

Go Programming Cookbook
Second Edition

Over 85 recipes to build modular, readable, and testable
Golang applications across various domains

Aaron Torres

BIRMINGHAM - MUMBAI

Go Programming Cookbook
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Shahnish Khan
Content Development Editor: Rohit Kumar Singh
Technical Editor: Romy Dias
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Aparna Bhagat
Graphic Coordinator: Alishon Mendonsa

First published: June 2017
Second edition: July 2019

Production reference: 1190719

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-098-2

www.packtpub.com

http://www.packtpub.com

To my wife, Kaylee, and my daughters, Hazel, Oleander, and Aranea. Thank you for your
patience, love, and support. This book would not be possible without you.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Aaron Torres received his master's degree in computer science from the New Mexico
Institute of Mining and Technology. He has worked on distributed systems in high-
performance computing and in large-scale web and microservices applications. He
currently leads a team of Go developers that refines and focuses on Go best practices with
an emphasis on continuous delivery and automated testing.

Aaron has published a number of papers and has several patents in the area of storage and
I/O. He is passionate about sharing his knowledge and ideas with others. He is also a huge
fan of the Go language and open source for backend systems and development.

About the reviewer
Eduard Bondarenko is a software developer living in Kyiv, Ukraine. He started
programming using BASIC on ZXSpectrum a long time ago. Later, he worked in the web
development domain. He has used Ruby on Rails for over 8 years. Having used Ruby for a
long time, he discovered Clojure in early 2009, and liked the simplicity of language. Besides
Ruby and Clojure, he is interested in Go and ReasonML development.

I want to thank my wonderful wife, kids, and parents for all the love, support, and help
they are giving to me.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: I/O and Filesystems 7
Technical requirements 8
Using the common I/O interfaces 8

How to do it... 9
How it works... 12

Using the bytes and strings packages 12
How to do it... 13
How it works... 17

Working with directories and files 17
How to do it... 17
How it works... 21

Working with the CSV format 22
How to do it... 22
How it works... 27

Working with temporary files 27
How to do it... 28
How it works... 30

Working with text/template and html/template 30
How to do it... 30
How it works... 37

Chapter 2: Command-Line Tools 38
Technical requirements 39
Using command-line flags 39

How to do it... 39
How it works... 43

Using command-line arguments 43
How to do it... 44
How it works... 47

Reading and setting environment variables 48
How to do it... 48
How it works... 52

Configuration using TOML, YAML, and JSON 52
How to do it... 53
How it works... 59

Working with Unix pipes 59
How to do it... 60
How it works... 62

Table of Contents

[ii]

Catching and handling signals 62
How to do it... 62
How it works... 65

An ANSI coloring application 65
How to do it... 65
How it works... 68

Chapter 3: Data Conversion and Composition 69
Technical requirements 69
Converting data types and interface casting 70

How to do it... 70
How it works... 74

Working with numeric data types using math and math/big 74
How to do it... 74
How it works... 78

Currency conversions and float64 considerations 78
How to do it... 78
How it works... 82

Using pointers and SQL NullTypes for encoding and decoding 82
How to do it... 83
How it works... 88

Encoding and decoding Go data 88
How to do it... 88
How it works... 92

Structure tags and basic reflection in Go 93
How to do it... 93
How it works... 98

Implementing collections via closures 99
How to do it... 99
How it works... 103

Chapter 4: Error Handling in Go 104
Technical requirements 104
Handling errors and the Error interface 105

How to do it... 105
How it works... 108

Using the pkg/errors package and wrapping errors 108
How to do it... 109
How it works... 112

Using the log package and understanding when to log errors 112
How to do it... 113
How it works... 115

Structured logging with the apex and logrus packages 116
How to do it... 116
How it works... 120

Table of Contents

[iii]

Logging with the context package 120
How to do it... 120
How it works... 123

Using package-level global variables 124
How to do it... 124
How it works... 127

Catching panics for long-running processes 127
How to do it... 127
How it works... 129

Chapter 5: Network Programming 130
Technical requirements 130
Writing a TCP/IP echo server and client 131

How to do it... 131
How it works... 134

Writing a UDP server and client 135
How to do it... 135
How it works... 139

Working with domain name resolution 139
How to do it... 140
How it works... 142

Working with WebSockets 142
How to do it... 143
How it works... 147

Working with net/rpc for calling remote methods 148
How to do it... 148
How it works... 151

Using net/mail for parsing emails 152
How to do it... 152
How it works... 154

Chapter 6: All about Databases and Storage 155
Using the database/sql package with MySQL 155

Getting ready 156
How to do it... 156
How it works... 160

Executing a database transaction interface 161
Getting ready 161
How to do it... 161
How it works... 165

Connection pooling, rate limiting, and timeouts for SQL 165
Getting ready 165
How to do it... 166
How it works... 168

Working with Redis 169

Table of Contents

[iv]

Getting ready 169
How to do it... 169
How it works... 173

Using NoSQL with MongoDB 173
Getting ready 174
How to do it... 174
How it works... 177

Creating storage interfaces for data portability 177
Getting ready 178
How to do it... 178
How it works... 182

Chapter 7: Web Clients and APIs 183
Technical requirements 183
Initializing, storing, and passing http.Client structures 184

How to do it... 184
How it works... 188

Writing a client for a REST API 188
How to do it... 189
How it works... 192

Executing parallel and async client requests 192
How to do it... 192
How it works... 195

Making use of OAuth2 clients 195
Getting ready 196
How to do it... 196
How it works... 199

Implementing an OAuth2 token storage interface 199
Getting ready 200
How to do it... 200
How it works... 205

Wrapping a client in added functionality and function composition 206
How to do it... 207
How it works... 210

Understanding GRPC clients 211
Getting ready 211
How to do it... 211
How it works... 215

Using twitchtv/twirp for RPC 215
Getting ready 216
How to do it... 216
How it works... 220

Chapter 8: Microservices for Applications in Go 221
Technical requirements 222

Table of Contents

[v]

Working with web handlers, requests, and ResponseWriter
instances 222

How to do it... 223
How it works... 226

Using structures and closures for stateful handlers 226
How to do it... 227
How it works... 231

Validating input for Go structures and user inputs 231
How to do it... 231
How it works... 235

Rendering and content negotiation 236
How to do it... 236
How it works... 239

Implementing and using middleware 239
How to do it... 240
How it works... 244

Building a reverse proxy application 244
How to do it... 244
How it works... 248

Exporting GRPC as a JSON API 248
Getting ready 248
How to do it... 249
How it works... 255

Chapter 9: Testing Go Code 256
Technical requirements 256
Mocking using the standard library 257

How to do it... 257
How it works... 261

Using the Mockgen package to mock interfaces 261
Getting ready 262
How to do it... 262
How it works... 265

Using table-driven tests to improve coverage 266
How to do it... 266
How it works... 268

Using third-party testing tools 269
Getting ready 269
How to do it... 269
How it works... 273

Behavior testing using Go 274
Getting ready 274
How to do it... 275
How it works... 278

Table of Contents

[vi]

Chapter 10: Parallelism and Concurrency 280
Technical requirements 281
Using channels and the select statement 281

How to do it... 281
How it works... 284

Performing async operations with sync.WaitGroup 285
How to do it... 285
How it works... 289

Using atomic operations and mutex 289
How to do it... 290
How it works... 293

Using the context package 294
How to do it... 294
How it works... 297

Executing state management for channels 297
How to do it... 298
How it works... 301

Using the worker pool design pattern 302
How to do it... 302
How it works... 307

Using workers to create pipelines 307
How to do it... 307
How it works... 312

Chapter 11: Distributed Systems 313
Technical requirements 313
Using service discovery with Consul 314

How to do it... 314
How it works... 317

Implementing basic consensus using Raft 318
How to do it... 318
How it works... 325

Using containerization with Docker 326
Getting ready 326
How to do it... 326
How it works... 330

Orchestration and deployment strategies 330
How to do it... 331
How it works... 334

Monitoring applications 334
How to do it... 334
How it works... 338

Collecting metrics 338
Getting ready 339
How to do it... 339

Table of Contents

[vii]

How it works... 342

Chapter 12: Reactive Programming and Data Streams 343
Technical requirements 343
Using Goflow for data flow programming 344

How to do it... 344
How it works... 347

Using Kafka with Sarama 348
Getting ready 348
How to do it... 348
How it works... 351

Using async producers with Kafka 351
Getting ready 352
How to do it... 352
How it works... 355

Connecting Kafka to Goflow 355
Getting ready 356
How to do it... 356
How it works... 359

Writing a GraphQL server in Go 360
How to do it... 360
How it works... 366

Chapter 13: Serverless Programming 367
Go programming on Lambda with Apex 367

Getting ready 368
How to do it... 368
How it works... 372

Apex serverless logging and metrics 372
Getting ready 373
How to do it... 373
How it works... 376

Google App Engine with Go 376
Getting ready 377
How to do it... 377
How it works... 381

Working with Firebase using firebase.google.com/go 382
Getting ready 382
How to do it... 383
How it works... 386

Chapter 14: Performance Improvements, Tips, and Tricks 387
Technical requirements 387
Using the pprof tool 388

How to do it... 388
How it works... 392

Table of Contents

[viii]

Benchmarking and finding bottlenecks 393
How to do it... 393
How it works... 397

Memory allocation and heap management 397
How to do it... 397
How it works... 400

Using fasthttprouter and fasthttp 401
How to do it... 401
How it works... 404

Other Books You May Enjoy 405

Index 408

Preface
Thank you for choosing this book! I hope it will be a handy reference for developers to
quickly look up Go development patterns. It is meant to be a companion to other resources
and a reference that will hopefully be useful long after reading it once. Each recipe in this
book includes working, simple, and tested code that can be used as a reference or
foundation for your own applications. The book covers a range of content from basic to
advanced topics.

Who this book is for
This book is aimed for web developers, programmers, and enterprise developers. Basic
knowledge of the Go language is assumed. Experience with backend application
development is not necessary, but may help understand the motivation behind some of the
recipes.

This book serves as a good reference for Go developers who are already proficient but need
a quick reminder, example, or reference. With the open source repository, it should be
possible to share these examples quickly with a team as well. If you are looking for quick
solutions to common and not-so-common problems in Go programming, this book is for
you.

What this book covers
Chapter 1, I/O and Filesystems, covers common Go I/O interfaces and explores working
with filesystems. This includes temporary files, templates, and CSV files.

Chapter 2, Command-Line Tools, looks at taking in user input via the command line and
explores processing common datatypes such as TOML, YAML, and JSON.

Chapter 3, Data Conversion and Composition, demonstrates methods for casting and
converting between Go interfaces and data types. It also showcases encoding strategies and
some functional design patterns for Go.

Preface

[2]

Chapter 4, Error Handling in Go, showcases strategies to handle errors in Go. It explores
how to pass errors, handle them, and log them.

Chapter 5, Network Programming, demonstrates usage of various networking primitives
such as UDP and TCP/IP. It also explores Domain Name System (DNS), working with raw
email messages, and basic Remote Procedure Call (RPC).

Chapter 6, All about Databases and Storage, deals with various storage libraries for accessing
data storage systems such as MySQL. It also demonstrates the use of interfaces to decouple
your library from your application logic.

Chapter 7, Web Clients and APIs, implements Go HTTP client interfaces, REST clients,
OAuth2 clients, decorating and extending clients, and gRPC.

Chapter 8, Microservices for Applications in Go, explores web handlers, passing in a state to a
handler, validation of user input, and middleware.

Chapter 9, Testing Go Code, focuses on mocking, test coverage, fuzzing, behavior testing,
and helpful testing tools.

Chapter 10, Parallelism and Concurrency, provides a reference for channels and async
operations, atomic values, Go context objects, and channel state management.

Chapter 11, Distributed Systems, implements service discovery, Docker containerization,
metrics and monitoring, and orchestration. It mostly deals with deployment and
productionization of Go applications.

Chapter 12, Reactive Programming and Data Streams, explores reactive and dataflow
applications, Kafka and distributed message queues, and GraphQL servers.

Chapter 13, Serverless Programming, deals with deploying Go applications without
maintaining a server. This includes using Google App Engine, Firebase, Lambda, and
logging in a serverless environment.

Chapter 14, Performance Improvements, Tips, and Tricks, deals with benchmarking,
identifying bottlenecks, optimizing, and improving the HTTP performance for Go
applications.

Preface

[3]

To get the most out of this book
To use this book, you'll need the following:

A Unix programming environment.
The latest version of the Go 1.x series.
An internet connection.
Permission to install additional packages as described in each chapter.
Prerequisites and other installation requirements for each recipe are mentioned
in the Technical requirements section of the respective chapters.

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Go- Programming- Cookbook- Second- Edition. We also have other code
bundles from our rich catalog of books and videos available at https:/ / github. com/
PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Go-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Code in Action
Visit the following link to check out videos of the code being run: http:/ /bit. ly/ 2J2uqQ3

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The bytes library provides a number of convenient functions when working
with data."

A block of code is set as follows:

 b, err := ioutil.ReadAll(r)
 if err != nil {
 return "", err
 }
 return string(b), nil
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 package bytestrings
 import (
 "bytes"
 "io"
 "io/ioutil"
)

Any command-line input or output is written as follows:

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/Chapter01/interfaces

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3
http://bit.ly/2J2uqQ3

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
I/O and Filesystems

Go provides excellent support for both basic and complex I/O. The recipes in this chapter
will explore common Go interfaces that are used to deal with I/O and show you how to
make use of them. The Go standard library frequently uses these interfaces, and they will
be used by recipes throughout the book.

You'll learn how to work with data in memory and in the form of streams. You'll see
examples of working with files, directories, and the CSV format. The temporary files recipe
looks at a mechanism to work with files without the overhead of dealing with name
collision and more. Lastly, we'll explore Go standard templates for both plain text and
HTML.

These recipes should lay the foundation for the use of interfaces to represent and modify
data, and should help you think about data in an abstract and flexible way.

In this chapter, the following recipes will be covered:

Using the common I/O interfaces
Using the bytes and strings packages
Working with directories and files
Working with the CSV format
Working with temporary files
Working with text/template and html/template

I/O and Filesystems Chapter 1

[8]

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system at https:/ /1.
golang.org/ doc/ install.
Open a Terminal or console application and create and navigate to a project2.
directory, such as ~/projects/go-programming-cookbook. All code will be
run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-3.
original, as shown in the following code. It is recommended that you work
from that directory rather than typing the examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Using the common I/O interfaces
The Go language provides a number of I/O interfaces that are used throughout the
standard library. It is best practice to make use of these interfaces wherever possible rather
than passing structures or other types directly. Two powerful interfaces we will explore in
this recipe are the io.Reader and io.Writer interfaces. These interfaces are used
throughout the standard library, and understanding how to use them will make you a
better Go developer.

The Reader and Writer interfaces look like this:

type Reader interface {
 Read(p []byte) (n int, err error)
}

type Writer interface {
 Write(p []byte) (n int, err error)
}

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

I/O and Filesystems Chapter 1

[9]

Go also makes it easy to combine interfaces. For example, take a look at the following code:

type Seeker interface {
 Seek(offset int64, whence int) (int64, error)
}

type ReadSeeker interface {
 Reader
 Seeker
}

This recipe will also explore an io function called Pipe(), as shown in the following code:

func Pipe() (*PipeReader, *PipeWriter)

The remainder of this book will make use of these interfaces.

How to do it...
The following steps cover how to write and run your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter1/interfaces.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter1/interfaces

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter1/interfaces

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter1/interfaces or use this as an exercise to write some of
your own code!

I/O and Filesystems Chapter 1

[10]

Create a file called interfaces.go with the following contents:5.

 package interfaces

 import (
 "fmt"
 "io"
 "os"
)

 // Copy copies data from in to out first directly,
 // then using a buffer. It also writes to stdout
 func Copy(in io.ReadSeeker, out io.Writer) error {
 // we write to out, but also Stdout
 w := io.MultiWriter(out, os.Stdout)
 // a standard copy, this can be dangerous if there's a
 // lot of data in in
 if _, err := io.Copy(w, in); err != nil {
 return err
 }
 in.Seek(0, 0)

 // buffered write using 64 byte chunks
 buf := make([]byte, 64)
 if _, err := io.CopyBuffer(w, in, buf); err != nil {
 return err
 }

 // lets print a new line
 fmt.Println()
 return nil
 }

Create a file called pipes.go with the following contents:6.

 package interfaces

 import (
 "io"
 "os"
)
 // PipeExample helps give some more examples of using io
 //interfaces
 func PipeExample() error {
 // the pipe reader and pipe writer implement
 // io.Reader and io.Writer
 r, w := io.Pipe()

I/O and Filesystems Chapter 1

[11]

 // this needs to be run in a separate go routine
 // as it will block waiting for the reader
 // close at the end for cleanup
 go func() {
 // for now we'll write something basic,
 // this could also be used to encode json
 // base64 encode, etc.
 w.Write([]byte("test\n"))
 w.Close()
 }()
 if _, err := io.Copy(os.Stdout, r); err != nil {
 return err
 }
 return nil
 }

Create a new directory named example and navigate to it.7.
Create a main.go file with the following contents:8.

 package main

 import (
 "bytes"
 "fmt"
 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter1/bytestrings"
)
 func main() {
 in := bytes.NewReader([]byte("example"))
 out := &bytes.Buffer{}
 fmt.Print("stdout on Copy = ")
 if err := interfaces.Copy(in, out); err != nil {
 panic(err)
 }
 fmt.Println("out bytes buffer =", out.String())
 fmt.Print("stdout on PipeExample = ")
 if err := interfaces.PipeExample(); err != nil {
 panic(err)
 }
 }

Run go run ..9.

I/O and Filesystems Chapter 1

[12]

You may also run the following:10.

$ go build
$./example

You should see the following output:

$ go run .
stdout on Copy = exampleexample
out bytes buffer = exampleexample
stdout on PipeExample = test

If you copied or wrote your own tests, go up one directory and run go test,11.
and ensure that all tests pass.

How it works...
The Copy() function copies bytes between interfaces and treats that data like a stream.
Thinking of data as streams has a lot of practical uses, especially when working with
network traffic or filesystems. The Copy() function also creates a MultiWriter interface
that combines two writer streams and writes to them twice using ReadSeeker. If a Reader
interface was used instead, rather than seeing exampleexample, you would only see
example despite copying to the MultiWriter interface twice. You can also use a buffered
write if your stream is not fitted into the memory.

The PipeReader and PipeWriter structures implement the io.Reader and io.Writer
interfaces. They're connected, creating an in-memory pipe. The primary purpose of a pipe
is to read from a stream while simultaneously writing from the same stream to a different
source. In essence, it combines the two streams into a pipe.

Go interfaces are a clean abstraction to wrap data that performs common operations. This is
made apparent when doing I/O operations, and so the io package is a great resource for
learning about interface composition. The pipe package is often underused, but provides
great flexibility with thread safety when linking input and output streams.

Using the bytes and strings packages
The bytes and strings packages have a number of useful helpers to work with and
convert the data from string to byte types, and vice versa. They allow the creation of buffers
that work with a number of common I/O interfaces.

I/O and Filesystems Chapter 1

[13]

How to do it...
The following steps cover how to write and run your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter1/bytestrings.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter1/bytestrings

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter1/bytestrings

Copy the tests from ~/projects/go-programming-cookbook-4.
original/chapter1/bytestrings or use this as an exercise to write some of
your own code!
Create a file called buffer.go with the following contents:5.

 package bytestrings
 import (
 "bytes"
 "io"
 "io/ioutil"
)
 // Buffer demonstrates some tricks for initializing bytes
 //Buffers
 // These buffers implement an io.Reader interface
 func Buffer(rawString string) *bytes.Buffer {
 // we'll start with a string encoded into raw bytes
 rawBytes := []byte(rawString)
 // there are a number of ways to create a buffer from
 // the raw bytes or from the original string
 var b = new(bytes.Buffer)
 b.Write(rawBytes)
 // alternatively
 b = bytes.NewBuffer(rawBytes)
 // and avoiding the initial byte array altogether
 b = bytes.NewBufferString(rawString)
 return b
 }
 // ToString is an example of taking an io.Reader and consuming
 // it all, then returning a string

I/O and Filesystems Chapter 1

[14]

 func toString(r io.Reader) (string, error) {
 b, err := ioutil.ReadAll(r)
 if err != nil {
 return "", err
 }
 return string(b), nil
 }

Create a file called bytes.go with the following contents:6.

 package bytestrings
 import (
 "bufio"
 "bytes"
 "fmt"
)
 // WorkWithBuffer will make use of the buffer created by the
 // Buffer function
 func WorkWithBuffer() error {
 rawString := "it's easy to encode unicode into a byte
 array"

 b := Buffer(rawString)

 // we can quickly convert a buffer back into byes with
 // b.Bytes() or a string with b.String()
 fmt.Println(b.String())
 // because this is an io Reader we can make use of
 // generic io reader functions such as
 s, err := toString(b)
 if err != nil {
 return err
 }
 fmt.Println(s)

 // we can also take our bytes and create a bytes reader
 // these readers implement io.Reader, io.ReaderAt,
 // io.WriterTo, io.Seeker, io.ByteScanner, and
 // io.RuneScanner interfaces
 reader := bytes.NewReader([]byte(rawString))
 // we can also plug it into a scanner that allows
 // buffered reading and tokenzation
 scanner := bufio.NewScanner(reader)
 scanner.Split(bufio.ScanWords)
 // iterate over all of the scan events
 for scanner.Scan() {
 fmt.Print(scanner.Text())
 }

I/O and Filesystems Chapter 1

[15]

 return nil
 }

Create a file called string.go with the following contents:7.

 package bytestrings
 import (
 "fmt"
 "io"
 "os"
 "strings"
)
 // SearchString shows a number of methods
 // for searching a string
 func SearchString() {
 s := "this is a test"
 // returns true because s contains
 // the word this
 fmt.Println(strings.Contains(s, "this"))
 // returns true because s contains the letter a
 // would also match if it contained b or c
 fmt.Println(strings.ContainsAny(s, "abc"))
 // returns true because s starts with this
 fmt.Println(strings.HasPrefix(s, "this"))
 // returns true because s ends with this
 fmt.Println(strings.HasSuffix(s, "test"))
 }
 // ModifyString modifies a string in a number of ways
 func ModifyString() {
 s := "simple string"
 // prints [simple string]
 fmt.Println(strings.Split(s, " "))
 // prints "Simple String"
 fmt.Println(strings.Title(s))
 // prints "simple string"; all trailing and
 // leading white space is removed
 s = " simple string "
 fmt.Println(strings.TrimSpace(s))
 }
 // StringReader demonstrates how to create
 // an io.Reader interface quickly with a string
 func StringReader() {
 s := "simple stringn"
 r := strings.NewReader(s)
 // prints s on Stdout
 io.Copy(os.Stdout, r)
 }

I/O and Filesystems Chapter 1

[16]

Create a new directory named example and navigate to it.8.
Create a main.go file with the following contents:9.

 package main
 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter1/bytestrings"
 func main() {
 err := bytestrings.WorkWithBuffer()
 if err != nil {
 panic(err)
 }
 // each of these print to stdout
 bytestrings.SearchString()
 bytestrings.ModifyString()
 bytestrings.StringReader()
 }

Run go run ..10.
You may also run the following:11.

$ go build
$./example

You should see the following output:

$ go run .
it's easy to encode unicode into a byte array ??
it's easy to encode unicode into a byte array ??
it'seasytoencodeunicodeintoabytearray??true
true
true
true
[simple string]
Simple String
simple string
simple string

If you copied or wrote your own tests, go up one directory and run go test,12.
and ensure that all tests pass.

I/O and Filesystems Chapter 1

[17]

How it works...
The bytes library provides a number of convenience functions when working with data. A
buffer, for example, is far more flexible than an array of bytes when working with stream-
processing libraries or methods. Once you've created a buffer, it can be used to satisfy an
io.Reader interface so that you can take advantage of ioutil functions to manipulate the
data. For streaming applications, you'd probably want to use a buffer and a scanner. The
bufio package comes in handy for these cases. Sometimes, using an array or slice is more
appropriate for smaller datasets or when you have a lot of memory on your machine.

Go provides a lot of flexibility in converting data between interfaces when using these basic
types—it's relatively simple to convert between strings and bytes. When working with
strings, the strings package provides a number of convenience functions to work with,
search, and manipulate strings. In some cases, a good regular expression may be
appropriate, but most of the time, the strings and strconv packages are sufficient. The
strings package allows you to make a string look like a title, split it into an array, or trim
whitespace. It also provides a Reader interface of its own that can be used instead of the
bytes package reader type.

Working with directories and files
Working with directories and files can be difficult when you switch between platforms
(Windows and Linux, for example). Go provides cross-platform support to work with files
and directories in the os and ioutils packages. We've already seen examples of ioutils,
but now we'll explore how to use them in another way!

How to do it...
The following steps cover how to write and run your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter1/filedirs.
Navigate to this directory.2.

I/O and Filesystems Chapter 1

[18]

Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter1/filedirs

You should see a file called go.mod that contains the following contents:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter1/filedirs

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter1/filedirs or use this as an exercise to write some of your
own code!
Create a file called dirs.go with the following contents:5.

 package filedirs
 import (
 "errors"
 "io"
 "os"
)
 // Operate manipulates files and directories
 func Operate() error {
 // this 0755 is similar to what you'd see with Chown
 // on a command line this will create a director
 // /tmp/example, you may also use an absolute path
 // instead of a relative one
 if err := os.Mkdir("example_dir", os.FileMode(0755));
 err != nil {
 return err
 }

 // go to the /tmp directory
 if err := os.Chdir("example_dir"); err != nil {
 return err
 }

 // f is a generic file object
 // it also implements multiple interfaces
 // and can be used as a reader or writer
 // if the correct bits are set when opening
 f, err := os.Create("test.txt")
 if err != nil {
 return err
 }

 // we write a known-length value to the file and

I/O and Filesystems Chapter 1

[19]

 // validate that it wrote correctly
 value := []byte("hellon")
 count, err := f.Write(value)
 if err != nil {
 return err
 }
 if count != len(value) {
 return errors.New("incorrect length returned
 from write")
 }

 if err := f.Close(); err != nil {
 return err
 }

 // read the file
 f, err = os.Open("test.txt")
 if err != nil {
 return err
 }
 io.Copy(os.Stdout, f)
 if err := f.Close(); err != nil {
 return err
 }
 // go to the /tmp directory
 if err := os.Chdir(".."); err != nil {
 return err
 }
 // cleanup, os.RemoveAll can be dangerous if you
 // point at the wrong directory, use user input,
 // and especially if you run as root
 if err := os.RemoveAll("example_dir"); err != nil {
 return err
 }
 return nil
 }

Create a file called files.go with the following contents:6.

 package filedirs
 import (
 "bytes"
 "io"
 "os"
 "strings"
)
 // Capitalizer opens a file, reads the contents,
 // then writes those contents to a second file

I/O and Filesystems Chapter 1

[20]

 func Capitalizer(f1 *os.File, f2 *os.File) error {
 if _, err := f1.Seek(0, io.SeekStart); err != nil {
 return err
 }
 var tmp = new(bytes.Buffer)
 if _, err := io.Copy(tmp, f1); err != nil {
 return err
 }

 s := strings.ToUpper(tmp.String())
 if _, err := io.Copy(f2, strings.NewReader(s)); err !=
 nil {
 return err
 }
 return nil
 }
 // CapitalizerExample creates two files, writes to one
 //then calls Capitalizer() on both
 func CapitalizerExample() error {
 f1, err := os.Create("file1.txt")
 if err != nil {
 return err
 }
 if _, err := f1.Write([]byte(`this file contains a
 number of words and new lines`)); err != nil {
 return err
 }
 f2, err := os.Create("file2.txt")
 if err != nil {
 return err
 }
 if err := Capitalizer(f1, f2); err != nil {
 return err
 }
 if err := os.Remove("file1.txt"); err != nil {
 return err
 }
 if err := os.Remove("file2.txt"); err != nil {
 return err
 }
 return nil
 }

Create a new directory named example and navigate to it.7.

I/O and Filesystems Chapter 1

[21]

Create a main.go file with the following contents:8.

 package main
 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter1/filedirs"
 func main() {
 if err := filedirs.Operate(); err != nil {
 panic(err)
 }
 if err := filedirs.CapitalizerExample(); err != nil {
 panic(err)
 }
 }

Run go run ..9.
You may also run the following:10.

$ go build
$./example

You should see the following output:

$ go run .
hello

If you copied or wrote your own tests, go up one directory and run go test,11.
and ensure that all tests pass.

How it works...
If you're familiar with files in Unix, the Go os library should feel very familiar. You can
perform basically all common operations—Stat a file to collect attributes, collect a file with
different permissions, and create and modify directories and files. In this recipe, we
performed a number of manipulations to directories and files and then cleaned up after
ourselves.

Working with file objects is very similar to working with in-memory streams. Files also
provide a number of convenience functions directly, such as Chown, Stat, and Truncate.
The easiest way to get comfortable with files is to make use of them. In all the previous
recipes, we have to be careful to clean up after our programs.

I/O and Filesystems Chapter 1

[22]

Working with files is a very common operation when building backend applications. Files
can be used for configuration, secret keys, as temporary storage, and more. Go wraps OS
system calls using the os package and allows the same functions to operate regardless of
whether you're using Windows or Unix.

Once your file is opened and stored in a File structure, it can easily be passed into a
number of interfaces (we discussed these interfaces earlier). All the earlier examples can use
os.File structures directly instead of buffers and in-memory data streams in order to
operate on data stored on the disk . This may be useful for certain techniques, such as
writing all logs to stderr and the file at the same time with a single write call.

Working with the CSV format
CSV is a common format that is used to manipulate data. It's common, for example, to
import or export a CSV file into Excel. The Go CSV package operates on data interfaces, and
as a result, it's easy to write data to a buffer, stdout, a file, or a socket. The examples in this
section will show some common ways to get data into and out of the CSV format.

How to do it...
These steps cover how to write and run your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter1/csvformat.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter1/csvformat

You should see a file called go.mod that contains the following contents:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter1/csvformat

I/O and Filesystems Chapter 1

[23]

Copy the tests from ~/projects/go-programming-cookbook-4.
original/chapter1/csvformat or use this as an exercise to write some of
your own code!
Create a file called read_csv.go with the following contents:5.

 package csvformat
 import (
 "bytes"
 "encoding/csv"
 "fmt"
 "io"
 "strconv"
)
 // Movie will hold our parsed CSV
 type Movie struct {
 Title string
 Director string
 Year int
 }
 // ReadCSV gives shows some examples of processing CSV
 // that is passed in as an io.Reader
 func ReadCSV(b io.Reader) ([]Movie, error) {
 r := csv.NewReader(b)
 // These are some optional configuration options
 r.Comma = ';'
 r.Comment = '-'
 var movies []Movie
 // grab and ignore the header for now
 // we may also want to use this for a dictionary key or
 // some other form of lookup
 _, err := r.Read()
 if err != nil && err != io.EOF {
 return nil, err
 }
 // loop until it's all processed
 for {
 record, err := r.Read()
 if err == io.EOF {
 break
 } else if err != nil {
 return nil, err
 }
 year, err := strconv.ParseInt(record[2], 10,
 64)
 if err != nil {
 return nil, err
 }

I/O and Filesystems Chapter 1

[24]

 m := Movie{record[0], record[1], int(year)}
 movies = append(movies, m)
 }
 return movies, nil
 }

Add this additional function to read_csv.go, as follows:6.

 // AddMoviesFromText uses the CSV parser with a string
 func AddMoviesFromText() error {
 // this is an example of us taking a string, converting
 // it into a buffer, and reading it
 // with the csv package
 in := `
 - first our headers
 movie title;director;year released
 - then some data
 Guardians of the Galaxy Vol. 2;James Gunn;2017
 Star Wars: Episode VIII;Rian Johnson;2017
 `
 b := bytes.NewBufferString(in)
 m, err := ReadCSV(b)
 if err != nil {
 return err
 }
 fmt.Printf("%#vn", m)
 return nil
 }

Create a file called write_csv.go with the following contents:7.

 package csvformat
 import (
 "bytes"
 "encoding/csv"
 "io"
 "os"
)
 // A Book has an Author and Title
 type Book struct {
 Author string
 Title string
 }
 // Books is a named type for an array of books
 type Books []Book
 // ToCSV takes a set of Books and writes to an io.Writer
 // it returns any errors
 func (books *Books) ToCSV(w io.Writer) error {

I/O and Filesystems Chapter 1

[25]

 n := csv.NewWriter(w)
 err := n.Write([]string{"Author", "Title"})
 if err != nil {
 return err
 }
 for _, book := range *books {
 err := n.Write([]string{book.Author,
 book.Title})
 if err != nil {
 return err
 }
 }
 n.Flush()
 return n.Error()
 }

Add these additional functions to write_csv.go, as follows:8.

 // WriteCSVOutput initializes a set of books
 // and writes the to os.Stdout
 func WriteCSVOutput() error {
 b := Books{
 Book{
 Author: "F Scott Fitzgerald",
 Title: "The Great Gatsby",
 },
 Book{
 Author: "J D Salinger",
 Title: "The Catcher in the Rye",
 },
 }
 return b.ToCSV(os.Stdout)
 }

 // WriteCSVBuffer returns a buffer csv for
 // a set of books
 func WriteCSVBuffer() (*bytes.Buffer, error) {
 b := Books{
 Book{
 Author: "F Scott Fitzgerald",
 Title: "The Great Gatsby",
 },
 Book{
 Author: "J D Salinger",
 Title: "The Catcher in the Rye",
 },
 }
 w := &bytes.Buffer{}

I/O and Filesystems Chapter 1

[26]

 err := b.ToCSV(w)
 return w, err
 }

Create a new directory named example and navigate to it.9.
Create a main.go file with the following contents:10.

 package main
 import (
 "fmt"
 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter1/csvformat"
)
 func main() {
 if err := csvformat.AddMoviesFromText(); err != nil {
 panic(err)
 }
 if err := csvformat.WriteCSVOutput(); err != nil {
 panic(err)
 }
 buffer, err := csvformat.WriteCSVBuffer()
 if err != nil {
 panic(err)
 }
 fmt.Println("Buffer = ", buffer.String())
 }

Run go run ..11.
You may also run the following:12.

$ go build
$./example

You should see the following output:

$ go run .
[]csvformat.Movie{csvformat.Movie{Title:"Guardians of the
Galaxy Vol. 2", Director:"James Gunn", Year:2017},
csvformat.Movie{Title:"Star Wars: Episode VIII", Director:"Rian
Johnson", Year:2017}}
Author,Title
F Scott Fitzgerald,The Great Gatsby
J D Salinger,The Catcher in the Rye
Buffer = Author,Title
F Scott Fitzgerald,The Great Gatsby
J D Salinger,The Catcher in the Rye

I/O and Filesystems Chapter 1

[27]

If you copied or wrote your own tests, go up one directory and run go test,13.
and ensure that all tests pass.

How it works...
In order to learn how to read a CSV format, we first represent our data as a structure. In Go,
it's very useful to format data as a structure, as it makes things such as marshaling and
encoding relatively simple. Our read example uses movies as our data type. The function
takes an io.Reader interface that holds our CSV data as an input. This could be a file or a
buffer. We then use that data to create and populate a Movie structure, including
converting the year into an integer. We also add options to the CSV parser to use ; (semi-
colon) as the separator and - (hyphen) as a comment line.

Next, we explore the same idea, but in reverse. Novels are represented with a title and an
author. We initialize an array of novels and then write specific novels in the CSV format to
an io.Writer interface. Once again, this can be a file, stdout, or a buffer.

The CSV package is an excellent example of why you'd want to think of data flows in Go as
implementing common interfaces. It's easy to change the source and destination of our data
with small one-line tweaks, and we can easily manipulate CSV data without using an
excessive amount of memory or time. For example, it would be possible to read from a
stream of data one record at a time and write to a separate stream in a modified format one
record at a time. Doing this would not incur significant memory or processor usage.

Later, when we explore data pipelines and worker pools, you'll see how these ideas can be
combined and how to handle these streams in parallel.

Working with temporary files
We've created and made use of files for a number of examples so far. We've also had to
manually deal with cleanup, name collision, and more. Temporary files and directories are
a quicker, simpler way to handle these cases.

I/O and Filesystems Chapter 1

[28]

How to do it...
The following steps cover how to write and run your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter1/tempfiles.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter1/tempfiles

You should see a file called go.mod that contains the following contents:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter1/tempfiles

Copy the tests from ~/projects/go-programming-cookbook-4.
original/chapter1/tempfiles or use this as an exercise to write some of
your own code!
Create a file called temp_files.go with the following contents:5.

 package tempfiles
 import (
 "fmt"
 "io/ioutil"
 "os"
)
 // WorkWithTemp will give some basic patterns for working
 // with temporary files and directories
 func WorkWithTemp() error {
 // If you need a temporary place to store files with
 // the same name ie. template1-10.html a temp directory
 // is a good way to approach it, the first argument
 // being blank means it will use create the directory
 // in the location returned by
 // os.TempDir()
 t, err := ioutil.TempDir("", "tmp")
 if err != nil {
 return err
 }
 // This will delete everything inside the temp file
 // when this function exits if you want to do this
 // later, be sure to return the directory name to the
 // calling function
 defer os.RemoveAll(t)

I/O and Filesystems Chapter 1

[29]

 // the directory must exist to create the tempfile
 // created. t is an *os.File object.
 tf, err := ioutil.TempFile(t, "tmp")
 if err != nil {
 return err
 }
 fmt.Println(tf.Name())
 // normally we'd delete the temporary file here, but
 // because we're placing it in a temp directory, it
 // gets cleaned up by the earlier defer

 return nil
 }

Create a new directory named example and navigate to it.6.
Create a main.go file with the following contents:7.

 package main
 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter1/tempfiles"
 func main() {
 if err := tempfiles.WorkWithTemp(); err != nil {
 panic(err)
 }
 }

Run go run ..8.
You may also run the following:9.

$ go build
$./example

You should see the following output (with a different path):

$ go run .
/var/folders/kd/ygq5l_0d1xq1lzk_c7htft900000gn/T
/tmp764135258/tmp588787953

If you copied or wrote your own tests, go up one directory and run go test,10.
and ensure that all tests pass.

I/O and Filesystems Chapter 1

[30]

How it works...
Creating temporary files and directories can be done using the ioutil package. Although
you must still delete the files yourself, using RemoveAll is the convention, and it will do
this for you with only one extra line of code.

When writing tests, the use of temporary files is highly recommended. It's also useful for
things such as build artifacts and more. The Go ioutil package will try and honor the OS
preferences by default, but it allows you to fall back to other directories if required.

Working with text/template and
html/template
Go provides rich support for templates. It is simple to nest templates, import functions,
represent variables, iterate over data, and so on. If you need something more sophisticated
than a CSV writer, templates may be a great solution.

Another application for templates is for websites. When we want to render server-side data
to the client, templates fit the bill nicely. At first, Go templates can appear confusing. This
section will explore working with templates, collecting templates inside of a directory, and
working with HTML templates.

How to do it...
These steps cover how to write and run your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter1/templates.
Navigate to this directory.2.

I/O and Filesystems Chapter 1

[31]

Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter1/templates

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter1/templates

Copy the tests from ~/projects/go-programming-cookbook-4.
original/chapter1/templates or use this as an exercise to write some of
your own code!
Create a file called templates.go with the following contents:5.

 package templates
 import (
 "os"
 "strings"
 "text/template"
)
 const sampleTemplate = `
 This template demonstrates printing a {{ .Variable |
 printf "%#v" }}.
 {{if .Condition}}
 If condition is set, we'll print this
 {{else}}
 Otherwise, we'll print this instead
 {{end}}
 Next we'll iterate over an array of strings:
 {{range $index, $item := .Items}}
 {{$index}}: {{$item}}
 {{end}}

 We can also easily import other functions like
 strings.Split
 then immediately used the array created as a result:
 {{ range $index, $item := split .Words ","}}
 {{$index}}: {{$item}}
 {{end}}
 Blocks are a way to embed templates into one another
 {{ block "block_example" .}}
 No Block defined!
 {{end}}
 {{/*
 This is a way
 to insert a multi-line comment

I/O and Filesystems Chapter 1

[32]

 */}}
`
 const secondTemplate = `
 {{ define "block_example" }}
 {{.OtherVariable}}
 {{end}}
`

Add a function to the end of templates.go, as follows: 6.

 // RunTemplate initializes a template and demonstrates a
 // variety of template helper functions
 func RunTemplate() error {
 data := struct {
 Condition bool
 Variable string
 Items []string
 Words string
 OtherVariable string
 }{
 Condition: true,
 Variable: "variable",
 Items: []string{"item1", "item2", "item3"},
 Words:
 "another_item1,another_item2,another_item3",
 OtherVariable: "I'm defined in a second
 template!",
 }
 funcmap := template.FuncMap{
 "split": strings.Split,
 }
 // these can also be chained
 t := template.New("example")
 t = t.Funcs(funcmap)
 // We could use Must instead to panic on error
 // template.Must(t.Parse(sampleTemplate))
 t, err := t.Parse(sampleTemplate)
 if err != nil {
 return err
 }
 // to demonstrate blocks we'll create another template
 // by cloning the first template, then parsing a second
 t2, err := t.Clone()
 if err != nil {
 return err
 }
 t2, err = t2.Parse(secondTemplate)
 if err != nil {

I/O and Filesystems Chapter 1

[33]

 return err
 }
 // write the template to stdout and populate it
 // with data
 err = t2.Execute(os.Stdout, &data)
 if err != nil {
 return err
 }
 return nil
 }

Create a file called template_files.go with the following contents:7.

 package templates
 import (
 "io/ioutil"
 "os"
 "path/filepath"
 "text/template"
)
 //CreateTemplate will create a template file that contains data
 func CreateTemplate(path string, data string) error {
 return ioutil.WriteFile(path, []byte(data),
 os.FileMode(0755))
 }

 // InitTemplates sets up templates from a directory
 func InitTemplates() error {
 tempdir, err := ioutil.TempDir("", "temp")
 if err != nil {
 return err
 }
 defer os.RemoveAll(tempdir)
 err = CreateTemplate(filepath.Join(tempdir, "t1.tmpl"),
 `Template 1! {{ .Var1 }}
 {{ block "template2" .}} {{end}}
 {{ block "template3" .}} {{end}}
 `)
 if err != nil {
 return err
 }
 err = CreateTemplate(filepath.Join(tempdir, "t2.tmpl"),
 `{{ define "template2"}}Template 2! {{ .Var2 }}{{end}}
 `)
 if err != nil {
 return err
 }

I/O and Filesystems Chapter 1

[34]

 err = CreateTemplate(filepath.Join(tempdir, "t3.tmpl"),
 `{{ define "template3"}}Template 3! {{ .Var3 }}{{end}}
 `)
 if err != nil {
 return err
 }
 pattern := filepath.Join(tempdir, "*.tmpl")

 // Parse glob will combine all the files that match
 // glob and combine them into a single template
 tmpl, err := template.ParseGlob(pattern)
 if err != nil {
 return err
 }
 // Execute can also work with a map instead
 // of a struct
 tmpl.Execute(os.Stdout, map[string]string{
 "Var1": "Var1!!",
 "Var2": "Var2!!",
 "Var3": "Var3!!",
 })

 return nil
 }

Create a file called html_templates.go with the following contents:8.

 package templates
 import (
 "fmt"
 "html/template"
 "os"
)
 // HTMLDifferences highlights some of the differences
 // between html/template and text/template
 func HTMLDifferences() error {
 t := template.New("html")
 t, err := t.Parse("<h1>Hello! {{.Name}}</h1>n")
 if err != nil {
 return err
 }
 // html/template auto-escapes unsafe operations like
 // javascript injection this is contextually aware and
 // will behave differently
 // depending on where a variable is rendered
 err = t.Execute(os.Stdout, map[string]string{"Name": "
 <script>alert('Can you see me?')</script>"})
 if err != nil {

I/O and Filesystems Chapter 1

[35]

 return err
 }
 // you can also manually call the escapers
 fmt.Println(template.JSEscaper(`example
 <example@example.com>`))
 fmt.Println(template.HTMLEscaper(`example
 <example@example.com>`))
 fmt.Println(template.URLQueryEscaper(`example
 <example@example.com>`))
 return nil
 }

Create a new directory named example and navigate to it.9.
Create a main.go file with the following contents:10.

 package main
 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter1/templates"
 func main() {
 if err := templates.RunTemplate(); err != nil {
 panic(err)
 }
 if err := templates.InitTemplates(); err != nil {
 panic(err)
 }
 if err := templates.HTMLDifferences(); err != nil {
 panic(err)
 }
 }

Run go run ..11.
You may also run the following:12.

$ go build
$./example

I/O and Filesystems Chapter 1

[36]

You should see the following output (with a different path):

If you copied or wrote your own tests, go up one directory and run go test,13.
and ensure that all tests pass.

I/O and Filesystems Chapter 1

[37]

How it works...
Go has two template packages: text/template and html/template. They share
functionality and a variety of functions. In general, you should use html/template to
render websites and text/template for everything else. Templates are plain text, but
variables and functions can be used inside of curly brace blocks.

The template packages also provide convenience methods to work with files. The example
that we used here creates a number of templates in a temporary directory and then reads
them all with a single line of code.

The html/template package is a wrapper around the text/template package. All of the
template examples work with the html/template package directly, using no modification
and only changing the import statement. HTML templates provide the added benefit of
context-aware safety; this prevents security breaches such as JavaScript injection.

The template packages provide what you'd expect from a modern template library. It's easy
to combine templates, add application logic, and ensure safety when emitting results to
HTML and JavaScript.

2
Command-Line Tools

Command-line applications are among the easiest ways to handle user input and output.
This chapter will focus on command-line-based interactions, such as command-line
arguments, configuration, and environment variables. We will conclude with a library for
coloring text output in Unix and Bash for Windows.

With the recipes in this chapter, you should be equipped to handle expected and
unexpected user input. The Catching and handling signals recipe is an example of cases
where users may send unexpected signals to your application, and the pipes recipe is a
good alternative to taking user inputs compared to flags or command-line arguments.

The ANSI color recipe will hopefully provide some examples of cleaning up output to
users. For example, in logging, being able to color text based on its purpose can sometimes
make large blocks of text significantly clearer.

In this chapter, we will cover the following recipes:

Using command-line flags
Using command-line arguments
Reading and setting environment variables
Configuration using TOML, YAML, and JSON
Working with Unix pipes
Catching and handling signals
An ANSI coloring application

Command-Line Tools Chapter 2

[39]

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system at https:/ /1.
golang.org/ doc/ install.
Open a Terminal or console application and create and navigate to a project2.
directory such as ~/projects/go-programming-cookbook. All of our code
will be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-3.
original and work from that directory rather than typing the examples
manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Using command-line flags
The flag package makes it simple to add command-line flag arguments to a Go
application. It has a few shortcomings—you tend to duplicate a lot of code in order to add
shorthand versions of flags, and they're ordered alphabetically from the help prompt. There
are a number of third-party libraries that attempt to address these shortcomings, but this
chapter will focus on the standard library version and not on those libraries.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/flags.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/flags

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Command-Line Tools Chapter 2

[40]

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/flags

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/flags, or use this as an opportunity to write some of
your own code!
Create a file called flags.go with the following contents:5.

 package main

 import (
 "flag"
 "fmt"
)

 // Config will be the holder for our flags
 type Config struct {
 subject string
 isAwesome bool
 howAwesome int
 countTheWays CountTheWays
 }

 // Setup initializes a config from flags that
 // are passed in
 func (c *Config) Setup() {
 // you can set a flag directly like so:
 // var someVar = flag.String("flag_name", "default_val",
 // "description")
 // but in practice putting it in a struct is generally
 // better longhand
 flag.StringVar(&c.subject, "subject", "", "subject is a
 string, it defaults to empty")
 // shorthand
 flag.StringVar(&c.subject, "s", "", "subject is a string,
 it defaults to empty (shorthand)")

 flag.BoolVar(&c.isAwesome, "isawesome", false, "is it
 awesome or what?")
 flag.IntVar(&c.howAwesome, "howawesome", 10, "how awesome
 out of 10?")

 // custom variable type
 flag.Var(&c.countTheWays, "c", "comma separated list of
 integers")

Command-Line Tools Chapter 2

[41]

 }

 // GetMessage uses all of the internal
 // config vars and returns a sentence
 func (c *Config) GetMessage() string {
 msg := c.subject
 if c.isAwesome {
 msg += " is awesome"
 } else {
 msg += " is NOT awesome"
 }

 msg = fmt.Sprintf("%s with a certainty of %d out of 10. Let
 me count the ways %s", msg, c.howAwesome,
 c.countTheWays.String())
 return msg
 }

Create a file called custom.go with the following contents:6.

 package main

 import (
 "fmt"
 "strconv"
 "strings"
)

 // CountTheWays is a custom type that
 // we'll read a flag into
 type CountTheWays []int

 func (c *CountTheWays) String() string {
 result := ""
 for _, v := range *c {
 if len(result) > 0 {
 result += " ... "
 }
 result += fmt.Sprint(v)
 }
 return result
 }

 // Set will be used by the flag package
 func (c *CountTheWays) Set(value string) error {
 values := strings.Split(value, ",")

 for _, v := range values {

Command-Line Tools Chapter 2

[42]

 i, err := strconv.Atoi(v)
 if err != nil {
 return err
 }
 *c = append(*c, i)
 }

 return nil
 }

Run the following command:7.

$ go mod tidy

Create a file called main.go with the following contents:8.

 package main

 import (
 "flag"
 "fmt"
)

 func main() {
 // initialize our setup
 c := Config{}
 c.Setup()

 // generally call this from main
 flag.Parse()

 fmt.Println(c.GetMessage())
 }

Run the following commands on the command line:9.

$ go build
$./flags -h

Try these and some other arguments; you should see the following output:10.

$ go build
$./flags -h
Usage of ./flags:
-c value
comma separated list of integers
-howawesome int
how awesome out of 10? (default 10)

Command-Line Tools Chapter 2

[43]

-isawesome
is it awesome or what? (default false)
-s string
subject is a string, it defaults to empty (shorthand)
-subject string
subject is a string, it defaults to empty
$./flags -s Go -isawesome -howawesome 10 -c 1,2,3
Go is awesome with a certainty of 10 out of 10. Let me count
the ways 1 ... 2 ... 3

If you copied or wrote your own tests, go up one directory and run go test,11.
and ensure that all the tests pass.

How it works...
This recipe attempts to demonstrate most of the common usages of the flag package. It
shows custom variable types, a variety of built-in variables, shorthand flags, and writing all
flags to a common structure. This is the first recipe to require a main function, as the main
usage of flag (flag.Parse()) should be called from main. As a result, the normal example
directory is omitted.

The example usage of this application shows that you get -h automatically to get a list of
flags that are included. Some other things to note are Boolean flags that are invoked
without arguments, and that the flag order doesn't matter.

The flag package is a quick way to structure input for command-line applications and
provide a flexible means of specifying upfront user input for things such as setting up log
levels or the verbosity of an application. In the Using command-line arguments recipe, we'll
explore flag sets and switch between them using arguments.

Using command-line arguments
The flags from the previous recipe are a type of command-line argument. This chapter will
expand on other uses for these arguments by constructing a command that supports nested
subcommands. This will demonstrate flagsets and also use positional arguments that are
passed into your application.

Like the previous recipe, this one requires a main function to run. There are a number of
third-party packages that deal with complex nested arguments and flags, but we'll
investigate how to do this using only the standard library.

Command-Line Tools Chapter 2

[44]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/cmdargs.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/cmdargs

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/cmdargs

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/cmdargs, or use this as an opportunity to write some of
your own code!
Create a file called cmdargs.go with the following contents:5.

 package main
 import (
 "flag"
 "fmt"
 "os"
)
 const version = "1.0.0"
 const usage = `Usage:
 %s [command]
 Commands:
 Greet
 Version
 `
 const greetUsage = `Usage:
 %s greet name [flag]
 Positional Arguments:
 name
 the name to greet
 Flags:
 `
 // MenuConf holds all the levels
 // for a nested cmd line argument
 type MenuConf struct {

Command-Line Tools Chapter 2

[45]

 Goodbye bool
 }
 // SetupMenu initializes the base flags
 func (m *MenuConf) SetupMenu() *flag.FlagSet {
 menu := flag.NewFlagSet("menu", flag.ExitOnError)
 menu.Usage = func() {
 fmt.Printf(usage, os.Args[0])
 menu.PrintDefaults()
 }
 return menu
 }
 // GetSubMenu return a flag set for a submenu
 func (m *MenuConf) GetSubMenu() *flag.FlagSet {
 submenu := flag.NewFlagSet("submenu", flag.ExitOnError)
 submenu.BoolVar(&m.Goodbye, "goodbye", false, "Say goodbye
 instead of hello")
 submenu.Usage = func() {
 fmt.Printf(greetUsage, os.Args[0])
 submenu.PrintDefaults()
 }
 return submenu
 }
 // Greet will be invoked by the greet command
 func (m *MenuConf) Greet(name string) {
 if m.Goodbye {
 fmt.Println("Goodbye " + name + "!")
 } else {
 fmt.Println("Hello " + name + "!")
 }
 }
 // Version prints the current version that is
 // stored as a const
 func (m *MenuConf) Version() {
 fmt.Println("Version: " + version)
 }

Create a file called main.go with the following contents:6.

package main

import (
 "fmt"
 "os"
 "strings"
)

func main() {
 c := MenuConf{}

Command-Line Tools Chapter 2

[46]

 menu := c.SetupMenu()

 if err := menu.Parse(os.Args[1:]); err != nil {
 fmt.Printf("Error parsing params %s, error: %v",
os.Args[1:], err)
 return
 }

 // we use arguments to switch between commands
 // flags are also an argument
 if len(os.Args) > 1 {
 // we don't care about case
 switch strings.ToLower(os.Args[1]) {
 case "version":
 c.Version()
 case "greet":
 f := c.GetSubMenu()
 if len(os.Args) < 3 {
 f.Usage()
 return
 }
 if len(os.Args) > 3 {
 if err := f.Parse(os.Args[3:]); err != nil {
 fmt.Fprintf(os.Stderr, "Error parsing params %s,
error: %v", os.Args[3:], err)
 return
 }

 }
 c.Greet(os.Args[2])

 default:
 fmt.Println("Invalid command")
 menu.Usage()
 return
 }
 } else {
 menu.Usage()
 return
 }
}

Command-Line Tools Chapter 2

[47]

Run go build.7.
Run the following commands and try a few other combinations of arguments:8.

$./cmdargs -h
Usage:

./cmdargs [command]

Commands:
Greet
Version

$./cmdargs version
Version: 1.0.0

$./cmdargs greet
Usage:

./cmdargs greet name [flag]

Positional Arguments:
 name
 the name to greet

Flags:
 -goodbye
 Say goodbye instead of hello

$./cmdargs greet reader
Hello reader!

$./cmdargs greet reader -goodbye
Goodbye reader!

If you copied or wrote your own tests, go up one directory and run go test,9.
and ensure that all the tests pass.

How it works...
Flagsets can be used to set up independent lists of expected arguments, usage strings, and
more. The developer is required to perform validation on a number of arguments, parsing
in the right subset of arguments to commands and defining usage strings. This can be error-
prone and requires a lot of iteration to get completely right.

Command-Line Tools Chapter 2

[48]

The flag package makes parsing arguments much easier and includes convenience
methods to get the number of flags, arguments, and more. This recipe demonstrates basic
ways to construct a complex command-line application using arguments, including a
package-level configuration, required positional arguments, multi-level command usage,
and how to split these things into multiple files or packages if required.

Reading and setting environment variables
Environment variables are another way that you can pass state into an application beyond
reading data in from a file or passing it explicitly over the command line. This recipe will
explore some very basic getting and setting of environment variables and then work with
the highly useful third-party library envconfig (https:/ /github. com/kelseyhightower/
envconfig).

We'll build an application that can read a config file via JSON or through environment
variables. The next recipe will explore alternative formats, including TOML and YAML.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/envvar.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/envvar

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/envvar

https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig
https://github.com/kelseyhightower/envconfig

Command-Line Tools Chapter 2

[49]

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/envvar, or use this as an opportunity to write some of
your own code!
Create a file called config.go with the following contents:5.

 package envvar

 import (
 "encoding/json"
 "os"

 "github.com/kelseyhightower/envconfig"
 "github.com/pkg/errors"
)

 // LoadConfig will load files optionally from the json file
 // stored at path, then will override those values based on the
 // envconfig struct tags. The envPrefix is how we prefix our
 // environment variables.
 func LoadConfig(path, envPrefix string, config interface{})
 error {
 if path != "" {
 err := LoadFile(path, config)
 if err != nil {
 return errors.Wrap(err, "error loading config from
 file")
 }
 }
 err := envconfig.Process(envPrefix, config)
 return errors.Wrap(err, "error loading config from env")
 }

 // LoadFile unmarshalls a json file into a config struct
 func LoadFile(path string, config interface{}) error {
 configFile, err := os.Open(path)
 if err != nil {
 return errors.Wrap(err, "failed to read config file")
 }
 defer configFile.Close()

 decoder := json.NewDecoder(configFile)
 if err = decoder.Decode(config); err != nil {
 return errors.Wrap(err, "failed to decode config file")
 }
 return nil
 }

Command-Line Tools Chapter 2

[50]

Create a new directory named example and navigate to it.6.
Create a main.go file with the following contents:7.

 package main

 import (
 "bytes"
 "fmt"
 "io/ioutil"
 "os"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter2/envvar"
)

 // Config will hold the config we
 // capture from a json file and env vars
 type Config struct {
 Version string `json:"version" required:"true"`
 IsSafe bool `json:"is_safe" default:"true"`
 Secret string `json:"secret"`
 }

 func main() {
 var err error

 // create a temporary file to hold
 // an example json file
 tf, err := ioutil.TempFile("", "tmp")
 if err != nil {
 panic(err)
 }
 defer tf.Close()
 defer os.Remove(tf.Name())

 // create a json file to hold
 // our secrets
 secrets := `{
 "secret": "so so secret"
 }`

 if _, err =
 tf.Write(bytes.NewBufferString(secrets).Bytes());
 err != nil {
 panic(err)
 }

Command-Line Tools Chapter 2

[51]

 // We can easily set environment variables
 // as needed
 if err = os.Setenv("EXAMPLE_VERSION", "1.0.0"); err != nil
 {
 panic(err)
 }
 if err = os.Setenv("EXAMPLE_ISSAFE", "false"); err != nil {
 panic(err)
 }

 c := Config{}
 if err = envvar.LoadConfig(tf.Name(), "EXAMPLE", &c);
 err != nil {
 panic(err)
 }

 fmt.Println("secrets file contains =", secrets)

 // We can also read them
 fmt.Println("EXAMPLE_VERSION =",
 os.Getenv("EXAMPLE_VERSION"))
 fmt.Println("EXAMPLE_ISSAFE =",
 os.Getenv("EXAMPLE_ISSAFE"))

 // The final config is a mix of json and environment
 // variables
 fmt.Printf("Final Config: %#v\n", c)
 }

Run go run main.go.8.
You may also run the following commands:9.

go build
./example

You should see the following output:10.

$ go run main.go
secrets file contains = {
"secret": "so so secret"
}
EXAMPLE_VERSION = 1.0.0
EXAMPLE_ISSAFE = false
Final Config: main.Config{Version:"1.0.0", IsSafe:false,
Secret:"so so secret"}

Command-Line Tools Chapter 2

[52]

The go.mod file may be updated, and the go.sum file should now be present in11.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test,12.
and ensure that all the tests pass.

How it works...
Reading and writing environment variables is pretty simple with the os package. The
envconfig third-party library this recipe uses is a clever way to capture environment
variables and specify certain requirements using struct tags.

The LoadConfig function is a flexible way to pull in configuration information from a
variety of sources without a lot of overhead or too many extra dependencies. It would be
simple to convert the primary config into another format aside from JSON or just always
use environment variables as well.

Also, note the use of errors. We wrapped errors throughout the code in this recipe so that
we can annotate errors without losing the original error's information. There will be more
details on this in Chapter 4, Error Handling in Go.

Configuration using TOML, YAML, and
JSON
There are many configuration formats that Go, with the use of third-party libraries,
supports. Three of the most popular data formats are TOML, YAML, and JSON. Go can
support JSON out of the box, and the others have clues on how to marshal/unmarshal or
encode/decode data for these formats. These formats have many benefits beyond
configuration, but this chapter will largely focus on converting a Go structure in the form of
a configuration structure. This recipe will explore basic input and output using these
formats.

These formats also provide an interface by which Go and applications written in other
languages can share the same configuration. There are also a number of tools that deal with
these formats and simplify working with them.

Command-Line Tools Chapter 2

[53]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/confformat.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/confformat

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/confformat

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/confformat, or use this as an opportunity to write some
of your own code!
Create a file called toml.go with the following contents:5.

 package confformat

 import (
 "bytes"

 "github.com/BurntSushi/toml"
)

 // TOMLData is our common data struct
 // with TOML struct tags
 type TOMLData struct {
 Name string `toml:"name"`
 Age int `toml:"age"`
 }

 // ToTOML dumps the TOMLData struct to
 // a TOML format bytes.Buffer
 func (t *TOMLData) ToTOML() (*bytes.Buffer, error) {
 b := &bytes.Buffer{}
 encoder := toml.NewEncoder(b)
 if err := encoder.Encode(t); err != nil {
 return nil, err
 }
 return b, nil

Command-Line Tools Chapter 2

[54]

 }

 // Decode will decode into TOMLData
 func (t *TOMLData) Decode(data []byte) (toml.MetaData, error) {
 return toml.Decode(string(data), t)
 }

Create a file called yaml.go with the following contents:6.

 package confformat

 import (
 "bytes"

 "github.com/go-yaml/yaml"
)

 // YAMLData is our common data struct
 // with YAML struct tags
 type YAMLData struct {
 Name string `yaml:"name"`
 Age int `yaml:"age"`
 }

 // ToYAML dumps the YAMLData struct to
 // a YAML format bytes.Buffer
 func (t *YAMLData) ToYAML() (*bytes.Buffer, error) {
 d, err := yaml.Marshal(t)
 if err != nil {
 return nil, err
 }

 b := bytes.NewBuffer(d)

 return b, nil
 }

 // Decode will decode into TOMLData
 func (t *YAMLData) Decode(data []byte) error {
 return yaml.Unmarshal(data, t)
 }

Command-Line Tools Chapter 2

[55]

Create a file called json.go with the following contents:7.

 package confformat

 import (
 "bytes"
 "encoding/json"
 "fmt"
)

 // JSONData is our common data struct
 // with JSON struct tags
 type JSONData struct {
 Name string `json:"name"`
 Age int `json:"age"`
 }

 // ToJSON dumps the JSONData struct to
 // a JSON format bytes.Buffer
 func (t *JSONData) ToJSON() (*bytes.Buffer, error) {
 d, err := json.Marshal(t)
 if err != nil {
 return nil, err
 }

 b := bytes.NewBuffer(d)

 return b, nil
 }

 // Decode will decode into JSONData
 func (t *JSONData) Decode(data []byte) error {
 return json.Unmarshal(data, t)
 }

 // OtherJSONExamples shows ways to use types
 // beyond structs and other useful functions
 func OtherJSONExamples() error {
 res := make(map[string]string)
 err := json.Unmarshal([]byte(`{"key": "value"}`), &res)
 if err != nil {
 return err
 }

 fmt.Println("We can unmarshal into a map instead of a
 struct:", res)

 b := bytes.NewReader([]byte(`{"key2": "value2"}`))

Command-Line Tools Chapter 2

[56]

 decoder := json.NewDecoder(b)

 if err := decoder.Decode(&res); err != nil {
 return err
 }

 fmt.Println("we can also use decoders/encoders to work with
 streams:", res)

 return nil
 }

Create a file called marshal.go with the following contents:8.

 package confformat

 import "fmt"

 // MarshalAll takes some data stored in structs
 // and converts them to the various data formats
 func MarshalAll() error {
 t := TOMLData{
 Name: "Name1",
 Age: 20,
 }

 j := JSONData{
 Name: "Name2",
 Age: 30,
 }

 y := YAMLData{
 Name: "Name3",
 Age: 40,
 }

 tomlRes, err := t.ToTOML()
 if err != nil {
 return err
 }

 fmt.Println("TOML Marshal =", tomlRes.String())

 jsonRes, err := j.ToJSON()
 if err != nil {
 return err
 }

Command-Line Tools Chapter 2

[57]

 fmt.Println("JSON Marshal=", jsonRes.String())

 yamlRes, err := y.ToYAML()
 if err != nil {
 return err
 }

 fmt.Println("YAML Marshal =", yamlRes.String())
 return nil
 }

Create a file called unmarshal.go with the following contents:9.

 package confformat
 import "fmt"
 const (
 exampleTOML = `name="Example1"
 age=99
 `
 exampleJSON = `{"name":"Example2","age":98}`
 exampleYAML = `name: Example3
 age: 97
 `
)
 // UnmarshalAll takes data in various formats
 // and converts them into structs
 func UnmarshalAll() error {
 t := TOMLData{}
 j := JSONData{}
 y := YAMLData{}
 if _, err := t.Decode([]byte(exampleTOML)); err != nil {
 return err
 }
 fmt.Println("TOML Unmarshal =", t)

 if err := j.Decode([]byte(exampleJSON)); err != nil {
 return err
 }
 fmt.Println("JSON Unmarshal =", j)

 if err := y.Decode([]byte(exampleYAML)); err != nil {
 return err
 }
 fmt.Println("Yaml Unmarshal =", y)
 return nil
 }

Command-Line Tools Chapter 2

[58]

Create a new directory named example and navigate to it.10.
Create a main.go file with the following contents:11.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter2/confformat"

 func main() {
 if err := confformat.MarshalAll(); err != nil {
 panic(err)
 }

 if err := confformat.UnmarshalAll(); err != nil {
 panic(err)
 }

 if err := confformat.OtherJSONExamples(); err != nil {
 panic(err)
 }
 }

Run go run main.go.12.
You may also run the following commands:13.

$ go build
$./example

You should see the following output:14.

$ go run main.go
TOML Marshal = name = "Name1"
age = 20

JSON Marshal= {"name":"Name2","age":30}
YAML Marshal = name: Name3
age: 40

TOML Unmarshal = {Example1 99}
JSON Unmarshal = {Example2 98}
Yaml Unmarshal = {Example3 97}
We can unmarshal into a map instead of a struct: map[key:value]
we can also use decoders/encoders to work with streams:
map[key:value key2:value2]

Command-Line Tools Chapter 2

[59]

The go.mod file may be updated and the go.sum file should now be present in15.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.16.
Ensure that all the tests pass.

How it works...
This recipe provided us with examples of how to use the TOML, YAML, and JSON parsers
to both write raw data to a go structure and read data out of it and into the corresponding
format. Like the recipes in Chapter 1, I/O and Filesystems, we saw how common it is to
quickly switch between []byte, string, bytes.Buffer, and other I/O interfaces.

The encoding/json package is the most comprehensive in providing encoding,
marshaling, and other methods to work with the JSON format. We abstracted these away
with our ToFormat functions, and it would be very simple to attach multiple methods such
as this so that we could use a single structure that can quickly be converted into or from
any of these types.

This recipe also touched upon structure tags and their use. The previous chapter also made
use of these, and they're a common way to give hints to packages and libraries about how
to treat data contained within a structure.

Working with Unix pipes
Unix pipes are useful when we are passing the output of one program to the input of
another. For example, take a look at the following code:

$ echo "test case" | wc -l
 1

In a Go application, the left-hand side of the pipe can be read in using os.Stdin, which
acts like a file descriptor. To demonstrate this, this recipe will take an input on the left-hand
side of a pipe and return a list of words and their number of occurrences. These words will
be tokenized on white space.

Command-Line Tools Chapter 2

[60]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/pipes.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/pipes

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/pipes

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/pipes, or use this as an opportunity to write some of
your own code!
Create a file called pipes.go with the following contents:5.

 package main

 import (
 "bufio"
 "fmt"
 "io"
 "os"
)

 // WordCount takes a file and returns a map
 // with each word as a key and it's number of
 // appearances as a value
 func WordCount(f io.Reader) map[string]int {
 result := make(map[string]int)

 // make a scanner to work on the file
 // io.Reader interface
 scanner := bufio.NewScanner(f)
 scanner.Split(bufio.ScanWords)

 for scanner.Scan() {
 result[scanner.Text()]++
 }

Command-Line Tools Chapter 2

[61]

 if err := scanner.Err(); err != nil {
 fmt.Fprintln(os.Stderr, "reading input:", err)
 }

 return result
 }

 func main() {
 fmt.Printf("string: number_of_occurrences\n\n")
 for key, value := range WordCount(os.Stdin) {
 fmt.Printf("%s: %d\n", key, value)
 }
 }

Run echo "some string" | go run pipes.go.6.
You may also run the following commands:7.

$ go build
echo "some string" | ./pipes

You should see the following output:

$ echo "test case" | go run pipes.go
string: number_of_occurrences

test: 1
case: 1

$ echo "test case test" | go run pipes.go
string: number_of_occurrences

test: 2
case: 1

If you copied or wrote your own tests, go up one directory and run go test.8.
Ensure that all the tests pass.

Command-Line Tools Chapter 2

[62]

How it works...
Working with pipes in Go is pretty simple, especially if you're familiar with working with
files. For example, you could use the pipe recipe from Chapter 1, I/O and Filesystems, to
create a tee application (https:/ /en. wikipedia. org/ wiki/ Tee_ (command)) where
everything piped in is immediately written to stdout and to a file.

This recipe uses a scanner to tokenize the io.Reader interface of the os.Stdin file object.
You can see how you must check for errors after completing all of the reads.

Catching and handling signals
Signals are a useful way for the user or the OS to kill your running application. Sometimes,
it makes sense to handle these signals in a more graceful way than the default behavior. Go
provides a mechanism to catch and handle signals. In this recipe, we'll explore the handling
of signals through the use of a signal that handles the Go routine.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/signals.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/signals

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/signals

https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Tee_(command)

Command-Line Tools Chapter 2

[63]

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/signals, or use this as an opportunity to write some of
your own code!
Create a file called signals.go with the following contents:5.

 package main

 import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
)

 // CatchSig sets up a listener for
 // SIGINT interrupts
 func CatchSig(ch chan os.Signal, done chan bool) {
 // block on waiting for a signal
 sig := <-ch
 // print it when it's received
 fmt.Println("nsig received:", sig)

 // we can set up handlers for all types of
 // sigs here
 switch sig {
 case syscall.SIGINT:
 fmt.Println("handling a SIGINT now!")
 case syscall.SIGTERM:
 fmt.Println("handling a SIGTERM in an entirely
 different way!")
 default:
 fmt.Println("unexpected signal received")
 }

 // terminate
 done <- true
 }

 func main() {
 // initialize our channels
 signals := make(chan os.Signal)
 done := make(chan bool)

 // hook them up to the signals lib
 signal.Notify(signals, syscall.SIGINT, syscall.SIGTERM)

 // if a signal is caught by this go routine

Command-Line Tools Chapter 2

[64]

 // it will write to done
 go CatchSig(signals, done)

 fmt.Println("Press ctrl-c to terminate...")
 // the program blocks until someone writes to done
 <-done
 fmt.Println("Done!")

 }

Run the following commands:6.

$ go build
$./signals

Try running the code and then press Ctrl + C. You should see the following:7.

$./signals
Press ctrl-c to terminate...
^C
sig received: interrupt
handling a SIGINT now!
Done!

Try running it again. Then, from a separate Terminal, determine the PID and kill8.
the application:

$./signals
Press ctrl-c to terminate...

in a separate terminal
$ ps -ef | grep signals
501 30777 26360 0 5:00PM ttys000 0:00.00 ./signals

$ kill -SIGTERM 30777

in the original terminal

sig received: terminated
handling a SIGTERM in an entirely different way!
Done!

If you copied or wrote your own tests, go up one directory and run go test.9.
Ensure that all the tests pass.

Command-Line Tools Chapter 2

[65]

How it works...
This recipe makes use of channels, which are covered more extensively in Chapter 9,
Parallelism and Concurrency. The signal.Notify function requires a channel to send signal
notifications to and also the types of signal we care about. Then, we set up a function in a
Go routine to handle any activity on the channel we passed to that function. Once we
receive the signal, we can handle it however we want. We can terminate the application,
respond with a message, and have different behaviors for different signals. The
kill command is a good way to test passing signals to the applications.

We also use a done channel to block the application from terminating until a signal is
received. Otherwise, the program would terminate immediately. This is unnecessary for
long-running applications such as web applications. It can be very useful to create
appropriate signal handling routines to perform cleanup, especially in applications with
large amounts of Go routines that are holding a significant amount of state. A practical
example of a graceful shutdown might be to allow current handlers to complete their HTTP
requests without terminating them midway.

An ANSI coloring application
Coloring an ANSI terminal application is handled by a variety of code before and after a
section of text you want colored. This recipe will explore a basic coloring mechanism that
colors text red or plain. For a complete application, take a look at https:/ / github. com/
agtorre/gocolorize, which supports many more colors and text types, and also
implements the fmt.Formatter interface for ease of printing.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter2/ansicolor.
Navigate to this directory.2.

https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize
https://github.com/agtorre/gocolorize

Command-Line Tools Chapter 2

[66]

Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter2/ansicolor

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter2/ansicolor

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter2/ansicolor, or use this as an opportunity to write some of
your own code!
Create a file called color.go with the following contents:5.

 package ansicolor

 import "fmt"

 //Color of text
 type Color int

 const (
 // ColorNone is default
 ColorNone = iota
 // Red colored text
 Red
 // Green colored text
 Green
 // Yellow colored text
 Yellow
 // Blue colored text
 Blue
 // Magenta colored text
 Magenta
 // Cyan colored text
 Cyan
 // White colored text
 White
 // Black colored text
 Black Color = -1
)

 // ColorText holds a string and its color
 type ColorText struct {
 TextColor Color
 Text string

Command-Line Tools Chapter 2

[67]

 }

 func (r *ColorText) String() string {
 if r.TextColor == ColorNone {
 return r.Text
 }

 value := 30
 if r.TextColor != Black {
 value += int(r.TextColor)
 }
 return fmt.Sprintf("33[0;%dm%s33[0m", value, r.Text)
 }

Create a new directory named example and navigate to it.6.
Create a main.go file with the following contents:7.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter2/ansicolor"
)

 func main() {
 r := ansicolor.ColorText{
 TextColor: ansicolor.Red,
 Text: "I'm red!",
 }

 fmt.Println(r.String())

 r.TextColor = ansicolor.Green
 r.Text = "Now I'm green!"

 fmt.Println(r.String())

 r.TextColor = ansicolor.ColorNone
 r.Text = "Back to normal..."

 fmt.Println(r.String())
 }

Command-Line Tools Chapter 2

[68]

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should see the following output with the text colored if your Terminal10.
supports the ANSI coloring format:

$ go run main.go
I'm red!
Now I'm green!
Back to normal...

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

How it works...
This application makes use of a structure to maintain the state of the colored text. In this
case, it stores the color of the text and the value of the text. The final string is rendered
when you call the String() method, which will return either the colored text or plain text,
depending on the values stored in the structure. By default, the text will be plain.

3
Data Conversion and

Composition
Understanding Go's typing system is a critical step to mastering all levels of Go
development. This chapter will show some examples of converting between data types,
working with very big numbers, working with currency, using different types of encoding
and decoding, including Base64 and gob, and creating custom collections using closures. In
this chapter, the following recipes will be covered:

Converting data types and interface casting
Working with numeric data types using math and math/big
Currency conversions and float64 considerations
Using pointers and SQL NullTypes for encoding and decoding
Encoding and decoding Go data
Structure tags and basic reflection in Go
Implementing collections using closures

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6, or later, on your operating system at https:/ /1.
golang.org/ doc/ install.
Open a Terminal/console application and create and navigate to a project2.
directory, such as ~/projects/go-programming-cookbook. All code will be
run and modified from this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Data Conversion and Composition Chapter 3

[70]

Clone the latest code into ~/projects/go-programming-cookbook-3.
original. If you wish, you can work from this directory rather than type the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Converting data types and interface casting
Go is typically very flexible when used to convert data from one type to another. A type
may inherit another type, as follows:

type A int

We can always cast back to the type we inherited, as follows:

var a A = 1
fmt.Println(int(a))

There are also convenience functions for converting between numbers using casting,
between strings and other types using fmt.Sprint and strconv, and between interfaces
and types using reflection. This recipe will explore some of these basic conversions, which
will be used throughout this book.

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/dataconv.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/dataconv

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/dataconv

Data Conversion and Composition Chapter 3

[71]

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/dataconv or use this as an exercise to write some of your
own code!
Create a file called dataconv.go with the following content:5.

 package dataconv

 import "fmt"

 // ShowConv demonstrates some type conversion
 func ShowConv() {
 // int
 var a = 24

 // float 64
 var b = 2.0

 // convert the int to a float64 for this calculation
 c := float64(a) * b
 fmt.Println(c)
 // fmt.Sprintf is a good way to convert to strings
 precision := fmt.Sprintf("%.2f", b)

 // print the value and the type
 fmt.Printf("%s - %T\n", precision, precision)
 }

Create a file called strconv.go with the following content:6.

 package dataconv

 import (
 "fmt"
 "strconv"
)

 // Strconv demonstrates some strconv
 // functions
 func Strconv() error {
 //strconv is a good way to convert to and from strings
 s := "1234"
 // we can specify the base (10) and precision
 // 64 bit
 res, err := strconv.ParseInt(s, 10, 64)
 if err != nil {
 return err
 }

Data Conversion and Composition Chapter 3

[72]

 fmt.Println(res)

 // lets try hex
 res, err = strconv.ParseInt("FF", 16, 64)
 if err != nil {
 return err
 }

 fmt.Println(res)

 // we can do other useful things like:
 val, err := strconv.ParseBool("true")
 if err != nil {
 return err
 }

 fmt.Println(val)

 return nil
 }

Create a file called interfaces.go with the following content:7.

 package dataconv

 import "fmt"

 // CheckType will print based on the
 // interface type
 func CheckType(s interface{}) {
 switch s.(type) {
 case string:
 fmt.Println("It's a string!")
 case int:
 fmt.Println("It's an int!")
 default:
 fmt.Println("not sure what it is...")
 }
 }

 // Interfaces demonstrates casting
 // from anonymous interfaces to types
 func Interfaces() {
 CheckType("test")
 CheckType(1)
 CheckType(false)

 var i interface{}

Data Conversion and Composition Chapter 3

[73]

 i = "test"

 // manually check an interface
 if val, ok := i.(string); ok {
 fmt.Println("val is", val)
 }

 // this one should fail
 if _, ok := i.(int); !ok {
 fmt.Println("uh oh! glad we handled this")
 }
 }

Create a new directory named example and navigate to it.8.
Create a file named main.go with the following content:9.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/dataconv"

 func main() {
 dataconv.ShowConv()
 if err := dataconv.Strconv(); err != nil {
 panic(err)
 }
 dataconv.Interfaces()
 }

Run go run main.go. You could also run the following commands:10.

$ go build
$./example

You should see the following output:

$ go run main.go
48
2.00 - string
1234
255
true
It's a string!
It's an int!
not sure what it is...
val is test
uh oh! glad we handled this

Data Conversion and Composition Chapter 3

[74]

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all tests pass.

How it works...
This recipe demonstrates how to cast between types by wrapping them in a new type by
using the strconv package and interface reflection. These methods allow Go developers to
quickly convert between various abstract Go types. These first two methods will
return errors during compilation, but the errors in interface reflection may not be found
until runtime. If you reflect incorrectly to an unsupported type, your program will panic.
Switching between types is a way to generalize, and is also demonstrated in this recipe.

Conversion becomes important for packages such as math, which operate on float64
exclusively.

Working with numeric data types using math
and math/big
The math and math/big packages focus on exposing more complex mathematical
operations to the Go language, such as Pow, Sqrt, and Cos. The math package itself
operates predominately on float64 unless a function says otherwise. The math/big
package is for numbers that are too large to represent in a 64-bit value. This recipe will
show some basic usage of the math package and demonstrate how to use math/big for
Fibonacci sequence.

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/math.
Navigate to this directory.2.

Data Conversion and Composition Chapter 3

[75]

Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/math

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/math

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/math or use this as an exercise to write some of your own
code!
Create a file called fib.go with the following content:5.

 package math

 import "math/big"

 // global to memoize fib
 var memoize map[int]*big.Int

 func init() {
 // initialize the map
 memoize = make(map[int]*big.Int)
 }

 // Fib prints the nth digit of the fibonacci sequence
 // it will return 1 for anything < 0 as well...
 // it's calculated recursively and use big.Int since
 // int64 will quickly overflow
 func Fib(n int) *big.Int {
 if n < 0 {
 return big.NewInt(1)
 }

 // base case
 if n < 2 {
 memoize[n] = big.NewInt(1)
 }

 // check if we stored it before
 // if so return with no calculation
 if val, ok := memoize[n]; ok {
 return val
 }

Data Conversion and Composition Chapter 3

[76]

 // initialize map then add previous 2 fib values
 memoize[n] = big.NewInt(0)
 memoize[n].Add(memoize[n], Fib(n-1))
 memoize[n].Add(memoize[n], Fib(n-2))

 // return result
 return memoize[n]
 }

Create a file called math.go with the following content:6.

package math

import (
 "fmt"
 "math"
)

// Examples demonstrates some of the functions
// in the math package
func Examples() {
 //sqrt Examples
 i := 25

 // i is an int, so convert
 result := math.Sqrt(float64(i))

 // sqrt of 25 == 5
 fmt.Println(result)

 // ceil rounds up
 result = math.Ceil(9.5)
 fmt.Println(result)

 // floor rounds down
 result = math.Floor(9.5)
 fmt.Println(result)

 // math also stores some consts:
 fmt.Println("Pi:", math.Pi, "E:", math.E)
}

Data Conversion and Composition Chapter 3

[77]

Create a new directory named example and navigate to it.7.
Create a file named main.go with the following content:8.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/math"
)

 func main() {
 math.Examples()

 for i := 0; i < 10; i++ {
 fmt.Printf("%v ", math.Fib(i))
 }
 fmt.Println()
 }

Run go run main.go. You could also run the following:9.

$ go build
$./example

You should see the following output:

$ go run main.go
5
10
9
Pi: 3.141592653589793 E: 2.718281828459045
1 1 2 3 5 8 13 21 34 55

If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all tests pass.

Data Conversion and Composition Chapter 3

[78]

How it works...
The math package makes it possible to perform complex mathematical operations in Go.
This recipe should be used in conjunction with this package for performing complex
floating-point operations and converting between types as needed. It's worth noting that
even with float64, there may still be rounding errors for certain floating-point numbers;
the following recipe demonstrates some techniques for dealing with this.

The math/big section showcases a recursive Fibonacci sequence. If you modify main.go to
loop well beyond 10, you'll quickly overflow int64 if it was used instead of big.Int. The
big.Int package also has helper methods to convert between the big types to other types.

Currency conversions and float64
considerations
Working with currency is always a tricky process. It can be tempting to represent money as
a float64, but this can result in some pretty tricky (and wrong) rounding errors when
doing calculations. For this reason, it's preferable to think of money in terms of cents and
store the figure as an int64 instance.

When collecting user input from forms, the command line, or other sources, money is
usually represented in dollar form. For this reason, it's best to treat it as a string and convert
that string directly to cents without floating-point conversions. This recipe will present
ways to convert a string representation of currency into an int64 (cents) instance and back
again.

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/currency.
Navigate to this directory.2.

Data Conversion and Composition Chapter 3

[79]

Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/currency

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/currency

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/currency or use this as an exercise to write some of your
own code!
Create a file called dollars.go with the following content:5.

 package currency

 import (
 "errors"
 "strconv"
 "strings"
)

 // ConvertStringDollarsToPennies takes a dollar amount
 // as a string, i.e. 1.00, 55.12 etc and converts it
 // into an int64
 func ConvertStringDollarsToPennies(amount string) (int64,
 error) {
 // check if amount can convert to a valid float
 _, err := strconv.ParseFloat(amount, 64)
 if err != nil {
 return 0, err
 }

 // split the value on "."
 groups := strings.Split(amount, ".")

 // if there is no . result will still be
 // captured here
 result := groups[0]

 // base string
 r := ""

 // handle the data after the "."
 if len(groups) == 2 {
 if len(groups[1]) != 2 {

Data Conversion and Composition Chapter 3

[80]

 return 0, errors.New("invalid cents")
 }
 r = groups[1]
 }

 // pad with 0, this will be
 // 2 0's if there was no .
 for len(r) < 2 {
 r += "0"
 }

 result += r

 // convert it to an int
 return strconv.ParseInt(result, 10, 64)
 }

Create a file called pennies.go with the following content:6.

 package currency

 import (
 "strconv"
)

 // ConvertPenniesToDollarString takes a penny amount as
 // an int64 and returns a dollar string representation
 func ConvertPenniesToDollarString(amount int64) string {
 // parse the pennies as a base 10 int
 result := strconv.FormatInt(amount, 10)

 // check if negative, will set it back later
 negative := false
 if result[0] == '-' {
 result = result[1:]
 negative = true
 }

 // left pad with 0 if we're passed in value < 100
 for len(result) < 3 {
 result = "0" + result
 }
 length := len(result)

 // add in the decimal
 result = result[0:length-2] + "." + result[length-2:]

 // from the negative we stored earlier!

Data Conversion and Composition Chapter 3

[81]

 if negative {
 result = "-" + result
 }

 return result
 }

Create a new directory named example and navigate to it.7.
Create a file called main.go with the following content:8.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/currency"
)

 func main() {
 // start with our user input
 // of fifteen dollars and 93 cents
 userInput := "15.93"

 pennies, err :=
 currency.ConvertStringDollarsToPennies(userInput)
 if err != nil {
 panic(err)
 }

 fmt.Printf("User input converted to %d pennies\n", pennies)

 // adding 15 cents
 pennies += 15

 dollars := currency.ConvertPenniesToDollarString(pennies)

 fmt.Printf("Added 15 cents, new values is %s dollars\n",
 dollars)
 }

Data Conversion and Composition Chapter 3

[82]

Run go run main.go. You could also run the following:9.

$ go build
$./example

You should see the following output:

$ go run main.go
User input converted to 1593 pennies
Added 15 cents, new values is 16.08 dollars

If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all tests pass.

How it works...
This recipe makes use of the strconv and strings packages to convert currency between
dollars in string format and pennies in int64. It does this without converting to a
float64 type, which can result in rounding error, and only does so for validation.

The strconv.ParseInt and strconv.FormatInt functions are very useful for
converting to and from int64 and strings. We also made use of the fact that Go strings can
easily be appended and sliced as needed.

Using pointers and SQL NullTypes for
encoding and decoding
When you encode or decode into an object in Go, types that are not explicitly set will be set
to their default values. Strings will default to empty string ("") and integers will default to
0, as an example. Normally, this is fine, unless 0 means something for your API or service
that is consuming the user input or returning it.

In addition, if you use struct tags such as json omitempty, the 0 value will be ignored
even if they're valid. Another example of this is Null, which returns from SQL. What value
best represents Null for an Int? This recipe will explore some of the ways Go developers
deal with this issue.

Data Conversion and Composition Chapter 3

[83]

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/nulls.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/nulls

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/nulls

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/nulls or use this as an exercise to write some of your
own code!
Create a file called base.go with the following content:5.

 package nulls

 import (
 "encoding/json"
 "fmt"
)

 // json that has name but not age
 const (
 jsonBlob = `{"name": "Aaron"}`
 fulljsonBlob = `{"name":"Aaron", "age":0}`
)

 // Example is a basic struct with age
 // and name fields
 type Example struct {
 Age int `json:"age,omitempty"`
 Name string `json:"name"`
 }

 // BaseEncoding shows encoding and
 // decoding with normal types
 func BaseEncoding() error {
 e := Example{}

Data Conversion and Composition Chapter 3

[84]

 // note that no age = 0 age
 if err := json.Unmarshal([]byte(jsonBlob), &e); err != nil
 {
 return err
 }
 fmt.Printf("Regular Unmarshal, no age: %+v\n", e)
 value, err := json.Marshal(&e)
 if err != nil {
 return err
 }
 fmt.Println("Regular Marshal, with no age:", string(value))

 if err := json.Unmarshal([]byte(fulljsonBlob), &e);
 err != nil {
 return err
 }
 fmt.Printf("Regular Unmarshal, with age = 0: %+v\n", e)

 value, err = json.Marshal(&e)
 if err != nil {
 return err
 }
 fmt.Println("Regular Marshal, with age = 0:",
 string(value))

 return nil
 }

Create a file called pointer.go with the following content:6.

 package nulls

 import (
 "encoding/json"
 "fmt"
)

 // ExamplePointer is the same, but
 // uses a *Int
 type ExamplePointer struct {
 Age *int `json:"age,omitempty"`
 Name string `json:"name"`
 }

 // PointerEncoding shows methods for
 // dealing with nil/omitted values
 func PointerEncoding() error {

Data Conversion and Composition Chapter 3

[85]

 // note that no age = nil age
 e := ExamplePointer{}
 if err := json.Unmarshal([]byte(jsonBlob), &e); err != nil
 {
 return err
 }
 fmt.Printf("Pointer Unmarshal, no age: %+v\n", e)

 value, err := json.Marshal(&e)
 if err != nil {
 return err
 }
 fmt.Println("Pointer Marshal, with no age:", string(value))

 if err := json.Unmarshal([]byte(fulljsonBlob), &e);
 err != nil {
 return err
 }
 fmt.Printf("Pointer Unmarshal, with age = 0: %+v\n", e)

 value, err = json.Marshal(&e)
 if err != nil {
 return err
 }
 fmt.Println("Pointer Marshal, with age = 0:",
 string(value))

 return nil
 }

Create a file called nullencoding.go with the following content:7.

 package nulls

 import (
 "database/sql"
 "encoding/json"
 "fmt"
)

 type nullInt64 sql.NullInt64

 // ExampleNullInt is the same, but
 // uses a sql.NullInt64
 type ExampleNullInt struct {
 Age *nullInt64 `json:"age,omitempty"`
 Name string `json:"name"`
 }

Data Conversion and Composition Chapter 3

[86]

 func (v *nullInt64) MarshalJSON() ([]byte, error) {
 if v.Valid {
 return json.Marshal(v.Int64)
 }
 return json.Marshal(nil)
 }

 func (v *nullInt64) UnmarshalJSON(b []byte) error {
 v.Valid = false
 if b != nil {
 v.Valid = true
 return json.Unmarshal(b, &v.Int64)
 }
 return nil
 }

 // NullEncoding shows an alternative method
 // for dealing with nil/omitted values
 func NullEncoding() error {
 e := ExampleNullInt{}

 // note that no means an invalid value
 if err := json.Unmarshal([]byte(jsonBlob), &e); err != nil
 {
 return err
 }
 fmt.Printf("nullInt64 Unmarshal, no age: %+v\n", e)

 value, err := json.Marshal(&e)
 if err != nil {
 return err
 }
 fmt.Println("nullInt64 Marshal, with no age:",
 string(value))

 if err := json.Unmarshal([]byte(fulljsonBlob), &e);
 err != nil {
 return err
 }
 fmt.Printf("nullInt64 Unmarshal, with age = 0: %+v\n", e)

 value, err = json.Marshal(&e)
 if err != nil {
 return err
 }
 fmt.Println("nullInt64 Marshal, with age = 0:",
 string(value))

Data Conversion and Composition Chapter 3

[87]

 return nil
 }

Create a new directory named example and navigate to it.8.
Create a file called main.go with the following content:9.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/nulls"
)

 func main() {
 if err := nulls.BaseEncoding(); err != nil {
 panic(err)
 }
 fmt.Println()

 if err := nulls.PointerEncoding(); err != nil {
 panic(err)
 }
 fmt.Println()

 if err := nulls.NullEncoding(); err != nil {
 panic(err)
 }
 }

Run go run main.go. You could also run the following:10.

$ go build
$./example

You should see the following output:

$ go run main.go
Regular Unmarshal, no age: {Age:0 Name:Aaron}
Regular Marshal, with no age: {"name":"Aaron"}
Regular Unmarshal, with age = 0: {Age:0 Name:Aaron}
Regular Marshal, with age = 0: {"name":"Aaron"}

Pointer Unmarshal, no age: {Age:<nil> Name:Aaron}
Pointer Marshal, with no age: {"name":"Aaron"}
Pointer Unmarshal, with age = 0: {Age:0xc42000a610 Name:Aaron}

Data Conversion and Composition Chapter 3

[88]

Pointer Marshal, with age = 0: {"age":0,"name":"Aaron"}

nullInt64 Unmarshal, no age: {Age:<nil> Name:Aaron}
nullInt64 Marshal, with no age: {"name":"Aaron"}
nullInt64 Unmarshal, with age = 0: {Age:0xc42000a750
Name:Aaron}
nullInt64 Marshal, with age = 0: {"age":0,"name":"Aaron"}

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all tests pass.

How it works...
Switching from a value to a pointer is a quick way to express null values when marshaling
and unmarshaling. Setting these values can be a bit tricky, as you can't assign them directly
to a pointer, -- *a := 1, but, otherwise, it's a flexible way of dealing with it.

This recipe also demonstrated an alternative method using the sql.NullInt64 type. This
is normally used with SQL and valid is set if anything other than Null is returned;
otherwise, it sets Null. We added a MarshalJSON method and an UnmarshallJSON
method to allow this type to interact with the JSON package and we chose to use a pointer
so that omitempty would continue to work as expected.

Encoding and decoding Go data
Go features a number of alternative encoding types other than JSON, TOML, and YAML.
These are largely meant for transporting data between Go processes with things such as
wire protocols and RPC, or in cases where some character formats are restricted.

This recipe will explore how to encode and decode the gob format and base64. The later
chapters will explore protocols such as GRPC.

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/encoding.
Navigate to this directory.2.

Data Conversion and Composition Chapter 3

[89]

Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/encoding

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/encoding

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/encoding or use this as an exercise to write some of your
own code!
Create a file called gob.go with the following content:5.

 package encoding

 import (
 "bytes"
 "encoding/gob"
 "fmt"
)

 // pos stores the x, y position
 // for Object
 type pos struct {
 X int
 Y int
 Object string
 }

 // GobExample demonstrates using
 // the gob package
 func GobExample() error {
 buffer := bytes.Buffer{}

 p := pos{
 X: 10,
 Y: 15,
 Object: "wrench",
 }

 // note that if p was an interface
 // we'd have to call gob.Register first

 e := gob.NewEncoder(&buffer)
 if err := e.Encode(&p); err != nil {

Data Conversion and Composition Chapter 3

[90]

 return err
 }

 // note this is a binary format so it wont print well
 fmt.Println("Gob Encoded valued length: ",
 len(buffer.Bytes()))

 p2 := pos{}
 d := gob.NewDecoder(&buffer)
 if err := d.Decode(&p2); err != nil {
 return err
 }

 fmt.Println("Gob Decode value: ", p2)
 return nil
 }

Create a file called base64.go with the following content:6.

 package encoding

 import (
 "bytes"
 "encoding/base64"
 "fmt"
 "io/ioutil"
)

 // Base64Example demonstrates using
 // the base64 package
 func Base64Example() error {
 // base64 is useful for cases where
 // you can't support binary formats
 // it operates on bytes/strings

 // using helper functions and URL encoding
 value := base64.URLEncoding.EncodeToString([]byte("encoding
 some data!"))
 fmt.Println("With EncodeToString and URLEncoding: ", value)

 // decode the first value
 decoded, err := base64.URLEncoding.DecodeString(value)
 if err != nil {
 return err
 }
 fmt.Println("With DecodeToString and URLEncoding: ",
 string(decoded))

Data Conversion and Composition Chapter 3

[91]

 return nil
 }

 // Base64ExampleEncoder shows similar examples
 // with encoders/decoders
 func Base64ExampleEncoder() error {
 // using encoder/ decoder
 buffer := bytes.Buffer{}

 // encode into the buffer
 encoder := base64.NewEncoder(base64.StdEncoding, &buffer)

 if _, err := encoder.Write([]byte("encoding some other
 data")); err != nil {
 return err
 }

 // be sure to close
 if err := encoder.Close(); err != nil {
 return err
 }

 fmt.Println("Using encoder and StdEncoding: ",
 buffer.String())

 decoder := base64.NewDecoder(base64.StdEncoding, &buffer)
 results, err := ioutil.ReadAll(decoder)
 if err != nil {
 return err
 }

 fmt.Println("Using decoder and StdEncoding: ",
 string(results))

 return nil
 }

Create a new directory named example and navigate to it.7.
Create a file called main.go with the following content:8.

 package main

 import (
 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/encoding"
)

Data Conversion and Composition Chapter 3

[92]

 func main() {
 if err := encoding.Base64Example(); err != nil {
 panic(err)
 }

 if err := encoding.Base64ExampleEncoder(); err != nil {
 panic(err)
 }

 if err := encoding.GobExample(); err != nil {
 panic(err)
 }
 }

Run go run main.go. You could also run the following:9.

$ go build
$./example

You should see the following output:

$ go run main.go
With EncodeToString and URLEncoding:
ZW5jb2Rpbmcgc29tZSBkYXRhIQ==
With DecodeToString and URLEncoding: encoding some data!
Using encoder and StdEncoding: ZW5jb2Rpbmcgc29tZSBvdGhlciBkYXRh
Using decoder and StdEncoding: encoding some other data
Gob Encoded valued length: 57
Gob Decode value: {10 15 wrench}

If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all tests pass.

How it works...
Gob encoding is a streaming format built with Go data types in mind. It is most efficient
when sending and encoding many consecutive items. For a single item, other encoding
formats, such as JSON, are potentially more efficient and portable. Despite this, gob
encoding makes it simple to marshal large, complex structures and reconstruct them in a
separate process. Although it wasn't shown here, gob can also operate on custom types or
unexported types with custom MarshalBinary and UnmarshalBinary methods.

Data Conversion and Composition Chapter 3

[93]

Base64 encoding is useful for communicating via URLs in GET requests or for generating a
string representation encoding of binary data. Most languages can support this format and
unmarshal the data on the other end. As a result, it's common to encode things such as
JSON payloads in cases where the JSON format is not supported.

Structure tags and basic reflection in Go
Reflection is a complicated topic that can't really be covered in a single recipe; however, a
practical application of reflection is dealing with structure tags. At their core, struct tags
are just key–value strings: you look up the key, then deal with the value. As you can
imagine, for something like JSON marshaling and unmarshaling, there's a lot of complexity
for dealing with these values.

The reflect package is designed for interrogating and understanding interface objects. It
has helper methods to look at the different kinds of structures, values, struct tags, and
more. If you need something beyond the basic interface conversion, such as the one at the
beginning of this chapter, this is the package you should look at.

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/tags.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/tags

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/tags

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/tags or use this as an exercise to write some of your own
code!

Data Conversion and Composition Chapter 3

[94]

Create a file called serialize.go with the following content:5.

 package tags

 import "reflect"

 // SerializeStructStrings converts a struct
 // to our custom serialization format
 // it honors serialize struct tags for string types
 func SerializeStructStrings(s interface{}) (string, error) {
 result := ""

 // reflect the interface into
 // a type
 r := reflect.TypeOf(s)
 value := reflect.ValueOf(s)
 // if a pointer to a struct is passed
 // in, handle it appropriately
 if r.Kind() == reflect.Ptr {
 r = r.Elem()
 value = value.Elem()
 }

 // loop over all of the fields
 for i := 0; i < r.NumField(); i++ {
 field := r.Field(i)
 // struct tag found
 key := field.Name
 if serialize, ok := field.Tag.Lookup("serialize"); ok {
 // ignore "-" otherwise that whole value
 // becomes the serialize 'key'
 if serialize == "-" {
 continue
 }
 key = serialize
 }

 switch value.Field(i).Kind() {
 // this recipe only supports strings!
 case reflect.String:
 result += key + ":" + value.Field(i).String() + ";"
 // by default skip it
 default:
 continue
 }
 }
 return result, nil
 }

Data Conversion and Composition Chapter 3

[95]

Create a file called deserialize.go with the following content:6.

 package tags

 import (
 "errors"
 "reflect"
 "strings"
)

 // DeSerializeStructStrings converts a serialized
 // string using our custom serialization format
 // to a struct
 func DeSerializeStructStrings(s string, res interface{}) error
 {
 r := reflect.TypeOf(res)

 // we're setting using a pointer so
 // it must always be a pointer passed
 // in
 if r.Kind() != reflect.Ptr {
 return errors.New("res must be a pointer")
 }

 // dereference the pointer
 r = r.Elem()
 value := reflect.ValueOf(res).Elem()

 // split our serialization string into
 // a map
 vals := strings.Split(s, ";")
 valMap := make(map[string]string)
 for _, v := range vals {
 keyval := strings.Split(v, ":")
 if len(keyval) != 2 {
 continue
 }
 valMap[keyval[0]] = keyval[1]
 }

 // iterate over fields
 for i := 0; i < r.NumField(); i++ {
 field := r.Field(i)

 // check if in the serialize set
 if serialize, ok := field.Tag.Lookup("serialize"); ok {
 // ignore "-" otherwise that whole value
 // becomes the serialize 'key'

Data Conversion and Composition Chapter 3

[96]

 if serialize == "-" {
 continue
 }
 // is it in the map
 if val, ok := valMap[serialize]; ok {
 value.Field(i).SetString(val)
 }
 } else if val, ok := valMap[field.Name]; ok {
 // is our field name in the map instead?
 value.Field(i).SetString(val)
 }
 }
 return nil
 }

Create a file called tags.go with the following content:7.

 package tags

 import "fmt"

 // Person is a struct that stores a persons
 // name, city, state, and a misc attribute
 type Person struct {
 Name string `serialize:"name"`
 City string `serialize:"city"`
 State string
 Misc string `serialize:"-"`
 Year int `serialize:"year"`
 }

 // EmptyStruct demonstrates serialize
 // and deserialize for an Empty struct
 // with tags
 func EmptyStruct() error {
 p := Person{}

 res, err := SerializeStructStrings(&p)
 if err != nil {
 return err
 }
 fmt.Printf("Empty struct: %#v\n", p)
 fmt.Println("Serialize Results:", res)

 newP := Person{}
 if err := DeSerializeStructStrings(res, &newP); err != nil
 {
 return err

Data Conversion and Composition Chapter 3

[97]

 }
 fmt.Printf("Deserialize results: %#v\n", newP)
 return nil
 }

 // FullStruct demonstrates serialize
 // and deserialize for an Full struct
 // with tags
 func FullStruct() error {
 p := Person{
 Name: "Aaron",
 City: "Seattle",
 State: "WA",
 Misc: "some fact",
 Year: 2017,
 }
 res, err := SerializeStructStrings(&p)
 if err != nil {
 return err
 }
 fmt.Printf("Full struct: %#v\n", p)
 fmt.Println("Serialize Results:", res)

 newP := Person{}
 if err := DeSerializeStructStrings(res, &newP);
 err != nil {
 return err
 }
 fmt.Printf("Deserialize results: %#v\n", newP)
 return nil
 }

Create a new directory named example and navigate to it.8.
Create a file called main.go with the following content:9.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/tags"
)

 func main() {

 if err := tags.EmptyStruct(); err != nil {

Data Conversion and Composition Chapter 3

[98]

 panic(err)
 }

 fmt.Println()

 if err := tags.FullStruct(); err != nil {
 panic(err)
 }
 }

Run go run main.go. You could also run the following:10.

$ go build
$./example

You should see the following output:

$ go run main.go
Empty struct: tags.Person{Name:"", City:"", State:"", Misc:"",
Year:0}
Serialize Results: name:;city:;State:;
Deserialize results: tags.Person{Name:"", City:"", State:"",
Misc:"", Year:0}

Full struct: tags.Person{Name:"Aaron", City:"Seattle",
State:"WA", Misc:"some fact", Year:2017}
Serialize Results: name:Aaron;city:Seattle;State:WA;
Deserialize results: tags.Person{Name:"Aaron", City:"Seattle",
State:"WA", Misc:"", Year:0}

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all tests pass.

How it works...
This recipe makes a string serialization format that takes a struct value and serializes all
the string fields into a parseable format. This recipe doesn't deal with certain edge cases; in
particular, strings must not contain a colon (:) or semicolon ; characters. Here is a
summary of its behavior:

If a field is a string, it will be serialized/deserialized.
If a field is not a string, it will be ignored.

Data Conversion and Composition Chapter 3

[99]

If the struct tag of the field contains the serialize "key", then the key will be the
returned serialized/deserialized environment.
Duplicates are not handled.
If a struct tag is not specified, the field name is used instead.
If the struct tag value is a hyphen (-), the field is ignored, even if it's a string.

Some other things to note are that reflection does not entirely work with nonexported
values.

Implementing collections via closures
If you've been working with functional or dynamic programming languages, you may feel
that for loops and if statements produce verbose code. Using functional constructs such
as map and filter for processing lists can be useful and make code appear more readable;
however, in Go, these types are not in the standard library, and can be difficult to
generalize without generics or very complex reflection and the use of empty interfaces. This
recipe will provide you with some basic examples of implementing collections using Go
closures.

How to do it...
The following steps cover how to write and run your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter3/collections.
Navigate to this directory.2.
Run the following command:3.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter3/collections

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter3/collections

Copy tests from ~/projects/go-programming-cookbook-4.
original/chapter3/collections, or use this as an exercise to write some of
your own code!

Data Conversion and Composition Chapter 3

[100]

Create a file called collections.go with the following content:5.

 package collections

 // WorkWith is the struct we'll
 // be implementing collections for
 type WorkWith struct {
 Data string
 Version int
 }

 // Filter is a functional filter. It takes a list of
 // WorkWith and a WorkWith Function that returns a bool
 // for each "true" element we return it to the resultant
 // list
 func Filter(ws []WorkWith, f func(w WorkWith) bool) []WorkWith
 {
 // depending on results, smalles size for result
 // is len == 0
 result := make([]WorkWith, 0)
 for _, w := range ws {
 if f(w) {
 result = append(result, w)
 }
 }
 return result
 }

 // Map is a functional map. It takes a list of
 // WorkWith and a WorkWith Function that takes a WorkWith
 // and returns a modified WorkWith. The end result is
 // a list of modified WorkWiths
 func Map(ws []WorkWith, f func(w WorkWith) WorkWith) []WorkWith
 {
 // the result should always be the same
 // length
 result := make([]WorkWith, len(ws))

 for pos, w := range ws {
 newW := f(w)
 result[pos] = newW
 }
 return result
 }

Data Conversion and Composition Chapter 3

[101]

Create a file called functions.go with the following content:6.

 package collections

 import "strings"

 // LowerCaseData does a ToLower to the
 // Data string of a WorkWith
 func LowerCaseData(w WorkWith) WorkWith {
 w.Data = strings.ToLower(w.Data)
 return w
 }

 // IncrementVersion increments a WorkWiths
 // Version
 func IncrementVersion(w WorkWith) WorkWith {
 w.Version++
 return w
 }

 // OldVersion returns a closures
 // that validates the version is greater than
 // the specified amount
 func OldVersion(v int) func(w WorkWith) bool {
 return func(w WorkWith) bool {
 return w.Version >= v
 }
 }

Create a new directory named example and navigate to it.7.
Create a file called main.go with the following content:8.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter3/collections"
)

 func main() {
 ws := []collections.WorkWith{
 collections.WorkWith{"Example", 1},
 collections.WorkWith{"Example 2", 2},
 }

Data Conversion and Composition Chapter 3

[102]

 fmt.Printf("Initial list: %#v\n", ws)

 // first lower case the list
 ws = collections.Map(ws, collections.LowerCaseData)
 fmt.Printf("After LowerCaseData Map: %#v\n", ws)

 // next increment all versions
 ws = collections.Map(ws, collections.IncrementVersion)
 fmt.Printf("After IncrementVersion Map: %#v\n", ws)

 // lastly remove all versions older than 3
 ws = collections.Filter(ws, collections.OldVersion(3))
 fmt.Printf("After OldVersion Filter: %#v\n", ws)
 }

Run go run main.go. You could also run the following:9.

$ go build
$./example

You should see the following output:

$ go run main.go
Initial list:
[]collections.WorkWith{collections.WorkWith{Data:"Example",
Version:1}, collections.WorkWith{Data:"Example 2", Version:2}}
After LowerCaseData Map:
[]collections.WorkWith{collections.WorkWith{Data:"example",
Version:1}, collections.WorkWith{Data:"example 2", Version:2}}
After IncrementVersion Map:
[]collections.WorkWith{collections.WorkWith{Data:"example",
Version:2}, collections.WorkWith{Data:"example 2", Version:3}}
After OldVersion Filter:
[]collections.WorkWith{collections.WorkWith{Data:"example 2",
Version:3}}

If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all tests pass.

Data Conversion and Composition Chapter 3

[103]

How it works...
Closures in Go are very powerful. Although our collections functions are not generic,
they're relatively small and can be easily applied to our WorkWith structure with minimal
added code using a variety of functions. You may notice from looking at this that we're not
returning errors anywhere. The idea of these functions is that they're pure: there are no side
effects to the original list, except that we choose to write over it after each call.

If you need to apply layers of modification to a list or structure of lists, then this pattern can
save you a lot of confusion and make testing very straightforward. It is also possible to
chain maps and filters together for a very expressive coding style.

4
Error Handling in Go

Error handling is important for even the most basic Go program. Errors in Go implement
the Error interface and must be dealt with at every layer of the code. Go errors do not
work like exceptions, and unhandled errors can cause enormous problems. You should
strive to handle and consider errors whenever they occur.

This chapter also covers logging since it's common to log whenever an actual error occurs.
We'll also investigate wrapping errors, so that the given error should provide an additional
context as it's returned up the function stack, so that it's easier to determine the actual cause
of certain errors.

In this chapter, the following recipes will be covered:

Handling errors and the Error interface
Using the pkg/errors package and wrapping errors
Using the log package and understanding when to log errors
Structured logging with the apex and logrus packages
Logging with the context package
Using package-level global variables
Catching panics for long-running processes

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6, or later, on your operating system at https:/ /1.
golang.org/ doc/ install.
Open a Terminal/console application; create and navigate to a project directory2.
such as ~/projects/go-programming-cookbook. All code will be run and
modified from this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Error Handling in Go Chapter 4

[105]

Clone the latest code into ~/projects/go-programming-cookbook-3.
original and, optionally, work from that directory, rather than typing in the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Handling errors and the Error interface
The Error interface is a pretty small and simple interface:

type Error interface{
 Error() string
}

This interface is elegant because it's simple to make anything in order to satisfy it.
Unfortunately, this also creates confusion for packages that need to take certain actions
depending on the error received.

There are a number of ways to create errors in Go; this recipe will explore the creation of
basic errors, errors that have assigned values or types, and a custom error using a structure.

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/basicerrors
and navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/basicerrors

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/basicerrors

Error Handling in Go Chapter 4

[106]

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/basicerrors, or use this as an exercise to write some of
your own code!
Create a file called basicerrors.go with the following content:4.

package basicerrors

import (
 "errors"
 "fmt"
)

// ErrorValue is a way to make a package level
// error to check against. I.e. if err == ErrorValue
var ErrorValue = errors.New("this is a typed error")

// TypedError is a way to make an error type
// you can do err.(type) == ErrorValue
type TypedError struct {
 error
}

//BasicErrors demonstrates some ways to create errors
func BasicErrors() {
 err := errors.New("this is a quick and easy way to create an
error")
 fmt.Println("errors.New: ", err)

 err = fmt.Errorf("an error occurred: %s", "something")
 fmt.Println("fmt.Errorf: ", err)

 err = ErrorValue
 fmt.Println("value error: ", err)

 err = TypedError{errors.New("typed error")}
 fmt.Println("typed error: ", err)

}

Create a file called custom.go with the following content:5.

package basicerrors

import (
 "fmt"
)

Error Handling in Go Chapter 4

[107]

// CustomError is a struct that will implement
// the Error() interface
type CustomError struct {
 Result string
}

func (c CustomError) Error() string {
 return fmt.Sprintf("there was an error; %s was the result",
c.Result)
}

// SomeFunc returns an error
func SomeFunc() error {
 c := CustomError{Result: "this"}
 return c
}

Create a new directory named example and navigate to it.6.
Create a main.go file with the following content:7.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter4/basicerrors"
)

 func main() {
 basicerrors.BasicErrors()

 err := basicerrors.SomeFunc()
 fmt.Println("custom error: ", err)
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

Error Handling in Go Chapter 4

[108]

You should now see the following output:

$ go run main.go
errors.New: this is a quick and easy way to create an error
fmt.Errorf: an error occurred: something
typed error: this is a typed error
custom error: there was an error; this was the result

If you copied or wrote your own tests, then go up one directory and run go10.
test. Ensure that all the tests pass.

How it works...
Whether you use errors.New, fmt.Errorf, or a custom error, the most important thing to
remember is that you should never leave errors unhandled in your code. These different
methods of defining errors give a lot of flexibility. You can, for example, put extra functions
in your structure to further interrogate an error and cast the interface to your error type in
the calling function to get some added functionality.

The interface itself is very simple and the only requirement is that you return a valid string.
Connecting this to a structure can be useful for some high-level applications that have
consistent error handling throughout, but want to work nicely with other applications.

Using the pkg/errors package and wrapping
errors
The errors package located in github.com/pkg/errors is a drop-in replacement for the
standard Go errors package. Additionally, it provides some very useful functionality for
wrapping and handling errors. The typed and declared errors in the preceding recipe are a
good example—they can be useful to add additional information to an error, but wrapping
it in the standard way will change its type and break the type assertion:

// this wont work if you wrapped it
// in a standard way. that is,
// fmt.Errorf("custom error: %s", err.Error())
if err == Package.ErrorNamed{
 //handle this error in a specific way
}

This recipe will demonstrate how to use the pkg/errors package to add annotation to
errors throughout your code.

Error Handling in Go Chapter 4

[109]

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/errwrap and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/errwrap

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/errwrap

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/errwrap, or use this as an exercise to write some of your
own code!
Create a file called errwrap.go with the following content:4.

 package errwrap

 import (
 "fmt"

 "github.com/pkg/errors"
)
 // WrappedError demonstrates error wrapping and
 // annotating an error
 func WrappedError(e error) error {
 return errors.Wrap(e, "An error occurred in WrappedError")
 }

 // ErrorTyped is a error we can check against
 type ErrorTyped struct{
 error
 }

 // Wrap shows what happens when we wrap an error
 func Wrap() {
 e := errors.New("standard error")

 fmt.Println("Regular Error - ", WrappedError(e))

Error Handling in Go Chapter 4

[110]

 fmt.Println("Typed Error - ",
 WrappedError(ErrorTyped{errors.New("typed error")}))

 fmt.Println("Nil -", WrappedError(nil))

 }

Create a file called unwrap.go with the following content:5.

 package errwrap

 import (
 "fmt"

 "github.com/pkg/errors"
)

 // Unwrap will unwrap an error and do
 // type assertion to it
 func Unwrap() {

 err := error(ErrorTyped{errors.New("an error occurred")})
 err = errors.Wrap(err, "wrapped")
 fmt.Println("wrapped error: ", err)

 // we can handle many error types
 switch errors.Cause(err).(type) {
 case ErrorTyped:
 fmt.Println("a typed error occurred: ", err)
 default:
 fmt.Println("an unknown error occurred")
 }
 }

 // StackTrace will print all the stack for
 // the error
 func StackTrace() {
 err := error(ErrorTyped{errors.New("an error occurred")})
 err = errors.Wrap(err, "wrapped")

 fmt.Printf("%+v\n", err)
 }

Create a new directory named example and navigate to it.6.

Error Handling in Go Chapter 4

[111]

Create a main.go file with the following content:7.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter4/errwrap"
)

 func main() {
 errwrap.Wrap()
 fmt.Println()
 errwrap.Unwrap()
 fmt.Println()
 errwrap.StackTrace()
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
Regular Error - An error occurred in WrappedError: standard
error
Typed Error - An error occurred in WrappedError: typed error
Nil - <nil>

wrapped error: wrapped: an error occurred
a typed error occurred: wrapped: an error occurred

an error occurred
github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/errwrap.StackTrace
/Users/lothamer/go/src/github.com/agtorre/go-
cookbook/chapter4/errwrap/unwrap.go:30
main.main
/tmp/go/src/github.com/agtorre/go-
cookbook/chapter4/errwrap/example/main.go:14

Error Handling in Go Chapter 4

[112]

The go.mod file should be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you copied or wrote your own tests, then go up one directory and run go11.
test. Ensure that all the tests pass.

How it works...
The pkg/errors package is a very useful tool. It makes sense to wrap every returned error
using this package to provide extra context in logging and error debugging. It's flexible
enough to print the entire stack traces when an error occurs or to just add a prefix to your
errors when printing them. It can also clean up code, since a wrapped nil returns a nil
value; for example, consider the following code:

func RetError() error{
 err := ThisReturnsAnError()
 return errors.Wrap(err, "This only does something if err != nil")
}

In some cases, this can save you from having to check whether an error is nil first, before
simply returning it. This recipe demonstrates how to use the package to wrap and unwrap
errors, as well as basic stack trace functionality. The documentation for the package also
provides some other useful examples such as printing partial stacks. Dave Cheney, the
author of this library, has also written a number of helpful blogs and given talks on the
subject; you can go to https:/ /dave. cheney. net/ 2016/ 04/ 27/dont- just- check- errors-
handle-them-gracefully to find out more.

Using the log package and understanding
when to log errors
Logging should typically occur when an error is the final result. In other words, it's useful
to log when something exceptional or unexpected occurs. It might also be appropriate, if
you use a log that provides log levels, to sprinkle debug or info statements at key parts of
your code to quickly debug issues during development. Too much logging will make it
difficult to find anything useful, but not enough logging can result in broken systems with
no insight into the root cause. This recipe will demonstrate the use of the default Go log
package and some useful options, and also showcase when a log should likely occur.

https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully

Error Handling in Go Chapter 4

[113]

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/log and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/log

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/log

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/log, or use this as an exercise to write some of your own
code!
Create a file called log.go with the following content:4.

 package log

 import (
 "bytes"
 "fmt"
 "log"
)

 // Log uses the setup logger
 func Log() {
 // we'll configure the logger to write
 // to a bytes.Buffer
 buf := bytes.Buffer{}

 // second argument is the prefix last argument is about
 // options you combine them with a logical or.
 logger := log.New(&buf, "logger: ",
 log.Lshortfile|log.Ldate)

 logger.Println("test")

 logger.SetPrefix("new logger: ")

 logger.Printf("you can also add args(%v) and use Fatalln to

Error Handling in Go Chapter 4

[114]

 log and crash", true)

 fmt.Println(buf.String())
 }

Create a file called error.go with the following content:5.

 package log

 import "github.com/pkg/errors"
 import "log"

 // OriginalError returns the error original error
 func OriginalError() error {
 return errors.New("error occurred")
 }

 // PassThroughError calls OriginalError and
 // forwards the error along after wrapping.
 func PassThroughError() error {
 err := OriginalError()
 // no need to check error
 // since this works with nil
 return errors.Wrap(err, "in passthrougherror")
 }

 // FinalDestination deals with the error
 // and doesn't forward it
 func FinalDestination() {
 err := PassThroughError()
 if err != nil {
 // we log because an unexpected error occurred!
 log.Printf("an error occurred: %s\n", err.Error())
 return
 }
 }

Create a new directory named example and navigate to it.6.
Create a main.go file with the following content:7.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter4/log"

Error Handling in Go Chapter 4

[115]

)

 func main() {
 fmt.Println("basic logging and modification of logger:")
 log.Log()
 fmt.Println("logging 'handled' errors:")
 log.FinalDestination()
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should see the following output:

$ go run main.go
basic logging and modification of logger:
logger: 2017/02/05 log.go:19: test
new logger: 2017/02/05 log.go:23: you can also add args(true)
and use Fataln to log and crash

logging 'handled' errors:
2017/02/05 18:36:11 an error occurred: in passthrougherror:
error occurred

The go.mod file gets updated and the go.sum file should now be present in the10.
top-level recipe directory.
If you copied or wrote your own tests, then go up one directory and run go11.
test. Ensure that all the tests pass.

How it works...
You can either initialize a logger and pass it around using log.NewLogger(), or use the
log package level logger to log messages. The log.go file in this recipe does the former
and error.go does the latter. It also shows when logging might make sense after an error
has reached its final destination; otherwise, it's likely that you'll log multiple times for one
event.

Error Handling in Go Chapter 4

[116]

There are a few issues with this approach. First, you may have additional context in one of
the intermediate functions, such as the variables you'd like to log. Second, logging a bunch
of variables can get messy, making it confusing and difficult to read. The next recipe
explores structured logging that provides flexibility in logging variables, and, in a later
recipe, we will explore implementing a global package-level logger as well.

Structured logging with the apex and logrus
packages
The primary reason to log information is to examine the state of the system when events
occur or have occurred in the past. Basic log messages are tricky to comb over when you
have a large number of microservices that are logging.

There's a variety of third-party packages for combing over logs if you can get the logs into a
data format they understand. These packages provide indexing functionality, searchability,
and more. The sirupsen/logrus and apex/log packages provide a way to do structured
logging where you can log a number of fields that can be reformatted to fit these third-
party log readers. For example, it's simple to emit logs in JSON format to be parsed by a
variety of services.

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/structured and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/structured

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/structured

Error Handling in Go Chapter 4

[117]

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/structured, or use this as an exercise to write some of
your own code!
Create a file called logrus.go with the following content:4.

 package structured

 import "github.com/sirupsen/logrus"

 // Hook will implement the logrus
 // hook interface
 type Hook struct {
 id string
 }

 // Fire will trigger whenever you log
 func (hook *Hook) Fire(entry *logrus.Entry) error {
 entry.Data["id"] = hook.id
 return nil
 }

 // Levels is what levels this hook will fire on
 func (hook *Hook) Levels() []logrus.Level {
 return logrus.AllLevels
 }

 // Logrus demonstrates some basic logrus functionality
 func Logrus() {
 // we're emitting in json format
 logrus.SetFormatter(&logrus.TextFormatter{})
 logrus.SetLevel(logrus.InfoLevel)
 logrus.AddHook(&Hook{"123"})

 fields := logrus.Fields{}
 fields["success"] = true
 fields["complex_struct"] = struct {
 Event string
 When string
 }{"Something happened", "Just now"}

 x := logrus.WithFields(fields)
 x.Warn("warning!")
 x.Error("error!")
 }

Error Handling in Go Chapter 4

[118]

Create a file called apex.go with the following content:5.

 package structured

 import (
 "errors"
 "os"

 "github.com/apex/log"
 "github.com/apex/log/handlers/text"
)

 // ThrowError throws an error that we'll trace
 func ThrowError() error {
 err := errors.New("a crazy failure")
 log.WithField("id", "123").Trace("ThrowError").Stop(&err)
 return err
 }

 // CustomHandler splits to two streams
 type CustomHandler struct {
 id string
 handler log.Handler
 }

 // HandleLog adds a hook and does the emitting
 func (h *CustomHandler) HandleLog(e *log.Entry) error {
 e.WithField("id", h.id)
 return h.handler.HandleLog(e)
 }

 // Apex has a number of useful tricks
 func Apex() {
 log.SetHandler(&CustomHandler{"123", text.New(os.Stdout)})
 err := ThrowError()

 //With error convenience function
 log.WithError(err).Error("an error occurred")
 }

Create a new directory named example and navigate to it.6.
Create a main.go file with the following content:7.

 package main

 import (
 "fmt"

Error Handling in Go Chapter 4

[119]

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter4/structured"
)

 func main() {
 fmt.Println("Logrus:")
 structured.Logrus()

 fmt.Println()
 fmt.Println("Apex:")
 structured.Apex()
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
Logrus:
WARN[0000] warning! complex_struct={Something happened Just now}
id=123 success=true
ERRO[0000] error! complex_struct={Something happened Just now}
id=123 success=true

Apex:
INFO[0000] ThrowError id=123
ERROR[0000] ThrowError duration=133ns error=a crazy failure
id=123
ERROR[0000] an error occurred error=a crazy failure

The go.mod file should be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you copied or wrote your own tests, then go up one directory and run go11.
test. Ensure that all the tests pass.

Error Handling in Go Chapter 4

[120]

How it works...
The sirupsen/logrus and apex/log packages are both excellent structured loggers. Both
provide hooks for either emitting to multiple events or to add extra fields to a log entry. It
would be relatively simple, for example, to use the logrus hook or the apex custom
handler to add line numbers to all of your logs, as well as service names. Another use for a
hook might include traceID, in order to trace a request across different services.

While logrus splits the hook and the formatter, apex combines them. In addition to this,
apex adds some convenience functions such as WithError to add an error field as well as
tracing, both of which are demonstrated in this recipe. It's also relatively simple to adapt
hooks from logrus to the apex handlers. For both solutions, it would be a simple change
to convert to JSON formatting, instead of ANSI-colored text.

Logging with the context package
This recipe will demonstrate a way to pass log fields between various functions. The Go
pkg/context package is an excellent way to pass additional variables and cancellations
between functions. This recipe will explore using this functionality to distribute variables
between functions for logging purposes.

This style can be adapted to logrus or apex from the previous recipe. We'll use apex for
this recipe.

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/context and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/context

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/context

Error Handling in Go Chapter 4

[121]

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/context, or use this as an exercise to write some of your
own code!
Create a file called log.go with the following content:4.

 package context

 import (
 "context"

 "github.com/apex/log"
)

 type key int

 // logFields is a key we use
 // for our context logging
 const logFields key = 0
 func getFields(ctx context.Context) *log.Fields {
 fields, ok := ctx.Value(logFields).(*log.Fields)
 if !ok {
 f := make(log.Fields)
 fields = &f
 }
 return fields
 }

 // FromContext takes an entry and a context
 // then returns an entry populated from the context object
 func FromContext(ctx context.Context, l log.Interface)
 (context.Context, *log.Entry) {
 fields := getFields(ctx)
 e := l.WithFields(fields)
 ctx = context.WithValue(ctx, logFields, fields)
 return ctx, e
 }

 // WithField adds a log field to the context
 func WithField(ctx context.Context, key string, value
 interface{}) context.Context {
 return WithFields(ctx, log.Fields{key: value})
 }

 // WithFields adds many log fields to the context
 func WithFields(ctx context.Context, fields log.Fielder)
 context.Context {
 f := getFields(ctx)

Error Handling in Go Chapter 4

[122]

 for key, val := range fields.Fields() {
 (*f)[key] = val
 }
 ctx = context.WithValue(ctx, logFields, f)
 return ctx
 }

Create a file called collect.go with the following content:5.

 package context

 import (
 "context"
 "os"

 "github.com/apex/log"
 "github.com/apex/log/handlers/text"
)

 // Initialize calls 3 functions to set up, then
 // logs before terminating
 func Initialize() {
 // set basic log up
 log.SetHandler(text.New(os.Stdout))
 // initialize our context
 ctx := context.Background()
 // create a logger and link it to
 // the context
 ctx, e := FromContext(ctx, log.Log)

 // set a field
 ctx = WithField(ctx, "id", "123")
 e.Info("starting")
 gatherName(ctx)
 e.Info("after gatherName")
 gatherLocation(ctx)
 e.Info("after gatherLocation")
 }

 func gatherName(ctx context.Context) {
 ctx = WithField(ctx, "name", "Go Cookbook")
 }

 func gatherLocation(ctx context.Context) {
 ctx = WithFields(ctx, log.Fields{"city": "Seattle",
 "state": "WA"})
 }

Error Handling in Go Chapter 4

[123]

Create a new directory named example and navigate to it.6.
Create a main.go file with the following content:7.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter4/context"

 func main() {
 context.Initialize()
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should see the following output:

$ go run main.go
INFO[0000] starting id=123
INFO[0000] after gatherName id=123 name=Go Cookbook
INFO[0000] after gatherLocation city=Seattle id=123 name=Go
Cookbook state=WA

The go.mod file gets updated and the go.sum file should now be present in the10.
top-level recipe directory.
If you copied or wrote your own tests, then go up one directory and run go11.
test. Ensure that all the tests pass.

How it works...
The context package now appears in a variety of packages, including the database and
HTTP packages. This recipe will allow you to attach log fields to a context and use them for
logging purposes. The idea is that separate methods can attach more fields to a context as it
is passed around, and then the final call site can perform logging and aggregate variables.

This recipe mimics the WithField and WithFields methods found in the logging
packages in the previous recipe. These modify a single value stored in the context and also
provide the other benefits of using a context: cancellation, timeouts, and thread safety.

Error Handling in Go Chapter 4

[124]

Using package-level global variables
The apex and logrus packages in the earlier examples both used a package-level global
variable. Sometimes, it's useful to structure your libraries to support both structures with a
variety of methods and top-level functions so that you can use them directly without
passing them around.

This recipe also demonstrates using sync.Once to ensure that the global logger will only
be initialized once. It can also be bypassed by the Set method. The recipe only exports
WithField and Debug, but you can imagine exporting every method attached to a log
object.

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/global and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/global

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/global

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/global, or use this as an exercise to write some of your
own code!
Create a file called global.go with the following content:4.

 package global

 import (
 "errors"
 "os"
 "sync"

 "github.com/sirupsen/logrus"

Error Handling in Go Chapter 4

[125]

)

 // we make our global package level
 // variable lower case
 var (
 log *logrus.Logger
 initLog sync.Once
)

 // Init sets up the logger initially
 // if run multiple times, it returns
 // an error
 func Init() error {
 err := errors.New("already initialized")
 initLog.Do(func() {
 err = nil
 log = logrus.New()
 log.Formatter = &logrus.JSONFormatter{}
 log.Out = os.Stdout
 log.Level = logrus.DebugLevel
 })
 return err
 }

 // SetLog sets the log
 func SetLog(l *logrus.Logger) {
 log = l
 }

 // WithField exports the logs withfield connected
 // to our global log
 func WithField(key string, value interface{}) *logrus.Entry {
 return log.WithField(key, value)
 }

 // Debug exports the logs Debug connected
 // to our global log
 func Debug(args ...interface{}) {
 log.Debug(args...)
 }

Create a file called log.go with the following content:5.

 package global

 // UseLog demonstrates using our global
 // log
 func UseLog() error {

Error Handling in Go Chapter 4

[126]

 if err := Init(); err != nil {
 return err
 }

 // if we were in another package these would be
 // global.WithField and
 // global.Debug
 WithField("key", "value").Debug("hello")
 Debug("test")

 return nil
 }

Create a new directory named example and navigate to it.6.
Create a main.go file with the following content:7.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter4/global"

 func main() {
 if err := global.UseLog(); err != nil {
 panic(err)
 }
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should see the following output:

$ go run main.go
{"key":"value","level":"debug","msg":"hello","time":"2017-02-
12T19:22:50-08:00"}
{"level":"debug","msg":"test","time":"2017-02-12T19:22:50-
08:00"}

The go.mod file gets updated and the go.sum file should now be present in the10.
top-level recipe directory.
If you copied or wrote your own tests, then go up one directory and run go11.
test. Ensure that all the tests pass.

Error Handling in Go Chapter 4

[127]

How it works...
A common pattern for these global package-level objects is to keep the global variable
unexported and expose only the desired functionality through methods. Typically, you
could also include a method to return a copy of the global logger for packages that want a
logger object.

The sync.Once type is a newly introduced structure. This structure, in conjunction with
the Do method, will only execute in the code once. We use this in our initialization code,
and the Init function will throw an error if Init is called more than once. We use a
custom Init function instead of the built-in init() function, if we want to pass in
parameters to our global log.

Although this example uses a log, you can also imagine cases where this might be useful
with a database connection, data streams, and a number of other use cases.

Catching panics for long-running processes
When implementing long-running processes, it's possible that certain code paths will result
in a panic. This is usually common for things such as uninitialized maps and pointers, as
well as division by zero problems in the case of poorly validated user input.

Having a program crash completely in these cases is frequently much worse than the panic
itself, and so it can be helpful to catch and handle panics.

How to do it...
These steps cover the writing and running of your application:

From your Terminal/console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter4/panic and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter4/panic

Error Handling in Go Chapter 4

[128]

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter4/panic

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter4/panic, or use this as an exercise to write some of your
own code!
Create a file called panic.go with the following content:4.

 package panic

 import (
 "fmt"
 "strconv"
)

 // Panic panics with a divide by zero
 func Panic() {
 zero, err := strconv.ParseInt("0", 10, 64)
 if err != nil {
 panic(err)
 }
 a := 1 / zero
 fmt.Println("we'll never get here", a)
 }

 // Catcher calls Panic
 func Catcher() {
 defer func() {
 if r := recover(); r != nil {
 fmt.Println("panic occurred:", r)
 }
 }()
 Panic()
 }

Create a new directory named example and navigate to it.5.
Create a main.go file with the following content:6.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/

Error Handling in Go Chapter 4

[129]

 chapter4/panic"
)

 func main() {
 fmt.Println("before panic")
 panic.Catcher()
 fmt.Println("after panic")
 }

Run go run main.go.7.
You may also run the following commands:8.

$ go build
$./example

You should see the following output:

$ go run main.go
before panic
panic occurred: runtime error: integer divide by zero
after panic

If you copied or wrote your own tests, then go up one directory and run go9.
test. Ensure that all the tests pass.

How it works...
This recipe is a very basic example of how to catch panics. You can imagine with more
complex middleware how you can defer a recover and catch it after running many nested
functions. Within the recover, you can, essentially, do anything you want, although
emitting a log is common.

In most web applications, it's common to catch panics and emit an
http.InternalServerError message when a panic occurs.

5
Network Programming

The Go standard library provides a lot of support for network operations. It includes
packages that allow you to manage TCP/IP, UDP, DNS, mail, and RPC using HTTP. Third-
party packages can also fill in the gaps from what's included in the standard library,
including gorilla/websockets (https:/ /github. com/gorilla/ websocket/) for a
WebSocket implementation that can be used in a normal HTTP handler. This chapter
explores these libraries and demonstrates some simple recipes for how you can make use of
each of them. These recipes will assist developers who are unable to use a higher-level
abstraction such as REST or GRPC, but need network connectivity. It's also useful for
DevOps applications that need to perform DNS lookups or work with raw emails. After
reading this chapter, you should've gained some mastery of basic networking
programming and be prepared to dive deeper.

In this chapter, the following recipes will be covered:

Writing a TCP/IP echo server and client
Writing a UDP server and client
Working with domain name resolution
Working with WebSockets
Working with net/rpc for calling remote methods
Using net/mail for parsing emails

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system from1.
https:// golang. org/ doc/ install.

https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://github.com/gorilla/websocket/
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Network Programming Chapter 5

[131]

Open a Terminal or console application, and then create and navigate to a project2.
directory such as ~/projects/go-programming-cookbook. All code will be
run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-3.
original and you have the option to work from that directory rather than
typing the examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Writing a TCP/IP echo server and client
TCP/IP is a common network protocol and the HTTP protocol was built on top of it. TCP
requires a client to connect to a server in order to send and receive data. This recipe will use
the net package to make a TCP connection between a client and a server. The client will
send user input to the server and the server will respond with the same string inputted, but
converted to uppercase using the results of strings.ToUpper(). The client will print any
messages received from the server so it should output the uppercase version of our input.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter5/tcp and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter5/tcp

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/tcp

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter5/tcp or use this as an exercise to write some of your own
code!

Network Programming Chapter 5

[132]

Create a new directory named server and navigate to it.4.
Create a file called main.go with the following content:5.

package main

import (
 "bufio"
 "fmt"
 "net"
 "strings"
)

const addr = "localhost:8888"

func echoBackCapitalized(conn net.Conn) {
 // set up a reader on conn (an io.Reader)
 reader := bufio.NewReader(conn)

 // grab the first line of data encountered
 data, err := reader.ReadString('\n')
 if err != nil {
 fmt.Printf("error reading data: %s\n", err.Error())
 return
 }
 // print then send back the data
 fmt.Printf("Received: %s", data)
 conn.Write([]byte(strings.ToUpper(data)))
 // close up the finished connection
 conn.Close()
}

func main() {
 ln, err := net.Listen("tcp", addr)
 if err != nil {
 panic(err)
 }
 defer ln.Close()
 fmt.Printf("listening on: %s\n", addr)
 for {
 conn, err := ln.Accept()
 if err != nil {
 fmt.Printf("encountered an error accepting connection: %s\n",
 err.Error())
 // if there's an error try again
 continue
 }
 // handle this asynchronously

Network Programming Chapter 5

[133]

 // potentially a good use-case
 // for a worker pool
 go echoBackCapitalized(conn)
 }
}

Navigate to the previous directory.6.
Create a new directory named client and navigate to it.7.
Create a file called main.go with the following content:8.

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
)

const addr = "localhost:8888"

func main() {
 reader := bufio.NewReader(os.Stdin)
 for {
 // grab a string input from the clie
 fmt.Printf("Enter some text: ")
 data, err := reader.ReadString('\n')
 if err != nil {
 fmt.Printf("encountered an error reading input: %s\n",
 err.Error())
 continue
 }
 // connect to the addr
 conn, err := net.Dial("tcp", addr)
 if err != nil {
 fmt.Printf("encountered an error connecting: %s\n",
 err.Error())
 }

 // write the data to the connection
 fmt.Fprintf(conn, data)

 // read back the response
 status, err := bufio.NewReader(conn).ReadString('\n')
 if err != nil {
 fmt.Printf("encountered an error reading response: %s\n",
 err.Error())

Network Programming Chapter 5

[134]

 }
 fmt.Printf("Received back: %s", status)
 // close up the finished connection
 conn.Close()
 }
}

Navigate to the previous directory.9.
Run go run ./server and you will see the following output:10.

$ go run ./server
listening on: localhost:8888

In a separate Terminal, run go run ./client from the tcp directory and you11.
will see the following output:

$ go run ./client
Enter some text:

Type this is a test and hit Enter. You will see the following:12.

$ go run ./client
Enter some text: this is a test
Received back: THIS IS A TEST
Enter some text:

Press Ctrl + C to exit.13.
If you copied or wrote your own tests, go up one directory and run go test.14.
Ensure that all the tests pass.

How it works...
The server is listening on port 8888. Whenever a request comes in, the server must pick up
the request and manage the client connection. In the case of this program, it dispatches a
Goroutine that reads the request from the client, capitalizes the data it receives, sends it
back to the client, and, lastly, closes the connection. The server immediately loops again,
waiting to receive new client connections while the previous connection is handled
separately.

The client reads input from STDIN, connects to the address via a TCP connection, writes the
message that was read from the input, and then prints back the response from the server.
Afterward, it closes the connection and loops the reading once again from STDIN. It's also
possible for you to rework this example to have the client stay connected until the program
exits rather than on each request.

Network Programming Chapter 5

[135]

Writing a UDP server and client
The UDP protocol is often used for games and in places where speed is more important
than reliability. UDP servers and clients do not need to connect with one another. This
recipe will create a UDP server that will listen for messages from clients, add their IPs to its
list, and broadcast messages to each of the previously seen clients.

The server will write a message to STDOUT whenever a client connects and it will broadcast
the same message to all of its clients. The text of this message should be Sent <count>,
where <count> will increment each time the server broadcasts to all of its clients. As a
result, count may have different values depending on how long it takes you to connect to
your client as the server will broadcast regardless of the number of clients it sends a
message to.

How to do it...
These steps cover the process of writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter5/udp and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter5/udp

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/udp

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter5/udp or use this as an exercise to write some of your own
code!
Create a new directory named server and navigate to it.4.

Network Programming Chapter 5

[136]

Create a file called broadcast.go with the following content:5.

package main

import (
 "fmt"
 "net"
 "sync"
 "time"
)

type connections struct {
 addrs map[string]*net.UDPAddr
 // lock for modifying the map
 mu sync.Mutex
}

func broadcast(conn *net.UDPConn, conns *connections) {
 count := 0
 for {
 count++
 conns.mu.Lock()
 // loop over known addresses
 for _, retAddr := range conns.addrs {

 // send a message to them all
 msg := fmt.Sprintf("Sent %d", count)
 if _, err := conn.WriteToUDP([]byte(msg), retAddr); err !=
nil {
 fmt.Printf("error encountered: %s", err.Error())
 continue
 }

 }
 conns.mu.Unlock()
 time.Sleep(1 * time.Second)
 }
}

Create a file called main.go with the following content:6.

package main

import (
 "fmt"
 "net"
)

Network Programming Chapter 5

[137]

const addr = "localhost:8888"

func main() {
 conns := &connections{
 addrs: make(map[string]*net.UDPAddr),
 }

 fmt.Printf("serving on %s\n", addr)

 // construct a udp addr
 addr, err := net.ResolveUDPAddr("udp", addr)
 if err != nil {
 panic(err)
 }

 // listen on our specified addr
 conn, err := net.ListenUDP("udp", addr)
 if err != nil {
 panic(err)
 }
 // cleanup
 defer conn.Close()

 // async send messages to all known clients
 go broadcast(conn, conns)

 msg := make([]byte, 1024)
 for {
 // receive a message to gather the ip address
 // and port to send back to
 _, retAddr, err := conn.ReadFromUDP(msg)
 if err != nil {
 continue
 }

 //store it in a map
 conns.mu.Lock()
 conns.addrs[retAddr.String()] = retAddr
 conns.mu.Unlock()
 fmt.Printf("%s connected\n", retAddr)
 }
}

Navigate to the previous directory.7.
Create a new directory named client and navigate to it.8.

Network Programming Chapter 5

[138]

Create a file called main.go with the following content:9.

package main

import (
 "fmt"
 "net"
)

const addr = "localhost:8888"

func main() {
 fmt.Printf("client for server url: %s\n", addr)

 addr, err := net.ResolveUDPAddr("udp", addr)
 if err != nil {
 panic(err)
 }

 conn, err := net.DialUDP("udp", nil, addr)
 if err != nil {
 panic(err)
 }
 defer conn.Close()

 msg := make([]byte, 512)
 n, err := conn.Write([]byte("connected"))
 if err != nil {
 panic(err)
 }
 for {
 n, err = conn.Read(msg)
 if err != nil {
 continue
 }
 fmt.Printf("%s\n", string(msg[:n]))
 }
}

Navigate to the previous directory.10.
Run go run ./server and you will see the following output:11.

$ go run ./server
serving on localhost:8888

Network Programming Chapter 5

[139]

In a separate Terminal, run go run ./client from the udp directory and you12.
will see the following output, although the counts may differ:

$ go run ./client
client for server url: localhost:8888
Sent 3
Sent 4
Sent 5

Navigate to the Terminal that is running the server and you should see13.
something similar to the following:

$ go run ./server
serving on localhost:8888
127.0.0.1:64242 connected

Press Ctrl + C to exit both the server and client.14.
If you copied or wrote your own tests, go up one directory and run go test.15.
Ensure that all the tests pass.

How it works...
The server is listening on port 8888 just like in the previous recipe. If a client starts, it sends
a message to the server and the server adds its address to a list of addresses. Because clients
can connect asynchronously, the server must use a mutex before modifying or reading from
the list.

A separate broadcast Goroutine runs separately and sends the same message to all client
addresses that have previously sent it messages. Assuming they're still listening, they'll
receive the same message from the server at roughly the same time. You may also connect
with more clients to see this in effect.

Working with domain name resolution
The net package provides a number of useful functions around DNS lookup. This
information is comparable to what you might get from using the Unix dig command. This
information can be extremely useful for you to implement any kind of network
programming that requires dynamically determining IP addresses.

Network Programming Chapter 5

[140]

This recipe will explore how you might gather this data. To demonstrate this, we'll
implement a simplified dig command. We'll seek to map a URL to all of its IPv4 and IPv6
addresses. By modifying GODEBUG=netdns= to be set to go or cgo, it will either use the
pure Go DNS resolver or the cgo resolver. By default, the pure Go DNS resolver is used.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter5/dns and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter5/dns

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/dns

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter5/dns or use this as an exercise to write some of your own
code!
Create a dns.go file with the following content:4.

package dns

import (
 "fmt"
 "net"

 "github.com/pkg/errors"
)

// Lookup holds the DNS information we care about
type Lookup struct {
 cname string
 hosts []string
}

// We can use this to print the lookup object
func (d *Lookup) String() string {

Network Programming Chapter 5

[141]

 result := ""
 for _, host := range d.hosts {
 result += fmt.Sprintf("%s IN A %s\n", d.cname, host)
 }
 return result
}

// LookupAddress returns a DNSLookup consisting of a cname and host
// for a given address
func LookupAddress(address string) (*Lookup, error) {
 cname, err := net.LookupCNAME(address)
 if err != nil {
 return nil, errors.Wrap(err, "error looking up CNAME")
 }
 hosts, err := net.LookupHost(address)
 if err != nil {
 return nil, errors.Wrap(err, "error looking up HOST")
 }

 return &Lookup{cname: cname, hosts: hosts}, nil
}

Create a new directory named example and navigate to it.5.
Create a main.go file with the following content:6.

package main

import (
 "fmt"
 "log"
 "os"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/dns"
)

func main() {
 if len(os.Args) < 2 {
 fmt.Printf("Usage: %s <address>\n", os.Args[0])
 os.Exit(1)
 }
 address := os.Args[1]
 lookup, err := dns.LookupAddress(address)
 if err != nil {
 log.Panicf("failed to lookup: %s", err.Error())
 }
 fmt.Println(lookup)
}

Network Programming Chapter 5

[142]

Run the go run main.go golang.org command.7.
You may also run the following:8.

$ go build
$./example golang.org

You should see the following output:

$ go run main.go golang.org
golang.org. IN A 172.217.5.17
golang.org. IN A 2607:f8b0:4009:809::2011

The go.mod file may be updated and the go.sum file should now be present in9.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all the tests pass.

How it works...
This recipe performed a CNAME and host lookup of the address provided. In our case, we
used golang.org. We store the result in a lookup structure that prints the output results
using the String() method. This method will be called automatically when we print our
object as a string, or we can call the method directly. We implement some basic argument
checking in main.go to ensure that an address is provided when the program is run.

Working with WebSockets
WebSockets allow a server application to connect to a web-based client written in
JavaScript. This allows you to create web applications with two-way communication and to
create updates such as chat rooms and more.

This recipe will explore writing a WebSocket server in Go and also demonstrate the process
of a client consuming and communicating with a WebSocket server. It uses
github.com/gorilla/websocket to upgrade a standard handler into a WebSocket
handler and also to create the client application.

Network Programming Chapter 5

[143]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter5/websocket and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter5/websocket

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/websocket

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter5/websocket or use this as an exercise to write some of
your own code!
Create a new directory named server and navigate to it.4.
Create a file called handler.go with the following content:5.

package main

import (
 "log"
 "net/http"

 "github.com/gorilla/websocket"
)

// upgrader takes an http connection and converts it
// to a websocket one, we're using some recommended
// basic buffer sizes
var upgrader = websocket.Upgrader{
 ReadBufferSize: 1024,
 WriteBufferSize: 1024,
}

func wsHandler(w http.ResponseWriter, r *http.Request) {
 // upgrade the connection
 conn, err := upgrader.Upgrade(w, r, nil)
 if err != nil {
 log.Println("failed to upgrade connection: ", err)
 return

Network Programming Chapter 5

[144]

 }
 for {
 // read and echo back messages in a loop
 messageType, p, err := conn.ReadMessage()
 if err != nil {
 log.Println("failed to read message: ", err)
 return
 }
 log.Printf("received from client: %#v", string(p))
 if err := conn.WriteMessage(messageType, p); err != nil {
 log.Println("failed to write message: ", err)
 return
 }
 }
}

Create a file called main.go with the following content:6.

package main

import (
 "fmt"
 "log"
 "net/http"
)

func main() {
 fmt.Println("Listening on port :8000")
 // we mount our single handler on port localhost:8000 to handle
all
 // requests
 log.Panic(http.ListenAndServe("localhost:8000",
http.HandlerFunc(wsHandler)))
}

Navigate to the previous directory.7.
Create a new directory named client and navigate to it.8.
Create a file called process.go with the following content:9.

package main

import (
 "bufio"
 "fmt"
 "log"
 "os"
 "strings"

Network Programming Chapter 5

[145]

 "github.com/gorilla/websocket"
)

func process(c *websocket.Conn) {
 reader := bufio.NewReader(os.Stdin)
 for {
 fmt.Printf("Enter some text: ")
 // this will block ctrl-c, to exit press it then hit enter
 // or kill from another location
 data, err := reader.ReadString('\n')
 if err != nil {
 log.Println("failed to read stdin", err)
 }

 // trim off the space from reading the string
 data = strings.TrimSpace(data)

 // write the message as a byte across the websocket
 err = c.WriteMessage(websocket.TextMessage, []byte(data))
 if err != nil {
 log.Println("failed to write message:", err)
 return
 }

 // this is an echo server, so we can always read after the
write
 _, message, err := c.ReadMessage()
 if err != nil {
 log.Println("failed to read:", err)
 return
 }
 log.Printf("received back from server: %#v\n", string(message))
 }
}

Create a file called main.go with the following content:10.

package main

import (
 "log"
 "os"
 "os/signal"

 "github.com/gorilla/websocket"
)

// catchSig cleans up our websocket conenction if we kill the

Network Programming Chapter 5

[146]

program
// with a ctrl-c
func catchSig(ch chan os.Signal, c *websocket.Conn) {
 // block on waiting for a signal
 <-ch
 err := c.WriteMessage(websocket.CloseMessage,
websocket.FormatCloseMessage(websocket.CloseNormalClosure, ""))
 if err != nil {
 log.Println("write close:", err)
 }
 return
}

func main() {
 // connect the os signal to our channel
 interrupt := make(chan os.Signal, 1)
 signal.Notify(interrupt, os.Interrupt)

 // use the ws:// Scheme to connect to the websocket
 u := "ws://localhost:8000/"
 log.Printf("connecting to %s", u)

 c, _, err := websocket.DefaultDialer.Dial(u, nil)
 if err != nil {
 log.Fatal("dial:", err)
 }
 defer c.Close()

 // dispatch our signal catcher
 go catchSig(interrupt, c)

 process(c)
}

Navigate to the previous directory.11.
Run go run ./server and you will see the following output:12.

$ go run ./server
Listening on port :8000

In a separate Terminal, run go run ./client from the websocket directory13.
and you will see the following output:

$ go run ./client
2019/05/26 11:53:20 connecting to ws://localhost:8000/
Enter some text:

Network Programming Chapter 5

[147]

Enter the test string and you should see the following:14.

$ go run ./client
2019/05/26 11:53:20 connecting to ws://localhost:8000/
Enter some text: test
2019/05/26 11:53:22 received back from server: "test"
Enter some text:

Navigate to the Terminal running the server and you should see something15.
similar to the following:

$ go run ./server
Listening on port :8000
2019/05/26 11:53:22 received from client: "test"

Press Ctrl + C to exit both the server and client. You may also have to hit Enter16.
after pressing Ctrl + C on the client.
The go.mod file may be updated and the go.sum file should now be present in17.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.18.
Ensure that all the tests pass.

How it works...
The server is listening on port 8000 for WebSocket connections. When a request comes in,
the github.com/gorilla/websocket package is used to upgrade the request to a
WebSocket connection. Similar to earlier echo server examples, the server waits for a
message on the WebSocket connection and responds with the same message back to the
client. Because it's a handler, it can handle many WebSocket connections asynchronously
and they will remain connected until the client terminates.

In the client, we added a catchsig function to handle the Ctrl + C event. This allows us to
cleanly terminate the connection with the server when the client exits. Otherwise, the client
just takes user input on STDIN and sends it to the server, logs the response, and then
repeats.

Network Programming Chapter 5

[148]

Working with net/rpc for calling remote
methods
Go provides your system with basic RPC functionality with the net/rpc package. This is a
potential alternative to making RPC calls without relying on GRPC or other more complex
RPC packages. However, its functionality is rather limited and any function you may wish
to export must conform to a very specific function signature.

The comments in the code note some of these restrictions for a method that can be called
remotely. This recipe demonstrates how to create a shared function that has a number of
parameters passed in via a structure and can be called remotely.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter5/rpc and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter5/rpc

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/rpc

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter5/rpc or use this as an exercise to write some of your own
code!
Create a new directory named tweak and navigate to it.4.
Create a file called tweak.go with the following content:5.

package tweak

import (
 "strings"
)

// StringTweaker is a type of string

Network Programming Chapter 5

[149]

// that can reverse itself
type StringTweaker struct{}

// Args are a list of options for how to tweak
// the string
type Args struct {
 String string
 ToUpper bool
 Reverse bool
}

// Tweak conforms to the RPC library which require:
// - the method's type is exported.
// - the method is exported.
// - the method has two arguments, both exported (or builtin)
types.
// - the method's second argument is a pointer.
// - the method has return type error.
func (s StringTweaker) Tweak(args *Args, resp *string) error {

 result := string(args.String)
 if args.ToUpper {
 result = strings.ToUpper(result)
 }
 if args.Reverse {
 runes := []rune(result)
 for i, j := 0, len(runes)-1; i < j; i, j = i+1, j-1 {
 runes[i], runes[j] = runes[j], runes[i]
 }
 result = string(runes)

 }
 *resp = result
 return nil
}

Navigate to the previous directory.6.
Create a new directory named server and navigate to it.7.
Create a file called main.go with the following content:8.

package main

import (
 "fmt"
 "log"
 "net"
 "net/http"

Network Programming Chapter 5

[150]

 "net/rpc"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/rpc/tweak"
)

func main() {
 s := new(tweak.StringTweaker)
 if err := rpc.Register(s); err != nil {
 log.Fatal("failed to register:", err)
 }

 rpc.HandleHTTP()

 l, err := net.Listen("tcp", ":1234")
 if err != nil {
 log.Fatal("listen error:", err)
 }

 fmt.Println("listening on :1234")
 log.Panic(http.Serve(l, nil))
}

Navigate to the previous directory.9.
Create a new directory named client and navigate to it.10.
Create a file called main.go with the following content:11.

package main

import (
 "fmt"
 "log"
 "net/rpc"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/rpc/tweak"
)

func main() {
 client, err := rpc.DialHTTP("tcp", "localhost:1234")
 if err != nil {
 log.Fatal("error dialing:", err)
 }

 args := tweak.Args{
 String: "this string should be uppercase and reversed",
 ToUpper: true,

Network Programming Chapter 5

[151]

 Reverse: true,
 }
 var result string
 err = client.Call("StringTweaker.Tweak", args, &result)
 if err != nil {
 log.Fatal("client call with error:", err)
 }
 fmt.Printf("the result is: %s", result)
}

Navigate to the previous directory.12.
Run go run ./server and you will see the following output:13.

$ go run ./server
Listening on :1234

In a separate Terminal, run go run ./client from the rpc directory and you14.
will see the following output:

$ go run ./client
the result is: DESREVER DNA ESACREPPU EB DLUOHS GNIRTS SIHT

Press Ctrl + C to exit the server.15.
If you copied or wrote your own tests, go up one directory and run go test.16.
Ensure that all the tests pass.

How it works...
The StringTweaker structure is put into a separate library so that its exported types can
be accessed by the client (to set arguments) and the server (to register the RPC and start the
server). It also conforms to the rules mentioned at the start of this recipe in order to work
with net/rpc.

StringTweaker can be used to take an input string and, optionally, reverse and uppercase
all the characters contained within it, depending on the options passed. This pattern can be
extended to create far more complex functions and you can also use extra functions to make
the code more readable as it grows.

Network Programming Chapter 5

[152]

Using net/mail for parsing emails
The net/mail package provides a number of useful functions that assist you when
working with email. If you have the raw text of the email, it can be parsed into extract
headers, information about the send date, and much more. This recipe will demonstrate a
number of these functions by parsing a raw email hardcoded as a string.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter5/mail and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter5/mail

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter5/mail

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter5/mail or use this as an exercise to write some of your own
code!
Create a header.go file with the following content:4.

package main

import (
 "fmt"
 "net/mail"
 "strings"
)

// extract header info and print it nicely
func printHeaderInfo(header mail.Header) {

 // this works because we know it's a single address
 // otherwise use ParseAddressList
 toAddress, err := mail.ParseAddress(header.Get("To"))
 if err == nil {

Network Programming Chapter 5

[153]

 fmt.Printf("To: %s <%s>\n", toAddress.Name, toAddress.Address)
 }
 fromAddress, err := mail.ParseAddress(header.Get("From"))
 if err == nil {
 fmt.Printf("From: %s <%s>\n", fromAddress.Name,
 fromAddress.Address)
 }

 fmt.Println("Subject:", header.Get("Subject"))

 // this works for a valid RFC5322 date
 // it does a header.Get("Date"), then a
 // mail.ParseDate(that_result)
 if date, err := header.Date(); err == nil {
 fmt.Println("Date:", date)
 }

 fmt.Println(strings.Repeat("=", 40))
 fmt.Println()
}

Create a main.go file with the following content:5.

package main

import (
 "io"
 "log"
 "net/mail"
 "os"
 "strings"
)

// an example email message
const msg string = `Date: Thu, 24 Jul 2019 08:00:00 -0700
From: Aaron <fake_sender@example.com>
To: Reader <fake_receiver@example.com>
Subject: Gophercon 2019 is going to be awesome!

Feel free to share my book with others if you're attending.
This recipe can be used to process and parse email information.
`

func main() {
 r := strings.NewReader(msg)
 m, err := mail.ReadMessage(r)
 if err != nil {
 log.Fatal(err)

Network Programming Chapter 5

[154]

 }

 printHeaderInfo(m.Header)

 // after printing the header, dump the body to stdout
 if _, err := io.Copy(os.Stdout, m.Body); err != nil {
 log.Fatal(err)
 }
}

Run the go run . command.6.
You may also run the following:7.

$ go build
$./mail

You should see the following output:

$ go run .
To: Reader <fake_receiver@example.com>
From: Aaron <fake_sender@example.com>
Subject: Gophercon 2019 is going to be awesome!
Date: 2019-07-24 08:00:00 -0700 -0700
==

Feel free to share my book with others if you're attending.
This recipe can be used to process and parse email information.

If you copied or wrote your own tests, go up one directory and run go test.8.
Ensure that all the tests pass.

How it works...
The printHeaderInfo function does the majority of the work for this recipe. It parses the
addresses from the header into a *mail.Address structure and parses the date header into
a date object. Then, it takes all of the information in the message and formats it into a
readable format. The main function parses the initial email and passes this header along.

6
All about Databases and

Storage
Go applications frequently need to make use of long-term storage. This is usually in the
form of relational and non-relational databases, as well as key-value stores and more. When
working with these storage applications, it helps to wrap your operations in an interface.
The recipes in this chapter will examine various storage interfaces, consider parallel access
with things such as connection pools, and look at general tips for integrating a new library,
which is often the case when using a new storage technology.

In this chapter, the following recipes will be covered:

Using the database/sql package with MySQL
Executing a database transaction interface
Connection pooling, rate limiting, and timeouts for SQL
Working with Redis
Using NoSQL with MongoDB
Creating storage interfaces for data portability

Using the database/sql package with MySQL
Relational databases are some of the most well understood and common database options.
MySQL and PostgreSQL are two of the most popular open-source relational databases. This
recipe will demonstrate the database/sql package, which provides hooks for a number of
relational databases and automatically handles connection pooling and connection
duration, and gives access to a number of basic database operations.

This recipe will make use of a MySQL database to establish a connection, insert some
simple data, and query it. It will clean up the database after use by dropping the table.

All about Databases and Storage Chapter 6

[156]

Getting ready
Configure your environment according to these steps:

Download and install Go 1.12.6 or greater on your operating system at https:/ /1.
golang.org/ doc/ install.
Open a Terminal or console application, create a project directory such as2.
~/projects/go-programming-cookbook and navigate to this directory. All
code will be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-original3.
and optionally work from that directory rather than typing the examples
manually, as follows:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Install and configure MySQL using https:/ /dev. mysql. com/ doc/mysql-4.
getting- started/ en/ .
Run the export MYSQLUSERNAME=<your mysql username> command.5.
Run the export MYSQLPASSWORD=<your mysql password> command.6.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter6/database and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter6/database

You should see a file called go.mod that containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/database

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/

All about Databases and Storage Chapter 6

[157]

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter6/database, or use this as an exercise to write some code of
your own!
Create a file called config.go with the following content:4.

 package database

 import (
 "database/sql"
 "fmt"
 "os"
 "time"

 _ "github.com/go-sql-driver/mysql" //we import supported
 libraries for database/sql
)

 // Example hold the results of our queries
 type Example struct {
 Name string
 Created *time.Time
 }

 // Setup configures and returns our database
 // connection poold
 func Setup() (*sql.DB, error) {
 db, err := sql.Open("mysql",
 fmt.Sprintf("%s:%s@/gocookbook?
 parseTime=true", os.Getenv("MYSQLUSERNAME"),
 os.Getenv("MYSQLPASSWORD")))
 if err != nil {
 return nil, err
 }
 return db, nil
 }

Create a file called create.go with the following content:5.

 package database

 import (
 "database/sql"

 _ "github.com/go-sql-driver/mysql" //we import supported
 libraries for database/sql
)

All about Databases and Storage Chapter 6

[158]

 // Create makes a table called example
 // and populates it
 func Create(db *sql.DB) error {
 // create the database
 if _, err := db.Exec("CREATE TABLE example (name
 VARCHAR(20), created DATETIME)"); err != nil {
 return err
 }

 if _, err := db.Exec(`INSERT INTO example (name, created)
 values ("Aaron", NOW())`); err != nil {
 return err
 }

 return nil
 }

Create a file called query.go with the following content:6.

 package database

 import (
 "database/sql"
 "fmt"

 _ "github.com/go-sql-driver/mysql" //we import supported
 libraries for database/sql
)

 // Query grabs a new connection
 // creates tables, and later drops them
 // and issues some queries
 func Query(db *sql.DB, name string) error {
 name := "Aaron"
 rows, err := db.Query("SELECT name, created FROM example
 where name=?", name)
 if err != nil {
 return err
 }
 defer rows.Close()
 for rows.Next() {
 var e Example
 if err := rows.Scan(&e.Name, &e.Created); err != nil {
 return err
 }
 fmt.Printf("Results:\n\tName: %s\n\tCreated: %v\n",
 e.Name, e.Created)
 }

All about Databases and Storage Chapter 6

[159]

 return rows.Err()
 }

Create a file called exec.go with the following content:7.

 package database

 // Exec replaces the Exec from the previous
 // recipe
 func Exec(db DB) error {

 // uncaught error on cleanup, but we always
 // want to cleanup
 defer db.Exec("DROP TABLE example")

 if err := Create(db); err != nil {
 return err
 }

 if err := Query(db, "Aaron"); err != nil {
 return err
 }
 return nil
 }

Create and navigate to the example directory.8.
Create a file called main.go with the following content:9.

 package main

 import (
 "PacktPublishing/Go-Programming-Cookbook-Second-Edition/
 go-cookbook/chapter6/database"
 _ "github.com/go-sql-driver/mysql" //we import supported
 libraries for database/sql
)

 func main() {
 db, err := database.Setup()
 if err != nil {
 panic(err)
 }

 if err := database.Exec(db); err != nil {
 panic(err)
 }
 }

All about Databases and Storage Chapter 6

[160]

Run go run main.go.10.
You could also run the following command:11.

$ go build
$./example

You should see the following output:

$ go run main.go
Results:
 Name: Aaron
 Created: 2017-02-16 19:02:36 +0000 UTC

The go.mod file may be updated and go.sum file should now be present in the13.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.14.
Ensure that all the tests pass.

How it works...
The _ "github.com/go-sql-driver/mysql" line of code is how you connect various
database connectors to the database/sql package. There are also alternative MySQL
packages that can be imported in the same way for similar results. The commands would
be similar if you were to connect to PostgreSQL, SQLite, or any others that implement the
database/sql interfaces.

Once connected, the package sets up a connection pool that is covered in the Connection
pooling, rate limiting, and timeouts for SQL recipe, and you can either execute SQL on the
connection directly, or create transaction objects that can do everything a connection can do
with the commit and rollback commands.

The mysql package provides some convenience support for Go time objects when talking
to the database. This recipe also retrieves the username and password from the
MYSQLUSERNAME and MYSQLPASSWORD environment variables.

All about Databases and Storage Chapter 6

[161]

Executing a database transaction interface
When working with connections to services such as database, it can be difficult to write
tests. This is because it's difficult in Go to mock or duck-type things at runtime. Although I
recommend using a storage interface when working with databases, it's still useful to mock
a database transaction interface inside this interface. The Creating storage interfaces for data
portability recipe will cover storage interfaces; this recipe will focus on an interface to wrap
database connections and transaction objects.

To show the use of such an interface, we'll rewrite the create and query files from the
previous recipe to use our interface. The final output will be the same, but the create and
query operations will all be performed in a transaction.

Getting ready
Refer to the Getting ready section in the Using the database/sql package with MySQL recipe.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter6/dbinterface and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter6/dbinterface

You should see a file called go.mod that containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/dbinterface

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter6/dbinterface, or use this as an exercise to write some
code of your own!

All about Databases and Storage Chapter 6

[162]

Create a file called transaction.go with the following content:4.

package dbinterface

import "database/sql"

// DB is an interface that is satisfied
// by an sql.DB or an sql.Transaction
type DB interface {
 Exec(query string, args ...interface{}) (sql.Result, error)
 Prepare(query string) (*sql.Stmt, error)
 Query(query string, args ...interface{}) (*sql.Rows, error)
 QueryRow(query string, args ...interface{}) *sql.Row
}

// Transaction can do anything a Query can do
// plus Commit, Rollback, or Stmt
type Transaction interface {
 DB
 Commit() error
 Rollback() error
}

Create a file called create.go with the following content:5.

package dbinterface

import _ "github.com/go-sql-driver/mysql" //we import supported
libraries for database/sql

// Create makes a table called example
// and populates it
func Create(db DB) error {
 // create the database
 if _, err := db.Exec("CREATE TABLE example (name VARCHAR(20),
created DATETIME)"); err != nil {
 return err
 }

 if _, err := db.Exec(`INSERT INTO example (name, created) values
("Aaron", NOW())`); err != nil {
 return err
 }

 return nil
}

All about Databases and Storage Chapter 6

[163]

Create a file called query.go with the following content:6.

package dbinterface

import (
 "fmt"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/database"
)

// Query grabs a new connection
// creates tables, and later drops them
// and issues some queries
func Query(db DB) error {
 name := "Aaron"
 rows, err := db.Query("SELECT name, created FROM example where
name=?", name)
 if err != nil {
 return err
 }
 defer rows.Close()
 for rows.Next() {
 var e database.Example
 if err := rows.Scan(&e.Name, &e.Created); err != nil {
 return err
 }
 fmt.Printf("Results:\n\tName: %s\n\tCreated: %v\n", e.Name,
 e.Created)
 }
 return rows.Err()
}

Create a file called exec.go with the following content:7.

package dbinterface

// Exec replaces the Exec from the previous
// recipe
func Exec(db DB) error {

 // uncaught error on cleanup, but we always
 // want to cleanup
 defer db.Exec("DROP TABLE example")

 if err := Create(db); err != nil {
 return err
 }

All about Databases and Storage Chapter 6

[164]

 if err := Query(db); err != nil {
 return err
 }
 return nil
}

Navigate to example.8.
Create a file called main.go with the following content:9.

package main

import (
 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/database"
 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/dbinterface"
 _ "github.com/go-sql-driver/mysql" //we import supported
libraries for database/sql
)

func main() {
 db, err := database.Setup()
 if err != nil {
 panic(err)
 }

 tx, err := db.Begin()
 if err != nil {
 panic(err)
 }
 // this wont do anything if commit is successful
 defer tx.Rollback()

 if err := dbinterface.Exec(tx); err != nil {
 panic(err)
 }
 if err := tx.Commit(); err != nil {
 panic(err)

Run go run main.go.10.
You could also run the following command:11.

$ go build
$./example

All about Databases and Storage Chapter 6

[165]

You should see the following output:

$ go run main.go
Results:
 Name: Aaron
 Created: 2017-02-16 20:00:00 +0000 UTC

The go.mod file may be updated and go.sum file should now be present in the12.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all the tests pass.

How it works...
This recipe works in a very similar way to the previous database recipe Using the
database/sql package with MySQL. This recipe performs the same operation of creating data
and querying it, but also demonstrates using transactions and making generic database
functions that work with both sql.DB connections and sql.Transaction objects.

Code written in this way allows us to reuse function that perform database operations that
can be run individually or in groups using a transaction. This allows for more code reuse
while still isolating functionality to functions or methods operating on a database. For
example you can have Update(db DB) functions for multiple tables and pass them all a
shared transaction to perform multiple updates atomically. It's also simpler to mock these
interfaces, as you'll see in Chapter 9, Testing Go Code.

Connection pooling, rate limiting, and
timeouts for SQL
Although the database/sql package provides support for connection pooling, rate
limiting, and timeouts, it's often important to tweak the defaults to better accommodate
your database configuration. This can become important when you have horizontal scaling
on microservices and don't want to hold too many active connections to the database.

Getting ready
Refer to the Getting ready section in the Using the database/sql package with MySQL recipe.

All about Databases and Storage Chapter 6

[166]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter6/pools and navigate to
this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter6/pools

You should see a file called go.mod that containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/pools

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter6/pools, or use this as an exercise to write some code of
your own!
Create a file called pools.go with the following content:4.

 package pools

 import (
 "database/sql"
 "fmt"
 "os"

 _ "github.com/go-sql-driver/mysql" //we import supported
 libraries for database/sql
)

 // Setup configures the db along with pools
 // number of connections and more
 func Setup() (*sql.DB, error) {
 db, err := sql.Open("mysql",
 fmt.Sprintf("%s:%s@/gocookbook?
 parseTime=true", os.Getenv("MYSQLUSERNAME"),
 os.Getenv("MYSQLPASSWORD")))
 if err != nil {
 return nil, err
 }

 // there will only ever be 24 open connections
 db.SetMaxOpenConns(24)

All about Databases and Storage Chapter 6

[167]

 // MaxIdleConns can never be less than max open
 // SetMaxOpenConns otherwise it'll default to that value
 db.SetMaxIdleConns(24)

 return db, nil
 }

Create a file called timeout.go with the following content:5.

package pools

import (
 "context"
 "time"
)

// ExecWithTimeout will timeout trying
// to get the current time
func ExecWithTimeout() error {
 db, err := Setup()
 if err != nil {
 return err
 }

 ctx := context.Background()

 // we want to timeout immediately
 ctx, cancel := context.WithDeadline(ctx, time.Now())

 // call cancel after we complete
 defer cancel()

 // our transaction is context aware
 _, err = db.BeginTx(ctx, nil)
 return err
}

Navigate to example.6.
Create a file called main.go with the following content:7.

 package main

 import "PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 go-cookbook/chapter6/pools"

 func main() {
 if err := pools.ExecWithTimeout(); err != nil {

All about Databases and Storage Chapter 6

[168]

 panic(err)
 }
 }

Run go run main.go.8.
You could also run the following:9.

$ go build
$./example

You should see the following output:

$ go run main.go
panic: context deadline exceeded

goroutine 1 [running]:
main.main()
/go/src/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/go-cookbook/chapter6/pools/example/main.go:7 +0x4e
exit status 2

The go.mod file may be updated and go.sum file should now be present in the10.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all tests pass.

How it works...
Being able to control the depth of our connection pool is very useful. This will prevent us
from overloading a database, but it's important to consider what it will mean in the context
of timeouts. If you enforce both a set number of connections and strict context-based
timeouts, as we did in this recipe, there will be cases where you'll have requests frequently
timing out on an overloaded application trying to establish too many connections.

This is because connections will time-out waiting for a connection to become available. The
newly added context functionality for database/sql makes it much simpler to have a
shared timeout for the entire request, including the steps involved in performing the query.

With this and the other recipes, it makes sense to use a global config object to be passed
into the Setup() function, although this recipe just uses environment variables.

All about Databases and Storage Chapter 6

[169]

Working with Redis
Sometimes you need persistent storage or additional functionality provided by third-party
libraries and services. This recipe will explore Redis as a form of non-relational data storage
and showcase how a language such as Go can interact with these third-party services.

Since Redis supports key-value storage with a simple interface, it's an excellent candidate
for session storage or temporary data that has a duration. The ability to specify a timeout
on data stored in Redis is extremely valuable. This recipe will explore basic Redis usage
from configuration, to querying, to using custom sorting.

Getting ready
Configure your environment according to these steps:

Download and install Go 1.11.1 or above on your operating system from https:/1.
/golang. org/ doc/ install.
Install Consul from https:/ /www.consul. io/intro/ getting- started/ install.2.
html.
Open a Terminal or console application and create and navigate to a project3.
directory such as ~/projects/go-programming-cookbook. All the code will
be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-4.
original and (optionally) work from that directory rather than typing in the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Install and configure Redis using https:/ /redis. io/topics/ quickstart.5.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter6/redis and navigate to
this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://redis.io/topics/quickstart

All about Databases and Storage Chapter 6

[170]

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter6/redis

You should see a file called go.mod that containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/redis

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter6/redis, or use this as an exercise to write some code of
your own!

Create a file called config.go with the following content:4.

 package redis

 import (
 "os"

 redis "gopkg.in/redis.v5"
)

 // Setup initializes a redis client
 func Setup() (*redis.Client, error) {
 client := redis.NewClient(&redis.Options{
 Addr: "localhost:6379",
 Password: os.Getenv("REDISPASSWORD"),
 DB: 0, // use default DB
 })

 _, err := client.Ping().Result()
 return client, err
 }

Create a file called exec.go with the following content:5.

 package redis

 import (
 "fmt"
 "time"

 redis "gopkg.in/redis.v5"
)

 // Exec performs some redis operations

All about Databases and Storage Chapter 6

[171]

 func Exec() error {
 conn, err := Setup()
 if err != nil {
 return err
 }

 c1 := "value"
 // value is an interface, we can store whatever
 // the last argument is the redis expiration
 conn.Set("key", c1, 5*time.Second)

 var result string
 if err := conn.Get("key").Scan(&result); err != nil {
 switch err {
 // this means the key
 // was not found
 case redis.Nil:
 return nil
 default:
 return err
 }
 }

 fmt.Println("result =", result)

 return nil
 }

Create a file called sort.go with the following content:6.

package redis

import (
 "fmt"

 redis "gopkg.in/redis.v5"
)

// Sort performs a sort redis operations
func Sort() error {
 conn, err := Setup()
 if err != nil {
 return err
 }

 listkey := "list"
 if err := conn.LPush(listkey, 1).Err(); err != nil {
 return err

All about Databases and Storage Chapter 6

[172]

 }
 // this will clean up the list key if any of the subsequent
commands error
 defer conn.Del(listkey)

 if err := conn.LPush(listkey, 3).Err(); err != nil {
 return err
 }
 if err := conn.LPush(listkey, 2).Err(); err != nil {
 return err
 }

 res, err := conn.Sort(listkey, redis.Sort{Order: "ASC"}).Result()
 if err != nil {
 return err
 }
 fmt.Println(res)

 return nil
}

Navigate to example.7.
Create a file called main.go with the following content:8.

 package main

 import "PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 go-cookbook/chapter6/redis"

 func main() {
 if err := redis.Exec(); err != nil {
 panic(err)
 }

 if err := redis.Sort(); err != nil {
 panic(err)
 }
 }

Run go run main.go.9.
You could also run the following command:10.

$ go build
$./example

All about Databases and Storage Chapter 6

[173]

You should see the following output:

$ go run main.go
result = value
[1 2 3]

The go.mod file may be updated and go.sum file should now be present in the11.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all tests pass.

How it works...
Working with Redis in Go is very similar to working with MySQL. Although there's no
standard library, a lot of the same conventions are followed with functions such as Scan()
to read data from Redis into Go types. It can be challenging to pick the best library to use in
cases like this and I suggest surveying what's available periodically, as things can rapidly
change.

This recipe uses a redis package to do basic setting and getting, a more complex sort
function, and basic configuration. Like database/sql, you can set additional
configuration in the form of write timeouts, poolsize, and more. Redis itself also provides a
lot of additional functionality, including Redis cluster support, Zscore and counter objects,
and distributed locks.

As in the preceding recipe, I recommend using a config object, which stores your Redis
settings and configuration details for ease of setup and security.

Using NoSQL with MongoDB
You may initially think that Go is better suited to relational databases due to Go structures
and because Go is a typed language. When working with something like the
github.com/mongodb/mongo-go-driver package, Go can nearly arbitrarily store and
retrieve structure objects. If you version your objects, your schema can adapt and it can
provide a very flexible development environment.

Some libraries do a better job of hiding or elevating these abstractions. The mongo-go-
driver package is an example of a library that does an excellent job of the former. The
following recipe will create a connection in a similar way to Redis and MySQL, but will
store and retrieve an object without even defining a concrete schema.

All about Databases and Storage Chapter 6

[174]

Getting ready
Configure your environment according to these steps:

Download and install Go 1.11.1 or above on your operating system from https:/1.
/golang. org/ doc/ install.
Install Consul from https:/ /www.consul. io/intro/ getting- started/ install.2.
html.
Open a Terminal or console application and create and navigate to a project3.
directory such as ~/projects/go-programming-cookbook. All the code will
be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-4.
original and (optionally) work from that directory rather than typing in the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Install and configure MongoDB (https:/ /docs. mongodb. com/ getting- started/5.
shell/.)

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter6/mongodb and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter6/mongodb

You should see a file called go.mod that containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/mongodb

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter6/mongodb, or use this as an exercise to write some code of
your own!

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/
https://docs.mongodb.com/getting-started/shell/

All about Databases and Storage Chapter 6

[175]

Create a file called config.go with the following content:4.

package mongodb

import (
 "context"
 "time"

 "github.com/mongodb/mongo-go-driver/mongo"
 "go.mongodb.org/mongo-driver/mongo/options"
)

// Setup initializes a mongo client
func Setup(ctx context.Context, address string) (*mongo.Client,
error) {
 ctx, cancel := context.WithTimeout(ctx, 10*time.Second)
 // cancel will be called when setup exits
 defer cancel()

 client, err :=
mongo.NewClient(options.Client().ApplyURI(address))
 if err != nil {
 return nil, err
 }

 if err := client.Connect(ctx); err != nil {
 return nil, err
 }
 return client, nil
}

Create a file called exec.go with the following content:5.

package mongodb

import (
 "context"
 "fmt"

 "github.com/mongodb/mongo-go-driver/bson"
)

// State is our data model
type State struct {
 Name string `bson:"name"`
 Population int `bson:"pop"`
}

All about Databases and Storage Chapter 6

[176]

// Exec creates then queries an Example
func Exec(address string) error {
 ctx := context.Background()
 db, err := Setup(ctx, address)
 if err != nil {
 return err
 }

 coll := db.Database("gocookbook").Collection("example")

 vals := []interface{}{&State{"Washington", 7062000},
&State{"Oregon", 3970000}}

 // we can inserts many rows at once
 if _, err := coll.InsertMany(ctx, vals); err != nil {
 return err
 }

 var s State
 if err := coll.FindOne(ctx, bson.M{"name":
"Washington"}).Decode(&s); err != nil {
 return err
 }

 if err := coll.Drop(ctx); err != nil {
 return err
 }

 fmt.Printf("State: %#v\n", s)
 return nil
}

Navigate to example.6.
Create a file called main.go with the following content:7.

package main

import "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/mongodb"

func main() {
 if err := mongodb.Exec("mongodb://localhost"); err != nil {
 panic(err)
 }
}

All about Databases and Storage Chapter 6

[177]

Run go run main.go.8.
You could also run the following command:9.

$ go build
$./example

You should see the following output:

$ go run main.go
State: mongodb.State{Name:"Washington", Population:7062000}

The go.mod file may be updated and go.sum file should now be present in the10.
top-level recipe directory.

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all tests pass.

How it works...
The mongo-go-driver package also provides connection pooling, and many ways to
tweak and configure your connections to the mongodb database. This recipe's examples are
fairly basic, but they illustrate how easy it is to reason about and query a document-based
database. The package implements a BSON data type, and marshaling to and from it is very
similar to working with JSON.

Consistency guarantees and best practices for mongodb are outside the scope of this book.
However, it's a pleasure to work with these in the Go language.

Creating storage interfaces for data
portability
When working with external storage interfaces, it can be helpful to abstract your operations
behind an interface. This is for ease of mocking, portability in the event you change storage
backends, and isolation of concerns. The downside to this approach may come if you need
to perform multiple operations inside a transaction. In that case, it makes sense to make
composite operations, or to allow them to be passed in via a context object or additional
function arguments.

All about Databases and Storage Chapter 6

[178]

This recipe will implement a very simple interface for working with items in MongoDB.
These items will have a name and price and we'll use an interface to persist and retrieve
these objects.

Getting ready
Refer to the steps given in the Getting ready section in the Using NoSQL with
MongoDB recipe.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter6/storage and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter6/storage

You should see a file called go.mod that containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter6/storage

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter6/storage, or use this as an exercise to write some code of
your own!
Create a file called storage.go with the following content:4.

 package storage

 import "context"

 // Item represents an item at
 // a shop
 type Item struct {
 Name string
 Price int64
 }

 // Storage is our storage interface

All about Databases and Storage Chapter 6

[179]

 // We'll implement it with Mongo
 // storage
 type Storage interface {
 GetByName(context.Context, string) (*Item, error)
 Put(context.Context, *Item) error
 }

Create a file called mongoconfig.go with the following content:5.

package storage

import (
 "context"
 "time"

 "github.com/mongodb/mongo-go-driver/mongo"
)

// MongoStorage implements our storage interface
type MongoStorage struct {
 *mongo.Client
 DB string
 Collection string
}

// NewMongoStorage initializes a MongoStorage
func NewMongoStorage(ctx context.Context, connection, db,
collection string) (*MongoStorage, error) {
 ctx, cancel := context.WithTimeout(ctx, 10*time.Second)
 defer cancel()

 client, err := mongo.Connect(ctx, "mongodb://localhost")
 if err != nil {
 return nil, err
 }

 ms := MongoStorage{
 Client: client,
 DB: db,
 Collection: collection,
 }
 return &ms, nil
}

All about Databases and Storage Chapter 6

[180]

Create a file called mongointerface.go with the following content:6.

package storage

import (
 "context"

 "github.com/mongodb/mongo-go-driver/bson"
)

// GetByName queries mongodb for an item with
// the correct name
func (m *MongoStorage) GetByName(ctx context.Context, name string)
(*Item, error) {
 c := m.Client.Database(m.DB).Collection(m.Collection)
 var i Item
 if err := c.FindOne(ctx, bson.M{"name": name}).Decode(&i); err !=
nil {
 return nil, err
 }

 return &i, nil
}

// Put adds an item to our mongo instance
func (m *MongoStorage) Put(ctx context.Context, i *Item) error {
 c := m.Client.Database(m.DB).Collection(m.Collection)
 _, err := c.InsertOne(ctx, i)
 return err
}

Create a file called exec.go with the following content:7.

package storage

import (
 "context"
 "fmt"
)

// Exec initializes storage, then performs operations
// using the storage interface
func Exec() error {
 ctx := context.Background()
 m, err := NewMongoStorage(ctx, "localhost", "gocookbook",
"items")
 if err != nil {
 return err

All about Databases and Storage Chapter 6

[181]

 }
 if err := PerformOperations(m); err != nil {
 return err
 }

 if err :=
m.Client.Database(m.DB).Collection(m.Collection).Drop(ctx); err !=
nil {
 return err
 }

 return nil
}

// PerformOperations creates a candle item
// then gets it
func PerformOperations(s Storage) error {
 ctx := context.Background()
 i := Item{Name: "candles", Price: 100}
 if err := s.Put(ctx, &i); err != nil {
 return err
 }

 candles, err := s.GetByName(ctx, "candles")
 if err != nil {
 return err
 }
 fmt.Printf("Result: %#v\n", candles)
 return nil
}

Navigate to example.8.
Create a file called main.go with the following content:9.

 package main

 import "PacktPublishing/Go-Programming-Cookbook-Second-Edition/
 go-cookbook/chapter6/storage"

 func main() {
 if err := storage.Exec(); err != nil {
 panic(err)
 }
 }

All about Databases and Storage Chapter 6

[182]

Run go run main.go.10.
You could also run the following command:11.

$ go build
$./example

You should see the following output:

$ go run main.go
Result: &storage.Item{Name:"candles", Price:100}

The go.mod file may be updated and go.sum file should now be present in the12.
top-level recipe directory.

If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all tests pass.

How it works...
The most important function for demonstrating this recipe is PerformOperations. This
function takes an interface to Storage as a parameter. This means we can dynamically
replace the underlying storage without even modifying this function. It would be simple,
for example, to connect storage to a separate API in order to consume and modify it.

We use the context for these interfaces to add additional flexibility and allow the interface
to handle timeouts as well. Separating your application logic from the underlying storage
provides a variety of benefits, but it can be difficult to pick the right places to draw
boundaries, and this will vary widely by application.

7
Web Clients and APIs

Working with APIs and writing web clients can be a tricky business. Different APIs have
different types of authorization, authentication, and protocol. We'll explore the
http.Client structure object, work with OAuth2 clients and long-term token storage, and
finish off with GRPC and an additional REST interface.

By the end of this chapter, you should have an idea of how to interface with third-party or
in-house APIs and have some patterns for common operations, such as async requests to
APIs.

In this chapter, we will cover the following recipes:

Initializing, storing, and passing http.Client structures
Writing a client for a REST API
Executing parallel and async client requests
Making use of OAuth2 clients
Implementing an OAuth2 token storage interface
Wrapping a client in added functionality and function composition
Understanding GRPC clients
Using twitchtv/twirp for RPC

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or higher on your operating system at https:/ /1.
golang.org/ doc/ install.
Open a Terminal or console application, create a project directory such2.
as ~/projects/go-programming-cookbook, and navigate to this directory. All
code will be run and modified from this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Web Clients and APIs Chapter 7

[184]

Clone the latest code into ~/projects/go-programming-cookbook-3.
original and optionally work from that directory rather than typing the
examples manually, as follows:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Initializing, storing, and passing http.Client
structures
The Go net/http package exposes a flexible http.Client structure for working with
HTTP APIs. This structure has separate transport functionality and makes it relatively
simple to short-circuit requests, modify headers for each client operation, and handle any
REST operations. Creating clients is a very common operation, and this recipe will start
with the basics of working and creating an http.Client object.

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/client, and navigate to
this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/client

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/client

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/client, or use this as an exercise to write some code of
your own!

Web Clients and APIs Chapter 7

[185]

Create a file called client.go with the following content:4.

 package client

 import (
 "crypto/tls"
 "net/http"
)

 // Setup configures our client and redefines
 // the global DefaultClient
 func Setup(isSecure, nop bool) *http.Client {
 c := http.DefaultClient

 // Sometimes for testing, we want to
 // turn off SSL verification
 if !isSecure {
 c.Transport = &http.Transport{
 TLSClientConfig: &tls.Config{
 InsecureSkipVerify: false,
 },
 }
 }
 if nop {
 c.Transport = &NopTransport{}
 }
 http.DefaultClient = c
 return c
 }

 // NopTransport is a No-Op Transport
 type NopTransport struct {
 }

 // RoundTrip Implements RoundTripper interface
 func (n *NopTransport) RoundTrip(*http.Request)
 (*http.Response, error) {
 // note this is an unitialized Response
 // if you're looking at headers etc
 return &http.Response{StatusCode: http.StatusTeapot}, nil
 }

Web Clients and APIs Chapter 7

[186]

Create a file called exec.go with the following content:5.

 package client

 import (
 "fmt"
 "net/http"
)

 // DoOps takes a client, then fetches
 // google.com
 func DoOps(c *http.Client) error {
 resp, err := c.Get("http://www.google.com")
 if err != nil {
 return err
 }
 fmt.Println("results of DoOps:", resp.StatusCode)

 return nil
 }

 // DefaultGetGolang uses the default client
 // to get golang.org
 func DefaultGetGolang() error {
 resp, err := http.Get("https://www.golang.org")
 if err != nil {
 return err
 }
 fmt.Println("results of DefaultGetGolang:",
 resp.StatusCode)
 return nil
 }

Create a file called store.go with the following content:6.

 package client

 import (
 "fmt"
 "net/http"
)

 // Controller embeds an http.Client
 // and uses it internally
 type Controller struct {
 *http.Client
 }

Web Clients and APIs Chapter 7

[187]

 // DoOps with a controller object
 func (c *Controller) DoOps() error {
 resp, err := c.Client.Get("http://www.google.com")
 if err != nil {
 return err
 }
 fmt.Println("results of client.DoOps", resp.StatusCode)
 return nil
 }

Create a new directory called example and navigate to it.7.
Create a file named main.go with the following content:8.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/client"

 func main() {
 // secure and op!
 cli := client.Setup(true, false)

 if err := client.DefaultGetGolang(); err != nil {
 panic(err)
 }

 if err := client.DoOps(cli); err != nil {
 panic(err)
 }

 c := client.Controller{Client: cli}
 if err := c.DoOps(); err != nil {
 panic(err)
 }

 // secure and noop
 // also modifies default
 client.Setup(true, true)

 if err := client.DefaultGetGolang(); err != nil {
 panic(err)
 }
 }

Web Clients and APIs Chapter 7

[188]

Run go run main.go.9.
You may also run the following command:10.

$ go build
$./example

You should now see the following output:

$ go run main.go
results of DefaultGetGolang: 200
results of DoOps: 200
results of client.DoOps 200
results of DefaultGetGolang: 418

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

How it works...
The net/http package exposes a DefaultClient package variable, which is used by the
following internal operations: Do, GET, POST, and so on. Our Setup() function returns a
client and sets the default client to be the same client. When setting up a client, most of your
modifications will take place in the transport, which only needs to implement the
RoundTripper interface.

This recipe gives an example of a no-op round tripper that always returns a 418 status code.
You can imagine how this might be useful for testing. It also demonstrates passing in
clients as function arguments, using them as structure parameters, and using the default
client to process requests.

Writing a client for a REST API
Writing a client for a REST API will not only help you better understand the API in
question, it will also give you a useful tool for all future applications using that API. This
recipe will explore structuring a client and show some strategies that you can immediately
take advantage of.

Web Clients and APIs Chapter 7

[189]

For this client, we'll assume that the authentication is handled by the basic auth, but it
should also be possible to hit an endpoint to retrieve a token, and so on. For the sake of
simplicity, we'll assume that our API exposes one endpoint, GetGoogle(), which returns
that status code returned from doing a GET request to https:/ / www.google. com.

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/rest, and navigate to
this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/rest

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/rest

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/rest, or use this as an exercise to write some code of your
own!
Create a file called client.go with the following content:4.

 package rest

 import "net/http"

 // APIClient is our custom client
 type APIClient struct {
 *http.Client
 }

 // NewAPIClient constructor initializes the client with our
 // custom Transport
 func NewAPIClient(username, password string) *APIClient {
 t := http.Transport{}
 return &APIClient{
 Client: &http.Client{
 Transport: &APITransport{
 Transport: &t,

https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com

Web Clients and APIs Chapter 7

[190]

 username: username,
 password: password,
 },
 },
 }
 }

 // GetGoogle is an API Call - we abstract away
 // the REST aspects
 func (c *APIClient) GetGoogle() (int, error) {
 resp, err := c.Get("http://www.google.com")
 if err != nil {
 return 0, err
 }
 return resp.StatusCode, nil
 }

Create a file called transport.go with the following content:5.

 package rest

 import "net/http"

 // APITransport does a SetBasicAuth
 // for every request
 type APITransport struct {
 *http.Transport
 username, password string
 }

 // RoundTrip does the basic auth before deferring to the
 // default transport
 func (t *APITransport) RoundTrip(req *http.Request)
 (*http.Response, error) {
 req.SetBasicAuth(t.username, t.password)
 return t.Transport.RoundTrip(req)
 }

Create a file called exec.go with the following content:6.

 package rest

 import "fmt"

 // Exec creates an API Client and uses its
 // GetGoogle method, then prints the result
 func Exec() error {
 c := NewAPIClient("username", "password")

Web Clients and APIs Chapter 7

[191]

 StatusCode, err := c.GetGoogle()
 if err != nil {
 return err
 }
 fmt.Println("Result of GetGoogle:", StatusCode)
 return nil
 }

Create a new directory called example and navigate to it.7.
Create a file named main.go with the following content:8.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/rest"

 func main() {
 if err := rest.Exec(); err != nil {
 panic(err)
 }
 }

Run go run main.go.9.
You may also run the following command:10.

$ go build
$./example

You should now see the following output:

$ go run main.go
Result of GetGoogle: 200

If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

Web Clients and APIs Chapter 7

[192]

How it works...
This code demonstrates how to hide logic such as authentication, and performing a token
refresh using the Transport interface. It also demonstrates how to expose an API call via a
method. Had we been implementing against something such as a user API, we would
expect methods such as the following:

type API interface{
 GetUsers() (Users, error)
 CreateUser(User) error
 UpdateUser(User) error
 DeleteUser(User)
}

If you've read Chapter 5, All about Databases and Storage, this may look similar to the recipe
entitled Executing a database transaction interface. This composition through interfaces,
especially common interfaces such as the RoundTripper interface, provides a lot of
flexibility for writing APIs. In addition, it may be useful to write a top-level interface as we
did earlier and pass the interface around instead of to the client directly. We'll explore this
in more detail in the next recipe as we explore writing an OAuth2 client.

Executing parallel and async client requests
Performing client requests in parallel is relatively simple in Go. In the following recipe,
we'll use a client to retrieve multiple URLs using Go buffered channels. Responses and
errors will both go to a separate channel that is readily accessible by anyone with access to
the client.

In the case of this recipe, creating the client, reading the channels, and handling responses
and errors will all be done in the main.go file.

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/async, and navigate to
this directory.

Web Clients and APIs Chapter 7

[193]

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/async

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/async

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/async, or use this as an exercise to write some code of
your own!
Create a file called config.go with the following content:4.

 package async

 import "net/http"

 // NewClient creates a new client and
 // sets its appropriate channels
 func NewClient(client *http.Client, bufferSize int) *Client {
 respch := make(chan *http.Response, bufferSize)
 errch := make(chan error, bufferSize)
 return &Client{
 Client: client,
 Resp: respch,
 Err: errch,
 }
 }

 // Client stores a client and has two channels to aggregate
 // responses and errors
 type Client struct {
 *http.Client
 Resp chan *http.Response
 Err chan error
 }

 // AsyncGet performs a Get then returns
 // the resp/error to the appropriate channel
 func (c *Client) AsyncGet(url string) {
 resp, err := c.Get(url)
 if err != nil {
 c.Err <- err
 return
 }

Web Clients and APIs Chapter 7

[194]

 c.Resp <- resp
 }

Create a file called exec.go with the following content:5.

 package async

 // FetchAll grabs a list of urls
 func FetchAll(urls []string, c *Client) {
 for _, url := range urls {
 go c.AsyncGet(url)
 }
 }

Create a new directory called example and navigate to it.6.
Create a file named main.go with the following content:7.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/chapter7/async"
)

 func main() {
 urls := []string{
 "https://www.google.com",
 "https://golang.org",
 "https://www.github.com",
 }
 c := async.NewClient(http.DefaultClient, len(urls))
 async.FetchAll(urls, c)

 for i := 0; i < len(urls); i++ {
 select {
 case resp := <-c.Resp:
 fmt.Printf("Status received for %s: %d\n",
 resp.Request.URL, resp.StatusCode)
 case err := <-c.Err:
 fmt.Printf("Error received: %s\n", err)
 }
 }
 }

Web Clients and APIs Chapter 7

[195]

Run go run main.go.8.
You may also run the following command:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
Status received for https://www.google.com: 200
Status received for https://golang.org: 200
Status received for https://github.com/: 200

If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all the tests pass.

How it works...
This recipe creates a framework for processing requests in a fan-out async way using a
single client. It will attempt to retrieve as many URLs as you specify as quickly as it can. In
many cases, you'll want to restrict this further with something such as a worker pool. It
may also make sense to handle these async Go routines outside the client and for specific
storage or retrieval interfaces.

This recipe also explores using a case statement to switch on multiple channels. Because the
fetches are being executed asynchronously, there must be some mechanism to wait for
them to complete. In this case, the program will only terminate when the main function has
read the same number of responses and errors as there were URLs in the original list. In
cases such as this, it's also important to consider whether your application should time-out
or whether there is some other way to cancel its operation early.

Making use of OAuth2 clients
OAuth2 is a relatively common protocol for speaking with APIs. The
golang.org/x/oauth2 package provides a pretty flexible client for working with OAuth2.
It has subpackages that specify endpoints for various providers such as Facebook, Google,
and GitHub.

This recipe will demonstrate how to create a new GitHub OAuth2 client and some of its
basic usages.

Web Clients and APIs Chapter 7

[196]

Getting ready
After completing the initial setup steps mentioned in the Technical requirements section at
the beginning of this chapter, proceed with the following steps:

Configure an OAuth Client at https:/ /github. com/ settings/ applications/1.
new.
Set the environment variables with your client ID and secret:2.

export GITHUB_CLIENT="your_client"

export GITHUB_SECRET="your_secret"

Brush up on the GitHub API documentation at https:/ / developer. github. com/3.
v3/.

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/oauthcli, and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/oauthcli

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/oauthcli

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/oauthcli, or use this as an exercise to write some code of
your own!
Create a file called config.go with the following content:4.

 package oauthcli

 import (
 "context"
 "fmt"
 "os"

https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/

Web Clients and APIs Chapter 7

[197]

 "golang.org/x/oauth2"
 "golang.org/x/oauth2/github"
)

 // Setup return an oauth2Config configured to talk
 // to github, you need environment variables set
 // for your id and secret
 func Setup() *oauth2.Config {
 return &oauth2.Config{
 ClientID: os.Getenv("GITHUB_CLIENT"),
 ClientSecret: os.Getenv("GITHUB_SECRET"),
 Scopes: []string{"repo", "user"},
 Endpoint: github.Endpoint,
 }
 }

 // GetToken retrieves a github oauth2 token
 func GetToken(ctx context.Context, conf *oauth2.Config)
 (*oauth2.Token, error) {
 url := conf.AuthCodeURL("state")
 fmt.Printf("Type the following url into your browser and
 follow the directions on screen: %v\n", url)
 fmt.Println("Paste the code returned in the redirect URL
 and hit Enter:")

 var code string
 if _, err := fmt.Scan(&code); err != nil {
 return nil, err
 }
 return conf.Exchange(ctx, code)
 }

Create a file called exec.go with the following content:5.

 package oauthcli

 import (
 "fmt"
 "net/http"
)

 // GetUsers uses an initialized oauth2 client to get
 // information about a user
 func GetUser(client *http.Client) error {
 url := fmt.Sprintf("https://api.github.com/user")

 resp, err := client.Get(url)
 if err != nil {

Web Clients and APIs Chapter 7

[198]

 return err
 }
 defer resp.Body.Close()
 fmt.Println("Status Code from", url, ":", resp.StatusCode)
 io.Copy(os.Stdout, resp.Body)
 return nil
 }

Create a new directory called example and navigate to it.6.
Create a main.go file with the following content:7.

 package main

 import (
 "context"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/oauthcli"
)

 func main() {
 ctx := context.Background()
 conf := oauthcli.Setup()

 tok, err := oauthcli.GetToken(ctx, conf)
 if err != nil {
 panic(err)
 }
 client := conf.Client(ctx, tok)

 if err := oauthcli.GetUser(client); err != nil {
 panic(err)
 }

 }

Run go run main.go.8.
You may also run the following command:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
Visit the URL for the auth dialog:
https://github.com/login/oauth/authorize?

Web Clients and APIs Chapter 7

[199]

access_type=offline&client_id=
<your_id>&response_type=code&scope=repo+user&state=state
Paste the code returned in the redirect URL and hit Enter:
<your_code>
Status Code from https://api.github.com/user: 200
{<json_payload>}

The go.mod file may be updated and go.sum file should now be present in the10.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

How it works...
The standard OAuth2 flow is redirect-based and ends with the server redirecting to an
endpoint you specify. Your server is then responsible for grabbing the code and exchanging
it for a token. This recipe bypasses that requirement by allowing us to use a URL such as
https://localhost or https://a-domain-you-own, manually copying/pasting the
code, and then hitting Enter. Once the token has been exchanged, the client will intelligently
refresh the token as required.

It's important to note that we're not storing the token in any way. If the program crashes, it
must re-exchange for the token. It's also important to note that we need to retrieve the
token explicitly only once unless the refresh token expires, is lost, or is corrupted. Once the
client is configured, it should be able to perform all typical HTTP operations for the API as
long as the appropriate scopes were requested during the OAuth2 flow. This recipe
requests the "repo" and "user" scopes, but more or less can be added as needed.

Implementing an OAuth2 token storage
interface
In the previous recipe, we retrieved a token for our client and performed API requests. The
downside of this approach is that we have no long-term storage for our token. In an HTTP
server, for example, we'd like to have consistent storage of the token between requests.

This recipe will explore modifying the OAuth2 client to store a token between requests and
retrieve it as required using a key. For the sake of simplicity, this key will be a file, but it
could also be a database, Redis, and so on.

Web Clients and APIs Chapter 7

[200]

Getting ready
Refer to the Getting ready section in the Making use of OAuth2 clients recipe.

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/oauthstore, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/oauthstore

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/oauthstore

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/oauthstore, or use this as an exercise to write some code
of your own!

Create a file called config.go with the following content:4.

 package oauthstore

 import (
 "context"
 "net/http"

 "golang.org/x/oauth2"
)

 // Config wraps the default oauth2.Config
 // and adds our storage
 type Config struct {
 *oauth2.Config
 Storage
 }

 // Exchange stores a token after retrieval
 func (c *Config) Exchange(ctx context.Context, code string)

Web Clients and APIs Chapter 7

[201]

 (*oauth2.Token, error) {
 token, err := c.Config.Exchange(ctx, code)
 if err != nil {
 return nil, err
 }
 if err := c.Storage.SetToken(token); err != nil {
 return nil, err
 }
 return token, nil
 }
 // TokenSource can be passed a token which
 // is stored, or when a new one is retrieved,
 // that's stored
 func (c *Config) TokenSource(ctx context.Context, t
 *oauth2.Token) oauth2.TokenSource {
 return StorageTokenSource(ctx, c, t)
 }

 // Client is attached to our TokenSource
 func (c *Config) Client(ctx context.Context, t *oauth2.Token)
 *http.Client {
 return oauth2.NewClient(ctx, c.TokenSource(ctx, t))
 }

Create a file called tokensource.go with the following content:5.

 package oauthstore

 import (
 "context"

 "golang.org/x/oauth2"
)

 type storageTokenSource struct {
 *Config
 oauth2.TokenSource
 }

 // Token satisfies the TokenSource interface
 func (s *storageTokenSource) Token() (*oauth2.Token, error) {
 if token, err := s.Config.Storage.GetToken(); err == nil &&
 token.Valid() {
 return token, err
 }
 token, err := s.TokenSource.Token()
 if err != nil {
 return token, err

Web Clients and APIs Chapter 7

[202]

 }
 if err := s.Config.Storage.SetToken(token); err != nil {
 return nil, err
 }
 return token, nil
 }

 // StorageTokenSource will be used by out configs TokenSource
 // function
 func StorageTokenSource(ctx context.Context, c *Config, t
 *oauth2.Token) oauth2.TokenSource {
 if t == nil || !t.Valid() {
 if tok, err := c.Storage.GetToken(); err == nil {
 t = tok
 }
 }
 ts := c.Config.TokenSource(ctx, t)
 return &storageTokenSource{c, ts}
 }

Create a file called storage.go with the following content:6.

 package oauthstore

 import (
 "context"
 "fmt"

 "golang.org/x/oauth2"
)

 // Storage is our generic storage interface
 type Storage interface {
 GetToken() (*oauth2.Token, error)
 SetToken(*oauth2.Token) error
 }

 // GetToken retrieves a github oauth2 token
 func GetToken(ctx context.Context, conf Config) (*oauth2.Token,
 error) {
 token, err := conf.Storage.GetToken()
 if err == nil && token.Valid() {
 return token, err
 }
 url := conf.AuthCodeURL("state")
 fmt.Printf("Type the following url into your browser and
 follow the directions on screen: %v\n", url)
 fmt.Println("Paste the code returned in the redirect URL

Web Clients and APIs Chapter 7

[203]

 and hit Enter:")

 var code string
 if _, err := fmt.Scan(&code); err != nil {
 return nil, err
 }
 return conf.Exchange(ctx, code)
 }

Create a file called filestorage.go with the following content:7.

 package oauthstore

 import (
 "encoding/json"
 "errors"
 "os"
 "sync"

 "golang.org/x/oauth2"
)

 // FileStorage satisfies our storage interface
 type FileStorage struct {
 Path string
 mu sync.RWMutex
 }

 // GetToken retrieves a token from a file
 func (f *FileStorage) GetToken() (*oauth2.Token, error) {
 f.mu.RLock()
 defer f.mu.RUnlock()
 in, err := os.Open(f.Path)
 if err != nil {
 return nil, err
 }
 defer in.Close()
 var t *oauth2.Token
 data := json.NewDecoder(in)
 return t, data.Decode(&t)
 }

 // SetToken creates, truncates, then stores a token
 // in a file
 func (f *FileStorage) SetToken(t *oauth2.Token) error {
 if t == nil || !t.Valid() {
 return errors.New("bad token")
 }

Web Clients and APIs Chapter 7

[204]

 f.mu.Lock()
 defer f.mu.Unlock()
 out, err := os.OpenFile(f.Path,
 os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0755)
 if err != nil {
 return err
 }
 defer out.Close()
 data, err := json.Marshal(&t)
 if err != nil {
 return err
 }

 _, err = out.Write(data)
 return err
 }

Create a new directory called example and navigate to it.8.
Create a file named main.go with the following content:9.

 package main

 import (
 "context"
 "io"
 "os"
 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/oauthstore"

 "golang.org/x/oauth2"
 "golang.org/x/oauth2/github"
)

 func main() {
 conf := oauthstore.Config{
 Config: &oauth2.Config{
 ClientID: os.Getenv("GITHUB_CLIENT"),
 ClientSecret: os.Getenv("GITHUB_SECRET"),
 Scopes: []string{"repo", "user"},
 Endpoint: github.Endpoint,
 },
 Storage: &oauthstore.FileStorage{Path: "token.txt"},
 }
 ctx := context.Background()
 token, err := oauthstore.GetToken(ctx, conf)
 if err != nil {
 panic(err)

Web Clients and APIs Chapter 7

[205]

 }

 cli := conf.Client(ctx, token)
 resp, err := cli.Get("https://api.github.com/user")
 if err != nil {
 panic(err)
 }
 defer resp.Body.Close()
 io.Copy(os.Stdout, resp.Body)
 }

Run go run main.go.10.
You may also run the following command:11.

$ go build
$./example

You should now see the following output:

$ go run main.go
Visit the URL for the auth dialog:
https://github.com/login/oauth/authorize?
access_type=offline&client_id=
<your_id>&response_type=code&scope=repo+user&state=state
Paste the code returned in the redirect URL and hit Enter:
<your_code>
{<json_payload>}

$ go run main.go
{<json_payload>}

The go.mod file may be updated and go.sum file should now be present in the12.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all the tests pass.

How it works...
This recipe takes care of storing and retrieving the contents of a token to/from a file. If it's a
first run, it must execute the entire code exchange, but subsequent runs will reuse the
access token, and, if one is available, it will refresh using the refresh token.

Web Clients and APIs Chapter 7

[206]

There is currently no way in this code to differentiate between users/tokens, but that could
be accomplished with cookies as a key for a filename or a row in the database as well. Let's
walk through what this code does:

The config.go file wraps the standard OAuth2 config. For every method that
involves retrieving a token, we first check whether we have a valid token in local
storage. If not, we retrieve one using the standard config and then store it.
The tokensource.go file implements our custom TokenSource interface,
which pairs with Config. Similar to Config, we always first try to retrieve our
token from a file; failing this, we set it with the new token.

The storage.go file is the storage interface used by Config and
TokenSource. It only defines two methods and we also include a helper function
to bootstrap the OAuth2 code-based flow similar to what we did in the previous
recipe, but if a file with a valid token already exists, it will be used instead.
The filestorage.go file implements the storage interface. When we store a
new token, we first truncate the file and write a JSON representation of the
token struct. Otherwise, we decode the file and return token.

Wrapping a client in added functionality and
function composition
In 2015, Tomás Senart gave an excellent talk on wrapping an http.Client structure with
an interface, allowing you to take advantage of middleware and function composition. You
can find out more on this at https:/ /github. com/ gophercon/ 2015- talks. This recipe
borrows from his ideas and demonstrates an example of performing the same action on the
Transport interface of the http.Client structure, in a similar way to our earlier recipe,
Writing a client for a REST API.

The following recipe will implement logging and basic auth middleware for a standard
http.Client structure. It also includes a decorate function that can be used when
required with a large variety of middleware.

https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks
https://github.com/gophercon/2015-talks

Web Clients and APIs Chapter 7

[207]

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/decorator, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/decorator

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/decorator

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/decorator, or use this as an exercise to write some code
of your own!
Create a file called config.go with the following content:4.

 package decorator

 import (
 "log"
 "net/http"
 "os"
)

 // Setup initializes our ClientInterface
 func Setup() *http.Client {
 c := http.Client{}

 t := Decorate(&http.Transport{},
 Logger(log.New(os.Stdout, "", 0)),
 BasicAuth("username", "password"),
)
 c.Transport = t
 return &c
 }

Web Clients and APIs Chapter 7

[208]

Create a file called decorator.go with the following content:5.

 package decorator

 import "net/http"

 // TransportFunc implements the RountTripper interface
 type TransportFunc func(*http.Request) (*http.Response, error)

 // RoundTrip just calls the original function
 func (tf TransportFunc) RoundTrip(r *http.Request)
 (*http.Response, error) {
 return tf(r)
 }

 // Decorator is a convenience function to represent our
 // middleware inner function
 type Decorator func(http.RoundTripper) http.RoundTripper

 // Decorate is a helper to wrap all the middleware
 func Decorate(t http.RoundTripper, rts ...Decorator)
 http.RoundTripper {
 decorated := t
 for _, rt := range rts {
 decorated = rt(decorated)
 }
 return decorated
 }

Create a file called middleware.go with the following content:6.

 package decorator

 import (
 "log"
 "net/http"
 "time"
)

 // Logger is one of our 'middleware' decorators
 func Logger(l *log.Logger) Decorator {
 return func(c http.RoundTripper) http.RoundTripper {
 return TransportFunc(func(r *http.Request)
 (*http.Response, error) {
 start := time.Now()
 l.Printf("started request to %s at %s", r.URL,
 start.Format("2006-01-02 15:04:05"))
 resp, err := c.RoundTrip(r)

Web Clients and APIs Chapter 7

[209]

 l.Printf("completed request to %s in %s", r.URL,
 time.Since(start))
 return resp, err
 })
 }
 }

 // BasicAuth is another of our 'middleware' decorators
 func BasicAuth(username, password string) Decorator {
 return func(c http.RoundTripper) http.RoundTripper {
 return TransportFunc(func(r *http.Request)
 (*http.Response, error) {
 r.SetBasicAuth(username, password)
 resp, err := c.RoundTrip(r)
 return resp, err
 })
 }
 }

Create a file called exec.go with the following content:7.

 package decorator

 import "fmt"

 // Exec creates a client, calls google.com
 // then prints the response
 func Exec() error {
 c := Setup()

 resp, err := c.Get("https://www.google.com")
 if err != nil {
 return err
 }
 fmt.Println("Response code:", resp.StatusCode)
 return nil
 }

Create a new directory called example and navigate to it.8.
Create a main.go file with the following content:9.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/decorator"

 func main() {

Web Clients and APIs Chapter 7

[210]

 if err := decorator.Exec(); err != nil {
 panic(err)
 }
 }

Run go run main.go.10.
You may also run the following command:11.

$ go build
$./example

You should now see the following output:

$ go run main.go
started request to https://www.google.com at 2017-01-01 13:38:42
completed request to https://www.google.com in 194.013054ms
Response code: 200

If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all the tests pass.

How it works...
This recipe takes advantage of closures as first-class citizens and interfaces. The main trick
in achieving this is having a function implement an interface. This allows us to wrap an
interface implemented by a structure with an interface implemented by a function.

The middleware.go file contains two example client middleware functions. These could
be extended to contain additional middleware, such as a more sophisticated auth, and
metrics. This recipe can also be combined with the previous recipe to produce an OAuth2
client that can be extended by additional middleware.

The Decorator function is a convenience function that allows the following:

Decorate(RoundTripper, Middleware1, Middleware2, etc)

vs

var t RoundTripper
t = Middleware1(t)
t = Middleware2(t)
etc

Web Clients and APIs Chapter 7

[211]

The advantage of this approach compared to wrapping the client is that we can keep the
interface sparse. If you want a fully featured client, you'll also need to implement methods
such as GET, POST, and PostForm.

Understanding GRPC clients
GRPC is a high-performance RPC framework that is built using protocol buffers (https:/ /
developers.google. com/ protocol- buffers) and HTTP/2 (https:/ /http2. github. io).
Creating a GRPC client in Go involves many of the same intricacies as working with Go
HTTP clients. In order to demonstrate basic client usage, it's easiest to also implement a
server. This recipe will create a greeter service, which takes a greeting and a name and
returns the sentence <greeting> <name>!. In addition, the server can specify whether to
exclaim ! or not . (full stop).

There are some details about GRPC, such as streaming, that this recipe won't explore;
however, it will hopefully serve as an introduction to creating a very basic server and client.

Getting ready
After completing the initial setup steps mentioned in the Technical requirements section at
the beginning of this chapter, install GRPC (https:/ /grpc. io/ docs/ quickstart/ go/) and
run the following commands:

go get -u github.com/golang/protobuf/{proto,protoc-gen-go}

go get -u google.golang.org/grpc

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory called1.
~/projects/go-programming-cookbook/chapter7/grpc, and navigate to
this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/grpc

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://http2.github.io
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/

Web Clients and APIs Chapter 7

[212]

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/grpc

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/grpc, or use this as an exercise to write some code of your
own!
Create a directory called greeter and navigate to it.4.
Create a file called greeter.proto with the following content:5.

 syntax = "proto3";

 package greeter;

 service GreeterService{
 rpc Greet(GreetRequest) returns (GreetResponse) {}
 }

 message GreetRequest {
 string greeting = 1;
 string name = 2;
 }

 message GreetResponse{
 string response = 1;
 }

Navigate back up a directory to grpc.6.
Run the following command:7.

$ protoc --go_out=plugins=grpc:. greeter/greeter.proto

Create a new directory called server and navigate to it.8.
Create a file called greeter.go with the following content. Ensure that you9.
modify the greeter import to use the path you set up in step 3:

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/grpc/greeter"
 "golang.org/x/net/context"

Web Clients and APIs Chapter 7

[213]

)

 // Greeter implements the interface
 // generated by protoc
 type Greeter struct {
 Exclaim bool
 }

 // Greet implements grpc Greet
 func (g *Greeter) Greet(ctx context.Context, r
 *greeter.GreetRequest) (*greeter.GreetResponse, error) {
 msg := fmt.Sprintf("%s %s", r.GetGreeting(), r.GetName())
 if g.Exclaim {
 msg += "!"
 } else {
 msg += "."
 }
 return &greeter.GreetResponse{Response: msg}, nil
 }

Create a file called server.go with the following content. Ensure that you10.
modify the greeter import to use the path you set up in step 3:

 package main

 import (
 "fmt"
 "net"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/grpc/greeter"
 "google.golang.org/grpc"
)

 func main() {
 grpcServer := grpc.NewServer()
 greeter.RegisterGreeterServiceServer(grpcServer,
 &Greeter{Exclaim: true})
 lis, err := net.Listen("tcp", ":4444")
 if err != nil {
 panic(err)
 }
 fmt.Println("Listening on port :4444")
 grpcServer.Serve(lis)
 }

Web Clients and APIs Chapter 7

[214]

Navigate back up a directory to grpc.11.
Create a new directory called client and navigate to it.12.
Create a file called client.go with the following content. Ensure that you13.
modify the greeter import to use the path you set up in step 3:

 package main

 import (
 "context"
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/grpc/greeter"
 "google.golang.org/grpc"
)

 func main() {
 conn, err := grpc.Dial(":4444", grpc.WithInsecure())
 if err != nil {
 panic(err)
 }
 defer conn.Close()

 client := greeter.NewGreeterServiceClient(conn)

 ctx := context.Background()
 req := greeter.GreetRequest{Greeting: "Hello", Name:
 "Reader"}
 resp, err := client.Greet(ctx, &req)
 if err != nil {
 panic(err)
 }
 fmt.Println(resp)

 req.Greeting = "Goodbye"
 resp, err = client.Greet(ctx, &req)
 if err != nil {
 panic(err)
 }
 fmt.Println(resp)
 }

Navigate back up a directory to grpc.14.

Web Clients and APIs Chapter 7

[215]

Run go run ./server, and you will see the following output:15.

$ go run ./server
Listening on port :4444

In a separate Terminal, run go run ./client from the grpc directory, and you16.
will see the following output:

$ go run ./client
response:"Hello Reader!"
response:"Goodbye Reader!"

The go.mod file may be updated and go.sum file should now be present in the17.
top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.18.
Ensure that all the tests pass.

How it works...
The GRPC server is set up to listen on port 4444. Once the client connects, it can send
requests and receive responses from the server. The structure of the requests, responses,
and supported methods is dictated by the .proto file we created in step 4. In practice,
when integrating against GRPC servers, they should provide the .proto file, which can be
used to automatically generate a client.

In addition to the client, the protoc command generates the stubs for the server, and all
that's required is to fill in the implementation details. The generated Go code also has JSON
tags and the same structures could be reused for JSON REST services. Our code sets up an
insecure client. To handle GRPC securely, you need to use an SSL certificate.

Using twitchtv/twirp for RPC
The twitchtv/twirp RPC framework affords many of the benefits of GRPC, including
building models with protocol buffers (https:/ /developers. google. com/ protocol-
buffers), and allows for communication over HTTP 1.1. It can also communicate using
JSON, so it's possible to use the curl command to communicate with a twirp RPC service.
This recipe will implement the same greeter as the GRPC section before it. This service
takes a greeting and a name and returns the sentence <greeting> <name>!. In addition,
the server can specify whether to exclaim ! or not ..

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

Web Clients and APIs Chapter 7

[216]

This recipe won't explore the other features of twitchtv/twirp, and will focus primarily
on basic client-server communication. For more information on what is supported, visit
their GitHub page (https:/ /github. com/ twitchtv/ twirp).

Getting ready
After completing the initial setup steps mentioned in the Technical requirements section at
the beginning of this chapter, install twirp https:/ / twitchtv. github. io/twirp/ docs/
install.html and run the following commands:

go get -u github.com/golang/protobuf/{proto,protoc-gen-go}

go get github.com/twitchtv/twirp/protoc-gen-twirp

How to do it...
These steps cover writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter7/twirp, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter7/twirp

You should see a file called go.mod containing the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/twirp

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter7/twirp, or use this as an exercise to write some code of
your own!
Create a directory called rpc/greeter and navigate to it.4.

https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://github.com/twitchtv/twirp
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html
https://twitchtv.github.io/twirp/docs/install.html

Web Clients and APIs Chapter 7

[217]

Create a file called greeter.proto with the following content:5.

 syntax = "proto3";

 package greeter;

 service GreeterService{
 rpc Greet(GreetRequest) returns (GreetResponse) {}
 }

 message GreetRequest {
 string greeting = 1;
 string name = 2;
 }

 message GreetResponse{
 string response = 1;
 }

Navigate back up a directory to twirp.6.
Run the following command:7.

$ protoc --proto_path=$GOPATH/src:. --twirp_out=. --go_out=.
./rpc/greeter/greeter.proto

Create a new directory called server and navigate to it.8.
Create a file called greeter.go with the following content. Ensure that you9.
modify the greeter import to use the path you set up in step 3:

package main

import (
 "context"
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter7/twirp/rpc/greeter"
)

// Greeter implements the interface
// generated by protoc
type Greeter struct {
 Exclaim bool
}

// Greet implements twirp Greet

Web Clients and APIs Chapter 7

[218]

func (g *Greeter) Greet(ctx context.Context, r
*greeter.GreetRequest) (*greeter.GreetResponse, error) {
 msg := fmt.Sprintf("%s %s", r.GetGreeting(), r.GetName())
 if g.Exclaim {
 msg += "!"
 } else {
 msg += "."
 }
 return &greeter.GreetResponse{Response: msg}, nil
}

Create a file called server.go with the following content. Ensure that you10.
modify the greeter import to use the path you set up in step 3:

package main

import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/twirp/rpc/greeter"
)

func main() {
 server := &Greeter{}
 twirpHandler := greeter.NewGreeterServiceServer(server, nil)

 fmt.Println("Listening on port :4444")
 http.ListenAndServe(":4444", twirpHandler)
}

Navigate back up a directory to twirp.11.
Create a new directory called client and navigate to it.12.
Create a file called client.go with the following content. Ensure that you13.
modify the greeter import to use the path you set up in step 3:

package main

import (
 "context"
 "fmt"
 "net/http"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter7/twirp/rpc/greeter"
)

Web Clients and APIs Chapter 7

[219]

func main() {
 // you can put in a custom client for tighter controls on
timeouts etc.
 client :=
greeter.NewGreeterServiceProtobufClient("http://localhost:4444",
&http.Client{})

 ctx := context.Background()
 req := greeter.GreetRequest{Greeting: "Hello", Name: "Reader"}
 resp, err := client.Greet(ctx, &req)
 if err != nil {
 panic(err)
 }
 fmt.Println(resp)

 req.Greeting = "Goodbye"
 resp, err = client.Greet(ctx, &req)
 if err != nil {
 panic(err)
 }
 fmt.Println(resp)
}

Navigate back up a directory to twirp.14.
Run go run ./server, and you will see the following output:15.

$ go run ./server
Listening on port :4444

In a separate Terminal, run go run ./client from the twirp directory. You16.
should see the following output:

$ go run ./client
response:"Hello Reader."
response:"Goodbye Reader."

The go.mod file may be updated and go.sum file should now be present in the17.
top-level recipe directory.

If you copied or wrote your own tests, go up one directory and run go test.18.
Ensure that all the tests pass.

Web Clients and APIs Chapter 7

[220]

How it works...
We set up the twitchtv/twirp RPC server to listen on port 4444. Like GRPC, protoc can
be used to generate clients for a number of languages and, for example, generate Swagger
(https://swagger. io/) documentation.

Like GRPC, we define our models first as .proto files, generate Go bindings, and finally
implement the interface generated. Thanks to the use of .proto files, the code is relatively
portable between GRPC and twitchtv/twirp as long as you're not relying on more
advanced features of either framework.

In addition, because the twitchtv/twirp server supports HTTP 1.1, we can curl it as
follows:

$ curl --request "POST" \
 --location "http://localhost:4444/twirp/greeter.GreeterService/Greet"
\
 --header "Content-Type:application/json" \
 --data '{"greeting": "Greetings to", "name":"you"}'

{"response":"Greetings to you."}

https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io/

8
Microservices for Applications

in Go
Out of the box, Go is an excellent choice for writing web applications. The built-in
net/http packages combined with packages such as html/template allow for fully
featured modern web applications out of the box. It's so easy that it encourages spinning up
web interfaces for the management of even basic long-running applications. Although the
standard library is fully featured, there is still a large variety of third-party web packages
for everything from routes to full-stack frameworks, including the following:

https:// github. com/ urfave/ negroni

https:// github. com/ gin- gonic/ gin

https:// github. com/ labstack/ echo

http://www. gorillatoolkit. org/

https:// github. com/ julienschmidt/ httprouter

The recipes in this chapter will focus on basic tasks you might run into when working with
handlers, when navigating response and request objects, and in dealing with concepts such
as middleware.

In this chapter, the following recipes will be covered:

Working with web handlers, requests, and ResponseWriter instances
Using structures and closures for stateful handlers
Validating input for Go structures and user inputs
Rendering and content negotiation
Implementing and using middleware
Building a reverse proxy application
Exporting GRPC as a JSON API

https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/urfave/negroni
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
https://github.com/labstack/echo
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
http://www.gorillatoolkit.org/
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/httprouter

Microservices for Applications in Go Chapter 8

[222]

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system from1.
https:// golang. org/ doc/ install.
Open a Terminal or console application; create a project directory such2.
as ~/projects/go-programming-cookbook and navigate to this directory. All
code will be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-3.
original and optionally work from that directory rather than typing the
examples manually, as follows:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Install the curl command from https:/ /curl. haxx. se/ download. html.4.

Working with web handlers, requests, and
ResponseWriter instances
Go defines HandlerFunc and a Handler interface with the following signatures:

// HandlerFunc implements the Handler interface
type HandlerFunc func(http.ResponseWriter, *http.Request)

type Handler interface {
 ServeHTTP(http.ResponseWriter, *http.Request)
}

By default, the net/http package makes extensive use of these types. For example, a route
can be attached to a Handler or HandlerFunc interface. This recipe will explore creating a
Handler interface, listening on a local port, and performing some operations on an
http.ResponseWriter interface after processing http.Request. This should be
considered the basis for Go web applications and RESTful APIs.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Microservices for Applications in Go Chapter 8

[223]

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter8/handlers, and
navigate to this directory.

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/handlers

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/handlers

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter8/handlers, or use this as an exercise to write some of your
own code!
Create a file called get.go with the following contents:4.

 package handlers

 import (
 "fmt"
 "net/http"
)

 // HelloHandler takes a GET parameter "name" and responds
 // with Hello <name>! in plaintext
 func HelloHandler(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "text/plain")
 if r.Method != http.MethodGet {
 w.WriteHeader(http.StatusMethodNotAllowed)
 return
 }
 name := r.URL.Query().Get("name")

 w.WriteHeader(http.StatusOK)
 w.Write([]byte(fmt.Sprintf("Hello %s!", name)))
 }

Microservices for Applications in Go Chapter 8

[224]

Create a file called post.go with the following contents:5.

 package handlers

 import (
 "encoding/json"
 "net/http"
)

 // GreetingResponse is the JSON Response that
 // GreetingHandler returns
 type GreetingResponse struct {
 Payload struct {
 Greeting string `json:"greeting,omitempty"`
 Name string `json:"name,omitempty"`
 Error string `json:"error,omitempty"`
 } `json:"payload"`
 Successful bool `json:"successful"`
 }

 // GreetingHandler returns a GreetingResponse which either has
 // errors or a useful payload
 func GreetingHandler(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "application/json")
 if r.Method != http.MethodPost {
 w.WriteHeader(http.StatusMethodNotAllowed)
 return
 }
 var gr GreetingResponse
 if err := r.ParseForm(); err != nil {
 gr.Payload.Error = "bad request"
 if payload, err := json.Marshal(gr); err == nil {
 w.Write(payload)
 } else if err != nil {
 w.WriteHeader(http.StatusInternalServerError)
 }
 }
 name := r.FormValue("name")
 greeting := r.FormValue("greeting")

 w.WriteHeader(http.StatusOK)
 gr.Successful = true
 gr.Payload.Name = name
 gr.Payload.Greeting = greeting
 if payload, err := json.Marshal(gr); err == nil {
 w.Write(payload)
 }
 }

Microservices for Applications in Go Chapter 8

[225]

Create a new directory named example and navigate to it.6.
Create a file called main.go with the following contents:7.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 $ chapter8/handlers"
)

 func main() {
 http.HandleFunc("/name", handlers.HelloHandler)
 http.HandleFunc("/greeting", handlers.GreetingHandler)
 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run go run main.go.8.
You could also run the following command:9.

$ go build
$./example

You should see the following output:

$ go run main.go
Listening on port :3333

In a separate Terminal, run the following commands:10.

$ curl "http://localhost:3333/name?name=Reader" -X GET
$ curl "http://localhost:3333/greeting" -X POST -d
 'name=Reader;greeting=Goodbye'

You should see the following output:

$ curl "http://localhost:3333/name?name=Reader" -X GET
Hello Reader!

$ curl "http://localhost:3333/greeting" -X POST -d
'name=Reader;greeting=Goodbye'
{"payload":{"greeting":"Goodbye","name":"Reader"},"successful":true
}

Microservices for Applications in Go Chapter 8

[226]

The go.mod file may be updated and the go.sum file should now be present in11.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all tests pass.

How it works...
For this recipe, we set up two handlers. The first handler expects a GET request with a GET
parameter called name. When we curl it, it returns the plain text string Hello <name>!.

The second handler expects a POST method with PostForm requests. This is what you'd get
if you used a standard HTML form without any AJAX calls. Alternatively, we could parse
JSON out of the request body instead. This is commonly done with json.Decoder. I
recommend trying this as an exercise as well. Lastly, the handler sends a JSON-formatted
response and sets all the appropriate headers.

Although all of this was written explicitly, there are a number of methods for making the
code less verbose, including the following:

Using https:/ / github. com/ unrolled/ render to handle responses
Using various web frameworks mentioned in the Working with web handlers,
requests, and ResponseWriters recipe of this chapter to parse route arguments,
restrict routes to specific HTTP verbs, handle graceful shutdown, and more

Using structures and closures for stateful
handlers
Due to the sparse signatures of HTTP handler functions, it may seem tricky to add state to a
handler. For example, there are a variety of ways to include a database connection. Two
approaches to doing this are to pass in the state via closures, which is useful for achieving
flexibility on a single handler, or by using a structure.

This recipe will demonstrate both. We'll use a struct controller to store a storage interface
and create two routes with a single handler that are modified by an outer function.

https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render
https://github.com/unrolled/render

Microservices for Applications in Go Chapter 8

[227]

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-
cookbook/chapter8/controllers, and navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/controllers

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/controllers

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter8/controllers, or use this as an exercise to write some of
your own code!
Create a file called controller.go with the following contents:4.

 package controllers

 // Controller passes state to our handlers
 type Controller struct {
 storage Storage
 }

 // New is a Controller 'constructor'
 func New(storage Storage) *Controller {
 return &Controller{
 storage: storage,
 }
 }

 // Payload is our common response
 type Payload struct {
 Value string `json:"value"`
 }

Create a file called storage.go with the following contents:5.

 package controllers

 // Storage Interface Supports Get and Put

Microservices for Applications in Go Chapter 8

[228]

 // of a single value
 type Storage interface {
 Get() string
 Put(string)
 }

 // MemStorage implements Storage
 type MemStorage struct {
 value string
 }

 // Get our in-memory value
 func (m *MemStorage) Get() string {
 return m.value
 }

 // Put our in-memory value
 func (m *MemStorage) Put(s string) {
 m.value = s
 }

Create a file called post.go with the following contents:6.

 package controllers

 import (
 "encoding/json"
 "net/http"
)

 // SetValue modifies the underlying storage of the controller
 // object
 func (c *Controller) SetValue(w http.ResponseWriter, r
 *http.Request) {
 if r.Method != http.MethodPost {
 w.WriteHeader(http.StatusMethodNotAllowed)
 return
 }
 if err := r.ParseForm(); err != nil {
 w.WriteHeader(http.StatusInternalServerError)
 return
 }
 value := r.FormValue("value")
 c.storage.Put(value)
 w.WriteHeader(http.StatusOK)
 p := Payload{Value: value}
 if payload, err := json.Marshal(p); err == nil {
 w.Write(payload)

Microservices for Applications in Go Chapter 8

[229]

 } else if err != nil {
 w.WriteHeader(http.StatusInternalServerError)
 }

 }

Create a file called get.go with the following contents:7.

 package controllers

 import (
 "encoding/json"
 "net/http"
)

 // GetValue is a closure that wraps a HandlerFunc, if
 // UseDefault is true value will always be "default" else it'll
 // be whatever is stored in storage
 func (c *Controller) GetValue(UseDefault bool) http.HandlerFunc
 {
 return func(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "application/json")
 if r.Method != http.MethodGet {
 w.WriteHeader(http.StatusMethodNotAllowed)
 return
 }
 value := "default"
 if !UseDefault {
 value = c.storage.Get()
 }
 w.WriteHeader(http.StatusOK)
 p := Payload{Value: value}
 if payload, err := json.Marshal(p); err == nil {
 w.Write(payload)
 }
 }
 }

Create a new directory named example and navigate to it.8.
Create a file called main.go with the following contents:9.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/

Microservices for Applications in Go Chapter 8

[230]

 Go-Programming-Cookbook-Second-Edition/
 chapter8/controllers"
)

 func main() {
 storage := controllers.MemStorage{}
 c := controllers.New(&storage)
 http.HandleFunc("/get", c.GetValue(false))
 http.HandleFunc("/get/default", c.GetValue(true))
 http.HandleFunc("/set", c.SetValue)

 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run go run main.go.10.

You could also run the following:11.

$ go build
$./example

You should see the following output:

$ go run main.go
Listening on port :3333

In a separate Terminal, run the following commands:12.

$ curl "http://localhost:3333/set" -X POST -d "value=value"
$ curl "http://localhost:3333/get" -X GET
$ curl "http://localhost:3333/get/default" -X GET

You should see the following output:

$ curl "http://localhost:3333/set" -X POST -d "value=value"
{"value":"value"}

$ curl "http://localhost:3333/get" -X GET
{"value":"value"}

$ curl "http://localhost:3333/get/default" -X GET
{"value":"default"}

The go.mod file may be updated and the go.sum file should now be present in13.
the top-level recipe directory.

Microservices for Applications in Go Chapter 8

[231]

If you copied or wrote your own tests, go up one directory and run go test.14.
Ensure that all tests pass.

How it works...
These strategies work because Go allows methods to satisfy typed functions such as
http.HandlerFunc. By using a structure, we can inject various pieces in main.go, which
could include database connections, logging, and more. In this recipe, we inserted a
Storage interface. All handlers connected to the controller can make use of its methods
and attributes.

The GetValue method doesn't have an http.HandlerFunc signature, and instead, returns
one. This is how we can use a closure to inject state. In main.go, we define two routes—one
with UseDefault set to false, and the other with it set to true. This could be used when
defining a function that spans multiple routes, or when using a structure where your
handlers feel too cumbersome.

Validating input for Go structures and user
inputs
Validation for web can be a problem. This recipe will explore using closures to support the
easy mocking of validation functions and to allow flexibility in the type of validation
performed when initializing a controller structure as described by the previous recipe.

We'll perform this validation on a structure, but not explore how to populate the structure.
We can assume that the data will be populated by parsing a JSON payload, populating
explicitly from the form input, or other methods.

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter8/validation, and
navigate to this directory.

Microservices for Applications in Go Chapter 8

[232]

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/validation

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/validation

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter8/validation, or use this as an exercise to write some of
your own code!
Create a file called controller.go with the following contents:4.

 package validation

 // Controller holds our validation functions
 type Controller struct {
 ValidatePayload func(p *Payload) error
 }

 // New initializes a controller with our
 // local validation, it can be overwritten
 func New() *Controller {
 return &Controller{
 ValidatePayload: ValidatePayload,
 }
 }

Create a file called validate.go with the following contents:5.

 package validation

 import "errors"

 // Verror is an error that occurs
 // during validation, we can
 // return this to a user
 type Verror struct {
 error
 }

 // Payload is the value we
 // process
 type Payload struct {
 Name string `json:"name"`

Microservices for Applications in Go Chapter 8

[233]

 Age int `json:"age"`
 }

 // ValidatePayload is 1 implementation of
 // the closure in our controller
 func ValidatePayload(p *Payload) error {
 if p.Name == "" {
 return Verror{errors.New("name is required")}
 }

 if p.Age <= 0 || p.Age >= 120 {
 return Verror{errors.New("age is required and must be a
 value greater than 0 and less than 120")}
 }
 return nil
 }

Create a file called process.go with the following contents:6.

 package validation

 import (
 "encoding/json"
 "fmt"
 "net/http"
)

 // Process is a handler that validates a post payload
 func (c *Controller) Process(w http.ResponseWriter, r
 *http.Request) {
 if r.Method != http.MethodPost {
 w.WriteHeader(http.StatusMethodNotAllowed)
 return
 }

 decoder := json.NewDecoder(r.Body)
 defer r.Body.Close()
 var p Payload

 if err := decoder.Decode(&p); err != nil {
 fmt.Println(err)
 w.WriteHeader(http.StatusBadRequest)
 return
 }

 if err := c.ValidatePayload(&p); err != nil {
 switch err.(type) {
 case Verror:

Microservices for Applications in Go Chapter 8

[234]

 w.WriteHeader(http.StatusBadRequest)
 // pass the Verror along
 w.Write([]byte(err.Error()))
 return
 default:
 w.WriteHeader(http.StatusInternalServerError)
 return
 }
 }
 }

Create a new directory named example and navigate to it.7.
Create a file called main.go with the following contents:8.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/validation"
)

 func main() {
 c := validation.New()
 http.HandleFunc("/", c.Process)
 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run go run main.go.9.
You could also run the following:10.

$ go build
$./example

You should see the following output:

$ go run main.go
Listening on port :3333

Microservices for Applications in Go Chapter 8

[235]

In a separate Terminal, run the following commands:11.

$ curl "http://localhost:3333/" -X POST -d '{}'
$ curl "http://localhost:3333/" -X POST -d '{"name":"test"}'
$ curl "http://localhost:3333/" -X POST -d '{"name":"test",
 "age": 5}' -v

You should see the following output:

$ curl "http://localhost:3333/" -X POST -d '{}'
name is required

$ curl "http://localhost:3333/" -X POST -d '{"name":"test"}'
age is required and must be a value greater than 0 and
less than 120

$ curl "http://localhost:3333/" -X POST -d '{"name":"test",
"age": 5}' -v

<lots of output, should contain a 200 OK status code>

The go.mod file may be updated and the go.sum file should now be present in12.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all tests pass.

How it works...
We handle validation by passing in a closure to our controller structure. For any input that
the controller might need to validate, we'd need one of these closures. The advantage to this
approach is that we can mock and replace the validation functions at runtime, so testing
becomes far simpler. In addition, we're not bound to a single function signature and we can
pass in things such as a database connection to our validation functions.

The other thing this recipe demonstrates is returning a typed error called Verror. This type
holds validation error messages that can be displayed to users. One shortcoming of this
approach is that it doesn't handle multiple validation messages at once. This would be
possible by modifying the Verror type to allow for more state, for example, by including a
map, in order to house a number of validation errors before it returns from our
ValidatePayload function.

Microservices for Applications in Go Chapter 8

[236]

Rendering and content negotiation
Web handlers can return a variety of content types; for example, they can return JSON,
plain text, images, and more. Frequently, when communicating with APIs, it's possible to
specify and accept a content type to clarify what format you'll pass data in as and what data
you want to receive back out.

This recipe will explore using unrolled/render and a custom function to negotiate the
content type and respond accordingly.

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter8/negotiate, and
navigate to this directory.

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/negotiate

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/negotiate

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter8/negotiate, or use this as an exercise to write some of
your own code!
Create a file called negotiate.go with the following contents:4.

 package negotiate

 import (
 "net/http"

 "github.com/unrolled/render"
)

 // Negotiator wraps render and does
 // some switching on ContentType
 type Negotiator struct {

Microservices for Applications in Go Chapter 8

[237]

 ContentType string
 *render.Render
 }

 // GetNegotiator takes a request, and figures
 // out the ContentType from the Content-Type header
 func GetNegotiator(r *http.Request) *Negotiator {
 contentType := r.Header.Get("Content-Type")

 return &Negotiator{
 ContentType: contentType,
 Render: render.New(),
 }
 }

Create a file called respond.go with the following contents:5.

 package negotiate

 import "io"
 import "github.com/unrolled/render"

 // Respond switches on Content Type to determine
 // the response
 func (n *Negotiator) Respond(w io.Writer, status int, v
 interface{}) {
 switch n.ContentType {
 case render.ContentJSON:
 n.Render.JSON(w, status, v)
 case render.ContentXML:
 n.Render.XML(w, status, v)
 default:
 n.Render.JSON(w, status, v)
 }
 }

Create a file called handler.go with the following contents:6.

 package negotiate

 import (
 "encoding/xml"
 "net/http"
)

 // Payload defines it's layout in xml and json
 type Payload struct {
 XMLName xml.Name `xml:"payload" json:"-"`

Microservices for Applications in Go Chapter 8

[238]

 Status string `xml:"status" json:"status"`
 }

 // Handler gets a negotiator using the request,
 // then renders a Payload
 func Handler(w http.ResponseWriter, r *http.Request) {
 n := GetNegotiator(r)

 n.Respond(w, http.StatusOK, &Payload{Status:
 "Successful!"})
 }

Create a new directory named example and navigate to it.7.
Create a file called main.go with the following contents:8.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/negotiate"
)

 func main() {
 http.HandleFunc("/", negotiate.Handler)
 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run go run main.go.9.
You could also run the following:10.

$ go build
$./example

You should see the following output:

$ go run main.go
Listening on port :3333

Microservices for Applications in Go Chapter 8

[239]

In a separate Terminal, run the following commands:11.

$ curl "http://localhost:3333" -H "Content-Type: text/xml"
$ curl "http://localhost:3333" -H "Content-Type: application/json"

You should see the following output:

$ curl "http://localhost:3333" -H "Content-Type: text/xml"
<payload><status>Successful!</status></payload>

$ curl "http://localhost:3333" -H "Content-Type: application/json"
{"status":"Successful!"}

The go.mod file may be updated and the go.sum file should now be present in12.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all tests pass.

How it works...
The github.com/unrolled/render package does the heavy lifting for this recipe. There
are a huge number of other options you can input if you need to work with HTML
templates and more. This recipe can be used to auto negotiate when working through web
handlers as demonstrated here by passing in various content type headers, or by
directly manipulating the structure.

A similar pattern can be applied to accept headers, but beware that these headers often
include multiple values and your code will have to take that into account.

Implementing and using middleware
Middleware for handlers in Go is an area that has been widely explored. There are a variety
of packages for handling middleware. This recipe will create middleware from scratch and
implement an ApplyMiddleware function to chain together a bunch of middlewares.

It will also explore setting values in the request context object and retrieving them later
using middleware. This will all be done with a very basic handler to help demonstrate how
to decouple middleware logic from your handlers.

Microservices for Applications in Go Chapter 8

[240]

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter8/middleware, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/middleware

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/middleware

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter8/middleware, or use this as an exercise to write some of
your own code!
Create a file called middleware.go with the following contents:4.

 package middleware

 import (
 "log"
 "net/http"
 "time"
)

 // Middleware is what all middleware functions will return
 type Middleware func(http.HandlerFunc) http.HandlerFunc

 // ApplyMiddleware will apply all middleware, the last
 // arguments will be the
 // outer wrap for context passing purposes
 func ApplyMiddleware(h http.HandlerFunc, middleware
 ...Middleware) http.HandlerFunc {
 applied := h
 for _, m := range middleware {
 applied = m(applied)
 }
 return applied
 }

 // Logger logs requests, this will use an id passed in via

Microservices for Applications in Go Chapter 8

[241]

 // SetID()
 func Logger(l *log.Logger) Middleware {
 return func(next http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 start := time.Now()
 l.Printf("started request to %s with id %s", r.URL,
 GetID(r.Context()))
 next(w, r)
 l.Printf("completed request to %s with id %s in
 %s", r.URL, GetID(r.Context()), time.Since(start))
 }
 }
 }

Create a file called context.go with the following contents:5.

 package middleware

 import (
 "context"
 "net/http"
 "strconv"
)

 // ContextID is our type to retrieve our context
 // objects
 type ContextID int

 // ID is the only ID we've defined
 const ID ContextID = 0

 // SetID updates context with the id then
 // increments it
 func SetID(start int64) Middleware {
 return func(next http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 ctx := context.WithValue(r.Context(), ID,
 strconv.FormatInt(start, 10))
 start++
 r = r.WithContext(ctx)
 next(w, r)
 }
 }
 }

 // GetID grabs an ID from a context if set
 // otherwise it returns an empty string
 func GetID(ctx context.Context) string {

Microservices for Applications in Go Chapter 8

[242]

 if val, ok := ctx.Value(ID).(string); ok {
 return val
 }
 return ""
 }

Create a file called handler.go with the following contents:6.

 package middleware

 import (
 "net/http"
)

 // Handler is very basic
 func Handler(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("success"))
 }

Create a new directory named example and navigate to it.7.
Create a file called main.go with the following contents:8.

 package main

 import (
 "fmt"
 "log"
 "net/http"
 "os"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/middleware"
)

 func main() {
 // We apply from bottom up
 h := middleware.ApplyMiddleware(
 middleware.Handler,
 middleware.Logger(log.New(os.Stdout, "", 0)),
 middleware.SetID(100),
)
 http.HandleFunc("/", h)
 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Microservices for Applications in Go Chapter 8

[243]

Run go run main.go.9.
You could also run the following commands:10.

$ go build
$./example

You should see the following output:

$ go run main.go
Listening on port :3333

In a separate Terminal, run the following curl command several times:11.

$ curl http://localhost:3333

You should see the following output:

$ curl http://localhost:3333
success

$ curl http://localhost:3333
success

$ curl http://localhost:3333
success

In the original main.go, you should see the following:12.

Listening on port :3333
started request to / with id 100
completed request to / with id 100 in 52.284µs
started request to / with id 101
completed request to / with id 101 in 40.273µs
started request to / with id 102

The go.mod file may be updated and the go.sum file should now be present in13.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.14.
Ensure that all tests pass.

Microservices for Applications in Go Chapter 8

[244]

How it works...
Middlewares can be used to perform simple operations such as logging, metric collection,
and analytics. Middlewares can also be used to dynamically populate variables on each
request. This can be done, for example, to collect an X-header from the request to set an ID
or generate an ID, like we did in this recipe. Another ID strategy might be to generate
a Universal Unique Identifier (UUID) for every request—this allows us to easily correlate
log messages together and trace your request across different applications if multiple
microservices are involved in building the response.

When working with context values, it's important to consider the order of your
middlewares. Typically, it's better to not make middlewares reliant on one another. For
example, in this recipe, it would probably be better to generate the UUID in the logging
middleware itself. However, this recipe should serve as a guide for layering middlewares
and initializing them in main.go.

Building a reverse proxy application
In this recipe, we will develop a reverse proxy application. The idea is, by hitting
http://localhost:3333 in a browser, all traffic will be forwarded to a configurable host
and the responses will be forwarded to your browser. The end result should be https:/ /
www.golang.org rendered in a browser through our proxy application.

This can be combined with port forwarding and SSH tunnels in order to securely hit
websites through an intermediate server. This recipe will build a reverse proxy from the
ground up, but this functionality is also provided by the net/http/httputil package.
Using this package, the incoming request can be modified by Director
func(*http.Request) and the outgoing response can be modified by ModifyResponse
func(*http.Response) error. In addition, there's support for buffering the response.

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter8/proxy, and
navigate to this directory.

https://www.golang.org
https://www.golang.org
https://www.golang.org
https://www.golang.org
https://www.golang.org
https://www.golang.org
https://www.golang.org
https://www.golang.org

Microservices for Applications in Go Chapter 8

[245]

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/proxy

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/proxy

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter8/proxy, or use this as an exercise to write some of your
own code!
Create a file called proxy.go with the following contents:4.

 package proxy

 import (
 "log"
 "net/http"
)

 // Proxy holds our configured client
 // and BaseURL to proxy to
 type Proxy struct {
 Client *http.Client
 BaseURL string
 }

 // ServeHTTP means that proxy implements the Handler interface
 // It manipulates the request, forwards it to BaseURL, then
 // returns the response
 func (p *Proxy) ServeHTTP(w http.ResponseWriter, r
 *http.Request) {
 if err := p.ProcessRequest(r); err != nil {
 log.Printf("error occurred during process request: %s",
 err.Error())
 w.WriteHeader(http.StatusBadRequest)
 return
 }

 resp, err := p.Client.Do(r)
 if err != nil {
 log.Printf("error occurred during client operation:
 %s", err.Error())
 w.WriteHeader(http.StatusInternalServerError)
 return

Microservices for Applications in Go Chapter 8

[246]

 }
 defer resp.Body.Close()
 CopyResponse(w, resp)
 }

Create a file called process.go with the following contents:5.

 package proxy

 import (
 "bytes"
 "net/http"
 "net/url"
)

 // ProcessRequest modifies the request in accordnance
 // with Proxy settings
 func (p *Proxy) ProcessRequest(r *http.Request) error {
 proxyURLRaw := p.BaseURL + r.URL.String()

 proxyURL, err := url.Parse(proxyURLRaw)
 if err != nil {
 return err
 }
 r.URL = proxyURL
 r.Host = proxyURL.Host
 r.RequestURI = ""
 return nil
 }

 // CopyResponse takes the client response and writes everything
 // to the ResponseWriter in the original handler
 func CopyResponse(w http.ResponseWriter, resp *http.Response) {
 var out bytes.Buffer
 out.ReadFrom(resp.Body)

 for key, values := range resp.Header {
 for _, value := range values {
 w.Header().Add(key, value)
 }
 }

 w.WriteHeader(resp.StatusCode)
 w.Write(out.Bytes())
 }

Microservices for Applications in Go Chapter 8

[247]

Create a new directory named example and navigate to it.6.
Create a file called main.go with the following contents:7.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/proxy"
)

 func main() {
 p := &proxy.Proxy{
 Client: http.DefaultClient,
 BaseURL: "https://www.golang.org",
 }
 http.Handle("/", p)
 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run go run main.go.8.
You could also run the following:9.

$ go build
$./example

You should see the following output:

$ go run main.go
Listening on port :3333

Navigate a browser to localhost:3333/. You should see the https:/ /golang.10.
org/ website rendered!
The go.mod file may be updated and the go.sum file should now be present in11.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all tests pass.

https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/

Microservices for Applications in Go Chapter 8

[248]

How it works...
Go request and response objects are largely shareable between clients and handlers. This
code takes a request obtained by a Proxy structure that satisfies a Handler interface. The
main.go file is using Handle instead of HandleFunc used elsewhere. Once the request is
available, it's modified to prepend Proxy.BaseURL for the request, which the client then
dispatches. Lastly, the response is copied back to the ResponseWriter interface. This
includes all headers, the body, and the status.

We can also add some additional features such as basic auth for requests, token
management, and more if needed. This can be useful for token management where the
proxy manages sessions for a JavaScript or other client application.

Exporting GRPC as a JSON API
In the Understanding GRPC clients recipe from Chapter 7, Web Clients and APIs, we wrote a
basic GRPC server and client. This recipe will expand on that idea by putting common RPC
functions in a package and wrapping them in both a GRPC server and a standard web
handler. This can be useful when your API wants to support both types of client, but you
don't want to replicate code for common functionality.

Getting ready
Configure your environment according to the following steps:

Refer to the steps given in the Technical requirements section at the beginning of1.
this chapter.
Install GRPC (https:/ / grpc. io/docs/ quickstart/ go/) and run the following2.
commands:

go get -u github.com/golang/protobuf/{proto,protoc-gen-
go}

go get -u google.golang.org/grpc

https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/
https://grpc.io/docs/quickstart/go/

Microservices for Applications in Go Chapter 8

[249]

How to do it...
The following steps cover the writing and running of your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter8/grpcjson, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter8/grpcjson

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter8/grpcjson

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter8/grpcjson, or use this as an exercise to write some of your
own code!
Create a new directory named keyvalue and navigate to it.4.
Create a file called keyvalue.proto with the following contents:5.

 syntax = "proto3";

 package keyvalue;

 service KeyValue{
 rpc Set(SetKeyValueRequest) returns (KeyValueResponse){}
 rpc Get(GetKeyValueRequest) returns (KeyValueResponse){}
 }

 message SetKeyValueRequest {
 string key = 1;
 string value = 2;
 }

 message GetKeyValueRequest{
 string key = 1;
 }

 message KeyValueResponse{
 string success = 1;
 string value = 2;
 }

Microservices for Applications in Go Chapter 8

[250]

Run the following command:6.

$ protoc --go_out=plugins=grpc:. keyvalue.proto

Navigate back up a directory.7.
Create a new directory named internal.8.
Create a file called internal/keyvalue.go with the following contents:9.

 package internal

 import (
 "golang.org/x/net/context"
 "sync"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/keyvalue"
 "google.golang.org/grpc"
 "google.golang.org/grpc/codes"
)

 // KeyValue is a struct that holds a map
 type KeyValue struct {
 mutex sync.RWMutex
 m map[string]string
 }

 // NewKeyValue initializes the KeyValue struct and its map
 func NewKeyValue() *KeyValue {
 return &KeyValue{
 m: make(map[string]string),
 }
 }

 // Set sets a value to a key, then returns the value
 func (k *KeyValue) Set(ctx context.Context, r
 *keyvalue.SetKeyValueRequest) (*keyvalue.KeyValueResponse,
 error) {
 k.mutex.Lock()
 k.m[r.GetKey()] = r.GetValue()
 k.mutex.Unlock()
 return &keyvalue.KeyValueResponse{Value: r.GetValue()}, nil
 }

 // Get gets a value given a key, or say not found if
 // it doesn't exist
 func (k *KeyValue) Get(ctx context.Context, r

Microservices for Applications in Go Chapter 8

[251]

 *keyvalue.GetKeyValueRequest) (*keyvalue.KeyValueResponse,
 error) {
 k.mutex.RLock()
 defer k.mutex.RUnlock()
 val, ok := k.m[r.GetKey()]
 if !ok {
 return nil, grpc.Errorf(codes.NotFound, "key not set")
 }
 return &keyvalue.KeyValueResponse{Value: val}, nil
 }

Create a new directory named grpc.10.
Create a file called grpc/main.go with the following contents:11.

 package main

 import (
 "fmt"
 "net"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/internal"
 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/keyvalue"
 "google.golang.org/grpc"
)

 func main() {
 grpcServer := grpc.NewServer()
 keyvalue.RegisterKeyValueServer(grpcServer,
 internal.NewKeyValue())
 lis, err := net.Listen("tcp", ":4444")
 if err != nil {
 panic(err)
 }
 fmt.Println("Listening on port :4444")
 grpcServer.Serve(lis)
 }

Create a new directory named http.12.

Microservices for Applications in Go Chapter 8

[252]

Create a file called http/set.go with the following contents:13.

 package main

 import (
 "encoding/json"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/internal"
 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/keyvalue"
 "github.com/apex/log"
)

 // Controller holds an internal KeyValueObject
 type Controller struct {
 *internal.KeyValue
 }

 // SetHandler wraps our GRPC Set
 func (c *Controller) SetHandler(w http.ResponseWriter, r
 *http.Request) {
 var kv keyvalue.SetKeyValueRequest

 decoder := json.NewDecoder(r.Body)
 if err := decoder.Decode(&kv); err != nil {
 log.Errorf("failed to decode: %s", err.Error())
 w.WriteHeader(http.StatusBadRequest)
 return
 }

 gresp, err := c.Set(r.Context(), &kv)
 if err != nil {
 log.Errorf("failed to set: %s", err.Error())
 w.WriteHeader(http.StatusInternalServerError)
 return
 }

 resp, err := json.Marshal(gresp)
 if err != nil {
 log.Errorf("failed to marshal: %s", err.Error())
 w.WriteHeader(http.StatusInternalServerError)
 return
 }
 w.WriteHeader(http.StatusOK)

Microservices for Applications in Go Chapter 8

[253]

 w.Write(resp)
 }

Create a file called http/get.go with the following contents:14.

 package main

 import (
 "encoding/json"
 "net/http"

 "google.golang.org/grpc"
 "google.golang.org/grpc/codes"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/keyvalue"
 "github.com/apex/log"
)

 // GetHandler wraps our RPC Get call
 func (c *Controller) GetHandler(w http.ResponseWriter, r
 *http.Request) {
 key := r.URL.Query().Get("key")
 kv := keyvalue.GetKeyValueRequest{Key: key}

 gresp, err := c.Get(r.Context(), &kv)
 if err != nil {
 if grpc.Code(err) == codes.NotFound {
 w.WriteHeader(http.StatusNotFound)
 return
 }
 log.Errorf("failed to get: %s", err.Error())
 w.WriteHeader(http.StatusInternalServerError)
 return
 }

 w.WriteHeader(http.StatusOK)
 resp, err := json.Marshal(gresp)
 if err != nil {
 log.Errorf("failed to marshal: %s", err.Error())
 w.WriteHeader(http.StatusInternalServerError)
 return
 }
 w.Write(resp)
 }

Microservices for Applications in Go Chapter 8

[254]

Create a file called http/main.go with the following contents:15.

 package main

 import (
 "fmt"
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter8/grpcjson/internal"
)

 func main() {
 c := Controller{KeyValue: internal.NewKeyValue()}
 http.HandleFunc("/set", c.SetHandler)
 http.HandleFunc("/get", c.GetHandler)

 fmt.Println("Listening on port :3333")
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run the go run ./http command. You should see the following output:16.

$ go run ./http
Listening on port :3333

In a separate Terminal, run the following commands:17.

$ curl "http://localhost:3333/set" -d '{"key":"test",
 "value":"123"}' -v
$ curl "http://localhost:3333/get?key=badtest" -v
$ curl "http://localhost:3333/get?key=test" -v

You should see the following output:

$ curl "http://localhost:3333/set" -d '{"key":"test",
"value":"123"}' -v
{"value":"123"}

$ curl "http://localhost:3333/get?key=badtest" -v
<should return a 404>

$ curl "http://localhost:3333/get?key=test" -v
{"value":"123"}

Microservices for Applications in Go Chapter 8

[255]

The go.mod file may be updated and the go.sum file should now be present in18.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.19.
Ensure that all tests pass.

How it works...
Although this recipe omits the client, you could replicate the steps in the Understanding
GRPC clients recipe from Chapter 7, Web Clients and APIs, and you should see identical
results to what we see with our curls. Both the http and grpc directories make use of the
same internal package. We have to be careful in this package to return appropriate GRPC
error codes and to correctly map those error codes to our HTTP response. In this case, we
use codes.NotFound, which we map to http.StatusNotFound. If you have to handle
more than a few errors, a switch statement may make more sense than an if…else

statement.

The other thing you may notice is that GRPC signatures are usually very consistent. They
take a request and return an optional response and an error. It's possible to create a generic
handler, shim, if your GRPC calls are repetitive enough and it also seems like it lends itself
well to code generation; you may eventually see something like that with a package such as
goadesign/goa.

9
Testing Go Code

This chapter will be different from the previous chapters; this chapter will focus on testing
and testing methodologies. Go provides excellent testing support out of the box. However,
it can be difficult to understand for developers coming from more dynamic languages
where monkey patching and mocking are relatively straightforward.

Go testing encourages a specific structure for your code. In particular, testing and mocking
interfaces is very straightforward and well supported. Some types of code can be more
difficult to test. For example, it can be difficult to test code that makes use of package-level
global variables, places that have not been abstracted into interfaces, and structures that
have non-exported variables or methods. This chapter will share some recipes for testing
Go code.

In this chapter, we will cover the following recipes:

Mocking using the standard library
Using the Mockgen package to mock interfaces
Using table-driven tests to improve coverage
Using third-party testing tools
Behavior testing using Go

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.
Open a Terminal or console application, then create and navigate to a project2.
directory such as ~/projects/go-programming-cookbook. All code will be
run and modified from this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Testing Go Code Chapter 9

[257]

Clone the latest code into ~/projects/go-programming-cookbook-3.
original, and you have the option to work from that directory rather than
typing the examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Mocking using the standard library
In Go, mocking typically means implementing an interface with a test version that allows
you to control runtime behavior from tests. It may also refer to mocking functions and
methods, for which we'll explore another trick in this recipe. This trick uses the Patch and
Restore functions defined at https:/ / play.golang. org/ p/oLF1XnRX3C.

In general, it's better to compose code so that you can use interfaces frequently and so that
the code is in small, testable chunks. Code that contains lots of branching conditions or
deeply nested logic can be tricky to test and tests tend to be more brittle at the end. This is
because a developer will need to keep track of more mock objects, patches, return values,
and states within their tests.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter9/mocking, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter9/mocking

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/mocking

https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C
https://play.golang.org/p/oLF1XnRX3C

Testing Go Code Chapter 9

[258]

Create a file called mock.go with the following content:3.

 package mocking

 // DoStuffer is a simple interface
 type DoStuffer interface {
 DoStuff(input string) error
 }

Create a file called patch.go with the following content:4.

 package mocking

 import "reflect"

 // Restorer holds a function that can be used
 // to restore some previous state.
 type Restorer func()

 // Restore restores some previous state.
 func (r Restorer) Restore() {
 r()
 }

 // Patch sets the value pointed to by the given destination to
 // the given value, and returns a function to restore it to its
 // original value. The value must be assignable to the element
 //type of the destination.
 func Patch(dest, value interface{}) Restorer {
 destv := reflect.ValueOf(dest).Elem()
 oldv := reflect.New(destv.Type()).Elem()
 oldv.Set(destv)
 valuev := reflect.ValueOf(value)
 if !valuev.IsValid() {
 // This isn't quite right when the destination type is
 // not nilable, but it's better than the complex
 // alternative.
 valuev = reflect.Zero(destv.Type())
 }
 destv.Set(valuev)
 return func() {
 destv.Set(oldv)
 }
 }

Testing Go Code Chapter 9

[259]

Create a file called exec.go with the following content:5.

 package mocking
 import "errors"
 var ThrowError = func() error {
 return errors.New("always fails")
 }

 func DoSomeStuff(d DoStuffer) error {

 if err := d.DoStuff("test"); err != nil {
 return err
 }

 if err := ThrowError(); err != nil {
 return err
 }

 return nil
 }

Create a file called mock_test.go with the following content:6.

 package mocking
 type MockDoStuffer struct {
 // closure to assist with mocking
 MockDoStuff func(input string) error
 }
 func (m *MockDoStuffer) DoStuff(input string) error {
 if m.MockDoStuff != nil {
 return m.MockDoStuff(input)
 }
 // if we don't mock, return a common case
 return nil
 }

Create a file called exec_test.go with the following content:7.

 package mocking
 import (
 "errors"
 "testing"
)

 func TestDoSomeStuff(t *testing.T) {
 tests := []struct {
 name string
 DoStuff error

Testing Go Code Chapter 9

[260]

 ThrowError error
 wantErr bool
 }{
 {"base-case", nil, nil, false},
 {"DoStuff error", errors.New("failed"), nil, true},
 {"ThrowError error", nil, errors.New("failed"), true},
 }
 for _, tt := range tests {
 t.Run(tt.name, func(t *testing.T) {
 // An example of mocking an interface
 // with our mock struct
 d := MockDoStuffer{}
 d.MockDoStuff = func(string) error {
 return tt.DoStuff }

 // mocking a function that is declared as a variable
 // will not work for func A(),
 // must be var A = func()
 defer Patch(&ThrowError, func() error { return
 tt.ThrowError }).Restore()

 if err := DoSomeStuff(&d); (err != nil) != tt.wantErr
 {
 t.Errorf("DoSomeStuff() error = %v,
 wantErr %v", err, tt.wantErr)
 }
 })
 }
 }

Fill in tests for the remaining functions and go up one directory and run go8.
test. Ensure that all the tests pass:

$go test
PASS
ok github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/mocking 0.006s

The go.mod file may be updated and the go.sum file should now be present in9.
the top-level recipe directory.

Testing Go Code Chapter 9

[261]

How it works...
This recipe demonstrates how to mock interfaces as well as functions that have been
declared as variables. There are also certain libraries that can mimic this patch/restore
directly on declared functions, but they bypass a lot of Go's type safety to accomplish that
feat. If you need to patch functions from an external package, you may use the following
trick:

// Whatever package you wanna patch
import "github.com/package"

// This is patchable using the method described in this recipe
var packageDoSomething = package.DoSomething

For this recipe, we start by setting up our test and using table-driven tests. There's a lot of
literature about this technique, such as https:/ /github. com/golang/ go/wiki/
TableDrivenTests, and I recommend exploring it further. Once our tests are set up, we
choose outputs for our mocked functions. In order to mock our interface, our mocked
objects define closures that can be rewritten at runtime. The patch/restore technique is
applied to change our global function and restore it after each loop. This is thanks to t.Run,
which sets up a new function for each loop of the test.

Using the Mockgen package to mock
interfaces
The previous example used our custom mock objects. When you're working with a lot of
interfaces, writing these can become cumbersome and error-prone. This is a place where
generating code makes a lot of sense. Fortunately, there's a package called
github.com/golang/mock/gomock that provides a generation of mock objects and gives
us a very useful library to use in conjunction with interface testing.

This recipe will explore some of the functionality of gomock and will cover trade-offs on
where, when, and how to work with and generate mock objects.

https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests

Testing Go Code Chapter 9

[262]

Getting ready
Configure your environment according to these steps:

Refer to the Technical requirements section at the beginning of this chapter.1.
Run the go get github.com/golang/mock/mockgen command.2.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter9/mockgen and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter9/mockgen

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/mockgen

Create a file called interface.go with the following content:3.

 package mockgen

 // GetSetter implements get a set of a
 // key value pair
 type GetSetter interface {
 Set(key, val string) error
 Get(key string) (string, error)
 }

Create a directory named internal.4.
Run the mockgen -destination internal/mocks.go -package internal5.
github.com/PacktPublishing/Go-Programming-Cookbook-Second-

Edition/chapter9/mockgen GetSetter command. This will create a file
named internal/mocks.go.

Testing Go Code Chapter 9

[263]

Create a file called exec.go with the following content:6.

 package mockgen

 // Controller is a struct demonstrating
 // one way to initialize interfaces
 type Controller struct {
 GetSetter
 }

 // GetThenSet checks if a value is set. If not
 // it sets it.
 func (c *Controller) GetThenSet(key, value string) error {
 val, err := c.Get(key)
 if err != nil {
 return err
 }

 if val != value {
 return c.Set(key, value)
 }
 return nil
 }

Create a file called interface_test.go with the following content:7.

 package mockgen

 import (
 "errors"
 "testing"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter9/mockgen/internal"
 "github.com/golang/mock/gomock"
)

 func TestExample(t *testing.T) {
 ctrl := gomock.NewController(t)
 defer ctrl.Finish()

 mockGetSetter := internal.NewMockGetSetter(ctrl)

 var k string
 mockGetSetter.EXPECT().Get("we can put anything
 here!").Do(func(key string) {
 k = key

Testing Go Code Chapter 9

[264]

 }).Return("", nil)

 customError := errors.New("failed this time")

 mockGetSetter.EXPECT().Get(gomock.Any()).Return("",
 customError)

 if _, err := mockGetSetter.Get("we can put anything
 here!"); err != nil {
 t.Errorf("got %#v; want %#v", err, nil)
 }
 if k != "we can put anything here!" {
 t.Errorf("bad key")
 }

 if _, err := mockGetSetter.Get("key"); err == nil {
 t.Errorf("got %#v; want %#v", err, customError)
 }
 }

Create a file called exec_test.go with the following content:8.

 package mockgen

 import (
 "errors"
 "testing"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter9/mockgen/internal"
 "github.com/golang/mock/gomock"
)

 func TestController_Set(t *testing.T) {
 tests := []struct {
 name string
 getReturnVal string
 getReturnErr error
 setReturnErr error
 wantErr bool
 }{
 {"get error", "value", errors.New("failed"), nil,
 true},
 {"value match", "value", nil, nil, false},
 {"no errors", "not set", nil, nil, false},
 {"set error", "not set", nil, errors.New("failed"),
 true},

Testing Go Code Chapter 9

[265]

 }
 for _, tt := range tests {
 t.Run(tt.name, func(t *testing.T) {
 ctrl := gomock.NewController(t)
 defer ctrl.Finish()

 mockGetSetter := internal.NewMockGetSetter(ctrl)
 mockGetSetter.EXPECT().Get("key").AnyTimes()
 .Return(tt.getReturnVal, tt.getReturnErr)
 mockGetSetter.EXPECT().Set("key",
 gomock.Any()).AnyTimes().Return(tt.setReturnErr)

 c := &Controller{
 GetSetter: mockGetSetter,
 }
 if err := c.GetThenSet("key", "value"); (err !=
 nil) != tt.wantErr {
 t.Errorf("Controller.Set() error = %v, wantErr
 %v", err, tt.wantErr)
 }
 })
 }
 }

Fill in tests for the remaining functions, go up one directory, and run go test.9.
Ensure that all the tests pass.
The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.

How it works...
The mock objects that have been generated allow tests to specify what arguments are
expected, the number of times a function will be called, and what to return. They also allow
us to set additional artifacts. For example, we could write to a channel directly if the
original function had a similar workflow. The interface_test.go file showcases some
examples of using mock objects while calling them in line. Generally, tests will look more
like exec_test.go, where we'll want intercept interface function calls performed by our
actual code and change their behavior at test time.

Testing Go Code Chapter 9

[266]

The exec_test.go file also showcases how you might use mocked objects in a table-
driven test environment. The Any() function means that the mocked function can be called
zero or more times, which is great for cases where the code terminates early.

One last trick demonstrated in this recipe is sticking mocked objects into the internal
package. This is useful when you need to mock functions declared in packages outside of
your own. This allows those methods to be defined in a non _test.go file, but they won't
be visible to users of your libraries as they cannot import from the internal package.
Generally, it's easier to just stick mocked objects into _test.go files, using the same
package name as the tests you're currently writing.

Using table-driven tests to improve
coverage
This recipe will demonstrate the process of how to write a table-driven test, collect test
coverage, and improve it. It will also make use of the github.com/cweill/gotests
package to generate tests. If you've been downloading the test code for other chapters, these
should look very familiar. Using a combination of this recipe and the previous two, you
should be able to achieve 100% test coverage in all cases with some work.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter9/coverage, and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter9/coverage

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/coverage

Testing Go Code Chapter 9

[267]

Create a file called coverage.go with the following content:3.

 package main

 import "errors"

 // Coverage is a simple function with some branching conditions
 func Coverage(condition bool) error {
 if condition {
 return errors.New("condition was set")
 }
 return nil
 }

Run the gotests -all -w command.4.
This will generate a file named coverage_test.go with the following content:5.

 package main

 import "testing"

 func TestCoverage(t *testing.T) {
 type args struct {
 condition bool
 }
 tests := []struct {
 name string
 args args
 wantErr bool
 }{
 // TODO: Add test cases.
 }
 for _, tt := range tests {
 t.Run(tt.name, func(t *testing.T) {
 if err := Coverage(tt.args.condition); (err != nil)
 != tt.wantErr {
 t.Errorf("Coverage() error = %v, wantErr %v",
 err, tt.wantErr)
 }
 })
 }
 }

Testing Go Code Chapter 9

[268]

Fill in the TODO section with the following:6.

 {"no condition", args{true}, true},

Run the go test -cover command, and you will see the following output:7.

$ go test -cover
PASS
coverage: 66.7% of statements
ok github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/coverage 0.007s

Add the following item to the TODO section:8.

 {"condition", args{false}, false},

Run the go test -cover command, and you will see the following output:9.

$ go test -cover
PASS
coverage: 100.0% of statements
ok github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/coverage 0.007s

Run the following commands:10.

$ go test -coverprofile=cover.out
$ go tool cover -html=cover.out -o coverage.html

Open the coverage.html file in a browser to see a graphical coverage report.11.
The go.mod file may be updated and the go.sum file should now be present in12.
the top-level recipe directory.

How it works...
The go test -cover command comes with a basic Go installation. It can be used to
collect a coverage report of your Go application. In addition, it has the ability to output
coverage metrics and an HTML coverage report. This tool is often wrapped by other tools,
which will be covered in the next recipe. These table-driven test styles are covered at
https://github.com/ golang/ go/ wiki/ TableDrivenTests and are an excellent way to
make clean tests that can handle many cases without writing a bunch of extra code.

https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests

Testing Go Code Chapter 9

[269]

This recipe starts by automatically generating test code, then filling in test cases as needed
to help create more coverage. The only time this is especially tricky is when you have non-
variable functions or methods being invoked. For example, it can be tricky to make
gob.Encode() return an error to increase test coverage. It can also seem quirky to use the
method described in the Mocking using the standard library recipe of this chapter and use var
gobEncode = gob.Encode to allow patching. For this reason, it can be difficult to
advocate for 100% test coverage and instead argue for focusing on testing the external
interface extensively—that is, testing many variations of input and output—and in some
cases, as we'll see in the Behavior testing using Go recipe of this chapter, fuzzing can become
useful.

Using third-party testing tools
There are a number of helpful tools for Go testing: tools that make it easier to get an idea of
code coverage at a per-function level, tools to implement assertions to reduce testing lines
of code, and test runners. This recipe will cover the github.com/axw/gocov and
github.com/smartystreets/goconvey packages in order to demonstrate some of this
functionality. There are a number of other notable test frameworks depending on your
needs. The github.com/smartystreets/goconvey package supports both assertions
and is a test runner. It used to be the cleanest way to have labeled subtests prior to Go 1.7.

Getting ready
Configure your environment according to these steps:

Refer to the Technical requirements section at the beginning of this chapter.1.
Run the go get github.com/axw/gocov/gocov command.2.
Run the go get github.com/smartystreets/goconvey command.3.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter9/tools, and
navigate to this directory.

Testing Go Code Chapter 9

[270]

Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter9/tools

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/tools

Create a file called funcs.go with the following content:3.

 package tools

 import (
 "fmt"
)

 func example() error {
 fmt.Println("in example")
 return nil
 }

 var example2 = func() int {
 fmt.Println("in example2")
 return 10
 }

Create a file called structs.go with the following content:4.

 package tools

 import (
 "errors"
 "fmt"
)

 type c struct {
 Branch bool
 }

 func (c *c) example3() error {
 fmt.Println("in example3")
 if c.Branch {
 fmt.Println("branching code!")
 return errors.New("bad branch")
 }

Testing Go Code Chapter 9

[271]

 return nil
 }

Create a file called funcs_test.go with the following content:5.

 package tools

 import (
 "testing"

 . "github.com/smartystreets/goconvey/convey"
)

 func Test_example(t *testing.T) {
 tests := []struct {
 name string
 }{
 {"base-case"},
 }
 for _, tt := range tests {
 Convey(tt.name, t, func() {
 res := example()
 So(res, ShouldBeNil)
 })
 }
 }

 func Test_example2(t *testing.T) {
 tests := []struct {
 name string
 }{
 {"base-case"},
 }
 for _, tt := range tests {
 Convey(tt.name, t, func() {
 res := example2()
 So(res, ShouldBeGreaterThanOrEqualTo, 1)
 })
 }
 }

Create a file called structs_test.go with the following content:6.

 package tools

 import (
 "testing"

Testing Go Code Chapter 9

[272]

 . "github.com/smartystreets/goconvey/convey"
)

 func Test_c_example3(t *testing.T) {
 type fields struct {
 Branch bool
 }
 tests := []struct {
 name string
 fields fields
 wantErr bool
 }{
 {"no branch", fields{false}, false},
 {"branch", fields{true}, true},
 }
 for _, tt := range tests {
 Convey(tt.name, t, func() {
 c := &c{
 Branch: tt.fields.Branch,
 }
 So((c.example3() != nil), ShouldEqual, tt.wantErr)
 })
 }
 }

Run the gocov test | gocov report command, and you will see the 7.
following output:

$ gocov test | gocov report
ok github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/tools 0.006s
coverage: 100.0% of statements

github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/tools/struct.go
c.example3 100.00% (5/5)
github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/tools/funcs.go example
100.00% (2/2)
github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/tools/funcs.go @12:16
100.00% (2/2)
github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/tools ----------
100.00% (9/9)

Total Coverage: 100.00% (9/9)

Testing Go Code Chapter 9

[273]

Run the goconvey command, and it will open a browser that should look like8.
this:

Ensure that all the tests pass.9.
The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.

How it works...
This recipe demonstrates how to wire the goconvey command into your tests. The Convey
keyword basically replaces t.Run and adds additional labels in the goconvey web UI, but
it behaves slightly differently. If you have nested Convey blocks, they're always re-executed
in order, as follows:

Convey("Outer loop", t, func(){
 a := 1
 Convey("Inner loop", t, func() {
 a = 2
 })
 Convey ("Inner loop2", t, func(){
 fmt.Println(a)
 })
})

Testing Go Code Chapter 9

[274]

The preceding code, using the goconvey command, will print 1. If we had used the built-in
t.Run instead, it would print 2 instead. In other words, Go t.Run tests are run sequentially
and are never repeated. This behavior can be useful for putting the setup code into outer
Convey blocks, but it's important to remember this distinction if you have to work with
both.

When using Convey assertions, there are check marks on successes in the web UI and in
additional stats. It can also reduce the size of checks to a single line, and it's even possible to
create custom assertions.

If you leave the goconvey web interface up and turn on notifications, as you save your
code, tests will automatically be run and you'll receive notifications on any increase or
decrease in coverage, as well as when your build fails.

All three tools assertions, the test runner, and the web UI can be used independently or
together.

The gocov tool can be useful when working toward higher test coverage. It can quickly
identify functions that are lacking in coverage and help you to dive deep into your
coverage report. In addition, gocov can be used to generate an alternate HTML report that
is shipped with the Go code by using the github.com/matm/gocov-html package.

Behavior testing using Go
Behavior testing or integration testing is a good method of implementing end-to-end black
box testing. One popular framework for this type of testing is Cucumber (https:/ /
cucumber.io/), which uses the Gherkin language to describe the steps to a test in English,
and then implements those steps in code. Go has a Cucumber library as well
(github.com/DATA-DOG/godog). This recipe will use the godog package to write behavior
tests.

Getting ready
Configure your environment according to these steps:

Refer to the Technical requirements section at the beginning of this chapter.1.
Run the go get github.com/DATA-DOG/godog/cmd/godog command.2.

https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/

Testing Go Code Chapter 9

[275]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter9/bdd, and navigate
to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter9/bdd

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter9/bdd

Create a file called handler.go with the following content:3.

 package bdd

 import (
 "encoding/json"
 "fmt"
 "net/http"
)

 // HandlerRequest will be json decoded
 // into by Handler
 type HandlerRequest struct {
 Name string `json:"name"`
 }

 // Handler takes a request and renders a response
 func Handler(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "text/plain; charset=utf-8")
 if r.Method != http.MethodPost {
 w.WriteHeader(http.StatusMethodNotAllowed)
 return
 }

 dec := json.NewDecoder(r.Body)
 var req HandlerRequest
 if err := dec.Decode(&req); err != nil {
 w.WriteHeader(http.StatusBadRequest)
 return
 }

Testing Go Code Chapter 9

[276]

 w.WriteHeader(http.StatusOK)
 w.Write([]byte(fmt.Sprintf("BDD testing %s", req.Name)))
 }

Create a new directory called features, and create a file called4.
features/handler.go with the following content:

 Feature: Bad Method
 Scenario: Good request
 Given we create a HandlerRequest payload with:
 | reader |
 | coder |
 | other |
 And we POST the HandlerRequest to /hello
 Then the response code should be 200
 And the response body should be:
 | BDD testing reader |
 | BDD testing coder |
 | BDD testing other |

Run the godog command, and you will see the following output:5.

$ godog
.
1 scenarios (1 undefined)
4 steps (4 undefined)
89.062µs
.

This should give you a skeleton to implement the tests that we wrote in our6.
feature file; copy those into handler_test.go and implement the first two
steps:

 package bdd

 import (
 "bytes"
 "encoding/json"
 "fmt"
 "net/http/httptest"

 "github.com/DATA-DOG/godog"
 "github.com/DATA-DOG/godog/gherkin"
)

 var payloads []HandlerRequest
 var resps []*httptest.ResponseRecorder

Testing Go Code Chapter 9

[277]

 func weCreateAHandlerRequestPayloadWith(arg1
 *gherkin.DataTable) error {
 for _, row := range arg1.Rows {
 h := HandlerRequest{
 Name: row.Cells[0].Value,
 }
 payloads = append(payloads, h)
 }
 return nil
 }

 func wePOSTTheHandlerRequestToHello() error {
 for _, p := range payloads {
 v, err := json.Marshal(p)
 if err != nil {
 return err
 }
 w := httptest.NewRecorder()
 r := httptest.NewRequest("POST", "/hello",
 bytes.NewBuffer(v))

 Handler(w, r)
 resps = append(resps, w)
 }
 return nil
 }

Run the godog command, and you will see the following output:7.

$ godog
.
1 scenarios (1 pending)
4 steps (2 passed, 1 pending, 1 skipped)
.

Fill in the remaining two steps:8.

 func theResponseCodeShouldBe(arg1 int) error {
 for _, r := range resps {
 if got, want := r.Code, arg1; got != want {
 return fmt.Errorf("got: %d; want %d", got, want)
 }
 }
 return nil
 }

 func theResponseBodyShouldBe(arg1 *gherkin.DataTable) error {
 for c, row := range arg1.Rows {

Testing Go Code Chapter 9

[278]

 b := bytes.Buffer{}
 b.ReadFrom(resps[c].Body)
 if got, want := b.String(), row.Cells[0].Value;
 got != want
 {
 return fmt.Errorf("got: %s; want %s", got, want)
 }
 }
 return nil
 }

 func FeatureContext(s *godog.Suite) {
 s.Step(`^we create a HandlerRequest payload with:$`,
 weCreateAHandlerRequestPayloadWith)
 s.Step(`^we POST the HandlerRequest to /hello$`,
 wePOSTTheHandlerRequestToHello)
 s.Step(`^the response code should be (d+)$`,
 theResponseCodeShouldBe)
 s.Step(`^the response body should be:$`,
 theResponseBodyShouldBe)
 }

Run the godog command, and you will see the following output:9.

$ godog
.
1 scenarios (1 passed)
4 steps (4 passed)
552.605µs
.

How it works...
Cucumber frameworks work excellently for pair programming, end-to-end testing, and any
sort of testing that is best communicated with written instructions and is understandable
for non-technical people. Once a step has been implemented, it's generally possible to reuse
it wherever it's needed. If you want to test integrations between services, tests can be
written to use actual HTTP clients if you first ensure that your environment is set up to
receive HTTP connections.

Testing Go Code Chapter 9

[279]

The datadog implementation of behavior-driven development (BDD) is lacking a few
features that you might expect if you've used other Cucumber frameworks, including lack
of examples, passing a context between functions, and a number of other keywords.
However, it's a good start, and by using a few tricks in this recipe, such as globals for
tracking state (and ensuring that you clean up those globals between scenarios), it's possible
to build a fairly robust set of tests. The datadog testing package also uses a third-party test
runner, so it's impossible to put it together with packages such as gocov or go test -
cover.

10
Parallelism and Concurrency

The recipes in this chapter cover worker pools, wait groups for asynchronous operations,
and the use of the context package. Parallelism and concurrency are some of the most
advertised and promoted features of the Go language. This chapter will offer a number of
useful patterns to get you started and help you understand these features.

Go provides primitives that make parallel applications possible. Goroutines allow any
function to become asynchronous and concurrent. Channels allow an application to set up
communication with Goroutines. One of the famous sayings in Go is, "Do not communicate
by sharing memory; instead, share memory by communicating", and is from https:/ /blog.
golang.org/share- memory- by- communicating.

In this chapter, we will cover the following recipes:

Using channels and the select statement
Performing async operations with sync.WaitGroup
Using atomic operations and mutex
Using the context package
Executing state management for channels
Using the worker pool design pattern
Using workers to create pipelines

https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating

Parallelism and Concurrency Chapter 10

[281]

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.
Open a Terminal or console application, and create and navigate to a project2.
directory such as ~/projects/go-programming-cookbook. All the code will
be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-3.
original and (optionally) work from that directory, rather than typing in the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Using channels and the select statement
Go channels, in combination with Goroutines, are first-class citizens for asynchronous
communication. Channels become especially powerful when we use select statements.
These statements allow a Goroutine to intelligently handle requests from multiple channels
at once.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/channels and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/channels

You should see a file called go.mod that contains the following code:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/channels

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Parallelism and Concurrency Chapter 10

[282]

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/channels, or use this as an opportunity to write some of
your own code!
Create a file called sender.go with the following content:4.

 package channels

 import "time"

 // Sender sends "tick"" on ch until done is
 // written to, then it sends "sender done."
 // and exits
 func Sender(ch chan string, done chan bool) {
 t := time.Tick(100 * time.Millisecond)
 for {
 select {
 case <-done:
 ch <- "sender done."
 return
 case <-t:
 ch <- "tick"
 }
 }
 }

Create a file called printer.go with the following content:5.

 package channels

 import (
 "context"
 "fmt"
 "time"
)

 // Printer will print anything sent on the ch chan
 // and will print tock every 200 milliseconds
 // this will repeat forever until a context is
 // Done, i.e. timed out or cancelled
 func Printer(ctx context.Context, ch chan string) {
 t := time.Tick(200 * time.Millisecond)
 for {
 select {
 case <-ctx.Done():
 fmt.Println("printer done.")
 return
 case res := <-ch:

Parallelism and Concurrency Chapter 10

[283]

 fmt.Println(res)
 case <-t:
 fmt.Println("tock")
 }
 }
 }

Create a new directory named example and navigate to it.6.
Create a file named main.go with the following content:7.

 package main

 import (
 "context"
 "time"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/channels"
)

 func main() {
 ch := make(chan string)
 done := make(chan bool)

 ctx := context.Background()
 ctx, cancel := context.WithCancel(ctx)
 defer cancel()
 go channels.Printer(ctx, ch)
 go channels.Sender(ch, done)

 time.Sleep(2 * time.Second)
 done <- true
 cancel()
 //sleep a bit extra so channels can clean up
 time.Sleep(3 * time.Second)
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

Parallelism and Concurrency Chapter 10

[284]

You should now see the following output, but the print ordering may differ:

$ go run main.go
tick
tock
tick
tick
tock
tick
tick
tock
tick
.
.
.
sender done.
printer done.

The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

How it works...
This recipe demonstrates two ways to launch a worker process that either reads or writes to
a channel, and may potentially do both. The worker will terminate when the done channel
is written to, or when context is cancelled through the calling of the cancel function or by
timing out. The Using the context package recipe will cover the context package in more
detail.

The main package is used to wire together the separate functions; thanks to this, it is
possible to set up multiple pairs as long as the channels are not shared. In addition to this,
it's possible to have multiple Goroutines listening on the same channel, as we'll explore in
the Using the worker pool design pattern recipe.

Lastly, due to the asynchronous nature of Goroutines, it can be tricky to establish cleanup
and terminate conditions; for example, a common mistake is to do the following:

select{
 case <-time.Tick(200 * time.Millisecond):
 //this resets whenever any other 'lane' is chosen
}

Parallelism and Concurrency Chapter 10

[285]

By putting the Tick in the select statement, it's possible to prevent this case from ever
occurring. There's also no simple way to prioritize traffic in a select statement.

Performing async operations with
sync.WaitGroup
Sometimes, it is useful to perform a number of operations asynchronously, and then wait
until they complete before moving on. For example, if an operation requires pulling
information from multiple APIs and aggregating that information, it can be helpful to make
those client requests asynchronously. This recipe will explore using sync.WaitGroup to
orchestrate non-dependent tasks in parallel.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/waitgroup and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/waitgroup

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/waitgroup

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/waitgroup, or use this as an opportunity to write some
of your own code!

Parallelism and Concurrency Chapter 10

[286]

Create a file called tasks.go with the following content:4.

 package waitgroup

 import (
 "fmt"
 "log"
 "net/http"
 "strings"
 "time"
)

 // GetURL gets a url, and logs the time it took
 func GetURL(url string) (*http.Response, error) {
 start := time.Now()
 log.Printf("getting %s", url)
 resp, err := http.Get(url)
 log.Printf("completed getting %s in %s", url,
 time.Since(start))
 return resp, err
 }

 // CrawlError is our custom error type
 // for aggregating errors
 type CrawlError struct {
 Errors []string
 }

 // Add adds another error
 func (c *CrawlError) Add(err error) {
 c.Errors = append(c.Errors, err.Error())
 }

 // Error implements the error interface
 func (c *CrawlError) Error() string {
 return fmt.Sprintf("All Errors: %s", strings.Join(c.Errors,
 ","))
 }

 // Present can be used to determine if
 // we should return this
 func (c *CrawlError) Present() bool {
 return len(c.Errors) != 0
 }

Parallelism and Concurrency Chapter 10

[287]

Create a file called process.go with the following content:5.

 package waitgroup

 import (
 "log"
 "sync"
 "time"
)

 // Crawl collects responses from a list of urls
 // that are passed in. It waits for all requests
 // to complete before returning.
 func Crawl(sites []string) ([]int, error) {
 start := time.Now()
 log.Printf("starting crawling")
 wg := &sync.WaitGroup{}

 var resps []int
 cerr := &CrawlError{}
 for _, v := range sites {
 wg.Add(1)
 go func(v string) {
 defer wg.Done()
 resp, err := GetURL(v)
 if err != nil {
 cerr.Add(err)
 return
 }
 resps = append(resps, resp.StatusCode)
 }(v)
 }
 wg.Wait()
 // we encountered a crawl error
 if cerr.Present() {
 return resps, cerr
 }
 log.Printf("completed crawling in %s", time.Since(start))
 return resps, nil
 }

Create a new directory named example and navigate to it.6.
Create a file named main.go with the following content:7.

 package main

 import (
 "fmt"

Parallelism and Concurrency Chapter 10

[288]

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/waitgroup"
)

 func main() {
 sites := []string{
 "https://golang.org",
 "https://godoc.org",
 "https://www.google.com/search?q=golang",
 }

 resps, err := waitgroup.Crawl(sites)
 if err != nil {
 panic(err)
 }
 fmt.Println("Resps received:", resps)
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should see the following output:

$ go run main.go
2017/04/05 19:45:07 starting crawling
2017/04/05 19:45:07 getting https://www.google.com/search?
q=golang
2017/04/05 19:45:07 getting https://golang.org
2017/04/05 19:45:07 getting https://godoc.org
2017/04/05 19:45:07 completed getting https://golang.org in
178.22407ms
2017/04/05 19:45:07 completed getting https://godoc.org in
181.400873ms
2017/04/05 19:45:07 completed getting
https://www.google.com/search?q=golang in 238.019327ms
2017/04/05 19:45:07 completed crawling in 238.191791ms
Resps received: [200 200 200]

The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

Parallelism and Concurrency Chapter 10

[289]

How it works...
This recipe shows you how to use waitgroups as a synchronization mechanism when
waiting for work. In essence, waitgroup.Wait() will wait until its internal counter has
reached 0. The waitgroup.Add(int) method will increment the counter by the amount
that's entered, and waitgroup.Done() will decrement the counter by 1. Because of this, it
is necessary to asynchronously Wait() while the various Goroutines mark waitgroup as
Done().

In this recipe, we increment before dispatching each HTTP request and then call a defer
wg.Done() method so that we can decrement whenever the Goroutine terminates. We then
wait for all Goroutines to finish before returning our aggregated results.

In practice, it's better to use channels for passing the errors and responses around.

When performing operations asynchronously like this, you should consider thread safety
for things such as modifying a shared map. If you keep this in mind, waitgroups are a
useful feature for waiting on any kind of asynchronous operation.

Using atomic operations and mutex
In a language such as Go, where you can build in asynchronous operations and parallelism,
it becomes important to consider things such as thread safety. For example, it is dangerous
to access a map from multiple Goroutines simultaneously. Go provides a number of helpers
in the sync and sync/atomic packages to make sure that certain events occur only once,
or that Goroutines can serialize on an operation.

This recipe will demonstrate the use of these packages to safely modify a map with various
Goroutines and to keep a global ordinal value that can be safely accessed by numerous
Goroutines. It will also showcase the Once.Do method, which can be used to ensure that
something is only done by a Go application once, such as reading a configuration file or
initializing a variable.

Parallelism and Concurrency Chapter 10

[290]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/atomic and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/atomic

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/atomic

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/atomic, or use this as an opportunity to write some of
your own code!
Create a file called map.go with the following content:4.

 package atomic

 import (
 "errors"
 "sync"
)

 // SafeMap uses a mutex to allow
 // getting and setting in a thread-safe way
 type SafeMap struct {
 m map[string]string
 mu *sync.RWMutex
 }

 // NewSafeMap creates a SafeMap
 func NewSafeMap() SafeMap {
 return SafeMap{m: make(map[string]string), mu:
 &sync.RWMutex{}}
 }

 // Set uses a write lock and sets the value given
 // a key
 func (t *SafeMap) Set(key, value string) {
 t.mu.Lock()

Parallelism and Concurrency Chapter 10

[291]

 defer t.mu.Unlock()

 t.m[key] = value
 }

 // Get uses a RW lock and gets the value if it exists,
 // otherwise an error is returned
 func (t *SafeMap) Get(key string) (string, error) {
 t.mu.RLock()
 defer t.mu.RUnlock()

 if v, ok := t.m[key]; ok {
 return v, nil
 }

 return "", errors.New("key not found")
 }

Create a file called ordinal.go with the following content:5.

 package atomic

 import (
 "sync"
 "sync/atomic"
)

 // Ordinal holds a global a value
 // and can only be initialized once
 type Ordinal struct {
 ordinal uint64
 once *sync.Once
 }

 // NewOrdinal returns ordinal with once
 // setup
 func NewOrdinal() *Ordinal {
 return &Ordinal{once: &sync.Once{}}
 }

 // Init sets the ordinal value
 // can only be done once
 func (o *Ordinal) Init(val uint64) {
 o.once.Do(func() {
 atomic.StoreUint64(&o.ordinal, val)
 })
 }

Parallelism and Concurrency Chapter 10

[292]

 // GetOrdinal will return the current
 // ordinal
 func (o *Ordinal) GetOrdinal() uint64 {
 return atomic.LoadUint64(&o.ordinal)
 }

 // Increment will increment the current
 // ordinal
 func (o *Ordinal) Increment() {
 atomic.AddUint64(&o.ordinal, 1)
 }

Create a new directory named example and navigate to it.6.
Create a file named main.go with the following content:7.

 package main

 import (
 "fmt"
 "sync"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/atomic"
)

 func main() {
 o := atomic.NewOrdinal()
 m := atomic.NewSafeMap()
 o.Init(1123)
 fmt.Println("initial ordinal is:", o.GetOrdinal())
 wg := sync.WaitGroup{}
 for i := 0; i < 10; i++ {
 wg.Add(1)
 go func(i int) {
 defer wg.Done()
 m.Set(fmt.Sprint(i), "success")
 o.Increment()
 }(i)
 }

 wg.Wait()
 for i := 0; i < 10; i++ {
 v, err := m.Get(fmt.Sprint(i))
 if err != nil || v != "success" {
 panic(err)
 }
 }

Parallelism and Concurrency Chapter 10

[293]

 fmt.Println("final ordinal is:", o.GetOrdinal())
 fmt.Println("all keys found and marked as: 'success'")
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
initial ordinal is: 1123
final ordinal is: 1133
all keys found and marked as: 'success'

The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

How it works...
For our map recipe, we used a ReadWrite mutex. The idea behind this mutex is that any
number of readers can acquire a read lock, but only one writer can acquire a write lock.
Additionally, a writer cannot acquire a lock when anyone else (a reader or a writer) has
one. This is useful because reads are very fast and non-blocking, compared to a standard
mutex. Whenever we want to set data, we use the Lock() object, and whenever we want to
read data, we use RLock(). It is critical that you use Unlock() or RUnlock() eventually so
that you don't deadlock your application. A deferred Unlock() object can be useful, but
may be slower than calling Unlock() manually.

This pattern may not be flexible enough when you want to group additional actions with
the locked value. For example, in some cases, you may want to lock, do some additional
processing, and only after you've completed this will you unlock. It's important to consider
this for your designs.

The sync/atmoic package is used by Ordinal to get and set values. There are also atomic
comparison operations, such as atomic.CompareAndSwapUInt64(), which are extremely
valuable. This recipe allows Init to be called on an Ordinal object only once; otherwise, it
can only be incremented and does so atomically.

Parallelism and Concurrency Chapter 10

[294]

We loop and create 10 Goroutines (synchronizing with sync.Waitgroup) and show that
the ordinal correctly incremented 10 times and that every key in our map was
appropriately set.

Using the context package
Several recipes throughout this book make use of the context package. This recipe will
explore the basics of creating and managing contexts. A good reference for understanding
context is https:/ /blog. golang. org/ context. Since this blog post was written, context
moved from net/context to a package called context. This still occasionally causes
problems when interacting with third-party libraries such as GRPC.

This recipe will explore setting and getting values for contexts, cancellation, and timeouts.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/context and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/context

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/context

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/context, or use this as an exercise to write some of your
own code!
Create a file called values.go with the following content:4.

 package context

 import "context"

 type key string

https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context

Parallelism and Concurrency Chapter 10

[295]

 const (
 timeoutKey key = "TimeoutKey"
 deadlineKey key = "DeadlineKey"
)

 // Setup sets some values
 func Setup(ctx context.Context) context.Context {

 ctx = context.WithValue(ctx, timeoutKey,
 "timeout exceeded")
 ctx = context.WithValue(ctx, deadlineKey,
 "deadline exceeded")

 return ctx
 }

 // GetValue grabs a value given a key and
 // returns a string representation of the
 // value
 func GetValue(ctx context.Context, k key) string {

 if val, ok := ctx.Value(k).(string); ok {
 return val
 }
 return ""

 }

Create a file called exec.go with the following content:5.

 package context

 import (
 "context"
 "fmt"
 "math/rand"
 "time"
)

 // Exec sets two random timers and prints
 // a different context value for whichever
 // fires first
 func Exec() {
 // a base context
 ctx := context.Background()
 ctx = Setup(ctx)

 rand.Seed(time.Now().UnixNano())

Parallelism and Concurrency Chapter 10

[296]

 timeoutCtx, cancel := context.WithTimeout(ctx,
 (time.Duration(rand.Intn(2)) * time.Millisecond))
 defer cancel()

 deadlineCtx, cancel := context.WithDeadline(ctx,
 time.Now().Add(time.Duration(rand.Intn(2))
 *time.Millisecond))
 defer cancel()

 for {
 select {
 case <-timeoutCtx.Done():
 fmt.Println(GetValue(ctx, timeoutKey))
 return
 case <-deadlineCtx.Done():
 fmt.Println(GetValue(ctx, deadlineKey))
 return
 }
 }
 }

Create a new directory named example and navigate to it.6.
Create a file named main.go with the following content:7.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/context"

 func main() {
 context.Exec()
 }

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
timeout exceeded
 OR
$ go run main.go
deadline exceeded

Parallelism and Concurrency Chapter 10

[297]

The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.11.
Ensure that all the tests pass.

How it works...
When working with context values, it's good to create a new type to represent the key. In
this case, we created a key type, then declared some corresponding const values to
represent all of our possible keys.

In this case, we initialize all our key/value pairs at the same time using the Setup()
function. When modifying contexts, functions generally take a context argument and
return a context value. So, the signature often looks like this:

func ModifyContext(ctx context.Context) context.Context

Sometimes, these methods also return an error or the cancel() function, such as in the
cases of context.WithCancel, context.WithTimeout, and context.WithDeadline.
All child contexts inherit the attributes of the parent.

In this recipe, we created two child contexts, one with a deadline and one with a timeout.
We set these to timeout to be random ranges, then terminated when either is received.
Lastly, we extracted a value given a set key and printed it.

Executing state management for channels
Channels can be any type in Go. A channel of structs allows you to pass a lot of state with a
single message. This recipe will explore the use of channels to pass around complex request
structures and return their results in complex response structs.

In the next recipe, Using the worker pool design pattern, the value of this becomes even more
apparent as you can create general purpose workers capable of performing a variety of
tasks.

Parallelism and Concurrency Chapter 10

[298]

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/state and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/state

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/state

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/state, or use this as an opportunity to write some of
your own code!
Create a file called state.go with the following content:4.

 package state

 type op string

 const (
 // Add values
 Add op = "add"
 // Subtract values
 Subtract = "sub"
 // Multiply values
 Multiply = "mult"
 // Divide values
 Divide = "div"
)

 // WorkRequest perform an op
 // on two values
 type WorkRequest struct {
 Operation op
 Value1 int64
 Value2 int64
 }

 // WorkResponse returns the result

Parallelism and Concurrency Chapter 10

[299]

 // and any errors
 type WorkResponse struct {
 Wr *WorkRequest
 Result int64
 Err error
 }

Create a file called processor.go with the following content:5.

 package state

 import "context"

 // Processor routes work to Process
 func Processor(ctx context.Context, in chan *WorkRequest, out
 chan *WorkResponse) {
 for {
 select {
 case <-ctx.Done():
 return
 case wr := <-in:
 out <- Process(wr)
 }
 }
 }

Create a file called process.go with the following content:6.

 package state

 import "errors"

 // Process switches on operation type
 // Then does work
 func Process(wr *WorkRequest) *WorkResponse {
 resp := WorkResponse{Wr: wr}

 switch wr.Operation {
 case Add:
 resp.Result = wr.Value1 + wr.Value2
 case Subtract:
 resp.Result = wr.Value1 - wr.Value2
 case Multiply:
 resp.Result = wr.Value1 * wr.Value2
 case Divide:
 if wr.Value2 == 0 {
 resp.Err = errors.New("divide by 0")
 break

Parallelism and Concurrency Chapter 10

[300]

 }
 resp.Result = wr.Value1 / wr.Value2
 default:
 resp.Err = errors.New("unsupported operation")
 }
 return &resp
 }

Create a new directory named example and navigate to it.7.
Create a file named main.go with the following content:8.

 package main

 import (
 "context"
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/state"
)

 func main() {
 in := make(chan *state.WorkRequest, 10)
 out := make(chan *state.WorkResponse, 10)
 ctx := context.Background()
 ctx, cancel := context.WithCancel(ctx)
 defer cancel()

 go state.Processor(ctx, in, out)
 req := state.WorkRequest{state.Add, 3, 4}
 in <- &req

 req2 := state.WorkRequest{state.Subtract, 5, 2}
 in <- &req2

 req3 := state.WorkRequest{state.Multiply, 9, 9}
 in <- &req3

 req4 := state.WorkRequest{state.Divide, 8, 2}
 in <- &req4

 req5 := state.WorkRequest{state.Divide, 8, 0}
 in <- &req5

 for i := 0; i < 5; i++ {
 resp := <-out
 fmt.Printf("Request: %v; Result: %v, Error: %vn",

Parallelism and Concurrency Chapter 10

[301]

 resp.Wr, resp.Result, resp.Err)
 }
 }

Run go run main.go.9.
You may also run the following commands:10.

$ go build
$./example

You should now see the following output:

$ go run main.go
Request: &{add 3 4}; Result: 7, Error: <nil>
Request: &{sub 5 2}; Result: 3, Error: <nil>
Request: &{mult 9 9}; Result: 81, Error: <nil>
Request: &{div 8 2}; Result: 4, Error: <nil>
Request: &{div 8 0}; Result: 0, Error: divide by 0

The go.mod file may be updated and the go.sum file should now be present in11.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all the tests pass.

How it works...
The Processor() function in this recipe is a function that loops forever until its context is
canceled, either through explicit calls to cancel or via timeout. It dispatches all work to
Process(), which can handle different functions when given various operations. It would
also be possible to have each of these cases dispatch another function for even more
modular code.

Ultimately, the response is returned to a response channel, and we loop over and print all
the results at the very end. We also demonstrate an error case in the divide by 0
example.

Parallelism and Concurrency Chapter 10

[302]

Using the worker pool design pattern
The worker pool design pattern is one where you dispatch long-running Goroutines as
workers. These workers can process a variety of work either using multiple channels, or by
using a stateful request structure that specifies the type, as described in the preceding
recipe. This recipe will create stateful workers and demonstrate how to coordinate and spin
up multiple workers who are all handling requests concurrently on the same channel.
These workers will be crypto workers, as in a web authentication application. Their
purpose will be to hash plaintext strings using the bcrypt package and compare a text
password against a hash.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/pool and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/pool

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/pool

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/pool, or use this as an opportunity to write some of
your own code!
Create a file called worker.go with the following content:4.

 package pool

 import (
 "context"
 "fmt"
)

 // Dispatch creates numWorker workers, returns a cancel
 // function channels for adding work and responses,
 // cancel must be called

Parallelism and Concurrency Chapter 10

[303]

 func Dispatch(numWorker int) (context.CancelFunc, chan
 WorkRequest, chan WorkResponse) {
 ctx := context.Background()
 ctx, cancel := context.WithCancel(ctx)
 in := make(chan WorkRequest, 10)
 out := make(chan WorkResponse, 10)

 for i := 0; i < numWorker; i++ {
 go Worker(ctx, i, in, out)
 }
 return cancel, in, out
 }

 // Worker loops forever and is part of the worker pool
 func Worker(ctx context.Context, id int, in chan WorkRequest,
 out chan WorkResponse) {
 for {
 select {
 case <-ctx.Done():
 return
 case wr := <-in:
 fmt.Printf("worker id: %d, performing %s
 workn", id, wr.Op)
 out <- Process(wr)
 }
 }
 }

Create a file called work.go with the following content:5.

 package pool

 import "errors"

 type op string

 const (
 // Hash is the bcrypt work type
 Hash op = "encrypt"
 // Compare is bcrypt compare work
 Compare = "decrypt"
)

 // WorkRequest is a worker req
 type WorkRequest struct {
 Op op
 Text []byte
 Compare []byte // optional

Parallelism and Concurrency Chapter 10

[304]

 }

 // WorkResponse is a worker resp
 type WorkResponse struct {
 Wr WorkRequest
 Result []byte
 Matched bool
 Err error
 }

 // Process dispatches work to the worker pool channel
 func Process(wr WorkRequest) WorkResponse {
 switch wr.Op {
 case Hash:
 return hashWork(wr)
 case Compare:
 return compareWork(wr)
 default:
 return WorkResponse{Err: errors.New("unsupported
 operation")}
 }
 }

Create a file called crypto.go with the following content:6.

 package pool

 import "golang.org/x/crypto/bcrypt"

 func hashWork(wr WorkRequest) WorkResponse {
 val, err := bcrypt.GenerateFromPassword(wr.Text,
 bcrypt.DefaultCost)
 return WorkResponse{
 Result: val,
 Err: err,
 Wr: wr,
 }
 }

 func compareWork(wr WorkRequest) WorkResponse {
 var matched bool
 err := bcrypt.CompareHashAndPassword(wr.Compare, wr.Text)
 if err == nil {
 matched = true
 }
 return WorkResponse{
 Matched: matched,
 Err: err,

Parallelism and Concurrency Chapter 10

[305]

 Wr: wr,
 }
 }

Create a new directory named example and navigate to it.7.
Create a file named main.go with the following content:8.

 package main

 import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/pool"
)

 func main() {
 cancel, in, out := pool.Dispatch(10)
 defer cancel()

 for i := 0; i < 10; i++ {
 in <- pool.WorkRequest{Op: pool.Hash, Text:
 []byte(fmt.Sprintf("messages %d", i))}
 }

 for i := 0; i < 10; i++ {
 res := <-out
 if res.Err != nil {
 panic(res.Err)
 }
 in <- pool.WorkRequest{Op: pool.Compare, Text:
 res.Wr.Text, Compare: res.Result}
 }

 for i := 0; i < 10; i++ {
 res := <-out
 if res.Err != nil {
 panic(res.Err)
 }
 fmt.Printf("string: "%s"; matched: %vn",
 string(res.Wr.Text), res.Matched)
 }
 }

Parallelism and Concurrency Chapter 10

[306]

Run go run main.go.9.
You may also run the following commands:10.

$ go build
$./example

You should now see the following output:

$ go run main.go
worker id: 9, performing encrypt work
worker id: 5, performing encrypt work
worker id: 2, performing encrypt work
worker id: 8, performing encrypt work
worker id: 6, performing encrypt work
worker id: 1, performing encrypt work
worker id: 0, performing encrypt work
worker id: 4, performing encrypt work
worker id: 3, performing encrypt work
worker id: 7, performing encrypt work
worker id: 2, performing decrypt work
worker id: 6, performing decrypt work
worker id: 8, performing decrypt work
worker id: 1, performing decrypt work
worker id: 0, performing decrypt work
worker id: 9, performing decrypt work
worker id: 3, performing decrypt work
worker id: 4, performing decrypt work
worker id: 7, performing decrypt work
worker id: 5, performing decrypt work
string: "messages 9"; matched: true
string: "messages 3"; matched: true
string: "messages 4"; matched: true
string: "messages 0"; matched: true
string: "messages 1"; matched: true
string: "messages 8"; matched: true
string: "messages 5"; matched: true
string: "messages 7"; matched: true
string: "messages 2"; matched: true
string: "messages 6"; matched: true

The go.mod file may be updated and the go.sum file should now be present in11.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all the tests pass.

Parallelism and Concurrency Chapter 10

[307]

How it works...
This recipe uses the Dispatch() method to create a number of workers on a single input
channel, output channel, and those attached to a single cancel() function. This can be
used if you want to make different pools for different purposes. For example, you can
create 10 crypto and 20 compare workers by using separate pools. For this recipe, we use
a single pool, send hash requests to the workers, retrieve the responses, and then send
compare requests to the same pool. Because of this, the worker performing the work will be
different each time, but they're all capable of performing either type of work.

The advantage of this approach is that both requests allow for parallelism and can also
control the maximum concurrency. Bounding the maximum number of Goroutines can also
be important for limiting memory. I chose crypto for this recipe because crypto is a good
example of code that can overwhelm your CPU or memory if you spin up a new Goroutine
for every new request; for example, in a web service.

Using workers to create pipelines
This recipe demonstrates creating groups of worker pools and connecting them together to
form a pipeline. For this recipe, we link together two pools, but the pattern can be used for
much more complex operations, similar to middleware.

Worker pools can be useful for keeping workers relatively simple and to also further
control concurrency. For example, it may be useful to serialize logging while parallelizing
other operations. It may also be useful to have a smaller pool for more expensive operations
so that you don't overload machine resources.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter10/pipeline and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter10/pipeline

Parallelism and Concurrency Chapter 10

[308]

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter10/pipeline

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter10/pipeline, or use this as an opportunity to write some of
your own code!
Create a file called worker.go with the following content:4.

 package pipeline

 import "context"

 // Worker have one role
 // that is determined when
 // Work is called
 type Worker struct {
 in chan string
 out chan string
 }

 // Job is a job a worker can do
 type Job string

 const (
 // Print echo's all input to
 // stdout
 Print Job = "print"
 // Encode base64 encodes input
 Encode Job = "encode"
)

 // Work is how to dispatch a worker, they are assigned
 // a job here
 func (w *Worker) Work(ctx context.Context, j Job) {
 switch j {
 case Print:
 w.Print(ctx)
 case Encode:
 w.Encode(ctx)
 default:
 return
 }
 }

Parallelism and Concurrency Chapter 10

[309]

Create a file called print.go with the following content:5.

 package pipeline

 import (
 "context"
 "fmt"
)

 // Print prints w.in and repalys it
 // on w.out
 func (w *Worker) Print(ctx context.Context) {
 for {
 select {
 case <-ctx.Done():
 return
 case val := <-w.in:
 fmt.Println(val)
 w.out <- val
 }
 }
 }

Create a file called encode.go with the following content:6.

 package pipeline

 import (
 "context"
 "encoding/base64"
 "fmt"
)

 // Encode takes plain text as int
 // and returns "string => <base64 string encoding>
 // as out
 func (w *Worker) Encode(ctx context.Context) {
 for {
 select {
 case <-ctx.Done():
 return
 case val := <-w.in:
 w.out <- fmt.Sprintf("%s => %s", val,
 base64.StdEncoding.EncodeToString([]byte(val)))
 }
 }
 }

Parallelism and Concurrency Chapter 10

[310]

Create a file called pipeline.go with the following content:7.

 package pipeline

 import "context"

 // NewPipeline initializes the workers and
 // connects them, it returns the input of the pipeline
 // and the final output
 func NewPipeline(ctx context.Context, numEncoders, numPrinters
 int) (chan string, chan string) {
 inEncode := make(chan string, numEncoders)
 inPrint := make(chan string, numPrinters)
 outPrint := make(chan string, numPrinters)
 for i := 0; i < numEncoders; i++ {
 w := Worker{
 in: inEncode,
 out: inPrint,
 }
 go w.Work(ctx, Encode)
 }

 for i := 0; i < numPrinters; i++ {
 w := Worker{
 in: inPrint,
 out: outPrint,
 }
 go w.Work(ctx, Print)
 }
 return inEncode, outPrint
 }

Create a new directory named example and navigate to it.8.
Create a file named main.go with the following content:9.

 package main

 import (
 "context"
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter10/pipeline"
)

 func main() {
 ctx := context.Background()

Parallelism and Concurrency Chapter 10

[311]

 ctx, cancel := context.WithCancel(ctx)
 defer cancel()

 in, out := pipeline.NewPipeline(ctx, 10, 2)

 go func() {
 for i := 0; i < 20; i++ {
 in <- fmt.Sprint("Message", i)
 }
 }()

 for i := 0; i < 20; i++ {
 <-out
 }
 }

Run go run main.go.10.
You may also run the following commands:11.

$ go build
$./example

You should now see the following output:

$ go run main.go
Message3 => TWVzc2FnZTM=
Message7 => TWVzc2FnZTc=
Message8 => TWVzc2FnZTg=
Message9 => TWVzc2FnZTk=
Message5 => TWVzc2FnZTU=
Message11 => TWVzc2FnZTEx
Message10 => TWVzc2FnZTEw
Message4 => TWVzc2FnZTQ=
Message12 => TWVzc2FnZTEy
Message6 => TWVzc2FnZTY=
Message14 => TWVzc2FnZTE0
Message13 => TWVzc2FnZTEz
Message0 => TWVzc2FnZTA=
Message15 => TWVzc2FnZTE1
Message1 => TWVzc2FnZTE=
Message17 => TWVzc2FnZTE3
Message16 => TWVzc2FnZTE2
Message19 => TWVzc2FnZTE5
Message18 => TWVzc2FnZTE4
Message2 => TWVzc2FnZTI=

Parallelism and Concurrency Chapter 10

[312]

The go.mod file may be updated and the go.sum file should now be present in12.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all the tests pass.

How it works...
The main package creates a pipeline consisting of 10 encoders and 2 printers. It enqueues 20
strings on the in channel and waits for 20 responses on the out channel. If messages reach
the out channel, it indicates that they've gone through the entire pipeline successfully.

The NewPipeline function is used to wire up the pools. It ensures that the channels are
created with the properly buffered sizes and that the output channels of some pools are
connected to the appropriate input channels of other pools. It's also possible to fan out the
pipeline by using an array of in channels and an array of out channels on each worker,
multiple named channels, or maps of channels. This would allow for things such as sending
messages to a logger at each step.

11
Distributed Systems

Sometimes, application-level parallelism is not enough, and things that seem simple in
development can become complex during deployment. Distributed systems provide a
number of challenges that aren't found when developing on a single machine. These
applications have added complexity for things such as monitoring, writing applications
that require strong consistency guarantees, and service discovery. In addition, you must
always be mindful of single points of failure, such as a database, otherwise your distributed
applications can fail when this single component fails.

This chapter will explore methods of managing distributed data, orchestration,
containerization, metrics, and monitoring. These will become part of your toolbox for
writing and maintaining microservices and large distributed applications.

In this chapter, we will cover the following recipes:

Using service discovery with Consul
Implementing basic consensus using Raft
Using containerization with Docker
Orchestration and deployment strategies
Monitoring applications
Collecting metrics

Technical requirements
To follow all the recipes in this chapter, configure your environment according to these
steps:

Download and install Go 1.12.6 or above on your operating system from https:/1.
/golang. org/ doc/ install.
Install Consul from https:/ /www.consul. io/intro/ getting- started/ install.2.
html.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html
https://www.consul.io/intro/getting-started/install.html

Distributed Systems Chapter 11

[314]

Open a Terminal or console application and create and navigate to a project3.
directory such as ~/projects/go-programming-cookbook. All the code will
be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-4.
original and (optionally) work from that directory rather than typing in the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Using service discovery with Consul
When using the microservice approach to applications, you end up with a lot of servers
listening on a variety of IPs, domains, and ports. These IP addresses will vary by
environment (staging versus production), and it can be tricky to keep them static for
configuration between services. You also want to know when a machine or service is down
or unreachable due to a network partition. A network partition occurs when two parts of
the network cannot reach each other. For example, if a switch fails between two data
centers, then the services within one datacenter cannot reach services in the other
datacenter. Consul is a tool that provides a lot of functionality, but here, we'll explore
registering services with Consul and querying them from our other services.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter11/discovery and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/discovery

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter11/discovery

Distributed Systems Chapter 11

[315]

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter11/discovery, or use this as an opportunity to write some
of your own code!
Create a file called client.go with the following content:4.

 package discovery

 import "github.com/hashicorp/consul/api"

 // Client exposes api methods we care
 // about
 type Client interface {
 Register(tags []string) error
 Service(service, tag string) ([]*api.ServiceEntry,
 *api.QueryMeta, error)
 }

 type client struct {
 client *api.Client
 address string
 name string
 port int
 }

 //NewClient iniitalizes a consul client
 func NewClient(config *api.Config, address, name string, port
 int) (Client, error) {
 c, err := api.NewClient(config)
 if err != nil {
 return nil, err
 }
 cli := &client{
 client: c,
 name: name,
 address: address,
 port: port,
 }
 return cli, nil
 }

Create a file called operations.go with the following content:5.

 package discovery

 import "github.com/hashicorp/consul/api"

 // Register adds our service to consul

Distributed Systems Chapter 11

[316]

 func (c *client) Register(tags []string) error {
 reg := &api.AgentServiceRegistration{
 ID: c.name,
 Name: c.name,
 Port: c.port,
 Address: c.address,
 Tags: tags,
 }
 return c.client.Agent().ServiceRegister(reg)
 }

 // Service return a service
 func (c *client) Service(service, tag string)
 ([]*api.ServiceEntry, *api.QueryMeta, error) {
 return c.client.Health().Service(service, tag, false,
 nil)
 }

Create a file called exec.go with the following content:6.

package discovery

import "fmt"

// Exec creates a consul entry then queries it
func Exec(cli Client) error {
 if err := cli.Register([]string{"Go", "Awesome"}); err != nil {
 return err
 }

 entries, _, err := cli.Service("discovery", "Go")
 if err != nil {
 return err
 }
 for _, entry := range entries {
 fmt.Printf("%#v\n", entry.Service)
 }

 return nil
}

Create a new directory named example and navigate to it.7.
Create a file named main.go with the following content:8.

 package main

 import "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/

Distributed Systems Chapter 11

[317]

 chapter11/discovery"

 func main() {
 if err := discovery.Exec(); err != nil {
 panic(err)
 }
 }

Start Consul in a separate Terminal using the consul agent -dev -9.
node=localhost command.
Run the go run main.go command.10.
You may also run the following commands:11.

$ go build
$./example

You should see the following output:

$ go run main.go
&api.AgentService{ID:"discovery", Service:"discovery", Tags:
[]string{"Go", "Awesome"}, Port:8080, Address:"localhost",
EnableTagOverride:false, CreateIndex:0x23, ModifyIndex:0x23}

The go.mod file may be updated and the go.sum file should now be present in12.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all the tests pass.

How it works...
Consul provides a robust Go API library. It can feel daunting when you're starting for the
first time, but this recipe shows how you might approach wrapping it. Configuring Consul
further is beyond the scope of this recipe; this shows the basics of registering a service and
querying for other services when given a key and tag.

It would be possible to use this to register new microservices at startup time, query for all
dependent services, and deregister at shutdown. You may also want to cache this
information so that you're not hitting Consul for every request, but this recipe provides the
basic tools that you can expand upon. The Consul agent also makes these repeated requests
fast and efficient (https:/ /www. consul. io/intro/ getting- started/ agent. html). Once
you've s

https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html
https://www.consul.io/intro/getting-started/agent.html

Distributed Systems Chapter 11

[318]

Implementing basic consensus using Raft
Raft is a consensus algorithm. It allows distributed systems to keep a shared and managed
state (https://raft. github. io/). Setting up a Raft system is complex in many ways – for
one, you need consensus for an election to occur and succeed. This can be difficult to
bootstrap when you're working with multiple nodes and can be difficult to get started. It is
possible to run a basic cluster on a single node/leader. However, if you want redundancy,
at least three nodes are needed to prevent data loss in the case of a single node failure. This
concept is known as quorum, where you must maintain (n/2)+1 available nodes to ensure
new logs can be committed to the Raft cluster. Basically, if you can maintain quorum, the
cluster remains healthy and usable.

This recipe implements a basic in-memory Raft cluster, constructs a state machine that can
transition between certain allowed states, and connects the distributed state machine to a
web handler that can trigger the transition. This can be useful when you're implementing
the base finite state machine interface that Raft requires, or when testing. This recipe uses
https://github.com/ hashicorp/ raft for the base Raft implementation.

How to do it...
The following steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter11/consensus and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/consensus

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter11/consensus

https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft
https://github.com/hashicorp/raft

Distributed Systems Chapter 11

[319]

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter11/consensus, or use this as an opportunity to write some
of your own code!
Create a file called state.go with the following content:4.

 package consensus

 type state string

 const (
 first state = "first"
 second = "second"
 third = "third"
)

 var allowedState map[state][]state

 func init() {
 // setup valid states
 allowedState = make(map[state][]state)
 allowedState[first] = []state{second, third}
 allowedState[second] = []state{third}
 allowedState[third] = []state{first}
 }

 // CanTransition checks if a new state is valid
 func (s *state) CanTransition(next state) bool {
 for _, n := range allowedState[*s] {
 if n == next {
 return true
 }
 }
 return false
 }

 // Transition will move a state to the next
 // state if able
 func (s *state) Transition(next state) {
 if s.CanTransition(next) {
 *s = next
 }
 }

Distributed Systems Chapter 11

[320]

Create a file called raftset.go with the following content:5.

package consensus

import (
 "fmt"

 "github.com/hashicorp/raft"
)

// keep a map of rafts for later
var rafts map[raft.ServerAddress]*raft.Raft

func init() {
 rafts = make(map[raft.ServerAddress]*raft.Raft)
}

// raftSet stores all the setup material we need
type raftSet struct {
 Config *raft.Config
 Store *raft.InmemStore
 SnapShotStore raft.SnapshotStore
 FSM *FSM
 Transport raft.LoopbackTransport
 Configuration raft.Configuration
}

// generate n raft sets to bootstrap the raft cluster
func getRaftSet(num int) []*raftSet {
 rs := make([]*raftSet, num)
 servers := make([]raft.Server, num)
 for i := 0; i < num; i++ {
 addr := raft.ServerAddress(fmt.Sprint(i))
 _, transport := raft.NewInmemTransport(addr)
 servers[i] = raft.Server{
 Suffrage: raft.Voter,
 ID: raft.ServerID(addr),
 Address: addr,
 }
 config := raft.DefaultConfig()
 config.LocalID = raft.ServerID(addr)

 rs[i] = &raftSet{
 Config: config,
 Store: raft.NewInmemStore(),
 SnapShotStore: raft.NewInmemSnapshotStore(),
 FSM: NewFSM(),
 Transport: transport,

Distributed Systems Chapter 11

[321]

 }
 }

 // configuration needs to be consistent between
 // services and so we need the full serverlist in this
 // case
 for _, r := range rs {
 r.Configuration = raft.Configuration{Servers: servers}
 }

 return rs
}

Create a file called config.go with the following content:6.

package consensus

import (
 "github.com/hashicorp/raft"
)

// Config creates num in-memory raft
// nodes and connects them
func Config(num int) {

 // create n "raft-sets" consisting of
 // everything needed to represent a node
 rs := getRaftSet(num)

 //connect all of the transports
 for _, r1 := range rs {
 for _, r2 := range rs {
 r1.Transport.Connect(r2.Transport.LocalAddr(), r2.Transport)
 }
 }

 // for each node, bootstrap then connect
 for _, r := range rs {
 if err := raft.BootstrapCluster(r.Config, r.Store, r.Store,
r.SnapShotStore, r.Transport, r.Configuration); err != nil {
 panic(err)
 }
 raft, err := raft.NewRaft(r.Config, r.FSM, r.Store, r.Store,
r.SnapShotStore, r.Transport)
 if err != nil {
 panic(err)
 }
 rafts[r.Transport.LocalAddr()] = raft

Distributed Systems Chapter 11

[322]

 }
}

Create a file called fsm.go with the following content:7.

 package consensus

 import (
 "io"

 "github.com/hashicorp/raft"
)

 // FSM implements the raft FSM interface
 // and holds a state
 type FSM struct {
 state state
 }

 // NewFSM creates a new FSM with
 // start state of "first"
 func NewFSM() *FSM {
 return &FSM{state: first}
 }

 // Apply updates our FSM
 func (f *FSM) Apply(r *raft.Log) interface{} {
 f.state.Transition(state(r.Data))
 return string(f.state)
 }

 // Snapshot needed to satisfy the raft FSM interface
 func (f *FSM) Snapshot() (raft.FSMSnapshot, error) {
 return nil, nil
 }

 // Restore needed to satisfy the raft FSM interface
 func (f *FSM) Restore(io.ReadCloser) error {
 return nil
 }

Create a file called handler.go with the following content:8.

package consensus

import (
 "net/http"
 "time"

Distributed Systems Chapter 11

[323]

)

// Handler grabs the get param ?next= and tries
// to transition to the state contained there
func Handler(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 state := r.FormValue("next")
 for address, raft := range rafts {
 if address != raft.Leader() {
 continue
 }
 result := raft.Apply([]byte(state), 1*time.Second)
 if result.Error() != nil {
 w.WriteHeader(http.StatusBadRequest)
 return
 }
 newState, ok := result.Response().(string)
 if !ok {
 w.WriteHeader(http.StatusInternalServerError)
 return
 }

 if newState != state {
 w.WriteHeader(http.StatusBadRequest)
 w.Write([]byte("invalid transition"))
 return
 }
 w.WriteHeader(http.StatusOK)
 w.Write([]byte(newState))
 return
 }
}

Create a new directory named example and navigate to it.9.
Create a file named main.go with the following content:10.

 package main

 import (
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter11/consensus"
)

 func main() {
 consensus.Config(3)

Distributed Systems Chapter 11

[324]

 http.HandleFunc("/", consensus.Handler)
 err := http.ListenAndServe(":3333", nil)
 panic(err)
 }

Run the go run main.go command. Alternatively, you may also run the11.
following commands:

$ go build
$./example

You should now see the following output:

$ go run main.go
2019/05/04 21:06:46 [INFO] raft: Initial configuration (index=1):
[{Suffrage:Voter ID:0 Address:0} {Suffrage:Voter ID:1 Address:1}
{Suffrage:Voter ID:2 Address:2}]
2019/05/04 21:06:46 [INFO] raft: Initial configuration (index=1):
[{Suffrage:Voter ID:0 Address:0} {Suffrage:Voter ID:1 Address:1}
{Suffrage:Voter ID:2 Address:2}]
2019/05/04 21:06:46 [INFO] raft: Node at 0 [Follower] entering
Follower state (Leader: "")
2019/05/04 21:06:46 [INFO] raft: Node at 1 [Follower] entering
Follower state (Leader: "")
2019/05/04 21:06:46 [INFO] raft: Initial configuration (index=1):
[{Suffrage:Voter ID:0 Address:0} {Suffrage:Voter ID:1 Address:1}
{Suffrage:Voter ID:2 Address:2}]
2019/05/04 21:06:46 [INFO] raft: Node at 2 [Follower] entering
Follower state (Leader: "")
2019/05/04 21:06:47 [WARN] raft: Heartbeat timeout from "" reached,
starting election
2019/05/04 21:06:47 [INFO] raft: Node at 0 [Candidate] entering
Candidate state in term 2
2019/05/04 21:06:47 [DEBUG] raft: Votes needed: 2
2019/05/04 21:06:47 [DEBUG] raft: Vote granted from 0 in term 2.
Tally: 1
2019/05/04 21:06:47 [DEBUG] raft: Vote granted from 1 in term 2.
Tally: 2
2019/05/04 21:06:47 [INFO] raft: Election won. Tally: 2
2019/05/04 21:06:47 [INFO] raft: Node at 0 [Leader] entering Leader
state
2019/05/04 21:06:47 [INFO] raft: Added peer 1, starting replication
2019/05/04 21:06:47 [INFO] raft: Added peer 2, starting replication
2019/05/04 21:06:47 [INFO] raft: pipelining replication to peer
{Voter 1 1}
2019/05/04 21:06:47 [INFO] raft: pipelining replication to peer
{Voter 2 2}

Distributed Systems Chapter 11

[325]

In a separate Terminal, run the following command:12.

$ curl "http://localhost:3333/?next=second"
second

$ curl "http://localhost:3333/?next=third"
third

$ curl "http://localhost:3333/?next=second"
invalid transition

$ curl "http://localhost:3333/?next=first"
first

The go.mod file may be updated and the go.sum file should now be present in13.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.14.
Ensure that all the tests pass.

How it works...
When the application starts, we initialize multiple Raft objects. These each have their own
address and transport. The InmemTransport{} function also provides a method for
connecting the other transports, and is called Connect(). Once these connections are
established, the Raft cluster holds an election. When communicating in a Raft cluster,
clients must communicate with the leader. In our case, one handler can talk to all of the
nodes, so the handler is responsible for having the Raft leader's call Apply() object.
This in turn runs apply() on all of the other nodes.

The InmemTransport{} function simplifies the election and bootstrapping process by
allowing everything to reside in memory. In practice, this isn't very helpful, except for
testing and proof of concepts, since Goroutines can freely access shared memory. A more
production-minded implementation would use something like an HTTP Transport such
that service instances can communicate across machines. This may require some additional
bookkeeping or service discovery as the service instances have to listen and serve as well as
have the ability discover and establish connections with one another.

Distributed Systems Chapter 11

[326]

Using containerization with Docker
Docker is a container technology for packaging and shipping applications. Other
advantages include portability, since a container will run the same way regardless of the
host OS. It provides a lot of the advantages of a virtual machine, but in a more lightweight
container. It's possible to limit the resource consumption of individual containers and
sandbox your environment. It can be extremely useful to have a common environment for
your applications locally and when you ship your code to production. Docker is written in
Go and is open source, so it's simple to take advantage of the client and libraries. This
recipe will set up a Docker container for a basic Go application, store some version
information about the container, and demonstrate hitting a handler from a Docker
endpoint.

Getting ready
Configure your environment according to these steps:

Refer to the Technical requirements section in this chapter for steps to configure1.
your environment.
Install Docker from https:/ / docs.docker. com/ install. This will also include2.
Docker Compose.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter11/docker and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/docker

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/

Distributed Systems Chapter 11

[327]

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter11/docker

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter11/docker, or use this as an opportunity to write some of
your own code!
Create a file called dockerfile with the following content:4.

 FROM alpine

 ADD ./example/example /example
 EXPOSE 8000
 ENTRYPOINT /example

Create a file called setup.sh with the following content:5.

 #!/usr/bin/env bash

 pushd example
 env GOOS=linux go build -ldflags "-X main.version=1.0 -X
 main.builddate=$(date +%s)"
 popd
 docker build . -t example
 docker run -d -p 8000:8000 example

Create a file called version.go with the following content:6.

 package docker

 import (
 "encoding/json"
 "net/http"
 "time"
)

 // VersionInfo holds artifacts passed in
 // at build time
 type VersionInfo struct {
 Version string
 BuildDate time.Time
 Uptime time.Duration
 }

 // VersionHandler writes the latest version info
 func VersionHandler(v *VersionInfo) http.HandlerFunc {

Distributed Systems Chapter 11

[328]

 t := time.Now()
 return func(w http.ResponseWriter, r *http.Request) {
 v.Uptime = time.Since(t)
 vers, err := json.Marshal(v)
 if err != nil {
 w.WriteHeader
 (http.StatusInternalServerError)
 return
 }
 w.WriteHeader(http.StatusOK)
 w.Write(vers)
 }
 }

Create a new directory named example and navigate to it.7.
Create a main.go file with the following content:8.

 package main

 import (
 "fmt"
 "net/http"
 "strconv"
 "time"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter11/docker"
)

 // these are set at build time
 var (
 version string
 builddate string
)

 var versioninfo docker.VersionInfo

 func init() {
 // parse buildtime variables
 versioninfo.Version = version
 i, err := strconv.ParseInt(builddate, 10, 64)
 if err != nil {
 panic(err)
 }
 tm := time.Unix(i, 0)
 versioninfo.BuildDate = tm
 }

Distributed Systems Chapter 11

[329]

 func main() {
 http.HandleFunc("/version",
 docker.VersionHandler(&versioninfo))
 fmt.Printf("version %s listening on :8000\n",
 versioninfo.Version)
 panic(http.ListenAndServe(":8000", nil))
 }

Navigate back to the starting directory.9.
Run the following command:10.

$ bash setup.sh

You should now see the following output:

$ bash setup.sh
~/go/src/github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/docker/example
~/go/src/github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/docker
~/go/src/github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/docker
Sending build context to Docker daemon 6.031 MB
Step 1/4 : FROM alpine
 ---> 4a415e366388
Step 2/4 : ADD ./example/example /example
 ---> de34c3c5451e
Removing intermediate container bdcd9c4f4381
Step 3/4 : EXPOSE 8000
 ---> Running in 188f450d4e7b
 ---> 35d1a2652b43
Removing intermediate container 188f450d4e7b
Step 4/4 : ENTRYPOINT /example
 ---> Running in cf0af4f48c3a
 ---> 3d737fc4e6e2
Removing intermediate container cf0af4f48c3a
Successfully built 3d737fc4e6e2
b390ef429fbd6e7ff87058dc82e15c3e7a8b2e
69a601892700d1d434e9e8e43b

Run the following commands:11.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b390ef429fbd example "/bin/sh -c /example" 22 seconds ago Up 23
seconds 0.0.0.0:8000->8000/tcp optimistic_wescoff

$ curl localhost:8000/version

Distributed Systems Chapter 11

[330]

{"Version":"1.0","BuildDate":"2017-04-
30T21:55:56Z","Uptime":48132111264}

$docker kill optimistic_wescoff # grab from first output
optimistic_wescoff

The go.mod file may be updated and the go.sum file should now be present in12.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.13.
Ensure that all the tests pass.

How it works...
This recipe created a script that compiles the Go binary for the Linux architecture and sets a
variety of private variables in main.go. These variables are used to return version
information on a version endpoint. Once the binary is compiled, a Docker container is
created that contains the binary. This allows us to use very small container images since the
Go runtime is self-contained in the binary. We then run the container while exposing the
port on which the container is listening for HTTP traffic. Lastly, we curl the port on
localhost and see our version information returned.

Orchestration and deployment strategies
Docker makes orchestration and deployment much simpler. In this recipe, we'll set up a
connection to MongoDB and then insert a document and query it all from Docker
containers. This recipe will set up the same environment as the Using NoSQL with MongoDB
and mgo recipe from Chapter 6, All about Databases and Storage, but will run the application
and environment inside of containers and will use Docker Compose to orchestrate and
connect to them.

This can later be used in conjunction with Docker Swarm, an integrated Docker tool that
allows you to manage a cluster, create and deploy nodes that can be scaled up or down
easily, and manage load balancing (https:/ /docs. docker. com/ engine/ swarm/). Another
good example of container orchestration is Kubernetes (https:/ /kubernetes. io/), a
container orchestration framework written by Google using the Go programming language.

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/

Distributed Systems Chapter 11

[331]

How to do it...
The following steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-
cookbook/chapter11/orchestrate and navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/orchestrate

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter11/orchestrate

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter11/orchestrate, or use this as an opportunity to write
some of your own code!
Create a file called Dockerfile with the following content:4.

FROM golang:1.12.4-alpine3.9

ENV GOPATH /code/
ADD . /code/src/github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/docker
WORKDIR /code/src/github.com/PacktPublishing/Go-Programming-
Cookbook-Second-Edition/chapter11/docker/example
RUN GO111MODULE=on GOPROXY=off go build -mod=vendor

ENTRYPOINT /code/src/github.com/PacktPublishing/Go-Programming-
Cookbook-Second-Edition/chapter11/docker/example/example

Create a file called docker-compose.yml with the following content:5.

 version: '2'
 services:
 app:
 build: .
 mongodb:
 image: "mongo:latest"

Distributed Systems Chapter 11

[332]

Create a file called config.go with the following content:6.

package mongodb

import (
 "context"
 "fmt"
 "time"

 "github.com/mongodb/mongo-go-driver/mongo"
 "go.mongodb.org/mongo-driver/mongo/options"
)

// Setup initializes a mongo client
func Setup(ctx context.Context, address string) (*mongo.Client,
error) {
 ctx, cancel := context.WithTimeout(ctx, 1*time.Second)
 defer cancel()

 fmt.Println(address)
 client, err :=
mongo.NewClient(options.Client().ApplyURI(address))
 if err != nil {
 return nil, err
 }

 if err := client.Connect(ctx); err != nil {
 return nil, err
 }
 return client, nil
}

Create a file called exec.go with the following content:7.

package mongodb

import (
 "context"
 "fmt"

 "github.com/mongodb/mongo-go-driver/bson"
)

// State is our data model
type State struct {
 Name string `bson:"name"`
 Population int `bson:"pop"`
}

Distributed Systems Chapter 11

[333]

// Exec creates then queries an Example
func Exec(address string) error {
 ctx := context.Background()
 db, err := Setup(ctx, address)
 if err != nil {
 return err
 }

 conn := db.Database("gocookbook").Collection("example")

 vals := []interface{}{&State{"Washington", 7062000},
&State{"Oregon", 3970000}}

 // we can inserts many rows at once
 if _, err := conn.InsertMany(ctx, vals); err != nil {
 return err
 }

 var s State
 if err := conn.FindOne(ctx, bson.M{"name":
"Washington"}).Decode(&s); err != nil {
 return err
 }

 if err := conn.Drop(ctx); err != nil {
 return err
 }

 fmt.Printf("State: %#v\n", s)
 return nil
}

Create a new directory named example and navigate to it.8.
Create a main.go file with the following content:9.

package main

import mongodb "github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/orchestrate"

func main() {
 if err := mongodb.Exec("mongodb://mongodb:27017"); err != nil {
 panic(err)
 }
}

Distributed Systems Chapter 11

[334]

Navigate back to the starting directory.10.
Run the go mod vendor command.11.
Run the docker-compose up -d command.12.
Run the docker logs orchestrate_app_1 command. You should now see13.
the following output:

$ docker logs orchestrate_app_1
State: docker.State{Name:"Washington", Population:7062000}

The go.mod file may be updated and the go.sum file should now be present in14.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.15.
Ensure that all the tests pass.

How it works...
This configuration is good for local development. Once the docker-compose up
command is run, the local directory is rebuilt, Docker establishes a connection to a
MongoDB instance using the latest version, and begins operating against it. This recipe uses
the go mod vendor for dependency management. As a result, we disable the go mod
cache and tell the go build command to use the vendor directory we created.

This can provide a good baseline when starting on apps that require connections to external
services; all of the recipes in Chapter 6, All about Databases and Storage, can make use of this
approach rather than creating a local instance of the database. For production, you
probably won't want to run your data storage behind a Docker container, but you'll also
generally have static host names for configuration.

Monitoring applications
There are a variety of ways to monitor Go applications. One of the easiest ways is to set up
Prometheus, a monitoring application written in Go (https:/ /prometheus. io). This is an
application that polls an endpoint based on your configuration file and collects a lot of
information about your app, including the number of Goroutines, memory usage, and
much more. This app will use the techniques from the previous recipe to set up a Docker
environment to host Prometheus and connect to it.

https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io

Distributed Systems Chapter 11

[335]

How to do it...
The following steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-
cookbook/chapter11/monitoring and navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/monitoring

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter11/monitoring

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter11/monitoring, or use this as an opportunity to write some
of your own code!
Create a file called Dockerfile with the following content:4.

 FROM golang:1.12.4-alpine3.9

 ENV GOPATH /code/
 ADD . /code/src/github.com/agtorre/go-
 cookbook/chapter11/monitoring
 WORKDIR /code/src/github.com/agtorre/go-
 cookbook/chapter11/monitoring
 RUN GO111MODULE=on GOPROXY=off go build -mod=vendor

 ENTRYPOINT /code/src/github.com/agtorre/go-
 cookbook/chapter11/monitoring/monitoring

Create a file called docker-compose.yml with the following content:5.

 version: '2'
 services:
 app:
 build: .
 prometheus:
 ports:
 - 9090:9090
 volumes:
 - ./prometheus.yml:/etc/prometheus/prometheus.yml
 image: "prom/prometheus"

Distributed Systems Chapter 11

[336]

Create a file called main.go with the following content:6.

 package main

 import (
 "net/http"

 "github.com/prometheus/client_golang/prometheus/promhttp"
)

 func main() {
 http.Handle("/metrics", promhttp.Handler())
 panic(http.ListenAndServe(":80", nil))
 }

Create a file called prometheus.yml with the following content:7.

 global:
 scrape_interval: 15s # By default, scrape targets every 15
 seconds.

 # A scrape configuration containing exactly one endpoint to
 scrape:
 # Here it's Prometheus itself.
 scrape_configs:
 # The job name is added as a label `job=<job_name>` to any
 timeseries scraped from this config.
 - job_name: 'app'

 # Override the global default and scrape targets from this job
 every 5 seconds.
 scrape_interval: 5s

 static_configs:
 - targets: ['app:80']

Run the go mod vendor command.8.
Run the docker-compose up command. You should now see the following9.
output:

$ docker-compose up
Starting monitoring_prometheus_1 ... done
Starting monitoring_app_1 ... done
Attaching to monitoring_app_1, monitoring_prometheus_1
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Starting
prometheus (version=1.6.1, branch=master,
revision=4666df502c0e239ed4aa1d80abbbfb54f61b23c3)"

Distributed Systems Chapter 11

[337]

source="main.go:88"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Build
context (go=go1.8.1, user=root@7e45fa0366a7,
date=20170419-14:32:22)" source="main.go:89"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Loading
configuration file /etc/prometheus/prometheus.yml"
source="main.go:251"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Loading
series map and head chunks..." source="storage.go:421"
prometheus_1 | time="2019-05-05T03:10:25Z" level=warning
msg="Persistence layer appears dirty." source="persistence.go:846"
prometheus_1 | time="2019-05-05T03:10:25Z" level=warning
msg="Starting crash recovery. Prometheus is inoperational until
complete." source="crashrecovery.go:40"
prometheus_1 | time="2019-05-05T03:10:25Z" level=warning msg="To
avoid crash recovery in the future, shut down Prometheus with
SIGTERM or a HTTP POST to /-/quit." source="crashrecovery.go:41"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Scanning
files." source="crashrecovery.go:55"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="File
scan complete. 43 series found." source="crashrecovery.go:83"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Checking
for series without series file." source="crashrecovery.go:85"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Check
for series without series file complete."
source="crashrecovery.go:131"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Cleaning
up archive indexes." source="crashrecovery.go:411"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Clean-up
of archive indexes complete." source="crashrecovery.go:504"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info
msg="Rebuilding label indexes." source="crashrecovery.go:512"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Indexing
metrics in memory." source="crashrecovery.go:513"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Indexing
archived metrics." source="crashrecovery.go:521"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="All
requests for rebuilding the label indexes queued. (Actual
processing may lag behind.)" source="crashrecovery.go:540"
prometheus_1 | time="2019-05-05T03:10:25Z" level=warning msg="Crash
recovery complete." source="crashrecovery.go:153"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="43
series loaded." source="storage.go:432"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info msg="Starting
target manager..." source="targetmanager.go:61"
prometheus_1 | time="2019-05-05T03:10:25Z" level=info
msg="Listening on :9090" source="web.go:259"

Distributed Systems Chapter 11

[338]

The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.
Navigate your browser to http://localhost:9090/. You should see a variety11.
of metrics related to your app!

How it works...
This recipe creates a simple handler in Go that exports stats about the running application
to prometheus using the prometheus go client. We connect our application to a prometheus
server that is running in docker and handle the network connection and startup using
docker-compose. Settings for how often to collect data, which port the application is
serving on, and the name of the app are all specified in the prometheus.yml file. Once
both containers start, the prometheus server begins harvesting and monitoring the app on
the specified port. It also exposes a web interface which we visit in the browser to see more
information about our app.

The Prometheus client handler will return a variety of stats about your application to a
Prometheus server. This allows you to point multiple Prometheus servers at an app,
without the need to reconfigure or deploy the app. Most of these stats are generic and
beneficial for things such as detecting memory leaks. A lot of other solutions require you to
periodically send information to a server instead. The next recipe, Collecting metrics, will
demonstrate how to ship custom metrics to the Prometheus server.

Collecting metrics
In addition to general information about your app, it can be helpful to emit metrics that are
app-specific. For example, we might want to collect timing data or keep track of the number
of times an event occurs.

This recipe will use the github.com/rcrowley/go-metrics package to collect metrics
and expose them via an endpoint. There are various exporter tools that you can use to
export metrics to places such as Prometheus and InfluxDB, which are also written in Go.

Distributed Systems Chapter 11

[339]

Getting ready
Configure your environment according to these steps:

Refer to the Technical requirements section in this chapter for steps to configure1.
your environment.
Run the go get github.com/rcrowley/go-metrics command.2.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter11/metrics and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter11/metrics

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter11/metrics

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter11/metrics, or use this as an opportunity to write some of
your own code!
Create a file called handler.go with the following content:4.

 package metrics

 import (
 "net/http"
 "time"

 metrics "github.com/rcrowley/go-metrics"
)

 // CounterHandler will update a counter each time it's called
 func CounterHandler(w http.ResponseWriter, r *http.Request) {
 c := metrics.GetOrRegisterCounter("counterhandler.counter",
 nil)
 c.Inc(1)

Distributed Systems Chapter 11

[340]

 w.WriteHeader(http.StatusOK)
 w.Write([]byte("success"))
 }

 // TimerHandler records the duration required to compelete
 func TimerHandler(w http.ResponseWriter, r *http.Request) {
 currt := time.Now()
 t := metrics.GetOrRegisterTimer("timerhandler.timer", nil)

 w.WriteHeader(http.StatusOK)
 w.Write([]byte("success"))
 t.UpdateSince(currt)
 }

Create a file called report.go with the following content:5.

 package metrics

 import (
 "net/http"

 gometrics "github.com/rcrowley/go-metrics"
)

 // ReportHandler will emit the current metrics in json format
 func ReportHandler(w http.ResponseWriter, r *http.Request) {

 w.WriteHeader(http.StatusOK)

 t := gometrics.GetOrRegisterTimer(
 "reporthandler.writemetrics", nil)
 t.Time(func() {
 gometrics.WriteJSONOnce(gometrics.DefaultRegistry, w)
 })
 }

Create a new directory named example and navigate to it.6.
Create a file named main.go :7.

 package main

 import (
 "net/http"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter11/metrics"
)

Distributed Systems Chapter 11

[341]

 func main() {
 // handler to populate metrics
 http.HandleFunc("/counter", metrics.CounterHandler)
 http.HandleFunc("/timer", metrics.TimerHandler)
 http.HandleFunc("/report", metrics.ReportHandler)
 fmt.Println("listening on :8080")
 panic(http.ListenAndServe(":8080", nil))
 }

Run go run main.go. Alternatively, you may also run the following command:8.

$ go build
$./example

You should now see the following output:

$ go run main.go
listening on :8080

Run the following commands from a separate shell:9.

$ curl localhost:8080/counter
success

$ curl localhost:8080/timer
success

$ curl localhost:8080/report
{"counterhandler.counter":{"count":1},
"reporthandler.writemetrics":
{"15m.rate":0,"1m.rate":0,"5m.rate":0,"75%":0,"95%":0,"99%":0,"99.9
%":0,"count":0,"max":0,"mean":0,"mean.rate":0,"median":0,"min":0,"s
tddev":0},"timerhandler.timer":{"15m.rate":0.0011080303990206543,"1
m.rate":0.015991117074135343,"5m.rate":0.0033057092356765017,"75%":
60485,"95%":60485,"99%":60485,"99.9%":60485,"count":1,"max":60485,"
mean":60485,"mean.rate":1.1334543719787356,"median":60485,"min":604
85,"stddev":0}}

Try hitting all the endpoints a few more times to see how they change.10.
The go.mod file may be updated and the go.sum file should now be present in11.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.12.
Ensure that all the tests pass.

Distributed Systems Chapter 11

[342]

How it works...
The gometrics keeps all of your metrics in a registry. Once it's set up, you can use any of
the metric emit options, such as counter or timer, and it will store this update in the
registry. There are multiple exporters that will export metrics to third-party tools. In our
case, we set up a handler that emits all the metrics in JSON format.

We set up three handlers—one that increments a counter, one that records the time to exit
the handler, and one that prints a report (while also incrementing an additional counter).
The GetOrRegister functions are useful for atomically getting or creating a metric emitter
if it doesn't currently exist in a thread-safe way. Alternatively, you can register everything
once in advance.

12
Reactive Programming and

Data Streams
In this chapter, we will discuss reactive programming design patterns in Go. Reactive
programming is a programming concept that focuses on data streams and the propagation
of change. Technologies such as Kafka allow you to quickly produce or consume a stream
of data. As a result, these technologies are a natural fit for one another. In the Connecting
Kafka to Goflow recipe, we'll explore combining a kafka message queue with goflow to
show a practical example of using these technologies. This chapter will also explore various
ways to connect with Kafka and use it to process messages. Lastly, this chapter will
demonstrate how to create a basic graphql server in Go.

In this chapter, we will cover the following recipes:

Using Goflow for data flow programming
Using Kafka with Sarama
Using async producers with Kafka
Connecting Kafka to Goflow
Writing a GraphQL server in Go

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.

Open a Terminal or console application, and create and navigate to a project2.
directory such as ~/projects/go-programming-cookbook. All code will be
run and modified from this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Reactive Programming and Data Streams Chapter 12

[344]

Clone the latest code into ~/projects/go-programming-cookbook-3.
original and optionally work from that directory, rather than typing the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Using Goflow for data flow programming
The github.com/trustmaster/goflow package is useful for creating data flow-based
applications. It tries to abstract the concepts so that you can write components and connect
them together using a custom network. This recipe will recreate the application discussed
in Chapter 9, Testing Go Code, but will do so using the goflow package.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter12/goflow and
navigate to this directory.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter12/goflow

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter12/goflow

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter12/goflow, or use this as an exercise to write some of your
own code!
Create a file called components.go with the following content:4.

package goflow

import (
 "encoding/base64"
 "fmt"
)

Reactive Programming and Data Streams Chapter 12

[345]

// Encoder base64 encodes all input
type Encoder struct {
 Val <-chan string
 Res chan<- string
}

// Process does the encoding then pushes the result onto Res
func (e *Encoder) Process() {
 for val := range e.Val {
 encoded := base64.StdEncoding.EncodeToString([]byte(val))
 e.Res <- fmt.Sprintf("%s => %s", val, encoded)
 }
}

// Printer is a component for printing to stdout
type Printer struct {
 Line <-chan string
}

// Process Prints the current line received
func (p *Printer) Process() {
 for line := range p.Line {
 fmt.Println(line)
 }
}

Create a file called network.go with the following content:5.

package goflow

import (
 "github.com/trustmaster/goflow"
)

// NewEncodingApp wires together the components
func NewEncodingApp() *goflow.Graph {
 e := goflow.NewGraph()

 // define component types
 e.Add("encoder", new(Encoder))
 e.Add("printer", new(Printer))

 // connect the components using channels
 e.Connect("encoder", "Res", "printer", "Line")

 // map the in channel to Val, which is
 // tied to OnVal function
 e.MapInPort("In", "encoder", "Val")

Reactive Programming and Data Streams Chapter 12

[346]

 return e
}

Create a new directory named example and navigate to it.6.
Create a file named main.go with the following content:7.

package main

import (
 "fmt"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/chapter12/goflow"
 flow "github.com/trustmaster/goflow"
)

func main() {

 net := goflow.NewEncodingApp()

 in := make(chan string)
 net.SetInPort("In", in)

 wait := flow.Run(net)

 for i := 0; i < 20; i++ {
 in <- fmt.Sprint("Message", i)
 }

 close(in)
 <-wait
}

Run go run main.go.8.
You may also run the following commands:9.

$ go build
$./example

You should now see the following output:

$ go run main.go
Message6 => TWVzc2FnZTY=
Message5 => TWVzc2FnZTU=
Message1 => TWVzc2FnZTE=
Message0 => TWVzc2FnZTA=
Message4 => TWVzc2FnZTQ=
Message8 => TWVzc2FnZTg=

Reactive Programming and Data Streams Chapter 12

[347]

Message2 => TWVzc2FnZTI=
Message3 => TWVzc2FnZTM=
Message7 => TWVzc2FnZTc=
Message10 => TWVzc2FnZTEw
Message9 => TWVzc2FnZTk=
Message12 => TWVzc2FnZTEy
Message11 => TWVzc2FnZTEx
Message14 => TWVzc2FnZTE0
Message13 => TWVzc2FnZTEz
Message16 => TWVzc2FnZTE2
Message15 => TWVzc2FnZTE1
Message18 => TWVzc2FnZTE4
Message17 => TWVzc2FnZTE3
Message19 => TWVzc2FnZTE5

The go.mod file may be updated, and the go.sum file should now be present in10.
the top-level recipe directory.
If you have copied or written your own tests, go up one directory and run the go11.
test command. Ensure that all the tests pass.

How it works...
The github.com/trustmaster/goflow package works by defining a network/graph,
registering some components, and then wiring them together. This can feel a bit error-
prone since components are described using strings, but usually this will fail early in
runtime until the application is set up and functioning correctly.

In this recipe, we set up two components, one that Base64-encodes an incoming string, and
one that prints anything passed to it. We connect it to an in channel that is initialized in
main.go, and anything passed onto that channel will flow through our pipeline.

A lot of the emphasis of this approach is on ignoring the internals of what's going on. We
treat everything like a connected black box and let goflow do the rest. You can see, in this
recipe, how small the code is to accomplish this pipeline of tasks and that we have fewer
knobs to control the number of workers, among other things.

Reactive Programming and Data Streams Chapter 12

[348]

Using Kafka with Sarama
Kafka is a popular distributed message queue with a lot of advanced functions for building
distributed systems. This recipe will show how to write to a Kafka topic using a
synchronous producer, and how to consume the same topic using a partition consumer.
This recipe will not explore different configurations of Kafka, as that is a much wider topic
beyond the scope of this book, but I suggest beginning at https:/ /kafka. apache. org/
intro.

Getting ready
Configure your environment according to these steps:

Refer to the Technical requirements section at the beginning of this chapter.1.
Install Kafka using the steps mentioned at https:/ /www. tutorialspoint. com/2.
apache_kafka/ apache_ kafka_ installation_ steps. htm.
Alternatively, you can also access https:/ /github. com/ spotify/ docker- kafka.3.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter12/synckafka and
navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter12/synckafka

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter12/synckafka

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter12/synckafka, or use this as an exercise to write some of
your own code!

https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka
https://github.com/spotify/docker-kafka

Reactive Programming and Data Streams Chapter 12

[349]

Ensure that Kafka is up and running on localhost:9092.4.
Create a file called main.go in a directory named consumer with the following5.
content:

 package main

 import (
 "log"

 sarama "github.com/Shopify/sarama"
)

 func main() {
 consumer, err :=
 sarama.NewConsumer([]string{"localhost:9092"}, nil)
 if err != nil {
 panic(err)
 }
 defer consumer.Close()

 partitionConsumer, err :=

 consumer.ConsumePartition("example", 0,
 sarama.OffsetNewest)
 if err != nil {
 panic(err)
 }
 defer partitionConsumer.Close()

 for {
 msg := <-partitionConsumer.Messages()
 log.Printf("Consumed message: \"%s\" at offset: %d\n",
 msg.Value, msg.Offset)
 }
 }

Create a file called main.go in a directory named producer with the following6.
content:

 package main

 import (

 "fmt"
 "log"

 sarama "github.com/Shopify/sarama"

Reactive Programming and Data Streams Chapter 12

[350]

)

 func sendMessage(producer sarama.SyncProducer, value string) {
 msg := &sarama.ProducerMessage{Topic: "example", Value:
 sarama.StringEncoder(value)}
 partition, offset, err := producer.SendMessage(msg)
 if err != nil {

 log.Printf("FAILED to send message: %s\n", err)
 return
 }
 log.Printf("> message sent to partition %d at offset %d\n",
 partition, offset)
 }

 func main() {
 producer, err :=
 sarama.NewSyncProducer([]string{"localhost:9092"}, nil)
 if err != nil {
 panic(err)
 }
 defer producer.Close()

 for i := 0; i < 10; i++ {
 sendMessage(producer, fmt.Sprintf("Message %d", i))
 }
 }

Navigate up a directory.7.
Run go run ./consumer.8.
In a separate Terminal from the same directory, run go run ./producer.9.
In the producer Terminal, you should see the following:10.

$ go run ./producer
2017/05/07 11:50:38 > message sent to partition 0 at offset 0
2017/05/07 11:50:38 > message sent to partition 0 at offset 1
2017/05/07 11:50:38 > message sent to partition 0 at offset 2
2017/05/07 11:50:38 > message sent to partition 0 at offset 3
2017/05/07 11:50:38 > message sent to partition 0 at offset 4
2017/05/07 11:50:38 > message sent to partition 0 at offset 5
2017/05/07 11:50:38 > message sent to partition 0 at offset 6
2017/05/07 11:50:38 > message sent to partition 0 at offset 7
2017/05/07 11:50:38 > message sent to partition 0 at offset 8
2017/05/07 11:50:38 > message sent to partition 0 at offset 9

Reactive Programming and Data Streams Chapter 12

[351]

In the consumer Terminal, you should see this:

$ go run ./consumer
2017/05/07 11:50:38 Consumed message: "Message 0" at offset: 0
2017/05/07 11:50:38 Consumed message: "Message 1" at offset: 1
2017/05/07 11:50:38 Consumed message: "Message 2" at offset: 2
2017/05/07 11:50:38 Consumed message: "Message 3" at offset: 3
2017/05/07 11:50:38 Consumed message: "Message 4" at offset: 4
2017/05/07 11:50:38 Consumed message: "Message 5" at offset: 5
2017/05/07 11:50:38 Consumed message: "Message 6" at offset: 6
2017/05/07 11:50:38 Consumed message: "Message 7" at offset: 7
2017/05/07 11:50:38 Consumed message: "Message 8" at offset: 8
2017/05/07 11:50:38 Consumed message: "Message 9" at offset: 9

The go.mod file may be updated and the go.sum file should now be present in11.
the top-level recipe directory.
If you have copied or written your own tests, go up one directory and run go12.
test. Ensure all tests pass.

How it works...
This recipe demonstrates passing simple messages via Kafka. More complex methods
should use a serialization format such as json, gob, protobuf, or others. The producer can
send a message to Kafka synchronously through sendMessage. This does not handle cases
well where the Kafka cluster is down, and may result in a hung process for these cases. This
is important to consider for applications such as web handlers, as it may result in timeouts
and hard dependencies on the Kafka cluster.

Assuming the message queues correctly, our consumer will observe the Kafka stream and
do something with the results. Previous recipes in this chapter might make use of this
stream to do some additional processing.

Using async producers with Kafka
It's often useful not to wait for a Kafka producer to complete before moving on to the next
task. In cases like this, you can use an asynchronous producer. These producers take
Sarama messages on a channel and have methods to return a success/error channel that can
be checked separately.

In this recipe, we'll create a Go routine that will handle success and failure messages while
we allow a handler to queue messages to send, regardless of the result.

Reactive Programming and Data Streams Chapter 12

[352]

Getting ready
Refer to the Getting ready section of the Using Kafka with Sarama recipe.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-
cookbook/chapter12/asynckafka and navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter12/asynckafka

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter12/asynckafka

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter12/asynckafka, or use this as an exercise to write some of
your own code!
Ensure that Kafka is up and running on localhost:9092.4.
Copy the consumer directory from the previous recipe.5.
Create a directory named producer and navigate to it.6.
Create a file called producer.go with the following content:7.

 package main

 import (
 "log"

 sarama "github.com/Shopify/sarama"
)

 // Process response grabs results and errors from a producer
 // asynchronously
 func ProcessResponse(producer sarama.AsyncProducer) {
 for {
 select {
 case result := <-producer.Successes():

Reactive Programming and Data Streams Chapter 12

[353]

 log.Printf("> message: \"%s\" sent to partition
 %d at offset %d\n", result.Value,
 result.Partition, result.Offset)
 case err := <-producer.Errors():
 log.Println("Failed to produce message", err)
 }
 }
 }

Create a file called handler.go with the following content:8.

 package main

 import (
 "net/http"

 sarama "github.com/Shopify/sarama"
)

 // KafkaController allows us to attach a producer
 // to our handlers
 type KafkaController struct {
 producer sarama.AsyncProducer
 }

 // Handler grabs a message from a GET parama and
 // send it to the kafka queue asynchronously
 func (c *KafkaController) Handler(w http.ResponseWriter, r
 *http.Request) {
 if err := r.ParseForm(); err != nil {
 w.WriteHeader(http.StatusBadRequest)
 return
 }

 msg := r.FormValue("msg")
 if msg == "" {
 w.WriteHeader(http.StatusBadRequest)
 w.Write([]byte("msg must be set"))
 return
 }
 c.producer.Input() <- &sarama.ProducerMessage{Topic:
 "example", Key: nil, Value:
 sarama.StringEncoder(msg)}
 w.WriteHeader(http.StatusOK)
 }

Reactive Programming and Data Streams Chapter 12

[354]

Create a file called main.go with the following content:9.

 package main

 import (
 "fmt"
 "net/http"

 sarama "github.com/Shopify/sarama"
)

 func main() {
 config := sarama.NewConfig()
 config.Producer.Return.Successes = true
 config.Producer.Return.Errors = true
 producer, err :=
 sarama.NewAsyncProducer([]string{"localhost:9092"}, config)
 if err != nil {
 panic(err)
 }
 defer producer.AsyncClose()

 go ProcessResponse(producer)

 c := KafkaController{producer}
 http.HandleFunc("/", c.Handler)
 fmt.Println("Listening on port :3333")
 panic(http.ListenAndServe(":3333", nil))
 }

Navigate up a directory.10.
Run go run ./consumer.11.
In a separate Terminal from the same directory, run go run ./producer.12.
In a third Terminal, run the following commands:13.

$ curl "http://localhost:3333/?msg=this"
$ curl "http://localhost:3333/?msg=is"
$ curl "http://localhost:3333/?msg=an"
$ curl "http://localhost:3333/?msg=example"

In the producer Terminal, you should see the following:

$ go run ./producer
Listening on port :3333
2017/05/07 13:52:54 > message: "this" sent to partition 0 at offset
0
2017/05/07 13:53:25 > message: "is" sent to partition 0 at offset 1

Reactive Programming and Data Streams Chapter 12

[355]

2017/05/07 13:53:27 > message: "an" sent to partition 0 at offset 2
2017/05/07 13:53:29 > message: "example" sent to partition 0 at
offset 3

In the consumer Terminal, you should see this:14.

$ go run ./consumer
2017/05/07 13:52:54 Consumed message: "this" at offset: 0
2017/05/07 13:53:25 Consumed message: "is" at offset: 1
2017/05/07 13:53:27 Consumed message: "an" at offset: 2
2017/05/07 13:53:29 Consumed message: "example" at offset: 3

The go.mod file may be updated, and the go.sum file should now be present in15.
the top-level recipe directory.
If you have copied or written your own tests, go up one directory and run go16.
test. Ensure that all tests pass.

How it works...
Our modifications in this chapter were all made to the producer. This time, we created a
separate Go routine to handle successes and errors. If these are left unhandled, your
application will deadlock. Next, we attached our producer to a handler and we emit
messages on it whenever a message is received, via a GET call to the handler.

The handler will immediately return success upon sending the message, regardless of its
response. If this is not acceptable, a synchronous approach should be used instead. In our
case, we're okay with later processing successes and errors separately.

Lastly, we curl our endpoint with a few different messages, and you can see them flow
from the handler to where they're eventually printed by the Kafka consumer we wrote in
the previous section.

Connecting Kafka to Goflow
This recipe will combine a Kafka consumer with a Goflow pipeline. As our consumer
receives messages from Kafka, it will run strings.ToUpper() on them and then print the
results. These naturally pair, as Goflow is designed to operate on an incoming stream,
which is exactly what Kafka provides us.

Reactive Programming and Data Streams Chapter 12

[356]

Getting ready
Refer to the Getting ready section of the Using Kafka with Sarama recipe.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter12/kafkaflow and
navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter12/kafkaflow

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter12/kafkaflow

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter12/kafkaflow, or use this as an exercise to write some of
your own code!
Ensure that Kafka is up and running on localhost:9092.4.
Create a file called components.go with the following content:5.

package kafkaflow

import (
 "fmt"
 "strings"

 flow "github.com/trustmaster/goflow"
)

// Upper upper cases the incoming
// stream
type Upper struct {
 Val <-chan string
 Res chan<- string
}

// Process loops over the input values and writes the upper

Reactive Programming and Data Streams Chapter 12

[357]

// case string version of them to Res
func (e *Upper) Process() {
 for val := range e.Val {
 e.Res <- strings.ToUpper(val)
 }
}

// Printer is a component for printing to stdout
type Printer struct {
 flow.Component
 Line <-chan string
}

// Process Prints the current line received
func (p *Printer) Process() {
 for line := range p.Line {
 fmt.Println(line)
 }
}

Create a file called network.go with the following content:6.

package kafkaflow

import "github.com/trustmaster/goflow"

// NewUpperApp wires together the components
func NewUpperApp() *goflow.Graph {
 u := goflow.NewGraph()

 u.Add("upper", new(Upper))
 u.Add("printer", new(Printer))

 u.Connect("upper", "Res", "printer", "Line")
 u.MapInPort("In", "upper", "Val")

 return u
}

Create a file called main.go in a directory named consumer with the following7.
content:

package main

import (
 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter12/kafkaflow"
 sarama "github.com/Shopify/sarama"

Reactive Programming and Data Streams Chapter 12

[358]

 flow "github.com/trustmaster/goflow"
)

func main() {
 consumer, err := sarama.NewConsumer([]string{"localhost:9092"},
nil)
 if err != nil {
 panic(err)
 }
 defer consumer.Close()

 partitionConsumer, err := consumer.ConsumePartition("example", 0,
sarama.OffsetNewest)
 if err != nil {
 panic(err)
 }
 defer partitionConsumer.Close()

 net := kafkaflow.NewUpperApp()

 in := make(chan string)
 net.SetInPort("In", in)

 wait := flow.Run(net)
 defer func() {
 close(in)
 <-wait
 }()

 for {
 msg := <-partitionConsumer.Messages()
 in <- string(msg.Value)
 }

}

Copy the producer directory from the Using Kafka with Saram recipe.8.
Run go run ./consumer.9.
In a separate Terminal from the same directory, run go run ./producer.10.
In the producer Terminal, you should now see the following:11.

$ go run ./producer
2017/05/07 18:24:12 > message "Message 0" sent to partition 0 at
offset 0
2017/05/07 18:24:12 > message "Message 1" sent to partition 0 at
offset 1
2017/05/07 18:24:12 > message "Message 2" sent to partition 0 at

Reactive Programming and Data Streams Chapter 12

[359]

offset 2
2017/05/07 18:24:12 > message "Message 3" sent to partition 0 at
offset 3
2017/05/07 18:24:12 > message "Message 4" sent to partition 0 at
offset 4
2017/05/07 18:24:12 > message "Message 5" sent to partition 0 at
offset 5
2017/05/07 18:24:12 > message "Message 6" sent to partition 0 at
offset 6
2017/05/07 18:24:12 > message "Message 7" sent to partition 0 at
offset 7
2017/05/07 18:24:12 > message "Message 8" sent to partition 0 at
offset 8
2017/05/07 18:24:12 > message "Message 9" sent to partition 0 at
offset 9

In the consumer Terminal, you should see the following:

$ go run ./consumer
MESSAGE 0
MESSAGE 1
MESSAGE 2
MESSAGE 3
MESSAGE 4
MESSAGE 5
MESSAGE 6
MESSAGE 7
MESSAGE 8
MESSAGE 9

The go.mod file may be updated, and the go.sum file should now be present in12.
the top-level recipe directory.
If you have copied or written your own tests, go up one directory and run go13.
test. Ensure that all the tests pass.

How it works...
This recipe combines ideas from previous recipes in this chapter. As in previous recipes, we
set up a Kafka consumer and producer. This recipe uses the synchronous producer from
the Using Kafka with Sarama recipe, but could have also used an asynchronous producer
instead. Once a message is received, we enqueue it on an in channel just as we did in the
Goflow for dataflow programming recipe. We modify the components from this recipe to
convert our incoming string to uppercase, rather than Base64-encoding it. We reuse the
print components and the resultant network configuration is similar.

Reactive Programming and Data Streams Chapter 12

[360]

The end result is that all messages received through the Kafka consumer are transported
into our flow-based work pipeline to be operated on. This allows us to instrument our
pipeline components to be modular and reusable, and we can use the same component
multiple times in different configurations. Similarly, we'll receive traffic from any producer
that writes to Kafka, so we can multiplex producers into a single data stream.

Writing a GraphQL server in Go
GraphQL is an alternative to REST, created by Facebook (http:/ /graphql. org/). This
technology allows a server to implement and publish a schema, and the clients then can ask
for the information they need, rather than understanding and making use of various API
endpoints.

For this recipe, we'll create a Graphql schema that represents a deck of playing cards. We'll
expose one resource card, which can be filtered by suit and value. Alternatively, this
schema can return all the cards in the deck if no arguments are specified.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter12/graphql and
navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter12/graphql

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter12/graphql

Copy the tests from ~/projects/go-programming-cookbook-3.
original/chapter12/graphql, or use this as an exercise to write some of your
own code!

http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/

Reactive Programming and Data Streams Chapter 12

[361]

Create and navigate to the cards directory.4.
Create a file called card.go with the following content:5.

 package cards

 // Card represents a standard playing
 // card
 type Card struct {
 Value string
 Suit string
 }

 var cards []Card

 func init() {
 cards = []Card{
 {"A", "Spades"}, {"2", "Spades"}, {"3", "Spades"},
 {"4", "Spades"}, {"5", "Spades"}, {"6", "Spades"},
 {"7", "Spades"}, {"8", "Spades"}, {"9", "Spades"},
 {"10", "Spades"}, {"J", "Spades"}, {"Q", "Spades"},
 {"K", "Spades"},
 {"A", "Hearts"}, {"2", "Hearts"}, {"3", "Hearts"},
 {"4", "Hearts"}, {"5", "Hearts"}, {"6", "Hearts"},
 {"7", "Hearts"}, {"8", "Hearts"}, {"9", "Hearts"},
 {"10", "Hearts"}, {"J", "Hearts"}, {"Q", "Hearts"},
 {"K", "Hearts"},
 {"A", "Clubs"}, {"2", "Clubs"}, {"3", "Clubs"},
 {"4", "Clubs"}, {"5", "Clubs"}, {"6", "Clubs"},
 {"7", "Clubs"}, {"8", "Clubs"}, {"9", "Clubs"},
 {"10", "Clubs"}, {"J", "Clubs"}, {"Q", "Clubs"},
 {"K", "Clubs"},
 {"A", "Diamonds"}, {"2", "Diamonds"}, {"3",
 "Diamonds"},
 {"4", "Diamonds"}, {"5", "Diamonds"}, {"6",
 "Diamonds"},
 {"7", "Diamonds"}, {"8", "Diamonds"}, {"9",
 "Diamonds"},
 {"10", "Diamonds"}, {"J", "Diamonds"}, {"Q",
 "Diamonds"},
 {"K", "Diamonds"},
 }
 }

Reactive Programming and Data Streams Chapter 12

[362]

Create a file called type.go with the following content:6.

 package cards

 import "github.com/graphql-go/graphql"

 // CardType returns our card graphql object
 func CardType() *graphql.Object {
 cardType := graphql.NewObject(graphql.ObjectConfig{
 Name: "Card",
 Description: "A Playing Card",
 Fields: graphql.Fields{
 "value": &graphql.Field{
 Type: graphql.String,
 Description: "Ace through King",
 Resolve: func(p graphql.ResolveParams)
 (interface{}, error) {
 if card, ok := p.Source.(Card); ok {
 return card.Value, nil
 }
 return nil, nil
 },
 },
 "suit": &graphql.Field{
 Type: graphql.String,
 Description: "Hearts, Diamonds, Clubs, Spades",
 Resolve: func(p graphql.ResolveParams)
 (interface{}, error) {
 if card, ok := p.Source.(Card); ok {
 return card.Suit, nil
 }
 return nil, nil
 },
 },
 },
 })
 return cardType
 }

Create a file called resolve.go with the following content:7.

 package cards

 import (
 "strings"

 "github.com/graphql-go/graphql"
)

Reactive Programming and Data Streams Chapter 12

[363]

 // Resolve handles filtering cards
 // by suit and value
 func Resolve(p graphql.ResolveParams) (interface{}, error) {
 finalCards := []Card{}
 suit, suitOK := p.Args["suit"].(string)
 suit = strings.ToLower(suit)

 value, valueOK := p.Args["value"].(string)
 value = strings.ToLower(value)

 for _, card := range cards {
 if suitOK && suit != strings.ToLower(card.Suit) {
 continue
 }
 if valueOK && value != strings.ToLower(card.Value) {
 continue
 }

 finalCards = append(finalCards, card)
 }
 return finalCards, nil
 }

Create a file called schema.go with the following content:8.

 package cards

 import "github.com/graphql-go/graphql"

 // Setup prepares and returns our card
 // schema
 func Setup() (graphql.Schema, error) {
 cardType := CardType()

 // Schema
 fields := graphql.Fields{
 "cards": &graphql.Field{
 Type: graphql.NewList(cardType),
 Args: graphql.FieldConfigArgument{
 "suit": &graphql.ArgumentConfig{
 Description: "Filter cards by card suit
 (hearts, clubs, diamonds, spades)",
 Type: graphql.String,
 },
 "value": &graphql.ArgumentConfig{
 Description: "Filter cards by card
 value (A-K)",
 Type: graphql.String,

Reactive Programming and Data Streams Chapter 12

[364]

 },
 },
 Resolve: Resolve,
 },
 }

 rootQuery := graphql.ObjectConfig{Name: "RootQuery",
 Fields: fields}
 schemaConfig := graphql.SchemaConfig{Query:
 graphql.NewObject(rootQuery)}
 schema, err := graphql.NewSchema(schemaConfig)

 return schema, err
 }

Navigate back to the graphql directory.9.
Create a new directory named example and navigate to it.10.
Create a file named main.go with the following content:11.

 package main

 import (
 "encoding/json"
 "fmt"
 "log"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter12/graphql/cards"
 "github.com/graphql-go/graphql"
)

 func main() {
 // grab our schema
 schema, err := cards.Setup()
 if err != nil {
 panic(err)
 }

 // Query
 query := `
 {
 cards(value: "A"){
 value
 suit
 }
 }`

Reactive Programming and Data Streams Chapter 12

[365]

 params := graphql.Params{Schema: schema, RequestString:
 query}
 r := graphql.Do(params)
 if len(r.Errors) > 0 {
 log.Fatalf("failed to execute graphql operation,
 errors: %+v", r.Errors)
 }
 rJSON, err := json.MarshalIndent(r, "", " ")
 if err != nil {
 panic(err)
 }
 fmt.Printf("%s \n", rJSON)
 }

Run go run main.go.12.
You may also run the following command:13.

$ go build
$./example

You should see the following output:

$ go run main.go
{
 "data": {
 "cards": [
 {
 "suit": "Spades",
 "value": "A"
 },
 {
 "suit": "Hearts",
 "value": "A"
 },
 {
 "suit": "Clubs",
 "value": "A"
 },
 {
 "suit": "Diamonds",
 "value": "A"
 }
]
 }
}

Reactive Programming and Data Streams Chapter 12

[366]

Test some additional queries, such as the following:14.
cards(suit: "Spades")

cards(value: "3", suit:"Diamonds")

The go.mod file may be updated, and the go.sum file should now be present in15.
the top-level recipe directory.
If you have copied or written your own tests, go up one directory and run go16.
test. Ensure that all the tests pass.

How it works...
The cards.go file defines a card object and initializes the base deck in a global variable
called cards. This state could also be held in long-term storage, such as a database. We
then define CardType in types.go, which allows graphql to resolve card objects to
responses. Next, we jump into resolve.go, where we define how to filter cards by value
and type. This Resolve function will be used by the final schema, which is defined in
schema.go.

For example, you would modify the Resolve function in this recipe in order to retrieve
data from a database. Lastly, we load the schema and run a query against it. It's a small
modification to mount our schema onto a REST endpoint, but for brevity, this recipe just
runs a hardcoded query. For more information about GraphQL queries, visit http:/ /
graphql.org/learn/ queries/ .

http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/

13
Serverless Programming

This chapter will focus on serverless architectures and using them with the Go language.
Serverless architectures are one where the developer does not manage the backend server.
This includes services such as Amazon Lambda, Google App Engine and Firebase. These
services allow you to quickly deploy applications and store data on the web.

All of the recipes in this chapter deal with third-party services that bill for use; ensure that
you clean up when you're done using them. Otherwise, think of these recipes as kick-
starters for spinning up larger applications on these platforms.

In this chapter, we will cover the following recipes:

Go programming on Lambda with Apex
Apex serverless logging and metrics
Google App Engine with Go
Working with Firebase using firebase.google.com/go

Go programming on Lambda with Apex
Apex is a tool for building, deploying, and managing AWS Lambda functions. It used to
provide a Go shim for managing Lambda functions in code, but this is now done using the
native AWS library (https:/ / github. com/ aws/ aws- lambda- go). This recipe will explore
creating Go Lambda functions and deploying them with Apex.

https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go

Serverless Programming Chapter 13

[368]

Getting ready
Configure your environment according to these steps:

Download and install Go 1.12.6 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.
Install Apex from http:/ /apex. run/#installation.2.
Open Terminal or console application and create and navigate to a project3.
directory such as ~/projects/go-programming-cookbook. All the code we
will cover in this recipe will be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-4.
original. Here, you have the option to work from that directory rather than
typing in the examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter13/lambda and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter13/lambda

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter13/lambda

Create an Amazon account and an IAM role that can edit Lambda functions,3.
which can be done from https:/ /aws. amazon. com/lambda/ .
Create a file called ~/.aws/credentials with the following content, copying4.
your credentials from what you set up in the Amazon console:

 [default]
 aws_access_key_id = xxxxxxxx
 aws_secret_access_key = xxxxxxxxxxxxxxxxxxxxxxxx

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
http://apex.run/#installation
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

Serverless Programming Chapter 13

[369]

Create an environment variable to hold your desired region:5.

 export AWS_REGION=us-west-2

Run the apex init command and follow the onscreen instructions:6.

$ apex init

Enter the name of your project. It should be machine-friendly, as
this is used to prefix your functions in Lambda.

Project name: go-cookbook

Enter an optional description of your project.

Project description: Demonstrating Apex with the Go Cookbook

[+] creating IAM go-cookbook_lambda_function role
[+] creating IAM go-cookbook_lambda_logs policy
[+] attaching policy to lambda_function role.
[+] creating ./project.json
[+] creating ./functions

Setup complete, deploy those functions!

$ apex deploy

Remove the lambda/functions/hello directory.7.
Create a new lambda/functions/greeter1/main.go file with the following8.
content:

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/lambda"
)

// Message is the input to the function and
// includes a Name
type Message struct {
 Name string `json:"name"`
}

// Response is sent back and contains a greeting

Serverless Programming Chapter 13

[370]

// string
type Response struct {
 Greeting string `json:"greeting"`
}

// HandleRequest will be called when the lambda function is invoked
// it takes a Message and returns a Response that contains a
greeting
func HandleRequest(ctx context.Context, m Message) (Response,
error) {
 return Response{Greeting: fmt.Sprintf("Hello, %s", m.Name)}, nil
}

func main() {
 lambda.Start(HandleRequest)
}

Create a new lambda/functions/greeter/main.go file with the following9.
content:

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/lambda"
)

// Message is the input to the function and
// includes a FirstName and LastName
type Message struct {
 FirstName string `json:"first_name"`
 LastName string `json:"last_name"`
}

// Response is sent back and contains a greeting
// string
type Response struct {
 Greeting string `json:"greeting"`
}

// HandleRequest will be called when the lambda function is invoked
// it takes a Message and returns a Response that contains a
greeting
// this greeting contains the first and last name specified
func HandleRequest(ctx context.Context, m Message) (Response,
error) {

Serverless Programming Chapter 13

[371]

 return Response{Greeting: fmt.Sprintf("Hello, %s %s",
m.FirstName, m.LastName)}, nil
}

func main() {
 lambda.Start(HandleRequest)
}

Deploy them:10.

$ apex deploy
• creating function env= function=greeter2
• creating function env= function=greeter1
• created alias current env= function=greeter2 version=4
• function created env= function=greeter2 name=go-cookbook_greeter2
version=1
• created alias current env= function=greeter1 version=5
• function created env= function=greeter1 name=go-cookbook_greeter1
version=1

Invoke the newly deployed functions:11.

$ echo '{"name": "Reader"}' | apex invoke greeter1
{"greeting":"Hello, Reader"}

$ echo '{"first_name": "Go", "last_name": "Coders"}' | apex invoke
greeter2 {"greeting":"Hello, Go Coders"}

Take a look at the logs:12.

$ apex logs greeter2
apex logs greeter2
/aws/lambda/go-cookbook_greeter2 START RequestId:
7c0f9129-3830-11e7-8755-75aeb52a51b9 Version: 1
/aws/lambda/go-cookbook_greeter2 END RequestId:
7c0f9129-3830-11e7-8755-75aeb52a51b9
/aws/lambda/go-cookbook_greeter2 REPORT RequestId:
7c0f9129-3830-11e7-8755-75aeb52a51b9 Duration: 93.84 ms Billed
Duration: 100 ms
Memory Size: 128 MB Max Memory Used: 19 MB

Clean up the deployed services:13.

$ apex delete
The following will be deleted:

- greeter1
- greeter2

Serverless Programming Chapter 13

[372]

Are you sure? (yes/no) yes
• deleting env= function=greeter
• function deleted env= function=greeter

How it works...
AWS Lambda makes it easy to run functions on demand without maintaining a server.
Apex provides facilities for deploying, versioning, and testing functions as you ship them
to Lambda.

The Go library (https:/ / github. com/ aws/ aws-lambda- go) provides native Go compilation
in Lambda and allows us to deploy Go code as Lambda functions. This is accomplished by
defining a handler, processing incoming request payloads, and returning a response.
Currently, the functions you define must follow these rules:

The handler must be a function.
The handler may take between zero and two arguments.
If there are two arguments, the first argument must satisfy the
context.Context interface.
The handler may return between zero and two arguments.
If there are two return values, the second argument must be an error.
If there is one return value, it must be an error.

In this recipe, we defined two greeter functions, one that took a full name and one where
we split the name into a first name and last name. If we modified a single function,
greeter, instead of creating two, Apex would have deployed the new version instead and
called in v2 rather than v1 in all the preceding examples. It would be possible to roll back
with apex rollback greeter as well.

Apex serverless logging and metrics
When working with serverless functions such as Lambda, it is valuable to have portable,
structured logs. In addition, you can combine the earlier recipes that dealt with logging
with this recipe. The recipes that we covered in Chapter 4, Error Handling in Go, are just as
relevant. Because we're using Apex to manage our Lambda functions, we chose to use the
Apex logger for this recipe. We'll also rely on metrics provided by Apex, as well as the
AWS console. The earlier recipes explored more complex logging and metrics examples,
and those still apply—the Apex logger can easily be configured to aggregate logs using, for
example, Amazon Kinesis or Elasticsearch.

https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-go

Serverless Programming Chapter 13

[373]

Getting ready
Refer to the Getting ready section of the Go programming on Lambda with Apex recipe in this
chapter.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter13/logging and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter13/logging

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter13/logging

Create an Amazon account and an IAM role that can edit Lambda functions,3.
which can be done at https:/ / aws. amazon. com/ lambda/ .
Create a ~/.aws/credentials file with the following content, copying your4.
credentials from what you set up in the Amazon console:

 [default]
 aws_access_key_id = xxxxxxxx
 aws_secret_access_key = xxxxxxxxxxxxxxxxxxxxxxxx

Create an environment variable to hold your desired region:5.

 export AWS_REGION=us-west-2

Run the apex init command and follow the onscreen instructions:6.

$ apex init

Enter the name of your project. It should be machine-friendly, as
this is used to prefix your functions in Lambda.

Project name: logging

Enter an optional description of your project.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

Serverless Programming Chapter 13

[374]

Project description: An example of apex logging and metrics

[+] creating IAM logging_lambda_function role
[+] creating IAM logging_lambda_logs policy
[+] attaching policy to lambda_function role.
[+] creating ./project.json
[+] creating ./functions

Setup complete, deploy those functions!

$ apex deploy

Remove the lambda/functions/hello directory.7.
Create a new lambda/functions/secret/main.go file with the following8.
content:

package main

import (
 "context"
 "os"

 "github.com/apex/log"
 "github.com/apex/log/handlers/text"
 "github.com/aws/aws-lambda-go/lambda"
)

// Input takes in a secret
type Input struct {
 Secret string `json:"secret"`
}

// HandleRequest will be called when the Lambda function is invoked
// it takes an input and checks if it matches our super secret
value
func HandleRequest(ctx context.Context, input Input) (string,
error) {
 log.SetHandler(text.New(os.Stderr))

 log.WithField("secret", input.Secret).Info("secret guessed")

 if input.Secret == "klaatu barada nikto" {
 return "secret guessed!", nil
 }
 return "try again", nil
}

Serverless Programming Chapter 13

[375]

func main() {
 lambda.Start(HandleRequest)
}

Deploy it to your specified region:9.

$ apex deploy
• creating function env= function=secret
• created alias current env= function=secret version=1
• function created env= function=secret name=logging_secret
version=1

To invoke it, run the following command:10.

$ echo '{"secret": "open sesame"}' | apex invoke secret
"try again"

$ echo '{"secret": "klaatu barada nikto"}' | apex invoke secret
"secret guessed!"

Check the logs:11.

$ apex logs secret
/aws/lambda/logging_secret START RequestId: cfa6f655-3834-11e7-
b99d-89998a7f39dd Version: 1
/aws/lambda/logging_secret INFO[0000] secret guessed secret=open
sesame
/aws/lambda/logging_secret END RequestId: cfa6f655-3834-11e7-
b99d-89998a7f39dd
/aws/lambda/logging_secret REPORT RequestId: cfa6f655-3834-11e7-
b99d-89998a7f39dd Duration: 52.23 ms Billed Duration: 100 ms Memory
Size: 128 MB Max Memory Used: 19 MB
/aws/lambda/logging_secret START RequestId: d74ea688-3834-11e7-
aa4e-d592c1fbc35f Version: 1
/aws/lambda/logging_secret INFO[0012] secret guessed secret=klaatu
barada nikto
/aws/lambda/logging_secret END RequestId: d74ea688-3834-11e7-aa4e-
d592c1fbc35f
/aws/lambda/logging_secret REPORT RequestId: d74ea688-3834-11e7-
aa4e-d592c1fbc35f Duration: 7.43 ms Billed Duration: 100 ms
Memory Size: 128 MB Max Memory Used: 19 MB

Check your metrics:12.

$ apex metrics secret

secret
total cost: $0.00

Serverless Programming Chapter 13

[376]

invocations: 0 ($0.00)
duration: 0s ($0.00)
throttles: 0
errors: 0
memory: 128

Clean up the deployed services:13.

$ apex delete
Are you sure? (yes/no) yes
• deleting env= function=secret
• function deleted env= function=secret

How it works...
In this recipe, we created a new Lambda function called secret that will respond with
whether or not you guessed a secret phrase. The function parses an incoming JSON request,
performs some logging using Stderr, and returns a response.

After using the function a few times, we can see that our logs are visible using the apex
logs command. This command can be run on a single Lambda function or across all of our
managed functions. This is especially useful if you are chaining Apex commands together
and want to watch logs across many services.

In addition, we have shown you how to use the apex metrics command to collect general
metrics about your application, including cost and invocations. You can also see a lot of this
information directly in the AWS console in the Lambda section. Like the other recipes, we
tried to clean up after ourselves at the end.

Google App Engine with Go
App Engine is a Google service that facilitates the quick deployment of web applications.
These applications have access to cloud storage and various other Google APIs. The general
idea is that App Engine will scale easily with the load and simplify any operations
management associated with hosting an app. This recipe will show how to create and
optionally deploy a basic App Engine application. This recipe won't get into the details of
setting up a Google Cloud account, setting up billing, or the specifics on cleaning up your
instance. As a minimum requirement, access to Google Cloud Datastore (https:/ /cloud.
google.com/datastore/ docs/ concepts/ overview) is required for this recipe to work.

https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview

Serverless Programming Chapter 13

[377]

Getting ready
Configure your environment according to these steps:

Download and install Go 1.11.1 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.
Download the Google Cloud SDK from https:/ /cloud. google. com/ appengine/2.
docs/flexible/ go/ quickstart.
Create an app that allows you to perform datastore access and record the app3.
name. For this recipe, we'll use go-cookbook.
 Install the gcloud components install app-engine-go Go app engine4.
component.
Open Terminal or console application and create and navigate to a project5.
directory such as ~/projects/go-programming-cookbook. All the code we
will cover in this recipe will be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-6.
original. Here, you have the option of working from that directory rather than
typing in the examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter13/appengine and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter13/appengine

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter13/appengine

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart
https://cloud.google.com/appengine/docs/flexible/go/quickstart

Serverless Programming Chapter 13

[378]

Create a file called app.yml with the following content, replacing go-cookbook3.
with the name of the app you created in the Getting ready section:

runtime: go112

manual_scaling:
 instances: 1

#[START env_variables]
env_variables:
 GCLOUD_DATASET_ID: go-cookbook
#[END env_variables]

Create a file called message.go with the following content:4.

 package main

 import (
 "context"
 "time"

 "cloud.google.com/go/datastore"
)

 // Message is the object we store
 type Message struct {
 Timestamp time.Time
 Message string
 }

 func (c *Controller) storeMessage(ctx context.Context, message
 string) error {
 m := &amp;Message{
 Timestamp: time.Now(),
 Message: message,
 }

 k := datastore.IncompleteKey("Message", nil)
 _, err := c.store.Put(ctx, k, m)
 return err
 }

 func (c *Controller) queryMessages(ctx context.Context, limit
 int) ([]*Message, error) {
 q := datastore.NewQuery("Message").
 Order("-Timestamp").
 Limit(limit)

Serverless Programming Chapter 13

[379]

 messages := make([]*Message, 0)
 _, err := c.store.GetAll(ctx, q, &amp;messages)
 return messages, err
 }

Create a file called controller.go with the following content:5.

 package main

 import (
 "context"
 "fmt"
 "log"
 "net/http"

 "cloud.google.com/go/datastore"
)

 // Controller holds our storage and other
 // state
 type Controller struct {
 store *datastore.Client
 }

 func (c *Controller) handle(w http.ResponseWriter, r
 *http.Request) {
 if r.Method != http.MethodGet {
 http.Error(w, "invalid method",
 http.StatusMethodNotAllowed)
 return
 }

 ctx := context.Background()

 // store the new message
 r.ParseForm()
 if message := r.FormValue("message"); message != "" {
 if err := c.storeMessage(ctx, message); err != nil {
 log.Printf("could not store message: %v", err)
 http.Error(w, "could not store
 message",
 http.StatusInternalServerError)
 return
 }
 }

 // get the current messages and display them
 fmt.Fprintln(w, "Messages:")

Serverless Programming Chapter 13

[380]

 messages, err := c.queryMessages(ctx, 10)
 if err != nil {
 log.Printf("could not get messages: %v", err)
 http.Error(w, "could not get messages",
 http.StatusInternalServerError)
 return
 }

 for _, message := range messages {
 fmt.Fprintln(w, message.Message)
 }
 }

Create a file called main.go with the following content:6.

 package main

 import (
 "log"
 "net/http"
 "os"

 "cloud.google.com/go/datastore"
 "golang.org/x/net/context"
 "google.golang.org/appengine"
)

 func main() {
 ctx := context.Background()
 log.SetOutput(os.Stderr)

 // Set this in app.yaml when running in production.
 projectID := os.Getenv("GCLOUD_DATASET_ID")

 datastoreClient, err := datastore.NewClient(ctx, projectID)
 if err != nil {
 log.Fatal(err)
 }

 c := Controller{datastoreClient}

 http.HandleFunc("/", c.handle)
 port := os.Getenv("PORT")
 if port == "" {
 port = "8080"
 log.Printf("Defaulting to port %s", port)
 }

Serverless Programming Chapter 13

[381]

 log.Printf("Listening on port %s", port)
 log.Fatal(http.ListenAndServe(fmt.Sprintf(":%s", port), nil))
 }

Run the gcloud config set project go-cookbook command, where go-7.
cookbook is the project you created in the Getting ready section.
Run the gcloud auth application-default login command and follow8.
the instructions.
Run the export PORT=8080 command.9.
Run the export GCLOUD_DATASET_ID=go-cookbook command, where go-10.
cookbook is the project you created in the Getting ready section.
Run the go build command.11.
Run the ./appengine command.12.
Navigate to http:/ /localhost:8080/ ?message= hello%20there.13.
Try a few more messages (?message=other).14.
Optionally, deploy the app to your instance with gcloud app deploy.15.
Navigate to the deployed app with gcloud app browse.16.
Optionally clean up your appengine instance and datastore at the following17.
URLs:

https:/ / console. cloud. google. com/ datastore

https:/ / console. cloud. google. com/ appengine

The go.mod file may be updated and the go.sum file should now be present in18.
the top-level recipe directory.
If you copied or wrote your own tests, run the go test command. Ensure that19.
all the tests pass.

How it works...
Once the cloud SDK is configured to point at your application and has been authenticated,
the GCloud tool allows quick deployment and configuration, allowing local applications to
access Google services.

After authenticating and setting the port, we run the application on localhost, and we
can begin working with the code. The application defines a message object that can be
stored and retrieved from the datastore. This demonstrates how you might isolate this sort
of code. You may also use a storage/database interface, as shown in previous chapters.

https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/datastore
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine
https://console.cloud.google.com/appengine

Serverless Programming Chapter 13

[382]

Next, we set up a handler that attempts to insert a message into the datastore, then retrieves
all the messages, displaying them in a browser. This creates something resembling a basic
guestbook. You may notice that the message doesn't always appear immediately. If you
navigate without a message parameter or send another message, it should appear on a
reload.

Lastly, ensure that you clean up the instances if you're no longer using them.

Working with Firebase using
firebase.google.com/go
Firebase is another Google Cloud service that creates a scalable, easy-to-manage database
that can support authentication and works especially well with mobile applications. For
this recipe, we'll use the latest Firestore as our database backend. The Firebase service
provides significantly more than what will be covered in this recipe, but we will just be
looking at storing and retrieving data. We'll also look into how to set up authentication for
your application and wrap the Firebase client with our own custom client.

Getting ready
Configure your environment according to these steps:

Download and install Go 1.11.1 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.
Create a Firebase account, project, and database at https:/ /console. firebase.2.
google.com/ .

This recipe runs in test mode, which is not secure by default.

Generate a service admin token by going to https:/ /console. firebase. google.3.
com/project/ go- cookbook/ settings/ serviceaccounts/ adminsdk. Here, go-
cookbook is replaced with your project name.
Move the downloaded token to /tmp/service_account.json.4.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk
https://console.firebase.google.com/project/go-cookbook/settings/serviceaccounts/adminsdk

Serverless Programming Chapter 13

[383]

Open Terminal or console application and create and navigate to a project5.
directory such as ~/projects/go-programming-cookbook. All the code we
will cover in this recipe will be run and modified from this directory.
Clone the latest code into ~/projects/go-programming-cookbook-6.
original. Here, you have the option to work from that directory rather than
typing in the examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter13/firebase and
navigate to it.
Run the following command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter13/firebase

You should see a file called go.mod that contains the following content:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter13/firebase

Create a file called client.go with the following content:3.

package firebase

import (
 "context"

 "cloud.google.com/go/firestore"
 "github.com/pkg/errors"
)

// Client Interface for mocking
type Client interface {
 Get(ctx context.Context, key string) (interface{}, error)
 Set(ctx context.Context, key string, value interface{}) error
 Close() error
}

Serverless Programming Chapter 13

[384]

// firestore.Client implements Close()
// we create Get and Set
type firebaseClient struct {
 *firestore.Client
 collection string
}

func (f *firebaseClient) Get(ctx context.Context, key string)
(interface{}, error) {
 data, err := f.Collection(f.collection).Doc(key).Get(ctx)
 if err != nil {
 return nil, errors.Wrap(err, "get failed")
 }
 return data.Data(), nil
}

func (f *firebaseClient) Set(ctx context.Context, key string, value
interface{}) error {
 set := make(map[string]interface{})
 set[key] = value
 _, err := f.Collection(f.collection).Doc(key).Set(ctx, set)
 return errors.Wrap(err, "set failed")
}

Create a file called auth.go with the following content:4.

package firebase

import (
 "context"

 firebase "firebase.google.com/go"
 "github.com/pkg/errors"
 "google.golang.org/api/option"
)

// Authenticate grabs oauth scopes using a generated
// service_account.json file from
//
https://console.firebase.google.com/project/go-cookbook/settings/se
rviceaccounts/adminsdk
func Authenticate(ctx context.Context, collection string) (Client,
error) {

 opt := option.WithCredentialsFile("/tmp/service_account.json")
 app, err := firebase.NewApp(ctx, nil, opt)
 if err != nil {
 return nil, errors.Wrap(err, "error initializing app")

Serverless Programming Chapter 13

[385]

 }

 client, err := app.Firestore(ctx)
 if err != nil {
 return nil, errors.Wrap(err, "failed to intialize filestore")
 }
 return &amp;firebaseClient{Client: client, collection:
collection}, nil
}

Create a new directory named example and navigate to it.5.
Create a file named main.go with the following content:6.

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter13/firebase"
)

func main() {
 ctx := context.Background()
 c, err := firebase.Authenticate(ctx, "collection")
 if err != nil {
 log.Fatalf("error initializing client: %v", err)
 }
 defer c.Close()

 if err := c.Set(ctx, "key", []string{"val1", "val2"}); err != nil
{
 log.Fatalf(err.Error())
 }

 res, err := c.Get(ctx, "key")
 if err != nil {
 log.Fatalf(err.Error())
 }
 fmt.Println(res)

 if err := c.Set(ctx, "key2", []string{"val3", "val4"}); err !=
nil {
 log.Fatalf(err.Error())
 }

Serverless Programming Chapter 13

[386]

 res, err = c.Get(ctx, "key2")
 if err != nil {
 log.Fatalf(err.Error())
 }
 fmt.Println(res)
}

Run go run main.go.7.
You may also run go build ./example. You should see the following output:8.

$ go run main.go
[val1 val2]
[val3 val4]

The go.mod file may be updated and the go.sum file should now be present in9.
the top-level recipe directory.
If you copied or wrote your own tests, go up one directory and run go test.10.
Ensure that all the tests pass.

How it works...
Firebase provides convenient functions so that you can log in with a credentials file. After
we're logged in, we can store any sort of structured, map-like object. In this case, we are
storing map[string]interface{}. This data is accessible by a number of clients,
including on the web and via mobile devices.

The client code wraps all the operations in an interface for ease of testing. This is a common
pattern when writing client code and is also used in other recipes. In our case, we create a
Get and Set function that stores and retrieves a value by a key. We also expose Close() so
that code that's using the client can defer close() and clean up our connection at the end.

14
Performance Improvements,

Tips, and Tricks
In this chapter, we will focus on optimizing an application and discovering bottlenecks.
These are some tips and tricks that can be used immediately by existing applications. Many
of these recipes are necessary if you or your organization requires fully reproducible builds.
They're also useful when you want to benchmark an application's performance. The final
recipe focuses on increasing the speed of HTTP; however, it's always important to
remember that the web world moves quickly, and it's important to refresh yourself on the
best practices. For example, if you require HTTP/2, it has been available using the built-in
Go net/http package since version 1.6.

In this chapter, we will cover the following recipes:

Using the pprof tool
Benchmarking and finding bottlenecks
Memory allocation and heap management
Using fasthttprouter and fasthttp

Technical requirements
In order to proceed with all the recipes in this chapter, configure your environment
according to these steps:

Download and install Go 1.12.6 or greater on your operating system1.
from https:/ /golang. org/ doc/ install.

Open a Terminal or console application and create and navigate to a project2.
directory such as ~/projects/go-programming-cookbook. All code will be
run and modified from this directory.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Performance Improvements, Tips, and Tricks Chapter 14

[388]

Clone the latest code into ~/projects/go-programming-cookbook-3.
original and optionally work from that directory rather than typing the
examples manually:

$ git clone git@github.com:PacktPublishing/Go-Programming-Cookbook-
Second-Edition.git go-programming-cookbook-original

Optionally, install Graphviz from http:/ /www. graphviz. org/ Home. php.4.

Using the pprof tool
The pprof tool allows Go applications to collect and export runtime profiling data. It also
provides webhooks to access the tool from a web interface. This recipe will create a basic
application that verifies a bcrypt-hashed password against a plaintext one, then it will
profile the application.

You might have expected the pprof tool to be covered in Chapter 11, Distributed Systems,
with other metrics and monitoring recipes. It was instead put in this chapter because it will
be used to analyze and improve a program much in the same way that benchmarking can
be used. As a result, this recipe will largely focus on pprof for analyzing and improving
the memory usage of an application.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter14/pprof and
navigate to this directory.

Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter14/pprof

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter14/pprof

http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php

Performance Improvements, Tips, and Tricks Chapter 14

[389]

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter14/pprof, or use this as an exercise to write some of your
own code!
Create a directory named crypto and navigate to it.4.
Create a file called handler.go with the following content:5.

 package crypto

 import (
 "net/http"

 "golang.org/x/crypto/bcrypt"
)

 // GuessHandler checks if ?message=password
 func GuessHandler(w http.ResponseWriter, r *http.Request) {
 if err := r.ParseForm(); err != nil{
 // if we can't parse the form
 // we'll assume it is malformed
 w.WriteHeader(http.StatusBadRequest)
 w.Write([]byte("error reading guess"))
 return
 }

 msg := r.FormValue("message")

 // "password"
 real :=
 []byte("$2a$10$2ovnPWuIjMx2S0HvCxP/mutzdsGhyt8rq/
 JqnJg/6OyC3B0APMGlK")

 if err := bcrypt.CompareHashAndPassword(real, []byte(msg));
 err != nil {
 w.WriteHeader(http.StatusBadRequest)
 w.Write([]byte("try again"))
 return
 }

 w.WriteHeader(http.StatusOK)
 w.Write([]byte("you got it"))
 return
 }

Performance Improvements, Tips, and Tricks Chapter 14

[390]

Navigate up a directory.6.
Create a new directory named example and navigate to it.7.
Create a main.go file with the following content:8.

 package main

 import (
 "fmt"
 "log"
 "net/http"
 _ "net/http/pprof"

 "github.com/PacktPublishing/
 Go-Programming-Cookbook-Second-Edition/
 chapter14/pprof/crypto"
)

 func main() {

 http.HandleFunc("/guess", crypto.GuessHandler)
 fmt.Println("server started at localhost:8080")
 log.Panic(http.ListenAndServe("localhost:8080", nil))
 }

Run go run main.go.9.
You may also run the following command:10.

$ go build
$./example

You should now see the following output:

$ go run main.go
server started at localhost:8080

In a separate Terminal, run the following:11.

$ go tool pprof http://localhost:8080/debug/pprof/profile

This will start a 30-second timer.12.

Performance Improvements, Tips, and Tricks Chapter 14

[391]

Run several curl commands while pprof runs:13.

$ curl "http://localhost:8080/guess?message=test"
try again

$curl "http://localhost:8080/guess?message=password"
you got it

.

.

.

.

$curl "http://localhost:8080/guess?message=password"
you got it

Return to the pprof command and wait for it to complete.14.
Run the top10 command from the pprof prompt:15.

(pprof) top 10
930ms of 930ms total (100%)
Showing top 10 nodes out of 15 (cum >= 930ms)
flat flat% sum% cum cum%
870ms 93.55% 93.55% 870ms 93.55%
golang.org/x/crypto/blowfish.encryptBlock
30ms 3.23% 96.77% 900ms 96.77%
golang.org/x/crypto/blowfish.ExpandKey
30ms 3.23% 100% 30ms 3.23% runtime.memclrNoHeapPointers
0 0% 100% 930ms 100% github.com/agtorre/go-
cookbook/chapter13/pprof/crypto.GuessHandler
0 0% 100% 930ms 100%
golang.org/x/crypto/bcrypt.CompareHashAndPassword
0 0% 100% 30ms 3.23% golang.org/x/crypto/bcrypt.base64Encode
0 0% 100% 930ms 100% golang.org/x/crypto/bcrypt.bcrypt
0 0% 100% 900ms 96.77%
golang.org/x/crypto/bcrypt.expensiveBlowfishSetup
0 0% 100% 930ms 100% net/http.(*ServeMux).ServeHTTP
0 0% 100% 930ms 100% net/http.(*conn).serve

Performance Improvements, Tips, and Tricks Chapter 14

[392]

If you installed Graphviz or a supported browser, run the web command from16.
the pprof prompt. You should see something like this with a much longer chain
of red boxes on the right side:

The go.mod file may be updated and the go.sum file should now be present in17.
the top-level recipe directory.
If you have copied or written your own tests, go up one directory and run go18.
test. Ensure that all the tests pass.

How it works...
The pprof tool provides a lot of runtime information about your application. Using the
net/pprof package is usually the most simple to configure—all that's required is listening
on a port and doing an import.

In our case, we wrote a handler that uses a very compute-heavy application (bcrypt) so
that we can demonstrate how they pop up when profiling with pprof. This will quickly
isolate chunks of code that are creating bottlenecks in your application.

Performance Improvements, Tips, and Tricks Chapter 14

[393]

We chose to collect a general profile that causes pprof to poll our application endpoint for
30 seconds. We then generated traffic against the endpoint to help produce results. This can
be helpful when you're attempting to check a single handler or branch of code.

Lastly, we looked at the top 10 functions in terms of CPU utilization. It's also possible to
look at memory/heap management with the pprof
http://localhost:8080/debug/pprof/heap command. Theweb command in the
pprof console can be used to look at a visualization of your CPU/memory profile and helps
highlight more active code.

Benchmarking and finding bottlenecks
Another method for determining slow parts of code is to use benchmarks. Benchmarks can
be used to test functions for average performance and can also run benchmarks in parallel.
This can be useful when comparing functions or doing micro-optimizations for certain
code, especially to see how a function implementation might perform when using it
concurrently. For this recipe, we'll create two structures that both implement an atomic
counter. The first will use the sync package, and the other will use sync/atomic. We'll
then benchmark both the solutions.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter14/bench and
navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter14/bench

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter14/bench

Performance Improvements, Tips, and Tricks Chapter 14

[394]

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter14/bench, or use this as an exercise to write some of your
own code!

Note that copied tests also include benchmarks written later in this recipe.

Create a file called lock.go with the following content:4.

 package bench

 import "sync"

 // Counter uses a sync.RWMutex to safely
 // modify a value
 type Counter struct {
 value int64
 mu *sync.RWMutex
 }

 // Add increments the counter
 func (c *Counter) Add(amount int64) {
 c.mu.Lock()
 c.value += amount
 c.mu.Unlock()
 }

 // Read returns the current counter amount
 func (c *Counter) Read() int64 {
 c.mu.RLock()
 defer c.mu.RUnlock()
 return c.value
 }

Create a file called atomic.go with the following content:5.

 package bench

 import "sync/atomic"

 // AtomicCounter implements an atmoic lock
 // using the atomic package
 type AtomicCounter struct {
 value int64
 }

Performance Improvements, Tips, and Tricks Chapter 14

[395]

 // Add increments the counter
 func (c *AtomicCounter) Add(amount int64) {
 atomic.AddInt64(&c.value, amount)
 }

 // Read returns the current counter amount
 func (c *AtomicCounter) Read() int64 {
 var result int64
 result = atomic.LoadInt64(&c.value)
 return result
 }

Create a file called lock_test.go with the following content:6.

 package bench

 import "testing"

 func BenchmarkCounterAdd(b *testing.B) {
 c := Counter{0, &sync.RWMutex{}}
 for n := 0; n < b.N; n++ {
 c.Add(1)
 }
 }

 func BenchmarkCounterRead(b *testing.B) {
 c := Counter{0, &sync.RWMutex{}}
 for n := 0; n < b.N; n++ {
 c.Read()
 }
 }

 func BenchmarkCounterAddRead(b *testing.B) {
 c := Counter{0, &sync.RWMutex{}}
 b.RunParallel(func(pb *testing.PB) {
 for pb.Next() {
 c.Add(1)
 c.Read()
 }
 })
 }

Performance Improvements, Tips, and Tricks Chapter 14

[396]

Create a file called atomic_test.go with the following content:7.

 package bench

 import "testing"

 func BenchmarkAtomicCounterAdd(b *testing.B) {
 c := AtomicCounter{0}
 for n := 0; n < b.N; n++ {
 c.Add(1)
 }
 }

 func BenchmarkAtomicCounterRead(b *testing.B) {
 c := AtomicCounter{0}
 for n := 0; n < b.N; n++ {
 c.Read()
 }
 }

 func BenchmarkAtomicCounterAddRead(b *testing.B) {
 c := AtomicCounter{0}
 b.RunParallel(func(pb *testing.PB) {
 for pb.Next() {
 c.Add(1)
 c.Read()
 }
 })
 }

Run the go test -bench . command, and you will see the following output:8.

$ go test -bench .
BenchmarkAtomicCounterAdd-4 200000000 8.38 ns/op
BenchmarkAtomicCounterRead-4 1000000000 2.09 ns/op
BenchmarkAtomicCounterAddRead-4 50000000 24.5 ns/op
BenchmarkCounterAdd-4 50000000 34.8 ns/op
BenchmarkCounterRead-4 20000000 66.0 ns/op
BenchmarkCounterAddRead-4 10000000 146 ns/op
PASS
ok github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter14/bench 10.919s

If you have copied or written your own tests, go up one directory and run go9.
test. Ensure that all the tests pass.

Performance Improvements, Tips, and Tricks Chapter 14

[397]

How it works...
This recipe is an example of comparing a critical path of code. For example, sometimes your
application must execute certain functionality often, maybe every call. In this case, we've
written an atomic counter that can add or read values from multiple go routines.

The first solution uses RWMutex and Lock or RLock objects to write and read, respectively.
The second uses the atomic package, which provides the same functionality out of the box.
We make the signatures of our functions the same, so benchmarks can be reused with
minor modifications and so that either can satisfy the same atomic integer interface.

Lastly, we write standard benchmarks for adding values and reading them. Then, we write
a parallel benchmark that calls the add and read functions. The parallel benchmark will
create lot of lock contention, so we expect a slowdown. Perhaps unexpectedly, the atomic
package significantly outperforms RWMutex.

Memory allocation and heap management
Some applications can benefit a lot from optimization. Consider routers, for example, which
we'll look at in a later recipe. Fortunately, the tool benchmark suite provides flags to collect
a number of memory allocations as well as memory allocation size. It can be helpful to tune
certain critical code paths to minimize these two attributes.

This recipe will show two approaches to writing a function that glues together strings with
a space, similar to strings.Join("a", "b", "c"). One approach will use
concatenation, while the other will use the strings package. We'll then compare
performance and memory allocations between the two.

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter14/tuning and
navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter14/tuning

Performance Improvements, Tips, and Tricks Chapter 14

[398]

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter14/tuning

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter14/tuning, or use this as an exercise to write some of your
own code!

Note that copied tests also include benchmarks written later in this recipe.

Create a file called concat.go with the following content:4.

 package tuning

 func concat(vals ...string) string {
 finalVal := ""
 for i := 0; i < len(vals); i++ {
 finalVal += vals[i]
 if i != len(vals)-1 {
 finalVal += " "
 }
 }
 return finalVal
 }

Create a file called join.go with the following content:5.

 package tuning

 import "strings"

 func join(vals ...string) string {
 c := strings.Join(vals, " ")
 return c
 }

Create a file called concat_test.go with the following content:6.

 package tuning

 import "testing"

 func Benchmark_concat(b *testing.B) {

Performance Improvements, Tips, and Tricks Chapter 14

[399]

 b.Run("one", func(b *testing.B) {
 one := []string{"1"}
 for i := 0; i < b.N; i++ {
 concat(one...)
 }
 })
 b.Run("five", func(b *testing.B) {
 five := []string{"1", "2", "3", "4", "5"}
 for i := 0; i < b.N; i++ {
 concat(five...)
 }
 })

 b.Run("ten", func(b *testing.B) {
 ten := []string{"1", "2", "3", "4", "5",
 "6", "7", "8", "9", "10"}
 for i := 0; i < b.N; i++ {
 concat(ten...)
 }
 })
 }

Create a file called join_test.go with the following content:7.

 package tuning

 import "testing"

 func Benchmark_join(b *testing.B) {
 b.Run("one", func(b *testing.B) {
 one := []string{"1"}
 for i := 0; i < b.N; i++ {
 join(one...)
 }
 })
 b.Run("five", func(b *testing.B) {
 five := []string{"1", "2", "3", "4", "5"}
 for i := 0; i < b.N; i++ {
 join(five...)
 }
 })

 b.Run("ten", func(b *testing.B) {
 ten := []string{"1", "2", "3", "4", "5",
 "6", "7", "8", "9", "10"}
 for i := 0; i < b.N; i++ {
 join(ten...)
 }

Performance Improvements, Tips, and Tricks Chapter 14

[400]

 })
 }

Run the GOMAXPROCS=1 go test -bench=. -benchmem -benchtime=1s8.
command and you will see the following output:

$ GOMAXPROCS=1 go test -bench=. -benchmem -benchtime=1s
Benchmark_concat/one 100000000 13.6 ns/op 0 B/op 0 allocs/op
Benchmark_concat/five 5000000 386 ns/op 48 B/op 8 allocs/op
Benchmark_concat/ten 2000000 992 ns/op 256 B/op 18 allocs/op
Benchmark_join/one 200000000 6.30 ns/op 0 B/op 0 allocs/op
Benchmark_join/five 10000000 124 ns/op 32 B/op 2 allocs/op
Benchmark_join/ten 10000000 183 ns/op 64 B/op 2 allocs/op
PASS
ok github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter14/tuning 12.003s

If you have copied or written your own tests run go test. Ensure that all the9.
tests pass.

How it works...
Benchmarking helps us tune applications and do certain micro-optimizations for things
such as memory allocations. When benchmarking allocations for applications with input,
it's important to try a variety of input sizes to determine whether it affects allocations. We
wrote two functions, concat and join. Both join together a variadic string parameter
with spaces, so the arguments (a, b, c) will return the string a b c.

The concat approach accomplishes this solely through string concatenation. We create a
string and append the strings in the list and spaces in a for loop. We omit adding a space
on the last loop. The join function uses the internal Strings.Join function to accomplish
this far more efficiently in most cases. It can be helpful to benchmark standard library
compared to your own functions to help better understand trade-offs in performance,
simplicity, and functionality.

We used sub-benchmarks to test all of our parameters, which also work excellently with
table-driven benchmarks. We can see how concat approach results in a lot more
allocations than join, at least for single length inputs. A good exercise would be to try this
with variable-length input strings as well as a number of arguments.

Performance Improvements, Tips, and Tricks Chapter 14

[401]

Using fasthttprouter and fasthttp
Although the Go standard library provides everything you need to run an HTTP server,
sometimes you need to further optimize for things such as routing and request time. This
recipe will explore a library that speeds up request handling, called fasthttp (https:/ /
github.com/valyala/ fasthttp), and a router that dramatically speeds up routing
performance, called fasthttprouter (https:/ /github. com/ buaazp/ fasthttprouter).
Although fasthttp is quick, it's important to note that it doesn't support HTTP/2 (https:/
/github.com/valyala/ fasthttp/ issues/ 45).

How to do it...
These steps cover writing and running your application:

From your Terminal or console application, create a new directory1.
called ~/projects/go-programming-cookbook/chapter14/fastweb and
navigate to this directory.
Run this command:2.

$ go mod init github.com/PacktPublishing/Go-Programming-Cookbook-
Second-Edition/chapter14/fastweb

You should see a file called go.mod that contains the following:

module github.com/PacktPublishing/Go-Programming-Cookbook-Second-
Edition/chapter14/fastweb

Copy tests from ~/projects/go-programming-cookbook-3.
original/chapter14/fastweb, or use this as an exercise to write some of your
own code!
Create a file called items.go with the following content:4.

 package main

 import (
 "sync"
)

 var items []string
 var mu *sync.RWMutex

 func init() {
 mu = &sync.RWMutex{}

https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/valyala/fasthttp
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/buaazp/fasthttprouter
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45
https://github.com/valyala/fasthttp/issues/45

Performance Improvements, Tips, and Tricks Chapter 14

[402]

 }

 // AddItem adds an item to our list
 // in a thread-safe way
 func AddItem(item string) {
 mu.Lock()
 items = append(items, item)
 mu.Unlock()
 }

 // ReadItems returns our list of items
 // in a thread-safe way
 func ReadItems() []string {
 mu.RLock()
 defer mu.RUnlock()
 return items
 }

Create a file called handlers.go with the following content:5.

 package main

 import (
 "encoding/json"

 "github.com/valyala/fasthttp"
)

 // GetItems will return our items object
 func GetItems(ctx *fasthttp.RequestCtx) {
 enc := json.NewEncoder(ctx)
 items := ReadItems()
 enc.Encode(&items)
 ctx.SetStatusCode(fasthttp.StatusOK)
 }

 // AddItems modifies our array
 func AddItems(ctx *fasthttp.RequestCtx) {
 item, ok := ctx.UserValue("item").(string)
 if !ok {
 ctx.SetStatusCode(fasthttp.StatusBadRequest)
 return
 }

 AddItem(item)
 ctx.SetStatusCode(fasthttp.StatusOK)
 }

Performance Improvements, Tips, and Tricks Chapter 14

[403]

Create a file called main.go with the following content:6.

 package main

 import (
 "fmt"
 "log"

 "github.com/buaazp/fasthttprouter"
 "github.com/valyala/fasthttp"
)

 func main() {
 router := fasthttprouter.New()
 router.GET("/item", GetItems)
 router.POST("/item/:item", AddItems)

 fmt.Println("server starting on localhost:8080")
 log.Fatal(fasthttp.ListenAndServe("localhost:8080",
 router.Handler))
 }

Run the go build command.7.
Run the ./fastweb command:8.

$./fastweb
server starting on localhost:8080

From a separate Terminal, test it our with some curl commands:9.

$ curl "http://localhost:8080/item/hi" -X POST

$ curl "http://localhost:8080/item/how" -X POST

$ curl "http://localhost:8080/item/are" -X POST

$ curl "http://localhost:8080/item/you" -X POST

$ curl "http://localhost:8080/item" -X GET
["hi","how", "are", "you"]

The go.mod file may be updated and the go.sum file should now be present in10.
the top-level recipe directory.
If you have copied or written your own tests, run go test. Ensure that all the11.
tests pass.

Performance Improvements, Tips, and Tricks Chapter 14

[404]

How it works...
The fasthttp and fasthttprouter packages can do a lot to speed up the life cycle of a
web request. Both packages do a lot of optimization on the hot path of code, but with the
unfortunate caveat of rewriting your handlers to use a new context object rather than
traditional requests and response writer.

There are a number of frameworks that have taken a similar approach to routing, and some
have directly incorporated fasthttp. These projects keep up-to-date information in their
README files.

Our recipe implemented a simple list object that we can append to with one endpoint
and that will be returned by the other. The primary purpose of this recipe is to demonstrate
working with parameters, setting up a router that now explicitly defines the supported
methods instead of the generic Handle and HandleFunc, and to show how similar they are
to standard handlers, but with many other benefits.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Data Structures and Algorithms with Golang
Bhagvan Kommadi

ISBN: 978-1-78961-850-1

Improve application performance using the most suitable data structure and
algorithm
Explore the wide range of classic algorithms such as recursion and hashing
algorithms
Work with algorithms such as garbage collection for efficient memory
management
Analyze the cost and benefit trade-off to identify algorithms and data structures
for problem solving
Explore techniques for writing pseudocode algorithm and ace whiteboard coding
in interviews
Discover the pitfalls in selecting data structures and algorithms by predicting
their speed and efficiency

https://www.packtpub.com/application-development/learn-data-structures-and-algorithms-golang

Other Books You May Enjoy

[406]

Machine Learning With Go
Daniel Whitenack

ISBN: 978-1-78588-210-4

Learn about data gathering, organization, parsing, and cleaning.
Explore matrices, linear algebra, statistics, and probability.
See how to evaluate and validate models.
Look at regression, classification, clustering.
Learn about neural networks and deep learning
Utilize times series models and anomaly detection.
Get to grip with techniques for deploying and distributing analyses and models.
Optimize machine learning workflow techniques

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-go

Other Books You May Enjoy

[407]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ANSI coloring application 65, 66, 67, 68
apex package
 used, for structured logging 116, 117, 118, 120
Apex
 Go programming, on Lambda 367, 369, 370,

371, 372
 metrics 372, 373, 375, 376
 serverless logging 372, 373, 375, 376
applications
 monitoring 334, 336, 338
async client requests
 executing 192, 193, 195
async operations
 performing, with sync.WaitGroup 285, 286, 287,

289

async producers
 using, with Kafka 351, 354, 355
atomic operations
 using 289, 290, 291, 293

B
behavior testing
 with Go 274, 276, 277
behavior-driven development (BDD) 279
benchmarking 393, 394, 395, 397
bottlenecks
 searching 393, 394, 395, 397
bytes package
 using 12, 14, 15, 17

C
cards 366
channels
 state management, executing for 297, 298, 300,

301

 using 281, 283, 284
client
 wrapping, in added functionality 206, 208, 209,

210

 writing, for REST API 188, 190, 191, 192
closures
 collections, implementing via 99, 101, 103
 using, for stateful handlers 226, 227, 229, 231
collections
 implementing, via closures 99, 101, 103
command-line arguments
 using 43, 44, 47, 48
command-line flags
 using 39, 40, 41, 42, 43
common I/O interfaces
 using 8, 10, 12
connection pooling
 for SQL 165, 167, 168
consensus
 implementing, Raft used 318, 321, 322, 325
Consul agent
 reference 317
Consul
 service discovery, using with 314, 315, 317
containerization
 using, with Docker 326, 327, 329, 330
content negotiation 236, 237, 239
context package
 logging with 120, 121, 123
 reference 294
 using 294, 295, 297
Copy() function 12
CSV format
 working with 22, 24, 25, 26, 27
Cucumber
 about 278
 reference 274

[409]

currency conversions
 considerations 78, 79, 80, 81, 82

D
data flow programming
 Goflow, using for 344, 346, 347
data portability
 storage interfaces, creating for 177, 179, 180,

182

data types
 converting 70, 71, 72, 73, 74
database transaction interface
 executing 161, 163, 164, 165
database/sql package
 using, with MySQL 155, 157, 159, 160
deployment
 strategies 330, 331, 332, 334
directories
 working with 17, 19, 20, 21
Docker Swarm
 reference 330
Docker
 about 326
 containerization, using with 326, 327, 329, 330
domain name resolution
 working with 139, 140, 141, 142

E
emails
 parsing, net/mail package used 152, 154
envconfig
 reference 48
environment variables
 reading 48, 49, 51, 52
 setting 48, 49, 51, 52
Error interface 104, 105, 106, 108
errors
 handling 105, 106, 108
 logging 112, 114, 115, 116
 wrapping 108, 109, 111, 112

F
fasthttp
 reference 401
 using 401, 403, 404

fasthttprouter
 reference 401
 using 401, 403, 404
files
 working with 17, 19, 20, 21
flag package 39
float64
 considerations 78, 79, 80, 81, 82
function composition 206

G
Go data
 decoding 88, 90, 91, 92
 encoding 88, 90, 91, 92
Go programming, on Lambda
 with Apex 367, 369, 370, 371, 372
Go structures
 input, validating for 234, 235
Go
 behavior testing 274, 276, 277
 download link 183
 Google App Engine, using with 376, 377, 379,

381

 GraphQL server, writing 360, 364, 365, 366
 reference 156, 169, 174, 313, 343
 reflection 93, 94, 97
 reflection in 98
 structure tags 93, 97
 structure tags in 98
gocov tool 274
Goflow
 Kafka, connecting to 355, 357, 360
 using, for data flow programming 344, 346, 347
Google App Engine
 with Go 376, 377, 379, 381
Google Cloud Datastore
 reference 376
Google Cloud SDK
 download link 377
GraphQL queries
 reference 366
GraphQL server
 writing, in Go 360, 364, 365, 366
GraphQL
 about 360

[410]

 reference 360
GRPC clients 211, 212, 214
GRPC server 215
GRPC
 about 211
 exporting, as JSON API 248, 251, 253, 254,

255

 reference 248

H
heap management 397, 398, 399, 400
html/template
 working with 30, 32, 33, 34, 36, 37
http.Client structures
 initializing 184, 187, 188
 passing 184, 187, 188
 storing 184, 187, 188
HTTP/2
 reference 211

I
input
 validating, for Go structures 231, 234, 235
 validating, for user inputs 231, 234, 235
interface casting 69, 70, 71, 72, 73, 74
interfaces
 mocking, Mockgen package used 261, 262,

263, 264, 265

J
JSON API
 GRPC, exporting as 248, 251, 253, 254, 255
JSON
 using, for configuration 52, 53, 56, 58, 59

K
Kafka
 about 348
 async producers, using with 351, 354, 355
 connecting, to Goflow 355, 357, 360
 reference 348
 using, with Sarama 348, 349, 351
Kubernetes
 reference 330

L
log package
 using 112, 114, 116
logrus package
 used, for structured logging 116, 117, 118, 120
long-running processes
 panics, catching for 127, 128, 129

M
math package
 used, for working with numeric data types 74,

75, 77, 78
math/big package
 used, for working with numeric data types 74,

75, 77, 78
memory allocation 397, 398, 399, 400
metrics
 collecting 338, 340, 342
middleware
 implementing 239, 241, 242, 244
 using 239, 241, 242, 244
Mockgen package
 using, to mock interfaces 261, 262, 263, 264,

265

mocking
 with standard library 257, 258, 259, 261
mongo-go-driver package 173, 177
MongoDB
 NoSQL, using with 173, 175, 176, 177
mutex
 using 289, 290, 291, 293
MySQL
 database/sql package, using with 155, 157, 159,

160

N
net/mail package
 used, for parsing emails 152, 154
net/rpc package
 remote methods, calling 148, 149, 151
NoSQL
 using, with MongoDB 173, 175, 176, 177
numeric data types
 working with 74, 75, 77, 78

[411]

O
OAuth2 195
OAuth2 clients
 using 195, 197, 199
OAuth2 token storage interface
 implementing 199, 200, 201, 203, 204, 205,

206

orchestration
 strategies 330, 331, 332, 334

P
package-level global variables
 using 124, 126, 127
panics
 catching, for long-running processes 127, 128,

129

parallel requests
 executing 192, 193, 195
Patch function
 reference 257
pipelines
 creating, workers used 307, 309, 310, 312
PipeReader 12
PipeWriter 12
pkg/errors package
 using 108, 109, 110, 112
pointers
 used, for decoding 82, 83, 87, 88
 used, for encoding 82, 83, 87, 88
pprof tool
 using 388, 390, 391, 392
Prometheus
 reference 334
protocol buffers
 reference 211, 215

R
Raft
 about 318
 reference 318
 used, for implementing basic consensus 318,

321, 322, 323, 325
rate limiting
 for SQL 165, 167, 168

Redis
 reference 169
 working with 169, 170, 172, 173
reflection
 in Go 93, 94, 97, 98
relational databases 155
remote methods
 calling, net/rpc used 148, 149, 151
rendering 236, 237, 239
requests
 working with 222, 223, 225, 226
ResponseWriters
 working with 222, 223, 225, 226
REST API
 client, writing for 188, 190, 192
Restore function
 reference 257
reverse proxy application
 building 244, 245, 247, 248
RPC
 twitchtv/twirp, using for 215, 217, 219

S
Sarama
 Kafka, using with 348, 349, 350, 351
select statement
 using 281, 283, 284
service discovery
 using, with Consul 314, 315, 317
signals
 catching 62, 64, 65
 handling 62, 64, 65
SQL NullTypes
 used, for decoding 82, 83, 87, 88
 used, for encoding 82, 83, 87, 88
standard library
 using, for mocking 257, 258, 261
state management
 executing, for channels 297, 298, 300, 301
stateful handlers
 closures, using for 226, 227, 229, 231
 structures, using for 226, 227, 229, 231
storage interfaces
 creating, for data portability 177, 179, 180, 182
strconv.FormatInt function 82

strconv.ParseInt function 82
string package
 using 12, 14, 15, 17
struct tags
 in Go 98
structure tags
 in Go 93, 97
structured logging
 with apex package 116, 117, 118, 120
 with logrus package 116, 117, 118, 120
structures
 using, for stateful handlers 226, 227, 229, 231
Swagger
 reference 220
sync.WaitGroup
 async operations, performing with 285, 286,

287, 289

T
table-driven tests
 reference 261
 used, for improving coverage 266, 267, 268,

269

TCP/IP 131
TCP/IP client
 writing 132, 133, 134
TCP/IP echo server
 writing 132, 133, 134
tee application
 reference 62
temporary files
 working with 27, 29, 30
text/template
 working with 30, 32, 33, 34, 36, 37
third-party testing tools
 using 269, 270, 271, 272, 273, 274

timeouts
 for SQL 165, 167, 168
TOML
 using, for configuration 52, 53, 57, 58, 59
twitchtv/twirp
 using, for RPC 215, 217, 219

U
UDP client
 writing 135, 136, 138, 139
UDP server
 writing 135, 136, 138, 139
Unix pipes
 working with 59, 60, 62
user inputs
 input, validating for 231, 234, 235

W
web handlers
 working with 222, 223, 225, 226
WebSockets
 working with 142, 143, 144, 145, 146, 147
worker pool design pattern
 using 302, 303, 304, 305, 307
workers
 used, for creating pipelines 307, 309, 310, 312

Y
YAML
 using, for configuration 52, 53, 56, 58, 59

Z
zabawaba99/firego
 used, for working with Firebase 382, 383, 384,

385, 386

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: I/O and Filesystems
	Technical requirements
	Using the common I/O interfaces
	How to do it...
	How it works...

	Using the bytes and strings packages
	How to do it...
	How it works...

	Working with directories and files
	How to do it...
	How it works...

	Working with the CSV format
	How to do it...
	How it works...

	Working with temporary files
	How to do it...
	How it works...

	Working with text/template and html/template
	How to do it...
	How it works...

	Chapter 2: Command-Line Tools
	Technical requirements
	Using command-line flags
	How to do it...
	How it works...

	Using command-line arguments
	How to do it...
	How it works...

	Reading and setting environment variables
	How to do it...
	How it works...

	Configuration using TOML, YAML, and JSON
	How to do it...
	How it works...

	Working with Unix pipes
	How to do it...
	How it works...

	Catching and handling signals
	How to do it...
	How it works...

	An ANSI coloring application
	How to do it...
	How it works...

	Chapter 3: Data Conversion and Composition
	Technical requirements
	Converting data types and interface casting
	How to do it...
	How it works...

	Working with numeric data types using math and math/big
	How to do it...
	How it works...

	Currency conversions and float64 considerations
	How to do it...
	How it works...

	Using pointers and SQL NullTypes for encoding and decoding
	How to do it...
	How it works...

	Encoding and decoding Go data
	How to do it...
	How it works...

	Structure tags and basic reflection in Go
	How to do it...
	How it works...

	Implementing collections via closures
	How to do it...
	How it works...

	Chapter 4: Error Handling in Go
	Technical requirements
	Handling errors and the Error interface
	How to do it...
	How it works...

	Using the pkg/errors package and wrapping errors
	How to do it...
	How it works...

	Using the log package and understanding when to log errors
	How to do it...
	How it works...

	Structured logging with the apex and logrus packages
	How to do it...
	How it works...

	Logging with the context package
	How to do it...
	How it works...

	Using package-level global variables
	How to do it...
	How it works...

	Catching panics for long-running processes
	How to do it...
	How it works...

	Chapter 5: Network Programming
	Technical requirements
	Writing a TCP/IP echo server and client
	How to do it...
	How it works...

	Writing a UDP server and client
	How to do it...
	How it works...

	Working with domain name resolution
	How to do it...
	How it works...

	Working with WebSockets
	How to do it...
	How it works...

	Working with net/rpc for calling remote methods
	How to do it...
	How it works...

	Using net/mail for parsing emails
	How to do it...
	How it works...

	Chapter 6: All about Databases and Storage
	Using the database/sql package with MySQL
	Getting ready
	How to do it...
	How it works...

	Executing a database transaction interface
	Getting ready
	How to do it...
	How it works...

	Connection pooling, rate limiting, and timeouts for SQL
	Getting ready
	How to do it...
	How it works...

	Working with Redis
	Getting ready
	How to do it...
	How it works...

	Using NoSQL with MongoDB
	Getting ready
	How to do it...
	How it works...

	Creating storage interfaces for data portability
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Web Clients and APIs
	Technical requirements
	Initializing, storing, and passing http.Client structures
	How to do it...
	How it works...

	Writing a client for a REST API
	How to do it...
	How it works...

	Executing parallel and async client requests
	How to do it...
	How it works...

	Making use of OAuth2 clients
	Getting ready
	How to do it...
	How it works...

	Implementing an OAuth2 token storage interface
	Getting ready
	How to do it...
	How it works...

	Wrapping a client in added functionality and function composition
	How to do it...
	How it works...

	Understanding GRPC clients
	Getting ready
	How to do it...
	How it works...

	Using twitchtv/twirp for RPC
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Microservices for Applications in Go
	Technical requirements
	Working with web handlers, requests, and ResponseWriter instances
	How to do it...
	How it works...

	Using structures and closures for stateful handlers
	How to do it...
	How it works...

	Validating input for Go structures and user inputs
	How to do it...
	How it works...

	Rendering and content negotiation
	How to do it...
	How it works...

	Implementing and using middleware
	How to do it...
	How it works...

	Building a reverse proxy application
	How to do it...
	How it works...

	Exporting GRPC as a JSON API
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Testing Go Code
	Technical requirements
	Mocking using the standard library
	How to do it...
	How it works...

	Using the Mockgen package to mock interfaces
	Getting ready
	How to do it...
	How it works...

	Using table-driven tests to improve coverage
	How to do it...
	How it works...

	Using third-party testing tools
	Getting ready
	How to do it...
	How it works...

	Behavior testing using Go
	Getting ready
	How to do it...
	How it works...

	Chapter 10: Parallelism and Concurrency
	Technical requirements
	Using channels and the select statement
	How to do it...
	How it works...

	Performing async operations with sync.WaitGroup
	How to do it...
	How it works...

	Using atomic operations and mutex
	How to do it...
	How it works...

	Using the context package
	How to do it...
	How it works...

	Executing state management for channels
	How to do it...
	How it works...

	Using the worker pool design pattern
	How to do it...
	How it works...

	Using workers to create pipelines
	How to do it...
	How it works...

	Chapter 11: Distributed Systems
	Technical requirements
	Using service discovery with Consul
	How to do it...
	How it works...

	Implementing basic consensus using Raft
	How to do it...
	How it works...

	Using containerization with Docker
	Getting ready
	How to do it...
	How it works...

	Orchestration and deployment strategies
	How to do it...
	How it works...

	Monitoring applications
	How to do it...
	How it works...

	Collecting metrics
	Getting ready
	How to do it...
	How it works...

	Chapter 12: Reactive Programming and Data Streams
	Technical requirements
	Using Goflow for data flow programming
	How to do it...
	How it works...

	Using Kafka with Sarama
	Getting ready
	How to do it...
	How it works...

	Using async producers with Kafka
	Getting ready
	How to do it...
	How it works...

	Connecting Kafka to Goflow
	Getting ready
	How to do it...
	How it works...

	Writing a GraphQL server in Go
	How to do it...
	How it works...

	Chapter 13: Serverless Programming
	Go programming on Lambda with Apex
	Getting ready
	How to do it...
	How it works...

	Apex serverless logging and metrics
	Getting ready
	How to do it...
	How it works...

	Google App Engine with Go
	Getting ready
	How to do it...
	How it works...

	Working with Firebase using firebase.google.com/go
	Getting ready
	How to do it...
	How it works...

	Chapter 14: Performance Improvements, Tips, and Tricks
	Technical requirements
	Using the pprof tool
	How to do it...
	How it works...

	Benchmarking and finding bottlenecks
	How to do it...
	How it works...

	Memory allocation and heap management
	How to do it...
	How it works...

	Using fasthttprouter and fasthttp
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

