

Mastering Go
Second Edition

Create Golang production applications using network
libraries, concurrency, machine learning, and advanced data
structures

Mihalis Tsoukalos

BIRMINGHAM - MUMBAI

Mastering Go
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Andrew Waldron
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editor: Kishor Rit
Development Editor: Joanne Lovell
Technical Editor: Aniket Shetty
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Sandip Tadge

First published: April 2018
Second edition: August 2019

Production reference: 1270819

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-933-5

www.packtpub.com

http://www.packtpub.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Mihalis Tsoukalos is a UNIX administrator, a programmer, a DBA, and a mathematician
who enjoys writing technical books and articles and learning new things. He is the author
of Go Systems Programming and Mastering Go. He has written more than 250 technical
articles for many magazines, including Sys Admin, MacTech, Linux User and Developer,
Usenix ;login:, Linux Format, and Linux Journal. His research interests include databases,
visualization, statistics and machine learning.

You can reach him at https:/ /www. mtsoukalos. eu/ and @mactsouk.

Mihalis is also a photographer.

I would like to thank the people at Packt Publishing for helping me to write this book,
including my technical reviewer, Mat Ryer, and Kishor Rit for answering all my questions
and encouraging me during the whole process.

I would like to dedicate this book to the loving memory of my parents, Ioannis and Argetta.

https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/
https://www.mtsoukalos.eu/

About the reviewer
Mat Ryer has been programming computers since he was six years old. He would build
games and programs, first in BASIC on a ZX Spectrum, and then in AmigaBASIC and
AMOS on Commodore Amiga with his father. Many hours were spent manually copying
the code from the Amiga Format magazine and tweaking variables or moving GOTO
statements around to see what might happen. The same spirit of exploration and obsession
with programming led Mat to starting work with a local agency in Mansfield, England,
when he was 18, where he started to build websites and other online services.

After several years of working with various technologies and industries in London and
around the world, Mat noticed a new systems language called Go that Google was
pioneering. Since it addressed very pertinent and relevant modern technical challenges, he
started using it to solve problems while the language was still in the beta stage, and he has
been using it ever since. Mat contributes to open-source projects and has founded Go
packages, including Testify, Moq, Silk, and Is, as well as a macOS developer tool called
BitBar.

In 2018, Mat co-founded Machine Box and still spends a lot of time speaking at conferences,
writing about Go on his blog, and being an active member of the Go community.

Table of Contents
Chapter 1: Go and the Operating System 8

The history of Go 8
Where is Go going? 9
The advantages of Go 9

Is Go perfect? 10
What is a preprocessor? 11

The godoc utility 11
Compiling Go code 12
Executing Go code 13
Two Go rules 14

You either use a Go package or you do not include it 14
There is only one way to format curly braces 16

Downloading Go packages 17
UNIX stdin, stdout, and stderr 18
About printing output 19
Using standard output 21
Getting user input 23

About := and = 23
Reading from standard input 24
Working with command-line arguments 25

About error output 28
Writing to log files 30

Logging levels 30
Logging facilities 30
Log servers 31
A Go program that sends information to log files 32
About log.Fatal() 35
About log.Panic() 35
Writing to a custom log file 37
Printing line numbers in log entries 39

Error handling in Go 41
The error data type 41
Error handling 43

Using Docker 46
Exercises and links 51
Summary 52

Chapter 2: Understanding Go Internals 53
The Go compiler 54

Table of Contents

[ii]

Garbage collection 55
The tricolor algorithm 58
More about the operation of the Go garbage collector 61
Maps, slices, and the Go garbage collector 62

Using a slice 63
Using a map with pointers 63
Using a map without pointers 64
Splitting the map 65
Comparing the performance of the presented techniques 65

Unsafe code 66
About the unsafe package 68
Another example of the unsafe package 69

Calling C code from Go 70
Calling C code from Go using the same file 70
Calling C code from Go using separate files 71
The C code 72
The Go code 72
Mixing Go and C code 74

Calling Go functions from C code 75
The Go package 75
The C code 76

The defer keyword 77
Using defer for logging 80

Panic and recover 82
Using the panic function on its own 84

Two handy UNIX utilities 85
The strace tool 85
The dtrace tool 86

Your Go environment 88
The go env command 90
The Go assembler 91
Node trees 92
Finding out more about go build 98
Creating WebAssembly code 100

A quick introduction to WebAssembly 100
Why is WebAssembly important? 100
Go and WebAssembly 100
An example 101
Using the generated WebAssembly code 102

General Go coding advice 104
Exercises and links 104
Summary 105

Chapter 3: Working with Basic Go Data Types 107
Numeric data types 108

Table of Contents

[iii]

Integers 108
Floating-point numbers 108
Complex numbers 108
Number literals in Go 2 111

Go loops 111
The for loop 111
The while loop 112
The range keyword 113
An example with multiple Go loops 113

Go arrays 115
Multi-dimensional arrays 116
The shortcomings of Go arrays 118

Go slices 119
Performing basic operations on slices 119
Slices are expanded automatically 121
Byte slices 123
The copy() function 123
Multi-dimensional slices 125
Another example with slices 126
Sorting slices using sort.Slice() 128
Appending an array to a slice 130

Go maps 131
Storing to a nil map 133
When you should use a map 134

Go constants 134
The constant generator iota 136

Go pointers 139
Why use pointers? 142

Times and dates 142
Working with times 144
Parsing times 144
Working with dates 146
Parsing dates 146
Changing date and time formats 147

Measuring execution time 149
Measuring the operation of the Go garbage collector 151

Web links and exercises 151
Summary 152

Chapter 4: The Uses of Composite Types 153
About composite types 154
Structures 154

Pointers to structures 156
Using the new keyword 158

Tuples 159

Table of Contents

[iv]

Regular expressions and pattern matching 160
Introducing some theory 161
A simple example 161
A more advanced example 164
Matching IPv4 addresses 167

Strings 171
What is a rune? 174
The unicode package 176
The strings package 177

The switch statement 181
Calculating Pi with high accuracy 185
Developing a key-value store in Go 187
Go and the JSON format 193

Reading JSON data 193
Saving JSON data 195
Using Marshal() and Unmarshal() 197
Parsing JSON data 198
Go and XML 201
Reading an XML file 204
Customizing XML output 206

Go and the YAML format 207
Additional resources 208
Exercises and web links 208
Summary 209

Chapter 5: How to Enhance Go Code with Data Structures 210
About graphs and nodes 211
Algorithm complexity 211
Binary trees in Go 212

Implementing a binary tree in Go 213
Advantages of binary trees 215

Hash tables in Go 216
Implementing a hash table in Go 217
Implementing the lookup functionality 219
Advantages of hash tables 220

Linked lists in Go 220
Implementing a linked list in Go 222
Advantages of linked lists 225

Doubly linked lists in Go 226
Implementing a doubly linked list in Go 227
Advantages of doubly linked lists 230

Queues in Go 231
Implementing a queue in Go 231

Stacks in Go 234

Table of Contents

[v]

Implementing a stack in Go 234
The container package 237

Using container/heap 238
Using container/list 240
Using container/ring 243

Generating random numbers 244
Generating random strings 248

Generating secure random numbers 250
Performing matrix calculations 252

Adding and subtracting matrices 252
Multiplying matrices 255
Dividing matrices 258

A tip on finding out the dimensions of an array 264
Solving Sudoku puzzles 264
Additional resources 268
Exercises 268
Summary 269

Chapter 6: What You Might Not Know About Go Packages and
Functions 271

About Go packages 272
About Go functions 272

Anonymous functions 273
Functions that return multiple values 273
The return values of a function can be named 275
Functions with pointer parameters 277
Functions that return pointers 278
Functions that return other functions 279
Functions that accept other functions as parameters 281
Variadic functions 282

Developing your own Go packages 284
Compiling a Go package 286
Private variables and functions 286
The init() function 286

Go modules 289
Creating and using a Go module 289

Creating version v1.0.0 290
Using version v1.0.0 290
Creating version v1.1.0 292
Using version v1.1.0 293
Creating version v2.0.0 294
Using version v2.0.0 296
Creating version v2.1.0 296
Using version v2.1.0 297

Using two different versions of the same Go module 298
Where Go stores Go modules 299

Table of Contents

[vi]

The go mod vendor command 300
Creating good Go packages 300
The syscall package 302

Finding out how fmt.Println() really works 305
The go/scanner, go/parser, and go/token packages 307

The go/ast package 307
The go/scanner package 307
The go/parser package 310
A practical example 312
Finding variable names with a given string length 314

Text and HTML templates 319
Generating text output 319
Constructing HTML output 322

Additional resources 329
Exercises 330
Summary 331

Chapter 7: Reflection and Interfaces for All Seasons 332
Type methods 333
Go interfaces 335

About type assertions 336
Writing your own interfaces 338

Using a Go interface 339
Using switch with interface and data types 341

Reflection 343
A simple reflection example 344
A more advanced reflection example 346
The three disadvantages of reflection 349
The reflectwalk library 350

Object-oriented programming in Go 352
An introduction to git and GitHub 356

Using git 356
The git status command 356
The git pull command 357
The git commit command 357
The git push command 357
Working with branches 358
Working with files 359
The .gitignore file 360
Using git diff 360
Working with tags 360
The git cherry-pick command 362

Debugging with Delve 362
A debugging example 363

Additional resources 367
Exercises 367

Table of Contents

[vii]

Summary 368

Chapter 8: Telling a UNIX System What to Do 369
About UNIX processes 370
The flag package 370
The viper package 375

A simple viper example 376
From flag to viper 377
Reading JSON configuration files 379
Reading YAML configuration files 380

The cobra package 383
A simple cobra example 384
Creating command aliases 389

The io.Reader and io.Writer Interfaces 391
Buffered and unbuffered file input and output 392

The bufio package 392
Reading text files 392

Reading a text file line by line 393
Reading a text file word by word 394
Reading a text file character by character 396
Reading from /dev/random 398

Reading a specific amount of data 400
The advantages of binary formats 402
Reading CSV files 403
Writing to a file 406
Loading and saving data on disk 409
The strings package revisited 413
About the bytes package 414
File permissions 416
Handling UNIX signals 417

Handling two signals 418
Handling all signals 420

Programming UNIX pipes in Go 422
Implementing the cat(1) utility in Go 423

About syscall.PtraceRegs 425
Tracing system calls 427
User ID and group ID 432
The Docker API and Go 433
Additional resources 436
Exercises 437
Summary 438

Chapter 9: Concurrency in Go – Goroutines, Channels, and Pipelines 439
About processes, threads, and goroutines 440

Table of Contents

[viii]

The Go scheduler 441
Concurrency and parallelism 441

Goroutines 442
Creating a goroutine 442
Creating multiple goroutines 444

Waiting for your goroutines to finish 445
What if the number of Add() and Done() calls do not agree? 448

Channels 449
Writing to a channel 450
Reading from a channel 452
Receiving from a closed channel 453
Channels as function parameters 454

Pipelines 455
Race conditions 459
Comparing Go and Rust concurrency models 461
Comparing Go and Erlang concurrency models 461
Additional resources 462
Exercises 462
Summary 463

Chapter 10: Concurrency in Go – Advanced Topics 464
The Go scheduler revisited 465

The GOMAXPROCS environment variable 467
The select keyword 468
Timing out a goroutine 471

Timing out a goroutine – take 1 471
Timing out a goroutine – take 2 473

Go channels revisited 475
Signal channels 476
Buffered channels 476
Nil channels 478
Channels of channels 480
Specifying the order of execution for your goroutines 483
How not to use goroutines 485

Shared memory and shared variables 486
The sync.Mutex type 487

What happens if you forget to unlock a mutex? 490
The sync.RWMutex type 492
The atomic package 495
Sharing memory using goroutines 497

Revisiting the go statement 500
Catching race conditions 503
The context package 508

An advanced example of the context package 512
Another example of the context package 517

Table of Contents

[ix]

Worker pools 519
Additional resources 524
Exercises 524
Summary 525

Chapter 11: Code Testing, Optimization, and Profiling 526
About optimization 527
Optimizing Go code 528
Profiling Go code 529

The net/http/pprof standard Go package 529
A simple profiling example 529
A convenient external package for profiling 537
The web interface of the Go profiler 539

A profiling example that uses the web interface 539
A quick introduction to Graphviz 542

The go tool trace utility 543
Testing Go code 549

Writing tests for existing Go code 549
Test code coverage 554

Testing an HTTP server with a database backend 556
The testing/quick package 564

What if testing takes too long or never finishes? 567
Benchmarking Go code 569
A simple benchmarking example 570

Wrongly defined benchmark functions 576
Benchmarking buffered writing 577
Finding unreachable Go code 581
Cross-compilation 583
Creating example functions 585
From Go code to machine code 587

Using assembly with Go 588
Generating documentation 590
Using Docker images 596
Additional resources 598
Exercises 599
Summary 599

Chapter 12: The Foundations of Network Programming in Go 601
About net/http, net, and http.RoundTripper 602

The http.Response type 602
The http.Request type 603
The http.Transport type 604

About TCP/IP 605
About IPv4 and IPv6 605
The nc(1) command-line utility 606

Table of Contents

[x]

Reading the configuration of network interfaces 606
Performing DNS lookups 611

Getting the NS records of a domain 613
Getting the MX records of a domain 615

Creating a web server in Go 616
Using the atomic package 620
Profiling an HTTP server 623
Creating a website in Go 628

HTTP tracing 638
Testing HTTP handlers 641

Creating a web client in Go 644
Making your Go web client more advanced 646

Timing out HTTP connections 649
More information about SetDeadline 651
Setting the timeout period on the server side 651
Yet another way to time out 653

The Wireshark and tshark tools 655
gRPC and Go 656

Defining the interface definition file 656
The gRPC client 658
The gRPC server 660

Additional resources 662
Exercises 664
Summary 664

Chapter 13: Network Programming – Building Your Own Servers and
Clients 666

Working with HTTPS traffic 667
Creating certificates 667
An HTTPS client 668
A simple HTTPS server 670
Developing a TLS server and client 671

The net standard Go package 675
A TCP client 675

A slightly different version of the TCP client 677
A TCP server 679

A slightly different version of the TCP server 681
A UDP client 683
Developing a UDP server 686
A concurrent TCP server 688

A handy concurrent TCP server 692
Creating a Docker image for a Go TCP/IP server 699
Remote Procedure Call (RPC) 701

The RPC client 702

Table of Contents

[xi]

The RPC server 703
Doing low-level network programming 705

Grabbing raw ICMP network data 707
Additional resources 712
Exercises 713
Summary 714

Chapter 14: Machine Learning in Go 715
Calculating simple statistical properties 716
Regression 720

Linear regression 720
Implementing linear regression 720
Plotting data 722

Classification 727
Clustering 731
Anomaly detection 733
Neural networks 736
Outlier analysis 738
Working with TensorFlow 741
Talking to Kafka 746
Additional resources 751
Exercises 752
Summary 752
Where to go next? 752

Other Books You May Enjoy 754

Index 756

Preface
The book you are reading right now is Mastering Go, Second Edition, and is all about helping
you become a better Go developer!

There are many exciting new topics, including an entirely new chapter that talks about
Machine Learning in Go as well as information and code examples relating to the Viper and
Cobra Go packages, gRPC, working with Docker images, working with YAML files,
working with the go/scanner and go/token packages, and generating WebAssembly
code from Go. In total, there are more than 130 new pages in this second edition of
Mastering Go.

Who this book is for
This book is for amateur and intermediate Go programmers who want to take their Go
knowledge to the next level, as well as experienced developers in other programming
languages who want to learn Go without learning again how a for loop works.

Some of the information found in this book can be also found in my other book, Go Systems
Programming. The main difference between these two books is that Go Systems Programming
is about developing system tools using the capabilities of Go, whereas Mastering Go is about
explaining the capabilities and the internals of Go in order to become a better Go developer.
Both books can be used as a reference after reading them for the first or the second time.

What this book covers
Chapter 1, Go and the Operating System, begins by talking about the history of Go and the
advantages of Go before describing the godoc utility and explaining how you can compile
and execute Go programs. After that, it talks about printing output and getting user input,
working with the command-line arguments of a program and using log files. The final topic
in the first chapter is error handling, which plays a key role in Go.

Chapter 2, Understanding Go Internals, discusses the Go garbage collector and the way it
operates. Then, it talks about unsafe code and the unsafe package, how to call C code from
a Go program, and how to call Go code from a C program.

Preface

[2]

After that, it showcases the use of the defer keyword and presents the strace(1) and
dtrace(1) utilities. In the remaining sections of the chapter, you will learn how to find
information about your Go environment, the use of the Go assembler, and how to generate
WebAssembly code from Go.

Chapter 3, Working with Basic Go Data Types, talks about the data types offered by Go,
which includes arrays, slices, and maps, as well as Go pointers, constants, loops, and
working with dates and times. You would not want to miss this chapter!

Chapter 4, The Uses of Composite Types, begins by teaching you about Go structures and the
struct keyword before discussing tuples, strings, runes, byte slices, and string literals. The
remainder of the chapter talks about regular expressions and pattern matching, the switch
statement, the strings package, the math/big package, about developing a key-value
store in Go, and about working with XML and JSON files.

Chapter 5, How to Enhance Go Code with Data Structures, is about developing your own data
structures when the structures offered by Go do not fit a particular problem. This includes
developing binary trees, linked lists, hash tables, stacks, and queues, and learning about
their advantages. This chapter also showcases the use of the structures found in the
container standard Go package, as well as how to use Go to verify Sudoku puzzles and
generate random numbers.

Chapter 6, What You Might Not Know About Go Packages and Functions, is all about packages
and functions, which also includes the use of the init() function, the syscall standard
Go package, and the text/template and html/template packages. Additionally, it
shows the use of the go/scanner, go/parser, and go/token advanced packages. This
chapter will definitely make you a better Go developer!

Chapter 7, Reflection and Interfaces for All Seasons, discusses three advanced Go concepts:
reflection, interfaces, and type methods. Additionally, it discusses the object-oriented
capabilities of Go and how to debug Go programs using Delve!

Chapter 8, Telling a UNIX System What to Do, is about Systems Programming in Go, which
includes subjects such as the flag package for working with command-line arguments,
handling UNIX signals, file input and output, the bytes package, the io.Reader and
io.Writer interfaces, and the use of the Viper and Cobra Go packages. As I told you
before, if you are really into systems programming in Go, then getting Go Systems
Programming after reading Mastering Go, Second Edition, is highly recommended!

Chapter 9, Concurrency in Go – Goroutines, Channels, and Pipelines, discusses goroutines,
channels, and pipelines, which is the Go way of achieving concurrency.

Preface

[3]

You will also learn about the differences between processes, threads, and goroutines, the
sync package, and the way the Go scheduler operates.

Chapter 10, Concurrency in Go – Advanced Topics, will continue from the point where the
previous chapter left off and make you a master of goroutines and channels! You will learn
more about the Go scheduler, the use of the powerful select keyword and the various
types of Go channels, as well as shared memory, mutexes, the sync.Mutex type, and the
sync.RWMutex type. The final part of the chapter talks about the context package, worker
pools, and how to detect race conditions.

Chapter 11, Code Testing, Optimization, and Profiling, discusses code testing, code
optimization and code profiling, as well as cross-compilation, creating documentation,
benchmarking Go code, creating example functions, and finding unreachable Go code.

Chapter 12, The Foundations of Network Programming in Go, is all about the net/http
package and how you can develop web clients and web servers in Go. This also includes
the use of the http.Response, http.Request, and http.Transport structures, and the
http.NewServeMux type. You will even learn how to develop an entire web site in Go!
Furthermore, in this chapter, you will learn how to read the configuration of your network
interfaces and how to perform DNS lookups in Go. Additionally, you will learn how to use
gRPC with Go.

Chapter 13, Network Programming – Building Your Own Servers and Clients, talks about
working with HTTPS traffic, and creating UDP and TCP servers and clients in Go using the
functionality offered by the net package. Other topics included in this chapter are creating
RPC clients and servers as well as developing a concurrent TCP server in Go and reading
raw network packages!

Chapter 14, Machine Learning in Go, talks about machine learning in Go, including
classification, clustering, anomaly detection, outliers, neural networks and TensorFlow, as
well as working with Apache Kafka with Go.

This book can be divided into three logical parts. The first part takes a sophisticated look at
some important Go concepts, including user input and output, downloading external Go
packages, compiling Go code, calling C code from Go, and creating WebAssembly from Go,
as well as using Go basic types and Go composite types.

The second part starts with Chapter 5, How to Enhance Go Code with Data Structures, and
also includes Chapter 6, What You Might Not Know About Go Packages and Go Functions,
and Chapter 7, Reflection and Interfaces for All Seasons. These three chapters deal with Go
code organization in packages and modules, the design of Go projects, and some advanced
features of Go, respectively.

Preface

[4]

The last part includes the remaining seven chapters and deals with more practical Go
topics. Chapters 8, 9, 10, and 11 talk about systems programming in Go, concurrency in Go,
code testing, optimization, and profiling. The last three chapters of this book will talk about
network programming and machine learning in Go.

The book includes content such as Go and WebAssembly, using Docker with Go, creating
professional command-line tools with the Viper and Cobra packages, parsing JSON and
YAML records, performing operations with matrices, working with Sudoku puzzles,
the go/scanner and go/token packages, working with git(1) and GitHub,
the atomic package, gRPC and Go, and HTTPS.

The book will present relatively small yet complete Go programs that illustrate the
presented concepts. This has two main advantages: firstly, you do not have to look at an
endless code listing when trying to learn a single technique and secondly, you can use this
code as a starting point when creating your own applications and utilities.

Realizing the importance of containers and Docker, this book includes
various examples of Go executable files that are used from within Docker
images because Docker images offer a great way to deploy server
software.

To get the most out of this book
This book requires a UNIX computer with a relatively recent Go version installed, which
includes any machine running Mac OS X, macOS, or Linux. Most of the code presented will
also run on Microsoft Windows machines.

To get the most out of this book, you should try to apply the knowledge of each chapter in
your own programs as soon as possible and see what works and what does not! As I told
you before, try to solve the exercises found at the end of each chapter or create your own
programming problems.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- Go- Second- Edition. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838559335.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first way is similar to using the man(1) command, but for Go functions and
packages."

A block of code is set as follows:

package main
import (
 "fmt"

http://www.packt.com
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/Mastering-Go-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf
https://static.packt-cdn.com/downloads/9781838559335.pdf

Preface

[6]

)
func main() {
 fmt.Println("This is a sample Go program!")
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import (
"fmt"
)
func main() {
 fmt.Println("This is a sample Go program!")
}

Any command-line input or output is written as follows:

$ date
Sat Oct 21 20:09:20 EEST 2017
$ go version
go version go1.12.7 darwin/amd64

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[7]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Go and the Operating System

This chapter is an introduction to various Go topics that beginners will find very useful.
More experienced Go developers can also use this chapter as a refresher course on the
fundamentals of Go. As it happens with most practical subjects, the best way to understand
something is to experiment with it. In this case, experimenting means writing Go code on
your own, making your own mistakes, and learning from them! Just don't let error
messages and bugs discourage you.

In this chapter, you will learn about:

The history and the future of the Go programming language
The advantages of Go
Compiling Go code
Executing Go code
Downloading and using external Go packages
UNIX standard input, output, and error
Printing data on the screen
Getting user input
Printing data to standard error
Working with log files
Using Docker to compile and execute a Go source file
Error handling in Go

The history of Go
Go is a modern, generic-purpose, open source programming language that was officially
announced at the end of 2009. Go began as an internal Google project, which means that it
was started as an experiment, and has since been inspired by many other programming
languages, including C, Pascal, Alef, and Oberon. Go's spiritual fathers are the professional
programmers Robert Griesemer, Ken Thomson, and Rob Pike.

Go and the Operating System Chapter 1

[9]

They designed Go as a language for professional programmers who want to build reliable,
robust, and efficient software. Apart from its syntax and its standard functions, Go comes
with a pretty rich standard library.

At the time of writing, the latest stable Go version is version 1.13. However, even if your
version number is higher, the contents of the book will still be relevant.

If you are going to install Go for the first time, you can start by visiting
https://golang.org/dl/. However, there is a big chance that your UNIX variant has a
ready-to-install package for the Go programming language, so you might want to get Go by
using your favorite package manager.

Where is Go going?
The Go community is already discussing the next major version of Go, which is going to be
called Go 2, but there is nothing definitive at the moment.

The intention of the current Go 1 team is to make Go 2 more community driven. Although
this is a good idea in general, it is always dangerous when lots of people try to make
important decisions about a programming language that was initially designed and
developed as an internal project by a small group of great people.

Some of the big changes that are being considered for Go 2 are generics, package
versioning, and improved error handling. All these new features are under discussion at
the moment and you should not be worried about them, but it is worthwhile to have an
idea of the direction that Go is going in.

The advantages of Go
Go has many advantages, and some of them are unique to Go, while others are shared with
other programming languages.

The list of the most significant Go advantages and features includes the following:

Go is a modern programming language that is easy to read, easy to understand,
and was made by experienced developers.
Go wants happy developers because happy developers write better code!
The Go compiler prints practical warning and error messages that help you to
solve the actual problem. Putting it simply, the Go compiler is there to help you,
not to make your life miserable by printing pointless output!

https://golang.org/dl/

Go and the Operating System Chapter 1

[10]

Go code is portable, especially among UNIX machines.
Go has support for procedural, concurrent, and distributed programming.
Go supports garbage collection, so you do not have to deal with memory
allocation and deallocation.
Go does not have a preprocessor and does high-speed compilation. As a
consequence, Go can also be used as a scripting language.
Go can build web applications and provides a simple web server for testing
purposes.
The standard Go library offers many packages that simplify the work of the
developer. Additionally, the functions found in the standard Go library are
tested and debugged in advance by the people who develop Go, which means
that, most of the time, they come without bugs.
Go uses static linking by default, which means that the binary files produced can
be easily transferred to other machines with the same OS. As a consequence, once
a Go program is compiled successfully and an executable file is generated, you
do not need to worry about libraries, dependencies, and different library versions
anymore.
You will not need a graphical user interface (GUI) for developing, debugging,
and testing Go applications, as Go can be used from the command-line, which I
think many UNIX people prefer.
Go supports Unicode, which means that you do not need any extra code for
printing characters from multiple human languages.
Go keeps concepts orthogonal because a few orthogonal features work better
than many overlapping ones.

Is Go perfect?
There is no such thing as the perfect programming language, and Go is not an exception to
this rule. However, some programming languages are better at some areas of programming
or we like them more than other programming languages. Personally, I do not like Java,
and while I used to like C++, I do not like it anymore. C++ has become too complex as a
programming language, whereas, in my opinion, Java, code does not look good.

Some of the disadvantages of Go are:

Go does not have direct support for object-oriented programming, which can be
a problem for programmers who are used to writing code in an object-oriented
manner. Nevertheless, you can use composition in Go to mimic inheritance.

Go and the Operating System Chapter 1

[11]

For some people, Go will never replace C.
C is still faster than any other programming language for systems programming
and this is mainly because UNIX is written in C.

Nevertheless, Go is a pretty decent programming language that will not disappoint you if
you find the time to learn it and program in it.

What is a preprocessor?
I said earlier that Go does not have a preprocessor and that this is a good thing. A
preprocessor is a program that processes your input data and generates output that will be
used as the input to another program. In the context of programming languages, the input
of a preprocessor is source code that will be processed by the preprocessor before being
given as input to the compiler of the programming language.

The biggest disadvantage of a preprocessor is that it knows nothing about the underlying
language or its syntax! This means that when a preprocessor is used, you cannot be certain
that the final version of your code will do what you really want because the preprocessor
might alter the logic as well as the semantics of your original code.

The list of programming languages with a preprocessor includes C, C++, Ada, and PL/SQL.
The infamous C preprocessor processes lines that begin with # and are called directives or
pragmas. As stated before, directives and pragmas are not part of the C programming
language!

The godoc utility
The Go distribution comes with a plethora of tools that can make your life as a programmer
easier. One of these tools is the godoc utility, which allows you to see the documentation of
existing Go functions and packages without needing an internet connection.

The godoc utility can be executed either as a normal command-line application that
displays its output on a terminal, or as a command-line application that starts a web server.
In the latter case, you will need a web browser to look at the Go documentation.

If you type godoc without any command-line parameters, you will get a
list of the command-line options supported by godoc.

Go and the Operating System Chapter 1

[12]

The first way is similar to using the man(1) command, but for Go functions and packages.
So, in order to find information about the Printf() function of the fmt package, you
should execute the following command:

$ go doc fmt.Printf

Similarly, you can find information about the entire fmt package by running the following
command:

$ go doc fmt

The second way requires executing godoc with the -http parameter:

$ godoc -http=:8001

The numeric value in the preceding command, which in this case is 8001, is the port
number the HTTP server will listen to. You can choose any port number that is available
provided that you have the right privileges. However, note that port numbers 0-1023 are
restricted and can only be used by the root user, so it is better to avoid choosing one of
those and pick something else, provided that it is not already in use by a different process.

You can omit the equal sign in the presented command and put a space character in its
place. So, the following command is completely equivalent to the previous one:

$ godoc -http :8001

After that, you should point your web browser to the http://localhost:8001/pkg/
URL in order to get the list of available Go packages and browse their documentation.

Compiling Go code
In this section, you will learn how to compile Go code. The good news is that you can
compile your Go code from the command line without the need for a graphical application.
Furthermore, Go does not care about the name of the source file of an autonomous program
as long as the package name is main and there is a single main() function in it. This is
because the main() function is where the program execution begins. As a result, you
cannot have multiple main() functions in the files of a single project.

Go and the Operating System Chapter 1

[13]

We will start our first Go program compilation with a program named aSourceFile.go
that contains the following Go code:

package main
import (
 "fmt"
)

func main() {
 fmt.Println("This is a sample Go program!")
}

Notice that the Go community prefers to name the Go source file source_file.go instead
of aSourceFile.go. Whatever you choose, be consistent.

In order to compile aSourceFile.go and create a statically linked executable file, you
will need to execute the following command:

$ go build aSourceFile.go

After that, you will have a new executable file named aSourceFile that you will need to
execute:

$ file aSourceFile
aSourceFile: Mach-O 64-bit executable x86_64
$ ls -l aSourceFile
-rwxr-xr-x 1 mtsouk staff 2007576 Jan 10 21:10 aSourceFile
$./aSourceFile
This is a sample Go program!

The main reason why the file size of aSourceFile is that big is because it is statically
linked, which means that it does not require any external libraries to run.

Executing Go code
There is another way to execute your Go code that does not create any permanent
executable files – it just generates some intermediate files that are automatically deleted
afterward.

Go and the Operating System Chapter 1

[14]

The way presented allows you to use Go as if it is a scripting
programming language like Python, Ruby, or Perl.

So, in order to run aSourceFile.go without creating an executable file, you will need to
execute the following command:

$ go run aSourceFile.go
This is a sample Go program!

As you can see, the output of the preceding command is exactly the same as before.

Please note that with go run, the Go compiler still needs to create an
executable file. It is because you do not see it, it is automatically executed,
and it is automatically deleted after the program has finished that you
might think that there is no need for an executable file.

This book mainly uses go run to execute the example code; primarily because it is simpler
than running go build and then executing the executable file. Additionally, go run does
not leave any files on your hard disk after the program has finished its execution.

Two Go rules
Go has strict coding rules that are there to help you avoid silly errors and bugs in your
code, as well as to make your code easier to read for the Go community. This section will
present two such Go rules that you need to know.

As mentioned earlier, please remember that the Go compiler is there to help and not make
your life miserable. As a result, the main purpose of the Go compiler is to compile and
increase the quality of your Go code.

You either use a Go package or you do not
include it
Go has strict rules about package usage. Therefore, you cannot just include any package
you might think that you will need and then not use it afterward.

Go and the Operating System Chapter 1

[15]

Look at the following naive program, which is saved as packageNotUsed.go:

package main

import (
 "fmt"
 "os"
)

func main() {
 fmt.Println("Hello there!")
}

In this book, you are going to see lots of error messages, error situations,
and warnings. I believe that looking at code that fails to compile is also
useful and sometimes even more valuable than just looking at Go code
that compiles without any errors. The Go compiler usually displays useful
error messages and warnings that will most likely help you to resolve an
erroneous situation, so do not underestimate Go error messages and
warnings.

If you execute packageNotUsed.go, you will get the following error message from Go and
the program will not get executed:

$ go run packageNotUsed.go
command-line-arguments
./packageNotUsed.go:5:2: imported and not used: "os"

If you remove the os package from the import list of the program, packageNotUsed.go
will compile just fine; try it on your own.

Although this is not the perfect time to start talking about breaking Go rules, there is a way
to bypass this restriction. This is showcased in the following Go code that is saved in the
packageNotUsedUnderscore.go file:

package main

import (
 "fmt"
 _ "os"
)

func main() {
 fmt.Println("Hello there!")
}

Go and the Operating System Chapter 1

[16]

So, using an underscore character in front of a package name in the import list will not
create an error message in the compilation process even if that package will not be used in
the program:

$ go run packageNotUsedUnderscore.go
Hello there!

The reason that Go is allowing you to bypass this rule will become more
evident in Chapter 6, What You Might Not Know About Go Packages and Go
Functions.

There is only one way to format curly braces
Look at the following Go program named curly.go:

package main

import (
 "fmt"
)

func main()
{
 fmt.Println("Go has strict rules for curly braces!")
}

Although it looks just fine, if you try to execute it, you will be fairly disappointed, because
you will get the following syntax error message and the code will not compile and
therefore run:

$ go run curly.go
command-line-arguments
./curly.go:7:6: missing function body for "main"
./curly.go:8:1: syntax error: unexpected semicolon or newline before {

The official explanation for this error message is that Go requires the use of semicolons as
statement terminators in many contexts, and the compiler automatically inserts the
required semicolons when it thinks that they are necessary. Therefore, putting the opening
curly brace ({) in its own line will make the Go compiler insert a semicolon at the end of the
previous line (func main()), which is the cause of the error message.

Go and the Operating System Chapter 1

[17]

Downloading Go packages
Although the standard Go library is very rich, there are times that you will need to
download external Go packages in order to use their functionality. This section will teach
you how to download an external Go package and where it will be placed on your UNIX
machine.

Have in mind that although Go modules, which is a new Go feature that
is still under development, might introduce changes to the way you work
with external Go code, the process of downloading a single Go package
into your computer will remain the same.

You will learn a lot more about Go packages and Go modules in Chapter
6, What You Might Not Know About Go Packages and Go Functions.

Look at the following naive Go program that is saved as getPackage.go:

package main

import (
 "fmt"
 "github.com/mactsouk/go/simpleGitHub"
)

func main() {
 fmt.Println(simpleGitHub.AddTwo(5, 6))
}

This program uses an external package because one of the import commands uses an
internet address. In this case, the external package is called simpleGitHub and is located at
github.com/mactsouk/go/simpleGitHub.

If you try to execute getPackage.go right away, you will be disappointed:

$ go run getPackage.go
getPackage.go:5:2: cannot find package
"github.com/mactsouk/go/simpleGitHub" in any of:
 /usr/local/Cellar/go/1.9.1/libexec/src/github.com/mactsouk/go/
simpleGitHub (from $GOROOT)
 /Users/mtsouk/go/src/github.com/mactsouk/go/simpleGitHub (from $GOPATH)

Go and the Operating System Chapter 1

[18]

So, you will need to get the missing package on your computer. In order to download it,
you will need to execute the following command:

$ go get -v github.com/mactsouk/go/simpleGitHub
github.com/mactsouk/go (download)
github.com/mactsouk/go/simpleGitHub

After that, you can find the downloaded files at the following directory:

$ ls -l ~/go/src/github.com/mactsouk/go/simpleGitHub/
total 8
-rw-r--r-- 1 mtsouk staff 66 Oct 17 21:47 simpleGitHub.go

However, the go get command also compiles the package. The relevant files can be found
at the following place:

$ ls -l ~/go/pkg/darwin_amd64/github.com/mactsouk/go/simpleGitHub.a
-rw-r--r-- 1 mtsouk staff 1050 Oct 17 21:47
/Users/mtsouk/go/pkg/darwin_amd64/github.com/mactsouk/go/simpleGitHub.a

You are now ready to execute getPackage.go without any problems:

$ go run getPackage.go
11

You can delete the intermediate files of a downloaded Go package as follows:

$ go clean -i -v -x github.com/mactsouk/go/simpleGitHub
cd /Users/mtsouk/go/src/github.com/mactsouk/go/simpleGitHub
rm -f simpleGitHub.test simpleGitHub.test.exe
rm -f /Users/mtsouk/go/pkg/darwin_amd64/github.com/mactsouk/go/
simpleGitHub.a

Similarly, you can delete an entire Go package you have downloaded locally using the
rm(1) UNIX command to delete its Go source after using go clean:

$ go clean -i -v -x github.com/mactsouk/go/simpleGitHub
$ rm -rf ~/go/src/github.com/mactsouk/go/simpleGitHub

After executing the former commands, you will need to download the Go package again.

UNIX stdin, stdout, and stderr
Every UNIX OS has three files open all the time for its processes. Remember that UNIX
considers everything, even a printer or your mouse, a file.

Go and the Operating System Chapter 1

[19]

UNIX uses file descriptors, which are positive integer values, as an internal representation
for accessing all of its open files, which is much prettier than using long paths.

So, by default, all UNIX systems support three special and standard filenames:
/dev/stdin, /dev/stdout, and /dev/stderr, which can also be accessed using file
descriptors 0, 1, and 2, respectively. These three file descriptors are also called standard
input, standard output, and standard error, respectively. Additionally, file descriptor 0 can
be accessed as /dev/fd/0 on a macOS machine and as both /dev/fd/0 and /dev/pts/0
on a Debian Linux machine.

Go uses os.Stdin for accessing standard input, os.Stdout for accessing standard output,
and os.Stderr for accessing standard error. Although you can still use /dev/stdin,
/dev/stdout, and /dev/stderr or the related file descriptor values for accessing the
same devices, it is better, safer, and more portable to stick with os.Stdin, os.Stdout, and
os.Stderr offered by Go.

About printing output
As with UNIX and C, Go offers a variety of ways for printing your output on the screen. All
the printing functions of this section require the use of the fmt Go standard package and
are illustrated in the printing.go program, which will be presented in two parts.

The simplest way to print something in Go is by using the fmt.Println() and the
fmt.Printf() functions. The fmt.Printf() function has many similarities with the C
printf(3) function. You can also use the fmt.Print() function instead of
fmt.Println(). The main difference between fmt.Print() and fmt.Println() is that
the latter automatically adds a newline character each time you call it.

On the other hand, the biggest difference between fmt.Println() and fmt.Printf() is
that the latter requires a format specifier for each thing that you want to print, just like the
C printf(3) function, which means that you have better control of what you are doing,
but you have to write more code. Go calls these format specifiers verbs. You can find more
information about verbs at https://golang.org/pkg/fmt/.

If you have to perform any formatting before printing something or have to arrange
multiple variables, then using fmt.Printf() might be a better choice. However, if you
only have to print a single variable, then you might need to choose either fmt.Print() or
fmt.Println(), depending on whether you need a newline character or not.

https://golang.org/pkg/fmt/

Go and the Operating System Chapter 1

[20]

The first part of printing.go contains the following Go code:

package main

import (
 "fmt"
)

func main() {
 v1 := "123"
 v2 := 123
 v3 := "Have a nice day\n"
 v4 := "abc"

In this part, you see the import of the fmt package and the definition of four Go variables.
The \n used in v3 is the line break character. However, if you just want to insert a line
break in your output, you can call fmt.Println() without any arguments, instead of
using something like fmt.Print("\n").

The second part is as follows:

 fmt.Print(v1, v2, v3, v4)
 fmt.Println()
 fmt.Println(v1, v2, v3, v4)
 fmt.Print(v1, " ", v2, " ", v3, " ", v4, "\n")
 fmt.Printf("%s%d %s %s\n", v1, v2, v3, v4)
}

In this part, you print the four variables using fmt.Println(), fmt.Print(), and
fmt.Printf() in order to better understand how they differ.

If you execute printing.go, you will get the following output:

$ go run printing.go
123123Have a nice day
abc
123 123 Have a nice day
abc
123 123 Have a nice day
abc
123123 Have a nice day
abc

As you can see from the preceding output, the fmt.Println() function also adds a space
character between its parameters, which is not the case with fmt.Print().

Go and the Operating System Chapter 1

[21]

As a result, a statement such as fmt.Println(v1, v2) is equivalent to fmt.Print(v1,
" ", v2, "\n").

Apart from fmt.Println(), fmt.Print(), and fmt.Printf(), which are the simplest
functions that can be used for generating output on the screen, there is also the S family of
functions that includes fmt.Sprintln(), fmt.Sprint(), and fmt.Sprintf(). These
functions are used to create strings based on a given format.

Finally, there is the F family of functions, which includes fmt.Fprintln(),
fmt.Fprint(), and fmt.Fprintf(). They are used for writing to files using an
io.Writer.

You will learn more about the io.Writer and io.Reader interfaces in
Chapter 8, Telling a UNIX System What to Do.

The next section will teach you how to print your data using standard output, which is
pretty common in the UNIX world.

Using standard output
Standard output is more or less equivalent to printing on the screen. However, using
standard output might require the use of functions that do not belong to the fmt package,
which is why it is presented in its own section.

The relevant technique will be illustrated in stdOUT.go and will be offered in three parts.
The first part of the program is as follows:

package main

import (
 "io"
 "os"
)

So, stdOUT.go will use the io package instead of the fmt package. The os package is used
for reading the command-line arguments of the program and for accessing os.Stdout.

Go and the Operating System Chapter 1

[22]

The second portion of stdOUT.go contains the following Go code:

func main() {
 myString := ""
 arguments := os.Args
 if len(arguments) == 1 {
 myString = "Please give me one argument!"
 } else {
 myString = arguments[1]
 }

The myString variable holds the text that will be printed on the screen, which is either the
first command-line argument of the program or, if the program was executed without any
command-line arguments, a hardcoded text message.

The third part of the program is as follows:

 io.WriteString(os.Stdout, myString)
 io.WriteString(os.Stdout, "\n")
}

In this case, the io.WriteString() function works in the same way as the fmt.Print()
function; however, it takes only two parameters. The first parameter is the file you want to
write to, which, in this case, is os.Stdout, and the second parameter is a string variable.

Strictly speaking, the type of the first parameter of the
io.WriteString() function should be io.Writer, which requires a
slice of bytes as the second parameter. However, in this case, a
string variable does the job just fine. You will learn more about slices in
Chapter 3, Working with Basic Go Data Types.

Executing stdOUT.go will produce the following output:

$ go run stdOUT.go
Please give me one argument!
$ go run stdOUT.go 123 12
123

The preceding output verifies that the io.WriteString() function sends the contents of
its second parameter onto the screen when its first parameter is os.Stdout.

Go and the Operating System Chapter 1

[23]

Getting user input
There are three main ways to get user input: firstly, by reading the command-line
arguments of a program; secondly, by asking the user for input; or thirdly, by reading
external files. This section will present the first two ways. Should you wish to learn how to
read an external file, you should visit Chapter 8, Telling a UNIX System What to Do.

About := and =
Before continuing, it will be very useful to talk about the use of := and how it differs from
=. The official name for := is the short assignment statement. The short assignment
statement can be used in place of a var declaration with an implicit type.

You will rarely see the use of var in Go; the var keyword is mostly used
for declaring global variables in Go programs, as well as for declaring
variables without an initial value. The reason for the former is that every
statement that exists outside of the code of a function must begin with a
keyword such as func or var. This means that the short assignment
statement cannot be used outside of a function because it is not available
there.

The := operator works as follows:

m := 123

The result of the preceding statement is a new integer variable named m with a value of
123.

However, if you try to use := on an already declared variable, the compilation will fail with
the following error message, which makes perfect sense:

$ go run test.go
command-line-arguments
./test.go:5:4: no new variables on left side of :=

So, you might now ask, what will happen if you are expecting two or more values from a
function and you want to use an existing variable for one of them. Should you use := or =?
The answer is simple: you should use :=, as in the following code example:

i, k := 3, 4
j, k := 1, 2

Go and the Operating System Chapter 1

[24]

As the j variable is used for the first time in the second statement, you use := even though
k has already been defined in the first statement.

Although it may seem boring to talk about such insignificant things, knowing them will
save you from various types of errors in the long run!

Reading from standard input
The reading of data from the standard input will be illustrated in stdIN.go, which you
will see in two parts. The first part is as follows:

package main

import (
 "bufio"
 "fmt"
 "os"
)

In the preceding code, you can see the use of the bufio package for the first time in this
book.

You will learn more about the bufio package in Chapter 8, Telling a
UNIX System What to Do.

Although the bufio package is mostly used for file input and output, you will keep seeing
the os package all the time in this book because it contains many handy functions; its most
common functionality is that it provides a way to access the command-line arguments of a
Go program (os.Args).

The official description of the os package tells us that it offers functions that perform OS
operations. This includes functions for creating, deleting, and renaming files and
directories, as well as functions for learning the UNIX permissions and other characteristics
of files and directories. The main advantage of the os package is that it is platform
independent. Put simply, its functions will work on both UNIX and Microsoft Windows
machines.

The second part of stdIN.go contains the following Go code:

func main() {

Go and the Operating System Chapter 1

[25]

 var f *os.File
 f = os.Stdin
 defer f.Close()

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 fmt.Println(">", scanner.Text())
 }
}

First, there is a call to bufio.NewScanner() using standard input (os.Stdin) as its
parameter. This call returns a bufio.Scanner variable, which is used with the Scan()
function for reading from os.Stdin line by line. Each line that is read is printed on the
screen before getting the next one. Please note that each line that is printed by the program
begins with the > character.

The execution of stdIN.go will produce the following kind of output:

$ go run stdIN.go
This is number 21
> This is number 21
This is Mihalis
> This is Mihalis
Hello Go!
> Hello Go!
Press Control + D on a new line to end this program!
> Press Control + D on a new line to end this program!

According to the UNIX way, you can tell a program to stop reading data from standard
input by pressing Ctrl + D.

The Go code of stdIN.go and stdOUT.go will be very useful when we
talk about UNIX pipes in Chapter 8, Telling a UNIX System What to Do, so
do not underestimate their simplicity.

Working with command-line arguments
The technique of this section will be illustrated using the Go code of cla.go, which will be
presented in three parts. The program will find the minimum and the maximum of its
command-line arguments.

The first part of the program is as follows:

package main

Go and the Operating System Chapter 1

[26]

import (
 "fmt"
 "os"
 "strconv"
)

What is important here is realizing that getting the command-line arguments requires the
use of the os package. Additionally, you need another package, named strconv, in order
to be able to convert a command-line argument, which is given as a string, into an
arithmetical data type.

The second part of the program is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Please give one or more floats.")
 os.Exit(1)
 }

 arguments := os.Args
 min, _ := strconv.ParseFloat(arguments[1], 64)
 max, _ := strconv.ParseFloat(arguments[1], 64)

Here, cla.go checks whether you have any command-line arguments by checking the
length of os.Args. This is because the program needs at least one command-line argument
to operate. Please note that os.Args is a Go slice with string values. The first element in
the slice is the name of the executable program. Therefore, in order to initialize the min and
max variables, you will need to use the second element of the string type os.Args slice
that has an index value of 1.

There is an important point here: the fact that you are expecting one or more floats does not
necessarily mean that the user will give you valid floats, either by accident or on purpose.
However, as we have not talked about error handling in Go so far, cla.go assumes that all
command-line arguments are in the right format and therefore will be acceptable. As a
result, cla.go ignores the error value returned by the strconv.ParseFloat() function
using the following statement:

n, _ := strconv.ParseFloat(arguments[i], 64)

The preceding statement tells Go that you only want to get the first value returned by
strconv.ParseFloat() and that you are not interested in the second value, which in this
case is an error variable, by assigning it to the underscore character. The underscore
character, which is called blank identifier, is the Go way of discarding a value. If a Go
function returns multiple values, you can use the blank identifier multiple times.

Go and the Operating System Chapter 1

[27]

Ignoring all or some of the return values of a Go function, especially the
error values, is a very dangerous technique that should not be used in
production code!

The third part comes with the following Go code:

 for i := 2; i < len(arguments); i++ {
 n, _ := strconv.ParseFloat(arguments[i], 64)

 if n < min {
 min = n
 }
 if n > max {
 max = n
 }
 }

 fmt.Println("Min:", min)
 fmt.Println("Max:", max)
}

Here, you use a for loop that will help you to visit all the elements of the os.Args slice,
which was previously assigned to the arguments variable.

Executing cla.go will create the following kind of output:

$ go run cla.go -10 0 1
Min: -10
Max: 1
$ go run cla.go -10
Min: -10
Max: -10

As you might expect, the program does not behave well when it receives erroneous input;
the worst thing of all is that it does not generate any warnings to inform the user that there
was an error (or several) while processing the command-line arguments of the program:

$ go run cla.go a b c 10
Min: 0
Max: 10

Go and the Operating System Chapter 1

[28]

About error output
This section will present a technique for sending data to UNIX standard error, which is the
UNIX way of differentiating between actual values and error output.

The Go code for illustrating the use of standard error in Go is included in stdERR.go and
will be presented in two parts. As writing to standard error requires the use of the file
descriptor related to standard error, the Go code of stdERR.go will be based on the Go
code of stdOUT.go.

The first part of the program is as follows:

package main

import (
 "io"
 "os"
)
func main() {
 myString := ""
 arguments := os.Args
 if len(arguments) == 1 {
 myString = "Please give me one argument!"
 } else {
 myString = arguments[1]
 }

So far, stdERR.go is almost identical to stdOUT.go.

The second portion of stdERR.go is the following:

 io.WriteString(os.Stdout, "This is Standard output\n")
 io.WriteString(os.Stderr, myString)
 io.WriteString(os.Stderr, "\n")
}

You call io.WriteString() two times to write to standard error (os.Stderr) and one
more time to write to standard output (os.Stdout).

Executing stdERR.go will create the following output:

$ go run stdERR.go
This is Standard output
Please give me one argument!

Go and the Operating System Chapter 1

[29]

The preceding output cannot help you to differentiate between data written to standard
output and data written to standard error, which can be very useful sometimes. However,
if you are using the bash(1) shell, there is a trick you can use in order to distinguish
between standard output data and standard error data. Almost all UNIX shells offer this
functionality in their own way.

When using bash(1), you can redirect the standard error output to a file as follows:

$ go run stdERR.go 2>/tmp/stdError
This is Standard output
$ cat /tmp/stdError
Please give me one argument!

The number after the name of a UNIX program or system call refers to the
section of the manual its page belongs to. Although most of the names can
be found only once in the manual pages, which means that putting the
section number is not required, there are names that can be located in
multiple sections because they have multiple meanings, such as
crontab(1) and crontab(5). Therefore, if you try to retrieve the
manual page of a name with multiple meanings without stating its section
number, you will get the entry that has the smallest section number.

Similarly, you can discard error output by redirecting it to the /dev/null device, which is
like telling UNIX to completely ignore it:

$ go run stdERR.go 2>/dev/null
This is Standard output

In the two examples, we redirected the file descriptor of standard error into a file and
/dev/null, respectively. If you want to save both standard output and standard error to
the same file, you can redirect the file descriptor of standard error (2) to the file descriptor
of standard output (1). The following command shows the technique, which is pretty
common in UNIX systems:

$ go run stdERR.go >/tmp/output 2>&1
$ cat /tmp/output
This is Standard output
Please give me one argument!

Finally, you can send both standard output and standard error to /dev/null as follows:

$ go run stdERR.go >/dev/null 2>&1

Go and the Operating System Chapter 1

[30]

Writing to log files
The log package allows you to send log messages to the system logging service of your
UNIX machine, whereas the syslog Go package, which is part of the log package, allows
you to define the logging level and the logging facility your Go program will use.

Usually, most system log files of a UNIX OS can be found under the /var/log directory.
However, the log files of many popular services, such as Apache and Nginx, can be found
elsewhere, depending on their configuration.

Generally speaking, using a log file to write some information is considered a better
practice than writing the same output on the screen for two reasons: firstly, because the
output does not get lost as it is stored on a file, and secondly, because you can search and
process log files using UNIX tools, such as grep(1), awk(1), and sed(1), which cannot be
done when messages are printed on a terminal window.

The log package offers many functions for sending output to the syslog server of a UNIX
machine. The list of functions includes log.Printf(), log.Print(), log.Println(),
log.Fatalf(), log.Fatalln(), log.Panic(), log.Panicln(), and log.Panicf().

Please note that logging functions can be extremely handy for debugging
your programs, especially server processes written in Go, so you should
not underestimate their power.

Logging levels
The logging level is a value that specifies the severity of the log entry. There are various
logging levels, including debug, info, notice, warning, err, crit, alert, and emerg, in reverse
order of severity.

Logging facilities
A logging facility is like a category used for logging information. The value of the logging
facility part can be one of auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog, user,
UUCP, local0, local1, local2, local3, local4, local5, local6, or local7 and is defined inside
/etc/syslog.conf, /etc/rsyslog.conf or another appropriate file depending on the
server process used for system logging on your UNIX machine.

Go and the Operating System Chapter 1

[31]

This means that if a logging facility is not defined and therefore handled, the log messages
you send to it might get ignored and therefore lost.

Log servers
All UNIX machines have a separate server process that is responsible for receiving logging
data and writing it to log files. There are various log servers that work on UNIX machines.
However, only two of them are used on most UNIX variants: syslogd(8) and
rsyslogd(8).

On macOS machines, the name of the process is syslogd(8). On the other hand, most
Linux machines use rsyslogd(8), which is an improved and more reliable version of
syslogd(8), which was the original UNIX system utility for message logging.

However, despite the UNIX variant you are using or the name of the server process used
for logging, logging works the same way on every UNIX machine and therefore does not
affect the Go code that you will write.

The configuration file of rsyslogd(8) is usually named rsyslog.conf and is located in
/etc. The contents of a rsyslog.conf configuration file, without the lines with comments
and lines starting with $, might look like the following:

$ grep -v '^#' /etc/rsyslog.conf | grep -v '^$' | grep -v '^\$'
auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err
news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice
*.=debug;\
 auth,authpriv.none;\
 news.none;mail.none -/var/log/debug
.=info;.=notice;*.=warn;\
 auth,authpriv.none;\
 cron,daemon.none;\
 mail,news.none -/var/log/messages
.emerg :omusrmsg:

Go and the Operating System Chapter 1

[32]

daemon.*;mail.*;\
 news.err;\
 .=debug;.=info;\
 .=notice;.=warn |/dev/xconsole
local7.* /var/log/cisco.log

So, in order to send your logging information to /var/log/cisco.log, you will need to
use the local7 logging facility. The star character after the name of the facility tells the
logging server to catch every logging level that goes to the local7 logging facility and write
it to /var/log/cisco.log.

The syslogd(8) server has a pretty similar configuration file that is usually
/etc/syslog.conf. On macOS High Sierra, the /etc/syslog.conf file is almost empty
and has been replaced by /etc/asl.conf. Nevertheless, the logic behind the configuration
of /etc/syslog.conf, /etc/rsyslog.conf, and /etc/asl.conf is the same.

A Go program that sends information to log files
The Go code of logFiles.go will explain the use of the log and log/syslog packages to
write to the system log files.

Please note that the log/syslog package is not implemented on the
Microsoft Windows version of Go.

The first part of logFiles.go is as follows:

package main

import (
 "fmt"
 "log"
 "log/syslog"
 "os"
 "path/filepath"
)

func main() {
 programName := filepath.Base(os.Args[0])
 sysLog, err := syslog.New(syslog.LOG_INFO|syslog.LOG_LOCAL7,
 programName)

Go and the Operating System Chapter 1

[33]

The first parameter to the syslog.New() function is the priority, which is a combination of
the logging facility and the logging level. Therefore, a priority of LOG_NOTICE |
LOG_MAIL, which is mentioned as an example, will send notice logging level messages to
the MAIL logging facility.

As a result, the preceding code sets the default logging to the local7 logging facility using
the info logging level. The second parameter to the syslog.New() function is the name of
the process that will appear on the logs as the sender of the message. Generally speaking, it
is considered a good practice to use the real name of the executable in order to be able to
easily find the information you want in the log files at another time.

The second part of the program contains the following Go code:

 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }
 log.Println("LOG_INFO + LOG_LOCAL7: Logging in Go!")

After the call to syslog.New(), you will have to check the error variable that is returned
from it so that you can make sure that everything is fine. If everything is OK, which means
that the value of the error variable is equal to nil, you call the log.SetOutput()
function, which sets the output destination of the default logger, which, in this case, is the
logger you created earlier on (sysLog). Then, you can use log.Println() to send
information to the log server.

The third part of logFiles.go comes with the following code:

 sysLog, err = syslog.New(syslog.LOG_MAIL, "Some program!")
 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }

 log.Println("LOG_MAIL: Logging in Go!")
 fmt.Println("Will you see this?")
}

The last part shows that you can change the logging configuration in your programs as
many times as you want and that you can still use fmt.Println() for printing output on
the screen.

Go and the Operating System Chapter 1

[34]

The execution of logFiles.go will create the following output on the screen of a Debian
Linux machine:

$ go run logFiles.go
Broadcast message from systemd-journald@mail (Tue 2017-10-17 20:06:08
EEST):
logFiles[23688]: Some program![23688]: 2017/10/17 20:06:08 LOG_MAIL:
Logging in Go!
Message from syslogd@mail at Oct 17 20:06:08 ...
Some program![23688]: 2017/10/17 20:06:08 LOG_MAIL: Logging in Go!
Will you see this?

Executing the same Go code on a macOS High Sierra machine generated the following
output:

$ go run logFiles.go
Will you see this?

Please bear in mind that most UNIX machines store logging information in more than one
log file, which is also the case with the Debian Linux machine used in this section. As a
result, logFiles.go sends its output to multiple log files, which can be verified by the
output of the following shell commands:

$ grep LOG_MAIL /var/log/mail.log
Oct 17 20:06:08 mail Some program![23688]: 2017/10/17 20:06:08 LOG_MAIL:
Logging in Go!
$ grep LOG_LOCAL7 /var/log/cisco.log
Oct 17 20:06:08 mail logFiles[23688]: 2017/10/17 20:06:08 LOG_INFO +
LOG_LOCAL7: Logging in Go!
$ grep LOG_ /var/log/syslog
Oct 17 20:06:08 mail logFiles[23688]: 2017/10/17 20:06:08 LOG_INFO +
LOG_LOCAL7: Logging in Go!
Oct 17 20:06:08 mail Some program![23688]: 2017/10/17 20:06:08 LOG_MAIL:
Logging in Go!

The preceding output shows that the message of the log.Println("LOG_INFO +
LOG_LOCAL7: Logging in Go!") statement was written on both /var/log/cisco.log
and /var/log/syslog, whereas the message of the log.Println("LOG_MAIL: Logging
in Go!") statement was written on both /var/log/syslog and /var/log/mail.log.

The important thing to remember from this section is that if the logging server of a UNIX
machine is not configured to catch all logging facilities, some of the log entries you send to
it might get discarded without any warnings.

Go and the Operating System Chapter 1

[35]

About log.Fatal()
In this section, you will see the log.Fatal() function in action. The log.Fatal()
function is used when something really bad has happened and you just want to exit your
program as fast as possible after reporting the bad situation.

The use of log.Fatal() is illustrated in the logFatal.go program, which contains the
following Go code:

package main

import (
 "fmt"
 "log"
 "log/syslog"
)

func main() {
 sysLog, err := syslog.New(syslog.LOG_ALERT|syslog.LOG_MAIL, "Some
program!")
 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }

 log.Fatal(sysLog)
 fmt.Println("Will you see this?")
}

Executing log.Fatal() will create the following output:

$ go run logFatal.go
exit status 1

As you can easily understand, the use of log.Fatal() terminates a Go program at the
point where log.Fatal() was called, which is the reason that you did not see the output
from the fmt.Println("Will you see this?") statement.

However, because of the parameters of the syslog.New() call, a log entry has been added
to the log file that is related to mail, which is /var/log/mail.log:

$ grep "Some program" /var/log/mail.log
Jan 10 21:29:34 iMac Some program![7123]: 2019/01/10 21:29:34 &{17 Some
program! iMac.local {0 0} 0xc00000c220}

Go and the Operating System Chapter 1

[36]

About log.Panic()
There are situations where a program will fail for good and you want to have as much
information about the failure as possible.

In such difficult times, you might consider using log.Panic(), which is the logging
function that is illustrated in this section using the Go code of logPanic.go.

The Go code of logPanic.go is as follows:

package main

import (
 "fmt"
 "log"
 "log/syslog"
)

func main() {
 sysLog, err := syslog.New(syslog.LOG_ALERT|syslog.LOG_MAIL, "Some
program!")
 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }

 log.Panic(sysLog)
 fmt.Println("Will you see this?")
}

Executing logPanic.go on macOS Mojave will produce the following output:

$ go run logPanic.go
panic: &{17 Some program! iMac.local {0 0} 0xc0000b21e0}
goroutine 1 [running]:
log.Panic(0xc00004ef68, 0x1, 0x1)
 /usr/local/Cellar/go/1.11.4/libexec/src/log/log.go:326 +0xc0
main.main()
 /Users/mtsouk/Desktop/mGo2nd/Mastering-Go-Second-
Edition/ch01/logPanic.go:17 +0xd6
exit status 2

Running the same program on a Debian Linux with Go version 1.3.3 will generate the
following output:

$ go run logPanic.go

Go and the Operating System Chapter 1

[37]

panic: &{17 Some program! mail {0 0} 0xc2080400e0}
goroutine 16 [running]:
runtime.panic(0x4ec360, 0xc208000320)
 /usr/lib/go/src/pkg/runtime/panic.c:279 +0xf5
log.Panic(0xc208055f20, 0x1, 0x1)
 /usr/lib/go/src/pkg/log/log.go:307 +0xb6
main.main()
 /home/mtsouk/Desktop/masterGo/ch/ch1/code/logPanic.go:17 +0x169
goroutine 17 [runnable]:
runtime.MHeap_Scavenger()
 /usr/lib/go/src/pkg/runtime/mheap.c:507
runtime.goexit()
 /usr/lib/go/src/pkg/runtime/proc.c:1445
goroutine 18 [runnable]:
bgsweep()
 /usr/lib/go/src/pkg/runtime/mgc0.c:1976
runtime.goexit()
 /usr/lib/go/src/pkg/runtime/proc.c:1445
goroutine 19 [runnable]:
runfinq()
 /usr/lib/go/src/pkg/runtime/mgc0.c:2606
runtime.goexit()
 /usr/lib/go/src/pkg/runtime/proc.c:1445
exit status 2

So, the output of log.Panic() includes additional low-level information that will
hopefully help you to resolve difficult situations that happened in your Go code.

Analogous to the log.Fatal() function, the use of the log.Panic() function will add an
entry to the proper log file and will immediately terminate the Go program.

Writing to a custom log file
Sometimes, you just need to write your logging data in a file of your choice. This can
happen for many reasons, including writing debugging data, which sometimes can be too
much, without messing with the system log files, keeping your own logging data separate
from system logs in order to transfer it or store it in a database, and storing your data using
a different format. This subsection will teach you how to write to a custom log file.

The name of the Go utility will be customLog.go, and the log file used will be
/tmp/mGo.log.

The Go code of customLog.go will be presented in three parts. The first part is as follows:

package main

Go and the Operating System Chapter 1

[38]

import (
 "fmt"
 "log"
 "os"
)

var LOGFILE = "/tmp/mGo.log"

The path of the log file is hardcoded into customLog.go using a global variable named
LOGFILE. For the purposes of this chapter, that log file resides inside the /tmp directory,
which is not the usual place for storing data because usually, the /tmp directory is emptied
after each system reboot. However, at this point, this will save you from having to execute
customLog.go with root privileges and from putting unnecessary files into system
directories. If you ever decide to use the code of customLog.go in a real application, you
should change that path into something more rational.

The second part of customLog.go is as follows:

func main() {
 f, err := os.OpenFile(LOGFILE, os.O_APPEND|os.O_CREATE|os.O_WRONLY,
0644)

 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

Here, you create a new log file using os.OpenFile() using the desired UNIX file
permissions (0644).

The last part of customLog.go is the following:

 iLog := log.New(f, "customLogLineNumber ", log.LstdFlags)

 iLog.SetFlags(log.LstdFlags)
 iLog.Println("Hello there!")
 iLog.Println("Another log entry!")
}

If you look at the documentation page of the log package, which, among other places, can
be found at https://golang.org/pkg/log/, you will see that the SetFlags function allows
you to set the output flags (options) for the current logger. The default values as defined by
LstdFlags are Ldate and Ltime, which means that you will get the current date and the
time in each log entry you write in your log file.

https://golang.org/pkg/log/

Go and the Operating System Chapter 1

[39]

Executing customLog.go will generate no visible output. However, after executing it
twice, the contents of /tmp/mGo.log will be as follows:

$ go run customLog.go
$ cat /tmp/mGo.log
customLog 2019/01/10 18:16:09 Hello there!
customLog 2019/01/10 18:16:09 Another log entry!
$ go run customLog.go
$ cat /tmp/mGo.log
customLog 2019/01/10 18:16:09 Hello there!
customLog 2019/01/10 18:16:09 Another log entry!
customLog 2019/01/10 18:16:17 Hello there!
customLog 2019/01/10 18:16:17 Another log entry!

Printing line numbers in log entries
In this section, you are going to learn how to print the line number of the source file that
executed the statement that wrote the log entry to a log file using the Go code of
customLogLineNumber.go. This will be presented in two parts. The first part is as follows:

package main

import (
 "fmt"
 "log"
 "os"
)

var LOGFILE = "/tmp/mGo.log"

func main() {
 f, err := os.OpenFile(LOGFILE, os.O_APPEND|os.O_CREATE|os.O_WRONLY,
0644)

 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

So far, there is nothing special when compared to the code of customLog.go.

Go and the Operating System Chapter 1

[40]

The remaining Go code of customLogLineNumber.go is as follows:

 iLog := log.New(f, "customLogLineNumber ", log.LstdFlags)
 iLog.SetFlags(log.LstdFlags | log.Lshortfile)
 iLog.Println("Hello there!")
 iLog.Println("Another log entry!")
}

All the magic happens with the iLog.SetFlags(log.LstdFlags | log.Lshortfile)
statement, which, apart from log.LstdFlags, also includes log.Lshortfile. The latter
flag adds the full filename as well as the line number of the Go statement that printed the
log entry in the log entry itself.

Executing customLogLineNumber.go will generate no visible output. However, after two
executions of customLogLineNumber.go, the contents of the /tmp/mGo.log log file will
be similar to the following:

$ go run customLogLineNumber.go
$ cat /tmp/mGo.log
customLogLineNumber 2019/01/10 18:25:14 customLogLineNumber.go:26: Hello
there!
customLogLineNumber 2019/01/10 18:25:14 customLogLineNumber.go:27: Another
log entry!
$ go run customLogLineNumber.go
$ cat /tmp/mGo.log
customLogLineNumber 2019/01/10 18:25:14 customLogLineNumber.go:26: Hello
there!
customLogLineNumber 2019/01/10 18:25:14 customLogLineNumber.go:27: Another
log entry!
customLogLineNumber 2019/01/10 18:25:23 customLogLineNumber.go:26: Hello
there!
customLogLineNumber 2019/01/10 18:25:23 customLogLineNumber.go:27: Another
log entry!

As you can see, using long names for your command-line utilities makes your log files
difficult to read.

In Chapter 2, Understanding Go Internals, you will learn how to use the
defer keyword for printing the log messages of a Go function more
elegantly.

Go and the Operating System Chapter 1

[41]

Error handling in Go
Errors and error handling are two very important Go topics. Go likes error messages so
much that it has a separate data type for errors, named error. This also means that you can
easily create your own error messages if you find that what Go gives you is not adequate.

You will most likely need to create and handle your own errors when you are developing
your own Go packages.

Please note that having an error condition is one thing, but deciding how to react to an
error condition is a totally different thing. Putting it simply, not all error conditions are
created equal, which means that some error conditions might require that you immediately
stop the execution of a program, whereas other error situations might require printing a
warning message for the user to see while continuing the execution of the program. It is up
to the developer to use common sense and decide what to do with each error value the
program might get.

Errors in Go are not like exceptions or errors in other programming
languages; they are normal Go objects that get returned from functions or
methods just like any other value.

The error data type
There are many scenarios where you might end up having to deal with a new error case
while you are developing your own Go application. The error data type is here to help
you to define your own errors.

This subsection will teach you how to create your own error variables. As you will see, in
order to create a new error variable, you will need to call the New() function of the
errors standard Go package.

The example Go code to illustrate this process can be found in newError.go and will be
presented in two parts. The first part of the program is as follows:

package main

import (
 "errors"
 "fmt"
)

func returnError(a, b int) error {

Go and the Operating System Chapter 1

[42]

 if a == b {
 err := errors.New("Error in returnError() function!")
 return err
 } else {
 return nil
 }
}

There are many interesting things happening here. First of all, you can see the definition of
a Go function other than main() for the first time in this book. The name of this new naive
function is returnError(). Additionally, you can see the errors.New() function in
action, which takes a string value as its parameter. Lastly, if a function should return an
error variable but there is not an error to report, it returns nil instead.

You will learn more about the various types of Go functions in Chapter 6,
What You Might Not Know About Go Packages and Go Functions.

The second part of newError.go is the following:

func main() {
 err := returnError(1, 2)
 if err == nil {
 fmt.Println("returnError() ended normally!")
 } else {
 fmt.Println(err)
 }

 err = returnError(10, 10)
 if err == nil {
 fmt.Println("returnError() ended normally!")
 } else {
 fmt.Println(err)
 }

 if err.Error() == "Error in returnError() function!" {
 fmt.Println("!!")
 }
}

As the code illustrates, most of the time, you need to check whether an error variable is
equal to nil and then act accordingly. What is also presented here is the use of the
errors.Error() function, which allows you to convert an error variable into a string
variable. This function lets you compare an error variable with a string variable.

Go and the Operating System Chapter 1

[43]

It is considered good practice to send your error messages to the logging
service of your UNIX machine, especially when a Go program is a server
or some other critical application. However, the code of this book will not
follow this principle everywhere in order to avoid filling your log files
with unnecessary data.

Executing newError.go will produce the following output:

$ go run newError.go
returnError() ended normally!
Error in returnError() function!
!!

If you try to compare an error variable with a string variable without first converting the
error variable to a string variable, the Go compiler will create the following error
message:

command-line-arguments
./newError.go:33:9: invalid operation: err == "Error in returnError()
function!" (mismatched types error and string)

Error handling
Error handling in a very important feature of Go because almost all Go functions return an
error message or nil, which is the Go way of saying whether there was an error condition
while executing a function. You will most likely get tired of seeing the following Go code
not only in this book but also in every other Go program you can find on the internet:

if err != nil {
 fmt.Println(err)
 os.Exit(10)
}

Please do not confuse error handling with printing to error output
because they are two totally different things. The former has to do with
Go code that handles error conditions, whereas the latter has to do with
writing something to the standard error file descriptor.

The preceding code prints the generated error message on the screen and exits your
program using os.Exit(). Please note that you can also exit your program by calling the
return keyword inside the main() function. Generally speaking, calling os.Exit() from
a function other than main() is considered a bad practice. Functions other than main()
tend to return the error message before exiting, which is handled by the calling function.

Go and the Operating System Chapter 1

[44]

Should you wish to send the error message to the logging service instead of the screen, you
should use the following variation of the preceding Go code:

if err != nil {
 log.Println(err)
 os.Exit(10)
}

Lastly, there is another variation of the preceding code that is used when something really
bad has happened and you want to terminate the program:

if err != nil {
 panic(err)
 os.Exit(10)
}

Panic is a built-in Go function that stops the execution of a program and starts panicking! If
you find yourself using panic too often, you might want to reconsider your Go
implementation. People tend to avoid panic situations in favor of errors wherever possible.

As you will see in the next chapter, Go also offers the recover function, which might be
able to save you from some bad situations. For now, you will need to wait for Chapter 2,
Understanding Go Internals, to learn more about the power of the panic and recover
function duo.

It is now time to see a Go program that not only handles error messages generated by
standard Go functions, but also defines its own error message. The name of the program is
errors.go and it will be presented to you in five parts. As you will see, the errors.go
utility tries to improve the functionality of the cla.go program you saw earlier in this
chapter by examining whether its command-line arguments are acceptable floats.

The first part of the program is as follows:

package main

import (
 "errors"
 "fmt"
 "os"
 "strconv"
)

This part of errors.go contains the expected import statements.

Go and the Operating System Chapter 1

[45]

The second portion of errors.go comes with the following Go code:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Please give one or more floats.")
 os.Exit(1)
 }

 arguments := os.Args
 var err error = errors.New("An error")
 k := 1
 var n float64

Here, you create a new error variable named err in order to initialize it with your own
value.

The third part of the program is as follows:

 for err != nil {
 if k >= len(arguments) {
 fmt.Println("None of the arguments is a float!")
 return
 }
 n, err = strconv.ParseFloat(arguments[k], 64)
 k++
 }

 min, max := n, n

This is the trickiest part of the program because if the first command-line argument is not a
proper float, you will need to check the next one and keep checking until you find a
suitable command-line argument. If none of the command-line arguments are in the correct
format, errors.go will terminate and print a message on the screen. All this checking
happens by examining the error value that is returned by strconv.ParseFloat(). All
this code is just for the accurate initialization of the min and max variables.

The fourth portion of the program comes with the following Go code:

 for i := 2; i < len(arguments); i++ {
 n, err := strconv.ParseFloat(arguments[i], 64)
 if err == nil {
 if n < min {
 min = n
 }
 if n > max {
 max = n
 }

Go and the Operating System Chapter 1

[46]

 }
 }

Here, you just process all the right command-line arguments in order to find the minimum
and maximum floats among them.

Finally, the last code portion of the program deals with just printing out the current values
of the min and max variables:

 fmt.Println("Min:", min)
 fmt.Println("Max:", max)
}

As you can see from the Go code of errors.go, most of its code is about error handling
rather than about the actual functionality of the program. Unfortunately, this is the case
with most modern software developed in Go, as well as most other programming
languages.

If you execute errors.go, you will get the following kind of output:

$ go run errors.go a b c
None of the arguments is a float!
$ go run errors.go b c 1 2 3 c -1 100 -200 a
Min: -200
Max: 100

Using Docker
In the last section of this chapter, you will learn how to use a Docker image in order to
compile and execute your Go code inside the Docker image.

As you might already know, everything in Docker begins with a Docker image; you can
either build your own Docker image from scratch or begin with an existing one. For the
purposes of this section, the base Docker image will be downloaded from Docker Hub and
we will continue with building the Go version of the Hello World! program inside that
Docker image.

The contents of the Dockerfile that will be used are as follows:

FROM golang:alpine

RUN mkdir /files
COPY hw.go /files
WORKDIR /files

Go and the Operating System Chapter 1

[47]

RUN go build -o /files/hw hw.go
ENTRYPOINT ["/files/hw"]

The first line defines the Docker image that will be used. The remaining three commands
create a new directory in the Docker image, copy a file (hw.go) from the current user
directory into the Docker image, and change the current working directory of the Docker
image, respectively. The last two commands create a binary executable from the Go source
file and specify the path of the binary file that will be executed when you run that Docker
image.

So, how do you use that Dockerfile? Provided that a file named hw.go exists in the
current working directory, you can build a new Docker image as follows:

$ docker build -t go_hw:v1 .
Sending build context to Docker daemon 2.237MB
Step 1/6 : FROM golang:alpine
alpine: Pulling from library/golang
cd784148e348: Pull complete
7e273b0dfc44: Pull complete
952c3806fd1a: Pull complete
ee1f873f86f9: Pull complete
7172cd197d12: Pull complete
Digest:
sha256:198cb8c94b9ee6941ce6d58f29aadb855f64600918ce602cdeacb018ad77d647
Status: Downloaded newer image for golang:alpine
 ---> f56365ec0638
Step 2/6 : RUN mkdir /files
 ---> Running in 18fa7784d82c
Removing intermediate container 18fa7784d82c
 ---> 9360e95d7cb4
Step 3/6 : COPY hw.go /files
 ---> 680517bc4aa3
Step 4/6 : WORKDIR /files
 ---> Running in f3f678fcc38d
Removing intermediate container f3f678fcc38d
 ---> 640117aea82f
Step 5/6 : RUN go build -o /files/hw hw.go
 ---> Running in 271cae1fa7f9
Removing intermediate container 271cae1fa7f9
 ---> dc7852b6aeeb
Step 6/6 : ENTRYPOINT ["/files/hw"]
 ---> Running in cdadf286f025
Removing intermediate container cdadf286f025
 ---> 9bec016712c4
Successfully built 9bec016712c4
Successfully tagged go_hw:v1

Go and the Operating System Chapter 1

[48]

The name of the newly created Docker image is go_hw:v1.

If the golang:alpine Docker image is already present on your computer, the output of
the preceding command will be as follows:

$ docker build -t go_hw:v1 .
Sending build context to Docker daemon 2.237MB
Step 1/6 : FROM golang:alpine
 ---> f56365ec0638
Step 2/6 : RUN mkdir /files
 ---> Running in 982e6883bb13
Removing intermediate container 982e6883bb13
 ---> 0632577d852c
Step 3/6 : COPY hw.go /files
 ---> 68a0feb2e7dc
Step 4/6 : WORKDIR /files
 ---> Running in d7d4d0c846c2
Removing intermediate container d7d4d0c846c2
 ---> 6597a7cb3882
Step 5/6 : RUN go build -o /files/hw hw.go
 ---> Running in 324400d532e0
Removing intermediate container 324400d532e0
 ---> 5496dd3d09d1
Step 6/6 : ENTRYPOINT ["/files/hw"]
 ---> Running in bbd24840d6d4
 Removing intermediate container bbd24840d6d4
 ---> 5a0d2473aa96
 Successfully built 5a0d2473aa96
 Successfully tagged go_hw:v1

You can verify that the go_hw:v1 Docker image exists on your machine as follows:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
go_hw v1 9bec016712c4 About a minute ago 312MB
golang alpine f56365ec0638 11 days ago 310MB

The contents of the hw.go file are as follows:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("Hello World!")
}

Go and the Operating System Chapter 1

[49]

You can use a Docker image that is on your local computer as follows:

$ docker run go_hw:v1
Hello World!

There are other more complex ways to execute a Docker image, but for such a naive Docker
image, this is the simplest way to use it.

If you want, you can store (push) a Docker image at a Docker registry on the internet in
order to be able to retrieve it (pull) from there afterward.

Docker Hub can be such a place, provided that you have a Docker Hub account, which is
easy to create and free. So, after creating a Docker Hub account, you should execute the
following commands on your UNIX machine and push that image to Docker Hub:

$ docker login
Authenticating with existing credentials...
Login Succeeded
$ docker tag go_hw:v1 "mactsouk/go_hw:v1"
$ docker push "mactsouk/go_hw:v1"
The push refers to repository [docker.io/mactsouk/go_hw]
bdb6946938e3: Pushed
99e21c42e35d: Pushed
0257968d27b2: Pushed
e121936484eb: Pushed
61b145086eb8: Pushed
789935042c6f: Pushed
b14874cfef59: Pushed
7bff100f35cb: Pushed
v1: digest:
sha256:c179d5d48a51b74b0883e582d53bf861c6884743eb51d9b77855949b5d91dd
e1 size: 1988

The first command is needed to log in to Docker Hub and should be executed only once.
The docker tag command is needed for specifying the name that a local image will have
on Docker Hub and should be executed before the docker push command. The last
command sends the desired Docker image to Docker Hub, hence the rich output it
generates. If you make your Docker image public, anyone will be able to pull it and use it.

You can delete one or more Docker images from your local UNIX machine in many ways.
One of them is by using the IMAGE ID of a Docker image:

$ docker rmi 5a0d2473aa96 f56365ec0638
Untagged: go_hw:v1
Deleted:
sha256:5a0d2473aa96bcdafbef92751a0e1c1bf146848966c8c971f462eb1eb242d2
a6

Go and the Operating System Chapter 1

[50]

Deleted:
sha256:5496dd3d09d13c63bf7a9ac52b90bb812690cdfd33cfc3340509f9bfe6215c
48
Deleted:
sha256:598c4e474b123eccb84f41620d2568665b88a8f176a21342030917576b9d82
a8
Deleted:
sha256:6597a7cb3882b73855d12111787bd956a9ec3abb11d9915d32f2bba4d0e92e
c6
Deleted:
sha256:68a0feb2e7dc5a139eaa7ca04e54c20e34b7d06df30bcd4934ad6511361f2c
b8
Deleted:
sha256:c04452ea9f45d85a999bdc54b55ca75b6b196320c021d777ec1f766d115aa5
14
Deleted:
sha256:0632577d852c4f9b66c0eff2481ba06c49437e447761d655073eb034fa0ac3
33
Deleted:
sha256:52efd0fa2950c8f3c3e2e44fbc4eb076c92c0f85fff46a07e060f5974c1007
a9
Untagged: golang:alpine
Untagged:
golang@sha256:198cb8c94b9ee6941ce6d58f29aadb855f64600918ce602cdeacb01
8ad77d647
Deleted:
sha256:f56365ec0638b16b752af4bf17e6098f2fda027f8a71886d6849342266cc3a
b7
Deleted:
sha256:d6a4b196ed79e7ff124b547431f77e92dce9650037e76da294b3b3aded709b
dd
Deleted:
sha256:f509ec77b9b2390c745afd76cd8dd86977c86e9ff377d5663b42b664357c35
22
Deleted:
sha256:1ee98fa99e925362ef980e651c5a685ad04cef41dd80df9be59f158cf9e529
51
Deleted:
sha256:78c8e55f8cb4c661582af874153f88c2587a034ee32d21cb57ac1fef51c610
9e
Deleted:
sha256:7bff100f35cb359a368537bb07829b055fe8e0b1cb01085a3a628ae9c187c7
b8

Docker is a huge and really important topic that we will revisit in several
chapters of this book.

Go and the Operating System Chapter 1

[51]

Exercises and links
Visit the Go site: https://golang.org/.
Visit the site of Docker: https://www.docker.com/.
Visit the Docker Hub site: https://hub.docker.com/.
Go 2 Draft Designs: https://blog.golang.org/go2draft.
Browse the Go documentation site: https://golang.org/doc/.
Visit the documentation of the log package at https:/ / golang. org/ pkg/ log/.
Visit the documentation of the log/syslog package at
https://golang.org/pkg/log/syslog/.
Visit the documentation of the os package at https://golang.org/pkg/os/.
Have a look at https://golang.org/cmd/gofmt/, which is the documentation
page of the gofmt tool that is used for formatting Go code.
Write a Go program that finds the sum of all command-line arguments that are
valid numbers.
Write a Go program that finds the average value of floating-point numbers that
are given as command-line arguments.
Write a Go program that keeps reading integers until it gets the word END as
input.
Can you modify customLog.go in order to write its log data into two log files at
the same time? You might need to read Chapter 8, Telling a UNIX System What to
Do, for help.
If you are working on a Mac machine, check the TextMate editor at
http://macromates.com/, as well as BBEdit at
https://www.barebones.com/products/bbedit/.
Visit the documentation page of the fmt package at
https://golang.org/pkg/fmt/ to learn more about verbs and the available
functions.
Please visit https:/ /blog. golang. org/ why- generics to learn more about Go
and Generics.

https://golang.org/
https://www.docker.com/
https://hub.docker.com/
https://blog.golang.org/go2draft
https://golang.org/doc/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/
https://golang.org/pkg/log/syslog/
https://golang.org/pkg/os/
https://golang.org/cmd/gofmt/
http://macromates.com/
http://macromates.com/
https://www.barebones.com/products/bbedit/
https://golang.org/pkg/fmt/
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics
https://blog.golang.org/why-generics

Go and the Operating System Chapter 1

[52]

Summary
This chapter talked about many interesting Go topics, including compiling Go code,
working with standard input, standard output, and standard error in Go, processing
command-line arguments, printing on the screen, and using the logging service of a UNIX
system, as well as error handling and some general information about Go. You should
consider all these topics as foundational information about Go.

The next chapter is all about the internals of Go, which includes talking about garbage
collection, the Go compiler, calling C code from Go, the defer keyword, the Go assembler,
and WebAssembly, as well as panic and recover.

2
Understanding Go Internals

All the Go features that you learned in the previous chapter are extremely handy and you
will be using them all the time. However, there is nothing as rewarding as being able to see
and understand what is going on in the background and how Go operates behind the
scenes.

In this chapter, you are going to learn about the Go garbage collector and the way it works.
Additionally, you will find out how to call C code from your Go programs, which you
might find indispensable in some situations. However, you will not need to use this
capability too often because Go is a very capable programming language.

Furthermore, you will learn how to call Go code from your C programs, along with how to
use the panic() and recover() functions and the defer keyword.

This chapter covers:

The Go compiler
How garbage collection works in Go
How to check the operation of the garbage collector
Calling C code from your Go code
Calling Go code from a C program
The panic() and recover() functions
The unsafe package
The handy, yet tricky, defer keyword
The strace(1) Linux utility
The dtrace(1) utility, which can be found in FreeBSD systems, including
macOS Mojave
Finding out information about your Go environment
The node trees created by Go
Creating WebAssembly code from Go
The Go assembler

Understanding Go Internals Chapter 2

[54]

The Go compiler
The Go compiler is executed with the help of the go tool, which does many more things
than just generating executable files.

The unsafe.go file used in this section does not contain any
special code – the presented commands will work on every valid Go
source file.

You can compile a Go source file using the go tool compile command. What
you will get is an object file, which is a file with the .o file extension. This is illustrated
in the output of the next commands, which were executed on a macOS Mojave
machine:

$ go tool compile unsafe.go
$ ls -l unsafe.o
-rw-r--r-- 1 mtsouk staff 6926 Jan 22 21:39 unsafe.o
$ file unsafe.o
unsafe.o: current ar archive

An object file is a file that contains object code, which is machine code in relocatable
format that, most of the time, is not directly executable. The biggest advantage of the
relocatable format is that it requires as low memory as possible during the linking
phase.

If you use the -pack command-line flag when executing go tool compile, you will get
an archive file instead of an object file:

$ go tool compile -pack unsafe.go
$ ls -l unsafe.a
-rw-r--r-- 1 mtsouk staff 6926 Jan 22 21:40 unsafe.a
$ file unsafe.a
unsafe.a: current ar archive

An archive file is a binary file that contains one or more files, and it is mainly
used for grouping multiple files into a single file. One of these formats is ar, which is
used by Go.

Understanding Go Internals Chapter 2

[55]

You can list the contents of an .a archive file as follows:

$ ar t unsafe.a
__.PKGDEF
go.o

Another truly valuable command-line flag of the go tool compile command that is
worth mentioning is -race, which allows you to detect race conditions. You will learn
more about what a race condition is and why you want to avoid it in Chapter 10,
Concurrency in Go – Advanced Topics.

You will find more uses of the go tool compile command near the end of this chapter
when we will talk about assembly language and node trees. However, for a tester, try
executing the next command:

$ go tool compile -S unsafe.go

The preceding command generates lots of output that you might find difficult to
understand, which means that Go does a pretty good job of hiding any unnecessary
complexities, unless you ask for them!

Garbage collection
Garbage collection is the process of freeing up memory space that is not being used. In
other words, the garbage collector sees which objects are out of scope and cannot be
referenced anymore, and frees the memory space they consume. This process happens in a
concurrent way while a Go program is running and not before or after the execution of the
program. The documentation of the Go garbage collector implementation states the
following:

"The GC runs concurrently with mutator threads, is type accurate (also known as
precise), allows multiple GC threads to run in parallel. It is a concurrent mark and sweep
that uses a write barrier. It is non-generational and non-compacting. Allocation is done
using size segregated per P allocation areas to minimize fragmentation while eliminating
locks in the common case."

There is lots of terminology here that will be explained in a while. But first, I will show you
a way to look at some parameters of the garbage collection process.

Understanding Go Internals Chapter 2

[56]

Fortunately, the Go standard library offers functions that allow you to study the operation
of the garbage collector and learn more about what the garbage collector secretly does. The
relevant code is saved as gColl.go and will be presented in three parts.

The first code segment of gColl.go is the following:

package main

import (
 "fmt"
 "runtime"
 "time"
)

func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC)
 fmt.Println("-----")
}

Note that each time you need to get the more recent garbage collection statistics, you will
need to call the runtime.ReadMemStats() function. The purpose of the printStats()
function is to avoid writing the same Go code all the time.

The second part of the program is the following:

func main() {
 var mem runtime.MemStats
 printStats(mem)

 for i := 0; i < 10; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)

The for loop creates many big Go slices in order to allocate large amounts of memory and
trigger the garbage collector.

Understanding Go Internals Chapter 2

[57]

The last part of gColl.go comes with the next Go code, which does more memory
allocations using Go slices:

 for i := 0; i < 10; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(5 * time.Second)
 }
 printStats(mem)
}

The output of gColl.go on a macOS Mojave machine is next:

$ go run gColl.go
mem.Alloc: 66024
mem.TotalAlloc: 66024
mem.HeapAlloc: 66024
mem.NumGC: 0

mem.Alloc: 50078496
mem.TotalAlloc: 500117056
mem.HeapAlloc: 50078496
mem.NumGC: 10

mem.Alloc: 76712
mem.TotalAlloc: 1500199904
mem.HeapAlloc: 76712
mem.NumGC: 20

Although you are not going to examine the operation of the Go garbage collector all the
time, being able to watch the way that it operates on a slow application can save so much
time in the long run. I can assure you that you will not regret the time you spend learning
about garbage collection in general and, more specifically, about the way the Go garbage
collector works.

There is a trick that allows you to get even more detailed output about the way the Go
garbage collector operates, which is illustrated in the next command:

$ GODEBUG=gctrace=1 go run gColl.go

Understanding Go Internals Chapter 2

[58]

So, if you put GODEBUG=gctrace=1 in front of any go run command, Go will print
analytical data about the operation of the garbage collector. The data will be in this form:

gc 4 @0.025s 0%: 0.002+0.065+0.018 ms clock,
 0.021+0.040/0.057/0.003+0.14 ms cpu, 47->47->0 MB, 48 MB goal, 8 P
gc 17 @30.103s 0%: 0.004+0.080+0.019 ms clock,
 0.033+0/0.076/0.071+0.15 ms cpu, 95->95->0 MB, 96 MB goal, 8 P

The preceding output tells us more information about the heap sizes during the garbage
collection process. So, let us take the 47->47->0 MB trinity of values as an example. The
first number is the heap size when the garbage collector is about to run. The second value is
the heap size when the garbage collector ends its operation. The last value is the size of the
live heap.

The tricolor algorithm
The operation of the Go garbage collector is based on the tricolor algorithm.

Please note that the tricolor algorithm is not unique to Go and can be used
in other programming languages.

Strictly speaking, the official name for the algorithm used in Go is the tricolor mark-and-
sweep algorithm. It can work concurrently with the program and uses a write barrier. This
means that when a Go program runs, the Go scheduler is responsible for the scheduling of
the application and the garbage collector. This is as if the Go scheduler has to deal with a
regular application with multiple goroutines! You will learn more about goroutines and the
Go scheduler in Chapter 9, Concurrency in Go – Goroutines, Channels, and Pipelines.

The core idea behind this algorithm came from Edsger W. Dijkstra, Leslie Lamport, A. J.
Martin, C. S. Scholten, and E. F. M. Steffens and was first illustrated in a paper named On-
the-Fly Garbage Collection: An Exercise in Cooperation.

The primary principle behind the tricolor mark-and-sweep algorithm is that it divides the
objects of the heap into three different sets according to their color, which is assigned by the
algorithm. It is now time to talk about the meaning of each color set. The objects of the
black set are guaranteed to have no pointers to any object of the white set.

Understanding Go Internals Chapter 2

[59]

However, an object of the white set can have a pointer to an object of the black set because
this has no effect on the operation of the garbage collector. The objects of the gray set might
have pointers to some objects of the white set. Finally, the objects of the white set are the
candidates for garbage collection.

Please note that no object can go directly from the black set to the white set, which allows
the algorithm to operate and be able to clear the objects on the white set. Additionally, no
object of the black set can directly point to an object of the white set.

So, when the garbage collection begins, all objects are white and the garbage collector visits
all the root objects and colors them gray. The roots are the objects that can be directly
accessed by the application, which includes global variables and other things on the stack.
These objects mostly depend on the Go code of a particular program.

After that, the garbage collector picks a gray object, makes it black, and starts looking at
whether that object has pointers to other objects of the white set. This means that when a
gray object is being scanned for pointers to other objects, it is colored black. If that scan
discovers that this particular object has one or more pointers to a white object, it puts that
white object in the gray set. This process keeps going for as long as there exist objects in the
gray set. After that, the objects in the white set are unreachable and their memory space can
be reused. Therefore, at this point, the elements of the white set are said to be garbage
collected.

Please note that if an object of the gray set becomes unreachable at some
point in a garbage collection cycle, it will not be collected at this garbage
collection cycle but in the next one! Although this is not an optimal
situation, it is not that bad.

During this process, the running application is called the mutator. The mutator runs a small
function named write barrier, which is executed each time a pointer in the heap is
modified. If the pointer of an object in the heap is modified, which means that this object is
now reachable, the write barrier colors it gray and puts it in the gray set.

The mutator is responsible for the invariant that no element of the black
set has a pointer to an element of the white set. This is accomplished with
the help of the write barrier function. Failing to accomplish this invariant
will ruin the garbage collection process and will most likely crash your
program in a pretty bad and undesirable way!

Understanding Go Internals Chapter 2

[60]

As a result, the heap is pictured as a graph of connected objects, which is also shown in
Figure 2.1, which demonstrates a single phase of a garbage collection cycle.

Figure 2.1: The Go garbage collector represents the heap of a program as a graph

So, there are three different colors: black, white, and gray. When the algorithm begins, all
objects are colored white. As the algorithm keeps going, white objects are moved into one
of the other two sets. The objects that are left in the white set are the ones that are going to
be cleared at some point.

In the presented graph, you can see that while object E, which is in the white set, can access
object F, it cannot be accessed by any other object because no other object points to object E,
which makes it a perfect candidate for garbage collection! Additionally, objects A, B, and C
are root objects and are always reachable; therefore, they cannot be garbage collected.

Can you guess what will happen next in that graph? Well, it is not that difficult to realize
that the algorithm will have to process the remaining elements of the gray set, which means
that both objects A and F will go to the black set. Object A will go to the black set because it
is a root element and F will go to the black set because it does not point to any other object
while it is in the gray set.

After object A is garbage collected, object F will become unreachable and will be garbage
collected in the next cycle of the garbage collector because an unreachable object cannot
magically become reachable in the next iteration of the garbage collection cycle.

Go garbage collection can also be applied to variables such as channels. When the garbage
collector finds out that a channel is unreachable, which is when the channel variable cannot
be accessed anymore, it will free its resources even if the channel has not been closed. You
will learn more about channels in Chapter 9, Concurrency in Go – Goroutines, Channels, and
Pipelines.

Understanding Go Internals Chapter 2

[61]

Go allows you to manually initiate garbage collection by putting a runtime.GC()
statement in your Go code. However, have in mind that runtime.GC() will block the
caller and it might block the entire program, especially if you are running a very busy Go
program with many objects. This mainly happens because you cannot perform garbage
collections while everything else is rapidly changing, as this will not give the garbage
collector the opportunity to clearly identify the members of the white, black, and gray sets.
This garbage collection status is also called a garbage collection safe-point.

You can find the long and relatively advanced Go code of the garbage collector at
https://github.com/golang/go/blob/master/src/runtime/mgc.go, which you can study
if you want to learn even more information about the garbage collection operation. You can
even make changes to that code if you are brave enough!

Note that the Go garbage collector is always being improved by the Go
team. They are trying to make it faster by lowering the number of scans it
needs to perform over the data of the three sets. However, despite the
various optimizations, the general idea behind the algorithm remains the
same.

More about the operation of the Go garbage
collector
This section will talk more about the Go garbage collector and present additional
information about its activities. The main concern of the Go garbage collector is low latency,
which basically means short pauses in its operation in order to have a real-time operation.
On the other hand, what a program does is create new objects and manipulate existing
objects with pointers all the time. This process can end up creating objects that cannot be
accessed anymore because there are no pointers pointing to these objects. These objects are
then garbage and wait for the garbage collector to clean them up and free their memory
space. After that, the memory space that has been freed is ready to be used again.

The mark-and-sweep algorithm is the simplest algorithm used. The algorithm stops the
program execution (stop-the-world garbage collector) in order to visit all the accessible
objects of the heap of a program and marks them. After that, it sweeps the inaccessible
objects. During the mark phase of the algorithm, each object is marked as white, gray, or
black. The children of a gray object are colored gray, whereas the original gray object is
now colored black. The sweep phase begins when there are no more gray objects to
examine. This technique works because there are no pointers from the black set to the white
set, which is a fundamental invariant of the algorithm.

https://github.com/golang/go/blob/master/src/runtime/mgc.go

Understanding Go Internals Chapter 2

[62]

Although the mark-and-sweep algorithm is simple, it suspends the execution of the
program while it is running, which means that it adds latency to the actual process. Go tries
to lower that particular latency by running the garbage collector as a concurrent process
and by using the tricolor algorithm described in the previous section. However, other
processes can move pointers or create new objects while the garbage collector runs
concurrently. This fact can make things pretty difficult for the garbage collector. As a result,
the point that will allow the tricolor algorithm to run concurrently will be when
maintaining the fundamental invariant of the mark-and-sweep algorithm: no object of the
black set can point to an object of the white set.

The solution to this problem is fixing all the cases that can cause a problem for the
algorithm. Therefore, new objects must go to the gray set because this way the fundamental
invariant of the mark-and-sweep algorithm cannot be altered. Additionally, when a pointer
of the program is moved, you color the object that the pointer points to as gray. The gray
set acts like a barrier between the white set and the black set. Finally, each time a pointer is
moved, some Go code gets automatically executed, which is the write barrier mentioned
earlier, which does some recoloring. The latency introduced by the execution of the write
barrier code is the price we have to pay for being able to run the garbage collector
concurrently.

Please note that the Java programming language has many garbage collectors that are
highly configurable with the help of multiple parameters. One of these Java garbage
collectors is called G1 and it is recommended for low-latency applications.

It is really important to remember that the Go garbage collector is a real-
time garbage collector that runs concurrently with the other goroutines of
a Go program and only optimizes for low latency.

In Chapter 11, Code Testing, Optimization, and Profiling, you will learn how to graphically
represent the performance of a program, which also includes information about the
operations of the Go garbage collector.

Maps, slices, and the Go garbage collector
In this section, I am going to present you with some examples showing why you should be
cautious regarding the operation of the garbage collector. The point of this section is to
understand that the way you store pointers has a great impact on the performance of the
garbage collector, especially when you are dealing with very large amounts of pointers.

Understanding Go Internals Chapter 2

[63]

The presented examples use pointers, slices, and maps, which are all
native Go data types. You will learn more about pointers, slices, and maps
in Go in Chapter 3, Working with Basic Go Data Types.

Using a slice
The example in this section will use a slice to store a large amount of structures. Each
structure stores two integer values. The Go code sliceGC.go is as follows:

package main

import (
 "runtime"
)

type data struct {
 i, j int
}

func main() {
 var N = 40000000
 var structure []data
 for i := 0; i < N; i++ {
 value := int(i)
 structure = append(structure, data{value, value})
 }

 runtime.GC()
 _ = structure[0]
}

The last statement (_ = structure[0]) is used for preventing the garbage collector from
garbage collecting the structure variable too early, as it is not referenced or used outside
of the for loop. The same technique will be used in the three Go programs that follow.
Apart from this important detail, a for loop is used for putting all values into structures
that are stored in the slice.

Using a map with pointers
In this subsection, we are going to use a map for storing all our pointers as integers. The
name of the program is mapStar.go and it contains the following Go code:

package main

Understanding Go Internals Chapter 2

[64]

import (
 "runtime"
)

func main() {
 var N = 40000000
 myMap := make(map[int]*int)
 for i := 0; i < N; i++ {
 value := int(i)
 myMap[value] = &value
 }
 runtime.GC()
 _ = myMap[0]
}

The name of the map that stores the integer pointers is myMap. A for loop is used for
putting the integer values into the map.

Using a map without pointers
In this subsection, we are going to use a map that stores plain values without pointers. The
Go code of mapNoStar.go is as follows:

package main

import (
 "runtime"
)

func main() {
 var N = 40000000
 myMap := make(map[int]int)
 for i := 0; i < N; i++ {
 value := int(i)
 myMap[value] = value
 }
 runtime.GC()
 _ = myMap[0]
}

As before, a for loop is used for putting the integer values into the map.

Understanding Go Internals Chapter 2

[65]

Splitting the map
The implementation of this subsection will split the map into a map of maps, which is also
called sharding. The program of this subsection is saved as mapSplit.go and will be
presented in two parts. The first part of mapSplit.go contains the following Go code:

package main

import (
 "runtime"
)

func main() {
 var N = 40000000
 split := make([]map[int]int, 200)

This is where the hash of hashed is defined.

The second part is as follows:

 for i := range split {
 split[i] = make(map[int]int)
 }
 for i := 0; i < N; i++ {
 value := int(i)
 split[i%200][value] = value
 }
 runtime.GC()
 _ = split[0][0]
}

This time, we are using two for loops: one for loop for creating the hash of hashes and
another one for storing the desired data in the hash of hashes.

Comparing the performance of the presented
techniques
As all four programs are using huge data structures, they are consuming large amounts of
memory. Programs that consume lots of memory space trigger the Go garbage collector
more often. So, in this subsection, we are going to compare the performance of each one of
these four implementations using the time(1) command.

Understanding Go Internals Chapter 2

[66]

What will be important in the presented output is not the exact numbers but the time
difference between the four different approaches. Here we go:

$ time go run sliceGC.go
real 1.50s
user 1.72s
sys 0.71s
$ time go run mapStar.go
real 13.62s
user 23.74s
sys 1.89s
$ time go run mapNoStar.go
real 11.41s
user 10.35s
sys 1.15s
$ time go run mapSplit.go
real 10.60s
user 10.01s
sys 0.74s

So, it turns out that maps slow down the Go garbage collector whereas slices collaborate
much better with it. It should be noted here that this is not a problem with maps but a
result of the way the Go garbage collector works. However, unless you are dealing with
maps that store huge amounts of data, this problem will not become evident in your
programs.

You will learn more about benchmarking in Go in Chapter 11, Code
Testing, Optimization, and Profiling. Additionally, you will learn a more
professional way to measure the time it took a command or a program in
Go to execute in Chapter 3, Working with Basic Go Data Types.

Enough with garbage collection and its quirks; the topic of the next section will be unsafe
code and the unsafe standard Go package.

Unsafe code
Unsafe code is Go code that bypasses the type safety and the memory security of Go. Most
of the time, unsafe code is related to pointers. However, have in mind that using unsafe
code can be dangerous for your programs, so if you are not completely sure that you need
to use unsafe code in one of your programs, do not use it!

The use of unsafe code will be illustrated in the unsafe.go program, which will be
presented in three parts.

Understanding Go Internals Chapter 2

[67]

The first part of unsafe.go is next:

package main

import (
 "fmt"
 "unsafe"
)

As you will notice, in order to use unsafe code, you will need to import the unsafe
standard Go package.

The second part of the program comes with the following Go code:

func main() {
 var value int64 = 5
 var p1 = &value
 var p2 = (*int32)(unsafe.Pointer(p1))

Note the use of the unsafe.Pointer() function here, which allows us, at our own risk, to
create an int32 pointer named p2 that points to an int64 variable named value, which is
accessed using the p1 pointer. Any Go pointer can be converted to unsafe.Pointer.

A pointer of type unsafe.Pointer can override the type system of Go.
This is unquestionably fast but it can also be dangerous if used incorrectly
or carelessly. Additionally, it gives developers more control over data.

The last part of unsafe.go has the next Go code:

 fmt.Println("*p1: ", *p1)
 fmt.Println("*p2: ", *p2)
 *p1 = 5434123412312431212
 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
 *p1 = 54341234
 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
}

You can dereference a pointer and get, use, or set its value using the star
character (*).

Understanding Go Internals Chapter 2

[68]

If you execute unsafe.go, you will have the next output:

$ go run unsafe.go
*p1: 5
*p2: 5
5434123412312431212
*p2: -930866580
54341234
*p2: 54341234

What does this output tell us? It tells us that a 32-bit pointer cannot store a 64-bit integer.

As you will see in the next section, the functions of the unsafe package can do many more
interesting things with memory.

About the unsafe package
Now you have seen the unsafe package in action, it is a good time to talk more about what
makes it a special kind of package. First of all, if you look at the source code of the unsafe
package, you might be a little surprised. On a macOS Mojave system with Go version 1.11.4
that is installed using Homebrew (https://brew.sh/), the source code of the unsafe
package is located at
/usr/local/Cellar/go/1.11.4/libexec/src/unsafe/unsafe.go and its contents
without the comments are the following:

$ cd /usr/local/Cellar/go/1.11.4/libexec/src/unsafe/
$ grep -v '^//' unsafe.go | grep -v '^$'
package unsafe
type ArbitraryType int
type Pointer *ArbitraryType
func Sizeof(x ArbitraryType) uintptr
func Offsetof(x ArbitraryType) uintptr
func Alignof(x ArbitraryType) uintptr

So, where is the rest of the Go code of the unsafe package? The answer to that question is
relatively simple: the Go compiler implements the unsafe package when you import it in
your programs.

Many low-level packages, such as runtime, syscall, and os, constantly
use the unsafe package.

https://brew.sh/

Understanding Go Internals Chapter 2

[69]

Another example of the unsafe package
In this subsection, you will learn more things about the unsafe package and its capabilities
with the help of another small Go program named moreUnsafe.go. This will be presented
in three parts. What moreUnsafe.go does is access all the elements of an array using
pointers.

The first part of the program is next:

package main

import (
 "fmt"
 "unsafe"
)

The second part of moreUnsafe.go comes with the next Go code:

func main() {
 array := [...]int{0, 1, -2, 3, 4}
 pointer := &array[0]
 fmt.Print(*pointer, " ")
 memoryAddress := uintptr(unsafe.Pointer(pointer)) +
 unsafe.Sizeof(array[0])

 for i := 0; i < len(array)-1; i++ {
 pointer = (*int)(unsafe.Pointer(memoryAddress))
 fmt.Print(*pointer, " ")
 memoryAddress = uintptr(unsafe.Pointer(pointer)) +
 unsafe.Sizeof(array[0])
 }

At first, the pointer variable points to the memory address of array[0], which is the first
element of the array of integers. Then, the pointer variable that points to an integer value
is converted to an unsafe.Pointer() and then to an uintptr. The result is stored in
memoryAddress.

The value of unsafe.Sizeof(array[0]) is what gets you to the next element of the array
because this is the memory occupied by each array element. So, that value is added to the
memoryAddress variable in each iteration of the for loop, which allows you to get the
memory address of the next array element. The *pointer notation dereferences the pointer
and returns the stored integer value.

Understanding Go Internals Chapter 2

[70]

The third part is the following:

 fmt.Println()
 pointer = (*int)(unsafe.Pointer(memoryAddress))
 fmt.Print("One more: ", *pointer, " ")
 memoryAddress = uintptr(unsafe.Pointer(pointer)) +
 unsafe.Sizeof(array[0])
 fmt.Println()
}

In the last part, we are trying to access an element of the array that does not exist using
pointers and memory addresses. The Go compiler cannot catch such a logical error due to
the use of the unsafe package and therefore will return something inaccurate.

Executing moreUnsafe.go will create the next output:

$ go run moreUnsafe.go
0 1 -2 3 4
One more: 824634208008

You have just accessed all the elements of a Go array using pointers. However, the real
problem here is that when you tried to access an invalid array element, the program did not
complain and returned a random number instead.

Calling C code from Go
Although Go intends to make your programming experience better and save you from the
quirks of C, C remains a very capable programming language that is still useful. This
means that there are situations, such as when using a database or a device driver written in
C, that still require the use of C, which means that you will need to work with C code in
your Go projects.

If you find yourself using this capability many times in the same project,
you might need to reconsider your approach or your choice of
programming language.

Calling C code from Go using the same file
The simplest way to call C code from a Go program is to include the C code in your Go
source file. This needs special treatment but it is pretty fast and not that difficult.

Understanding Go Internals Chapter 2

[71]

The name of the Go source file that contains both C and Go code is cGo.go and will be
presented in three parts.

The first part is next:

package main

//#include <stdio.h>
//void callC() {
// printf("Calling C code!\n");
//}
import "C"

As you can see, the C code is included in the comments of the Go
program. However, the go tool knows what to do with these kind of
comments because of the use of the C Go package.

The second part of the program has the next Go code:

import "fmt"

func main() {

So, all the other packages should be imported separately.

The last part of cGo.go contains the next code:

 fmt.Println("A Go statement!")
 C.callC()
 fmt.Println("Another Go statement!")
}

In order to execute the callC() C function, you will need to call it as C.callC().

Executing cGo.go will create the next output:

$ go run cGo.go
A Go statement!
Calling C code!
Another Go statement!

Calling C code from Go using separate files
Now let us continue with how to call C code from a Go program when the C code is located
in a separate file.

Understanding Go Internals Chapter 2

[72]

First, I will explain the imaginary problem that we will solve with our program. We will
need to use two C functions that we have implemented in the past and that we do not want
or cannot rewrite in Go.

The C code
This subsection will present you with the C code for the example. It comes in two files:
callC.h and callC.c. The included file (callC.h) contains the next code:

#ifndef CALLC_H
#define CALLC_H

void cHello();
void printMessage(char* message);

#endif

The C source file (callC.c) contains the next C code:

#include <stdio.h>
#include "callC.h"

void cHello() {
 printf("Hello from C!\n");
}

void printMessage(char* message) {
 printf("Go send me %s\n", message);
}

Both the callC.c and callC.h files are stored in a separate directory, which in this case is
going to be callClib. However, you can use any directory name you want.

The actual C code is not important as long as you call the right C functions
with the correct type and number of parameters. There is nothing in the C
code that tells us that it is going to be used from a Go program. You
should look at the Go code for the juicy part.

The Go code
This subsection will present you with the Go source code for the example, which will be
named callC.go and will be presented to you in three parts.

Understanding Go Internals Chapter 2

[73]

The first part of callC.go comes with the next Go code:

package main

// #cgo CFLAGS: -I${SRCDIR}/callClib
// #cgo LDFLAGS: ${SRCDIR}/callC.a
// #include <stdlib.h>
// #include <callC.h>
import "C"

The single most important Go statement of the entire Go source file is the inclusion of the C
package using a separate import statement. However, C is a virtual Go package that just
tells go build to preprocess its input file using the cgo tool before the Go compiler
processes the file. You can still see that you need to use comments to inform the Go
program about the C code. In this case, you tell callC.go where to find the callC.h file as
well as where to find the callC.a library file that we will create in a while. Such lines
begin with #cgo.

The second part of the program is the following:

import (
 "fmt"
 "unsafe"
)

func main() {
 fmt.Println("Going to call a C function!")
 C.cHello()

The last part of callC.go is next:

 fmt.Println("Going to call another C function!")
 myMessage := C.CString("This is Mihalis!")
 defer C.free(unsafe.Pointer(myMessage))
 C.printMessage(myMessage)

 fmt.Println("All perfectly done!")
}

In order to pass a string to a C function from Go, you will need to create a C string using
C.CString(). Additionally, you will need a defer statement in order to free the memory
space of the C string when it is no longer needed. The defer statement includes a call to
C.free() and another one to unsafe.Pointer().

In the next section, you will see how to compile and execute callC.go.

Understanding Go Internals Chapter 2

[74]

Mixing Go and C code
Now that you have the C code and the Go code, it is time to learn what to do next in order
to execute the Go file that calls the C code.

The good news is that you do not need to do anything particularly difficult because all the
critical information is contained in the Go file. The only critical thing that you will need to
do is compile the C code in order to create a library, which requires the execution of the
following commands:

$ ls -l callClib/
total 16
-rw-r--r--@ 1 mtsouk staff 162 Jan 10 09:17 callC.c
-rw-r--r--@ 1 mtsouk staff 89 Jan 10 09:17 callC.h
$ gcc -c callClib/*.c
$ ls -l callC.o
-rw-r--r-- 1 mtsouk staff 952 Jan 22 22:03 callC.o
$ file callC.o
callC.o: Mach-O 64-bit object x86_64
$ /usr/bin/ar rs callC.a *.o
ar: creating archive callC.a
$ ls -l callC.a
-rw-r--r-- 1 mtsouk staff 4024 Jan 22 22:03 callC.a
$ file callC.a
callC.a: current ar archive
$ rm callC.o

After that, you are going to have a file named callC.a located in the same directory as the
callC.go file. The gcc executable is the name of the C compiler.

Now you are ready to compile the file with the Go code and create a new executable file:

$ go build callC.go
$ ls -l callC
-rwxr-xr-x 1 mtsouk staff 2403184 Jan 22 22:10 callC
$ file callC
callC: Mach-O 64-bit executable x86_64

Executing the callC executable file will create the next output:

$./callC
Going to call a C function!
Hello from C!
Going to call another C function!
Go send me This is Mihalis!
All perfectly done!

Understanding Go Internals Chapter 2

[75]

If you are going to call a small amount of C code, then using a single Go
file for both C and Go code is highly recommended because of its
simplicity. However, if you are going to do something more complex and
advanced, creating a static C library should be the preferred way.

Calling Go functions from C code
It is also possible to call a Go function from your C code. Therefore, this section will present
you with a small example where two Go functions are going to be called from a C program.
The Go package is going to be converted into a C shared library that is going to be used in
the C program.

The Go package
This subsection will present you with the code of the Go package that will be used in a C
program. The name of the Go package needs to be main but its filename can be anything
you want; in this case, the filename will be usedByC.go and it will be presented in three
parts.

You will learn more about Go packages in Chapter 6, What You Might Not
Know About Go Packages and Go Functions.

The first part of the code of the Go package is next:

package main

import "C"

import (
 "fmt"
)

As I said before, it is mandatory to name the Go package main. You will also need to
import the C package in your Go code.

The second part comes with the following Go code:

//export PrintMessage
func PrintMessage() {
 fmt.Println("A Go function!")

Understanding Go Internals Chapter 2

[76]

}

Each Go function that will be called by the C code needs to be exported first. This means
that you should put a comment line starting with //export before its implementation.
After //export, you will need to put the name of the function because this is what the C
code will use.

The last part of usedByC.go is next:

//export Multiply
func Multiply(a, b int) int {
 return a * b
}

func main() {
}

The main() function of usedByC.go needs no code because it is not going to be exported
and therefore used by the C program. Additionally, as you also want to export the
Multiply() function, you will need to put //export Multiply before its
implementation.

After that, you will need to generate a C shared library from the Go code by executing the
following command:

$ go build -o usedByC.o -buildmode=c-shared usedByC.go

The preceding command will generate two files named usedByC.h and usedByC.o:

$ ls -l usedByC.*
-rw-r--r--@ 1 mtsouk staff 204 Jan 10 09:17 usedByC.go
-rw-r--r-- 1 mtsouk staff 1365 Jan 22 22:14 usedByC.h
-rw-r--r-- 1 mtsouk staff 2329472 Jan 22 22:14 usedByC.o
$ file usedByC.o
usedByC.o: Mach-O 64-bit dynamically linked shared library x86_64

You should not make any changes to usedByC.h.

The C code
The relevant C code can be found in the willUseGo.c source file, which will be presented
in two parts. The first part of willUseGo.c is next:

#include <stdio.h>
#include "usedByC.h"

Understanding Go Internals Chapter 2

[77]

int main(int argc, char **argv) {
 GoInt x = 12;
 GoInt y = 23;

 printf("About to call a Go function!\n");
 PrintMessage();

If you already know C, you will understand why you need to include usedByC.h; this is
the way the C code knows about the available functions of a library.

The second part of the C program is next:

 GoInt p = Multiply(x,y);
 printf("Product: %d\n",(int)p);
 printf("It worked!\n");
 return 0;
}

The GoInt p variable is needed for getting an integer value from a Go function, which is
converted to a C integer using the (int) p notation.

Compiling and executing willUseGo.c on a macOS Mojave machine will create the next
output:

$ gcc -o willUseGo willUseGo.c ./usedByC.o
$./willUseGo
About to call a Go function!
A Go function!
Product: 276
It worked!

The defer keyword
The defer keyword postpones the execution of a function until the surrounding function
returns, which is widely used in file input and output operations because it saves you from
having to remember when to close an opened file. The defer keyword allows you to put
the function call that closes an opened file near to the function call that opened it. As you
will learn about the use of defer in file-related operations in Chapter 8, Telling a UNIX
System What to Do, this section will present two different usages of defer. You will also see
defer in action in the section that talks about the panic() and recover() built-in Go
functions, as well as in the section that is related to logging.

Understanding Go Internals Chapter 2

[78]

It is very important to remember that deferred functions are executed in last in, first out
(LIFO) order after the return of the surrounding function. Putting it simply, this means that
if you defer function f1() first, function f2() second, and function f3() third in the
same surrounding function, when the surrounding function is about to return, function
f3() will be executed first, function f2() will be executed second, and function f1() will
be the last one to get executed.

As this definition of defer is a little unclear, I think that you will understand the use of
defer a little better by looking at the Go code and the output of the defer.go program,
which will be presented in three parts.

The first part of the program is next:

package main

import (
 "fmt"
)

func d1() {
 for i := 3; i > 0; i-- {
 defer fmt.Print(i, " ")
 }
}

Apart from the import block, the preceding Go code implements a function named d1()
with a for loop and a defer statement that will be executed three times.

The second part of defer.go comes with the next Go code:

func d2() {
 for i := 3; i > 0; i-- {
 defer func() {
 fmt.Print(i, " ")
 }()
 }
 fmt.Println()
}

In this part of the code, you can see the implementation of another function, which is
named d2(). The d2() function also contains a for loop and a defer statement, which
will also be executed three times. However, this time, the defer keyword is applied to an
anonymous function instead of a single fmt.Print() statement. Additionally, the
anonymous function takes no parameters.

Understanding Go Internals Chapter 2

[79]

The last part has the following Go code:

func d3() {
 for i := 3; i > 0; i-- {
 defer func(n int) {
 fmt.Print(n, " ")
 }(i)
 }
}

func main() {
 d1()
 d2()
 fmt.Println()
 d3()
 fmt.Println()
}

Apart from the main() function that calls the d1(), d2(), and d3() functions, you can also
see the implementation of the d3() function, which has a for loop that uses the defer
keyword on an anonymous function. However, this time, the anonymous function requires
one integer parameter named n. The Go code tells us that the n parameter takes its value
from the i variable used in the for loop.

Executing defer.go will create the next output:

$ go run defer.go
1 2 3
0 0 0
1 2 3

You will most likely find the generated output complicated and challenging to understand,
which proves that the operation and the results of the use of defer can be tricky if your
code is not clear and unambiguous. Let me explain the results in order to get a better idea
of how tricky defer can be if you do not pay close attention to your code.

We will start with the first line of the output (1 2 3) that is generated by the d1() function.
The values of i in d1() are 3, 2, and 1 in that order. The function that is deferred in d1() is
the fmt.Print() statement; as a result, when the d1() function is about to return, you get
the three values of the i variable of the for loop in reverse order because deferred
functions are executed in LIFO order.

Now, let me explain the second line of the output that is produced by the d2() function. It
is really strange that we got three zeros instead of 1 2 3 in the output; however, the reason
for that is relatively simple.

Understanding Go Internals Chapter 2

[80]

After the for loop has ended, the value of i is 0, because it is that value of i that made the
for loop terminate. However, the tricky point here is that the deferred anonymous function
is evaluated after the for loop ends because it has no parameters, which means that it is
evaluated three times for an i value of 0, hence the generated output. This kind of
confusing code is what might lead to the creation of nasty bugs in your projects, so try to
avoid it.

Finally, we will talk about the third line of the output, which is generated by the d3()
function. Due to the parameter of the anonymous function, each time the anonymous
function is deferred, it gets and therefore uses the current value of i. As a result, each
execution of the anonymous function has a different value to process, hence the generated
output.

After that, it should be clear that the best approach to the use of defer is the third one,
which is exhibited in the d3() function, because you intentionally pass the desired variable
in the anonymous function in an easy-to-understand way.

Using defer for logging
This section will present an application of defer related to logging. The purpose of this
technique is to help you organize the logging information of a function in a better way and
make it more visible. The name of the Go program that will illustrate the use of the defer
keyword in logging is logDefer.go and it will be presented in three parts.

The first part of logDefer.go is as follows:

package main

import (
 "fmt"
 "log"
 "os"
)

var LOGFILE = "/tmp/mGo.log"

func one(aLog *log.Logger) {
 aLog.Println("-- FUNCTION one ------")
 defer aLog.Println("-- FUNCTION one ------")

 for i := 0; i < 10; i++ {
 aLog.Println(i)
 }

Understanding Go Internals Chapter 2

[81]

}

The function named one() is using defer to make sure that the second aLog.Println()
call is going to be executed just before the function is about to return. Therefore, all log
messages from the function are going to be embedded between the opening
aLog.Println() and the closing aLog.Println() calls. As a result, it will be much easier
to discover the log messages of that function in your log files.

The second part of logDefer.go is the following:

func two(aLog *log.Logger) {
 aLog.Println("---- FUNCTION two")
 defer aLog.Println("FUNCTION two ------")

 for i := 10; i > 0; i-- {
 aLog.Println(i)
 }
}

The function named two() also uses defer to easily group its log messages. However, this
time two() uses slightly different messages than function one(). It is up to you to choose
the format of the logging messages.

The last part of logDefer.go contains the following Go code:

func main() {
 f, err := os.OpenFile(LOGFILE,
 os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

 iLog := log.New(f, "logDefer ", log.LstdFlags)
 iLog.Println("Hello there!")
 iLog.Println("Another log entry!")

 one(iLog)
 two(iLog)
}

Executing logDefer.go will generate no visible output. However, looking at the contents
of /tmp/mGo.log, which is the log file that is being used by the program, will make it
pretty clear how handy the use of defer is in this case:

$ cat /tmp/mGo.log

Understanding Go Internals Chapter 2

[82]

logDefer 2019/01/19 21:15:11 Hello there!
logDefer 2019/01/19 21:15:11 Another log entry!
logDefer 2019/01/19 21:15:11 -- FUNCTION one ------
logDefer 2019/01/19 21:15:11 0
logDefer 2019/01/19 21:15:11 1
logDefer 2019/01/19 21:15:11 2
logDefer 2019/01/19 21:15:11 3
logDefer 2019/01/19 21:15:11 4
logDefer 2019/01/19 21:15:11 5
logDefer 2019/01/19 21:15:11 6
logDefer 2019/01/19 21:15:11 7
logDefer 2019/01/19 21:15:11 8
logDefer 2019/01/19 21:15:11 9
logDefer 2019/01/19 21:15:11 -- FUNCTION one ------
logDefer 2019/01/19 21:15:11 ---- FUNCTION two
logDefer 2019/01/19 21:15:11 10
logDefer 2019/01/19 21:15:11 9
logDefer 2019/01/19 21:15:11 8
logDefer 2019/01/19 21:15:11 7
logDefer 2019/01/19 21:15:11 6
logDefer 2019/01/19 21:15:11 5
logDefer 2019/01/19 21:15:11 4
logDefer 2019/01/19 21:15:11 3
logDefer 2019/01/19 21:15:11 2
logDefer 2019/01/19 21:15:11 1
logDefer 2019/01/19 21:15:11 FUNCTION two ------

Panic and recover
This section will present you with a tricky technique that was first mentioned in the
previous chapter. This technique involves the use of the panic() and recover() functions
and will be presented in panicRecover.go, which you will see in three parts.

Strictly speaking, panic() is a built-in Go function that terminates the current flow of a Go
program and starts panicking. On the other hand, the recover() function, which is also a
built-in Go function, allows you to take back control of a goroutine that just panicked
using panic().

The first part of the program is next:

package main

import (
 "fmt"
)

Understanding Go Internals Chapter 2

[83]

func a() {
 fmt.Println("Inside a()")
 defer func() {
 if c := recover(); c != nil {
 fmt.Println("Recover inside a()!")
 }
 }()
 fmt.Println("About to call b()")
 b()
 fmt.Println("b() exited!")
 fmt.Println("Exiting a()")
}

Apart from the import block, this part includes the implementation of the a() function.
The most important part of function a() is the defer block of code, which implements an
anonymous function that will be called when there is a call to panic().

The second code segment of panicRecover.go is next:

func b() {
 fmt.Println("Inside b()")
 panic("Panic in b()!")
 fmt.Println("Exiting b()")
}

The last part of the program that illustrates the panic() and recover() functions is the
following:

func main() {
 a()
 fmt.Println("main() ended!")
}

Executing panicRecover.go will create the next output:

$ go run panicRecover.go
Inside a()
About to call b()
Inside b()
Recover inside a()!
main() ended!

What just happened was really impressive. However, as you can see from the output, the
a() function did not end normally because its last two statements did not get executed:

 fmt.Println("b() exited!")
 fmt.Println("Exiting a()")

Understanding Go Internals Chapter 2

[84]

Nevertheless, the good thing is that panicRecover.go ended according to our will
without panicking because the anonymous function used in defer took control of the
situation. Also note that function b() knows nothing about function a(); however,
function a() contains Go code that handles the panic condition of function b().

Using the panic function on its own
You can also use the panic() function on its own without any attempt to recover and this
subsection will show its results using the Go code of justPanic.go, which will be
presented in two parts.

The first part of justPanic.go is next:

package main

import (
 "fmt"
 "os"
)

As you can see, the use of panic() does not require any extra Go packages.

The second part of justPanic.go comes with the next Go code:

func main() {
 if len(os.Args) == 1 {
 panic("Not enough arguments!")
 }

 fmt.Println("Thanks for the argument(s)!")
}

If your Go program does not have at least one command-line argument, it will call the
panic() function. The panic() function takes one parameter, which is the error message
that you want to print on the screen.

Executing justPanic.go on a macOS Mojave machine will create the next output:

$ go run justPanic.go
panic: Not enough arguments!
goroutine 1 [running]:
main.main()
 /Users/mtsouk/ch2/code/justPanic.go:10 +0x91
exit status 2

Understanding Go Internals Chapter 2

[85]

Therefore, using the panic() function on its own will terminate the Go program without
giving you the opportunity to recover. So, the use of the panic() and recover() pair is
much more practical and professional than just using panic().

The output of the panic() function looks like the output of the Panic()
function from the log package. However, the panic() function sends
nothing to the logging service of your UNIX machine.

Two handy UNIX utilities
There are times when a UNIX program fails for some unknown reason or does not perform
well and you want to find out why without having to rewrite your code and add a plethora
of debugging statements.

This section will present two command-line utilities that allow you to see the C system calls
executed by an executable file. The names of the two tools are strace(1) and dtrace(1)
and they allow you to inspect the operation of a program.

Please remember that at the end of the day, all programs that work on
UNIX machines end up using C system calls to communicate with the
UNIX kernel and perform most of their tasks.

Although both tools can work with the go run command, you will get less unrelated
output if you first create an executable file using go build and use this file. This mainly
occurs because, as you already know, go run makes various temporary files before
actually running your Go code and both tools will see that and try to display information
about the temporary files, which is not what you want.

The strace tool
The strace(1) command-line utility allows you to trace system calls and signals. As
strace(1) only works on Linux machines, this section will use a Debian Linux machine to
showcase strace(1).

The output that strace(1) generates looks like the following:

$ strace ls
execve("/bin/ls", ["ls"], [/* 15 vars */]) = 0

Understanding Go Internals Chapter 2

[86]

brk(0) = 0x186c000
fstat(3, {st_mode=S_IFREG|0644, st_size=35288, ...}) = 0

The strace(1) output displays each system call with its parameters as well as its return
value. Please note that in the UNIX world, a return value of 0 is a good thing.

In order to process a binary file, you will need to put the strace(1) command in front of
the executable you want to process. However, you will need to interpret the output on your
own in order to make useful conclusions from it. The good thing is that tools like grep(1)
can get you the output that you are really looking for:

$ strace find /usr 2>&1 | grep ioctl
ioctl(0, SNDCTL_TMR_TIMEBASE or SNDRV_TIMER_IOCTL_NEXT_DEVICE or
TCGETS, 0x7ffe3bc59c50) = -1 ENOTTY (Inappropriate ioctl for device)
ioctl(1, SNDCTL_TMR_TIMEBASE or SNDRV_TIMER_IOCTL_NEXT_DEVICE or
TCGETS, 0x7ffe3bc59be0) = -1 ENOTTY (Inappropriate ioctl for device)

The strace(1) tool can print count time, calls, and errors for each system call when used
with the -c command-line option:

$ strace -c find /usr 1>/dev/null
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- -------------
 82.88 0.063223 2 39228 getdents
 16.60 0.012664 1 19587 newfstatat
 0.16 0.000119 0 19618 13 open

As the normal program output is printed in standard output and the output of strace(1)
is printed in standard error, the previous command discards the output of the command
that is examined and shows the output of strace(1). As you can see from the last line of
the output, the open(2) system call was called 19,618 times, generated 13 errors, and took
about 0.16% of the execution time of the entire command or about 0.000119 seconds.

The dtrace tool
Although debugging utilities such as strace(1) and truss(1) can trace system calls
produced by a process, they can be slow and therefore not appropriate for solving
performance problems on busy UNIX systems. Another tool, named DTrace, allows you to
see what happens behind the scenes on a system-wide basis without the need to modify or
recompile anything. It also allows you to work on production systems and watch running
programs or server processes dynamically without introducing a big overhead.

Understanding Go Internals Chapter 2

[87]

Although there is a version of dtrace(1) that works on Linux, the
dtrace(1) tool works best on macOS and the other FreeBSD variants.

This subsection will use the dtruss(1) command-line utility that comes with macOS,
which is just a dtrace(1) script that shows the system calls of a process and saves us from
having to write dtrace(1) code. Note that both dtrace(1) and dtruss(1) need root
privileges to run.

The output that dtruss(1) generates looks like the following:

$ sudo dtruss godoc
ioctl(0x3, 0x80086804, 0x7FFEEFBFEC20) = 0 0
close(0x3) = 0 0
access("/AppleInternal/XBS/.isChrooted\0", 0x0, 0x0) = -1 Err#2
thread_selfid(0x0, 0x0, 0x0) = 1895378 0
geteuid(0x0, 0x0, 0x0) = 0 0
 getegid(0x0, 0x0, 0x0) = 0 0

So, dtruss(1) works the same way as the strace(1) utility. Analogous to strace(1),
dtruss(1) will print system call counts when used with the -c parameter:

$ sudo dtruss -c go run unsafe.go 2>&1
CALL COUNT
access 1
bsdthread_register 1
getuid 1
ioctl 1
issetugid 1
kqueue 1
write 1
mkdir 2
read 244
kevent 474
fcntl 479
lstat64 553
psynch_cvsignal 649
psynch_cvwait 654

The preceding output will quickly inform you about potential bottlenecks in your Go code
or allow you to compare the performance of two different command-line programs.

Understanding Go Internals Chapter 2

[88]

Utilities like strace(1), dtrace(1), and dtruss(1) need some getting
used to, but such tools can make our lives so much easier and more
comfortable that I strongly suggest you start learning at least one such
tool right now.

You can learn more about the dtrace(1) utility by reading DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD by Brendan Gregg and Jim Mauro or by visiting
http://dtrace.org/.

Please have in mind that dtrace(1) is much more powerful than strace(1) because it
has its own programming language. However, strace(1) is more versatile when all you
want to do is watch the system calls of an executable file.

Your Go environment
This section will talk about finding out information about your current Go environment
using the functions and the properties of the runtime package. The name of the program
that will be developed in this section is goEnv.go and it will be presented in two parts.

The first part of goEnv.go is next:

package main

import (
 "fmt"
 "runtime"
)

As you will see in a while, the runtime package contains functions and properties that will
reveal the desired information. The second code portion of goEnv.go contains the
implementation of the main() function:

func main() {
 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("Using Go version", runtime.Version())
 fmt.Println("Number of CPUs:", runtime.NumCPU())
 fmt.Println("Number of Goroutines:", runtime.NumGoroutine())
}

http://dtrace.org/

Understanding Go Internals Chapter 2

[89]

Executing goEnv.go on a macOS Mojave machine with Go version 1.11.4 will create the
next output:

$ go run goEnv.go
You are using gc on a amd64 machine
Using Go version go1.11.4
Number of CPUs: 8
Number of Goroutines: 1

The same program generates the next output on a Debian Linux machine with Go version
1.3.3:

$ go run goEnv.go
You are using gc on a amd64 machine
Using Go version go1.3.3
Number of CPUs: 1
Number of Goroutines: 4

However, the real benefit you can get from being able to find information about your Go
environment is illustrated in the next program, named requiredVersion.go, which tells
you if you are using Go version 1.8 or higher:

package main

import (
 "fmt"
 "runtime"
 "strconv"
 "strings"
)

func main() {
 myVersion := runtime.Version()
 major := strings.Split(myVersion, ".")[0][2]
 minor := strings.Split(myVersion, ".")[1]
 m1, _ := strconv.Atoi(string(major))
 m2, _ := strconv.Atoi(minor)

 if m1 == 1 && m2 < 8 {
 fmt.Println("Need Go version 1.8 or higher!")
 return
 }

 fmt.Println("You are using Go version 1.8 or higher!")
}

Understanding Go Internals Chapter 2

[90]

The strings Go standard package is used for splitting the Go version string you get from
runtime.Version() in order to get its first two parts, whereas the strconv.Atoi()
function is used for converting a string to an integer.

Executing requiredVersion.go on the macOS Mojave machine will create the next
output:

$ go run requiredVersion.go
You are using Go version 1.8 or higher!

However, if you run requiredVersion.go on the Debian Linux machine you saw earlier
in this section, it will generate the next output:

$ go run requiredVersion.go
Need Go version 1.8 or higher!

So, by using the Go code of requiredVersion.go, you will be able to identify whether
your UNIX machine has the required Go version or not.

The go env command
If you need to get a list of all environment variables supported by Go and the Go compiler,
along with their current values, then the solution is to execute go env.

On my macOS Mojave, which uses Go version 1.11.4, the pretty rich output of go env is as
follows:

$ go env
GOARCH="amd64"
GOBIN=""
GOCACHE="/Users/mtsouk/Library/Caches/go-build"
GOEXE=""
GOFLAGS=""
GOHOSTARCH="amd64"
GOHOSTOS="darwin"
GOOS="darwin"
GOPATH="/Users/mtsouk/go"
GOPROXY=""
GORACE=""
GOROOT="/usr/local/Cellar/go/1.11.4/libexec"
GOTMPDIR=""
GOTOOLDIR="/usr/local/Cellar/go/1.11.4/libexec/pkg/tool/darwin_amd64"
GCCGO="gccgo"
CC="clang"
CXX="clang++"

Understanding Go Internals Chapter 2

[91]

CGO_ENABLED="1"
GOMOD=""
CGO_CFLAGS="-g -O2"
CGO_CPPFLAGS=""
CGO_CXXFLAGS="-g -O2"
CGO_FFLAGS="-g -O2"
CGO_LDFLAGS="-g -O2"
PKG_CONFIG="pkg-config"
GOGCCFLAGS="-fPIC -m64 -pthread -fno-caret-diagnostics -Qunused-
arguments -fmessage-length=0 -fdebug-prefix-
map=/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/go-
build790367620=/tmp/go-build -gno-record-gcc-switches -fno-common"

Please note that some of these environment variables might change if you are using a
different Go version, if your username is not mtsouk, if you are using a different UNIX
variant on a different hardware, or if you are using Go modules (GOMOD) by default.

The Go assembler
This section will briefly talk about the assembly language and the Go assembler, which is a
Go tool that allows you to see the assembly language used by the Go compiler.

As an example, you can see the assembly language of the goEnv.go program you saw in
the previous section of this chapter by executing the next command:

$ GOOS=darwin GOARCH=amd64 go tool compile -S goEnv.go

The value of the GOOS variable defines the name of the target operating system whereas the
value of the GOARCH variable defines the compilation architecture. The preceding command
was executed on a macOS Mojave machine, hence the use of the darwin value for the GOOS
variable.

The output of the previous command is pretty large even for a small program such as
goEnv.go. Some of its output is next:

"".main STEXT size=859 args=0x0 locals=0x118
 0x0000 00000 (goEnv.go:8) TEXT "".main(SB), $280-0
 0x00be 00190 (goEnv.go:9) PCDATA $0, $1
 0x0308 00776 (goEnv.go:13) PCDATA $0, $5
 0x0308 00776 (goEnv.go:13) CALL runtime.convT2E64(SB)
"".init STEXT size=96 args=0x0 locals=0x8
 0x0000 00000 (<autogenerated>:1) TEXT "".init(SB), $8-0
 0x0000 00000 (<autogenerated>:1) MOVQ (TLS), CX
 0x001d 00029 (<autogenerated>:1) FUNCDATA $0,

Understanding Go Internals Chapter 2

[92]

gclocals d4dc2f11db048877dbc0f60a22b4adb3(SB)
 0x001d 00029 (<autogenerated>:1) FUNCDATA $1,
gclocals 33cdeccccebe80329f1fdbee7f5874cb(SB)

The lines that contain the FUNCDATA and PCDATA directives are read and used by the Go
garbage collector and are automatically generated by the Go compiler.

An equivalent variant of the preceding command is next:

$ GOOS=darwin GOARCH=amd64 go build -gcflags -S goEnv.go

The list of valid GOOS values includes android, darwin, dragonfly, freebsd, linux,
nacl, netbsd, openbsd, plan9, solaris, windows, and zos. On the other hand, the list of
valid GOARCH values includes 386, amd64, amd64p32, arm, armbe, arm64, arm64be, ppc64,
ppc64le, mips, mipsle, mips64, mips64le, mips64p32, mips64p32le, ppc, s390,
s390x, sparc, and sparc64.

If you are really interested in the Go assembler and you want more
information, you should visit https://golang.org/doc/asm.

Node trees
A Go node is a struct with a large number of properties. You will learn more about
defining and using Go structures in Chapter 4, The Uses of Composite Types. Everything in a
Go program is parsed and analyzed by the modules of the Go compiler according to the
grammar of the Go programming language. The final product of this analysis is a tree that
is specific to the provided Go code and represents the program in a different way that is
suited to the compiler rather than to the developer.

Please note that go tool 6g -W test.go does not work on newer Go
versions. You should use go tool compile -W test.go instead.

This section will first use the following Go code, which is saved as nodeTree.go, as an
example in order to see the kind of low-level information the go tool can provide us with:

package main

import (
 "fmt"

https://golang.org/doc/asm

Understanding Go Internals Chapter 2

[93]

)

func main() {
 fmt.Println("Hello there!")
}

The Go code of nodeTree.go is pretty easy to understand, so you will not be surprised by
its output, which is next:

$ go run nodeTree.go
Hello there!

Now it is time to see some internal Go workings by executing the next command:

$ go tool compile -W nodeTree.go
before walk main
. CALLFUNC l(8) tc(1) STRUCT-(int, error)
. . NAME-fmt.Println a(true) l(263) x(0) class(PFUNC) tc(1) used FUNC-
func(...interface {}) (int, error)
. . DDDARG l(8) esc(no) PTR64-*[1]interface {}
. CALLFUNC-list
. . CONVIFACE l(8) esc(h) tc(1) implicit(true) INTER-interface {}
. . . NAME-main.statictmp_0 a(true) l(8) x(0) class(PEXTERN) tc(1)
used string
. VARKILL l(8) tc(1)
. . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N) used
ARRAY-[1]interface {}
after walk main
. CALLFUNC-init
. . AS l(8) tc(1)
. . . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) addrtaken assigned used ARRAY-[1]interface {}
. . AS l(8) tc(1)
. . . NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) assigned used PTR64-*[1]interface {}
. . . ADDR l(8) tc(1) PTR64-*[1]interface {}
. . . . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) addrtaken assigned used ARRAY-[1]interface {}
. . BLOCK l(8)
. . BLOCK-list
. . . AS l(8) tc(1) hascall
. . . . INDEX l(8) tc(1) assigned bounded hascall INTER-interface
{}
. IND l(8) tc(1) implicit(true) assigned hascall ARRAY-
[1]interface {}
. NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO)
esc(N) tc(1) assigned used PTR64-*[1]interface {}
. LITERAL-0 l(8) tc(1) int

Understanding Go Internals Chapter 2

[94]

. . . . EFACE l(8) tc(1) INTER-interface {}

. ADDR a(true) l(8) tc(1) PTR64-*uint8

. NAME-type.string a(true) x(0) class(PEXTERN) tc(1)
uint8
. ADDR l(8) tc(1) PTR64-*string
. NAME-main.statictmp_0 a(true) l(8) x(0)
class(PEXTERN) tc(1) addrtaken used string
. . BLOCK l(8)
. . BLOCK-list
. . . AS l(8) tc(1) hascall
. . . . NAME-main..autotmp_1 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) assigned used SLICE-[]interface {}
. . . . SLICEARR l(8) tc(1) hascall SLICE-[]interface {}
. NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO)
esc(N) tc(1) assigned used PTR64-*[1]interface {}
. CALLFUNC l(8) tc(1) hascall STRUCT-(int, error)
. . NAME-fmt.Println a(true) l(263) x(0) class(PFUNC) tc(1) used FUNC-
func(...interface {}) (int, error)
. . DDDARG l(8) esc(no) PTR64-*[1]interface {}
. CALLFUNC-list
. . AS l(8) tc(1)
. . . INDREGSP-SP a(true) l(8) x(0) tc(1) addrtaken main.__ SLICE-
[]interface {}
. . . NAME-main..autotmp_1 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) assigned used SLICE-[]interface {}
. VARKILL l(8) tc(1)
. . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N) tc(1)
addrtaken assigned used ARRAY-[1]interface {}
before walk init
. IF l(1) tc(1)
. . GT l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 l(1) tc(1) uint8
. IF-body
. . RETURN l(1) tc(1)
. IF l(1) tc(1)
. . EQ l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 l(1) tc(1) uint8
. IF-body
. . CALLFUNC l(1) tc(1)
. . . NAME-runtime.throwinit a(true) x(0) class(PFUNC) tc(1) used
FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8

Understanding Go Internals Chapter 2

[95]

. . LITERAL-1 l(1) tc(1) uint8

. CALLFUNC l(1) tc(1)

. . NAME-fmt.init a(true) l(1) x(0) class(PFUNC) tc(1) used FUNC-func()

. AS l(1) tc(1)

. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-2 l(1) tc(1) uint8
. RETURN l(1) tc(1)
after walk init
. IF l(1) tc(1)
. . GT l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 l(1) tc(1) uint8
. IF-body
. . RETURN l(1) tc(1)
. IF l(1) tc(1)
. . EQ l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 l(1) tc(1) uint8
. IF-body
. . CALLFUNC l(1) tc(1) hascall
. . . NAME-runtime.throwinit a(true) x(0) class(PFUNC) tc(1) used
FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-1 l(1) tc(1) uint8
. CALLFUNC l(1) tc(1) hascall
. . NAME-fmt.init a(true) l(1) x(0) class(PFUNC) tc(1) used FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-2 l(1) tc(1) uint8
. RETURN l(1) tc(1)

As you can understand, the Go compiler and its tools do many things behind the scenes,
even for a small program such as nodeTree.go.

The -W parameter tells the go tool compile command to print the
debug parse tree after the type checking.

Understanding Go Internals Chapter 2

[96]

Look at the output of the next two commands:

$ go tool compile -W nodeTree.go | grep before
before walk main
before walk init
$ go tool compile -W nodeTree.go | grep after
after walk main
after walk init

As you can see, the before keyword is about the beginning of the execution of a function.
If your program had more functions, you would have got more output, which is illustrated
in the next example:

$ go tool compile -W defer.go | grep before
before d1
before d2
before d3
before main
before d2.func1
before d3.func1
before init
before type..hash.[2]interface {}
before type..eq.[2]interface {}

The previous example uses the Go code of defer.go, which is much more complicated
than nodeTree.go. However, it should be obvious that the init() function is
automatically generated by Go as it exists in both outputs of go tool compile -W
(nodeTree.go and defer.go). I will now present you with a juicier version of
nodeTree.go, named nodeTreeMore.go:

package main

import (
 "fmt"
)

func functionOne(x int) {
 fmt.Println(x)
}

func main() {
 varOne := 1
 varTwo := 2
 fmt.Println("Hello there!")
 functionOne(varOne)
 functionOne(varTwo)
}

Understanding Go Internals Chapter 2

[97]

The nodeTreeMore.go program has two variables, named varOne and varTwo, and an
extra function named functionOne. Searching the output of go tool compile -W for
varOne, varTwo, and functionOne will reveal the following information:

$ go tool compile -W nodeTreeMore.go | grep functionOne | uniq
before walk functionOne
after walk functionOne
. . NAME-main.functionOne a(true) l(7) x(0) class(PFUNC) tc(1) used
FUNC-func(int)
$ go tool compile -W nodeTreeMore.go | grep varTwo | uniq
. . NAME-main.varTwo a(true) g(2) l(13) x(0) class(PAUTO) tc(1) used
int
. . . NAME-main.varTwo a(true) g(2) l(13) x(0) class(PAUTO) tc(1)
used int
$ go tool compile -W nodeTreeMore.go | grep varOne | uniq
. . NAME-main.varOne a(true) g(1) l(12) x(0) class(PAUTO) tc(1) used
int
. . . NAME-main.varOne a(true) g(1) l(12) x(0) class(PAUTO) tc(1)
used int

So, varOne is represented as NAME-main.varOne while varTwo is denoted by NAME-
main.varTwo. The functionOne() function is referenced as NAME-main.functionOne.
Consequently, the main() function is referenced as NAME-main.

Now, let us see the next code of the debug parse tree of nodeTreeMore.go:

before walk functionOne
. AS l(8) tc(1)
. . NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO) esc(N) tc(1)
assigned used int
. . NAME-main.x a(true) g(1) l(7) x(0) class(PPARAM) tc(1) used int

This data is related to the definition of functionOne(). The l(8) string tells us that the
definition of this node can be found in line eight, that is, after reading line seven. The
NAME-main..autotmp_2 integer variable is automatically generated by the compiler.

The next part of the debug parse tree output that will be explained here is:

. CALLFUNC l(15) tc(1)

. . NAME-main.functionOne a(true) l(7) x(0) class(PFUNC) tc(1) used
FUNC-func(int)
. CALLFUNC-list
. . NAME-main.varOne a(true) g(1) l(12) x(0) class(PAUTO) tc(1) used
int

Understanding Go Internals Chapter 2

[98]

The first line says that at line 15 of the program, which is specified by l(15), you will call
NAME-main.functionOne, which is defined at line seven of the program, as specified by
l(7), which is a function that requires a single integer parameter, as specified by FUNC-
func(int). The function list of parameters, which is specified after CALLFUNC-list,
includes the NAME-main.varOne variable, which is defined at line 12 of the program, as
l(12) shows.

Finding out more about go build
If you want to learn more about what is happening behind the scenes when you execute a
go build command, you should add the -x flag to it:

$ go build -x defer.go
WORK=/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/go-build254573394
mkdir -p $WORK/b001/
cat >$WORK/b001/importcfg.link << 'EOF' # internal
packagefile command-line-arguments=/Users/mtsouk/Library/Caches/go-
build/9d/9d6ca8651e083f3662adf82bb90a00837fc76f55839e65c7107bb55fcab92458-d
packagefile fmt=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/fmt.a
packagefile
runtime=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/runtime.a
packagefile
errors=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/errors.a
packagefile io=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/io.a
packagefile
math=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/math.a
packagefile os=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/os.a
packagefile
reflect=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/reflect.a
packagefile
strconv=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/strconv.a
packagefile
sync=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/sync.a
packagefile
unicode/utf8=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/unicode/u
tf8.a
packagefile
internal/bytealg=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/inter
nal/bytealg.a
packagefile
internal/cpu=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/internal/
cpu.a
packagefile
runtime/internal/atomic=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd6

Understanding Go Internals Chapter 2

[99]

4/runtime/internal/atomic.a
packagefile
runtime/internal/sys=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/r
untime/internal/sys.a
packagefile
sync/atomic=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/sync/atomi
c.a
packagefile
internal/poll=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/internal
/poll.a
packagefile
internal/syscall/unix=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/
internal/syscall/unix.a
packagefile
internal/testlog=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/inter
nal/testlog.a
packagefile
syscall=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/syscall.a
packagefile
time=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/time.a
packagefile
unicode=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/unicode.a
packagefile
math/bits=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/math/bits.a
packagefile
internal/race=/usr/local/Cellar/go/1.11.4/libexec/pkg/darwin_amd64/internal
/race.a
EOF
mkdir -p $WORK/b001/exe/
cd .
/usr/local/Cellar/go/1.11.4/libexec/pkg/tool/darwin_amd64/link -o
$WORK/b001/exe/a.out -importcfg $WORK/b001/importcfg.link -buildmode=exe -
buildid=nkFdi6n3HGYZXDdCOju1/VfKOjehfe3PSzik3cZom/OthUDj9rThOtZPf-2627/nkFd
i6n3HGYZXDdCOju1 -extld=clang /Users/mtsouk/Library/Caches/go-
build/9d/9d6ca8651e083f3662adf82bb90a00837fc76f55839e65c7107bb55fcab92458-d
/usr/local/Cellar/go/1.11.4/libexec/pkg/tool/darwin_amd64/buildid -w
$WORK/b001/exe/a.out # internal
mv $WORK/b001/exe/a.out defer
rm -r $WORK/b001/

Once again, there are many things happening in the background and it is good to be aware
of them. However, most of the time, you will not have to deal with the actual commands of
the compilation process.

Understanding Go Internals Chapter 2

[100]

Creating WebAssembly code
Go allows you to create WebAssembly code with the help of the go tool. Before I illustrate
the process, I will share more information about WebAssembly.

A quick introduction to WebAssembly
WebAssembly (Wasm) is a machine model and executable format targeting a virtual
machine. It is designed for efficiency, both in speed and file size. This means that you can
use a WebAssembly binary on any platform you want without a single change.

WebAssembly comes in two formats: plain text format and binary format. Plain text format
WebAssembly files have the .wat extension, whereas binary files have the .wasm file
extension. Notice that once you have a WebAssembly binary file, you will have to load and
use it using the JavaScript API.

Apart from Go, WebAssembly can also be generated from other programming languages
that have support for static typing, including Rust, C, and C++.

Why is WebAssembly important?
WebAssembly is important for the following reasons:

WebAssembly code runs at a speed that is pretty close to the native speed, which
means that WebAssembly is fast.
You can create WebAssembly code from many programming languages, which
might include programming languages that you already know.
Most modern web browsers natively support WebAssembly without the need for
a plugin or any other software installation.
WebAssembly code is much faster than JavaScript code.

Go and WebAssembly
For Go, WebAssembly is just another architecture. Therefore, you can use the cross-
compilation capabilities of Go in order to create WebAssembly code.

Understanding Go Internals Chapter 2

[101]

You will learn more about the cross-compilation capabilities of Go in Chapter 11, Code
Testing, Optimization, and Profiling. For now, notice the values of the GOOS and GOARCH
environment variables that are being used while compiling Go code into WebAssembly
because this is where all the magic happens.

An example
In this section, we are going to see how a Go program can be compiled into WebAssembly
code. The Go code of toWasm.go is the following:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("Creating WebAssembly code from Go!")
}

The important things to notice here are that there is no sign of WebAssembly in this code
and that toWasm.go can be compiled and executed on its own, which means that it has no
external dependencies related to WebAssembly.

The last step that you will need to take in order to create the WebAssembly code is
executing the following command:

$ GOOS=js GOARCH=wasm go build -o main.wasm toWasm.go
$ ls -l
total 4760
-rwxr-xr-x 1 mtsouk staff 2430633 Jan 19 21:00 main.wasm
-rw-r--r--@ 1 mtsouk staff 100 Jan 19 20:53 toWasm.go
$ file main.wasm
main.wasm: , created: Thu Oct 25 20:41:08 2007, modified: Fri May 28
13:51:43 2032

So, the values of GOOS and GOARCH found in the first command tell Go to create
WebAssembly code. If you do not put the right GOOS and GOARCH values, the compilation
will not generate WebAssembly code or it might fail.

Understanding Go Internals Chapter 2

[102]

Using the generated WebAssembly code
So far, we have only generated a WebAssembly binary file. However, there are still some
steps that you will need to take in order to use that WebAssembly binary file and see its
results on the window of a web browser.

If you are using Google Chrome as your web browser, then there is a flag
that allows you to enable Liftoff, which is a compiler for WebAssembly
that will theoretically improve the running time of WebAssembly code. It
does not hurt to try it! In order to change that flag, you should visit
chrome://flags/#enable-webassembly-baseline.

The first step is to copy main.wasm into a directory of your web server. Next, you will need
to execute the following command:

$ cp "$(go env GOROOT)/misc/wasm/wasm_exec.js" .

This will copy wasm_exec.js from the Go installation into the current directory. You
should put that file in the same directory of your web server that you put main.wasm.

The JavaScript code found in wasm_exec.js will not be presented here. On the other hand,
the HTML code of index.html will be presented:

<HTML>

<head>
 <meta charset="utf-8">
 <title>Go and WebAssembly</title>
</head>

<body>
 <script src="wasm_exec.js"></script>
 <script>
 if (!WebAssembly.instantiateStreaming) { // polyfill
 WebAssembly.instantiateStreaming = async (resp, importObject) => {
 const source = await (await resp).arrayBuffer();
 return await WebAssembly.instantiate(source, importObject);
 };
 }

 const go = new Go();
 let mod, inst;
 WebAssembly.instantiateStreaming(fetch("main.wasm"),
go.importObject).then((result) => {
 mod = result.module;
 inst = result.instance;

Understanding Go Internals Chapter 2

[103]

 document.getElementById("runButton").disabled = false;
 }).catch((err) => {
 console.error(err);
 });

 async function run() {
 console.clear();
 await go.run(inst);
 inst = await WebAssembly.instantiate(mod, go.importObject);
 }
 </script>

 <button onClick="run();" id="runButton" disabled>Run</button>
</body>
</HTML>

Please note that the Run button created by the HTML code will not get activated until the
WebAssembly code is loaded.

The next figure shows the output of the WebAssembly code as presented in the JavaScript
console of the Google Chrome web browser. Other web browsers will show a similar
output.

Figure 2.2: Serving WebAssembly code generated by Go

In Chapter 12, The Foundations of Network Programming in Go, you will
learn how to develop your own web servers in Go.

However, I believe there is a much easier and simpler way to test your WebAssembly
applications and that includes the use of Node.js. There is no need for a web server because
Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine.

Understanding Go Internals Chapter 2

[104]

Provided that you have Node.js already installed on your local machine, you can execute
the following command:

$ export PATH="$PATH:$(go env GOROOT)/misc/wasm"
$ GOOS=js GOARCH=wasm go run .
Creating WebAssembly code from Go!

The output of the second command verifies that the WebAssembly code is correct and
generates the desired message. Please note that the first command is not strictly required as
it just changes the current value of the PATH environment variable in order to include the
directory where the current Go installation stores its WebAssembly-related files.

General Go coding advice
The following is a list of practical advice that will help you to write better Go code:

If you have an error in a Go function, either log it or return it; do not do both
unless you have a really good reason for doing so.
Go interfaces define behaviors not data and data structures.
Use the io.Reader and io.Writer interfaces when possible because they make
your code more extensible.
Make sure that you pass a pointer to a variable to a function only when needed.
The rest of the time, just pass the value of the variable.
Error variables are not string variables; they are error variables!
Do not test your Go code on production machines unless you have a really good
reason to do so.
If you do not really know a Go feature, test it before using it for the first time,
especially if you are developing an application or a utility that will be used by a
large number of users.
If you are afraid of making mistakes, you will most likely end up doing nothing
really interesting. Experiment as much as you can!

Exercises and links
Learn more about the unsafe standard Go package by visiting its documentation
page at https://golang.org/pkg/unsafe/.
Visit the web site of DTrace at http://dtrace.org/.

https://golang.org/pkg/unsafe/
http://dtrace.org/

Understanding Go Internals Chapter 2

[105]

Use strace(1) on your Linux machine to inspect the operation of some
standard UNIX utilities such as cp(1) and ls(1). What do you see?
If you are using a macOS machine, use dtruss(1) to see how the sync(8)
utility works.
Write your own example where you use your own C code from a Go program.
Write a Go function and use it in a C program.
You can find more information about the functions of the runtime package by
visiting https://golang.org/pkg/runtime/.
Reading research papers might be difficult but it is very rewarding. Please
download the On-the-Fly Garbage Collection: An Exercise in Cooperation paper and
read it. The paper can be found in many places, including
https://dl.acm.org/citation.cfm?id=359655.
Visit https://github.com/gasche/gc-latency-experiment in order to find
benchmarking code for the garbage collector of various programming languages.
The Node.js web site can be found at https://nodejs.org/en/.
You can learn more about WebAssembly at https://webassembly.org/.
Should you wish to learn more about garbage collection, you should definitely
visit http://gchandbook.org/.
Visit the documentation page of cgo at https://golang.org/cmd/cgo/.

Summary
This chapter discussed many interesting Go topics, including theoretical and practical
information about the Go garbage collector; how to call C code from your Go programs; the
handy and sometimes tricky defer keyword; the panic() and recover() functions; the
strace(1), dtrace(1), and dtruss(1) UNIX tools; the use of the unsafe standard Go
package; how to generate WebAssembly code from Go; and assembly code generated by
Go. Finally, it shared information about your Go environment using the runtime package
and showed how to reveal and explain the node tree of a Go program, before giving you
some handy Go coding advice.

What you should remember from this chapter is that tools such as the unsafe Go package
and the ability to call C code from Go are usually used on three occasions: firstly, when you
want the best performance and you want to sacrifice some Go safety for it; secondly, when
you want to communicate with another programming language; and thirdly, when you
want to implement something that cannot be implemented in Go.

https://golang.org/pkg/runtime/
https://dl.acm.org/citation.cfm?id=359655
https://github.com/gasche/gc-latency-experiment
https://nodejs.org/en/
https://webassembly.org/
http://gchandbook.org/
https://golang.org/cmd/cgo/

Understanding Go Internals Chapter 2

[106]

In the next chapter, we will start learning about the basic data types that come with Go,
including arrays, slices, and maps. Despite their simplicity, these data types are the
building blocks of almost every Go application because they are the basis of more complex
data structures, which allows you to store your data and move information inside your Go
projects.

Additionally, you will learn about pointers, which can also be found in other programming
languages, Go loops, and the unique way that Go works with dates and times.

3
Working with Basic Go Data

Types
The previous chapter talked about many fascinating topics including the way the Go
garbage collector works, the panic() and recover() functions, the unsafe package, how
to call C code from a Go program, and how to call Go code from a C program, as well as the
node tree created by the Go compiler when compiling a Go program.

The core subject of this chapter is the basic data types of Go. This list includes numeric
types, arrays, slices, and maps. Despite their simplicity, these data types can help you to
make numeric calculations. You can also store, retrieve, and alter the data of your programs
in a very convenient and quick way. The chapter also covers pointers, constants, loops,
and working with dates and times in Go.

In this chapter, you will learn about:

Numeric data types
Go arrays
Go slices and why slices are much better than arrays
How to append an array to an existing slice
Go maps
Pointers in Go
Looping in Go
Constants in Go
Working with times
Measuring the execution time of commands and functions
Operating with dates

Working with Basic Go Data Types Chapter 3

[108]

Numeric data types
Go has native support for integers and floating-point numbers, as well as complex
numbers. The subsections that follow will tell you more about each numeric type supported
by Go.

Integers
Go offers support for four different sizes of signed and unsigned integers, named int8,
int16, int32, int64; and uint8, uint16, uint32, and uint64, respectively. The number
at the end of each type shows the number of bits used for representing each type.

Additionally, int and uint exist and are the most efficient signed and unsigned integers
for your current platform. Therefore, when in doubt, use int and uint, but have in mind
that the size of these types changes depending on the architecture.

The difference between signed and unsigned integers is the following: if an integer has
eight bits and no sign, then its values can be from binary 00000000 (0) to binary 11111111
(255). If it has a sign, then its values can be from -127 to 127. This means that you get to
have seven binary digits to store your number because the eighth bit is used for keeping the
sign of the integer. The same rule applies to the other sizes of unsigned integers.

Floating-point numbers
Go supports only two types of floating-point numbers: float32 and float64. The first
one provides about six decimal digits of precision, whereas the second one gives you 15
digits of precision.

Complex numbers
Similar to floating-point numbers, Go offers two complex number types named complex64
and complex128. The first one uses two float32: one for the real part and the other for
the imaginary part of the complex number, whereas complex128 uses two float64.
Complex numbers are expressed in the form of a + bi, where a and b are real numbers,
and i is a solution of the equation x2 = −1.

All these numeric data types are illustrated in the code of numbers.go, which will be
presented in three parts.

Working with Basic Go Data Types Chapter 3

[109]

The first part of numbers.go is as follows:

package main

import (
 "fmt"
)

func main() {
 c1 := 12 + 1i
 c2 := complex(5, 7)
 fmt.Printf("Type of c1: %T\n", c1)
 fmt.Printf("Type of c2: %T\n", c2)

 var c3 complex64 = complex64(c1 + c2)
 fmt.Println("c3:", c3)
 fmt.Printf("Type of c3: %T\n", c3)

 cZero := c3 - c3
 fmt.Println("cZero:", cZero)

In this part, we are working with complex numbers and making some calculations with
them. There are two ways to create a complex number: directly, as with c1 and c2, or
indirectly by making calculations with existing complex numbers, as with c3 and cZero.

If you mistakenly try to create a complex number as aComplex := 12 +
2 * i, there will be two possible outcomes because this statement tells
Go that you want to perform an addition and a multiplication.
If there is no numeric variable named i in the current scope, this
statement will create a syntax error and the compilation of your Go code
will fail. However, if a numeric variable named i is already defined, the
calculation will be successful, but you will not get the desired complex
number as the result (bug).

The second part of numbers.go is the following:

 x := 12
 k := 5
 fmt.Println(x)
 fmt.Printf("Type of x: %T\n", x)

 div := x / k
 fmt.Println("div", div)

Working with Basic Go Data Types Chapter 3

[110]

In this part, we are working with signed integers. Please note that if you divide two
integers, Go thinks that you want the result of the integer division and will calculate and
return the quotient of the integer division. So, trying to divide 11 by 2 will result in 5 in an
integer division and not 5.5. If you are not familiar with mathematics, this might come as a
surprise.

When you are converting a floating-point number to an integer, the
fraction is discarded by truncating the floating-point number toward zero,
which means that some data might get lost in the process.

The last part of numbers.go includes the following code:

 var m, n float64
 m = 1.223
 fmt.Println("m, n:", m, n)

 y := 4 / 2.3
 fmt.Println("y:", y)

 divFloat := float64(x) / float64(k)
 fmt.Println("divFloat", divFloat)
 fmt.Printf("Type of divFloat: %T\n", divFloat)
}

In this last part of the program, we are working with floating-point numbers. In the
presented code, you can see how you can use float64() to tell Go to create a floating-
point number when dividing two integers. If you just type divFloat := float64(x) /
k, then you will get the following error message when running the code:

$ go run numbers.go
command-line-arguments
./numbers.go:35:25: invalid operation: float64(x) / k (mismatched types
float64 and int)

Executing numbers.go will generate the following output:

Type of c1: complex128
Type of c2: complex128
c3: (17+8i)
Type of c3: complex64
cZero: (0+0i)
12
Type of x: int
div 2
m, n: 1.223 0

Working with Basic Go Data Types Chapter 3

[111]

y: 1.7391304347826086
divFloat 2.4
Type of divFloat: float64

Number literals in Go 2
At the time of writing this, there is a proposal for changes in the way Go handles number
literals. Number literals are related to the way you can define and use numbers in a
programming language. This particular proposal is related to the representation of binary
integer literals, octal integer literals, the digit separator, and support for hexadecimal
floating-point numbers.

You can find more information about the proposal related to Go 2 and number literals at
https://golang.org/design/19308-number-literals.

The people who develop Go keep a detailed release dashboard that you
can view at https://dev.golang.org/release.

Go loops
Every programming language has a way of looping and Go is no exception. Go offers the
for loop, which allows you to iterate over many kinds of data types.

Go does not offer support for the while keyword. However, for loops in
Go can replace while loops.

The for loop
The for loop allows you to iterate a predefined number of times, for as long as a condition
is valid, or according to a value that is calculated at the beginning of the for loop. Such
values include the size of a slice or an array, or the number of keys on a map. This means
that the most common way of accessing all the elements of an array, a slice, or a map is the
for loop.

https://golang.org/design/19308-number-literals
https://dev.golang.org/release

Working with Basic Go Data Types Chapter 3

[112]

The simplest form of a for loop follows. A given variable takes a range of predefined
values:

for i := 0; i < 100; i++ {
}

Generally speaking, a for loop has three sections: the first one is called the initialization,
the second one is called the condition, and the last one is called the afterthought. All
sections are optional.

In the previous loop, the values that i will take are from 0 to 99. As soon as i reaches 100,
the execution of the for loop will stop. In this case, i is a local and temporary variable,
which means that after the termination of the for loop, i will be garbage collected at some
point and disappear. However, if i was defined outside the for loop, it will keep its value
after the termination of the for loop. In this case, the value of i after the termination of the
for loop will be 100 as this was the last value of i in this particular program at this
particular point.

You can completely exit a for loop using the break keyword. The break keyword also
allows you to create a for loop without an exit condition, such as i < 100 used in the
preceding example, because the exit condition can be included in the code block of the for
loop. You are also allowed to have multiple exit conditions in a for loop. Additionally, you
can skip a single iteration of a for loop using the continue keyword.

The while loop
As discussed earlier, Go does not offer the while keyword for writing while loops but
allows you to use a for loop instead of a while loop. This section will present two
examples where a for loop does the job of a while loop.

Firstly, let's look at a typical case where you might want to write something like
while(true):

for {
}

It is the job of the developer to use the break keyword to exit this for loop.

However, the for loop can also emulate a do...while loop, which can be found in other
programming languages.

Working with Basic Go Data Types Chapter 3

[113]

As an example, the following Go code is equivalent to a
do...while(anExpression) loop:

for ok := true; ok; ok = anExpression {
}

As soon as the ok variable has the false value, the for loop will terminate.

There is also a for condition {} loop in Go where you specify the condition and the for
loop is executed for as long as the condition is true.

The range keyword
Go also offers the range keyword, which is used in for loops and allows you to write
easy-to-understand code for iterating over supported Go data types including Go channels.
The main advantage of the range keyword is that you do not need to know the cardinality
of a slice, a map, or a channel in order to process its elements one by one. You will see
range in action later in the chapter.

An example with multiple Go loops
This section will display multiple examples of for loops. The name of the file is loops.go
and will be presented in four parts. The first code segment of loops.go is next:

package main

import (
 "fmt"
)

func main() {
 for i := 0; i < 100; i++ {
 if i%20 == 0 {
 continue
 }

 if i == 95 {
 break
 }

 fmt.Print(i, " ")
 }

Working with Basic Go Data Types Chapter 3

[114]

The preceding code shows a typical for loop, as well as the use of the continue and
break keywords.

The next code segment is the following:

 fmt.Println()
 i := 10
 for {
 if i < 0 {
 break
 }
 fmt.Print(i, " ")
 i--
 }
 fmt.Println()

The offered code emulates a typical while loop. Note the use of the break keyword to exit
the for loop.

The third part of loops.go is next:

 i = 0
 anExpression := true
 for ok := true; ok; ok = anExpression {
 if i > 10 {
 anExpression = false
 }

 fmt.Print(i, " ")
 i++
 }
 fmt.Println()

In this part, you see the use of a for loop that does the job of a do...while loop, as
discussed earlier on in this chapter. Notice that this for loop is difficult to read.

The last part of loops.go comes with the next Go code:

 anArray := [5]int{0, 1, -1, 2, -2}
 for i, value := range anArray {
 fmt.Println("index:", i, "value: ", value)
 }
}

Applying the range keyword to an array variable returns two values: an array index and
the value of the element at that index, respectively.

Working with Basic Go Data Types Chapter 3

[115]

You can use both of them, one of them, or none of them in case you just want to count the
elements of the array or perform some other task the same number of times as there are
items in an array.

Executing loops.go will produce the next output:

$ go run loops.go
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
56 57 58 59 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 81 82
83 84 85 86 87 88 89 90 91 92 93 94
10 9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9 10 11
index: 0 value: 0
index: 1 value: 1
index: 2 value: -1
index: 3 value: 2
index: 4 value: -2

Go arrays
Arrays are one of the most popular data structures for two reasons. The first reason is that
they are simple and easy to understand, while the second reason is that they are very
versatile and can store many different kinds of data.

You can declare an array that stores four integers as follows:

anArray := [4]int{1, 2, 4, -4}

The size of the array is stated before its type, which is defined before its elements. You can
find the length of an array with the help of the len() function: len(anArray).

The index of the first element of any dimension of an array is zero; the index of the second
element of any array dimension is one and so on. This means that for an array with one
dimension named a, the valid indexes are from 0 to len(a)-1.

Although you might be familiar with accessing the elements of an array in other
programming languages and using a for loop and one or more numeric variables, there
exist more idiomatic ways to visit all the elements of an array in Go. They involve the use of
the range keyword and allow you to bypass the use of the len() function in the for loop.
Look at the Go code of loops.go for such an example.

Working with Basic Go Data Types Chapter 3

[116]

Multi-dimensional arrays
Arrays can have more than one dimension. However, using more than three dimensions
without a serious reason can make your program difficult to read and might create bugs.

Arrays can store all the types of elements; we are just using integers here
because they are easier to understand and type.

The following Go code shows how you can create an array with two dimensions (twoD)
and another one with three dimensions (threeD):

twoD := [4][4]int{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},
 {13, 14, 15, 16}}
threeD := [2][2][2]int{{{1, 0}, {-2, 4}}, {{5, -1}, {7, 0}}}

Accessing, assigning, or printing a single element from one of the previous two arrays can
be done easily. As an example, the first element of the twoD array is twoD[0][0] and its
value is 1.

Therefore, accessing all the elements of the threeD array with the help of multiple for
loops can be done as follows:

 for i := 0; i < len(threeD); i++ {
 for j := 0; j < len(v); j++ {
 for k := 0; k < len(m); k++ {
 }
 }
 }

As you can see, you need as many for loops as the dimensions of the array in order to
access all of its elements. The same rule applies to slices, which will be presented in the next
section. Using x, y, and z as variable names instead of i, j, and k might be a good idea
here.

The code of usingArrays.go, which will be presented in three parts, presents a complete
example of how to deal with arrays in Go.

The first part of the code is the following:

package main

import (
 "fmt"
)

Working with Basic Go Data Types Chapter 3

[117]

func main() {
 anArray := [4]int{1, 2, 4, -4}
 twoD := [4][4]int{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14,
15, 16}}
 threeD := [2][2][2]int{{{1, 0}, {-2, 4}}, {{5, -1}, {7, 0}}}

Here, you define three array variables named anArray, twoD, and threeD, respectively.

The second part of usingArrays.go is next:

 fmt.Println("The length of", anArray, "is", len(anArray))
 fmt.Println("The first element of", twoD, "is", twoD[0][0])
 fmt.Println("The length of", threeD, "is", len(threeD))

 for i := 0; i < len(threeD); i++ {
 v := threeD[i]
 for j := 0; j < len(v); j++ {
 m := v[j]
 for k := 0; k < len(m); k++ {
 fmt.Print(m[k], " ")
 }
 }
 fmt.Println()
 }

What you get from the first for loop is a two-dimensional array (threeD[i]), whereas
what you get from the second for loop is an array with one dimension (v[j]). The last for
loop iterates over the elements of the array with one dimension.

The last code part comes with the next Go code:

 for _, v := range threeD {
 for _, m := range v {
 for _, s := range m {
 fmt.Print(s, " ")
 }
 }
 fmt.Println()
 }
}

The range keyword does exactly the same job as the iteration variables used in the for
loops of the previous code segment but in a more elegant and clear way. However, if you
want to know the number of iterations that are going to be executed in advance, you cannot
use the range keyword.

Working with Basic Go Data Types Chapter 3

[118]

The range keyword also works with Go maps, which makes it pretty
handy and my preferred way of iteration. As you will see in Chapter 9,
Concurrency in Go – Goroutines, Channels, and Pipelines, the range keyword
also works with channels.

Executing usingArrays.go will generate the following output:

$ go run usingArrays.go
The length of [1 2 4 -4] is 4
The first element of [[1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16]] is 1
The length of [[[1 0] [-2 4]] [[5 -1] [7 0]]] is 2
1 0 -2 4
5 -1 7 0
1 0 -2 4
5 -1 7 0

One of the biggest problems with arrays is out-of-bounds errors, which means trying to
access an element that does not exist. This is like trying to access the sixth element of an
array with only five elements. The Go compiler considers compiler issues that can be
detected as compiler errors because this helps the development workflow. Therefore, the
Go compiler can detect out-of-bounds array access errors:

./a.go:10: invalid array index -1 (index must be non-negative)

./a.go:10: invalid array index 20 (out of bounds for 2-element array)

The shortcomings of Go arrays
Go arrays have many disadvantages that will make you reconsider using them in your Go
projects. First of all, once you define an array, you cannot change its size, which means that
Go arrays are not dynamic. Putting it simply, if you need to add an element to an existing
array that has no space left, you will need to create a bigger array and copy all the elements
of the old array to the new one. Also, when you pass an array to a function as a parameter,
you actually pass a copy of the array, which means that any changes you make to an array
inside a function will be lost after the function exits. Lastly, passing a large array to a
function can be pretty slow, mostly because Go has to create a copy of the array. The
solution to all these problems is to use Go slices, which will be presented in the next
section.

Because of their disadvantages, arrays are rarely used in Go!

Working with Basic Go Data Types Chapter 3

[119]

Go slices
Go slices are very powerful and it would not be an exaggeration to say that slices could
totally replace the use of arrays in Go. There are only a few occasions when you will need
to use an array instead of a slice. The most obvious one is when you are absolutely sure that
you will need to store a fixed number of elements.

Slices are implemented using arrays internally, which means that Go uses
an underlying array for each slice.

As slices are passed by reference to functions, which means that what is actually passed is
the memory address of the slice variable, any modifications you make to a slice inside a
function will not get lost after the function exits. Additionally, passing a big slice to a
function is significantly faster than passing an array with the same number of elements
because Go will not have to make a copy of the slice; it will just pass the memory address of
the slice variable.

Performing basic operations on slices
You can create a new slice literal as follows:

 aSliceLiteral := []int{1, 2, 3, 4, 5}

This means that slice literals are defined just like arrays but without the element count. If
you put an element count in a definition, you will get an array instead.

However, there is also the make() function, which allows you to create empty slices with
the desired length and capacity based on the parameters passed to make(). The capacity
parameter can be omitted. In that case, the capacity of the slice will be the same as its
length. So, you can define a new empty slice with 20 places that can be automatically
expanded when needed as follows:

 integer := make([]int, 20)

Please note that Go automatically initializes the elements of an empty slice to the zero value
of its type, which means that the value of the initialization depends on the type of the object
stored in the slice. It is good to know that Go initializes the elements of every slice created
with make.

Working with Basic Go Data Types Chapter 3

[120]

You can access all the elements of a slice in the following way:

 for i := 0; i < len(integer); i++ {
 fmt.Println(integer[i])
 }

If you want to empty an existing slice, the zero value for a slice variable is nil:

aSliceLiteral = nil

You can add an element to the slice, which will automatically increase its size, using the
append() function:

integer = append(integer, 12345)

You can access the first element of the integer slice as integer[0], whereas you can
access the last element of the integer slice as integer[len(integer)-1].

Lastly, you can access multiple continuous slice elements using the [:] notation. The next
statement selects the second and the third elements of a slice:

integer[1:3]

Additionally, you can use the [:] notation for creating a new slice from an existing slice or
array:

s2 := integer[1:3]

Please note that this process is called re-slicing and can cause problems in some cases. Look
at the next program:

package main

import "fmt"

func main() {

 s1 := make([]int, 5)
 reSlice := s1[1:3]
 fmt.Println(s1)
 fmt.Println(reSlice)

 reSlice[0] = -100
 reSlice[1] = 123456
 fmt.Println(s1)
 fmt.Println(reSlice)

}

Working with Basic Go Data Types Chapter 3

[121]

First, note that in order to select the second and third elements of a slice using the [:]
notation, you should use [1:3], which means starting with index number 1 and going up
to index number 3, without including index number 3.

Given an array, a1, you can create a slice, s1, that references that array by
executing s1 := a1[:].

Executing the previous code, which is saved as reslice.go, will create the next output:

$ go run reslice.go
[0 0 0 0 0]
[0 0]
[0 -100 123456 0 0]
[-100 123456]

So, at the end of the program, the contents of the s1 slice will be [0 -100 123456 0 0]
even though we did not change them directly! This means that altering the elements of a re-
slice modifies the element of the original slice because they both point to the same
underlying array. Putting it simply, the re-slice process does not make a copy of the original
slice.

The second problem from re-slicing is that even if you re-slice a slice in order to use a small
part of the original slice, the underlying array from the original slice will be kept in
memory for as long as the smaller re-slice exists because the original slice is being
referenced by the smaller re-slice. Although this is not very important for small slices, it can
cause problems when you are reading big files into slices and you want to use only a small
part of them.

Slices are expanded automatically
Slices have two main properties: capacity and length. The tricky thing is that usually these
two properties have different values. The length of a slice is the same as the length of an
array with the same number of elements and can be found using the len() function. The
capacity of a slice is the current room that has been allocated for this particular slice and can
be found with the cap() function. As slices are dynamic in size, if a slice runs out of room,
Go automatically doubles its current length to make room for more elements.

Putting it simply, if the length and the capacity of a slice have the same values and you try
to add another element to the slice, the capacity of the slice will be doubled whereas its
length will be increased by one.

Working with Basic Go Data Types Chapter 3

[122]

Although this might work well for small slices, adding a single element to a really huge
slice might take more memory than expected.

The code of lenCap.go illustrates the concepts of capacity and length in more detail and
will be presented in three parts. The first part of the program is next:

package main

import (
 "fmt"
)

func printSlice(x []int) {
 for _, number := range x {
 fmt.Print(number, " ")
 }
 fmt.Println()
}

The printSlice() function helps you to print a one-dimensional slice without having to
repeat the same Go code all the time.

The second part of lenCap.go contains the next Go code:

func main() {
 aSlice := []int{-1, 0, 4}
 fmt.Printf("aSlice: ")
 printSlice(aSlice)

 fmt.Printf("Cap: %d, Length: %d\n", cap(aSlice), len(aSlice))
 aSlice = append(aSlice, -100)
 fmt.Printf("aSlice: ")
 printSlice(aSlice)
 fmt.Printf("Cap: %d, Length: %d\n", cap(aSlice), len(aSlice))

In this part, as well as the next one, you will add some elements to the aSlice slice to alter
its length and its capacity.

The last portion of Go code is the following:

 aSlice = append(aSlice, -2)
 aSlice = append(aSlice, -3)
 aSlice = append(aSlice, -4)
 printSlice(aSlice)
 fmt.Printf("Cap: %d, Length: %d\n", cap(aSlice), len(aSlice))
}

Working with Basic Go Data Types Chapter 3

[123]

The execution of lenCap.go will create the next output:

$ go run lenCap.go
aSlice: -1 0 4
Cap: 3, Length: 3
aSlice: -1 0 4 -100
Cap: 6, Length: 4
-1 0 4 -100 -2 -3 -4
Cap: 12, Length: 7

As you can see, the initial size of the slice was three. As a result, the initial value of its
capacity was also three. After adding one element to the slice, its size became four, whereas
its capacity became six. After adding three more elements to the slice, its size became seven,
whereas its capacity was doubled one more time and became 12.

Byte slices
A byte slice is a slice where its type is byte. You can create a new byte slice named s as
follows:

s := make([]byte, 5)

Go knows that most slices of bytes are used to store strings and so makes it easy to switch
between this type and the string type. There is nothing special in the way you can access
a byte slice compared to the other types of slices. It is just that byte slices are used in file
input and output operations. You will see byte slices in action in Chapter 8, Telling a UNIX
System What to Do.

The copy() function
You can create a slice from the elements of an existing array and you can copy an existing
slice to another one using the copy() function. However, as the use of copy() can be very
tricky, this subsection will try to clarify its usage with the help of the Go code of
copySlice.go, which will be presented in four parts.

You should be very careful when using the copy() function on slices
because the built-in copy(dst, src) copies the minimum number of
len(dst) and len(src) elements.

Working with Basic Go Data Types Chapter 3

[124]

The first part of the program comes with the next Go code:

package main

import (
 "fmt"
)

func main() {
 a6 := []int{-10, 1, 2, 3, 4, 5}
 a4 := []int{-1, -2, -3, -4}
 fmt.Println("a6:", a6)
 fmt.Println("a4:", a4)

 copy(a6, a4)
 fmt.Println("a6:", a6)
 fmt.Println("a4:", a4)
 fmt.Println()

So, in the preceding code, we define two slices named a6 and a4, we print them, and then
we try to copy a4 to a6. As a6 has more elements than a4, all the elements of a4 will be
copied to a6. However, as a4 has only four elements and a6 has six elements, the last two
elements of a6 will remain the same.

The second part of copySlice.go is next:

 b6 := []int{-10, 1, 2, 3, 4, 5}
 b4 := []int{-1, -2, -3, -4}
 fmt.Println("b6:", b6)
 fmt.Println("b4:", b4)
 copy(b4, b6)
 fmt.Println("b6:", b6)
 fmt.Println("b4:", b4)

In this case, only the first four elements of b6 will be copied to b4 because b4 has only four
elements.

The third code segment of copySlice.go comes with the next Go code:

 fmt.Println()
 array4 := [4]int{4, -4, 4, -4}
 s6 := []int{1, 1, -1, -1, 5, -5}
 copy(s6, array4[0:])
 fmt.Println("array4:", array4[0:])
 fmt.Println("s6:", s6)
 fmt.Println()

Working with Basic Go Data Types Chapter 3

[125]

Here you try to copy an array with four elements to a slice with six elements. Please note
that the array is converted to a slice with the help of the [:] notation (array4[0:]).

The last code portion of copySlice.go is the following:

 array5 := [5]int{5, -5, 5, -5, 5}
 s7 := []int{7, 7, -7, -7, 7, -7, 7}
 copy(array5[0:], s7)
 fmt.Println("array5:", array5)
 fmt.Println("s7:", s7)
}

Here, you can see how you can copy a slice to an array that has space for five elements. As
copy() only accepts slice arguments, you should also use the [:] notation to convert the
array into a slice.

If you try to copy an array into a slice or vice versa without using the [:] notation, the
program will fail to compile, giving one of the next error messages:

command-line-arguments
./a.go:42:6: first argument to copy should be slice; have [5]int
./a.go:43:6: second argument to copy should be slice or string; have [5]int
./a.go:44:6: arguments to copy must be slices; have [5]int, [5]int

Executing copySlice.go will create the next output:

$ go run copySlice.go
a6: [-10 1 2 3 4 5]
a4: [-1 -2 -3 -4]
a6: [-1 -2 -3 -4 4 5]
a4: [-1 -2 -3 -4]
b6: [-10 1 2 3 4 5]
b4: [-1 -2 -3 -4]
b6: [-10 1 2 3 4 5]
b4: [-10 1 2 3]
array4: [4 -4 4 -4]
s6: [4 -4 4 -4 5 -5]
array5: [7 7 -7 -7 7]
s7: [7 7 -7 -7 7 -7 7]

Multi-dimensional slices
Slices can have many dimensions just like arrays. The next statement creates a slice with
two dimensions:

s1 := make([][]int, 4)

Working with Basic Go Data Types Chapter 3

[126]

If you find yourself using slices with many dimensions all the time, you
might need to reconsider your approach and choose a simpler design that
does not require multi-dimensional slices.

You will find a code example with a multi-dimensional slice in the next section.

Another example with slices
The Go code of the slices.go program will hopefully clarify many things about slices and
will be presented in five parts.

The first part of the program contains the expected preamble as well as the definition of
two slices:

package main

import (
 "fmt"
)

func main() {
 aSlice := []int{1, 2, 3, 4, 5}
 fmt.Println(aSlice)
 integers := make([]int, 2)
 fmt.Println(integers)
 integers = nil
 fmt.Println(integers)

The second part shows how to use the [:] notation to create a new slice that references an
existing array. Remember that you are not creating a copy of the array, just a reference to it
that will be verified in the output of the program:

 anArray := [5]int{-1, -2, -3, -4, -5}
 refAnArray := anArray[:]

 fmt.Println(anArray)
 fmt.Println(refAnArray)
 anArray[4] = -100
 fmt.Println(refAnArray)

The third code segment defines a slice with one dimension and another one with two
dimensions using the make() function:

 s := make([]byte, 5)

Working with Basic Go Data Types Chapter 3

[127]

 fmt.Println(s)
 twoD := make([][]int, 3)
 fmt.Println(twoD)
 fmt.Println()

As slices are automatically initialized by Go, all the elements of the two preceding slices
will have the zero value of the slice type, which for integers is 0 and for slices is nil. Keep
in mind that the elements of a multi-dimensional slice are slices.

In the fourth part of slices.go that comes with the next Go code, you will learn how to
manually initialize all the elements of a slice with two dimensions:

 for i := 0; i < len(twoD); i++ {
 for j := 0; j < 2; j++ {
 twoD[i] = append(twoD[i], i*j)
 }
 }

The preceding Go code shows that in order to expand an existing slice and make it grow,
you will need to use the append() function and not just reference an index that does not
exist! The latter would create a panic: runtime error: index out of range error
message. Please note that the values of the slice elements have been chosen arbitrarily.

The last part shows how to use the range keyword to visit and print all the elements of a
slice with two dimensions:

 for _, x := range twoD {
 for i, y := range x {
 fmt.Println("i:", i, "value:", y)
 }
 fmt.Println()
 }
}

If you execute slices.go, you will get the next output:

$ go run slices.go
[1 2 3 4 5]
[0 0]
[]
[-1 -2 -3 -4 -5]
[-1 -2 -3 -4 -5]
[-1 -2 -3 -4 -100]
[0 0 0 0 0]
[[] [] []]
i: 0 value: 0
i: 1 value: 0

Working with Basic Go Data Types Chapter 3

[128]

i: 0 value: 0
i: 1 value: 1
i: 0 value: 0
i: 1 value: 2

It should not come as a surprise to you that the objects of the slice with the two dimensions
are initialized to nil and therefore are printed as empty; this happens because the zero
value for the slice type is nil.

Sorting slices using sort.Slice()
This subsection will illustrate the use of the sort.Slice() function, which was first
introduced in Go version 1.8. This means that the presented code, which is saved in
sortSlice.go, will not run on older Go versions. The program will be presented in three
parts. This is the first part:

package main

import (
 "fmt"
 "sort"
)

type aStructure struct {
 person string
 height int
 weight int
}

Apart from the expected preamble, you can also see the definition of a Go structure for the
first time in this book. Chapter 4, The Uses of Composite Types, will thoroughly explore Go
structures. For now, bear in mind that structures are types with multiple variables of
multiple types.

The second part of sortSlice.go comes with the next Go code:

func main() {
 mySlice := make([]aStructure, 0)
 mySlice = append(mySlice, aStructure{"Mihalis", 180, 90})
 mySlice = append(mySlice, aStructure{"Bill", 134, 45})
 mySlice = append(mySlice, aStructure{"Marietta", 155, 45})
 mySlice = append(mySlice, aStructure{"Epifanios", 144, 50})
 mySlice = append(mySlice, aStructure{"Athina", 134, 40})

 fmt.Println("0:", mySlice)

Working with Basic Go Data Types Chapter 3

[129]

Here, you create a new slice named mySlice with elements from the aStructure structure
created earlier.

The final part of the program is the following:

 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].height < mySlice[j].height
 })
 fmt.Println("<:", mySlice)
 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].height > mySlice[j].height
 })
 fmt.Println(">:", mySlice)
}

Here, you sort mySlice two times using sort.Slice() and two anonymous functions.
This happens one anonymous function at a time, using the height field of aStructure.

Please note that sort.Slice() changes the order of the elements in the
slice according to the sorting function.

Executing sortSlice.go will create the next output:

$ go run sortSlice.go
0: [{Mihalis 180 90} {Bill 134 45} {Marietta 155 45} {Epifanios 144 50}
{Athina 134 40}]
<: [{Bill 134 45} {Athina 134 40} {Epifanios 144 50} {Marietta 155 45}
{Mihalis 180 90}]
>: [{Mihalis 180 90} {Marietta 155 45} {Epifanios 144 50} {Bill 134 45}
{Athina 134 40}]

If you try to execute sortSlice.go on a UNIX machine with a Go version older than 1.8,
you will get the next error message:

$ go version
o version go1.3.3 linux/amd64
$ go run sortSlice.go
command-line-arguments
./sortSlice.go:24: undefined: sort.Slice
./sortSlice.go:28: undefined: sort.Slice

Working with Basic Go Data Types Chapter 3

[130]

Appending an array to a slice
In this subsection, you will learn how to append an existing array to an existing slice using
the technique found in appendArrayToSlice.go. The program will be presented in two
parts. The first part is the following:

package main

import (
 "fmt"
)

func main() {
 s := []int{1, 2, 3}
 a := [3]int{4, 5, 6}

So far, we have just created and initialized a slice named s and an array named a.

The second part of appendArrayToSlice.go is as follows:

 ref := a[:]
 fmt.Println("Existing array:\t", ref)
 t := append(s, ref...)
 fmt.Println("New slice:\t", t)
 s = append(s, ref...)
 fmt.Println("Existing slice:\t", s)
 s = append(s, s...)
 fmt.Println("s+s:\t\t", s)
}

Two important things are happening here. The first is that we create a new slice named t
that contains the elements of a + s, we append the array named a to the slice named s,
and we store the result to the s slice. So, you have a choice on whether to store the new slice
in an existing slice variable or not. This mainly depends on what you want to accomplish.

The second important thing is that you have to create a reference to the existing array (ref
:= a[:]) for this to work. Please notice the way the ref variable is used in the two
append() calls: the three dots (...) are exploding the array into arguments that are
appended to the existing slice.

The last two statements of the program show how you can copy a slice to the end of itself.
The three dots (...) are still required.

Working with Basic Go Data Types Chapter 3

[131]

Executing appendArrayToSlice.go will generate the following output:

$ go run appendArrayToSlice.go
Existing array: [4 5 6]
New slice: [1 2 3 4 5 6]
Existing slice: [1 2 3 4 5 6]
s+s: [1 2 3 4 5 6 1 2 3 4 5 6]

Go maps
A Go map is equivalent to the well-known hash table found in many other programming
languages. The main advantage of maps is that they can use any data type as their index,
which in this case is called a map key or just a key. Although Go maps do not exclude any
data types from being used as keys, for a data type to be used as a key it must be
comparable, which means that the Go compiler must be able to differentiate one key from
another or, putting it simply, that the keys of a map must support the == operator.

The good news is that almost all data types are comparable. However, as you can imagine,
using the bool data type as the key to a map will definitely limit your options.
Additionally, using floating-point numbers as keys might present problems caused by the
precision used for different machines and operating systems.

As mentioned, a Go map is a reference to a hash table. The good thing is
that Go hides the implementation of the hash table and therefore its
complexity. You will learn more about implementing a hash table on your
own in Go in Chapter 5, How to Enhance Go Code with Data Structures.

You can create a new empty map with string keys and int values with the help of the
make() function:

iMap = make(map[string]int)

Alternatively, you can use the next map literal in order to create a new map that will be
populated with data:

anotherMap := map[string]int {
"k1": 12
"k2": 13
}

Working with Basic Go Data Types Chapter 3

[132]

You can access the two objects of anotherMap as anotherMap["k1"] and
anotherMap["k2"]. You can delete an object of a map using the delete() function:

delete(anotherMap, "k1")

You can iterate over all the elements of a map using the next technique:

 for key, value := range iMap {
 fmt.Println(key, value)
 }

The Go code of usingMaps.go will illustrate the use of maps in more detail. The program
will be presented in three parts. The first part comes with the following Go code:

package main

import (
 "fmt"
)

func main() {

 iMap := make(map[string]int)
 iMap["k1"] = 12
 iMap["k2"] = 13
 fmt.Println("iMap:", iMap)

 anotherMap := map[string]int{
 "k1": 12,
 "k2": 13,
 }

The second part of usingMaps.go contains the next code:

 fmt.Println("anotherMap:", anotherMap)
 delete(anotherMap, "k1")
 delete(anotherMap, "k1")
 delete(anotherMap, "k1")
 fmt.Println("anotherMap:", anotherMap)

 _, ok := iMap["doesItExist"]
 if ok {
 fmt.Println("Exists!")
 } else {
 fmt.Println("Does NOT exist")
 }

Working with Basic Go Data Types Chapter 3

[133]

Here you see a technique that allows you to determine whether a given key is in the map or
not. This is a vital technique because without it you would not know whether a given map
has the required information or not.

The bad thing is that if you try to get the value of a map key that does not
exist in the map, you will end up getting zero, which gives you no way of
determining whether the result was zero because the key you requested
was not there or because the element with the corresponding key actually
had a zero value. This is why we have _, ok in maps.

Additionally, you can see the delete() function in action. Calling the same delete()
statement multiple times does not make any difference and does not generate any warning
messages.

The last part of the program is next:

 for key, value := range iMap {
 fmt.Println(key, value)
 }
}

Here, you see the use of the range keyword on a map, which is pretty elegant and handy.

If you execute usingMaps.go, you will get the next output:

$ go run usingMaps.go
iMap: map[k1:12 k2:13]
anotherMap: map[k1:12 k2:13]
anotherMap: map[k2:13]
Does NOT exist
k1 12
k2 13

Please note that you cannot and should not make any assumptions about
the order the map pairs are going to be displayed on your screen because
that order is totally random.

Storing to a nil map
The following Go code will work:

aMap := map[string]int{}
aMap["test"] = 1

Working with Basic Go Data Types Chapter 3

[134]

However, the next Go code will not work because you have assigned the nil value to the
map you are trying to use:

aMap := map[string]int{}
// var aMap map[string]int
aMap = nil
fmt.Println(aMap)
aMap["test"] = 1

Saving the preceding code to failMap.go and trying to compile it will generate the next
error message:

$ go run failMap.go
map[]
panic: assignment to entry in nil map
...

This means that trying to insert data to a nil map will fail. However, looking up, deleting,
finding the length, and using range loops on nil maps will not crash your code.

When you should use a map
Maps are more versatile than both slices and arrays but this flexibility comes at a cost: the
extra processing power required for the implementation of a Go map. However, built-in Go
structures are very fast, so do not hesitate to use a Go map when you need to. What you
should remember is that Go maps are very convenient and can store many different kinds
of data, while being both easy to understand and fast to work with.

Go constants
Go supports constants, which are variables that cannot change their values. Constants in
Go are defined with the help of the const keyword.

Generally speaking, constants are global variables, so you might rethink
your approach if you find yourself defining too many constant variables
with a local scope.

The main benefit you get from using constants in your programs is the guarantee that their
value will not change during program execution. Strictly speaking, the value of a constant
variable is defined at compile time not at run time.

Working with Basic Go Data Types Chapter 3

[135]

Behind the scenes, Go uses Boolean, string, or number as the type for storing a constant
variable because this gives Go more flexibility when dealing with constants.

You can define a new constant as follows:

const HEIGHT = 200

Please note that in Go we do not use ALL CAPS for constants; this is just a personal
preference of mine.

Additionally, if you want to declare many constants at once, mainly because they are
related to each other, you can use the next notation:

const (
 C1 = "C1C1C1"
 C2 = "C2C2C2"
 C3 = "C3C3C3"
)

Please note that the Go compiler considers the results of all operations applied to constants
as constants. However, if a constant is part of a larger expression, this will not be the case.

Now, for something completely different, let's look at the following three variable
declarations that mean exactly the same thing in Go:

 s1 := "My String"
 var s2 = "My String"
 var s3 string = "My String"

However, as none of them have the const keyword in their declaration, none of them are
constants. This does not mean that you cannot define two constants in a similar way:

 const s1 = "My String"
 const s2 string = "My String"

Although both s1 and s2 are constants, s2 comes with a type declaration (string), which
makes its declaration more restrictive than the declaration of s1. This is because a typed Go
constant must follow all the strict rules of a typed Go variable. On the other hand, a
constant without a type doesn't need to follow all the strict rules of a typed variable, which
means that it can be mixed with expressions more liberally. Additionally, even constants
without a type have a default type that is used when, and only when, no other type
information is available. The main reason for this behavior is that as you do not know how
a constant is going to be used, you do not desire to use all the available Go rules.

Working with Basic Go Data Types Chapter 3

[136]

A simple example is the definition of a numeric constant such as const value = 123. As
you might use the value constant in many expressions, declaring a type would make your
job much more difficult. Look at the next Go code:

 const s1 = 123
 const s2 float64 = 123

 var v1 float32 = s1 * 12
 var v2 float32 = s2 * 12

Although the compiler will not have a problem with the definition of v1, the code used for
the definition of v2 will not compile because s2 and v2 have different types:

$ go run a.go
command-line-arguments
./a.go:12:6: cannot use s2 * 12 (type float64) as type float32 in
assignment

As general advice, if you are using lots of constants in your programs, it might be a good
idea to gather all of them in a Go package or a Go structure.

The constant generator iota
The constant generator iota is used for declaring a sequence of related values that use
incrementing numbers without the need to explicitly type each one of them.

Most of the concepts related to the const keyword, including the constant generator iota,
will be illustrated in the constants.go file, which will be presented in four parts.

The first code segment of constants.go is next:

package main

import (
 "fmt"
)

type Digit int
type Power2 int

const PI = 3.1415926

const (

Working with Basic Go Data Types Chapter 3

[137]

 C1 = "C1C1C1"
 C2 = "C2C2C2"
 C3 = "C3C3C3"
)

In this part, we declare two new types named Digit and Power2, and four new constants
named PI, C1, C2, and C3.

A Go type is a way of defining a new named type that uses the same
underlying type as an existing type. This is mainly used for differentiating
between different types that might use the same kind of data.

The second part of constants.go comes with the next Go code:

func main() {
 const s1 = 123
 var v1 float32 = s1 * 12
 fmt.Println(v1)
 fmt.Println(PI)

In this part, you define another constant (s1) that is used in an expression (v1).

The third part of the program is as follows:

 const (
 Zero Digit = iota
 One
 Two
 Three
 Four
)
 fmt.Println(One)
 fmt.Println(Two)

Here you see the definition of a constant generator iota based on Digit, which is
equivalent to the next declaration of four constants:

 const (
 Zero = 0
 One = 1
 Two = 2
 Three = 3
 Four = 4
)

Working with Basic Go Data Types Chapter 3

[138]

The last portion of constants.go is the following:

 const (
 p2_0 Power2 = 1 << iota
 _
 p2_2
 _
 p2_4
 _
 p2_6
)

 fmt.Println("2^0:", p2_0)
 fmt.Println("2^2:", p2_2)
 fmt.Println("2^4:", p2_4)
 fmt.Println("2^6:", p2_6)

}

There is another constant generator iota here that is a little different than the previous one.
Firstly, you can see the use of the underscore character in a const block with a constant
generator iota, which allows you to skip unwanted values. Secondly, the value of iota
always increments and can be used in expressions, which is what occurred in this case.

Now let us see what really happens inside the const block. For p2_0, iota has the value of
0 and p2_0 is defined as 1. For p2_2, iota has the value of 2 and p2_2 is defined as the
result of the expression 1 << 2, which is 00000100 in binary representation. The decimal
value of 00000100 is 4, which is the result and the value of p2_2. Analogously, the value of
p2_4 is 16 and the value of p2_6 is 32.

As you can see, the use of iota can save your time when it fits your needs.

Executing constants.go will generate the next output:

$ go run constants.go
1476
3.1415926
1
2
2^0: 1
2^2: 4
2^4: 16
2^6: 64

Working with Basic Go Data Types Chapter 3

[139]

Go pointers
Go supports pointers, which are memory addresses that offer improved speed in exchange
for difficult-to-debug code and nasty bugs. Ask any C programmer you know to learn more
about this.

You have already seen pointers in action in Chapter 2, Understanding Go Internals, when we
talked about unsafe code and the unsafe package, as well as the Go garbage collector, but
this section will try to shed more light on this difficult and tricky subject. Additionally,
native Go pointers are safe provided that you know what you are doing.

When working with pointers, you need * to get the value of a pointer, which is called
dereferencing the pointer, and & to get the memory address of a non-pointer variable.

Generally speaking, amateur developers should use pointers only when
the libraries they use require it because pointers can be the cause of
horrible and difficult-to-discover bugs when used carelessly.

You can make a function accept a pointer parameter as follows:

func getPointer(n *int) {
}

Similarly, a function can return a pointer as follows:

func returnPointer(n int) *int {
}

The use of safe Go pointers is illustrated in pointers.go, which will be presented in four
parts. The first code segment of pointers.go is next:

package main

import (
 "fmt"
)

func getPointer(n *int) {
 *n = *n * *n

}

func returnPointer(n int) *int {
 v := n * n
 return &v

Working with Basic Go Data Types Chapter 3

[140]

}

The good thing with getPointer() is that it allows you to update the variable passed to it
without the need to return anything to the caller function. This happens because the pointer
passed as a parameter contains the memory address of the variable.

On the other hand, returnPointer() gets an integer parameter and returns a pointer to
an integer, which is denoted by return &v. Although this might not look that useful, you
will really appreciate this capability in Chapter 4, The Uses of Composite Types, when we talk
about pointers to Go structures as well as in later chapters where more complex data
structures will be involved.

Both the getPointer() and returnPointer() functions find the square of an integer.
However, they use a totally different approach as getPointer() stores the result to the
provided parameter whereas returnPointer() returns the result and requires a different
variable for storing it.

The second part of the program contains the next Go code:

func main() {
 i := -10
 j := 25

 pI := &i
 pJ := &j

 fmt.Println("pI memory:", pI)
 fmt.Println("pJ memory:", pJ)
 fmt.Println("pI value:", *pI)
 fmt.Println("pJ value:", *pJ)

Both i and j are normal integer variables. However, pI and pJ are both pointers pointing
to i and j, respectively. pI is the memory address of the pointer, whereas *pI is the value
stored to that memory address.

The third part of pointers.go is the following:

 *pI = 123456
 *pI--
 fmt.Println("i:", i)

Working with Basic Go Data Types Chapter 3

[141]

Here, you can see how you can change the i variable through the pI pointer that points to
i in two different ways: firstly, by directly assigning a new value to it and secondly, by
using the -- operator.

The last code portion of pointers.go comes with the next Go code:

 getPointer(pJ)
 fmt.Println("j:", j)
 k := returnPointer(12)
 fmt.Println(*k)
 fmt.Println(k)
}

Here you call the getPointer() function using pJ as its parameter. As we talked about
before, any changes made to the variable that pJ points to inside getPointer() will have
an effect on the value of the j variable, which will be verified by the output of the
fmt.Println("j:", j) statement. The call to returnPointer() returns a pointer that is
assigned to the k pointer variable.

Running pointers.go will create the next output:

$ go run pointers.go
pI memory: 0xc0000160b0
pJ memory: 0xc0000160b8
pI value: -10
pJ value: 25
i: 123455
j: 625
144
0xc0000160f0

I recognize that you might have trouble understanding the Go code of pointers.go
because we have not talked about functions and function definitions yet. Feel free to look at
Chapter 6, What You Might Not Know About Go Packages and Go Functions, where things
related to functions are explained in more detail.

Please note that strings in Go are value types not pointers as is the case in
C.

Working with Basic Go Data Types Chapter 3

[142]

Why use pointers?
There are two main reasons for using pointers in your programs:

Pointers allow you to share data, especially between Go functions.
Pointers can be extremely useful when you want to differentiate between a zero
value and a value that is not set.

Times and dates
In this section, you are going to learn how to parse time and date strings in Go, how to
convert between different time and date formats, and how to print times and dates in the
format you desire. Although this task might look insignificant at first, it can be truly critical
when you want to synchronize multiple tasks or when your application needs to read the
date from one or more text files, or directly from the user.

The time package is the star of working with times and dates in Go; you will see some of
its functions in action in this section.

Before learning how to parse a string and convert it into a time or a date, you will see a
simple program named usingTime.go that will introduce you to the time package. The
program will be presented in three parts. The first part is the following:

package main

import (
 "fmt"
 "time"
)

The second code segment of usingTime.go comes with the next Go code:

func main() {
 fmt.Println("Epoch time:", time.Now().Unix())
 t := time.Now()
 fmt.Println(t, t.Format(time.RFC3339))
 fmt.Println(t.Weekday(), t.Day(), t.Month(), t.Year())

 time.Sleep(time.Second)
 t1 := time.Now()
 fmt.Println("Time difference:", t1.Sub(t))

Working with Basic Go Data Types Chapter 3

[143]

The time.Now().Unix() function returns the UNIX epoch time, which is the number of
seconds that have elapsed since 00:00:00 UTC, 1 January, 1970. The Format() function
allows you to convert a time variable to another format; in this case, the RFC3339 format.

You will see the time.Sleep() function many times in this book as a naive way of
emulating the delay from the execution of a true function. The time.Second constant
allows you to use a one-second duration in Go. If you want to define a duration of 10
seconds, you will need to multiply time.Second by 10. Other similar constants include
time.Nanosecond, time.Microsecond, time.Millisecond, time.Minute, and
time.Hour. So, the smallest amount of time that can be defined with the time package is
the nanosecond. Lastly, the time.Sub() function allows you to find the time difference
between two times.

The last part of the program is next:

 formatT := t.Format("01 January 2006")
 fmt.Println(formatT)
 loc, _ := time.LoadLocation("Europe/Paris")
 londonTime := t.In(loc)
 fmt.Println("Paris:", londonTime)
}

Here you define a new date format using time.Format() in order to use it for printing out
a time variable.

Executing usingTime.go will generate the next output:

$ go run usingTime.go
Epoch time: 1548753515
2019-01-29 11:18:35.01478 +0200 EET m=+0.000339641
2019-01-29T11:18:35+02:00
Tuesday 29 January 2019
Time difference: 1.000374985s
01 January 2019
Paris: 2019-01-29 10:18:35.01478 +0100 CET

Now that you know the basics of the time package, it is time to dig deeper into its
functionality, starting with working with times.

Working with Basic Go Data Types Chapter 3

[144]

Working with times
When you have a time variable, it is easy to convert it into anything that is related to time
or date. However, the main problem is when you have a string and you want to see
whether this is a valid time or not. The function used for parsing time and date strings is
called time.Parse() and it accepts two parameters. The first one denotes the expected
format of the string that you are going to parse, whereas the second parameter is the actual
string that is going to be parsed. The first parameter is composed of elements from a list of
Go constants related to date and time parsing.

The list of constants that can be used for creating your own parse format
can be found at https://golang.org/src/time/format.go. Go does not
define the format of a date or a time in a form like DDYYYYMM or %D %Y %M
as other programming languages do but uses its own approach. Although
you might find this approach strange at first, you will certainly appreciate
it as it prevents the developer from making silly mistakes.

The Go constants for working with times are 15 for parsing the hour, 04 for parsing the
minutes, and 05 for parsing the seconds. You can easily guess that all these numeric values
must be unique. You can use PM for parsing the PM string in uppercase and pm for parsing
the lowercase version.

Please note that you are not obligated to use every available Go constant. The main task of
the developer is putting the various Go constants in the desired order to match the kind of
strings that the program will have to process. You can consider the final version of the
string that is passed as the first parameter to the time.Parse() function as a regular
expression.

Parsing times
This section will tell you how to parse a string, which is given as a command-line argument
to the parseTime.go utility in order to convert it into a time variable. However, this is not
always possible because the given string might not be in the correct format or might contain
invalid characters. The parseTime.go utility will be presented in three parts.

The first code segment of parseTime.go is next:

package main

import (
 "fmt"
 "os"

https://golang.org/src/time/format.go

Working with Basic Go Data Types Chapter 3

[145]

 "path/filepath"
 "time"
)

The second part comes with the next code:

func main() {
 var myTime string
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s string\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 myTime = os.Args[1]

The last portion of parseTime.go, which is where the magic happens, is the following:

 d, err := time.Parse("15:04", myTime)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Time:", d.Hour(), d.Minute())
 } else {
 fmt.Println(err)
 }
}

In order to parse an hour and minute string, you will need to use "15:04". The value of the
err variable tells you whether the parsing was successful or not.

Executing parseTime.go will create the next kind of output:

$ go run parseTime.go
usage: parseTime string
exit status 1
$ go run parseTime.go 12:10
Full: 0000-01-01 12:10:00 +0000 UTC
Time: 12 10

As you can see here, Go prints a full date and time string because this is what is stored in a
time variable. If you are only interested in the time and not in the date, you should print
the parts of a time variable that you want.

If you use a wrong Go constant like 22:04 when trying to parse a string and convert it into
a time, you will get the next error message:

$ go run parseTime.go 12:10
parsing time "12:10" as "22:04": cannot parse ":10" as "2"

Working with Basic Go Data Types Chapter 3

[146]

However, if you use a Go constant like 11 that is used for parsing months when the month
is given as a number, the error message will be slightly different:

$ go run parseTime.go 12:10
parsing time "12:10": month out of range

Working with dates
In this subsection, you will learn how to parse strings that denote dates in Go, which still
requires the use of the time.Parse() function.

The Go constants for working with dates are Jan for parsing the three-letter abbreviation
used for describing a month, 2006 for parsing the year, and 02 for parsing the day of the
month. If you use January instead of Jan, you will get the long name of the month instead
of its three-letter abbreviation, which makes perfect sense.

Additionally, you can use Monday for parsing strings that contain a long weekday string
and Mon for the abbreviated version of the weekday.

Parsing dates
The name of the Go program that will be developed in this subsection is parseDate.go
and it will be presented in two parts.

The first part of parseDate.go is next:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "time"
)

func main() {

 var myDate string
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s string\n",
 filepath.Base(os.Args[0]))
 return
 }

Working with Basic Go Data Types Chapter 3

[147]

 myDate = os.Args[1]

The second part of parseDate.go contains the following Go code:

 d, err := time.Parse("02 January 2006", myDate)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Time:", d.Day(), d.Month(), d.Year())
 } else {
 fmt.Println(err)
 }
}

If there is a character such as - between the name of the month and the year, you can use
"02 January-2006" instead of "02 January 2006" as the first parameter to
time.Parse().

Executing parseDate.go will generate the next output:

$ go run parseDate.go
usage: parseDate string
$ go run parseDate.go "20 July 2000"
Full: 2000-07-20 00:00:00 +0000 UTC
Time: 20 July 2000

As parseDate.go does not expect data about the time, the 00:00:00 +0000 UTC string is
automatically added at the end of the full date and time string.

Changing date and time formats
In this section, you will learn how to change the format of a string that contains both a date
and a time. A very common place for finding such strings is the log files of web servers
such as Apache and Nginx. As we do not know how to read a text file line by line, the text
will be hard coded in the program; however, this fact does not change the functionality of
the program.

The Go code of timeDate.go will be presented in four parts. The first part is the expected
preamble:

package main

import (
 "fmt"
 "regexp"
 "time"

Working with Basic Go Data Types Chapter 3

[148]

)

You need the regexp standard Go package for supporting regular expressions.

The second code portion of timeDate.go is the following:

func main() {

 logs := []string{"127.0.0.1 - - [16/Nov/2017:10:49:46 +0200]
 325504", "127.0.0.1 - - [16/Nov/2017:10:16:41 +0200] \"GET /CVEN
 HTTP/1.1\" 200 12531 \"-\" \"Mozilla/5.0 AppleWebKit/537.36",
"127.0.0.1 200 9412 - - [12/Nov/2017:06:26:05 +0200]
 \"GET \"http://www.mtsoukalos.eu/taxonomy/term/47\" 1507",
 "[12/Nov/2017:16:27:21 +0300]",
 "[12/Nov/2017:20:88:21 +0200]",
 "[12/Nov/2017:20:21 +0200]",
 }

As you cannot be sure about your data and its format, the sample data used for this
program tries to cover many different cases, including incomplete data like
[12/Nov/2017:20:21 +0200] where there are no seconds in the time part, and erroneous
data such as [12/Nov/2017:20:88:21 +0200] where the value of the minutes is 88.

The third part of timeDate.go contains the next Go code:

 for _, logEntry := range logs {
 r :=
regexp.MustCompile(`.*\[(\d\d\/\w+/\d\d\d\d:\d\d:\d\d:\d\d.*)\].*`)
 if r.MatchString(logEntry) {
 match := r.FindStringSubmatch(logEntry)

The main benefit you get from such a difficult-to-read regular expression in this particular
program is that it allows your code to find out whether you have a date and time string
somewhere in your line or not. After you get that string, you will feed time.Parse() with
it and let time.Parse() do the rest of the job.

The last part of the program comes with the next Go code:

 dt, err := time.Parse("02/Jan/2006:15:04:05 -0700",
match[1])
 if err == nil {
 newFormat := dt.Format(time.RFC850)
 fmt.Println(newFormat)
 } else {
 fmt.Println("Not a valid date time format!")
 }
 } else {

Working with Basic Go Data Types Chapter 3

[149]

 fmt.Println("Not a match!")
 }
 }
}

Once you find a string that matches the regular expression, you parse it using
time.Parse() to make sure that it is a valid date and time string. If yes, timeDate.go
will print the date and time according to the RFC850 format.

If you execute timeDate.go, you will get the next kind of output:

$ go run timeDate.go
Thursday, 16-Nov-17 10:49:46 EET
Thursday, 16-Nov-17 10:16:41 EET
Sunday, 12-Nov-17 06:26:05 EET
Sunday, 12-Nov-17 16:27:21 +0300
Not a valid date time format!
Not a match!

Measuring execution time
In this section, you are going to learn how to measure the execution time of one or more
commands in Go. The same technique can be applied for measuring the execution time of a
function or a group of functions. The name of the Go program is execTime.go and it will
be presented in three parts.

This is an easy-to-implement technique that is both very powerful and
handy. Do not underestimate the simplicity of Go.

The first part of execTime.go is as follows:

package main

import (
 "fmt"
 "time"
)

func main() {
 start := time.Now()
 time.Sleep(time.Second)
 duration := time.Since(start)
 fmt.Println("It took time.Sleep(1)", duration, "to finish.")

Working with Basic Go Data Types Chapter 3

[150]

You will need the functionality offered by the time package in order to measure the
execution time of a command. All the job is done by the time.Since() function that
accepts a single argument, which should be a time in the past. In this case, we are
measuring the time it took Go to execute a time.Sleep(time.Second) call as this is the
only statement between time.Now() and time.Since().

The second part of execTime.go has the following code:

 start = time.Now()
 time.Sleep(2 * time.Second)
 duration = time.Since(start)
 fmt.Println("It took time.Sleep(2)", duration, "to finish.")

This time we are measuring the time it took Go to execute a time.Sleep(2 *
time.Second) call. This can be very useful for finding out how accurate the
time.Sleep() function is, which mainly has to do with how accurate the internal Go clock
is.

The last part of execTime.go is as follows:

 start = time.Now()
 for i := 0; i < 200000000; i++ {
 _ = i
 }
 duration = time.Since(start)
 fmt.Println("It took the for loop", duration, "to finish.")

 sum := 0
 start = time.Now()
 for i := 0; i < 200000000; i++ {
 sum += i
 }
 duration = time.Since(start)
 fmt.Println("It took the for loop", duration, "to finish.")

In the last part, we are measuring the speed of two for loops. The first one does nothing,
whereas the second one does some calculations. As you will see in the output of the
program, the second for loop is faster than the first one.

Executing execTime.go will generate the following kind of output:

$ go run execTime.go
It took time.Sleep(1) 1.000768881s to finish.
It took time.Sleep(2) 2.00062487s to finish.
It took the for loop 50.497931ms to finish.
It took the for loop 47.70599ms to finish.

Working with Basic Go Data Types Chapter 3

[151]

Measuring the operation of the Go garbage
collector
Now we can rewrite sliceGC.go, mapNoStar.go, mapStar.go, and mapSplit.go from
the previous chapter and get more accurate results from them without the need to use the
time(1) UNIX command-line utility. Actually, the only thing that needs to be done in each
one of these files is embed the call to runtime.GC() between time.Now() and
time.Since(), and print the results. The updated versions of sliceGC.go,
mapNoStar.go, mapStar.go, and mapSplit.go will be called sliceGCTime.go,
mapNoStarTime.go, mapStarTime.go, and mapSplitTime.go, respectively.

Executing the updated versions will generate the following output:

$ go run sliceGCTime.go
It took GC() 281.563µs to finish
$ go run mapNoStarTime.go
It took GC() 9.483966ms to finish
$ go run mapStarTime.go
It took GC() 651.704424ms to finish
$ go run mapSplitTime.go
It took GC() 12.743889ms to finish

These results are far more accurate than before because they only show the time it took
runtime.GC() to execute without including the time it took the program to populate the
slice or the map used for storing the values. Nevertheless, the results still verify the
findings about how slow it is for the Go garbage collector to deal with map variables with
lots of data.

Web links and exercises
Write a constant generator iota for the days of the week.
Write a Go program that converts an existing array into a map.
Visit the documentation page of the time package, which can be found at
https://golang.org/pkg/time/.
Can you write a constant generator iota for the powers of the number four?
You can also visit the GitHub page where Go 2 and the changes to number
literals are being discussed, which will help you to understand how changes in
Go are happening:
https://github.com/golang/proposal/blob/master/design/19308-number-lit

erals.md.

https://golang.org/pkg/time/
https://github.com/golang/proposal/blob/master/design/19308-number-literals.md
https://github.com/golang/proposal/blob/master/design/19308-number-literals.md

Working with Basic Go Data Types Chapter 3

[152]

Write your own version of parseDate.go.
Write your own version of parseTime.go. Do not forget to test your program.
Can you create a version of timeDate.go that can process two date and time
formats?

Summary
In this chapter, you learned about many interesting Go topics, including numeric data
types, maps, arrays, and slices, as well as Go pointers, Go constants and loops, and how Go
allows you to work with dates and times. You should understand by now why slices are
superior to arrays.

The next chapter will be about building and using composite types in Go, which mainly
includes types that are created with the struct keyword and are called structures. After
that, we will talk about string variables and tuples.

Additionally, the next chapter will talk about regular expressions and pattern matching,
which are tricky subjects not only in Go but also in every other programming language.
However, when used properly and carefully, regular expressions and pattern matching can
make the life of a developer so much easier that it is totally worth learning more about
them.

JSON is a very popular text format, so the next chapter will also discuss how you can
create, import, and export JSON data in Go.

Lastly, you will learn about the switch keyword and the strings package, which allows
you to manipulate UTF-8 strings.

4
The Uses of Composite Types

In the previous chapter, we talked about many core Go topics, including numeric data
types, arrays, slices, maps, pointers, constants, the for loop, the range keyword, and how
to work with times and dates.

This chapter will explore more advanced Go features, such as tuples and strings, the
strings standard Go package, and the switch statement, but, most importantly, it will
look at structures, which are used extensively in Go.

The chapter will also show you how to work with JavaScript Object Notation (JSON) and
Extensible Markup Language (XML) text files, how to implement a simple key-value
store, how to define regular expressions, and how to perform pattern matching in Go.

The following topics will be covered:

Go structures and the struct keyword
Go tuples
Go strings, runes, and string literals
Working with the JSON text format
Working with the XML text format
Regular expressions in Go
Pattern matching in Go
The switch statement
The functionality that the strings package offers
Calculating Pi with high accuracy
Developing a key-value store

The Uses of Composite Types Chapter 4

[154]

About composite types
Although standard Go types are pretty handy, fast, and flexible, they most likely cannot
cover every type of data you want to support in your Go code. Go solves this problem by
supporting structures, which are custom types defined by the developer. Additionally, Go
has its own way of supporting tuples, which mainly allows functions to return multiple
values without the need to group them in structures as is the case in C.

Structures
Although arrays, slices, and maps are all very useful, they cannot group and hold multiple
values in the same place. When you need to group various types of variables and create a
new handy type, you can use a structure. The various elements of a structure are called the
fields of the structure or just fields.

I will start this section by explaining a simple structure that was first defined in the
sortSlice.go source file of the previous chapter:

type aStructure struct {
 person string
 height int
 weight int
}

For reasons that will become evident in Chapter 6, What You Might Not Know About Go
Packages and Go Functions, the fields of a structure usually begin with an uppercase letter –
this mainly depends on what you want to do with the fields. This structure has three fields
named person, height, and weight, respectively. You can create a new variable of the
aStructure type as follows:

var s1 aStructure

Additionally, you can access a specific field of a structure by its name. So, in order to get
the value of the person field of the s1 variable, you should type s1.person.

A structure literal can be defined as follows:

p1 := aStructure{"fmt", 12, -2}

However, since remembering the order of the fields of a structure can be pretty hard, Go
allows you to use another form for defining a structure literal:

p1 := aStructure{weight: 12, height: -2}

The Uses of Composite Types Chapter 4

[155]

In this case, you do not need to define an initial value for every field of the structure.

Now that you know the basics of structures, it is time to show you a more practical
example. It is named structures.go and will be presented in four parts.

The first part of structures.go contains the following code:

package main

import (
 "fmt"
)

Structures, in particular, and Go types, in general, are usually defined
outside the main() function in order that they have a global scope and are
available to the entire Go package, unless you want to clarify that a type is
only useful within the current scope and is not expected to be used
elsewhere.

The second code segment from structures.go is shown in the following Go code:

func main() {

 type XYZ struct {
 X int
 Y int
 Z int
 }

 var s1 XYZ
 fmt.Println(s1.Y, s1.Z)

As you can see, there is nothing that prevents you from defining a new structure type
inside a function, but you should have a reason for doing so.

The third portion of structures.go follows:

 p1 := XYZ{23, 12, -2}
 p2 := XYZ{Z: 12, Y: 13}
 fmt.Println(p1)
 fmt.Println(p2)

Here you define two structure literals named p1 and p2, which you print afterward.

The last part of structures.go contains the following Go code:

 pSlice := [4]XYZ{}

The Uses of Composite Types Chapter 4

[156]

 pSlice[2] = p1
 pSlice[0] = p2
 fmt.Println(pSlice)
 p2 = XYZ{1, 2, 3}
 fmt.Println(pSlice)
}

In this last part, we created an array of structures named pSlice. As you will understand
from the output of structures.go, when you assign a structure to an array of structures,
the structure is copied into the array so changing the value of the original structure will
have no effect on the objects of the array.

Executing structures.go will generate the next output:

$ go run structures.go
0 0
{23 12 -2}
{0 13 12}
[{0 13 12} {0 0 0} {23 12 -2} {0 0 0}]
[{0 13 12} {0 0 0} {23 12 -2} {0 0 0}]

Note that the order in which you put the fields in the definition of a
structure type is significant for the type identity of the defined structure.
Put simply, two structures with the same fields will not be considered
identical in Go if their fields are not in exactly the same order.

The output of structures.go illustrates that the zero value of a struct variable is
constructed by zeroing all the fields of the struct variable according to their types.

Pointers to structures
In Chapter 3, Working with Basic Go Data Types, we talked about pointers. In this section, we
will look at an example that is related to pointers to structures. The name of the program
will be pointerStruct.go and will be presented in four parts.

The first part of the program contains the next Go code:

package main

import (
 "fmt"
)

type myStructure struct {
 Name string

The Uses of Composite Types Chapter 4

[157]

 Surname string
 Height int32
}

The second code segment from pointerStruct.go follows:

func createStruct(n, s string, h int32) *myStructure {
 if h > 300 {
 h = 0
 }
 return &myStructure{n, s, h}
}

The approach used in createStruct() for creating a new structure variable has many
advantages over initializing structure variables on your own, including the fact that you are
allowed to check whether the provided information is both correct and valid. Additionally,
this approach is cleaner – there is a central point where structure variables are initialized so
if there is something wrong with your struct variables, you know where to look and who
to blame! Note that some people might prefer to name the createStruct() function
NewStruct().

For those with a C or C++ background, it is perfectly legal for a Go
function to return the memory address of a local variable. Nothing gets
lost, so everybody is happy.

The third portion of pointerStruct.go is as follows:

func retStructure(n, s string, h int32) myStructure {
 if h > 300 {
 h = 0
 }
 return myStructure{n, s, h}
}

This part presents the no-pointer version of the createStruct() function named
retStructure(). Both functions work fine, so choosing between the implementation of
createStruct() and retStructure() is just a matter of personal preference. More
appropriate names for these two functions might have been NewStructurePointer() and
NewStructure(), respectively.

The last part of pointerStruct.go is shown in the following Go code:

func main() {
 s1 := createStruct("Mihalis", "Tsoukalos", 123)
 s2 := retStructure("Mihalis", "Tsoukalos", 123)

The Uses of Composite Types Chapter 4

[158]

 fmt.Println((*s1).Name)
 fmt.Println(s2.Name)
 fmt.Println(s1)
 fmt.Println(s2)
}

If you execute pointerStruct.go, you will get the next output:

$ go run pointerStruct.go
Mihalis
Mihalis
&{Mihalis Tsoukalos 123}
{Mihalis Tsoukalos 123}

Here you can see one more time that the main difference between createStruct() and
retStructure() is that the former returns a pointer to a structure, which means that you
will need to dereference that pointer in order to use the object it points to, whereas the
latter returns an entire structure object. This can make your code a little uglier.

Structures are very important in Go and are used extensively in real-
world programs because they allow you to group as many values as you
want and treat those values as a single entity.

Using the new keyword
Go supports the new keyword, which allows you to allocate new objects. However, there is
a very important detail that you need to remember about new: new returns the memory
address of the allocated object. Put simply, new returns a pointer.

So, you can create a fresh aStructure variable as follows:

pS := new(aStructure)

After executing the new statement, you are ready to work with your fresh variable that has
its allocated memory zeroed but not initialized.

The main difference between new and make is that variables created with
make are properly initialized without just zeroing the allocated memory
space. Additionally, make can only be applied to maps, channels, and
slices, and does not return a memory address, which means that make
does not return a pointer.

The Uses of Composite Types Chapter 4

[159]

The next statement will create a slice with new that points to nil:

sP := new([]aStructure)

Tuples
Strictly speaking, a tuple is a finite ordered list with multiple parts. The most important
thing about tuples is that Go has no support for the tuple type, which means that Go does
not officially care about tuples, despite the fact that it has support for certain uses of tuples.

One interesting thing here is that we have been using Go tuples in this book since Chapter
1, Go and the Operating System, in statements such as the next one, where a function returns
two values that you get in a single statement:

min, _ := strconv.ParseFloat(arguments[1], 64)

The name of the Go program that will illustrate Go tuples is tuples.go and it will be
presented in three code segments. Please note that the presented code uses a function that
returns three values as a tuple. You will learn more about functions in Chapter 6, What You
Might Not Know About Go Packages and Go Functions.

The first part of tuples.go is as follows:

package main

import (
 "fmt"
)

func retThree(x int) (int, int, int) {
 return 2 * x, x * x, -x
}

You can see the implementation of a function named retThree() that returns a tuple
containing three integer values. This capability permits the function to return multiple
values, without the need to group the various return values into a structure, and return a
structure variable instead.

In Chapter 6, What You Might Not Know About Go Packages and Go Functions, you will learn
how to put names to the return values of a Go function, which is a very handy feature that
can save you from various types of bugs.

The Uses of Composite Types Chapter 4

[160]

The second part of tuples.go is as follows:

func main() {
 fmt.Println(retThree(10))
 n1, n2, n3 := retThree(20)
 fmt.Println(n1, n2, n3)

Here, we use the retThree() function twice. Firstly, we do this without saving its return
values. Secondly, we do this by saving the three return values of retThree() into three
different variables using a single statement, which in Go terminology is called a tuple
assignment, hence the confusion about Go supporting tuples.

If you do not care about one or more return values of a function, you can put an underscore
character (_) in their place. Note that it is a compile time error in Go if you declare a
variable and do not use it afterward.

The third part of the program is shown in the following Go code:

 n1, n2 = n2, n1
 fmt.Println(n1, n2, n3)

 x1, x2, x3 := n1*2, n1*n1, -n1
 fmt.Println(x1, x2, x3)
}

As you can see, tuples can do many intelligent things, such as swapping values without the
need for a temporary variable, as well as evaluating expressions.

Executing tuples.go will create the next output:

$ go run tuples.go
20 100 -10
40 400 -20
400 40 -20
800 160000 -400

Regular expressions and pattern matching
Pattern matching, which plays a key role in Go, is a technique for searching a string for
some set of characters based on a specific search pattern that is based on regular
expressions and grammars. If pattern matching is successful, it allows you to extract the
desired data from the string, replace it, or delete it.

The Uses of Composite Types Chapter 4

[161]

The Go package responsible for defining regular expressions and performing pattern
matching is called regexp. You will see it in action later in this chapter.

When using a regular expression in your code, you should consider the
definition of the regular expression as the most important part of the
relevant code because the functionality of that code depends on the
regular expression.

Introducing some theory
Every regular expression is compiled into a recognizer by building a generalized transition
diagram called a finite automaton. A finite automaton can be either deterministic or
nondeterministic. Nondeterministic means that more than one transition out of a state can
be possible for the same input. A recognizer is a program that takes a string x as input and
is able to tell whether x is a sentence of a given language.

A grammar is a set of production rules for strings in a formal language. The production
rules describe how to create strings from the alphabet of the language that are valid
according to the syntax of the language. A grammar does not describe the meaning of a
string or what can be done with it in whatever context – it only describes its form. What is
important here is to realize that grammars are at the heart of regular expressions because
without a grammar, you cannot define or use a regular expression.

Although regular expressions allow you to solve problems that it would
be extremely difficult to solve otherwise, do not try to solve every
problem you face with a regular expression. Always use the right tool for
the job.

The rest of this section will present three examples of regular expressions and pattern
matching.

A simple example
In this subsection, you will learn how to select a particular column from a line of text. To
make things more interesting, you will also learn how to read a text file line by line.
However, file I/O is the subject of Chapter 8, Telling a UNIX System What to Do, so you
should refer to that chapter in order to get more information about the relevant Go code.

The Uses of Composite Types Chapter 4

[162]

The name of the Go source file is selectColumn.go. It will be presented in five segments.
The utility needs at least two command-line arguments to operate; the first one is the
required column number and the second one is the path of the text file to
process. However, you can use as many text files as you want – selectColumn.go will
process all of them one by one.

The first part of selectColumn.go follows:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "strconv"
 "strings"
)

The second code portion of selectColumn.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) < 2 {
 fmt.Printf("usage: selectColumn column <file1> [<file2> [...
<fileN]]\n")
 os.Exit(1)
 }

 temp, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Column value is not an integer:", temp)
 return
 }

 column := temp
 if column < 0 {
 fmt.Println("Invalid Column number!")
 os.Exit(1)
 }

The first test the program performs is to make sure that it has an adequate number of
command-line arguments (len(arguments) < 2). Additionally, you need two more tests
to make sure that the provided column value is actually a number and that it is bigger than
0.

The Uses of Composite Types Chapter 4

[163]

The third part of selectColumn.go follows:

 for _, filename := range arguments[2:] {
 fmt.Println("\t\t", filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)
 continue
 }
 defer f.Close()

The program performs various tests to make sure that the text file does exist and that you
can read it – the os.Open() function is used for opening the text file. Remember that the
UNIX file permissions of a text file might not allow you to read it.

The fourth code piece of selectColumn.go is as follows:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

As you will learn in Chapter 8, Telling a UNIX System What to Do, the
bufio.ReadString() function reads a file until the first occurrence of its parameter. As a
result, bufio.ReadString('\n') tells Go to read a file line by line because \n is the
UNIX newline character. The bufio.ReadString() function returns a byte slice.

The last code fragment of selectColumn.go is next:

 data := strings.Fields(line)
 if len(data) >= column {
 fmt.Println((data[column-1]))
 }
 }
 }
}

The logic behind the program is pretty simple: you split each line of text and select the
desired column. However, as you cannot be sure that the current line has the required
number of fields, you check that before printing any output. This is the simplest form of
pattern matching because each line is split using space characters as word separators.

The Uses of Composite Types Chapter 4

[164]

If you want more information about the splitting of lines, then you will find it useful to
know that the strings.Fields() function splits a string based on the whitespace
characters that are defined in the unicode.IsSpace() function and returns a slice of
strings.

Executing selectColumn.go will generate the next kind of output:

$ go run selectColumn.go 15 /tmp/swtag.log /tmp/adobegc.log | head
 /tmp/swtag.log
 /tmp/adobegc.log
AdobeGCData
Successfully
Initializing
Stream
***********AdobeGC
Perform
Perform
Trying

The selectColumn.go utility prints the name of each processed file even if you get no
output from that file.

The important thing to remember is that you should never trust your data,
especially when it comes from non-technical users. Put simply, always
verify that the data you expect to grab is there.

A more advanced example
In this section, you will learn how to match a date and time string as found in the log files
of an Apache web server. To make things even more interesting, you will also learn how to
change the date and time format of the log file into a different format. Once again, this
requires reading the Apache log file, which is a plain text file, line by line.

The name of the command-line utility is changeDT.go and it will be presented in five
parts. Note that changeDT.go is an improved version of the timeDate.go utility
presented in Chapter 3, Working with Basic Go Data Types, not only because it gets its data
from an external file, but also because changeDT.go uses two regular expressions and
therefore it is able to match strings in two different time and date formats.

The Uses of Composite Types Chapter 4

[165]

There is a very important point here: do not try to implement every
possible feature in the first version of your utilities. It is a better approach
to build a working version with fewer features and improve that version
in small steps.

The first chunk of code from changeDT.go follows:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "regexp"
 "strings"
 "time"
)

Lots of packages are needed because changeDT.go does so many fascinating things.

The second piece of code from changeDT.go is the following:

func main() {

 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide one text file to process!")
 os.Exit(1)
 }

 filename := arguments[1]
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

 notAMatch := 0
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

The Uses of Composite Types Chapter 4

[166]

In this part, you just try to open your input file for reading in order to read it line by line.
The notAMatch variable holds the number of lines in the input file that did not match any
one of the two regular expressions of the program.

The third code segment of changeDT.go comes with the following Go code:

 r1 :=
regexp.MustCompile(`.*\[(\d\d\/\w+/\d\d\d\d:\d\d:\d\d:\d\d.*)\] .*`)
 if r1.MatchString(line) {
 match := r1.FindStringSubmatch(line)
 d1, err := time.Parse("02/Jan/2006:15:04:05 -0700", match[1])
 if err == nil {
 newFormat := d1.Format(time.Stamp)
 fmt.Print(strings.Replace(line, match[1], newFormat, 1))
 } else {
 notAMatch++
 }
 continue
 }

Here you can see that if the first date and time format is not a match, the program will
continue its execution. However, if it enters the if block, the continue statement will get
executed, which means that it will skip the remaining code of the surrounding for loop.
Thus, in the first supported format, the time and date string has the
21/Nov/2017:19:28:09 +0200 format.

The regexp.MustCompile() function is like regexp.Compile() but panics if the
expression cannot be parsed. The parentheses around the regular expression allows you to
use the matches afterwards. In this case, you can only have one match, which you will get
using the regexp.FindStringSubmatch() function.

The fourth part of changeDT.go follows:

 r2 := regexp.MustCompile(`.*\[(\w+\-\d\d-\d\d:\d\d:\d\d:\d\d.*)\]
.*`)
 if r2.MatchString(line) {
 match := r2.FindStringSubmatch(line)
 d1, err := time.Parse("Jan-02-06:15:04:05 -0700", match[1])
 if err == nil {
 newFormat := d1.Format(time.Stamp)
 fmt.Print(strings.Replace(line, match[1], newFormat, 1))
 } else {
 notAMatch++
 }
 continue
 }

The Uses of Composite Types Chapter 4

[167]

The second supported time and date format is Jun-21-17:19:28:09 +0200. As you can
appreciate, there are not many differences between the two formats. Note that although the
program uses just two date and time formats, you can have as many of these types of
formats as you desire.

The last code portion from changeDT.go contains the following Go code:

 }
 fmt.Println(notAMatch, "lines did not match!")
}

Here, you print the number of lines that did not match any one of the two formats.

The text file that will be used for testing changeDT.go will contain the next lines:

$ cat logEntries.txt
- - [21/Nov/2017:19:28:09 +0200] "GET /AMEv2.tif.zip HTTP/1.1" 200 2188249
"-"
- - [21/Jun/2017:19:28:09 +0200] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [25/Lun/2017:20:05:34 +0200] "GET /MongoDjango.zip HTTP/1.1" 200 118362
- - [Jun-21-17:19:28:09 +0200] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [20/Nov/2017:20:05:34 +0200] "GET /MongoDjango.zip HTTP/1.1" 200 118362
- - [35/Nov/2017:20:05:34 +0200] "GET MongoDjango.zip HTTP/1.1" 200 118362

Executing changDT.go will generate the next output:

$ go run changeDT.go logEntries.txt
- - [Nov 21 19:28:09] "GET /AMEv2.tif.zip HTTP/1.1" 200 2188249 "-"
- - [Jun 21 19:28:09] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [Jun 21 19:28:09] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [Nov 20 20:05:34] "GET /MongoDjango.zip HTTP/1.1" 200 118362
2 lines did not match!

Matching IPv4 addresses
An IPv4 address, or simply an IP address, has four discrete parts. As an IPv4 address is
stored using 8-bit binary numbers, each part can have values from 0, which is 00000000 in
the binary format, to 255, which is equal to 11111111 in the binary format.

The format of an IPv6 address is much more complicated than the format
of an IPv4 address so the presented program will not work with IPv6
addresses.

The Uses of Composite Types Chapter 4

[168]

The name of the program will be findIPv4.go and it is going to be presented in five parts.
The first part of findIPv4.go is shown here:

package main

import (
 "bufio"
 "fmt"
 "io"
 "net"
 "os"
 "path/filepath"
 "regexp"
)

As findIPv4.go is a pretty sophisticated utility, it needs many standard Go packages.

The second part is shown in the following Go code:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." +
 partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

The preceding code contains the definition of the regular expression that will help you to
discover an IPv4 address inside a function. This is the most critical part of the program
because if you define the regular expression incorrectly, you will never be able to catch any
IPv4 addresses.

Before explaining the regular expression a little further, it is important to understand that
prior to defining one or more regular expressions, you should be aware of the problem you
are trying to solve. In other words, if you are not aware of the fact that the decimal values
of an IPv4 address cannot be larger than 255, no regular expression can save you!

Now that we are on the same page, let us talk about the next two statements:

partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP

The regular expression defined in partIP matches each one of the four parts of an IP
address. A valid IPv4 address can begin with 25 and end with 0, 1, 2, 3, 4, or 5 because that
is the biggest 8-bit binary number (25[0-5]), or it can begin with 2 followed by 0, 1, 2, 3, or
4 and end with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 (2[0-4][0-9]).

The Uses of Composite Types Chapter 4

[169]

Alternatively, it can begin with 1 followed by two more digits from 0 to 9 (1[0-9][0-9]).
The last alternative would be a natural number that has one or two digits. The first digit,
which is optional, can be from 1 to 9 and the second, which is mandatory, can be from 0 to 9
([1-9]?[0-9]).

The grammar variable tells us that what we are looking for has four distinct parts, and each
one of them must match partIP. That grammar variable is what matches the complete IPv4
address that we seek.

As findIPv4.go works with regular expressions to find an IPv4 address
in a file, it can process any kind of text file that contains valid IPv4
addresses.

Finally, if you have any special requirements, such as excluding certain IPv4 addresses or
watching for specific addresses or networks, you can easily change the Go code of
findIPv4.go and add the extra functionality you desire, which is the kind of flexibility
achieved when you develop your own tools.

The third part of the findIPv4.go utility contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) < 2 {
 fmt.Printf("usage: %s logFile\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }

 for _, filename := range arguments[1:] {
 f, err := os.Open(filename)
 if err != nil {

fmt.Printf("error opening file %s\n", err)
 os.Exit(-1)
 }
 defer f.Close()

Firstly, you make sure that you have a sufficient number of command-line arguments by
checking the length of os.Args. Then, you use a for loop to iterate over all of the
command-line arguments.

The fourth code portion is as follows:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

The Uses of Composite Types Chapter 4

[170]

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }

As happened in selectColumn.go, you use bufio.ReadString() to read your input line
by line.

The last part of findIPv4.go contains the following Go code:

 ip := findIP(line)
 trial := net.ParseIP(ip)
 if trial.To4() == nil {
 continue
 }
 fmt.Println(ip)
 }
 }
}

For each line of the input text file, you call the findIP() function. The net.ParseIP()
function double-checks that we are dealing with a valid IPv4 address – it is never a bad
thing to double-check! If the call to net.ParseIP() is successful, you print the IPv4
address you just found. After that, the program will deal with the next line of input.

Executing findIPv4.go will generate the next kind of output:

$ go run findIPv4.go /tmp/auth.log
116.168.10.9
192.31.20.9
10.10.16.9
10.31.160.9
192.168.68.194

Thus, the output of findIPv4.go can have lines that are displayed multiple times. Apart
from that detail, the output of the utility is pretty straightforward.

Processing the preceding output with some traditional UNIX command-line utilities might
help you to reveal more information about your data:

$ go run findIPv4.go /tmp/auth.log.1 /tmp/auth.log | sort -rn | uniq -c |
sort -rn
 38 xxx.zz.116.9
 33 x.zz.2.190
 25 xx.zzz.1.41

The Uses of Composite Types Chapter 4

[171]

 20 178.132.1.18
 18 x.zzz.63.53
 17 178.zzz.y.9
 15 103.yyy.xxx.179
 10 213.z.yy.194
 10 yyy.zzz.110.4
 9 yy.xx.65.113

What we did here is find out the top-10 IPv4 addresses located in the processed text files
using the sort(1) and uniq(1) UNIX command-line utilities. The logic behind this pretty
long bash(1) shell command is simple: the output of the findIPv4.go utility will become
the input of the first sort -rn command in order to be sorted numerically in reverse
order. Then, the uniq -c command removes the lines that appear multiple times by
replacing them with a single line that is preceded with the count of the number of times the
line occurred in the input. The output is then sorted once again so that the IPv4 addresses
with the higher number of occurrences will appear first.

Once again, it is important to realize that the core functionality of
findIPv4.go is implemented through the regular expression. If the
regular expression is defined incorrectly or does not match all the cases
(false negative) or matches things that should not be matched (false
positive) then your program will not work correctly.

Strings
Strictly speaking, a string in Go is not a composite type, but there are so many Go functions
that support strings that I decided to describe strings in more detail in this chapter.

As discussed in Chapter 3, Working with Basic Go Data Types, strings in Go are value types,
not pointers as is the case with C strings. Additionally, Go supports UTF-8 strings by
default, which means that you do not need to load any special packages or do anything
tricky in order to print Unicode characters. However, there are subtle differences between a
character, a rune, and a byte, as well as differences between a string and a string literal,
which are going to be clarified here.

A Go string is a read-only byte slice that can hold any type of bytes and can have an
arbitrary length.

You can define a new string literal as follows:

const sLiteral = "\x99\x42\x32\x55\x50\x35\x23\x50\x29\x9c"

The Uses of Composite Types Chapter 4

[172]

You might be surprised with the look of the string literal. You can define a string variable
as follows:

s2 := "€£³"

You can find the length of a string variable or a string literal using the len() function.

The strings.go file will illustrate many standard operations related to strings and will be
presented in five parts. The first is shown in the following Go code:

package main

import (
 "fmt"
)

The second portion of Go code is as follows:

func main() {
 const sLiteral = "\x99\x42\x32\x55\x50\x35\x23\x50\x29\x9c"
 fmt.Println(sLiteral)
 fmt.Printf("x: %x\n", sLiteral)

 fmt.Printf("sLiteral length: %d\n", len(sLiteral))

Each \xAB sequence represents a single character of sLiteral. As a result, calling
len(sLiteral) will return the number of characters of sLiteral. Using %x in
fmt.Printf() will return the AB part of a \xAB sequence.

The third code segment of strings.go is shown in the following Go code:

 for i := 0; i < len(sLiteral); i++ {
 fmt.Printf("%x ", sLiteral[i])
 }
 fmt.Println()

 fmt.Printf("q: %q\n", sLiteral)
 fmt.Printf("+q: %+q\n", sLiteral)
 fmt.Printf(" x: % x\n", sLiteral)

 fmt.Printf("s: As a string: %s\n", sLiteral)

Here, you can see that you can access a string literal as if it is a slice. Using %q in
fmt.Printf() with a string argument will print a double-quoted string that is safely
escaped with Go syntax. Using %+q in fmt.Printf() with a string argument will
guarantee ASCII-only output.

The Uses of Composite Types Chapter 4

[173]

Last, using % x (note the space between the % character and the x character) in
fmt.Printf() will put spaces between the printed bytes. In order to print a string literal
as a string, you will need to call fmt.Printf() with %s.

The fourth code portion of strings.go is as follows:

 s2 := "€£³"
 for x, y := range s2 {
 fmt.Printf("%#U starts at byte position %d\n", y, x)
 }

 fmt.Printf("s2 length: %d\n", len(s2))

Here you define a string named s2 with three Unicode characters. Using fmt.Printf()
with %#U will print the characters in the U+0058 format. Using the range keyword on a
string that contains Unicode characters will allow you to process its Unicode characters one
by one.

The output of len(s2) might surprise you a little. As the s2 variable contains Unicode
characters, its byte size is larger than the number of characters in it.

The last part of strings.go is as follows:

 const s3 = "ab12AB"
 fmt.Println("s3:", s3)
 fmt.Printf("x: % x\n", s3)

 fmt.Printf("s3 length: %d\n", len(s3))

 for i := 0; i < len(s3); i++ {
 fmt.Printf("%x ", s3[i])
 }
 fmt.Println()
}

Running strings.go will generate the next output:

$ go run strings.go
�B2UP5#P)�
x: 9942325550352350299c
sLiteral length: 10
99 42 32 55 50 35 23 50 29 9c
q: "\x99B2UP5#P)\x9c"
+q: "\x99B2UP5#P)\x9c"
x: 99 42 32 55 50 35 23 50 29 9c
s: As a string: �B2UP5#P)�
U+20AC '€' starts at byte position 0

The Uses of Composite Types Chapter 4

[174]

U+00A3 '£' starts at byte position 3
U+00B3 '³' starts at byte position 5
s2 length: 7
s3: ab12AB
x: 61 62 31 32 41 42
s3 length: 6
61 62 31 32 41 42

It will be no surprise if you find the information presented in this section pretty strange and
complex, especially if you are not familiar with Unicode and UTF-8 representations of
characters and symbols. The good thing is that you will not need most of them in your
everyday life as a Go developer; you will most likely get away with using simple
fmt.Println() and fmt.Printf() commands in your programs to print your output.
However, if you are living outside of Europe and the U.S., you might find some of the
information in this section pretty handy.

What is a rune?
A rune is an int32 value, and therefore a Go type, that is used for representing a Unicode
code point. A Unicode code point, or code position, is a numerical value that is usually
used for representing single Unicode characters; however, it can also have alternative
meanings, such as providing formatting information.

NOTE: You can consider a string as a collection of runes.

A rune literal is a character in single quotes. You may also consider a rune literal as a rune
constant. Behind the scenes, a rune literal is associated with a Unicode code point.

Runes are going to be illustrated in runes.go, which is going to be presented in three
parts. The first part of runes.go follows:

package main

import (
 "fmt"
)

The second part of runes.go contains the following code:

func main() {
 const r1 = '€'

The Uses of Composite Types Chapter 4

[175]

 fmt.Println("(int32) r1:", r1)
 fmt.Printf("(HEX) r1: %x\n", r1)
 fmt.Printf("(as a String) r1: %s\n", r1)
 fmt.Printf("(as a character) r1: %c\n", r1)

First you define a rune literal named r1. (Please note that the Euro sign does not belong to
the ASCII table of characters.) Then, you print r1 using various statements. Next, you print
its int32 value and its hexadecimal value. After that, you try printing it as a string. Finally,
you print it as a character, which is what gives you the same output as the one used in the
definition of r1.

The third and last code segment of runes.go is shown in the following Go code:

 fmt.Println("A string is a collection of runes:", []byte("Mihalis"))
 aString := []byte("Mihalis")
 for x, y := range aString {
 fmt.Println(x, y)
 fmt.Printf("Char: %c\n", aString[x])
 }
 fmt.Printf("%s\n", aString)
}

Here, you see that a byte slice is a collection of runes and that printing a byte slice with
fmt.Println() might not return what you expected. In order to convert a rune into a
character, you should use %c in a fmt.Printf() statement. In order to print a byte slice as
a string, you will need to use fmt.Printf() with %s.

Executing runes.go will create the following output:

$ go run runes.go
(int32) r1: 8364
(HEX) r1: 20ac
(as a String) r1: %!s(int32=8364)
(as a character) r1: €
A string is a collection of runes: [77 105 104 97 108 105 115]
0 77
Char: M
1 105
Char: i
2 104
Char: h
3 97
Char: a
4 108
Char: l
5 105
Char: i

The Uses of Composite Types Chapter 4

[176]

6 115
Char: s
Mihalis

Finally, the easiest way to get an illegal rune literal error message is by using single
quotes instead of double quotes when importing a package:

$ cat a.go
package main
import (
 'fmt'
)
func main() {
}
$ go run a.go
package main:
a.go:4:2: illegal rune literal

The unicode package
The unicode standard Go package contains various handy functions. One of them, which
is called unicode.IsPrint(), can help you to identify the parts of a string that are
printable using runes. This technique will be illustrated in the Go code of unicode.go,
which will be presented in two parts. The first part of unicode.go is as follows:

package main

import (
 "fmt"
 "unicode"
)

func main() {
 const sL = "\x99\x00ab\x50\x00\x23\x50\x29\x9c"

The second code segment of unicode.go is shown in the following Go code:

 for i := 0; i < len(sL); i++ {
 if unicode.IsPrint(rune(sL[i])) {
 fmt.Printf("%c\n", sL[i])
 } else {
 fmt.Println("Not printable!")
 }
 }
}

The Uses of Composite Types Chapter 4

[177]

As stated before, all of the dirty work is done by the unicode.IsPrint() function, which
returns true when a rune is printable and false otherwise. If you are really into Unicode
characters, you should definitely check the documentation page of the unicode
package. Executing unicode.go will generate the following output:

$ go run unicode.go
Not printable!
Not printable!
a
b
P
Not printable!
#
P
)
Not printable!

The strings package
The strings standard Go package allows you to manipulate UTF-8 strings in Go and
includes many powerful functions. Most of these functions will be illustrated in the
useStrings.go source file, which will be presented in five parts. Note that the functions
of the strings package that are related to file input and output will be demonstrated in
Chapter 8, Telling a UNIX System What to Do.

The first part of useStrings.go follows:

package main

import (
 "fmt"
 s "strings"
 "unicode"
)

var f = fmt.Printf

There is a difference in the way the strings package is imported. This
kind of import statement makes Go create an alias for that package. So,
instead of writing strings.FunctionName(), you can now write
s.FunctionName(), which is a bit shorter. Please note that you will not
be able to call a function of the strings package as
strings.FunctionName() anymore.

The Uses of Composite Types Chapter 4

[178]

Another handy trick is that if you find yourself using the same function all the time, and
you want to use something shorter instead, you can assign a variable name to that function
and use that variable name instead. Here, you can see that feature applied to the
fmt.Printf() function. Nevertheless, you should not overuse that feature because you
might end up finding it difficult to read the code!

The second part of useStrings.go contains the following Go code:

func main() {
 upper := s.ToUpper("Hello there!")
 f("To Upper: %s\n", upper)
 f("To Lower: %s\n", s.ToLower("Hello THERE"))
 f("%s\n", s.Title("tHis wiLL be A title!"))
 f("EqualFold: %v\n", s.EqualFold("Mihalis", "MIHAlis"))
 f("EqualFold: %v\n", s.EqualFold("Mihalis", "MIHAli"))

In this code segment, you can see many functions that allow you to play with the case of a
string. Additionally, you can see that the strings.EqualFold() function allows you to
determine whether two strings are the same in spite of the differences in their letters.

The third code portion of useStrings.go follows:

 f("Prefix: %v\n", s.HasPrefix("Mihalis", "Mi"))
 f("Prefix: %v\n", s.HasPrefix("Mihalis", "mi"))
 f("Suffix: %v\n", s.HasSuffix("Mihalis", "is"))
 f("Suffix: %v\n", s.HasSuffix("Mihalis", "IS"))

 f("Index: %v\n", s.Index("Mihalis", "ha"))
 f("Index: %v\n", s.Index("Mihalis", "Ha"))
 f("Count: %v\n", s.Count("Mihalis", "i"))
 f("Count: %v\n", s.Count("Mihalis", "I"))
 f("Repeat: %s\n", s.Repeat("ab", 5))

 f("TrimSpace: %s\n", s.TrimSpace(" \tThis is a line. \n"))
 f("TrimLeft: %s", s.TrimLeft(" \tThis is a\t line. \n", "\n\t
 "))
 f("TrimRight: %s\n", s.TrimRight(" \tThis is a\t line. \n",
 "\n\t "))

The strings.Count() function counts the number of non-overlapping times the second
parameter appears in the string that is given as the first parameter. The
strings.HasPrefix() function returns true when the first parameter string begins with
the second parameter string, and false otherwise. Similarly, the strings.HasSuffix()
function returns true when the first parameter, which is a string, ends with the second
parameter, which is also a string, and false otherwise.

The Uses of Composite Types Chapter 4

[179]

The fourth code segment of useStrings.go contains the following Go code:

 f("Compare: %v\n", s.Compare("Mihalis", "MIHALIS"))
 f("Compare: %v\n", s.Compare("Mihalis", "Mihalis"))
 f("Compare: %v\n", s.Compare("MIHALIS", "MIHalis"))

 f("Fields: %v\n", s.Fields("This is a string!"))
 f("Fields: %v\n", s.Fields("Thisis\na\tstring!"))

 f("%s\n", s.Split("abcd efg", ""))

This code portion contains some pretty advanced and ingenious functions. The first handy
function is strings.Split(), which allows you to split the given string according to the
desired separator string – the strings.Split() function returns a string slice. Using ""
as the second parameter of strings.Split() will allow you to process a string character
by character.

The strings.Compare() function compares two strings lexicographically, and it may
return 0 if the two strings are identical, and -1 or +1 otherwise.

Lastly, the strings.Fields() function splits the string parameter using whitespace
characters as separators. The whitespace characters are defined in the unicode.IsSpace()
function.

strings.Split() is a powerful function that you should learn because
sooner rather than later, you will have to use it in your programs.

The last part of useStrings.go is shown in the following Go code:

 f("%s\n", s.Replace("abcd efg", "", "_", -1))
 f("%s\n", s.Replace("abcd efg", "", "_", 4))
 f("%s\n", s.Replace("abcd efg", "", "_", 2))

 lines := []string{"Line 1", "Line 2", "Line 3"}
 f("Join: %s\n", s.Join(lines, "+++"))

 f("SplitAfter: %s\n", s.SplitAfter("123++432++", "++"))

 trimFunction := func(c rune) bool {
 return !unicode.IsLetter(c)
 }
 f("TrimFunc: %s\n", s.TrimFunc("123 abc ABC \t .",
 trimFunction))
}

The Uses of Composite Types Chapter 4

[180]

As in the previous part of useStrings.go, the last code segment contains functions that
implement some very intelligent functionality in a simple-to-understand and easy-to-use
way.

The strings.Replace() function takes four parameters. The first parameter is the string
that you want to process. The second parameter contains the string that, if found, will be
replaced by the third parameter of strings.Replace(). The last parameter is the
maximum number of replacements that are allowed to happen. If that parameter has a
negative value, then there is no limit to the number of replacements that can take place.

The last two statements of the program define a trim function, which allows you to keep
the runes of a string that interest you and utilize that function as the second argument to
the strings.TrimFunc() function.

Lastly, the strings.SplitAfter() function splits its first parameter string into substrings
based on the separator string that is given as the second parameter to the function.

For the full list of functions similar to unicode.IsLetter(), you should
visit the documentation page of the unicode standard Go package.

Executing useStrings.go will create the next output:

$ go run useStrings.go
To Upper: HELLO THERE!
To Lower: hello there
THis WiLL Be A Title!
EqualFold: true
EqualFold: false
Prefix: true
Prefix: false
Suffix: true
Suffix: false
Index: 2
Index: -1
Count: 2
Count: 0
Repeat: ababababab
TrimSpace: This is a line.
TrimLeft: This is a line.
TrimRight: This is a line.
Compare: 1
Compare: 0
Compare: -1
Fields: [This is a string!]

The Uses of Composite Types Chapter 4

[181]

Fields: [Thisis a string!]
[a b c d e f g]
_a_b_c_d_ _e_f_g_
_a_b_c_d efg
_a_bcd efg
Join: Line 1+++Line 2+++Line 3
SplitAfter: [123++ 432++]
TrimFunc: abc ABC

Please note that the list of functions presented from the strings package is far from
complete. You should see the documentation page of the strings package at
https://golang.org/pkg/strings/ for the complete list of available functions.

If you are working with text and text processing, you will definitely need to learn all the
gory details and functions of the strings package, so make sure that you experiment with
all these functions and create many examples that will help you to clarify things.

The switch statement
The main reason for presenting the switch statement in this chapter is because a switch
case can use regular expressions. Firstly, however, take a look at this simple switch block:

 switch asString {
 case "1":
 fmt.Println("One!")
 case "0":
 fmt.Println("Zero!")
 default:
 fmt.Println("Do not care!")
 }

The preceding switch block can differentiate between the "1" string, the "0" string, and
everything else (default).

Having a match all remaining cases case in a switch block is considered a
very good practice. However, as the order of the cases in a switch block
does matter, the match all remaining cases case should be put last. In Go, the
name of the match all remaining cases case is default.

However, a switch statement can be much more flexible and adaptable:

switch {
case number < 0:
 fmt.Println("Less than zero!")

The Uses of Composite Types Chapter 4

[182]

case number > 0:
 fmt.Println("Bigger than zero!")
default:
 fmt.Println("Zero!")
}

The preceding switch block does the job of identifying whether you are dealing with a
positive integer, a negative integer, or zero. As you can see, the branches of a switch
statement can have conditions. You will soon see that the branches of a switch statement
can also have regular expressions in them.

All these examples, and some additional ones, can be found in switch.go, which will be
presented in five parts.

The first part of switch.go is as follows:

package main

import (
 "fmt"
 "os"
 "regexp"
 "strconv"
)

func main() {

 arguments := os.Args
 if len(arguments) < 2 {
 fmt.Println("usage: switch number")
 os.Exit(1)
 }

The regexp package is needed for supporting regular expressions in switch.

The second code segment of switch.go is shown in the following Go code:

 number, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("This value is not an integer:", number)
 } else {
 switch {
 case number < 0:
 fmt.Println("Less than zero!")
 case number > 0:
 fmt.Println("Bigger than zero!")
 default:

The Uses of Composite Types Chapter 4

[183]

 fmt.Println("Zero!")
 }
 }

The third part of switch.go is as follows:

 asString := arguments[1]
 switch asString {
 case "5":
 fmt.Println("Five!")
 case "0":
 fmt.Println("Zero!")
 default:
 fmt.Println("Do not care!")
 }

In this code segment, you can see that a switch case can also contain hardcoded values.
This mainly occurs when the switch keyword is followed by the name of a variable.

The fourth code portion of switch.go contains the following Go code:

 var negative = regexp.MustCompile(`-`)
 var floatingPoint = regexp.MustCompile(`\d?\.\d`)
 var email = regexp.MustCompile(`^[^@]+@[^@.]+\.[^@.]+`)

 switch {
 case negative.MatchString(asString):
 fmt.Println("Negative number")
 case floatingPoint.MatchString(asString):
 fmt.Println("Floating point!")
 case email.MatchString(asString):
 fmt.Println("It is an email!")
 fallthrough
 default:
 fmt.Println("Something else!")
 }

Many interesting things are happening here. Firstly, you define three regular expressions
named negative, floatingPoint, and email, respectively. Secondly, you use all three of
them in the switch block with the help of the regexp.MatchString() function, which
does the actual matching.

Lastly, the fallthrough keyword tells Go to execute the branch that follows the current
one, which, in this case, is the default branch. This means that when the code of the
email.MatchString(asString) case is the one that will get executed, the default case
will also be executed.

The Uses of Composite Types Chapter 4

[184]

The last part of switch.go is as follows:

 var aType error = nil
 switch aType.(type) {
 case nil:
 fmt.Println("It is nil interface!")
 default:
 fmt.Println("Not nil interface!")
 }
}

Here, you can see that switch can differentiate between types. You will learn more about
working with switch and Go interfaces in Chapter 7, Reflection and Interfaces for All
Seasons.

Executing switch.go with various input arguments will generate the next kind of output:

$ go run switch.go
usage: switch number.
exit status 1
$ go run switch.go mike@g.com
This value is not an integer: 0
Do not care!
It is an email!
Something else!
It is nil interface!
$ go run switch.go 5
Bigger than zero!
Five!
Something else!
It is nil interface!
$ go run switch.go 0
Zero!
Zero!
Something else!
It is nil interface!
$ go run switch.go 1.2
This value is not an integer: 0
Do not care!
Floating point!
It is nil interface!
$ go run switch.go -1.5
This value is not an integer: 0
Do not care!
Negative number
It is nil interface!

The Uses of Composite Types Chapter 4

[185]

Calculating Pi with high accuracy
In this section, you will learn how to calculate Pi with high accuracy using a standard Go
package named math/big and the special purpose types offered by that package.

This section contains the ugliest Go code that I have even seen; even Java
code looks better than this!

The name of the program that uses Bellard's formula to calculate Pi is calculatePi.go
and it will be presented in four parts.

The first part of calculatePi.go follows:

package main

import (
 "fmt"
 "math"
 "math/big"
 "os"
 "strconv"
)

var precision uint = 0

The precision variable holds the desired precision of the calculations, and it is made
global in order to be accessible from everywhere in the program.

The second code segment of calculatePi.go is shown in the following Go code:

func Pi(accuracy uint) *big.Float {
 k := 0
 pi := new(big.Float).SetPrec(precision).SetFloat64(0)
 k1k2k3 := new(big.Float).SetPrec(precision).SetFloat64(0)
 k4k5k6 := new(big.Float).SetPrec(precision).SetFloat64(0)
 temp := new(big.Float).SetPrec(precision).SetFloat64(0)
 minusOne := new(big.Float).SetPrec(precision).SetFloat64(-1)
 total := new(big.Float).SetPrec(precision).SetFloat64(0)

 two2Six := math.Pow(2, 6)
 two2SixBig := new(big.Float).SetPrec(precision).SetFloat64(two2Six)

The new(big.Float) call creates a new big.Float variable with the required precision,
which is set by SetPrec().

The Uses of Composite Types Chapter 4

[186]

The third part of calculatePi.go contains the remaining Go code of the Pi() function:

 for {
 if k > int(accuracy) {
 break
 }
 t1 := float64(float64(1) / float64(10*k+9))
 k1 := new(big.Float).SetPrec(precision).SetFloat64(t1)
 t2 := float64(float64(64) / float64(10*k+3))
 k2 := new(big.Float).SetPrec(precision).SetFloat64(t2)
 t3 := float64(float64(32) / float64(4*k+1))
 k3 := new(big.Float).SetPrec(precision).SetFloat64(t3)
 k1k2k3.Sub(k1, k2)
 k1k2k3.Sub(k1k2k3, k3)

 t4 := float64(float64(4) / float64(10*k+5))
 k4 := new(big.Float).SetPrec(precision).SetFloat64(t4)
 t5 := float64(float64(4) / float64(10*k+7))
 k5 := new(big.Float).SetPrec(precision).SetFloat64(t5)
 t6 := float64(float64(1) / float64(4*k+3))
 k6 := new(big.Float).SetPrec(precision).SetFloat64(t6)
 k4k5k6.Add(k4, k5)
 k4k5k6.Add(k4k5k6, k6)
 k4k5k6 = k4k5k6.Mul(k4k5k6, minusOne)
 temp.Add(k1k2k3, k4k5k6)

 k7temp := new(big.Int).Exp(big.NewInt(-1), big.NewInt(int64(k)),
nil)
 k8temp := new(big.Int).Exp(big.NewInt(1024), big.NewInt(int64(k)),
nil)

 k7 := new(big.Float).SetPrec(precision).SetFloat64(0)
 k7.SetInt(k7temp)
 k8 := new(big.Float).SetPrec(precision).SetFloat64(0)
 k8.SetInt(k8temp)

 t9 := float64(256) / float64(10*k+1)
 k9 := new(big.Float).SetPrec(precision).SetFloat64(t9)
 k9.Add(k9, temp)
 total.Mul(k9, k7)
 total.Quo(total, k8)
 pi.Add(pi, total)

 k = k + 1
 }
 pi.Quo(pi, two2SixBig)
 return pi
}

The Uses of Composite Types Chapter 4

[187]

This part of the program is the Go implementation of Bellard's formula. The bad thing with
math/big is that you need a special function of it for almost every kind of calculation,
which mainly happens because those functions can keep the precision at the desired level.
So, without using big.Float and big.Int variables, as well as the functions of math/big
all the time, you cannot compute Pi with the desired precision.

The last part of calculatePi.go shows the implementation of the main() function:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide one numeric argument!")
 os.Exit(1)
 }

 temp, _ := strconv.ParseUint(arguments[1], 10, 32)
 precision = uint(temp) * 3

 PI := Pi(precision)
 fmt.Println(PI)
}

Executing calculatePi.go will generate the next kind of output:

$ go run calculatePi.go
Please provide one numeric argument!
exit status 1
$ go run calculatePi.go 20
3.141592653589793258
$ go run calculatePi.go 200
3.1415926535897932569603993617387624040191831562485732434931792835710464502
489134671185117843176153542820179294162928090508139378752834356105863133635
48602436768047706489838924381929

Developing a key-value store in Go
In this section, you will learn how to develop an unsophisticated version of a key-value
store in Go, which means that you will learn how to implement the core functionality of a
key-value store without any additional bells and whistles. The idea behind a key-value
store is modest: answer queries fast and work as fast as possible. This translates into using
simple algorithms and simple data structures.

The Uses of Composite Types Chapter 4

[188]

The presented program will implement the four fundamental tasks of a key-value store:

Adding a new element1.
Deleting an existing element from the key-value store based on a key2.
Looking up the value of a specific key in the store3.
Changing the value of an existing key4.

These four functions allow you to have full control over the key-value store. The commands
for these four functions will be named ADD, DELETE, LOOKUP, and CHANGE, respectively.
This means that the program will only operate when it gets one of these four commands.
Additionally, the program will stop when you enter the STOP word as input and will print
the full contents of the key-value store when you enter the PRINT command.

The name of the program will be keyValue.go and it will be presented in five code
segments.

The first code segment of keyValue.go follows:

package main

import (
 "bufio"
 "fmt"
 "os"
 "strings"
)

type myElement struct {
 Name string
 Surname string
 Id string
}

var DATA = make(map[string]myElement)

The key-value store is stored in a native Go map because using a built-in Go structure is
usually faster. The map variable is defined as a global variable, where its keys are string
variables and its values are myElement variables. You can also see the definition of the
myElement struct type here.

The second code segment of keyValue.go is as follows:

func ADD(k string, n myElement) bool {
 if k == "" {
 return false

The Uses of Composite Types Chapter 4

[189]

 }

 if LOOKUP(k) == nil {
 DATA[k] = n
 return true
 }
 return false
}

func DELETE(k string) bool {
 if LOOKUP(k) != nil {
 delete(DATA, k)
 return true
 }
 return false
}

This code contains the implementation of two functions that support the functionality of
the ADD and DELETE commands. Note that if the user tries to add a new element to the store
without giving enough values to populate the myElement struct, the ADD function will
fail. For this particular program, the missing fields of the myElement struct will be set to
the empty string. However, if you try to add a key that already exists, you will get an error
message instead of modifying the value of the existing key.

The third portion of keyValue.go contains the following code:

func LOOKUP(k string) *myElement {
 _, ok := DATA[k]
 if ok {
 n := DATA[k]
 return &n
 } else {
 return nil
 }
}

func CHANGE(k string, n myElement) bool {
 DATA[k] = n
 return true
}

func PRINT() {
 for k, d := range DATA {
 fmt.Printf("key: %s value: %v\n", k, d)
 }
}

The Uses of Composite Types Chapter 4

[190]

In this Go code segment, you can see the implementation of the functions that support the
functionality of the LOOKUP and CHANGE commands. If you try to change a key that does not
exist, the program will add that key to the store without generating any error messages. In
this part, you can also see the implementation of the PRINT() function that prints the full
contents of the key-value store.

The reason for using ALL CAPS for the names of these functions is that they are really
important for the program.

The fourth part of keyValue.go is as follows:

func main() {
 scanner := bufio.NewScanner(os.Stdin)
 for scanner.Scan() {
 text := scanner.Text()
 text = strings.TrimSpace(text)
 tokens := strings.Fields(text)

 switch len(tokens) {
 case 0:
 continue
 case 1:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 2:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 3:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 4:
 tokens = append(tokens, "")
 }

In this part of keyValue.go, you read the input from the user. Firstly, the for loop makes
sure that the program will keep running for as long as the user provides some input.
Secondly, the program makes sure that the tokens slice has at least five elements, even
though only the ADD command needs that number of elements. Thus, for an ADD operation
to be complete and not have any missing values, you will need an input that looks like ADD
aKey Field1 Field2 Field3.

The Uses of Composite Types Chapter 4

[191]

The last part of keyValue.go is shown in the following Go code:

 switch tokens[0] {
 case "PRINT":
 PRINT()
 case "STOP":
 return
 case "DELETE":
 if !DELETE(tokens[1]) {
 fmt.Println("Delete operation failed!")
 }
 case "ADD":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !ADD(tokens[1], n) {
 fmt.Println("Add operation failed!")
 }
 case "LOOKUP":
 n := LOOKUP(tokens[1])
 if n != nil {
 fmt.Printf("%v\n", *n)
 }
 case "CHANGE":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !CHANGE(tokens[1], n) {
 fmt.Println("Update operation failed!")
 }
 default:
 fmt.Println("Unknown command - please try again!")
 }
 }
}

In this part of the program, you process the input from the user. The switch statement
makes the design of the program very clean and saves you from having to use multiple
if...else statements.

Executing and using keyValue.go will create the following output:

$ go run keyValue.go
UNKNOWN
Unknown command - please try again!
ADD 123 1 2 3
ADD 234 2 3 4
ADD 345
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: { }

The Uses of Composite Types Chapter 4

[192]

ADD 345 3 4 5
Add operation failed!
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: { }
CHANGE 345 3 4 5
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: {3 4 5}
DELETE 345
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
DELETE 345
Delete operation failed!
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
ADD 345 3 4 5
ADD 567 -5 -6 -7
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: {3 4 5}
key: 567 value: {-5 -6 -7}
CHANGE 345
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: { }
key: 567 value: {-5 -6 -7}
STOP

You will have to wait until Chapter 8, Telling a UNIX System What to Do, in order to learn
how to add data persistence to the key-value store.

You can also improve keyValue.go by adding goroutines and channels to it. However,
adding goroutines and channels to a single-user application has no practical purpose. But if
you make keyValue.go able to operate over Transmission Control Protocol/Internet
Protocol (TCP/IP) networks, then the use of goroutines and channels will allow it to accept
multiple connections and serve multiple users.

You will learn more about routines and channels in Chapter 9, Concurrency in Go –
Goroutines, Channels, and Pipelines, and in Chapter 10, Concurrency in Go – Advanced Topics.

The Uses of Composite Types Chapter 4

[193]

You will then learn about creating network applications in Go in Chapter 12, The
Foundations of Network Programming in Go, and in Chapter 13, Network Programming –
Building Your Own Servers and Clients.

Go and the JSON format
JSON is a very popular text-based format designed to be an easy and light way to pass
information between JavaScript systems. However, JSON is also being used for creating
configuration files for applications and storing data in a structured format.

The encoding/json package offers the Encode() and Decode() functions, which allow
the conversion of a Go object into a JSON document and vice versa. Additionally, the
encoding/json package offers the Marshal() and Unmarshal() functions, which work
similarly to Encode() and Decode() and are based on the Encode() and Decode()
methods. The main difference between the Marshal() and Unmarshal() pair and the
Encode() and Decode() pair is that the former pair works on single objects, whereas the
latter pair of functions can work on multiple objects as well as streams of bytes.

Reading JSON data
In this section, you will learn how to read a JSON record from disk using the code of
readJSON.go, which will be presented in three parts.

The first part of readJSON.go is shown in the following Go code:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string

The Uses of Composite Types Chapter 4

[194]

}

In this Go code, we define the structure variables that are going to keep the JSON data.

The second part of readJSON.go is as follows:

func loadFromJSON(filename string, key interface{}) error {
 in, err := os.Open(filename)
 if err != nil {
 return err
 }

 decodeJSON := json.NewDecoder(in)
 err = decodeJSON.Decode(key)
 if err != nil {
 return err
 }
 in.Close()
 return nil
}

Here, we define a new function named loadFromJSON() that is used for decoding the data
of a JSON file according to a data structure that is given as the second argument to it. We
first call the json.NewDecoder() function to create a new JSON decode variable that is
associated with a file, and then we call the Decode() function for actually decoding the
contents of the file and putting them into the desired variable.

The last part of readJSON.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 return
 }

 filename := arguments[1]

 var myRecord Record
 err := loadFromJSON(filename, &myRecord)
 if err == nil {
 fmt.Println(myRecord)
 } else {
 fmt.Println(err)
 }
}

The Uses of Composite Types Chapter 4

[195]

The contents of readMe.json are the following:

 $ cat readMe.json
 {
 "Name":"Mihalis",
 "Surname":"Tsoukalos",
 "Tel":[
 {"Mobile":true,"Number":"1234-567"},
 {"Mobile":true,"Number":"1234-abcd"},
 {"Mobile":false,"Number":"abcc-567"}
]
 }

Executing readJSON.go will generate the following output:

$ go run readJSON.go readMe.json
{Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false abcc-567}]}

Saving JSON data
In this subsection, you will learn how to write JSON data. The utility that will be presented
in three parts is called writeJSON.go and it will write to standard output (os.Stdout),
which means that it will write on the terminal screen.

The first part of writeJSON.go is as follows:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The Uses of Composite Types Chapter 4

[196]

The second part of writeJSON.go is the following:

func saveToJSON(filename *os.File, key interface{}) {
 encodeJSON := json.NewEncoder(filename)
 err := encodeJSON.Encode(key)
 if err != nil {
 fmt.Println(err)
 return
 }
}

The saveToJSON() function does all the work for us as it creates a JSON encoder variable
named encodeJSON, which is associated with a filename, which is where the data is going
to be put. The call to Encode() is what saves the data into the desired file after encoding it.

The last part of writeJSON.go is as follows:

func main() {
 myRecord := Record{
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Tel: []Telephone{Telephone{Mobile: true, Number: "1234-
 567"},
 Telephone{Mobile: true, Number: "1234-abcd"},
 Telephone{Mobile: false, Number: "abcc-567"},
 },
 }

 saveToJSON(os.Stdout, myRecord)
}

The previous code is all about defining a structure variable that holds the data that we want
to save in the JSON format using the saveToJSON() function. As we are using os.Stdout,
the data will be printed on the screen instead of being saved into a file.

Executing writeJSON.go will generate the following output:

$ go run writeJSON.go
{"Name":"Mihalis","Surname":"Tsoukalos","Tel":[{"Mobile":true,"Number":"123
4-567"},{"Mobile":true,"Number":"1234-
abcd"},{"Mobile":false,"Number":"abcc-567"}]}

The Uses of Composite Types Chapter 4

[197]

Using Marshal() and Unmarshal()
In this subsection, you will see how to use the Marshal() and Unmarshal() methods in
order to implement the functionality of readJSON.go and writeJSON.go. The Go code
that illustrates the Marshal() and Unmarshal() functions can be found in mUJSON.go,
and it will be presented in three parts.

The first part of mUJSON.go is as follows:

package main

import (
 "encoding/json"
 "fmt"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

In this part of the program, we are defining two structures named Record and Telephone,
which will be used for storing the data that will be put into a JSON record.

The second part of mUJSON.go is as follows:

func main() {
 myRecord := Record{
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Tel: []Telephone{Telephone{Mobile: true, Number: "1234-567"},
 Telephone{Mobile: true, Number: "1234-abcd"},
 Telephone{Mobile: false, Number: "abcc-567"},
 }}

 rec, err := json.Marshal(&myRecord)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println(string(rec))

The Uses of Composite Types Chapter 4

[198]

In this part of the utility, we define the myRecord variable, which holds the desired data.
You can also see the use of the json.Marshal() function, which accepts a reference to the
myRecord variable. Note that json.Marshal() requires a pointer variable that converts
into the JSON format.

The last part of mUJSON.go contains the following code:

 var unRec Record
 err1 := json.Unmarshal(rec, &unRec)
 if err1 != nil {
 fmt.Println(err1)
 return
 }
 fmt.Println(unRec)
}

The json.Unmarshal() function gets JSON input and converts it into a Go structure. As it
happened with json.Marshal(), json.Unmarshal() also requires a pointer argument.

Executing mUJSON.go will generate the following output:

$ go run mUJSON.go
{"Name":"Mihalis","Surname":"Tsoukalos","Tel":[{"Mobile":true,"Number":"123
4-567"},{"Mobile":true,"Number":"1234-
abcd"},{"Mobile":false,"Number":"abcc-567"}]}
{Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false abcc-567}]}

The encoding/json Go package includes two interfaces named
Marshaler and Unmarshaler. Each one of these interfaces requires the
implementation of a single method, named MarshalJSON() and
UnmarshalJSON(), respectively. Should you wish to perform any custom
JSON marshalling and unmarshalling, these two interfaces will allow you
to do so.

Parsing JSON data
So far, we have seen how to process structured JSON data with a format that is known in
advance. This kind of data can be stored in Go structures using the methods that are
already described in the previous subsections.

The Uses of Composite Types Chapter 4

[199]

This subsection will tell you how to read and store unstructured JSON data. The critical
thing to remember is that unstructured JSON data is put into Go maps instead of Go
structures – this will be illustrated in parsingJSON.go, which will be presented in four
parts.

The first part of parsingJSON.go is as follows:

package main

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
 "os"
)

In this part, we just import the required Go packages.

The second part of parsingJSON.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 return
 }

 filename := arguments[1]

The presented code reads the command-line arguments of the program and gets the first
one, which is the JSON file that is going to be read.

The third part of parsingJSON.go is as follows:

 fileData, err := ioutil.ReadFile(filename)
 if err != nil {
 fmt.Println(err)
 return
 }

 var parsedData map[string]interface{}
 json.Unmarshal([]byte(fileData), &parsedData)

The ioutil.ReadFile() function allows you to read a file all at once, which is what we
want here.

The Uses of Composite Types Chapter 4

[200]

In this part, there is also a definition of a map named parsedData that will hold the
contents of the JSON file that was read. Each map key, which is a string, corresponds to a
JSON property. The value of each map key is of the type interface{}, which can be of
any type – this means that the value of a map key can also be another map.

The json.Unmarshal() function is used for putting the contents of the file into the
parsedData map.

In Chapter 7, Reflection and Interfaces for All Seasons, you will learn more
about interfaces and interface{}, as well as reflection, which allows
you to dynamically learn the type of an arbitrary object, as well as
information about its structure.

The last part of parsingJSON.go contains the following code:

 for key, value := range parsedData {
 fmt.Println("key:", key, "value:", value)
 }
}

The presented code shows that you can iterate over the map and get its contents. However,
interpreting these contents is a totally different story because this depends on the structure
of the data, which is not known.

The JSON file with the sample data that will be used in this subsection is called
noStr.json and it has the following contents:

$ cat noStr.json
{
 "Name": "John",
 "Surname": "Doe",
 "Age": 25,
 "Parents": [
 "Jim",
 "Mary"
],
 "Tel":[
 {"Mobile":true,"Number":"1234-567"},
 {"Mobile":true,"Number":"1234-abcd"},
 {"Mobile":false,"Number":"abcc-567"}
]
}

The Uses of Composite Types Chapter 4

[201]

Executing parsingJSON.go will generate the following output:

$ go run parsingJSON.go noStr.json
key: Tel value: [map[Mobile:true Number:1234-567] map[Mobile:true
Number:1234-abcd] map[Mobile:false Number:abcc-567]]
key: Name value: John
key: Surname value: Doe
key: Age value: 25
key: Parents value: [Jim Mary]

Once again, you can see from the output that map keys are printed in random order.

Go and XML
Go has support for XML, which is a markup language similar to HTML but much more
advanced than HTML.

The developed utility, which is called rwXML.go, will read a JSON record from disk, make
a change to it, convert it to XML, and print it on screen. Then it will convert the XML data
into JSON. The related Go code will be presented in four parts.

The first part of rwXML.go is as follows:

package main

import (
 "encoding/json"
 "encoding/xml"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The Uses of Composite Types Chapter 4

[202]

The second part of rwXML.go is shown in the following Go code:

func loadFromJSON(filename string, key interface{}) error {
 in, err := os.Open(filename)
 if err != nil {
 return err
 }

 decodeJSON := json.NewDecoder(in)
 err = decodeJSON.Decode(key)
 if err != nil {
 return err
 }
 in.Close()
 return nil
}

The third part of rwXML.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 return
 }

 filename := arguments[1]

 var myRecord Record
 err := loadFromJSON(filename, &myRecord)
 if err == nil {
 fmt.Println("JSON:", myRecord)
 } else {
 fmt.Println(err)
 }

 myRecord.Name = "Dimitris"

 xmlData, _ := xml.MarshalIndent(myRecord, "", " ")
 xmlData = []byte(xml.Header + string(xmlData))
 fmt.Println("\nxmlData:", string(xmlData))

After we read the input file and convert it into JSON, we put its data into a Go structure.
Then, we make a change to the data of that structure (myRecord). After that, we convert
that data into the XML format using the MarshalIndent() function and add a header
using xml.Header.

The Uses of Composite Types Chapter 4

[203]

The MarshalIndent() function, which can also be used with JSON data, works like
Marshal(), but each XML element begins with a new line and is indented according to its
nesting depth. This mainly has to do with the presentation of the XML data, not the values.

The last part of rwXML.go is the following:

 data := &Record{}
 err = xml.Unmarshal(xmlData, data)
 if nil != err {
 fmt.Println("Unmarshalling from XML", err)
 return
 }

 result, err := json.Marshal(data)
 if nil != err {
 fmt.Println("Error marshalling to JSON", err)
 return
 }

 _ = json.Unmarshal([]byte(result), &myRecord)
 fmt.Println("\nJSON:", myRecord)
}

In this part of the program, we convert the XML data into JSON using Marshal() and
Unmarshal() and print it on screen.

Executing rwXML.go will generate the following output:

$ go run rwXML.go readMe.json
JSON: {Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false
abcc-567}]}
xmlData: <?xml version="1.0" encoding="UTF-8"?>
<Record>
 <Name>Dimitris</Name>
 <Surname>Tsoukalos</Surname>
 <Tel>
 <Mobile>true</Mobile>
 <Number>1234-567</Number>
 </Tel>
 <Tel>
 <Mobile>true</Mobile>
 <Number>1234-abcd</Number>
 </Tel>
 <Tel>
 <Mobile>false</Mobile>
 <Number>abcc-567</Number>
 </Tel>

The Uses of Composite Types Chapter 4

[204]

</Record>
JSON: {Dimitris Tsoukalos [{true 1234-567} {true 1234-abcd} {false
abcc-567}]}

Reading an XML file
In this subsection, you will learn how to read an XML file from disk and store it into a Go
structure. The name of the program is readXML.go and it will be presented in three parts.
The first part of readXML.go is as follows:

package main

import (
 "encoding/xml"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The second part of readXML.go is the following:

func loadFromXML(filename string, key interface{}) error {
 in, err := os.Open(filename)
 if err != nil {
 return err
 }

 decodeXML := xml.NewDecoder(in)
 err = decodeXML.Decode(key)
 if err != nil {
 return err
 }
 in.Close()
 return nil
}

The Uses of Composite Types Chapter 4

[205]

The presented process is very similar to the way that you read a JSON file from disk.

The last part of readXML.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 return
 }

 filename := arguments[1]

 var myRecord Record
 err := loadFromXML(filename, &myRecord)

 if err == nil {
 fmt.Println("XML:", myRecord)
 } else {
 fmt.Println(err)
 }
}

Executing readXML.go will generate the following output:

$ go run readXML.go data.xml
XML: {Dimitris Tsoukalos [{true 1234-567} {true 1234-abcd} {false
abcc-567}]}

The contents of data.xml are the following:

$ cat data.xml
xmlData: <?xml version="1.0" encoding="UTF-8"?>
<Record>
 <Name>Dimitris</Name>
 <Surname>Tsoukalos</Surname>
 <Tel>
 <Mobile>true</Mobile>
 <Number>1234-567</Number>
 </Tel>
 <Tel>
 <Mobile>true</Mobile>
 <Number>1234-abcd</Number>
 </Tel>
 <Tel>
 <Mobile>false</Mobile>
 <Number>abcc-567</Number>

The Uses of Composite Types Chapter 4

[206]

 </Tel>
</Record>

Customizing XML output
In this subsection, you will learn how to modify and customize the generated XML output.
The name of the utility, which will be presented in three parts, is modXML.go. Note that the
data that is going to be converted into XML is hardcoded in the program for reasons of
simplicity.

The first part of modXML.go is as follows:

package main

import (
 "encoding/xml"
 "fmt"
 "os"
)

func main() {
 type Address struct {
 City, Country string
 }
 type Employee struct {
 XMLName xml.Name `xml:"employee"`
 Id int `xml:"id,attr"`
 FirstName string `xml:"name>first"`
 LastName string `xml:"name>last"`
 Initials string `xml:"name>initials"`
 Height float32 `xml:"height,omitempty"`
 Address
 Comment string `xml:",comment"`
 }

This is where the structure for the XML data is defined. However, there is additional
information regarding the name and the type of the XML elements. The XMLName field
provides the name of the XML record, which in this case will be employee.

A field with the tag ",comment" is a comment and it is formatted as such in the output. A
field with the tag ",attr" appears as an attribute to the provided field name (which is id
in this case) in the output. The "name>first" notation tells Go to embed the first tag
inside a tag called name.

The Uses of Composite Types Chapter 4

[207]

Lastly, a field with the "omitempty" option is omitted from the output if it is empty. An
empty value is any of 0, false, nil pointer, or interface, and any array, slice, map, or string
with a length of zero.

The second part of modXML.go is as follows:

 r := &Employee{Id: 7, FirstName: "Mihalis", LastName: "Tsoukalos",
Initials: "MIT"}
 r.Comment = "Technical Writer + DevOps"
 r.Address = Address{"SomeWhere 12", "12312, Greece"}

Here we define and initialize an employee structure.

The last part of modXML.go is shown in the following Go code:

 output, err := xml.MarshalIndent(r, " ", " ")
 if err != nil {
 fmt.Println("Error:", err)
 }
 output = []byte(xml.Header + string(output))
 os.Stdout.Write(output)
 os.Stdout.Write([]byte("\n"))
}

Executing modXML.go will generate the following output:

$ go run modXML.go
<?xml version="1.0" encoding="UTF-8"?>
 <employee id="7">
 <name>
 <first>Mihalis</first>
 <last>Tsoukalos</last>
 <initials>MIT</initials>
 </name>
 <City>SomeWhere 12</City>
 <Country>12312, Greece</Country>
 <!--Technical Writer + DevOps-->
 </employee>

Go and the YAML format
YAML Ain't Markup Language (YAML) is another very popular text format. Although the
standard Go library offers no support for the YAML format, you can look at
https://github.com/go-yaml/yaml for a Go package that offers YAML support for Go.

https://github.com/go-yaml/yaml

The Uses of Composite Types Chapter 4

[208]

The YAML format is supported by the Viper package, which is illustrated
in Chapter 8, Telling a UNIX System What to Do. If you want to learn more
about how Viper parses YAML files, you can look at the Viper Go code at
https://github.com/spf13/viper.

Additional resources
Take a look at the following resources:

Read the documentation of the regexp standard Go package, which can be
found at https://golang.org/pkg/regexp/.
Visit the main page of the grep(1) utility and find out how it supports regular
expressions.
You can find more information about the math/big Go package at
https://golang.org/pkg/math/big/.
You can find more information about YAML at https://yaml.org/.
You might find it interesting to look at the sync.Map type explained at
https://golang.org/pkg/sync/.
Please have a look at the documentation of the unicode standard Go package at
https://golang.org/pkg/unicode/.
Although you might find it hard at first, start reading The Go Programming
Language Specification at https://golang.org/ref/spec.

Exercises and web links
Try to write a Go program that prints the invalid part or parts of an IPv4 address.
Can you state the differences between make and new without looking at the
chapter text?
Using the code of findIPv4.go, write a Go program that prints the most
popular IPv4 addresses found in a log file without processing the output with
any UNIX utilities.
Develop a Go program that finds the IPv4 addresses in a log file that generated a
404 HTML error message.
Read a JSON file with 10 integer values, store it in a struct variable, increment
each integer value by one, and write the updated JSON entry on disk. Now, do
the same for an XML file.

https://github.com/spf13/viper
https://golang.org/pkg/regexp/
https://golang.org/pkg/math/big/
https://yaml.org/
https://golang.org/pkg/sync/
https://golang.org/pkg/unicode/
https://golang.org/ref/spec

The Uses of Composite Types Chapter 4

[209]

Develop a Go program that finds all the IPv4 addresses of a log file that
downloaded ZIP files.
Using the math/big standard Go package, write a Go program that calculates
square roots with high precision – choose the algorithm on your own.
Write a Go utility that finds a given date and time format in its input and returns
just the time part of it.
Do you remember the differences between a character, a byte, and a rune?
Develop a Go utility that uses a regular expression in order to match integers
from 200 to 400.
Try to improve keyValue.go by adding logging to it.

Summary
In this chapter, we talked about many handy Go features, including creating and using
structures, tuples, strings, and runes, and the functionality of the unicode standard Go
package. Additionally, you learned about pattern matching, regular expressions, the
processing of JSON and XML files, the switch statement, and the strings standard Go
package.

Finally, we developed a key-value store in Go and you learned how to use the types of the
math/big package to calculate Pi with the desired accuracy.

In the next chapter, you will learn how you can group and manipulate data using more
advanced arrangements, such as binary trees, linked lists, doubly linked lists, queues,
stacks, and hash tables. You will also explore the structures that can be found in the
container standard Go package, how to perform matrix operations in Go, and how to
verify Sudoku puzzles. The last topic of the next chapter will be random numbers and
generating difficult-to-guess strings that can potentially be used as secure passwords.

5
How to Enhance Go Code with

Data Structures
In the previous chapter, we discussed composite data types, which are constructed using
the struct keyword, and JSON and XML processing in Go, as well as topics such as
regular expressions, pattern matching, tuples, runes, strings, and the unicode and
strings standard Go packages. Finally, we developed a simple key-value store in Go.

There are times, however, when the structures offered by a programming language will not
fit a particular problem. In such cases, you will need to create your own data structures to
store, search, and receive your data in explicit and specialized ways.

Consequently, this chapter is all about developing and using many famous data structures
in Go, including binary trees, linked lists, hash tables, stacks, and queues, and learning
about their advantages. As nothing describes a data structure better than an image, you will
see many explanatory figures in this chapter.

The last parts of the chapter will talk about verifying Sudoku puzzles and performing
calculations with matrices using slices.

In this chapter, you will learn about the following topics:

Graphs and nodes
Measuring the complexity of an algorithm
Binary trees
Hash tables
Linked lists
Doubly linked lists
Working with queues in Go
Stacks
The data structures offered by the container standard Go package

How to Enhance Go Code with Data Structures Chapter 5

[211]

Performing matrix calculations
Working with Sudoku puzzles
Generating random numbers in Go
Building random strings that can be used as difficult-to-crack passwords

About graphs and nodes
A graph (G (V, E)) is a finite, nonempty set of vertices (V) (or nodes) and a set of edges (E).
There are two main types of graphs: cyclic graphs and acyclic graphs. A cyclic graph is a
graph where all or a number of its vertices are connected in a closed chain. In acyclic
graphs, there are not any closed chains.

A directed graph is a graph with edges that have a direction associated with them, while a
directed acyclic graph is a directed graph with no cycles in it.

As a node may contain any kind of information, nodes are usually
implemented using Go structures due to their versatility.

Algorithm complexity
The efficiency of an algorithm is judged by its computational complexity, which mostly has
to do with the number of times the algorithm needs to access its input data to do its job. The
big O notation is used in computer science for describing the complexity of an algorithm.
Thus, an O(n) algorithm, which needs to access its input only once, is considered better
than an O(n2) algorithm, which is better than an O(n3) algorithm, and so on. The worst
algorithms, however, are the ones with an O(n!) running time, which makes them almost
unusable for inputs with more than 300 elements.

Lastly, most Go lookup operations in built-in types, such as finding the value of a map key
or accessing an array element, have a constant time, which is represented by O(1). This
means that built-in types are faster than custom types, and that you should generally favor
using them, unless you want full control over what is going on behind the scenes.

Furthermore, not all data structures are created equal. Generally speaking, array operations
are faster than map operations, which is the price you have to pay for the versatility of a
map.

How to Enhance Go Code with Data Structures Chapter 5

[212]

Although every algorithm has its drawbacks, if you do not have lots of
data, the algorithm is not really important as long as it performs the
desired job accurately.

Binary trees in Go
A binary tree is a data structure where underneath each node there exist at most two other
nodes. This means that a node can be connected to one, two, or no other nodes. The root of
a tree is the first node of the tree. The depth of a tree, which is also called the height of a
tree, is defined as the longest path from the root to a node, whereas the depth of a node is
the number of edges from the node to the root of the tree. A leaf is a node with no children.

A tree is considered balanced when the longest length from the root node to a leaf is at
most one more than the shortest such length. An unbalanced tree is a tree that is not
balanced. Balancing a tree might be a difficult and slow operation, so it is better to keep
your tree balanced from the beginning rather than trying to balance it after you have
created it, especially when your tree has a large number of nodes.

The next figure shows an unbalanced binary tree. Its root node is J, whereas nodes A, G, W,
and D are leaves.

Figure 5.1: An unbalanced binary tree

How to Enhance Go Code with Data Structures Chapter 5

[213]

Implementing a binary tree in Go
This section will illustrate how to implement a binary tree in Go using the source code
found in binTree.go as an example. The contents of binTree.go will be presented in five
parts. The first part is next:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

type Tree struct {
 Left *Tree
 Value int
 Right *Tree
}

What you see here is the definition of the node of the tree using a Go structure. The
math/rand package is used for populating the tree with random numbers, as we do not
have any real data.

The second code portion from binTree.go comes with the next Go code:

func traverse(t *Tree) {
 if t == nil {
 return
 }
 traverse(t.Left)
 fmt.Print(t.Value, " ")
 traverse(t.Right)
}

The traverse() function reveals how you can visit all of the nodes of a binary tree using
recursion.

The third code segment is as follows:

func create(n int) *Tree {
 var t *Tree
 rand.Seed(time.Now().Unix())
 for i := 0; i < 2*n; i++ {
 temp := rand.Intn(n * 2)
 t = insert(t, temp)
 }

How to Enhance Go Code with Data Structures Chapter 5

[214]

 return t
}

The create() function is only used for populating the binary tree with random integers.

The fourth part of the program is next:

func insert(t *Tree, v int) *Tree {
 if t == nil {
 return &Tree{nil, v, nil}
 }
 if v == t.Value {
 return t
 }
 if v < t.Value {
 t.Left = insert(t.Left, v)
 return t
 }
 t.Right = insert(t.Right, v)
 return t
}

The insert() function does many important things using if statements. The first if
statement checks whether we are dealing with an empty tree or not. If it is indeed an empty
tree, then the new node will be the root of the tree and will be created as &Tree{nil, v,
nil}.

The second if statement determines whether the value you are trying to insert already
exists in the binary tree or not. If it exists, the function returns without doing anything else.

The third if statement determines whether the value you are trying to insert will go on the
left or on the right of the node that is currently being examined and acts accordingly. Please
note that the presented implementation creates unbalanced binary trees.

The last part of binTree.go contains the following Go code:

func main() {
 tree := create(10)
 fmt.Println("The value of the root of the tree is",
 tree.Value)
 traverse(tree)
 fmt.Println()
 tree = insert(tree, -10)
 tree = insert(tree, -2)
 traverse(tree)
 fmt.Println()
 fmt.Println("The value of the root of the tree is",

How to Enhance Go Code with Data Structures Chapter 5

[215]

 tree.Value)
}

Executing binTree.go will generate the next kind of output:

$ go run binTree.go
The value of the root of the tree is 18
0 3 4 5 7 8 9 10 11 14 16 17 18 19
-10 -2 0 3 4 5 7 8 9 10 11 14 16 17 18 19
The value of the root of the tree is 18

Advantages of binary trees
You cannot beat a tree when you need to represent hierarchical data. For that reason, trees
are extensively used when the compiler of a programming language parses a computer
program.

Additionally, trees are ordered by design, which means that you do not have to make any
special effort to order them; putting an element into its correct place keeps them ordered.
However, deleting an element from a tree is not always trivial because of the way that trees
are constructed.

If a binary tree is balanced, its search, insert, and delete operations take about log(n) steps,
where n is the total number of elements that the tree holds. Additionally, the height of a
balanced binary tree is approximately log2(n), which means that a balanced tree with 10,000
elements has a height of about 14, and that is remarkably small.

Similarly, the height of a balanced tree with 100,000 elements will be about 17, and the
height of a balanced tree with 1,000,000 elements will be about 20. In other words, putting a
significantly large number of elements into a balanced binary tree does not change the
speed of the tree in an extreme way. Stated differently, you can reach any node of a tree
with 1,000,000 nodes in less than 20 steps!

A major disadvantage of binary trees is that the shape of the tree depends on the order in
which its elements were inserted. If the keys of a tree are long and complex, then inserting
or searching for an element might be slow due to the large number of comparisons
required. Finally, if a tree is not balanced, then the performance of the tree will be
unpredictable.

Although you can create a linked list or an array faster than a binary tree,
the flexibility that a binary tree offers in search operations might be worth
the extra overhead and maintenance.

How to Enhance Go Code with Data Structures Chapter 5

[216]

When searching for an element on a binary tree, you check whether the
value of the element that you are looking for is bigger or smaller than the
value of the current node and use that decision to choose which part of the
tree you will go down next. Doing this saves a lot of time.

Hash tables in Go
Strictly speaking, a hash table is a data structure that stores one or more key-value pairs
and uses a hash function to compute an index into an array of buckets or slots, from which
the correct value can be discovered. Ideally, the hash function should assign each key to a
unique bucket provided that you have the required number of buckets, which is usually the
case.

A good hash function must be able to produce a uniform distribution of the hash values,
because it is inefficient to have unused buckets or big differences in the cardinalities of the
buckets. Additionally, the hash function should work consistently and output the same
hash value for identical keys. Otherwise, it would be impossible to locate the information
you want.

Figure 5.2: A hash table with 10 buckets

How to Enhance Go Code with Data Structures Chapter 5

[217]

Implementing a hash table in Go
The Go code of hashTable.go, which will be presented in five parts, will help to clarify
many things about hash tables.

The first part of hashTable.go is as follows:

package main

import (
 "fmt"
)

const SIZE = 15
type Node struct {
 Value int
 Next *Node
}

In this part, you can see the definition of the node of the hash table, which, as expected, is
defined using a Go structure. The SIZE constant variable holds the number of buckets of
the hash table.

The second segment from hashTable.go is shown in the following Go code:

type HashTable struct {
 Table map[int]*Node
 Size int
}

func hashFunction(i, size int) int {
 return (i % size)
}

In this code segment, you can see the implementation of the hash function used in this
particular hash. The hashFunction() uses the modulo operator. The main reason for
choosing the modulo operator is because this particular hash table has to cope with integer
values. If you were dealing with strings or floating-point numbers, then you would use a
different logic in your hash function.

The actual hash is stored in a HashTable structure that has two fields. The first field is a
map that associates an integer with a linked list (*Node), and the second field is the size of
the hash table. As a result, this hash table will have as many linked lists as the number of its
buckets. This also means that the nodes of each bucket of the hash table will be stored in
linked lists. You will learn more about linked lists in a little while.

How to Enhance Go Code with Data Structures Chapter 5

[218]

The third code portion of hashTable.go is as follows:

func insert(hash *HashTable, value int) int {
 index := hashFunction(value, hash.Size)
 element := Node{Value: value, Next: hash.Table[index]}
 hash.Table[index] = &element
 return index
}

The insert() function is called for inserting elements into the hash table. Note that the
current implementation of the insert() function does not check for duplicate values.

The fourth part of hashTable.go is next:

func traverse(hash *HashTable) {
 for k := range hash.Table {
 if hash.Table[k] != nil {
 t := hash.Table[k]
 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
 }
 }
}

The traverse() function is used for printing all of the values in the hash table. The
function visits each of the linked lists of the hash table and prints the stored values, linked
list by linked list.

The last code portion of hashTable.go is as follows:

func main() {
 table := make(map[int]*Node, SIZE)
 hash := &HashTable{Table: table, Size: SIZE}
 fmt.Println("Number of spaces:", hash.Size)
 for i := 0; i < 120; i++ {
 insert(hash, i)
 }
 traverse(hash)
}

In this part of the code, you create a new hash table named hash using the table variable,
which is a map that holds the buckets of the hash table. As you already know, the slots of a
hash table are implemented using linked lists.

How to Enhance Go Code with Data Structures Chapter 5

[219]

The main reason for using a map to hold the linked lists of a hash table instead of a slice or
an array is that the keys of a slice or an array can only be positive integers, while the keys of
a map can be almost anything you need.

Executing hashTable.go will produce the following output:

$ go run hashTable.go
Number of spaces: 15
105 -> 90 -> 75 -> 60 -> 45 -> 30 -> 15 -> 0 ->
110 -> 95 -> 80 -> 65 -> 50 -> 35 -> 20 -> 5 ->
114 -> 99 -> 84 -> 69 -> 54 -> 39 -> 24 -> 9 ->
118 -> 103 -> 88 -> 73 -> 58 -> 43 -> 28 -> 13 ->
119 -> 104 -> 89 -> 74 -> 59 -> 44 -> 29 -> 14 ->
108 -> 93 -> 78 -> 63 -> 48 -> 33 -> 18 -> 3 ->
112 -> 97 -> 82 -> 67 -> 52 -> 37 -> 22 -> 7 ->
113 -> 98 -> 83 -> 68 -> 53 -> 38 -> 23 -> 8 ->
116 -> 101 -> 86 -> 71 -> 56 -> 41 -> 26 -> 11 ->
106 -> 91 -> 76 -> 61 -> 46 -> 31 -> 16 -> 1 ->
107 -> 92 -> 77 -> 62 -> 47 -> 32 -> 17 -> 2 ->
109 -> 94 -> 79 -> 64 -> 49 -> 34 -> 19 -> 4 ->
117 -> 102 -> 87 -> 72 -> 57 -> 42 -> 27 -> 12 ->
111 -> 96 -> 81 -> 66 -> 51 -> 36 -> 21 -> 6 ->
115 -> 100 -> 85 -> 70 -> 55 -> 40 -> 25 -> 10 ->

This particular hash table is perfectly balanced because it has to deal with continuous
numbers that are placed in a slot according to the results of the modulo operator. Real-
world problems might not generate such convenient results!

The remainder of a Euclidean division between two natural numbers, a
and b, can be calculated according to the a = bq + r formula, where q is the
quotient and r is the remainder. The values allowed for the remainder can
be between 0 and b-1, which are the possible results of the modulo
operator.

Note that if you execute hashTable.go several times, you will most likely get an output
where the lines are in a different order, because the way that Go outputs the key-value
pairs of a map is deliberately totally random, and therefore cannot be relied upon.

Implementing the lookup functionality
In this section, you are going to see an implantation of the lookup() function that allows
you to determine whether a given element already exists in the hash table or not. The code
of the lookup() function is based on that of the traverse() function, as follows:

How to Enhance Go Code with Data Structures Chapter 5

[220]

func lookup(hash *HashTable, value int) bool {
 index := hashFunction(value, hash.Size)
 if hash.Table[index] != nil {
 t := hash.Table[index]
 for t != nil {
 if t.Value == value {
 return true
 }
 t = t.Next
 }
 }
 return false
}

You can find the preceding code in the hashTableLookup.go source file. Executing
hashTableLookup.go will create the following output:

$ go run hashTableLookup.go
120 is not in the hash table!
121 is not in the hash table!
122 is not in the hash table!
123 is not in the hash table!
124 is not in the hash table!

The preceding output means that the lookup() function does its job pretty well.

Advantages of hash tables
If you are thinking that hash tables are not that useful, handy, or smart, consider the
following: when a hash table has n keys and k buckets, the search speed for the n keys goes
from O(n) for a linear search down to O(n/k). Although the improvement might look small,
for a hash array with only 20 slots, the search time will be reduced by 20 times! This makes
hash tables perfect for applications such as dictionaries or any other analogous application
where you have to search large amounts of data.

Linked lists in Go
A linked list is a data structure with a finite set of elements where each element uses at least
two memory locations: one for storing the actual data and the other for storing a pointer
that links the current element to the next one, thus creating a sequence of elements that
construct the linked list.

How to Enhance Go Code with Data Structures Chapter 5

[221]

The first element of a linked list is called the head, whereas the last element is often called
the tail. The first thing that you should do when defining a linked list is to keep the head of
the list in a separate variable because the head is the only thing that you have to access the
entire linked list. Note that if you lose the pointer to that first node of a singly linked list,
there is no way to find it again.

Figure 5.3: A linked list with five nodes

The next figure shows you how to remove an existing node from a linked list in order to
better understand the steps that are involved in the process. The main thing that you will
need to do is to arrange the pointer to the left node of the node that you are removing in
order to point to the right node of the node that is being removed.

Figure 5.4: Removing a node from a linked list

The linked list implementation that follows is relatively simple and will not include the
delete node functionality, which is left as an exercise for you to tackle.

How to Enhance Go Code with Data Structures Chapter 5

[222]

Implementing a linked list in Go
The Go source file for the implementation of the linked list is called linkedList.go, and it
will be presented in five parts.

The first code segment of linkedList.go is as follows:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

var root = new(Node)

In this part of the program, you define the Node structure type that will be used for the
nodes of the linked list, as well as the root global variable that holds the first element of
the linked list, which will be accessible everywhere in the code. Bear in mind that although
using global variables is generally fine for smaller programs and example code, it might
create bugs in larger programs.

The second part of linkedList.go is shown in the following Go code:

func addNode(t *Node, v int) int {
 if root == nil {
 t = &Node{v, nil}
 root = t
 return 0
 }

 if v == t.Value {
 fmt.Println("Node already exists:", v)
 return -1
 }

 if t.Next == nil {
 t.Next = &Node{v, nil}
 return -2
 }

 return addNode(t.Next, v)
}

How to Enhance Go Code with Data Structures Chapter 5

[223]

Due to the way that linked lists work, they do not normally contain duplicate entries.
Furthermore, new nodes are usually added at the end of a linked list when the linked list is
not sorted. Thus, the addNode() function is used for adding new nodes to the linked list.

There are three distinct cases in the implementation that are examined using if statements.
In the first case, you test whether you are dealing with an empty linked list or not. In the
second case, you check whether the value that you want to add is already in the list. In the
third case, you check whether you have reached the end of the linked list. In this case, you
add a new node at the end of the list with the desired value using t.Next = &Node{v,
nil}. If none of these conditions is true, you repeat the same process with the addNode()
function for the next node of the linked list using return addNode(t.Next, v).

The third code segment of the linkedList.go program contains the implementation of
the traverse() function:

func traverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

The fourth part of linkedList.go is as follows:

func lookupNode(t *Node, v int) bool {
 if root == nil {
 t = &Node{v, nil}
 root = t
 return false
 }

 if v == t.Value {
 return true
 }

 if t.Next == nil {
 return false
 }

 return lookupNode(t.Next, v)

How to Enhance Go Code with Data Structures Chapter 5

[224]

}

func size(t *Node) int {
 if t == nil {
 fmt.Println("-> Empty list!")
 return 0
 }

 i := 0
 for t != nil {
 i++
 t = t.Next
 }
 return i
}

In this part, you see the implementation of two very handy functions: lookupNode() and
size(). The former checks whether a given element exists in the linked list, while the latter
returns the size of the linked list, which is the number of nodes in the linked list.

The logic behind the implementation of the lookupNode() function is easy to understand:
you start accessing all of the elements of the singly linked list in order to search for the
value you want. If you reach the tail of the linked list without having found the desired
value, then you know that the linked list does not contain that value.

The last part of linkedList.go contains the implementation of the main() function:

func main() {
 fmt.Println(root)
 root = nil
 traverse(root)
 addNode(root, 1)
 addNode(root, -1)
 traverse(root)
 addNode(root, 10)
 addNode(root, 5)
 addNode(root, 45)
 addNode(root, 5)
 addNode(root, 5)
 traverse(root)
 addNode(root, 100)
 traverse(root)

 if lookupNode(root, 100) {
 fmt.Println("Node exists!")
 } else {
 fmt.Println("Node does not exist!")

How to Enhance Go Code with Data Structures Chapter 5

[225]

 }

 if lookupNode(root, -100) {
 fmt.Println("Node exists!")
 } else {
 fmt.Println("Node does not exist!")
 }
}

Executing linkedList.go will generate the following output:

$ go run linkedList.go
&{0 <nil>}
-> Empty list!
1 -> -1 ->
Node already exists: 5
Node already exists: 5
1 -> -1 -> 10 -> 5 -> 45 ->
1 -> -1 -> 10 -> 5 -> 45 -> 100 ->
Node exists!
Node does not exist!

Advantages of linked lists
The greatest advantages of linked lists are that they are easy to understand and implement,
and they are generic enough that they can be used in many different situations. This means
that they can be used to model many different kinds of data, starting from single values
and going up to complex data structures with many fields. Additionally, linked lists are
really fast at sequential searching when used with pointers.

Linked lists not only help you to sort your data, but they can also assist you in keeping
your data sorted even after inserting or deleting elements. Deleting a node from a sorted
linked list is the same as in an unsorted linked list; however, inserting a new node into a
sorted linked list is different because the new node has to go to the right place in order for
the list to remain sorted. In practice, this means that if you have lots of data and you know
that you will need to delete data all the time, using a linked list is a better choice than using
a hash table or a binary tree.

Lastly, sorted linked lists allow you to use various optimization techniques when
searching for or inserting a node. The most common technique is keeping a pointer at the
center node of the sorted linked list and starting your lookups from there. This simple
optimization can reduce the time of the lookup operation by half!

How to Enhance Go Code with Data Structures Chapter 5

[226]

Doubly linked lists in Go
A doubly linked list is one where each node keeps a pointer to the previous element on the
list, as well as the next element.

Figure 5.6: A doubly linked list

Thus, on a doubly linked list, the next link of the first node points to the second node, while
its previous link points to nil (also called NULL). Analogously, the next link of the last
node points to nil, while its previous link points to the penultimate node of the doubly
linked list.

The last figure of this chapter illustrates the addition of a node in a doubly linked list. As
you can imagine, the main task that needs to be accomplished is dealing with the pointers
of three nodes: the new node, the node that will be on the left of the new node, and the
node that will be on the right of the new node.

Figure 5.7: Inserting a new node into the middle of a doubly linked list

How to Enhance Go Code with Data Structures Chapter 5

[227]

Thus, in reality, the main difference between a singly linked list and a doubly linked list is
that the latter requires more housekeeping. This is the price that you will have to pay for
being able to access your doubly linked list both ways.

Implementing a doubly linked list in Go
The name of the program with the Go implementation of a doubly linked list is
doublyLList.go, and it will be offered to you in five parts. The general idea behind a
doubly linked list is the same as with a singly linked list, but you just have to do more
housekeeping due to the presence of two pointers in each node of the list.

The first part of doublyLList.go is as follows:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Previous *Node
 Next *Node
}

In this part, you can see the definition of the node of the doubly linked list using a Go
structure. However, this time, the struct has two pointer fields for apparent reasons.

The second code portion of doublyLList.go contains the following Go code:

func addNode(t *Node, v int) int {
 if root == nil {
 t = &Node{v, nil, nil}
 root = t
 return 0
 }

 if v == t.Value {
 fmt.Println("Node already exists:", v)
 return -1
 }

 if t.Next == nil {
 temp := t

How to Enhance Go Code with Data Structures Chapter 5

[228]

 t.Next = &Node{v, temp, nil}
 return -2
 }

 return addNode(t.Next, v)
}

As happened in the case of the singly linked list, each new node is placed at the end of the
current doubly linked list. However, this is not mandatory, as you can decide that you want
to have a sorted doubly linked list.

The third part of doublyLList.go is as follows:

func traverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

func reverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 temp := t
 for t != nil {
 temp = t
 t = t.Next
 }

 for temp.Previous != nil {
 fmt.Printf("%d -> ", temp.Value)
 temp = temp.Previous
 }
 fmt.Printf("%d -> ", temp.Value)
 fmt.Println()
}

How to Enhance Go Code with Data Structures Chapter 5

[229]

Here you see the Go code for the traverse() and reverse() functions. The
implementation of the traverse() function is the same as in the linkedList.go
program. However, the logic behind the reverse() function is very interesting. As we do
not keep a pointer to the tail of the doubly linked list, we need to go to the end of the
doubly linked list before being able to access its nodes in reverse order.

Notice that Go allows you to write code such as a, b = b, a in order to swap the values
of two variables without the need for a temporary variable.

The fourth part of doublyLList.go contains the following Go code:

func size(t *Node) int {
 if t == nil {
 fmt.Println("-> Empty list!")
 return 0
 }

 n := 0
 for t != nil {
 n++
 t = t.Next
 }
 return n
}

func lookupNode(t *Node, v int) bool {
 if root == nil {
 return false
 }

 if v == t.Value {
 return true
 }

 if t.Next == nil {
 return false
 }

 return lookupNode(t.Next, v)
}

The last code segment of doublyLList.go contains the following Go code:

var root = new(Node)

func main() {

How to Enhance Go Code with Data Structures Chapter 5

[230]

 fmt.Println(root)
 root = nil
 traverse(root)
 addNode(root, 1)
 addNode(root, 1)
 traverse(root)
 addNode(root, 10)
 addNode(root, 5)
 addNode(root, 0)
 addNode(root, 0)
 traverse(root)
 addNode(root, 100)
 fmt.Println("Size:", size(root))
 traverse(root)
 reverse(root)
}

If you execute doublyLList.go, you will get the following output:

$ go run doublyLList.go
&{0 <nil> <nil>}
-> Empty list!
Node already exists: 1
1 ->
Node already exists: 0
1 -> 10 -> 5 -> 0 ->
Size: 5
1 -> 10 -> 5 -> 0 -> 100 ->
100 -> 0 -> 5 -> 10 -> 1 ->

As you can see, the reverse() function works just fine!

Advantages of doubly linked lists
Doubly linked lists are more versatile than singly linked lists because you can traverse them
in any direction you want and also you can insert and delete elements from them more
easily. Additionally, even if you lose the pointer to the head of a doubly linked list, you can
still find the head node of that list. However, this versatility comes at a price: maintaining
two pointers for each node. It is up to the developer to decide whether that extra
complexity is justified or not. After all, your music player might be using a doubly linked
list to represent your current list of songs and be able to go to the previous song as well as
the next one.

How to Enhance Go Code with Data Structures Chapter 5

[231]

Queues in Go
A queue is a special kind of linked list where each new element is inserted to the head and
removed from the tail of the linked list. I do not need a figure to describe a queue; imagine
going to a bank and waiting for the people that came before you to finish their transactions
before you can talk to a bank teller.

The main advantage of queues is simplicity. You only need two functions to access a queue,
which means that you have to worry about fewer things going wrong and you can
implement a queue any way you want as long as you can offer support for those two
functions.

Implementing a queue in Go
The program that will illustrate the Go implementation of a queue is called queue.go, and
it will be presented in five parts. Note that a linked list is going to be used for the
implementation of the queue. The Push() and Pop() functions are used for adding and
removing nodes from the queue, respectively.

The first part of the code for queue.go is as follows:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

var size = 0
var queue = new(Node)

Having a variable (size) for keeping the number of nodes that you have on the queue is
handy but not compulsory. However, the implementation presented here supports this
functionality because it makes things simpler. In practice, you will probably want to keep
these fields in your own structure.

The second code portion of queue.go contains the following Go code:

func Push(t *Node, v int) bool {
 if queue == nil {

How to Enhance Go Code with Data Structures Chapter 5

[232]

 queue = &Node{v, nil}
 size++
 return true
 }

 t = &Node{v, nil}
 t.Next = queue
 queue = t
 size++

 return true
}

This part displays the implementation of the Push() function, which is straightforward. If
the queue is empty, then the new node will become the queue. If the queue is not empty,
then you create a new node that is placed in front of the current queue. After that, the head
of the queue becomes the node that was just created.

The third part of queue.go contains the following Go code:

func Pop(t *Node) (int, bool) {
 if size == 0 {
 return 0, false
 }

 if size == 1 {
 queue = nil
 size--
 return t.Value, true
 }

 temp := t
 for (t.Next) != nil {
 temp = t
 t = t.Next
 }

 v := (temp.Next).Value
 temp.Next = nil

 size--
 return v, true
}

The preceding code shows the implementation of the Pop() function, which removes the
oldest element of the queue. If the queue is empty (size == 0), there is nothing to extract.

How to Enhance Go Code with Data Structures Chapter 5

[233]

If the queue has only one node, then you extract the value of that node and the queue
becomes empty. Otherwise, you extract the last element of the queue, remove the last node
of the queue, and fix the required pointers before returning the desired value.

The fourth part of queue.go contains the following Go code:

func traverse(t *Node) {
 if size == 0 {
 fmt.Println("Empty Queue!")
 return
 }
 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

Strictly speaking, the traverse() function is not necessary for the operation of a queue,
but it gives you a practical way of looking at all of the nodes of the queue.

The last code segment of queue.go is shown in the following Go code:

func main() {
 queue = nil
 Push(queue, 10)
 fmt.Println("Size:", size)
 traverse(queue)

 v, b := Pop(queue)
 if b {
 fmt.Println("Pop:", v)
 }
 fmt.Println("Size:", size)

 for i := 0; i < 5; i++ {
 Push(queue, i)
 }
 traverse(queue)
 fmt.Println("Size:", size)

 v, b = Pop(queue)
 if b {
 fmt.Println("Pop:", v)
 }
 fmt.Println("Size:", size)

 v, b = Pop(queue)

How to Enhance Go Code with Data Structures Chapter 5

[234]

 if b {
 fmt.Println("Pop:", v)
 }
 fmt.Println("Size:", size)
 traverse(queue)
}

Almost all of the Go code in main() is for checking the operation of the queue. The most
important code in here is the two if statements, which let you know whether the Pop()
function returned an actual value, or if the queue was empty and there is nothing to return.

Executing queue.go will produce the following type of output:

$ go run queue.go
Size: 1
10 ->
Pop: 10
Size: 0
4 -> 3 -> 2 -> 1 -> 0 ->
Size: 5
Pop: 0
Size: 4
Pop: 1
Size: 3
4 -> 3 -> 2 ->

Stacks in Go
A stack is a data structure that looks like a pile of plates. The last plate that goes on the top
of the pile is the one that will be used first when you need to use a new plate.

Like a queue, the main advantage of a stack is its simplicity because you only have to worry
about implementing two functions in order to be able to work with a stack: adding a new
node to the stack and removing a node from the stack.

Implementing a stack in Go
It is now time to look at the implementation of a stack in Go. This will be illustrated in the
stack.go source file. Once again, a linked list will be used for implementing the stack. As
you know, you will need two functions: one function named Push() for putting things on
the stack and another one named Pop() for removing things from the stack.

How to Enhance Go Code with Data Structures Chapter 5

[235]

Although it is not necessary, it is useful to keep the number of elements that you have on
the stack on a separate variable in order to be able to tell whether you are dealing with an
empty stack or not, without having to access the linked list itself.

The source code of stack.go will be presented in four parts. The first part is as follows:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

var size = 0
var stack = new(Node)

The second part of stack.go contains the implementation of the Push() function:

func Push(v int) bool {
 if stack == nil {
 stack = &Node{v, nil}
 size = 1
 return true
 }

 temp := &Node{v, nil}
 temp.Next = stack
 stack = temp
 size++
 return true
}

If the stack is not empty, then you create a new node (temp), which is placed in front of the
current stack. After that, this new node becomes the head of the stack. The current version
of the Push() function always returns true, but if your stack does not have unlimited
space, you might want to modify it and return false when you are about to exceed its
capacity.

The third part contains the implementation of the Pop() function:

func Pop(t *Node) (int, bool) {
 if size == 0 {
 return 0, false

How to Enhance Go Code with Data Structures Chapter 5

[236]

 }

 if size == 1 {
 size = 0
 stack = nil
 return t.Value, true
 }

 stack = stack.Next
 size--
 return t.Value, true
}

The fourth code segment of stack.go is as follows:

func traverse(t *Node) {
 if size == 0 {
 fmt.Println("Empty Stack!")
 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

As the stack is implemented using a linked list, it is traversed as such.

The last part of stack.go is shown in the following Go code:

func main() {
 stack = nil
 v, b := Pop(stack)
 if b {
 fmt.Print(v, " ")
 } else {
 fmt.Println("Pop() failed!")
 }

 Push(100)
 traverse(stack)
 Push(200)
 traverse(stack)

 for i := 0; i < 10; i++ {
 Push(i)

How to Enhance Go Code with Data Structures Chapter 5

[237]

 }

 for i := 0; i < 15; i++ {
 v, b := Pop(stack)
 if b {
 fmt.Print(v, " ")
 } else {
 break
 }
 }
 fmt.Println()
 traverse(stack)
}

As you just saw, the source code of stack.go is a little shorter than the Go code of
queue.go, primarily because the idea behind a stack is simpler than the idea behind a
queue.

Executing stack.go will generate the following type of output:

$ go run stack.go
Pop() failed!
100 ->
200 -> 100 ->
9 8 7 6 5 4 3 2 1 0 200 100
Empty Stack!

NOTE: So far, you have seen how a linked list is used in the
implementation of a hash table, a queue, and a stack. These examples
should help you to realize the usefulness and the importance of linked
lists in programming and computer science in general.

The container package
In this section, I will explain the use of the container standard Go package. The
container package supports three data structures: a heap, list, and ring. These data
structures are implemented in container/heap, container/list, and
container/ring, respectively.

If you are unfamiliar with rings, a ring is a circular list, which means that the last element
of a ring points to its first element. In essence, this means that all of the nodes of a ring are
equivalent and that a ring does not have a beginning and an end. As a result, each element
of a ring can help you to traverse the entire ring.

How to Enhance Go Code with Data Structures Chapter 5

[238]

The next three subsections will illustrate each one of the packages contained in the
container package. The rational advice is that if the functionality of the container
standard Go package suits your needs, use it; otherwise, you should implement and use
your own data structures.

Using container/heap
In this subsection, you will see the functionality that the container/heap package offers.
First of all, you should know that the container/heap package implements a heap, which
is a tree where the value of each node of the tree is the smallest element in its subtree. Note
that I am using the phrase smallest element instead of minimum value in order to make it clear
that a heap does not only support numerical values.

However, as you can guess, in order to implement a heap tree in Go, you will have to
develop a way to tell which of two elements is smaller than the other on your own. In such
cases, Go uses interfaces because they allow you to define such a behavior.

This means that the container/heap package is more advanced than the other two
packages found in container, and that you will have to define some things before being
able to use the functionality of the container/heap package. Strictly speaking, the
container/heap package requires that you implement container/heap.Interface,
which is defined as follows:

type Interface interface {
 sort.Interface
 Push(x interface{}) // add x as element Len()
 Pop() interface{} // remove and return element Len() - 1.
}

You will learn more about interfaces in Chapter 7, Reflection and Interfaces for All Seasons.
For now, just remember that compliance with a Go interface requires the implementation of
one or more functions or other interfaces, which in this case is sort.Interface, as well as
the Push() and Pop() functions.

sort.Interface requires that you implement the Len(), Less(), and Swap() functions,
which makes perfect sense because you cannot perform any kind of sorting without being
able to swap two elements, being able to calculate a value for the things that you want to
sort, and being able to tell which element between two elements is bigger than the other
based on the value that you calculated previously. Although you might think that this is a
lot of work, keep in mind that most of the time, the implementation of these functions is
either trivial or rather simple.

How to Enhance Go Code with Data Structures Chapter 5

[239]

Since the purpose of this section is to illustrate the use of container/heap and not to
make your life difficult, the data type for the elements in this example will be float32.

The Go code of conHeap.go will be presented in five parts. The first part is as follows:

package main

import (
 "container/heap"
 "fmt"
)

type heapFloat32 []float32

The second part of conHeap.go is shown in the following Go code:

func (n *heapFloat32) Pop() interface{} {
 old := *n
 x := old[len(old)-1]
 new := old[0 : len(old)-1]
 *n = new
 return x
}

func (n *heapFloat32) Push(x interface{}) {
 *n = append(*n, x.(float32))
}

Although you define two functions named Pop() and Push() here, these two functions are
used for interface compliance. In order to add and remove elements from the heap, you
should call heap.Push() and heap.Pop(), respectively.

The third code segment of conHeap.go contains the following Go code:

func (n heapFloat32) Len() int {
 return len(n)
}

func (n heapFloat32) Less(a, b int) bool {
 return n[a] < n[b]
}

func (n heapFloat32) Swap(a, b int) {
 n[a], n[b] = n[b], n[a]
}

How to Enhance Go Code with Data Structures Chapter 5

[240]

This part implements the three functions needed by the sort.Interface interface.

The fourth part of conHeap.go is as follows:

func main() {
 myHeap := &heapFloat32{1.2, 2.1, 3.1, -100.1}
 heap.Init(myHeap)
 size := len(*myHeap)
 fmt.Printf("Heap size: %d\n", size)
 fmt.Printf("%v\n", myHeap)

The last code portion of conHeap.go is as follows:

 myHeap.Push(float32(-100.2))
 myHeap.Push(float32(0.2))
 fmt.Printf("Heap size: %d\n", len(*myHeap))
 fmt.Printf("%v\n", myHeap)
 heap.Init(myHeap)
 fmt.Printf("%v\n", myHeap)
}

In this last part of conHeap.go, you add two new elements to myHeap using heap.Push().
However, in order for the heap to get properly resorted, you will need to make another call
to heap.Init().

Executing conHeap.go will generate the following type of output:

$ go run conHeap.go
Heap size: 4
&[-100.1 1.2 3.1 2.1]
Heap size: 6
&[-100.1 1.2 3.1 2.1 -100.2 0.2]
&[-100.2 -100.1 0.2 2.1 1.2 3.1]

If you find it strange that the 2.1 1.2 3.1 triplet in the last line of the output is not sorted
in the linear logic, remember that a heap is a tree-not a linear structure like an array or a
slice.

Using container/list
This subsection will illustrate the operation of the container/list package using the Go
code of conList.go, which will be presented in three parts.

How to Enhance Go Code with Data Structures Chapter 5

[241]

NOTE: The container/list package implements a linked list.

The first part of conList.go contains the following Go code:

package main

import (
 "container/list"
 "fmt"
 "strconv"
)

func printList(l *list.List) {
 for t := l.Back(); t != nil; t = t.Prev() {
 fmt.Print(t.Value, " ")
 }
 fmt.Println()

 for t := l.Front(); t != nil; t = t.Next() {
 fmt.Print(t.Value, " ")
 }

 fmt.Println()
}

Here, you see a function named printList(), which allows you to print the contents of a
list.List variable passed as a pointer. The Go code shows you how to print the elements
of list.List starting from the first element and going to the last element, and vice versa.
Usually, you will need to use only one of the two methods in your programs. The Prev()
and Next() functions allow you to iterate over the elements of a list backward and
forward.

The second code segment of conList.go is as follows:

func main() {
 values := list.New()

 e1 := values.PushBack("One")
 e2 := values.PushBack("Two")
 values.PushFront("Three")
 values.InsertBefore("Four", e1)
 values.InsertAfter("Five", e2)
 values.Remove(e2)

How to Enhance Go Code with Data Structures Chapter 5

[242]

 values.Remove(e2)
 values.InsertAfter("FiveFive", e2)
 values.PushBackList(values)

 printList(values)

 values.Init()

The list.PushBack() function allows you to insert an object at the back of a linked list,
whereas the list.PushFront() function allows you to insert an object at the front of a
list. The return value of both functions is the element inserted in the list.

If you want to insert a new element after a specific element, then you should use
list.InsertAfter(). Similarly, if you want to insert a new element before a specific
element, you should use the list.InsertBefore() function. If the element does not exist,
then the list will not change. list.PushBackList() inserts a copy of an existing list at the
end of another list, whereas the list.PushFrontList() function puts a copy of an
existing list at the front of another list. The list.Remove() function removes a specific
element from a list.

Note the use of the values.Init() function, which either empties an existing list or
initializes a new list.

The last portion of the code of conList.go is shown in the following Go code:

 fmt.Printf("After Init(): %v\n", values)

 for i := 0; i < 20; i++ {
 values.PushFront(strconv.Itoa(i))
 }

 printList(values)
}

Here, you create a new list using a for loop. The strconv.Itoa() function converts an
integer value into a string.

In summary, the use of the functions of the container/list package is straightforward
and comes with no surprises.

Executing conList.go will generate the following type of output:

$ go run conList.go
Five One Four Three Five One Four Three
Three Four One Five Three Four One Five
After Init(): &{{0xc420074180 0xc420074180 <nil> <nil>} 0}

How to Enhance Go Code with Data Structures Chapter 5

[243]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Using container/ring
This section will illustrate the use of the container/ring package using the Go code of
conRing.go, which will be presented in four parts. Note that the container/ring
package is much simpler than both container/list and container/heap, which means
that it contains fewer functions than the other two packages.

The first code segment of conRing.go follows:

package main

import (
 "container/ring"
 "fmt"
)

var size int = 10

The size variable holds the size of the ring that is going to be created.

The second part of conRing.go contains the following Go code:

func main() {
 myRing := ring.New(size + 1)
 fmt.Println("Empty ring:", *myRing)

 for i := 0; i < myRing.Len()-1; i++ {
 myRing.Value = i
 myRing = myRing.Next()
 }

 myRing.Value = 2

Thus, a new ring is created with the help of the ring.New() function, which requires a
single parameter: the size of the ring. The myRing.Value = 2 statement at the end adds
the value 2 to the ring. That value, however, already exists in the ring as it was added in the
for loop. Lastly, the zero value of a ring is a ring with a single element whose value is nil.

The third part of conRing.go is shown in the following Go code:

 sum := 0
 myRing.Do(func(x interface{}) {

How to Enhance Go Code with Data Structures Chapter 5

[244]

 t := x.(int)
 sum = sum + t
 })
 fmt.Println("Sum:", sum)

The ring.Do() function allows you to call a function for each element of a ring in
chronological order. However, if that function makes any changes to the ring, then the
behavior of ring.Do() is undefined.

The x.(int) statement is called type assertion. You will learn more about type assertions
in Chapter 7, Reflection and Interfaces for All Seasons. For now, just know that it shows that x
is of type int.

The last part of the conRing.go program is as follows:

 for i := 0; i < myRing.Len()+2; i++ {
 myRing = myRing.Next()
 fmt.Print(myRing.Value, " ")
 }
 fmt.Println()
}

The only problem with rings is that you can keep calling ring.Next() indefinitely, so you
will need to find a way to put a stop to that. In this case, this is accomplished with the help
of the ring.Len() function. Personally, I prefer to use the ring.Do() function for
iterating over all of the elements of a ring because it generates cleaner code, but using a for
loop is just as good.

Executing conRing.go will generate the following type of output:

$ go run conRing.go
Empty ring: {0xc42000a080 0xc42000a1a0 <nil>}
Sum: 47
0 1 2 3 4 5 6 7 8 9 2 0 1

The output verifies that a ring can contain duplicate values, which means that unless you
use the ring.Len() function, you have no safe way of knowing the size of a ring.

Generating random numbers
Random number generation is an art as well as a research area in computer science. This is
because computers are purely logical machines, and it turns out that using them to generate
random numbers is extremely difficult!

How to Enhance Go Code with Data Structures Chapter 5

[245]

Go uses the math/rand package for generating pseudo-random numbers. It needs a seed to
start producing the numbers. The seed is used for initializing the entire process, and it is
extremely important because if you always start with the same seed, you will always get
the same sequence of pseudo-random numbers. This means that everybody can regenerate
that sequence, and that particular sequence will not be random after all.

The name of the utility that will help us to generate pseudo-random numbers is
randomNumbers.go, and it will be presented in four parts. The utility takes various
parameters, which are the lower and upper limits of the numbers that will be generated, as
well as the amount of numbers to generate. If you use a fourth command parameter, the
program will use that as the seed of the pseudo-random number generator, which will help
you to regenerate the same number sequence – the main reason for doing so is for testing
your code.

The first part of the utility is as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The random() function does all of the job, which is generating pseudo-random numbers in
the given range by calling rand.Intn().

The second part of the command-line utility is as follows:

func main() {
 MIN := 0
 MAX := 100
 TOTAL := 100
 SEED := time.Now().Unix()

 arguments := os.Args

In this part, you initialize the variables that will be used in the program.

How to Enhance Go Code with Data Structures Chapter 5

[246]

The third part of randomNumbers.go contains the following Go code:

 switch len(arguments) {
 case 2:
 fmt.Println("Usage: ./randomNumbers MIN MAX TOTAL SEED")
 MIN, _ = strconv.Atoi(arguments[1])
 MAX = MIN + 100
 case 3:
 fmt.Println("Usage: ./randomNumbers MIN MAX TOTAL SEED")
 MIN, _ = strconv.Atoi(arguments[1])
 MAX, _ = strconv.Atoi(arguments[2])
 case 4:
 fmt.Println("Usage: ./randomNumbers MIN MAX TOTAL SEED")
 MIN, _ = strconv.Atoi(arguments[1])
 MAX, _ = strconv.Atoi(arguments[2])
 TOTAL, _ = strconv.Atoi(arguments[3])
 case 5:
 MIN, _ = strconv.Atoi(arguments[1])
 MAX, _ = strconv.Atoi(arguments[2])
 TOTAL, _ = strconv.Atoi(arguments[3])
 SEED, _ = strconv.ParseInt(arguments[4], 10, 64)
 default:
 fmt.Println("Using default values!")
 }

The logic behind this switch block is relatively simple: depending on the number of
command-line arguments you have, you use either the initial values of the missing
arguments or the values given by the user. For reasons of simplicity, the error variables of
the strconv.Atoi() and strconv.ParseInt() functions are being ignored using
underscore characters. If this was a commercial program, the error variables of the
strconv.Atoi() and strconv.ParseInt() functions would not have been ignored.

Lastly, the reason for using strconv.ParseInt() for setting a new value to the SEED
variable is that the rand.Seed() function requires an int64 parameter. The first
parameter of strconv.ParseInt() is the string to parse, the second parameter is the base
of the generated number, and the third parameter is the bit size of the generated number.

As we want to create a decimal integer that uses 64 bits, we are using 10 as the base and 64
as the bit size. Please note that had we wanted to parse an unsigned integer, we would have
used the strconv.ParseUint() function instead.

The last part of randomNumbers.go is shown in the following Go code:

 rand.Seed(SEED)
 for i := 0; i < TOTAL; i++ {
 myrand := random(MIN, MAX)

How to Enhance Go Code with Data Structures Chapter 5

[247]

 fmt.Print(myrand)
 fmt.Print(" ")
 }
 fmt.Println()
}

Instead of using the UNIX epoch time as the seed for the pseudo-random
number generator, you can use the /dev/random system device. You will
learn about reading from /dev/random in Chapter 8, Telling a UNIX
System What to Do.

Executing randomNumbers.go will create the following type of output:

$ go run randomNumbers.go
Using default values!
75 69 15 75 62 67 64 8 73 1 83 92 7 34 8 70 22 58 38 8 54 34 91 65 1 50 76
5 82 61 90 10 38 40 63 6 28 51 54 49 27 52 92 76 35 44 9 66 76 90 10 29 22
20 83 33 92 80 50 62 26 19 45 56 75 40 30 97 23 87 10 43 11 42 65 80 82 25
53 27 51 99 88 53 36 37 73 52 61 4 81 71 57 30 72 51 55 62 63 79
$ go run randomNumbers.go 1 3 2
Usage: ./randomNumbers MIN MAX TOTAL SEED
1 1
$ go run randomNumbers.go 1 3 2
Usage: ./randomNumbers MIN MAX TOTAL SEED
2 2
$ go run randomNumbers.go 1 5 10 10
3 1 4 4 1 1 4 4 4 3
$ go run randomNumbers.go 1 5 10 10
3 1 4 4 1 1 4 4 4 3

If you are really interested in random number generation, you should start by reading the
second volume of The Art of Computer Programming by Donald E. Knuth (Addison-Wesley
Professional, 2011).

If you intend to use these pseudo-random numbers for security-related reasons, it is
important that you use the crypto/rand package. This package implements a
cryptographically secure pseudo-random number generator. It will be presented later in
this chapter.

How to Enhance Go Code with Data Structures Chapter 5

[248]

Generating random strings
Once you know how a computer represents single characters, it is not difficult to go from
pseudo-random numbers to random strings. This section will present a technique for
creating difficult-to-guess passwords based on the Go code of randomNumbers.go, which
was presented in the previous section. The name of the Go program for this task will be
generatePassword.go, and it is going to be presented in four parts. The utility requires
just one command-line parameter, which is the length of the password that you want to
generate.

The first part of generatePassword.go contains the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second code portion of generatePassword.go contains the following Go code:

func main() {
 MIN := 0
 MAX := 94
 var LENGTH int64 = 8

 arguments := os.Args

As we only want to get printable ASCII characters, we limit the range of pseudo-random
numbers that can be generated. The number of printable characters in the ASCII table is 94.
This means that the range of the pseudo-random numbers that the program can generate
should be from 0 to 94, not including 94.

How to Enhance Go Code with Data Structures Chapter 5

[249]

The third code segment of generatePassword.go is shown in the following Go code:

 switch len(arguments) {
 case 2:
 LENGTH, _ = strconv.ParseInt(os.Args[1], 10, 64)
 default:
 fmt.Println("Using default values!")
 }

SEED := time.Now().Unix()
 rand.Seed(SEED)

The last part of generatePassword.go is as follows:

 startChar := "!"
 var i int64 = 1
 for {
 myRand := random(MIN, MAX)
 newChar := string(startChar[0] + byte(myRand))
 fmt.Print(newChar)
 if i == LENGTH {
 break
 }
 i++
 }
 fmt.Println()
}

The startChar variable holds the first ASCII character that can be generated by the utility,
which, in this case, is the exclamation mark, which has a decimal ASCII value of 33. Given
that the program can generate pseudo-random numbers up to 94, the maximum ASCII
value that can be generated is 93 + 33, which is equal to 126, which is the ASCII value of ~.
The following output shows the ASCII table with the corresponding decimal values for
each character:

 0 nul 1 soh 2 st 3 etx 4 eot 5 enq 6 ack 7 bel
 8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si
 16 dle 17 dc1 18 dc 19 dc3 20 dc4 21 nak 22 syn 23 etb
 24 can 25 em 26 su 27 esc 28 fs 29 gs 30 rs 31 us
 32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '
 40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
 48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
 56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
 64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
 72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
 88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _

How to Enhance Go Code with Data Structures Chapter 5

[250]

 96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

Typing man ascii on your favorite UNIX shell will also generate the
ASCII table in a readable form.

Executing generatePassword.go with the appropriate command-line parameters will
create the following type of output:

$ go run generatePassword.go
Using default values!
ugs$5mvl
$ go run generatePassword.go
Using default values!
PA/8hA@?
$ go run generatePassword.go 20
HBR+=3\UA'B@ExT4QG|o
$ go run generatePassword.go 20
XLcr|R{*pX/::'t2u^T'

Generating secure random numbers
Should you wish to generate more secure pseudo-random numbers in Go, you should use
the crypto/rand package, which implements a cryptographically secure pseudo-random
number generator and is the subject of this section.

The use of the crypto/rand package will be illustrated using the Go code of
cryptoRand.go, which is going to be presented in three parts.

The first part of cryptoRand.go is as follows:

package main

import (
 "crypto/rand"
 "encoding/base64"
 "fmt"
 "os"
 "strconv"
)

How to Enhance Go Code with Data Structures Chapter 5

[251]

func generateBytes(n int64) ([]byte, error) {
 b := make([]byte, n)
 _, err := rand.Read(b)
 if err != nil {
 return nil, err
 }

 return b, nil
}

The second part of cryptoRand.go contains the following Go code:

func generatePass(s int64) (string, error) {
 b, err := generateBytes(s)
 return base64.URLEncoding.EncodeToString(b), err
}

The last part of cryptoRand.go is as follows:

func main() {
 var LENGTH int64 = 8
 arguments := os.Args
 switch len(arguments) {
 case 2:
 LENGTH, _ = strconv.ParseInt(os.Args[1], 10, 64)
 if LENGTH <= 0 {
 LENGTH = 8
 }
 default:
 fmt.Println("Using default values!")
 }

 myPass, err := generatePass(LENGTH)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println(myPass[0:LENGTH])
}

Executing cryptoRand.go will generate the following kind of output:

$ go run cryptoRand.go
Using default values!
hIAFYuvW
$ go run cryptoRand.go 120
WTR15SIcjYQmaMKds0lDfFturG27ovH_HZ6iAi_kOnJC88EDLdvNPcv1JjOd9DcF0r0S3q2itXZ
8O1TNaNFpHkT-aMrsjeue6kUyHnx_EaL_vJHy9wL5RTr8

How to Enhance Go Code with Data Structures Chapter 5

[252]

You can find more information about the crypto/rand package by visiting its
documentation page at https://golang.org/pkg/crypto/rand/.

Performing matrix calculations
A matrix is an array with two dimensions. The easiest way to represent a matrix in Go is
using a slice. However, if you know the dimensions of your array in advance, an array will
also do the job just fine. If both dimensions of a matrix are the same, then the matrix is
called a square matrix.

There are some rules that can tell you whether you can perform a calculation between two
matrices or not. The rules are the following:

In order to add or subtract two matrices, they should have exactly the same
dimensions.
In order to multiply matrix A with matrix B, the number of columns of matrix A
should be equal to the number of rows of matrix B. Otherwise, the multiplication
of matrices A and B is impossible.
In order to divide matrix A with matrix B, two conditions must be met. Firstly,
you will need to be able to calculate the inverse of matrix B and secondly, you
should be able to multiply matrix A with the inverse of matrix B according to the
previous rule. Only square matrices can have an inverse.

Adding and subtracting matrices
In this section, you are going to learn how to add and subtract matrices with the help of the
addMat.go utility, which is going to be presented in three parts. The program uses slices to
implement the required matrices.

The first part of addMat.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
)

func random(min, max int) int {

https://golang.org/pkg/crypto/rand/

How to Enhance Go Code with Data Structures Chapter 5

[253]

 return rand.Intn(max-min) + min
}

func negativeMatrix(s [][]int) [][]int {
 for i, x := range s {
 for j, _ := range x {
 s[i][j] = -s[i][j]
 }
 }
 return s
}

The negativeMatrix() function gets a slice input and returns a new slice where each of
the integer elements of the original size is replaced with its opposite integer. As you will
soon see, the elements of the two initial matrices are generated using pseudo-random
numbers, hence the need for the random() function.

The second part of addMat.go contains the following Go code:

func addMatrices(m1 [][]int, m2 [][]int) [][]int {
 result := make([][]int, len(m1))
 for i, x := range m1 {
 for j, _ := range x {
 result[i] = append(result[i], m1[i][j]+m2[i][j])
 }
 }
 return result
}

The addMatrices() function accesses the elements of both matrices in order to add them
and create the result matrix.

The last part of addMat.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Println("Wrong number of arguments!")
 return
 }

 var row, col int
 row, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Need an integer: ", arguments[1])
 return
 }

How to Enhance Go Code with Data Structures Chapter 5

[254]

 col, err = strconv.Atoi(arguments[2])
 if err != nil {
 fmt.Println("Need an integer: ", arguments[2])
 return
 }
 fmt.Printf("Using %dx%d arrays\n", row, col)

 if col <= 0 || row <= 0 {
 fmt.Println("Need positive matrix dimensions!")
 return
 }

 m1 := make([][]int, row)
 m2 := make([][]int, row)

 rand.Seed(time.Now().Unix())
 // Initialize m1 and m2 with random numbers
 for i := 0; i < row; i++ {
 for j := 0; j < col; j++ {
 m1[i] = append(m1[i], random(-1, i*j+rand.Intn(10)))
 m2[i] = append(m2[i], random(-1, i*j+rand.Intn(10)))
 }
 }
 fmt.Println("m1:", m1)
 fmt.Println("m2:", m2)

 // Adding
 r1 := addMatrices(m1, m2)
 // Subtracting
 r2 := addMatrices(m1, negativeMatrix(m2))
 fmt.Println("r1:", r1)
 fmt.Println("r2:", r2)
}

The main() function is the controller of the program. Among other things, it makes sure
that the user has given the correct type of input, creates the desired matrices, and populates
them with pseudo-randomly generated numbers.

Executing addMat.go will create the following output:

$ go run addMat.go 2 3
Using 2x3 arrays
m1: [[0 -1 0] [1 1 1]]
m2: [[2 1 0] [7 4 9]]
r1: [[2 0 0] [8 5 10]]
r2: [[-2 -2 0] [-6 -3 -8]]
$ go run addMat.go 2 3
Using 2x3 arrays

How to Enhance Go Code with Data Structures Chapter 5

[255]

m1: [[0 -1 0] [1 1 1]]
m2: [[2 1 0] [7 4 9]]
r1: [[2 0 0] [8 5 10]]
r2: [[-2 -2 0] [-6 -3 -8]]
$ go run addMat.go 3 2
Using 3x2 arrays
m1: [[0 -1] [0 0] [0 1]]
m2: [[2 1] [0 3] [1 9]]
r1: [[2 0] [0 3] [1 10]]
r2: [[-2 -2] [0 -3] [-1 -8]]

Multiplying matrices
As you already know, multiplying matrices is much more complex than adding or
subtracting matrices, which is also shown in the number of command-line arguments that
the presented utility, which is named mulMat.go, requires. The mulMat.go utility, which
is going to be presented in four parts, requires four command-line arguments, which are
the dimensions of the first and the second matrices, respectively.

The first part of mulMat.go is as follows:

package main

import (
 "errors"
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second part of mulMat.go contains the following Go code:

func multiplyMatrices(m1 [][]int, m2 [][]int) ([][]int, error) {
 if len(m1[0]) != len(m2) {
 return nil, errors.New("Cannot multiply the given matrices!")
 }

 result := make([][]int, len(m1))
 for i := 0; i < len(m1); i++ {
 result[i] = make([]int, len(m2[0]))

How to Enhance Go Code with Data Structures Chapter 5

[256]

 for j := 0; j < len(m2[0]); j++ {
 for k := 0; k < len(m2); k++ {
 result[i][j] += m1[i][k] * m2[k][j]
 }
 }
 }
 return result, nil
}

The way matrices are multiplied is totally different from the way they are added, hence the
way multiplyMatrices() is implemented. The multiplyMatrices() function also
returns its own custom error message in case the input matrices do not have the right
dimensions that will allow them to get multiplied.

The third part of mulMat.go is as follows:

func createMatrix(row, col int) [][]int {
 r := make([][]int, row)
 for i := 0; i < row; i++ {
 for j := 0; j < col; j++ {
 r[i] = append(r[i], random(-5, i*j))
 }
 }
 return r
}

func main() {
 rand.Seed(time.Now().Unix())
 arguments := os.Args
 if len(arguments) != 5 {
 fmt.Println("Wrong number of arguments!")
 return
 }

The createMatrix() function creates a slice with the desired dimensions and populates it
with integers that are randomly generated.

The last part of mulMat.go is as follows:

 var row, col int
 row, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Need an integer: ", arguments[1])
 return
 }

 col, err = strconv.Atoi(arguments[2])

How to Enhance Go Code with Data Structures Chapter 5

[257]

 if err != nil {
 fmt.Println("Need an integer: ", arguments[2])
 return
 }

 if col <= 0 || row <= 0 {
 fmt.Println("Need positive matrix dimensions!")
 return
 }
 fmt.Printf("m1 is a %dx%d matrix\n", row, col)
 // Initialize m1 with random numbers
 m1 := createMatrix(row, col)

 row, err = strconv.Atoi(arguments[3])
 if err != nil {
 fmt.Println("Need an integer: ", arguments[3])
 return
 }

 col, err = strconv.Atoi(arguments[4])
 if err != nil {
 fmt.Println("Need an integer: ", arguments[4])
 return
 }

 if col <= 0 || row <= 0 {
 fmt.Println("Need positive matrix dimensions!")
 return
 }
 fmt.Printf("m2 is a %dx%d matrix\n", row, col)
 // Initialize m2 with random numbers
 m2 := createMatrix(row, col)
 fmt.Println("m1:", m1)
 fmt.Println("m2:", m2)

 // Multiply
 r1, err := multiplyMatrices(m1, m2)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("r1:", r1)
}

The main() function is the controller of the program that defines the way it operates and
makes sure that the correct kind of command-line arguments were given.

How to Enhance Go Code with Data Structures Chapter 5

[258]

Executing mulMat.go will create the following output:

$ go run mulMat.go 1 2 2 1
m1 is a 1x2 matrix
m2 is a 2x1 matrix
m1: [[-3 -1]]
m2: [[-2] [-1]]
r1: [[7]]
$ go run mulMat.go 5 2 2 1
m1 is a 5x2 matrix
m2 is a 2x1 matrix
m1: [[-1 -2] [-4 -4] [-4 -1] [-2 2] [-5 -5]]
m2: [[-5] [-3]]
r1: [[11] [32] [23] [4] [40]]
$ go run mulMat.go 1 2 3 4
m1 is a 1x2 matrix
m2 is a 3x4 matrix
m1: [[-3 -4]]
m2: [[-5 -2 -2 -3] [-1 -4 -3 -5] [-5 -2 3 3]]
Cannot multiply the given matrices!

Dividing matrices
In this subsection, you will learn how to divide two matrices using the Go code of
divMat.go, which is going to be presented in five parts. The core function of divMat.go is
called inverseMatrix(). What inverseMatrix() mainly implements is the calculation
of the inverse matrix of a given matrix, which is a pretty complex task. There are ready-to-
use Go packages that allow you to inverse a matrix, but I have decided to implement
it from scratch.

Not all matrices are invertible. Non-square matrices are not invertible. A
square matrix that is not invertible is called singular or degenerate – this
happens when the determinant of the square matrix is 0. Singular matrices
are very rare.

The divMat.go utility requires a single command-line argument that defines the
dimensions of the used square matrices.

The first part of divMat.go is as follows:

package main

import (
 "errors"
 "fmt"

How to Enhance Go Code with Data Structures Chapter 5

[259]

 "math/rand"
 "os"
 "strconv"
 "time"
)

func random(min, max int) float64 {
 return float64(rand.Intn(max-min) + min)
}

This time the random() function generates a float64. The entire divMat.go operates
using floating-point numbers, mainly because the inverse of a matrix with integer elements
will most likely not be a matrix with integer elements.

The second part of divMat.go contains the following Go code:

func getCofactor(A [][]float64, temp [][]float64, p int, q int, n int) {
 i := 0
 j := 0

 for row := 0; row < n; row++ {
 for col := 0; col < n; col++ {
 if row != p && col != q {
 temp[i][j] = A[row][col]
 j++
 if j == n-1 {
 j = 0
 i++
 }
 }
 }
 }
}

func determinant(A [][]float64, n int) float64 {
 D := float64(0)
 if n == 1 {
 return A[0][0]
 }

 temp := createMatrix(n, n)
 sign := 1

 for f := 0; f < n; f++ {
 getCofactor(A, temp, 0, f, n)
 D += float64(sign) * A[0][f] * determinant(temp, n-1)
 sign = -sign
 }

How to Enhance Go Code with Data Structures Chapter 5

[260]

 return D
}

The getCofactor() and determinant() functions calculate things that are necessary for
inversing a matrix. If the determinant of a matrix is 0, then the matrix is singular.

The third part of divMat.go is as follows:

func adjoint(A [][]float64) ([][]float64, error) {
 N := len(A)
 adj := createMatrix(N, N)
 if N == 1 {
 adj[0][0] = 1
 return adj, nil
 }
 sign := 1
 var temp = createMatrix(N, N)

 for i := 0; i < N; i++ {
 for j := 0; j < N; j++ {
 getCofactor(A, temp, i, j, N)
 if (i+j)%2 == 0 {
 sign = 1
 } else {
 sign = -1
 }
 adj[j][i] = float64(sign) * (determinant(temp, N-1))
 }
 }
 return adj, nil
}

func inverseMatrix(A [][]float64) ([][]float64, error) {
 N := len(A)
 var inverse = createMatrix(N, N)
 det := determinant(A, N)
 if det == 0 {
 fmt.Println("Singular matrix, cannot find its inverse!")
 return nil, nil
 }

 adj, err := adjoint(A)
 if err != nil {
 fmt.Println(err)
 return nil, nil
 }

 fmt.Println("Determinant:", det)

How to Enhance Go Code with Data Structures Chapter 5

[261]

 for i := 0; i < N; i++ {
 for j := 0; j < N; j++ {
 inverse[i][j] = float64(adj[i][j]) / float64(det)
 }
 }

 return inverse, nil
}

The adjoint() function calculates the adjoint matrix of the given matrix. The
inverseMatrix() function is what calculates the inverse of the given matrix.

The divMat.go program is a great example of Go code that needs to be
extensively tested before putting it into production. You will learn more
about testing in Chapter 11, Code Testing, Optimization, and Profiling.

The fourth part of divMat.go contains the following Go code:

func multiplyMatrices(m1 [][]float64, m2 [][]float64) ([][]float64, error)
{
 if len(m1[0]) != len(m2) {
 return nil, errors.New("Cannot multiply the given matrices!")
 }

 result := make([][]float64, len(m1))
 for i := 0; i < len(m1); i++ {
 result[i] = make([]float64, len(m2[0]))
 for j := 0; j < len(m2[0]); j++ {
 for k := 0; k < len(m2); k++ {
 result[i][j] += m1[i][k] * m2[k][j]
 }
 }
 }
 return result, nil
}

func createMatrix(row, col int) [][]float64 {
 r := make([][]float64, row)
 for i := 0; i < row; i++ {
 for j := 0; j < col; j++ {
 r[i] = append(r[i], random(-5, i*j))
 }
 }
 return r
}

How to Enhance Go Code with Data Structures Chapter 5

[262]

The multiplyMatrices() function is needed because the division of a matrix with
another is equal to the multiplication of the first matrix with the inverse of the second one.

The last part of divMat.go is as follows:

func main() {
 rand.Seed(time.Now().Unix())
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Wrong number of arguments!")
 return
 }

 var row int
 row, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Need an integer:", arguments[1])
 return
 }
 col := row
 if col <= 0 {
 fmt.Println("Need positive matrix dimensions!")
 return
 }

 m1 := createMatrix(row, col)
 m2 := createMatrix(row, col)
 fmt.Println("m1:", m1)
 fmt.Println("m2:", m2)

 inverse, err := inverseMatrix(m2)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Println("\t\t\tPrinting inverse matrix!")
 for i := 0; i < len(inverse); i++ {
 for j := 0; j < len(inverse[0]); j++ {
 fmt.Printf("%.2f\t", inverse[i][j])
 }
 fmt.Println()
 }

 fmt.Println("\t\t\tPrinting result!")
 r1, err := multiplyMatrices(m1, inverse)
 if err != nil {
 fmt.Println(err)

How to Enhance Go Code with Data Structures Chapter 5

[263]

 return
 }

 for i := 0; i < len(r1); i++ {
 for j := 0; j < len(r1[0]); j++ {
 fmt.Printf("%.3f\t", r1[i][j])
 }
 fmt.Println()
 }
}

Once again, the main() function orchestrates the flow of the program and makes the
necessary checks on the user input before proceeding.

Executing divMat.go will create the following output:

$ go run divMat.go 2
m1: [[-3 -3] [-4 -4]]
m2: [[-3 -5] [-4 -1]]
Determinant: -17
 Printing inverse matrix!
0.06 -0.29
-0.24 0.18
 Printing result!
0.529 0.353
0.706 0.471
$ go run divMat.go 3
m1: [[-3 -5 -2] [-1 -4 1] [-2 -5 -1]]
m2: [[-2 -4 -5] [-1 0 -2] [-2 -2 1]]
Determinant: -22
 Printing inverse matrix!
0.18 -0.64 -0.36
-0.23 0.55 -0.05
-0.09 -0.18 0.18
 Printing result!
0.773 -0.455 0.955
0.636 -1.727 0.727
0.864 -1.273 0.773
$ go run divMat.go 2
m1: [[-3 -5] [-5 -5]]
m2: [[-5 -3] [-5 -3]]
Singular matrix, cannot find its inverse!
 Printing inverse matrix!
 Printing result!
Cannot multiply the given matrices!

How to Enhance Go Code with Data Structures Chapter 5

[264]

A tip on finding out the dimensions of an array
In this section, I am going to present you with a way to find the dimensions of an array
using the Go code found in dimensions.go. The same technique can be used for finding
out the dimensions of a slice.

The Go code of dimensions.go is as follows:

package main

import (
 "fmt"
)

func main() {
 array := [12][4][7][10]float64{}
 x := len(array)
 y := len(array[0])
 z := len(array[0][0])
 w := len(array[0][0][0])
 fmt.Println("x:", x, "y:", y, "z:", z, "w:", w)
}

There is an array called array with four dimensions. The len() function allows you to
find its dimensions when provided with the right arguments. Finding the first dimension
requires a call to len(array), whereas finding the second dimension requires a call to
len(array[0]), and so on.

Executing dimensions.go will generate the following output:

$ go run dimensions.go
x: 12 y: 4 z: 7 w: 10

Solving Sudoku puzzles
The main purpose of this section is to help you to understand that you should always use
the simplest data structure that does the job you want it to. In this case, that data structure
will be a humble slice, which will be used for representing and verifying a Sudoku puzzle.
Alternatively, we could have used an array because Sudoku puzzles have a predefined size.

A Sudoku is a logic-based, combinatorial, number-placement puzzle. Verifying a Sudoku
puzzle means making sure that the Sudoku puzzle is correctly solved – this is a task that
can be easily done by a computer program.

How to Enhance Go Code with Data Structures Chapter 5

[265]

In order to be as generic as possible, the presented utility, which is named sudoku.go and
will be presented in four parts, will load Sudoku puzzles from external files.

The first part of sudoku.go is as follows:

package main

import (
 "bufio"
 "errors"
 "fmt"
 "io"
 "os"
 "strconv"
 "strings"
)

func importFile(file string) ([][]int, error) {
 var err error
 var mySlice = make([][]int, 0)

 f, err := os.Open(file)
 if err != nil {
 return nil, err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 fields := strings.Fields(line)
 temp := make([]int, 0)
 for _, v := range fields {
 n, err := strconv.Atoi(v)
 if err != nil {
 return nil, err
 }
 temp = append(temp, n)
 }
 if len(temp) != 0 {
 mySlice = append(mySlice, temp)
 }

 if err == io.EOF {
 break
 } else if err != nil {
 return nil, err
 }

How to Enhance Go Code with Data Structures Chapter 5

[266]

 if len(temp) != len(mySlice[0]) {
 return nil, errors.New("Wrong number of elements!")
 }

 }
 return mySlice, nil
}

The importFile() function only checks whether it reads valid integer numbers or not. Put
simply, importFile() will accept negative integers or integers bigger than 9 but it will not
accept the value a, which is not a number or a float. The only other test that importFile()
will perform is making sure that all the lines in the input file have the same number of
integers. The first line of the input text file is the one that specifies the number of columns
that should exist in each input line.

The second code portion of sudoku.go contains the following Go code:

func validPuzzle(sl [][]int) bool {
 for i := 0; i <= 2; i++ {
 for j := 0; j <= 2; j++ {
 iEl := i * 3
 jEl := j * 3
 mySlice := []int{0, 0, 0, 0, 0, 0, 0, 0, 0}
 for k := 0; k <= 2; k++ {
 for m := 0; m <= 2; m++ {
 bigI := iEl + k
 bigJ := jEl + m
 val := sl[bigI][bigJ]
 if val > 0 && val < 10 {
 if mySlice[val-1] == 1 {
 fmt.Println("Appeared 2 times:", val)
 return false
 } else {
 mySlice[val-1] = 1
 }
 } else {
 fmt.Println("Invalid value:", val)
 return false
 }
 }
 }
 }
 }

In order to access all the elements of a Sudoku puzzle, sudoku.go uses four for loops.
Although using four for loops for a 9x9 array might not be a performance issue, it would
definitely be a problem if we had to work with much bigger arrays.

How to Enhance Go Code with Data Structures Chapter 5

[267]

The third part of sudoku.go is as follows:

 // Testing columns
 for i := 0; i <= 8; i++ {
 sum := 0
 for j := 0; j <= 8; j++ {
 sum = sum + sl[i][j]
 }
 if sum != 45 {
 return false
 }
 sum = 0
 }

 // Testing rows
 for i := 0; i <= 8; i++ {
 sum := 0
 for j := 0; j <= 8; j++ {
 sum = sum + sl[j][i]
 }
 if sum != 45 {
 return false
 }
 sum = 0
 }

 return true
}

The presented code makes sure that each column and row of the Sudoku puzzle contains
all numbers.

The last part of sudoku.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Printf("usage: loadFile textFile size\n")
 return
 }

 file := arguments[1]

 mySlice, err := importFile(file)
 if err != nil {
 fmt.Println(err)
 return
 }

How to Enhance Go Code with Data Structures Chapter 5

[268]

 if validPuzzle(mySlice) {
 fmt.Println("Correct Sudoku puzzle!")
 } else {
 fmt.Println("Incorrect Sudoku puzzle!")
 }
}

The main() function orchestrates the entire program.

Executing sudoku.go with various input files will generate the following kind of output:

$ go run sudoku.go OK.txt
Correct Sudoku puzzle!
$ go run sudoku.go noOK1.txt
Incorrect Sudoku puzzle!

Additional resources
You should find the following resources very useful:

Examine the Graphviz utility website. This utility lets you draw graphs using its
own language: http://graphviz.org/.
Read the documentation page of the sub-packages of the container standard
Go package by visiting https://golang.org/pkg/container/.
Should you wish to learn more about data structures, you should read The Design
and Analysis of Computer Algorithms by Alfred V. Aho, John E. Hopcroft, and
Jeffrey D. Ullman (Addison-Wesley, 1974). It is an excellent book!
You can learn more about hash functions by
visiting https://en.wikipedia.org/wiki/Hash_function.
Another really interesting book about algorithms and data structures is
Programming Pearls, written by Jon Bentley (Addison-Wesley Professional, 1999)
as well as More Programming Pearls: Confessions of a Coder, also by John Bentley
(Addison-Wesley Professional, 1988). Reading both books will make you a better
programmer.

Exercises
Try to change the logic behind generatePassword.go by picking the password
from a list of passwords found in a Go slice combined with the current system
time or date.

http://graphviz.org/
https://golang.org/pkg/container/
https://en.wikipedia.org/wiki/Hash_function

How to Enhance Go Code with Data Structures Chapter 5

[269]

Make the necessary changes to the code of queue.go in order to store floating-
point numbers instead of integers.
Change the Go code of stack.go so that its nodes have three data fields of
integer type, named Value, Number, and Seed. Apart from the apparent changes
to the definition of the Nodestruct, what is the main change that you will need
to make to the rest of the program?
Can you change the code in linkedList.go in order to keep the nodes of the
linked list sorted?
Similarly, can you change the Go code of doublyLList.go in order to keep the
nodes of the list sorted? Can you develop a function for deleting existing nodes?
Change the code of hashTableLookup.go so that you do not have duplicate
values in your hash table. Use the lookup() function for that.
Rewrite sudoku.go in order to use a Go map instead of a slice.
Rewrite sudoku.go in order to use a linked list instead of a slice. Why is this
difficult?
Create a Go program that can calculate the powers of matrices. Are there any
conditions that need to be met in order to find the power of a matrix?
Implement the addition and subtraction of arrays with three dimensions.
Try to represent matrices using Go structures. What are the main challenges?
Can you modify the Go code of generatePassword.go in order to generate
passwords that only contain uppercase letters?
Try to change the code of conHeap.go in order to support a custom and more
complex structure instead of just float32 elements.
Implement the delete node functionality that is missing from linkedList.go.
Do you think that a doubly linked list would make the code of the queue.go
program better? Try to implement a queue using a doubly linked list instead of a
singly linked list.

Summary
This chapter talked about many interesting and practical topics, including implementing
linked lists, doubly linked lists, hash tables, queues, and stacks in Go, as well as using the
functionality of the container standard Go package, verifying Sudoku puzzles, and
generating pseudo-random numbers, along with difficult-to-guess passwords, in Go.

How to Enhance Go Code with Data Structures Chapter 5

[270]

What you should remember from this chapter is that the foundation of every data structure
is the definition and the implementation of its node. Lastly, we talked about performing
matrix calculations.

I am sure that you will find the next chapter to be one of the most interesting and valuable
chapters of this book. The main topic is Go packages, along with information about how to
define and use the various types of Go functions in your programs. Additionally, the
chapter will talk about modules, which, put simply, are packages with versions.

6
What You Might Not Know

About Go Packages and
Functions

The previous chapter talked about developing and using custom data structures like linked
lists, binary trees, and hash tables, as well as generating random numbers and difficult-to-
guess passwords in Go and performing matrix operations.

The main focus of this chapter is Go packages, which are the Go way of organizing,
delivering, and using code. The most common components of a Go package are functions,
which are pretty flexible in Go. Additionally, this chapter will talk about Go modules,
which are packages with versions. In the last part of this chapter, you will see some
advanced packages that belong to the Go standard library in order to better understand
that not all Go packages are created equal.

In this chapter, you will learn about the following topics:

Developing functions in Go
Anonymous functions
Functions that return multiple values
Giving names to the return values of a function
Functions that return other functions
Functions that get other functions as parameters
Variadic functions
Developing Go packages
Developing and working with Go modules
Private and public package objects
The use of the init() function in packages

What You Might Not Know About Go Packages and Functions Chapter 6

[272]

The sophisticated html/template standard Go package
The text/template standard package, which is another truly sophisticated Go
package that has its own language
The go/scanner, go/parser, and go/token advanced packages
The syscall standard Go package, which is a low-level package that, although
you might not use it directly, is extensively used by other Go packages

About Go packages
Everything in Go is delivered in the form of packages. A Go package is a Go source file that
begins with the package keyword followed by the name of the package. Some packages
have a structure. For example, the net package has several subdirectories, named http,
mail, rpc, smtp, textproto, and url, which should be imported as net/http, net/mail,
net/rpc, net/smtp, net/textproto, and net/url, respectively.

Apart from the packages of the Go standard library, there exist external packages that can
be imported using their full address and that should be downloaded before their first use.
One such example is github.com/matryer/is, which is stored in GitHub.

Packages are mainly used for grouping related functions, variables, and constants so that
you can transfer them easily and use them in your own Go programs. Note that apart from
the main package, Go packages are not autonomous programs and cannot be compiled into
executable files. This means that they need to be called directly or indirectly from a main
package in order to be used. As a result, if you try to execute a Go package as if it is an
autonomous program, you will be disappointed:

$ go run aPackage.go
go run: cannot run non-main package

About Go functions
Functions are an important element of every programming language because they allow
you to break big programs into smaller and more manageable parts. Functions must be as
independent from each other as possible and must do one job and only one job well. So, if
you find yourself writing functions that do multiple things, you might consider replacing
them with multiple functions instead.

What You Might Not Know About Go Packages and Functions Chapter 6

[273]

The single most popular Go function is main(), which is used in every independent Go
program. You should already know that all function definitions begin with the func
keyword.

Anonymous functions
Anonymous functions can be defined inline without the need for a name and they are
usually used for implementing things that require a small amount of code. In Go, a function
can return an anonymous function or take an anonymous function as one of its arguments.
Additionally, anonymous functions can be attached to Go variables. Note that anonymous
functions are also called closures, especially in functional programming terminology.

It is considered good practice for anonymous functions to have a small
implementation and a local focus. If an anonymous function does not
have a local focus, then you might need to consider making it a regular
function.

When an anonymous function is suitable for a job it is extremely convenient and makes
your life easier; just do not use too many anonymous functions in your programs without
having a good reason. You will see anonymous functions in action in a while.

Functions that return multiple values
As you already know from functions such as strconv.Atoi(), Go functions can return
multiple distinct values, which saves you from having to create a dedicated structure for
returning and receiving multiple values from a function. You can declare a function that
returns four values (two int values, one float64 value, and one string) as follows:

func aFunction() (int, int, float64, string) {
}

It is now time to illustrate anonymous functions and functions that return multiple values
in more detail using the Go code of functions.go as an example. The relevant code will
be presented in five parts.

The first code portion of functions.go is as follows:

package main

import (
 "fmt"
 "os"

What You Might Not Know About Go Packages and Functions Chapter 6

[274]

 "strconv"
)

The second code segment from functions.go is shown in the following Go code:

func doubleSquare(x int) (int, int) {
 return x * 2, x * x
}

Here you can see the definition and implementation of a function named
doubleSquare(), which requires a single int parameter and returns two int values.

The third part of the functions.go program is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("The program needs 1 argument!")
 return
 }

 y, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println(err)
 return
 }

The preceding code deals with the command-line arguments of the program.

The fourth portion of the functions.go program contains the following Go code:

 square := func(s int) int {
 return s * s
 }
 fmt.Println("The square of", y, "is", square(y))

 double := func(s int) int {
 return s + s
 }
 fmt.Println("The double of", y, "is", double(y))

Each of the square and double variables holds an anonymous function. The bad part is
that you are allowed to change the value of square, double, or any other variable that
holds an anonymous function afterward, which means that the meaning of those variables
can change and calculate something else instead.

What You Might Not Know About Go Packages and Functions Chapter 6

[275]

It is not considered good programming practice to alter the code of
variables that hold anonymous functions because this might be the root
cause of nasty bugs.

The last part of functions.go is as follows:

 fmt.Println(doubleSquare(y))
 d, s := doubleSquare(y)
 fmt.Println(d, s)
}

So, you can either print the return values of a function, such as doubleSquare(), or assign
them to distinct variables.

Executing functions.go will generate the following kind of output:

$ go run functions.go 1 21
The program needs 1 argument!
$ go run functions.go 10.2
strconv.Atoi: parsing "10.2": invalid syntax
$ go run functions.go 10
The square of 10 is 100
The double of 10 is 20
20 100
20 100

The return values of a function can be named
Unlike C, Go allows you to name the return values of a Go function. Additionally, when
such a function has a return statement without any arguments, then the function
automatically returns the current value of each named return value in the order in which it
was declared in the definition of the function.

The source code that illustrates Go functions that have named return values is
returnNames.go, and it will be presented in three parts.

The first part of the returnNames.go program is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"

What You Might Not Know About Go Packages and Functions Chapter 6

[276]

)

func namedMinMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return
}

In this code segment, you can see the implementation of the namedMinMax() function,
which uses named return parameters. However, there is a tricky point here: the
namedMinMax() function does not explicitly return any variables or values in its return
statement. Nevertheless, as this function has named return values in its signature, the min
and max parameters are automatically returned in the order in which they were put into the
function definition.

The second code segment from returnNames.go is as follows:

func minMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return min, max
}

The minMax() function also uses named return values, but its return statement
specifically defines the order and the variables that are going to be returned.

The last code portion from returnNames.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) < 3 {
 fmt.Println("The program needs at least 2 arguments!")
 return
 }

 a1, _ := strconv.Atoi(arguments[1])
 a2, _ := strconv.Atoi(arguments[2])

What You Might Not Know About Go Packages and Functions Chapter 6

[277]

 fmt.Println(minMax(a1, a2))
 min, max := minMax(a1, a2)
 fmt.Println(min, max)

 fmt.Println(namedMinMax(a1, a2))
 min, max = namedMinMax(a1, a2)
 fmt.Println(min, max)
}

The purpose of the Go code in the main() function is to verify that all methods generate
the same results.

Executing returnNames.go will produce the following output:

$ go run returnNames.go -20 1
-20 1
-20 1
-20 1
-20 1

Functions with pointer parameters
A function can take pointer parameters provided that its signature allows it. The Go code of
ptrFun.go will illustrate the use of pointers as function parameters.

The first part of ptrFun.go is as follows:

package main

import (
 "fmt"
)

func getPtr(v *float64) float64 {
 return *v * *v
}

So, the getPtr() function accepts a pointer parameter that points to a float64 value.

The second part of the program is shown in the following Go code:

func main() {
 x := 12.2
 fmt.Println(getPtr(&x))
 x = 12
 fmt.Println(getPtr(&x))

What You Might Not Know About Go Packages and Functions Chapter 6

[278]

}

The tricky part here is that you need to pass the address of the variable to the getPtr()
function because it requires a pointer parameter, which can be done by putting an
ampersand in front of a variable (&x).

Executing ptrFun.go will generate the following kind of output:

$ go run ptrFun.go
148.83999999999997
144

If you try to pass a plain value, such as 12.12, to getPtr() and call it, such as
getPtr(12.12), the compilation of the program will fail, as shown in the following error
message:

$ go run ptrFun.go
command-line-arguments
./ptrFun.go:15:21: cannot use 12.12 (type float64) as type *float64 in
argument to getPtr

Functions that return pointers
As illustrated in pointerStruct.go from Chapter 4, The Uses of Composite Types, it is
considered good practice to create new structure variables using a separate function and
return a pointer to them from that function. So, the scenario of functions returning pointers
is very common. Generally speaking, such a function simplifies the structure of a program
and allows the developer to concentrate on more important things instead of copying the
same Go code all the time. This section will use a much simpler example, as found in the
Go code of returnPtr.go.

The first part of returnPtr.go contains the following Go code:

package main

import (
 "fmt"
)

func returnPtr(x int) *int {
 y := x * x
 return &y
}

What You Might Not Know About Go Packages and Functions Chapter 6

[279]

Apart from the expected preamble, this code portion defines a new function that returns a
pointer to an int variable. The only thing to remember is to use &y in the return statement
in order to return the memory address of the y variable.

The second part of returnPtr.go is as follows:

func main() {
 sq := returnPtr(10)
 fmt.Println("sq value:", *sq)

The * character dereferences a pointer variable, which means that it returns the actual value
stored at the memory address instead of the memory address itself.

The last code segment from returnPtr.go is shown in the following Go code:

 fmt.Println("sq memory address:", sq)
}

The preceding code will return the memory address of the sq variable, not the int value
stored in it.

If you execute returnPtr.go, you will see the following output (the memory address will
differ):

$ go run returnPtr.go
sq value: 100
sq memory address: 0xc00009a000

Functions that return other functions
In this section, you are going to learn how to implement a Go function that returns another
function using the Go code of returnFunction.go, which will be presented in three
segments. The first code segment of returnFunction.go is as follows:

package main

import (
 "fmt"
)

func funReturnFun() func() int {
 i := 0
 return func() int {
 i++
 return i * i

What You Might Not Know About Go Packages and Functions Chapter 6

[280]

 }
}

As you can see from the implementation of funReturnFun(), its return value is an
anonymous function (func() int).

The second code segment from returnFunction.go contains the following code:

func main() {
 i := funReturnFun()
 j := funReturnFun()

In this code, you call funReturnFun() two times and assign its return value, which is a
function, to two separate variables named i and j. As you will see in the output of the
program, the two variables are completely unrelated to each other.

The last code section of returnFunction.go is as follows:

 fmt.Println("1:", i())
 fmt.Println("2:", i())
 fmt.Println("j1:", j())
 fmt.Println("j2:", j())
 fmt.Println("3:", i())
}

So, in this Go code, you use the i variable three times as i() and the j variable two times
as j(). The important thing here is that although both i and j were created by calling
funReturnFun(), they are totally independent from each other and have nothing in
common.

Executing returnFunction.go will produce the following output:

$ go run returnFunction.go
1: 1
2: 4
j1: 1
j2: 4
3: 9

As you can see from the output of returnFunction.go, the value of i in
funReturnFun() keeps increasing and does not become 0 after each call either to i() or
j().

What You Might Not Know About Go Packages and Functions Chapter 6

[281]

Functions that accept other functions as
parameters
Go functions can accept other Go functions as parameters, which is a feature that adds
versatility to what you can do with a Go function. The two most common uses of this
functionality are functions for sorting elements and the filepath.Walk() function.
However, in the example presented here, which is named funFun.go, we will implement a
much simpler case that deals with integer values. The relevant code will be presented in
three parts.

The first code segment of funFun.go is shown in the following Go code:

package main

import "fmt"

func function1(i int) int {
 return i + i
}

func function2(i int) int {
 return i * i
}

What we have here is two functions that both accept an int and return an int. These
functions will be used as parameters to another function in a short while.

The second code segment of funFun.go contains the following code:

func funFun(f func(int) int, v int) int {
 return f(v)
}

The funFun() function accepts two parameters, a function parameter named f and an int
value. The f parameter should be a function that takes one int argument and returns an
int value.

The last code segment of funFun.go follows:

func main() {
 fmt.Println("function1:", funFun(function1, 123))
 fmt.Println("function2:", funFun(function2, 123))
 fmt.Println("Inline:", funFun(func(i int) int {return i * i
 *i}, 123))
}

What You Might Not Know About Go Packages and Functions Chapter 6

[282]

The first fmt.Println() call uses funFun() with function1, without any parentheses,
as its first parameter, whereas the second fmt.Println() call uses funFun() with
function2 as its first parameter.

In the last fmt.Println() statement, something magical happens: the implementation of
the function parameter is defined inside the call to funFun(). Although this method works
fine for simple and small function parameters, it might not work that well for functions
with many lines of Go code.

Executing funFun.go will produce the next output:

$ go run funFun.go
function1: 246
function2: 15129
Inline: 1860867

Variadic functions
Go also supports variadic functions, which are functions that accept a variable number of
arguments. The most popular variadic functions can be found in the fmt package. Variadic
functions will be illustrated in variadic.go, which will be presented in three parts.

The first part of variadic.go is as follows:

package main

import (
 "fmt"
 "os"
)

func varFunc(input ...string) {
 fmt.Println(input)
}

This code part presents the implementation of a variadic function named varFunc() that
accepts string arguments. The input function argument is a slice and will be handled as a
slice inside the varFunc() function. The ... operator used as ...Type is called the pack
operator, whereas the unpack operator ends with ... and begins with a slice. A variadic
function cannot use the pack operator more than once.

What You Might Not Know About Go Packages and Functions Chapter 6

[283]

The second part of variadic.go contains the following Go code:

func oneByOne(message string, s ...int) int {
 fmt.Println(message)
 sum := 0
 for i, a := range s {
 fmt.Println(i, a)
 sum = sum + a
 }
 s[0] = -1000
 return sum
}

Here you can see another variadic function named oneByOne() that accepts a single string
and a variable number of integer arguments. The s function argument is a slice.

The last part of variadic.go is as follows:

func main() {
 arguments := os.Args
 varFunc(arguments...)
 sum := oneByOne("Adding numbers...", 1, 2, 3, 4, 5, -1, 10)
 fmt.Println("Sum:", sum)
 s := []int{1, 2, 3}
 sum = oneByOne("Adding numbers...", s...)
 fmt.Println(s)
}

The main() function is what calls and uses the two variadic functions. As the second call to
oneByOne() uses a slice, any changes you make to the slice inside the variadic function
will remain after the function exits.

Building and executing variadic.go will generate the following output:

$./variadic 1 2
[./variadic 1 2]
Adding numbers...
0 1
1 2
2 3
3 4
4 5
5 -1
6 10
Sum: 24
Adding numbers...
0 1

What You Might Not Know About Go Packages and Functions Chapter 6

[284]

1 2
2 3
[-1000 2 3]

Developing your own Go packages
The source code of a Go package, which can contain multiple files and multiple directories,
can be found within a single directory that is named after the package name, with the
obvious exception of the main package, which can be located anywhere.

For the purposes of this section, a simple Go package named aPackage will be developed.
The source file of the package is called aPackage.go, and its source code will be presented
in two parts.

The first part of aPackage.go is shown in the following Go code:

package aPackage

import (
 "fmt"
)

func A() {
 fmt.Println("This is function A!")
}

Notice that using capital letters in Go package names is not considered a good practice
– aPackage is only used here as an example.

The second code segment of aPackage.go follows:

func B() {
 fmt.Println("privateConstant:", privateConstant)
}

const MyConstant = 123
const privateConstant = 21

As you can see, developing a new Go package is pretty easy. Right now, you cannot use
that package on its own and you need to create a package named main with a main()
function in it in order to create an executable file. In this case, the name of the program that
will use aPackage is useAPackage.go, and it is included in the following Go code:

package main

What You Might Not Know About Go Packages and Functions Chapter 6

[285]

import (
 "aPackage"
 "fmt"
)

func main() {
 fmt.Println("Using aPackage!")
 aPackage.A()
 aPackage.B()
 fmt.Println(aPackage.MyConstant)
}

If you try to execute useAPackage.go right now, however, you will get an error message,
which means that we are not done yet:

$ go run useAPackage.go
useAPackage.go:4:2: cannot find package "aPackage" in any of:
 /usr/local/Cellar/go/1.9.2/libexec/src/aPackage (from $GOROOT)
 /Users/mtsouk/go/src/aPackage (from $GOPATH)

There is another thing that you will need to handle. As you already know from Chapter 1,
Go and the Operating System, Go requires the execution of specific commands from the UNIX
shell in order to install all external packages, which also includes packages that you have
developed locally. Therefore, you will need to put the preceding package in the appropriate
directory and make it available to the current UNIX user. Thus, installing one of your own
packages involves the execution of the following commands from your favorite UNIX shell:

$ mkdir ~/go/src/aPackage
$ cp aPackage.go ~/go/src/aPackage/
$ go install aPackage
$ cd ~/go/pkg/darwin_amd64/
$ ls -l aPackage.a
-rw-r--r-- 1 mtsouk staff 4980 Dec 22 06:12 aPackage.a

If the ~/go directory does not already exist, you will need to create it with
the help of the mkdir(1) command. In that case, you will also need to do
the same for the ~/go/src directory.

Executing useAPackage.go will create the following output:

$ go run useAPackage.go
Using aPackage!
This is function A!
privateConstant: 21
123

What You Might Not Know About Go Packages and Functions Chapter 6

[286]

Compiling a Go package
Although you cannot execute a Go package if it does not include a main() function, you
are still allowed to compile it and create an object file, as follows:

$ go tool compile aPackage.go
$ ls -l aPackage.*
-rw-r--r--@ 1 mtsouk staff 201 Jan 10 22:08 aPackage.go
-rw-r--r-- 1 mtsouk staff 16316 Mar 4 20:01 aPackage.o

Private variables and functions
What differentiates private variables and functions from public ones is that private ones can
be strictly used and called internally in a package. Controlling which functions, constants,
and variables are public or not is also known as encapsulation.

Go follows a simple rule that states that functions, variables, types, and so forth that begin
with an uppercase letter are public, whereas functions, variables, types, and so on that
begin with a lowercase letter are private. This is the reason that fmt.Println() is named
Println() instead of println(). However, this rule does not affect package names that
are allowed to begin with uppercase and lowercase letters.

The init() function
Every Go package can optionally have a private function named init() that is
automatically executed at the beginning of the execution time.

The init() function is a private function by design, which means that it
cannot be called from outside the package in which it is contained.
Additionally, as the user of a package has no control over the init()
function, you should think carefully before using an init() function in
public packages or changing any global state in init().

I will now present a code example with multiple init() functions from multiple Go
packages. Examine the code of the following basic Go package, which is simply called a:

package a

import (
 "fmt"
)

What You Might Not Know About Go Packages and Functions Chapter 6

[287]

func init() {
 fmt.Println("init() a")
}

func FromA() {
 fmt.Println("fromA()")
}

The a package implements an init() function and a public one named FromA().

After that, you will need to execute the following commands from your UNIX shell so that
the package becomes available to the current UNIX user:

$ mkdir ~/go/src/a
$ cp a.go ~/go/src/a/
$ go install a

Now, look at the code of the next Go code package, which is named b:

package b

import (
 "a"
 "fmt"
)

func init() {
 fmt.Println("init() b")
}

func FromB() {
 fmt.Println("fromB()")
 a.FromA()
}

What is happening here? Package a uses the fmt standard Go package. However, package
b needs to import package a, as it uses a.FromA(). Both a and b have an init() function.

As before, you will need to install that package and make it available to the current UNIX
user by executing the following commands from your UNIX shell:

$ mkdir ~/go/src/b
$ cp b.go ~/go/src/b
$ go install b

What You Might Not Know About Go Packages and Functions Chapter 6

[288]

Thus, we currently have two Go packages that both have an init() function. Now try to
guess the output that you will get from executing manyInit.go, which comes with the
following code:

package main

import (
 "a"
 "b"
 "fmt"
)

func init() {
 fmt.Println("init() manyInit")
}

func main() {
 a.FromA()
 b.FromB()
}

The actual question could have been: how many times is the init() function of package a
going to be executed? Executing manyInit.go will generate the following output and shed
some light on this question:

$ go run manyInit.go
init() a
init() b
init() manyInit
fromA()
fromB()
fromA()

The preceding output shows that the init() function of a is executed only once, despite
the fact that the a package is imported two times by two different packages. Additionally,
as the import block from manyInit.go is executed first, the init() functions of package
a and package b are executed before the init() function of manyInit.go, which makes
perfect sense. The main reason for this is that the init() function of manyInit.go is
allowed to use an element from either a or b.

Notice that init() can be very useful when you want to set up some unexported internal
variables. As an example, you might find the current time zone in init(). Finally, bear in
mind that you can have many init() functions within one file; however, this Go feature is
rarely used.

What You Might Not Know About Go Packages and Functions Chapter 6

[289]

Go modules
Go modules were first introduced in Go version 1.11. At the time of writing, the latest Go
version is 1.13. Although the general idea behind Go modules will remain the same, some
of the presented details might change in future versions of Go.

A Go module is like a Go package with a version. Go uses semantic versioning for
versioning modules. This means that versions begin with the letter v followed by the
version number. Therefore, you can have versions such as v1.0.0, v1.0.5, and v2.0.2.
The v1, v2, or v3 part signifies the major version of a Go package that is usually not
backwards compatible. This means that if your Go program works with v1, it will not
necessarily work with v2 or v3 – it might work, but you cannot count on it.

The second number in a version is about features. Usually v1.1.0 has more features than
v1.0.2 or v1.0.0, while being compatible with all older versions.

Lastly, the third number is just about bug fixes without having any new features. Note that
semantic versioning is also used for Go versions.

Note that Go modules allow you to write things outside of GOPATH.

Creating and using a Go module
In this subsection, we are going to create the first version of a basic module. You will need
to have a GitHub repository for storing your Go code. In my case, the GitHub repository
will be https://github. com/ mactsouk/ myModule. We will begin with an empty GitHub
repository – only README.md will be there. So, first we will need to execute the following
command to get the contents of the GitHub repository:

$ git clone git@github.com:mactsouk/myModule.git
Cloning into 'myModule'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 7 (delta 1), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (7/7), done.
Resolving deltas: 100% (1/1), done.

If you execute the same command on your computer, you will get my GitHub repository,
which will not be empty at the time you read this. If you want to create your own Go
module from scratch, you will need to create your own empty GitHub repository.

https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
https://github.com/mactsouk/myModule
mailto:git@github.com%253Amactsouk/myModule.git

What You Might Not Know About Go Packages and Functions Chapter 6

[290]

Creating version v1.0.0
We will need to execute the following commands to create v1.0.0 of our basic Go module:

$ go mod init
go: creating new go.mod: module github.com/mactsouk/myModule
$ touch myModule.go
$ vi myModule.go
$ git add .
$ git commit -a -m "Initial version 1.0.0"
$ git push
$ git tag v1.0.0
$ git push -q origin v1.0.0
$ go list
github.com/mactsouk/myModule
$ go list -m
github.com/mactsouk/myModule

The contents of myModule.go will be as follows:

package myModule

import (
 "fmt"
)

func Version() {
 fmt.Println("Version 1.0.0")
}

The contents of go.mod, which was created previously, will be as follows:

$ cat go.mod
module github.com/mactsouk/myModule
go 1.12

Using version v1.0.0
In this section, you are going to learn how to use v1.0.0 of the Go module we created
earlier. In order to use our Go modules, we will need to create a Go program, which in this
case will be called useModule.go and will contain the following Go code:

package main

import (
 v1 "github.com/mactsouk/myModule"
)

What You Might Not Know About Go Packages and Functions Chapter 6

[291]

func main() {
 v1.Version()
}

You will need to include the path of the Go module (github.com/mactsouk/myModule) –
in this case the Go module also has an alias (v1). Using aliases for packages is highly
irregular in Go; however, in this example it makes the code easier to read. Nevertheless,
this feature should not be used on production code without a really good reason.

If you just try to execute useModule.go, which in this case is going to be put in /tmp, it
will fail because the required module is not present on your system:

$ pwd
/tmp
$ go run useModule.go
useModule.go:4:2: cannot find package "github.com/mactsouk/myModule" in any
of:
 /usr/local/Cellar/go/1.12/libexec/src/github.com/mactsouk/myModule
(from $GOROOT)
 /Users/mtsouk/go/src/github.com/mactsouk/myModule (from $GOPATH)

Therefore, you will need to execute the following commands to get the required Go
modules and to successfully execute useModule.go:

$ export GO111MODULE=on
$ go run useModule.go
go: finding github.com/mactsouk/myModule v1.0.0
go: downloading github.com/mactsouk/myModule v1.0.0
go: extracting github.com/mactsouk/myModule v1.0.0
Version 1.0.0

So, useModule.go is correct and can be executed. Now it is time to make things even more
official by giving useModule.go a name and building it:

$ go mod init hello
go: creating new go.mod: module hello
$ go build

The last command generates an executable file inside /tmp, as well as two additional files
named go.sum and go.mod. The contents of go.sum will be as follows:

$ cat go.sum
github.com/mactsouk/myModule v1.0.0
h1:eTCn2Jewnajw0REKONrVhHmeDEJ0Q5TAZ0xsSbh8kFs=
github.com/mactsouk/myModule v1.0.0/go.mod
h1:s3ziarTDDvaXaHWYYOf/ULi97aoBd6JfnvAkM8rSuzg=

What You Might Not Know About Go Packages and Functions Chapter 6

[292]

The go.sum file keeps a checksum of all the modules it has downloaded.

The contents of go.mod will be as follows:

$ cat go.mod
module hello
go 1.12
require github.com/mactsouk/myModule v1.0.0

Please note that if the go.mod file found in your project specifies the use
of version v1.3.0 of a Go module, Go will use version v1.3.0 even if a
newer version of the Go module is available.

Creating version v1.1.0
In this subsection, we are going to create a new version of myModule using a different tag.
However, this time there is no need to execute go mod init, as this was done before. You
will just need to execute the following commands:

$ vi myModule.go
$ git commit -a -m "v1.1.0"
[master ddd0742] v1.1.0
 1 file changed, 1 insertion(+), 1 deletion(-)
$ git push
$ git tag v1.1.0
$ git push -q origin v1.1.0

The contents of this version of myModule.go will be as follows:

package myModule

import (
 "fmt"
)

func Version() {
 fmt.Println("Version 1.1.0")
}

What You Might Not Know About Go Packages and Functions Chapter 6

[293]

Using version v1.1.0
In this section, you are going to learn how to use v1.1.0 of the Go module we created. This
time we are going to use a Docker image in order to be as independent from the machine
we used for developing the module as possible. The command we will use to get the
Docker image and going into its UNIX shell is the following:

$ docker run --rm -it golang:latest
root@884c0d188694:/go# cd /tmp
root@58c5688e3ee0:/tmp# go version
go version go1.13 linux/amd64

As you can see, the Docker image uses the latest version of Go, which at the time of writing
is 1.13. In order to use one or more Go modules, you will need to create a Go program,
which is called useUpdatedModule.go and contains the following Go code:

package main

import (
 v1 "github.com/mactsouk/myModule"
)

func main() {
 v1.Version()
}

The Go code of useUpdatedModule.go is the same as the Go code of useModule.go. The
good thing is that you will automatically get the latest update of version v1.

After writing the program in the Docker image, you will need to do the following:

root@58c5688e3ee0:/tmp# ls -l
total 4
-rw-r--r-- 1 root root 91 Mar 2 19:59 useUpdatedModule.go
root@58c5688e3ee0:/tmp# export GO111MODULE=on
root@58c5688e3ee0:/tmp# go run useUpdatedModule.go
go: finding github.com/mactsouk/myModule v1.1.0
go: downloading github.com/mactsouk/myModule v1.1.0
go: extracting github.com/mactsouk/myModule v1.1.0
Version 1.1.0

This means that useUpdatedModule.go is automatically using the latest v1 version of the
Go module. It is critical that you execute export GO111MODULE=on to turn on module
support.

What You Might Not Know About Go Packages and Functions Chapter 6

[294]

If you try to execute useModule.go, which is located in the /tmp directory of your local
machine, you will get the following:

$ ls -l go.mod go.sum useModule.go
-rw------- 1 mtsouk wheel 67 Mar 2 21:29 go.mod
-rw------- 1 mtsouk wheel 175 Mar 2 21:29 go.sum
-rw-r--r-- 1 mtsouk wheel 92 Mar 2 21:12 useModule.go
$ go run useModule.go
Version 1.0.0

This means that useModule.go is still using the older version of the Go module. If you
want useModule.go to use the latest version of the Go module, you can do the following:

$ rm go.mod go.sum
$ go run useModule.go
go: finding github.com/mactsouk/myModule v1.1.0
go: downloading github.com/mactsouk/myModule v1.1.0
go: extracting github.com/mactsouk/myModule v1.1.0
Version 1.1.0

If you want to go back to using v1.0.0 of the module, you can do the following:

$ go mod init hello
go: creating new go.mod: module hello
$ go build
$ go run useModule.go
Version 1.1.0
$ cat go.mod
module hello
go 1.12
require github.com/mactsouk/myModule v1.1.0
$ vi go.mod
$ cat go.mod
module hello
go 1.12
require github.com/mactsouk/myModule v1.0.0
$ go run useModule.go
Version 1.0.0

The next subsection will create a new major version of the Go module, which means that
instead of using a different tag, we will need to use a different GitHub branch.

Creating version v2.0.0
In this subsection, we are going to create the second major version of myModule. Note that
for major versions, you will need to be explicit in your import statements.

What You Might Not Know About Go Packages and Functions Chapter 6

[295]

So github.com/mactsouk/myModule will become
github.com/mactsouk/myModule/v2 for version v2 and
github.com/mactsouk/myModule/v3 for v3.

The first thing to do is create a new GitHub branch:

$ git checkout -b v2
Switched to a new branch 'v2'
$ git push --set-upstream origin v2

Then, you should do the following:

$ vi go.mod
$ cat go.mod
module github.com/mactsouk/myModule/v2
go 1.12
$ git commit -a -m "Using 2.0.0"
[v2 5af2269] Using 2.0.0
 2 files changed, 2 insertions(+), 2 deletions(-)
$ git tag v2.0.0
$ git push --tags origin v2
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 441 bytes | 441.00 KiB/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:mactsouk/myModule.git
 * [new branch] v2 -> v2
 * [new tag] v2.0.0 -> v2.0.0
$ git --no-pager branch -a
 master
* v2
 remotes/origin/HEAD -> origin/master
 remotes/origin/master
 remotes/origin/v2

The contents of this major version of myModule.go will be as follows:

package myModule

import (
 "fmt"
)

func Version() {
 fmt.Println("Version 2.0.0")
}

What You Might Not Know About Go Packages and Functions Chapter 6

[296]

Using version v2.0.0
Once again, in order to use our Go modules, we will need to create a Go program, which is
called useV2.go and contains the following Go code:

package main

import (
 v "github.com/mactsouk/myModule/v2"
)

func main() {
 v.Version()
}

We are going to use a Docker image. This is the most convenient way of playing with Go
modules because we are starting with a clean Go installation:

$ docker run --rm -it golang:latest
root@191d84fc5571:/go# cd /tmp
root@191d84fc5571:/tmp# cat > useV2.go
package main
import (
 v "github.com/mactsouk/myModule/v2"
)
func main() {
 v.Version()
}
root@191d84fc5571:/tmp# export GO111MODULE=on
root@191d84fc5571:/tmp# go run useV2.go
go: finding github.com/mactsouk/myModule/v2 v2.0.0
go: downloading github.com/mactsouk/myModule/v2 v2.0.0
go: extracting github.com/mactsouk/myModule/v2 v2.0.0
Version 2.0.0

Everything is working fine as the Docker image is using version v2.0.0 of myModule.

Creating version v2.1.0
We are now going to create an updated version of myModule.go that has to do with using a
different GitHub tag. So, execute the following commands:

$ vi myModule.go
$ git commit -a -m "v2.1.0"
$ git push
$ git tag v2.1.0

What You Might Not Know About Go Packages and Functions Chapter 6

[297]

$ git push -q origin v2.1.0

The updated contents of myModule.go will be as follows:

package myModule

import (
 "fmt"
)

func Version() {
 fmt.Println("Version 2.1.0")
}

Using version v2.1.0
As you already know, in order to use our Go modules, we will need to create a Go
program, which will be called useUpdatedV2.go and contains the following Go code:

package main

import (
 v "github.com/mactsouk/myModule/v2"
)

func main() {
 v.Version()
}

Still, there is no need to declare that you want to use the latest v2 version of the Go module
because this is handled by Go, which is the main reason that useUpdatedV2.go and
useV2.go are exactly the same.

Once again, a Docker image will be used for reasons of simplicity – the reason for using the
cat(1) command to create useUpdatedV2.go is because that particular Docker image
comes without vi(1) installed.

$ docker run --rm -it golang:1.12
root@ccfcd675e333:/go# cd /tmp/
root@ccfcd675e333:/tmp# cat > useUpdatedV2.go
package main
import (
 v "github.com/mactsouk/myModule/v2"
)
func main() {
 v.Version()

What You Might Not Know About Go Packages and Functions Chapter 6

[298]

}
root@ccfcd675e333:/tmp# ls -l
total 4
-rw-r--r-- 1 root root 92 Mar 2 20:34 useUpdatedV2.go
root@ccfcd675e333:/tmp# go run useUpdatedV2.go
useUpdatedV2.go:4:2: cannot find package "github.com/mactsouk/myModule/v2"
in any of:
 /usr/local/go/src/github.com/mactsouk/myModule/v2 (from $GOROOT)
 /go/src/github.com/mactsouk/myModule/v2 (from $GOPATH)
root@ccfcd675e333:/tmp# export GO111MODULE=on
root@ccfcd675e333:/tmp# go run useUpdatedV2.go
go: finding github.com/mactsouk/myModule/v2 v2.1.0
go: downloading github.com/mactsouk/myModule/v2 v2.1.0
go: extracting github.com/mactsouk/myModule/v2 v2.1.0
Version 2.1.0

You will learn more about git(1) and GitHub in Chapter 7, Reflection
and Interfaces for All Seasons.

Using two different versions of the same Go
module
In this subsection, you will see how to use two different major versions of the same Go
module in a single Go program. The same technique can be used if you want to use more
than two major versions of a Go module at the same time.

The name of the Go source file will be useTwo.go and it is as follows:

package main

import (
 v1 "github.com/mactsouk/myModule"
 v2 "github.com/mactsouk/myModule/v2"
)

func main() {
 v1.Version()
 v2.Version()
}

So, you just need to explicitly import the major versions of the Go module you want to use
and give them different aliases.

What You Might Not Know About Go Packages and Functions Chapter 6

[299]

Executing useTwo.go will generate the following kind of output:

$ export GO111MODULE=on
$ go run useTwo.go
go: creating new go.mod: module github.com/PacktPublishing/Mastering-Go-
Second-Edition
go: finding github.com/mactsouk/myModule/v2 v2.1.0
go: downloading github.com/mactsouk/myModule/v2 v2.1.0
go: extracting github.com/mactsouk/myModule/v2 v2.1.0
Version 1.1.0
Version 2.1.0

Where Go stores Go modules
In this section, we are going to see where and how Go stores the code and the information
about the Go modules we are using, using our Go module as an example. Here are the
contents of the ~/go/pkg/mod/github.com/mactsouk directory after using the presented
Go module on my local macOS Mojave machine:

$ ls -lR ~/go/pkg/mod/github.com/mactsouk
total 0
drwxr-xr-x 3 mtsouk staff 96B Mar 2 22:38 my!module
dr-x------ 6 mtsouk staff 192B Mar 2 21:18 my!module@v1.0.0
dr-x------ 6 mtsouk staff 192B Mar 2 22:07 my!module@v1.1.0
/Users/mtsouk/go/pkg/mod/github.com/mactsouk/my!module:
total 0
dr-x------ 6 mtsouk staff 192B Mar 2 22:38 v2@v2.1.0
/Users/mtsouk/go/pkg/mod/github.com/mactsouk/my!module/v2@v2.1.0:
total 24
-r--r--r-- 1 mtsouk staff 28B Mar 2 22:38 README.md
-r--r--r-- 1 mtsouk staff 48B Mar 2 22:38 go.mod
-r--r--r-- 1 mtsouk staff 86B Mar 2 22:38 myModule.go
/Users/mtsouk/go/pkg/mod/github.com/mactsouk/my!module@v1.0.0:
total 24
-r--r--r-- 1 mtsouk staff 28B Mar 2 21:18 README.md
-r--r--r-- 1 mtsouk staff 45B Mar 2 21:18 go.mod
-r--r--r-- 1 mtsouk staff 86B Mar 2 21:18 myModule.go
/Users/mtsouk/go/pkg/mod/github.com/mactsouk/my!module@v1.1.0:
total 24
-r--r--r-- 1 mtsouk staff 28B Mar 2 22:07 README.md
-r--r--r-- 1 mtsouk staff 45B Mar 2 22:07 go.mod
-r--r--r-- 1 mtsouk staff 86B Mar 2 22:07 myModule.go

What You Might Not Know About Go Packages and Functions Chapter 6

[300]

The best way to learn how to develop and use Go modules is to
experiment. Go modules are here to stay, so start using them.

The go mod vendor command
There are times when you need to store all your dependencies in the same place and keep
them close to the files of your project. In these situations, the go mod vendor command
can help you to do exactly this:

$ cd useTwoVersions
$ go mod init useV1V2
go: creating new go.mod: module useV1V2
$ go mod vendor
$ ls -l
total 24
-rw------- 1 mtsouk staff 114B Mar 2 22:43 go.mod
-rw------- 1 mtsouk staff 356B Mar 2 22:43 go.sum
-rw-r--r--@ 1 mtsouk staff 143B Mar 2 19:36 useTwo.go
drwxr-xr-x 4 mtsouk staff 128B Mar 2 22:43 vendor
$ ls -l vendor/github.com/mactsouk/myModule
total 24
-rw-r--r-- 1 mtsouk staff 28B Mar 2 22:43 README.md
-rw-r--r-- 1 mtsouk staff 45B Mar 2 22:43 go.mod
-rw-r--r-- 1 mtsouk staff 86B Mar 2 22:43 myModule.go
drwxr-xr-x 6 mtsouk staff 192B Mar 2 22:43 v2
$ ls -l vendor/github.com/mactsouk/myModule/v2
total 24
-rw-r--r-- 1 mtsouk staff 28B Mar 2 22:43 README.md
-rw-r--r-- 1 mtsouk staff 48B Mar 2 22:43 go.mod
-rw-r--r-- 1 mtsouk staff 86B Mar 2 22:43 myModule.go

The key point here is to execute go mod init <package name> before executing the go
mod vendor command.

Creating good Go packages
This section will provide some handy advice that will help you to develop better Go
packages. We have covered that Go packages are organized in directories and can contain
public and private elements. Public elements can be used both internally and externally
from other packages, whereas private elements can only be used internally in a package.

What You Might Not Know About Go Packages and Functions Chapter 6

[301]

Here are several good rules to follow to create superior Go packages:

The first unofficial rule of a successful package is that its elements must be
related in some way. Thus, you can create a package for supporting cars, but it
would not be a good idea to create a single package for supporting both cars and
bicycles. Put simply, it is better to split the functionality of a package
unnecessarily into multiple packages than to add too much functionality to a
single Go package. Additionally, packages should be made simple and stylish-
but not too simplistic and fragile.
A second practical rule is that you should use your own packages first for a
reasonable amount of time before giving them to the public. This will help you to
discover silly bugs and make sure that your packages operate as expected. After
that, give them to some fellow developers for additional testing before making
them publicly available.
Next, try to imagine the kinds of users who will use your packages happily and
make sure that your packages will not create more problems to them than they
can solve.
Unless there is a very good reason for doing so, your packages should not export
an endless list of functions. Packages that export a short list of functions are
understood better and used more easily. After that, try to title your functions
using descriptive but not very long names.
Interfaces can improve the usefulness of your functions, so when you think it is
appropriate, use an interface instead of a single type as a function parameter or
return type.
When updating one of your packages, try not to break things and create
incompatibilities with older versions unless it is absolutely necessary.
When developing a new Go package, try to use multiple files in order to group
similar tasks or concepts.
Additionally, try to follow the rules that exist in the Go packages of the standard
library. Reading the code of a Go package that belongs to the standard library
will help you on this.
Do not create a package that already exists from scratch. Make changes to the
existing package and maybe create your own version of it.
Nobody wants a Go package that prints logging information on the screen. It
would be more professional to have a flag for turning on logging when needed.
The Go code of your packages should be in harmony with the Go code of your
programs. This means that if you look at a program that uses your packages and
your function names stand out in the code in a bad way, it would be better to
change the names of your functions. As the name of a package is used almost
everywhere, try to use a concise and expressive package name.

What You Might Not Know About Go Packages and Functions Chapter 6

[302]

It is more convenient if you put new Go type definitions near the place that they
will be used for the first time because nobody, including you, wants to search
source files for definitions of new data types.
Try to create test files for your packages, because packages with test files are
considered more professional than ones without them; small details make all the
difference and give people confidence that you are a serious developer! Notice
that writing tests for your packages is not optional and that you should avoid
using packages that do not include tests. You will learn more about testing in
Chapter 11, Code Testing, Optimization, and Profiling.
Finally, do not write a Go package because you do not have anything better to do
– in that case, find something better to do and do not waste your time!

Always remember that apart from the fact that the actual Go code in a
package should be bug-free, the next most important element of a
successful package is its documentation, as well as some code examples
that clarify its use and showcase the idiosyncrasies of the functions of the
package.

The syscall package
This section will present a small portion of the functionality of the syscall standard Go
package. Note that the syscall package offers a plethora of functions and types related to
low-level operating system primitives. Additionally, the syscall package is extensively
used by other Go packages, such as os, net, and time, which all provide a portable
interface to the operating system. This means that the syscall package is not the most
portable package in the Go library – that is not its job.

Although UNIX systems have many similarities, they also exhibit various differences,
especially when we talk about their system internals. The job of the syscall package is to
deal with all of these incompatibilities as gently as possible. The fact that this is not a secret
and is well documented makes syscall a successful package.

Strictly speaking, a system call is a programmatic way for an application to request
something from the kernel of an operating system. As a consequence, system calls are
responsible for accessing and working with most UNIX low-level elements such as
processes, storage devices, printing data, network interfaces, and all kinds of files. Put
simply, you cannot work on a UNIX system without using system calls. You can inspect the
system calls of a UNIX process using utilities such as strace(1) and dtrace(1), which
were presented in Chapter 2, Understanding Go Internals.

What You Might Not Know About Go Packages and Functions Chapter 6

[303]

The use of the syscall package will be illustrated in the useSyscall.go program, which
will be presented in four parts.

You might not directly need to use the syscall package unless you are
working on pretty low-level stuff. Not all Go packages are for everyone!

The first code portion of useSyscall.go is as follows:

package main

import (
 "fmt"
 "os"
 "syscall"
)

This is the easy part of the program, where you just import the required Go packages.

The second part of useSyscall.go is shown in the following Go code:

func main() {
 pid, _, _ := syscall.Syscall(39, 0, 0, 0)
 fmt.Println("My pid is", pid)
 uid, _, _ := syscall.Syscall(24, 0, 0, 0)
 fmt.Println("User ID:", uid)

In this part, you find out information about the process ID and the user ID using two
syscall.Syscall() calls. The first parameter of the syscall.Syscall() call determines
the information that you request.

The third code segment of useSyscall.go contains the following Go code:

 message := []byte{'H', 'e', 'l', 'l', 'o', '!', '\n'}
 fd := 1
 syscall.Write(fd, message)

In this part, you print a message on the screen using syscall.Write(). The first
parameter is the file descriptor to which you will write, and the second parameter is a byte
slice that holds the actual message. The syscall.Write() function is portable.

The last part of the useSyscall.go program is as follows:

 fmt.Println("Using syscall.Exec()")
 command := "/bin/ls"
 env := os.Environ()

What You Might Not Know About Go Packages and Functions Chapter 6

[304]

 syscall.Exec(command, []string{"ls", "-a", "-x"}, env)
}

In the last part of the program, you can see how to use the syscall.Exec() function to
execute an external command. However, you have no control over the output of the
command, which is automatically printed on the screen.

Executing useSyscall.go on macOS Mojave will generate the following output:

$ go run useSyscall.go
My pid is 14602
User ID: 501
Hello!
Using syscall.Exec()
. .. a.go
funFun.go functions.go html.gohtml
htmlT.db htmlT.go manyInit.go
ptrFun.go returnFunction.go returnNames.go
returnPtr.go text.gotext textT.go
useAPackage.go useSyscall.go

Executing the same program on a Debian Linux machine will generate the following
output:

$ go run useSyscall.go
My pid is 20853
User ID: 0
Hello!
Using syscall.Exec()
. .. a.go
funFun.go functions.go html.gohtml
htmlT.db htmlT.go manyInit.go
ptrFun.go returnFunction.go returnNames.go
returnPtr.go text.gotext textT.go
useAPackage.go useSyscall.go

So, although most of the output is the same as before, the syscall.Syscall(39, 0, 0,
0) call does not work on Linux because the user ID of the Linux user is not 0, which means
that this command is not portable.

If you want to discover which standard Go packages use the syscall package, you can
execute the next command from your UNIX shell:

$ grep \"syscall\" `find /usr/local/Cellar/go/1.12/libexec/src -name
"*.go"`

What You Might Not Know About Go Packages and Functions Chapter 6

[305]

Please replace /usr/local/Cellar/go/1.12/libexec/src with the appropriate
directory path.

Finding out how fmt.Println() really works
If you really want to grasp the usefulness of the syscall package, start by reading this
subsection. The implementation of the fmt.Println() function, as found in
https://golang.org/src/fmt/print.go, is as follows:

func Println(a ...interface{}) (n int, err error) {
 return Fprintln(os.Stdout, a...)
}

This means that the fmt.Println() function calls fmt.Fprintln() to do its job. The
implementation of fmt.Fprintln(), as found in the same file, is as follows:

func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
 p := newPrinter()
 p.doPrintln(a)
 n, err = w.Write(p.buf)
 p.free()
 return
}

This means that the actual writing in fmt.Fprintln() is done by the Write() function of
the io.Writer interface. In this case, the io.Writer interface is os.Stdout, which is
defined as follows in https://golang.org/src/os/file.go:

var (
 Stdin = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
 Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
 Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")
)

Now look at the implementation of NewFile(), which can be found inside
https://golang.org/src/os/file_plan9.go:

func NewFile(fd uintptr, name string) *File {
 fdi := int(fd)
 if fdi < 0 {
 return nil
 }
 f := &File{&file{fd: fdi, name: name}}
 runtime.SetFinalizer(f.file, (*file).close)
 return f

https://golang.org/src/fmt/print.go
https://golang.org/src/os/file.go
https://golang.org/src/os/file_plan9.go

What You Might Not Know About Go Packages and Functions Chapter 6

[306]

}

When you see a Go source file named file_plan9.go, you should suspect that it contains
commands specific to a UNIX variant, which means that it contains code that is not
portable.

What we have here is the file structure type that is embedded in the File type, which is
the one that is being exported due to its name. So, start looking for functions inside
https://golang.org/src/os/file_plan9.go that are applied to a File structure or to a
pointer to a File structure, and that allow you to write data. As the function we are
seeking is named Write() – look at the implementation of Fprintln() – we will have to
search all of the source files of the os package to find it:

$ grep "func (f *File) Write(" *.go
file.go:func (f *File) Write(b []byte) (n int, err error) {

The implementation of Write() as found in https://golang.org/src/os/file.go is as
follows:

func (f *File) Write(b []byte) (n int, err error) {
 if err := f.checkValid("write"); err != nil {
 return 0, err
 }
 n, e := f.write(b)
 if n < 0 {
 n = 0
 }
 if n != len(b) {
 err = io.ErrShortWrite
 }

 epipecheck(f, e)

 if e != nil {
 err = f.wrapErr("write", e)
 }

 return n, err
}

This means that we now have to search for the write() function. Searching for the write
string in https://golang.org/src/os/file_plan9.go reveals the following function inside
https://golang.org/src/os/file_plan9.go:

func (f *File) write(b []byte) (n int, err error) {
 if len(b) == 0 {

https://golang.org/src/os/file_plan9.go
https://golang.org/src/os/file.go
https://golang.org/src/os/file_plan9.go
https://golang.org/src/os/file_plan9.go

What You Might Not Know About Go Packages and Functions Chapter 6

[307]

 return 0, nil
 }
 return fixCount(syscall.Write(f.fd, b))
}

This tells us that a call to the fmt.Println() function is implemented using a call to
syscall.Write(). This underscores how useful and necessary the syscall package is.

The go/scanner, go/parser, and go/token
packages
This section will talk about the go/scanner, go/parser, and go/token packages, as well
as the go/ast package. This is low-level information about how Go scans and parses Go
code that will help you to understand how Go works. However, you might want to skip
this section if low-level things frustrate you.

Parsing a language requires two phases. The first one is about breaking up the input into
tokens (lexical analysis) and the second one is about feeding the parser with all these
tokens in order to make sure that these tokens make sense and are in the right order
(semantic analysis). Just combining English words does not always create valid sentences.

The go/ast package
An abstract syntax tree (AST) is a structured representation of the source code of a Go
program. This tree is constructed according to some rules that are specified in the language
specification. The go/ast package is used for declaring the data types required to represent
ASTs in Go. If you want to find out more about an ast.* type, the go/ast package should
be the best place for this kind of information.

The go/scanner package
A scanner is something, which in this case will be some Go code, that reads a program
written in a programming language, which in this case is Go, and generates tokens.

The go/scanner package is used for reading Go programs and generating a series of
tokens. The use of the go/scanner package will be illustrated in goScanner.go, which
will be presented in three parts.

What You Might Not Know About Go Packages and Functions Chapter 6

[308]

The first part of goScanner.go is as follows:

package main

import (
 "fmt"
 "go/scanner"
 "go/token"
 "io/ioutil"
 "os"
)

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Not enough arguments!")
 return

 }

The go/token package defines constants that represent the lexical tokens of the Go
programming language.

The second part of goScanner.go contains the following Go code:

 for _, file := range os.Args[1:] {
 fmt.Println("Processing:", file)
 f, err := ioutil.ReadFile(file)
 if err != nil {
 fmt.Println(err)
 return
 }
 One := token.NewFileSet()
 files := one.AddFile(file, one.Base(), len(f))

The source file that is going to be tokenized is stored in the file variable, whereas its
contents are stored in f.

The last part of goScanner.go is as follows:

 var myScanner scanner.Scanner
 myScanner.Init(files, f, nil, scanner.ScanComments)

 for {
 pos, tok, lit := myScanner.Scan()
 if tok == token.EOF {
 break
 }
 fmt.Printf("%s\t%s\t%q\n", one.Position(pos), tok, lit)

What You Might Not Know About Go Packages and Functions Chapter 6

[309]

 }
 }
}

The for loop is used for traversing the input file. The end of the source code file is
indicated by toker.EOF – this will exit the for loop. The scanner.Scan() method
returns the current file position, the token, and the literal. The use of
scanner.ScanComments in scanner.Init() tells the scanner to return comments as
COMMENT tokens. You can use 1 instead of scanner.ScanComments and you can put 0 if
you do not want to see any COMMENT tokens in the output.

Building and executing goScanner.go will create the following output:

$./goScanner a.go
Processing: a.go
a.go:1:1 package "package"
a.go:1:9 IDENT "a"
a.go:1:10 ; "\n"
a.go:3:1 import "import"
a.go:3:8 (""
a.go:4:2 STRING "\"fmt\""
a.go:4:7 ; "\n"
a.go:5:1) ""
a.go:5:2 ; "\n"
a.go:7:1 func "func"
a.go:7:6 IDENT "init"
a.go:7:10 (""
a.go:7:11) ""
a.go:7:13 { ""
a.go:8:2 IDENT "fmt"
a.go:8:5 . ""
a.go:8:6 IDENT "Println"
a.go:8:13 (""
a.go:8:14 STRING "\"init() a\""
a.go:8:24) ""
a.go:8:25 ; "\n"
a.go:9:1 } ""
a.go:9:2 ; "\n"
a.go:11:1 func "func"
a.go:11:6 IDENT "FromA"
a.go:11:11 (""
a.go:11:12) ""
a.go:11:14 { ""
a.go:12:2 IDENT "fmt"
a.go:12:5 . ""
a.go:12:6 IDENT "Println"
a.go:12:13 (""

What You Might Not Know About Go Packages and Functions Chapter 6

[310]

a.go:12:14 STRING "\"fromA()\""
a.go:12:23) ""
a.go:12:24 ; "\n"
a.go:13:1 } ""
a.go:13:2 ; "\n"

The output of goScanner.go is as simple as it can be. Note that goScanner.go can scan
any type of file, even binary files. However, if you scan a binary file, you might get less
readable output. As you can see from the output, the Go scanner adds semicolons
automatically. Note that IDENT notifies an identifier, which is the most popular type of
token.

The next subsection will deal with the parsing process.

The go/parser package
A parser reads the output of a scanner (tokens) in order to generate a structure from those
tokens. Parsers use a grammar that describes a programming language to make sure that
the given tokens compose a valid program. That structure is represented as a tree, which is
the AST.

The use of the go/parser package that processes the output of go/token is illustrated in
goParser.go, which is going to be presented in four parts.

The first part of goParser.go is as follows:

package main

import (
 "fmt"
 "go/ast"
 "go/parser"
 "go/token"
 "os"
 "strings"
)

type visitor int

The second part of goParser.go contains the following Go code:

func (v visitor) Visit(n ast.Node) ast.Visitor {
 if n == nil {
 return nil
 }

What You Might Not Know About Go Packages and Functions Chapter 6

[311]

 fmt.Printf("%s%T\n", strings.Repeat("\t", int(v)), n)
 return v + 1
}

The Visit() method will be called for every node of the AST.

The third part of goParser.go is as follows:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Not enough arguments!")
 return
 }

The last part of goParser.go is as follows:

 for _, file := range os.Args[1:] {
 fmt.Println("Processing:", file)
 one := token.NewFileSet()
 var v visitor
 f, err := parser.ParseFile(one, file, nil,
 parser.AllErrors)
 if err != nil {
 fmt.Println(err)
 return
 }
 ast.Walk(v, f)
 }
}

The Walk() function, which is called recursively, traverses an AST in depth-first order in
order to visit all of its nodes.

Building and executing goParser.go to find the AST of a simple and small Go module
will generate the following kind of output:

$./goParser a.go
Processing: a.go
*ast.File
 *ast.Ident
 *ast.GenDecl
 *ast.ImportSpec
 *ast.BasicLit
 *ast.FuncDecl
 *ast.Ident
 *ast.FuncType
 *ast.FieldList
 *ast.BlockStmt

What You Might Not Know About Go Packages and Functions Chapter 6

[312]

 *ast.ExprStmt
 *ast.CallExpr
 *ast.SelectorExpr
 *ast.Ident
 *ast.Ident
 *ast.BasicLit
 *ast.FuncDecl
 *ast.Ident
 *ast.FuncType
 *ast.FieldList
 *ast.BlockStmt
 *ast.ExprStmt
 *ast.CallExpr
 *ast.SelectorExpr
 *ast.Ident
 *ast.Ident
 *ast.BasicLit

The output of goParser.go is as simple as it gets. However, it is totally different from the
output of goScanner.go.

Now that you know how the outputs of the Go scanner and the Go parser look, you are
ready to see some more practical examples.

A practical example
In this subsection, we are going to write a Go program that counts the number of times a
keyword appears in the input files. In this case, the keyword that is going to be counted is
var. The name of the utility will be varTimes.go and it is going to be presented in four
parts. The first part of varTimes.go is as follows:

package main

import (
 "fmt"
 "go/scanner"
 "go/token"
 "io/ioutil"
 "os"
)

var KEYWORD = "var"
var COUNT = 0

What You Might Not Know About Go Packages and Functions Chapter 6

[313]

You can search for any Go keyword you want – you can even set the value of the KEYWORD
global variable at runtime if you modify varTimes.go.

The second part of varTimes.go contains the following Go code:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Not enough arguments!")
 return
 }

 for _, file := range os.Args[1:] {
 fmt.Println("Processing:", file)
 f, err := ioutil.ReadFile(file)
 if err != nil {
 fmt.Println(err)
 return
 }
 one := token.NewFileSet()
 files := one.AddFile(file, one.Base(), len(f))

The third part of varTimes.go is as follows:

 var myScanner scanner.Scanner
 myScanner.Init(files, f, nil, scanner.ScanComments)

 localCount := 0
 for {
 _, tok, lit := myScanner.Scan()
 if tok == token.EOF {
 break
 }

In this case, the position the token was found in is ignored as it does not matter. However,
the tok variable is needed for finding out the end of the file.

The last part of varTimes.go is as follows:

 if lit == KEYWORD {
 COUNT++
 localCount++
 }
 }
 fmt.Printf("Found _%s_ %d times\n", KEYWORD, localCount)
 }
 fmt.Printf("Found _%s_ %d times in total\n", KEYWORD, COUNT)
}

What You Might Not Know About Go Packages and Functions Chapter 6

[314]

Compiling and executing varTimes.go will create the following kind of output:

$ go build varTimes.go
$./varTimes varTimes.go variadic.go a.go
Processing: varTimes.go
Found _var_ 3 times
Processing: variadic.go
Found _var_ 0 times
Processing: a.go
Found _var_ 0 times
Found _var_ 3 times in total

Finding variable names with a given string length
This subsection will present another practical example that will be more advanced than the
one presented in varTimes.go. You will see how to find the variable names with a given
string length – you can use any string length you want. Additionally, the program will be
able to differentiate between global variables and local variables.

A local variable is defined inside a function whereas a global variable is
defined outside of a function. Global variables are also called package
variables.

The name of the utility is varSize.go and it will be presented in four parts. The first part
of varSize.go is as follows:

package main

import (
 "fmt"
 "go/ast"
 "go/parser"
 "go/token"
 "os"
 "strconv"
)

var SIZE = 2
var GLOBAL = 0
var LOCAL = 0

type visitor struct {
 Package map[*ast.GenDecl]bool
}

What You Might Not Know About Go Packages and Functions Chapter 6

[315]

func makeVisitor(f *ast.File) visitor {
 k1 := make(map[*ast.GenDecl]bool)
 for _, aa := range f.Decls {
 v, ok := aa.(*ast.GenDecl)
 if ok {
 k1[v] = true
 }
 }

 return visitor{k1}
}

As we want to differentiate between local and global variables, we define two global
variables named GLOBAL and LOCAL to keep these two counts. The use of the visitor
structure will help us to differentiate between local and global variables, hence the map
field defined in the visitor structure. The makeVisitor() method is used to initialize the
active visitor structure according to the values of its parameter, which is a File node
representing an entire file.

The second part of varSize.go contains the implementation of the Visit() method:

func (v visitor) Visit(n ast.Node) ast.Visitor {
 if n == nil {
 return nil
 }

 switch d := n.(type) {
 case *ast.AssignStmt:
 if d.Tok != token.DEFINE {
 return v
 }

 for _, name := range d.Lhs {
 v.isItLocal(name)
 }
 case *ast.RangeStmt:
 v.isItLocal(d.Key)
 v.isItLocal(d.Value)
 case *ast.FuncDecl:
 if d.Recv != nil {
 v.CheckAll(d.Recv.List)
 }

 v.CheckAll(d.Type.Params.List)
 if d.Type.Results != nil {
 v.CheckAll(d.Type.Results.List)
 }

What You Might Not Know About Go Packages and Functions Chapter 6

[316]

 case *ast.GenDecl:
 if d.Tok != token.VAR {
 return v
 }
 for _, spec := range d.Specs {
 value, ok := spec.(*ast.ValueSpec)
 if ok {
 for _, name := range value.Names {
 if name.Name == "_" {
 continue
 }
 if v.Package[d] {
 if len(name.Name) == SIZE {
 fmt.Printf("** %s\n", name.Name)
 GLOBAL++
 }
 } else {
 if len(name.Name) == SIZE {
 fmt.Printf("* %s\n", name.Name)
 LOCAL++
 }
 }
 }
 }
 }
 }
 return v
}

The main job of the Visit() function is to determine the type of the node that it works
with in order to act accordingly. This happens with the help of a switch statement.

The ast.AssignStmt node represents assignments or short variable declarations. The
ast.RangeStmt node is a structure type for representing a for statement with a range
clause – this is another place where new local variables are declared.

The ast.FuncDecl node is a structure type for representing function declarations – every
variable that is defined inside a function is a local variable. Lastly, the ast.GenDecl node
is a structure type for representing an import, constant, type, or variable declaration.
However, we are only interested in token.VAR tokens.

The third part of varSize.go is as follows:

func (v visitor) isItLocal(n ast.Node) {
 identifier, ok := n.(*ast.Ident)
 if ok == false {
 return

What You Might Not Know About Go Packages and Functions Chapter 6

[317]

 }

 if identifier.Name == "_" || identifier.Name == "" {
 return
 }

 if identifier.Obj != nil && identifier.Obj.Pos() == identifier.Pos() {
 if len(identifier.Name) == SIZE {
 fmt.Printf("* %s\n", identifier.Name)
 LOCAL++
 }
 }
}

func (v visitor) CheckAll(fs []*ast.Field) {
 for _, f := range fs {
 for _, name := range f.Names {
 v.isItLocal(name)
 }
 }
}

These two functions are helper methods. The first one decides whether an identifier node is
a local variable or not, and the second one visits an ast.Field node in order to examine its
contents for local variables.

The last part of varSize.go is as follows:

func main() {
 if len(os.Args) <= 2 {
 fmt.Println("Not enough arguments!")
 return
 }

 temp, err := strconv.Atoi(os.Args[1])
 if err != nil {
 SIZE = 2
 fmt.Println("Using default SIZE:", SIZE)
 } else {
 SIZE = temp
 }

 var v visitor
 all := token.NewFileSet()
 for _, file := range os.Args[2:] {
 fmt.Println("Processing:", file)
 f, err := parser.ParseFile(all, file, nil, parser.AllErrors)
 if err != nil {

What You Might Not Know About Go Packages and Functions Chapter 6

[318]

 fmt.Println(err)
 continue
 }

 v = makeVisitor(f)
 ast.Walk(v, f)
 }
 fmt.Printf("Local: %d, Global:%d with a length of %d.\n", LOCAL,
GLOBAL, SIZE)
}

The program generates the AST of its input and processes that in order to extract the
desired information. Apart from the Visit() method, which is part of the interface, the
rest of the magic in the main() function happens with the help of ast.Walk(), which
automatically visits all the AST nodes of each file that is being processed.

Building and executing varSize.go will generate the following kind of output:

$ go build varSize.go
$./varSize
Not enough arguments!
$./varSize 2 varSize.go variadic.go
Processing: varSize.go
* k1
* aa
* ok
* ok
* ok
* fs
Processing: variadic.go
Local: 6, Global:0 with a length of 2.
$./varSize 3 varSize.go variadic.go
Processing: varSize.go
* err
* all
* err
Processing: variadic.go
* sum
* sum
Local: 5, Global:0 with a length of 3.
$./varSize 7 varSize.go variadic.go
Processing: varSize.go
Processing: variadic.go
* message
Local: 1, Global:0 with a length of 7.

What You Might Not Know About Go Packages and Functions Chapter 6

[319]

You can remove the various fmt.Println() calls in varSize.go and have a less cluttered
output.

You can do pretty ingenious things in Go once you know how to parse a Go program – you
can even write your own parser for your own programming language if you want! If you
are really into parsing, you should have a look at the documentation page of the go/ast
package, as well as its source code, which can be found at
https://golang.org/pkg/go/ast/ and at
https://github.com/golang/go/tree/master/src/go/ast respectively.

Text and HTML templates
The subject of this section will probably surprise you in a good way, because both
presented packages give you so much flexibility that I am sure you will find many creative
ways to use them. Templates are mainly used for separating the formatting part and the
data part of the output. Please note that a Go template can be either a file or a string – the
general idea is to use inline strings for smaller templates and external files for bigger ones.

You cannot import both text/template and html/template on the
same Go program because these two packages share the same package
name (template). If absolutely necessary, you should define an alias for
one of them. See the useStrings.go code in Chapter 4, The Uses of
Composite Types.

Text output is usually presented on your screen, whereas HTML output is seen with the
help of a web browser. However, as text output is usually better than HTML output, if you
think that you will need to process the output of a Go utility using other UNIX command-
line utilities, you should use text/template instead of html/template.

Note that both the text/template and html/template packages are good examples of
how sophisticated a Go package can be. As you will see shortly, both packages support
their own kind of programming language – good software makes complex things look
simple and elegant.

Generating text output
If you need to create plain text output, then using the text/template package is a good
choice. The use of the text/template package will be illustrated in textT.go, which will
be presented in five parts.

https://golang.org/pkg/go/ast/
https://github.com/golang/go/tree/master/src/go/ast

What You Might Not Know About Go Packages and Functions Chapter 6

[320]

As templates are usually stored in external files, the example presented will use the
text.gotext template file, which will be analyzed in three parts. Data is typically read
from text files or from the Internet. However, for reasons of simplicity, the data for
textT.go will be hardcoded in the program using a slice.

We will start by looking at the Go code of textT.go. The first code portion of textT.go is
as follows:

package main

import (
 "fmt"
 "os"
 "text/template"
)

The second code segment from textT.go is as follows:

type Entry struct {
 Number int
 Square int
}

You will need to define a new data type for storing your data unless you are dealing with
very simplistic data.

The third part of textT.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Need the template file!")
 return
 }

 tFile := arguments[1]
 DATA := [][]int{{-1, 1}, {-2, 4}, {-3, 9}, {-4, 16}}

The DATA variable, which is a slice with two dimensions, holds the initial version of your
data.

What You Might Not Know About Go Packages and Functions Chapter 6

[321]

The fourth part of textT.go contains the following Go code:

 var Entries []Entry

 for _, i := range DATA {
 if len(i) == 2 {
 temp := Entry{Number: i[0], Square: i[1]}
 Entries = append(Entries, temp)
 }
 }

The preceding code creates a slice of structures from the DATA variable.

The last code segment from textT.go is the following:

 t := template.Must(template.ParseGlob(tFile))
 t.Execute(os.Stdout, Entries)
}

The template.Must() function is used for making the required initializations. Its return
data type is Template, which is a structure that holds the representation of a parsed
template. template.ParseGlob() reads the external template file. Note that I prefer to
use the gohtml extension for the template files, but you can use any extension that you
want – just be consistent.

Lastly, the template.Execute() function does all the work, which includes processing
the data and printing the output to the desired file, which in this case is os.Stdout.

Now it is time to look at the code of the template file. The first part of the text template file
is as follows:

Calculating the squares of some integers

Note that empty lines in a text template file are significant and will be shown as empty lines
in the final output.

The second part of the template is as follows:

{{ range . }} The square of {{ printf "%d" .Number}} is {{ printf
 "%d" .Square}}

What You Might Not Know About Go Packages and Functions Chapter 6

[322]

There are many interesting things happening here. The range keyword allows you to
iterate over the lines of the input, which is given as a slice of structures. Plain text is printed
as such, whereas variables and dynamic text must begin with {{ and end with }}. The
fields of the structure are accessed as .Number and .Square. Note the dot character in
front of the field name of the Entry data type. Lastly, the printf command is used to
format the final output.

The third part of the text.gotext file is as follows:

{{ end }}

A {{ range }} command is ended with {{ end }}. Accidentally putting {{ end }} in
the wrong place will affect your output. Once again, keep in mind that empty lines in text
template files are significant and will be shown in the final output.

Executing textT.go will generate the following type of output:

$ go run textT.go text.gotext
Calculating the squares of some integers
 The square of -1 is 1
 The square of -2 is 4
 The square of -3 is 9
 The square of -4 is 16

Constructing HTML output
This section illustrates the use of the html/template package with an example named
htmlT.go. It will be presented in six parts. The philosophy of the html/template package
is the same as the text/template package. The main difference between these two
packages is that html/template generates HTML output that is safe against code
injection.

Although you can create HTML output with the text/template package
– after all, HTML is just plain text – if you want to create HTML output,
then you should use the html/template package instead.

For reasons of simplicity, the following presented will read data from an SQLite database,
but you can use any database that you want, provided that you have or you can write the
appropriate Go drivers. To make things even easier, the example will populate a database
table before reading from it.

What You Might Not Know About Go Packages and Functions Chapter 6

[323]

The first code portion from htmlT.go is as follows:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/mattn/go-sqlite3"
 "html/template"
 "net/http"
 "os"
)

type Entry struct {
 Number int
 Double int
 Square int
}

var DATA []Entry
var tFile string

You can see a new package named net/http in the import block, which is used for
creating HTTP servers and clients in Go. You will learn more about network programming
in Go and the use of the net and net/http standard Go packages in Chapter 12, The
Foundations of Network Programming in Go, and Chapter 13, Network Programming – Building
Your Own Servers and Clients.

Apart from net/http, you can also see the definition of the Entry data type that will hold
the records read from the SQLite3 table, as well as two global variables named DATA and
tFile, which hold the data that is going to be passed to the template file and the filename
of the template file, respectively.

Lastly, you can see the use of the https://github.com/mattn/go-sqlite3 package for
communicating with the SQLite3 database with the help of the database/sql interface.

The second part of htmlT.go is as follows:

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Printf("Host: %s Path: %s\n", r.Host, r.URL.Path)
 myT := template.Must(template.ParseGlob(tFile))
 myT.ExecuteTemplate(w, tFile, DATA)
}

https://github.com/mattn/go-sqlite3

What You Might Not Know About Go Packages and Functions Chapter 6

[324]

The simplicity and the effectiveness of the myHandler() function is phenomenal,
especially if you consider the size of the function! The template.ExecuteTemplate()
function does all the work for us. Its first parameter is the variable that holds the connection
with the HTTP client, its second parameter is the template file that will be used for
formatting the data, and its third parameter is the slice of structures with the data.

The third code segment from htmlT.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Println("Need Database File + Template File!")
 return
 }

 database := arguments[1]
 tFile = arguments[2]

The fourth code portion from htmlT.go is where you start dealing with the database:

 db, err := sql.Open("sqlite3", database)
 if err != nil {
 fmt.Println(nil)
 return
 }

 fmt.Println("Emptying database table.")
 _, err = db.Exec("DELETE FROM data")
 if err != nil {
 fmt.Println(nil)
 return
 }

 fmt.Println("Populating", database)
 stmt, _ := db.Prepare("INSERT INTO data(number, double,
 square) values(?,?,?)")
 for i := 20; i < 50; i++ {
 _, _ = stmt.Exec(i, 2*i, i*i)
 }

The sql.Open() function opens the connection with the desired database. With
db.Exec(), you can execute database commands without expecting any feedback from
them. Lastly, the db.Prepare() function allows you to execute a database command
multiple times by changing only its parameters and calling Exec() afterward.

What You Might Not Know About Go Packages and Functions Chapter 6

[325]

The fifth part of htmlT.go contains the following Go code:

 rows, err := db.Query("SELECT * FROM data")
 if err != nil {
 fmt.Println(nil)
 return
 }

 var n int
 var d int
 var s int
 for rows.Next() {
 err = rows.Scan(&n, &d, &s)
 temp := Entry{Number: n, Double: d, Square: s}
 DATA = append(DATA, temp)
 }

In this part of the program, we read the data from the desired table using db.Query() and
multiple calls to Next() and Scan(). While reading the data, you put it into a slice of
structures and you are done dealing with the database.

The last part of the program is all about setting up the web server, and it contains the
following Go code:

 http.HandleFunc("/", myHandler)
 err = http.ListenAndServe(":8080", nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

Here, the http.HandleFunc() function tells the web server embedded in the program
which URLs will be supported and by which handler function (myHandler()). The current
handler supports the / URL, which in Go matches all URLs. This saves you from having to
create any extra static or dynamic pages.

The code of the htmlT.go program is divided into two virtual parts. The first part is about
getting the data from the database and putting it into a slice of structures, whereas the
second part, which is similar to textT.go, is about displaying your data in a web browser.

The two biggest advantages of SQLite are that you do not need to run a
server process for the database server and that SQLite databases are
stored in self-contained files, which means that single files hold entire
SQLite databases.

What You Might Not Know About Go Packages and Functions Chapter 6

[326]

Note that in order to reduce the Go code and be able to run the htmlT.go program
multiple times, you will need to create the database table and the SQLite3 database
manually, which is as simple as executing the following commands:

$ sqlite3 htmlT.db
SQLite version 3.19.3 2017-06-27 16:48:08
Enter ".help" for usage hints.
sqlite> CREATE TABLE data (
 ...> number INTEGER PRIMARY KEY,
 ...> double INTEGER,
 ...> square INTEGER);
sqlite> ^D
$ ls -l htmlT.db
-rw-r--r-- 1 mtsouk staff 8192 Dec 26 22:46 htmlT.db

The first command is executed from the UNIX shell and it is needed for creating the
database file. The second command is executed from the SQLite3 shell and it has to do with
creating a database table named data, which has three fields named number, double, and
square.

Additionally, you are going to need an external template file, which will be named
html.gohtml. It is going to be used for the generation of the output of the program.

The first part of html.gohtml is as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Doing Maths in Go!</title>
 <style>
 html {
 font-size: 14px;
 }
 table, th, td {
 border: 2px solid blue;
 }
 </style>
 </head>
 <body>

The HTML code that a web browser will get is based on the contents of html.gohtml. This
means that you will need to create proper HTML output, hence the preceding HTML code,
which also includes some inline CSS code for formatting the generated HTML table.

What You Might Not Know About Go Packages and Functions Chapter 6

[327]

The second part of html.gohtml contains the following code:

<table>
 <thead>
 <tr>
 <th>Number</th>
 <th>Double</th>
 <th>Square</th>
 </tr>
 </thead>
 <tbody>
{{ range . }}
 <tr>
 <td> {{ .Number }} </td>
 <td> {{ .Double }} </td>
 <td> {{ .Square }} </td>
 </tr>
{{ end }}
 </tbody>
</table>

As you can see from the preceding code, you still have to use {{ range }} and {{ end
}} in order to iterate over the elements of the slice of structures that was passed to
template.ExecuteTemplate(). However, this time the html.gohtml template file
contains lots of HTML code in order to format the data in the slice of structures better.

The last part of the HTML template file is as follows:

</body>
</html>

The last part of html.gohtml is mainly used for properly ending the generated HTML
code according to the HTML standards. Before being able to compile and execute
htmlT.go, you will need to download the package that will help the Go programming
language to communicate with SQLite3. You can do this by executing the following
command:

$ go get github.com/mattn/go-sqlite3

As you already know, you can find the source code of the downloaded package inside
~/go/src and its compiled version inside ~/go/pkg/darwin_amd64 if you are on a
macOS machine. Otherwise, check the contents of ~/go/pkg to find out your own
architecture. Note that the ~ character denotes the home directory of the current user.

What You Might Not Know About Go Packages and Functions Chapter 6

[328]

Keep in mind that additional Go packages exist that can help you to communicate with an
SQLite3 database. However, the one used here is the only one that currently supports the
database/sql interface. Executing htmlT.go will produce the kind of output on a web
browser that you can see in the following figure:

Figure 6.1: The output of the htmlT.go program

What You Might Not Know About Go Packages and Functions Chapter 6

[329]

Moreover, htmlT.go will generate the following type of output in your UNIX shell, which
is mainly debugging information:

$ go run htmlT.go htmlT.db html.gohtml
Emptying database table.
Populating htmlT.db
Host: localhost:8080 Path: /
Host: localhost:8080 Path: /favicon.ico
Host: localhost:8080 Path: /123

If you want to see the HTML output of the program from the UNIX shell, you can use the
wget(1) utility as follows:

$ wget -qO- http://localhost:8080
<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Doing Maths in Go!</title>
 <style>
 html {
 font-size: 14px;
 }
 table, th, td {
 border: 2px solid blue;
 }
 </style>
 </head>
 <body>
<table>
 <thead>
 <tr>

Both text/template and html/template are powerful packages that can save you a lot
of time, so I suggest that you use them when they fit the requirements of your applications.

Additional resources
You will find the next resources very useful:

Visit the documentation page of the syscall standard Go package at
https://golang.org/pkg/syscall/. This is one of the biggest Go documentation
pages that I have ever seen!

https://golang.org/pkg/syscall/

What You Might Not Know About Go Packages and Functions Chapter 6

[330]

Visit the documentation page of the text/template package, which can be
found at https://golang.org/pkg/text/template/.
Similarly, go to https://golang.org/pkg/html/template/ for the
documentation of the html/template package.
You can find out more about the go/token package at
https://golang.org/pkg/go/token/.
You can find out more about the go/parser package at
https://golang.org/pkg/go/parser/.
You can find out more about the go/scanner package at
https://golang.org/pkg/go/scanner/.
You can find out more about the go/ast package at
https://golang.org/pkg/go/ast/.
Visit the home page of SQLite3 at https://www.sqlite.org/.
Watch the "Writing Beautiful Packages in Go" video by Mat Ryer at
https://www.youtube.com/watch?v=cAWlv2SeQus.
If you want to know about Plan 9, look at https://plan9.io/plan9/.
Take the time to look at the find(1) command-line tool by visiting its man page
(man 1 find).

Exercises
Seek out more information about the actual implementation of the
fmt.Printf() function.
Can you write a function that sorts three int values? Try to write two versions of
the function: one with named returned values and another without named return
values. Which one do you think is better?
Can you modify the Go code of htmlT.go in order to use text/template
instead of html/template?
Can you modify the Go code of htmlT.go in order to use either https:/ /
github.com/ feyeleanor/ gosqlite3 or the https:/ /github. com/ phf/ go- sqlite3
package for communicating with the SQLite3 database?
Create your own Go module and develop three major versions of it.
Write a Go program like htmlT.go that reads data from a MySQL database.
Write down the code changes that you made.

https://golang.org/pkg/text/template/
https://golang.org/pkg/html/template/
https://golang.org/pkg/go/token/
https://golang.org/pkg/go/parser/
https://golang.org/pkg/go/scanner/
https://golang.org/pkg/go/ast/
https://www.sqlite.org/
https://www.youtube.com/watch?v=cAWlv2SeQus
https://plan9.io/plan9/
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/feyeleanor/gosqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3
https://github.com/phf/go-sqlite3

What You Might Not Know About Go Packages and Functions Chapter 6

[331]

Summary
This chapter presented three primary topics: Go functions, Go packages, and Go modules.
The main advantage of Go modules is that they record the exact dependency requirements,
which makes creating reproducible builds easy and straightforward.

This chapter also offered you ample advice about developing good Go packages. It
subsequently talked about the text/template and html/template packages, which
allow you to create plain text and HTML output based on templates, as well as the
go/token, go/parser, and go/scanner packages. Lastly, it talked about the syscall
standard Go package that offers advanced features.

The next chapter will discuss two important Go features: interfaces and reflection.
Additionally, it will talk about object-oriented programming in Go, debugging, and Go
type methods. All of these topics are pretty advanced and you might find them difficult at
first. However, learning more about them will unquestionably make you a better Go
programmer.

Finally, the next chapter includes a quick introduction to the git utility, which was used in
this chapter to create Go modules.

7
Reflection and Interfaces for All

Seasons
The previous chapter talked about developing packages, modules, and functions in Go, as
well as working with text and HTML templates with the help of the text/template and
html/template packages. The chapter also explained the use of the syscall package.

This chapter is going to teach you three very interesting, handy, and somewhat advanced
Go concepts: reflection, interfaces, and type methods. Although Go interfaces are used all
the time, reflection is not, mainly because it is not usually necessary for your programs to
use it. Furthermore, you will learn about type assertions, the Delve debugger, and object-
oriented programming in Go. Lastly, this chapter will present a short introduction to git
and GitHub.

Therefore, in this chapter, you will learn about:

Type methods
Go interfaces
Type assertions
Developing and using your own interfaces
GitHub and git
An introduction to the Delve debugger
Object-oriented programming in Go
Reflection and the reflect standard Go package
Reflection and the reflectwalk library

Reflection and Interfaces for All Seasons Chapter 7

[333]

Type methods
A Go type method is a function with a special receiver argument. You declare methods as
ordinary functions with an additional parameter that appears in front of the function name.
This particular parameter connects the function to the type of that extra parameter. As a
result, that parameter is called the receiver of the method.

The following Go code is the implementation of the Close() function as found in
https://golang.org/src/os/file_plan9.go:

func (f *File) Close() error {
 if err := f.checkValid("close"); err != nil {
 return err
 }
 return f.file.close()
}

The Close() function is a type method because there is that (f *File) parameter in front
of its name and after the func keyword. The f parameter is called the receiver of the
method. In object-oriented programming terminology this process can be described as
sending a message to an object. In Go, the receiver of a method is defined using a regular
variable name without the need to use a dedicated keyword such as this or self.

Now let me offer you a complete example using the Go code of the methods.go file, which
will be presented in four parts.

The first part of methods.go comes with the following Go code:

package main

import (
 "fmt"
)

type twoInts struct {
 X int64
 Y int64
}

In the preceding Go code, you can see the definition of a new structure with two fields
named twoInts.

https://golang.org/src/os/file_plan9.go

Reflection and Interfaces for All Seasons Chapter 7

[334]

The second code segment of methods.go is next:

func regularFunction(a, b twoInts) twoInts {
 temp := twoInts{X: a.X + b.X, Y: a.Y + b.Y}
 return temp
}

In this part, you define a new function named regularFunction() that accepts two
parameters of type twoInts and returns just one twoInts value.

The third part of the program contains the next Go code:

func (a twoInts) method(b twoInts) twoInts {
 temp := twoInts{X: a.X + b.X, Y: a.Y + b.Y}
 return temp
}

The method() function is equivalent to the regularFunction() function defined in the
previous part of methods.go. However, the method() function is a type method and you
are going to learn a different way of calling it in a moment.

The really interesting thing here is that the implementation of method()
is exactly the same as the implementation of regularFunction()!

The last code segment of methods.go is the following:

func main() {
 i := twoInts{X: 1, Y: 2}
 j := twoInts{X: -5, Y: -2}
 fmt.Println(regularFunction(i, j))
 fmt.Println(i.method(j))
}

As you can see, the way you call a type method (i.method(j)) is different from the way
you call a conventional function (regularFunction(i, j)).

Executing methods.go will create the next output:

$ go run methods.go
{-4 0}
{-4 0}

Reflection and Interfaces for All Seasons Chapter 7

[335]

Notice that type methods are also associated with interfaces, which will be the subject of the
next section. As a result, you will see more type methods later.

Go interfaces
Strictly speaking, a Go interface type defines the behavior of other types by specifying a set
of methods that need to be implemented. For a type to satisfy an interface, it needs to
implement all the methods required by that interface, which are usually not too many.

Putting it simply, interfaces are abstract types that define a set of functions that need to be
implemented so that a type can be considered an instance of the interface. When this
happens, we say that the type satisfies this interface. So, an interface is two things: a set of
methods and a type, and it is used to define the behavior of other types.

The biggest advantage you get from having and using an interface is that you can pass a
variable of a type that implements that particular interface to any function that expects a
parameter of that specific interface. Without that amazing capability, interfaces would have
been only a formality without any practical or real benefit.

Please note that if you find yourself defining an interface and its
implementation in the same Go package, you might need to rethink your
approach. This is not because this is technically wrong, but because it
looks logically wrong.

Two very common Go interfaces are io.Reader and io.Writer and they are used in file
input and output operations. More specifically, io.Reader is used for reading from a file,
whereas io.Writer is used for writing to a file of any type.

The definition of io.Reader as found in https://golang.org/src/io/io.go is the
following:

type Reader interface {
 Read(p []byte) (n int, err error)
}

So, in order for a type to satisfy the io.Reader interface, you will need to implement the
Read() method as described in the interface definition.

Similarly, the definition of io.Writer as found in https://golang.org/src/io/io.go is
next:

type Writer interface {

https://golang.org/src/io/io.go
https://golang.org/src/io/io.go

Reflection and Interfaces for All Seasons Chapter 7

[336]

 Write(p []byte) (n int, err error)
}

To satisfy the io.Writer interface, you will just need to implement a single method named
Write().

Each of the io.Reader and io.Writer interfaces requires the implementation of just one
method. Yet both interfaces are very powerful – most likely their power comes from their
simplicity. Generally speaking, most interfaces are fairly simple.

In the next subsections, you will learn how to define an interface on your own and how to
use it in other Go packages. Notice that it is not necessary for an interface to be fancy or
impressive as long as it does what you want it to do.

Putting it simply, interfaces should be utilized when there is a need for
making sure that certain conditions will be met and certain behaviors will
be anticipated from a Go element.

About type assertions
A type assertion is the x.(T) notation, where x is an interface type and T is a type.
Additionally, the actual value stored in x is of type T and T must satisfy the interface type
of x. The following paragraphs, as well as the code example, will help you to clarify this
relatively eccentric definition of a type assertion.

Type assertions help you to do two things. The first thing is checking whether an interface
value keeps a particular type. When used this way, a type assertion returns two values: the
underlying value and a bool value. Although the underlying value is what you might want
to use, the Boolean value tells you whether the type assertion was successful or not.

The second thing that type assertions help with is allowing you to use the concrete value
stored in an interface or assign it to a new variable. This means that if there is an int
variable in an interface, you can get that value using a type assertion.

However, if a type assertion is not successful and you do not handle that failure on your
own, your program will panic. Look at the Go code of the assertion.go program, which
will be presented in two parts. The first part contains the following Go code:

package main

import (
 "fmt"

Reflection and Interfaces for All Seasons Chapter 7

[337]

)

func main() {
 var myInt interface{} = 123

 k, ok := myInt.(int)
 if ok {
 fmt.Println("Success:", k)
 }

 v, ok := myInt.(float64)
 if ok {
 fmt.Println(v)
 } else {
 fmt.Println("Failed without panicking!")
 }

First, you declare the myInt variable that has a dynamic type int and value 123. Then, you
use a type assertion twice to testing the interface of the myInt variable – once for int and
once for float64.

As the myInt variable does not contain a float64 value, the myInt.(float64) type
assertion will fail unless handled properly. Fortunately, in this case, the correct use of the
ok variable will save your program from panicking.

The second part comes with the next Go code:

 i := myInt.(int)
 fmt.Println("No checking:", i)

 j := myInt.(bool)
 fmt.Println(j)
}

There are two type assertions taking place here. The first type assertion is successful, so
there will be no problem with that. But let me talk a little bit more about this particular type
assertion. The type of variable i will be int and its value will be 123, which is the value
stored in myInt. So, as int satisfies the myInt interface, which in this case happens because
the myInt interface requires no functions to be implemented, the value of myInt.(int) is
an int value.

Reflection and Interfaces for All Seasons Chapter 7

[338]

However, the second type assertion, which is myInt.(bool), will trigger a panic because
the underlying value of myInt is not Boolean (bool).

Therefore, executing assertion.go will generate the following output:

$ go run assertion.go
Success: 123
Failed without panicking!
No cheking: 123
panic: interface conversion: interface {} is int, not bool
goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/mGo2nd/Mastering-Go-Second-
Edition/ch07/assertion.go:25 +0x1c1
exit status 2

Go states pretty clearly the reason for panicking: interface {} is int, not bool.

Generally speaking, when using interfaces, expect to use type assertions as well. You will
see more type assertions in the useInterface.go program coming up.

Writing your own interfaces
In this section, you will learn how to develop your own interfaces, which is a relatively easy
process as long as you know what you want to develop.

The technique is going to be illustrated using the Go code of myInterface.go, which will
be presented shortly. The interface that is going to be created will help you to work with
geometric shapes of the plane.

The Go code of myInterface.go is next:

package myInterface

type Shape interface {
 Area() float64
 Perimeter() float64
}

Reflection and Interfaces for All Seasons Chapter 7

[339]

The definition of the shape interface is truly straightforward as it requires that you
implement just two functions, named Area() and Perimeter(), that both return a
float64 value. The first function will be used to calculate the area of a shape in the plane
and the second one to calculate the perimeter of a shape in the plane.

After that, you will need to install the myInterface.go package and make it available to
the current user. As you already know, the installation process involves the execution of the
following UNIX commands:

$ mkdir ~/go/src/myInterface
$ cp myInterface.go ~/go/src/myInterface
$ go install myInterface

Using a Go interface
This subsection will teach you how to use the interface defined in myInterface.go in a Go
program named useInterface.go, which will be presented in five parts.

The first part of useInterface.go comes with the next Go code:

package main

import (
 "fmt"
 "math"
 "myInterface"
)

type square struct {
 X float64
}

type circle struct {
 R float64
}

As the desired interface is defined in its own package, it should come as no surprise that
you are importing the myInterface package.

Reflection and Interfaces for All Seasons Chapter 7

[340]

The second code portion from useInterface.go contains the following code:

func (s square) Area() float64 {
 return s.X * s.X
}

func (s square) Perimeter() float64 {
 return 4 * s.X
}

In this part, you implement the shape interface for the square type.

The third part contains the next Go code:

func (s circle) Area() float64 {
 return s.R * s.R * math.Pi
}

func (s circle) Perimeter() float64 {
 return 2 * s.R * math.Pi
}

In this part, you implement the shape interface for the circle type.

The fourth part of useInterface.go comes with the following Go code:

func Calculate(x myInterface.Shape) {
 _, ok := x.(circle)
 if ok {
 fmt.Println("Is a circle!")
 }

 v, ok := x.(square)
 if ok {
 fmt.Println("Is a square:", v)
 }

 fmt.Println(x.Area())
 fmt.Println(x.Perimeter())
}

Reflection and Interfaces for All Seasons Chapter 7

[341]

So, in the preceding code, you implement one function that requires a single shape
parameter (myInterface.Shape). The magic here should be more obvious once you
understand that it requires any shape parameter, which is any parameter whose type
implements the shape interface.

The code at the beginning of the function shows how you can differentiate between the
various data types that implement the desired interface. In the second block, you can see
how you can find out the values stored in a square parameter – you can use this technique
for any type that implements the myInterface.Shape interface.

The last code segment includes the next code:

func main() {
 x := square{X: 10}
 fmt.Println("Perimeter:", x.Perimeter())
 Calculate(x)
 y := circle{R: 5}
 Calculate(y)
}

In this part, you can see how you can use both circle and square variables as parameters
to the Calculate() function you implemented earlier.

If you execute useInterface.go, you will get the next output:

$ go run useInterface.go
Perimeter: 40
Is a square: {10}
100
40
Is a circle!
78.53981633974483
31.41592653589793

Using switch with interface and data types
In this subsection, you will learn how to use the switch statement to differentiate between
different data types using the Go code of switch.go, which will be presented in four parts.
The Go code of switch.go is partially based on useInterface.go, but it will add another
type named rectangle and will not need to implement the methods of any interface.

Reflection and Interfaces for All Seasons Chapter 7

[342]

The first part of the program is next:

package main

import (
 "fmt"
)

As the code in switch.go will not work with the interface defined in myInterface.go,
there is no need to import the myInterface package.

The second part is where you define the three new data types that will be used in the
program:

type square struct {
 X float64
}

type circle struct {
 R float64
}

type rectangle struct {
 X float64
 Y float64
}

All three types are pretty simple.

The third code segment from switch.go comes with the following Go code:

func tellInterface(x interface{}) {
 switch v := x.(type) {
 case square:
 fmt.Println("This is a square!")
 case circle:
 fmt.Printf("%v is a circle!\n", v)
 case rectangle:
 fmt.Println("This is a rectangle!")
 default:
 fmt.Printf("Unknown type %T!\n", v)
 }
}

Reflection and Interfaces for All Seasons Chapter 7

[343]

Here you can see the implementation of a function named tellInterface() with a single
parameter named x and type interface{}.

This trick will help you to differentiate between the different data types of the x parameter.
All the magic is performed with the use of the x.(type) statement that returns the type of
the x element. The %v verb used in fmt.Printf() allows you to acquire the value of the
type.

The last part of switch.go contains the implementation of the main() function:

func main() {
 x := circle{R: 10}
 tellInterface(x)
 y := rectangle{X: 4, Y: 1}
 tellInterface(y)
 z := square{X: 4}
 tellInterface(z)
 tellInterface(10)
}

Executing switch.go will generate the next kind of output:

$ go run switch.go
{10} is a circle!
This is a rectangle!
This is a square!
Unknown type int!

Reflection
Reflection is an advanced Go feature that allows you to dynamically learn the type of an
arbitrary object, as well as information about its structure. Go offers the reflect package
for working with reflection. What you should remember is that you will most likely not
need to use reflection in every Go program. So, the first two questions are: why is reflection
necessary and when should you use it?

Reflection is necessary for the implementation of packages such as fmt, text/template,
and html/template. In the fmt package, reflection saves you from having to explicitly
deal with every data type that exists. However, even if you had the patience to write code
to work with every data type that you know of, you would still not be able to work with all
possible types! In this case, reflection makes it possible for the methods of the fmt package
to find the structure and to work with new types.

Reflection and Interfaces for All Seasons Chapter 7

[344]

Therefore, you might need to use reflection when you want to be as generic as possible or
when you want to make sure that you will be able to deal with data types that do not exist
at the time of writing your code but might exist in the future. Additionally, reflection is
handy when working with values of types that do not implement a common interface.

As you can see, reflection helps you to work with unknown types and
unknown values of types. However, that flexibility comes at a cost.

The stars of the reflect package are two types named reflect.Value and
reflect.Type. The former type is used for storing values of any type, whereas the latter
type is used for representing Go types.

A simple reflection example
This section will present you with a relatively simple reflection example in order to help
you to feel comfortable with this advanced Go feature.

The name of the Go source file is reflection.go and it will be presented to you in four
parts. The purpose of reflection.go is to examine an "unknown" structure variable and
find out more about it at runtime. In order to be more interesting, the program will define
two new struct types. Based on these two types, it will also define two new variables;
however, it will only examine one of them.

If the program has no command-line arguments, it will examine the first one, otherwise it
will explore the second one – practically, this means that the program will not know in
advance (at runtime) the kind of struct variable it will have to process.

The first part of reflection.go contains the next Go code:

package main

import (
 "fmt"
 "os"
 "reflect"
)

type a struct {
 X int
 Y float64
 Z string

Reflection and Interfaces for All Seasons Chapter 7

[345]

}

type b struct {
 F int
 G int
 H string
 I float64
}

In this part, you can see the definition of the struct data types that will be used in the
program.

The second code segment from reflection.go is the following:

func main() {
 x := 100
 xRefl := reflect.ValueOf(&x).Elem()
 xType := xRefl.Type()
 fmt.Printf("The type of x is %s.\n", xType)

The preceding Go code presents a small and naive reflection example. First you declare a
variable named x and then you call the reflect.ValueOf(&x).Elem() function. Then
you call xRefl.Type() in order to get the type of the variable, which is stored in xType.
These three lines of code illustrate how you can get the data type of a variable using
reflection. However, if all you care about is the data type of a variable, you can just call
reflect.TypeOf(x) instead.

The third code portion from reflection.go contains the next Go code:

 A := a{100, 200.12, "Struct a"}
 B := b{1, 2, "Struct b", -1.2}
 var r reflect.Value

 arguments := os.Args
 if len(arguments) == 1 {
 r = reflect.ValueOf(&A).Elem()
 } else {
 r = reflect.ValueOf(&B).Elem()
 }

In this part, you declare two variables named A and B. The type of the A variable is a and
the type of the B variable is b. The type of the r variable should be reflect.Value because
this is what the reflect.ValueOf() function returns. The Elem() method returns the
value contained in the reflection interface (reflect.Value).

Reflection and Interfaces for All Seasons Chapter 7

[346]

The last part of reflection.go is next:

 iType := r.Type()
 fmt.Printf("i Type: %s\n", iType)
 fmt.Printf("The %d fields of %s are:\n", r.NumField(), iType)

 for i := 0; i < r.NumField(); i++ {
 fmt.Printf("Field name: %s ", iType.Field(i).Name)
 fmt.Printf("with type: %s ", r.Field(i).Type())
 fmt.Printf("and value %v\n", r.Field(i).Interface())
 }
}

In this part of the program, you use the appropriate functions of the reflect package in
order to obtain the desired information. The NumField() method returns the number of
fields in a reflect.Value structure, whereas the Field() function returns the field of the
structure that is specified by its parameter. The Interface() function returns the value of
a field of the reflect.Value structure as an interface.

Executing reflection.go twice will generate the following output:

$ go run reflection.go 1
The type of x is int.
i Type: main.b
The 4 fields of main.b are:
Field name: F with type: int and value 1
Field name: G with type: int and value 2
Field name: H with type: string and value Struct b
Field name: I with type: float64 and value -1.2
$ go run reflection.go
The type of x is int.
i Type: main.a
The 3 fields of main.a are:
Field name: X with type: int and value 100
Field name: Y with type: float64 and value 200.12
Field name: Z with type: string and value Struct a

It is important to note that Go uses its internal representation to print the data types of
variables A and B, which are main.a and main.b, respectively. However, this is not the
case with variable x, which is an int.

A more advanced reflection example
In this section, we are going to see more advanced uses of reflection illustrated in relatively
small code blocks using the Go code of advRefl.go.

Reflection and Interfaces for All Seasons Chapter 7

[347]

The advRefl.go program will be presented in five parts – its first part is next:

package main

import (
 "fmt"
 "os"
 "reflect"
)

type t1 int
type t2 int

Note that although both t1 and t2 types are based on int, and therefore are essentially the
same type as int, Go treats them as totally different types. Their internal representation
after Go parses the code of the program will be main.t1 and main.t2, respectively.

The second code portion from advRefl.go is the following:

type a struct {
 X int
 Y float64
 Text string
}

func (a1 a) compareStruct(a2 a) bool {
 r1 := reflect.ValueOf(&a1).Elem()
 r2 := reflect.ValueOf(&a2).Elem()

 for i := 0; i < r1.NumField(); i++ {
 if r1.Field(i).Interface() != r2.Field(i).Interface() {
 return false
 }
 }
 return true
}

In this code, you define a Go structure type named a and implement a Go function named
compareStruct(). The purpose of this function is to find out whether two variables of the
a type are exactly the same or not. As you can see, compareStruct() uses Go code from
reflection.go to perform its task.

The third code segment of advRefl.go comes with the following Go code:

func printMethods(i interface{}) {
 r := reflect.ValueOf(i)
 t := r.Type()

Reflection and Interfaces for All Seasons Chapter 7

[348]

 fmt.Printf("Type to examine: %s\n", t)

 for j := 0; j < r.NumMethod(); j++ {
 m := r.Method(j).Type()
 fmt.Println(t.Method(j).Name, "-->", m)
 }
}

The printMethods() function prints the methods of a variable. The variable type that will
be used in advRefl.go to illustrate printMethods() will be os.File.

The fourth code segment from advRefl.go contains the following Go code:

func main() {
 x1 := t1(100)
 x2 := t2(100)
 fmt.Printf("The type of x1 is %s\n", reflect.TypeOf(x1))
 fmt.Printf("The type of x2 is %s\n", reflect.TypeOf(x2))

 var p struct{}
 r := reflect.New(reflect.ValueOf(&p).Type()).Elem()
 fmt.Printf("The type of r is %s\n", reflect.TypeOf(r))

The last code portion of advRefl.go is as follows:

 a1 := a{1, 2.1, "A1"}
 a2 := a{1, -2, "A2"}

 if a1.compareStruct(a1) {
 fmt.Println("Equal!")
 }

 if !a1.compareStruct(a2) {
 fmt.Println("Not Equal!")
 }

 var f *os.File
 printMethods(f)
}

As you will see later, the a1.compareStruct(a1) call returns true because we are
comparing a1 with itself, whereas the a1.compareStruct(a2) call will return false
because the a1 and a2 variables have different values.

Executing advRefl.go will create the following output:

$ go run advRefl.go
The type of x1 is main.t1

Reflection and Interfaces for All Seasons Chapter 7

[349]

The type of x2 is main.t2
The type of r is reflect.Value
Equal!
Not Equal!
Type to examine: *os.File
Chdir --> func() error
Chmod --> func(os.FileMode) error
Chown --> func(int, int) error
Close --> func() error
Fd --> func() uintptr
Name --> func() string
Read --> func([]uint8) (int, error)
ReadAt --> func([]uint8, int64) (int, error)
Readdir --> func(int) ([]os.FileInfo, error)
Readdirnames --> func(int) ([]string, error)
Seek --> func(int64, int) (int64, error)
Stat --> func() (os.FileInfo, error)
Sync --> func() error
Truncate --> func(int64) error
Write --> func([]uint8) (int, error)
WriteAt --> func([]uint8, int64) (int, error)
WriteString --> func(string) (int, error)

You can see that the type of the r variable, which is returned by reflect.New(), will be
reflect.Value. Additionally, the output of the printMethods() method tells us that the
*os.File type supports a plethora of methods, such as Chdir() and Chmod().

The three disadvantages of reflection
Without a doubt, reflection is a powerful Go feature. However, as with all tools, reflection
should be used rationally for three main reasons. The first reason is that extensive use of
reflection will make your programs hard to read and maintain. A potential solution to this
problem is good documentation, but developers are famous for not having the time to write
the required documentation.

The second reason is that the Go code that uses reflection will make your programs slower.
Generally speaking, Go code that is made to work with a particular data type will always
be faster than Go code that uses reflection to dynamically work with any Go data type.
Additionally, such dynamic code will make it difficult for tools to refactor or analyze your
code.

The last reason is that reflection errors cannot be caught at build time and are reported at
runtime as panics, which means that reflection errors can potentially crash your programs.

Reflection and Interfaces for All Seasons Chapter 7

[350]

This can happen months or even years after the development of a Go program! One
solution to this problem is extensive testing before a dangerous function call. However, this
will add even more Go code to your programs, which will make them even slower.

The reflectwalk library
The reflectwalk library allows you to walk complex values in Go using reflection in a
way that is similar to the way you walk a filesystem. The following example, which is going
to walk a structure, is called walkRef.go and it is going to be presented in five parts.

The first part of walkRef.go is as follows:

package main

import (
 "fmt"
 "github.com/mitchellh/reflectwalk"
 "reflect"
)

type Values struct {
 Extra map[string]string
}

As reflectwalk is not a standard Go package, you will need to call it using its full
address.

The second part of walkRef.go is as follows:

type WalkMap struct {
 MapVal reflect.Value
 Keys map[string]bool
 Values map[string]bool
}

func (t *WalkMap) Map(m reflect.Value) error {
 t.MapVal = m
 return nil
}

The Map() function is required by an interface that is defined in reflectwalk and used for
searching maps.

Reflection and Interfaces for All Seasons Chapter 7

[351]

The third part of walkRef.go is as follows:

func (t *WalkMap) MapElem(m, k, v reflect.Value) error {
 if t.Keys == nil {
 t.Keys = make(map[string]bool)
 t.Values = make(map[string]bool)
 }

 t.Keys[k.Interface().(string)] = true
 t.Values[v.Interface().(string)] = true
 return nil
}

The fourth part of walkRef.go is as follows:

func main() {
 w := new(WalkMap)

 type S struct {
 Map map[string]string
 }

 data := &S{
 Map: map[string]string{
 "V1": "v1v",
 "V2": "v2v",
 "V3": "v3v",
 "V4": "v4v",
 },
 }

 err := reflectwalk.Walk(data, w)
 if err != nil {
 fmt.Println(err)
 return
 }

Here, you define a new variable named data that holds the map and you call
reflectwalk.Walk() to learn more about it.

The last part of walkRef.go is as follows:

 r := w.MapVal
 fmt.Println("MapVal:", r)
 rType := r.Type()
 fmt.Printf("Type of r: %s\n", rType)

 for _, key := range r.MapKeys() {

Reflection and Interfaces for All Seasons Chapter 7

[352]

 fmt.Println("key:", key, "value:", r.MapIndex(key))
 }
}

The last part of walkRef.go shows how to use reflection to print the contents of the
MapVal field of the WalkMap structure. The MapKeys() method returns a slice of
reflect.Values – each value holds a single map key. The MapIndex() method allows
you to print the value of a key. The MapKeys() and MapIndex() methods only work with
the reflect.Map type and allow you to iterate over a map – the order of the returned map
elements will be random.

Before using the reflectwalk library for the first time, you will need to download it,
which can be done as follows:

$ go get github.com/mitchellh/reflectwalk

If you decide to use Go modules, the process of downloading the
reflectwalk library will be much simpler and automated.

Executing walkRef.go will generate the following output:

$ go run walkRef.go
MapVal: map[V1:v1v V2:v2v V3:v3v V4:v4v]
Type of r: map[string]string
key: V2 value: v2v
key: V3 value: v3v
key: V4 value: v4v
key: V1 value: v1v

Object-oriented programming in Go
You should know by now that Go does not use inheritance; instead, it supports
composition. Go interfaces provide a kind of polymorphism. So, although Go is not an
object-oriented programming language, it has some features that allow us to mimic object-
oriented programming.

If you really want to develop applications using the object-oriented
methodology, then choosing Go might not be your best option. As I am
not really into Java, I would suggest looking at C++ or Python instead.

Reflection and Interfaces for All Seasons Chapter 7

[353]

First, let me explain to you the two techniques that will be used in the Go program of this
section. The first technique uses methods in order to associate a function with a type, which
means that in some ways, the function and the type construct an object. In the second
technique, you embed a type into a new structure type in order to create a kind of
hierarchy.

There is also a third technique where you use a Go interface to make two or more elements
objects of the same class. This technique is not going to be illustrated in this section as it was
shown earlier in this chapter.

The key point here is that a Go interface allows you to define a common behavior between
different elements such that all these different elements share the characteristics of an
object. This might permit you to say that these different elements are objects of the same
class; however, objects and classes of an actual object-oriented programming language can
do many more things.

The first two techniques will be illustrated in ooo.go, which will be presented in four parts.
The first code segment from ooo.go contains the next Go code:

package main

import (
 "fmt"
)

type a struct {
 XX int
 YY int
}

type b struct {
 AA string
 XX int
}

The second part of the program is the following:

type c struct {
 A a
 B b
}

So, composition allows you to create a structure in your Go elements using multiple
struct types. In this case, data type C groups an a variable and a b variable.

Reflection and Interfaces for All Seasons Chapter 7

[354]

The third portion of ooo.go comes with the next Go code:

func (A a) A() {
 fmt.Println("Function A() for A")
}

func (B b) A() {
 fmt.Println("Function A() for B")
}

The two methods defined here can have the same name (A()) because they have different
function headers – the first one works with a variables, whereas the second one works with
b variables. This technique allows you to share the same function name between multiple
types.

The last part of ooo.go is next:

func main() {
 var i c
 i.A.A()
 i.B.A()
}

All the Go code in ooo.go is pretty simplistic compared to the code of an object-oriented
programming language that would implement abstract classes and inheritance. However, it
is more than adequate for generating types and elements with a structure in them, as well
as for having different data types with the same method names.

Executing ooo.go will generate the following output:

$ go run ooo.go
Function A() for A
Function A() for B

Nevertheless, as the following code illustrates, composition is not inheritance and the
first type knows nothing about the changes made to the shared() function by the
second type:

package main

import (
 "fmt"
)

type first struct{}

Reflection and Interfaces for All Seasons Chapter 7

[355]

func (a first) F() {
 a.shared()
}

func (a first) shared() {
 fmt.Println("This is shared() from first!")
}

type second struct {
 first
}

func (a second) shared() {
 fmt.Println("This is shared() from second!")
}

func main() {
 first{}.F()
 second{}.shared()
 i := second{}
 j := i.first
 j.F()
}

Please note that the second type embeds the first type and that the two types share a
function named shared().

Saving the former Go code as goCoIn.go and executing it will generate the following
output:

$ go run goCoIn.go
This is shared() from first!
This is shared() from second!
This is shared() from first!

Although the calls to first{}.F() and second{}.shared() generate the expected
results, the call to j.F() still calls first.shared() instead of the second.shared()
function despite the fact that the second type changes the implementation of the shared()
function. This is called method overriding in object-oriented terminology.

Note that the j.F() call can be written as (i.first).F() or as (second{}.first).F()
without the need to define too many variables. Breaking it into three lines of code makes it
a little easier to understand.

Reflection and Interfaces for All Seasons Chapter 7

[356]

An introduction to git and GitHub
GitHub is a website and service for storing and building software. You can work on GitHub
using its graphical user interface or using command-line utilities. On the other hand,
git(1) is a command-line utility that can do many things, including working with GitHub
repositories.

An alternative to GitHub is GitLab. Most, if not all, of the presented
git(1) commands and options will work for communicating with GitLab
without any modifications.

This section will offer you a quick introduction to git(1) and its most common and
frequently used commands.

Using git
Note that git(1) has a huge number of commands and options that you do not need to
use on a daily basis. In this subsection, I am going to present you with the most useful and
popular git(1) commands in my experience and based on the way I work.

Please note that in order to get an existing GitHub repository onto your local computer, you
will need to use the git clone command followed by the URL of the repository:

$ git clone git@github.com:mactsouk/go-kafka.git
Cloning into 'go-kafka'...
remote: Enumerating objects: 13, done.
remote: Counting objects: 100% (13/13), done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 13 (delta 4), reused 10 (delta 4), pack-reused 0
Receiving objects: 100% (13/13), done.
Resolving deltas: 100% (4/4), done.

The git status command
The git status command shows the status of the working tree. If everything is in sync,
git status will return an output similar to the following:

$ git status
On branch master
Your branch is up to date with 'origin/master'.
nothing to commit, working tree clean

Reflection and Interfaces for All Seasons Chapter 7

[357]

If there are changes, the output of git status will look similar to the following:

On branch master
Your branch is up to date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)
 modified: main.go
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 newFile.go
no changes added to commit (use "git add" and/or "git commit -a")

The git pull command
The git pull command is used to get updates from the remote repository. This is
especially useful when multiple people are working on the same repository or if you are
working from multiple machines.

The git commit command
The git commit command is for recording changes to the repository. After a git commit
command, you will most likely need to issue a git push command to send the changes to
the remote repository. A very common way to execute the git commit command is the
following:

$ git commit -a -m "Commit message"

The -m option specifies that the message that will go with the commit, whereas the -a
option tells git commit to automatically include all modified files. Please note that this
will exclude new files that need to be added first using git add.

The git push command
For local changes to be transferred to the GitHub repository, you will need to execute the
git push command. The output of the git push command is similar to the following:

$ touch a_file.go
$ git add a_file.go
$ git commit -a -m "Adding a new file"
[master 782c4da] Adding a new file
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 ch07/a_file.go

Reflection and Interfaces for All Seasons Chapter 7

[358]

$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 337 bytes | 337.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To github.com:PacktPublishing/Mastering-Go-Second-Edition.git
 98f8a77..782c4da master -> master

Working with branches
A branch offers a way to manage your workflow and separate changes from the main
branch. Each repository has a default branch, which is usually called the master branch,
and potentially multiple other branches.

You can create a new branch named new_branch on your local machine and go to it as
follows:

$ git checkout -b new_branch
Switched to a new branch 'new_branch'

If you want to connect that branch with GitHub, you should execute the following
command:

$ git push --set-upstream origin new_branch
Total 0 (delta 0), reused 0 (delta 0)
remote:
remote: Create a pull request for 'new_branch' on GitHub by visiting:
remote:
https://github.com/PacktPublishing/Mastering-Go-Second-Edition/pull/new/new
_branch
remote:
To github.com:PacktPublishing/Mastering-Go-Second-Edition.git
 * [new branch] new_branch -> new_branch
Branch 'new_branch' set up to track remote branch 'new_branch' from
'origin'.

If you want to change your current branch and go back to the master branch, you can
execute the following command:

$ git checkout master
Switched to branch 'master'
Your branch is up to date with 'origin/master'.

Reflection and Interfaces for All Seasons Chapter 7

[359]

If you want to delete a local branch, new_branch in this case, you can execute the git
branch -D command:

$ git --no-pager branch -a
* master
 new_branch
 remotes/origin/HEAD -> origin/master
 remotes/origin/master
 remotes/origin/new_branch
$ git branch -D new_branch
Deleted branch new_branch (was 98f8a77).
$ git --no-pager branch -a
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/master
 remotes/origin/new_branch

Working with files
When you add or remove one or more files from a repository, git(1) should know about
it from you. You can delete a file named a_file.go as follows:

$ rm a_file.go
$ git rm a_file.go
rm 'ch07/a_file.go'

Executing git status at this point will generate the following kind of output:

$ git status
On branch master
Your branch is up to date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 deleted: a_file.go

For changes to take effect you will need to git commit first and git push afterwards:

$ git commit -a -m "Deleting a_file.go"
[master 1b06700] Deleting a_file.go
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 ch07/a_file.go
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 296 bytes | 296.00 KiB/s, done.

Reflection and Interfaces for All Seasons Chapter 7

[360]

Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To github.com:PacktPublishing/Mastering-Go-Second-Edition.git
 782c4da..1b06700 master -> master

The .gitignore file
The .gitignore file is used to list files or directories that you want to ignore when
committing to GitHub. The contents of a sample .gitignore file might look as follows:

$ cat .gitignore
public/
.DS_Store
*.swp

Please note that after being created for the first time, .gitignore should be added to the
current branch using git add.

Using git diff
The git diff command shows differences between commits and a working repository or
branch, and so on.

The following command will show the changes between your files and the files that are on
GitHub (before the last git push). These will be the changes that will be added to the
version that is on GitHub after a git push command:

$ git diff
diff --git a/content/blog/Stats.md b/content/blog/Stats.md
index 0f36b60..af64ec3 100644
--- a/content/blog/Stats.md
+++ b/content/blog/Stats.md
@@ -16,6 +16,8 @@ title: Statistical analysis of random numbers
Developing a Kafka producer in Go
+Please note that the format of the first record that is written to Kafka
+specifies the format of the subsequent records
 ### Viewing the data in Lenses

Working with tags
A tag is a way of identifying specific release versions of your code. You can think of a tag as
a branch that never changes.

Reflection and Interfaces for All Seasons Chapter 7

[361]

You can create a new lightweight tag as follows:

$ git tag c7.0

You can find information about a specific tag as follows:

$ git --no-pager show v1.0.0
commit f415872e62bd71a004b680d50fa089c139359533 (tag: v1.0.0)
Author: Mihalis Tsoukalos <mihalistsoukalos@gmail.com>
Date: Sat Mar 2 20:33:58 2019 +0200
 Initial version 1.0.0
diff --git a/go.mod b/go.mod
new file mode 100644
index 0000000..c4928c5
--- /dev/null
+++ b/go.mod
@@ -0,0 +1,3 @@
+module github.com/mactsouk/myModule
+
+go 1.12
diff --git a/myModule.go b/myModule.go
index e69de29..fa6b0fe 100644
--- a/myModule.go
+++ b/myModule.go
@@ -0,0 +1,9 @@
+package myModule
+
+import (
+ "fmt"
+)
+
+func Version() {
+ fmt.Println("Version 1.0.0")
+}

You can list all available tags using the git tag command:

$ git --no-pager tag
c7.0

You can push a tag to GitHub as follows:

$ git push origin c7.0
Total 0 (delta 0), reused 0 (delta 0)
To github.com:PacktPublishing/Mastering-Go-Second-Edition.git
 * [new tag] c7.0 -> c7.0

Reflection and Interfaces for All Seasons Chapter 7

[362]

You can delete an existing tag from localhost as follows:

$ git tag -d c7.0
Deleted tag 'c7.0' (was 1b06700)

You can delete an existing tag from remote, which is the GitHub server, as follows:

$ git push origin :refs/tags/c7.0
To github.com:PacktPublishing/Mastering-Go-Second-Edition.git
 - [deleted] c7.0

The git cherry-pick command
The git cherry-pick command is an advanced command that should be used with care
as it applies the changes introduced by some existing commits to the current branch. The
following command will apply commit 4226f2c4 to the current branch:

$ git cherry-pick 4226f2c4

The following command will apply all commits from 4226f2c4 to 0d820a87 to the current
branch without including the 4226f2c4 commit:

$ git cherry-pick 4226f2c4..0d820a87

The following command will apply all commits from 4226f2c4 to 0d820a87 to the current
branch, including the 4226f2c4 commit:

$ git cherry-pick 4226f2c4^..0d820a87

Although the presented list of git(1) commands and options is far from
complete, they will allow you to work with git(1) and GitHub, and will
come in handy when creating Go modules.

Debugging with Delve
Delve is a text-based debugger for Go programs written in Go. On macOS Mojave, you can
download Delve as follows:

$ go get -u github.com/go-delve/delve/cmd/dlv
$ ls -l ~/go/bin/dlv
-rwxr-xr-x 1 mtsouk staff 16M Mar 7 09:04 /Users/mtsouk/go/bin/dlv

Reflection and Interfaces for All Seasons Chapter 7

[363]

As Delve depends on a lot of Go modules and packages, the installation process is going to
take a while. The Delve binary is installed on ~/go/bin. Executing dlv version will
reveal information about its version:

$ ~/go/bin/dlv version
Delve Debugger
Version: 1.2.0
Build: $Id: 068e2451004e95d0b042e5257e34f0f08ce01466 $

Note that Delve also works on Linux and Microsoft Windows machines. Also note that
Delve is an external program, which means that you do not need to include any packages in
your Go programs for Delve to work.

As this section is a quick introduction to Delve, the following subsection will present a
small example to help you to get started with the Delve debugger. The presented
information shows the general ideas behind Delve and almost every other debugger.

A debugging example
If ~/go/bin is in your PATH environment variable, then you can call Delve from
everywhere as dlv. Otherwise, you will need to provide its full path. I am going to use the
full path in this subsection.

The first Delve command that you should know is debug. This command will tell Delve to
compile the main package in the current working directory and begin to debug it. If there is
no main package in the current working directory, you will get the following error
message:

$ ~/go/bin/dlv debug
go: cannot find main module; see 'go help modules'
exit status 1

So, let us go to the ./ch07/debug directory and debug a real program that is stored in
main.go. The Go code of main.go is as follows:

package main

import (
 "fmt"
 "os"
)

func function(i int) int {
 return i * i

Reflection and Interfaces for All Seasons Chapter 7

[364]

}

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Need at least one argument.")
 return
 }

 i := 5
 fmt.Println("Debugging with Delve")
 fmt.Println(i)
 fmt.Println(function(i))

 for arg, _ := range os.Args[1:] {
 fmt.Println(arg)
 }
}

In order to pass some command-line arguments to the program, you should execute Delve
as follows:

$ ~/go/bin/dlv debug -- arg1 arg2 arg3

We are going to execute Delve as follows:

$ ~/go/bin/dlv debug -- 1 2 3
Type 'help' for list of commands.
(dlv)

The prompt of Delve is (dlv), which is where you give your Delve commands. If you just
press c (for continue) at this point, your Go program will be executed as if you were
issuing the go run command from your shell:

(dlv) c
Debugging with Delve
5
25
0
1
2
Process 57252 has exited with status 0
(dlv)

If you press c or type continue again, you will get the following:

(dlv) c
Process 57252 has exited with status 0

Reflection and Interfaces for All Seasons Chapter 7

[365]

This happens because your program has ended and cannot continue at this point – you will
have to restart it in order to be able to debug it. You can restart a program by typing r or
restart, which is equal to executing Delve from the UNIX shell:

(dlv) r
Process restarted with PID 57257
(dlv)

At this point, we will have to try something different. What we are going to do is set two
breakpoints, one for the main() function and another one for function():

$ ~/go/bin/dlv debug -- 1 2 3
Type 'help' for list of commands.
(dlv)
(dlv) break main.main
Breakpoint 1 set at 0x10b501b for main.main() ./main.go:12
(dlv) break function
Breakpoint 2 set at 0x10b4fe0 for main.function() ./main.go:8
(dlv)

If you press continue at this point, the debugger will stop the program at either main() or
function(), whatever comes first. As this is an executable program, the main() function
will be first:

(dlv) c
> main.main() ./main.go:12 (hits goroutine(1):1 total:1) (PC: 0x10b501b)
 7:
 8: func function(i int) int {
 9: return i * i
 10: }
 11:
=> 12: func main() {
 13: if len(os.Args) == 1 {
 14: fmt.Println("Need at least one argument.")
 15: return
 16: }
 17:
(dlv)

The => arrow shows the line of the source code that the break happened in. Typing next
will take us to the next Go statement – we can type next as many times as we want until
we reach the end of the program:

(dlv) next
> main.main() ./main.go:13 (PC: 0x10b5032)
 8: func function(i int) int {
 9: return i * i

Reflection and Interfaces for All Seasons Chapter 7

[366]

 10: }
 11:
 12: func main() {
=> 13: if len(os.Args) == 1 {
 14: fmt.Println("Need at least one argument.")
 15: return
 16: }
 17:
 18: i := 5
 (dlv) next
> main.main() ./main.go:18 (PC: 0x10b50d0)
 13: if len(os.Args) == 1 {
 14: fmt.Println("Need at least one argument.")
 15: return
 16: }
 17:
=> 18: i := 5
 19: fmt.Println("Debugging with Delve")
 20: fmt.Println(i)
 21: fmt.Println(function(i))
 22:
 23: for arg, _ := range os.Args[1:] {
(dlv) next
> main.main() ./main.go:19 (PC: 0x10b50db)
 14: fmt.Println("Need at least one argument.")
 15: return
 16: }
 17:
 18: i := 5
=> 19: fmt.Println("Debugging with Delve")
 20: fmt.Println(i)
 21: fmt.Println(function(i))
 22:
 23: for arg, _ := range os.Args[1:] {
 24: fmt.Println(arg)
(dlv) print i
5

The last command (print i) prints the value of variable i. Typing continue will take us
to the next break point, if there is one, or to the end of the program:

(dlv) c
Debugging with Delve
5
> main.function() ./main.go:8 (hits goroutine(1):1 total:1) (PC: 0x10b4fe0)
 3: import (
 4: "fmt"
 5: "os"

Reflection and Interfaces for All Seasons Chapter 7

[367]

 6:)
 7:
=> 8: func function(i int) int {
 9: return i * i
 10: }
 11:
 12: func main() {
 13: if len(os.Args) == 1 {

In this case, the next break point is the function() function, as defined earlier.

Please note that for debugging Go tests, you should use the dlv test command and Delve
will take care of the rest.

Additional resources
You will find the next resources very handy:

Visit the documentation page of the reflect Go standard package, which can be
found at https://golang.org/pkg/reflect/. This package has many more
capabilities than the ones presented in this chapter.
GitHub: https://github.com/.
GitLab: https://gitlab.com/.
You can find out more about Delve at https://github.com/go-delve/delve.
You can find out more about the reflectwalk library by Mitchell Hashimoto at
https://github.com/mitchellh/reflectwalk. Studying its code will help you to
learn more about reflection.

Exercises
Write your own interface and use it in another Go program. Then state why your
interface is useful.
Write an interface for calculating the volume of shapes with three dimensions,
such as cubes and spheres.
Write an interface for calculating the length of line segments and the distance
between two points in the plane.
Explore reflection using your own example.
How does reflection work on Go maps?

https://golang.org/pkg/reflect/
https://github.com/
https://gitlab.com/
https://github.com/go-delve/delve
https://github.com/mitchellh/reflectwalk

Reflection and Interfaces for All Seasons Chapter 7

[368]

If you are good at mathematics, try to write an interface that implements the four
basic mathematical operations for both real numbers and complex numbers. Do
not use the complex64 and complex128 standard Go types – define your own
structure for supporting complex numbers.

Summary
In this chapter, you learned about debugging, git(1), GitHub, and interfaces, which are
like contracts, and also about type methods, type assertion, and reflection in Go. Although
reflection is a very powerful Go feature, it might slow down your Go programs because it
adds a layer of complexity at runtime. Furthermore, your Go programs could crash if you
use reflection carelessly.

You additionally learned about creating Go code that follows the principles of object-
oriented programming. If you are going to remember just one thing from this chapter, it
should be that Go is not an object-oriented programming language, but it can mimic some
of the functionality offered by object-programming languages, such as Java and C++. This
means that if you plan to develop software using the object-oriented paradigm all of the
time, it would be best to choose a programming language other than Go. Nevertheless,
object-oriented programming is not a panacea, and you might create a better, cleaner, and
more robust design if you choose a programming language such as Go!

Although there may have been more theory in this chapter than you expected, the next
chapter will reward your patience; it will address systems programming in Go. File I/O,
working with UNIX system files, handling UNIX signals, and supporting UNIX pipes will
be discussed.

The next chapter will also talk about using the flag and viper packages to support
multiple command-line arguments and options in your command-line tools, as well as the
cobra package, UNIX file permissions, and some advanced uses of the functionality
offered by the syscall standard Go package. If you are really into systems programming
with Go, my book on the subject elaborates on this (Go Systems Programming (Packt
Publishing, 2017)).

8
Telling a UNIX System What to

Do
In the previous chapter, we talked about two advanced, but somewhat theoretical, Go
topics: interfaces and reflection. The Go code that you will find in this chapter is anything
but theoretical!

The subject of this chapter is systems programming because, after all, Go is a mature
systems programming language that was born out of frustration. Its spiritual fathers were
unsatisfied with the programming language choices they had for creating systems software,
so they decided to create a new programming language.

This chapter contains some interesting and somewhat advanced topics
that are not included in Go Systems Programming (Packt Publishing, 2017).

This chapter focuses on the following topics:

UNIX processes
The flag package
The viper package
The cobra package
The use of the io.Reader and io.Writer interfaces
Handling UNIX signals in Go with the help of the os/signal package
Supporting UNIX pipes in your UNIX system utilities
Creating Go clients for Docker
Reading text files
Reading CSV files
Writing to files

Telling a UNIX System What to Do Chapter 8

[370]

The bytes package
Advanced uses of the syscall package
UNIX file permissions

About UNIX processes
Strictly speaking, a process is an execution environment that contains instructions, user
data and system data parts, and other types of resources that are obtained during runtime.
On the other hand, a program is a binary file that contains instructions and data that are
used for initializing the instruction and user data parts of a process. Each running UNIX
process is uniquely identified by an unsigned integer, which is called the process ID of the
process.

There are three categories of processes: user processes, daemon processes, and kernel
processes. User processes run in user space and usually have no special access rights.
Daemon processes are programs that can be found in the user space and run in the
background without the need for a terminal. Kernel processes are executed in kernel space
only and can fully access all kernel data structures.

The C way of creating new processes involves calling the fork() system
call. The return value of fork() allows the programmer to differentiate
between the parent and the child process. In contrast, Go does not support
a similar functionality but offers goroutines.

The flag package
Flags are specially-formatted strings that are passed into a program to control its behavior.
Dealing with flags on your own might become very difficult if you want to support
multiple flags. Thus, if you are developing UNIX system command-line utilities, you will
find the flag package very interesting and useful.

The flag package makes no assumptions about the order of command-line arguments and
options, and it prints helpful messages in case there was an error in the way the command-
line utility was executed.

The biggest advantage of the flag package is that it is part of the
standard Go library, which means that it has been extensively tested and
debugged.

Telling a UNIX System What to Do Chapter 8

[371]

I will present two Go programs that use the flag package: a simple one and a more
advanced one. The first one, named simpleFlag.go, will be offered in four parts. The
simpleFlag.go program will recognize two command-line options: the first one will be a
Boolean option and the second one will require an integer value.

The first part of simpleFlag.go contains the following Go code:

package main

import (
 "flag"
 "fmt"
)

The second code portion from simpleFlag.go is as follows:

func main() {
 minusK := flag.Bool("k", true, "k flag")
 minusO := flag.Int("O", 1, "O")
 flag.Parse()

The flag.Bool("k", true, "k flag") statement defines a Boolean command-line
option named k with the default value of true. The last parameter of the statement is the
usage string that will be displayed with the usage information of the program. Similarly,
the flag.Int() function adds support for an integer command-line option.

You always need to call flag.Parse() after defining the command-line
options that you want to support.

The third part of the simpleFlag.go program contains the following Go code:

 valueK := *minusK
 valueO := *minusO
 valueO++

In the preceding Go code, you can see how you can obtain the values of your options. The
good thing here is that the flag package automatically converts the input associated with
the flag.Int() flag to an integer value. This means that you do not have to do that on
your own. Additionally, the flag package makes sure that it was given an acceptable
integer value.

The remaining Go code from simpleFlag.go follows:

 fmt.Println("-k:", valueK)

Telling a UNIX System What to Do Chapter 8

[372]

 fmt.Println("-O:", valueO)
}

After getting the values of the desired parameters, you are now ready to use them.

Interacting with simpleFlag.go will create the following type of output:

$ go run simpleFlag.go -O 100
-k: true
-O: 101
$ go run simpleFlag.go -O=100
-k: true
-O: 101
$ go run simpleFlag.go -O=100 -k
-k: true
-O: 101
$ go run simpleFlag.go -O=100 -k false
-k: true
-O: 101
$ go run simpleFlag.go -O=100 -k=false
-k: false
-O: 101

If there is an error in the way simpleFlag.go was executed, you will get the following
type of error message from the flag package:

$ go run simpleFlag.go -O=notAnInteger
invalid value "notAnInteger" for flag -O: parse error
Usage of /var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/go-
build593534621/b001/exe/simpleFlag:
 -O int
 O (default 1)
 -k flag (default true)
exit status 2

Notice the convenient usage message that is automatically printed when there is an error in
the command-line options given to your program.

Now it is time to present a more realistic and advanced program that uses the flag
package. Its name is funWithFlag.go, and it will be presented in five parts. The
funWithFlag.go utility will recognize various kinds of options, including one that accepts
multiple values that are separated by commas. Additionally, it will illustrate how you can
access the command-line arguments that are located at the end of the executable and do not
belong to any option.

Telling a UNIX System What to Do Chapter 8

[373]

The flag.Var() function used in funWithFlag.go creates a flag of any type that satisfies
the flag.Value interface, which is defined as follows:

type Value interface {
 String() string
 Set(string) error
}

The first part of funWithFlag.go contains the following Go code:

package main

import (
 "flag"
 "fmt"
 "strings"
)

type NamesFlag struct {
 Names []string
}

The NamesFlag structure will be used in a short while for the flag.Value interface.

The second part of funWithFlag.go is as follows:

func (s *NamesFlag) GetNames() []string {
 return s.Names
}

func (s *NamesFlag) String() string {
 return fmt.Sprint(s.Names)
}

The third code portion from funWithFlag.go contains the following code:

func (s *NamesFlag) Set(v string) error {
 if len(s.Names) > 0 {
 return fmt.Errorf("Cannot use names flag more than once!")
 }

 names := strings.Split(v, ",")
 for _, item := range names {
 s.Names = append(s.Names, item)
 }
 return nil
}

Telling a UNIX System What to Do Chapter 8

[374]

First, the Set() method makes sure that the related command-line option is not already
set. After that, it gets the input and separates its arguments using the strings.Split()
function. Then, the arguments are saved in the Names field of the NamesFlag structure.

The fourth code segment from funWithFlag.go is shown in the following Go code:

func main() {
 var manyNames NamesFlag
 minusK := flag.Int("k", 0, "An int")
 minusO := flag.String("o", "Mihalis", "The name")
 flag.Var(&manyNames, "names", "Comma-separated list")

 flag.Parse()
 fmt.Println("-k:", *minusK)
 fmt.Println("-o:", *minusO)

The last part of the funWithFlag.go utility follows:

 for i, item := range manyNames.GetNames() {
 fmt.Println(i, item)
 }

 fmt.Println("Remaining command line arguments:")
 for index, val := range flag.Args() {
 fmt.Println(index, ":", val)
 }
}

The flag.Args() slice keeps the command-line arguments that are left, while the
manyNames variable holds the values from the flag.Var() command-line option.

Executing funWithFlag.go will create the following type of output:

$ go run funWithFlag.go -names=Mihalis,Jim,Athina 1 two Three
-k: 0
-o: Mihalis
0 Mihalis
1 Jim
2 Athina
Remaining command line arguments:
0 : 1
1 : two
2 : Three
$ go run funWithFlag.go -Invalid=Marietta 1 two Three
flag provided but not defined: -Invalid
Usage of funWithFlag:
 -k int

Telling a UNIX System What to Do Chapter 8

[375]

 An int
 -names value
 Comma-separated list
 -o string
 The name (default "Mihalis")
exit status 2
$ go run funWithFlag.go -names=Marietta -names=Mihalis
invalid value "Mihalis" for flag -names: Cannot use names flag more than
once!
Usage of funWithFlag:
 -k int
 An int
 -names value
 Comma-separated list
 -o string
 The name (default "Mihalis")
exit status 2

Unless you are developing a trivial command-line utility that requires no
command-line options, you will most likely need to use a Go package to
process the command-line arguments of your program.

The viper package
viper is a powerful Go package that supports a plethora of options. All viper projects
follow a pattern. First, you initialize viper and then you define the elements that interest
you. After that, you get these elements and read their values in order to use them. Notice
that the viper package can entirely replace the flag package.

The desired values can be either taken directly, as happens when you are using the flag
package of the standard Go library, or indirectly using configuration files. When using
formatted configuration files in the JSON, YAML, TOML, HCL, or Java properties format,
viper does all the parsing for you, which saves you from having to write and debug lots of
Go code. viper also allows you to extract and save values in Go structures. However, this
also requires the fields of the Go structure to match the keys of the configuration file.

The home page of viper is on GitHub (https://github.com/spf13/viper). Please note
that you are not obliged to use every capability of viper in your tools – just the features
that you want. The general rule is to use the features of viper that simplify your code. Put
simply, if your command-line utility requires too many command-line parameters and
flags, then it would be better to use a configuration file instead.

https://github.com/spf13/viper

Telling a UNIX System What to Do Chapter 8

[376]

A simple viper example
Before going into more advanced examples, I will present some sample Go code that uses
viper. The name of the program is usingViper.go and it will be presented in three parts.

The first part of useViper.go is as follows:

package main

import (
 "fmt"
 "github.com/spf13/viper"
)

The second part of useViper.go is as follows:

func main() {
 viper.BindEnv("GOMAXPROCS")
 val := viper.Get("GOMAXPROCS")
 fmt.Println("GOMAXPROCS:", val)
 viper.Set("GOMAXPROCS", 10)
 val = viper.Get("GOMAXPROCS")
 fmt.Println("GOMAXPROCS:", val)

The last part of useViper.go contains the following Go code:

 viper.BindEnv("NEW_VARIABLE")
 val = viper.Get("NEW_VARIABLE")
 if val == nil {
 fmt.Println("NEW_VARIABLE not defined.")
 return
 }
 fmt.Println(val)
}

The purpose of this program is to illustrate how you can read and modify environment
variables using viper. The flag package does not offer such functionality but the os
standard Go package does, although not as easily as the viper package.

The first time you are going to use viper, you will need to download it. If you are not
using Go modules, this can be done as follows:

$ go get -u github.com/spf13/viper

Telling a UNIX System What to Do Chapter 8

[377]

If you are using Go modules, Go will automatically download viper the first time you try
to execute a Go program that uses it.

Executing useViper.go will generate the following kind of output:

$ go run useViper.go
GOMAXPROCS: <nil>
GOMAXPROCS: 10
NEW_VARIABLE not defined.

From flag to viper
There is a chance that you have a Go program that already uses the flag package and that
you want to convert to using the viper package. Let us say that we have the following Go
code that uses the flag package:

package main

import (
 "flag"
 "fmt"
)

func main() {
 minusI := flag.Int("i", 100, "i parameter")
 flag.Parse()
 i := *minusI
 fmt.Println(i)
}

The new version of that program, which is going to be saved in flagToViper.go, is going
to use the viper package and will be presented in three parts. The first part of
flagToViper.go is as follows:

package main

import (
 "flag"
 "fmt"
 "github.com/spf13/pflag"
 "github.com/spf13/viper"
)

Telling a UNIX System What to Do Chapter 8

[378]

You will need to import the pflag package in order to work with command-line
arguments in viper.

The second part of flagToViper.go contains the following Go code:

func main() {
 flag.Int("i", 100, "i parameter")
 pflag.CommandLine.AddGoFlagSet(flag.CommandLine)
 pflag.Parse()

So, you still use flag.Int() in order to change as little code as possible, but for the
parsing, you call pflag.Parse(). However, all the magic happens with the call to
pflag.CommandLine.AddGoFlagSet(flag.CommandLine) because this call imports the
data from the flag package to the pflag package.

The last part of flagToViper.go is the following:

 viper.BindPFlags(pflag.CommandLine)
 i := viper.GetInt("i")
 fmt.Println(i)
}

The last function call that you have to make is viper.BindPFlags(). After that, you can
get the value of an integer command-line parameter using viper.GetInt(). For other
kinds of data types, you will have to call different viper functions.

At this point, you might need to download the pflag Go package for flagToViper.go to
work, which can be done as follows:

$ go get -u github.com/spf13/pflag

Executing flagToViper.go will generate the following kind of output:

$ go run flagToViper.go
100
$ go build flagToViper.go
$./flagToViper -i 0
0
$./flagToViper -i abcd
invalid argument "abcd" for "-i, --i" flag: parse error
Usage of ./flagToViper:
 -i, --i int i parameter
invalid argument "abcd" for "-i, --i" flag: parse error

If, for some reason, you give an unknown command-line parameter to flagToViper.go,
viper will complain about it:

Telling a UNIX System What to Do Chapter 8

[379]

$./flagToViper -j 200
unknown shorthand flag: 'j' in -j
Usage of ./flagToViper:
 -i, --i int i parameter (default 100)
unknown shorthand flag: 'j' in -j
exit status 2

Reading JSON configuration files
In this subsection, you will learn how to read JSON configuration files with the viper
package. The name of the utility is readJSON.go and it is going to be presented in three
parts. The first part of readJSON.go is as follows:

package main

import (
 "fmt"
 "github.com/spf13/viper"
)

The second part of readJSON.go contains the following code:

func main() {
 viper.SetConfigType("json")
 viper.SetConfigFile("./myJSONConfig.json")
 fmt.Printf("Using config: %s\n", viper.ConfigFileUsed())
 viper.ReadInConfig()

This is where the parsing of the configuration file takes place. Please note that the filename
of the JSON configuration file is hardcoded inside readJSON.go using the
viper.SetConfigFile("./myJSONConfig.json") function call.

The last part of readJSON.go is as follows:

 if viper.IsSet("item1.key1") {
 fmt.Println("item1.key1:", viper.Get("item1.key1"))
 } else {
 fmt.Println("item1.key1 not set!")
 }

 if viper.IsSet("item2.key3") {
 fmt.Println("item2.key3:", viper.Get("item2.key3"))
 } else {
 fmt.Println("item2.key3 is not set!")
 }

Telling a UNIX System What to Do Chapter 8

[380]

 if !viper.IsSet("item3.key1") {
 fmt.Println("item3.key1 is not set!")
 }
}

This is where the values of the JSON configuration file are examined by the program in
order to find out whether the desired keys exist or not.

The contents of the myJSONConfig.json file are as follows:

{
 "item1": {
 "key1": "val1",
 "key2": false,
 "key3": "val3"
 },
 "item2": {
 "key1": "val1",
 "key2": true,
 "key3": "val3"
 }
}

Executing readJSON.go will generate the following kind of output:

$ go run readJSON.go
Using config: ./myJSONConfig.json
item1.key1: val1
item2.key3: val3
item3.key1 is not set!

If myJSONConfig.json cannot be located, the program will not complain and will act as if
it has read an empty JSON configuration file:

$ mv myJSONConfig.json ..
$ go run readJSON.go
Using config: ./myJSONConfig.json
item1.key1 not set!
item2.key3 is not set!
item3.key1 is not set!

Reading YAML configuration files
YAML is another popular text-based format that is used for configuration files. In this
subsection, you will learn how to read YAML configuration files with the viper package.

Telling a UNIX System What to Do Chapter 8

[381]

However, this time, the filename of the YAML configuration file will be given as a
command-line argument to the utility. Additionally, the utility will use the
viper.AddConfigPath() function to add three search paths, which are places where
viper will automatically look for configuration files. The name of the utility, which will be
presented in four parts, is readYAML.go.

The first part of readYAML.go is as follows:

package main

import (
 "fmt"
 flag "github.com/spf13/pflag"
 "github.com/spf13/viper"
 "os"
)

In the preamble of the program, we define an alias (flag) for the pflag Go package.

The second part of readYAML.go contains the following Go code:

func main() {
 var configFile *string = flag.String("c", "myConfig", "Setting the
configuration file")
 flag.Parse()

 _, err := os.Stat(*configFile)

 if err == nil {
 fmt.Println("Using User Specified Configuration file!")
 viper.SetConfigFile(*configFile)
 } else {
 viper.SetConfigName(*configFile)
 viper.AddConfigPath("/tmp")
 viper.AddConfigPath("$HOME")
 viper.AddConfigPath(".")
 }

The code checks whether the value of the config flag (--c) exists using a call to os.Stat().
If it exists, the provided file will be used; otherwise, the default config filename (myConfig)
will be used. Notice that we are not explicitly specifying that we want to use a YAML
configuration file - the program will look for all supported file formats, provided that the
filename without the file extension is myConfig, because this is the way viper works.
Three paths will be searched for configuration files: /tmp, the home directory of the current
user, and the current working directory, in that order.

Telling a UNIX System What to Do Chapter 8

[382]

Using the /tmp directory to keep your configuration files is not recommended, mainly
because the contents of /tmp are automatically deleted after each system reboot - it is only
used here for reasons of simplicity.

The use of viper.ConfigFileUsed() makes perfect sense because there is no hardcoded
configuration file, which means that we will have to define it on our own.

The third part of readYAML.go is as follows:

 err = viper.ReadInConfig()
 if err != nil {
 fmt.Printf("%v\n", err)
 return
 }
 fmt.Printf("Using config: %s\n", viper.ConfigFileUsed())

The YAML file is read and parsed using a call to viper.ReadInConfig().

The last part of readYAML.go is as follows:

 if viper.IsSet("item1.k1") {
 fmt.Println("item1.val1:", viper.Get("item1.k1"))
 } else {
 fmt.Println("item1.k1 not set!")
 }

 if viper.IsSet("item1.k2") {
 fmt.Println("item1.val2:", viper.Get("item1.k2"))
 } else {
 fmt.Println("item1.k2 not set!")
 }

 if !viper.IsSet("item3.k1") {
 fmt.Println("item3.k1 is not set!")
 }
}

This is where the contents of the parsed configuration file are examined by the program in
order to find out whether the desired keys exist or not.

The contents of myConfig.yaml are as follows:

 item1:
 k1:
 - true
 k2:
 - myValue

Telling a UNIX System What to Do Chapter 8

[383]

Executing readYAML.go will generate the following kind of output:

$ go build readYAML.go
$./readYAML
Using config: /Users/mtsouk/Desktop/mGo2nd/Mastering-Go-Second-
Edition/ch08/viper/myConfig.yaml
item1.val1: [true]
item1.val2: [myValue]
item3.k1 is not set!
$ mv myConfig.yaml /tmp
$./readYAML
Using config: /tmp/myConfig.yaml
item1.val1: [true]
item1.val2: [myValue]
item3.k1 is not set!

The cobra package
cobra is a very handy and popular Go package that allows you to develop command-line
utilities with commands, subcommands, and aliases. If you have ever used hugo, docker,
or kubectl you will understand immediately what Cobra does, as all these tools were
developed using cobra.

As you will see in this section, commands in cobra can have one or more aliases, which is
very handy when you want to please both amateur and experienced users. cobra also
supports Persistent Flags and Local Flags, which are flags that are available to all
commands and flags that are available to a given command only, respectively. Also, by
default, cobra uses viper for parsing its command-line arguments.

All cobra projects follow the same development pattern. You use the cobra tool, then you
create commands, and then you make the desired changes to the generated Go source code
files in order to implement the desired functionality. Depending on the complexity of your
utility, you might need to make lots of changes to the created files. Although cobra saves
you lots of time, you will still have to write the code that implements the desired
functionality.

If you want to install your utility in binary version, you can always execute go install
from anywhere in the cobra project directory. Unless otherwise specified, the binary
executable will be placed in ~/go/bin.

The home page of cobra is on GitHub (https://github.com/spf13/cobra).

https://github.com/spf13/cobra

Telling a UNIX System What to Do Chapter 8

[384]

A simple cobra example
In this section, we are going to implement a simple command-line utility using cobra and
the ~/go/bin/cobra tool that comes with the package. If you execute ~/go/bin/cobra
without any command-line arguments, you will get the following output:

$ ~/go/bin/cobra
Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.
Usage:
 cobra [command]
Available Commands:
 add Add a command to a Cobra Application
 help Help about any command
 init Initialize a Cobra Application
Flags:
 -a, --author string author name for copyright attribution (default
"YOUR NAME")
 --config string config file (default is $HOME/.cobra.yaml)
 -h, --help help for cobra
 -l, --license string name of license for the project
 --viper use Viper for configuration (default true)
Use "cobra [command] --help" for more information about a command.

With that information in mind, we are going to create a new cobra project, as follows:

$ ~/go/bin/cobra init cli
Your Cobra application is ready at
/Users/mtsouk/go/src/cli
Give it a try by going there and running `go run main.go`.
Add commands to it by running `cobra add [cmdname]`.
$ cd ~/go/src/cli
$ ls -l
total 32
-rw-r--r-- 1 mtsouk staff 11358 Mar 13 09:51 LICENSE
drwxr-xr-x 3 mtsouk staff 96 Mar 13 09:51 cmd
-rw-r--r-- 1 mtsouk staff 669 Mar 13 09:51 main.go
$ ~/go/bin/cobra add cmdOne
cmdOne created at /Users/mtsouk/go/src/cli/cmd/cmdOne.go
$ ~/go/bin/cobra add cmdTwo
cmdTwo created at /Users/mtsouk/go/src/cli/cmd/cmdTwo.go

The cobra init command creates a new cobra project inside ~/go/src, named after its
last parameter (cli). The cobra add command adds a new command to the command-
line tool and creates all necessary files and Go functions to support that command.

Telling a UNIX System What to Do Chapter 8

[385]

Therefore, after each execution of the cobra add command, Cobra does most of the dirty
work for us. However, you will still need to implement the functionality of the commands
you just added - in this case, the commands are called cmdOne and cmdTwo. The cmdOne
command will accept a local command-line flag named number - you will also need to
write some extra code for this feature to work.

At this point, if you execute go run main.go, you will get the following output:

A longer description that spans multiple lines and likely contains
examples and usage of using your application. For example:
Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.
Usage:
 cli [command]
Available Commands:
 cmdOne A brief description of your command
 cmdTwo A brief description of your command
 help Help about any command
Flags:
 --config string config file (default is $HOME/.cli.yaml)
 -h, --help help for cli
 -t, --toggle Help message for toggle
Use "cli [command] --help" for more information about a command.

The Go code for the cmdOne command can be found in ./cmd/cmdOne.go and for the
cmdTwo command in ./cmd/cmdTwo.go.

The final version of ./cmd/cmdOne.go is as follows:

package cmd

import (
 "fmt"
 "github.com/spf13/cobra"
)

// cmdOneCmd represents the cmdOne command
var cmdOneCmd = &cobra.Command{
 Use: "cmdOne",
 Short: "A brief description of your command",
 Long: `A longer description that spans multiple lines and likely
contains examples
and usage of using your command. For example:

Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files

Telling a UNIX System What to Do Chapter 8

[386]

to quickly create a Cobra application.`,
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("cmdOne called!")
 number, _ := cmd.Flags().GetInt("number")
 fmt.Println("Going to use number", number)
 fmt.Printf("Square: %d\n", number*number)
 },
}

func init() {
 rootCmd.AddCommand(cmdOneCmd)
 cmdOneCmd.Flags().Int("number", 0, "A help for number")
}

The previous Go code comes without the comments that are automatically generated by
cobra. The following line of code in the init() function is what defines the new local
command-line flag:

cmdOneCmd.Flags().Int("number", 0, "A help for number")

That flag, which is called number, is used in the cobra.Command block as follows:

number, _ := cmd.Flags().GetInt("number")

After that, you can use the number variable any way you want.

The Go code of the final version of ./cmd/cmdTwo.go, which includes comments and
license information, is as follows:

// Copyright © 2019 NAME HERE <EMAIL ADDRESS>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package cmd

import (
 "fmt"
 "github.com/spf13/cobra"

Telling a UNIX System What to Do Chapter 8

[387]

)

// cmdTwoCmd represents the cmdTwo command
var cmdTwoCmd = &cobra.Command{
 Use: "cmdTwo",
 Short: "A brief description of your command",
 Long: `A longer description that spans multiple lines and likely
contains examples
and usage of using your command. For example:

Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.`,
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("cmdTwo called!")
 },
}

func init() {
 rootCmd.AddCommand(cmdTwoCmd)

 // Here you will define your flags and configuration settings.

 // Cobra supports Persistent Flags which will work for this command
 // and all subcommands, e.g.:
 // cmdTwoCmd.PersistentFlags().String("foo", "", "A help for foo")

 // Cobra supports local flags which will only run when this command
 // is called directly, e.g.:
 // cmdTwoCmd.Flags().BoolP("toggle", "t", false, "Help message for
toggle")
}

This is the default implementation of the cmdTwo command generated by cobra.

Executing the cli tool will generate the following kind of output:

$ go run main.go cmdOne
cmdOne called!
Going to use number 0
Square: 0
$ go run main.go cmdOne --number -20
cmdOne called!
Going to use number -20
Square: 400
$ go run main.go cmdTwo
cmdTwo called!

Telling a UNIX System What to Do Chapter 8

[388]

If you give the cli the tool wrong input, it will generate the following kind of error
messages:

$ go run main.go cmdThree
Error: unknown command "cmdThree" for "cli"
Run 'cli --help' for usage.
unknown command "cmdThree" for "cli"
exit status 1
$ go run main.go cmdOne --n -20
Error: unknown flag: --n
Usage:
 cli cmdOne [flags]
Flags:
 -h, --help help for cmdOne
 --number int A help for number
Global Flags:
 --config string config file (default is $HOME/.cli.yaml)
unknown flag: --n
exit status 1

The help screen for the cmdOne command, which is automatically generated, is as follows:

$ go run main.go cmdOne --help
A longer description that spans multiple lines and likely contains examples
and usage of using your command. For example:
Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.
Usage:
 cli cmdOne [flags]
Flags:
 -h, --help help for cmdOne
 --number int A help for number
Global Flags:
 --config string config file (default is $HOME/.cli.yaml)

The directory structure and the files of the final version of the utility can be displayed with
the help of the tree(1) command:

$ tree
.
├── LICENSE
├── cmd
│ ├── cmdOne.go
│ ├── cmdTwo.go
│ └── root.go
└── main.go
1 directory, 5 files

Telling a UNIX System What to Do Chapter 8

[389]

Creating command aliases
In this section, you will learn how to create aliases for existing commands with cobra.

As before, you will first need to create a new cobra project, which in this case is going to be
called aliases, along with the desired commands. This can be done as follows:

$ ~/go/bin/cobra init aliases
$ cd ~/go/src/aliases
$ ~/go/bin/cobra add initialization
initialization created at
/Users/mtsouk/go/src/aliases/cmd/initialization.go
$ ~/go/bin/cobra add preferences
preferences created at /Users/mtsouk/go/src/aliases/cmd/preferences.go

So far, you have a command-line utility that supports two commands, named
initialization and preferences.

Each alias of an existing cobra command needs to be explicitly specified in the Go code.
For the initialization command, you will need the following line of code in the
appropriate place in ./cmd/initialization.go:

 Aliases: []string{"initialize", "init"},

The previous statement creates two aliases for the initialization command, named
initialize and init. The contents of the final version of ./cmd/initialization.go,
without any comments, will be as follows:

package cmd

import (
 "fmt"
 "github.com/spf13/cobra"
)

var initializationCmd = &cobra.Command{
 Use: "initialization",
 Aliases: []string{"initialize", "init"},
 Short: "A brief description of your command",
 Long: `A longer description of your command`,
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("initialization called")
 },
}

func init() {

Telling a UNIX System What to Do Chapter 8

[390]

 rootCmd.AddCommand(initializationCmd)
}

Similarly, for the preferences command, you will need to include the following line of
Go code in the appropriate place in ./cmd/preferences.go:

Aliases: []string{"prefer", "pref", "prf"},

The aforementioned statement creates three aliases for the preferences command, named
prefer, pref, and prf.

The contents of the final version of ./cmd/preferences.go, without any comments, are
as follows:

package cmd

import (
 "fmt"
 "github.com/spf13/cobra"
)

var preferencesCmd = &cobra.Command{
 Use: "preferences",
 Aliases: []string{"prefer", "pref", "prf"},
 Short: "A brief description of your command",
 Long: `A longer description of your command`,
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("preferences called")
 },
}

func init() {
 rootCmd.AddCommand(preferencesCmd)
}

Executing the aliases command-line utility will generate the following kind of output:

$ go run main.go prefer
preferences called
$ go run main.go prf
preferences called
$ go run main.go init
initialization called

Telling a UNIX System What to Do Chapter 8

[391]

If you give erroneous commands to aliases, then it will generate the following kind of
error messages:

$ go run main.go inits
Error: unknown command "inits" for "aliases"
Run 'aliases --help' for usage.
unknown command "inits" for "aliases"
exit status 1
$ go run main.go prefeR
Error: unknown command "prefeR" for "aliases"
Did you mean this?
 preferences
Run 'aliases --help' for usage.
unknown command "prefeR" for "aliases"
Did you mean this?
 preferences
exit status 1

The tree(1) command, which does not come with most UNIX systems and must be
installed separately, can help us to get an idea of the directory structure and the files of the
generated cobra utility:

$ tree
.
├── LICENSE
├── cmd
│ ├── initialization.go
│ ├── preferences.go
│ └── root.go
└── main.go
1 directory, 5 files

Both viper and cobra have more features and capabilities than the ones
presented here.

The io.Reader and io.Writer Interfaces
As stated in the previous chapter, compliance with the io.Reader interface requires the
implementation of the Read() method, whereas if you want to satisfy the io.Writer
interface guidelines, you will need to implement the Write() method. Both these interfaces
are very popular in Go and we will put them to use in a little while.

Telling a UNIX System What to Do Chapter 8

[392]

Buffered and unbuffered file input and output
Buffered file input and output happens when there is a buffer for temporarily storing data
before reading data or writing data. Thus, instead of reading a file byte by byte, you read
many bytes at once. You put the data in a buffer and wait for someone to read it in the
desired way. Unbuffered file input and output happens when there is no buffer to
temporarily store data before actually reading or writing it.

The next question that you might ask is how to decide when to use buffered and when to
use unbuffered file input and output. When dealing with critical data, unbuffered file input
and output is generally a better choice because buffered reads might result in out-of-date
data and buffered writes might result in data loss when the power of your computer is
interrupted. However, most of the time, there is no definitive answer to that question. This
means that you can use whatever makes your tasks easier to implement.

The bufio package
As the name suggests, the bufio package is about buffered input and output. However, the
bufio package still uses (internally) the io.Reader and io.Writer objects, which it
wraps in order to create the bufio.Reader and bufio.Writer objects, respectively. As
you will see in the forthcoming sections, the bufio package is very popular for reading text
files.

Reading text files
A text file is the most common kind of file that you can find on a UNIX system. In this
section, you will learn how to read text files in three ways: line by line, word by word, and
character by character. As you will see, reading a text file line by line is the easiest method
to access a text file, while reading a text file word by word is the most difficult method of
all.

If you look closely at the byLine.go, byWord.go, and byCharacter.go programs, you
will see many similarities in their Go code. Firstly, all three utilities read the input file line
by line. Secondly, all three utilities have the same main() function, with the exception of
the function that is called in the for loop of the main() function. Lastly, the three functions
that process the input text files are almost identical, except for the part that implements the
actual functionality of the function.

Telling a UNIX System What to Do Chapter 8

[393]

Reading a text file line by line
Going line by line is the most common method of reading a text file. This is the main reason
that it is being shown first. The Go code of byLine.go, which will be presented in three
parts, will help you to understand the technique.

The first code segment from byLine.go is shown in the following Go code:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
)

As you can see by the presence of the bufio package, we will use buffered input.

The second part of byLine.go contains the following Go code:

func lineByLine(file string) error {
 var err error

 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }
 fmt.Print(line)
 }
 return nil
}

Telling a UNIX System What to Do Chapter 8

[394]

All the magic happens in the lineByLine() function. After making sure that you can open
the given filename for reading, you create a new reader using bufio.NewReader(). Then,
you use that reader with bufio.ReadString() in order to read the input file line by line.
The trick is done by the parameter of bufio.ReadString(), which is a character that tells
bufio.ReadString() to keep reading until that character is found. Constantly calling
bufio.ReadString() when that parameter is the newline character results in reading the
input file line by line. The use of fmt.Print() instead of fmt.Println() for printing the
input line shows that the newline character is included in each input line.

The third part of byLine.go follows:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: byLine <file1> [<file2> ...]\n")
 return
 }

 for _, file := range flag.Args() {
 err := lineByLine(file)
 if err != nil {
 fmt.Println(err)
 }
 }
}

Executing byLine.go and processing its output with wc(1) will generate the following
type of output:

$ go run byLine.go /tmp/swtag.log /tmp/adobegc.log | wc
 4761 88521 568402

The following command will verify the accuracy of the preceding output:

$ wc /tmp/swtag.log /tmp/adobegc.log
 131 693 8440 /tmp/swtag.log
 4630 87828 559962 /tmp/adobegc.log
 4761 88521 568402 total

Reading a text file word by word
The technique presented in this subsection will be demonstrated by the byWord.go file and
shown in four parts. As you will see in the Go code, separating the words of a line can be
tricky.

Telling a UNIX System What to Do Chapter 8

[395]

The first part of this utility is as follows:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
)

The second code portion of byWord.go is shown in the following Go code:

func wordByWord(file string) error {
 var err error
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 return err
 }

This part of the wordByWord() function is the same as the lineByLine() function of the
byLine.go utility.

The third part of byWord.go is as follows:

 r := regexp.MustCompile("[^\\s]+")
 words := r.FindAllString(line, -1)
 for i := 0; i < len(words); i++ {
 fmt.Println(words[i])
 }
 }
 return nil
}

Telling a UNIX System What to Do Chapter 8

[396]

The remaining code of the wordByWord() function is totally new and it uses regular
expressions to separate the words found in each line of the input file. The regular
expression defined in the regexp.MustCompile("[^\\s]+") statement states that empty
characters will separate one word from another.

The last code segment of byWord.go is as follows:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: byWord <file1> [<file2> ...]\n")
 return
 }

 for _, file := range flag.Args() {
 err := wordByWord(file)
 if err != nil {
 fmt.Println(err)
 }
 }
}

Executing byWord.go will produce the following type of output:

$ go run byWord.go /tmp/adobegc.log
01/08/18
20:25:09:669
|
[INFO]

You can verify the validity of byWord.go with the help of the wc(1) utility:

$ go run byWord.go /tmp/adobegc.log | wc
 91591 91591 559005
$ wc /tmp/adobegc.log
 4831 91591 583454 /tmp/adobegc.log

As you can see, the number of words calculated by wc(1) is the same as the number of
lines and words that you took from the execution of byWord.go.

Reading a text file character by character
In this section, you will learn how to read a text file character by character, which is a pretty
rare requirement unless you want to develop a text editor. The relevant Go code will be
saved as byCharacter.go, which will be presented in four parts.

Telling a UNIX System What to Do Chapter 8

[397]

The first part of byCharacter.go is shown in the following Go code:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
)

As you can see, you will not need to use regular expressions for this task.

The second code segment from byCharacter.go is as follows:

func charByChar(file string) error {
 var err error
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 return err
 }

The third part of byCharacter.go is where the logic of the program is found:

 for _, x := range line {
 fmt.Println(string(x))
 }
 }
 return nil
}

Here, you take each line that you read and split it using range, which returns two values.
You discard the first, which is the location of the current character in the line variable, and
you use the second. However, that value is not a character - that is the reason you have to
convert it into a character using the string() function.

Telling a UNIX System What to Do Chapter 8

[398]

Note that, due to the fmt.Println(string(x)) statement, each character is printed in a
distinct line, which means that the output of the program will be large. If you want a more
compressed output, you should use the fmt.Print() function instead.

The last part of byCharacter.go contains the following Go code:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: byChar <file1> [<file2> ...]\n")
 return
 }

 for _, file := range flag.Args() {
 err := charByChar(file)
 if err != nil {
 fmt.Println(err)
 }
 }
}

The execution of byCharacter.go will generate the following type of output:

$ go run byCharacter.go /tmp/adobegc.log
0
1
/
0
8
/
1
8

Note that the Go code presented here can be used for counting the number of characters
found in the input file, which can help you to implement a Go version of the handy wc(1)
command-line utility.

Reading from /dev/random
In this section, you will learn how to read from the /dev/random system device. The
purpose of the /dev/random system device is to generate random data, which you might
use for testing your programs or, in this case, as the seed for a random number generator.
Getting data from /dev/random can be a little bit tricky, and this is the main reason for
specifically discussing it here.

Telling a UNIX System What to Do Chapter 8

[399]

On a macOS Mojave machine, the /dev/random file has the following permissions:

$ ls -l /dev/random
crw-rw-rw- 1 root wheel 14, 0 Mar 12 20:24 /dev/random

Similarly, on a Debian Linux machine, the /dev/random system device has the following
UNIX file permissions:

$ ls -l /dev/random
crw-rw-rw- 1 root root 1, 8 Oct 13 12:19 /dev/random

This means that the /dev/random file has analogous file permissions on both UNIX
variants. The only difference between these two UNIX variants is the UNIX group that
owns the file, which is wheel on macOS and root on Debian Linux.

The name of the program for this topic is devRandom.go, and it will be presented in three
parts. The first part of the program is as follows:

package main

import (
 "encoding/binary"
 "fmt"
 "os"
)

In order to read from /dev/random, you will need to import the encoding/binary
standard Go package, because /dev/random returns binary data that needs to be
decoded. The second code portion of devRandom.go follows:

func main() {
 f, err := os.Open("/dev/random")
 defer f.Close()

 if err != nil {
 fmt.Println(err)
 return
 }

You open /dev/random as usual because everything in UNIX is a file.

The last code segment of devRandom.go is shown in the following Go code:

 var seed int64
 binary.Read(f, binary.LittleEndian, &seed)
 fmt.Println("Seed:", seed)
}

Telling a UNIX System What to Do Chapter 8

[400]

You need the binary.Read() function, which requires three parameters, in order to read
from the /dev/random system device. The value of the second parameter
(binary.LittleEndian) specifies that you want to use the little endian byte order. The
other option is binary.BigEndian, which is used when your computer is using the big
endian byte order.

Executing devRandom.go will generate the following type of output:

$ go run devRandom.go
Seed: -2044736418491485077
$ go run devRandom.go
Seed: -5174854372517490328
$ go run devRandom.go
Seed: 7702177874251412774

Reading a specific amount of data
In this section, you will learn how to read exactly the amount of data you want. This
technique is particularly useful when reading binary files, where you have to decode the
data you read in a particular way. Nevertheless, this technique still works with text files.

The logic behind this technique is as follows: you create a byte slice with the size you need
and use that byte slice for reading. To make this more interesting, this functionality is going
to be implemented as a function with two parameters. One parameter will be used to
specify the amount of data that you want to read, and the other parameter, which will have
the *os.File type, will be used to access the desired file. The return value of that function
will be the data you have read.

The name of the Go program for this topic will be readSize.go and it will be presented in
four parts. The utility will accept a single parameter, which will be the size of the byte slice.

This particular program, when used with the presented technique, can
help you to copy any file using the buffer size you want.

The first part of readSize.go has the expected preamble:

package main

import (
 "fmt"
 "io"

Telling a UNIX System What to Do Chapter 8

[401]

 "os"
 "strconv"
)

The second part of readSize.go contains the following Go code:

func readSize(f *os.File, size int) []byte {
 buffer := make([]byte, size)

 n, err := f.Read(buffer)
 if err == io.EOF {
 return nil
 }

 if err != nil {
 fmt.Println(err)
 return nil
 }

 return buffer[0:n]
}

This is the function discussed earlier. Although the code is straightforward, there is one
point that needs an explanation. The io.Reader.Read() method returns two parameters:
the number of bytes read and an error variable. The readSize() function uses the former
return value of io.Read() in order to return a byte slice of that size. Although this is a tiny
detail, and it is only significant when you reach the end of the file, it ensures that the output
of the utility will be same as the input and that it will not contain any extra characters.

Finally, there is code that checks for io.EOF, which is an error that signifies that you have
reached the end of a file. When that kind of error occurs, the function returns. Dave
Cheney, a project member for Go and open-source contributor, calls these errors "sentinel
errors" because they signify that an error did not occur.

The third code portion of this utility is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Println("<buffer size> <filename>")
 return
 }

 bufferSize, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return

Telling a UNIX System What to Do Chapter 8

[402]

 }

 file := os.Args[2]
 f, err := os.Open(file)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

The last code segment of readSize.go is as follows:

 for {
 readData := readSize(f, bufferSize)
 if readData != nil {
 fmt.Print(string(readData))
 } else {
 break
 }
 }
}

Here, you keep reading your input file until readSize() returns an error or nil.

Executing readSize.go by telling it to process a binary file and handling its output with
wc(1) will validate the correctness of the program:

$ go run readSize.go 1000 /bin/ls | wc
 80 1032 38688
$ wc /bin/ls
 80 1032 38688 /bin/ls

The advantages of binary formats
In the previous section, the readSize.go utility illustrated how you can read a file byte by
byte, which is a technique that best applies to binary files. So, you might ask, why read data
in binary format when text formats are so much easier to understand? The main reason is
space reduction. Imagine that you want to store the number 20 as a string to a file. It is easy
to understand that you will need two bytes to store 20 using ASCII characters: one for
storing 2 and another for storing 0.

Storing 20 in binary format requires just one byte, since 20 can be represented as 00010100
in binary or as 0x14 in hexadecimal.

Telling a UNIX System What to Do Chapter 8

[403]

This difference might look insignificant when you are dealing with small amounts of data,
but it could be pretty substantial when dealing with data found in applications such as
database servers.

Reading CSV files
CSV files are plain text files with a format. In this section, you will learn how to read a text
file that contains points of a plane, which means that each line will contain a pair of
coordinates. Additionally, you are also going to use an external Go library named Glot,
which will help you to create a plot of the points that you read from the CSV file. Note that
Glot uses Gnuplot, which means that you will need to install Gnuplot on your UNIX
machine in order to use Glot.

The name of the source file for this topic is CSVplot.go, and it is going to be presented in
five parts. The first code segment is as follows:

package main

import (
 "encoding/csv"
 "fmt"
 "github.com/Arafatk/glot"
 "os"
 "strconv"
)

The second part of CSVplot.go is shown in the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need a data file!")
 return
 }

 file := os.Args[1]
 _, err := os.Stat(file)
 if err != nil {
 fmt.Println("Cannot stat", file)
 return
 }

In this part, you can see a technique for checking whether a file already exists or not using
the powerful os.Stat() function.

Telling a UNIX System What to Do Chapter 8

[404]

The third part of CSVplot.go is as follows:

 f, err := os.Open(file)
 if err != nil {
 fmt.Println("Cannot open", file)
 fmt.Println(err)
 return
 }
 defer f.Close()

 reader := csv.NewReader(f)
 reader.FieldsPerRecord = -1
 allRecords, err := reader.ReadAll()
 if err != nil {
 fmt.Println(err)
 return
 }

The fourth code segment of CSVplot.go is shown in the following Go code:

 xP := []float64{}
 yP := []float64{}
 for _, rec := range allRecords {
 x, _ := strconv.ParseFloat(rec[0], 64)
 y, _ := strconv.ParseFloat(rec[1], 64)
 xP = append(xP, x)
 yP = append(yP, y)
 }

 points := [][]float64{}
 points = append(points, xP)
 points = append(points, yP)
 fmt.Println(points)

Here, you convert the string values you read into numbers and put them into a slice with
two dimensions named points.

Telling a UNIX System What to Do Chapter 8

[405]

The last part of CSVplot.go contains the following Go code:

 dimensions := 2
 persist := true
 debug := false
 plot, _ := glot.NewPlot(dimensions, persist, debug)

 plot.SetTitle("Using Glot with CSV data")
 plot.SetXLabel("X-Axis")
 plot.SetYLabel("Y-Axis")
 style := "circle"
 plot.AddPointGroup("Circle:", style, points)
 plot.SavePlot("output.png")
}

In the preceding Go code, you saw how you can create a PNG file with the help of the Glot
library and its glot.SavePlot() function.

As you might guess, you will need to download the Glot library before being able to
compile and execute the CSVplot.go source code, which requires the execution of the
following command from your favorite UNIX shell:

$ go get github.com/Arafatk/glot

The CSV data file containing the points that will be plotted has the following format:

$ cat /tmp/dataFile
1,2
2,3
3,3
4,4
5,8
6,5
-1,12
-2,10
-3,10
-4,10

Telling a UNIX System What to Do Chapter 8

[406]

Executing CSVplot.go will generate the following kind of output:

$ go run CSVplot.go /tmp/doesNoExist
Cannot stat /tmp/doesNoExist
$ go run CSVplot.go /tmp/dataFile
[[1 2 3 4 5 6 -1 -2 -3 -4] [2 3 3 4 8 5 12 10 10 10]]

You can see the results of CSVplot.go in a much better format in the following figure:

Figure 8.1: The type of graphical output you can get from Glot

Writing to a file
Generally speaking, you can use the functionality of the io.Writer interface for writing
data to files on a disk. Nevertheless, the Go code of save.go will show you five ways to
write data to a file. The save.go program will be presented in six parts.

The first part of save.go is as follows:

package main

import (

Telling a UNIX System What to Do Chapter 8

[407]

 "bufio"
 "fmt"
 "io"
 "io/ioutil"
 "os"
)

The second code portion of save.go is shown in the following Go code:

func main() {
 s := []byte("Data to write\n")

 f1, err := os.Create("f1.txt")
 if err != nil {
 fmt.Println("Cannot create file", err)
 return
 }
 defer f1.Close()
 fmt.Fprintf(f1, string(s))

Notice that the s byte slice will be used in every line that involves writing presented in this
Go program. Additionally, the fmt.Fprintf() function used here can help you to write
data to your own log files using the format you want. In this case, fmt.Fprintf() writes
your data to the file identified by f1.

The third part of save.go contains the following Go code:

 f2, err := os.Create("f2.txt")
 if err != nil {
 fmt.Println("Cannot create file", err)
 return
 }
 defer f2.Close()
 n, err := f2.WriteString(string(s))
 fmt.Printf("wrote %d bytes\n", n)

In this case, f2.WriteString() is used for writing your data to a file.

The fourth code segment of save.go is next:

 f3, err := os.Create("f3.txt")
 if err != nil {
 fmt.Println(err)
 return
 }
 w := bufio.NewWriter(f3)
 n, err = w.WriteString(string(s))

Telling a UNIX System What to Do Chapter 8

[408]

 fmt.Printf("wrote %d bytes\n", n)
 w.Flush()

In this case, bufio.NewWriter() opens a file for writing and bufio.WriteString()
writes the data.

The fifth part of save.go will teach you another method for writing to a file:

 f4 := "f4.txt"
 err = ioutil.WriteFile(f4, s, 0644)
 if err != nil {
 fmt.Println(err)
 return
 }

This method needs just a single function call named ioutil.WriteFile() for writing
your data, and it does not require the use of os.Create().

The last code segment of save.go is as follows:

 f5, err := os.Create("f5.txt")
 if err != nil {
 fmt.Println(err)
 return
 }
 n, err = io.WriteString(f5, string(s))
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("wrote %d bytes\n", n)
}

The last technique uses io.WriteString() to write the desired data to a file.

Executing save.go will create the following type of output:

$ go run save.go
wrote 14 bytes
wrote 14 bytes
wrote 14 bytes
$ ls -l f?.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f1.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f2.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f3.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f4.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f5.txt
$ cat f?.txt

Telling a UNIX System What to Do Chapter 8

[409]

Data to write
Data to write
Data to write
Data to write
Data to write

The next section will show you how to save data to a file with the help of a specialized
function of a package that is in the standard Go library.

Loading and saving data on disk
Do you remember the keyValue.go application from Chapter 4, The Uses of Composite
Types? Well, it was far from perfect, so in this section you will learn how to save the data of
a key-value store on disk and how to load it back into memory when you next start your
application.

We are going to create two new functions, one named save() for saving data to disk and
another named load() for retrieving the data from disk. Thus, we will only present the
code differences between keyValue.go and kvSaveLoad.go using the diff(1) UNIX
command-line utility.

The diff(1) UNIX command-line utility can be very convenient when
you want to spot the differences between two text files. You can learn
more about it by executing man 1 diff at the command line of your
favorite UNIX shell.

If you think about the task to be implemented here, you will recognize that what you really
need is an easy way to save the contents of a Go map to disk, as well as a way to load the
data from a file and put it into a Go map.

The process of converting your data into a stream of bytes is called serialization. The
process of reading a data file and converting it into an object is called deserialization. The
encoding/gob standard Go package will be used for the kvSaveLoad.go program. It will
help the serialization and deserialization process. The encoding/gob package uses the gob
format to store its data. The official name for such formats is stream encoding. The good
thing about the gob format is that Go does all of the dirty work, so you do not have to
worry about the encoding and decoding stages.

Other Go packages that can help you to serialize and deserialize data are encoding/xml,
which uses the XML format, and encoding/json, which uses the JSON format.

Telling a UNIX System What to Do Chapter 8

[410]

The following output reveals the code changes between kvSaveLoad.go and
keyValue.go without including the implementations of the save() and load() functions,
which will be fully presented shortly:

$ diff keyValue.go kvSaveLoad.go
4a5
> "encoding/gob"
16a18,55
> var DATAFILE = "/tmp/dataFile.gob"
> func save() error {
>
> return nil
> }
>
> func load() error {
>
> }
59a99,104
>
> err := load()
> if err != nil {
> fmt.Println(err)
> }
>
88a134,137
> err = save()
> if err != nil {
> fmt.Println(err)
> }

An important part of the diff(1) output is the definition of the DATAFILE global variable,
which holds the path to the file that is used by the key-value store. Apart from this, you can
see where the load() function is called, as well as the point where the save() function is
called. The load() function is used first in the main() function, while the save() function
is executed when the user issues the STOP command.

Each time you execute kvSaveLoad.go, the program checks whether there is data to be
read by trying to read the default data file. If there is no data file to read, you will start with
an empty key-value store. When the program is about to terminate, it writes all of its data
on the disk using the save() function.

The save() function has the following implementation:

func save() error {
 fmt.Println("Saving", DATAFILE)
 err := os.Remove(DATAFILE)

Telling a UNIX System What to Do Chapter 8

[411]

 if err != nil {
 fmt.Println(err)
 }

 saveTo, err := os.Create(DATAFILE)
 if err != nil {
 fmt.Println("Cannot create", DATAFILE)
 return err
 }
 defer saveTo.Close()

 encoder := gob.NewEncoder(saveTo)
 err = encoder.Encode(DATA)
 if err != nil {
 fmt.Println("Cannot save to", DATAFILE)
 return err
 }
 return nil
}

Note that the first thing the save() function does is to delete the existing data file using the
os.Remove() function in order to create it later on.

One of the most critical tasks the save() function does is to make sure that you can
actually create and write to the desired file. Although there are many ways to do this, the
save() function uses the simplest way, which is checking the error value returned by the
os.Create() function. If that value is not nil, then there is a problem and the save()
function finishes without saving any data.

The load() function is implemented as follows:

func load() error {
 fmt.Println("Loading", DATAFILE)
 loadFrom, err := os.Open(DATAFILE)
 defer loadFrom.Close()
 if err != nil {
 fmt.Println("Empty key/value store!")
 return err
 }

 decoder := gob.NewDecoder(loadFrom)
 decoder.Decode(&DATA)
 return nil
}

One of the tasks of the load() function is to make sure that the file that you are trying to
read is actually there and that you can read it without any problems.

Telling a UNIX System What to Do Chapter 8

[412]

Once again, the load() function uses the simplest approach, which is to look at the return
value of the os.Open() function. If the error value returned is equal to nil, then
everything is fine.

It is also important to close the file after reading the data from it, as it will be overwritten by
the save() function later on. The release of the file is accomplished by the
deferloadFrom.Close() statement.

Executing kvSaveLoad.go will generate the following type of output:

$ go run kvSaveLoad.go
Loading /tmp/dataFile.gob
Empty key/value store!
open /tmp/dataFile.gob: no such file or directory
ADD 1 2 3
ADD 4 5 6
STOP
Saving /tmp/dataFile.gob
remove /tmp/dataFile.gob: no such file or directory
$ go run kvSaveLoad.go
Loading /tmp/dataFile.gob
PRINT
key: 1 value: {2 3 }
key: 4 value: {5 6 }
DELETE 1
PRINT
key: 4 value: {5 6 }
STOP
Saving /tmp/dataFile.gob
rMacBook:code mtsouk$ go run kvSaveLoad.go
Loading /tmp/dataFile.gob
PRINT
key: 4 value: {5 6 }
STOP
Saving /tmp/dataFile.gob
$ ls -l /tmp/dataFile.gob
-rw-r--r-- 1 mtsouk wheel 80 Jan 22 11:22 /tmp/dataFile.gob
$ file /tmp/dataFile.gob
/tmp/dataFile.gob: data

In Chapter 13, Network Programming – Building Your Own Servers and Clients, you are going
to see the final version of the key-value store, which will be able to operate over a TCP/IP
connection and will serve multiple network clients using goroutines.

Telling a UNIX System What to Do Chapter 8

[413]

The strings package revisited
We first talked about the handy strings package back in Chapter 4, The Uses of Composite
Types. This section will address the functions of the strings package that are related to file
input and output.

The first part of str.go is shown in the following Go code:

package main

import (
 "fmt"
 "io"
 "os"
 "strings"
)

The second code segment of str.go is as follows:

func main() {

 r := strings.NewReader("test")
 fmt.Println("r length:", r.Len())

The strings.NewReader() function creates a read-only Reader from a string. The
strings.Reader object implements the io.Reader, io.ReaderAt, io.Seeker,
io.WriterTo, io.ByteScanner, and io.RuneScanner interfaces.

The third part of str.go follows:

 b := make([]byte, 1)
 for {
 n, err := r.Read(b)
 if err == io.EOF {
 break
 }

 if err != nil {
 fmt.Println(err)
 continue
 }
 fmt.Printf("Read %s Bytes: %d\n", b, n)
 }

Telling a UNIX System What to Do Chapter 8

[414]

Here, you can see how to use strings.Reader as an io.Reader in order to read a string
byte by byte using the Read() function.

The last code portion of str.go contains the following Go code:

 s := strings.NewReader("This is an error!\n")
 fmt.Println("r length:", s.Len())
 n, err := s.WriteTo(os.Stderr)

 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Wrote %d bytes to os.Stderr\n", n)
}

In this code segment, you can see how you can write to standard error with the help of the
strings package.

Executing str.go will generate the following output:

$ go run str.go
r length: 4
Read t Bytes: 1
Read e Bytes: 1
Read s Bytes: 1
Read t Bytes: 1
r length: 18
This is an error!
Wrote 18 bytes to os.Stderr
$ go run str.go 2>/dev/null
r length: 4
Read t Bytes: 1
Read e Bytes: 1
Read s Bytes: 1
Read t Bytes: 1
r length: 18
Wrote 18 bytes to os.Stderr

About the bytes package
The bytes standard Go package contains functions for working with byte slices in the
same way that the strings standard Go package helps you to work with strings. The
name of the Go source code file is bytes.go, and it will be presented in three code
portions.

Telling a UNIX System What to Do Chapter 8

[415]

The first part of bytes.go follows:

package main

import (
 "bytes"
 "fmt"
 "io"
 "os"
)

The second code portion of bytes.go contains the following Go code:

func main() {
 var buffer bytes.Buffer
 buffer.Write([]byte("This is"))
 fmt.Fprintf(&buffer, " a string!\n")
 buffer.WriteTo(os.Stdout)
 buffer.WriteTo(os.Stdout)

First, you create a new bytes.Buffer variable and you put data into it using
buffer.Write() and fmt.Fprintf(). Then, you call buffer.WriteTo() twice.

The first buffer.WriteTo() call will print the contents of the buffer variable. However,
the second call to buffer.WriteTo() has nothing to print because the buffer variable
will be empty after the first buffer.WriteTo() call.

The last part of bytes.go is as follows:

 buffer.Reset()
 buffer.Write([]byte("Mastering Go!"))
 r := bytes.NewReader([]byte(buffer.String()))
 fmt.Println(buffer.String())
 for {
 b := make([]byte, 3)
 n, err := r.Read(b)
 if err == io.EOF {
 break
 }

 if err != nil {
 fmt.Println(err)
 continue
 }
 fmt.Printf("Read %s Bytes: %d\n", b, n)
 }
}

Telling a UNIX System What to Do Chapter 8

[416]

The Reset() method resets the buffer variable and the Write() method puts some data
into it again. Then, you create a new reader using bytes.NewReader(), and after that you
use the Read() method of the io.Reader interface to read the data found in the buffer
variable.

Executing bytes.go will create the following type of output:

$ go run bytes.go
This is a string!
Mastering Go!
Read Mas Bytes: 3
Read ter Bytes: 3
Read ing Bytes: 3
Read Go Bytes: 3
Read ! Bytes: 1

File permissions
A popular topic in UNIX systems programming is UNIX file permissions. In this section,
you will learn how to print the permissions of any file, provided that you have the required
UNIX permission to do so. The name of the program is permissions.go, and it will be
presented in three parts.

The first part of permissions.go contains the following Go code:

package main

import (
 "fmt"
 "os"
)

The second code segment of permissions.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("usage: permissions filename\n")
 return
 }

The last part of this utility follows:

 filename := arguments[1]
 info, _ := os.Stat(filename)

Telling a UNIX System What to Do Chapter 8

[417]

 mode := info.Mode()
 fmt.Println(filename, "mode is", mode.String()[1:10])
}

The call to os.Stat(filename) returns a big structure with lots of data. As we are only
interested in the permissions of the file, we call the Mode() method and print its output.
Actually, we are printing a part of the output denoted by mode.String()[1:10] because
this is where the data that interests us is found.

Executing permissions.go will create the following type of output:

$ go run permissions.go /tmp/adobegc.log
/tmp/adobegc.log mode is rw-rw-rw-
$ go run permissions.go /dev/random
/dev/random mode is crw-rw-rw

The output of the ls(1) utility verifies the correctness of permissions.go:

$ ls -l /dev/random /tmp/adobegc.log
crw-rw-rw- 1 root wheel 14, 0 Jan 8 20:24 /dev/random
-rw-rw-rw- 1 root wheel 583454 Jan 16 19:12 /tmp/adobegc.log

Handling UNIX signals
Go provides the os/signal package to help developers to work with signals. This section
will show you how to use it for UNIX signal handling.

First, let me present some useful information about UNIX signals. Have you ever pressed
Ctrl+C in order to stop a running program? If your answer is "yes," then you are already
familiar with signals because Ctrl+C sends the SIGINT signal to a program. Strictly
speaking, UNIX signals are software interrupts that can be accessed either by name or by
number, and they offer a way to handle asynchronous events on a UNIX system. Generally
speaking, it is safer to send a signal by name because you are less likely to send the wrong
signal accidentally.

A program cannot handle all of the available signals. Some signals cannot be caught, but
nor can they be ignored. The SIGKILL and SIGSTOP signals cannot be caught, blocked, or
ignored. The reason for this is that they provide the kernel and the root user with a way of
stopping any process that they desire. The SIGKILL signal, which is also known by the
number 9, is usually called in extreme conditions where you need to act fast. Thus, it is the
only signal that is usually called by number, simply because it is quicker to do so.

Telling a UNIX System What to Do Chapter 8

[418]

signal.SIGINFO in not available on Linux machines, which means that if
you find it in a Go program that you want to run on a Linux machine, you
need to replace it with another signal, or your Go program will not be able
to compile and execute.

The most common way to send a signal to a process is by using the kill(1) utility. By
default, kill(1) sends the SIGTERM signal. If you want to find all of the supported signals
on your UNIX machine, you should execute the kill -l command.

If you try to send a signal to a process without having the required permissions, kill(1)
will not do the job and you will get an error message similar to the following:

$ kill 1210
-bash: kill: (1210) - Operation not permitted

Handling two signals
In this subsection, you will learn how to handle two signals in a Go program using the code
found in handleTwo.go, which will be presented in four parts. The signals that will be
handled by handleTwo.go are SIGINFO and SIGINT, which in Go are named
syscall.SIGINFO and os.Interrupt, respectively.

If you look at the documentation of the os package, you will find that the
only two signals that are guaranteed to be present on all systems are
syscall.SIGKILL and syscall.SIGINT, which in Go are also defined
as os.Kill and os.Interrupt, respectively.

The first part of handleTwo.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

The second part of the handleTwo.go program follows:

func handleSignal(signal os.Signal) {
 fmt.Println("handleSignal() Caught:", signal)
}

Telling a UNIX System What to Do Chapter 8

[419]

The handleSignal() function will be used for handling the syscall.SIGINFO signal,
while the os.Interrupt signal will be handled inline.

The third code segment of handleTwo.go is shown in the following Go code:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt, syscall.SIGINFO)
 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 fmt.Println("Caught:", sig)
 case syscall.SIGINFO:
 handleSignal(sig)
 return
 }
 }
 }()

This technique works as follows: first, you define a channel named sigs that helps you to
pass data around. Then, you call signal.Notify() in order to state the signals that
interest you. Next, you implement an anonymous function that runs as a goroutine in
order to act when you receive any one of the signals you care about. You will have to wait
for Chapter 9, Concurrency in Go – Goroutines, Channels, and Pipelines, to learn more about
goroutines and channels.

The last portion of the handleTwo.go program is as follows:

 for {
 fmt.Printf(".")
 time.Sleep(20 * time.Second)
 }
}

The time.Sleep() call is used to prohibit the program from terminating, as it has no real
work to do. In an actual application, there would be no need to use similar code.

As we need the process ID of a program in order to send signals to it using the kill(1)
utility, we will first compile handleTwo.go and run the executable file instead of using go
runhandleTwo.go. Working with handleTwo will generate the following type of output:

$ go build handleTwo.go
$ ls -l handleTwo
-rwxr-xr-x 1 mtsouk staff 2005200 Jan 18 07:49 handleTwo

Telling a UNIX System What to Do Chapter 8

[420]

$./handleTwo
.^CCaught: interrupt
.Caught: interrupt
handleSignal() Caught: information request
.Killed: 9

Note that you will need an additional terminal in order to interact with handleTwo.go and
obtain the preceding output. You will execute the following commands in that terminal:

$ ps ax | grep ./handleTwo | grep -v grep
47988 s003 S+ 0:00.00 ./handleTwo
$ kill -s INT 47988
$ kill -s INFO 47988
$ kill -s USR1 47988
$ kill -9 47988

The first command is used for finding the process ID of the handleTwo executable, while
the remaining commands are used for sending the desired signals to that process. The
SIGUSR1 signal is ignored and it does not appear in the output.

The problem with handleTwo.go is that if it gets a signal that it is not programmed to
handle, it will ignore it. Thus, in the next section, you will see a technique that uses a
relatively different approach in order to handle signals in a more efficient way.

Handling all signals
In this subsection, you will learn how to handle all signals but respond only to the ones that
really interest you. This is a much better and safer technique than the one presented in the
previous subsection. The technique will be illustrated using the Go code of handleAll.go,
which will be presented in four parts.

The first part of handleAll.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

func handle(signal os.Signal) {
 fmt.Println("Received:", signal)

Telling a UNIX System What to Do Chapter 8

[421]

}

The second code segment from handleAll.go is shown in the following Go code:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)

So, all the magic happens due to the signal.Notify(sigs) statement. As no signals are
specified, all incoming signals will be handled.

You are allowed to call signal.Notify() multiple times in the same
program using different channels and the same signals. In that case, each
relevant channel will receive a copy of the signals that it was programmed
to handle.

The third code portion of the handleAll.go utility follows:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 handle(sig)
 case syscall.SIGTERM:
 handle(sig)
 os.Exit(0)
 case syscall.SIGUSR2:
 fmt.Println("Handling syscall.SIGUSR2!")
 default:
 fmt.Println("Ignoring:", sig)
 }
 }
 }()

It is very convenient to use one of the signals in order to exit your program. This gives you
the opportunity to do some housekeeping in your program when needed. In this case, the
syscall.SIGTERM signal is used for that purpose. This does not prevent you from using
SIGKILL to kill a program, though.

The remaining Go code for handleAll.go follows:

 for {
 fmt.Printf(".")
 time.Sleep(30 * time.Second)
 }
}

Telling a UNIX System What to Do Chapter 8

[422]

You still need to call time.Sleep() to prevent your program from terminating
immediately.

Again, it would be better to build an executable file for handleAll.go using the go build
tool. Executing handleAll and interacting with it from another terminal will generate the
following type of output:

$ go build handleAll.go
$ ls -l handleAll
-rwxr-xr-x 1 mtsouk staff 2005216 Jan 18 08:25 handleAll
$./handleAll
.Ignoring: hangup
Handling syscall.SIGUSR2!
Ignoring: user defined signal 1
Received: interrupt
^CReceived: interrupt
Received: terminated

The commands issued from the second terminal are as follows:

$ ps ax | grep ./handleAll | grep -v grep
49902 s003 S+ 0:00.00 ./handleAll
$ kill -s HUP 49902
$ kill -s USR2 49902
$ kill -s USR1 49902
$ kill -s INT 49902
$ kill -s TERM 49902

Programming UNIX pipes in Go
According to the UNIX philosophy, UNIX command-line utilities should do one job and
perform that job well. In practice, this means that instead of developing huge utilities that
do lots of jobs, you should develop multiple smaller programs, which, when combined,
should perform the desired job. The most common way for two or more UNIX command-
line utilities to communicate is by using pipes. In a UNIX pipe, the output of a command-
line utility becomes the input of another command-line utility. This process may involve
more than two programs. The symbol that is used for UNIX pipes is the | character.

Pipes have two serious limitations: firstly, they usually communicate in one direction, and
secondly, they can only be used between processes that have a common ancestor. The
general idea behind the implementation of UNIX pipes is that if you do not have a file to
process, you should wait to get your input from standard input.

Telling a UNIX System What to Do Chapter 8

[423]

Similarly, if you are not told to save your output to a file, you should write your output to
standard output, either for the user to see it or for another program to process it.

In Chapter 1, Go and the Operating System, you learned how to read from standard input
and how to write to standard output. If you have doubts about these two operations, it
would be a good time to review the Go code of stdOUT.go and stdIN.go.

Implementing the cat(1) utility in Go
In this section, you will see a Go version of the cat(1) utility. You will most likely be
surprised by the length of the program. The source code of cat.go will be presented in
three parts. The first part of cat.go follows:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
)

The second code segment of cat.go contains the following Go code:

func printFile(filename string) error {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close()
 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 io.WriteString(os.Stdout, scanner.Text())
 io.WriteString(os.Stdout, "\n")
 }
 return nil
}

In this part, you can see the implementation of a function whose purpose it is to print the
contents of a file in the standard output.

Telling a UNIX System What to Do Chapter 8

[424]

The last part of cat.go is as follows:

func main() {
 filename := ""
 arguments := os.Args
 if len(arguments) == 1 {
 io.Copy(os.Stdout, os.Stdin)
 return
 }

 for i := 1; i < len(arguments); i++ {
 filename = arguments[i]
 err := printFile(filename)
 if err != nil {
 fmt.Println(err)
 }
 }
}

The preceding code contains all of the magic of cat.go, because this is where you define
how the program will behave. First of all, if you execute cat.go without any command-
line arguments, then the program will just copy standard input to standard output as
defined by the io.Copy(os.Stdout, os.Stdin) statement. However, if there are
command-line arguments, then the program will process them all in the same order that
they were given.

Executing cat.go will create the following type of output:

$ go run cat.go
Mastering Go!
Mastering Go!
1 2 3 4
1 2 3 4

However, things get really interesting if you execute cat.go using UNIX pipes:

$ go run cat.go /tmp/1.log /tmp/2.log | wc
 2367 44464 279292
$ go run cat.go /tmp/1.log /tmp/2.log | go run cat.go | wc
 2367 44464 279292

cat.go is also able to print multiple files on your screen:

$ go run cat.go 1.txt 1 1.txt
 2367 44464 279292
 2367 44464 279292
open 1: no such file or directory

Telling a UNIX System What to Do Chapter 8

[425]

 2367 44464 279292
 2367 44464 279292

Please note that if you try to execute cat.go as go run cat.go cat.go and expect that
you will get the contents of cat.go on your screen, the process will fail and you will get
the following error message instead:

package main: case-insensitive file name collision: "cat.go" and "cat.go"

The reason for this is that Go does not understand that the second cat.go should be used
as a command-line argument to the go run cat.go command. Instead, go run tries to
compile cat.go twice, which causes the error message. The solution to this problem is to
execute go build cat.go first, and then use cat.go or any other Go source file as the
argument to the generated binary executable file.

About syscall.PtraceRegs
You might have assumed that you are done dealing with the syscall standard Go
package, but you are mistaken! In this section, we will work with syscall.PtraceRegs,
which is a structure that holds information about the state of the registers.

You will now learn how to print the values of all of the following registers on your screen
using the Go code of ptraceRegs.go, which will be presented in four parts. The star of the
ptraceRegs.go utility is the syscall.PtraceGetRegs() function - there are also the
syscall.PtraceSetRegs(), syscall.PtraceAttach(),
syscall.PtracePeekData(), and syscall.PtracePokeData() functions that can help
you to work with registers, but these functions will not be used in ptraceRegs.go.

The first part of the ptraceRegs.go utility follows:

package main

import (
 "fmt"
 "os"
 "os/exec"
 "syscall"
 "time"
)

The second code portion of ptraceRegs.go is shown in the following Go code:

func main() {

Telling a UNIX System What to Do Chapter 8

[426]

 var r syscall.PtraceRegs
 cmd := exec.Command(os.Args[1], os.Args[2:]...)

 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr

The last two statements redirect the standard output and standard error from the executed
command to the UNIX standard output and standard error, respectively.

The third part of ptraceRegs.go contains the following Go code:

 cmd.SysProcAttr = &syscall.SysProcAttr{Ptrace: true}
 err := cmd.Start()
 if err != nil {
 fmt.Println("Start:", err)
 return
 }

 err = cmd.Wait()
 fmt.Printf("State: %v\n", err)
 wpid := cmd.Process.Pid

In the preceding Go code, you call an external command, which is specified in the
command-line arguments of the program, and you find its process ID, which will be used
in the syscall.PtraceGetRegs() call. The &syscall.SysProcAttr{Ptrace: true}
statement specifies that you want to use ptrace on the child process.

The last code segment of ptraceRegs.go follows:

 err = syscall.PtraceGetRegs(wpid, &r)
 if err != nil {
 fmt.Println("PtraceGetRegs:", err)
 return
 }
 fmt.Printf("Registers: %#v\n", r)
 fmt.Printf("R15=%d, Gs=%d\n", r.R15, r.Gs)

 time.Sleep(2 * time.Second)
}

Here, you call syscall.PtraceGetRegs() and you print the results that are stored in the
r variable, which should be passed as a pointer.

Telling a UNIX System What to Do Chapter 8

[427]

Executing ptraceRegs.go on a macOS Mojave machine will generate the following
output:

$ go run ptraceRegs.go
command-line-arguments
./ptraceRegs.go:11:8: undefined: syscall.PtraceRegs
./ptraceRegs.go:14:9: undefined: syscall.PtraceGetRegs

This means that this program will not work on machines running macOS and Mac OS X.

Executing ptraceRegs.go on a Debian Linux machine will create the following output:

$ go version
go version go1.7.4 linux/amd64
$ go run ptraceRegs.go echo "Mastering Go!"
State: stop signal: trace/breakpoint trap
Registers: syscall.PtraceRegs{R15:0x0, R14:0x0, R13:0x0, R12:0x0, Rbp:0x0,
Rbx:0x0, R11:0x0, R10:0x0, R9:0x0, R8:0x0, Rax:0x0, Rcx:0x0, Rdx:0x0,
Rsi:0x0, Rdi:0x0, Orig_rax:0x3b, Rip:0x7f4045f81c20, Cs:0x33, Eflags:0x200,
Rsp:0x7ffe1905b070, Ss:0x2b, Fs_base:0x0, Gs_base:0x0, Ds:0x0, Es:0x0,
Fs:0x0, Gs:0x0}
R15=0, Gs=0
Mastering Go!

You can also find the list of registers on the documentation page of the syscall package.

Tracing system calls
This section will present a pretty advanced technique that uses the syscall package and
allows you to monitor the system calls executed in a Go program.

The name of the Go utility is traceSyscall.go, and it is going to be presented in five code
segments. The first part of traceSyscall.go follows:

package main

import (
 "bufio"
 "fmt"
 "os"
 "os/exec"
 "strings"
 "syscall"
)

Telling a UNIX System What to Do Chapter 8

[428]

var maxSyscalls = 0

const SYSCALLFILE = "SYSCALLS"

You will learn more about the purpose of the SYSCALLFILE variable in a short while.

The second code segment from traceSyscall.go is the following:

func main() {
 var SYSTEMCALLS []string
 f, err := os.Open(SYSCALLFILE)
 defer f.Close()
 if err != nil {
 fmt.Println(err)
 return
 }

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 line := scanner.Text()
 line = strings.Replace(line, " ", "", -1)
 line = strings.Replace(line, "SYS_", "", -1)
 temp := strings.ToLower(strings.Split(line, "=")[0])
 SYSTEMCALLS = append(SYSTEMCALLS, temp)
 maxSyscalls++
 }

Note that the information of the SYSCALLS text file is taken from the documentation of the
syscall package, and it associates each system call with a number, which is the internal
Go representation of the system call. This file is mainly used for printing the names of the
system calls used by the program that is being traced.

The format of the SYSCALLS text file is as follows:

SYS_READ = 0
SYS_WRITE = 1
SYS_OPEN = 2
SYS_CLOSE = 3
SYS_STAT = 4

After reading the text file, the program creates a slice named SYSTEMCALLS for storing that
information.

Telling a UNIX System What to Do Chapter 8

[429]

The third part of traceSyscall.go is as follows:

 COUNTER := make([]int, maxSyscalls)
 var regs syscall.PtraceRegs
 cmd := exec.Command(os.Args[1], os.Args[2:]...)

 cmd.Stdin = os.Stdin
 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr
 cmd.SysProcAttr = &syscall.SysProcAttr{Ptrace: true}

 err = cmd.Start()
 err = cmd.Wait()
 if err != nil {
 fmt.Println("Wait:", err)
 }

 pid := cmd.Process.Pid
 fmt.Println("Process ID:", pid)

The COUNTER slice stores the number of times each system call is found in the program that
is being traced.

The fourth code segment of traceSyscall.go contains the following Go code:

 before := true
 forCount := 0
 for {
 if before {
 err := syscall.PtraceGetRegs(pid, ®s)
 if err != nil {
 break
 }
 if regs.Orig_rax > uint64(maxSyscalls) {
 fmt.Println("Unknown:", regs.Orig_rax)
 return
 }

 COUNTER[regs.Orig_rax]++
 forCount++
 }

 err = syscall.PtraceSyscall(pid, 0)
 if err != nil {
 fmt.Println("PtraceSyscall:", err)
 return
 }

Telling a UNIX System What to Do Chapter 8

[430]

 _, err = syscall.Wait4(pid, nil, 0, nil)
 if err != nil {
 fmt.Println("Wait4:", err)
 return
 }
 before = !before
 }

The syscall.PtraceSyscall() function tells Go to continue the execution of the
program that is being traced, but to stop when that program enters or exits a system call,
which is exactly what we want! As each system call is traced before being called, right after
it has finished its job, we use the before variable in order to count each system call only
once.

The last part of traceSyscall.go follows:

 for i, x := range COUNTER {
 if x != 0 {
 fmt.Println(SYSTEMCALLS[i], "->", x)
 }
 }
 fmt.Println("Total System Calls:", forCount)
}

In this part, we print the contents of the COUNTER slice. The SYSTEMCALLS slice is used here
for finding out the name of a system call when we know its numerical Go representation.

Executing traceSyscall.go on a macOS Mojave machine will create the following
output:

$ go run traceSyscall.go
command-line-arguments
./traceSyscall.go:36:11: undefined: syscall.PtraceRegs
./traceSyscall.go:57:11: undefined: syscall.PtraceGetRegs
./traceSyscall.go:70:9: undefined: syscall.PtraceSyscall

Once again, the traceSyscall.go utility will not run on macOS and Mac OS X.

Executing the same program on a Debian Linux machine will create the following output:

$ go run traceSyscall.go ls /tmp/
Wait: stop signal: trace/breakpoint trap
Process ID: 5657
go-build084836422 test.go upload_progress_cache
read -> 11
write -> 1
open -> 37

Telling a UNIX System What to Do Chapter 8

[431]

close -> 27
stat -> 1
fstat -> 25
mmap -> 39
mprotect -> 16
munmap -> 4
brk -> 3
rt_sigaction -> 2
rt_sigprocmask -> 1
ioctl -> 2
access -> 9
execve -> 1
getdents -> 2
getrlimit -> 1
statfs -> 2
arch_prctl -> 1
futex -> 1
set_tid_address -> 1
openat -> 1
set_robust_list -> 1
Total System Calls: 189

At the end of the program, traceSyscall.go prints the number of times each system call
was called in the program. The correctness of traceSyscall.go is verified by the output
of the strace -c utility:

$ strace -c ls /tmp
test.go upload_progress_cache
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 0.00 0.000000 0 11 read
 0.00 0.000000 0 1 write
 0.00 0.000000 0 37 13 open
 0.00 0.000000 0 27 close
 0.00 0.000000 0 1 stat
 0.00 0.000000 0 25 fstat
 0.00 0.000000 0 39 mmap
 0.00 0.000000 0 16 mprotect
 0.00 0.000000 0 4 munmap
 0.00 0.000000 0 3 brk
 0.00 0.000000 0 2 rt_sigaction
 0.00 0.000000 0 1 rt_sigprocmask
 0.00 0.000000 0 2 ioctl
 0.00 0.000000 0 9 9 access
 0.00 0.000000 0 1 execve
 0.00 0.000000 0 2 getdents
 0.00 0.000000 0 1 getrlimit
 0.00 0.000000 0 2 2 statfs

Telling a UNIX System What to Do Chapter 8

[432]

 0.00 0.000000 0 1 arch_prctl
 0.00 0.000000 0 1 futex
 0.00 0.000000 0 1 set_tid_address
 0.00 0.000000 0 1 openat
 0.00 0.000000 0 1 set_robust_list
------ ----------- ----------- --------- --------- -------------
100.00 0.000000 189 24 total

User ID and group ID
In this section, you will learn how to find the user ID of the current user, as well as the
group IDs to which the current user belongs. Both the user ID and group IDs are positive
integers kept in UNIX system files.

The name of the utility is ids.go, and it will be presented in two parts. The first part of the
utility follows:

package main

import (
 "fmt"
 "os"
 "os/user"
)

func main() {
 fmt.Println("User id:", os.Getuid())

Finding the user ID of the current user is as simple as calling the os.Getuid() function.

The second part of ids.go is as follows:

 var u *user.User
 u, _ = user.Current()
 fmt.Print("Group ids: ")
 groupIDs, _ := u.GroupIds()
 for _, i := range groupIDs {
 fmt.Print(i, " ")
 }
 fmt.Println()
}

On the other hand, finding the group IDs to which a user belongs is a much trickier task.

Telling a UNIX System What to Do Chapter 8

[433]

Executing ids.go will generate the following type of output:

$ go run ids.go
User id: 501
Group ids: 20 701 12 61 79 80 81 98 33 100 204 250 395 398 399

The Docker API and Go
If you work with Docker, you will find this section particularly handy as it will teach you
how to communicate with Docker using Go and the Docker API.

The dockerAPI.go utility, which will be presented in four parts, implements the docker
ps and the docker image ls commands. The first command lists all running containers,
whereas the second command lists all available images on the local machine.

The first part of dockerAPI.go is as follows:

package main

import (
 "fmt"
 "github.com/docker/docker/api/types"
 "github.com/docker/docker/client"
 "golang.org/x/net/context"
)

As dockerAPI.go requires lots of external packages, it would be a good idea to execute it
using Go modules; therefore, execute export GO111MODULE=on before running
dockerAPI.go for the first time. This will also save you from having to manually
download all of the required packages.

The second part of dockerAPI.go contains the following Go code:

func listContainers() error {
 cli, err := client.NewEnvClient()
 if err != nil {
 return (err)
 }

 containers, err := cli.ContainerList(context.Background(),
types.ContainerListOptions{})
 if err != nil {
 return (err)
 }

Telling a UNIX System What to Do Chapter 8

[434]

 for _, container := range containers {
 fmt.Println("Images:", container.Image, "with ID:", container.ID)
 }
 return nil
}

The definition of the types.Container
(https://godoc.org/github.com/docker/docker/api/types#Container) structure, which
is returned by ContainerList(), is as follows:

type Container struct {
 ID string `json:"Id"`
 Names []string
 Image string
 ImageID string
 Command string
 Created int64
 Ports []Port
 SizeRw int64 `json:",omitempty"`
 SizeRootFs int64 `json:",omitempty"`
 Labels map[string]string
 State string
 Status string
 HostConfig struct {
 NetworkMode string `json:",omitempty"`
 }
 NetworkSettings *SummaryNetworkSettings
 Mounts []MountPoint
}

Should you wish to find any other information about the list of running Docker images
(containers), you should make use of the other fields of the types.Container structure.

The third part of dockerAPI.go is as follows:

func listImages() error {
 cli, err := client.NewEnvClient()
 if err != nil {
 return (err)
 }

 images, err := cli.ImageList(context.Background(),
 types.ImageListOptions{})
 if err != nil {
 return (err)
 }

 for _, image := range images {

https://godoc.org/github.com/docker/docker/api/types#Container

Telling a UNIX System What to Do Chapter 8

[435]

 fmt.Printf("Images %s with size %d\n", image.RepoTags,
 image.Size)
 }
 return nil
}

The definition of the types.ImageSummary
(https://godoc.org/github.com/docker/docker/api/types#ImageSummary) structure,
which is the data type of the slice that is returned by ImageList(), is as follows:

type ImageSummary struct {
 Containers int64 `json:"Containers"`
 Created int64 `json:"Created"`
 ID string `json:"Id"`
 Labels map[string]string `json:"Labels"`
 ParentID string `json:"ParentId"`
 RepoDigests []string `json:"RepoDigests"`
 RepoTags []string `json:"RepoTags"`
 SharedSize int64 `json:"SharedSize"`
 Size int64 `json:"Size"`
 VirtualSize int64 `json:"VirtualSize"`
}

The last part of dockerAPI.go is the following:

func main() {
 fmt.Println("The available images are:")
 err := listImages()
 if err != nil {
 fmt.Println(err)
 }

 fmt.Println("The running Containers are:")
 err = listContainers()
 if err != nil {
 fmt.Println(err)
 }
}

Executing dockerAPI.go on my macOS Mojave machine will generate the following kind
of output:

$ go run dockerAPI.go
The available images are:
Images [golang:1.12] with size 772436547
Images [landoop/kafka-lenses-dev:latest] with size 1379088343
Images [confluentinc/cp-kafka:latest] with size 568503378
Images [landoop/fast-data-dev:latest] with size 1052076831

https://godoc.org/github.com/docker/docker/api/types#ImageSummary

Telling a UNIX System What to Do Chapter 8

[436]

The running Containers are:
Images: landoop/kafka-lenses-dev with ID:
90e1caaab43297810341290137186425878ef5891c787f6707c03be617862db5

If Docker is not available or if it is not running, you will get the following error message:

$ go run dockerAPI.go
The available images are:
Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the
docker daemon running?
The running Containers are:
Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the
docker daemon running?

Additional resources
You will find the following web links very useful:

Read the documentation page of the io package, which can be found at
https://golang.org/pkg/io/.
Hear from Dave Cheney on error handling:
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-

gracefully.
You can learn more about the Glot plotting library by visiting its official web
page at https://github.com/Arafatk/glot.
You can find more examples of the use of the Docker API in Go, Python, and
HTTP at https://docs.docker.com/develop/sdk/examples/.
You can learn more about the encoding/binary standard package by visiting
https://golang.org/pkg/encoding/binary/.
Check out the documentation page of the encoding/gob package, which can be
found at https://golang.org/pkg/encoding/gob/.
You can also watch https://www.youtube.com/watch?v=JRFNIKUROPE and
https://www.youtube.com/watch?v=w8nFRoFJ6EQ.
You can learn about Endianness in many places, including
https://en.wikipedia.org/wiki/Endianness.
Visit the documentation page of the flag package, which can be found at
https:// golang. org/ pkg/ flag/ .

https://golang.org/pkg/io/
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully
https://github.com/Arafatk/glot
https://docs.docker.com/develop/sdk/examples/
https://golang.org/pkg/encoding/binary/
https://golang.org/pkg/encoding/gob/
https://www.youtube.com/watch?v=JRFNIKUROPE
https://www.youtube.com/watch?v=w8nFRoFJ6EQ
https://en.wikipedia.org/wiki/Endianness
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/
https://golang.org/pkg/flag/

Telling a UNIX System What to Do Chapter 8

[437]

Exercises
Write a Go program that takes three arguments: the name of a text file, and two
strings. This utility should then replace every occurrence of the first string in the
file with the second string. For reasons of security, the final output will be
printed on the screen, which means that the original text file will remain intact.
Use the encoding/gob package to serialize and deserialize a Go map, as well as
a slice of structures.
Create a Go program that handles any three signals you choose.
Create a utility in Go that replaces all tab characters found in a text file with a
given number of spaces, specified as a command-line parameter to the program.
Once again, the output will be printed on the screen.
Develop a utility that reads a text file line by line and removes the space
characters from each line using the strings.TrimSpace() function.
Modify kvSaveLoad.go in order to support a single command-line argument,
which is the filename that you will use both to load and save your data.
Can you create a Go version of the wc(1) utility? Look at the manual page of
wc(1) to find out about the command-line options that it supports.
Can you write a program that uses Glot to plot a function?
Modify traceSyscall.go in order to display each system call at the time it is
being traced.
Modify cat.go just to do io.Copy(os.Stdout, f) in order to copy the
contents of a file straight out, instead of scanning it all.
Use the Docker API to write a utility that terminates all containers that begin
with a given string.
The cobra package also supports subcommands, which are commands
associated with specific commands like go run main.go command list. Try to
implement a utility with subcommands.
You can also use bufio.NewScanner() and bufio.ScanWords to read a line
word by word. Find out how and create a new version of the byWord.go utility.

Telling a UNIX System What to Do Chapter 8

[438]

Summary
This invaluable chapter talked about many interesting topics, including reading files,
writing to files, using the Docker API, and using the flag, cobra, and viper packages.
Nevertheless, there are many more topics related to systems programming not mentioned
in this chapter, such as working with directories; copying, deleting, and renaming files;
dealing with UNIX users, groups, and UNIX processes; changing UNIX file permissions;
generating sparse files; file locking and creating; and using and rotating your own log files,
as well as the information found in the structure returned by the os.Stat() call.

At the end of this chapter, I presented two advanced utilities written in Go. The first one
allowed you to inspect the state of the registers, while the second one showed you a
technique that allows you to trace the system calls of any program.

The next chapter will talk about goroutines, channels, and pipelines, which are unique and
powerful Go features.

9
Concurrency in Go –

Goroutines, Channels, and
Pipelines

The previous chapter discussed systems programming in Go, including the Go functions
and techniques that allow you to communicate with your operating system. Two of the
areas of systems programming that were not covered in the previous chapter are
concurrent programming and how to create and manage multiple threads. Both of these
topics will be addressed in this chapter and the next one.

Go offers its own unique and innovative way of achieving concurrency, which comes in the
form of goroutines and channels. Goroutines are the smallest Go entities that can be
executed on their own in a Go program. Channels can get data from goroutines in a
concurrent and efficient way. This allows goroutines to have a point of reference and they
can communicate with each other. Everything in Go is executed using goroutines, which
makes perfect sense since Go is a concurrent programming language by design. Therefore,
when a Go program starts its execution, its single goroutine calls the main() function,
which starts the actual program execution.

The contents and the code of this chapter will be pretty simple, and you should have no
problem following and understanding them. I left the more advanced parts of goroutines
and channels for Chapter 10, Concurrency in Go – Advanced Topics.

In this chapter, you will learn about the following topics:

The differences between processes, threads, and goroutines
The Go scheduler
Concurrency versus parallelism
The concurrency models of Erlang and Rust
Creating goroutines

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[440]

Creating channels
Reading or receiving data from a channel
Writing or sending data to a channel
Creating pipelines
Waiting for your goroutines to finish

About processes, threads, and goroutines
A process is an execution environment that contains instructions, user data, and system
data parts, as well as other types of resources that are obtained during runtime, whereas a
program is a file that contains instructions and data that are used for initializing the
instruction and user-data parts of a process.

A thread is a smaller and lighter entity than a process or a program. Threads are created by
processes and have their own flow of control and stack. A quick and simplistic way to
differentiate a thread from a process is to consider a process as the running binary file and a
thread as a subset of a process.

A goroutine is the minimum Go entity that can be executed concurrently. The use of the
word "minimum" is very important here, as goroutines are not autonomous entities like
UNIX processes – goroutines live in UNIX threads that live in UNIX processes. The main
advantage of goroutines is that they are extremely lightweight and running thousands or
hundreds of thousands of them on a single machine is not a problem.

The good thing is that goroutines are lighter than threads, which, in turn, are lighter than
processes. In practice, this means that a process can have multiple threads as well as lots of
goroutines, whereas a goroutine needs the environment of a process in order to exist. So, in
order to create a goroutine, you will need to have a process with at least one thread – UNIX
takes care of the process and thread management, while Go and the developer need to take
care of the goroutines.

Now that you know the basics of processes, programs, threads, and goroutines, let us talk a
little bit about the Go scheduler.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[441]

The Go scheduler
The UNIX kernel scheduler is responsible for the execution of the threads of a program. On
the other hand, the Go runtime has its own scheduler, which is responsible for the
execution of the goroutines using a technique known as m:n scheduling, where m
goroutines are executed using n operating system threads using multiplexing. The Go
scheduler is the Go component responsible for the way and the order in which the
goroutines of a Go program get executed. This makes the Go scheduler a really important
part of the Go programming language, as everything in a Go program is executed as a
goroutine.

Be aware that as the Go scheduler only deals with the goroutines of a single program, its
operation is much simpler, cheaper, and faster than the operation of the kernel scheduler.

Chapter 10, Concurrency in Go – Advanced Topics, will talk about the way the Go scheduler
operates in much more detail.

Concurrency and parallelism
It is a very common misconception that concurrency is the same thing as parallelism – this
is just not true! Parallelism is the simultaneous execution of multiple entities of some kind,
whereas concurrency is a way of structuring your components so that they can be executed
independently when possible.

It is only when you build software components concurrently that you can safely execute
them in parallel, when and if your operating system and your hardware permit it. The
Erlang programming language did this a long time ago – long before CPUs had multiple
cores and computers had lots of RAM.

In a valid concurrent design, adding concurrent entities makes the whole system run faster
because more things can be executed in parallel. So, the desired parallelism comes from a
better concurrent expression and implementation of the problem. The developer is
responsible for taking concurrency into account during the design phase of a system and
will benefit from a potential parallel execution of the components of the system. So, the
developer should not think about parallelism but about breaking things into independent
components that solve the initial problem when combined.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[442]

Even if you cannot run your functions in parallel on a UNIX machine, a valid concurrent
design will still improve the design and the maintainability of your programs. In other
words, concurrency is better than parallelism!

Goroutines
You can define, create, and execute a new goroutine using the go keyword followed by a
function name or the full definition of an anonymous function. The go keyword makes the
function call return immediately, while the function starts running in the background as a
goroutine and the rest of the program continues its execution.

However, as you will see in a moment, you cannot control or make any assumptions about
the order in which your goroutines are going to be executed because this depends on the
scheduler of the operating system, the Go scheduler, and the load of the operating system.

Creating a goroutine
In this subsection, you will learn two ways of creating goroutines. The first one is by using
regular functions, while the second method is by using anonymous functions – these two
ways are equivalent.

The name of the program covered in this section is simple.go, and it is presented in three
parts.

The first part of simple.go is the following Go code:

package main

import (
 "fmt"
 "time"
)

func function() {
 for i := 0; i < 10; i++ {
 fmt.Print(i)
 }
}

Apart from the import block, the preceding code defines a function named function()
that will be used in a short while.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[443]

The function name function() is nothing special – you can give it any valid function
name you want.

The second part of simple.go is as follows:

func main() {
 go function()

The preceding code starts by executing function() as a goroutine. After that, the program
continues its execution, while function() begins to run in the background.

The last code portion of simple.go is shown in the following Go code:

 go func() {
 for i := 10; i < 20; i++ {
 fmt.Print(i, " ")
 }
 }()

 time.Sleep(1 * time.Second)
 fmt.Println()
}

With this code, you create a goroutine using an anonymous function. This method works
best for relatively small functions. However, if you have lots of code, it is considered a
better practice to create a regular function and execute it using the go keyword.

As you will see in the next section, you can create multiple goroutines any way you desire,
including using a for loop.

Executing simple.go three times will generate the following type of output:

$ go run simple.go
10 11 12 13 14 15 16 17 18 19 0123456789
$ go run simple.go
10 11 12 13 14 15 16 0117 2345678918 19
$ go run simple.go
10 11 12 012345678913 14 15 16 17 18 19

Although what you really want from your programs is to generate the same output for the
same input, the output you get from simple.go is not always the same. The preceding
output supports the fact that you cannot control the order in which your goroutines will be
executed without taking extra care. This means writing extra code specifically for this to
occur. In Chapter 10, Concurrency in Go – Advanced Topics, you will learn how to control the
order in which your goroutines are executed, as well as how to print the results of one
goroutine before printing the results of the following one.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[444]

Creating multiple goroutines
In this subsection, you will learn how to create a variable number of goroutines. The
program reviewed in this section is called create.go. It is going to be presented in four
parts, and it will allow you to create a dynamic number of goroutines. The number of
goroutines will be given as a command-line argument to the program, which uses the flag
package to process its command-line argument.

The first code part of create.go is as follows:

package main

import (
 "flag"
 "fmt"
 "time"
)

The second code segment from create.go contains the following Go code:

func main() {
 n := flag.Int("n", 10, "Number of goroutines")
 flag.Parse()

 count := *n
 fmt.Printf("Going to create %d goroutines.\n", count)

The preceding code reads the value of the n command-line option, which determines the
number of goroutines that are going to be created. If there is no n command-line option, the
value of the n variable will be 10.

The third code portion of create.go is as follows:

 for i := 0; i < count; i++ {
 go func(x int) {
 fmt.Printf("%d ", x)
 }(i)
 }

A for loop is used to create the desired number of goroutines. Once again, you should
remember that you cannot make any assumptions about the order in which they are going
to be created and executed.

The last part of the Go code from create.go is the following:

 time.Sleep(time.Second)

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[445]

 fmt.Println("\nExiting...")
}

The purpose of the time.Sleep() statement is to give the goroutines enough time to finish
their jobs so that their output can be seen on the screen. In a real program, you will not
need a time.Sleep() statement, as you will want to finish as soon as possible and,
moreover, you will learn a better technique of making your program wait for the various
goroutines to finish before the main() function returns.

Executing create.go multiple times will generate the following type of output:

$ go run create.go -n 100
Going to create 100 goroutines.
5 3 2 4 19 9 0 1 7 11 10 12 13 14 15 31 16 20 17 22 8 18 28 29 21 52 30 45
25 24 49 38 41 46 6 56 57 54 23 26 53 27 59 47 69 66 51 44 71 48 74 33 35
73 39 37 58 40 50 78 85 86 90 67 72 91 32 64 65 95 75 97 99 93 36 60 34 77
94 61 88 89 83 84 43 80 82 87 81 68 92 62 55 98 96 63 76 79 42 70
Exiting...
$ go run create.go -n 100
Going to create 100 goroutines.
2 5 3 16 6 7 8 9 1 22 10 12 13 17 11 18 15 14 19 20 31 23 26 21 29 24 30 25
37 32 36 38 35 33 45 41 43 42 40 39 34 44 48 46 47 56 53 50 0 49 55 59 58
28 54 27 60 4 57 51 52 64 61 65 72 62 63 67 69 66 74 73 71 75 89 70 76 84
85 68 79 80 93 97 83 82 99 78 88 91 92 77 81 95 94 98 87 90 96 86
Exiting...

Once again, you can see that the output is non-deterministic and messy in the sense that
you will have to search the output to find what you are looking for. Additionally, if you do
not use a suitable delay in the time.Sleep() call, you will not be able to see the output of
the goroutines. time.Second might be fine for now, but this kind of code can cause nasty
and unpredictable bugs further down the road.

In the next section, you will learn how to give your goroutines enough time to finish what
they are doing before your program ends, without the need to call time.Sleep().

Waiting for your goroutines to finish
This section will present a way to prevent the main() function from ending while it is
waiting for its goroutines to finish using the sync package. The logic of the syncGo.go
program will be based on create.go, which was presented in the previous section.

The first part of syncGo.go is as follows:

package main

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[446]

import (
 "flag"
 "fmt"
 "sync"
)

As you can see, there is no need to import and use the time package, as we will use the
functionality of the sync package and wait for as long as necessary for all the goroutines to
end.

In Chapter 10, Concurrency in Go – Advanced Topics, you will study two
techniques for timing out goroutines when they are taking longer than
desired.

The second code segment of syncGo.go is shown in the following Go code:

func main() {
 n := flag.Int("n", 20, "Number of goroutines")
 flag.Parse()
 count := *n
 fmt.Printf("Going to create %d goroutines.\n", count)

 var waitGroup sync.WaitGroup

In the preceding Go code, you define a sync.WaitGroup variable. If you look at the source
code of the sync Go package, and more specifically at the waitgroup.go file that is located
inside the sync directory, you will see that the sync.WaitGroup type is nothing more than
a structure with three fields:

type WaitGroup struct {
 noCopy
 state1 [12]byte
 sema uint32
}

The output of syncGo.go will reveal more information about the way sync.WaitGroup
variables work. The number of goroutines that belong to a sync.WaitGroup group is
defined by one or multiple calls to the sync.Add() function.

The third part of syncGo.go contains the following Go code:

 fmt.Printf("%#v\n", waitGroup)
 for i := 0; i < count; i++ {
 waitGroup.Add(1)
 go func(x int) {

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[447]

 defer waitGroup.Done()
 fmt.Printf("%d ", x)
 }(i)
 }

Here, you create the desired number of goroutines using a for loop. (You could use
multiple sequential Go statements instead.)

Each call to sync.Add() increases a counter in a sync.WaitGroup variable. Notice that it
is really important to call sync.Add(1) before the go statement in order to prevent any
race conditions. When each goroutine finishes its job, the sync.Done() function will be
executed, which will decrease the same counter.

The last code portion of syncGo.go is as follows:

 fmt.Printf("%#v\n", waitGroup)
 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

The sync.Wait() call blocks until the counter in the relevant sync.WaitGroup variable is
zero, giving your goroutines time to finish.

Executing syncGo.go will create the following type of output:

$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x14, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 7 8 9 10 11 12 13 14 15 16 17 0 1 2 5 18 4 6 3
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
1 0 4 5 17 7 8 9 10 11 12 13 2 sync.WaitGroup{noCopy:sync.noCopy{},
state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x17, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0}, sema:0x0}
29 15 6 27 24 25 16 22 14 23 18 26 3 19 20 28 21
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[448]

0x1e, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
29 1 7 8 2 9 10 11 12 4 13 15 0 6 5 22 25 23 16 28 26 20 19 24 21 14 3 17
18 27
Exiting...

The output of syncGo.go still varies from execution to execution, especially if you are
dealing with a large number of goroutines. Most of the time, this is acceptable; however,
there are times when this is not the desired behavior. Additionally, when the number of
goroutines is 30, some of the goroutines have finished their job before the second
fmt.Printf("%#v\n", waitGroup) statement. Finally, notice that one of the elements of
the state1 field in sync.WaitGroup is the one that holds the counter, which increases and
decreases according to the sync.Add() and sync.Done() calls.

What if the number of Add() and Done() calls do
not agree?
When the number of sync.Add() calls and sync.Done() calls are equal, everything will
be fine in your programs. However, this section will tell you what will happen when these
two numbers do not agree with each other.

If you have executed more sync.Add() calls than sync.Done() calls, in this case by
adding a waitGroup.Add(1) statement before the first fmt.Printf("%#v\n",
waitGroup) statement of the syncGo.go program, then the output of the go run
command will be similar to the following:

$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x15, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 10 11 12 13 17 18 8 5 4 6 14 1 0 7 3 2 15 9 16 fatal error: all
goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc4200120bc)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/sema.go:56 +0x39
sync.(*WaitGroup).Wait(0xc4200120b0)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:131 +0x72
main.main()
 /Users/mtsouk/Desktop/masterGo/ch/ch9/code/syncGo.go:28 +0x2d7
exit status 2

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[449]

The error message is pretty clear: fatal error: all goroutines are asleep -
deadlock! This happened because you told your program to wait for n+1 goroutines by
calling the sync.Add(1) function n+1 times while only n sync.Done() statements were
executed by your n goroutines. As a result, the sync.Wait() call will wait indefinitely for
one or more calls to sync.Done() without any luck, which is obviously a deadlock
situation.

If you have made fewer sync.Add() calls than sync.Done() calls, which can be emulated
by adding a waitGroup.Done() statement after the for loop of the syncGo.go program,
then the go run output will be similar to the following:

$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x12, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 6 1 2 9 7 8 15 13 0 14 16 17 3 11 4 5 12 18 10 panic: sync: negative
WaitGroup counter
goroutine 22 [running]:
sync.(*WaitGroup).Add(0xc4200120b0, 0xffffffffffffffff)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:75 +0x134
sync.(*WaitGroup).Done(0xc4200120b0)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:100 +0x34
main.main.func1(0xc4200120b0, 0x11)
 /Users/mtsouk/Desktop/masterGo/ch/ch9/code/syncGo.go:25 +0xd8
created by main.main
 /Users/mtsouk/Desktop/masterGo/ch/ch9/code/syncGo.go:21 +0x206
exit status 2

Once again, the root of the problem is stated pretty clearly: panic: sync: negative
WaitGroup counter.

Although the error messages are very descriptive in both cases and will help you to solve
the real problem, you should be very careful with the number of sync.Add() and
sync.Done() calls that you put into your programs. Additionally, notice that in the second
error case (panic: sync: negative WaitGroup counter), the problem might not
appear all of the time.

Channels
A channel is a communication mechanism that allows goroutines to exchange data, among
other things.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[450]

However, there are some specific rules. Firstly, each channel allows the exchange of a
particular data type, which is also called the element type of the channel, and secondly, for
a channel to operate properly, you will need someone to receive what is sent via the
channel. You should declare a new channel using the chan keyword, and you can close a
channel using the close() function.

Finally, a very important detail: when you are using a channel as a function parameter, you
can specify its direction; that is, whether it is going to be used for sending or receiving. In
my opinion, if you know the purpose of a channel in advance, you should use this
capability because it will make your programs more robust, as well as safer. You will not be
able to send data accidentally to a channel from which you should only receive data, or
receive data from a channel to which you should only be sending data. As a result, if you
declare that a channel function parameter will be used for reading only and you try to write
to it, you will get an error message that will most likely save you from nasty bugs. We will
talk about this later on in this chapter.

Although you will learn many things about channels in this chapter, you
will have to wait for Chapter 10, Concurrency in Go – Advanced Topics, to
fully understand the power and flexibility that channels offer to the Go
developer.

Writing to a channel
The code in this subsection will teach you how to write to a channel. Writing the value x to
channel c is as easy as writing c <- x. The arrow shows the direction of the value, and you
will have no problem with this statement as long as both x and c have the same type. The
example code in this section is saved in writeCh.go, and it will be presented in three parts.

The first code segment from writeCh.go is as follows:

package main

import (
 "fmt"
 "time"
)

func writeToChannel(c chan int, x int) {
 fmt.Println(x)
 c <- x
 close(c)

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[451]

 fmt.Println(x)
}

The chan keyword is used for declaring that the c function parameter will be a channel,
and it should be followed by the type of the channel (int). The c <- x statement allows
you to write the value x to channel c, and the close() function closes the channel; that is,
it makes writing to it impossible.

The second part of writeCh.go contains the following Go code:

func main() {
 c := make(chan int)

In the preceding code, you can find the definition of a channel variable, which is named c,
and for the first time in this chapter you are using the make() function as well as the chan
keyword. All channels have a type associated with them, which in this case is int.

The remaining code from writeCh.go is as follows:

 go writeToChannel(c, 10)
 time.Sleep(1 * time.Second)
}

Here, you execute the writeToChannel() function as a goroutine and call time.Sleep()
in order to give enough time to the writeToChannel() function to execute.

Executing writeCh.go will create the following output:

$ go run writeCh.go
10

The strange thing here is that the writeToChannel() function prints the given value only
once. The cause of this unexpected output is that the second fmt.Println(x) statement is
never executed. The reason for this is pretty simple once you understand how channels
work: the c <- x statement is blocking the execution of the rest of the writeToChannel()
function because nobody is reading what was written to the c channel. Therefore, when the
time.Sleep(1 * time.Second) statement finishes, the program terminates without
waiting for writeToChannel().

The next section will illustrate how to read data from a channel.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[452]

Reading from a channel
In this subsection, you will learn how to read from a channel. You can read a single value
from a channel named c by executing <-c. In this case, the direction is from the channel to
the outer world.

The name of the program that will be used to help you understand how to read from a
channel is readCh.go, and it will be presented in three parts.

The first code segment from readCh.go is shown in the following Go code:

package main

import (
 "fmt"
 "time"
)

func writeToChannel(c chan int, x int) {
 fmt.Println("1", x)
 c <- x
 close(c)
 fmt.Println("2", x)
}

The implementation of the writeToChannel() function is the same as before.

The second part of readCh.go follows:

func main() {
 c := make(chan int)
 go writeToChannel(c, 10)
 time.Sleep(1 * time.Second)
 fmt.Println("Read:", <-c)
 time.Sleep(1 * time.Second)

In the preceding code, you read from channel c using the <-c notation. If you want to store
that value to a variable named k instead of just printing it, you can use a k := <-c
statement. The second time.Sleep(1 * time.Second) statement gives you the time to
read from the channel.

The last code portion of readCh.go contains the following Go code:

 _, ok := <-c
 if ok {
 fmt.Println("Channel is open!")
 } else {

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[453]

 fmt.Println("Channel is closed!")
 }
}

In the preceding code, you can see a technique for determining whether a given channel is
open or not. The current Go code works fine when the channel is closed; however, if the
channel was open, the Go code presented here would have discarded the read value of the
channel because of the use of the _ character in the _, ok := <-c statement. Use a proper
variable name instead of _ if you also want to store the value found in the channel in case it
is open.

Executing readCh.go will generate the following output:

$ go run readCh.go
1 10
Read: 10
2 10
Channel is closed!
$ go run readCh.go
1 10
2 10
Read: 10
Channel is closed!

Although the output is still not deterministic, both the fmt.Println(x) statements of the
writeToChannel() function are executed because the channel is unblocked when you
read from it.

Receiving from a closed channel
In this subsection, you will learn what happens when you try to read from a closed channel
using the Go code found in readClose.go, which is going to be presented in two parts.

The first part of readClose.go is as follows:

package main

import (
 "fmt"
)

func main() {
 willClose := make(chan int, 10)

 willClose <- -1

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[454]

 willClose <- 0
 willClose <- 2

 <-willClose
 <-willClose
 <-willClose

In this part of the program, we create a new int channel named willClose, we write data
to it, and we read all that data without doing anything with it.

The second part of readClose.go contains the following code:

 close(willClose)
 read := <-willClose
 fmt.Println(read)
}

In this part, we close the willClose channel and we try to read from the willClose
channel, which we emptied in the previous part.

Executing readClose.go will generate the following output:

$ go run readClose.go
0

This means that reading from a closed channel returns the zero value of its data type, which
in this case is 0.

Channels as function parameters
Although neither readCh.go nor writeCh.go used this feature, Go allows you to specify
the direction of a channel when used as a function parameter; that is, whether it will be
used for reading or writing. These two types of channels are called unidirectional channels,
whereas, by default, channels are bidirectional.

Examine the Go code of the following two functions:

func f1(c chan int, x int) {
 fmt.Println(x)
 c <- x
}
func f2(c chan<- int, x int) {
 fmt.Println(x)
 c <- x
}

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[455]

Although both functions implement the same functionality, their definitions are slightly
different. The difference is created by the <- symbol found on the right of the chan
keyword in the definition of the f2() function. This denotes that the c channel can be used
for writing only. If the code of a Go function attempts to read from a write-only channel
(send-only channel) parameter, the Go compiler will generate the following kind of error
message:

command-line-arguments
a.go:19:11: invalid operation: range in (receive from send-only type chan<-
int)

Similarly, you can have the following function definitions:

func f1(out chan<- int64, in <-chan int64) {
 fmt.Println(x)
 c <- x
}

func f2(out chan int64, in chan int64) {
 fmt.Println(x)
 c <- x
}

The definition of f2() combines a read-only channel named in with a write-only channel
named out. If you accidentally try to write and close a read-only channel (receive-only
channel) parameter of a function, you will get the following kind of error message:

command-line-arguments
a.go:13:7: invalid operation: out <- i (send to receive-only type <-chan
int)
a.go:15:7: invalid operation: close(out) (cannot close receive-only
channel)

Pipelines
A pipeline is a virtual method for connecting goroutines and channels so that the output of
one goroutine becomes the input of another goroutine using channels to transfer your data.

One of the benefits that you get from using pipelines is that there is a constant data flow in
your program, as no goroutine and channel have to wait for everything to be completed in
order to start their execution. Additionally, you use fewer variables and therefore less
memory space because you do not have to save everything as a variable. Finally, the use of
pipelines simplifies the design of the program and improves its maintainability.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[456]

Pipelines are going to be illustrated using the code of pipeline.go. This program will be
presented in six parts. The task performed by the pipeline.go program is to generate
random numbers in a given range and stop when any number in the random sequence
appears a second time. However, before terminating, the program will print the sum of all
random numbers that appeared up to the point where the first random number appeared a
second time. You will need three functions to connect the channels of the program. The
logic of the program is found in these three functions, but the data flows in the channels of
the pipeline.

This program will have two channels. The first channel (channel A) will be used to get the
random numbers from the first function and send them to the second function. The second
channel (channel B) will be used by the second function to send the acceptable random
numbers to the third function. The third function will be responsible for getting the data
from channel B, calculating it, and presenting the results.

The first code segment of pipeline.go contains the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

var CLOSEA = false

var DATA = make(map[int]bool)

As the second() function will need a way to tell the first() function to close the first
channel, I will use a global variable named CLOSEA for that. The CLOSEA variable is only
checked by the first() function, and it can only be altered by the second() function.

The second part of pipeline.go is shown in the following Go code:

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func first(min, max int, out chan<- int) {
 for {
 if CLOSEA {
 close(out)
 return

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[457]

 }
 out <- random(min, max)
 }
}

The preceding code presents the implementation of two functions named random() and
first(). You are already familiar with the random() function that generates random
numbers in a given range. However, the first() function is really interesting as it keeps
running using a for loop until a Boolean variable (CLOSEA) becomes true. In that case, it
will close its out channel.

The third code segment of pipeline.go is as follows:

func second(out chan<- int, in <-chan int) {
 for x := range in {
 fmt.Print(x, " ")
 _, ok := DATA[x]
 if ok {
 CLOSEA = true
 } else {
 DATA[x] = true
 out <- x
 }
 }
 fmt.Println()
 close(out)
}

The second() function receives data from the in channel and keeps sending it to the out
channel. However, as soon as the second() function finds a random number that already
exists in the DATA map, it sets the CLOSEA global variable to true and stops sending any
more numbers to the out channel. After that, it closes the out channel.

range loops over channels and will automatically exit when the channel
is closed.

The fourth code portion of pipeline.go is shown in the following Go code:

func third(in <-chan int) {
 var sum int
 sum = 0
 for x2 := range in {
 sum = sum + x2
 }

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[458]

 fmt.Printf("The sum of the random numbers is %d\n", sum)
}

The third() function keeps reading from the in function parameter channel. When that
channel is closed by the second() function, the for loop will stop getting any more data
and the function will display its output. At this point, it should become clear that the
second() function controls many things.

The fifth code segment of pipeline.go is as follows:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Need two integer parameters!")
 return
 }

 n1, _ := strconv.Atoi(os.Args[1])
 n2, _ := strconv.Atoi(os.Args[2])

 if n1 > n2 {
 fmt.Printf("%d should be smaller than %d\n", n1, n2)
 return
 }

The previous code is used for working with the command-line arguments of the program.

The last part of the pipeline.go program is as follows:

 rand.Seed(time.Now().UnixNano())
 A := make(chan int)
 B := make(chan int)

 go first(n1, n2, A)
 go second(B, A)
 third(B)
}

Here you define the required channels, and you execute two goroutines and one function.
The third() function is what prevents main() from returning immediately, because it is
not executed as a goroutine.

Executing pipeline.go will produce the following type of output:

$ go run pipeline.go 1 10
2 2
The sum of the random numbers is 2
$ go run pipeline.go 1 10

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[459]

9 7 8 4 3 3
The sum of the random numbers is 31
$ go run pipeline.go 1 10
1 6 9 7 1
The sum of the random numbers is 23
$ go run pipeline.go 10 20
16 19 16
The sum of the random numbers is 35
$ go run pipeline.go 10 20
10 16 17 11 15 10
The sum of the random numbers is 69
$ go run pipeline.go 10 20
12 11 14 15 10 15
The sum of the random numbers is 62

The important point here is that although the first() function keeps generating random
numbers at its own pace and the second() function will print all of them on your screen,
the unwanted random numbers, which are the random numbers that have already
appeared, will not be sent to the third() function and therefore will not be included in the
final sum.

Race conditions
The code of pipeline.go is not perfect and contains a logical error, which in concurrent
terminology is called a race condition. This can be revealed by executing the following
command:

$ go run -race pipeline.go 1 10
2 2 ==================
WARNING: DATA RACE
Write at 0x00000122bae8 by goroutine 7:
 main.second()
 /Users/mtsouk/ch09/pipeline.go:34 +0x15c
Previous read at 0x00000122bae8 by goroutine 6:
 main.first()
 /Users/mtsouk/ch09/pipeline.go:21 +0xa3
Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/ch09/pipeline.go:72 +0x2a1
Goroutine 6 (running) created at:
 main.main()
 /Users/mtsouk/ch09/pipeline.go:71 +0x275
==================
2
The sum of the random numbers is 2.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[460]

Found 1 data race(s)
exit status 66

The problem here is that the goroutine that executes the second() function might change
the value of the CLOSEA variable while the first() function reads the CLOSEA variable. As
what will happen first and what will happen second is not deterministic, it is considered a
race condition. In order to correct this race condition, we will need to use a signal channel
and the select keyword.

You will learn more about race conditions, signal channels, and the
select keyword in Chapter 10, Concurrency in Go – Advanced Topics.

The output of the diff(1) command will reveal the changes made to pipeline.go – the
new version is called plNoRace.go:

$ diff pipeline.go plNoRace.go
14a15,16
> var signal chan struct{}
>
21c23,24
< if CLOSEA {

> select {
> case <-signal:
23a27
> case out <- random(min, max):
25d28
< out <- random(min, max)
31d33
< fmt.Print(x, " ")
34c36
< CLOSEA = true

> signal <- struct{}{}
35a38
> fmt.Print(x, " ")
61d63
<
66a69,70
> signal = make(chan struct{})
>

The logical correctness of plNoRace.go can be verified by the output of the next command:

$ go run -race plNoRace.go 1 10

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[461]

8 1 4 9 3
The sum of the random numbers is 25.

Comparing Go and Rust concurrency
models
Rust is a very popular systems programming language that also supports concurrent
programming. Briefly speaking, some characteristics of Rust and the Rust concurrency
model are as follows:

Rust threads are UNIX threads, which means that they are heavy but can do
many things.
Rust supports both message-passing and shared-state concurrency like Go does
with channels, mutexes, and shared variables.
Based on its strict type and ownership system, Rust provides a safe thread
mutable state. The rules are enforced by the Rust compiler.
There are Rust structures that allow you to share state.
If a thread starts misbehaving, the system will not crash. This situation can be
handled and controlled.
The Rust programming language is under constant development, which might
discourage some people from using it as they might need to make changes to
their existing code all the time.

So, Rust has a flexible concurrency model that is even more flexible than the concurrency
model of Go. However, the price you will have to pay for this flexibility is having to live
with Rust and its idiosyncrasies.

Comparing Go and Erlang concurrency
models
Erlang is a very popular concurrent functional programming language that was designed
with high availability in mind. Briefly speaking, the main characteristics of Erlang and the
Erlang concurrency model are as follows:

Erlang is a mature and tested programming language – this also applies to its
concurrency model.

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[462]

If you do not like the way Erlang code works, you can always try Elixir, which is
based on Erlang and uses the Erlang VM, but its code is more pleasant.
Erlang uses asynchronous communication and nothing else.
Erlang uses error handling for developing robust concurrent systems.
Erlang processes can crash but if that crashing is handled properly, the system
can continue working without problems.
Just like goroutines, Erlang processes are isolated and there is no shared state
between them. The one and only way for Erlang processes to communicate with
each other is through message passing.
Erlang threads are lightweight, just like Go goroutines. This means that you will
be able to create as many processes as you want.

In summary, both Erlang and Elixir are established choices for reliable and highly available
systems, as long as you are willing to work with the Erlang concurrency approach.

Additional resources
Visit the following useful resources:

Visit the documentation page of the sync package, which can be found at
https:// golang. org/ pkg/ sync/ .
Visit the Rust web site at https://www.rust-lang.org/.
Visit the Erlang web site at https://www.erlang.org/.
Visit the documentation page of the sync package once more. Pay close attention
to the sync.Mutex and sync.RWMutex types that will appear in the next
chapter.

Exercises
Create a pipeline that reads text files, finds the number of occurrences of a given
phrase in each text file, and calculate the total number of occurrences of the
phrase in all files.
Create a pipeline for calculating the sum of the squares of all of the natural
numbers in a given range.
Remove the time.Sleep(1 * time.Second) statement from the simple.go
program and see what happens. Why is that?

https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://www.rust-lang.org/
https://www.erlang.org/

Concurrency in Go – Goroutines, Channels, and Pipelines Chapter 9

[463]

Modify the Go code of pipeline.go in order to create a pipeline with five
functions and the appropriate number of channels.
Modify the Go code of pipeline.go in order to find out what will happen when
you forget to close the out channel of the first() function.

Summary
In this chapter, you studied many unique Go features including goroutines, channels, and
pipelines. Additionally, you found out how to give your goroutines enough time to finish
their jobs using the functionality offered by the sync package. Finally, you learned that
channels can be used as parameters to Go functions. This allows developers to create
pipelines where data can flow.

The next chapter will continue talking about Go concurrency by introducing the formidable
select keyword. This keyword helps Go channels to perform many interesting jobs, and I
think that you will be truly amazed by its power.

After that, you will see two techniques that allow you to time out one or more goroutines
that are stalled for some reason. Afterward, you will learn about nil channels, signal
channels, channel of channels, and buffered channels, as well as the context package.

You will also learn about shared memory, which is the traditional way of sharing
information among the threads of the same UNIX process that also applies to goroutines.
Nevertheless, shared memory is not that popular among Go programmers because Go
offers better, safer, and faster ways for goroutines to exchange data.

10
Concurrency in Go – Advanced

Topics
The previous chapter introduced goroutines, which are the most important feature of Go,
channels, and pipelines. This chapter will continue from the point where the previous one
left off in order to help you to learn more about goroutines, channels, and the select
keyword, before discussing shared variables, as well as the sync.Mutex and
sync.RWMutex types.

This chapter also includes code examples that demonstrate the use of signal channels,
buffered channels, nil channels, and channels of channels. Additionally, early on in this
chapter, you will learn two techniques for timing out a goroutine after a given amount of
time, because nobody can guarantee that all goroutines will finish before a desired time.

The chapter will end by examining the atomic package, race conditions, the context
standard Go package, and worker pools.

In this chapter, you will learn about the following topics:

The select keyword
How the Go scheduler works
Two techniques that allow you to time out a goroutine that takes longer than
expected to finish
Signal channels
Buffered channels
Nil channels
Monitor goroutines
Shared memory and mutexes
The sync.Mutex and sync.RWMutex types
The context package and its advanced functionality

Concurrency in Go – Advanced Topics Chapter 10

[465]

The atomic package
Worker pools
Detecting race conditions

The Go scheduler revisited
A scheduler is responsible for distributing the amount of work that needs to be done over
the available resources in an efficient way. In this section, we will examine the way that the
Go scheduler operates in much greater depth than in the previous chapter. As you already
know, Go works using the m:n scheduler (or M:N scheduler). It schedules goroutines,
which are lighter than OS threads, using OS threads. First, though, let us review the
necessary theory and define some useful terms.

Go uses the fork-join concurrency model. The fork part of the model states that a child
branch can be created at any point of a program. Analogously, the join part of the Go
concurrency model is where the child branch ends and joins with its parent. Among other
things, both sync.Wait() statements and channels that collect the results of goroutines are
join points, whereas each new goroutine creates a child branch.

The fork phase of the fork-join model and the fork(2) C system call are
two totally different things.

The fair scheduling strategy, which is pretty straightforward and has a simple
implementation, shares all load evenly among the available processors. At first, this might
look like the perfect strategy because it does not have to take many things into
consideration while keeping all processors equally occupied. However, it turns out that this
is not exactly the case because most distributed tasks usually depend on other tasks.
Therefore, some processors are underutilized, or equivalently, some processors are utilized
more than others.

A goroutine in Go is a task, whereas everything after the calling statement of a goroutine is
a continuation. In the work-stealing strategy used by the Go scheduler, a (logical)
processor that is underutilized looks for additional work from other processors. When it
finds such jobs, it steals them from the other processor or processors, hence the name.
Additionally, the work-stealing algorithm of Go queues and steals continuations. A stalling
join, as is suggested by its name, is a point where a thread of execution stalls at a join and
starts looking for other work to do.

Concurrency in Go – Advanced Topics Chapter 10

[466]

Although both task stealing and continuation stealing have stalling joins, continuations
happen more often than tasks; therefore, the Go algorithm works with continuations rather
than tasks.

The main disadvantage of continuation stealing is that it requires extra work from the
compiler of the programming language. Fortunately, Go provides that extra help and
therefore uses continuation stealing in its work-stealing algorithm.

One of the benefits of continuation stealing is that you get the same results when using just
functions instead of goroutines or a single thread with multiple goroutines. This makes
perfect sense, as only one thing is executed at any given time in both cases.

Now, let us return to the m:n scheduling algorithm used in Go. Strictly speaking, at any
time, you have m goroutines that are executed, and therefore scheduled to run, on n OS
threads using, at most, GOMAXPROCS number of logical processors. You will learn about
GOMAXPROCS shortly.

The Go scheduler works using three main kinds of entities: OS threads (M), which are
related to the operating system in use, goroutines (G), and logical processors (P). The
number of processors that can be used by a Go program is specified by the value of the
GOMAXPROCS environment variable – at any given time, there are at most GOMAXPROCS
processors.

The following figure illustrates this point:

Figure 10.1: How the Go scheduler works

Concurrency in Go – Advanced Topics Chapter 10

[467]

What the figure tells us is that there are two different kinds of queues: a global queue and a
local queue attached to each logical processor. Goroutines from the global queue are
assigned to the queue of a logical processor in order to be executed. As a result, the Go
scheduler needs to check the global queue in order to avoid executing goroutines that are
only located at the local queue of each logical processor. However, the global queue is not
checked all of the time, which means that it does not have an advantage over the local
queue.

Additionally, each logical processor can have multiple threads, and the stealing occurs
between the local queues of the available logical processors. Finally, keep in mind that the
Go scheduler is allowed to create more OS threads when needed. OS threads are pretty
expensive, however, which means that dealing too much with OS threads might slow down
your Go applications.

Remember that using more goroutines in a program is not a panacea for performance, as
more goroutines, in addition to the various calls to sync.Add(), sync.Wait(), and
sync.Done(), might slow down your program due to the extra housekeeping that needs to
be done by the Go scheduler.

The Go scheduler, as well as most Go components, is always evolving,
which means that the people who work on the Go scheduler constantly
try to improve its performance by making small changes to the way it
works. The core principles, however, remain the same.

You do not need to know all of this information in order to write Go code that uses
goroutines. But knowing what occurs behind the scenes can definitely help you when
strange things start happening or if you are curious about how the Go scheduler works. It
will certainly make you a better developer!

The GOMAXPROCS environment variable
The GOMAXPROCS environment variable (and Go function) allows you to limit the number of
operating system threads that can execute user-level Go code simultaneously. Starting with
Go version 1.5, the default value of GOMAXPROCS should be the number of logical cores
available in your UNIX machine.

If you decide to assign a value to GOMAXPROCS that is less than the number of the cores in
your UNIX machine, you might affect the performance of your program. However, using a
GOMAXPROCS value that is larger than the number of the available cores will not necessarily
make your Go programs run faster.

Concurrency in Go – Advanced Topics Chapter 10

[468]

You can programmatically discover the value of the GOMAXPROCS environment variable; the
relevant code can be found in the following program, which is named maxprocs.go:

package main

import (
 "fmt"
 "runtime"
)

func getGOMAXPROCS() int {
 return runtime.GOMAXPROCS(0)
}

func main() {
 fmt.Printf("GOMAXPROCS: %d\n", getGOMAXPROCS())
}

Executing maxprocs.go on a machine with an Intel i7 processor will produce the following
output:

$ go run maxprocs.go
GOMAXPROCS: 8

You can modify the previous output by changing the value of the GOMAXPROCS
environment variable prior to the execution of the program, however. The following
commands are executed in the bash(1) UNIX shell:

$ go version
go version go1.12.3 darwin/amd64
$ export GOMAXPROCS=800; go run maxprocs.go
GOMAXPROCS: 800
$ export GOMAXPROCS=4; go run maxprocs.go
GOMAXPROCS: 4

The select keyword
As you will learn in a short while, the select keyword is pretty powerful and can do
many things in a variety of situations. The select statement in Go looks like a switch
statement but for channels. In practice, this means that select allows a goroutine to wait
on multiple communication operations. Therefore, the main benefit that you receive from
select is that it gives you the power to work with multiple channels using a single
select block. As a consequence, you can have nonblocking operations on channels,
provided that you have appropriate select blocks.

Concurrency in Go – Advanced Topics Chapter 10

[469]

The biggest problem when using multiple channels and the select
keyword is deadlocks. This means that you should be extra careful during
the design and the development process in order to avoid such deadlocks.

The Go code of select.go will clarify the use of the select keyword. This program will
be presented in five parts. The first part of select.go is shown in the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

The second code portion from select.go is as follows:

func gen(min, max int, createNumber chan int, end chan bool) {
 for {
 select {
 case createNumber <- rand.Intn(max-min) + min:
 case <-end:
 close(end)
 return
 case <-time.After(4 * time.Second):
 fmt.Println("\ntime.After()!")
 }
 }
}

So, what is really happening in the code of this select block? This particular select
statement has three cases. Notice that select statements do not require a default branch.
You can consider the third branch of the select statement of the aforementioned code as a
clever default branch. This happens because time.After() waits for the specified
duration to elapse and then sends the current time on the returned channel – this will
unblock the select statement in case all of the other channels are blocked for some reason.

A select statement is not evaluated sequentially, as all of its channels are examined
simultaneously. If none of the channels in a select statement are ready, the select
statement will block until one of the channels is ready. If multiple channels of a select
statement are ready, then the Go runtime will make a random selection from the set of
these ready channels.

Concurrency in Go – Advanced Topics Chapter 10

[470]

The Go runtime tries to make this random selection between these ready channels as
uniformly and as fairly as possible.

The third part of select.go is as follows:

func main() {
 rand.Seed(time.Now().Unix())
 createNumber := make(chan int)
 end := make(chan bool)

 if len(os.Args) != 2 {
 fmt.Println("Please give me an integer!")
 return
 }

The fourth code portion of the select.go program contains the following Go code:

 n, _ := strconv.Atoi(os.Args[1])
 fmt.Printf("Going to create %d random numbers.\n", n)
 go gen(0, 2*n, createNumber, end)

 for i := 0; i < n; i++ {
 fmt.Printf("%d ", <-createNumber)
 }

The reason for not examining the error value returned by
strconv.Atoi() is to save some space. You should never do this in real
applications.

The remaining Go code of the select.go program is as follows:

 time.Sleep(5 * time.Second)
 fmt.Println("Exiting...")
 end <- true
}

The main purpose of the time.Sleep(5 * time.Second) statement is to give the
time.After() function of gen() enough time to return and therefore activate the relevant
branch of the select statement.

The last statement of the main() function is what terminates the program by activating the
case <-end branch of the select statement in gen() and executing the related Go code.

Executing select.go will generate the following output:

$ go run select.go 10

Concurrency in Go – Advanced Topics Chapter 10

[471]

Going to create 10 random numbers.
13 17 8 14 19 9 2 0 19 5
time.After()!
Exiting...

The biggest advantage of select is that it can connect, orchestrate, and
manage multiple channels. As channels connect goroutines, select
connects channels that connect goroutines. Therefore, the select
statement is one of the most important, if not the single most important,
part of the Go concurrency model.

Timing out a goroutine
This section presents two very important techniques that will help you to time out
goroutines. Put simply, these two techniques will save you from having to wait forever for
a goroutine to finish its job, and they will give you full control over the amount of time that
you want to wait for a goroutine to end. Both techniques use the capabilities of the handy
select keyword combined with the time.After() function that you experienced in the
previous section.

Timing out a goroutine – take 1
The source code of the first technique will be saved in timeOut1.go, and it will be
presented in four parts.

The first part of timeOut1.go is shown in the following Go code:

package main

import (
 "fmt"
 "time"
)

The second code segment from timeOut1.go is as follows:

func main() {
 c1 := make(chan string)
 go func() {
 time.Sleep(time.Second * 3)
 c1 <- "c1 OK"
 }()

Concurrency in Go – Advanced Topics Chapter 10

[472]

The time.Sleep() call is used to emulate the time it will normally take for the function to
finish its job. In this case, the anonymous function that is executed as a goroutine will take
about three seconds (time.Second * 3) before writing a message to the c1 channel.

The third code segment from timeOut1.go contains the following Go code:

 select {
 case res := <-c1:
 fmt.Println(res)
 case <-time.After(time.Second * 1):
 fmt.Println("timeout c1")
 }

The purpose of the time.After() function call is to wait for the chosen time. In this case,
you are not interested in the actual value returned by time.After() but in the fact that the
time.After() function call has ended, which means that the available waiting time has
passed. In this case, as the value passed to the time.After() function is smaller than the
value used in the time.Sleep() call that was executed as the goroutine in the previous
code segment, you will most likely get a timeout message.

The remaining code from timeOut1.go is as follows:

 c2 := make(chan string)
 go func() {
 time.Sleep(3 * time.Second)
 c2 <- "c2 OK"
 }()

 select {
 case res := <-c2:
 fmt.Println(res)
 case <-time.After(4 * time.Second):
 fmt.Println("timeout c2")
 }
}

The preceding code both executes a goroutine that will take about three seconds to execute
because of the time.Sleep() call and defines a timeout period of four seconds using
time.After(4 * time.Second). If the time.After(4 * time.Second) call returns
after you get a value from the c2 channel found in the first case of the select block, then
there will not be any timeout; otherwise, you will get a timeout! However, in this case, the
value of the time.After() call provides enough time for the time.Sleep() call to return,
so you will most likely not get a timeout message here.

Concurrency in Go – Advanced Topics Chapter 10

[473]

Executing timeOut1.go will generate the following type of output:

$ go run timeOut1.go
timeout c1
c2 OK

As expected, the first goroutine did not finish its job, whereas the second goroutine had
enough time to finish.

Timing out a goroutine – take 2
The source code of the second technique will be saved in timeOut2.go, and it will be
presented in five parts. This time, the timeout period is provided as a command-line
argument to the program.

The first part of timeOut2.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

The second code segment of timeOut2.go is shown in the following Go code:

func timeout(w *sync.WaitGroup, t time.Duration) bool {
 temp := make(chan int)
 go func() {
 defer close(temp)
 time.Sleep(5 * time.Second)

 w.Wait()
 }()

 select {
 case <-temp:
 return false
 case <-time.After(t):
 return true
 }
}

Concurrency in Go – Advanced Topics Chapter 10

[474]

In the preceding code, the time duration that will be used in the time.After() call is a
parameter to the timeout() function, which means that it can vary. Once again, the
select block implements the logic of the time out. Additionally, the w.Wait() call will
make the timeout() function wait for a matching sync.Done() function indefinitely in
order to end. When the w.Wait() call returns, the first branch of the select statement will
be executed.

The third code portion from timeOut2.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Need a time duration!")
 return
 }

 var w sync.WaitGroup
 w.Add(1)

 t, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println(err)
 return
 }

The fourth part of the timeOut2.go program is as follows:

 duration := time.Duration(int32(t)) * time.Millisecond
 fmt.Printf("Timeout period is %s\n", duration)

 if timeout(&w, duration) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }

The time.Duration() function converts an integer value into a time.Duration variable
that you can use afterward.

The remaining Go code from timeOut2.go is as follows:

 w.Done()
 if timeout(&w, duration) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")

Concurrency in Go – Advanced Topics Chapter 10

[475]

 }
}

Once the w.Done() call is executed, the previous timeout() function will return.
However, the second call to timeout() has no sync.Done() statement to wait for.

Executing timeOut2.go will generate the following type of output:

$ go run timeOut2.go 10000
Timeout period is 10s
Timed out!
OK!

In this execution of timeOut2.go, the timeout period is longer than the time.Sleep(5 *
time.Second) call of the anonymous goroutine. However, without the required call to
w.Done(), the anonymous goroutine cannot return and therefore the time.After(t) call
will end first, so the timeout() function of the first if statement will return true. In the
second if statement, the anonymous function does not have to wait for anything, so the
timeout() function will return false because time.Sleep(5 * time.Second) will
finish before time.After(t).

$ go run timeOut2.go 100
Timeout period is 100ms
Timed out!
Timed out!

In the second program execution, however, the timeout period is too small, so both
executions of timeout() will not have enough time to finish; therefore, both will be timed
out. So, when defining a timeout period, make sure that you choose an appropriate value,
or your results might not be what you expect.

Go channels revisited
Once the select keyword comes into play, Go channels can be used in several unique
ways to do many more things than those you experienced in Chapter 9, Concurrency in Go –
Goroutines, Channels, and Pipelines. This section will reveal the many uses of Go channels.

It helps to remember that the zero value of the channel type is nil, and that if you send a
message to a closed channel, the program will panic. However, if you try to read from a
closed channel, you will get the zero value of the type of that channel. So, after closing a
channel, you can no longer write to it, but you can still read from it.

Concurrency in Go – Advanced Topics Chapter 10

[476]

In order to be able to close a channel, the channel must not be receive-only. Additionally, a
nil channel always blocks, which means that trying to read or write from a nil channel
will block. This property of channels can be very useful when you want to disable a branch
of a select statement by assigning the nil value to a channel variable.

Finally, if you try to close a nil channel, your program will panic. This is best illustrated in
the closeNilChannel.go program, which is presented next:

package main

func main() {
 var c chan string
 close(c)
}

Executing closeNilChannel.go will generate the following output:

$ go run closeNilChannel.go
panic: close of nil channel
goroutine 1 [running]:
main.main()
 /Users/mtsouk/closeNilChannel.go:5 +0x2a
exit status 2

Signal channels
A signal channel is one that is used just for signaling. Put simply, you can use a signal
channel when you want to inform another goroutine about something. Signal channels
should not be used for the transferring of data.

You should not confuse signal channels with UNIX signal handling,
which was discussed in Chapter 8, Telling a UNIX System What to Do,
because they are totally different things.

You will see a code example that uses signal channels in the section called Specifying the
order of execution for your goroutines later in this chapter.

Buffered channels
The topic of this subsection is buffered channels. These are channels that allow the Go
scheduler to put jobs in the queue quickly in order to be able to deal with more requests.

Concurrency in Go – Advanced Topics Chapter 10

[477]

Moreover, you can use buffered channels as semaphores in order to limit the throughput of
your application.

The technique presented here works as follows: all incoming requests are forwarded to a
channel, which processes them one by one. When the channel is done processing a request,
it sends a message to the original caller saying that it is ready to process a new one. So, the
capacity of the buffer of the channel restricts the number of simultaneous requests that it
can keep.

The technique will be presented with the help of the code found in bufChannel.go, which
is broken down into four parts.

The first part of the code of bufChannel.go is as follows:

package main

import (
 "fmt"
)

The second code segment of bufChannel.go contains the following Go code:

func main() {
 numbers := make(chan int, 5)
 counter := 10

The definition presented of the numbers channel gives it a place to store up to five integers.

The third part of the code of bufChannel.go is shown in the following Go code:

 for i := 0; i < counter; i++ {
 select {
 case numbers <- i:
 default:
 fmt.Println("Not enough space for", i)
 }
 }

In the preceding code, we tried to put 10 integers in the numbers channel. However, as the
numbers channel has room for only five integers, we will not be able to store all 10 integers
in it.

The remaining Go code of bufChannel.go follows:

 for i := 0; i < counter+5; i++ {
 select {

Concurrency in Go – Advanced Topics Chapter 10

[478]

 case num := <-numbers:
 fmt.Println(num)
 default:
 fmt.Println("Nothing more to be done!")
 break
 }
 }
}

In the preceding Go code, we tried to read the contents of the numbers channel using a for
loop and a select statement. As long as there is something to read from the numbers
channel, the first branch of the select statement will get executed. As long as the numbers
channel is empty, the default branch will be executed.

Executing bufChannel.go will create the following type of output:

$ go run bufChannel.go
Not enough space for 5
Not enough space for 6
Not enough space for 7
Not enough space for 8
Not enough space for 9
0
1
2
3
4
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!

Nil channels
In this subsection, you will learn about nil channels. These are a special kind of channel
because they always block. They are illustrated in nilChannel.go, which will be
presented in four code segments.

Concurrency in Go – Advanced Topics Chapter 10

[479]

The first part of nilChannel.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

The second code portion of nilChannel.go is shown in the following Go code:

func add(c chan int) {
 sum := 0
 t := time.NewTimer(time.Second)

 for {
 select {
 case input := <-c:
 sum = sum + input
 case <-t.C:
 c = nil
 fmt.Println(sum)
 }
 }
}

The add() function demonstrates how a nil channel is used. The <-t.C statement blocks
the c channel of the t timer for the time that is specified in the time.NewTimer() call. Do
not confuse channel c, which is the parameter of the function, with channel t.C, which
belongs to timer t. When the time expires, the timer sends a value to the t.C channel. This
will trigger the execution of the relevant branch of the select statement, which will assign
the value nil to channel c and print the sum variable.

The third code segment of nilChannel.go is as follows:

func send(c chan int) {
 for {
 c <- rand.Intn(10)
 }
}

The purpose of the send() function is to generate random numbers and continue sending
them to a channel for as long as the channel is open.

Concurrency in Go – Advanced Topics Chapter 10

[480]

The remaining Go code of nilChannel.go is as follows:

func main() {
 c := make(chan int)
 go add(c)
 go send(c)

 time.Sleep(3 * time.Second)
}

The time.Sleep() function is used to give enough time to the two goroutines to operate.

Executing nilChannel.go will generate the following output:

$ go run nilChannel.go
13167523
$ go run nilChannel.go
12988362

Since the number of times that the first branch of the select statement in the add()
function will be executed is not fixed, you get different results from executing
nilChannel.go.

Channels of channels
A channel of channels is a special kind of channel variable that works with channels instead
of other types of variables. Nevertheless, you still have to declare a data type for a channel
of channels. You can define a channel of channels using the chan keyword twice in a row,
as shown in the following statement:

c1 := make(chan chan int)

The other types of channels presented in this chapter are far more popular
and useful than a channel of channels.

The use of channels of channels is illustrated using the code found in chSquare.go, which
will be presented in four parts.

The first part of chSquare.go is as follows:

package main

import (

Concurrency in Go – Advanced Topics Chapter 10

[481]

 "fmt"
 "os"
 "strconv"
 "time"
)

var times int

The second code portion from chSquare.go is shown in the following Go code:

func f1(cc chan chan int, f chan bool) {
 c := make(chan int)
 cc <- c
 defer close(c)

 sum := 0
 select {
 case x := <-c:
 for i := 0; i <= x; i++ {
 sum = sum + i
 }
 c <- sum
 case <-f:
 return
 }
}

After declaring a regular int channel, you send that to the channel of channels variable.
Then, you use a select statement in order to be able to read data from the regular int
channel or exit your function using the f signal channel.

Once you read a single value from the c channel, you start a for loop that calculates the
sum of all integers from 0 up to the integer value that you just read. Next, you send the
calculated value to the c int channel and you are done.

The third part of chSquare.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Need just one integer argument!")
 return
 }

 times, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println(err)

Concurrency in Go – Advanced Topics Chapter 10

[482]

 return
 }

 cc := make(chan chan int)

The last statement in the preceding code is where you declare a channel of channels
variable named cc, which is the star of the program because everything depends on that
variable. The cc variable is passed to the f1() function, and it will be used in the for loop
that is coming next.

The remaining Go code of chSquare.go is as follows:

 for i := 1; i < times+1; i++ {
 f := make(chan bool)
 go f1(cc, f)
 ch := <-cc
 ch <- i
 for sum := range ch {
 fmt.Print("Sum(", i, ")=", sum)
 }
 fmt.Println()
 time.Sleep(time.Second)
 close(f)
 }
}

The f channel is a signal channel used to end the goroutine when the real work is finished.
The ch := <-cc statement allows you to get a regular channel from the channel of
channels variable in order to be able to send an int value to it using ch <- i. After that,
you start reading from it using a for loop. Although the f1() function is programmed to
send a single value back, you can also read multiple values. Notice that each value of i is
served by a different goroutine.

The type of a signal channel can be anything you want, including bool, which is used in
the preceding code, and struct{}, which will be used in the signal channel in the next
section. The main advantage of a struct{} signal channel is that no data can be sent to it,
which can save you from bugs and misconceptions.

Executing chSquare.go will generate the following type of output:

$ go run chSquare.go 4
Sum(1)=1
Sum(2)=3
Sum(3)=6
Sum(4)=10
$ go run chSquare.go 7

Concurrency in Go – Advanced Topics Chapter 10

[483]

Sum(1)=1
Sum(2)=3
Sum(3)=6
Sum(4)=10
Sum(5)=15
Sum(6)=21
Sum(7)=28

Specifying the order of execution for your
goroutines
Although you should not make any assumptions about the order in which your goroutines
will be executed, there are times when you need to be able to control this order. This
subsection illustrates such a technique using signal channels.

You might ask, "Why choose to execute goroutines in a given order when
simple functions could do the same job much more easily?" The answer is
simple: goroutines are able to operate concurrently and wait for other
goroutines to end, whereas functions executed in sequence cannot do that.

The name of the Go program for this topic is defineOrder.go, and it will be presented in
five parts. The first part of defineOrder.go follows:

package main

import (
 "fmt"
 "time"
)

func A(a, b chan struct{}) {
 <-a
 fmt.Println("A()!")
 time.Sleep(time.Second)
 close(b)
}

The A() function is blocked by the channel stored in the a parameter. Once that channel is
unblocked in the main() function, the A() function will start working. Finally, it will close
channel b, which will unblock another function – in this case, function B().

The second code portion of defineOrder.go is shown in the following Go code:

func B(a, b chan struct{}) {

Concurrency in Go – Advanced Topics Chapter 10

[484]

 <-a
 fmt.Println("B()!")
 close(b)
}

The logic in B() is the same as in function A(). The function is blocked until channel a is
closed. Then, it does its job and closes channel b. Notice that channels a and b refer to the
names of the parameters of the function.

The third code segment of defineOrder.go follows:

func C(a chan struct{}) {
 <-a
 fmt.Println("C()!")
}

Function C() is blocked and waits for channel a to close in order to start working.

The fourth part of defineOrder.go contains the following code:

func main() {
 x := make(chan struct{})
 y := make(chan struct{})
 z := make(chan struct{})

These three channels will be the parameters to the three functions.

The last code segment of defineOrder.go contains the following Go code:

 go C(z)
 go A(x, y)
 go C(z)
 go B(y, z)
 go C(z)

 close(x)
 time.Sleep(3 * time.Second)
}

In this part, we execute the desired goroutines before closing the x channel and sleeping for
three seconds.

Executing defineOrder.go will generate the desired output even though the C()function
is called multiple times:

$ go run defineOrder.go
A()!
B()!

Concurrency in Go – Advanced Topics Chapter 10

[485]

C()!
C()!
C()!

Calling the C() function multiple times as goroutines will work just fine because C() does
not close any channels. However, if you call A() or B() more than once, you will most
likely get an error message such as the following:

$ go run defineOrder.go
A()!
A()!
B()!
C()!
C()!
C()!
panic: close of closed channel
goroutine 7 [running]:
main.A(0xc420072060, 0xc4200720c0)
 /Users/mtsouk/Desktop/defineOrder.go:12 +0x9d
created by main.main
 /Users/mtsouk/Desktop/defineOrder.go:33 +0xfa
exit status 2

As you can see from the output, function A() was called twice. However, as function A()
closes a channel, one of its goroutines will find that channel already closed and generate a
panic situation when it tries to close it again. You will get a similar panic situation if you
call B() more than once.

How not to use goroutines
In this section, you are going to see a naive way to sort natural numbers using goroutines.
The name of the program is sillySort.go and it will be presented in two parts. The first
part of sillySort.go is the following:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

func main() {

Concurrency in Go – Advanced Topics Chapter 10

[486]

 arguments := os.Args

 if len(arguments) == 1 {
 fmt.Println(os.Args[0], "n1, n2, [n]")
 return
 }

 var wg sync.WaitGroup
 for _, arg := range arguments[1:] {
 n, err := strconv.Atoi(arg)
 if err != nil || n < 0 {
 fmt.Print(". ")
 continue
 }

The second part of sillySort.go contains the following Go code:

 wg.Add(1)
 go func(n int) {
 defer wg.Done()
 time.Sleep(time.Duration(n) * time.Second)
 fmt.Print(n, " ")
 }(n)
 }

 wg.Wait()
 fmt.Println()
}

The sorting takes place with the help of the time.Sleep() call – the bigger the natural
number, the bigger the wait for the execution of the fmt.Print() statement!

Executing sillySort.go will generate the following kind of output:

$ go run sillySort.go a -1 1 2 3 5 0 100 20 60
. . 0 1 2 3 5 20 60 100
$ go run sillySort.go a -1 1 2 3 5 0 100 -1 a 20 hello 60
. 0 1 2 3 5 20 60 100
$ go run sillySort.go 0 0 10 2 30 3 4 30
0 0 2 3 4 10 30 30

Shared memory and shared variables
Shared memory and shared variables are the most common ways for UNIX threads to
communicate with each other.

Concurrency in Go – Advanced Topics Chapter 10

[487]

A mutex variable, which is an abbreviation of mutual exclusion variable, is mainly used for
thread synchronization and for protecting shared data when multiple writes can occur at
the same time. A mutex works like a buffered channel with a capacity of one, which allows
at most one goroutine to access a shared variable at any given time. This means that there is
no way for two or more goroutines to try to update that variable simultaneously.

A critical section of a concurrent program is the code that cannot be executed
simultaneously by all processes, threads, or, in this case, goroutines. It is the code that
needs to be protected by mutexes. Therefore, identifying the critical sections of your code
will make the whole programming process so much simpler that you should pay particular
attention to this task.

A critical section cannot be embedded into another critical section when
both critical sections use the same sync.Mutex or sync.RWMutex
variable. Put simply, avoid at almost any cost spreading mutexes across
functions because that makes it really hard to see whether you are
embedding or not.

The next two subsections will illustrate the use of the sync.Mutex and sync.RWMutex
types.

The sync.Mutex type
The sync.Mutex type is the Go implementation of a mutex. Its definition, which can be
found in the mutex.go file of the sync directory, is as follows:

// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
type Mutex struct {
 state int32
 sema uint32
}

If you are interested in what code in the standard library is doing,
remember that Go is completely open source and you can go and read it.

Concurrency in Go – Advanced Topics Chapter 10

[488]

The definition of the sync.Mutex type is nothing extraordinary. All of the interesting work
is done by the sync.Lock() and sync.Unlock() functions, which can lock and unlock a
sync.Mutex mutex, respectively. Locking a mutex means that nobody else can lock it until
it has been released using the sync.Unlock() function.

The mutex.go program, which is going to be presented in five parts, illustrates the use of
the sync.Mutex type.

The first code segment of mutex.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

var (
 m sync.Mutex
 v1 int
)

The second part of mutex.go is shown in the following Go code:

func change(i int) {
 m.Lock()
 time.Sleep(time.Second)
 v1 = v1 + 1
 if v1%10 == 0 {
 v1 = v1 - 10*i
 }
 m.Unlock()
}

The critical section of this function is the Go code between the m.Lock() and m.Unlock()
statements.

Concurrency in Go – Advanced Topics Chapter 10

[489]

The third part of mutex.go contains the following Go code:

func read() int {
 m.Lock()
 a := v1
 m.Unlock()
 return a
}

Similarly, the critical section of this function is defined by the m.Lock() and m.Unlock()
statements.

The fourth code segment of mutex.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please give me an integer!")
 return
 }

 numGR, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 var waitGroup sync.WaitGroup

The last part of mutex.go is shown in the following Go code:

 fmt.Printf("%d ", read())
 for i := 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func(i int) {
 defer waitGroup.Done()
 change(i)
 fmt.Printf("-> %d", read())
 }(i)
 }

 waitGroup.Wait()
 fmt.Printf("-> %d\n", read())
}

Executing mutex.go will generate the following type of output:

$ go run mutex.go 21
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9-> -30-> -29-> -28-> -27-> -26->
-25-> -24-> -23-> -22-> -21-> -210-> -209-> -209

Concurrency in Go – Advanced Topics Chapter 10

[490]

$ go run mutex.go 21
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9-> -130-> -129-> -128-> -127-> -126->
-125-> -124-> -123-> -122-> -121-> -220-> -219-> -219
$ go run mutex.go 21
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9-> -100-> -99-> -98-> -97-> -96->
-95-> -94-> -93-> -92-> -91-> -260-> -259-> -259

If you remove the m.Lock() and m.Unlock() statements from the change() function, the
program will generate output similar to the following:

$ go run mutex.go 21
0 -> 1-> 6-> 7-> 5-> -60-> -59-> 9-> 2-> -58-> 3-> -52-> 4-> -57-> 8->
-55-> -90-> -54-> -89-> -53-> -56-> -51-> -89
$ go run mutex.go 21
0 -> 1-> 7-> 8-> 9-> 5-> -99-> 4-> 2-> -97-> -96-> 3-> -98-> -95-> -100->
-93-> -94-> -92-> -91-> -230-> 6-> -229-> -229
$ go run mutex.go 21
0 -> 3-> 7-> 8-> 9-> -120-> -119-> -118-> -117-> 1-> -115-> -114-> -116->
4-> 6-> -112-> 2-> -111-> 5-> -260-> -113-> -259-> -259

The reason for such a change in the output is that all goroutines are simultaneously
changing the shared variable, which is the main reason that the output appears randomly
generated.

What happens if you forget to unlock a mutex?
In this section, you will see what happens if you forget to unlock a sync.Mutex. You will
do this using the Go code of forgetMutex.go, which will be presented in two parts.

The first part of forgetMutex.go is shown in the following Go code:

package main

import (
 "fmt"
 "sync"
)

var m sync.Mutex

func function() {
 m.Lock()
 fmt.Println("Locked!")
}

Concurrency in Go – Advanced Topics Chapter 10

[491]

All of the problems in this program are caused because the developer forgot to release the
lock to m sync.Mutex. However, if your program is going to call function() only once,
then everything will look just fine.

The second part of forgetMutex.go is as follows:

func main() {
 var w sync.WaitGroup

 go func() {
 defer w.Done()
 function()
 }()
 w.Add(1)

 go func() {
 defer w.Done()
 function()
 }()
 w.Add(1)

 w.Wait()
}

There is nothing wrong with the main() function, which generates just two goroutines and
waits for them to finish.

Executing forgetMutex.go will produce the following output:

$ go run forgetMutex.go
Locked!
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42001209c)
 /usr/local/Cellar/go/1.12.3/libexec/src/runtime/sema.go:56 +0x39
sync.(*WaitGroup).Wait(0xc420012090)
 /usr/local/Cellar/go/1.12.3/libexec/src/sync/waitgroup.go:131 +0x72
main.main()
 /Users/mtsouk/forgetMutex.go:30 +0xb6
goroutine 5 [semacquire]:
sync.runtime_SemacquireMutex(0x115c6fc, 0x0)
 /usr/local/Cellar/go/1.12.3/libexec/src/runtime/sema.go:71 +0x3d
sync.(*Mutex).Lock(0x115c6f8)
 /usr/local/Cellar/go/1.12.3/libexec/src/sync/mutex.go:134 +0xee
main.function()
 /Users/mtsouk/forgetMutex.go:11 +0x2d
main.main.func1(0xc420012090)

Concurrency in Go – Advanced Topics Chapter 10

[492]

 /Users/mtsouk/forgetMutex.go:20 +0x48
created by main.main
 /Users/mtsouk/forgetMutex.go:18 +0x58
exit status 2

So, forgetting to unlock a sync.Mutex mutex will create a panic situation even in the
simplest kind of program. The same applies to the sync.RWMutex type of mutex, which
you are going to work with in the next section.

The sync.RWMutex type
The sync.RWMutex type is another kind of mutex – actually, it is an improved version of
sync.Mutex, which is defined in the rwmutex.go file of the sync directory as follows:

type RWMutex struct {
 w Mutex // held if there are pending writers
 writerSem uint32 // semaphore for writers to wait for completing
readers
 readerSem uint32 // semaphore for readers to wait for completing
writers
 readerCount int32 // number of pending readers
 readerWait int32 // number of departing readers
}

In other words, sync.RWMutex is based on sync.Mutex with the necessary additions and
improvements.

Now, let us talk about how sync.RWMutex improves sync.Mutex. Although only one
function is allowed to perform write operations using a sync.RWMutex mutex, you can
have multiple readers owning a sync.RWMutex mutex. However, there is one thing that
you should be aware of: until all of the readers of a sync.RWMutex mutex unlock that
mutex, you cannot lock it for writing, which is the small price you have to pay for allowing
multiple readers.

The functions that can help you to work with a sync.RWMutex mutex are RLock() and
RUnlock(), which are used for locking and unlocking the mutex for reading purposes,
respectively. The Lock() and Unlock() functions used in a sync.Mutex mutex should
still be used when you want to lock and unlock a sync.RWMutex mutex for writing
purposes. Hence, an RLock() function call that locks for reading purposes should be
paired with an RUnlock() function call. Finally, it should be apparent that you should not
make changes to any shared variables inside an RLock() and RUnlock() block of code.

Concurrency in Go – Advanced Topics Chapter 10

[493]

The Go code found in rwMutex.go illustrates the use and usefulness of the sync.RWMutex
type. The program will be presented in six parts, and it contains two slightly different
versions of the same function. The first one uses a sync.RWMutex mutex for reading, and
the second one uses a sync.Mutex mutex for reading. The performance difference between
these two functions will help you to better understand the benefits of the sync.RWMutex
mutex when used for reading purposes.

The first part of rwMutex.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "sync"
 "time"
)

var Password = secret{password: "myPassword"}

type secret struct {
 RWM sync.RWMutex
 M sync.Mutex
 password string
}

The secret structure holds a shared variable, a sync.RWMutex mutex, and a sync.Mutex
mutex.

The second code portion of rwMutex.go is shown in the following code:

func Change(c *secret, pass string) {
 c.RWM.Lock()
 fmt.Println("LChange")
 time.Sleep(10 * time.Second)
 c.password = pass
 c.RWM.Unlock()
}

The Change() function modifies a shared variable, which means that you need to use an
exclusive lock, which is the reason for using the Lock() and Unlock() functions. You
cannot avoid using exclusive locks when changing things!

The third part of rwMutex.go is as follows:

func show(c *secret) string {

Concurrency in Go – Advanced Topics Chapter 10

[494]

 c.RWM.RLock()
 fmt.Print("show")
 time.Sleep(3 * time.Second)
 defer c.RWM.RUnlock()
 return c.password
}

The show() function uses the RLock() and RUnlock() functions because its critical
section is used for reading a shared variable. So, although many goroutines can read the
shared variable, no one can change it without using the Lock() and Unlock() functions.
However, the Lock() function will be blocked for as long as there is someone reading that
shared variable using the mutex.

The fourth code segment of rwMutex.go contains the following Go code:

func showWithLock(c *secret) string {
 c.RWM.Lock()
 fmt.Println("showWithLock")
 time.Sleep(3 * time.Second)
 defer c.RWM.Unlock()
 return c.password
}

The only difference between the code of the showWithLock() function and the code of the
show() function is that the showWithLock() function uses an exclusive lock for reading,
which means that only one showWithLock() function can read the password field of the
secret structure.

The fifth part of rwMutex.go contains the following Go code:

func main() {
 var showFunction = func(c *secret) string { return "" }
 if len(os.Args) != 2 {
 fmt.Println("Using sync.RWMutex!")
 showFunction = show
 } else {
 fmt.Println("Using sync.Mutex!")
 showFunction = showWithLock
 }

 var waitGroup sync.WaitGroup

 fmt.Println("Pass:", showFunction(&Password))

The remaining code of rwMutex.go follows:

 for i := 0; i < 15; i++ {

Concurrency in Go – Advanced Topics Chapter 10

[495]

 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 fmt.Println("Go Pass:", showFunction(&Password))
 }()
 }

 go func() {
 waitGroup.Add(1)
 defer waitGroup.Done()
 Change(&Password, "123456")
 }()

 waitGroup.Wait()
 fmt.Println("Pass:", showFunction(&Password))
}

Executing rwMutex.go twice and using the time(1) command-line utility to benchmark
the two versions of the program will generate the following type of output:

$ time go run rwMutex.go 10 >/dev/null
real 0m51.206s
user 0m0.130s
sys 0m0.074s
$ time go run rwMutex.go >/dev/null
real 0m22.191s
user 0m0.135s
sys 0m0.071s

Note that > /dev/null at the end of the preceding commands is for omitting the output of
the two commands. Hence, the version that uses the sync.RWMutex mutex is much faster
than the version that uses sync.Mutex.

The atomic package
An atomic operation is an operation that is completed in a single step relative to other
threads or, in this case, to other goroutines. This means that an atomic operation cannot be
interrupted in the middle of it.

The Go standard library offers the atomic package, which, in some cases, can help you to
avoid using a mutex. However, mutexes are more versatile than atomic operations. Using
the atomic package, you can have atomic counters accessed by multiple goroutines
without synchronization issues and race conditions.

Concurrency in Go – Advanced Topics Chapter 10

[496]

Notice that, if you have an atomic variable, all reading and writing must be done using the
atomic functions provided by the atomic package. The use of the atomic package will be
illustrated with the atom.go program, which will be presented in three parts.

The first part of atom.go is as follows:

package main

import (
 "flag"
 "fmt"
 "sync"
 "sync/atomic"
)

type atomCounter struct {
 val int64
}

func (c *atomCounter) Value() int64 {
 return atomic.LoadInt64(&c.val)
}

The second part of atom.go contains the following code:

func main() {
 minusX := flag.Int("x", 100, "Goroutines")
 minusY := flag.Int("y", 200, "Value")
 flag.Parse()
 X := *minusX
 Y := *minusY

 var waitGroup sync.WaitGroup
 counter := atomCounter{}

The last part of atom.go is as follows:

 for i := 0; i < X; i++ {
 waitGroup.Add(1)
 go func(no int) {
 defer waitGroup.Done()
 for i := 0; i < Y; i++ {
 atomic.AddInt64(&counter.val, 1)
 }
 }(i)
 }

 waitGroup.Wait()

Concurrency in Go – Advanced Topics Chapter 10

[497]

 fmt.Println(counter.Value())
}

The desired variable changes using atomic.AddInt64().

Executing atom.go will generate the following output:

$ go run atom.go
20000
$ go run atom.go -x 4000 -y 10
40000

The output of atom.go proves that the counter used in the program is safe. It would be a
very interesting exercise to modify the atom.go program in order to modify the counter
variable using regular arithmetic (counter.val++) instead of atomic.AddInt64(). In
that case, the output of the program would have been similar to the following:

$ go run atom.go -x 4000 -y 10
37613
$ go run atom.go
15247

The previous output shows that the use of counter.val++ makes the program thread
unsafe.

In Chapter 12, The Foundations of Network Programming in Go, you are going to see a similar
example using an HTTP server written in Go.

Sharing memory using goroutines
The last subsection of this topic illustrates how you can share data using a dedicated
goroutine. Although shared memory is the traditional way that threads communicate with
each other, Go comes with built-in synchronization features that allow a single goroutine to
own a shared piece of data. This means that other goroutines must send messages to this
single goroutine that owns the shared data, which prevents the corruption of the data. Such
a goroutine is called a monitor goroutine. In Go terminology, this is sharing by
communicating instead of communicating by sharing.

The technique will be illustrated using the monitor.go source file, which will be presented
in five parts. The monitor.go program generates random numbers using a monitor
goroutine.

Concurrency in Go – Advanced Topics Chapter 10

[498]

The first part of monitor.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "sync"
 "time"
)

var readValue = make(chan int)
var writeValue = make(chan int)

The readValue channel is used for reading random numbers, whereas the writeValue
channel is used for getting new random numbers.

The second code portion of monitor.go is shown in the following code:

func set(newValue int) {
 writeValue <- newValue
}

func read() int {
 return <-readValue
}

The purpose of the set() function is to set the value of the shared variable, whereas the
purpose of the read() function is to read the value of the saved variable.

The third code segment of the monitor.go program is as follows:

func monitor() {
 var value int
 for {
 select {
 case newValue := <-writeValue:
 value = newValue
 fmt.Printf("%d ", value)
 case readValue <- value:
 }
 }
}

Concurrency in Go – Advanced Topics Chapter 10

[499]

All of the logic of the program can be found in the implementation of the monitor()
function. More specifically, the select statement orchestrates the operation of the entire
program.

When you have a read request, the read() function attempts to read from the readValue
channel, which is controlled by the monitor() function. This returns the current value that
is kept in the value variable. On the other hand, when you want to change the stored
value, you call set(). This writes to the writeValue channel, which is also handled by the
select statement. As a result, no one can deal with the value shared variable without
using the monitor() function.

The fourth code segment of monitor.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please give an integer!")
 return
 }
 n, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("Going to create %d random numbers.\n", n)
 rand.Seed(time.Now().Unix())
 go monitor()

The last part of monitor.go contains the following Go code:

 var w sync.WaitGroup

 for r := 0; r < n; r++ {
 w.Add(1)
 go func() {
 defer w.Done()
 set(rand.Intn(10 * n))
 }()
 }
 w.Wait()
 fmt.Printf("\nLast value: %d\n", read())
}

Executing monitor.go generates the following output:

$ go run monitor.go 20

Concurrency in Go – Advanced Topics Chapter 10

[500]

Going to create 20 random numbers.
89 88 166 42 149 89 20 84 44 178 184 28 52 121 62 91 31 117 140 106
Last value: 106
$ go run monitor.go 10
Going to create 10 random numbers.
30 16 66 70 65 45 31 57 62 26
Last value: 26

Personally, I prefer to use a monitor goroutine instead of traditional
shared memory techniques because the implementation that uses the
monitor goroutine is safer, closer to the Go philosophy, and much cleaner.

Revisiting the go statement
Although goroutines are fast and you can execute thousands of goroutines on your
machine, this comes at a price. In this section, we are going to talk about the go statement,
its behavior, and what happens when you start new goroutines in your Go programs.

Notice that closured variables in goroutines are evaluated when the goroutine actually runs
and when the go statement is executed in order to create a new goroutine. This means that
closured variables are going to be replaced by their values when the Go scheduler decides
to execute the relevant code. This is illustrated in the following Go code, which is saved as
cloGo.go:

package main

import (
 "fmt"
 "time"
)

func main() {
 for i := 0; i <= 20; i++ {
 go func() {
 fmt.Print(i, " ")
 }()
 }
 time.Sleep(time.Second)
 fmt.Println()
}

It would be a good idea to stop reading for a moment and try to guess what the output of
that code will be.

Concurrency in Go – Advanced Topics Chapter 10

[501]

Executing cloGo.go multiple times will reveal the problem we were talking about:

$ go run cloGo.go
9 21
$ go run cloGo.go
4 21 21 21 21 21 21 21 21 6 21 21 21 21 21 21 21 21 21 21 21
$ go run cloGo.go
6 21 6 6 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 6 21

The program mostly prints the number 21, which is the last value of the variable of the for
loop and not the other numbers. As i is a closured variable, it is evaluated at the time of
execution. As the goroutines begin but wait for the Go scheduler to allow them to get
executed, the for loop ends, so the value of i that is being used is 21. Lastly, the same issue
also applies to Go channels, so be careful.

There is a pretty funny and unexpected way to solve this problem and it involves some
idiomatic Go. The solution can be seen in cloGoCorrect.go, which contains the following
code:

package main

import (
 "fmt"
 "time"
)

func main() {
 for i := 0; i <= 20; i++ {
 i := i
 go func() {
 fmt.Print(i, " ")
 }()
 }
 time.Sleep(time.Second)
 fmt.Println()
}

The valid yet bizarre i := i statement creates a new instance of the variable for the
goroutine, which makes the output of cloGoCorrect.go similar to the following:

$ go run cloGoCorrect.go
1 5 4 3 6 0 13 7 8 9 10 11 12 17 14 15 16 19 18 20 2
$ go run cloGoCorrect.go
5 2 20 13 6 7 1 9 10 11 0 3 17 14 15 16 4 19 18 8 12

Concurrency in Go – Advanced Topics Chapter 10

[502]

You are now going to see another strange case that uses the go statement. Look at the
following Go code, which is saved as endlessComp.go:

package main

import (
 "fmt"
 "runtime"
)

func main() {
 var i byte
 go func() {
 for i = 0; i <= 255; i++ {
 }
 }()
 fmt.Println("Leaving goroutine!")
 runtime.Gosched()
 runtime.GC()

 fmt.Println("Good bye!")
}

Executing endlessComp.go will surprise you as the program never ends because it blocks
indefinitely and therefore has to be stopped manually:

$ go run endlessComp.go
Leaving goroutine!
^Csignal: interrupt

As you might have guessed, the root of the problem is related to the Go garbage collector
and the way it works. The call to the runtime.Gosched() function asks the scheduler to
execute another goroutine and then we invoke the Go garbage collector, which is trying to
do its job.

First, the garbage collector needs all goroutines to go to sleep before doing its job. The
problem is that the for loop will never end because the type of the for loop variable is
byte. This means that the for loop prevents the system from doing anything else because
the goroutine with that for loop will never go to sleep. This unfortunate event will happen
even if your machine has multiple cores.

Notice that if the for loop was not empty, then the program would have been executed
and ended just fine because the garbage collector would have had a place to stop.

Lastly, keep in mind that goroutines need to be explicitly signaled in order to end. You can
easily end a goroutine using a simple return statement.

Concurrency in Go – Advanced Topics Chapter 10

[503]

Catching race conditions
A data race condition is a situation where two or more running elements, such as threads
and goroutines, try to take control of or modify a shared resource or a variable of a
program. Strictly speaking, a data race occurs when two or more instructions access the
same memory address, where at least one of them performs a write operation. If all
operations are read operations, then there is no race condition.

Using the -race flag when running or building a Go source file will turn on the Go race
detector, which will make the compiler create a modified version of a typical executable
file. This modified version can record all access to shared variables as well as all
synchronization events that take place, including calls to sync.Mutex and
sync.WaitGroup. After analyzing the relevant events, the race detector prints a report that
can help you to identify potential problems so that you can correct them.

Look at the following Go code, which is saved as raceC.go. This program is presented in
three parts.

The first part of raceC.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
)

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Give me a natural number!")
 return
 }
 numGR, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

The second part of raceC.go contains the following Go code:

 var waitGroup sync.WaitGroup
 var i int

Concurrency in Go – Advanced Topics Chapter 10

[504]

 k := make(map[int]int)
 k[1] = 12

 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 k[i] = i
 }()
 }

The remaining Go code of raceC.go is as follows:

 k[2] = 10
 waitGroup.Wait()
 fmt.Printf("k = %#v\n", k)
}

As if it was not enough that many goroutines accessed the k map at the same time, I added
another statement that accesses the k map before calling the sync.Wait() function.

If you execute raceC.go, you will get the following type of output without any warning or
error messages:

$ go run raceC.go 10
k = map[int]int{7:10, 2:10, 10:10, 1:12}
$ go run raceC.go 10
k = map[int]int{2:10, 10:10, 1:12, 8:8, 9:9}
$ go run raceC.go 10
k = map[int]int{10:10, 1:12, 6:7, 7:7, 2:10}

If you execute raceC.go only once, then everything will look normal despite the fact that
you do not get what you would expect when printing the contents of the k map. However,
executing raceC.go multiple times tells us that there is something wrong here, mainly
because each execution generates a different output.

There are many more things that we can get from raceC.go and its unexpected output – if
we decide to use the Go race detector to analyze it:

$ go run -race raceC.go 10
==================
WARNING: DATA RACE
Read at 0x00c00001a0a8 by goroutine 6:
 main.main.func1()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:32 +0x66
Previous write at 0x00c00001a0a8 by main goroutine:
 main.main()

Concurrency in Go – Advanced Topics Chapter 10

[505]

 /Users/mtsouk/Desktop/mGo2nd/raceC.go:28 +0x23f
Goroutine 6 (running) created at:
 main.main()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:30 +0x215
==================
==================
WARNING: DATA RACE
Write at 0x00c0000bc000 by goroutine 7:
 runtime.mapassign_fast64()
 /usr/local/Cellar/go/1.12.3/libexec/src/runtime/map_fast64.go:92 +0x0
 main.main.func1()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:32 +0x8d
Previous write at 0x00c0000bc000 by goroutine 6:
 runtime.mapassign_fast64()
 /usr/local/Cellar/go/1.12.3/libexec/src/runtime/map_fast64.go:92 +0x0
 main.main.func1()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:32 +0x8d
Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:30 +0x215
Goroutine 6 (finished) created at:
 main.main()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:30 +0x215
==================
==================
WARNING: DATA RACE
Write at 0x00c0000bc000 by goroutine 8:
 runtime.mapassign_fast64()
 /usr/local/Cellar/go/1.12.3/libexec/src/runtime/map_fast64.go:92 +0x0
 main.main.func1()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:32 +0x8d
Previous write at 0x00c0000bc000 by goroutine 6:
 runtime.mapassign_fast64()
 /usr/local/Cellar/go/1.12.3/libexec/src/runtime/map_fast64.go:92 +0x0
 main.main.func1()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:32 +0x8d
Goroutine 8 (running) created at:
 main.main()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:30 +0x215
Goroutine 6 (finished) created at:
 main.main()
 /Users/mtsouk/Desktop/mGo2nd/raceC.go:30 +0x215
==================
k = map[int]int{1:1, 2:10, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9, 10:10}
Found 3 data race(s)
exit status 66

Concurrency in Go – Advanced Topics Chapter 10

[506]

So, the race detector found three data races. Each one begins with the WARNING: DATA
RACE message in its output.

The first data race happens inside main.main.func1() at line 32, which is called in line 28
by the for loop, which is called by a goroutine created at line 30. The problem here is
signified by the Previous write message. After examining the related code, it is easy to
see that the actual problem is that the anonymous function takes no parameters, which
means that the value of i that is used in the for loop cannot be deterministically discerned,
as it keeps changing due to the for loop, which is a write operation.

The message of the second data race is Write at 0x00c0000bc000 by goroutine 7. If
you read the relevant output, you will see that the data race is related to a write operation,
and it happens on a Go map at line 32 by at least two goroutines that started at line 30. As
the two goroutines have the same name (main.main.func1()), this is an indication that
we are talking about the same goroutine. Two goroutines trying to modify the same
variable is a data race condition. The third data race is similar to the second one.

The main.main.func1() notation is used by Go in order to name an
anonymous function internally. If you have different anonymous
functions, their names will be different as well.

You might ask, "What can I do now in order to correct the problems coming from the two
data races?"

Well, you can rewrite the main() function of raceC.go, as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Give me a natural number!")
 return
 }
 numGR, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 var waitGroup sync.WaitGroup
 var i int

 k := make(map[int]int)
 k[1] = 12

Concurrency in Go – Advanced Topics Chapter 10

[507]

 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func(j int) {
 defer waitGroup.Done()
 aMutex.Lock()
 k[j] = j
 aMutex.Unlock()
 }(i)
 }

 waitGroup.Wait()
 k[2] = 10
 fmt.Printf("k = %#v\n", k)
}

The aMutex variable is a global sync.Mutex variable defined outside the main() function
that is accessible from everywhere in the program. Although this is not required, having
such a global variable can save you from having to pass it to your functions all of the time.

Saving the new version of raceC.go as noRaceC.go and executing it will generate the
expected output:

$ go run noRaceC.go 10
k = map[int]int{1:1, 0:0, 5:5, 3:3, 6:6, 9:9, 2:10, 4:4, 7:7, 8:8}

Processing noRaceC.go with the Go race detector will generate the following output:

$ go run -race noRaceC.go 10
k = map[int]int{5:5, 7:7, 9:9, 1:1, 0:0, 4:4, 6:6, 8:8, 2:10, 3:3}

Note that you need to use a locking mechanism while accessing the k map. If you do not
use such a mechanism and just change the implementation of the anonymous function that
is executed as a goroutine, you will get the following output from go run noRaceC.go:

$ go run noRaceC.go 10
fatal error: concurrent map writes
goroutine 10 [running]:
runtime.throw(0x10ca0bd, 0x15)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/panic.go:605 +0x95
fp=0xc420024738 sp=0xc420024718 pc=0x10276b5
runtime.mapassign_fast64(0x10ae680, 0xc420074180, 0x5, 0x0)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/hashmap_fast.go:607
+0x3d2 fp=0xc420024798 sp=0xc420024738 pc=0x100b582
main.main.func1(0xc420010090, 0xc420074180, 0x5)
 /Users/mtsouk/ch10/code/noRaceC.go:35 +0x6b fp=0xc4200247c8
sp=0xc420024798 pc=0x1096f5b
runtime.goexit()

Concurrency in Go – Advanced Topics Chapter 10

[508]

 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/asm_amd64.s:2337 +0x1
fp=0xc4200247d0 sp=0xc4200247c8 pc=0x1050c21
created by main.main
 /Users/mtsouk/ch10/code/noRaceC.go:32 +0x15a
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42001009c)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/sema.go:56 +0x39
sync.(*WaitGroup).Wait(0xc420010090)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:131 +0x72
main.main()
 /Users/mtsouk/ch10/code/noRaceC.go:40 +0x17a
goroutine 12 [runnable]:
sync.(*WaitGroup).Done(0xc420010090)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:99 +0x43
main.main.func1(0xc420010090, 0xc420074180, 0x7)
 /Users/mtsouk/ch10/code/noRaceC.go:37 +0x79
created by main.main
 /Users/mtsouk/ch10/code/noRaceC.go:32 +0x15a
exit status 2

The root of the problem can be seen clearly: concurrent map writes.

The context package
The main purpose of the context package is to define the Context type and support
cancellation. Yes, you heard that right; there are times when, for some reason, you want to
abandon what you are doing. However, it would be very helpful to be able to include some
extra information about your cancellation decisions. The context package allows you to
do exactly that.

If you take a look at the source code of the context package, you will realize that its
implementation is pretty simple – even the implementation of the Context type is pretty
simple, yet the context package is very important.

The context package existed for a while as an external Go package; it
first appeared as a standard Go package in Go version 1.7. So, if you have
an older Go version, you will not be able to follow this section without
first downloading the context package or installing a newer Go version.

The Context type is an interface with four methods named Deadline(), Done(), Err(),
and Value(). The good news is that you do not need to implement all of these functions of
the Context interface – you just need to modify a Context variable using functions such
as context.WithCancel(), context.WithDeadline(), and context.WithTimeout().

Concurrency in Go – Advanced Topics Chapter 10

[509]

All three of these functions return a derived Context (the child) and a CancelFunc
function. Calling the CancelFunc function removes the parent's reference to the child and
stops any associated timers. This means that the Go garbage collector is free to garbage
collect the child goroutines that no longer have associated parent goroutines. For garbage
collection to work correctly, the parent goroutine needs to keep a reference to each child
goroutine. If a child goroutine ends without the parent knowing about it, then a memory
leak occurs until the parent is canceled as well.

The following is a simple use of the context package using the Go code of the
simpleContext.go file, which will be presented in six parts.

The first code segment of simpleContext.go contains the following code:

package main

import (
 "context"
 "fmt"
 "os"
 "strconv"
 "time"
)

The second part of simpleContext.go is as follows:

func f1(t int) {
 c1 := context.Background()
 c1, cancel := context.WithCancel(c1)
 defer cancel()

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

The f1() function requires just one parameter, which is the time delay, because everything
else is defined inside the function. Notice that the type of the cancel variable is
context.CancelFunc.

You need to call the context.Background() function in order to initialize an empty
Context. The context.WithCancel() function uses an existing Context and creates a
child of it with cancellation. The context.WithCancel() function also creates a Done
channel that can be closed, either when the cancel() function is called, as shown in the
preceding code, or when the Done channel of the parent context is closed.

Concurrency in Go – Advanced Topics Chapter 10

[510]

The third code portion of simpleContext.go contains the rest of the code of the f1()
function:

 select {
 case <-c1.Done():
 fmt.Println("f1():", c1.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f1():", r)
 }
 return
}

Here, you see the use of the Done() function of a Context variable. When this function is
called, you have a cancellation. The return value of Context.Done() is a channel because,
otherwise, you would have not been able to use it in a select statement.

The fourth part of simpleContext.go contains the following Go code:

func f2(t int) {
 c2 := context.Background()
 c2, cancel := context.WithTimeout(c2, time.Duration(t)*time.Second)
 defer cancel()

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

 select {
 case <-c2.Done():
 fmt.Println("f2():", c2.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f2():", r)
 }
 return
}

This part showcases the use of the context.WithTimeout() function, which requires two
parameters: a Context parameter and a time.Duration parameter. When the timeout
period expires, the cancel() function is automatically called.

The fifth part of simpleContext.go is as follows:

func f3(t int) {
 c3 := context.Background()

Concurrency in Go – Advanced Topics Chapter 10

[511]

 deadline := time.Now().Add(time.Duration(2*t) * time.Second)
 c3, cancel := context.WithDeadline(c3, deadline)
 defer cancel()

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

 select {
 case <-c3.Done():
 fmt.Println("f3():", c3.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f3():", r)
 }
 return
}

The preceding Go code illustrates the use of the context.WithDeadline() function,
which requires two parameters: a Context variable and a time in the future that signifies
the deadline of the operation. When the deadline passes, the cancel() function is
automatically called.

The remaining Go code of simpleContext.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need a delay!")
 return
 }

 delay, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Delay:", delay)

 f1(delay)
 f2(delay)
 f3(delay)
}

The purpose of the main() function is to initialize things.

Concurrency in Go – Advanced Topics Chapter 10

[512]

Executing simpleContext.go will generate the following type of output:

$ go run simpleContext.go 4
Delay: 4
f1(): context canceled
f2(): 2019-04-11 18:18:43.327345 +0300 EEST m=+8.004588898
f3(): 2019-04-11 18:18:47.328073 +0300 EEST m=+12.005483099
$ go run simpleContext.go 2
Delay: 2
f1(): 2019-04-11 18:18:53.972045 +0300 EEST m=+2.005231943
f2(): context deadline exceeded
f3(): 2019-04-11 18:18:57.974337 +0300 EEST m=+6.007690061
$ go run simpleContext.go 10
Delay: 10
f1(): context canceled
f2(): context canceled
f3(): context canceled

The long lines of the output are the return values of the time.After() function calls. They
denote the normal operation of the program. The point here is that the operation of the
program is canceled when there are delays in its execution.

This is as simple as it gets with the use of the context package, as the code presented did
not do any serious work with the Context interface. However, the Go code included in the
next section will present a more realistic example.

An advanced example of the context package
The functionality of the context package will be illustrated much better and in greater
depth by using the Go code of the useContext.go program, which is presented in five
parts. In this example, you will create an HTTP client that does not want to wait too long
for the response of the HTTP server, which is not an unusual scenario. In fact, as almost all
HTTP clients support such functionality, you will study another technique for timing out
an HTTP request in Chapter 12, The Foundations of Network Programming in Go.

The useContext.go program requires two command-line arguments: the URL of the
server to which it is going to connect and the time for which the presented utility should
wait. If the program has only one command-line argument, then the delay will be five
seconds.

The first code segment of useContext.go follows:

package main

Concurrency in Go – Advanced Topics Chapter 10

[513]

import (
 "context"
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
 "strconv"
 "sync"
 "time"
)

var (
 myUrl string
 delay int = 5
 w sync.WaitGroup
)

type myData struct {
 r *http.Response
 err error
}

Both myURL and delay are global variables, so they can be accessed by anything in the
code. Additionally, there is a sync.WaitGroup variable named w, which also has a global
scope, and the definition of a structure named myData for keeping together the response of
the web server, along with an error variable in case there is an error somewhere. The
second part of useContext.go is shown in the following Go code:

func connect(c context.Context) error {
 defer w.Done()
 data := make(chan myData, 1)

 tr := &http.Transport{}
 httpClient := &http.Client{Transport: tr}

 req, _ := http.NewRequest("GET", myUrl, nil)

The preceding Go code deals with the HTTP connection.

You will learn more about developing HTTP servers and clients in Go in
Chapter 12, The Foundations of Network Programming in Go.

The third code portion of useContext.go contains the following Go code:

 go func() {

Concurrency in Go – Advanced Topics Chapter 10

[514]

 response, err := httpClient.Do(req)
 if err != nil {
 fmt.Println(err)
 data <- myData{nil, err}
 return
 } else {
 pack := myData{response, err}
 data <- pack
 }
 }()

The fourth code segment of useContext.go is shown in the following Go code:

 select {
 case <-c.Done():
 tr.CancelRequest(req)
 <-data
 fmt.Println("The request was cancelled!")
 return c.Err()
 case ok := <-data:
 err := ok.err
 resp := ok.r
 if err != nil {
 fmt.Println("Error select:", err)
 return err
 }
 defer resp.Body.Close()

 realHTTPData, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 fmt.Println("Error select:", err)
 return err
 }
 fmt.Printf("Server Response: %s\n", realHTTPData)

 }
 return nil
}

The remaining code of useContext.go, which is the implementation of the main()
function, is as follows:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Need a URL and a delay!")
 return
 }

Concurrency in Go – Advanced Topics Chapter 10

[515]

 myUrl = os.Args[1]
 if len(os.Args) == 3 {
 t, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }
 delay = t
 }

 fmt.Println("Delay:", delay)
 c := context.Background()
 c, cancel := context.WithTimeout(c, time.Duration(delay)*time.Second)
 defer cancel()

 fmt.Printf("Connecting to %s \n", myUrl)
 w.Add(1)
 go connect(c)
 w.Wait()
 fmt.Println("Exiting...")
}

The timeout period is defined by the context.WithTimeout() method. The connect()
function that is executed as a goroutine will either terminate normally or when the
cancel() function is executed. Notice that it is considered good practice to use
context.Background() in the main() function or the init() function of a package or in
tests.

Although it is not necessary to know about the server side of the operation, it is good to see
how a Go version of a web server can be slow in a random way. In this case, a random
number generator decides how slow your web server will be – real web servers might be
too busy to answer or there might be network issues that cause the delay. The name of the
source file is slowWWW.go, and its contents are as follows:

package main

import (
 "fmt"
 "math/rand"
 "net/http"
 "os"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min

Concurrency in Go – Advanced Topics Chapter 10

[516]

}

func myHandler(w http.ResponseWriter, r *http.Request) {
 delay := random(0, 15)
 time.Sleep(time.Duration(delay) * time.Second)

 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Fprintf(w, "Delay: %d\n", delay)
 fmt.Printf("Served: %s\n", r.Host)
}

func main() {
 seed := time.Now().Unix()
 rand.Seed(seed)

 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/", myHandler)
 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

As you can see, you do not need to use the context package in the slowWWW.go file
because it is the job of the web client to decide how much time it can wait for a response.

The code of the myHandler() function is responsible for the slowness of the web server
program. The delay can be from 0 seconds to 14 seconds, as introduced by the random(0,
15) function call.

If you try to use the slowWWW.go web server using a tool such as wget(1), you will receive
the following type of output:

$ wget -qO- http://localhost:8001/
Serving: /
Delay: 4
$ wget -qO- http://localhost:8001/
Serving: /
Delay: 13

Concurrency in Go – Advanced Topics Chapter 10

[517]

This happens because the default timeout value of wget(1) is larger. Executing
useContext.go while slowWWW.go is already running in another UNIX shell will create
the following type of output when processed with the handy time(1) utility:

$ time go run useContext.go http://localhost:8001/ 1
Delay: 1
Connecting to http://localhost:8001/
Get http://localhost:8001/: net/http: request canceled
The request was cancelled!
Exiting...
real 0m1.374s
user 0m0.304s
sys 0m0.117s
$ time go run useContext.go http://localhost:8001/ 10
Delay: 10
Connecting to http://localhost:8001/
Get http://localhost:8001/: net/http: request canceled
The request was cancelled!
Exiting...
real 0m10.381s
user 0m0.314s
sys 0m0.125s
$ time go run useContext.go http://localhost:8001/ 15
Delay: 15
Connecting to http://localhost:8001/
Server Response: Serving: /
Delay: 13
Exiting...
real 0m13.379s
user 0m0.309s
sys 0m0.118s

The output shows that only the third command actually got an answer from the HTTP
server – the first two commands timed out.

Another example of the context package
In this section, you are going to learn even more about the context package because it is
such a powerful and unique package of the Go standard library. This time, we are going to
create a context that uses the context.TODO() function instead of the
context.Background() function. Although both functions return a non-nil, empty
Context, their purposes differ. We are also going to illustrate the use of the
context.WithValue() function. The name of the program that will be developed in this
section is moreContext.go, and it will be presented in four parts.

Concurrency in Go – Advanced Topics Chapter 10

[518]

The first part of moreContext.go is as follows:

package main

import (
 "context"
 "fmt"
)

type aKey string

The second part of moreContext.go contains the following Go code:

func searchKey(ctx context.Context, k aKey) {
 v := ctx.Value(k)
 if v != nil {
 fmt.Println("found value:", v)
 return
 } else {
 fmt.Println("key not found:", k)
 }
}

This is a function that retrieves a value from a context and checks whether that value exists
or not.

The third part of moreContext.go contains the following Go code:

func main() {
 myKey := aKey("mySecretValue")
 ctx := context.WithValue(context.Background(), myKey, "mySecretValue")

 searchKey(ctx, myKey)

The context.WithValue() function offers a way of associating a value with a Context.

Notice that contexts should be not stored in structures – they should be passed as separate
parameters to functions. It is considered good practice to pass them as the first parameter of
a function.

The last part of moreContext.go is as follows:

 searchKey(ctx, aKey("notThere"))
 emptyCtx := context.TODO()
 searchKey(emptyCtx, aKey("notThere"))
}

Concurrency in Go – Advanced Topics Chapter 10

[519]

In this case, we declare that although we intend to use an operation context, we are not sure
about it yet – this is signified by the use of the context.TODO() function. The good thing
is that TODO() is recognized by static analysis tools, which allows them to determine
whether Contexts are propagated correctly in a program or not.

Executing moreContext.go will generate the following output:

$ go run moreContext.go
found value: mySecretValue
key not found: notThere
key not found: notThere

Remember that you should never pass a nil context – use the context.TODO() function
to create a suitable context – and remember that the context.TODO() function should be
used when you are not sure about the Context that you want to use.

Worker pools
Generally speaking, a worker pool is a set of threads that are about to process jobs assigned
to them. The Apache web server and the net/http package of Go more or less work this
way: the main process accepts all incoming requests, which are forwarded to the worker
processes to get served. Once a worker process has finished its job, it is ready to serve a
new client.

Nevertheless, there is a central difference here because our worker pool is going to use
goroutines instead of threads. Additionally, threads do not usually die after serving a
request because the cost of ending a thread and creating a new one is too high, whereas
goroutines do die after finishing their job. As you will see shortly, worker pools in Go are
implemented with the help of buffered channels, because they allow you to limit the
number of goroutines running at the same time.

The next program, workerPool.go, will be presented in five parts. The program will
implement a simple task: it will process integers and print their square values using a single
goroutine to serve each request. Despite the simplicity of workerPool.go, the Go code of
the program can be easily used as a template for implementing much more difficult tasks.

This is an advanced technique that can help you to create server processes
in Go that can accept and serve multiple clients using goroutines.

Concurrency in Go – Advanced Topics Chapter 10

[520]

The first part of workerPool.go follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

type Client struct {
 id int
 integer int
}

type Data struct {
 job Client
 square int
}

Here, you can see a technique that uses the Client structure to assign a unique ID to each
request that you are going to process. The Data structure is used to group the data of a
Client with the actual results generated by the program. Put simply, the Client structure
holds the input data of each request, whereas the Data structure holds the results of a
request.

The second code portion of workerPool.go is shown in the following Go code:

var (
 size = 10
 clients = make(chan Client, size)
 data = make(chan Data, size)
)

func worker(w *sync.WaitGroup) {
 for c := range clients {
 square := c.integer * c.integer
 output := Data{c, square}
 data <- output
 time.Sleep(time.Second)
 }
 w.Done()
}

Concurrency in Go – Advanced Topics Chapter 10

[521]

The preceding code has two interesting parts. The first part creates three global variables.
The clients and data buffered channels are used to get new client requests and write the
results, respectively. If you want your program to run faster, you can increase the value of
the size parameter.

The second part is the implementation of the worker() function, which reads the clients
channel in order to get new requests to serve. Once the processing is complete, the result is
written to the data channel. The delay that is introduced using the
time.Sleep(time.Second) statement is not necessary, but it gives you a better sense of
the way that the generated output will be printed.

Finally, remember to use a pointer for the sync.WaitGroup parameter in the worker()
function because, otherwise, the sync.WaitGroup variable is copied, which means that it
will be useless.

The third part of workerPool.go contains the following Go code:

func makeWP(n int) {
 var w sync.WaitGroup
 for i := 0; i < n; i++ {
 w.Add(1)
 go worker(&w)
 }
 w.Wait()
 close(data)
}

func create(n int) {
 for i := 0; i < n; i++ {
 c := Client{i, i}
 clients <- c
 }
 close(clients)
}

The preceding code implements two functions, named makeWP() and create(). The
purpose of the makeWP() function is to generate the required number of worker()
goroutines to process all requests. Although the w.Add(1) function is called in makeWP(),
w.Done() is called in the worker() function once a worker has finished its job. The
purpose of the create() function is to create all requests properly using the Client type
and then write them to the clients channel for processing. Note that the clients channel
is read by the worker() function.

Concurrency in Go – Advanced Topics Chapter 10

[522]

The fourth code segment of workerPool.go is as follows:

func main() {
 fmt.Println("Capacity of clients:", cap(clients))
 fmt.Println("Capacity of data:", cap(data))

 if len(os.Args) != 3 {
 fmt.Println("Need #jobs and #workers!")
 os.Exit(1)
 }

 nJobs, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 nWorkers, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }

In the preceding code, you read your command-line parameters. First, however, you see
that you can use the cap() function to find the capacity of a channel.

If the number of workers is greater than the size of the clients buffered channel, then the
number of goroutines that are going to be created will be equal to the size of the clients
channel. Similarly, if the number of jobs is greater than the number of workers, the jobs will
be served in smaller sets.

The program allows you to define the number of workers and the number of jobs using its
command-line arguments. However, in order to change the size of the clients and data
channels, you will need to make changes to the source code of the program.

The remaining code of workerPool.go follows:

 go create(nJobs)
 finished := make(chan interface{})
 go func() {
 for d := range data {
 fmt.Printf("Client ID: %d\tint: ", d.job.id)
 fmt.Printf("%d\tsquare: %d\n", d.job.integer, d.square)
 }
 finished <- true
 }()

Concurrency in Go – Advanced Topics Chapter 10

[523]

 makeWP(nWorkers)
 fmt.Printf(": %v\n", <-finished)
}

First, you call the create() function to mimic the client requests that you will have to
process. An anonymous goroutine is used to read the data channel and print the output to
the screen. The finished channel is used to block the program until the anonymous
goroutine is done reading the data channel. Therefore, the finished channel needs no
particular type.

Next, you call the makeWP() function to actually process the requests. The <-finished
statement in fmt.Printf() blocks means that it does not allow the program to end until
somebody writes something to the finished channel. That somebody is the anonymous
goroutine of the main() function. Additionally, although the anonymous function writes
the true value to the finished channel, you could have written false to it and had the
same result, which is unblocking the main() function. Try it on your own!

Executing workerPool.go will generate the following type of output:

$ go run workerPool.go 15 5
Capacity of clients: 10
Capacity of data: 10
Client ID: 0 int: 0 square: 0
Client ID: 4 int: 4 square: 16
Client ID: 1 int: 1 square: 1
Client ID: 3 int: 3 square: 9
Client ID: 2 int: 2 square: 4
Client ID: 5 int: 5 square: 25
Client ID: 6 int: 6 square: 36
Client ID: 7 int: 7 square: 49
Client ID: 8 int: 8 square: 64
Client ID: 9 int: 9 square: 81
Client ID: 10 int: 10 square: 100
Client ID: 11 int: 11 square: 121
Client ID: 12 int: 12 square: 144
Client ID: 13 int: 13 square: 169
Client ID: 14 int: 14 square: 196
: true

When you want to serve each individual request without expecting an answer from it in the
main() function, as happened with workerPool.go, you have fewer things to worry
about. A simple way to use goroutines for processing your requests and to get an answer
from them in the main() function is by using shared memory or a monitor process that will
collect the data instead of just printing it on the screen.

Concurrency in Go – Advanced Topics Chapter 10

[524]

Finally, the work of the workerPool.go program is much simpler because the worker()
function cannot fail. This will not be the case when you have to work over computer
networks or with other kinds of resources that can fail.

Additional resources
The following are very useful resources:

Visit the documentation page of the sync package, which can be found at
https://golang.org/pkg/sync/.
Visit the documentation page of the context package, which can be found at
https://golang.org/pkg/context/.
You can learn more about the implementation of the Go scheduler by visiting
https:// golang. org/ src/ runtime/ proc. go.
You can find the documentation page of the atomic package at https:/ /golang.
org/pkg/ sync/ atomic/ .
You can view the design document of the Go scheduler at
https://golang.org/s/go11sched.

Exercises
Try to implement a concurrent version of wc(1) that uses a buffered channel.
Next, try to implement a concurrent version of wc(1) that uses shared memory.
Finally, try to implement a concurrent version of wc(1) that uses a monitor
goroutine.
Modify the Go code of workerPool.go in order to save the results in a file. Use a
mutex and a critical section while dealing with the file or a monitor goroutine
that will keep writing your data on the disk.
What will happen to the workerPool.go program when the value of the size
global variable becomes 1? Why?
Modify the Go code of workerPool.go in order to implement the functionality
of the wc(1) command-line utility.
Modify the Go code of workerPool.go so that the size of the clients and data
buffered channels can be defined using command-line arguments.

https://golang.org/pkg/sync/
https://golang.org/pkg/context/
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/src/runtime/proc.go
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/pkg/sync/atomic/
https://golang.org/s/go11sched

Concurrency in Go – Advanced Topics Chapter 10

[525]

Try to write a concurrent version of the find(1) command-line utility that uses
a monitor goroutine.
Modify the code of simpleContext.go so that the anonymous function used in
all f1(), f2(), and f3() functions becomes a separate function. What is the
main challenge of this code change?
Modify the Go code of simpleContext.go so that all f1(), f2(), and f3()
functions use an externally-created Context variable instead of defining their
own.
Modify the Go code of useContext.go in order to use either
context.WithDeadline() or context.WithCancel() instead of
context.WithTimeout().
Finally, try to implement a concurrent version of the find(1) command-line
utility using a sync.Mutex mutex.

Summary
This chapter addressed many important topics related to goroutines and channels. Mainly,
however, it clarified the power of the select statement. Due to the capabilities of the
select statement, channels are the preferred Go way for interconnecting the components
of a concurrent Go program that utilizes multiple goroutines. Additionally, the chapter
demonstrated the use of the context standard Go package, which, when needed, is
irreplaceable.

There are many rules in concurrent programming; however, the most important rule is that
you should avoid sharing things unless you have a pretty important reason to do so!
Shared data is the root of all nasty bugs in concurrent programming.

What you must remember from this chapter is that, although shared memory used to be the
only way of exchanging data over the threads of the same process, Go offers better ways for
goroutines to communicate with each other, so think in Go terms before deciding to use
shared memory in your Go code. Nonetheless, if you really have to use shared memory,
you might want to use a monitor goroutine instead.

The primary subjects of the next chapter will be code testing, code optimization, and code
profiling with Go. Apart from these topics, you will learn about benchmarking Go code,
cross-compilation, and finding unreachable Go code.

At the end of the next chapter, you will also learn how to document your Go code and how
to generate HTML output using the godoc utility.

11
Code Testing, Optimization,

and Profiling
The previous chapter discussed concurrency in Go, mutexes, the atomic package, the
various types of channels, race conditions, and how the select statement allows you to
use channels as glue to control goroutines and allow them to communicate.

The Go topics in this chapter are very practical and important, especially if you are
interested in improving the performance of your Go programs and discovering bugs
quickly. This chapter primarily addresses code optimization, code testing, code
documentation, and code profiling.

Code optimization is a process where one or more developers try to make certain parts of a
program run faster, be more efficient, or use fewer resources. Put simply, code optimization
is about eliminating the bottlenecks of a program.

Code testing is about making sure that your code does what you want it to do. In this
chapter, you will experience the Go way of testing code. The best time to write code to test
your programs is during the development phase, as this can help to reveal bugs in your
code as early as possible.

Code profiling relates to measuring certain aspects of a program in order to get a detailed
understanding of the way the code works. The results of code profiling may help you to
decide which parts of your code need to change.

I hope that you already recognize the importance of documenting your code in order to
describe the decisions you made while developing the implementation of your program. In
this chapter, you will see how Go can help you to generate documentation for the modules
that you implement.

Code Testing, Optimization, and Profiling Chapter 11

[527]

Documentation is so important that some developers write the
documentation first and the code afterward! However, what is really
important is that the documentation and the functionality of the program
say and do the same thing, respectively.

In this chapter, you will learn about the following topics:

Profiling Go code
The go tool pprof utility
Using the web interface of the Go profiler
Testing Go code
The go test command
The go tool trace utility
The handy testing/quick package
Benchmarking Go code
Cross-compilation
Testing code coverage
Generating documentation for your Go code
Creating example functions
Finding unreachable Go code in your programs

About optimization
Code optimization is both an art and a science. This means that there is no deterministic
way to help you optimize your Go code, or any other code in any programming language,
and that you should use your brain and try many things if you want to make your code run
faster.

You should make sure that you optimize code that does not contain any
bugs, because there is no point in optimizing a bug. If you have any bugs
in your program, you should debug it first.

If you are really into code optimization, you might want to read Compilers: Principles,
Techniques, and Tools by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman
(Pearson Education Limited, 2014), which focuses on compiler construction. Additionally,
all volumes in The Art of Computer Programming series by Donald Knuth (Addison-Wesley
Professional, 1998) are great resources for all aspects of programming.

Code Testing, Optimization, and Profiling Chapter 11

[528]

Always remember what Knuth said about optimization:

"The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the root
of all evil (or at least most of it) in programming."

Also, remember what Joe Armstrong, one of the developers of Erlang, said about
optimization:

"Make it work, then make it beautiful, then if you really, really have to, make it fast. 90
percent of the time, if you make it beautiful, it will already be fast. So really, just make it
beautiful!"

Additionally, generally speaking, only a small percentage of a program needs to be
optimized. In such cases, the assembly programming language, which can be used to
implement certain Go functions, is a really good candidate and will have a huge impact on
the performance of your programs.

Optimizing Go code
As mentioned, code optimization is the process where you try to discover the parts of your
code that have a big impact on the performance of the entire program in order to make
them run faster or use fewer resources.

The benchmarking section that appears later in this chapter will greatly help you to
understand what is going on with your code behind the scenes and which parameters of
your program have the greatest impact on the performance of your program. However, do
not underestimate the importance of common sense. Put simply, if one of your functions is
executed 10,000 times more than the rest of the functions of a program, try to optimize that
function first.

The general advice for optimization is that you must optimize bug-free
code only. This means that you must optimize working code only.
Therefore, you should first try to write correct code even if that code is
slow. Finally, the single most frequent mistake that programmers make is
trying to optimize the first version of their code, which is the root of most
bugs!

Again, code optimization is both an art and a science, which means that it is a pretty
difficult task. The next section about profiling Go code will definitely help you with code
optimization because the main purpose of profiling is to find the bottlenecks in your code
in order to optimize the most important parts of your program.

Code Testing, Optimization, and Profiling Chapter 11

[529]

Profiling Go code
Profiling is a process of dynamic program analysis that measures various values related to
program execution in order to give you a better understanding of the behavior of your
program. In this section, you are going to learn how to profile Go code in order to
understand your code better and improve its performance. Sometimes, code profiling can
even reveal bugs!

First, we are going to use the command-line interface of the Go profiler. Then, we will use
the web interface of the Go profiler.

The single most important thing to remember is that if you want to profile Go code, you
will need to import the runtime/pprof standard Go package, either directly or indirectly.
You can find the help page of the pprof tool by executing the go tool pprof -help
command, which will generate lots of output.

The net/http/pprof standard Go package
Although Go comes with the low-level runtime/pprof standard Go package, there is also
the high-level net/http/pprof package, which should be used when you want to profile
a web application written in Go. As this chapter will not talk about creating HTTP servers
in Go, you will learn more about the net/http/pprof package in Chapter 12, The
Foundations of Network Programming in Go.

A simple profiling example
Go supports two kinds of profiling: CPU profiling and memory profiling. It is not
recommended that you profile an application for both kinds at the same time, because these
two different kinds of profiling do not work well with each other. The profileMe.go
application is an exception, however, because it is used to illustrate the two techniques.

The Go code to be profiled is saved as profileMe.go, and it will be presented in five parts.
The first part of profileMe.go is shown in the following Go code:

package main
import (
 "fmt"
 "math"
 "os"
 "runtime"
 "runtime/pprof"

Code Testing, Optimization, and Profiling Chapter 11

[530]

 "time"
)
func fibo1(n int) int64 {
 if n == 0 || n == 1 {
 return int64(n)
 }
 time.Sleep(time.Millisecond)
 return int64(fibo2(n-1)) + int64(fibo2(n-2))
}

Notice that it is compulsory to import the runtime/pprof package directly or indirectly
for your program to create profiling data. The reason for calling time.Sleep() in the
fibo1() function is to slow it down a bit. You will learn why near the end of this section.

The second code segment of profileMe.go follows:

func fibo2(n int) int {
 fn := make(map[int]int)
 for i := 0; i <= n; i++ {
 var f int
 if i <= 2 {
 f = 1
 } else {
 f = fn[i-1] + fn[i-2]
 }
 fn[i] = f
 }
 time.Sleep(50 * time.Millisecond)
 return fn[n]
}

The preceding code contains the implementation of another Go function that uses a
different algorithm for calculating numbers of the Fibonacci sequence.

The third part of profileMe.go contains the following Go code:

func N1(n int) bool {
 k := math.Floor(float64(n/2 + 1))
 for i := 2; i < int(k); i++ {
 if (n % i) == 0 {
 return false
 }
 }
 return true
}

func N2(n int) bool {
 for i := 2; i < n; i++ {

Code Testing, Optimization, and Profiling Chapter 11

[531]

 if (n % i) == 0 {
 return false
 }
 }
 return true
}

Both the N1() and N2() functions are used to find out whether a given integer is a prime
number or not. The first function is optimized because its for loop iterates over
approximately half the numbers used in the for loop of N2(). As both functions are
relatively slow, there is no need for a call to time.Sleep() here.

The fourth code segment of profileMe.go is as follows:

func main() {
 cpuFile, err := os.Create("/tmp/cpuProfile.out")
 if err != nil {
 fmt.Println(err)
 return
 }
 pprof.StartCPUProfile(cpuFile)
 defer pprof.StopCPUProfile()
 total := 0
 for i := 2; i < 100000; i++ {
 n := N1(i)
 if n {
 total = total + 1
 }
 }
 fmt.Println("Total primes:", total)
 total = 0
 for i := 2; i < 100000; i++ {
 n := N2(i)
 if n {
 total = total + 1
 }
 }
 fmt.Println("Total primes:", total)
 for i := 1; i < 90; i++ {
 n := fibo1(i)
 fmt.Print(n, " ")
 }
 fmt.Println()
 for i := 1; i < 90; i++ {
 n := fibo2(i)
 fmt.Print(n, " ")
 }

Code Testing, Optimization, and Profiling Chapter 11

[532]

 fmt.Println()
 runtime.GC()

The call to os.Create() is used to have a file to which to write the profiling data. The
pprof.StartCPUProfile() call begins the CPU profiling of the program, and the call to
pprof.StopCPUProfile() stops it.

If you want to create and use temporary files and directories multiple times, then you
should have a look at ioutil.TempFile() and ioutil.TempDir() respectively.

The last part of profileMe.go follows:

 // Memory profiling!
 memory, err := os.Create("/tmp/memoryProfile.out")
 if err != nil {
 fmt.Println(err)
 return
 }
 defer memory.Close()
 for i := 0; i < 10; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(50 * time.Millisecond)
 }
 err = pprof.WriteHeapProfile(memory)
 if err != nil {
 fmt.Println(err)
 return
 }
}

In the last part, you can see how the memory profiling technique works. It is pretty similar
to CPU profiling, and once again, you will need a file to write out the profiling data.

Executing profileMe.go will generate the following output:

$ go run profileMe.go
Total primes: 9592
Total primes: 9592
1 2 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946
17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309
3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155
165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073
4807526976 7778742049 12586269025 20365011074 32951280099 53316291173
86267571272 139583862445 225851433717 365435296162 591286729879

Code Testing, Optimization, and Profiling Chapter 11

[533]

956722026041 1548008755920 2504730781961 4052739537881 6557470319842
10610209857723 17167680177565 27777890035288 44945570212853 72723460248141
117669030460994 190392490709135 308061521170129 498454011879264
806515533049393 1304969544928657 2111485077978050 3416454622906707
5527939700884757 8944394323791464 14472334024676221 23416728348467685
37889062373143906 61305790721611591 99194853094755497 160500643816367088
259695496911122585 420196140727489673 679891637638612258
1100087778366101931 1779979416004714189
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946
17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309
3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155
165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073
4807526976 7778742049 12586269025 20365011074 32951280099 53316291173
86267571272 139583862445 225851433717 365435296162 591286729879
956722026041 1548008755920 2504730781961 4052739537881 6557470319842
10610209857723 17167680177565 27777890035288 44945570212853 72723460248141
117669030460994 190392490709135 308061521170129 498454011879264
806515533049393 1304969544928657 2111485077978050 3416454622906707
5527939700884757 8944394323791464 14472334024676221 23416728348467685
37889062373143906 61305790721611591 99194853094755497 160500643816367088
259695496911122585 420196140727489673 679891637638612258
1100087778366101931 1779979416004714189

Apart from the output, the program will also collect the profiling data in two files:

$ cd /tmp
$ ls -l *Profile*
-rw-r--r-- 1 mtsouk wheel 1557 Apr 24 16:37 cpuProfile.out
-rw-r--r-- 1 mtsouk wheel 438 Apr 24 16:37 memoryProfile.out

It is only after collecting the profiling data that you can start to inspect it. Thus, you can
now start the command-line profiler to examine the CPU data as follows:

$ go tool pprof /tmp/cpuProfile.out
Type: cpu
Time: Apr 24, 2019 at 4:37pm (EEST)
Duration: 19.59s, Total samples = 4.46s (22.77%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

Pressing help while in the profiler shell will generate the following output:

(pprof) help
 Commands:
 callgrind Outputs a graph in callgrind format
 comments Output all profile comments
 disasm Output assembly listings annotated with samples
 dot Outputs a graph in DOT format

Code Testing, Optimization, and Profiling Chapter 11

[534]

 eog Visualize graph through eog
 evince Visualize graph through evince
 gif Outputs a graph image in GIF format
 gv Visualize graph through gv
 kcachegrind Visualize report in KCachegrind
 list Output annotated source for functions matching regexp
 pdf Outputs a graph in PDF format
 peek Output callers/callees of functions matching regexp
 png Outputs a graph image in PNG format
 proto Outputs the profile in compressed protobuf format
 ps Outputs a graph in PS format
 raw Outputs a text representation of the raw profile
 svg Outputs a graph in SVG format
 tags Outputs all tags in the profile
 text Outputs top entries in text form
 top Outputs top entries in text form
 topproto Outputs top entries in compressed protobuf format
 traces Outputs all profile samples in text form
 tree Outputs a text rendering of call graph
 web Visualize graph through web browser
 weblist Display annotated source in a web browser
 o/options List options and their current values
 quit/exit/^D Exit pprof
 Options:
 call_tree Create a context-sensitive call tree
 compact_labels Show minimal headers
 divide_by Ratio to divide all samples before visualization
 drop_negative Ignore negative differences
 edgefraction Hide edges below <f>*total
 focus Restricts to samples going through a node matching
regexp
 hide Skips nodes matching regexp
 ignore Skips paths going through any nodes matching regexp
 mean Average sample value over first value (count)
 nodecount Max number of nodes to show
 nodefraction Hide nodes below <f>*total
 noinlines Ignore inlines.
 normalize Scales profile based on the base profile.
 output filename for file-based outputs
 prune_from Drops any functions below the matched frame.
 relative_percentages Show percentages relative to focused subgraph
 sample_index Sample value to report (0-based index or name)
 show Only show nodes matching regexp
 show_from Drops functions above the highest matched frame.
 source_path Search path for source files
 tagfocus Restricts to samples with tags in range or matched by
regexp
 taghide Skip tags matching this regexp

Code Testing, Optimization, and Profiling Chapter 11

[535]

 tagignore Discard samples with tags in range or matched by
regexp
 tagshow Only consider tags matching this regexp
 trim Honor nodefraction/edgefraction/nodecount defaults
 trim_path Path to trim from source paths before search
 unit Measurement units to display
 Option groups (only set one per group):
 cumulative
 cum Sort entries based on cumulative weight
 flat Sort entries based on own weight
 granularity
 addresses Aggregate at the address level.
 filefunctions Aggregate at the function level.
 files Aggregate at the file level.
 functions Aggregate at the function level.
 lines Aggregate at the source code line level.
 : Clear focus/ignore/hide/tagfocus/tagignore
 type "help <cmd|option>" for more information
(pprof)

Do find the time to try out all of the commands of the go tool pprof
utility and familiarize yourself with them.

The top command returns the top 10 entries in text form:

(pprof) top
Showing nodes accounting for 4.42s, 99.10% of 4.46s total
Dropped 14 nodes (cum <= 0.02s)
Showing top 10 nodes out of 19
 flat flat% sum% cum cum%
 2.69s 60.31% 60.31% 2.69s 60.31% main.N2
 1.41s 31.61% 91.93% 1.41s 31.61% main.N1
 0.19s 4.26% 96.19% 0.19s 4.26% runtime.nanotime
 0.10s 2.24% 98.43% 0.10s 2.24% runtime.usleep
 0.03s 0.67% 99.10% 0.03s 0.67% runtime.memclrNoHeapPointers
 0 0% 99.10% 4.14s 92.83% main.main
 0 0% 99.10% 0.03s 0.67% runtime.(*mheap).alloc
 0 0% 99.10% 0.03s 0.67% runtime.largeAlloc
 0 0% 99.10% 4.14s 92.83% runtime.main
 0 0% 99.10% 0.03s 0.67% runtime.makeslice

As the first line of the output states, the functions presented are responsible for 99.10% of
the total execution time of the program.

Code Testing, Optimization, and Profiling Chapter 11

[536]

The main.N2 function in particular is responsible for 60.31% of the execution time of the
program.

The top10 --cum command returns the cumulative time for each function:

(pprof) top10 --cum
Showing nodes accounting for 4390ms, 98.43% of 4460ms total
Dropped 14 nodes (cum <= 22.30ms)
Showing top 10 nodes out of 19
 flat flat% sum% cum cum%
 0 0% 0% 4140ms 92.83% main.main
 0 0% 0% 4140ms 92.83% runtime.main
 2690ms 60.31% 60.31% 2690ms 60.31% main.N2
 1410ms 31.61% 91.93% 1410ms 31.61% main.N1
 0 0% 91.93% 290ms 6.50% runtime.mstart
 0 0% 91.93% 270ms 6.05% runtime.mstart1
 0 0% 91.93% 270ms 6.05% runtime.sysmon
 190ms 4.26% 96.19% 190ms 4.26% runtime.nanotime
 100ms 2.24% 98.43% 100ms 2.24% runtime.usleep
 0 0% 98.43% 50ms 1.12% runtime.systemstack

What if you want to find out what is happening with a particular function? You can use the
list command followed by the function name, combined with the package name, and
you'll get more detailed information about the performance of that function:

(pprof) list main.N1
Total: 4.18s
ROUTINE ======= main.N1 in /Users/mtsouk/ch11/code/profileMe.go
 1.41s 1.41s (flat, cum) 31.61% of Total
 . . 32: return fn[n]
 . . 33:}
 . . 34:
 . . 35:func N1(n int) bool {
 . . 36: k := math.Floor(float64(n/2 + 1))
 60ms 60ms 37: for i := 2; i < int(k); i++ {
 1.35s 1.35s 38: if (n % i) == 0 {
 . . 39: return false
 . . 40: }
 . . 41: }
 . . 42: return true
 . . 43:}
 (pprof)

The output shows that the for loop of main.N1 is responsible for almost all of the
execution time of the entire function. Specifically, the if (n % i) == 0 statement is
responsible for 1.35s out of 1.41s of the execution time of the entire function.

Code Testing, Optimization, and Profiling Chapter 11

[537]

You can also create PDF output of the profiling data from the shell of the Go profiler using
the pdf command:

(pprof) pdf
Generating report in profile001.pdf

Note that you will need Graphviz in order to generate a PDF file that can be viewed using
your favorite PDF reader.

Finally, a warning: if your program executes too quickly, then the profiler will not have
enough time to get its required samples and you might see the Total samples = 0
output when you load the data file. In that case, you will not be able to get any useful
information from the profiling process. That is the reason for using the time.Sleep()
function in some of the functions of profileMe.go:

$ go tool pprof /tmp/cpuProfile.out
Type: cpu
Time: Apr 24, 2019 at 4:37pm (EEST)
Duration: 19.59s, Total samples = 4.46s (22.77%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

A convenient external package for profiling
In this subsection, you will see the use of an external Go package that sets up the profiling
environment much more conveniently than by using the runtime/pprof standard Go
package. This point is illustrated in betterProfile.go, which will be presented in three
parts.

The first part of betterProfile.go is as follows:

package main
import (
 "fmt"
 "github.com/pkg/profile"
)
var VARIABLE int
func N1(n int) bool {
 for i := 2; i < n; i++ {
 if (n % i) == 0 {
 return false
 }
 }
 return true
}

Code Testing, Optimization, and Profiling Chapter 11

[538]

In the preceding code, you can see the use of an external Go package that can be found at
github.com/pkg/profile. You can download it with the help of the go get command, as
follows:

$ go get github.com/pkg/profile

The second code segment of betterProfile.go contains the following Go code:

func Multiply(a, b int) int {
 if a == 1 {
 return b
 }
 if a == 0 || b == 0 {
 return 0
 }
 if a < 0 {
 return -Multiply(-a, b)
 }
 return b + Multiply(a-1, b)
}
func main() {
 defer profile.Start(profile.ProfilePath("/tmp")).Stop()

The github.com/pkg/profile package by Dave Cheney requires that you insert just a
single statement in order to enable CPU profiling in your Go application. If you want to
enable memory profiling, you should insert the following statement instead:

defer profile.Start(profile.MemProfile).Stop()

The remaining Go code of the program is as follows:

 total := 0
 for i := 2; i < 200000; i++ {
 n := N1(i)
 if n {
 total++
 }
 }
 fmt.Println("Total: ", total)
 total = 0
 for i := 0; i < 5000; i++ {
 for j := 0; j < 400; j++ {
 k := Multiply(i, j)
 VARIABLE = k
 total++
 }
 }
 fmt.Println("Total: ", total)

https://github.com/pkg/profile
https://github.com/pkg/profile

Code Testing, Optimization, and Profiling Chapter 11

[539]

}

Executing betterProfile.go generates the following output:

$ go run betterProfile.go
2019/04/24 16:44:05 profile: cpu profiling enabled, /tmp/cpu.pprof
Total: 17984
Total: 2000000
2019/04/24 16:44:33 profile: cpu profiling disabled, /tmp/cpu.pprof

The github.com/pkg/profile package will help you with the data
capturing portion; the processing part is the same as before.

$ go tool pprof /tmp/cpu.pprof
Type: cpu
Time: Apr 24, 2019 at 4:44pm (EEST)
Duration: 27.40s, Total samples = 25.10s (91.59%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

The web interface of the Go profiler
The good news is that with Go version 1.10, the go tool pprof command comes with a
web user interface.

For the web user interface feature to work, you will need to have
Graphviz installed and your web browser must support JavaScript. If you
want to play it safe, use either Chrome or Firefox.

You can start the interactive Go profiler as follows:

$ go tool pprof -http=[host]:[port] aProfile

A profiling example that uses the web interface
We will use the data captured from the execution of profileMe.go to study the web
interface of the Go profiler, as there is no need to create a specific code example to do this.
As you learned in the previous subsection, you will first need to execute the following
command:

$ go tool pprof -http=localhost:8080 /tmp/cpuProfile.out

https://github.com/pkg/profile

Code Testing, Optimization, and Profiling Chapter 11

[540]

Main binary filename not available.

The following figure shows the initial screen of the web user interface of the Go profiler
after executing the preceding command:

Figure 11.1: The web interface of the Go profiler in action

Code Testing, Optimization, and Profiling Chapter 11

[541]

Similarly, the following figure shows the http://localhost:8080/ui/source URL of the
Go profiler, which displays analytical information for each function of the program:

Figure 11.2: Using the /source URL of the Go profiler

Code Testing, Optimization, and Profiling Chapter 11

[542]

As I cannot possibly show every single page of the Go profiler web
interface, you should start to familiarize yourself with it on your own, as it
is a great tool for examining the operations of your programs.

A quick introduction to Graphviz
Graphviz is a very handy compilation of utilities and a computer language that allows you
to draw complex graphs. Strictly speaking, Graphviz is a collection of tools for
manipulating both directed and undirected graph structures and generating graph layouts.
Graphviz has its own language, named DOT, which is simple, elegant, and powerful. The
good thing about Graphviz is that you can write its code using a simple plain text editor. A
wonderful side effect of this feature is that you can easily develop scripts that generate
Graphviz code. Also, most programming languages, including Python, Ruby, C++, and
Perl, provide their own interfaces for creating Graphviz files using native code.

You do not need to know all of these things about Graphviz in order to
use the web interface of the Go profiler. It is just useful to know how
Graphviz works and what its code looks like.

The following Graphviz code, which is saved as graph.dot, briefly illustrates the way that
Graphviz works and the look of the Graphviz language:

digraph G
{
 graph [dpi = 300, bgcolor = "gray"];
 rankdir = LR;
 node [shape=record, width=.2, height=.2, color="white"];
 node0 [label = "<p0>; |<p1>|<p2>|<p3>|<p4>| | ", height = 3];
 node[width=2];
 node1 [label = "{<e> r0 | 123 | <p> }", color="gray"];
 node2 [label = "{<e> r10 | 13 | <p> }"];
 node3 [label = "{<e> r11 | 23 | <p> }"];
 node4 [label = "{<e> r12 | 326 | <p> }"];
 node5 [label = "{<e> r13 | 1f3 | <p> }"];
 node6 [label = "{<e> r20 | 143 | <p> }"];
 node7 [label = "{<e> r40 | b23 | <p> }"];
 node0:p0 -> node1:e [dir=both color="red:blue"];
 node0:p1 -> node2:e [dir=back arrowhead=diamond];
 node2:p -> node3:e;
 node3:p -> node4:e [dir=both arrowtail=box color="red"];
 node4:p -> node5:e [dir=forward];
 node0:p2 -> node6:e [dir=none color="orange"];

Code Testing, Optimization, and Profiling Chapter 11

[543]

 node0:p4 -> node7:e;
}

The color attribute changes the color of a node, whereas the shape attribute changes the
shape of a node. Additionally, the dir attribute, which can be applied to edges, defines
whether an edge is going to have two arrows, one, or none. Furthermore, the style of the
arrowhead can be specified using the arrowhead and arrowtail attributes.

Compiling the preceding code using one of the Graphviz command-line tools in order to
create a PNG image requires the execution of the following command in your favorite
UNIX shell:

$ dot -T png graph.dot -o graph.png
$ ls -l graph.png
-rw-r--r--@ 1 mtsouk staff 94862 Apr 24 16:48 graph.png

The next figure shows the graphics file generated from the execution of the preceding
command:

Figure 11.3: Using Graphviz to create graphs

Thus, if you want to visualize any kind of structure, you should definitely consider using
Graphviz and its tools, especially if you want to automate things with your own scripts.

The go tool trace utility
The go tool trace utility is a tool for viewing trace files that can be generated in any one
of the following three ways:

Using the runtime/trace package

Code Testing, Optimization, and Profiling Chapter 11

[544]

Using the net/http/pprof package
Executing the go test -trace command

This section will use the first technique only. The output of the following command will
greatly help you to understand what the Go execution tracer does:

 $ go doc runtime/trace
 package trace // import "runtime/trace"
 Package trace contains facilities for programs to generate traces for
the Go
 execution tracer.
 Tracing runtime activities
 The execution trace captures a wide range of execution events such as
 goroutine creation/blocking/unblocking, syscall enter/exit/block, GC-
related
 events, changes of heap size, processor start/stop, etc. A precise
 nanosecond-precision timestamp and a stack trace is captured for most
 events. The generated trace can be interpreted using `go tool trace`.
 The trace tool computes the latency of a task by measuring the time
between the task creation and the task end and provides latency
distributions for each task type found in the trace.
 func IsEnabled() bool
 func Log(ctx context.Context, category, message string)
 func Logf(ctx context.Context, category, format string, args
...interface{})
 func Start(w io.Writer) error
 func Stop()
 func WithRegion(ctx context.Context, regionType string, fn func())
 type Region struct{ ... }
 func StartRegion(ctx context.Context, regionType string) *Region
 type Task struct{ ... }
 func NewTask(pctx context.Context, taskType string) (ctx
context.Context, task *Task)

In Chapter 2, Understanding Go Internals, we talked about the Go garbage collector and
presented a Go utility, gColl.go, which allowed us to see some of the variables of the Go
garbage collector. In this section, we are going to gather even more information about the
operation of gColl.go using the go tool trace utility.

First, let's examine the modified version of the gColl.go program, which tells Go to collect
performance data. It is saved as goGC.go, and it will be presented in three parts.

The first part of goGC.go is as follows:

package main
import (

Code Testing, Optimization, and Profiling Chapter 11

[545]

 "fmt"
 "os"
 "runtime"
 "runtime/trace"
 "time"
)

func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC)
 fmt.Println("-----")
}

As you already know, you first need to import the runtime/trace standard Go package in
order to collect data for the go tool trace utility.

The second code segment of goGC.go is shown in the following Go code:

func main() {
 f, err := os.Create("/tmp/traceFile.out")
 if err != nil {
 panic(err)
 }
 defer f.Close()
 err = trace.Start(f)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer trace.Stop()

This part is all about acquiring data for the go tool trace utility, and it has nothing to do
with the functionality of the actual program. First, you create a new file that will hold the
tracing data for the go tool trace utility. Then, you start the tracing process using
trace.Start(). When you are done, you call the trace.Stop() function. The defer call
to this function means that you want to terminate tracing when your program ends.

Using the go tool trace utility is a process with two phases that
requires extra Go code. First, you collect the data, and then you display
and process it.

Code Testing, Optimization, and Profiling Chapter 11

[546]

The remaining Go code is as follows:

var mem runtime.MemStats
 printStats(mem)
 for i := 0; i < 3; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)
 for i := 0; i < 5; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(time.Millisecond)
 }
 printStats(mem)
}

Executing goGC.go produces the following output, as well as a new file named
/tmp/traceFile.out with the tracing information:

 $ go run goGC.go
 mem.Alloc: 108592
 mem.TotalAlloc: 108592
 mem.HeapAlloc: 108592
 mem.NumGC: 0

 mem.Alloc: 109736
 mem.TotalAlloc: 150127000
 mem.HeapAlloc: 109736
 mem.NumGC: 3

 mem.Alloc: 114672
 mem.TotalAlloc: 650172952
 mem.HeapAlloc: 114672
 mem.NumGC: 8

 $ cd /tmp
 $ ls -l traceFile.out
 -rw-r--r-- 1 mtsouk wheel 10108 Apr 24 16:51 /tmp/traceFile.out
 $ file /tmp/traceFile.out
 /tmp/traceFile.out: data

Code Testing, Optimization, and Profiling Chapter 11

[547]

The go tool trace utility uses a web interface that starts automatically when you execute
the next command:

 $ go tool trace /tmp/traceFile.out
 2019/04/24 16:52:06 Parsing trace...
 2019/04/24 16:52:06 Splitting trace...
 2019/04/24 16:52:06 Opening browser. Trace viewer is listening on
http://127.0.0.1:50383

The figure that follows shows the initial image of the web interface of the go tool trace
utility when examining the /tmp/traceFile.out trace file.

Figure 11.4: The initial screen of the web interface of the go tool trace utility

You should now select the View trace link. This will take you to the next figure, which
shows you another view of the web interface of the go tool trace utility that uses the
data from /tmp/traceFile.out.

Code Testing, Optimization, and Profiling Chapter 11

[548]

Figure 11.5: Examining the operation of the Go garbage collector using go tool trace

In the preceding figure, you can see that the Go garbage collector runs on its own
goroutine, but that it does not run all of the time. Additionally, you can see the number of
goroutines used by the program. You can learn more about this by selecting certain parts of
the interactive view. As we are interested in the operation of the garbage collector, a useful
piece of information that is displayed is how often and for how long the garbage collector
runs.

Notice that although go tool trace is a very handy and powerful utility, it cannot solve
every kind of performance problem. There are times when go tool pprof is more
appropriate, especially when you want to reveal where your program spends most of its
time by individual function.

Code Testing, Optimization, and Profiling Chapter 11

[549]

Testing Go code
Software testing is a very large subject and cannot be covered in a single section of a
chapter in a book. So, this brief section will try to present as much practical information as
possible.

Go allows you to write tests for your Go code in order to detect bugs. Strictly speaking, this
section is about automated testing, which involves writing extra code to verify whether the
real code – that is, the production code – works as expected or not. Thus, the result of a test
function is either PASS or FAIL. You will see how this works shortly.

Although the Go approach to testing might look simple at first, especially if you compare it
with the testing practices of other programming languages, it is very efficient and effective
because it does not require too much of the developer's time.

Go follows certain conventions regarding testing. First of all, testing functions should be
included in Go source files that end with _test.go. So, if you have a package named
aGoPackage.go, then your tests should be placed in a file named aGoPackage_test.go.
A test function begins with Test, and it checks the correctness of the behavior of a function
of the production package. Finally, you will need to import the testing standard Go
package for the go test subcommand to work correctly. As you will soon see, this import
requirement also applies to two additional cases.

Once the testing code is correct, the go test subcommand does all the dirty work for you,
which includes scanning all *_test.go files for special functions, generating a temporary
main package properly, calling these special functions, getting the results, and generating
the final output.

Always put the testing code in a different source file. There is no need to
create a huge source file that is hard to read and maintain.

Writing tests for existing Go code
In this section, you will learn how to write tests for an existing Go application that includes
two functions: one for calculating numbers of the Fibonacci sequence and one for finding
out the length of a string. The main reason for using these two functions that implement
such relatively trivial tasks is simplicity. The tricky point here is that each function will
have two different implementations: one that works well and another one that has some
issues.

Code Testing, Optimization, and Profiling Chapter 11

[550]

The Go package in this example is named testMe and it is saved as testMe.go. The code
of this package will be presented in three parts.

The first part of testMe.go includes the following Go code:

package testMe
func f1(n int) int {
 if n == 0 {
 return 0
 }
 if n == 1 {
 return 1
 }
 return f1(n-1) + f1(n-2)
}

In the preceding code, you can see the definition of a function named f1(),
which calculates natural numbers of the Fibonacci sequence.

The second part of testMe.go is shown in the following Go code:

func f2(n int) int {
 if n == 0 {
 return 0
 }
 if n == 1 {
 return 2
 }
 return f2(n-1) + f2(n-2)
}

In this code, you can see the implementation of another function that calculates the
numbers of the Fibonacci sequence, named f2(). However, this function contains a bug
because it does not return 1 when the value of n is 1, which destroys the entire functionality
of the function.

The remaining code of testMe.go is shown in the following Go code:

func s1(s string) int {
 if s == "" {
 return 0
 }
 n := 1
 for range s {
 n++
 }
 return n

Code Testing, Optimization, and Profiling Chapter 11

[551]

}

func s2(s string) int {
 return len(s)
}

In this part, we implement two functions named s1() and s2(), which work on strings.
Both of these functions find the length of a string. However, the implementation of s1() is
incorrect because the initial value of n is 1 instead of 0.

It is now time to start thinking about tests and test cases. First of all, you should create a
testMe_test.go file, which will be used to store your testing functions. Next, it is
important to realize that you do not need to make any code changes to testMe.go. Finally,
remember that you should try to write as many tests as required to cover all potential
inputs and outputs.

The first part of testMe_test.go is shown in the following Go code:

package testMe

import "testing"

func TestS1(t *testing.T) {
 if s1("123456789") != 9 {
 t.Error(`s1("123456789") != 9`)
 }
 if s1("") != 0 {
 t.Error(`s1("") != 0`)
 }
}

The preceding function performs two tests on the s1() function: one using "123456789"
as input and another one using "" as input.

The second part of testMe_test.go is as follows:

func TestS2(t *testing.T) {
 if s2("123456789") != 9 {
 t.Error(`s2("123456789") != 9`)
 }
 if s2("") != 0 {
 t.Error(`s2("") != 0`)
 }
}

The preceding testing code performs the same two tests on the s2() function.

Code Testing, Optimization, and Profiling Chapter 11

[552]

The remaining code of testMe_test.go comes next:

func TestF1(t *testing.T) {
 if f1(0) != 0 {
 t.Error(`f1(0) != 0`)
 }
 if f1(1) != 1 {
 t.Error(`f1(1) != 1`)
 }
 if f1(2) != 1 {
 t.Error(`f1(2) != 1`)
 }
 if f1(10) != 55 {
 t.Error(`f1(10) != 55`)
 }
}

func TestF2(t *testing.T) {
 if f2(0) != 0 {
 t.Error(`f2(0) != 0`)
 }
 if f2(1) != 1 {
 t.Error(`f2(1) != 1`)
 }
 if f2(2) != 1 {
 t.Error(`f2(2) != 1`)
 }
 if f2(10) != 55 {
 t.Error(`f2(10) != 55`)
 }
}

The previous code tests the operation of the f1() and f2() functions.

Executing the tests will generate the following type of output:

$ go test testMe.go testMe_test.go -v
=== RUN TestS1
--- FAIL: TestS1 (0.00s)
 testMe_test.go:7: s1("123456789") != 9
=== RUN TestS2
--- PASS: TestS2 (0.00s)
=== RUN TestF1
--- PASS: TestF1 (0.00s)
=== RUN TestF2
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1

Code Testing, Optimization, and Profiling Chapter 11

[553]

 testMe_test.go:58: f2(10) != 55
FAIL
FAIL command-line-arguments 0.005s

If you do not include the -v parameter, which produces richer output, you will get the
following output:

$ go test testMe.go testMe_test.go
--- FAIL: TestS1 (0.00s)
 testMe_test.go:7: s1("123456789") != 9
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
FAIL
FAIL command-line-arguments 0.005s

If you want to run a test multiple times in succession, you can use the -count option as
follows:

$ go test testMe.go testMe_test.go -count 2
--- FAIL: TestS1 (0.00s)
 testMe_test.go:7: s1("123456789") != 9
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
--- FAIL: TestS1 (0.00s)
 testMe_test.go:7: s1("123456789") != 9
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
FAIL
FAIL command-line-arguments 0.005s

Should you wish to execute specific tests, you should use the -run command-line option,
which accepts a regular expression and executes all tests that have a function name that
matches the given regular expression:

$ go test testMe.go testMe_test.go -run='F2' -v
=== RUN TestF2
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
FAIL

Code Testing, Optimization, and Profiling Chapter 11

[554]

FAIL command-line-arguments 0.005s
$ go test testMe.go testMe_test.go -run='F1'
ok command-line-arguments (cached)

The last command verifies that the go test command used caching.

CAUTION: Software testing can only show the presence of one or more
bugs, not the absence of bugs. This means that you can never be
absolutely sure that your code has no bugs!

Test code coverage
In this section, you will learn how to find more information about the code
coverage of your programs. There are times when seeing the code coverage of your
programs can reveal issues and bugs with your code, so do not underestimate its
usefulness.

The Go code of codeCover.go is as follows:

package codeCover

func fibo1(n int) int {
 if n == 0 {
 return 0
 } else if n == 1 {
 return 1
 } else {
 return fibo1(n-1) + fibo1(n-2)
 }
}

func fibo2(n int) int {
 if n >= 0 {
 return 0
 } else if n == 1 {
 return 1
 } else {
 return fibo1(n-1) + fibo1(n-2)
 }
}

The implementation of fibo2() is erroneous because it returns 0 all the time. A result of
this bug is that most of the Go code of fibo2() will never get executed.

Code Testing, Optimization, and Profiling Chapter 11

[555]

The test code that can be found in codeCover_test.go is as follows:

package codeCover

import (
 "testing"
)

func TestFibo1(t *testing.T) {
 if fibo1(1) != 1 {
 t.Errorf("Error fibo1(1): %d\n", fibo1(1))
 }
}

func TestFibo2(t *testing.T) {
 if fibo2(0) != 0 {
 t.Errorf("Error fibo2(0): %d\n", fibo1(0))
 }
}

func TestFibo1_10(t *testing.T) {
 if fibo1(10) == 1 {
 t.Errorf("Error fibo1(1): %d\n", fibo1(1))
 }
}

func TestFibo2_10(t *testing.T) {
 if fibo2(10) != 0 {
 t.Errorf("Error fibo2(0): %d\n", fibo1(0))
 }
}

The implementations of these functions are pretty naive because their purpose is to
illustrate the use of the code coverage tool and not the generation of test functions.

Now we are going to check the coverage of the previous code. The main way to do this is
by executing go test with the -cover parameter:

$ go test -cover -v
=== RUN TestFibo1
--- PASS: TestFibo1 (0.00s)
=== RUN TestFibo2
--- PASS: TestFibo2 (0.00s)
=== RUN TestFibo1_10
--- PASS: TestFibo1_10 (0.00s)
=== RUN TestFibo2_10
--- PASS: TestFibo2_10 (0.00s)

Code Testing, Optimization, and Profiling Chapter 11

[556]

PASS
coverage: 70.0% of statements
ok _/Users/mtsouk/cover 0.005s

So, the code coverage is 70.0%, which means that there might be a problem somewhere.
Notice that the -v flag is not required for -cover to work.

However, there is a variation of the main command for test coverage that can generate a
coverage profile:

$ go test -coverprofile=coverage.out
PASS
coverage: 70.0% of statements
ok _/Users/mtsouk/cover 0.005s

After generating that special file, you can analyze it as follows:

$ go tool cover -func=coverage.out
/Users/mtsouk/cover/codeCover.go:3: fibo1 100.0%
/Users/mtsouk/cover/codeCover.go:13: fibo2 40.0%
total: (statements) 70.0%

Additionally, you can use a web browser to analyze that code coverage file as follows:

$ go tool cover -html=coverage.out

In the browser window that automatically opens, you will see lines of code colored either in
green or in red. Red-colored lines of code are not covered by tests, which means that you
should either cover them with more test cases or that there is something wrong with the Go
code that is being tested. One way or another, you should look into these lines of code and
reveal the problem.

Lastly, you can save that HTML output as follows:

$ o tool cover -html=coverage.out -o output.html

Testing an HTTP server with a database
backend
In this section, you are going to see how to test a database server, which in this case is going
to be a PostgreSQL server that works with an HTTP server written in Go. This is a special
situation because you will have to get your database data in order to be able to test the
correctness of the HTTP server.

Code Testing, Optimization, and Profiling Chapter 11

[557]

For the purposes of this section, I am going to show two Go files named webServer.go
and webServer_test.go. Before executing the code, you will need to download the Go
package that will help you to work with PostgreSQL from Go, which requires the execution
of the following command:

$ go get github.com/lib/pq

The Go code of webServer.go is as follows:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/lib/pq"
 "net/http"
 "os"
 "time"
)

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

func getData(w http.ResponseWriter, r *http.Request) {
 fmt.Printf("Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)

 connStr := "user=postgres dbname=s2 sslmode=disable"
 db, err := sql.Open("postgres", connStr)
 if err != nil {
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", err)
 return
 }

 rows, err := db.Query("SELECT * FROM users")
 if err != nil {

Code Testing, Optimization, and Profiling Chapter 11

[558]

 fmt.Fprintf(w, "<h3 align=\"center\">%s</h3>\n", err)
 return
 }
 defer rows.Close()

 for rows.Next() {
 var id int
 var firstName string
 var lastName string
 err = rows.Scan(&id, &firstName, &lastName)
 if err != nil {
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>\n", err)
 return
 }
 fmt.Fprintf(w, "<h3 align=\"center\">%d, %s, %s</h3>\n", id,
firstName, lastName)
 }

 err = rows.Err()
 if err != nil {
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", err)
 return
 }
}

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }
 fmt.Println("Using port number: ", PORT)
 http.HandleFunc("/time", timeHandler)
 http.HandleFunc("/getdata", getData)
 http.HandleFunc("/", myHandler)

 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

The Go code of webServer_test.go will be presented in six parts. The thing with testing
a web server that gets its data from a database is that you will need to write lots of utility
code to support the testing of the database.

Code Testing, Optimization, and Profiling Chapter 11

[559]

The first part of webServer_test.go is as follows:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/lib/pq"
 "net/http"
 "net/http/httptest"
 "testing"
)

The second part of webServer_test.go contains the following Go code:

func create_table() {
 connStr := "user=postgres dbname=s2 sslmode=disable"
 db, err := sql.Open("postgres", connStr)
 if err != nil {
 fmt.Println(err)
 }

 const query = `
 CREATE TABLE IF NOT EXISTS users (
 id SERIAL PRIMARY KEY,
 first_name TEXT,
 last_name TEXT
)`

 _, err = db.Exec(query)
 if err != nil {
 fmt.Println(err)
 return
 }
 db.Close()
}

This function communicates with PostgreSQL and creates a table named users inside the
database, which will be used for testing purposes only.

The third part of webServer_test.go is as follows:

func drop_table() {
 connStr := "user=postgres dbname=s2 sslmode=disable"
 db, err := sql.Open("postgres", connStr)
 if err != nil {
 fmt.Println(err)
 return

Code Testing, Optimization, and Profiling Chapter 11

[560]

 }

 _, err = db.Exec("DROP TABLE IF EXISTS users")
 if err != nil {
 fmt.Println(err)
 return
 }
 db.Close()
}

func insert_record(query string) {
 connStr := "user=postgres dbname=s2 sslmode=disable"
 db, err := sql.Open("postgres", connStr)
 if err != nil {
 fmt.Println(err)
 return
 }
 _, err = db.Exec(query)
 if err != nil {
 fmt.Println(err)
 return
 }
 db.Close()
}

These are two helper functions. The first one deletes the table that is created by
create_table(), whereas the second one inserts a record in PostgreSQL.

The fourth part of webServer_test.go is the following:

func Test_count(t *testing.T) {
 var count int
 create_table()

 insert_record("INSERT INTO users (first_name, last_name) VALUES
('Epifanios', 'Doe')")
 insert_record("INSERT INTO users (first_name, last_name) VALUES
('Mihalis', 'Tsoukalos')")
 insert_record("INSERT INTO users (first_name, last_name) VALUES
('Mihalis', 'Unknown')")

 connStr := "user=postgres dbname=s2 sslmode=disable"
 db, err := sql.Open("postgres", connStr)
 if err != nil {
 fmt.Println(err)
 return
 }

Code Testing, Optimization, and Profiling Chapter 11

[561]

 row := db.QueryRow("SELECT COUNT(*) FROM users")
 err = row.Scan(&count)
 db.Close()

 if count != 3 {
 t.Errorf("Select query returned %d", count)
 }
 drop_table()
}

This is the first test function of the package and it operates in two stages. Firstly, it inserts
three records into a database table. Secondly, it verifies that the database table has exactly
three records in it.

The fifth part of webServer_test.go contains the following Go code:

func Test_queryDB(t *testing.T) {
 create_table()

 connStr := "user=postgres dbname=s2 sslmode=disable"
 db, err := sql.Open("postgres", connStr)
 if err != nil {
 fmt.Println(err)
 return
 }

 query := "INSERT INTO users (first_name, last_name) VALUES ('Random
Text', '123456')"
 insert_record(query)

 rows, err := db.Query(`SELECT * FROM users WHERE last_name=$1`,
`123456`)
 if err != nil {
 fmt.Println(err)
 return
 }
 var col1 int
 var col2 string
 var col3 string
 for rows.Next() {
 rows.Scan(&col1, &col2, &col3)
 }
 if col2 != "Random Text" {
 t.Errorf("first_name returned %s", col2)
 }

 if col3 != "123456" {
 t.Errorf("last_name returned %s", col3)

Code Testing, Optimization, and Profiling Chapter 11

[562]

 }

 db.Close()
 drop_table()
}

This is another test function that inserts a record into a database table and verifies that the
data was written correctly.

The last part of webServer_test.go is as follows:

func Test_record(t *testing.T) {
 create_table()
 insert_record("INSERT INTO users (first_name, last_name) VALUES
('John', 'Doe')")

 req, err := http.NewRequest("GET", "/getdata", nil)
 if err != nil {
 fmt.Println(err)
 return
 }
 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(getData)
 handler.ServeHTTP(rr, req)

 status := rr.Code
 if status != http.StatusOK {
 t.Errorf("Handler returned %v", status)
 }

 if rr.Body.String() != "<h3 align=\"center\">1, John, Doe</h3>\n" {
 t.Errorf("Wrong server response!")
 }
 drop_table()
}

The last test function of the package interacts with the web server and visits the /getdata
URL. Then, it verifies that the return value is the expected one.

At this point, you should create a PostgreSQL database named s2 because this is the one
that is used by the testing code. This can be done as follows:

$ psql -p 5432 -h localhost -U postgres -c "CREATE DATABASE s2"
CREATE DATABASE

If everything is OK, you will get the following kind of output from go test:

$ go test webServer* -v

Code Testing, Optimization, and Profiling Chapter 11

[563]

=== RUN Test_count
--- PASS: Test_count (0.05s)
=== RUN Test_queryDB
--- PASS: Test_queryDB (0.04s)
=== RUN Test_record
Serving: /getdata
Served:
--- PASS: Test_record (0.04s)
PASS
ok command-line-arguments 0.138s

Omitting the -v option will generate a shorter output:

$ go test webServer*
ok command-line-arguments 0.160s

Notice that you should not start the web server before the go test command, as it is
automatically started by go test.

If the PostgreSQL server is not running, the test will fail with the following error messages:

$ go test webServer* -v
=== RUN Test_count
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
--- FAIL: Test_count (0.01s)
 webServer_test.go:85: Select query returned 0
=== RUN Test_queryDB
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
--- PASS: Test_queryDB (0.00s)
=== RUN Test_record
dial tcp [::1]:5432: connect: connection refused
dial tcp [::1]:5432: connect: connection refused
Serving: /getdata
Served:
dial tcp [::1]:5432: connect: connection refused
--- FAIL: Test_record (0.00s)
 webServer_test.go:145: Wrong server response!
FAIL
FAIL command-line-arguments 0.024s

In Chapter 12, The Foundations of Network Programming in Go, you are going to see an
example where you test the handlers and the HTTP code of an HTTP server written in Go.

Code Testing, Optimization, and Profiling Chapter 11

[564]

The testing/quick package
The Go standard library offers the testing/quick package, which can be used for black-
box testing and is somewhat related to the QuickCheck package found in the Haskell
programming language – both packages implement utility functions to help you with
black-box testing. Go can generate random values of built-in types. The testing/quick
package allows you to use these random values for testing, which saves you from having to
generate all these values on your own.

A small program, which is saved as randomBuiltin.go and illustrates how Go can
generate random values, is the following:

package main

import (
 "fmt"
 "math/rand"
 "reflect"
 "testing/quick"
 "time"
)

func main() {
 type point3D struct {
 X, Y, Z int8
 S float32
 }
 ran := rand.New(rand.NewSource(time.Now().Unix()))

 myValues := reflect.TypeOf(point3D{})
 x, _ := quick.Value(myValues, ran)
 fmt.Println(x)
}

First, we create a new random generator using rand.New() and then we use reflection to
get information about the type of point3D. After that, we call quick.Value() from the
testing/quick package with a type descriptor and a random number generator in order
to put some random data into the myValues variable. Notice that in order to generate
arbitrary values for structures, all the fields of the structure must be exported.

Executing randomBuiltin.go will generate the following kind of output:

$ go run randomBuiltin.go
{65 8 75 -3.3435536e+38}
$ go run randomBuiltin.go
{-38 33 36 3.2604468e+38}

Code Testing, Optimization, and Profiling Chapter 11

[565]

Notice that if you decide to create random strings, you will end up having Unicode strings
with strange characters.

Now that you know how to create random values for built-in types, let us continue with the
testing/quick package. For the purposes of this subsection, we are going to use two Go
source files named quick.go and quick_test.go.

The Go code of quick.go is as follows:

package main

import (
 "fmt"
)

func Add(x, y uint16) uint16 {
 var i uint16
 for i = 0; i < x; i++ {
 y++
 }
 return y
}

func main() {
 fmt.Println(Add(0, 0))
}

The add() function in quick.go implements the addition of unsigned integers (uint16)
using a for loop and it is used to illustrate black-box testing using the testing/quick
package.

The code of quick_test.go will be the following:

package main

import (
 "testing"
 "testing/quick"
)

var N = 1000000

func TestWithSystem(t *testing.T) {
 condition := func(a, b uint16) bool {
 return Add(a, b) == (b + a)
 }

Code Testing, Optimization, and Profiling Chapter 11

[566]

 err := quick.Check(condition, &quick.Config{MaxCount: N})
 if err != nil {
 t.Errorf("Error: %v", err)
 }
}

func TestWithItself(t *testing.T) {
 condition := func(a, b uint16) bool {
 return Add(a, b) == Add(b, a)
 }

 err := quick.Check(condition, &quick.Config{MaxCount: N})
 if err != nil {
 t.Errorf("Error: %v", err)
 }

}

The two calls to quick.Check() automatically generate random numbers based on the
signature of their first argument, which is a function defined earlier. There is no need to
create these random input numbers on your own, which makes the code easy to read and
write. The actual tests happen in the condition function in both cases.

Executing the tests will generate the following output:

$ go test -v quick*
=== RUN TestWithSystem
--- PASS: TestWithSystem (8.36s)
=== RUN TestWithItself
--- PASS: TestWithItself (17.41s)
PASS
ok command-line-arguments (cached)

If you do not want to use cached testing, you should execute go test as follows:

$ go test -v quick* -count=1
=== RUN TestWithSystem
--- PASS: TestWithSystem (8.15s)
=== RUN TestWithItself
--- PASS: TestWithItself (15.95s)
PASS
ok command-line-arguments 24.104s

The idiomatic way to bypass test caching is to use -count=1 with the go
test command because GOCACHE=off no longer works with Go 1.12.

Code Testing, Optimization, and Profiling Chapter 11

[567]

The error message you will get if you try to use GOCACHE=off is build
cache is disabled by GOCACHE=off, but required as of Go

1.12. You can learn more about it by executing go help testflag.

What if testing takes too long or never finishes?
If the go test tool takes too much time to finish or for some reason it never ends, there is
the -timeout parameter. In order to illustrate that, we are going to create a new Go
program along with its tests.

The Go code of the main package, which is saved as too_long.go, is the following:

package main

import (
 "time"
)

func sleep_with_me() {
 time.Sleep(5 * time.Second)
}

func get_one() int {
 return 1
}

func get_two() int {
 return 2
}

func main() {

}

The testing functions, which are saved in too_long_test.go, will be as follows:

package main

import (
 "testing"
)

func Test_test_one(t *testing.T) {
 sleep_with_me()
 value := get_one()

Code Testing, Optimization, and Profiling Chapter 11

[568]

 if value != 1 {
 t.Errorf("Function returned %v", value)
 }
 sleep_with_me()
}

func Test_test_two(t *testing.T) {
 sleep_with_me()
 value := get_two()
 if value != 2 {
 t.Errorf("Function returned %v", value)
 }
}

func Test_that_will_fail(t *testing.T) {
 value := get_one()
 if value != 2 {
 t.Errorf("Function returned %v", value)
 }
}

The Test_that_will_fail() test function will always fail, whereas the other two
functions are correct but slow.

Executing go test with and without the -timeout parameter will generate the following
kinds of output:

$ go test too_long* -v
=== RUN Test_test_one
--- PASS: Test_test_one (10.01s)
=== RUN Test_test_two
--- PASS: Test_test_two (5.00s)
=== RUN Test_that_will_fail
--- FAIL: Test_that_will_fail (0.00s)
 too_long_test.go:27: Function returned 1
FAIL
FAIL command-line-arguments 15.019s
$ go test too_long* -v -timeout 20s
=== RUN Test_test_one
--- PASS: Test_test_one (10.01s)
=== RUN Test_test_two
--- PASS: Test_test_two (5.01s)
=== RUN Test_that_will_fail
--- FAIL: Test_that_will_fail (0.00s)
 too_long_test.go:27: Function returned 1
FAIL
FAIL command-line-arguments 15.021s
$ go test too_long* -v -timeout 15s

Code Testing, Optimization, and Profiling Chapter 11

[569]

=== RUN Test_test_one
--- PASS: Test_test_one (10.01s)
=== RUN Test_test_two
panic: test timed out after 15s
goroutine 34 [running]:
testing.(*M).startAlarm.func1()
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:1334 +0xdf
created by time.goFunc
 /usr/local/Cellar/go/1.12.4/libexec/src/time/sleep.go:169 +0x44
goroutine 1 [chan receive]:
testing.(*T).Run(0xc0000dc000, 0x113a46d, 0xd, 0x1141a08, 0x1069b01)
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:917 +0x381
testing.runTests.func1(0xc0000c0000)
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:1157 +0x78
testing.tRunner(0xc0000c0000, 0xc00009fe30)
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:865 +0xc0
testing.runTests(0xc0000ba000, 0x1230280, 0x3, 0x3, 0x0)
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:1155 +0x2a9
testing.(*M).Run(0xc0000a8000, 0x0)
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:1072 +0x162
main.main()
 _testmain.go:46 +0x13e
goroutine 5 [runnable]:
runtime.goparkunlock(...)
 /usr/local/Cellar/go/1.12.4/libexec/src/runtime/proc.go:307
time.Sleep(0x12a05f200)
 /usr/local/Cellar/go/1.12.4/libexec/src/runtime/time.go:105 +0x159
command-line-arguments.sleep_with_me(...)
 /Users/mtsouk/Desktop/mGo2nd/Mastering-Go-Second-
Edition/ch11/too_long.go:8
command-line-arguments.Test_test_two(0xc0000dc000)
 /Users/mtsouk/Desktop/mGo2nd/Mastering-Go-Second-
Edition/ch11/too_long_test.go:17 +0x31
testing.tRunner(0xc0000dc000, 0x1141a08)
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:865 +0xc0
created by testing.(*T).Run
 /usr/local/Cellar/go/1.12.4/libexec/src/testing/testing.go:916 +0x35a
FAIL command-line-arguments 15.015s

Only the third go test command fails because it takes longer than 15 seconds to finish.

Benchmarking Go code
Benchmarking measures the performance of a function or program, allowing you to
compare implementations and to understand the impact of changes you make to your code.

Code Testing, Optimization, and Profiling Chapter 11

[570]

Using that information, you can easily reveal the part of the Go code that needs to be
rewritten in order to improve its performance.

Never benchmark your Go code on a busy UNIX machine that is currently
being used for other, more important, purposes unless you have a very
good reason to do so! Otherwise, you will interfere with the
benchmarking process and get inaccurate results.

Go follows certain conventions regarding benchmarking. The most important convention is
that the name of a benchmark function must begin with Benchmark.

Once again, the go test subcommand is responsible for benchmarking a program. As a
result, you still need to import the testing standard Go package and include
benchmarking functions in Go files that end with _test.go.

A simple benchmarking example
In this section, I will show you a basic benchmarking example that will measure the
performance of three algorithms that generate numbers belonging to the Fibonacci
sequence. The good news is that such algorithms require lots of mathematical calculations,
which makes them perfect candidates for benchmarking.

For the purposes of this section, I will create a new main package, which will be saved as
benchmarkMe.go and presented in three parts.

The first part of benchmarkMe.go is as follows:

package main

import (
 "fmt"
)

func fibo1(n int) int {
 if n == 0 {
 return 0
 } else if n == 1 {
 return 1
 } else {
 return fibo1(n-1) + fibo1(n-2)
 }
}

Code Testing, Optimization, and Profiling Chapter 11

[571]

The preceding code contains the implementation of the fibo1() function, which uses
recursion in order to calculate numbers of the Fibonacci sequence. Although the algorithm
works fine, this is a relatively simple and somewhat slow approach.

The second code segment of benchmarkMe.go is shown in the following Go code:

func fibo2(n int) int {
 if n == 0 || n == 1 {
 return n
 }
 return fibo2(n-1) + fibo2(n-2)
}

In this part, you see the implementation of the fibo2() function, which is almost identical
to the fibo1() function that you saw earlier. However, it will be interesting to see whether
a small code change – a single if statement as opposed to an if else if block – has any
impact on the performance of the function.

The third code portion of benchmarkMe.go contains yet another implementation of a
function that calculates numbers that belong to the Fibonacci sequence:

func fibo3(n int) int {
 fn := make(map[int]int)
 for i := 0; i <= n; i++ {
 var f int
 if i <= 2 {
 f = 1
 } else {
 f = fn[i-1] + fn[i-2]
 }
 fn[i] = f
 }
 return fn[n]
}

The fibo3() function presented here uses a totally new approach that requires a Go map
and has a for loop. It remains to be seen whether this approach is indeed faster than the
other two implementations. The algorithm presented in fibo3() will also be used in
Chapter 13, Network Programming – Building Your Own Servers and Clients, where it will be
explained in greater detail. As you will see in a while, choosing an efficient algorithm can
save you a lot of trouble!

The remaining code of benchmarkMe.go follows:

func main() {
 fmt.Println(fibo1(40))

Code Testing, Optimization, and Profiling Chapter 11

[572]

 fmt.Println(fibo2(40))
 fmt.Println(fibo3(40))
}

Executing benchmarkMe.go will generate the following output:

$ go run benchmarkMe.go
102334155
102334155
102334155

The good news is that all three implementations returned the same number. Now it is time
to add some benchmarks to benchmarkMe.go in order to understand the efficiency of each
one of the three algorithms.

As the Go rules require, the version of benchmarkMe.go containing the benchmark
functions is going to be saved as benchmarkMe_test.go. This program is presented in five
parts. The first code segment of benchmarkMe_test.go contains the following Go code:

package main
import (
 "testing"
)

var result int

func benchmarkfibo1(b *testing.B, n int) {
 var r int
 for i := 0; i < b.N; i++ {
 r = fibo1(n)
 }
 result = r
}

In the preceding code, you can see the implementation of a function with a name that
begins with the benchmark string instead of the Benchmark string. As a result, this
function will not run automatically because it begins with a lowercase b instead of an
uppercase B.

The reason for storing the result of fibo1(n) in a variable named r and using another
global variable named result afterward is tricky: this technique is used to prevent the
compiler from performing any optimizations that will exclude the function that you want
to measure from being executed because its results are never used. The same technique will
be applied to the benchmarkfibo2() and benchmarkfibo3() functions, which will be
presented next.

Code Testing, Optimization, and Profiling Chapter 11

[573]

The second part of benchmarkMe_test.go is shown in the following Go code:

func benchmarkfibo2(b *testing.B, n int) {
 var r int
 for i := 0; i < b.N; i++ {
 r = fibo2(n)
 }
 result = r
}

func benchmarkfibo3(b *testing.B, n int) {
 var r int
 for i := 0; i < b.N; i++ {
 r = fibo3(n)
 }
 result = r
}

The preceding code defines two more benchmark functions that will not run automatically
because they begin with a lowercase b instead of an uppercase B.

Now, I will tell you a big secret: even if these three functions were named
BenchmarkFibo1(), BenchmarkFibo2(), and BenchmarkFibo3(), they would not have
been invoked automatically by the go test command because their signature is not
func(*testing.B). So, that is the reason for naming them with a lowercase b. However,
there is nothing that prevents you from invoking them from other benchmark functions
afterward, as you will see shortly.

The third part of benchmarkMe_test.go follows:

func Benchmark30fibo1(b *testing.B) {
 benchmarkfibo1(b, 30)
}

This is a correct benchmark function with the correct name and the correct signature, which
means that it will be executed by go tool.

Notice that although Benchmark30fibo1() is a valid benchmark function name,
BenchmarkfiboIII() is not because there is no uppercase letter or a number after the
Benchmark string. This is very important because a benchmark function with an incorrect
name will not get executed automatically. The same rule applies to test functions.

The fourth code segment of benchmarkMe_test.go contains the following Go code:

func Benchmark30fibo2(b *testing.B) {
 benchmarkfibo2(b, 30)

Code Testing, Optimization, and Profiling Chapter 11

[574]

}

func Benchmark30fibo3(b *testing.B) {
 benchmarkfibo3(b, 30)
}

Both the Benchmark30fibo2() and Benchmark30fibo3() benchmark functions are
similar to Benchmark30fibo1().

The last part of benchmarkMe_test.go is as follows:

func Benchmark50fibo1(b *testing.B) {
 benchmarkfibo1(b, 50)
}
func Benchmark50fibo2(b *testing.B) {
 benchmarkfibo2(b, 50)
}
func Benchmark50fibo3(b *testing.B) {
 benchmarkfibo3(b, 50)
}

In this part, you see three additional benchmark functions that calculate the 50th number in
the Fibonacci sequence.

Remember that each benchmark is executed for at least one second by
default. If the benchmark function returns in a time that is less than one
second, the value of b.N is increased, and the function is run again. The
first time the value of b.N is one, then it becomes two, then five, then 10,
then 20, then 50, and so on. This happens because the faster the function
is, the more times you need to run it to get accurate results.

Executing benchmarkMe_test.go will generate the following output:

$ go test -bench=. benchmarkMe.go benchmarkMe_test.go
goos: darwin
goarch: amd64
Benchmark30fibo1-8 300 4494213 ns/op
Benchmark30fibo2-8 300 4463607 ns/op
Benchmark30fibo3-8 500000 2829 ns/op
Benchmark50fibo1-8 1 67272089954 ns/op
Benchmark50fibo2-8 1 67300080137 ns/op
Benchmark50fibo3-8 300000 4138 ns/op
PASS
ok command-line-arguments 145.827s

Code Testing, Optimization, and Profiling Chapter 11

[575]

There are two important points here: first, the value of the -bench parameter specifies the
benchmark functions that are going to be executed. The . value used is a regular expression
that matches all valid benchmark functions. The second point is that if you omit the -bench
parameter, no benchmark function will be executed.

So, what does this output tell us? First of all, the -8 at the end of each benchmark function
(Benchmark10fibo1-8) signifies the number of goroutines used during its execution,
which is essentially the value of the GOMAXPROCS environment variable. You will recall that
we talked about the GOMAXPROCS environment variable back in Chapter 10, Concurrency in
Go – Advanced Topics. Similarly, you can see the values of GOOS and GOARCH, which show
the operating system and the architecture of your machine.

The second column in the output displays the number of times that the relevant function
was executed. Faster functions are executed more times than slower functions. As an
example, the Benchmark30fibo3() function was executed 500,000 times, while the
Benchmark50fibo2() function was executed only once! The third column in the output
shows the average time of each run.

As you can see, the fibo1() and fibo2() functions are really slow compared to the
fibo3() function. Should you wish to include memory allocation statistics in the output,
you can execute the following command:

$ go test -benchmem -bench=. benchmarkMe.go benchmarkMe_test.go
goos: darwin
goarch: amd64
Benchmark30fibo1-8 300 4413791 ns/op 0 B/op 0 allocs/op
Benchmark30fibo2-8 300 4430097 ns/op 0 B/op 0 allocs/op
Benchmark30fibo3-8 500000 2774 ns/op 2236 B/op 6 allocs/op
Benchmark50fibo1-8 1 71534648696 ns/op 0 B/op 0 allocs/op
Benchmark50fibo2-8 1 72551120174 ns/op 0 B/op 0 allocs/op
Benchmark50fibo3-8 300000 4612 ns/op 2481 B/op 10 allocs/op
PASS
ok command-line-arguments 150.500s

The preceding output is similar to the one without the -benchmem command-line
parameter, but it includes two more columns in its output. The fourth column shows the
amount of memory that was allocated on average in each execution of the benchmark
function. The fifth column shows the number of allocations used to allocate the memory
value of the fourth column. So, Benchmark50fibo3() allocated 2,481 bytes in 10
allocations on average.

Code Testing, Optimization, and Profiling Chapter 11

[576]

As you can understand, the fibo1() and fibo2() functions do not need any special kind
of memory apart from what is expected, because neither of them use any kind of data
structure, which is not the case with fibo3(), which uses a map variable; hence the larger-
than-zero values in both the fourth and fifth columns of the output of
Benchmark10fibo3-8.

Wrongly defined benchmark functions
Look at the Go code of the following benchmark function:

func BenchmarkFiboI(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo1(i)
 }
}

The BenchmarkFibo() function has a valid name and the correct signature. The bad news,
however, is that this benchmark function is wrong, and you will not get any output from it
after executing the go test command.

The reason for this is that as the b.N value grows in the way described earlier, the runtime
of the benchmark function will also increase because of the for loop. This fact prevents
BenchmarkFiboI() from converging to a stable number, which prevents the function from
completing and therefore returning.

For analogous reasons, the next benchmark function is also wrongly implemented:

func BenchmarkfiboII(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo2(b.N)
 }
}

On the other hand, there is nothing wrong with the implementation of the following two
benchmark functions:

func BenchmarkFiboIV(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo3(10)
 }
}

func BenchmarkFiboIII(b *testing.B) {

Code Testing, Optimization, and Profiling Chapter 11

[577]

 _ = fibo3(b.N)
}

Benchmarking buffered writing
In this section, we will explore how the size of the write buffer affects the performance of
the entire writing operation using the Go code of writingBU.go, which will be presented
in five parts.

The writingBU.go program generates dummy files with randomly generated data. The
variables of the program are the size of the buffer and the size of the output file.

The first part of writingBU.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
)

var BUFFERSIZE int
var FILESIZE int

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second code portion of writingBU.go contains the following Go code:

func createBuffer(buf *[]byte, count int) {
 *buf = make([]byte, count)
 if count == 0 {
 return
 }
 for i := 0; i < count; i++ {
 intByte := byte(random(0, 100))
 if len(*buf) > count {
 return
 }
 *buf = append(*buf, intByte)
 }
}

Code Testing, Optimization, and Profiling Chapter 11

[578]

The third part of writingBU.go is shown in the following Go code:

func Create(dst string, b, f int) error {
 _, err := os.Stat(dst)
 if err == nil {
 return fmt.Errorf("File %s already exists.", dst)
 }
 destination, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer destination.Close()
 if err != nil {
 panic(err)
 }
 buf := make([]byte, 0)
 for {
 createBuffer(&buf, b)
 buf = buf[:b]
 if _, err := destination.Write(buf); err != nil {
 return err
 }
 if f < 0 {
 break
 }
 f = f - len(buf)
 }
 return err
}

The Create() function does all of the work in the program, and it is this function that
needs to be benchmarked.

Note that if the buffer size and the file size were not part of the signature of the Create()
function, you would have a problem writing a benchmark function for Create() because
you would be required to use the BUFFERSIZE and FILESIZE global variables, which are
both initialized in the main() function of writingBU.go. This would be difficult to do in
the writingBU_test.go file. This means that in order to create a benchmark for a
function, you should think about it when you are writing your code.

The fourth code segment of writingBU.go is as follows:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Need BUFFERSIZE FILESIZE!")
 return
 }

Code Testing, Optimization, and Profiling Chapter 11

[579]

 output := "/tmp/randomFile"
 BUFFERSIZE, _ = strconv.Atoi(os.Args[1])
 FILESIZE, _ = strconv.Atoi(os.Args[2])
 err := Create(output, BUFFERSIZE, FILESIZE)
 if err != nil {
 fmt.Println(err)
 }

The remaining Go code of writingBU.go follows:

 err = os.Remove(output)
 if err != nil {
 fmt.Println(err)
 }
}

Although the os.Remove() call that deletes the temporary file is inside of the main()
function, which is not called by the benchmark functions, it is easy to call os.Remove()
from the benchmark functions, so there is no problem here.

Executing writingBU.go twice on a macOS Mojave machine with an SSD hard disk using
the time(1) utility to check the speed of the program generates the following output:

$ time go run writingBU.go 1 100000
real 0m1.193s
user 0m0.349s
sys 0m0.809s
$ time go run writingBU.go 10 100000
real 0m0.283s
user 0m0.195s
sys 0m0.228s

So, although it is obvious that the size of the write buffer plays a key role in the
performance of the program, we need to be much more specific and accurate. Therefore, we
will write benchmark functions that will be stored in writingBU_test.go.

The first part of writingBU_test.go is shown in the following Go code:

package main
import (
 "fmt"
 "os"
 "testing"
)
var ERR error

func benchmarkCreate(b *testing.B, buffer, filesize int) {

Code Testing, Optimization, and Profiling Chapter 11

[580]

 var err error
 for i := 0; i < b.N; i++ {
 err = Create("/tmp/random", buffer, filesize)
 }
 ERR = err
 err = os.Remove("/tmp/random")
 if err != nil {
 fmt.Println(err)
 }
}

As you will recall, this is not a valid benchmark function.

The second code segment of writingBU_test.go is as follows:

func Benchmark1Create(b *testing.B) {
 benchmarkCreate(b, 1, 1000000)
}

func Benchmark2Create(b *testing.B) {
 benchmarkCreate(b, 2, 1000000)
}

The remaining code of writingBU_test.go is as follows:

func Benchmark4Create(b *testing.B) {
 benchmarkCreate(b, 4, 1000000)
}

func Benchmark10Create(b *testing.B) {
 benchmarkCreate(b, 10, 1000000)
}

func Benchmark1000Create(b *testing.B) {
 benchmarkCreate(b, 1000, 1000000)
}

Here, we created five benchmark functions that are going to check the performance of the
benchmarkCreate() function, which checks the performance of the Create() function
for various write buffer sizes.

Executing go test on both the writingBU.go and writingBU_test.go files will
generate the following type of output:

$ go test -bench=. writingBU.go writingBU_test.go
goos: darwin
goarch: amd64
Benchmark1Create-8 1 6001864841 ns/op

Code Testing, Optimization, and Profiling Chapter 11

[581]

Benchmark2Create-8 1 3063250578 ns/op
Benchmark4Create-8 1 1557464132 ns/op
Benchmark10Create-8 100000 11136 ns/op
Benchmark1000Create-8 200000 5532 ns/op
PASS
ok command-line-arguments 21.847s

The following output also checks the memory allocations of the benchmark functions:

$ go test -bench=. writingBU.go writingBU_test.go -benchmem
goos: darwin
goarch: amd64
Benchmark1Create-8 1 6209493161 ns/op 16000840 B/op 2000017
allocs/op
Benchmark2Create-8 1 3177139645 ns/op 8000584 B/op 1000013
allocs/op
Benchmark4Create 1 1632772604 ns/op 4000424 B/op 500011
allocs/op
Benchmark10Create-8 100000 11238 ns/op 336 B/op 7 allocs/op
Benchmark1000Create-8 200000 5122 ns/op 303 B/op 5 allocs/op
PASS
ok command-line-arguments 24.031s

It is now time to interpret the output of the two go test commands.

It is extremely obvious that using a write buffer with a size of 1 byte is totally inefficient
and slows everything down. Additionally, such a buffer size requires too many memory
operations, which slows down the program even more.

Using a write buffer with 2 bytes makes the entire program twice as fast, which is a good
thing. However, it is still very slow. The same applies to a write buffer with a size of 4
bytes. Where things get much faster is when we decide to use a write buffer with a size of
10 bytes. Finally, the results show that using a write buffer with a size of 1,000 bytes does
not make things 100 times faster than when using a buffer size of 10 bytes, which means
that the sweet spot between speed and write buffer size is somewhere between these two
buffer size values.

Finding unreachable Go code
Go code that cannot be executed is a logical error, and therefore it is pretty difficult to
reveal it with developers or a normal execution of the Go compiler. Put simply, there is
nothing wrong with unreachable code, apart from the fact that there is no way for this code
to get executed.

Code Testing, Optimization, and Profiling Chapter 11

[582]

Take a look at the following Go code, which is saved as cannotReach.go:

package main
import (
 "fmt"
)

func f1() int {
 fmt.Println("Entering f1()")
 return -10
 fmt.Println("Exiting f1()")
 return -1
}

func f2() int {
 if true {
 return 10
 }
 fmt.Println("Exiting f2()")
 return 0
}

func main() {
 fmt.Println(f1())
 fmt.Println("Exiting program...")
}

There is nothing syntactically incorrect with the Go code of cannotReach.go. As a result,
you can execute cannotReach.go without getting any error messages from the compiler:

$ go run cannotReach.go
Entering f1()
-1
Exiting program...

Note that f2() is never used in the program. However, it is obvious that the following Go
code of f2() never gets executed because the condition in the preceding if is always true:

 fmt.Println("Exiting f2()")
 return 0

So, what can you do about it? You can execute go vet as follows:

$ go vet cannotReach.go
command-line-arguments
./cannotReach.go:10:2: unreachable code

Code Testing, Optimization, and Profiling Chapter 11

[583]

The output tells us that there is unreachable code in line 10 of the program. Now let's
remove the return -10 statement from the f1() function and rerun go vet:

$ go vet cannotReach.go

Here, there are no new error messages despite the fact that there is still unreachable code in
the f2() function. This means that go vet cannot catch every possible type of logical
error.

Cross-compilation
Cross-compilation is the process of generating a binary executable file for a different
architecture than the one on which you are working.

The main benefit that you receive from cross-compilation is that you do not need a second
or third machine to create executable files for different architectures. This means that you
basically need just a single machine for your development. Fortunately, Go has built-in
support for cross-compilation.

For the purpose of this section, we are going to use the Go code of xCompile.go to
illustrate the cross-compilation process. The Go code of xCompile.go is as follows:

package main

import (
 "fmt"
 "runtime"
)

func main() {
 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("with Go version", runtime.Version())
}

Running xCompile.go on a macOS Mojave machine generates the following output:

$ go run xCompile.go
You are using gc on a amd64 machine
with Go version go1.12.4

Code Testing, Optimization, and Profiling Chapter 11

[584]

In order to cross compile a Go source file, you will need to set the GOOS and GOARCH
environment variables to the target operating system and architecture, respectively, which
is not as difficult as it sounds.

So, the cross-compilation process goes like this:

$ env GOOS=linux GOARCH=arm go build xCompile.go
$ file xCompile
xCompile: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
statically linked, not stripped
$./xCompile
-bash: ./xCompile: cannot execute binary file

The first command generates a binary file that works on Linux machines that use the ARM
architecture, while the output of file(1) verifies that the generated binary file is indeed
for a different architecture.

As the Debian Linux machine that will be used for this example has an Intel processor, we
will have to execute the go build command once more using the correct GOARCH value:

$ env GOOS=linux GOARCH=386 go build xCompile.go
$ file xCompile
xCompile: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, with debug_info, not stripped

Executing the generated binary executable file on a Linux machine will produce the
following expected output:

$./xCompile
You are using gc on a 386 machine
with Go version go1.12.4
$ go version
go version go1.3.3 linux/amd64
$ go run xCompile.go
You are using gc on a amd64 machine
with Go version go1.3.3

One thing to notice here is that the cross-compiled binary file of xCompile.go prints the
Go version of the machine used for compiling it. The second thing to notice is that the
architecture of the Linux machine is actually amd64 instead of 386, which was used in the
cross-compilation process.

Code Testing, Optimization, and Profiling Chapter 11

[585]

You can find a list of the available values for the GOOS and GOARCH
environment variables at https://golang.org/doc/install/source.
Keep in mind, however, that not all GOOS and GOARCH pairs are valid.

Creating example functions
Part of the documentation process is generating example code that showcases the use of
some or all of the functions and types of a package. Example functions have many benefits,
including the fact that they are executable tests that are executed by go test. Therefore, if
an example function contains an // Output: line, the go test tool will check whether the
calculated output matches the values found after the // Output: line.

Additionally, examples are really useful when seen in the documentation of the package,
which is the subject of the next section. Finally, example functions that are presented on the
Go documentation server (https://golang.org/pkg/io/#example_Copy) allow the reader
of the documentation to experiment with the example code. The Go playground at
https://play.golang.org/ also supports this functionality.

As the go test subcommand is responsible for the examples of a program, you will need
to import the testing standard Go package and include example functions in Go files that
end with _test.go. Moreover, the name of each example function must begin with
Example. Lastly, example functions take no input parameters and return no results.

Now let's create some example functions for the following package, which is saved as
ex.go:

package ex
func F1(n int) int {
 if n == 0 {
 return 0
 }
 if n == 1 || n == 2 {
 return 1
 }
 return F1(n-1) + F1(n-2)
}
func S1(s string) int {
 return len(s)
}

The ex.go source file contains the implementation of two functions named F1() and S1().

https://golang.org/doc/install/source
https://golang.org/pkg/io/#example_Copy
https://play.golang.org/

Code Testing, Optimization, and Profiling Chapter 11

[586]

Notice that ex.go does not need to import the fmt package.

As you know, the example functions will be included in the ex_test.go file, which will be
presented in three parts.

The first part of ex_test.go is as follows:

package ex
import (
 "fmt"
)

The second code portion of ex_test.go is shown in the following Go code:

func ExampleF1() {
 fmt.Println(F1(10))
 fmt.Println(F1(2))
 // Output:
 // 55
 // 1
}

The remaining Go code of ex_test.go follows:

func ExampleS1() {
 fmt.Println(S1("123456789"))
 fmt.Println(S1(""))
 // Output:
 // 8
 // 0
}

Executing the go test command on the ex.go package will generate the following type of
output:

$ go test ex.go ex_test.go -v
=== RUN ExampleF1
--- PASS: ExampleF1 (0.00s)
=== RUN ExampleS1
--- FAIL: ExampleS1 (0.00s)
got:
9
0
want:
8
0
FAIL
FAIL command-line-arguments 0.006s

Code Testing, Optimization, and Profiling Chapter 11

[587]

You will observe that the preceding output tells us that there is something wrong with the
S1() function based on the data after the // Output: comment.

From Go code to machine code
In this section, you will learn how Go code is converted into machine code in much more
detail. The Go program that is going to be used in this example is named machineCode.go
and it is going to be presented in two parts.

The first part of machineCode.go is as follows:

package main

import (
 "fmt"
)

func hello() {
 fmt.Println("Hello!")
}

The second and final part of machineCode.go is as follows:

func main() {
 hello()
}

After that, you can see machineCode.go translated into machine code as follows:

$ GOSSAFUNC=main GOOS=linux GOARCH=amd64 go build -gcflags "-S"
machineCode.go
runtime
dumped SSA to /usr/local/Cellar/go/1.12.4/libexec/src/runtime/ssa.html
command-line-arguments
dumped SSA to ./ssa.html
os.(*File).close STEXT dupok nosplit size=26 args=0x18 locals=0x0
 0x0000 00000 (<autogenerated>:1) TEXT os.(*File).close(SB),
DUPOK|NOSPLIT|ABIInternal, $0-24
 0x0000 00000 (<autogenerated>:1) FUNCDATA $0, gclocals
e6397a44f8e1b6e77d0f200b4fba5269(SB)
 0x0000 00000 (<autogenerated>:1) FUNCDATA $1, gclocals
69c1753bd5f81501d95132d08af04464(SB)
 0x0000 00000 (<autogenerated>:1) FUNCDATA $3, gclocals
9fb7f0986f647f17cb5
...

Code Testing, Optimization, and Profiling Chapter 11

[588]

The first lines of the output tell us that there are two files that contain all the generated
output: /usr/local/Cellar/go/1.12.4/libexec/src/runtime/ssa.html and
./ssa.html. Notice that if you have a different Go version or a different Go installation,
the first file will be located at a different place. Static Single Assignment (SSA) form is a
method for describing low-level operations in a way that is pretty close to machine
instructions. However, notice that SSA acts as if it has an infinite number of registers, which
is not the case with machine code.

Opening that file on your favorite web browser will present a plethora of useful yet low-
level information about the program. Lastly, notice that the parameter to GOSSAFUNC is the
Go function that you want to disassemble.

Unfortunately, talking more about SSA is beyond the scope of this book.

Using assembly with Go
In this section, we are going to talk about assembly and Go, and how you can use assembly
to implement Go functions. We will begin with the following Go program, which is saved
as add_me.go:

package main

import (
 "fmt"
)

func add(x, y int64) int64 {
 return x + y
}

func main() {
 fmt.Println(add(1, 2))
}

Executing the following command will reveal the assembly implementation of the add()
function, which is the following:

$ GOOS=darwin GOARCH=amd64 go tool compile -S add_me.go
"".add STEXT nosplit size=19 args=0x18 locals=0x0
 0x0000 00000 (add_me.go:7) TEXT "".add(SB), NOSPLIT|ABIInternal,
$0-24
 0x0000 00000 (add_me.go:7) FUNCDATA $0, gclocals
33cdeccccebe80329f1fdbee7f5874cb(SB)
 0x0000 00000 (add_me.go:7) FUNCDATA $1, gclocals

Code Testing, Optimization, and Profiling Chapter 11

[589]

33cdeccccebe80329f1fdbee7f5874cb(SB)
 0x0000 00000 (add_me.go:7) FUNCDATA $3, gclocals
33cdeccccebe80329f1fdbee7f5874cb(SB)
 0x0000 00000 (add_me.go:8) PCDATA $2, $0
 0x0000 00000 (add_me.go:8) PCDATA $0, $0
 0x0000 00000 (add_me.go:8) MOVQ "".y+16(SP), AX
 0x0005 00005 (add_me.go:8) MOVQ "".x+8(SP), CX
 0x000a 00010 (add_me.go:8) ADDQ CX, AX
 0x000d 00013 (add_me.go:8) MOVQ AX, "".~r2+24(SP)
 0x0012 00018 (add_me.go:8) RET
 0x0000 48 8b 44 24 10 48 8b 4c 24 08 48 01 c8 48 89 44
H.D$.H.L$.H..H.D
 0x0010 24 18 c3 $..
 "".main STEXT size=150 args=0x0 locals=0x58

The last line is not part of the assembly implementation of the add() function.
Additionally, the FUNCDATA lines have nothing to do with the assembly implementation of
the function and are added by the Go compiler.

Now, we are going to make some changes to the previous assembly code and make it look
as follows:

TEXT add(SB),$0
 MOVQ x+0(FP), BX
 MOVQ y+8(FP), BP
 ADDQ BP, BX
 MOVQ BX, ret+16(FP)
 RET

The assembly code will be saved in a file named add_amd64.s in order to be used as the
implementation of the add() function.

The new version of add_me.go will be as follows:

package main

import (
 "fmt"
)

func add(x, y int64) int64

func main() {
 fmt.Println(add(1, 2))
}

Code Testing, Optimization, and Profiling Chapter 11

[590]

This means that add_me.go will use the assembly implementation of the add()
function. Using the assembly implementation of the add() function is as simple as this:

$ go build
$ ls -l
total 4136
-rw-r--r--@ 1 mtsouk staff 93 Apr 18 22:49 add_amd64.s
-rw-r--r--@ 1 mtsouk staff 101 Apr 18 22:59 add_me.go
-rwxr-xr-x 1 mtsouk staff 2108072 Apr 18 23:00 asm
$./asm
3
$ file asm
asm: Mach-O 64-bit executable x86_64

The only tricky point here is that the assembly code is not portable. Unfortunately, talking
more about assembly and Go is beyond the scope of the book – you should look at the
assembly reference of your own CPU and architecture.

Generating documentation
Go offers the godoc tool, which allows you to view the documentation of your packages –
provided that you have included some extra information in your files.

The general advice is that you should try to document everything but
leave out obvious things. Put simply, do not say, "Here, I create a new int
variable." It would be better to state the use of that int variable!
Nevertheless, really good code does not usually need documentation.

The rule about writing documentation in Go is pretty simple and straightforward: in order
to document something, you have to put one or more regular comment lines that start with
// just before its declaration. This convention can be used to document functions, variables,
constants, or even packages.

Additionally, you will notice that the first line of the documentation of a package of any
size will appear in the package list of godoc, as happens in https://golang.org/pkg/. This
means that your description should be pretty expressive and complete.

Keep in mind that comments that begin with BUG(something) will appear in the Bugs
section of the documentation of a package, even if they do not precede a declaration.

https://golang.org/pkg/

Code Testing, Optimization, and Profiling Chapter 11

[591]

If you are looking for such an example, you can visit the source code and the
documentation page of the bytes package, which can be found at:
https://golang.org/src/bytes/bytes.go and https://golang.org/pkg/bytes/,
respectively. Lastly, all comments that are not related to a top-level declaration are omitted
from the output that is generated by the godoc utility.

Take a look at the following Go code, which is saved as documentMe.go:

// This package is for showcasing the documentation capabilities of Go
// It is a naive package!
package documentMe
// Pie is a global variable
// This is a silly comment!
const Pie = 3.1415912
// The S1() function finds the length of a string
// It iterates over the string using range
func S1(s string) int {
 if s == "" {
 return 0
 }
 n := 0
 for range s {
 n++
 }
 return n
}
// The F1() function returns the double value of its input integer
// A better function name would have been Double()!
func F1(n int) int {
 return 2 * n
}

As discussed in the previous section, we will need to create a documentMe_test.go file in
order to develop example functions for it. The contents of documentMe_test.go follow:

package documentMe
import (
 "fmt"
)
func ExampleS1() {
 fmt.Println(S1("123456789"))
 fmt.Println(S1(""))
 // Output:
 // 9
 // 0
}

https://golang.org/src/bytes/bytes.go
https://golang.org/pkg/bytes/

Code Testing, Optimization, and Profiling Chapter 11

[592]

func ExampleF1() {
 fmt.Println(F1(10))
 fmt.Println(F1(2))
 // Output:
 // 1
 // 55
}

In order to be able to see the documentation of documentMe.go, you will need to install the
package on your local machine as you learned back in Chapter 6, What You Might Not Know
About Go Packages and Functions. This will require the execution of the following commands
from your favorite UNIX shell:

$ mkdir ~/go/src/documentMe
$ cp documentMe* ~/go/src/documentMe/
$ ls -l ~/go/src/documentMe/
total 16
-rw-r--r--@ 1 mtsouk staff 542 Mar 6 21:11 documentMe.go
-rw-r--r--@ 1 mtsouk staff 223 Mar 6 21:11 documentMe_test.go
$ go install documentMe
$ cd ~/go/pkg/darwin_amd64
$ ls -l documentMe.a
-rw-r--r-- 1 mtsouk staff 1626 Mar 6 21:11 documentMe.a

Next, you should execute the godoc utility as follows:

$ godoc -http=":8080"

Note that if the port is already in use and the user has root privileges, the error message you will get will be the
following:

$ godoc -http=":22"
2019/08/19 15:18:21 ListenAndServe :22: listen tcp :22: bind: address
already in use

On the other hand, if the user does not have root privileges, the error message will be the
following (even if the port is already in use):

$ godoc -http=":22"
2019/03/06 21:03:05 ListenAndServe :22: listen tcp :22: bind: permission
denied

After taking care of that, you will be able to browse the HTML documentation created
using your favorite web browser. The URL that will take you to the documentation is
http://localhost:8080/pkg/.

Code Testing, Optimization, and Profiling Chapter 11

[593]

The following figure shows the root directory of the godoc server that we just started.
There, you can see the documentMe package that you created in documentMe.go among
the other Go packages:

Figure 11.6: The root directory of the godoc server

Code Testing, Optimization, and Profiling Chapter 11

[594]

The following figure shows the root directory of the documentation of the documentMe
package implemented in the documentMe.go source file:

Figure 11.7: The root page of the documentMe.go file

Code Testing, Optimization, and Profiling Chapter 11

[595]

Similarly, the following figure shows the documentation of the S1() function of the
documentMe.go package in greater detail, which also includes the example code:

Figure 11.8: The documentation page and the example of the S1() function

Executing the go test command will generate the following output, which might reveal
potential problems and bugs in our code:

$ go test -v documentMe*
=== RUN ExampleS1
--- PASS: ExampleS1 (0.00s)
=== RUN ExampleF1

Code Testing, Optimization, and Profiling Chapter 11

[596]

--- FAIL: ExampleF1 (0.00s)
got:
20
4
want:
1
55
FAIL
FAIL command-line-arguments 0.005s

Using Docker images
In this section, you will learn how to create a Docker image that contains both PostgreSQL
and Go. The image will not be perfect, but it will illustrate how this can be done. As you
already know, everything should begin with a Dockerfile, which in this case will be the
following:

FROM ubuntu:18.04

RUN apt-get update && apt-get install -y gnupg
RUN apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-
keys B97B0AFCAA1A47F044F244A07FCC7D46ACCC4CF8
RUN echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main" >
/etc/apt/sources.list.d/pgdg.list
RUN apt-get update && apt-get install -y software-properties-common
postgresql-9.3 postgresql-client-9.3 postgresql-contrib-9.3
RUN apt-get update && apt-get install -y git golang vim

USER postgres
RUN /etc/init.d/postgresql start &&\
 psql --command "CREATE USER docker WITH SUPERUSER PASSWORD 'docker';"
&&\
 createdb -O docker docker

RUN echo "host all all 0.0.0.0/0 md5" >>
/etc/postgresql/9.3/main/pg_hba.conf
RUN echo "listen_addresses='*'" >> /etc/postgresql/9.3/main/postgresql.conf

USER root
RUN mkdir files
COPY webServer.go files
WORKDIR files
RUN go get github.com/lib/pq
RUN go build webServer.go
RUN ls -l

Code Testing, Optimization, and Profiling Chapter 11

[597]

USER postgres
CMD ["/usr/lib/postgresql/9.3/bin/postgres", "-D",
"/var/lib/postgresql/9.3/main", "-c",
"config_file=/etc/postgresql/9.3/main/postgresql.conf"]

This is a relatively complex Dockerfile that begins with a base Docker image from
Docker Hub and downloads additional software – this is more or less the way to build a
custom Docker image that fits your needs.

Executing Dockerfile will generate lots of output, including the following:

$ docker build -t go_postgres .
Sending build context to Docker daemon 9.216kB
Step 1/19 : FROM ubuntu:18.04
 ---> 94e814e2efa8
Step 2/19 : RUN apt-get update && apt-get install -y gnupg
...
Step 15/19 : RUN go get github.com/lib/pq
 ---> Running in 17aede1c97d8
Removing intermediate container 17aede1c97d8
 ---> 1878408c6e06
Step 16/19 : RUN go build webServer.go
 ---> Running in 39cfe8af63d5
Removing intermediate container 39cfe8af63d5
 ---> 1b4d638242ae
...
Removing intermediate container 9af6a391c1e4
 ---> c24937079367
Successfully built c24937079367
Successfully tagged go_postgres:latest

In the last part of the Dockerfile, we also build the executable file from webServer.go
using the operating system of the Docker image, which is Ubuntu Linux.

Executing docker images will generate the following kind of output:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
go_postgres latest c24937079367 34 seconds ago 831MB

Now we can execute that Docker image and connect to its bash(1) shell as follows:

$ docker run --name=my_go -dt go_postgres:latest
23de1ab0d3f5517d5dbf8c599a68075574a8ed9217aa3cb4899ea2f92412a833
$ docker exec -it my_go bash
postgres@23de1ab0d3f5:/files$

Code Testing, Optimization, and Profiling Chapter 11

[598]

Additional resources
Visit the following web links:

Visit the web site of Graphviz at http://graphviz.org.
Visit the documentation page of the testing package, which can be found at
https://golang.org/pkg/testing/.
If you are not familiar with Donald Knuth and his work, you can learn more
about him at https://en.wikipedia.org/wiki/Donald_Knuth.
You can learn more about the godoc utility by visiting its documentation page at
https://godoc.org/golang.org/x/tools/cmd/godoc.
Visit the documentation page of the runtime/pprof standard Go package,
which can be found at https://golang.org/pkg/runtime/pprof/.
You can view the Go code of the net/http/pprof package by visiting
https://golang.org/src/net/http/pprof/pprof.go.
You can find the documentation page of the net/http/pprof package at
https://golang.org/pkg/net/http/pprof/.
You can learn more about the pprof tool by visiting its development page at
https://github.com/google/pprof.
Watch the "Advanced Testing with Go" video from GopherCon 2017 by Mitchell
Hashimoto: https://www.youtube.com/watch?v=8hQG7QlcLBk.
You can find the source code of the testing package at
https://golang.org/src/testing/testing.go.
You can find more information about the testing/quick package by visiting
https://golang.org/pkg/testing/quick/.
You can learn more about the profile package by visiting its web page at
https://github.com/pkg/profile.
A "Manual for the Plan 9 assembler": https://9p.io/sys/doc/asm.html.
The documentation page of the arm64 package can be found at
https://golang.org/pkg/cmd/internal/obj/arm64/.
You can learn more about Go and SSA by visiting
https://golang.org/src/cmd/compile/internal/ssa/.
SSA bibliography: http://www.dcs.gla.ac.uk/~jsinger/ssa.html.
You can learn more about the go fix tool by visiting its web page at
https://golang.org/cmd/fix/.

http://graphviz.org
https://golang.org/pkg/testing/
https://en.wikipedia.org/wiki/Donald_Knuth
https://godoc.org/golang.org/x/tools/cmd/godoc
https://golang.org/pkg/runtime/pprof/
https://golang.org/src/net/http/pprof/pprof.go
https://golang.org/pkg/net/http/pprof/
https://github.com/google/pprof
https://www.youtube.com/watch?v=8hQG7QlcLBk
https://golang.org/src/testing/testing.go
https://golang.org/pkg/testing/quick/
https://github.com/pkg/profile
https://9p.io/sys/doc/asm.html
https://golang.org/pkg/cmd/internal/obj/arm64/
https://golang.org/src/cmd/compile/internal/ssa/
http://www.dcs.gla.ac.uk/~jsinger/ssa.html
https://golang.org/cmd/fix/

Code Testing, Optimization, and Profiling Chapter 11

[599]

Exercises
Write test functions for the byWord.go program that we developed in Chapter
8, Telling a UNIX System What to Do.
Write benchmark functions for the readSize.go program that we developed in
Chapter 8, Telling a UNIX System What to Do.
Try to fix the problems in the Go code of documentMe.go and
documentMe_test.go.
Use the text interface of the go tool pprof utility to examine the
memoryProfile.out file generated by profileMe.go.
Modify webServer.go and webServer_test.go in order to work with other
databases such as MySQL and SQLite3.
Modify the Dockerfile file from the last section in order to include
webServer_test.go.
Modify Dockerfile in order to be able to execute go test -v for the web
server. The changes have to do with creating the right PostgreSQL users and
databases.
Use the web interface of the go tool pprof utility to examine the
memoryProfile.out file generated by profileMe.go.

Summary
In this chapter, we talked about code testing, code optimization, and code profiling. Near
the end of the chapter, you learned how to find unreachable code and how to cross-compile
Go code. The go test command is used to test and benchmark Go code, as well as offering
extra documentation with the use of example functions.

Although the discussion of the Go profiler and go tool trace is far from complete, you
should understand that with topics such as profiling and code tracing, nothing can replace
experimenting and trying new techniques on your own!

In the next chapter, Chapter 12, The Foundations of Network Programming in Go, we will start
talking about network programming in Go, which involves programming applications that
work over TCP/IP computer networks, which includes the Internet. Some of the subjects in
the next chapter are the net/http package, creating web clients and web servers in Go, the
http.Response and http.Request structures, profiling HTTP servers, gRPC, and timing
out network connections.

Code Testing, Optimization, and Profiling Chapter 11

[600]

Additionally, the next chapter will discuss the IPv4 and IPv6 protocols, as well as the
Wireshark and tshark tools, which are used to capture and analyze network traffic.

12
The Foundations of Network

Programming in Go
The previous chapter discussed benchmarking Go code using benchmark functions, testing
in Go, example functions, code coverage, cross-compilation, and profiling Go code, as well
as generating documentation in Go and creating Docker images that contain the software
that you want.

This chapter is all about network and web programming, which means that you will learn
how to create web applications that work over computer networks and the Internet.
However, you will have to wait for Chapter 13, Network Programming – Building Your Own
Servers and Clients, to learn how to develop TCP and UDP applications.

Please note that in order to follow this chapter and the next one successfully, you will need
to know some basic information about HTTP, networking, and how computer networks
work.

In this chapter, you will learn about the following topics:

What TCP/IP is and why it is important
The IPv4 and IPv6 protocols
The netcat command-line utility
Performing DNS lookups in Go
The net/http package
The http.Response, http.Request, and http.Transport structures
Creating web servers in Go
Programming web clients in Go
Creating websites in Go

The Foundations of Network Programming in Go Chapter 12

[602]

gRPC and Go
The http.NewServeMux type
Wireshark and tshark
Timing out HTTP connections that take too long to finish either on the server or
client end

About net/http, net, and http.RoundTripper
The star of this chapter will be the net/http package, which offers functions that allow
you to develop powerful web servers and web clients. The http.Set() and http.Get()
methods can be used to make HTTP and HTTPS requests, whereas the
http.ListenAndServe() function can be used to create web servers by specifying the IP
address and the TCP port to which the server will listen, as well as the functions that will
handle incoming requests.

Apart from net/http, we will use the net package in some of the programs presented in
this chapter. The functionality of the net package, however, will be exposed in greater
detail in Chapter 13, Network Programming – Building Your Own Servers and Clients.

Finally, it will come in handy to know that an http.RoundTripper is an interface that is
used to make sure that a Go element is capable of executing HTTP transactions. Put simply,
this means that a Go element can get an http.Response for a given http.Request. You
will learn about http.Response and http.Request shortly.

The http.Response type
The definition of the http.Response structure, which can be found in the
https://golang.org/src/net/http/response.go file, is as follows:

type Response struct {
 Status string // e.g. "200 OK"
 StatusCode int // e.g. 200
 Proto string // e.g. "HTTP/1.0"
 ProtoMajor int // e.g. 1
 ProtoMinor int // e.g. 0
 Header Header
 Body io.ReadCloser
 ContentLength int64
 TransferEncoding []string
 Close bool

https://golang.org/src/net/http/response.go

The Foundations of Network Programming in Go Chapter 12

[603]

 Uncompressed bool
 Trailer Header
 Request *Request
 TLS *tls.ConnectionState
}

The goal of this pretty complex http.Response type is to represent the response of an
HTTP request. The source file contains more information about the purpose of each field of
the structure, which is the case with most struct types found in the standard Go library.

The http.Request type
The purpose of the http.Request type is to represent an HTTP request as received by a
server, or as about to be sent to a server by an HTTP client.

The http.Request structure type as defined in
https://golang.org/src/net/http/request.go is as follows:

type Request struct {
 Method string
 URL *url.URL
 Proto string // "HTTP/1.0"
 ProtoMajor int // 1
 ProtoMinor int // 0
 Header Header
 Body io.ReadCloser
 GetBody func() (io.ReadCloser, error)
 ContentLength int64
 TransferEncoding []string
 Close bool
 Host string
 Form url.Values
 PostForm url.Values
 MultipartForm *multipart.Form
 Trailer Header
 RemoteAddr string
 RequestURI string
 TLS *tls.ConnectionState
 Cancel <-chan struct{}
 Response *Response
 ctx context.Context
}

https://golang.org/src/net/http/request.go

The Foundations of Network Programming in Go Chapter 12

[604]

The http.Transport type
The definition of the http.Transport structure, which can be found in
https://golang.org/src/net/http/transport.go, is as follows:

type Transport struct {
 idleMu sync.Mutex
 wantIdle bool
 idleConn map[connectMethodKey][]*persistConn
 idleConnCh map[connectMethodKey]chan *persistConn
 idleLRU connLRU
 reqMu sync.Mutex
 reqCanceler map[*Request]func(error)
 altMu sync.Mutex
 altProto atomic.Value
 Proxy func(*Request) (*url.URL, error)
 DialContext func(ctx context.Context, network, addr string)
(net.Conn, error)
 Dial func(network, addr string) (net.Conn, error)
 DialTLS func(network, addr string) (net.Conn, error)
 TLSClientConfig *tls.Config
 TLSHandshakeTimeout time.Duration
 DisableKeepAlives bool
 DisableCompression bool
 MaxIdleConns int
 MaxIdleConnsPerHost int
 IdleConnTimeout time.Duration
 ResponseHeaderTimeout time.Duration
 ExpectContinueTimeout time.Duration
 TLSNextProto map[string]func(authority string, c *tls.Conn)
RoundTripper
 ProxyConnectHeader Header
 MaxResponseHeaderBytes int64
 nextProtoOnce sync.Once
 h2transport *http2Transport
}

As you can see, the http.Transport structure is pretty complex and contains a very large
number of fields. The good news is that you will not need to use the http.Transport
structure in all of your programs and that you are not required to deal with all of its fields
each time that you use it.

The http.Transport structure implements the http.RoundTripper interface and
supports HTTP, HTTPS, and HTTP proxies. Note that http.Transport is pretty low-level,
whereas the http.Client structure, which is also used in this chapter, implements a high-
level HTTP client.

https://golang.org/src/net/http/transport.go

The Foundations of Network Programming in Go Chapter 12

[605]

About TCP/IP
TCP/IP is a family of protocols that help the internet to operate. Its name comes from its
two most well-known protocols: TCP and IP.

TCP stands for Transmission Control Protocol. TCP software transmits data between
machines using segments, which are also called TCP packets. The main characteristic of
TCP is that it is a reliable protocol, which means that it makes sure that a packet was
delivered without needing any extra code from the programmer. If there is no proof of
packet delivery, TCP resends that particular packet. Among other things, a TCP packet can
be used for establishing connections, transferring data, sending acknowledgements, and
closing connections.

When a TCP connection is established between two machines, a full duplex virtual circuit,
similar to a telephone call, is created between those two machines. The two machines
constantly communicate to make sure that data is sent and received correctly. If the
connection fails for some reason, the two machines try to find the problem and report to the
relevant application.

IP stands for Internet Protocol. The main characteristic of IP is that it is not a reliable
protocol by nature. IP encapsulates the data that travels over a TCP/IP network because it is
responsible for delivering packets from the source host to the destination host according to
the IP addresses. IP has to find an addressing method to send a packet to its destination
effectively. Although there are dedicated devices, called routers, that perform IP routing,
every TCP/IP device has to perform some basic routing.

The UDP (User Datagram Protocol) protocol is based on IP, which means that it is also
unreliable. Generally speaking, the UDP protocol is simpler than the TCP protocol, mainly
because UDP is not reliable by design. As a result, UDP messages can be lost, duplicated, or
arrive out of order. Furthermore, packets can arrive faster than the recipient can process
them. So, UDP is used when speed is more important than reliability.

About IPv4 and IPv6
The first version of the IP protocol is now called IPv4 in order to differentiate it from the
latest version of the IP protocol, which is called IPv6.

The main problem with IPv4 is that it is about to run out of IP addresses, which is the main
reason for creating the IPv6 protocol. This happened because an IPv4 address is
represented using 32 bits only, which allows a total number of 232 (4,294,967,296) different
IP addresses. On the other hand, IPv6 uses 128 bits to define each one of its addresses.

The Foundations of Network Programming in Go Chapter 12

[606]

The format of an IPv4 address is 10.20.32.245 (four parts separated by dots), while the
format of an IPv6 address is 3fce:1706:4523:3:150:f8ff:fe21:56cf (eight parts separated by
colons).

The nc(1) command-line utility
The nc(1) utility, which is also called netcat(1), comes in very handy when you want to
test TCP/IP servers and clients. This section will present some of its more common uses.

You can use nc(1) as a client for a TCP service that runs on a machine with the
10.10.1.123 IP address and listens to port number 1234, as follows:

$ nc 10.10.1.123 1234

By default, nc(1) uses the TCP protocol. However, if you execute nc(1) with the -u flag,
then nc(1) will use the UDP protocol.

The -l option tells netcat(1) to act as a server, which means that netcat(1) will start
listening for connections at the given port number.

Finally, the -v and -vv options tell netcat(1) to generate verbose output, which can come
in handy when you want to troubleshoot network connections.

Although netcat(1) can help you to test HTTP applications, it will be niftier in Chapter
13, Network Programming – Building Your Own Servers and Clients, when we will develop our
own TCP and UDP clients and servers. As a result, the netcat(1) utility will be used only
once in this chapter.

Reading the configuration of network
interfaces
There are four core elements in a network configuration: the IP address of the interface, the
network mask of the interface, the DNS servers of the machine, and the default gateway or
default router of the machine. However, there is a problem here: you cannot find every
piece of information using native, portable Go code. This means that there is no portable
way to discover the DNS configuration and the default gateway information of a UNIX
machine.

The Foundations of Network Programming in Go Chapter 12

[607]

As a result, in this section, you will learn how to read the configuration of the network
interfaces of a UNIX machine with Go. For that purpose, I will present two portable utilities
that allow you to find out information about your network interfaces.

The source code of the first utility, which is called netConfig.go, is presented in three
parts. The first part of netConfig.go is shown in the following Go code:

package main

import (
 "fmt"
 "net"
)

func main() {
 interfaces, err := net.Interfaces()
 if err != nil {
 fmt.Println(err)
 return
 }

The net.Interfaces() function returns all of the interfaces of the current machine as a
slice with elements of the net.Interface type. This slice will be used shortly to acquire
the desired information.

The second code portion of netConfig.go contains the following Go code:

 for _, i := range interfaces {
 fmt.Printf("Interface: %v\n", i.Name)
 byName, err := net.InterfaceByName(i.Name)
 if err != nil {
 fmt.Println(err)
 }

In the preceding code, you visit each element of the slice with the net.Interface
elements to retrieve the desired information.

The remaining Go code of netConfig.go is as follows:

 addresses, err := byName.Addrs()
 for k, v := range addresses {
 fmt.Printf("Interface Address #%v: %v\n", k, v.String())
 }
 fmt.Println()
 }
}

The Foundations of Network Programming in Go Chapter 12

[608]

Executing netConfig.go on a macOS Mojave machine with Go version 1.12.4 generates
the following output:

$ go run netConfig.go
Interface: lo0
Interface Address #0 : 127.0.0.1/8
Interface Address #1 : ::1/128
Interface Address #2 : fe80::1/64
Interface: gif0
Interface: stf0
Interface: XHC20
Interface: en0
Interface Address #0 : fe80::1435:19cd:ece8:f532/64
Interface Address #1 : 10.67.93.23/24
Interface: p2p0
Interface: awdl0
Interface Address #0 : fe80::888:68ff:fe01:99c/64
Interface: en1
Interface: en2
Interface: bridge0
Interface: utun0
Interface Address #0 : fe80::7fd3:e1ba:a4b1:fe22/64

As you can see, the netConfig.go utility returns a rather large output, because today's
computers tend to have lots of network interfaces, and the program supports both the IPv4
and IPv6 protocols.

Executing netConfig.go on a Debian Linux machine with Go version 1.7.4 will generate
the following output:

$ go run netConfig.go
Interface: lo
Interface Address #0: 127.0.0.1/8
Interface Address #1: ::1/128
Interface: dummy0
Interface: eth0
Interface Address #0: 10.74.193.253/24
Interface Address #1: 2a01:7e00::f03c:91ff:fe69:1381/64
Interface Address #2: fe80::f03c:91ff:fe69:1381/64
Interface: teql0
Interface: tunl0
Interface: gre0
Interface: gretap0
Interface: erspan0
Interface: ip_vti0
Interface: ip6_vti0
Interface: sit0

The Foundations of Network Programming in Go Chapter 12

[609]

Interface: ip6tnl0
Interface: ip6gre0

Please note that the main reason why a network interface may not have a network address
is that it is down, which essentially means that it is not currently configured.

Not all of the listed interfaces have a real hardware network device
attached to them. A more representative example is the lo0 interface,
which is a loopback device. The loopback device is a special, virtual
network interface that is used by your computer in order to communicate
with itself over a network.

The Go code for the next utility, netCapabilities.go, is also presented in three parts.
The purpose of the netCapabilities.go utility is to reveal the capabilities of each
network interface found on your UNIX system.

The netCapabilities.go utility uses the fields of the net.Interface structure, which is
defined as follows:

type Interface struct {
 Index int
 MTU int
 Name string
 HardwareAddr HardwareAddr
 Flags Flags
}

The first part of the Go code for netCapabilities.go is as follows:

package main

import (
 "fmt"
 "net"
)

The second code portion of netCapabilities.go contains the following Go code:

func main() {
 interfaces, err := net.Interfaces()

 if err != nil {
 fmt.Print(err)
 return
 }

The Foundations of Network Programming in Go Chapter 12

[610]

The last part of netCapabilities.go comes in the following Go code:

 for _, i := range interfaces {
 fmt.Printf("Name: %v\n", i.Name)
 fmt.Println("Interface Flags:", i.Flags.String())
 fmt.Println("Interface MTU:", i.MTU)
 fmt.Println("Interface Hardware Address:", i.HardwareAddr)

 fmt.Println()
 }
}

Running netCapabilities.go on a macOS Mojave machine will generate the following
output:

$ go run netCapabilities.go
Name : lo0
Interface Flags: up|loopback|multicast
Interface MTU: 16384
Interface Hardware Address:
Name : gif0
Interface Flags: pointtopoint|multicast
Interface MTU: 1280
Interface Hardware Address:
Name : stf0
Interface Flags: 0
Interface MTU: 1280
Interface Hardware Address:
Name : XHC20
Interface Flags: 0
Interface MTU: 0
Interface Hardware Address:
Name : en0
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: b8:e8:56:34:a1:c8
Name : p2p0
Interface Flags: up|broadcast|multicast
Interface MTU: 2304
Interface Hardware Address: 0a:e8:56:34:a1:c8
Name : awdl0
Interface Flags: up|broadcast|multicast
Interface MTU: 1484
Interface Hardware Address: 0a:88:68:01:09:9c
Name : en1
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 72:00:00:9d:b2:b0

The Foundations of Network Programming in Go Chapter 12

[611]

Name : en2
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 72:00:00:9d:b2:b1
Name : bridge0
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 72:00:00:9d:b2:b0
Name : utun0
Interface Flags: up|pointtopoint|multicast
Interface MTU: 2000
Interface Hardware Address:

Executing netCapabilities.go on a Debian Linux machine will generate similar output.

Finally, if you are really interested in finding out the default gateway of the machine, you
can execute the netstat -nr command either externally or using exec.Command(),
taking its output using a pipe or exec.CombinedOutput() and processing it as text using
Go. This solution, however, is neither elegant nor perfect!

Performing DNS lookups
DNS stands for Domain Name System, which relates to the way an IP address is translated
into a name, such as packt.com, and vice versa. The logic behind the DNS.go utility, which
will be developed in this section, is pretty simple: if the given command-line argument is a
valid IP address, the program will process it as an IP address; otherwise, it will assume that
it is dealing with a hostname that needs to be translated into one or more IP addresses.

The code for the DNS.go utility will be presented in three parts. The first part of the
program contains the following Go code:

package main

import (
 "fmt"
 "net"
 "os"
)

func lookIP(address string) ([]string, error) {
 hosts, err := net.LookupAddr(address)
 if err != nil {
 return nil, err
 }

The Foundations of Network Programming in Go Chapter 12

[612]

 return hosts, nil
}

func lookHostname(hostname string) ([]string, error) {
 IPs, err := net.LookupHost(hostname)
 if err != nil {
 return nil, err
 }
 return IPs, nil
}

The lookIP() function gets an IP address as input and returns a list of names that match
that IP address with the help of the net.LookupAddr() function.

On the other hand, the lookHostname() function gets a hostname as input and returns a
list with the associated IP addresses using the net.LookupHost() function.

The second part of DNS.go is the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 return
 }

 input := arguments[1]
 IPaddress := net.ParseIP(input)

The net.ParseIP() function parses a string as an IPv4 or an IPv6 address. If the IP
address is not valid, net.ParseIP() returns nil.

The remaining Go code for the DNS.go utility is as follows:

 if IPaddress == nil {
 IPs, err := lookHostname(input)
 if err == nil {
 for _, singleIP := range IPs {
 fmt.Println(singleIP)
 }
 }
 } else {
 hosts, err := lookIP(input)
 if err == nil {
 for _, hostname := range hosts {
 fmt.Println(hostname)
 }

The Foundations of Network Programming in Go Chapter 12

[613]

 }
 }
}

Executing DNS.go with various kinds of input will generate the following output:

$ go run DNS.go 127.0.0.1
localhost
$ go run DNS.go 192.168.1.1
cisco
$ go run DNS.go packtpub.com
83.166.169.231
$ go run DNS.go google.com
2a00:1450:4001:816::200e
216.58.210.14
$ go run DNS.go www.google.com
2a00:1450:4001:816::2004
216.58.214.36
$ go run DNS.go cnn.com
2a04:4e42::323
2a04:4e42:600::323
2a04:4e42:400::323
2a04:4e42:200::323
151.101.193.67
151.101.1.67
151.101.129.67
151.101.65.67

Please note that the output of the go run DNS.go 192.168.1.1 command is taken from
my /etc/hosts file, because the cisco hostname is an alias for the 192.168.1.1 IP
address in my /etc/hosts file.

The output of the last command shows that, sometimes, a single hostname (cnn.com)
might have multiple public IP addresses. Please pay special attention to the word public
here, because although www.google.com has multiple IP addresses, it uses just a single
public IP address (216.58.214.36).

Getting the NS records of a domain
A very popular DNS request has to do with finding out the name servers of a domain,
which are stored in the NS records of that domain. This functionality will be illustrated in
the code for NSrecords.go.

The code for NSrecords.go will be presented in two parts.

https://www.google.com/

The Foundations of Network Programming in Go Chapter 12

[614]

The first part of NSrecords.go is as follows:

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Need a domain name!")
 return
 }

In this part, you check whether you have at least one command-line argument in order to
have something with which you can work.

The remaining Go code for NSrecords.go is as follows:

 domain := arguments[1]
 NSs, err := net.LookupNS(domain)
 if err != nil {
 fmt.Println(err)
 return
 }

 for _, NS := range NSs {
 fmt.Println(NS.Host)
 }
}

All the work is done by the net.LookupNS() function, which returns the NS records of a
domain as a slice variable of the net.NS type. This is the reason for printing the Host field
of each net.NS element of the slice. Executing NSrecords.go will generate the following
type of output:

$ go run NSrecords.go mtsoukalos.eu
ns5.linode.com.
ns4.linode.com.
ns1.linode.com.
ns2.linode.com.
ns3.linode.com.
$ go run NSrecords.go www.mtsoukalos.eu
lookup www.mtsoukalos.eu on 8.8.8.8:53: no such host

The Foundations of Network Programming in Go Chapter 12

[615]

You can verify the correctness of the preceding output with the help of the host(1) utility:

$ host -t ns www.mtsoukalos.eu
www.mtsoukalos.eu has no NS record
$ host -t ns mtsoukalos.eu
mtsoukalos.eu name server ns3.linode.com.
mtsoukalos.eu name server ns1.linode.com.
mtsoukalos.eu name server ns4.linode.com.
mtsoukalos.eu name server ns2.linode.com.
mtsoukalos.eu name server ns5.linode.com.

Getting the MX records of a domain
Another very popular DNS request has to do with getting the MX records of a domain. The
MX records specify the mail servers of a domain. The code for the MXrecords.go utility
will perform this task with Go. The first part of the MXrecords.go utility is shown in the
following Go code:

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Need a domain name!")
 return
 }

The second part of MXrecords.go contains the following Go code:

 domain := arguments[1]
 MXs, err := net.LookupMX(domain)
 if err != nil {
 fmt.Println(err)
 return
 }

 for _, MX := range MXs {
 fmt.Println(MX.Host)
 }
}

The Foundations of Network Programming in Go Chapter 12

[616]

The code for MXrecords.go works in a similar way to the code for NXrecords.go,
presented in the previous section. The only difference is that MXrecords.go uses the
net.LookupMX() function instead of the net.LookupNS() function.

Executing MXrecords.go will generate the following type of output:

$ go run MXrecords.go golang.com
aspmx.l.google.com.
alt3.aspmx.l.google.com.
alt1.aspmx.l.google.com.
alt2.aspmx.l.google.com.
$ go run MXrecords.go www.mtsoukalos.eu
lookup www.mtsoukalos.eu on 8.8.8.8:53: no such host

Once again, you can verify the validity of the preceding output with the help of the
host(1) utility:

$ host -t mx golang.com
golang.com mail is handled by 2 alt3.aspmx.l.google.com.
golang.com mail is handled by 1 aspmx.l.google.com.
golang.com mail is handled by 2 alt1.aspmx.l.google.com.
golang.com mail is handled by 2 alt2.aspmx.l.google.com.
$ host -t mx www.mtsoukalos.eu
www.mtsoukalos.eu has no MX record

Creating a web server in Go
Go allows you to create web servers on your own using some of the functions of its
standard library.

Although a web server programmed in Go can do many things efficiently
and securely, if what you really need is a powerful web server that will
support modules, multiple websites, and virtual hosts, then you would be
better off using a web server such as Apache, Nginx or Candy, which is
written in Go.

The name of the Go program for this example will be www.go, and it will be presented in
five parts. The first part of www.go contains the expected import statements:

package main

import (
 "fmt"
 "net/http"

The Foundations of Network Programming in Go Chapter 12

[617]

 "os"
 "time"
)

The time package is not necessary for a web server to operate. However, it is needed in this
case because the server is going to send the time and date to its clients.

The second code segment of www.go is shown in the following Go code:

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

This is the implementation of the first handler function of the program. A handler function
serves one or more URLs depending on the configuration that is stated in the Go code – you
can have as many handler functions as you want.

The third part of www.go contains the following Go code:

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

In the preceding Go code, you can see the implementation of the program's second handler
function. This function generates dynamic content.

The fourth section of code for our web server deals with the command-line arguments and
the definition of the supported URLs:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/time", timeHandler)
 http.HandleFunc("/", myHandler)

The Foundations of Network Programming in Go Chapter 12

[618]

The http.HandleFunc() function associates a URL with a handler function. What is really
important here is that all URLs apart from /time are served by the myHandler() function
because its first argument, which is /, matches every URL not matched by another handler.

The last part of the www.go program is as follows:

 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

You should start the web server with the help of the http.ListenAndServe() function
using the desired port number.

Executing www.go and connecting to its web server will generate the following type of
output:

$ go run www.go
Using default port number: :8001
Served: localhost:8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001
Served: localhost:8001
Served: localhost:8001

The Foundations of Network Programming in Go Chapter 12

[619]

Although the output of the program provides some handy material, I think that you would
prefer to see the real output of the program using your favorite web browser. The next
screenshot shows the output of the myHandler() function of our web server as displayed
in Google Chrome:

Figure 12.1: The home page of the www.go web server

The Foundations of Network Programming in Go Chapter 12

[620]

The following screenshot shows that www.go can generate dynamic pages as well. In this
case, it is a web page registered in /time, which displays the current date and time:

Figure 12.2: Getting the current date and time from the www.go web server

Using the atomic package
In this section, you will learn how to use the atomic package in an HTTP server
environment. The name of the program is atomWWW.go and it will be presented in three
parts.

http://www.go

The Foundations of Network Programming in Go Chapter 12

[621]

The first part of atomWWW.go is as follows:

package main

import (
 "fmt"
 "net/http"
 "runtime"
 "sync/atomic"
)

var count int32

The variable that will be used by the atomic package is a global one, in order to be
accessible from anywhere in the code.

The second part of atomWWW.go contains the following Go code:

func handleAll(w http.ResponseWriter, r *http.Request) {
 atomic.AddInt32(&count, 1)
}

func getCounter(w http.ResponseWriter, r *http.Request) {
 temp := atomic.LoadInt32(&count)
 fmt.Println("Count:", temp)
 fmt.Fprintf(w, "<h1 align=\"center\">%d</h1>", count)
}

The atomic counter used in this program is associated with the count global variable and
helps us to count the total number of clients that the web server has served so far.

The last part of atomWWW.go is as follows:

func main() {
 runtime.GOMAXPROCS(runtime.NumCPU() - 1)
 http.HandleFunc("/getCounter", getCounter)
 http.HandleFunc("/", handleAll)
 http.ListenAndServe(":8080", nil)
}

The Foundations of Network Programming in Go Chapter 12

[622]

Testing atomWWW.go using the ab(1) utility will verify how the atomic package helps,
because it will reveal that the count variable can be accessed by all clients without any
problems. First, you will need to execute atomWWW.go:

$ go run atomWWW.go
Count: 1500

Then, you will need to execute ab(1) as follows:

$ ab -n 1500 -c 100 http://localhost:8080/
This is ApacheBench, Version 2.3 <$Revision: 1826891 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking localhost (be patient)
Completed 150 requests
Completed 300 requests
Completed 450 requests
Completed 600 requests
Completed 750 requests
Completed 900 requests
Completed 1050 requests
Completed 1200 requests
Completed 1350 requests
Completed 1500 requests
Finished 1500 requests
Server Software:
Server Hostname: localhost
Server Port: 8080
Document Path: /
Document Length: 0 bytes
Concurrency Level: 100
Time taken for tests: 0.098 seconds
Complete requests: 1500
Failed requests: 0
Total transferred: 112500 bytes
HTML transferred: 0 bytes
Requests per second: 15238.64 [#/sec] (mean)
Time per request: 6.562 [ms] (mean)
Time per request: 0.066 [ms] (mean, across all concurrent requests)
Transfer rate: 1116.11 [Kbytes/sec] received
Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 3 0.5 3 5
Processing: 2 3 0.6 3 6
Waiting: 0 3 0.6 3 5
Total: 4 6 0.6 6 9
Percentage of the requests served within a certain time (ms)
 50% 6

The Foundations of Network Programming in Go Chapter 12

[623]

 66% 6
 75% 7
 80% 7
 90% 7
 95% 7
 98% 8
 99% 8
 100% 9 (longest request)

The previous ab(1) command sends 1,500 requests, with the number of concurrent
requests being 100.

After the ab(1) part, you should visit the /getCounter address in order to get the current
value of the count variable:

$ wget -qO- http://localhost:8080/getCounter
<h1 align="center">1500</h1>%

Profiling an HTTP server
As you learned in Chapter 11, Code Testing, Optimization, and Profiling, there is a standard
Go package named net/http/pprof, which should be used when you want to profile a
Go application with its own HTTP server. To that end, importing net/http/pprof will
install various handlers under the /debug/pprof/ URL. You will see more on this in a
short while. For now, it is enough to remember that the net/http/pprof package should
be used to profile web applications with an HTTP server, whereas the runtime/pprof
standard Go package should be used to profile all other kinds of applications.

Note that if your profiler works using the http://localhost:8080 address, you will
automatically get support for the following web links:

http://localhost:8080/ debug/ pprof/ goroutine

http://localhost:8080/ debug/ pprof/ heap

http://localhost:8080/ debug/ pprof/ threadcreate

http://localhost:8080/ debug/ pprof/ block

http://localhost:8080/ debug/ pprof/ mutex

http://localhost:8080/ debug/ pprof/ profile

http://localhost:8080/ debug/ pprof/ trace? seconds= 5

The next program to be presented uses www.go as its starting point and adds the necessary
Go code to allow you to profile it.

The Foundations of Network Programming in Go Chapter 12

[624]

The name of the new program is wwwProfile.go, and it will be presented in four parts.

Note that wwwProfile.go uses the http.NewServeMux variable to register the program's
supported paths. The main reason for doing so is that the use of http.NewServeMux
requires defining the HTTP endpoints manually. Also note that you are allowed to define a
subset of the supported HTTP endpoints. If you decide not to use http.NewServeMux,
then the HTTP endpoints will be registered automatically, which will also mean that you
will have to import the net/http/pprof package using the _ character in front of it.

The first part of wwwProfile.go contains the following Go code:

package main

import (
 "fmt"
 "net/http"
 "net/http/pprof"
 "os"
 "time"
)

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

The implementations of these two handler functions are exactly the same as before.

The second code segment of wwwProfile.go is as follows:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 fmt.Println("Using port number: ", PORT)

The Foundations of Network Programming in Go Chapter 12

[625]

 }

 r := http.NewServeMux()
 r.HandleFunc("/time", timeHandler)
 r.HandleFunc("/", myHandler)

In the preceding Go code, you define the URLs that will be supported by your web server
using http.NewServeMux() and HandleFunc().

The third code portion for wwwProfile.go is shown in the following Go code:

 r.HandleFunc("/debug/pprof/", pprof.Index)
 r.HandleFunc("/debug/pprof/cmdline", pprof.Cmdline)
 r.HandleFunc("/debug/pprof/profile", pprof.Profile)
 r.HandleFunc("/debug/pprof/symbol", pprof.Symbol)
 r.HandleFunc("/debug/pprof/trace", pprof.Trace)

The preceding Go code defines the HTTP endpoints related to profiling. Without them, you
will not be able to profile your web application.

The remaining Go code is as follows:

 err := http.ListenAndServe(PORT, r)
 if err != nil {
 fmt.Println(err)
 return
 }
}

This code begins the Go web server, and this allows it to serve connections from HTTP
clients. You will notice that the second parameter to http.ListenAndServe() is no longer
nil.

As you can see, wwwProfile.go does not define the /debug/pprof/goroutine HTTP
endpoint, which makes perfect sense as wwwProfile.go does not use any goroutines.

Executing wwwProfile.go will generate the following type of output:

$ go run wwwProfile.go 1234
Using port number: :1234
Served time for: localhost:1234

Using the Go profiler to get data is a pretty simple task that requires the execution of the
following command, which will take you to the shell of the Go profiler automatically:

$ go tool pprof http://localhost:1234/debug/pprof/profile
Fetching profile over HTTP from http://localhost:1234/debug/pprof/profile

The Foundations of Network Programming in Go Chapter 12

[626]

Saved profile in /Users/mtsouk/pprof/pprof.samples.cpu.003.pb.gz
Type: cpu
Time: Mar 27, 2018 at 10:04pm (EEST)
Duration: 30s, Total samples = 21.04s (70.13%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) top
Showing nodes accounting for 19.94s, 94.77% of 21.04s total
Dropped 159 nodes (cum <= 0.11s)
Showing top 10 nodes out of 75
 flat flat% sum% cum cum%
 13.73s 65.26% 65.26% 13.73s 65.26% syscall.Syscall
 1.58s 7.51% 72.77% 1.58s 7.51% runtime.kevent
 1.36s 6.46% 79.23% 1.36s 6.46% runtime.mach_semaphore_signal
 1.02s 4.85% 84.08% 1.02s 4.85% runtime.usleep
 0.80s 3.80% 87.88% 0.80s 3.80% runtime.mach_semaphore_wait
 0.53s 2.52% 90.40% 2.11s 10.03% runtime.netpoll
 0.44s 2.09% 92.49% 0.44s 2.09% internal/poll.convertErr
 0.26s 1.24% 93.73% 0.26s 1.24% net.(*TCPConn).Read
 0.18s 0.86% 94.58% 0.18s 0.86% runtime.freedefer
 0.04s 0.19% 94.77% 1.05s 4.99% runtime.runqsteal
(pprof)

You can now use the profiling data and analyze it using go tool pprof, as you learned to
do in Chapter 11, Code Testing, Optimization, and Profiling.

You can visit http:/ /HOSTNAME:PORTNUMBER/ debug/ pprof/ and see the
profiling results there. When the HOSTNAME value is localhost and the
PORTNUMBER value is 1234, you should visit
http://localhost:1234/debug/pprof/.

Should you wish to test the performance of your web server application, you can use the
ab(1) utility, which is more widely known as the Apache HTTP server benchmarking
tool, in order to create some traffic and benchmark wwwProfile.go. This will also allow go
tool pprof to collect more accurate data – you can execute ab(1) as follows:

$ ab -k -c 10 -n 100000 "http://127.0.0.1:1234/time"
This is ApacheBench, Version 2.3 <$Revision: 1807734 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 127.0.0.1 (be patient)
Completed 10000 requests
Completed 20000 requests
Completed 30000 requests
Completed 40000 requests
Completed 50000 requests
Completed 60000 requests
Completed 70000 requests

The Foundations of Network Programming in Go Chapter 12

[627]

Completed 80000 requests
Completed 90000 requests
Completed 100000 requests
Finished 100000 requests

Server Software:
Server Hostname: 127.0.0.1
Server Port: 1234
Document Path: /time
Document Length: 114 bytes
Concurrency Level: 10
Time taken for tests: 2.114 seconds
Complete requests: 100000
Failed requests: 0
Keep-Alive requests: 100000
Total transferred: 25500000 bytes
HTML transferred: 11400000 bytes
Requests per second: 47295.75 [#/sec] (mean)
Time per request: 0.211 [ms] (mean)
Time per request: 0.021 [ms] (mean, across all concurrent requests)
Transfer rate: 11777.75 [Kbytes/sec] received
Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.0 0 0
Processing: 0 0 0.7 0 13
Waiting: 0 0 0.7 0 13
Total: 0 0 0.7 0 13
Percentage of the requests served within a certain time (ms)
 50% 0
 66% 0
 75% 0
 80% 0
 90% 0
 95% 0
 98% 0
 99% 0
 100% 13 (longest request)

Can you use the net/http/pprof package to profile command-line
applications? Yes! However, the net/http/pprof package is particularly
useful when you want to profile a running web application and capture
live data, which is the main reason that it is presented in this chapter.

The Foundations of Network Programming in Go Chapter 12

[628]

Creating a website in Go
Do you remember the keyValue.go application from Chapter 4, The Uses of Composite
Types, and kvSaveLoad.go from Chapter 8, Telling a UNIX System What to Do? In this
section, you will learn how to create a web interface for the keyValue.go application using
the capabilities of the standard Go library. The name of the new Go source code file is
kvWeb.go, and it is going to be presented in six parts.

The first difference between the Go code for kvWeb.go and www.go, developed earlier in
this chapter, is that kvWeb.go uses the http.NewServeMux type to deal with HTTP
requests because it is much more versatile for non-trivial web applications.

The first part of kvWeb.go is as follows:

package main

import (
 "encoding/gob"
 "fmt"
 "html/template"
 "net/http"
 "os"
)

type myElement struct {
 Name string
 Surname string
 Id string
}

var DATA = make(map[string]myElement)
var DATAFILE = "/tmp/dataFile.gob"

You have already seen this code in kvSaveLoad.go in Chapter 8, Telling a UNIX System
What to Do.

The second part of kvWeb.go is shown in the following Go code:

func save() error {
 fmt.Println("Saving", DATAFILE)
 err := os.Remove(DATAFILE)
 if err != nil {
 fmt.Println(err)
 }

 saveTo, err := os.Create(DATAFILE)

The Foundations of Network Programming in Go Chapter 12

[629]

 if err != nil {
 fmt.Println("Cannot create", DATAFILE)
 return err
 }
 defer saveTo.Close()

 encoder := gob.NewEncoder(saveTo)
 err = encoder.Encode(DATA)
 if err != nil {
 fmt.Println("Cannot save to", DATAFILE)
 return err
 }
 return nil
}

func load() error {
 fmt.Println("Loading", DATAFILE)
 loadFrom, err := os.Open(DATAFILE)
 defer loadFrom.Close()
 if err != nil {
 fmt.Println("Empty key/value store!")
 return err
 }

 decoder := gob.NewDecoder(loadFrom)
 decoder.Decode(&DATA)
 return nil
}

func ADD(k string, n myElement) bool {
 if k == "" {
 return false
 }

 if LOOKUP(k) == nil {
 DATA[k] = n
 return true
 }
 return false
}

func DELETE(k string) bool {
 if LOOKUP(k) != nil {
 delete(DATA, k)
 return true
 }
 return false
}

The Foundations of Network Programming in Go Chapter 12

[630]

func LOOKUP(k string) *myElement {
 _, ok := DATA[k]
 if ok {
 n := DATA[k]
 return &n
 } else {
 return nil
 }
}

func CHANGE(k string, n myElement) bool {
 DATA[k] = n
 return true
}

func PRINT() {
 for k, d := range DATA {
 fmt.Printf("key: %s value: %v\n", k, d)
 }
}

You should also be familiar with the preceding Go code, as it first appeared in
kvSaveLoad.go in Chapter 8, Telling a UNIX System What to Do.

The third code portion of kvWeb.go is as follows:

func homePage(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Serving", r.Host, "for", r.URL.Path)
 myT := template.Must(template.ParseGlob("home.gohtml"))
 myT.ExecuteTemplate(w, "home.gohtml", nil)
}

func listAll(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Listing the contents of the KV store!")

 fmt.Fprintf(w, "Home sweet
home!")
 fmt.Fprintf(w, "List
all elements!")
 fmt.Fprintf(w, "<a href=\"/change\" style=\"margin-right:
20px;\">Change an element!")
 fmt.Fprintf(w, "<a href=\"/insert\" style=\"margin-right:
20px;\">Insert new element!")

 fmt.Fprintf(w, "<h1>The contents of the KV store are:</h1>")
 fmt.Fprintf(w, "")
 for k, v := range DATA {
 fmt.Fprintf(w, "")

The Foundations of Network Programming in Go Chapter 12

[631]

 fmt.Fprintf(w, "%s with value: %v\n", k, v)
 fmt.Fprintf(w, "")
 }

 fmt.Fprintf(w, "")
}

The listAll() function does not use any Go templates to generate its dynamic output.
Instead, its output is generated on the fly using Go. You may consider this an exception, as
web applications usually work better with HTML templates and the html/template
standard Go package.

The fourth part of kvWeb.go contains the following Go code:

func changeElement(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Changing an element of the KV store!")
 tmpl := template.Must(template.ParseFiles("update.gohtml"))
 if r.Method != http.MethodPost {
 tmpl.Execute(w, nil)
 return
 }

 key := r.FormValue("key")
 n := myElement{
 Name: r.FormValue("name"),
 Surname: r.FormValue("surname"),
 Id: r.FormValue("id"),
 }

 if !CHANGE(key, n) {
 fmt.Println("Update operation failed!")
 } else {
 err := save()
 if err != nil {
 fmt.Println(err)
 return
 }
 tmpl.Execute(w, struct{ Success bool }{true})
 }
}

In the preceding Go code, you can see how to read the values from the fields of an HTML
form with the help of the FormValue() function. template.Must()is a helper function
that makes sure that the template file provided contains no errors.

The Foundations of Network Programming in Go Chapter 12

[632]

The fifth code segment of kvWeb.go is contained in the following Go code:

func insertElement(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Inserting an element to the KV store!")
 tmpl := template.Must(template.ParseFiles("insert.gohtml"))
 if r.Method != http.MethodPost {
 tmpl.Execute(w, nil)
 return
 }

 key := r.FormValue("key")
 n := myElement{
 Name: r.FormValue("name"),
 Surname: r.FormValue("surname"),
 Id: r.FormValue("id"),
 }

 if !ADD(key, n) {
 fmt.Println("Add operation failed!")
 } else {
 err := save()
 if err != nil {
 fmt.Println(err)
 return
 }
 tmpl.Execute(w, struct{ Success bool }{true})
 }
}

The remaining Go code is as follows:

func main() {
 err := load()
 if err != nil {
 fmt.Println(err)
 }

 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/", homePage)
 http.HandleFunc("/change", changeElement)
 http.HandleFunc("/list", listAll)

The Foundations of Network Programming in Go Chapter 12

[633]

 http.HandleFunc("/insert", insertElement)
 err = http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 }
}

The main() function of kvWeb.go is much simpler than the main() function of
kvSaveLoad.go from Chapter 8, Telling a UNIX System What to Do, because these two
programs have totally different designs.

It is now time to look at the gohtml files used for this project, starting with home.gohtml,
which is as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Key Value Store!</title>
</head>
<body>

Home sweet home!
List all elements!
Change an element!
Insert new element!

<h2>Welcome to the Go KV store!</h2>

</body>
</html>

The home.gohtml file is static, which means that its contents do not change. However, the
remaining gohtml files display information dynamically.

The contents of update.gohtml are as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Key Value Store!</title>
</head>
<body>

Home sweet home!
List all elements!

The Foundations of Network Programming in Go Chapter 12

[634]

Change an element!
Insert new element!

{{if .Success}}
 <h1>Element updated!</h1>
{{else}}
<h1>Please fill in the fields:</h1>
 <form method="POST">
 <label>Key:</label>

 <input type="text" name="key">

 <label>Name:</label>

 <input type="text" name="name">

 <label>Surname:</label>

 <input type="text" name="surname">

 <label>Id:</label>

 <input type="text" name="id">

 <input type="submit">
 </form>
{{end}}

</body>
</html>

The preceding code is mainly HTML code. Its most interesting part is the if statement,
which specifies whether you should see the form or the Element updated! message.

Finally, the contents of insert.gohtml are as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Key Value Store!</title>
</head>
<body>

Home sweet home!
List all elements!
Change an element!
Insert new element!

{{if .Success}}
 <h1>Element inserted!</h1>
{{else}}
 <h1>Please fill in the fields:</h1>
 <form method="POST">
 <label>Key:</label>

 <input type="text" name="key">

The Foundations of Network Programming in Go Chapter 12

[635]

 <label>Name:</label>

 <input type="text" name="name">

 <label>Surname:</label>

 <input type="text" name="surname">

 <label>Id:</label>

 <input type="text" name="id">

 <input type="submit">
 </form>
{{end}}

</body>
</html>

As you can see, insert.gohtml and update.gohtml are identical apart from the text in
the <title> tag.

Executing kvWeb.go will generate the following output on a UNIX shell:

$ go run kvWeb.go
Loading /tmp/dataFile.gob
Using default port number: :8001
Serving localhost:8001 for /
Serving localhost:8001 for /favicon.ico
Listing the contents of the KV store!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Add operation failed!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Saving /tmp/dataFile.gob
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Serving localhost:8001 for /favicon.ico
Changing an element of the KV store!
Serving localhost:8001 for /favicon.ico

Additionally, what is really interesting is how you can interact with kvWeb.go from a web
browser.

The Foundations of Network Programming in Go Chapter 12

[636]

The home page of the website, as defined in home.gohtml, can be seen in the following
figure:

Figure 12.3: The static home page of our web application

The next figure presents the contents of the key-value store:

Figure 12.4: The contents of the key-value store

The Foundations of Network Programming in Go Chapter 12

[637]

The next figure shows the appearance of the web page that allows you to add new data to
the key-value store using the web interface of the kvWeb.go web application:

Figure 12.5: Adding a new entry to the key-value store

The next figure shows you how to update the value of an existing key using the web
interface of the kvWeb.go web application:

Figure 12.6: Updating the value of a key in the key-value store

The kvWeb.go web application is far from perfect, so feel free to improve it as an exercise!

The Foundations of Network Programming in Go Chapter 12

[638]

This section illustrated how you can develop entire websites and web
applications in Go. Although your requirements will undoubtedly vary,
the techniques are the same as the ones used for kvWeb.go. Notice that
custom-made sites are considered more secure than sites created using
some popular content management systems.

HTTP tracing
Go supports HTTP tracing with the help of the net/http/httptrace standard package.
That package allows you to trace the phases of an HTTP request. So, the use of the
net/http/httptrace standard Go package will be illustrated in httpTrace.go, which is
going to be presented in five parts.

The first part of httpTrace.go is as follows:

package main

import (
 "fmt"
 "io"
 "net/http"
 "net/http/httptrace"
 "os"
)

As you might expect, you need to import the net/http/httptrace package in order to
enable HTTP tracing.

The second part of httpTrace.go contains the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: URL\n")
 return
 }

 URL := os.Args[1]
 client := http.Client{}

In this part, we read the command-line arguments and create a new http.Client variable.

We will talk a little bit more about the http.Client object. The http.Client object offers
a way to send a request to a server and get a reply.

The Foundations of Network Programming in Go Chapter 12

[639]

Its Transport field permits you to set various HTTP details instead of using the default
values.

Notice that you should never use the default values of the http.Client object in
production software because those values do not specify request timeouts, which can
jeopardize the performance of your programs and your goroutines. Additionally, by
design, http.Client objects can be safely used in concurrent programs.

The third code segment of httpTrace.go is contained in the following Go code:

 req, _ := http.NewRequest("GET", URL, nil)
 trace := &httptrace.ClientTrace{
 GotFirstResponseByte: func() {
 fmt.Println("First response byte!")
 },
 GotConn: func(connInfo httptrace.GotConnInfo) {
 fmt.Printf("Got Conn: %+v\n", connInfo)
 },
 DNSDone: func(dnsInfo httptrace.DNSDoneInfo) {
 fmt.Printf("DNS Info: %+v\n", dnsInfo)
 },
 ConnectStart: func(network, addr string) {
 fmt.Println("Dial start")
 },
 ConnectDone: func(network, addr string, err error) {
 fmt.Println("Dial done")
 },
 WroteHeaders: func() {
 fmt.Println("Wrote headers")
 },
 }

The preceding code is all about tracing HTTP requests. The httptrace.ClientTrace
object defines the events that interest us. When such an event occurs, the relevant code is
executed. You can find more information about supported events and their purpose in the
documentation of the net/http/httptrace package.

The fourth part of the httpTrace.go utility is as follows:

 req = req.WithContext(httptrace.WithClientTrace(req.Context(), trace))
 fmt.Println("Requesting data from server!")
 _, err := http.DefaultTransport.RoundTrip(req)
 if err != nil {
 fmt.Println(err)
 return
 }

The Foundations of Network Programming in Go Chapter 12

[640]

The httptrace.WithClientTrace() function returns a new context based on the given
parent context; while the http.DefaultTransport.RoundTrip() method wraps
http.DefaultTransport.RoundTrip in order to tell it to keep track of the current
request.

Notice that Go HTTP tracing has been designed to trace the events of a single
http.Transport.RoundTrip. However, as you may have multiple URL redirects when
serving a single HTTP request, you need to be able to identify the current request.

The remaining Go code for httpTrace.go is as follows:

 response, err := client.Do(req)
 if err != nil {
 fmt.Println(err)
 return
 }

 io.Copy(os.Stdout, response.Body)
}

This last part is about performing the actual request to the web server using Do(), getting
the HTTP data, and displaying it on the screen.

Executing httpTrace.go will generate the following very informative output:

$ go run httpTrace.go http://localhost:8001/
Requesting data from server!
DNS Info: {Addrs:[{IP:::1 Zone:} {IP:127.0.0.1 Zone:}] Err:<nil>
Coalesced:false}
Dial start
Dial done
Got Conn: {Conn:0xc420142000 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
DNS Info: {Addrs:[{IP:::1 Zone:} {IP:127.0.0.1 Zone:}] Err:<nil>
Coalesced:false}
Dial start
Dial done
Got Conn: {Conn:0xc420142008 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
Serving: /

Be aware that since httpTrace.go prints the full HTML response from the HTTP server,
you might get lots of output when you test it on a real web server, which is the main reason
for using the web server developed in www.go here.

The Foundations of Network Programming in Go Chapter 12

[641]

If you have the time to look at the source code for the
net/http/httptrace package at
https://golang.org/src/net/http/httptrace/trace.go, you will
immediately realize that net/http/httptrace is a pretty low-level
package that uses the context package, the reflect package, and the
internal/nettrace package to implement its functionality. Remember
that you can do this for any code in the standard library because Go is a
completely open-source project.

Testing HTTP handlers
In this section, we are going to learn how to test HTTP handlers in Go. We will begin with
the Go code for www.go and modify it where needed.

The new version of www.go is called testWWW.go, and it will be presented in three parts.
The first code portion of testWWW.go is as follows:

package main

import (
 "fmt"
 "net/http"
 "os"
)

func CheckStatusOK(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, `Fine!`)
}

The second part of testWWW.go is contained in the following Go code:

func StatusNotFound(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusNotFound)
}

func MyHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

The remaining Go code for testWWW.go is as follows:

func main() {
 PORT := ":8001"

https://golang.org/src/net/http/httptrace/trace.go

The Foundations of Network Programming in Go Chapter 12

[642]

 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/CheckStatusOK", CheckStatusOK)
 http.HandleFunc("/StatusNotFound", StatusNotFound)
 http.HandleFunc("/", MyHandler)

 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

We now need to start testing testWWW.go, which means that we should create a
testWWW_test.go file. The contents of that file will be presented in four parts.

The first part of testWWW_test.go is contained in the following Go code:

package main

import (
 "fmt"
 "net/http"
 "net/http/httptest"
 "testing"
)

Notice that you need to import the net/http/httptest standard Go package in order to
test web applications in Go.

The second code portion of testWWW_test.go contains the following code:

func TestCheckStatusOK(t *testing.T) {
 req, err := http.NewRequest("GET", "/CheckStatusOK", nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(CheckStatusOK)
 handler.ServeHTTP(rr, req)

The Foundations of Network Programming in Go Chapter 12

[643]

The httptest.NewRecorder() function returns an httptest.ResponseRecorder
object, and it is used to record the HTTP response.

The third part of testWWW_test.go is as follows:

 status := rr.Code
 if status != http.StatusOK {
 t.Errorf("handler returned %v", status)
 }

 expect := `Fine!`
 if rr.Body.String() != expect {
 t.Errorf("handler returned %v", rr.Body.String())
 }
}

You first check that the response code is as expected, and then you verify that the body of
the response is also what you expected.

The remaining Go code for testWWW_test.go is as follows:

func TestStatusNotFound(t *testing.T) {
 req, err := http.NewRequest("GET", "/StatusNotFound", nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(StatusNotFound)
 handler.ServeHTTP(rr, req)

 status := rr.Code
 if status != http.StatusNotFound {
 t.Errorf("handler returned %v", status)
 }
}

This test function verifies that the StatusNotFound() function of the main package works
as expected.

Executing the two test functions of testWWW_test.go will generate the following output:

$ go test testWWW.go testWWW_test.go -v --count=1
=== RUN TestCheckStatusOK
--- PASS: TestCheckStatusOK (0.00s)
=== RUN TestStatusNotFound
--- PASS: TestStatusNotFound (0.00s)

The Foundations of Network Programming in Go Chapter 12

[644]

PASS
ok command-line-arguments (cached)

Creating a web client in Go
In this section, you will learn more about developing web clients in Go. The name of the
web client utility is webClient.go, and it is going to be presented in four parts.

The first part of webClient.go contains the following Go code:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"
 "path/filepath"
)

The second part of webClient.go is where you read the desired URL as a command-line
argument:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }

 URL := os.Args[1]

The third code portion of webClient.go is where the real action takes place:

 data, err := http.Get(URL)

 if err != nil {
 fmt.Println(err)
 return

All of the work is done by the http.Get() call, which is pretty convenient when you do
not want to deal with parameters and options. However, this type of call gives you no
flexibility about the process. Notice that http.Get() returns an http.Response variable.

The Foundations of Network Programming in Go Chapter 12

[645]

The remaining Go code is as follows:

 } else {
 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

What the previous code does is copy the contents of the Body field of the http.Response
structure to standard output.

Executing webClient.go will generate the following type of output (note that only a small
portion of the output is presented here):

$ go run webClient.go http://www.mtsoukalos.eu/ | head -20
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
version="XHTML+RDFa 1.0" dir="ltr"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:dc="http://purl.org/dc/terms/"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:og="http://ogp.me/ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:sioc="http://rdfs.org/sioc/ns#"
 xmlns:sioct="http://rdfs.org/sioc/types#"
 xmlns:skos="http://www.w3.org/2004/02/skos/core#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<head profile="http://www.w3.org/1999/xhtml/vocab">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="shortcut icon" href="http://www.mtsoukalos.eu/misc/favicon.ico"
type="image/vnd.microsoft.icon" />
<meta name="HandheldFriendly" content="true" />
<meta name="MobileOptimized" content="width" />
<meta name="Generator" content="Drupal 7 (http://drupal.org)" />

The main problem with webClient.go is that it gives you almost no control over the
process – you either get the entire HTML output or nothing at all!

The Foundations of Network Programming in Go Chapter 12

[646]

Making your Go web client more advanced
As the web client of the previous section is relatively simplistic and does not give you any
flexibility, in this section, you will learn how to read a URL more elegantly without using
the http.Get() function, and with more options. The name of the utility is
advancedWebClient.go and it is going to be presented in five parts.

The first code segment of advancedWebClient.go contains the following Go code:

package main

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
 "path/filepath"
 "strings"
 "time"
)

The second part of advancedWebClient.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }

 URL, err := url.Parse(os.Args[1])
 if err != nil {
 fmt.Println("Error in parsing:", err)
 return
 }

The third code portion of advancedWebClient.go contains the following Go code:

 c := &http.Client{
 Timeout: 15 * time.Second,
 }
 request, err := http.NewRequest("GET", URL.String(), nil)
 if err != nil {
 fmt.Println("Get:", err)
 return
 }

The Foundations of Network Programming in Go Chapter 12

[647]

 httpData, err := c.Do(request)
 if err != nil {
 fmt.Println("Error in Do():", err)
 return
 }

The http.NewRequest() function returns an http.Request object given a method, a
URL, and an optional body. The http.Do() function sends an HTTP request
(http.Request) using an http.Client and gets an HTTP response (http.Response).
So, http.Do() does the job of http.Get() in a more comprehensive way.

The "GET" string used in http.NewRequest() can be replaced by http.MethodGet.

The fourth part of advancedWebClient.go is contained in the following Go code:

 fmt.Println("Status code:", httpData.Status)
 header, _ := httputil.DumpResponse(httpData, false)
 fmt.Print(string(header))

 contentType := httpData.Header.Get("Content-Type")
 characterSet := strings.SplitAfter(contentType, "charset=")
 if len(characterSet) > 1 {
 fmt.Println("Character Set:", characterSet[1])
 }

 if httpData.ContentLength == -1 {
 fmt.Println("ContentLength is unknown!")
 } else {
 fmt.Println("ContentLength:", httpData.ContentLength)
 }

In the preceding code, you can see how to start searching the server response in order to
find what you want.

The last part of the advancedWebClient.go utility is as follows:

 length := 0
 var buffer [1024]byte
 r := httpData.Body
 for {
 n, err := r.Read(buffer[0:])
 if err != nil {
 fmt.Println(err)
 break
 }
 length = length + n
 }

The Foundations of Network Programming in Go Chapter 12

[648]

 fmt.Println("Calculated response data length:", length)
}

In the preceding code, you can see a technique for discovering the size of the server HTTP
response. If you want to display the HTML output on your screen, you can print the
contents of the r buffer variable.

Using advancedWebClient.go to visit a web page will generate the following type of
output, which is much richer than before:

$ go run advancedWebClient.go http://www.mtsoukalos.eu
Status code: 200 OK
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 0
Cache-Control: no-cache, must-revalidate
Connection: keep-alive
Content-Language: en
Content-Type: text/html; charset=utf-8
Date: Sat, 24 Mar 2018 18:52:17 GMT
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Server: Apache/2.4.25 (Debian) PHP/5.6.33-0+deb8u1 mod_wsgi/4.5.11
Python/2.7
Vary: Accept-Encoding
Via: 1.1 varnish (Varnish/5.0)
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Generator: Drupal 7 (http://drupal.org)
X-Powered-By: PHP/5.6.33-0+deb8u1
X-Varnish: 886025
Character Set: utf-8
ContentLength is unknown!
EOF
Calculated response data length: 50176

Executing advancedWebClient.go to visit a different URL will return a slightly different
output:

$ go run advancedWebClient.go http://www.google.com
Status code: 200 OK
HTTP/1.1 200 OK
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-7
Date: Sat, 24 Mar 2018 18:52:38 GMT
Expires: -1
P3p: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Server: gws
Set-Cookie: 1P_JAR=2018-03-24-18; expires=Mon, 23-Apr-2018 18:52:38 GMT;

The Foundations of Network Programming in Go Chapter 12

[649]

path=/; domain=.google.gr
Set-Cookie:
NID=126=csX1_koD30SJcC_ljAfcM2V8kTfRkppmAamLjINLfclracMxuk6JGe4glc0Pjs8uD00
bqGaxkSW-J-ZNDJexG2ZX9pNB9E_dRc2y1KZ05V7pk0bOczE2FtS1zb50Uofl; expires=Sun,
23-Sep-2018 18:52:38 GMT; path=/; domain=.google.gr; HttpOnly
X-Frame-Options: SAMEORIGIN
X-Xss-Protection: 1; mode=block
Character Set: ISO-8859-7
ContentLength in unknown!
EOF
Calculated response data length: 10240

If you try to fetch an erroneous URL with advancedWebClient.go, you will get the
following type of output:

$ go run advancedWebClient.go http://www.google
Error in Do(): Get http://www.google: dial tcp: lookup www.google: no such
host
$ go run advancedWebClient.go www.google.com
Error in Do(): Get www.google.com: unsupported protocol scheme ""

Feel free to make any changes you want to advancedWebClient.go in order to make the
output match your requirements!

Timing out HTTP connections
This section will present a technique for timing out network connections that take too long
to finish. Remember that you already know such a technique from Chapter 10, Concurrency
in Go – Advanced Topics, when we talked about the context standard Go package. This
technique was presented in the useContext.go source code file.

The method that is going to be presented in this section is much easier to implement. The
relevant code is saved in clientTimeOut.go and it is going to be presented in four parts.
The utility accepts two command-line arguments, which are the URL and the timeout
period in seconds. Please notice that the second parameter is optional.

The first part of the code portion for clientTimeOut.go is as follows:

package main

import (
 "fmt"
 "io"
 "net"

The Foundations of Network Programming in Go Chapter 12

[650]

 "net/http"
 "os"
 "path/filepath"
 "strconv"
 "time"
)

var timeout = time.Duration(time.Second)

The second code segment for clientTimeOut.go contains the following Go code:

func Timeout(network, host string) (net.Conn, error) {
 conn, err := net.DialTimeout(network, host, timeout)
 if err != nil {
 return nil, err
 }
 conn.SetDeadline(time.Now().Add(timeout))
 return conn, nil
}

You will learn more about the functionality of SetDeadline() in the next subsection. The
Timeout() function will be used by the Dial field of an http.Transport variable.

The third code portion for clientTimeOut.go is contained in the following code:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("Usage: %s URL TIMEOUT\n", filepath.Base(os.Args[0]))
 return
 }

 if len(os.Args) == 3 {
 temp, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println("Using Default Timeout!")
 } else {
 timeout = time.Duration(time.Duration(temp) * time.Second)
 }
 }

 URL := os.Args[1]
 t := http.Transport{ Dial: Timeout, }

The remaining Go code for the clientTimeOut.go utility is as follows:

 client := http.Client{
 Transport: &t,
 }

The Foundations of Network Programming in Go Chapter 12

[651]

 data, err := client.Get(URL)
 if err != nil {
 fmt.Println(err)
 return
 } else {
 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

The clientTimeOut.go web client is going to be tested using the slowWWW.go web server
developed in Chapter 10, Concurrency in Go – Advanced Topics.

Executing clientTimeOut.go twice will generate the following type of output:

$ go run clientTimeOut.go http://localhost:8001
Serving: /
Delay: 0
$ go run clientTimeOut.go http://localhost:8001
Get http://localhost:8001: read tcp [::1]:57397->[::1]:8001: i/o timeout

As you can see from the generated output, the first request had no problem connecting to
the desired web server. However, the second http.Get() request took longer than
expected and therefore timed out.

More information about SetDeadline
The SetDeadline() function is used by the net package to set the read and write
deadlines of a given network connection. Due to the way the SetDeadline() function
works, you will need to call SetDeadline() before any read or write operation. Keep in
mind that Go uses deadlines to implement timeouts, so you do not need to reset the
timeout every time your application receives or sends any data.

Setting the timeout period on the server side
In this subsection, you will learn how to time out a connection on the server side. You need
to do this because there are times when clients take much longer than expected to end an
HTTP connection. This usually happens for two reasons. The first reason is bugs in the
client software, and the second reason is when a server process is experiencing an attack!

The Foundations of Network Programming in Go Chapter 12

[652]

This technique is going to be implemented in the serverTimeOut.go source code file,
which will be presented in four parts. The first part of serverTimeOut.go is as follows:

package main

import (
 "fmt"
 "net/http"
 "os"
 "time"
)

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

The second code portion of serverTimeOut.go contains the following Go code:

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

The third code segment of serverTimeOut.go is shown in the following Go code:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("Listening on http://0.0.0.0%s\n", PORT)
 } else {
 PORT = ":" + arguments[1]
 fmt.Printf("Listening on http://0.0.0.0%s\n", PORT)
 }

 m := http.NewServeMux()
 srv := &http.Server{
 Addr: PORT,
 Handler: m,
 ReadTimeout: 3 * time.Second,
 WriteTimeout: 3 * time.Second,
 }

The Foundations of Network Programming in Go Chapter 12

[653]

In this case, we are using an http.Server structure that supports two kinds of timeouts
with its fields. The first one is called ReadTimeout, and the second one is called
WriteTimeout. The value of the ReadTimeout field specifies the maximum duration
allowed to read the entire request, including the body.

The value of the WriteTimeout field specifies the maximum time duration before timing
out the writing of the response. Put simply, this is the time from the end of the request
header read to the end of the response write.

The remaining Go code for serverTimeOut.go is as follows:

 m.HandleFunc("/time", timeHandler)
 m.HandleFunc("/", myHandler)

 err := srv.ListenAndServe()
 if err != nil {
 fmt.Println(err)
 return
 }
}

We are now going to execute serverTimeOut.go in order to interact with it using nc(1):

$ go run serverTimeOut.go
Listening on http://0.0.0.0:8001

For the nc(1) part, which in this case acts as a dummy HTTP client, you should issue the
following command to connect to serverTimeOut.go:

$ time nc localhost 8001
real 0m3.012s
user 0m0.001s
sys 0m0.002s

As we did not issue any commands, the HTTP server ended the connection. The output of
the time(1) utility verifies the time it took the server to close the connection.

Yet another way to time out
This subsection will present yet another way to timeout an HTTP connection from the client
side. As you will see, this is the simplest form of timeout, because you just need to use an
http.Client object and set its Timeout field to the desired timeout value.

The Foundations of Network Programming in Go Chapter 12

[654]

The name of the utility that showcases this last type of timeout is anotherTimeOut.go,
and it is going to be presented in four parts.

The first part of anotherTimeOut.go is as follows:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"
 "strconv"
 "time"
)

var timeout = time.Duration(time.Second)

The second part of anotherTimeOut.go contains the following Go code:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Please provide a URL")
 return
 }

 if len(os.Args) == 3 {
 temp, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println("Using Default Timeout!")
 } else {
 timeout = time.Duration(time.Duration(temp) * time.Second)
 }
 }

 URL := os.Args[1]

The third code segment for anotherTimeOut.go contains the following Go code:

 client := http.Client{
 Timeout: timeout,
 }
 client.Get(URL)

The Foundations of Network Programming in Go Chapter 12

[655]

This is the place where the timeout period is defined using the Timeout field of the
http.Client variable.

The last code portion for anotherTimeOut.go is as follows:

 data, err := client.Get(URL)
 if err != nil {
 fmt.Println(err)
 return
 } else {
 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

Executing anotherTimeOut.go and interacting with the slowWWW.go web server
developed in Chapter 10, Concurrency in Go – Advanced Topics, will generate the following
type of output:

$ go run anotherTimeOut.go http://localhost:8001
Get http://localhost:8001: net/http: request canceled (Client.Timeout
exceeded while awaiting headers)
$ go run anotherTimeOut.go http://localhost:8001 15
Serving: /
Delay: 8

The Wireshark and tshark tools
This section will briefly mention the powerful Wireshark and tshark utilities. Wireshark,
which is a graphical application, is the dominant tool for analyzing network traffic of
almost any kind. Although Wireshark is very powerful, there may be times when you need
something lighter that you can execute remotely without a graphical user interface. In such
situations, you can use tshark, which is the command-line version of Wireshark.

Unfortunately, talking more about Wireshark and tshark is beyond the scope of this
chapter.

The Foundations of Network Programming in Go Chapter 12

[656]

gRPC and Go
Strictly speaking, gRPC is a protocol built on HTTP/2 that allows you to create services
easily. gRPC can use protocol buffers to specify an interface definition language, as well as
to specify the format of the interchanged messages. gRPC clients and servers can be written
in any programming language without the need to have clients written in the same
programming language as their servers.

The process that will be presented here has three steps. The first step is creating the
interface definition file, the second step is the development of the gRPC client, and the third
step is the development of the gRPC server that will work with the gRPC client.

Defining the interface definition file
As you learned in the previous section, before we begin developing the gRPC client and
server for our service, we need to define some data structures and protocols that will be
used by them.

Protocol Buffers (protobuf) is a method for serializing structured data. As protobuf uses
the binary format, it takes up less space than plain text serialization formats such as JSON
and XML. However, it needs to be encoded and decoded in order to be machine-usable and
human-readable, respectively.

As a result, in order to be able to use protobuf in your applications, you will need to
download the necessary tools that allow you to work with it – the funny thing is that most
protobuf tools are written in Go because Go is great at creating command-line tools!

On a macOS machine, the necessary tools can be downloaded using Homebrew, as follows:

$ brew install protobuf

There is an extra step that needs to be completed in order to get protobuf support for Go,
because Go is not supported by default. This step requires the execution of the following
command:

$ go get -u github.com/golang/protobuf/protoc-gen-go

Among other things, the previous command downloads the protoc-gen-go executable
and puts it in ~/go/bin, which is the value of $GOPATH/bin on my machine. However, for
the protoc compiler to find it, you will need to include that directory in your PATH
environment variable, which on bash(1) and zsh(1) can be done as follows:

$ export PATH=$PATH:~/go/bin

The Foundations of Network Programming in Go Chapter 12

[657]

Once you have the necessary tools, you will need to define the structures and the functions
that will be used between the gRPC client and the gRPC server. In our case, the interface
definition file, which is saved in api.proto, will be the following:

syntax = "proto3";

package message_service;

message Request {
 string text = 1;
 string subtext = 2;
}

message Response {
 string text = 1;
 string subtext = 2;
}

service MessageService {
 rpc SayIt (Request) returns (Response);
}

The gRPC server and the gRPC client that are going to be developed will support that
protocol, which more or less defines a simple, basic messaging service with two basic types
named Request and Response, and a single function named SayIt().

However, we are not done yet, as api.proto needs to be processed and compiled by the
protobuf tool, which in this case is the protobuf compiler that can be found at
/usr/local/bin/protoc. This should be done as follows:

$ protoc -I . --go_out=plugins=grpc:. api.proto

After executing these commands, you will have an extra file on your computer named
api.pb.go:

$ ls -l api.pb.go
-rw-r--r-- 1 mtsouk staff 7320 May 4 18:31 api.pb.go

So, for Go, the protobuf compiler generates .pb.go files that, among other things, contain a
type for each message type in your interface definition file and a Go interface that needs to
be implemented in the gRPC server. The .pb.go file extension will be different for other
programming languages.

The first lines of api.pb.go are the following:

// Code generated by protoc-gen-go. DO NOT EDIT.

The Foundations of Network Programming in Go Chapter 12

[658]

// source: api.proto

package message_service

import (
 context "context"
 fmt "fmt"
 proto "github.com/golang/protobuf/proto"
 grpc "google.golang.org/grpc"
 codes "google.golang.org/grpc/codes"
 status "google.golang.org/grpc/status"
 math "math"
)

These lines say that you should not edit api.pb.go on your own and that the name of the
package is message_service. For your Go programs to be able to find all protobuf-related
files, it is advisable to put them in their own GitHub repository. For the purposes of this
example, that repository will be https://github.com/mactsouk/protobuf. This also means
that you will need to get that repository using the following command:

$ go get github.com/mactsouk/protobuf

If you ever update api.proto or any other similar file on your local
machine, you should remember to do two things: first, update the GitHub
repository, and second, execute go get -u -v followed by the address
of the remote GitHub repository to get the updates on your local machine.

Now we are ready to continue with developing the Go code for the gRPC client and server.

Note that if the required Go package is not present on your computer, you will get the
following error message when you try to compile the interface definition file:

$ protoc -I . --go_out=plugins=grpc:. api.proto
protoc-gen-go: program not found or is not executable
--go_out: protoc-gen-go: Plugin failed with status code 1.

The gRPC client
In this subsection, we are going to develop a gRPC client in Go, which is going to be saved
in the gClient.go file, which will be presented in three parts.

The first part of gClient.go is as follows:

package main

https://github.com/mactsouk/protobuf

The Foundations of Network Programming in Go Chapter 12

[659]

import (
 "fmt"
 p "github.com/mactsouk/protobuf"
 "golang.org/x/net/context"
 "google.golang.org/grpc"
)

var port = ":8080"

Notice that you should not need to download the required external Go packages because
you already downloaded them when you executed the following command in order to
compile the interface definition language file and create the Go-related output files:

$ go get -u github.com/golang/protobuf/protoc-gen-go

Keep in mind that -u tells go get to update the named packages along with their
dependencies. If you use -v, you will get a better understanding of what actually happens,
as this makes go get generate extra debugging information.

The second part of gClient.go contains the following Go code:

 func AboutToSayIt(ctx context.Context, m p.MessageServiceClient, text
string) (*p.Response, error) {
 request := &p.Request{
 Text: text,
 Subtext: "New Message!",
 }
 r, err := m.SayIt(ctx, request)
 if err != nil {
 return nil, err
 }
 return r, nil
 }

The way you name the AboutToSayIt() function is totally up to you. However, the
signature of the function must contain a context.Context parameter, as well as a
MessageServiceClient parameter in order to be able to call the SayIt() function later
on. Notice that, for the client, you don't need to implement any functions of the interface
definition language – you just have to call them.

The last part of gClient.go is as follows:

func main() {
 conn, err := grpc.Dial(port, grpc.WithInsecure())
 if err != nil {
 fmt.Println("Dial:", err)
 return

The Foundations of Network Programming in Go Chapter 12

[660]

 }

 client := p.NewMessageServiceClient(conn)
 r, err := AboutToSayIt(context.Background(), client, "My Message!")
 if err != nil {
 fmt.Println(err)
 }

 fmt.Println("Response Text:", r.Text)
 fmt.Println("Response SubText:", r.Subtext)
}

You need to call grpc.Dial() in order to connect to the gRPC server and create a new
client using NewMessageServiceClient(). The name of the latter function depends on
the value of the package statement found in the api.proto file. The message that is sent
to the gRPC server is hardcoded in the code for gClient.go.

There is no point in executing the gRPC client without having a gRPC server, so you should
wait for the next section. However, if you really want to find out the generated error
message, you can still try:

$ go run gClient.go
rpc error: code = Unavailable desc = all SubConns are in TransientFailure,
latest connection error: connection error: desc = "transport: Error while
dialing dial tcp :8080: connect: connection refused"
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x8 pc=0x13d8afe]
goroutine 1 [running]:
main.main()
 /Users/mtsouk/ch12/gRPC/gClient.go:41 +0x22e
exit status 2

The gRPC server
In this subsection, you will learn how to develop a gRPC server in Go. The name of the
program will be gServer.go and it is going to be presented in four parts.

The first part of gServer.go is as follows:

package main

import (
 "fmt"
 p "github.com/mactsouk/protobuf"
 "golang.org/x/net/context"

The Foundations of Network Programming in Go Chapter 12

[661]

 "google.golang.org/grpc"
 "net"
)

As the name of the Go package with the interface definition language is
message_service, which is pretty long, I've introduced an alias for it here, which is pretty
short and convenient (p).

The golang.org/x/net/context and google.golang.org/grpc packages were downloaded
earlier along with the other dependencies of the github.com/golang/protobuf/protoc-
gen-go package, which means that you will not need to download any of them.

As of Go 1.7, the golang.org/x/net/context package is available in the
standard library under the name context. Therefore, you are free to
replace it with context if you want.

The second part of gServer.go contains the following Go code:

type MessageServer struct {
}

var port = ":8080"

You need that empty structure in order to be able to create the gRPC server later on in your
Go code.

The third part of gServer.go is where you implement the interface:

func (MessageServer) SayIt(ctx context.Context, r *p.Request) (*p.Response,
error) {
 fmt.Println("Request Text:", r.Text)
 fmt.Println("Request SubText:", r.Subtext)

 response := &p.Response{
 Text: r.Text,
 Subtext: "Got it!",
 }

 return response, nil
}

The signature of the SayIt() function depends on the data in the interface definition
language file and can be found in api.pb.go.

https://godoc.org/golang.org/x/net/context
https://godoc.org/google.golang.org/grpc
https://github.com/golang/protobuf/tree/master/protoc-gen-go
https://github.com/golang/protobuf/tree/master/protoc-gen-go
https://godoc.org/golang.org/x/net/context

The Foundations of Network Programming in Go Chapter 12

[662]

What the SayIt() function does is send the contents of the Text field back to the client
while changing the contents of the Subtext field.

The last part of gServer.go is as follows:

func main() {
 server := grpc.NewServer()
 var messageServer MessageServer
 p.RegisterMessageServiceServer(server, messageServer)
 listen, err := net.Listen("tcp", port)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Serving requests...")
 server.Serve(listen)
}

In order to test the connection, you will need to begin by executing gServer.go:

$ go run gServer.go
Serving requests...

Executing gClient.go while gServer.go is running will generate the following kind of
output:

$ go run gClient.go
Response Text: My Message!
Response SubText: Got it!

Once you execute gClient.go, you will see the following output in gServer.go:

Request Text: My Message!
Request SubText: New Message!

Although gClient.go will automatically end, you will need to manually terminate
gServer.go.

Additional resources
The following resources will definitely broaden your horizons, so please find some time to
read them:

The official web page for the Apache web server is located at
http://httpd.apache.org/.

http://httpd.apache.org/

The Foundations of Network Programming in Go Chapter 12

[663]

The official web page for the Nginx web server is located at http://nginx.org/.
Should you wish to learn more about the Internet or TCP/IP, and its various
services, you should start by reading the RFC documents. One of the places that
you can find such documents is at http://www.rfc-archive.org/.
Visit the website of both Wireshark and tshark at https://www.wireshark.org/
to learn more about them.
Visit the documentation page for the net standard Go package, which can be
found at https://golang.org/pkg/net/. This is one of the largest
documentation pages in the official Go documentation.
Visit the documentation page for the net/http Go package at
https://golang.org/pkg/net/http/.
If you want to create a website without writing any Go code, you can try the
Hugo utility, which is written in Go. You can learn more about the Hugo
framework at https://gohugo.io/. However, what would really be interesting
and educational for every Go programmer is to look at its Go code, which can be
found at https://github.com/gohugoio/hugo.
You can visit the documentation page for the net/http/httptrace package at
https://golang.org/pkg/net/http/httptrace/.
You can find the documentation page for the net/http/pprof package at
https://golang.org/pkg/net/http/pprof/.
Visit the manual page for the nc(1) command-line utility to learn more about its
capabilities and its various command-line options.
The httpstat utility, which was developed by Dave Cheney, can be found at
https://github.com/davecheney/httpstat. It is a good example of the use of
the net/http/httptrace Go package for HTTP tracing.
You can find more information about the Candy web server at https:/ /github.
com/caddyserver/ cadd.
You can learn more about protobuf by
visiting https://opensource.google.com/projects/protobuf and
https://developers.google.com/protocol-buffers/.
You can find the Protocol Buffers Language Guide documentation at
https://developers.google.com/protocol-buffers/docs/proto3.
The documentation page for the protobuf Go package can be found at
https://github.com/golang/protobuf.
You can find more information about ab(1) by visiting its manual page at
https://httpd.apache.org/docs/2.4/programs/ab.html.

http://nginx.org/
http://www.rfc-archive.org/
https://www.wireshark.org/
https://golang.org/pkg/net/
https://golang.org/pkg/net/http/
https://gohugo.io/
https://github.com/gohugoio/hugo
https://golang.org/pkg/net/http/httptrace/
https://golang.org/pkg/net/http/pprof/
https://github.com/davecheney/httpstat
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://github.com/caddyserver/caddy
https://opensource.google.com/projects/protobuf
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/golang/protobuf
https://httpd.apache.org/docs/2.4/programs/ab.html

The Foundations of Network Programming in Go Chapter 12

[664]

Exercises
Write a web client in Go on your own without looking at the code in this chapter.
Merge the code for MXrecords.go and NSrecords.go in order to create a single
utility that does both jobs based on its command-line arguments.
Modify the code for MXrecords.go and NSrecords.go to also accept IP
addresses as input.
Create a version of MXrecords.go and NSrecords.go using the cobra and
viper packages.
Create your own gRPC application using your own interface definition language.
Make the necessary code changes to gServer.go in order to use goroutines and
keep the number of clients that it has served.
Modify advancedWebClient.go in order to save the HTML output in an
external file.
Try to implement a simple version of ab(1) on your own in Go using goroutines
and channels.
Modify kvWeb.go in order to support the DELETE and LOOKUP operations found
in the original version of the key-value store.
Modify httpTrace.go in order to have a flag that disables the execution of the
io.Copy(os.Stdout, response.Body) statement.

Summary
This chapter presented Go code for programming web clients and web servers, as well as
creating a website in Go. You also learned about the http.Response, http.Request, and
http.Transport structures, which allow you to define the parameters of an HTTP
connection.

Additionally, you learned how to develop gRPC applications, how to get the network
configuration of a UNIX machine using Go code, and how to perform DNS lookups in a Go
program, including getting the NS and MX records of a domain.

Finally, I talked about Wireshark and tshark, which are two very popular utilities that
allow you to capture and, most importantly, analyze network traffic. At the beginning of
this chapter, I also mentioned the nc(1) utility.

The Foundations of Network Programming in Go Chapter 12

[665]

In the next chapter of this book, we will continue our discussion of network programming
in Go. However, this time, I will present lower-level Go code that will allow you to develop
TCP clients and servers, as well as UDP client and server processes. Additionally, you will
learn about creating RCP clients and servers.

13
Network Programming –

Building Your Own Servers and
Clients

The previous chapter discussed topics related to network programming, including
developing HTTP clients, HTTP servers, and web applications; performing DNS lookups;
and timing out HTTP connections.

This chapter will take you to the next level by showing you how to work with HTTPS and
how to program your own TCP clients and servers, as well as your own UDP clients and
servers.

Additionally, the chapter will demonstrate how you can program a concurrent TCP server
using two examples. The first example will be relatively simple, as the concurrent TCP
server will just calculate and return numbers in the Fibonacci sequence. However, the
second example will use the code of the keyValue.go application from Chapter 4, The
Uses of Composite Types, as its foundation and convert the key-value store into a concurrent
TCP application that can operate without the need for a web browser. In this chapter, you
will learn about the following topics:

Working with HTTPS traffic
The net standard Go package
Developing TCP clients and TCP servers
Developing a concurrent TCP server
Developing UDP clients and UDP servers
Modifying kvSaveLoad.go from Chapter 8, Telling a UNIX System What to Do,
so that it can serve requests through TCP connections
Executing a TCP/IP server on a Docker image
Creating an RCP client and RCP server

Network Programming – Building Your Own Servers and Clients Chapter 13

[667]

Working with HTTPS traffic
Before you create TCP/IP servers with Go, this chapter will teach you how to work with the
HTTPS protocol in Go, which is the secure version of the HTTP protocol. Notice that the
default TCP port for HTTPS is 443, but you can use any port number you want as long as
you put it in the URL.

Creating certificates
In order to be able to follow and execute the code examples of this section, you will first
need to create certificates because HTTPS requires them. On a macOS Mojave machine, you
will need to execute the following commands:

$ openssl genrsa -out server.key 2048
Generating RSA private key, 2048 bit long modulus
.....................+++
.......................+++
e is 65537 (0x10001)
$ openssl ecparam -genkey -name secp384r1 -out server.key
$ openssl req -new -x509 -sha256 -key server.key -out server.crt -days 3650

The last command will ask you some questions that are not displayed here. It does not
really matter what information you put in, which means that you are free to leave most of
the answers blank. What you will have after executing these commands are the following
two files:

$ ls -l server.crt
-rw-r--r-- 1 mtsouk staff 501 May 16 09:42 server.crt
$ ls -l server.key
-rw-r--r-- 1 mtsouk staff 359 May 16 09:42 server.key

Notice that if a certificate is self-signed, as the one that we have just generated is, you will
need to use the InsecureSkipVerify: true option in the http.Transport structure for
the HTTPS client to work – this will be illustrated shortly.

Now, you should create a certificate for the client, which requires the execution of a single
command:

$ openssl req -x509 -nodes -newkey rsa:2048 -keyout client.key -out
client.crt -days 3650 -subj "/"
Generating a 2048 bit RSA private key
........................+++
...+++

Network Programming – Building Your Own Servers and Clients Chapter 13

[668]

writing new private key to 'client.key'

The previous command will generate two new files:

$ ls -l client.*
-rw-r--r-- 1 mtsouk staff 924 May 16 22:17 client.crt
-rw-r--r-- 1 mtsouk staff 1704 May 16 22:17 client.key

We are now ready to continue and talk about creating an HTTPS client.

An HTTPS client
Nowadays, most web sites work using HTTPS instead of HTTP. Therefore, in this
subsection, you will learn how to create an HTTPS client. The name of the program will be
httpsClient.go and it is going to be presented in three parts.

Depending on the deployment architecture, Go programs might just
speak HTTP and some other service (such as the Nginx web server or a
cloud-supplied service) might provide the Secure Sockets Layer (SSL)
part.

The first part of httpsClient.go contains the following code:

package main

import (
 "crypto/tls"
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
 "path/filepath"
 "strings"
)

The most important package is crypto/tls, which, according to its documentation,
partially implements Transport Layer Security (TLS) 1.2, as specified in RFC 5246, and TLS
1.3, as specified in RFC 8446.

The second part of httpsClient.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))

Network Programming – Building Your Own Servers and Clients Chapter 13

[669]

 return
 }
 URL := os.Args[1]

 tr := &http.Transport{
 TLSClientConfig: &tls.Config{},
 }
 client := &http.Client{Transport: tr}
 response, err := client.Get(URL)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer response.Body.Close()

The http.Transport structure is configured for TLS using TLSClientConfig, which
holds another structure named tls.Config that, at this point, uses its default values.

The last part of the httpsClient.go HTTPS client contains the following code for reading
the HTTPS server response and printing it on the screen:

 content, _ := ioutil.ReadAll(response.Body)
 s := strings.TrimSpace(string(content))

 fmt.Println(s)
}

Executing httpsClient.go in order to read a secure web site will generate the following
kind of output:

$ go run httpsClient.go https://www.google.com
<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
lang="el"><head><meta content="text/html; charset=UTF-8" http-
equiv="Content-Type"><meta
content="/images/branding/googleg/1x/googleg_standard_color_128dp.png"
.
.
.

However, httpsClient.go might fail in some cases, depending on the server certificate:

$ go run httpsClient.go https://www.mtsoukalos.eu/
Get https://www.mtsoukalos.eu/: x509: certificate signed by unknown
authority

The solution to this problem is the use of the InsecureSkipVerify: true option in the
initialization of http.Transport.

Network Programming – Building Your Own Servers and Clients Chapter 13

[670]

You can try that now on your own or wait a little bit for TLSclient.go.

A simple HTTPS server
In this subsection, you are going to see the Go code of a HTTPS server. The implementation
of the simple HTTPS server is saved in https.go and it is going to be presented in three
parts.

The first part of https.go is as follows:

package main

import (
 "fmt"
 "net/http"
)

var PORT = ":1443"

The second part of https.go contains the following code:

func Default(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintf(w, "This is an example HTTPS server!\n")
}

This function will handle all incoming HTTPS connections.

The last part of https.go is as follows:

func main() {
 http.HandleFunc("/", Default)
 fmt.Println("Listening to port number", PORT)

 err := http.ListenAndServeTLS(PORT, "server.crt", "server.key", nil)
 if err != nil {
 fmt.Println("ListenAndServeTLS: ", err)
 return
 }
}

The ListenAndServeTLS() function is similar to the ListenAndServe() function used in
the previous chapter – their main difference is that ListenAndServeTLS() expects HTTPS
connections, whereas ListenAndServe() cannot serve HTTPS clients. Additionally,
ListenAndServeTLS() requires more parameters than ListenAndServe() because it
uses a certificate file as well as a key file.

Network Programming – Building Your Own Servers and Clients Chapter 13

[671]

Executing https.go and connecting to it using the httpsClient.go client will generate
the following kind of output to the httpsClient.go client:

$ go run httpsClient.go https://localhost:1443
Get https://localhost:1443: x509: certificate is not valid for any names,
but wanted to match localhost

Once again, the use of a self-signed certificate will not allow httpsClient.go to connect to
our HTTPS server, which is an issue with the implementations of both the client and the
server. In this case, the output of https.go will be as follows:

$ go run https.go
Listening to port number :1443
2019/05/17 10:11:21 http: TLS handshake error from [::1]:56716: remote
error: tls: bad certificate

The HTTPS server developed in this section uses HTTPS via SSL, which is not the most
secure option. A better option is TLS – a Go implementation of an HTTPS server that uses
TLS will be presented in the next section.

Developing a TLS server and client
In this section, we are going to implement a TLS server named TLSserver.go, which will
be presented in four parts. This time, the HTTPS server will be better than the https.go
server implemented in the previous section.

The first part of TLSserver.go is as follows:

package main

import (
 "crypto/tls"
 "crypto/x509"
 "fmt"
 "io/ioutil"
 "net/http"
)

var PORT = ":1443"

type handler struct {
}

Network Programming – Building Your Own Servers and Clients Chapter 13

[672]

The second part of TLSserver.go contains the following code:

func (h *handler) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 w.Write([]byte("Hello world!\n"))
}

This is the handler function of the web server that handles all client connections.

The third part of TLSserver.go is as follows:

func main() {
 caCert, err := ioutil.ReadFile("client.crt")
 if err != nil {
 fmt.Println(err)
 return
 }

 caCertPool := x509.NewCertPool()
 caCertPool.AppendCertsFromPEM(caCert)
 cfg := &tls.Config{
 ClientAuth: tls.RequireAndVerifyClientCert,
 ClientCAs: caCertPool,
 }

The x509 Go package parses X.509-encoded keys and certificates. You can find more
information about it at https://golang.org/pkg/crypto/x509/.

The last part of TLSserver.go contains the following code:

 srv := &http.Server{
 Addr: PORT,
 Handler: &handler{},
 TLSConfig: cfg,
 }
 fmt.Println("Listening to port number", PORT)
 fmt.Println(srv.ListenAndServeTLS("server.crt", "server.key"))
}

The ListenAndServeTLS() call starts the HTTPS server – its full configuration is held in
the http.Server structure.

If you try to use httpsClient.go with TLSserver.go, you will get the following kind of
output from the client:

$ go run httpsClient.go https://localhost:1443
Get https://localhost:1443: x509: certificate is not valid for any names,
but wanted to match localhost

https://golang.org/pkg/crypto/x509/

Network Programming – Building Your Own Servers and Clients Chapter 13

[673]

In this case, the server will generate the following output:

 $ go run TLSserver.go
 Listening to port number :1443
 2019/05/17 10:05:11 http: TLS handshake error from [::1]:56569: remote
error: tls: bad certificate

As mentioned earlier, in order for the httpsClient.go HTTPS client to communicate
successfully with TLSserver.go, which uses a self-signed certificate, you will need to add
the InsecureSkipVerify: true option to http.Transport. The version of
httpsClient.go that works with TLSserver.go and contains the
InsecureSkipVerify: true option is saved as TLSclient.go and will be presented in
four parts.

The first part of TLSclient.go is as follows:

package main

import (
 "crypto/tls"
 "crypto/x509"
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
 "path/filepath"
)

The second part of TLSclient.go contains the following code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }
 URL := os.Args[1]

 caCert, err := ioutil.ReadFile("server.crt")
 if err != nil {
 fmt.Println(err)
 return
 }

The third part of TLSclient.go is the following:

 caCertPool := x509.NewCertPool()

Network Programming – Building Your Own Servers and Clients Chapter 13

[674]

 caCertPool.AppendCertsFromPEM(caCert)
 cert, err := tls.LoadX509KeyPair("client.crt", "client.key")

 if err != nil {
 fmt.Println(err)
 return
 }

 client := &http.Client{
 Transport: &http.Transport{
 TLSClientConfig: &tls.Config{
 RootCAs: caCertPool,
 InsecureSkipVerify: true,
 Certificates: []tls.Certificate{cert},
 },
 },
 }

 resp, err := client.Get(URL)
 if err != nil {
 fmt.Println(err)
 return
 }

In this part, you can see the use of InsecureSkipVerify.

The last part of TLSclient.go contains the following Go code:

 htmlData, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 fmt.Println(err)
 return
 }

 defer resp.Body.Close()
 fmt.Printf("%v\n", resp.Status)
 fmt.Printf(string(htmlData))
}

If you try to connect TLSclient.go to TLSserver.go, you will get the expected output,
which is the following:

$ go run TLSclient.go https://localhost:1443
200 OK
Hello world!

Network Programming – Building Your Own Servers and Clients Chapter 13

[675]

If you try to connect TLSclient.go to https.go, you will get the expected output, which
means that TLSclient.go is a pretty good HTTPS client implementation:

$ go run TLSclient.go https://localhost:1443
200 OK
This is an example HTTPS server!

The net standard Go package
That is enough with HTTPS. It is time to begin talking about the core protocols of TCP/IP,
which are TCP, IP, and UDP.

You cannot create a TCP or UDP client or server in Go without using the functionality
offered by the net package. The net.Dial() function is used to connect to a network as a
client, whereas the net.Listen() function is used to tell a Go program to accept network
connections and thus act as a server. The return value of both the net.Dial() function and
the net.Listen() function is of the net.Conn type, which implements the io.Reader
and io.Writer interfaces. The first parameter of both functions is the network type, but
this is where their similarities end.

A TCP client
As you already know from the previous chapter, TCP's principal characteristic is that it is a
reliable protocol. The TCP header of each packet includes the source port and destination
port fields. These two fields, plus the source and destination IP addresses, are combined to
uniquely identify every single TCP connection. The name of the TCP client that will be
developed in this section is TCPclient.go, and it will be presented in four parts. The first
part of TCPclient.go is shown in the following Go code:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

Network Programming – Building Your Own Servers and Clients Chapter 13

[676]

The second code segment of TCPclient.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide host:port.")
 return
 }

 CONNECT := arguments[1]
 c, err := net.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 return
 }

The net.Dial() function is used to connect to the remote server. The first parameter of the
net.Dial() function defines the network that will be used, while the second parameter
defines the server address, which must also include the port number. Valid values for the
first parameter are tcp, tcp4 (IPv4-only), tcp6 (IPv6-only), udp, udp4 (IPv4-only), udp6
(IPv6-only), ip, ip4 (IPv4-only), ip6 (IPv6-only), unix (UNIX sockets), unixgram, and
unixpacket.

The third part of TCPclient.go contains the following code:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(c, text+"\n")

The preceding code is for getting user input, which can be verified by the use of the
os.Stdin file for reading. Ignoring the error value returned by reader.ReadString()
is not good practice, but it saves some space here. Certainly, you should never do that in
production software.

The last part of TCPclient.go follows:

 message, _ := bufio.NewReader(c).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 return
 }
 }
}

Network Programming – Building Your Own Servers and Clients Chapter 13

[677]

For testing purposes, TCPclient.go will connect to a TCP server that is implemented
using netcat(1), and will create the following type of output:

$ go run TCPclient.go 8001
dial tcp: address 8001: missing port in address
$ go run TCPclient.go localhost:8001
>> Hello from TCPclient.go!
->: Hi from nc!
>> STOP
->:
TCP client exiting...

The output of the first command illustrates what will happen if you do not include a host
name in the command-line arguments of TCPclient.go. The output of the netcat(1)
TCP server, which should be executed first, is as follows:

$ nc -l 127.0.0.1 8001
Hello from TCPclient.go!
Hi from nc!
STOP

Notice that a client for a given protocol, such as TCP and UDP, can be
reasonably generic in nature, which means that it can talk to many kinds
of servers that support its protocol. As you will soon see, this is not the
case with server applications, which must implement a prearranged
functionality using a prearranged protocol.

A slightly different version of the TCP client
Go offers a different family of functions that also allows you to develop TCP clients and
servers. In this section, you will learn how to program a TCP client using these functions.

The name of the TCP client will be otherTCPclient.go, and it is going to be presented in
four parts. The first code segment from otherTCPclient.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

Network Programming – Building Your Own Servers and Clients Chapter 13

[678]

The second code portion from otherTCPclient.go contains the following code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a server:port string!")
 return
 }

 CONNECT := arguments[1]

 tcpAddr, err := net.ResolveTCPAddr("tcp4", CONNECT)
 if err != nil {
 fmt.Println("ResolveTCPAddr:", err.Error())
 return
 }

The net.ResolveTCPAddr() function returns the address of a TCP endpoint (type
TCPAddr) and can only be used for TCP networks.

The third part of otherTCPclient.go contains the following code:

 conn, err := net.DialTCP("tcp4", nil, tcpAddr)
 if err != nil {
 fmt.Println("DialTCP:", err.Error())
 return
 }

The net.DialTCP() function is equivalent to net.Dial() but it is for TCP networks only.

The remaining code of otherTCPclient.go is as follows:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(conn, text+"\n")

 message, _ := bufio.NewReader(conn).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 conn.Close()
 return
 }
 }
}

Network Programming – Building Your Own Servers and Clients Chapter 13

[679]

Executing otherTCPclient.go and interacting with a TCP server will generate the
following type of output:

$ go run otherTCPclient.go localhost:8001
>> Hello from otherTCPclient.go!
->: Hi from netcat!
>> STOP
->:
TCP client exiting...

For this example, the TCP server is supported by the netcat(1) utility, which is executed
as follows:

 $ nc -l 127.0.0.1 8001
Hello from otherTCPclient.go!
Hi from netcat!
STOP

A TCP server
The TCP server that is going to be developed in this section will return the current date and
time to the client in a single network packet. In practice, this means that after accepting a
client connection, the server will get the time and date from the UNIX system and send that
data back to the client.

The name of the utility is TCPserver.go, and it will be presented in four parts.

The first part of TCPserver.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
 "time"
)

The second code portion of TCPserver.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {

Network Programming – Building Your Own Servers and Clients Chapter 13

[680]

 fmt.Println("Please provide port number")
 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

The net.Listen() function listens for connections. If the second parameter does not
contain an IP address but only a port number, net.Listen() will listen on all available IP
addresses of the local system.

The third segment from TCPserver.go is as follows:

 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }

The Accept() function waits for the next connection and returns a generic Conn variable.
The only thing that is wrong with this particular TCP server is that it can only serve the first
TCP client that is going to connect to it because the Accept() call is outside the for loop
that is coming next. The remaining Go code of TCPserver.go is as follows:

 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 return
 }
 if strings.TrimSpace(string(netData)) == "STOP" {
 fmt.Println("Exiting TCP server!")
 return
 }

 fmt.Print("-> ", string(netData))
 t := time.Now()
 myTime := t.Format(time.RFC3339) + "\n"
 c.Write([]byte(myTime))
 }
}

Network Programming – Building Your Own Servers and Clients Chapter 13

[681]

Executing TCPserver.go and interacting with it using a TCP client application will
generate the following type of output:

$ go run TCPserver.go 8001
-> HELLO
Exiting TCP server!

On the client side, you will see the following output:

$ nc 127.0.0.1 8001
HELLO
2019-05-18T22:50:31+03:00
STOP

If the TCPserver.go utility attempts to use a TCP port that is already in use by another
UNIX process, you will get the following type of error message:

$ go run TCPserver.go 9000
listen tcp :9000: bind: address already in use

Finally, if the TCPserver.go utility attempts to use a TCP port in the 1-1024 range that
requires root privileges on UNIX systems, you will get the following type of error message:

$ go run TCPserver.go 80
listen tcp :80: bind: permission denied

A slightly different version of the TCP server
In this section, you are going to see an alternative implementation of a TCP server in Go.
This time, the TCP server implements the Echo service, which basically returns to the
client, the data that the client sent. The program is called otherTCPserver.go, and it will
be presented in four parts.

The first part of otherTCPserver.go is as follows:

package main

import (
 "fmt"
 "net"
 "os"
 "strings"
)

Network Programming – Building Your Own Servers and Clients Chapter 13

[682]

The second portion of otherTCPserver.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 SERVER := "localhost" + ":" + arguments[1]

 s, err := net.ResolveTCPAddr("tcp", SERVER)
 if err != nil {
 fmt.Println(err)
 return
 }

 l, err := net.ListenTCP("tcp", s)
 if err != nil {
 fmt.Println(err)
 return
 }

The net.ListenTCP() function is equivalent to net.Listen() for TCP networks.

The third segment of otherTCPserver.go is as follows:

 buffer := make([]byte, 1024)
 conn, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }

The remaining code of otherTCPserver.go is as follows:

 for {
 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }

 if strings.TrimSpace(string(buffer[0:n])) == "STOP" {
 fmt.Println("Exiting TCP server!")
 conn.Close()
 return
 }

Network Programming – Building Your Own Servers and Clients Chapter 13

[683]

 fmt.Print("> ", string(buffer[0:n-1]))
 _, err = conn.Write(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

Executing otherTCPserver.go and using a client for interacting with it will generate the
following type of output:

$ go run otherTCPserver.go 8001
> 1
> 2
> Hello!
> Exiting TCP server!

On the client side, which in this case is going to be otherTCPclient.go, you will see the
following type of output:

$ go run otherTCPclient.go localhost:8001
>> 1
->: 1
>> 2
->: 2
>> Hello!
->: Hello!
>> ->:
>> STOP
->: TCP client exiting...

Finally, I will present a way of finding out the name of the process that listens to a given
TCP or UDP port on a UNIX machine. So, if you want to discover which process uses TCP
port number 8001, you should execute the following command:

$ sudo lsof -n -i :8001
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
TCPserver 86775 mtsouk 3u IPv6 0x98d55014e6c9360f 0t0 TCP *:vcom-
tunnel (LISTEN)

A UDP client
If you know how to develop a TCP client, then you should find developing a UDP client
much easier due to the simplicity of the UDP protocol.

Network Programming – Building Your Own Servers and Clients Chapter 13

[684]

The biggest difference between UDP and TCP is that UDP is not reliable
by design. This also means that, in general, UDP is simpler than TCP
because UDP does not need to keep the state of a UDP connection. Put
simply, UDP is like "fire and forget," which in some cases is perfect.

The name of the utility presented for this topic is UDPclient.go, and it will be presented
in four code segments. The first part of UDPclient.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second segment of UDPclient.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string")
 return
 }
 CONNECT := arguments[1]

 s, err := net.ResolveUDPAddr("udp4", CONNECT)
 c, err := net.DialUDP("udp4", nil, s)

 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("The UDP server is %s\n", c.RemoteAddr().String())
 defer c.Close()

The net.ResolveUDPAddr() function returns an address of a UDP endpoint as defined by
its second parameter. The first parameter (udp4) specifies that the program will support the
IPv4 protocol only.

The net.DialUDP() function used is like net.Dial() for UDP networks.

Network Programming – Building Your Own Servers and Clients Chapter 13

[685]

The third segment of UDPclient.go contains the following code:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 data := []byte(text + "\n")
 _, err = c.Write(data)
 if strings.TrimSpace(string(data)) == "STOP" {
 fmt.Println("Exiting UDP client!")
 return
 }

The preceding code requires that the user types some text, which is sent to the UDP server.
The user text is read from UNIX standard input using bufio.NewReader(os.Stdin). The
Write(data) method sends the data over the UDP network connection.

The rest of the Go code is as follows:

 if err != nil {
 fmt.Println(err)
 return
 }

 buffer := make([]byte, 1024)
 n, _, err := c.ReadFromUDP(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply: %s\n", string(buffer[0:n]))
 }
}

Once the client data is sent, you must wait for the data that the UDP server has to send,
which is read using ReadFromUDP(). Executing UDPclient.go and interacting with the
netcat(1) utility that acts as a UDP server will generate the following type of output:

$ go run UDPclient.go localhost:8001
The UDP server is 127.0.0.1:8001
>> Hello!
Reply: Hi there!
>> Have to leave - bye!
Reply: OK.
>> STOP
Exiting UDP client!

Network Programming – Building Your Own Servers and Clients Chapter 13

[686]

On the UDP server side, the output will be as follows:

$ nc -v -u -l 127.0.0.1 8001
Hello!
Hi there!
Have to leave - bye!
OK.
STOP
^C

The reason for typing Ctrl+C in order to terminate nc(1) is that nc(1) does not have any
code that tells it to terminate when it receives the STOP string as input.

Developing a UDP server
The purpose of the UDP server that is going to be developed in this section is returning
random numbers between 1 and 1,000 to its UDP clients. The name of the program is
UDPserver.go, and it is presented in four segments.

The first part of UDPserver.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "net"
 "os"
 "strconv"
 "strings"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second segment of UDPserver.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

Network Programming – Building Your Own Servers and Clients Chapter 13

[687]

 PORT := ":" + arguments[1]

 s, err := net.ResolveUDPAddr("udp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }

The third segment of UDPserver.go contains the following code:

 connection, err := net.ListenUDP("udp4", s)
 if err != nil {
 fmt.Println(err)
 return
 }

 defer connection.Close()
 buffer := make([]byte, 1024)
 rand.Seed(time.Now().Unix())

The net.ListenUDP() function acts like net.ListenTCP() for UDP networks.

The remaining Go code of UDPserver.go is as follows:

 for {
 n, addr, err := connection.ReadFromUDP(buffer)
 fmt.Print("-> ", string(buffer[0:n-1]))

 if strings.TrimSpace(string(buffer[0:n])) == "STOP" {
 fmt.Println("Exiting UDP server!")
 return
 }

 data := []byte(strconv.Itoa(random(1, 1001)))
 fmt.Printf("data: %s\n", string(data))
 _, err = connection.WriteToUDP(data, addr)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

The ReadFromUDP() function allows you to read data from a UDP connection using a
buffer, which, as expected, is a byte slice.

Network Programming – Building Your Own Servers and Clients Chapter 13

[688]

Executing UDPserver.go and connecting to it with UDPclient.go will generate the
following type of output:

$ go run UDPserver.go 8001
-> Hello!
data: 156
-> Another random number please :)
data: 944
-> Leaving...
data: 491
-> STOP
Exiting UDP server!
On the client side, the output will be as follows:
$ go run UDPclient.go localhost:8001
The UDP server is 127.0.0.1:8001
>> Hello!
Reply: 156
>> Another random number please :)
Reply: 944
>> Leaving...
Reply: 491
>> STOP
Exiting UDP client!

A concurrent TCP server
In this section, you will learn how to develop a concurrent TCP server using goroutines.
For each incoming connection to the TCP server, the program will start a new goroutine to
handle that request. This allows it to accept more requests, which means that a concurrent
TCP server can serve multiple clients simultaneously.

The job of the TCP concurrent server is to accept a positive integer and return a natural
number from the Fibonacci sequence. If there is an error in the input, the return value will
be -1. As the calculation of numbers in the Fibonacci sequence can be slow, we are going to
use an algorithm that was first presented in Chapter 11, Code Testing, Optimization, and
Profiling, and was included in benchmarkMe.go. Additionally, this time, the algorithm
used will be explained a little more.

The name of the program is fiboTCP.go, and its code is presented in five parts. As it is
considered good practice to be able to define the port number of a web service as a
command-line parameter, fiboTCP.go will do exactly that.

Network Programming – Building Your Own Servers and Clients Chapter 13

[689]

The first part of fiboTCP.go contains the following Go code:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strconv"
 "strings"
 "time"
)

The second code portion of fiboTCP.go contains the following Go code:

func f(n int) int {
 fn := make(map[int]int)
 for i := 0; i <= n; i++ {
 var f int
 if i <= 2 {
 f = 1
 } else {
 f = fn[i-1] + fn[i-2]
 }
 fn[i] = f
 }
 return fn[n]
}

In the preceding code, you can see the implementation of the f() function, which generates
natural numbers that belong to the Fibonacci sequence. The algorithm used is difficult to
understand at first, but it is very efficient and therefore fast.

Firstly, the f() function uses a Go map named fn, which is pretty unusual when
calculating numbers of the Fibonacci sequence. Secondly, the f() function uses a for loop,
which is also fairly unusual. Finally, the f() function does not use recursion, which is the
main reason for the speed of its operation.

The idea behind the algorithm used in f(), which uses a dynamic programming technique,
is that whenever a Fibonacci number is computed, it is put into the fn map so that it will
not be computed again. This simple idea saves a lot of time, especially when large Fibonacci
numbers need to be calculated, because then you do not have to calculate the same
Fibonacci number multiple times.

Network Programming – Building Your Own Servers and Clients Chapter 13

[690]

The third code segment of fiboTCP.go is as follows:

func handleConnection(c net.Conn) {
 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 temp := strings.TrimSpace(string(netData))
 if temp == "STOP" {
 break
 }

 fibo := "-1\n"
 n, err := strconv.Atoi(temp)
 if err == nil {
 fibo = strconv.Itoa(f(n)) + "\n"
 }
 c.Write([]byte(string(fibo)))
 }
 time.Sleep(5 * time.Second)
 c.Close()
}

The handleConnection() function deals with each client of the concurrent TCP server.

The fourth part of fiboTCP.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

Network Programming – Building Your Own Servers and Clients Chapter 13

[691]

The remaining Go code of fiboTCP.go is as follows:

 for {
 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }
 go handleConnection(c)
 }
}

The concurrency of the program is implemented by the go handleConnection(c)
statement, which commences a new goroutine each time a new TCP client comes from the
internet or a local network. The goroutine is executed concurrently, which gives the server
the opportunity to serve even more clients.

Executing fiboTCP.go and interacting with it using both netcat(1) and TCPclient.go
on two different terminals will generate the following type of output:

$ go run fiboTCP.go 9000
n: 10
fibo: 55
n: 0
fibo: 1
n: -1
fibo: 0
n: 100
fibo: 3736710778780434371
n: 12
fibo: 144
n: 12
fibo: 144

The output will be as follows on the TCPclient.go side:

$ go run TCPclient.go localhost:9000
>> 12
->: 144
>> a
->: -1
>> STOP
->: TCP client exiting...

On the netcat(1) side, the output will be as follows:

$ nc localhost 9000
10

Network Programming – Building Your Own Servers and Clients Chapter 13

[692]

55
0
1
-1
0
100
3736710778780434371
ads
-1
STOP

When you send the STOP string to the server process, the goroutine that serves that
particular TCP client will terminate, which will cause the connection to end.

Finally, the impressive thing here is that both clients are served at the same time, which can
be verified by the output of the following command:

$ netstat -anp TCP | grep 9000
tcp4 0 0 127.0.0.1.9000 127.0.0.1.57309 ESTABLISHED
tcp4 0 0 127.0.0.1.57309 127.0.0.1.9000 ESTABLISHED
tcp4 0 0 127.0.0.1.9000 127.0.0.1.57305 ESTABLISHED
tcp4 0 0 127.0.0.1.57305 127.0.0.1.9000 ESTABLISHED
tcp4 0 0 *.9000 *.* LISTEN

The last line of the output of the preceding command tells us that there is a process
that listens to port 9000, which means that you can still connect to port 9000. The first
two lines of the output say that there is a client that uses port 57309 to talk to the server
process. The third and fourth lines of the preceding output verify that there is another client
that communicates with the server that listens to port 9000. That client uses TCP port
57305.

A handy concurrent TCP server
Although the concurrent TCP server from the previous section works fine, it does not serve
a practical application. Therefore, in this section, you will learn how to convert the
keyValue.go application from Chapter 4, The Uses of Composite Types, into a fully-featured
concurrent TCP application.

What we are going to do is create our own kind of TCP protocol in order to be able to
interact with the key-value store from a network. You will need a keyword for each one of
the functions of the key-value store. For reasons of simplicity, each keyword will be
followed by the relevant data. The result of most commands will be a success or failure
message.

Network Programming – Building Your Own Servers and Clients Chapter 13

[693]

Designing your own TCP- or UDP-based protocols is not an easy job. This
means that you should be particularly specific and careful when
designing a new protocol.

The name of the utility shown in this topic is kvTCP.go, and it is presented in six parts.

The first part of kvTCP.go is as follows:

package main

import (
 "bufio"
 "encoding/gob"
 "fmt"
 "net"
 "os"
 "strings"
)

type myElement struct {
 Name string
 Surname string
 Id string
}

const welcome = "Welcome to the Key Value store!\n"

var DATA = make(map[string]myElement)
var DATAFILE = "/tmp/dataFile.gob"

The second part of kvTCP.go contains the following Go code:

func handleConnection(c net.Conn) {
 c.Write([]byte(welcome))
 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 return
 }

 command := strings.TrimSpace(string(netData))
 tokens := strings.Fields(command)
 switch len(tokens) {
 case 0:
 continue
 case 1:

Network Programming – Building Your Own Servers and Clients Chapter 13

[694]

 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 2:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 3:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 4:
 tokens = append(tokens, "")
 }

 switch tokens[0] {
 case "STOP":
 err = save()
 if err != nil {
 fmt.Println(err)
 }
 c.Close()
 return
 case "PRINT":
 PRINT(c)
 case "DELETE":
 if !DELETE(tokens[1]) {
 netData := "Delete operation failed!\n"
 c.Write([]byte(netData))
 } else {
 netData := "Delete operation successful!\n"
 c.Write([]byte(netData))
 }
 case "ADD":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !ADD(tokens[1], n) {
 netData := "Add operation failed!\n"
 c.Write([]byte(netData))
 } else {
 netData := "Add operation successful!\n"
 c.Write([]byte(netData))
 }
 err = save()
 if err != nil {
 fmt.Println(err)
 }
 case "LOOKUP":
 n := LOOKUP(tokens[1])

Network Programming – Building Your Own Servers and Clients Chapter 13

[695]

 if n != nil {
 netData := fmt.Sprintf("%v\n", *n)
 c.Write([]byte(netData))
 } else {
 netData := "Did not find key!\n"
 c.Write([]byte(netData))
 }
 case "CHANGE":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !CHANGE(tokens[1], n) {
 netData := "Update operation failed!\n"
 c.Write([]byte(netData))
 } else {
 netData := "Update operation successful!\n"
 c.Write([]byte(netData))
 }
 err = save()
 if err != nil {
 fmt.Println(err)
 }
 default:
 netData := "Unknown command - please try again!\n"
 c.Write([]byte(netData))
 }
 }
}

The handleConnection() function communicates with each TCP client and interprets the
client input.

The third segment of kvTCP.go contains the following Go code:

func save() error {
 fmt.Println("Saving", DATAFILE)
 err := os.Remove(DATAFILE)
 if err != nil {
 fmt.Println(err)
 }

 saveTo, err := os.Create(DATAFILE)
 if err != nil {
 fmt.Println("Cannot create", DATAFILE)
 return err
 }
 defer saveTo.Close()

 encoder := gob.NewEncoder(saveTo)
 err = encoder.Encode(DATA)

Network Programming – Building Your Own Servers and Clients Chapter 13

[696]

 if err != nil {
 fmt.Println("Cannot save to", DATAFILE)
 return err
 }
 return nil
}

func load() error {
 fmt.Println("Loading", DATAFILE)
 loadFrom, err := os.Open(DATAFILE)
 defer loadFrom.Close()
 if err != nil {
 fmt.Println("Empty key/value store!")
 return err
 }

 decoder := gob.NewDecoder(loadFrom)
 decoder.Decode(&DATA)
 return nil
}

The fourth segment of kvTCP.go is as follows:

func ADD(k string, n myElement) bool {
 if k == "" {
 return false
 }

 if LOOKUP(k) == nil {
 DATA[k] = n
 return true
 }
 return false
}

func DELETE(k string) bool {
 if LOOKUP(k) != nil {
 delete(DATA, k)
 return true
 }
 return false
}

func LOOKUP(k string) *myElement {
 _, ok := DATA[k]
 if ok {
 n := DATA[k]
 return &n

Network Programming – Building Your Own Servers and Clients Chapter 13

[697]

 } else {
 return nil
 }
}

func CHANGE(k string, n myElement) bool {
 DATA[k] = n
 return true
}

The implementation of the preceding functions is the same as in keyValue.go. None of
them talk directly to a TCP client.

The fifth part of kvTCP.go contains the following Go code:

func PRINT(c net.Conn) {
 for k, d := range DATA {
 netData := fmt.Sprintf("key: %s value: %v\n", k, d)
 c.Write([]byte(netData))
 }
}

The PRINT() function sends data to a TCP client directly, one line at a time.

The remaining Go code of the program is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

 err = load()
 if err != nil {
 fmt.Println(err)
 }

 for {
 c, err := l.Accept()

Network Programming – Building Your Own Servers and Clients Chapter 13

[698]

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 go handleConnection(c)
 }
}

Executing kvTCP.go will generate the following type of output:

$ go run kvTCP.go 9000
Loading /tmp/dataFile.gob
Empty key/value store!
open /tmp/dataFile.gob: no such file or directory
Saving /tmp/dataFile.gob
remove /tmp/dataFile.gob: no such file or directory
Saving /tmp/dataFile.gob
Saving /tmp/dataFile.gob

For the purposes of this section, the netcat(1) utility will act as the TCP client of
kvTCP.go:

$ nc localhost 9000
Welcome to the Key Value store!
PRINT
LOOKUP 1
Did not find key!
ADD 1 2 3 4
Add operation successful!
LOOKUP 1
{2 3 4}
ADD 4 -1 -2 -3
Add operation successful!
PRINT
key: 1 value: {2 3 4}
key: 4 value: {-1 -2 -3}
STOP

kvTCP.go is a concurrent application that uses goroutines and can serve
multiple TCP clients simultaneously. However, all of these TCP clients will
share the same data.

Network Programming – Building Your Own Servers and Clients Chapter 13

[699]

Creating a Docker image for a Go TCP/IP
server
In this section, you will learn how to put kvTCP.go into a Docker image and use it from
there, which is a pretty convenient way of using a TCP/IP application because a Docker
image can be easily transferred to other machines or deployed in Kubernetes.

As you might expect, everything will begin with a Dockerfile, which will have the
following contents:

FROM golang:latest

RUN mkdir /files
COPY kvTCP.go /files
WORKDIR /files

RUN go build -o /files/kvTCP kvTCP.go
ENTRYPOINT ["/files/kvTCP","80"]

After that, you will need to build the Docker image, as follows:

$ docker build -t kvtcp:latest .
Sending build context to Docker daemon 6.656kB
Step 1/6 : FROM golang:latest
 ---> 7ced090ee82e
Step 2/6 : RUN mkdir /files
 ---> Running in bbbbada6271f
Removing intermediate container bbbbada6271f
 ---> 5b0a621eee29
Step 3/6 : COPY kvTCP.go /files
 ---> 4aab441b14c2
Step 4/6 : WORKDIR /files
 ---> Running in 7185606bed2e
Removing intermediate container 7185606bed2e
 ---> 744e9800fdba
Step 5/6 : RUN go build -o /files/kvTCP kvTCP.go
 ---> Running in f44fcbc8951b
Removing intermediate container f44fcbc8951b
 ---> a8d00c7ead13
Step 6/6 : ENTRYPOINT ["/files/kvTCP","80"]
 ---> Running in ec3227170e09
Removing intermediate container ec3227170e09
 ---> b65ba728849a
Successfully built b65ba728849a
Successfully tagged kvtcp:latest

Network Programming – Building Your Own Servers and Clients Chapter 13

[700]

Executing docker images will verify that you have created the desired Docker image:

$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
kvtcp latest b65ba728849a 26
minutes ago 777MB
landoop/kafka-lenses-dev latest 289093ceee7b 2 days
ago 1.37GB
golang latest 7ced090ee82e 9 days
ago 774MB

Then, you will need to execute that Docker image. This time, you will need to specify some
extra parameters to expose the port numbers that you want to make available to the outer
world:

$ docker run -d -p 5801:80 kvtcp:latest
af9939992a25cb5ccf405b1b97b9c813fb4cb3f3a2e5b13942db637709c8cee2

The last command exposes port number 80 from the Docker image to the local machine
using port number 5801 on the local machine.

From now on, you will be able to use the TCP server that is located in the Docker image, as
follows:

$ nc 127.0.0.1 5801
Welcome to the Key Value store!

Notice that, until you save your data in a location outside of the Docker image, your data
will be lost when you terminate that Docker image.

This capability of Docker gives you the opportunity to use any port number that you want
to access the TCP server in the Docker image. However, if you try to map port number 80
again, you will get the following kind of error message:

$ docker run -d -p 5801:80 kvtcp:latest
709d44be8668284b101d7dfc253938d13e6797d812821838aa5ab18ea48527ec
docker: Error response from daemon: driver failed programming external
connectivity on endpoint eager_nobel
(fa9d43d3c129734576e824753703d8ac3ff51bcdcdc20e6937b30f3bcfefeff7): Bind
for 0.0.0.0:5801 failed: port is already allocated.

As the error message says, the port is already allocated and therefore cannot be used again.
However, there is a workaround to this limitation, which can be illustrated by the following
command:

$ docker run -d -p 5801:80 -p 2000:80 kvtcp:latest

Network Programming – Building Your Own Servers and Clients Chapter 13

[701]

5cbb17c5bbf720eaa5ce0f1e11cc73dbe5bef3cc925b7936ae1b97e245d54ae8

The previous command maps port number 80 from the Docker image to two external TCP
ports (5801 and 2000) in a single docker run command. Notice that there is a single
kvTCP server running and that there is a single copy of the data even if that data can be
accessed using multiple ports.

This can also be verified by the output of the docker ps command:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
5cbb17c5bbf7 kvtcp:latest "/files/kvTCP 80" 3 seconds ago
Up 2 seconds 0.0.0.0:2000->80/tcp, 0.0.0.0:5801->80/tcp
compassionate_morse

Remote Procedure Call (RPC)
RPC is a client-server mechanism for interprocess communication that uses TCP/IP. Both
the RPC client and the RPC server to be developed will use the following package, which is
named sharedRPC.go:

package sharedRPC

type MyFloats struct {
 A1, A2 float64
}

type MyInterface interface {
 Multiply(arguments *MyFloats, reply *float64) error
 Power(arguments *MyFloats, reply *float64) error
}

The sharedRPC package defines one interface called MyInterface and one structure
called MyFloats, which will be used by both the client and the server. However, only the
RPC server will need to implement that interface.

After that, you will need to install the sharedRPC.go package by executing the following
commands:

$ mkdir -p ~/go/src/sharedRPC
$ cp sharedRPC.go ~/go/src/sharedRPC/
$ go install sharedRPC

Network Programming – Building Your Own Servers and Clients Chapter 13

[702]

The RPC client
In this section, you are going to see the Go code of the RPC client, which will be saved as
RPCclient.go and presented in four parts.

The first part of RPCclient.go is as follows:

package main

import (
 "fmt"
 "net/rpc"
 "os"
 "sharedRPC"
)

The second segment of RPCclient.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string!")
 return
 }

 CONNECT := arguments[1]
 c, err := rpc.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 return
 }

Observe the use of the rpc.Dial() function for connecting to the RPC server instead of the
net.Dial() function, even though the RCP server uses TCP.

The third segment of RPCclient.go is as follows:

 args := sharedRPC.MyFloats{16, -0.5}
 var reply float64

 err = c.Call("MyInterface.Multiply", args, &reply)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply (Multiply): %f\n", reply)

Network Programming – Building Your Own Servers and Clients Chapter 13

[703]

What is being exchanged between the RPC client and the RPC server with the help of the
Call() function are function names, their arguments, and the results of the function calls,
as the RPC client knows nothing about the actual implementation of the functions.

The remaining Go code of RPCclient.go is as follows:

 err = c.Call("MyInterface.Power", args, &reply)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply (Power): %f\n", reply)
}

If you try to execute RPCclient.go without having an RPC server running, you will get
the following type of error message:

$ go run RPCclient.go localhost:1234
dial tcp [::1]:1234: connect: connection refused

The RPC server
The RPC server will be saved as RPCserver.go, and it is presented in five parts.

The first part of RPCserver.go is as follows:

package main

import (
 "fmt"
 "math"
 "net"
 "net/rpc"
 "os"
 "sharedRPC"
)

The second segment of RPCserver.go contains the following Go code:

type MyInterface struct{}

func Power(x, y float64) float64 {
 return math.Pow(x, y)
}

func (t *MyInterface) Multiply(arguments *sharedRPC.MyFloats, reply

Network Programming – Building Your Own Servers and Clients Chapter 13

[704]

*float64) error {
 *reply = arguments.A1 * arguments.A2
 return nil
}

func (t *MyInterface) Power(arguments *sharedRPC.MyFloats, reply *float64)
error {
 *reply = Power(arguments.A1, arguments.A2)
 return nil
}

In the preceding Go code, the RPC server implements the desired interface, as well as a
helper function named Power().

The third segment of RPCserver.go is as follows:

func main() {
 PORT := ":1234"
 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }

The fourth part of RPCserver.go contains the following code:

 myInterface := new(MyInterface)
 rpc.Register(myInterface)
 t, err := net.ResolveTCPAddr("tcp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 l, err := net.ListenTCP("tcp4", t)
 if err != nil {
 fmt.Println(err)
 return
 }

What makes this program an RPC server is the use of the rpc.Register() function.
However, as the RPC server uses TCP, it still needs to make function calls to
net.ResolveTCPAddr() and net.ListenTCP().

The rest of the Go code of RPCclient.go is as follows:

 for {
 c, err := l.Accept()
 if err != nil {
 continue

Network Programming – Building Your Own Servers and Clients Chapter 13

[705]

 }
 fmt.Printf("%s\n", c.RemoteAddr())
 rpc.ServeConn(c)
 }
}

The RemoteAddr() function returns the IP address and the port number used for
communicating with the RPC client. The rpc.ServeConn() function serves the RPC client.

Executing RPCserver.go and waiting for RPCclient.go will create the following type of
output:

$ go run RPCserver.go
127.0.0.1:52289

Executing RPCclient.go will create the following type of output:

$ go run RPCclient.go localhost:1234
Reply (Multiply): -8.000000
Reply (Power): 0.250000

Doing low-level network programming
Although the http.Transport structure allows you to modify the various low-level
parameters of a network connection, you can write Go code that permits you to read the
raw data of network packets.

There are two tricky points here. Firstly, network packets come in binary format, which
requires you to look for specific kinds of network packets and not just any type of network
packet. Put simply, when reading network packets, you should specify the protocol or
protocols that you are going to support in your applications in advance. Secondly, in order
to send a network packet, you will have to construct it on your own.

The next utility to be shown is called lowLevel.go, and it will be presented in three parts.
Notice that lowLevel.go captures Internet Control Message Protocol (ICMP) packets,
which use the IPv4 protocol and print their contents. Also, note that working with raw
network data requires root privileges for security reasons.

The first segment of lowLevel.go is as follows:

package main

import (
 "fmt"

Network Programming – Building Your Own Servers and Clients Chapter 13

[706]

 "net"
)

The second part of lowLevel.go contains the following Go code:

func main() {
 netaddr, err := net.ResolveIPAddr("ip4", "127.0.0.1")
 if err != nil {
 fmt.Println(err)
 return
 }
 conn, err := net.ListenIP("ip4:icmp", netaddr)
 if err != nil {
 fmt.Println(err)
 return
 }

The ICMP protocol is specified in the second part of the first parameter (ip4:icmp) of
net.ListenIP(). Moreover, the ip4 part tells the utility to capture IPv4 traffic only.

The remaining part of lowLevel.go contains the following Go code:

 buffer := make([]byte, 1024)
 n, _, err := conn.ReadFrom(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("% X\n", buffer[0:n])
}

The preceding code tells lowLevel.go to read just a single network packet because there is
no for loop.

The ICMP protocol is used by the ping(1) and traceroute(1) utilities, so one way to
create ICMP traffic is to use one of these two tools. The network traffic will be generated
using the following commands on both UNIX machines while lowLevel.go is already
running:

$ ping -c 5 localhost
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.037 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.038 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.117 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.052 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.049 ms

Network Programming – Building Your Own Servers and Clients Chapter 13

[707]

--- localhost ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.037/0.059/0.117/0.030 ms
$ traceroute localhost
traceroute to localhost (127.0.0.1), 64 hops max, 52 byte packets
 1 localhost (127.0.0.1) 0.255 ms 0.048 ms 0.067 ms

Executing lowLevel.go on a macOS Mojave machine with root privileges will produce the
following type of output:

$ sudo go run lowLevel.go
03 03 CD DA 00 00 00 00 45 00 34 00 B4 0F 00 00 01 11 00 00 7F 00 00 01 7F
00 00 01 B4 0E 82 9B 00 20 00 00
$ sudo go run lowLevel.go
00 00 0B 3B 20 34 00 00 5A CB 5C 15 00 04 32 A9 08 09 0A 0B 0C 0D 0E 0F 10
11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

The first output example is generated by the ping(1) command, whereas the second
output example is generated by the traceroute(1) command.

Running lowLevel.go on a Debian Linux machine will generate the following type of
output:

$ uname -a
Linux mail 4.14.12-x86_64-linode92 #1 SMP Fri Jan 5 15:34:44 UTC 2018
x86_64 GNU/Linux
go run lowLevel.go
08 00 61 DD 3F BA 00 01 9A 5D CB 5A 00 00 00 00 26 DC 0B 00 00 00 00 00 10
11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37
go run lowLevel.go
03 03 BB B8 00 00 00 00 45 00 00 3C CD 8D 00 00 01 11 EE 21 7F 00 00 01 7F
00 00 01 CB 40 82 9A 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D
4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

The output of the uname(1) command prints useful information about the Linux system.
Note that, on modern Linux machines, you should execute ping(1) with the -4 flag in
order to tell it to use the IPv4 protocol.

Grabbing raw ICMP network data
In this subsection, you will learn how to use the syscall package to capture raw ICMP
network data and syscall.SetsockoptInt() in order to set the options of a socket.

Network Programming – Building Your Own Servers and Clients Chapter 13

[708]

Keep in mind that sending raw ICMP data is much more difficult, as you will have to
construct the raw network packets on your own. The name of the utility is
syscallNet.go, and it will be shown in four parts.

The first part of syscallNet.go is as follows:

package main

import (
 "fmt"
 "os"
 "syscall"
)

The second segment of syscallNet.go contains the following Go code:

func main() {
 fd, err := syscall.Socket(syscall.AF_INET, syscall.SOCK_RAW,
syscall.IPPROTO_ICMP)
 if err != nil {
 fmt.Println("Error in syscall.Socket:", err)
 return
 }

 f := os.NewFile(uintptr(fd), "captureICMP")
 if f == nil {
 fmt.Println("Error in os.NewFile:", err)
 return
 }

The syscall.AF_INET parameter tells syscall.Socket() that you want to work with
IPv4. The syscall.SOCK_RAW parameter is what makes the generated socket a raw socket.
The last parameter, which is syscall.IPPROTO_ICMP, tells syscall.Socket() that you
are interested in ICMP traffic only.

The third part of syscallNet.go is as follows:

 err = syscall.SetsockoptInt(fd, syscall.SOL_SOCKET, syscall.SO_RCVBUF,
256)
 if err != nil {
 fmt.Println("Error in syscall.Socket:", err)
 return
 }

The call to syscall.SetsockoptInt() sets the size of the receive buffer of the socket to
256. The syscall.SOL_SOCKET parameter is for stating that you want to work on the
socket layer level.

Network Programming – Building Your Own Servers and Clients Chapter 13

[709]

The remaining Go code of syscallNet.go is as follows:

 for {
 buf := make([]byte, 1024)
 numRead, err := f.Read(buf)
 if err != nil {
 fmt.Println(err)
 }
 fmt.Printf("% X\n", buf[:numRead])
 }
}

Due to the for loop, syscallNet.go will keep capturing ICMP network packets until you
terminate it manually.

Executing syscallNet.go on a macOS High Sierra machine will produce the following
type of output:

$ sudo go run syscallNet.go
45 00 40 00 BC B6 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 3F 36 71
45 00 00 5A CB 6A 90 00 0B 9F 1A 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 62 FB 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 31 EF 71
45 00 01 5A CB 6A 91 00 0B AC 5F 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 9A 5F 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 1D D6 71
45 00 02 5A CB 6A 92 00 0B C0 76 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 6E 0D 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 09 CF 71
45 00 03 5A CB 6A 93 00 0B D4 7B 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 3A 07 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 FE 9C 71
45 00 04 5A CB 6A 94 00 0B DF AB 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 24 00 45 55 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 03 03 AB 12 00
00 00 00 45 00 34 00 C5 73 00 00 01 11 00 00 7F 00 00 01 7F 00 00 01 C5 72
82 9B 00 20 00 00
45 00 24 00 E8 1E 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 03 03 AB 10 00
00 00 00 45 00 34 00 C5 74 00 00 01 11 00 00 7F 00 00 01 7F 00 00 01 C5 72
82 9C 00 20 00 00
45 00 24 00 2A 4B 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 03 03 AB 0E 00
00 00 00 45 00 34 00 C5 75 00 00 01 11 00 00 7F 00 00 01 7F 00 00 01 C5 72
82 9D 00 20 00 00

Network Programming – Building Your Own Servers and Clients Chapter 13

[710]

Running syscallNet.go on a Debian Linux machine will generate the following type of
output:

go run syscallNet.go
45 00 00 54 7F E9 40 00 40 01 BC BD 7F 00 00 01 7F 00 00 01 08 00 6F 07 53
E3 00 01 FA 6A CB 5A 00 00 00 00 AA 7B 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 7F EA 00 00 40 01 FC BC 7F 00 00 01 7F 00 00 01 00 00 77 07 53
E3 00 01 FA 6A CB 5A 00 00 00 00 AA 7B 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 C0 00 44 68 54 00 00 34 01 8B 8E 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 40 4F 40 00 34 06 74 6A 6D 4A C1 FD 86 77 DC 57 B0 B8
DD 96 00 00 00 00 52 F1 AB DA 50 14 00 00 90 9E 00 00
45 00 00 54 80 4E 40 00 40 01 BC 58 7F 00 00 01 7F 00 00 01 08 00 7E 01 53
E3 00 02 FB 6A CB 5A 00 00 00 00 9A 80 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 4F 00 00 40 01 FC 57 7F 00 00 01 7F 00 00 01 00 00 86 01 53
E3 00 02 FB 6A CB 5A 00 00 00 00 9A 80 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 9B 40 00 40 01 BC 0B 7F 00 00 01 7F 00 00 01 08 00 93 EC 53
E3 00 03 FC 6A CB 5A 00 00 00 00 83 94 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 9C 00 00 40 01 FC 0A 7F 00 00 01 7F 00 00 01 00 00 9B EC 53
E3 00 03 FC 6A CB 5A 00 00 00 00 83 94 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 C0 00 44 68 55 00 00 34 01 8B 8D 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 40 D1 40 00 34 06 73 E8 6D 4A C1 FD 86 77 DC 57 8E 8E
DD 96 00 00 00 00 6C 6E D3 36 50 14 00 00 71 EF 00 00
45 00 00 54 80 F8 40 00 40 01 BB AE 7F 00 00 01 7F 00 00 01 08 00 F2 E7 53
E3 00 04 FD 6A CB 5A 00 00 00 00 23 98 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 F9 00 00 40 01 FB AD 7F 00 00 01 7F 00 00 01 00 00 FA E7 53
E3 00 04 FD 6A CB 5A 00 00 00 00 23 98 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 82 0D 40 00 40 01 BA 99 7F 00 00 01 7F 00 00 01 08 00 4A 82 53
E3 00 05 FE 6A CB 5A 00 00 00 00 CA FC 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 82 0E 00 00 40 01 FA 98 7F 00 00 01 7F 00 00 01 00 00 52 82 53
E3 00 05 FE 6A CB 5A 00 00 00 00 CA FC 06 00 00 00 00 00 10 11 12 13 14 15

Network Programming – Building Your Own Servers and Clients Chapter 13

[711]

16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 C0 00 44 68 56 00 00 34 01 8B 8C 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 41 74 40 00 34 06 73 45 6D 4A C1 FD 86 77 DC 57 2E 9B
DD 96 00 00 00 00 C3 D6 44 57 50 14 00 00 09 5A 00 00
45 C0 00 44 68 57 00 00 34 01 8B 8B 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 44 27 40 00 33 06 71 92 6D 4A C1 FD 86 77 DC 57 C5 C2
DD 96 00 00 00 00 CF DD DB BE 50 14 00 00 CE C3 00 00
45 C0 00 58 94 B4 00 00 40 01 E7 2E 7F 00 00 01 7F 00 00 01 03 03 F1 DA 00
00 00 00 45 00 00 3C 85 E1 00 00 01 11 35 CE 7F 00 00 01 7F 00 00 01 95 1E
82 9A 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B5 00 00 40 01 E7 2D 7F 00 00 01 7F 00 00 01 03 03 F9 EA 00
00 00 00 45 00 00 3C 85 E2 00 00 01 11 35 CD 7F 00 00 01 7F 00 00 01 8D 0D
82 9B 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B6 00 00 40 01 E7 2C 7F 00 00 01 7F 00 00 01 03 03 D2 EB 00
00 00 00 45 00 00 3C 85 E3 00 00 01 11 35 CC 7F 00 00 01 7F 00 00 01 B4 0B
82 9C 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B7 00 00 40 01 E7 2B 7F 00 00 01 7F 00 00 01 03 03 D6 AC 00
00 00 00 45 00 00 3C 85 E4 00 00 02 11 34 CB 7F 00 00 01 7F 00 00 01 B0 49
82 9D 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B8 00 00 40 01 E7 2A 7F 00 00 01 7F 00 00 01 03 03 F1 B4 00
00 00 00 45 00 00 3C 85 E5 00 00 02 11 34 CA 7F 00 00 01 7F 00 00 01 95 40
82 9E 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B9 00 00 40 01 E7 29 7F 00 00 01 7F 00 00 01 03 03 CD 43 00
00 00 00 45 00 00 3C 85 E6 00 00 02 11 34 C9 7F 00 00 01 7F 00 00 01 B9 B0
82 9F 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BA 00 00 40 01 E7 28 7F 00 00 01 7F 00 00 01 03 03 9D 8F 00
00 00 00 45 00 00 3C 85 E7 00 00 03 11 33 C8 7F 00 00 01 7F 00 00 01 E9 63
82 A0 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BB 00 00 40 01 E7 27 7F 00 00 01 7F 00 00 01 03 03 A3 13 00
00 00 00 45 00 00 3C 85 E8 00 00 03 11 33 C7 7F 00 00 01 7F 00 00 01 E3 DE
82 A1 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BC 00 00 40 01 E7 26 7F 00 00 01 7F 00 00 01 03 03 D4 66 00
00 00 00 45 00 00 3C 85 E9 00 00 03 11 33 C6 7F 00 00 01 7F 00 00 01 B2 8A
82 A2 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BD 00 00 40 01 E7 25 7F 00 00 01 7F 00 00 01 03 03 A6 8D 00
00 00 00 45 00 00 3C 85 EA 00 00 04 11 32 C5 7F 00 00 01 7F 00 00 01 E0 62
82 A3 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Network Programming – Building Your Own Servers and Clients Chapter 13

[712]

45 C0 00 58 94 BE 00 00 40 01 E7 24 7F 00 00 01 7F 00 00 01 03 03 F1 C6 00
00 00 00 45 00 00 3C 85 EB 00 00 04 11 32 C4 7F 00 00 01 7F 00 00 01 95 28
82 A4 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BF 00 00 40 01 E7 23 7F 00 00 01 7F 00 00 01 03 03 A3 FE 00
00 00 00 45 00 00 3C 85 EC 00 00 04 11 32 C3 7F 00 00 01 7F 00 00 01 E2 EF
82 A5 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C0 00 00 40 01 E7 22 7F 00 00 01 7F 00 00 01 03 03 B9 AA 00
00 00 00 45 00 00 3C 85 ED 00 00 05 11 31 C2 7F 00 00 01 7F 00 00 01 CD 42
82 A6 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C1 00 00 40 01 E7 21 7F 00 00 01 7F 00 00 01 03 03 B3 B7 00
00 00 00 45 00 00 3C 85 EE 00 00 05 11 31 C1 7F 00 00 01 7F 00 00 01 D3 34
82 A7 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C2 00 00 40 01 E7 20 7F 00 00 01 7F 00 00 01 03 03 F2 62 00
00 00 00 45 00 00 3C 85 EF 00 00 05 11 31 C0 7F 00 00 01 7F 00 00 01 94 88
82 A8 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C3 00 00 40 01 E7 1F 7F 00 00 01 7F 00 00 01 03 03 DD BE 00
00 00 00 45 00 00 3C 85 F0 00 00 06 11 30 BF 7F 00 00 01 7F 00 00 01 A9 2B
82 A9 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Additional resources
Take a look at the following resources:

Visit the documentation of the net standard Go package, which can be found at
https://golang.org/pkg/net/. This is one of the biggest documentation pages
found in the Go documentation.
You can learn more about the crypto/tls package of the standard Go library at
https://golang.org/pkg/crypto/tls/.
Visit https://golang.org/pkg/crypto/x509/ to learn more about the
crypto/x509 package.
The ICMP protocol for IPv4 is defined in RFC 792. It can be found in many
places, including https://tools.ietf.org/html/rfc792.
WebSocket is a protocol for two-way communication between a client and a
remote host. There is a WebSocket implementation for Go at
https://github.com/gorilla/websocket. You can learn more about WebSocket
at http://www.rfc-editor.org/rfc/rfc6455.txt.

https://golang.org/pkg/net/
https://golang.org/pkg/crypto/tls/
https://golang.org/pkg/crypto/x509/
https://tools.ietf.org/html/rfc792
https://github.com/gorilla/websocket
http://www.rfc-editor.org/rfc/rfc6455.txt

Network Programming – Building Your Own Servers and Clients Chapter 13

[713]

If you are really into network programming and you want to be able to work
with raw TCP packets, you mind find interesting and helpful information and
tools in the gopacket library, which can be found at
https://github.com/google/gopacket.
The raw package, which is located at https://github.com/mdlayher/raw, allows
you to read and write data at the device driver level for a network device.

Exercises
Develop a File Transfer Protocol (FTP) client in Go.
Next, try to develop an FTP server in Go. Is it more difficult to implement the
FTP client or the FTP server? Why?
Try to implement a Go version of the nc(1) utility. The secret when
programming such fairly complex utilities is to start with a version that
implements the basic functionality of the desired utility, before trying to support
every possible option.
Modify TCPserver.go so that it returns the date in one network packet and the
time in another.
Modify TCPserver.go so that it can serve multiple clients in a sequential way.
Notice that this is not the same as being able to serve multiple requests
concurrently. Put simply, use a for loop so that the Accept() call can be
executed multiple times.
TCP servers, such as fiboTCP.go, tend to terminate when they receive a given
signal, so add signal handling code to fiboTCP.go, as you learned in Chapter 8,
Telling a UNIX System What to Do.
Modify kvTCP.go so that the save() function is protected using a sync.Mutex.
Is this required?
Try to connect to https.go and TLSserver.go using your favorite web
browser.
Try to put https.go into a Docker image and use it from there.
Develop your own small web server in Go using a plain TCP implementation
instead of using the http.ListenAndServe() function.

https://github.com/google/gopacket
https://github.com/mdlayher/raw

Network Programming – Building Your Own Servers and Clients Chapter 13

[714]

Summary
This chapter talked about many interesting things including developing UDP and TCP
clients and servers, which are applications that work over TCP/IP computer networks.

The next chapter, which will be the last, will talk about machine learning and Go. It will
include topics such as regression, classification, anomaly detection, and neural networks.

14
Machine Learning in Go

The previous two chapters discussed topics related to network programming, TCP/IP,
HTTPS, RPC, and the net package. This chapter will talk about machine learning in Go,
including many interesting topics such as calculating statistical properties, classification,
regression, clustering, anomaly detection, neural networks, outlier analysis, and working
with Apache Kafka. However, as all these are huge topics that deserve a book on their own,
this chapter will only scratch the surface and give you a quick introduction to them, as well
as introduce you to some handy Go packages that can help you to do the job.

Notice that each machine learning technique has some theory behind it – knowing the
theory, the parameters, and the limitations of the techniques you are trying to use is
essential for the success of your work. Additionally, visualizing your data can be helpful
from time to time, as it allows you to get a good sense of your data quickly.

If you are really into machine learning with Go, then I suggest that you
begin by getting Machine Learning with Go by Daniel Whitenack (Packt
Publishing, 2017). If you want to learn about the theory behind machine
learning, then you can begin by reading An Introduction to Statistical
Learning, by Gareth James, Daniela Witten, Trevor Hastie, and Robert
Tibshirani (Springer, 2013), and The Elements of Statistical Learning, 2nd
Edition, by Trevor Hastie, Robert Tibshirani, and Jerome Friedman
(Springer, 2009).

Therefore, in this chapter, you will learn about the following:

Calculating simple statistical properties
Regression
Classification
Anomaly detection
Clustering
Neural networks
Working with TensorFlow

Machine Learning in Go Chapter 14

[716]

Outlier analysis
Working with Apache Kafka

Calculating simple statistical properties
Statistics is an area of mathematics that deals with the collection, analysis, interpretation,
organization, and presentation of data. The field of statistics is divided into two main areas:
the area of descriptive statistics, which tries to describe an already existing group of values,
and the area of inferential statistics, which tries to predict upcoming values based on the
information found in the current set of values.

Statistical learning is a branch of applied statistics that is related to machine learning.
Machine learning, which is closely related to computational statistics, is an area of
computer science that tries to learn from data and make predictions about it without being
specifically programmed to do so.

Statistical models try to interpret data as accurately as possible. However,
the accuracy of a model might depend on external factors that might affect
the data. So, you might have a weather forecasting model that could
become totally inaccurate when there is a hurricane nearby.

In this section, you are going to learn how to calculate basic statistical properties such as the
mean value, the minimum and the maximum values of your sample, the median value, and
the variance of the sample. These values give you a good overview of your sample without
going into too much detail. However, generic values that try to describe your sample can
easily trick you by making you believe that you know your sample well without this being
true.

All these statistical properties will be computed in stats.go, which will be presented in
five parts. Each line of the input file contains a single number, which means that the input
file is read line by line. Invalid input will be ignored without any warning messages.

Notice that input will be stored in a slice in order to use a separate function for calculating
each property. Also, as you will see shortly, the values of the slice will be sorted before
processing them.

The first part of stats.go is as follows:

package main

import (
 "bufio"

Machine Learning in Go Chapter 14

[717]

 "flag"
 "fmt"
 "io"
 "math"
 "os"
 "sort"
 "strconv"
 "strings"
)

func min(x []float64) float64 {
 return x[0]
}

func max(x []float64) float64 {
 return x[len(x)-1]
}

As the slice is sorted, it is easy to find the minimum and the maximum values in it.
However, if the elements of the slice are not numeric, you might need to calculate the
minimum and the maximum values in a different way that is related to your data.

The second part of stats.go contains the following Go code:

func meanValue(x []float64) float64 {
 sum := float64(0)
 for _, v := range x {
 sum = sum + v
 }
 return sum / float64(len(x))
}

This function calculates the mean value of your numeric data.

The third part of stats.go is as follows:

func medianValue(x []float64) float64 {
 length := len(x)
 if length%2 == 1 {
 // Odd
 return x[(length-1)/2]
 } else {
 // Even
 return (x[length/2] + x[(length/2)-1]) / 2
 }
 return 0
}

Machine Learning in Go Chapter 14

[718]

func variance(x []float64) float64 {
 mean := meanValue(x)
 sum := float64(0)
 for _, v := range x {
 sum = sum + (v-mean)*(v-mean)
 }
 return sum / float64(len(x))
}

In order to be able to calculate the median value of a set, the set needs to be sorted.

The fourth part of stats.go contains the following code:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: stats filename\n")
 return
 }

 data := make([]float64, 0)

 file := flag.Args()[0]
 f, err := os.Open(file)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

The final part of stats.go is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }
 line = strings.TrimRight(line, "\r\n")
 value, err := strconv.ParseFloat(line, 64)
 if err == nil {
 data = append(data, value)
 }
 }

Machine Learning in Go Chapter 14

[719]

 sort.Float64s(data)

 fmt.Println("Min:", min(data))
 fmt.Println("Max:", max(data))
 fmt.Println("Mean:", meanValue(data))
 fmt.Println("Median:", medianValue(data))
 fmt.Println("Variance:", variance(data))
 fmt.Println("Standard Deviation:", math.Sqrt(variance(data)))
}

In this part, you will start reading the input file. There are many ways to get your input –
feel free to refer to Chapter 8, Telling a UNIX System What to Do, in order to learn more
about working with files in Go.

Notice that although it is not obligatory to sort the slice with the data before processing it, it
saves you time in some calculations, so it is performed inside main().

The last block of fmt.Println() statements prints the calculated statistical properties.

Executing stats.go will generate the following kind of output:

$ go run stats.go data.txt
Min: -2
Max: 3
Mean: 1.04
Median: 1.2
Variance: 2.8064
Standard Deviation: 1.6752313273097539

Notice that the contents of data.txt are as follows:

$ cat data.txt
1.2
-2
1
2.0
not valid
3

As you can see, each line contains a single value, which means that we are working with
the simplest form of data. Although the manipulation of more complex data might be
slightly different, the general idea remains the same.

The program of this section calculated every statistical property without using any external
Go packages related to statistics. Most of the Go code that follows will use existing Go
packages and will not implement everything from scratch.

Machine Learning in Go Chapter 14

[720]

Regression
Regression is a statistical method for calculating relationships among variables. This section
will implement linear regression, which is the most popular and simplest regression
technique and a very good way to understand your data. Note that regression techniques
are not 100% accurate, even if you use higher-order (nonlinear) polynomials. The key with
regression, as with most machine learning techniques, is to find a good enough technique
and not the perfect technique and model.

Linear regression
The idea behind linear regression is simple: you are trying to model your data using a first-
degree equation. A first-degree equation can be represented as y = a x + b.

There are many methods that allow you to find out that first-degree equation that will
model your data – all techniques calculate a and b.

Implementing linear regression
The Go code of this section will be saved in regression.go, which is going to be
presented in three parts. The output of the program will be two floating-point numbers that
define a and b in the first-degree equation.

The first part of regression.go contains the following code:

package main

import (
 "encoding/csv"
 "flag"
 "fmt"
 "gonum.org/v1/gonum/stat"
 "os"
 "strconv"
)

type xy struct {
 x []float64
 y []float64
}

Machine Learning in Go Chapter 14

[721]

The xy structure is used to hold the data and should change according to your data format
and values.

The second part of regression.go is as follows:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: regression filename\n")
 return
 }

 filename := flag.Args()[0]
 file, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer file.Close()

 r := csv.NewReader(file)

 records, err := r.ReadAll()
 if err != nil {
 fmt.Println(err)
 return
 }
 size := len(records)

 data := xy{
 x: make([]float64, size),
 y: make([]float64, size),
 }

The final part of regression.go is as follows:

 for i, v := range records {
 if len(v) != 2 {
 fmt.Println("Expected two elements")
 continue
 }

 if s, err := strconv.ParseFloat(v[0], 64); err == nil {
 data.y[i] = s
 }

 if s, err := strconv.ParseFloat(v[1], 64); err == nil {
 data.x[i] = s

Machine Learning in Go Chapter 14

[722]

 }
 }

 b, a := stat.LinearRegression(data.x, data.y, nil, false)
 fmt.Printf("%.4v x + %.4v\n", a, b)
 fmt.Printf("a = %.4v b = %.4v\n", a, b)
}

The data from the data file is read into the data variable. The function that implements the
linear regression is stat.LinearRegression() and it returns two numbers, which are b
and a, in that particular order.

At this point, it would be a good time to download the gonum package:

$ go get -u gonum.org/v1/gonum/stat

Executing regression.go with the input data stored in reg_data.txt will generate the
following output:

$ go run regression.go reg_data.txt
0.9463 x + -0.3985
a = 0.9463 b = -0.3985

The two numbers returned are a and b from the y = a x + b formula.

The contents of reg_data.txt are as follows:

$ cat reg_data.txt
1,2
3,4.0
2.1,3
4,4.2
5,5.1
-5,-5.1

Plotting data
It is now time to plot the results and the dataset in order to test how accurate the results
from the linear regression technique are. For that purpose, we are going to use the Go code
of plotLR.go, which will be presented in four parts. plotLR.go requires three command-
line arguments, which are a and b from the y = a x + b formula, and the file that
contains the data points. The fact that plotLR.go does not calculate a and b on its own
gives you the opportunity to experiment with a and b using your own values or values that
were calculated by another utility.

Machine Learning in Go Chapter 14

[723]

The first part of plotLR.go is as follows:

package main

import (
 "encoding/csv"
 "flag"
 "fmt"
 "gonum.org/v1/plot"
 "gonum.org/v1/plot/plotter"
 "gonum.org/v1/plot/vg"
 "image/color"
 "os"
 "strconv"
)

type xy struct {
 x []float64
 y []float64
}

func (d xy) Len() int {
 return len(d.x)
}

func (d xy) XY(i int) (x, y float64) {
 x = d.x[i]
 y = d.y[i]
 return
}

The Len() and XY() methods are needed for the plotting part, whereas the image/color
package is needed to change the colors in the output.

The second part of plotLR.go contains the following code:

func main() {
 flag.Parse()
 if len(flag.Args()) < 3 {
 fmt.Printf("usage: plotLR filename a b\n")
 return
 }

 filename := flag.Args()[0]
 file, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 return

Machine Learning in Go Chapter 14

[724]

 }
 defer file.Close()

 r := csv.NewReader(file)

 a, err := strconv.ParseFloat(flag.Args()[1], 64)
 if err != nil {
 fmt.Println(a, "not a valid float!")
 return
 }

 b, err := strconv.ParseFloat(flag.Args()[2], 64)
 if err != nil {
 fmt.Println(b, "not a valid float!")
 return
 }

 records, err := r.ReadAll()
 if err != nil {
 fmt.Println(err)
 return
 }

This part of the program works with the command-line arguments and the reading of the
data.

The third part of plotLR.go is as follows:

 size := len(records)

 data := xy{
 x: make([]float64, size),
 y: make([]float64, size),
 }

 for i, v := range records {
 if len(v) != 2 {
 fmt.Println("Expected two elements per line!")
 return
 }

 s, err := strconv.ParseFloat(v[0], 64)
 if err == nil {
 data.y[i] = s
 }

 s, err = strconv.ParseFloat(v[1], 64)

Machine Learning in Go Chapter 14

[725]

 if err == nil {
 data.x[i] = s
 }
 }

The final part of plotLR.go is as follows:

 line := plotter.NewFunction(func(x float64) float64 { return a*x + b })
 line.Color = color.RGBA{B: 255, A: 255}

 p, err := plot.New()
 if err != nil {
 fmt.Println(err)
 return
 }

 plotter.DefaultLineStyle.Width = vg.Points(1)
 plotter.DefaultGlyphStyle.Radius = vg.Points(2)

 scatter, err := plotter.NewScatter(data)
 if err != nil {
 fmt.Println(err)
 return
 }
 scatter.GlyphStyle.Color = color.RGBA{R: 255, B: 128, A: 255}

 p.Add(scatter, line)

 w, err := p.WriterTo(300, 300, "svg")
 if err != nil {
 fmt.Println(err)
 return
 }

 _, err = w.WriteTo(os.Stdout)
 if err != nil {
 fmt.Println(err)
 return
 }
}

The function that is going to be plotted is defined using the plotter.NewFunction()
method.

At this point, you should download some external packages by executing the following
commands:

$ go get -u gonum.org/v1/plot

Machine Learning in Go Chapter 14

[726]

$ go get -u gonum.org/v1/plot/plotter
$ go get -u gonum.org/v1/plot/vg

Executing plotLR.go will generate the following kind of output:

$ go run plotLR.go reg_data.txt
usage: plotLR filename a b
$ go run plotLR.go reg_data.txt 0.9463 -0.3985
<?xml version="1.0"?>
<!-- Generated by SVGo and Plotinum VG -->
<svg width="300pt" height="300pt" viewBox="0 0 300 300"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
<g transform="scale(1, -1) translate(0, -300)">
.
.
.

Therefore, you should save the generated output in a file before using it:

$ go run plotLR.go reg_data.txt 0.9463 -0.3985 > output.svg

As the output is in the Scalable Vector Graphics (SVG) format, you should load it into a
web browser in order to see the results. The results from our data can be seen in the
following figure.

Figure 14.1: The output of the plotLR.go program

Machine Learning in Go Chapter 14

[727]

The output of the image will also show how accurately the data can be modeled using a
linear equation.

Classification
In statistics and machine learning, classification is the process of putting elements into
existing sets that are called categories. In machine learning, classification is considered a
supervised learning technique, which is where a set that is considered to contain correctly
identified observations is used for training before working with the actual data.

A very popular and easy-to-implement classification method is called k-nearest neighbors
(k-NN). The idea behind k-NN is that we can classify data items based on their similarity
with other items. The k in k-NN denotes the number of neighbors that are going to be
included in the decision, which means that k is a positive integer that is usually pretty
small.

The input of the algorithm consists of the k-closest training examples in the feature space.
An object is classified by a plurality vote of its neighbors, with the object being assigned to
the class that is the most common among its k-NN. If the value of k is 1, then the element is
simply assigned to the class that is the nearest neighbor according to the distance metric
used. The distance metric depends on the data you are dealing with. As an example, you
will need a different distance metric when working with complex numbers and another
when working with points in three-dimensional space.

The Go code that will illustrate classification in Go can be found in classify.go. The file
is going to be presented in three parts.

The first part of classify.go is as follows:

package main

import (
 "flag"
 "fmt"
 "strconv"

 "github.com/sjwhitworth/golearn/base"
 "github.com/sjwhitworth/golearn/evaluation"
 "github.com/sjwhitworth/golearn/knn"
)

Machine Learning in Go Chapter 14

[728]

The second part of classify.go contains the following Go code:

func main() {
 flag.Parse()
 if len(flag.Args()) < 2 {
 fmt.Printf("usage: classify filename k\n")
 return
 }

 dataset := flag.Args()[0]
 rawData, err := base.ParseCSVToInstances(dataset, false)
 if err != nil {
 fmt.Println(err)
 return
 }

 k, err := strconv.Atoi(flag.Args()[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 cls := knn.NewKnnClassifier("euclidean", "linear", k)

The knn.NewKnnClassifier() method returns a new classifier. The last parameter of the
function is the number of neighbors that the classifier will have.

The final part of classify.go is as follows:

 train, test := base.InstancesTrainTestSplit(rawData, 0.50)
 cls.Fit(train)

 p, err := cls.Predict(test)
 if err != nil {
 fmt.Println(err)
 return
 }

 confusionMat, err := evaluation.GetConfusionMatrix(test, p)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Println(evaluation.GetSummary(confusionMat))
}

Machine Learning in Go Chapter 14

[729]

The Fit() method stores the training data in case you want to use it later on, whereas the
Predict() method returns a classification for the input based on the training data using
the k-NN algorithm. Finally, the evaluation.GetSummary() method returns a table of
precision, recall, true positive, false positive, and true negative values for each class for the
given ConfusionMatrix, which was calculated using the call to
evaluation.GetConfusionMatrix().

As base.InstancesTrainTestSplit() will not return the same values
all the time, the training and test data will be different each time you
execute classify.go, which means that you will get different results.

At this point, you should install the github.com/sjwhitworth/golearn package as follows:

 $ go get -t -u -v github.com/sjwhitworth/golearn
 github.com/sjwhitworth/golearn (download)
 github.com/sjwhitworth/golearn
 $ cd ~/go/src/github.com/sjwhitworth/golearn
 $ go get -t -u -v ./...

Now, you should return back to your previous directory in order to execute classify.go
from there. Executing classify.go will create the following kind of output:

$ go run classify.go class_data.txt 2
Reference ClassnTrue Positives False Positives True Negatives Precision
Recall F1 Score
--------------- -------------- --------------- -------------- -
-------- ------ --------
Iris-versicolor 25 0 41 1.0000 0.9259
0.9615
Iris-virginica 5 2 61 0.7143 1.0000
0.8333
Iris-setosa 36 0 32 1.0000 1.0000
1.0000
Overall accuracy: 0.9706
$ go run classify.go class_data.txt 30
Reference ClassnTrue Positives False Positives True Negatives Precision
Recall F1 Score
--------------- -------------- --------------- -------------- -
-------- ------ --------
Iris-versicolor 27 5 36 0.8438 1.0000
0.9153
Iris-virginica 0 0 63 NaN 0.0000 NaN
Iris-setosa 36 0 32 1.0000 1.0000
1.0000
Overall accuracy: 0.9265

https://github.com/sjwhitworth/golearn

Machine Learning in Go Chapter 14

[730]

The contents of class_data.txt, which are pretty simple, have the following format:

$ head -4 class_data.txt
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica

The data is taken from the Iris dataset.

The precision of the algorithm is high because the number of elements in class_data.txt
is pretty small. As golearn includes some sample data, I can try using the entire Iris
dataset on my personal macOS Mojave machine as follows:

$ go run classify.go
~/go/src/github.com/sjwhitworth/golearn/examples/datasets/iris.csv 2
Reference ClassnTrue Positives False Positives True Negatives Precision
Recall F1 Score
--------------- -------------- --------------- -------------- -
-------- ------ --------
Iris-setosa 30 0 58 1.0000 1.0000
1.0000
Iris-virginica 28 3 56 0.9032 0.9655
0.9333
Iris-versicolor 26 1 58 0.9630 0.8966
0.9286
Overall accuracy: 0.9545
$ go run classify.go
~/go/src/github.com/sjwhitworth/golearn/examples/datasets/iris.csv 50
Reference ClassnTrue Positives False Positives True Negatives Precision
Recall F1 Score
--------------- -------------- --------------- -------------- -
-------- ------ --------
Iris-setosa 0 0 58 NaN 0.0000 NaN
Iris-virginica 4 5 54 0.4444 0.1379
0.2105
Iris-versicolor 24 55 4 0.3038 0.8276
0.4444
Overall accuracy: 0.3182

If you work with the Iris dataset and try different values for the number of neighbors, you
will find out that the larger the number of neighbors you want to use, the smaller the
accuracy of the results. Unfortunately, further discussion of the k-NN algorithm is beyond
the scope of this book.

Machine Learning in Go Chapter 14

[731]

Clustering
Clustering is the unsupervised version of classification where the grouping of data into
categories is based on some metric of similarity or distance. This section will use k-means
clustering, which is the most famous clustering technique and one that is also easy to
implement. Once again, we are going to use an external library that can be found at
https://github.com/mash/gokmeans.

The utility that showcases clustering in Go is called cluster.go, and it is going to be
presented in three parts. The utility requires one command-line argument, which is the
number of clusters that are going to be created.

The first part of cluster.go is as follows:

package main

import (
 "flag"
 "fmt"
 "github.com/mash/gokmeans"
 "strconv"
)

var observations []gokmeans.Node = []gokmeans.Node{
 gokmeans.Node{4},
 gokmeans.Node{5},
 gokmeans.Node{6},
 gokmeans.Node{8},
 gokmeans.Node{10},
 gokmeans.Node{12},
 gokmeans.Node{15},
 gokmeans.Node{0},
 gokmeans.Node{-1},
}

This time, the data is included in the program for reasons of simplicity. However, nothing
prohibits you from reading it from one or more external files.

The second part of cluster.go contains the following Go code:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: cluster k\n")
 return
 }

https://github.com/mash/gokmeans

Machine Learning in Go Chapter 14

[732]

 k, err := strconv.Atoi(flag.Args()[0])
 if err != nil {
 fmt.Println(err)
 return
 }

The final part of cluster.go is as follows:

 if success, centroids := gokmeans.Train(observations, k, 50); success {
 fmt.Println("The centroids are the following:")
 for _, centroid := range centroids {
 fmt.Println(centroid)
 }

 fmt.Println("The clusters are the following:")
 for _, observation := range observations {
 index := gokmeans.Nearest(observation, centroids)
 fmt.Println(observation, "belongs in cluster", index+1, ".")
 }
 }
}

At this point, you will need to get the external Go library by executing the following
command:

$ go get -v -u github.com/mash/gokmeans
github.com/mash/gokmeans (download)
github.com/mash/gokmeans

Executing cluster.go when you want to have a single cluster will produce the following
kind of output:

$ go run cluster.go 1
The centroids are the following:
[6.555555555555555]
The clusters are the following:
[4] belongs in cluster 1 .
[5] belongs in cluster 1 .
[6] belongs in cluster 1 .
[8] belongs in cluster 1 .
[10] belongs in cluster 1 .
[12] belongs in cluster 1 .
[15] belongs in cluster 1 .
[0] belongs in cluster 1 .
[-1] belongs in cluster 1 .

As you have a single cluster, each item will belong to that cluster, hence the output
returned by cluster.go.

Machine Learning in Go Chapter 14

[733]

If you change the value of k, you will get the following output:

$ go run cluster.go 5
The centroids are the following:
[5]
[-0.5]
[13.5]
[10]
[8]
The clusters are the following:
[4] belongs in cluster 1 .
[5] belongs in cluster 1 .
[6] belongs in cluster 1 .
[8] belongs in cluster 5 .
[10] belongs in cluster 4 .
[12] belongs in cluster 3 .
[15] belongs in cluster 3 .
[0] belongs in cluster 2 .
[-1] belongs in cluster 2 .
$ go run cluster.go 8
The centroids are the following:
[0]
[4.5]
[-1]
[9]
[-1]
[6]
[12]
[15]
The clusters are the following:
[4] belongs in cluster 2 .
[5] belongs in cluster 2 .
[6] belongs in cluster 6 .
[8] belongs in cluster 4 .
[10] belongs in cluster 4 .
[12] belongs in cluster 7 .
[15] belongs in cluster 8 .
[0] belongs in cluster 1 .
[-1] belongs in cluster 3 .

Anomaly detection
Anomaly detection techniques try to find the probability that a given set contains
anomalous behavior, which can be unusual values or patterns.

Machine Learning in Go Chapter 14

[734]

The utility that is going to be developed in this section is called anomaly.go, and it is going
to be presented in three parts. The utility uses probabilistic anomaly detection with the help
of the Anomalyzer package and calculates the probability that the given set of numeric
values contains anomalous behavior.

The first part of anomaly.go is as follows:

package main

import (
 "flag"
 "fmt"
 "math/rand"
 "strconv"
 "time"

 "github.com/lytics/anomalyzer"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second part of anomaly.go is as follows:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: anomaly MAX\n")
 return
 }

 MAX, err := strconv.Atoi(flag.Args()[0])
 if err != nil {
 fmt.Println(err)
 return
 }

 conf := &anomalyzer.AnomalyzerConf{
 Sensitivity: 0.1,
 UpperBound: 5,
 LowerBound: anomalyzer.NA,
 ActiveSize: 1,
 NSeasons: 4,
 Methods: []string{"diff", "fence", "magnitude", "ks"},
 }

Machine Learning in Go Chapter 14

[735]

The anomalyzer package supports the cdf, diff, high rank, low rank, magnitude, fence, and
bootstrap ks algorithmic tests. If you decide to use some or all of them as the value of
Methods, then anomalyzer will execute all of them. As each one of them returns a
probability of anomalous behavior, the anomalyzer package will compute a weighted
mean in order to establish whether the current dataset has anomalous behavior.

The Sensitivity field is for the magnitude test – its default value is 0.1. The
UpperBound and LowerBound fields are used by the fence test. On the other hand, the
presence of the ActiveSize field is compulsory – its value should be at least 1. Lastly, the
NSeasons field has a default value of 4 if it is not defined.

The third part of anomaly.go contains the following Go code:

 data := []float64{}
 SEED := time.Now().Unix()
 rand.Seed(SEED)

 for i := 0; i < MAX; i++ {
 data = append(data, float64(random(0, MAX)))
 }
 fmt.Println("data:", data)

The anomaly.go code generates random data on its own. The number of elements is
defined as a command-line argument to the program.

The final part of anomaly.go is as follows:

 anom, _ := anomalyzer.NewAnomalyzer(conf, data)
 prob := anom.Push(8.0)
 fmt.Println("Anomalous Probability:", prob)
}

At this point, you should download the external Go package as follows:

$ go get -v -u github.com/lytics/anomalyzer
github.com/lytics/anomalyzer (download)
github.com/drewlanenga/govector (download)
github.com/drewlanenga/govector
github.com/lytics/anomalyzer

Executing anomaly.go will generate the following kind of output:

$ go run anomaly.go 20
data: [18 3 2 19 2 16 5 15 3 14 2 9 11 10 2 17 17 14 19 1]
Anomalous Probability: 0.8612730015082957
$ go run anomaly.go 20

Machine Learning in Go Chapter 14

[736]

data: [17 8 19 10 0 14 12 7 7 13 2 5 18 1 15 4 0 14 13 9]
Anomalous Probability: 0.7885470085470085
$ go run anomaly.go 100
data: [85 5 64 32 69 55 0 67 11 96 75 92 25 54 2 49 58 6 16 38 55 11 93 90
90 47 66 97 37 61 85 92 15 45 33 43 61 44 73 18 10 86 17 15 67 28 26 7 25
76 79 51 9 32 70 99 9 39 6 25 10 57 50 84 20 67 42 89 0 1 8 96 49 6 20 33
57 18 48 84 53 98 51 84 41 97 69 62 11 44 21 13 90 25 52 85 48 27 90 20]
Anomalous Probability: 0.8977395577395577

Neural networks
Neural networks, which try to work like the human brain, learn to perform tasks based on
given examples. Neural network have layers, and the smallest neural network must have at
least two layers: input and output. During the training phase, data flows through the layers
of the neural network. The actual output values of the training data are used to correct the
calculated output values of the training data so that the next iteration will be more precise.

The utility that will be developed in this section is named neural.go, and it will
implement a really simple neural network. This is going to be presented in four parts.

The first part of neural.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "time"

 "github.com/goml/gobrain"
)

The new line in the import list tells the gofmt tool to sort the package names in blocks that
are separated by new lines. The second part of neural.go contains the following Go code:

func main() {
 seed := time.Now().Unix()
 rand.Seed(seed)

 patterns := [][][]float64{
 {{0, 0, 0, 0}, {0}},
 {{0, 1, 0, 1}, {1}},
 {{1, 0, 1, 0}, {1}},
 {{1, 1, 1, 1}, {1}},
 }

Machine Learning in Go Chapter 14

[737]

The patterns slice holds the training data that will be used later. The rand.Seed()
function initializes a new random-number generator that is automatically used by the
github.com/goml/gobrain package.

The third part of neural.go is as follows:

 ff := &gobrain.FeedForward{}
 ff.Init(4, 2, 1)
 ff.Train(patterns, 1000, 0.6, 0.4, false)

In this part, we initialize the neural network. The first parameter of the Init() method is
the number of inputs, the second is the number of hidden nodes, and the third is the
number of outputs. The dimension and the data of the patterns slice should be in
compliance with the values in Init(), and vice versa.

The final part of neural.go is as follows:

 in := []float64{1, 1, 0, 1}
 out := ff.Update(in)
 fmt.Println(out)

 in = []float64{0, 0, 0, 0}
 out = ff.Update(in)
 fmt.Println(out)
}

There are two tests happening here. For the first test, the input is {1, 1, 0, 1}, whereas
for the second test, the input is {0, 0, 0, 0}.

You should know by now which Go package you will need to download using go get, so
please download it before trying to run neural.go.

Executing neural.go will generate the following kind of output:

$ go run neural.go
[0.9918648920317314]
[0.02826477691747802]

The first value is close to 1, whereas the second value is close to 0.

As there is a kind of randomness introduced, executing neural.go multiple times will
generate slightly different results:

$ go run neural.go
[0.9920127780655835]
[0.028029429851140687]

https://github.com/goml/gobrain

Machine Learning in Go Chapter 14

[738]

go run neural.go
[0.9913803776914417]
[0.028875009295811015]

Outlier analysis
Outlier analysis is about finding the values that look like they do not belong with the rest
of the values. Put simply, outliers are extreme values that greatly differ from the other
observations. A good book on outlier analysis is Outlier Analysis, 2nd Edition, by Charu C.
Aggarwal (Springer, 2017).

The outlier technique that is going to be implemented in outlier.go, which is going to be
presented in four parts, is based on standard deviation. You will learn more about this
technique later.

The first part of outlier.go is as follows:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "math"
 "os"
 "sort"
 "strconv"
 "strings"
)

The technique that is going to be implemented requires packages of the standard Go library
only.

The second part of outlier.go contains the following Go code:

func variance(x []float64) float64 {
 mean := meanValue(x)
 sum := float64(0)
 for _, v := range x {
 sum = sum + (v-mean)*(v-mean)
 }
 return sum / float64(len(x))
}

Machine Learning in Go Chapter 14

[739]

func meanValue(x []float64) float64 {
 sum := float64(0)
 for _, v := range x {
 sum = sum + v
 }
 return sum / float64(len(x))
}

These two functions were used previously in stats.go. If you find yourself using the same
functions all the time, it would be good to create one or more Go libraries and group your
Go code.

The third part of outlier.go contains the following Go code:

func outliers(x []float64, limit float64) []float64 {
 deviation := math.Sqrt(variance(x))
 mean := meanValue(x)
 anomaly := deviation * limit
 lower_limit := mean - anomaly
 upper_limit := mean + anomaly
 fmt.Println(lower_limit, upper_limit)

 y := make([]float64, 0)
 for _, val := range x {
 if val < lower_limit || val > upper_limit {
 y = append(y, val)
 }
 }

 return y
}

This function holds the logic of the program. It calculates the standard deviation and the
mean value of the sample in order to compute the upper and lower limits. Everything
outside these two limits will be considered an outlier.

The final part of outlier.go is as follows:

func main() {
 flag.Parse()
 if len(flag.Args()) != 2 {
 fmt.Printf("usage: stats filename limit\n")
 return
 }

 file := flag.Args()[0]
 f, err := os.Open(file)
 if err != nil {

Machine Learning in Go Chapter 14

[740]

 fmt.Println(err)
 return
 }
 defer f.Close()

 limit, err := strconv.ParseFloat(flag.Args()[1], 64)
 if err != nil {
 fmt.Println(err)
 return
 }

 data := make([]float64, 0)
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }
 line = strings.TrimRight(line, "\r\n")
 value, err := strconv.ParseFloat(line, 64)
 if err == nil {
 data = append(data, value)
 }
 }

 sort.Float64s(data)
 out := outliers(data, limit)
 fmt.Println(out)
}

The main() function deals with command-line arguments and the reading of the input file
before calling the outliers() function.

Executing outlier.go will produce the following kind of output:

$ go run outlier.go data.txt 2
-94.21189713007178 95.36745268562734
[-100 100]
$ go run outlier.go data.txt 5
-236.3964094918461 237.55196504740167
[]
$ go run outlier.go data.txt 0.02
-0.3701189713007176 1.5256745268562737
[-100 -10 -2 2 3 10 100]

Machine Learning in Go Chapter 14

[741]

If you lower the value of the limit variable, you will find more outliers in your data.
However, this depends on the problem you are trying to solve.

The contents of data.txt are the following:

$ cat data.txt
1.2
-2
1
2.0
not valid
3
10
100
-10
-100

Working with TensorFlow
TensorFlow is a rather famous open-source platform for machine learning. In order to use
TensorFlow with Go, you will first need to download a Go package:

$ go get github.com/tensorflow/tensorflow/tensorflow/go

However, for the aforementioned command to work, the C interface for TensorFlow should
be already installed. On a macOS Mojave machine, this can be installed as follows:

$ brew install tensorflow

If the C interface is not installed, and you try to install the Go package for TensorFlow, you
will get the following error message:

$ go get github.com/tensorflow/tensorflow/tensorflow/go
github.com/tensorflow/tensorflow/tensorflow/go
ld: library not found for -ltensorflow
clang: error: linker command failed with exit code 1 (use -v to see
invocation)

As TensorFlow is pretty complex, it would be good to execute the following command in
order to validate your installation:

$ go test github.com/tensorflow/tensorflow/tensorflow/go
ok github.com/tensorflow/tensorflow/tensorflow/go 0.109s

Machine Learning in Go Chapter 14

[742]

Apart from the Go tests, you can also execute the following Go program, which will print
the version of the Go TensorFlow package that you are using:

package main

import (
 tf "github.com/tensorflow/tensorflow/tensorflow/go"
 "github.com/tensorflow/tensorflow/tensorflow/go/op"
 "fmt"
)

func main() {
 s := op.NewScope()
 c := op.Const(s, "Using TensorFlow version: " + tf.Version())
 graph, err := s.Finalize()

 if err != nil {
 fmt.Println(err)
 return
 }

 sess, err := tf.NewSession(graph, nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 output, err := sess.Run(nil, []tf.Output{c}, nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Println(output[0].Value())
}

If you save that program as tfVersion.go and execute it, you will get the following
output:

$ go run tfVersion.go
2019-06-10 22:30:12.880532: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Using TensorFlow version: 1.13.1

The first message is a warning generated by the TensorFlow Go package and you can
ignore it at the moment.

Machine Learning in Go Chapter 14

[743]

We are now ready to continue and I will show you a real TensorFlow program that will
illustrate how TensorFlow works. The related code is saved in tFlow.go and it is going to
be presented in four parts. What the program does is add and multiply two numbers that
are given as command-line arguments to the program.

The first part of tFlow.go is the following:

package main

import (
 "fmt"
 "os"
 "strconv"

 tf "github.com/tensorflow/tensorflow/tensorflow/go"
 "github.com/tensorflow/tensorflow/tensorflow/go/op"
)

The second part of tFlow.go contains the following code:

func Add(sum_arg1, sum_arg2 int8) (interface{}, error) {
 sum_scope := op.NewScope()
 input1 := op.Placeholder(sum_scope.SubScope("a1"), tf.Int8)
 input2 := op.Placeholder(sum_scope.SubScope("a2"), tf.Int8)
 sum_result_node := op.Add(sum_scope, input1, input2)

 graph, err := sum_scope.Finalize()
 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 a1, err := tf.NewTensor(sum_arg1)
 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 a2, err := tf.NewTensor(sum_arg2)
 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 session, err := tf.NewSession(graph, nil)
 if err != nil {
 fmt.Println(err)
 return 0, err

Machine Learning in Go Chapter 14

[744]

 }
 defer session.Close()

 sum, err := session.Run(
 map[tf.Output]*tf.Tensor{
 input1: a1,
 input2: a2,
 },
 []tf.Output{sum_result_node}, nil)

 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 return sum[0].Value(), nil
}

The Add() function adds two int8 numbers. The code is pretty big for just adding two
numbers, which illustrates that TensorFlow has a certain way of working. This mainly
happens because TensorFlow is an advanced environment with many capabilities.

The third part of tFlow.go is as follows:

func Multiply(sum_arg1, sum_arg2 int8) (interface{}, error) {
 sum_scope := op.NewScope()
 input1 := op.Placeholder(sum_scope.SubScope("x1"), tf.Int8)
 input2 := op.Placeholder(sum_scope.SubScope("x2"), tf.Int8)

 sum_result_node := op.Mul(sum_scope, input1, input2)
 graph, err := sum_scope.Finalize()
 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 x1, err := tf.NewTensor(sum_arg1)
 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 x2, err := tf.NewTensor(sum_arg2)
 if err != nil {
 fmt.Println(err)
 return 0, err
 }

Machine Learning in Go Chapter 14

[745]

 session, err := tf.NewSession(graph, nil)
 if err != nil {
 fmt.Println(err)
 return 0, err
 }
 defer session.Close()

 sum, err := session.Run(
 map[tf.Output]*tf.Tensor{
 input1: x1,
 input2: x2,
 },
 []tf.Output{sum_result_node}, nil)

 if err != nil {
 fmt.Println(err)
 return 0, err
 }

 return sum[0].Value(), nil
}

The Multiply() function multiplies two int8 values and returns the result.

The final part of tFlow.go is the following:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Need two integer parameters!")
 return
 }

 t1, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 n1 := int8(t1)

 t2, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }
 n2 := int8(t2)

 res, err := Add(n1, n2)
 if err != nil {

Machine Learning in Go Chapter 14

[746]

 fmt.Println(err)
 } else {
 fmt.Println("Add:", res)
 }

 res, err = Multiply(n1, n2)
 if err != nil {
 fmt.Println(err)
 } else {
 fmt.Println("Multiply:", res)
 }
}

Executing tFlow.go will generate the following kind of output:

$ go run tFlow.go 1 20
2019-06-14 18:46:52.115676: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Add: 21
Multiply: 20
$ go run tFlow.go -2 20
2019-06-14 18:47:23.104918: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Add: 18
Multiply: -40

The warning message that appears on the output tells you that TensorFlow is not as fast as
it can be on your machine. Basically, it informs you that you will need to compile
TensorFlow from scratch in order to resolve that warning message.

Talking to Kafka
In this section, you will learn how to write and read JSON records using Kafka. Its name
was inspired by the author Franz Kafka, because Kafka software is optimized for writing.
Kafka is written in Scala and Java. It was originally developed by LinkedIn and donated to
the Apache Software Foundation back in 2011. Kafka's design was influenced by
transaction logs.

The main advantage of Kafka is that it can be used to store lots of data fast, which might
interest you when you have to work with huge amounts of real-time data. However, its
disadvantage is that in order to maintain that speed, the data is read-only and stored in a
naive way.

Machine Learning in Go Chapter 14

[747]

The following program, which is named writeKafka.go, will illustrate how to write data
to Kafka. In Kafka terminology, writeKafka.go is a producer. The utility will be
presented in three parts.

The first part of writeKafka.go is as follows:

package main

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/segmentio/kafka-go"
 "math/rand"
 "os"
 "strconv"
 "time"
)

The Kafka Go driver requires the use of an external package that you will need to
download on your own.

The second part of writeKafka.go contains the following Go code:

type Record struct {
 Name string `json:"name"`
 Random int `json:"random"`
}

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func main() {
 MIN := 0
 MAX := 0
 TOTAL := 0
 topic := ""
 if len(os.Args) > 4 {
 MIN, _ = strconv.Atoi(os.Args[1])
 MAX, _ = strconv.Atoi(os.Args[2])
 TOTAL, _ = strconv.Atoi(os.Args[3])
 topic = os.Args[4]
 } else {
 fmt.Println("Usage:", os.Args[0], "MIX MAX TOTAL TOPIC")
 return
 }

Machine Learning in Go Chapter 14

[748]

The Record structure is used to store the data that will be written to the desired Kafka
topic.

The third part of writeKafka.go contains the following Go code:

 partition := 0
 conn, err := kafka.DialLeader(context.Background(), "tcp",
"localhost:9092", topic, partition)
 if err != nil {
 fmt.Printf("%s\n", err)
 return
 }

 rand.Seed(time.Now().Unix())

In this part of the program, you define the address (localhost:9092) of the Kafka server.

The final part of writeKafka.go is as follows:

 for i := 0; i < TOTAL; i++ {
 myrand := random(MIN, MAX)
 temp := Record{strconv.Itoa(i), myrand}
 recordJSON, _ := json.Marshal(temp)

 conn.SetWriteDeadline(time.Now().Add(1 * time.Second))
 conn.WriteMessages(
 kafka.Message{Value: []byte(recordJSON)},
)

 if i%50 == 0 {
 fmt.Print(".")
 }
 time.Sleep(10 * time.Millisecond)
 }

 fmt.Println()
 conn.Close()
}

The following Go program, which is named readKafka.go, will illustrate how to write
data to Kafka. Programs that read data from Kafka are called consumers in Kafka
terminology. The Go code of readKafka.go will be presented in four parts.

The first part of readKafka.go is as follows:

package main

Machine Learning in Go Chapter 14

[749]

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/segmentio/kafka-go"
 "os"
)

The readKafka.go utility also requires an external Go package.

The second part of readKafka.go is as follows:

type Record struct {
 Name string `json:"name"`
 Random int `json:"random"`
}

func main() {
 if len(os.Args) < 2 {
 fmt.Println("Need a Kafka topic name.")
 return
 }

 partition := 0
 topic := os.Args[1]
 fmt.Println("Kafka topic:", topic)

This part of the program defines the Go structure that will hold the Kafka records and deals
with the command-line arguments of the program.

The third part of readKafka.go contains the following Go code:

 r := kafka.NewReader(kafka.ReaderConfig{
 Brokers: []string{"localhost:9092"},
 Topic: topic,
 Partition: partition,
 MinBytes: 10e3,
 MaxBytes: 10e6,
 })
 r.SetOffset(0)

The kafka.NewReader() structure holds the data required to connect to the Kafka server
process and Kafka topic.

The final code segment from readKafka.go is the following:

 for {
 m, err := r.ReadMessage(context.Background())

Machine Learning in Go Chapter 14

[750]

 if err != nil {
 break
 }
 fmt.Printf("message at offset %d: %s = %s\n", m.Offset,
string(m.Key), string(m.Value))

 temp := Record{}
 err = json.Unmarshal(m.Value, &temp)
 if err != nil {
 fmt.Println(err)
 }
 fmt.Printf("%T\n", temp)
 }

 r.Close()
}

This for loop reads the data from the desired Kafka topic and prints it on the screen. Note
that the program will keep waiting for data and will never end.

For the purposes of this section, we are going to use a Docker image with Kafka in order to
execute both readKafka.go and writeKafka.go. So, first, we will need to execute the
following command to download the desired Kafka image, if it is not already on our local
machine:

$ docker pull landoop/fast-data-dev:latest

The output of the docker images command will be able to verify that the desired Kafka
Docker image is there. Then, you should execute that image and run it as a container, as
follows:

$ docker run --rm --name=kafka-box -it -p 2181:2181 -p 3030:3030 -p
8081:8081 -p 8082:8082 -p 8083:8083 -p 9092:9092 -p 9581:9581 -p 9582:9582
-p 9583:9583 -p 9584:9584 -e ADV_HOST=127.0.0.1 landoop/fast-data-
dev:latest
Setting advertised host to 127.0.0.1.
Starting services.
This is Landoop's fast-data-dev. Kafka 2.0.1-L0 (Landoop's Kafka
Distribution).
You may visit http://127.0.0.1:3030 in about a minute.
.
.
.

For the presented utilities to work, you will need to download the Go package that allows
you to communicate with Kafka.

Machine Learning in Go Chapter 14

[751]

This can be done as follows:

$ go get -u github.com/segmentio/kafka-go

After that, you are ready to use the Docker image of Kafka and execute the two Go utilities.
Executing writeKafka.go will generate the following kind of output:

$ go run writeKafka.go 1 1000 500 my_topic
..........
$ go run writeKafka.go 1 1000 500 my_topic
..........

Executing readKafka.go will produce the following output:

$ go run readKafka.go my_topic | head
Kafka topic: my_topic
message at offset 0: = {"name":"0","random":134}
main.Record
message at offset 1: = {"name":"1","random":27}
main.Record
message at offset 2: = {"name":"2","random":168}
main.Record
message at offset 3: = {"name":"3","random":317}
main.Record
message at offset 4: = {"name":"4","random":455}
signal: broken pipe

Additional resources
Have a look at the following resources:

You can learn more about Kafka by visiting https:/ /kafka. apache. org/.
You can learn more about TensorFlow at https://www.tensorflow.org/.
Lenses is a great product for working with Kafka and Kafka records. You can
learn more about Lenses at https://lenses.io/.
You can find the documentation page of the Go TensorFlow package at
https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go.
You can learn more about the Iris dataset at
https://archive.ics.uci.edu/ml/datasets/iris.
Have a look at https://machinebox.io/, which is machine learning software for
people without a science degree, is free for developers, and works using Docker
images.

https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://www.tensorflow.org/
https://lenses.io/
https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go
https://archive.ics.uci.edu/ml/datasets/iris
https://machinebox.io/

Machine Learning in Go Chapter 14

[752]

The documentation page for the Anomalyzer Go package can be found at
https://github.com/lytics/anomalyzer.

Exercises
Develop your own Kafka producer that will write JSON records with three fields
to a Kafka topic.
A very interesting statistical property is covariance. Find its formula and
implement it in Go.
Change the code of stats.go in order to work with integer values only.
Modify cluster.go in order to get the data from an external file that will be
given as a command-line argument to the program.
Change the code of outlier.go in order to divide the input into two slices and
work with each one of these slices.
Change the code of outlier.go in order to accept the upper and lower limits
from the user without calculating them.
If you find TensorFlow difficult to use, you can try tfgo, which can be found at
https://github.com/galeone/tfgo.

Summary
This chapter talked about many interesting things related to machine learning, including
regression, anomaly detection, classification, clustering, and outliers. Go is a great and
robust programming language for use in machine learning areas, so feel free to include it in
your machine learning projects.

Where to go next?
Philosophically speaking, no programming book can ever be perfect, and neither is this
book! Did I leave some Go topics out? Absolutely, yes! Why? Because there are always
more topics that could be covered in a book, so if I tried to cover everything, the book
would never be ready for publication. This situation is somehow analogous to the
specifications of a program: you can always add new and exciting features, but if you do
not freeze its specifications, the program will always be under development and will never
be ready.

https://github.com/lytics/anomalyzer
https://github.com/galeone/tfgo

Machine Learning in Go Chapter 14

[753]

The good thing is that after reading this book, you will be ready to learn on your own,
which is the biggest benefit you can get from any good computer book on programming.
The main purpose of this book is to help you to learn how to program in Go and gain some
experience. However, there is no substitute for trying things on your own and failing often
because the only way to learn a programming language is to keep developing non-trivial
things. You are now ready to start writing your own software in Go and learning new
things.

I would like to congratulate you and thank you for choosing this book, with the hope that
you found it useful and will continue to use it as a reference. Go is a great programming
language that I believe you will not regret learning. This is the end of another Go book for
me, but just the beginning of the journey for you!

Soli Deo gloria

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Go
Mihalis Tsoukalos

ISBN: 978-1-78862-654-5

Understand the design choices of Golang syntax
Know enough Go internals to be able to optimize Golang code
Appreciate concurrency models available in Golang
Understand the interplay of systems and networking code
Write server-level code that plays well in all environments
Understand the context and appropriate use of Go data types and data structures

https://www.packtpub.com/networking-and-servers/mastering-go

Other Books You May Enjoy

[755]

Go Systems Programming
Mihalis Tsoukalos

ISBN: 978-1-78712-564-3

Explore the Go language from the standpoint of a developer conversant with
Unix, Linux, and so on
Understand Goroutines, the lightweight threads used for systems and concurrent
applications
Learn how to translate Unix and Linux systems code in C to Golang code
How to write fast and lightweight server code
Dive into concurrency with Go
Write low-level networking code

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

https://www.packtpub.com/networking-and-servers/go-systems-programming

Index

.

.gitignore file 360

A
abstract syntax tree (AST) 307
abstract types 335
Alef language 9
algorithm complexity 211
anomaly detection 733, 735
Anomalyzer package 734
anonymous function 78, 273, 419, 442
Apache 147, 616
Apache HTTP server benchmarking tool 626
array dimensions
 finding 264
arrays 115
assembly
 about 588
 used, with Go code 588, 589, 590
atomic operation 495
atomic package
 about 495, 496, 497
 using 620, 621, 622
automated testing 549

B
balanced tree 212
benchmark function
 defining 576
benchmarking
 about 66
 buffered writing 577, 578, 579, 580
 example 570, 571, 572, 573, 574, 575, 576
 Go code 569, 570
big endian byte 400
binary formats

 advantages 402, 403
binary tree
 advantages 215
 implementing, in Go 213, 214, 215
 in Go 212
black set 58
black-box testing 564
blank identifier 26
branches
 working with 358, 359
buffered channel 476, 477, 478
buffered writing
 benchmarking 577, 578, 579, 580
bufio package 392
byte slice 123, 163, 171, 400, 414
bytes package
 about 414, 415, 416
 reference link 591

C
C code
 about 72, 76, 77
 calling, from Go 70
 calling, from Go with same file 70, 71
 calling, from Go with separate files 71
 mixing, with Go 74
C language 8
C shared library 75
C strings 171
C++ 353, 542
cancellation 508
Candy 616
cardinality 113
cat(1) utility
 implementing, in Go 423, 424
channel of channels 480, 481, 482
channels

[757]

 about 60, 439, 449
 as function parameters 454, 455
 reading from 452, 453
 writing 450, 451
circular list 237
classification 727, 728, 729, 730
closed channel
 receiving from 453, 454
closured variable 501
closures 273
clustering 731, 733
cobra package
 about 383
 command aliases, creating 389, 390, 391
 example 384, 385, 386, 387, 388
code coverage
 testing 554, 555, 556
code optimization 527, 528
command line arguments
 working with 26, 27
comparable 131
complex number 108, 109, 110
concurrency 441
concurrent TCP server 688, 689, 690, 691, 692,

693, 695, 697, 698
constant generator iota
 about 136, 137, 138
 defining 137
consumers 748
container package
 about 237, 238, 244
 container/heap, using 238, 239, 240
 container/list, using 240, 241, 242
 container/ring, using 243, 244
container
 using 238, 239, 240, 241, 242, 243, 244
context package
 about 508, 509, 510, 512
 advanced example 512, 513, 516, 517
 another example 517, 518, 519
 worker pool 519, 520, 521, 522, 524
continuation 465
continuation stealing 466
copy() function 123, 124, 125
CPU profiling 529, 532

critical section 487
cross-compilation 583, 584
crypto/rand package
 reference link 252
CSV files
 about 403
 reading 403, 404, 405, 406

D
data amount
 reading 400, 401, 402
data race condition
 about 503
 catching 503, 506, 507
data
 loading, on disk 409, 410, 412
 saving, on disk 409, 410, 412
database backend
 used, for testing HTTP server 556, 557, 558,

560, 563
date
 about 142, 143
 formats, modifying 147, 148
 parsing 146, 147
 working with 146
Dave Cheney 538
deadlocks 469
debug parse tree 95
debugger 362
debugging
 example 363, 365, 366
 with Delve 363
defer keyword
 about 77, 78, 79, 80
 used, for logging 80, 81
deferred functions 78
degenerate 258
Delve
 debugging with 362
dereferencing the pointer 139
deserialization 409
directed acyclic graph 211
directed graph 211
directives 11
disassemble 588

[758]

distance metric 727
DNS lookups
 performing 611, 612, 613
Docker API 433, 434, 435
Docker image
 about 293
 creating, for Go TCP/IP server 699, 700, 701
 using 596, 597
Docker
 using 46, 48, 49
documentation
 generating 590, 591, 592, 594, 595
Domain Name System (DNS) 611
DOT language 542
doubly linked list
 advantages 230
 implementing, in Go 227, 228, 229, 230
 in Go 226, 227
 versus singly linked list 227
dtrace tool
 about 86, 87, 88
 URL 88
dynamic programming 689

E
Echo service 681
element type 450
Elixir 462
encapsulation 286
Erlang concurrency model
 versus Go concurrency model 461, 462
error data type 41, 42
error handling
 about 43, 44, 46
 error data type 41, 42
 in Go 41
error messages 41
error output 28, 29
example functions
 creating 585, 586
 reference link 585
execution time
 measuring 149, 150

F
fair scheduling strategy 465
Fibonacci sequence 570
fields of structure 154
file descriptors 19
file permissions 416, 417
file
 writing to 406, 408
files
 working with 359
finite automaton 161
flag package 370, 371, 373, 374
floating-point numbers 108
fmt.Println() function
 reference link 305
for loop 111, 112
fork-join concurrency model 465
format specifier 19

G
G1 62
garbage collection 10, 55, 56, 57, 58
garbage collection safe-point 61
garbage collector, Go code
 reference link 61
git cherry-pick command 362
git commit command 357
git diff command
 using 360
git pull command 357
git push command 357
git status command 356, 357
git
 .gitignore file 360
 about 356
 branches, working with 358, 359
 files, working with 359
 git cherry-pick command 362
 git commit command 357
 git diff command, using 360
 git pull command 357
 git push command 357
 git status command 356, 357
 tag, working with 360, 361, 362

[759]

 using 356
GitHub 356
GitLab 356
global variables 134, 314
Glot 403
Gnuplot 403
Go 2
 number literals 111
 reference link 111
Go arrays
 about 115
 multi-dimensional arrays 116, 117, 118
 shortcomings 118
Go assembler 91, 92
go build 98, 99
Go channels 113
Go channels revisited
 about 475, 476
 buffered channel 476, 477, 478
 channel of channels 480, 481, 482
 goroutines, avoiding 485, 486
 nil channel 478, 479, 480
 order of execution, specifying for goroutines 483,

484, 485
 signal channel 476
Go code
 about 72, 73
 advice 104
 assembly, using 588, 589, 590
 benchmarking 569, 570
 code coverage, testing 554, 555, 556
 compiling 12
 convenient external package, for profiling 537,

538, 539
 executing 13, 14
 logical error, finding 581, 582, 583
 net/http/pprof standard Go package 529
 optimizing 528
 profiling 529
 profiling, example 529, 530, 531, 532, 533,

535, 536, 537
 testing 549
 tests, writing 549, 550, 551, 552, 554
 to machine code 587, 588
 web interface, of Go profiler 539

Go compiler 54, 55
Go concurrency model
 versus Erlang concurrency model 461, 462
 versus Rust concurrency model 461
Go constants
 about 134, 135, 136
 constant generator iota 136, 137, 138
go env command 90, 91
Go environment 88, 89, 90
Go execution tracer 544
Go function
 about 272, 273
 anonymous functions 273
 calling, from C code 75
 multiple values, returning 273, 274, 275
 other functions, accepted as parameters 281,

282

 other functions, returning 279, 280
 pointers, returning 278, 279
 return values, naming 275, 276, 277
 variadic functions 282, 283
 with pointer parameters 277, 278
Go garbage collector
 about 62, 544
 operation 61, 62
 operation, measuring 151
Go interface
 about 104, 335, 336
 switch statement, used with data types 341,

342, 343
 type assertion 336, 337, 338
 using 339, 340, 341
 writing 338, 339
Go loop
 about 111
 example 113, 114, 115
 for loop 111, 112
 range keyword 113
 while loop 112, 113
Go map
 about 131, 132, 133, 571
 need for 134
 nil map, storing 133, 134
Go module
 about 17, 289

[760]

 code and information, storing 299
 creating 289
 different versions, using 298, 299
 go mod vendor command 300
 reference link 289
 using 289
 version v1.0.0, creating 290
 version v1.0.0, using 290, 291, 292
 version v1.1.0, creating 292
 version v1.1.0, using 293, 294
 version v2.0.0, creating 294, 295
 version v2.0.0, using 296
 version v2.1.0, creating 296
 version v2.1.0, using 297
Go package
 about 75, 76, 272
 compiling 286
 creating 300, 301, 302
 developing 284, 285
 downloading 17, 18
 init() function 286, 287, 288
 private functions 286
 private variables 286
 usage 14, 15, 16
Go pointers
 about 139, 141
 need for 142
Go profiler
 web interface 539
Go program
 example 312, 313, 314
 variable names, finding with string length 314,

315, 316, 318, 319
Go race detector 503
Go reflection
 about 343, 344
 advanced reflection example 346, 347, 348
 disadvantages 349, 350
 reflectwalk library 350, 351
 simple reflection example 344, 346
Go rules
 about 14
 curly braces, formatting 16
 Go package, usage 14, 15, 16
Go scheduler 441

Go scheduler revisited 465, 466, 467
Go scheduler, entities
 goroutines (G) 466
 logical processors (P) 466
 OS threads (M) 466
Go slices
 about 56, 119
 array, appending to 130, 131
 byte slice 123
 copy() function 123, 124, 125
 example 126, 127, 128
 expanding, automatically 121, 122, 123
 multi-dimensional slice 125, 126
 operations, performing 119, 120, 121
 sorting, with sort.Slice() function 128, 129
go statement
 revisiting 500, 501, 502
Go structures 92
Go TCP/IP server
 Docker image, creating for 699, 700, 701
go tool trace utility 543, 544, 545, 547, 548
Go type
 about 137
 method 333, 334, 335
Go web client
 creating 644, 645
 upgrading 646, 647, 648, 649
go/ast package
 about 307
 reference link 319
go/parser package 307, 310, 311, 312
go/scanner package 307, 308, 310
go/token package 307
Go
 about 9, 433, 434, 435, 656
 advantages 9
 binary tree in 212
 binary tree, implementing 213, 214, 215
 C code, calling from 70
 C code, calling with same file 70, 71
 C code, calling with separate files 71
 cat(1) utility, implementing 423, 424
 cross-compilation capabilities, used for creating

WebAssembly code 100, 101
 disadvantages 10

[761]

 doubly linked list in 226, 227
 doubly linked list, implementing 227, 228, 229,

230

 error handling in 41
 features 9, 10
 godoc utility 11, 12
 hash table in 216
 hash table, implementing 217, 218, 219
 history 8
 key-value store, developing in 187, 189, 190,

192

 linked list in 220, 221
 linked list, implementing 222, 223, 224, 225
 mixing, with C code 74
 object-oriented programming in 352, 353, 354,

355

 perfect programming language 10, 11
 queue in 231
 queue, implementing 231, 232, 233, 234
 stack in 234
 stack, implementing 234, 235, 236, 237
 UNIX pipe, programming in 422, 423
 web server, creating 616, 617, 618, 620
 website, creating 628, 630, 632, 636, 637
gob format 409
godoc package
 reference link 590
godoc utility 11, 12
GOMAXPROCS environment variable 466, 467,

468

Google Chrome
 using 102
goroutines
 about 58, 412, 439, 440, 442
 avoiding 485, 486
 creating 442, 443, 444, 445
 error messages 448, 449
 finishing 445, 446, 448
 timing out 471, 472, 473, 474, 475
 used, for sharing memory 497, 498, 499
grammar 160, 161
graph structures 542
graphical user interface (GUI) 10
graphs
 about 211
 acyclic graphs 211

 cyclic graphs 211
Graphviz 537, 542, 543
gray set 59
group ID 432, 433
gRPC 656
gRPC client
 developing, in Go 658, 659, 660
gRPC server
 developing, in Go 660, 661, 662

H
handler function 617
hash function 216
hash table
 about 131
 advantages 220
 implementing, in Go 217, 218, 219
 in Go 216
 lookup functionality, implementing 219, 220
Haskell programming language 564
head 221
heap
 about 237
 using 238, 239, 240
Homebrew
 URL 68
 using 656
HTML output
 constructing 322, 323, 324, 325, 327, 328, 329
HTML template 319
HTTP connection
 timeout, ways 653, 654, 655
 timing out 649, 650, 651
HTTP handlers
 testing 641, 643
HTTP server
 profiling 623, 624, 625, 626
 testing, with database backend 556, 557, 558,

560, 563
 testing/quick package 564, 565, 566
HTTP tracing 638, 639, 640
http.Request type
 about 603
 reference link 603
http.Response type 602

[762]

http.RoundTripper 602
http.Transport type
 about 604
 reference link 604
HTTPS client
 creating 668, 669
HTTPS server 670, 671
HTTPS traffic
 certificates, creating 667, 668
 TLS client, developing 671, 672, 674
 TLS server, developing 671, 672, 674
 working with 667

I
interface 21, 238, 602
interface definition file
 defining 656, 657, 658
interface definition language 656
Internet Protocol (IP) 605
io.Reader interface
 about 391
 buffered file input 392
 buffered file output 392
 unbuffered file input 392
 unbuffered file output 392
io.Writer interface
 about 391
 buffered file input 392
 buffered file output 392
 unbuffered file input 392
 unbuffered file output 392
IP address 167
IPv4 605
IPv4 address 167
IPv6 605
Iris dataset 730

J
Java 353, 746
Java code 185
Java programming language 62
JavaScript 100, 104
JSON data
 parsing 198, 199, 200, 201
 reading 193, 194, 195

 saving 195, 196
JSON format 409, 410
JSON format, for Go
 about 193
 JSON data, parsing 198, 199, 200, 201
 JSON data, reading 193, 194, 195
 JSON data, saving 195, 196
 Marshal() method, using 197, 198
 Marshal(), using 198
 Unmarshal() method, using 197
 XML file, reading 204, 205
 XML output, customizing 206, 207
 XML, supporting from Go 201, 202, 203

K
k-means clustering 731
k-nearest neighbors (k-NN) 727
Kafka 746, 747, 748, 751
key-value store
 about 187, 409
 developing, in Go 187, 189, 190, 192
 fundamental tasks, implementing 188

L
last in first out (LIFO) 78
lexical analysis 307
lightweight tag 360
linear regression
 about 720
 implementing 720, 721, 722
linked list
 advantages 225
 implementing, in Go 222, 223, 224, 225
 in Go 220, 221
list
 about 237
 using 240, 241, 242
little endian byte 400
local variables 314
log files
 Go program, used for sending information 32,

33, 34
 line numbers, printing in log entries 39, 40
 log servers 31
 log.Fatal() function 35

[763]

 log.Panic() function 36
 logging facility 30, 31
 logging level 30
 writing 30, 37, 39
log package
 reference link 38
log servers 31
log.Fatal() function 35
log.Panic() function 36
logging facility 30, 31
logging level 30
low-level network programming 708
 performing 705, 706, 707
 raw ICMP network data, grabbing 707, 709, 710

M
machine code
 from Go code 587, 588
machine learning (ML) 716
map key 131
map literal 131
map
 about 62
 splitting 65
 using, with pointers 63
 using, without pointers 64
Marshal() method
 using 197, 198
matrices
 adding 252, 253, 254
 array dimensions, finding 264
 dividing 258, 260, 261, 262
 multiplying 255, 258
 subtracting 252, 253, 254
matrix 252
matrix calculation
 matrices, adding 252, 253, 254
 matrices, dividing 258, 260, 261, 262
 matrices, multiplying 255, 258
 matrices, subtracting 252, 253, 254
 performing 252
memory profiling 529, 532
memory
 sharing, goroutines used 497, 498, 499
message-passing 461

method overriding 355
modulo operator 217
monitor goroutine 497
multi-dimensional arrays 116, 117, 118
multi-dimensional slice 125
multi-dimensional slices 126
mutator 59
mutex variable 487
mutual exclusion variable 487
MX records
 obtaining, of domain 615, 616

N
name servers 613
named type 137
nc(1) command-line utility 606
net 602
net standard Go package 675
net/http 602
net/http/pprof standard Go package 529
network interfaces
 configuration, reading 606, 607, 608, 609, 611
neural networks 736, 737
Nginx 147, 616
nil channel 478
node trees 92, 95
 about 96, 98
Node.js 103
nodes 211
NS records
 obtaining, of domain 613, 614, 615
null 226
number literals
 about 111
 in Go 2 111
 reference link 111
numeric data types
 about 108
 complex number 108, 109
 complex numbers 110
 floating-point numbers 108
 integers 108
 number literals, in Go 2 111

[764]

O
O notation 211
Oberon language 9
object 333
object-oriented programming
 about 10
 in Go 352, 353, 354, 355
order of execution
 specifying, for goroutines 483, 484, 485
outlier analysis 738, 739, 741
output
 printing 19, 20, 21

P
pack operator 282
package variables 314
panic 44
panic function
 about 82, 84
 using 84, 85
parallelism 441
Pascal language 8
pattern matching
 about 160, 161
 advanced example 164, 166, 167
 example 161, 162, 163, 164
 IPv4 addresses, matching 167, 168, 169, 170
Perl 14, 542
Pi
 about 185
 calculating, with high accuracy 185, 187
pipeline 455, 456, 457, 458, 459
pointers
 about 139
 map, using with 63
 map, using without 64
Pop() function 234
PostgreSQL server 556
pragmas 11
preprocessor 10, 11
presented techniques
 performance, comparing 65, 66
process 370, 440
process ID 370

profiling 529
program 370, 440
Protocol Buffers (protobuf) 656
pseudo-random number
 generating 244, 245, 246, 247
pseudo-random strings
 generating 248, 249
Push() function 234
Python 14, 353, 542

Q
queue
 implementing, in Go 231, 232, 233, 234
 in Go 231
quotient 110

R
race conditions 55, 447, 459, 460
range keyword 113
raw ICMP network data
 grabbing 707, 708, 709, 710
re-slicing 120
receive-only channel 455
receiver method 333
recognizer 161
recover function 82, 83, 84
reflection 343, 564
regression
 about 720
 data, plotting 722, 723, 725, 726
regular expressions
 about 144, 160, 161
 advanced example 164, 166, 167
 example 161, 162, 163, 164
 IPv4 addresses, matching 167, 168, 169, 170
 theory 161
Remote Procedure Call (RPC)
 about 701
 RPC client 702, 703
 RPC server 703, 705
RFC850 format 149
ring
 about 237
 using 243, 244
roots 59

[765]

RPC client 702, 703
RPC server 703, 705
Ruby 14, 542
rune 174, 176
rune constant 174
rune literal 174
Rust concurrency model
 versus Go concurrency model 461

S
Scala 746
Scalable Vector Graphics (SVG) 726
scanner 307
scheduler 465
secure pseudo-random numbers
 generating 250, 252
Secure Sockets Layer (SSL) 668
seed 245
select keyword 468, 469, 470
semantic analysis 307
semantic versioning 289
semaphores 477
serialization 409
server side
 timeout period, setting 651, 653
SetDeadline() function
 using 651
sharding 65
shared memory 486, 487
shared variables 486, 487
shared-state 461
short assignment statement 23, 24
SIGINT signal 417
signal channel 476
signed integers 108
singular 258
slice literal 119
slice of bytes 22
slice of structures 321
slice
 about 62, 63
 using 63
sort.Slice() function
 used, for sorting Go slices 128, 129
sorted linked list 225

sqlite3 package
 reference link 323
square matrix 252, 258
stack
 implementing, in Go 234, 235, 236, 237
 in Go 234
stalling join 465
standard error 19
standard input
 about 19
 reading from 24, 25
standard output
 about 19
 using 21, 22
static linking 10
Static Single Assignment (SSA) 588
statically linked executable file 13
statistical learning 716
statistical properties
 calculating 716, 719
stop-the-world garbage collector 61
strace tool 85, 86
stream encoding 409
string literal 171
string slice 179
string
 about 171, 172, 173
 package 177, 178, 179, 180
 rune 174, 176
 unicode package 176
strings 414
strings package
 revisiting 413, 414
structure literal 154
structures
 about 154, 155
 keyword, using 158, 159
 pointers to 156, 157
Sudoku puzzles
 solving 264, 266, 267
switch statement 181, 182, 184
sync.Mutex type
 about 487, 488, 489, 490
 unlocking 490, 491
sync.RWMutex type 492, 493, 495

[766]

syntax error 16
syscall package
 about 302, 303, 304
 fmt.Println() function, working 305, 306
syscall.PtraceRegs 425, 427
system call
 about 302
 tracing 427, 430, 431

T
tag
 about 292, 360
 working with 360, 361, 362
tail 221
TCP client
 about 675, 676, 677
 version 677, 678, 679
TCP server
 about 679, 680, 681
 version 681, 682, 683
TCP/IP 605
templates 319
TensorFlow
 about 741
 working with 741, 742, 744
testing/quick package 564, 565, 566
text file
 reading 392
 reading, character by character 396, 397, 398
 reading, from /dev/random system device 398,

399, 400
 reading, line by line 393, 394
 reading, word by word 394, 395, 396
text output
 generating 319, 320, 321, 322
text template 319
thread 440
time
 about 142, 143
 formats, modifying 147, 148
 parsing 144, 145, 146
 working with 144
timeout parameter
 using 567, 568, 569
timeout period

 setting, on sever side 651, 653
TLS client
 developing 671, 672, 674
TLS server
 developing 671, 672, 674
Transmission Control Protocol (TCP) 605
Transmission Control Protocol/Internet Protocol

(TCP/IP) networks 192
Transport Layer Security (TLS) 668
tricolor algorithm 58, 59, 60, 61
tricolor mark-and-sweep algorithm 58
trim function 180
tshark tools 655
tuple assignment 160
tuples 154, 159, 160
type assertion 244, 336, 337, 338
type identity 156

U
UDP client 683, 684, 685, 686
UDP server
 developing 686, 688
unbalanced tree 212
underscore character (_) 160
Unicode 10
Unicode code point 174
unicode package 176
UNIX epoch time 143
UNIX pipe
 about 422
 programming, in Go 422, 423
UNIX processes
 about 370
 daemon processes 370
 kernel processes 370
 user processes 370
UNIX signal
 about 417
 all signals, handling 420, 421, 422
 handling 417, 418, 476
 two signals, handling 418, 419, 420
UNIX standard error 28
UNIX stderr 18, 19
UNIX stdin 18, 19
UNIX stdout 18, 19

UNIX utilities
 about 85
 dtrace tool 86, 87, 88
 strace tool 85, 86
Unmarshal() method
 using 197, 198
unpack operator 282
unsafe code 66, 67, 68
unsafe package
 about 68
 example 69, 70
unsigned integers 108
unstructured JSON data 199
User Datagram Protocol (UDP) 605
user ID 432, 433
user input
 command line arguments, working with 25, 26,

27

 obtaining 23
 short assignment statement 23, 24
 standard input, reading from 24, 25
useUpdatedV2.go 297

V
variadic functions 282, 283
verbs
 about 19
 reference link 19
viper package
 about 375
 converting, from flag package 377, 378
 example 376, 377
 JSON configuration files, reading 379, 380
 YAML configuration files, reading 380, 381, 382,

383

W
web interface

 Graphviz 542, 543
 of Go profiler 539
 profiling, example 539, 541
web server
 creating, in Go 616, 617, 618, 620
WebAssembly code
 about 100
 creating, with cross-compilation capabilities of

Go 100, 101
 example 101
 generated, using 102, 103, 104
 requisites 100
website
 creating, in Go 628, 630, 632, 636, 637
while loop 112, 113
white set 58
Wireshark tools 655
work-stealing strategy 465
worker pool 519
write barrier
 about 59
 using 58

X
XML file
 reading 204, 205
XML format 409
XML output
 customizing 206, 207
XML
 about 201
 supporting, from Go 201, 202, 203

Y
YAML Ain't Markup Language (YAML) 207
YAML format, for Go
 about 207
 reference link 207

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Go and the Operating System
	The history of Go
	Where is Go going?
	The advantages of Go
	Is Go perfect?
	What is a preprocessor?

	The godoc utility

	Compiling Go code
	Executing Go code
	Two Go rules
	You either use a Go package or you do not include it
	There is only one way to format curly braces

	Downloading Go packages
	UNIX stdin, stdout, and stderr
	About printing output
	Using standard output
	Getting user input
	About := and =
	Reading from standard input
	Working with command-line arguments

	About error output
	Writing to log files
	Logging levels
	Logging facilities
	Log servers
	A Go program that sends information to log files
	About log.Fatal()
	About log.Panic()
	Writing to a custom log file
	Printing line numbers in log entries

	Error handling in Go
	The error data type
	Error handling

	Using Docker
	Exercises and links
	Summary

	Chapter 2: Understanding Go Internals
	The Go compiler
	Garbage collection
	The tricolor algorithm
	More about the operation of the Go garbage collector
	Maps, slices, and the Go garbage collector
	Using a slice
	Using a map with pointers
	Using a map without pointers
	Splitting the map
	Comparing the performance of the presented techniques

	Unsafe code
	About the unsafe package
	Another example of the unsafe package

	Calling C code from Go
	Calling C code from Go using the same file
	Calling C code from Go using separate files
	The C code
	The Go code
	Mixing Go and C code

	Calling Go functions from C code
	The Go package
	The C code

	The defer keyword
	Using defer for logging

	Panic and recover
	Using the panic function on its own

	Two handy UNIX utilities
	The strace tool
	The dtrace tool

	Your Go environment
	The go env command
	The Go assembler
	Node trees
	Finding out more about go build
	Creating WebAssembly code
	A quick introduction to WebAssembly
	Why is WebAssembly important?
	Go and WebAssembly
	An example
	Using the generated WebAssembly code

	General Go coding advice
	Exercises and links
	Summary

	Chapter 3: Working with Basic Go Data Types
	Numeric data types
	Integers
	Floating-point numbers
	Complex numbers
	Number literals in Go 2

	Go loops
	The for loop
	The while loop
	The range keyword
	An example with multiple Go loops

	Go arrays
	Multi-dimensional arrays
	The shortcomings of Go arrays

	Go slices
	Performing basic operations on slices
	Slices are expanded automatically
	Byte slices
	The copy() function
	Multi-dimensional slices
	Another example with slices
	Sorting slices using sort.Slice()
	Appending an array to a slice

	Go maps
	Storing to a nil map
	When you should use a map

	Go constants
	The constant generator iota

	Go pointers
	Why use pointers?

	Times and dates
	Working with times
	Parsing times
	Working with dates
	Parsing dates
	Changing date and time formats

	Measuring execution time
	Measuring the operation of the Go garbage collector

	Web links and exercises
	Summary

	Chapter 4: The Uses of Composite Types
	About composite types
	Structures
	Pointers to structures
	Using the new keyword

	Tuples
	Regular expressions and pattern matching
	Introducing some theory
	A simple example
	A more advanced example
	Matching IPv4 addresses

	Strings
	What is a rune?
	The unicode package
	The strings package

	The switch statement
	Calculating Pi with high accuracy
	Developing a key-value store in Go
	Go and the JSON format
	Reading JSON data
	Saving JSON data
	Using Marshal() and Unmarshal()
	Parsing JSON data
	Go and XML
	Reading an XML file
	Customizing XML output

	Go and the YAML format
	Additional resources
	Exercises and web links
	Summary

	Chapter 5: How to Enhance Go Code with Data Structures
	About graphs and nodes
	Algorithm complexity
	Binary trees in Go
	Implementing a binary tree in Go
	Advantages of binary trees

	Hash tables in Go
	Implementing a hash table in Go
	Implementing the lookup functionality
	Advantages of hash tables

	Linked lists in Go
	Implementing a linked list in Go
	Advantages of linked lists

	Doubly linked lists in Go
	Implementing a doubly linked list in Go
	Advantages of doubly linked lists

	Queues in Go
	Implementing a queue in Go

	Stacks in Go
	Implementing a stack in Go

	The container package
	Using container/heap
	Using container/list
	Using container/ring

	Generating random numbers
	Generating random strings

	Generating secure random numbers
	Performing matrix calculations
	Adding and subtracting matrices
	Multiplying matrices
	Dividing matrices
	A tip on finding out the dimensions of an array

	Solving Sudoku puzzles
	Additional resources
	Exercises
	Summary

	Chapter 6: What You Might Not Know About Go Packages and Functions
	About Go packages
	About Go functions
	Anonymous functions
	Functions that return multiple values
	The return values of a function can be named
	Functions with pointer parameters
	Functions that return pointers
	Functions that return other functions
	Functions that accept other functions as parameters
	Variadic functions

	Developing your own Go packages
	Compiling a Go package
	Private variables and functions
	The init() function

	Go modules
	Creating and using a Go module
	Creating version v1.0.0
	Using version v1.0.0
	Creating version v1.1.0
	Using version v1.1.0
	Creating version v2.0.0
	Using version v2.0.0
	Creating version v2.1.0
	Using version v2.1.0

	Using two different versions of the same Go module
	Where Go stores Go modules
	The go mod vendor command

	Creating good Go packages
	The syscall package
	Finding out how fmt.Println() really works

	The go/scanner, go/parser, and go/token packages
	The go/ast package
	The go/scanner package
	The go/parser package
	A practical example
	Finding variable names with a given string length

	Text and HTML templates
	Generating text output
	Constructing HTML output

	Additional resources
	Exercises
	Summary

	Chapter 7: Reflection and Interfaces for All Seasons
	Type methods
	Go interfaces
	About type assertions

	Writing your own interfaces
	Using a Go interface
	Using switch with interface and data types

	Reflection
	A simple reflection example
	A more advanced reflection example
	The three disadvantages of reflection
	The reflectwalk library

	Object-oriented programming in Go
	An introduction to git and GitHub
	Using git
	The git status command
	The git pull command
	The git commit command
	The git push command
	Working with branches
	Working with files
	The .gitignore file
	Using git diff
	Working with tags
	The git cherry-pick command

	Debugging with Delve
	A debugging example

	Additional resources
	Exercises
	Summary

	Chapter 8: Telling a UNIX System What to Do
	About UNIX processes
	The flag package
	The viper package
	A simple viper example
	From flag to viper
	Reading JSON configuration files
	Reading YAML configuration files

	The cobra package
	A simple cobra example
	Creating command aliases

	The io.Reader and io.Writer Interfaces
	Buffered and unbuffered file input and output

	The bufio package
	Reading text files
	Reading a text file line by line
	Reading a text file word by word
	Reading a text file character by character
	Reading from /dev/random

	Reading a specific amount of data
	The advantages of binary formats
	Reading CSV files
	Writing to a file
	Loading and saving data on disk
	The strings package revisited
	About the bytes package
	File permissions
	Handling UNIX signals
	Handling two signals
	Handling all signals

	Programming UNIX pipes in Go
	Implementing the cat(1) utility in Go

	About syscall.PtraceRegs
	Tracing system calls
	User ID and group ID
	The Docker API and Go
	Additional resources
	Exercises
	Summary

	Chapter 9: Concurrency in Go – Goroutines, Channels, and Pipelines
	About processes, threads, and goroutines
	The Go scheduler
	Concurrency and parallelism

	Goroutines
	Creating a goroutine
	Creating multiple goroutines

	Waiting for your goroutines to finish
	What if the number of Add() and Done() calls do not agree?

	Channels
	Writing to a channel
	Reading from a channel
	Receiving from a closed channel
	Channels as function parameters

	Pipelines
	Race conditions
	Comparing Go and Rust concurrency models
	Comparing Go and Erlang concurrency models
	Additional resources
	Exercises
	Summary

	Chapter 10: Concurrency in Go – Advanced Topics
	The Go scheduler revisited
	The GOMAXPROCS environment variable

	The select keyword
	Timing out a goroutine
	Timing out a goroutine – take 1
	Timing out a goroutine – take 2

	Go channels revisited
	Signal channels
	Buffered channels
	Nil channels
	Channels of channels
	Specifying the order of execution for your goroutines
	How not to use goroutines

	Shared memory and shared variables
	The sync.Mutex type
	What happens if you forget to unlock a mutex?

	The sync.RWMutex type
	The atomic package
	Sharing memory using goroutines

	Revisiting the go statement
	Catching race conditions
	The context package
	An advanced example of the context package
	Another example of the context package
	Worker pools

	Additional resources
	Exercises
	Summary

	Chapter 11: Code Testing, Optimization, and Profiling
	About optimization
	Optimizing Go code
	Profiling Go code
	The net/http/pprof standard Go package
	A simple profiling example
	A convenient external package for profiling
	The web interface of the Go profiler
	A profiling example that uses the web interface
	A quick introduction to Graphviz

	The go tool trace utility
	Testing Go code
	Writing tests for existing Go code
	Test code coverage

	Testing an HTTP server with a database backend
	The testing/quick package
	What if testing takes too long or never finishes?

	Benchmarking Go code
	A simple benchmarking example
	Wrongly defined benchmark functions

	Benchmarking buffered writing
	Finding unreachable Go code
	Cross-compilation
	Creating example functions
	From Go code to machine code
	Using assembly with Go

	Generating documentation
	Using Docker images
	Additional resources
	Exercises
	Summary

	Chapter 12: The Foundations of Network Programming in Go
	About net/http, net, and http.RoundTripper
	The http.Response type
	The http.Request type
	The http.Transport type

	About TCP/IP
	About IPv4 and IPv6
	The nc(1) command-line utility
	Reading the configuration of network interfaces
	Performing DNS lookups
	Getting the NS records of a domain
	Getting the MX records of a domain

	Creating a web server in Go
	Using the atomic package
	Profiling an HTTP server
	Creating a website in Go

	HTTP tracing
	Testing HTTP handlers

	Creating a web client in Go
	Making your Go web client more advanced

	Timing out HTTP connections
	More information about SetDeadline
	Setting the timeout period on the server side
	Yet another way to time out

	The Wireshark and tshark tools
	gRPC and Go
	Defining the interface definition file
	The gRPC client
	The gRPC server

	Additional resources
	Exercises
	Summary

	Chapter 13: Network Programming – Building Your Own Servers and Clients
	Working with HTTPS traffic
	Creating certificates
	An HTTPS client
	A simple HTTPS server
	Developing a TLS server and client

	The net standard Go package
	A TCP client
	A slightly different version of the TCP client

	A TCP server
	A slightly different version of the TCP server

	A UDP client
	Developing a UDP server
	A concurrent TCP server
	A handy concurrent TCP server

	Creating a Docker image for a Go TCP/IP server
	Remote Procedure Call (RPC)
	The RPC client
	The RPC server

	Doing low-level network programming
	Grabbing raw ICMP network data

	Additional resources
	Exercises
	Summary

	Chapter 14: Machine Learning in Go
	Calculating simple statistical properties
	Regression
	Linear regression
	Implementing linear regression
	Plotting data

	Classification
	Clustering
	Anomaly detection
	Neural networks
	Outlier analysis
	Working with TensorFlow
	Talking to Kafka
	Additional resources
	Exercises
	Summary
	Where to go next?

	Other Books You May Enjoy
	Index

