

Mastering Go

Create Golang production applications using network
libraries, concurrency, and advanced Go data structures

Mihalis Tsoukalos

BIRMINGHAM - MUMBAI

Mastering Go
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editors: Frank Pohlmann, Suresh Jain
Project Editor: Kishor Rit
Content Development Editor: Gary Schwarts
Technical Editors: Gaurav Gavas, Nidhisha Shetty
Proofreader: Tom Jacob
Indexer: Mariammal Chettiyar
Graphics: Tom Scaria
Production Coordinator: Shantanu Zagade

First published: April 2018

Production reference: 1270418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-654-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Mihalis Tsoukalos is a technical author, a Unix administrator, a developer, and a
mathematician, who enjoys learning new things. He has written more than 250 technical
articles for many publications, including Sys Admin, MacTech, Linux User and Developer,
Usenix ;login:, Linux Format, and Linux Journal.

Mihalis is also the author of Go Systems Programming, by Packt Publishing, 2017 and the
technical editor for MongoDB in Action, Second Edition, by Manning. Mihalis' research
interests include databases, operating systems, and statistics. You can reach him at http:/ ​/
www.​mtsoukalos.​eu/ ​ and @mactsouk. He is also a photographer (http:/ ​/​www. ​highiso.
net/​).

I would like to thank the people at Packt Publishing for helping me write this book,
including Frank Pohlmann and Gary Schwartz, my technical reviewer, Mat Ryer, Radhika
Atitkar, for her encouragement and trust, and Kishor Rit, for answering all my questions
and encouraging me during the whole process.

For all people everywhere: You will never change your life until you change something you
do daily!

http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.mtsoukalos.eu/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/
http://www.highiso.net/

About the reviewer
Mat Ryer has been programming computers since he was 6 years old. He would build
games and programs, first in BASIC on a ZX Spectrum and then in AmigaBASIC and
AMOS on Commodore Amiga with his father. Many hours were spent on manually
copying the code from the Amiga Format magazine and tweaking variables or moving
GOTO statements around to see what might happen. The same spirit of exploration and
obsession with programming led Mat to starting work with a local agency in Mansfield,
England, when he was 18, where he started to build websites and other online services.

After several years of working with various technologies and industries in London and
around the world, Mat noticed a new systems language called Go that Google was
pioneering. Since it addressed very pertinent and relevant modern technical challenges, Mat
started using it to solve problems while the language was still in the beta stage. He has used
it ever since. Mat contributes to open-source projects and founded Go packages, including
Testify, Moq, Silk, and Is, as well as a macOS developer tool called BitBar.

In 2018, Mat co-founded Machine Box and still spends a lot of time speaking at conferences,
writing about Go on his blog, and is an active member of the Go community.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Go and the Operating System 7
The structure of the book 8
The history of Go 8
Why learn Go? 9
Go advantages 9

Is Go perfect? 11
What is a preprocessor? 11

The godoc utility 12
Compiling Go code 13
Executing Go code 14
Two Go rules 14

You either use a Go package or do not include it 15
There is only one way to format curly braces 16

Downloading Go packages 17
Unix stdin, stdout, and stderr 19
About printing output 19
Using standard output 21
Getting user input 23
About := and = 23

Reading from standard input 24
Working with command-line arguments 26

About error output 28
Writing to log files 30

Logging levels 31
Logging facilities 31
Log servers 31
A Go program that sends information to log files 32
About log.Fatal() 35
About log.Panic() 36

Error handling in Go 38
The error data type 38
Error handling 40

Additional resources 43
Exercises 44
Summary 44

Chapter 2: Understanding Go Internals 45

Table of Contents

[ii]

The Go compiler 46
Garbage Collection 47

The Tricolor algorithm 50
More about the operation of the Go Garbage Collector 53
Unsafe code 55
About the unsafe package 57
Another example of the unsafe package 57

Calling C code from Go 59
Calling C code from Go using the same file 59
Calling C code from Go using separate files 60
The C code 61
The Go code 62
Mixing Go and C code 63

Calling Go functions from C code 64
The Go package 64
The C code 66

The defer keyword 67
Panic and Recover 69

Using the panic function on its own 71
Two handy Unix utilities 72

The strace tool 73
The dtrace tool 74

Your Go environment 76
The Go Assembler 78
Node Trees 79
Learning more about go build 85
General Go coding advices 86
Additional Resources 86
Exercises 87
Summary 87

Chapter 3: Working with Basic Go Data Types 89
Go loops 90

The for loop 90
The while loop 91
The range keyword 91
Examples of Go for loops 91

Go arrays 93
Multi-dimensional arrays 94
The shortcomings of Go arrays 97

Go slices 97
Performing basic operations on slices 98
Slices are being expanded automatically 100
Byte slices 102

Table of Contents

[iii]

The copy() function 102
Multidimensional slices 105
Another example of slices 105
Sorting slices using sort.slice() 108

Go maps 110
Storing to a nil map 112
When you should use a map? 113

Go constants 113
The constant generator iota 115

Go pointers 118
Dealing with times and dates 121

Working with times 123
Parsing times 123
Working with dates 125
Parsing dates 125
Changing date and time formats 127

Additional resources 129
Exercises 129
Summary 129

Chapter 4: The Uses of Composite Types 130
About composite types 131
Structures 131

Pointers to structures 134
Using the new keyword 136

Tuples 136
Regular expressions and pattern matching 138

Now for some theory 139
A simple example 139
A more advanced example 142
Matching IPv4 addresses 145

Strings 150
What is a rune? 153
The Unicode package 155
The strings package 156

The switch statement 160
Calculating Pi with great accuracy 164
Developing a key/value store in Go 167
Additional resources 172
Exercises 173
Summary 173

Chapter 5: Enhancing Go Code with Data Structures 174
About graphs and nodes 175

Table of Contents

[iv]

Algorithm complexity 175
Binary trees in Go 176

Implementing a binary tree in Go 177
Advantages of binary trees 179

Hash tables in Go 180
Implementing a hash table in Go 181
Implementing the lookup functionality 184
Advantages of hash tables 185

Linked lists in Go 185
Implementing a linked list in Go 186
Advantages of linked lists 190

Doubly linked lists in Go 190
Implementing a doubly linked list in Go 192
Advantages of doubly linked lists 195

Queues in Go 195
Implementing a queue in Go 196

Stacks in Go 199
Implementing a stack in Go 199

The container package 202
Using container/heap 203
Using container/list 206
Using container/ring 208

Generating random numbers 210
Generating random strings 213

Additional Resources 216
Exercises 216
Summary 217

Chapter 6: What You Might Not Know About Go Packages 218
About Go packages 219
About Go functions 219

Anonymous functions 220
Functions that return multiple values 220
The return values of a function can be named! 222
Functions with pointer parameters 224
Functions that return pointers 225
Functions that return other functions 227
Functions that accept other functions as parameters 228

Developing your own Go packages 230
Compiling a Go package 232
Private variables and functions 232
The init() function 232

Reading the Go code of a standard Go package 235
Exploring the code of the net/url package 235

Table of Contents

[v]

Looking at the Go code of the log/syslog package 237
Creating good Go packages 238
The syscall package 240

Finding out how fmt.Println() really works 243
Text and HTML templates 245

Generating text output 246
Constructing HTML output 248
Basic SQLite3 commands 256

Additional resources 256
Exercises 257
Summary 257

Chapter 7: Reflection and Interfaces for All Seasons 258
Type methods 258
Go interfaces 261
About type assertion 262
Developing your own interfaces 264

Using a Go interface 265
Using switch with interface and data types 267

Reflection 269
A simple Reflection example 270
A more advanced reflection example 272
The three disadvantages of reflection 275

Object-oriented programming in Go! 276
Additional resources 280
Exercises 280
Summary 281

Chapter 8: Telling a Unix System What to Do 282
About Unix processes 283
The flag package 283
The io.Reader and io.Writer interfaces 289

Buffered and unbuffered file input and output 289
The bufio package 289
Reading text files 290

Reading a text file line by line 290
Reading a text file word by word 292
Reading a text file character by character 294
Reading from /dev/random 296

Reading the amount of data you want from a file 298
Why are we using binary format? 300
Reading CSV files 301
Writing to a file 304
Loading and saving data on disk 307

Table of Contents

[vi]

The strings package revisited 311
About the bytes package 313
File permissions 315
Handling Unix signals 316

Handling two signals 317
Handling all signals 319

Programming Unix pipes in Go 322
Implementing the cat(1) utility in Go 322

Traversing directory trees 324
Using eBPF from Go 327
About syscall.PtraceRegs 328
Tracing system calls 330
User ID and group ID 335
Additional resources 336
Exercises 337
Summary 338

Chapter 9: Go Concurrency – Goroutines, Channels, and Pipelines 339
About processes, threads, and goroutines 340

The Go scheduler 341
Concurrency and parallelism 341

Goroutines 342
Creating a goroutine 342
Creating multiple goroutines 344

Waiting for your goroutines to finish 346
What if the number of Add() and Done() calls do not agree? 348

Channels 350
Writing to a channel 350
Reading from a channel 352
Channels as function parameters 354

Pipelines 355
Additional resources 359
Exercises 359
Summary 360

Chapter 10: Go Concurrency – Advanced Topics 361
The Go scheduler revisited 362

The GOMAXPROCS environment variable 364
The select keyword 365
Timing out a goroutine 368

Timing out a goroutine – take 1 368
Timing out a goroutine – take 2 370

Go channels revisited 373
Signal channels 374

Table of Contents

[vii]

Buffered channels 374
Nil channels 377
Channel of channels 378
Specifying the order of execution for your goroutines 381

Shared memory and shared variables 384
The sync.Mutex type 385

What happens if you forget to unlock a mutex? 387
The sync.RWMutex type 389
Sharing memory using goroutines 393

Catching race conditions 395
The context package 401

An advanced example of the context package 405
Worker pools 410

Additional resources 415
Exercises 416
Summary 417

Chapter 11: Code Testing, Optimization, and Profiling 418
The Go version used in this chapter 419

Comparing Go version 1.10 with Go version 1.9 419
Installing a beta or RC version of Go 420
About optimization 422
Optimizing Go code 422
Profiling Go code 423

The net/http/pprof standard Go package 424
A simple profiling example 424
A convenient external package for profiling 432
The web interface of the Go profiler 434

A profiling example that uses the web interface 434
A quick introduction to Graphviz 437

The go tool trace utility 438
Testing Go code 444

Writing tests for existing Go code 445
Benchmarking Go code 449
A simple benchmarking example 449

A wrong benchmark function 455
Benchmarking buffered writing 456
Finding unreachable Go code 461
Cross-compilation 462
Creating example functions 464
Generating documentation 466
Additional resources 472
Exercises 473
Summary 474

Table of Contents

[viii]

Chapter 12: The Foundations of Network Programming in Go 475
About net/http, net, and http.RoundTripper 476

The http.Response type 476
The http.Request type 477
The http.Transport type 478

About TCP/IP 479
About IPv4 and IPv6 480
The nc(1) command-line utility 480
Reading the configuration of network interfaces 481
Performing DNS lookups 486

Getting the NS records of a domain 488
Getting the MX records of a domain 490

Creating a web server in Go 492
Profiling an HTTP server 495
Creating a website in Go 500

HTTP tracing 510
Testing HTTP handlers 513

Creating a web client in Go 516
Making your Go web client more advanced 518

Timing out HTTP connections 522
More information about SetDeadline 524
Setting the timeout period on the server side 525
Yet another way to time out! 527

Wireshark and tshark tools 529
Additional resources 529
Exercises 530
Summary 531

Chapter 13: Network Programming – Building Servers and Clients 532
The net standard Go package 533
A TCP client 533

A slightly different version of the TCP client 535
A TCP server 537

A slightly different version of the TCP server 539
A UDP client 542
Developing a UDP server 544
A concurrent TCP server 546

A handy concurrent TCP server 551
Remote Procedure Call (RPC) 557

The RPC client 558
The RPC server 559

Doing low-level network programming 561
Grabbing raw ICMP network data 564

Table of Contents

[ix]

Where to go next? 569
Additional resources 569
Exercises 570
Summary 571

Other Books You May Enjoy 572

Index 576

Preface
The book you are reading right now is called Mastering Go and is all about helping you
become a better Go developer!

I tried to include the right amount of theory and hands on practice, but only you, the reader,
can tell if I succeeded or not! Additionally, all presented examples are self-contained, which
means that they can be used on their own or as templates for creating more complex
applications.

Please try to do the exercises located at the end of each chapter and do not hesitate to
contact me with ways to make any future editions of this book even better!

Who this book is for
This book is for amateur and intermediate Go programmers who want to take their Go
knowledge to the next level as well as for experienced developers in other programming
languages who want to learn Go without learning again how a for loop works.

Some of the information found in this book can be also found in my other book, Go Systems
Programming by Packt Publishing. The main difference between these two books is that Go
Systems Programming is about developing system tools using the capabilities of Go, whereas
Mastering Go is about explaining the capabilities and the internals of Go in order to become
a better Go developer. Both books can be used as a reference after reading them for the first
or the second time.

What this book covers
Chapter 1, Go and the Operating System, begins by talking about the history of Go and the
advantages of Go before describing the godoc utility and explaining how you can compile
and execute Go programs. After that, it talks about printing the output and getting user
input, working with the command-line arguments of a program, and using log files. The
last topic of the first chapter is error handling, which plays a key role in Go.

Preface

[2]

Chapter 2, Understanding Go Internals, discusses the Go garbage collector and the way it
operates. Then it talks about unsafe code and the unsafe package, how to call C code from a
Go program, and how to call Go code from a C program. After that, it showcases the use of
the defer keyword and presents the strace(1) and dtrace(1) utilities. In the remaining
sections of the chapter, you will learn how to find information about your Go environment
and the use of the Go assembler.

Chapter 3, Working with Basic Go Data Types, talks about the data types offered by Go,
which includes arrays, slices, and maps as well as Go pointers, constants, loops, and
working with dates and times. You would not want to miss this chapter!

Chapter 4, The Uses of Composite Types, begins by teaching you about Go structures and the
struct keyword before discussing tuples, strings, runes, byte slices, and string literals. The
rest of the chapter talks about regular expressions and pattern matching, the switch
statement, the strings package, the math/big package, and about developing a key-value
store in Go.

Chapter 5, Enhancing Go Code with Data Structures, is about developing your own data
structures when the structures offered by Go do not fit a particular problem. This includes
developing binary trees, linked lists, hash tables, stacks, and queues and learning about
their advantages. This chapter also showcases the use of the structures found in the
container standard Go package. The last topic of this chapter is random number generation.

Chapter 6, What You Might Not Know About Go Packages, is all about packages and
functions, which also includes the use of the init() function, the syscall standard Go
package, and the text/template and html/template packages. This chapter will
definitely make you a better Go developer!

Chapter 7, Reflection and Interfaces for All Seasons, discusses three advanced Go concepts:
reflection, interfaces, and type methods. The last part of the chapter is about object oriented
programming in Go!

Chapter 8, Telling a Unix System What to Do, is about systems programming in Go, which
includes subjects such as the flag package for working with command-line arguments,
handling Unix signals, file input and output, the bytes package, and the io.Reader and
io.Writer interfaces. As I told you before, if you are really into systems programming in
Go, then getting Go Systems Programming after reading Mastering Go is highly
recommended!

Preface

[3]

Chapter 9, Concurrency in Go – Goroutines, Channels, and Pipelines, discusses goroutines,
channels and pipelines, which is the Go way of achieving concurrency. You will also learn
about the differences between processes, threads, and goroutines, and the sync package
and the way the Go scheduler operates.

Chapter 10, Concurrency in Go – Advanced Topics, will continue from the point where the
previous chapter left off and make you a master of goroutines and channels! You will learn
more about the Go scheduler, the use of the powerful select keyword and the various
types of Go channels as well as shared memory, mutexes, the sync.Mutex type, and the
sync.RWMutex type. The last part of the chapter will talk about the context package,
worker pools, and how to detect race conditions.

Chapter 11, Code Testing, Optimization, and Profiling, discusses code testing, code
optimization, and code profiling as well as about cross compilation, creating
documentation, benchmarking Go code, creating example function, and finding
unreachable Go code.

Chapter 12, The Foundations of Network Programming in Go, is all about the net/http
package and how you can develop web clients and web servers in Go. This also includes the
use of the http.Response, http.Request and http.Transport structures and the
http.NewServeMux type. You will even learn how to develop an entire website in Go!
Furthermore, in this chapter, you will learn how to read the configuration of your network
interfaces and how to perform DNS lookups in Go.

Chapter 13, Network Programming – Building Your Own Servers and Clients, talks about
creating UDP and TCP servers and clients in Go, using the functionality offered by the net
package. Other topics included in this chapter are how to create RPC clients and servers as
well as develop a concurrent TCP server in Go and read raw network packages!

To get the most out of this book
This book requires any Unix machine with a relatively recent Go version installed, which
includes any machine running Mac OS X, macOS or Linux. Most of the presented code will
also work on Microsoft Windows machines.

Preface

[4]

To get the most out of this book, you should try to apply the knowledge of each chapter in
your own programs as soon as possible, and see what works and what does not! As I told
you before, try to solve the exercises found at the end of each chapter, or create your own
programming problems.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​Go. In case there's an update to the code, it will be updated on
the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/MasteringGo_ColorImages.

pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/Mastering-Go
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringGo_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first way is similar to using the man(1) command, but for Go functions and
packages."

A block of code is set as follows:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("This is a sample Go program!")
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("This is a sample Go program!")
}

Any command-line input or output is written as follows:

$ date
Sat Oct 21 20:09:20 EEST 2017
$ go version
go version go1.9.1 darwin/amd64

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Go and the Operating System

This chapter will serve as an introduction to various Go topics that may appear slightly
ingenuous and naïve at first. The topics contained in this chapter, however, will be used
throughout the entire book, so you'll need to make sure that you completely understand
them. As happens with most practical subjects, the best way to understand something is to
experiment with it. In this case, experimenting means writing Go code on your own,
making your own mistakes, and learning from them! Just don't let the error messages
discourage you.

In the first chapter, you will learn the following topics:

The history of the Go programming language

The reasons that Go is a good choice for developing your applications

Compiling Go code

Executing Go code

Downloading and using external Go packages

Unix standard input, output, and error

Printing data on the screen

Getting user input

Printing data to standard error

Working with log files

Dealing with error handling in Go

Go and the Operating System Chapter 1

[8]

The structure of the book
Mastering Go can be divided into three logical parts. The first part consists of four chapters,
and it takes a sophisticated look at some important Go concepts, including user input and
output, downloading external Go packages, compiling Go code, calling C code from Go, as
well as using Go basic types and Go composite types.

The second part consists of three chapters that deal with Go code organization, the design
of Go projects, and some advanced features of Go, respectively.

The third part includes the remaining six chapters and deals with the more practical Go
topics, including systems programming in Go, concurrency in Go, code testing,
optimization, and profiling. The last two chapters of this book will also talk about network
programming in Go.

The book will present relatively small, yet complete Go programs that illustrate the
concepts presented. This has two main advantages: first, you do not have to look at an
endless code listing when trying to learn a single technique, and second, you can use this
code as a starting point when creating your own applications and utilities.

Note that the focus of this book is machines that run a variant of the Unix operating system;
this does not mean that the Go code presented will not run on Microsoft Windows
machines—after all Go is portable! It just means that the included Go code has been tested
on various Unix variants, mainly on macOS High Sierra and Debian Linux.

The history of Go
Go is a modern, generic purpose open-source programming language that was officially
announced at the end of 2009. It began as an internal Google project, which means that it
was started as an experiment, and it is inspired by many other programming languages,
including C, Pascal, Alef, and Oberon. Its spiritual fathers are Robert Griesemer, Ken
Thomson, and Rob Pike, who are professional programmers who designed Go as a language
for professional programmers who want to build reliable, robust, and efficient software.
Apart from its syntax and its standard functions, Go comes with a pretty rich standard
library.

Go and the Operating System Chapter 1

[9]

At the time of writing this chapter, the current stable Go version is 1.9.1, but version 1.9.2 is
on its way:

$ date
Sat Oct 21 20:09:20 EEST 2017
$ go version
go version go1.9.1 darwin/amd64

I am pretty confident that by the time this book is published, the output of the go version
command will be different! The good news is that due to the way that Go progresses, this
book will remain relevant for many years!

If you are installing Go for the first time, you can start by visiting https://golang.org/dl/.
However, there is a good chance that your Unix variant already has a ready-to-install
package for the Go programming language, so you might want to get Go, using your
favorite package manager.

Why learn Go?
Go is a modern programming language that allows you to write safe code without silly
bugs—do not worry, you can still create complex bugs! Most of all, though, Go wants to
have happy developers; therefore, by design, Go code looks attractive and familiar, and it is
easy to write.

The next section talks more analytically about the advantages of Go.

Go advantages
Go has many advantages—some of them are unique to Go, while others are shared with
other programming languages.

The most significant Go advantages and features are as follows:

Go is a modern programming language that was created by experienced
developers.

Go release candidates are used first by Google staff for production use!

Go code is easy to read and easy to understand.

https://golang.org/dl/

Go and the Operating System Chapter 1

[10]

Go wants happy developers, because a happy developer writes better code!

The Go compiler prints practical warning and error messages that help you solve
the actual problem. Put simply, the Go compiler is here to help you, and not to
make your life miserable by printing pointless output!

Go code is portable, especially between Unix machines.

Go has support for procedural, concurrent, and distributed programming.

Go supports Garbage Collection, so you do not have to deal with memory
allocation and deallocation.

Go does not have a preprocessor. It does high-speed compilation. As a
consequence, Go can also be used as a scripting language.

Go can build web applications, and it provides a simple web server for testing
purposes.

The standard Go library offers many packages that simplify the work of the
developer. Additionally, the functions found in the standard Go library are tested
and debugged in advance by the people who develop Go, which means that most
of the time these functions come without bugs.

Go uses static linking by default, which means that the binary files produced can
be easily transferred to other machines with the same OS. As a consequence, once
a Go program is compiled successfully and an executable file is generated, the
developer does not need to worry about libraries, dependencies, and different
library versions anymore.

You will not need a GUI for developing, debugging, and testing Go applications,
as Go can be used from the command-line, which many Unix people prefer.

Go supports Unicode, which means that you do not need any extra code for
printing characters from multiple human languages.

Go keeps concepts orthogonal, because a few orthogonal features work better
than many overlapping ones.

Go and the Operating System Chapter 1

[11]

Is Go perfect?
There is no such thing as the perfect programming language, and Go is no exception to this
rule. However, some programming languages are better at some areas of programming, or
we just like them more than other programming languages. Personally, I do not like Java,
and while I used to like C++, I do not like it anymore. This is mainly because I find the look
of Java and C++ code to be unpleasant.

Some of the disadvantages of Go are as follows:

Go does not have direct support for object-oriented programming (OOP), which
can be a problem for programmers who are used to writing code in an object-
oriented manner. Nevertheless, you can use composition in Go to mimic
inheritance.

For some people who still prefer C, Go will never replace C!

C is still faster than any other programming language for systems programming,
mainly because Unix is written in C.

Nevertheless, Go is a pretty decent and modern programming language that will not
disappoint if you find the time to learn it and program in it.

What is a preprocessor?
Earlier, I said that Go does not have a preprocessor, and that this is a good thing. A
preprocessor is a program that processes your input data and generates output that will be
used as the input to another program. In the context of programming languages, the input
of a preprocessor is source code that will be processed by the preprocessor before given as
input to the compiler of the programming language. The biggest disadvantage of a
preprocessor is that it knows nothing about the underlying language or its syntax!

Put simply, this means that when a preprocessor is used, you cannot be certain that the final
version of your code will do what you really want it to do because the preprocessor might
alter the logic as well as the semantics of your original code!

The list of programming languages with a preprocessor includes, but is not limited to C,
C++, Ada, and PL/SQL. The infamous C preprocessor processes lines that begin with # and
are called directives or pragmas. Directives and pragmas are not part of the C
programming language!

Go and the Operating System Chapter 1

[12]

The godoc utility
The Go distribution comes with a plethora of tools that can simplify your life as a
programmer. One of these tools is the godoc utility, which allows you to see the
documentation of existing Go functions and packages without needing an internet
connection.

The godoc utility can be executed either as a normal command-line application that
displays its output on a Terminal window, or as a command-line application that starts a
web server. In the latter case, you will need a web browser to look at the Go documentation.

If you type godoc without any command-line parameters, you will get the
list of the command-line options supported by godoc.

The first way of executing godoc is similar to using the man(1) command, but for Go
functions and packages. So, in order to find out information about the Printf() function
of the fmt package, you should execute the following command:

$ godoc fmt Printf

Similarly, you can find out information about the entire fmt package by running the next
command:

$ godoc cmd/fmt

The second way requires executing godoc with the -http parameter:

$ godoc -http=:8001

The numeric value used in the preceding command, 8001, is the port number to which the
HTTP server will listen. You can choose any port number that is available provided that
you have the right privileges. However, note that port numbers 0-1023 are restricted and
can only be used by the root user. Thus, it is better to avoid choosing one of them and to
pick something else provided that it is not already in use by a different process.

You can omit the equal sign in the command presented and put a space character in its
place. So, the next command is the complete equivalent of the previous one:

$ godoc -http :8001

Go and the Operating System Chapter 1

[13]

After that, you should point your web browser to the http://localhost:8001/pkg/ URL in
order to get the list of the available Go packages and to browse their documentation.

Compiling Go code
In this section, you will learn how to compile Go code. The good news is that you can
compile your Go code from the command-line without needing a graphical application.

Furthermore, Go does not care about the name of the source file of an autonomous program
as long as the package name is main and there is a single main() function in it, because the
main() function is where the program execution begins. As a result, you cannot have
multiple main() functions in the files of a single project.

We will start our first Go program compilation with a program named aSourceFile.go
that contains the next Go code:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("This is a sample Go program!")
}

So, in order to compile aSourceFile.go and create a statically linked executable file, you
will need to execute this command:

$ go build aSourceFile.go

After that, you will have a new executable file named aSourceFile:

$ file aSourceFile
aSourceFile: Mach-O 64-bit executable x86_64
$ ls -l aSourceFile
-rwxr-xr-x 1 mtsouk staff 1933104 Oct 14 21:50 aSourceFile
$./aSourceFile
This is a sample Go program!

Go and the Operating System Chapter 1

[14]

The main reason that aSourceFile is that big is because it is statically linked, which means
that it does not require any external libraries in order to run.

Executing Go code
There is another way to execute your Go code that does not create any permanent
executable files—it just generates some intermediate files that are automatically deleted
afterwards.

The method presented in this chapter allows you to use Go as if it were a
scripting language like Python, Ruby, and Perl.

In order to run aSourceFile.go without creating an executable file, you will need to
execute the next command:

$ go run aSourceFile.go
This is a sample Go program!

As you can see, the output of the preceding command is exactly the same as before.

With go run, the Go compiler still needs to create an executable file. The
fact that you will not see it, that it is automatically executed, and that it is
automatically deleted after the program has finished might make you
think that there is no need for an executable file!

This book mainly uses go run to execute the example code, primarily because it is simpler
than running go build and then running the executable file. Additionally, go run does
not leave any files on your hard drive after the program has finished its execution.

Two Go rules
Go has strict coding rules that are there to help you avoid silly errors and bugs in your
code, as well as to make your code easier to read among the Go community. This section
will present two such Go rules that you need to know.

Go and the Operating System Chapter 1

[15]

Please remember that the Go compiler is here to help and not make your life miserable. As a
result, the main purpose of the Go compiler is to compile and increase the quality of your
Go code.

You either use a Go package or do not include it
Go has strict rules about package usage. Therefore, you cannot just include any package
that you might think you will need and not use it afterwards. You will learn more about Go
packages in Chapter 6, What You Might Not Know About Go Packages.

Look at the following naïve program, which is saved as packageNotUsed.go:

package main

import (
 "fmt"
 "os"
)

func main() {
 fmt.Println("Hello there!")
}

In this book, you are going to see lots of error messages, error situations,
and warnings. I believe that examining code that fails to compile is useful
and sometimes even more valuable than just looking at Go code that
compiles without any errors. The Go compiler usually displays useful
error messages and warnings that will most likely help you resolve an
erroneous situation, so do not underestimate these error messages and
warnings.

If you execute packageNotUsed.go, you will get the next error message from Go and the
program will not be executed:

$ go run packageNotUsed.go
command-line-arguments
./packageNotUsed.go:5:2: imported and not used: "os"

If you remove the os package from the import list of the program, packageNotUsed.go
will compile just fine—try it on your own.

Go and the Operating System Chapter 1

[16]

Although, this is not the perfect time to start talking about breaking Go rules, there is a way
to bypass this restriction, which is showcased in the next Go code listing that is saved in the
packageNotUsedUnderscore.go file:

package main

import (
 "fmt"
 _ "os"
)

func main() {
 fmt.Println("Hello there!")
}

Using an underscore character in front of a package name in the import list will not create
an error message in the compilation process, even if that package is not used in the
program:

$ go run packageNotUsedUnderscore.go
Hello there!

The reason that Go allows you to bypass this rule will become more
evident in Chapter 6, What You Might Not Know About Go Packages.

There is only one way to format curly braces
Look at the next Go program, which is named curly.go:

package main

import (
 "fmt"
)

func main()
{
 fmt.Println("Go has strict rules for curly braces!")
}

Go and the Operating System Chapter 1

[17]

Although it looks just fine, if you try to execute it, you will be fairly disappointed because
you will get the next syntax error message, and the code will not compile and therefore not
run:

$ go run curly.go
command-line-arguments
./curly.go:7:6: missing function body for "main"
./curly.go:8:1: syntax error: unexpected semicolon or newline before
{

The official explanation for this error message is that Go requires the use of semicolons as
statement terminators in many contexts, and the compiler automatically inserts the required
semicolons when it thinks that they are necessary. Therefore, putting the opening brace ({)
in its own line will make the Go compiler insert a semicolon at the end of the previous line
(func main()), which produces the error message.

Downloading Go packages
Although the standard Go library is very rich, there are times when you will need to
download external Go packages in order to use their functionality. This section will teach
you how to download an external package and where it will be placed on your Unix
machine.

Look at the next simple Go program that is saved as getPackage.go:

package main

import (
 "fmt"
 "github.com/mactsouk/go/simpleGitHub"
)

func main() {
 fmt.Println(simpleGitHub. AddTwo (5, 6))
}

This program uses an external package, because one of the import commands uses an
internet address. In this case, the external package is called simpleGitHub and is located
at https:/​/​github. ​com/ ​mactsouk/ ​go.

https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go
https://github.com/mactsouk/go

Go and the Operating System Chapter 1

[18]

If you try to execute getPackage.go right away, you will be disappointed:

$ go run getPackage.go
getPackage.go:5:2: cannot find package
"github.com/mactsouk/go/simpleGitHub" in any of:
 /usr/local/Cellar/go/1.9.1/libexec/src/github.com/
mactsouk/go/simpleGitHub (from $GOROOT)
 /Users/mtsouk/go/src/github.com/mactsouk/go/
simpleGitHub (from $GOPATH)

The thing is that you will need to get the missing package onto your computer. In order to
download it, you will need to execute the following command:

$ go get -v github.com/mactsouk/go/simpleGitHub
github.com/mactsouk/go (download)
github.com/mactsouk/go/simpleGitHub

After that, you can find the downloaded files at the following directory:

$ ls -l ~/go/src/github.com/mactsouk/go/simpleGitHub/
total 8
-rw-r--r-- 1 mtsouk staff 66 Oct 17 21:47 simpleGitHub.go

However, the go get command also compiles the package. The relevant files can be found
at the following place:

$ ls -l ~/go/pkg/darwin_amd64/github.com/mactsouk/go/simpleGitHub.a
-rw-r--r-- 1 mtsouk staff 1050 Oct 17 21:47 /Users/mtsouk/go/pkg/
darwin_amd64/github.com/mactsouk/go/simpleGitHub.a

You are now ready to execute getPackage.go without any problems:

$ go run getPackage.go
11

You can delete the intermediate files of a downloaded Go package as follows:

$ go clean -i -v -x github.com/mactsouk/go/simpleGitHub
cd /Users/mtsouk/go/src/github.com/mactsouk/go/simpleGitHub
rm -f simpleGitHub.test simpleGitHub.test.exe
rm -f /Users/mtsouk/go/pkg/darwin_amd64/github.com/mactsouk/
go/simpleGitHub.a

Go and the Operating System Chapter 1

[19]

Similarly, you can delete an entire Go package that you have downloaded locally using the
rm(1) Unix command to delete its Go source after using go clean:

$ go clean -i -v -x github.com/mactsouk/go/simpleGitHub
$ rm -rf ~/go/src/github.com/mactsouk/go/simpleGitHub

After executing the former commands, you will need to download the Go package again.

You will learn a lot more about Go packages in Chapter 6, What You Might Not Know About
Go Packages.

Unix stdin, stdout, and stderr
Every Unix operating system has three files open all the time for its processes. As you
know, Unix considers everything a file, even a printer or your mouse. Unix uses file
descriptors, which are positive integer values, as an internal representation for accessing all
of its open files, which is much more convenient than using long paths.

By default, all Unix systems support three special and standard filenames: /dev/stdin,
/dev/stdout, and /dev/stderr, which can also be accessed using file descriptors 0, 1,
and 2, respectively. These three file descriptors are also called standard input, standard
output, and standard error, respectively. Additionally, file descriptor 0 can be accessed as
/dev/fd/0 on a macOS machine and as both /dev/fd/0 and /dev/pts/0 on a Debian
Linux machine.

Go uses os.Stdin for accessing standard input, os.Stdout for accessing standard output,
and os.Stderr for accessing standard error. Although you can still use /dev/stdin,
/dev/stdout, and /dev/stderr, or the related file descriptor values for accessing the
same devices, it is better, safer, and more portable to stick with the os.Stdin, os.Stdout,
and os.Stderr standard filenames that Go offers.

About printing output
As is the case with Unix and C, Go also offers a variety of ways for printing your output on
the screen. All of the printing functions in this section require the use of the fmt Go
standard package and are illustrated in the printing.go program, which will be presented
in two parts.

Go and the Operating System Chapter 1

[20]

The simplest way to print something in Go is by using the fmt.Println() and
fmt.Printf() functions. The fmt.Printf() function has many similarities to the C
printf(3) function. You can also use the fmt.Print() function instead of
fmt.Println(). The main difference between fmt.Print() and fmt.Println() is that
the latter automatically adds a newline character each time you call it, whereas the biggest
difference between fmt.Println() and fmt.Printf() is that the latter requires a format
specifier for each thing that you want to print, just like the C printf(3) function, which
means that you have better control over what you are doing, though you have to write
more code. Go calls these format specifiers verbs. You can find more information about
verbs at https://golang.org/pkg/fmt/. If you have to perform any formatting before
printing something, or you have to arrange multiple variables, then using fmt.Printf()
might be a better choice. However, if you only have to print a single variable, then you
might need to choose either fmt.Print() or fmt.Println(), depending on whether you
need the newline character or not.

The first part of printing.go contains the next Go code:

package main

import (
 "fmt"
)

func main() {
 v1 := "123"
 v2 := 123
 v3 := "Have a nice day\n"
 v4 := "abc"

In this part, you can see the import of the fmt package and the definition of four Go
variables. The \n used in v3 is the line break character-if you just want to insert a line break
in your output, however, you can call fmt.Println() without any arguments instead of
using something like fmt.Print("\n").

The second part follows:

 fmt.Print(v1, v2, v3, v4)
 fmt.Println()
 fmt.Println(v1, v2, v3, v4)
 fmt.Print(v1, " ", v2, " ", v3, " ", v4, "\n")
 fmt.Printf("%s%d %s %s\n", v1, v2, v3, v4)
}

https://golang.org/pkg/fmt/

Go and the Operating System Chapter 1

[21]

In this part, you print the four variables using fmt.Println(), fmt.Print(), and
fmt.Printf() in order to understand their differences better.

If you execute printing.go, you will get the following output:

$ go run printing.go
123123Have a nice day
abc
123 123 Have a nice day
abc
123 123 Have a nice day
abc
123123 Have a nice day
abc

As you can see in the preceding output, the fmt.Println() function also adds a space
character between its parameters, which is not the case with fmt.Print(). As a result, a
statement like fmt.Println(v1, v2) is equivalent to fmt.Print(v1, " ", v2,
"\n").

Apart from fmt.Println(), fmt.Print(), and fmt.Printf(), which are the simplest
functions that can be used for generating output on the screen, there is also the S family of
functions that includes fmt.Sprintln(), fmt.Sprint(), and fmt.Sprintf(), which are
used for creating strings based on the given format and the F family of functions. This
includes fmt.Fprintln(), fmt.Fprint() and fmt.Fprintf(), which are used for
writing to files using an io.Writer.

You will learn more about the io.Writer and io.Reader interfaces in
Chapter 8, Telling a Unix System What to Do.

The next section will teach you how to print your data using standard output, which is
pretty common in the Unix world.

Using standard output
Standard output is more or less equivalent to printing on the screen. However, using
standard output might require the use of functions that do not belong to the fmt package,
which is why it is presented in its own section.

Go and the Operating System Chapter 1

[22]

The relevant technique will be illustrated in stdOUT.go, which will be offered in three
parts. The first part of the program follows:

package main

import (
 "io"
 "os"
)

Here stdOUT.go uses the io package instead of the fmt package. The os package is used
for reading the command-line arguments of the program and for accessing os.Stdout.

The second portion of stdOUT.go contains the next Go code:

func main() {
 myString := ""
 arguments := os.Args
 if len(arguments) == 1 {
 myString = "Please give me one argument!"
 } else {
 myString = arguments[1]
 }

The myString variable holds the text that will be printed on the screen, which is either the
first command-line argument of the program or, if the program was executed without any
command-line arguments, a hard-coded text message.

The third part of the program is as follows:

 io.WriteString(os.Stdout, myString)
 io.WriteString(os.Stdout, "\n")
}

In this case, the io.WriteString() function works in the same way as the fmt.Print()
function; however, it takes only two parameters. The first parameter is the file to which you
want to write, which in this case is os.Stdout, and the second parameter is a string
variable.

NOTE: Strictly speaking, the type of the first parameter of the
io.WriteString() function should be an io.Writer interface, which
requires a slice of bytes as the second parameter. However, in this case, a
string does the job just fine. You will learn more about slices in Chapter
3, Working with Basic Go Data Types.

Go and the Operating System Chapter 1

[23]

Executing stdOUT.go will produce the following output:

$ go run stdOUT.go
Please give me one argument!
$ go run stdOUT.go 123 12
123

The preceding output verifies that the io.WriteString() function sends the contents of
its second parameter on the screen when its first parameter is os.Stdout.

Getting user input
There are three main ways to acquire user input:

By reading the command-line arguments of a program1.

By asking the user for input2.

By reading external files3.

This section will present the first two ways. Should you wish to learn how to read an
external file, visit Chapter 8, Telling a Unix System What to Do.

About := and =
Before continuing, it would be very useful to talk about the use of := and how it differs
from =. The official name for := is the short assignment statement. The short assignment
statement can be used in place of a var declaration with an implicit type.

The var keyword is mostly used for declaring global variables in Go
programs as well as for declaring variables without an initial value. The
reason for the former is that every statement that exists outside of the code
of a function must begin with a keyword, such as func or var. This means
that the short assignment statement cannot be used outside of a function
because it is not available there.

The := operator works as follows:

m := 123

Go and the Operating System Chapter 1

[24]

The result of the preceding statement is a new integer variable named m with a value of 123.

However, if you try to use := on an already declared variable, the compilation will fail with
the next error message, which will make perfect sense:

$ go run test.go
command-line-arguments
./test.go:5:4: no new variables on left side of :=

Now you might ask what will happen if you are expecting two or more values from a
function, and you want to use an existing variable for one of them. Should you use := or =?
The answer is simple: you should use := as shown in the next code example:

i, k := 3, 4
j, k := 1, 2

As the j variable is used for the first time in the second statement, you should use := even
though k has already been defined in the first statement.

Although it seems boring to talk about such insignificant things, knowing them will save
you from various types of errors in the long run!

Reading from standard input
The reading of data from the standard input will be illustrated in stdIN.go, which you will
see in two parts. The first part follows:

package main

import (
 "bufio"
 "fmt"
 "os"
)

In the preceding code, you see the use of the bufio package for the first time in this book.

You will learn more about the bufio package, which is related to file
input and output, in Chapter 8, Telling a Unix System What to Do.

Go and the Operating System Chapter 1

[25]

Although the bufio package is mostly used for file input and output, you will keep seeing
the os package all of the time in this book because it contains many handy functions. Its
most common functionality is that it provides you with a way to access the command-line
arguments of a Go program (os.Args). The official description of the os package tells us
that it offers functions that perform operating system operations. This includes functions for
creating, deleting, and renaming files and directories, as well as functions for learning the
Unix permissions and other characteristics of files and directories. The main advantage of
the os package is that it is platform independent. Put simply, its functions will work on
both Unix and Microsoft Windows machines!

The second part of stdIN.go contains the following Go code:

func main() {
 var f *os.File
 f = os.Stdin
 defer f.Close()

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 fmt.Println(">", scanner.Text())
 }
}

Here there is a call to bufio.NewScanner() using standard input (os.Stdin) as its
parameter. This call returns a bufio.Scanner variable, which is then used with the
Scan() function for reading from os.Stdin line by line. Each line that is read is printed on
the screen before getting the next one. Note that each line printed by the program begins
with the > character.

The execution of stdIN.go will produce the following type of output:

$ go run stdIN.go
21
> 21
This is Mihalis!
> This is Mihalis!

In Unix, you can tell a program to stop reading data from standard input by pressing Ctrl +
D.

The Go code of stdIN.go and stdOUT.go will be very useful when we
talk about Unix pipes in Chapter 8, Telling a Unix System What to Do, so do
not underestimate their simplicity.

Go and the Operating System Chapter 1

[26]

Working with command-line arguments
The technique covered in this section will be illustrated by using the Go code of cla.go,
which will be presented in three parts. The program will find the minimum and the
maximum of its command-line arguments.

The first part of the program is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
)

What is important here is to realize that obtaining the command-line arguments requires
the use of the os package. Additionally, you need another package, named strconv, in
order to be able to convert a command-line argument, which is given as a string, into an
arithmetical data type.

The second part of the program is as follows:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Please give one or more floats.")
 os.Exit(1)
 }

 arguments := os.Args
 min, _ := strconv.ParseFloat(arguments[1], 64)
 max, _ := strconv.ParseFloat(arguments[1], 64)

Here, cla.go checks whether you have any command-line arguments or not by examining
the length of os.Args, because the program needs at least one command-line argument to
operate. Note that os.Args is a Go slice with string values. The first element in the slice is
the name of the executable program. Therefore, in order to initialize the min and max
variables, you will need to use the second element of the os.Args string slice that has an
index value of 1.

Go and the Operating System Chapter 1

[27]

The important point here is that the fact that you are expecting one or more floats does not
necessarily mean that the user will give you valid floats, either by accident or on purpose.
However, as we have not talked about error handling in Go so far, cla.go assumes that all
command-line arguments are in the right format and therefore will be acceptable. As a
result, cla.go ignores the error value returned by the strconv.ParseFloat() function
using the following statement:

n, _ := strconv.ParseFloat(arguments[i], 64)

The preceding statement tells Go that you only want to get the first value returned by
strconv.ParseFloat() and that you are not interested in the second value, which in this
case is an error variable by assigning it to the underscore character. The underscore
character, which is called a blank identifier, is the Go way of discarding a value. If a Go
function returns multiple values, you can use the blank identifier multiple times.

WARNING: Ignoring all or some of the return values of a Go function,
especially the error values, is a very dangerous practice that should not be
used in production code!

The third part comes with the following Go code:

 for i := 2; i < len(arguments); i++ {
 n, _ := strconv.ParseFloat(arguments[i], 64)
 if n < min {
 min = n
 }
 if n > max {
 max = n
 }
 }

 fmt.Println("Min:", min)
 fmt.Println("Max:", max)
}

Here you use a for loop that will help you visit all of the elements of the os.Args slice,
which was previously assigned to the arguments variable.

Go and the Operating System Chapter 1

[28]

Executing cla.go will create the next type of output:

$ go run cla.go -10 0 1
Min: -10
Max: 1
$ go run cla.go -10
Min: -10
Max: -10

As you might expect, the program does not behave well when it receives erroneous input.
Worst of all, the program does not generate any warnings to inform the user that there were
one or more errors while processing the command-line arguments:

$ go run cla.go a b c 10
Min: 0
Max: 10

About error output
This section presents a technique for sending data to Unix standard error, which is the Unix
way of differentiating between actual values and error output.

The Go code for illustrating the use of standard error in Go is included in stdERR.go and
will be presented in two parts. As writing to standard error requires the use of the file
descriptor related to standard error, the Go code of stdERR.go will be based on the Go
code of stdOUT.go.

The first part of the program follows:

package main

import (
 "io"
 "os"
)
func main() {
 myString := ""
 arguments := os.Args
 if len(arguments) == 1 {
 myString = "Please give me one argument!"
 } else {
 myString = arguments[1]
 }

Go and the Operating System Chapter 1

[29]

So far, stdERR.go is almost identical to stdOUT.go.

The second part of the program, stdERR.go, is as follows:

 io.WriteString(os.Stdout, "This is Standard output\n")
 io.WriteString(os.Stderr, myString)
 io.WriteString(os.Stderr, "\n")

Here you call io.WriteString() two times to write to standard error (os.Stderr) and
one more time to write to standard output (os.Stdout).

Executing stdERR.go will create the following output:

$ go run stdERR.go
This is Standard output
Please give me one argument!

The preceding output cannot help you differentiate between data written to standard
output and data written to standard error, which could be very useful at times. However, if
you are using the bash(1) shell, there is a trick that you can use in order to distinguish
between standard output data and standard error data. Almost all Unix shells offer this
functionality in their own way.

Thus, when using bash(1), you can redirect the standard error output to a file as follows:

$ go run stdERR.go 2>/tmp/stdError
This is Standard output
$ cat /tmp/stdError
Please give me one argument!

The number after the name of a Unix program or system call refers to the
section of the manual to which its page belongs. Although most names can
be found only once in the manual pages, which means that indicating the
section number is not required, there are names that can be located in
multiple sections because they have multiple meanings, such as
crontab(1) and crontab(5). Therefore, if you try to retrieve the manual
page of a name with multiple meanings without stating its section
number, you will get the entry that has the smallest section number.

Similarly, you can discard error output by redirecting it to the /dev/null device, which is
like telling Unix to ignore it completely:

$ go run stdERR.go 2>/dev/null
This is Standard output

Go and the Operating System Chapter 1

[30]

What we did in the two preceding examples is to redirect the file descriptor of standard
error into a file and /dev/null, respectively. If you want to save both standard output and
standard error to the same file, you can redirect the file descriptor of standard error (2) to
the file descriptor of standard output (1)! The following command shows this technique,
which is pretty common in Unix systems:

$ go run stdERR.go >/tmp/output 2>&1
$ cat /tmp/output
This is Standard output
Please give me one argument!

Last, you can send both standard output and standard error to /dev/null as follows:

$ go run stdERR.go >/dev/null 2>&1

Writing to log files
The log package allows you to send log messages to the system logging service of your
Unix machine, whereas the syslog Go package, which is part of the log package, allows
you to define the logging level and the logging facility that your Go program will use.

Usually, most system log files on a Unix operating system can be found under the
/var/log directory. However, the log files of many popular services, such as Apache and
Nginx, can be found elsewhere, depending on their configuration.

Generally speaking, using a log file to write some information is considered a better practice
than writing the same output on the screen for two reasons:

The output does not get lost as it is stored in a file1.

You can search and process log files using Unix tools such as grep(1), awk(1),2.
and sed(1), which cannot be done when messages are printed on a Terminal
window

The log package offers many functions for sending output to the syslog server of a Unix
machine. The list of function includes log.Printf(), log.Print(), log.Println(),
log.Fatalf(), log.Fatalln(), log.Panic(), log.Panicln(), and log.Panicf().

Logging functions can be extremely handy for debugging your programs,
especially server processes written in Go, so you should not undervalue
their power.

Go and the Operating System Chapter 1

[31]

Logging levels
The logging level is a value that specifies the severity of the log entry. Various logging
levels exist including debug, info, notice, warning, err, crit, alert, and emerg (in
reverse order of severity).

Logging facilities
A logging facility is a category used for logging information. The value of the logging
facility part can be one of auth, authpriv, cron, daemon, kern, lpr, mail, mark, news,
syslog, user, UUCP, local0, local1, local2, local3, local4, local5, local6, and
local7. It is defined inside /etc/syslog.conf, /etc/rsyslog.conf, or another
appropriate file depending on the server process used for system logging on your Unix
machine. This means that if a logging facility is not defined and thus handled, the log
messages you send to it might get ignored and therefore lost.

Log servers
All Unix machines have a separate server process that is responsible for receiving logging
data and writing it to log files. Various log servers exist that work on Unix machines;
however, only two of them are used on most Unix variants: syslogd(8) and
rsyslogd(8).

On macOS machines, the name of the process is syslogd(8). On the other hard, most
Linux machines use rsyslogd(8), which is an improved and more reliable version of
syslogd(8), which was the original Unix system utility for message logging.

However, despite the Unix variant you are using or the name of the server process used for
logging, logging works the same way on every Unix machine and therefore does not affect
the Go code that you will write.

The configuration file of rsyslogd(8) is usually named rsyslog.conf and is located in
/etc. The contents of a rsyslog.conf configuration file, without the lines with comments
and lines starting with $, might look like the following:

$ grep -v '^#' /etc/rsyslog.conf | grep -v '^$' | grep -v '^\$'
auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log

Go and the Operating System Chapter 1

[32]

lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err
news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice
*.=debug;\
 auth,authpriv.none;\
 news.none;mail.none -/var/log/debug
.=info;.=notice;*.=warn;\
 auth,authpriv.none;\
 cron,daemon.none;\
 mail,news.none -/var/log/messages
.emerg :omusrmsg:
daemon.*;mail.*;\
 news.err;\
 .=debug;.=info;\
 .=notice;.=warn |/dev/xconsole
local7.* /var/log/cisco.log

In order to send your logging information to /var/log/cisco.log, you will need to use
the local7 logging facility. The star character after the name of the facility tells the logging
server to catch every logging level that goes to the local7 logging facility and write it to
/var/log/cisco.log.

The syslogd(8) server has a pretty similar configuration file that is usually
/etc/syslog.conf. On macOS High Sierra, the /etc/syslog.conf file is almost empty
and has been replaced by /etc/asl.conf. Nevertheless, the logic behind the configuration
of /etc/syslog.conf, /etc/rsyslog.conf, and /etc/asl.conf is the same.

A Go program that sends information to log files
The Go code of logFiles.go will explain the use of the log and log/syslog packages.

The log/syslog package is not implemented on the Microsoft Windows
version of Go.

Go and the Operating System Chapter 1

[33]

The first part of logFiles.go follows:

package main

import (
 "fmt"
 "log"
 "log/syslog"
 "os"
 "path/filepath"
)

func main() {

 programName := filepath.Base(os.Args[0])
 sysLog, err := syslog.New(syslog.LOG_INFO|syslog.LOG_LOCAL7,
 programName)

The first parameter of the syslog.New() function is the priority, which is a combination of
the logging facility and the logging level. Therefore, a priority of LOG_NOTICE |
LOG_MAIL, which is mentioned as an example, will send notice logging-level messages to
the MAIL logging facility.

As a result, the preceding code sets the default logging to the local7 logging facility using
the info logging level. The second parameter of the syslog.New() function is the name of
the process that will appear on the logs as the sender of the message. Generally speaking, it
is considered a good practice to use the real name of the executable in order to be able to
find the information you want easily in the log files at another time.

The second part of the program contains the following Go code:

 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }
 log.Println("LOG_INFO + LOG_LOCAL7: Logging in Go!")

After the call to syslog.New(), you will have to check the error variable that it returns so
that you can make sure that everything is fine. If everything is OK, which means that the
value of the error variable is equal to nil, you call the log.SetOutput() function. This
sets the output destination of the default logger, which in this case is the logger you created
earlier on (sysLog). Then you can use log.Println() to send information to the log
server.

Go and the Operating System Chapter 1

[34]

The third part of logFiles.go comes with the following code:

 sysLog, err = syslog.New(syslog.LOG_MAIL, "Some program!")
 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }

 log.Println("LOG_MAIL: Logging in Go!")
 fmt.Println("Will you see this?")
}

The last part shows that you can change the logging configuration in your programs as
many times as you want, and that you can still use fmt.Println() for printing output on
the screen.

The execution of logFiles.go will create the following output on the screen on a Debian
Linux machine:

$ go run logFiles.go
Broadcast message from systemd-journald@mail (Tue 2017-10-17 20:06:08
EEST):
logFiles[23688]: Some program![23688]: 2017/10/17 20:06:08 LOG_MAIL:
Logging in Go!
Message from syslogd@mail at Oct 17 20:06:08 ...
Some program![23688]: 2017/10/17 20:06:08 LOG_MAIL: Logging in Go!
Will you see this?

Executing the same Go code on a macOS High Sierra machine generated the following
output:

$ go run logFiles.go
Will you see this?

Keep in mind that most Unix machines store logging information in more than one log file,
which is also the case with the Debian Linux machine used in this section. As a result,
logFiles.go sends its output to multiple log files, which can be verified by the output of
the following shell commands:

$ grep LOG_MAIL /var/log/mail.log
Oct 17 20:06:08 mail Some program![23688]: 2017/10/17 20:06:08
LOG_MAIL: Logging in Go!
$ grep LOG_LOCAL7 /var/log/cisco.log
Oct 17 20:06:08 mail logFiles[23688]: 2017/10/17 20:06:08 LOG_INFO +
LOG_LOCAL7: Logging in Go!
$ grep LOG_ /var/log/syslog

Go and the Operating System Chapter 1

[35]

Oct 17 20:06:08 mail logFiles[23688]: 2017/10/17 20:06:08 LOG_INFO +
LOG_LOCAL7: Logging in Go!
Oct 17 20:06:08 mail Some program![23688]: 2017/10/17 20:06:08
LOG_MAIL: Logging in Go!

The preceding output shows that the message of the log.Println("LOG_INFO +
LOG_LOCAL7: Logging in Go!") statement was written on both /var/log/cisco.log
and /var/log/syslog, whereas the message of the log.Println("LOG_MAIL: Logging
in Go!") statement was written on both /var/log/syslog and /var/log/mail.log.

The important thing to remember from this section is that if the logging server of a Unix
machine is not configured to catch all logging facilities, some of the log entries that you
send to it might get discarded without any warnings.

About log.Fatal()
In this section, you will see the log.Fatal() function in action. The log.Fatal()
function is used when something really bad has happened, and you just want to exit your
program as fast as possible after reporting the bad situation. The use of log.Fatal() is
illustrated in the logFatal.go program, which contains the following Go code:

package main

import (
 "fmt"
 "log"
 "log/syslog"
)

func main() {
 sysLog, err := syslog.New(syslog.LOG_ALERT|syslog.LOG_MAIL,
 "Some program!")
 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }

 log.Fatal(sysLog)
 fmt.Println("Will you see this?")
}

Go and the Operating System Chapter 1

[36]

Executing log.Fatal() will create the following output:

$ go run logFatal.go
exit status 1

As you can easily understand, the use of log.Fatal() terminates a Go program at the
point where log.Fatal() was called, which is the reason that you did not see the output
from the fmt.Println("Will you see this?") statement.

However, because of the parameters of the syslog.New() call, a log entry has been added
to the log file that is related to mail, which is /var/log/mail.log:

$ grep "Some program" /var/log/mail.log
Oct 17 20:20:29 iMac Some program![4663]: 2017/10/17 20:20:29 &{17
Some program! iMac.local {0 0} 0xc42000c220}

About log.Panic()
There are situations where a program will fail for good, and you want to have as much
information about the failure as possible. In such difficult circumstances, you might
consider using log.Panic(), which is the logging function that is illustrated in this section
using the Go code of logPanic.go.

The Go code of logPanic.go follows:

package main

import (
 "fmt"
 "log"
 "log/syslog"
)

func main() {
 sysLog, err := syslog.New(syslog.LOG_ALERT|syslog.LOG_MAIL,
 "Some program!")
 if err != nil {
 log.Fatal(err)
 } else {
 log.SetOutput(sysLog)
 }

 log.Panic(sysLog)
 fmt.Println("Will you see this?")
}

Go and the Operating System Chapter 1

[37]

Executing logPanic.go on macOS High Sierra will produce the following output:

$ go run logPanic.go
panic: &{17 Some program! iMac.local {0 0} 0xc42000c220}
goroutine 1 [running]:
log.Panic(0xc42004ff50, 0x1, 0x1)
 /usr/local/Cellar/go/1.9.1/libexec/src/log/log.go:330 +0xc0
main.main()
 /Users/mtsouk/Desktop/masterGo/ch/ch1/code/logPanic.go:17 +0xea
exit status 2

Running the same program on a Debian Linux machine with Go version 1.3.3 will generate
the following output:

$ go run logPanic.go
panic: &{17 Some program! mail {0 0} 0xc2080400e0}
goroutine 16 [running]:
runtime.panic(0x4ec360, 0xc208000320)
 /usr/lib/go/src/pkg/runtime/panic.c:279 +0xf5
log.Panic(0xc208055f20, 0x1, 0x1)
 /usr/lib/go/src/pkg/log/log.go:307 +0xb6
main.main()
 /home/mtsouk/Desktop/masterGo/ch/ch1/code/logPanic.go:17 +0x169
goroutine 17 [runnable]:
runtime.MHeap_Scavenger()
 /usr/lib/go/src/pkg/runtime/mheap.c:507
runtime.goexit()
 /usr/lib/go/src/pkg/runtime/proc.c:1445
goroutine 18 [runnable]:
bgsweep()
 /usr/lib/go/src/pkg/runtime/mgc0.c:1976
runtime.goexit()
 /usr/lib/go/src/pkg/runtime/proc.c:1445
goroutine 19 [runnable]:
runfinq()
 /usr/lib/go/src/pkg/runtime/mgc0.c:2606
runtime.goexit()
 /usr/lib/go/src/pkg/runtime/proc.c:1445
exit status 2

The output of log.Panic() includes additional low-level information that will hopefully
help you resolve difficult and rare situations that happen in your Go code.

Go and the Operating System Chapter 1

[38]

Analogous to the log.Fatal() function, the use of the log.Panic() function will add an
entry to the proper log file and will immediately terminate the Go program.

Error handling in Go
Errors and error handling are two very important Go topics. Go likes error messages so
much that it has a separate data type for errors, named error! This also means that you can
easily create your own error messages if you find that what Go gives you is inadequate.
You will most likely need to create and handle your own errors when you are developing
your own Go packages.

Note that having an error condition is one thing, while deciding how to react to an error
condition is a totally different thing. Put simply, not all error conditions are created equal,
which means that some error conditions might require that you immediately stop the
execution of a program, whereas other error situations might require printing a warning
message for the user and continuing with the execution of the program. It is up to the
developer to use common sense and decide what to do with each error value that the
program might get.

The error data type
Many occasions exist where you might end up having to deal with a new error case while
developing your own Go application. The error data type is here to help you define your
own errors.

This subsection will teach you how to create your own error variables. As you will see in a
while, in order to create a new error variable, you will need to call the New() function of
the errors standard Go package.

The example Go code illustrating this process can be found in newError.go, and it will be
presented in two parts. The first part of the program follows next:

package main

import (
 "errors"
 "fmt"
)

func returnError(a, b int) error {

Go and the Operating System Chapter 1

[39]

 if a == b {
 err := errors.New("Error in returnError() function!")
 return err
 } else {
 return nil
 }
}

There are many interesting things happening here. First of all, you can see the definition of
a Go function other than main() for the first time in this book. The name of this new
unsophisticated function is returnError(). Additionally, you can see the errors.New()
function in action, which takes a string value as its parameter. Last, if a function should
return an error variable but there is no error to report, it returns nil instead.

You will learn more about the various types of Go functions in Chapter 6,
What You Might Not Know About Go Packages.

The second part of newError.go is as follows:

func main() {
 err := returnError(1, 2)
 if err == nil {
 fmt.Println("returnError() ended normally!")
 } else {
 fmt.Println(err)
 }

 err = returnError(10, 10)
 if err == nil {
 fmt.Println("returnError() ended normally!")
 } else {
 fmt.Println(err)
 }

 if err.Error() == "Error in returnError() function!" {
 fmt.Println("!!")
 }
}

Go and the Operating System Chapter 1

[40]

As the code illustrates, most of the time, you need to check whether an error variable is
equal to nil or not and then act accordingly. Also presented here is the use of the
err.Error() method, which allows you to convert an error variable into a string
variable. This function lets you compare an error variable with a string.

Sending your error messages to the logging service of your Unix machine,
especially when a Go program is a server or some other critical
application. However, the code presented in this book will not follow this
principle everywhere in order to avoid filling your log files with
unnecessary data.

Executing newError.go will produce the following output:

$ go run newError.go
returnError() ended normally!
Error in returnError() function!
!!

If you try to compare an error variable with a string variable without converting the
error variable to a string first, the Go compiler will create the following error message:

command-line-arguments
./newError.go:33:9: invalid operation: err == "Error in returnError()
function!" (mismatched types error and string)

Error handling
Error handling is a very important feature of Go because almost all Go functions return an
error message or nil, which is the Go way of saying whether there was an error condition
while executing a function or not. You will most likely get tired of seeing the following Go
code, not only in this book but also in every other Go program you can find on the Internet:

if err != nil {
 fmt.Println(err)
 os.Exit(10)
}

Do not confuse error handling with printing to error output, because they
are two totally different things. The former has to do with Go code that
handles error conditions, whereas the latter has to do with writing
something to the standard error file descriptor.

Go and the Operating System Chapter 1

[41]

The preceding code prints the error message on the screen and exits using os.Exit().
Should you wish to send the error message to the logging service instead of the screen, use
the following variation of the preceding Go code:

if err != nil {
 log.Println(err)
 os.Exit(10)
}

Last, there is another variation of the preceding code that is used when something really
bad has happened and you want to terminate the program:

if err != nil {
 panic(err)
 os.Exit(10)
}

The panic function is a built-in Go function that stops the execution of a program and
starts panicking! If you find yourself using panic too often, you might want to reconsider
your Go implementation. As you will see in Chapter 2, Understanding Go Internals, Go also
offers the recover function, which might be able to save you when you're in some bad
situations. For now, you will need to wait for the next chapter to learn more about the
power of the panic and recover function pair.

It's now time to see a Go program that not only handles error messages generated by
standard Go functions, but one that also defines its own error message. The name of the
program is errors.go, and it will be presented to you in five parts. As you will see, the
errors.go utility tries to improve the functionality of the cla.go program that you saw
earlier in this chapter by examining whether its command-line arguments are acceptable
floats or not.

The first part of the program follows:

package main

import (
 "errors"
 "fmt"
 "os"
 "strconv"
)

This part of errors.go contains the expected import statements.

Go and the Operating System Chapter 1

[42]

The second portion of errors.go comes with the following Go code:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Please give one or more floats.")
 os.Exit(1)
 }

 arguments := os.Args
 var err error = errors.New("An error")
 k := 1
 var n float64

Here you create a new error variable named err in order to initialize it with your own
value.

The third part of the program comes next:

 for err != nil {
 if k >= len(arguments) {
 fmt.Println("None of the arguments is a float!")
 return
 }
 n, err = strconv.ParseFloat(arguments[k], 64)
 k++
 }

 min, max := n, n

This is the trickiest part of the program because, if the first command-line argument is not a
proper float, you will need to check the next one and keep checking until you find a suitable
command-line argument. If none of the command-line arguments are in the correct format,
errors.go will terminate and print a message on the screen. All this checking happens by
examining the error value that is returned by strconv.ParseFloat(). All of this code is
there just for the accurate initialization of the min and max variables.

The fourth part of the program comes with the following Go code:

 for i := 2; i < len(arguments); i++ {
 n, err := strconv.ParseFloat(arguments[i], 64)
 if err == nil {
 if n < min {
 min = n
 }
 if n > max {
 max = n
 }

Go and the Operating System Chapter 1

[43]

 }
 }

Here you just process all of the right command-line arguments in order to find the
minimum and maximum floats among them.

Finally, the last code portion of the program just deals with printing out the current values
of the min and max variables:

 fmt.Println("Min:", min)
 fmt.Println("Max:", max)
}

As you can see from the Go code in errors.go, the biggest part of the code is about error
handling than about the actual functionality of the program. Unfortunately, this is the case
for software developed in most modern programming languages, and Go is no exception.

If you execute errors.go, you will get the following output:

$ go run errors.go a b c
None of the arguments is a float!
$ go run errors.go b c 1 2 3 c -1 100 -200 a
Min: -200
Max: 100

Additional resources
Have a look at the following resources:

Visit the Go website at https://golang.org/
Browse the Go documentation site at https://golang.org/doc/

Visit the documentation page of the log package
at https://golang.org/pkg/log/

Visit the documentation of the log/syslog package
at https://golang.org/pkg/log/syslog/

Visit the documentation page of the os package at https://golang.org/pkg/os/

Have a look at https://golang.org/cmd/gofmt/, which is the documentation
page of the gofmt tool that is used for formatting Go code

https://golang.org/
https://golang.org/doc/
https://golang.org/pkg/log/
https://golang.org/pkg/log/syslog/
https://golang.org/pkg/os/
https://golang.org/cmd/gofmt/

Go and the Operating System Chapter 1

[44]

If you are working on a Mac, check the TextMate editor at
http://macromates.com/ as well as BBEdit at
https://www.barebones.com/products/bbedit/

Visit the documentation page of the fmt package at
https://golang.org/pkg/fmt/ to learn more about Go verbs and the available
functions

Exercises
Write a Go program that finds the sum of all of its numeric command-line
arguments
Write a Go program that finds the average value of all of its float command-line
arguments
Write a Go program that keeps reading integers until it gets the word STOP as
input

Summary
This chapter addressed many interesting Go topics including compiling Go code, working
with standard input, accessing standard output and standard error in Go, processing
command-line arguments, printing on the screen, and using the logging service of a Unix
system as well as error handling and some general information about Go. You should
consider all of these topics as foundational information about Go.

The next chapter is all about the internals of Go, which includes learning about Garbage
Collection, working with the Go compiler, calling C code from Go, using the defer
keyword, and working with the Go assembler as well as the panic and recover function
pair.

http://macromates.com/
https://www.barebones.com/products/bbedit/
https://golang.org/pkg/fmt/

2
Understanding Go Internals

All of the Go features that you learned in the previous chapter are extremely handy, and
you will be using them all the time. However, there is nothing more rewarding than being
able to see and understand what is going on in the background and how Go operates
behind the scenes.

In this chapter, you will learn about the Go garbage collector and how it works.
Additionally, you will find out how to call C code from your Go programs, which you
might find indispensable in certain situations. However, you will not need to use this
capability too often, because Go is a very capable programming language. Likewise, you
will also understand how to call Go code from your C programs and how to use the
panic() and recover() functions and the defer keyword.

In this chapter of Mastering Go, you will learn the following topics:

The Go compiler
How garbage collection works in Go
How to check the operation of the garbage collector
Calling C code from your Go programs
Calling Go code from a C program
The panic() and recover() functions
The unsafe package
The handy, yet tricky defer keyword
The strace(1) Linux utility
The dtrace(1) utility that can be found in FreeBSD systems including macOS
High Sierra
Finding out information about your Go environment
Node trees
The Go assembler

Understanding Go Internals Chapter 2

[46]

The Go compiler
The Go compiler is executed with the help of the go tool. This tool does many more things
than just generating executable files.

The unsafe.go file used in this section does not contain any special code-
the commands presented will work on every valid Go source file. You will
see the contents of unsafe.go in a short while.

You can compile a Go source file using the go tool compile command. What you will
get is an object file, which is a file with the .o file extension. This is illustrated in the output
of the following commands, which were executed on a macOS High Sierra machine:

$ go tool compile unsafe.go
$ ls -l unsafe.o
-rw-r--r-- 1 mtsouk staff 5495 Oct 30 19:51 unsafe.o
$ file unsafe.o
unsafe.o: data

An object file is a binary file that contains object code, which is machine code in a
relocatable format that, most of the time is not directly executable. The biggest advantage of
the relocatable format is that it requires as little memory as possible during the linking
phase.

If you use the -pack command-line flag when executing go tool compile, you will get
an archive file instead of an object file:

$ go tool compile -pack unsafe.go
$ ls -l unsafe.a
-rw-r--r-- 1 mtsouk staff 5680 Oct 30 19:52 unsafe.a
$ file unsafe.a
unsafe.a: current ar archive

An archive file is a binary file that contains one or more files that is primarily used for
grouping multiple files into a single file. The archive format used by Go is called ar.

You can list the contents of an .a archive file as follows:

$ ar t unsafe.a
__.PKGDEF
go.o

Understanding Go Internals Chapter 2

[47]

Another truly valuable command-line flag of the go tool compile command is -race,
which allows you to detect race conditions. You will learn more about race conditions and
why you want to avoid them in Chapter 10, Go Concurrency – Advanced Topics.

You will learn the additional uses of the go tool compile command toward the end of
this chapter, when we talk about assembly language and node trees. However, in order to
tease you a little, try executing the following command:

$ go tool compile -S unsafe.go

The preceding command generates lots of output that you might find difficult to
understand, which means that Go does a pretty good job on hiding any unnecessary
complexities, unless you ask for them!

Garbage Collection
Garbage Collection is the process of freeing memory space that is not being used. In other
words, the garbage collector sees which objects are out of scope and can no longer be
referenced, and it frees the memory space they consume. This process happens in a
concurrent manner while a Go program is running, not before or after the execution of a Go
program. The documentation of the Go garbage collector implementation states the
following:

The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple GC
threads to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is non-
generational and non-compacting. Allocation is done using size segregated per P allocation areas to
minimize fragmentation while eliminating locks in the common case.

There is a lot of terminology here that I will explain in a while. First, however, I will show
you a way to look at some parameters of the garbage collection process. Fortunately, the Go
standard library offers functions that allow you to study the operation of the garbage
collector and learn more about what the garbage collector does secretly. The relevant code is
saved as gColl.go, and it will be presented in three parts.

The first code segment of gColl.go is as follows:

package main

import (
 "fmt"
 "runtime"
 "time"

Understanding Go Internals Chapter 2

[48]

)

func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC)
 fmt.Println("-----")
}

Note that each time that you need to retrieve the more recent garbage collections statistics,
you will need to call the runtime.ReadMemStats() function. The purpose of the
printStats() function is to avoid writing the same Go code all of the time.

The second part of the program is as follows:

func main() {
 var mem runtime.MemStats
 printStats(mem)

 for i := 0; i < 10; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)

The for loop creates multiple, big Go slices in order to allocate large amounts of memory
and trigger the garbage collector.

The last part of gColl.go has the following Go code, which does more memory allocations
using Go slices:

 for i := 0; i < 10; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(5 * time.Second)
 }
 printStats(mem)
}

Understanding Go Internals Chapter 2

[49]

The output of gColl.go on a macOS High Sierra machine is as follows:

$ go run gColl.go
mem.Alloc: 66024
mem.TotalAlloc: 66024
mem.HeapAlloc: 66024
mem.NumGC: 0

mem.Alloc: 50078496
mem.TotalAlloc: 500117056
mem.HeapAlloc: 50078496
mem.NumGC: 10

mem.Alloc: 76712
mem.TotalAlloc: 1500199904
mem.HeapAlloc: 76712
mem.NumGC: 20

Although you will not examine the operation of the Go garbage collector all of the time,
being able to watch the way the Go garbage collector operates on a slow application can
save you a lot of time in the long run—I can assure you that you will not regret the time you
spend learning about garbage collection in general and, more specifically, about the way the
Go garbage collector works.

There is a trick that allows you to get even more detailed output about the way the Go
garbage collector operates, which is illustrated by the next command:

$ GODEBUG=gctrace=1 go run gColl.go

So, if you put GODEBUG=gctrace=1 in front of any go run command, Go will print
analytical data about the operation of the garbage collector. The generated data will have
the following format:

gc 4 @0.025s 0%: 0.002+0.065+0.018 ms clock, 0.021+0.040/0.057/0.003+0.14
ms cpu, 47->47->0 MB, 48 MB goal, 8 P
gc 17 @30.103s 0%: 0.004+0.080+0.019 ms clock, 0.033+0/0.076/0.071+0.15 ms
cpu, 95->95->0 MB, 96 MB goal, 8 P

The preceding output gives you more information about the heap sizes during the garbage
collection process. Let's take the 47->47->0 MB trinity of values as an example. The first
number is the heap size when the garbage collector is about to run. The second value is the
heap size when the garbage collector ends its operation. The last value is the size of the live
heap.

Understanding Go Internals Chapter 2

[50]

The Tricolor algorithm
The operation of the Go garbage collector is based on the tricolor algorithm, which is the
subject of this subsection.

The tricolor algorithm is not unique to Go, and it can be used in other
programming languages as well.

Strictly speaking, the official name for the algorithm used in Go is the tricolor mark-and-
sweep algorithm. It can work concurrently with the program and uses a write barrier. This
means that when a Go program runs, the Go scheduler is responsible for the scheduling of
the application and the garbage collector as if the Go scheduler had to deal with a regular
application with multiple goroutines! You will learn more about goroutines and the Go
scheduler in Chapter 9, Go Concurrency – Goroutines, Channels, and Pipelines.

The core idea behind this algorithm is that of Edsger W. Dijkstra, Leslie Lamport, A. J.
Martin, C. S. Scholten, and E. F. M. Steffens. It was first illustrated on a paper, On-the-fly
Garbage Collection: An Exercise in Cooperation. The primary principle behind the tricolor
mark-and-sweep algorithm is that it divides the objects of the heap into three different sets
according to their color, which is assigned by the algorithm. I will address the mark-and-
sweep algorithm further in the More about the operation of the Go Garbage Collector section of
this chapter.

Now let's talk about the meaning of each color set. The objects of the black set are
guaranteed to have no pointers to any object of the white set. However, an object in the
white set can have a pointer to an object of the black set, because this has no effect on the
operation of the garbage collector! The objects of the grey set might have pointers to some
objects of the white set. Also, the objects of the white set are candidates for garbage
collection.

Understanding Go Internals Chapter 2

[51]

Note that no object can go directly from the black set to the white set, which allows the
algorithm to operate and be able to clear the objects in the white set. Additionally, no object
of the black set can directly point to an object of the white set.

When the garbage collection begins, all objects are white and the garbage collector visits all
of the root objects and colors them grey. The roots are the objects that can be directly
accessed by the application, which includes global variables and other things on the stack.
These objects mostly depend on the Go code of a particular program. After this, the garbage
collector picks a grey object, makes it black, and starts searching to determine if that object
has pointers to other objects of the white set. This means that when a grey object is being
scanned for pointers to other objects, it is colored black. If that scan discovers that this
particular object has one or more pointers to a white object, it puts that white object in the
grey set. This process keeps going for as long as objects exist in the grey set. After that, the
objects in the white set are unreachable and their memory space can be reused. Therefore, at
this point, the elements of the white set are said to be garbage collected.

If an object of the grey set becomes unreachable at some point in a garbage
collection cycle, it will not be collected in that garbage collection cycle but
rather in the next one! Although this is not an optimal situation, it is not
that bad.

During this process, the running application is called the mutator. The mutator runs a small
function named write barrier that is executed each time a pointer in the heap is modified. If
the pointer of an object in the heap is modified, which means that this object is now
reachable, the write barrier colors it grey and puts it in the grey set.

The mutator is responsible for the invariant that no element of the black
set has a pointer to an element of the white set. This is accomplished with
the help of the write barrier function. Failing to accomplish this invariant
will ruin the garbage collection process, and it will most likely crash your
program in an ugly and undesired way.

Understanding Go Internals Chapter 2

[52]

As a result, the heap can be viewed as a graph of connected objects, as shown in the
following diagram, which demonstrates a single phase of a garbage collection cycle:

The Go garbage collector represents the heap of a program as a graph

Thus, there are three different colors: black, white, and grey. When the algorithm begins, all
objects are colored white. As the algorithm continues, white objects are moved into one of
the other two sets. The objects that are left in the white set are the ones that will be cleared
at some point.

In the preceding graph, you can see that while object E, which is in the white set, can access
object F, it cannot be accessed by any other object because no other object points to object E,
which makes it a perfect candidate for garbage collection! Additionally, objects A, B, and C
are root objects and are always reachable and therefore cannot be garbage collected.

Understanding Go Internals Chapter 2

[53]

Can you guess what will happen next in that graph? Well, it is not that difficult to fathom
that the algorithm will have to process the remaining elements of the grey set, which means
that objects A and F will go into the black set. Object A will go into the black set because it is
a root element, and F will go into the black set because it does not point to any other object
while it is in the grey set. After object A is garbage collected, object F will become
unreachable and will be garbage collected in the next cycle of the garbage collector, as an
unreachable object cannot magically become reachable in the next iteration of the garbage
collection cycle.

The Go garbage collection can also be applied to variables such as channels! When the
garbage collector finds out that a channel is unreachable and that the channel variable can
no longer be accessed, it will free its resources even if the channel has not been closed! You
will learn more about channels in Chapter 9, Go Concurrency – Goroutines, Channels and
Pipelines.

Go allows you to initiate a garbage collection manually by putting a runtime.GC()
statement in your Go code. However, keep in mind that runtime.GC() will block the
caller, and it might block the entire program, especially if you are running a very busy Go
program with many objects. This happens mainly because you cannot perform garbage
collections while everything else is rapidly changing, as this will not give the garbage
collector the opportunity to identify clearly the members of the white, black, and grey sets!
This garbage collection status is also called the garbage collection safe-point.

You can find the long and relatively advanced Go code of the garbage collector
at https://github.com/golang/go/blob/master/src/runtime/mgc.go. You can study this
if you want to learn even more about the garbage collection operation. You can even make
changes to that code if you are brave enough!

The Go garbage collector is always being improved by the Go team,
mainly by trying to make it faster by lowering the number of scans it
needs to perform over the data of the three sets . However, despite the
various optimizations, the general idea behind the algorithm remains the
same.

More about the operation of the Go Garbage
Collector
This section will explore the Go garbage collector further and present additional
information about its activities.

https://github.com/golang/go/blob/master/src/runtime/mgc.go

Understanding Go Internals Chapter 2

[54]

The main concern of the Go garbage collector is low latency, which basically means short
pauses in its operation in order to have a real-time operation. On the other hand, what a
program does all the time is to create new objects and manipulate existing objects with
pointers. This process can end up creating objects that cannot be accessed any longer
because no pointers exist that point to these objects. Such objects are now garbage waiting
for the garbage collector to clean them up and free their memory space. After that, the
memory space that has been freed is ready to be used again.

The classic algorithm for garbage collection is called mark-and-sweep, and it is the simplest
algorithm in use. The way that the mark-and-sweep algorithm works is pretty simple and
easy to understand: the algorithm stops the program execution (stop-the-world garbage
collector) in order to visit all of the accessible objects of the heap of a program and marks
them. After that, it sweeps the inaccessible objects. During the mark phase of the algorithm,
each object is marked as white, grey, or black. The children of a grey object are colored grey,
whereas the original grey object is now colored black. The sweep phase begins when there
are no more grey objects to examine. This technique works because there are no pointers
from the black set to the white set, which is a fundamental invariant of the algorithm.

Although the mark-and-sweep algorithm is simple, it suspends the execution of the
program while it is running, which means that it adds latency to the actual process. Go tries
to lower that particular latency by running the garbage collector as a concurrent process
and using the tricolor algorithm described in the previous section. However, other
processes can move pointers or create new objects while the garbage collector runs
concurrently. This fact can make things pretty difficult for the garbage collector. As a result,
the principal point that allows the tricolor algorithm to run concurrently is to be able to
maintain the fundamental invariant of the mark-and-sweep algorithm-no object of the black
set can point to an object of the white set.

The solution to this problem is to fix all of the cases that can cause a problem for the
algorithm! Therefore, new objects must go to the grey set, because this way the fundamental
invariant of the mark-and-sweep algorithm cannot be altered. Additionally, when a pointer
of the program is moved, you color the object to which the pointer points as grey. You can
say that the grey set acts like a barrier between the white set and the black set. Last, each
time a pointer is moved, some Go code gets automatically executed, which is the write
barrier mentioned earlier that does some recoloring.

The latency introduced by the execution of the write barrier code is the price you have to
pay for being able to run the garbage collector concurrently.

Understanding Go Internals Chapter 2

[55]

Note that the Java programming language has many garbage collectors that are highly
configurable with the help of multiple parameters. One of these Java garbage collectors is
called G1, and it is recommended for low-latency applications.

It is really important to remember that the Go garbage collector is a real-
time garbage collector, which runs concurrently with the other goroutines
of a Go program and only optimizes for low latency.

In Chapter 11, Code Testing, Optimization and Profiling, you will learn how to represent
graphically the performance of a program. This chapter also includes information about the
operations of the Go garbage collector.

That's enough about garbage collection. The next topic covered will be unsafe code and the
unsafe standard Go package.

Unsafe code
Unsafe code is Go code that bypasses the type safety and the memory security of Go. Most
of the time, unsafe code is related to pointers. However, keep in mind that using unsafe
code can be dangerous for your programs, so if you are not completely sure that you need
to use unsafe code in one of your programs, do not use it!

The use of unsafe code will be illustrated in the unsafe.go program, which is presented in
three parts.

The first part of unsafe.go is as follows:

package main

import (
 "fmt"
 "unsafe"
)

Note that in order to use unsafe code, you will need to import the unsafe standard Go
package.

Understanding Go Internals Chapter 2

[56]

The second part of the program occurs with the following Go code:

func main() {
 var value int64 = 5
 var p1 = &value
 var p2 = (*int32)(unsafe.Pointer(p1))

Note the use of the unsafe.Pointer() function here which allows you, at your own risk,
to create a int32 pointer named p2 that points to a int64 variable named value, which is
accessed using the p1 pointer. Any Go pointer can be converted to unsafe.Pointer.

A pointer of the unsafe.Pointer type can override the type system of
Go. This is unquestionably fast, but it can also be dangerous if used
incorrectly or carelessly. Additionally, it gives developers more control
over data.

The last part of unsafe.go contains the following Go code:

 fmt.Println("*p1: ", *p1)
 fmt.Println("*p2: ", *p2)
 *p1 = 5434123412312431212
 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
 *p1 = 54341234
 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
}

You can dereference a pointer and get, use, or set its value using the star
character (*).

If you execute unsafe.go, you will get the following output:

$ go run unsafe.go
*p1: 5
*p2: 5
5434123412312431212
*p2: -930866580
54341234
*p2: 54341234

What does this output tell us? It tells us that a 32-bit pointer cannot store a 64-bit integer!

Understanding Go Internals Chapter 2

[57]

As you will see in the next section, the functions of the unsafe package can do many more
interesting things with memory.

About the unsafe package
Now that you have seen the unsafe package in action, it's a good time to talk about what
makes it a special kind of a package!

First of all, if you look at the source code of the unsafe package, you might be a little
surprised. On a macOS High Sierra system with Go version 1.9.1 that is installed using
Homebrew (https://brew.sh/), the source code of the unsafe package is located at
/usr/local/Cellar/go/1.9.1/libexec/src/unsafe/unsafe.go and its contents
without the comments are as follows:

$ cd /usr/local/Cellar/go/1.9.1/libexec/src/unsafe/
$ grep -v '^//' unsafe.go | grep -v '^$'
package unsafe
type ArbitraryType int
type Pointer *ArbitraryType
func Sizeof(x ArbitraryType) uintptr
func Offsetof(x ArbitraryType) uintptr
func Alignof(x ArbitraryType) uintptr

OK. Where is the rest of the Go code of the unsafe package? The answer to that question is
relatively simple: the Go compiler implements the unsafe package when you import it into
your programs.

Many low-level packages such as runtime, syscall, and os constantly
use the unsafe package.

Another example of the unsafe package
In this subsection, you will learn more about the unsafe package and its capabilities with
the help of another small Go program named moreUnsafe.go. This program will be
presented in three parts. What moreUnsafe.go does is to access all the elements of an array
using pointers.

https://brew.sh/

Understanding Go Internals Chapter 2

[58]

The first part of the program is as follows:

package main

import (
 "fmt"
 "unsafe"
)

The second part of moreUnsafe.go comes with the following Go code:

func main() {
 array := [...]int{0, 1, -2, 3, 4}
 pointer := &array[0]
 fmt.Print(*pointer, " ")
 memoryAddress := uintptr(unsafe.Pointer(pointer)) +
unsafe.Sizeof(array[0])

 for i := 0; i < len(array)-1; i++ {
 pointer = (*int)(unsafe.Pointer(memoryAddress))
 fmt.Print(*pointer, " ")
 memoryAddress = uintptr(unsafe.Pointer(pointer)) +
unsafe.Sizeof(array[0])
 }

At first, the pointer variable points to the memory address of array[0], which is the first
element of the array of integers. Next, the pointer variable that points to an integer value
is converted to an unsafe.Pointer() function and then to uintptr. The result is stored
in memoryAddress.

The value of unsafe.Sizeof(array[0]) is what gets you to the next element of the array,
because this is the memory occupied by each array element. This value is added to the
memoryAddress variable in each iteration of the for loop, which allows you to get the
memory address of the next array element. The *pointer notation dereferences the pointer
and returns the stored integer value.

The third part is as follows:

 fmt.Println()
 pointer = (*int)(unsafe.Pointer(memoryAddress))
 fmt.Print("One more: ", *pointer, " ")
 memoryAddress = uintptr(unsafe.Pointer(pointer)) +
unsafe.Sizeof(array[0])
 fmt.Println()
}

Understanding Go Internals Chapter 2

[59]

In the last part, you are trying to access an element of the array that does not exist using
pointers and memory addresses. The Go compiler cannot catch such a logical error due to
the use of the unsafe package and therefore will return something inaccurate.

Executing moreUnsafe.go will create the following output:

$ go run moreUnsafe.go
0 1 -2 3 4
One more: 842350722816

You have now accessed all of the elements of a Go array using pointers! However, the real
problem here is that when you tried to access an invalid array element, the program did not
complain and returned a random number instead.

Calling C code from Go
Although the intention of Go is to make your programming experience better and save you
from having to deal with the quirks of C, C remains a very capable programming language
that is still useful. This means that there are situations, such as using a database or a device
driver written in C, which still require the use of C. This means that you will need to work
with C code in your Go projects.

If you find yourselves using this capability several times in the same
project, you might need to reconsider your approach or your choice of
programming language!

Calling C code from Go using the same file
The simplest way to call C code from a Go program is to include the C code in your Go
source file. This requires a special treatment, but it is pretty fast and not that difficult to do.

The name of the Go source file that contains both C and Go code will be cGo.go, and it will
be presented in three parts.

Understanding Go Internals Chapter 2

[60]

The first part of the Go source file is as follows:

package main

//#include <stdio.h>
//void callC() {
// printf("Calling C code!\n");
//}
import "C"

As you can see, the C code is included in the comments of the Go
program. However, the go tool knows what to do with these kinds of
comments because of the use of the C Go package.

The second part of the program contains the following Go code:

import "fmt"

func main() {

All of the other packages should be imported separately.

The last part of cGo.go contains the following code:

 fmt.Println("A Go statement!")
 C.callC()
 fmt.Println("Another Go statement!")
}

Thus, in order to execute the callC() C function, you will need to call it as C.callC().

Executing cGo.go will create the following output:

$ go run cGo.go
A Go statement!
Calling C code!
Another Go statement!

Calling C code from Go using separate files
Now let's continue learning how to call C code from a Go program when the C code is
located in a separate file.

Understanding Go Internals Chapter 2

[61]

First, let me explain the imaginary problem that we will solve with our program. We will
need to use two C functions that we have implemented in the past and that we do not want
or cannot rewrite in Go.

The C code
This subsection will present the C code for the example which comes in two files: callC.h
and callC.c. The include file (callC.h) contains the following code:

#ifndef CALLC_H
#define CALLC_H

void cHello();
void printMessage(char* message);

#endif

The C source file (callC.c) contains the following C code:

#include <stdio.h>
#include "callC.h"

void cHello() {
 printf("Hello from C!\n");
}

void printMessage(char* message) {
 printf("Go send me %s\n", message);
}

Both the callC.c and callC.h files are stored in a separate directory, which in this case is
callClib. You can use any directory name you want, however.

The actual C code is not important as long as you call the right C functions
with the correct type and number of parameters. There is nothing in the C
code that tells you that it will be used from a Go program. You should
look at the Go code for the juicy part.

Understanding Go Internals Chapter 2

[62]

The Go code
This subsection will address the Go source code of the example, which will be called
callC.go and will be presented in three parts.

The first part of callC.go includes the following Go code:

package main

// #cgo CFLAGS: -I${SRCDIR}/callClib
// #cgo LDFLAGS: ${SRCDIR}/callC.a
// #include <stdlib.h>
// #include <callC.h>
import "C"

The single most important Go statement of the entire Go source file is the inclusion of the C
package using a separate import statement. However, C is a virtual Go package that just
tells go build to preprocess its input file using the cgo tool before the Go compiler
processes the file! You can still see that you need to use comments to inform the Go
program about the C code. In this case, you tell callC.go where to find the callC.h file as
well as where to find the callC.a library file that we will create in a little while—such lines
begin with #cgo.

The second part of the program is as follows:

import (
 "fmt"
 "unsafe"
)

func main() {
 fmt.Println("Going to call a C function!")
 C.cHello()

The last part of callC.go follows:

 fmt.Println("Going to call another C function!")
 myMessage := C.CString("This is Mihalis!")
 defer C.free(unsafe.Pointer(myMessage))
 C.printMessage(myMessage)

 fmt.Println("All perfectly done!")
}

Understanding Go Internals Chapter 2

[63]

In order to pass a string to a C function from Go, you will need to create a C string using
C.CString(). Additionally, you will need a defer statement in order to free the memory
space of the C string when it is no longer needed. The defer statement includes a call to
C.free() and another one to unsafe.Pointer().

In the next section, you will see how to compile and execute callC.go.

Mixing Go and C code
Now that you have the C and the Go code, it is time to learn what to do next in order to
execute the Go file that calls the C code.

The good news is that you do not need to do anything particularly difficult because all of
the critical information is contained in the Go file. The only critical thing that you will need
to do is to compile the C code in order to create a library, which requires the execution of
the following commands:

$ ls -l callClib/
total 16
-rw-r--r--@ 1 mtsouk staff 162 Oct 31 18:14 callC.c
-rw-r--r--@ 1 mtsouk staff 89 Oct 31 18:14 callC.h
$ gcc -c callClib/*.c
$ ls -l callC.o
-rw-r--r-- 1 mtsouk staff 944 Oct 31 18:14 callC.o
$ file callC.o
callC.o: Mach-O 64-bit object x86_64
$ ar rs callC.a *.o
ar: creating archive callC.a
$ ls -l callC.a
-rw-r--r-- 1 mtsouk staff 1152 Oct 31 18:15 callC.a
$ file callC.a
callC.a: current ar archive random library
$ rm callC.o

After that, you will have a file named callC.a located in the same directory as the
callC.go file. The gcc executable is the name of the C compiler.

Now you are ready to compile the file with the Go code and create a new executable file:

$ go build callC.go
$ ls -l callC
-rwxr-xr-x 1 mtsouk staff 2322000 Oct 31 18:16 callC
$ file callC
callC: Mach-O 64-bit executable x86_64

Understanding Go Internals Chapter 2

[64]

Executing the callC executable file will create the following output:

$./callC
Going to call a C function!
Hello from C!
Going to call another C function!
Go send me This is Mihalis!
All perfectly done!

If you will call a small amount of C code, then using a single Go file for
both the C and Go code is highly recommended because of its simplicity.
However, if you will do something more complex and advanced, creating
a static C library should be your preferred method.

Calling Go functions from C code
It is also possible to call a Go function from your C code. Therefore, this section will present
a small example where two Go functions will be called from a C program. The Go package
will be converted into a C shared library that will be used in the C program.

The Go package
This subsection will present you with the code of the Go package that will be used in a C
program. The name of the Go package needs to be main, but its filename can be anything
you want. In this case, the filename will be usedByC.go, and it will be presented in three
parts.

You will learn more about Go packages in Chapter 6, What You Might Not
Know About Go Packages.

The first part of the code of the Go package is as follows:

package main

import "C"

import (
 "fmt"
)

Understanding Go Internals Chapter 2

[65]

As I mentioned before, it is mandatory that you name the Go package as main. You will
also need to import the C package in your Go code.

The second part of the program contains the following Go code:

//export PrintMessage
func PrintMessage() {
 fmt.Println("A Go function!")
}

Each Go function that will be called by the C code needs to be exported first. This means
that you should put a comment line starting with //export before its implementation.
After //export, you will need to put the name of the function because this is what the C
code will use.

The last part of usedByC.go is as follows:

//export Multiply
func Multiply(a, b int) int {
 return a * b
}

func main() {
}

The main() function of usedByC.go needs no code because it will not be exported and
therefore used by the C program. Additionally, as you also want to export the Multiply()
function, you will need to put //export Multiply before its implementation.

After this, you will need to generate a C shared library from the Go code by executing the
following command:

$ go build -o usedByC.o -buildmode=c-shared usedByC.go

The preceding command will generate two files named usedByC.h and usedByC.o:

$ ls -l usedByC.*
-rw-r--r--@ 1 mtsouk staff 204 Oct 31 20:37 usedByC.go
-rw-r--r-- 1 mtsouk staff 1365 Oct 31 20:40 usedByC.h
-rw-r--r-- 1 mtsouk staff 2329472 Oct 31 20:40 usedByC.o
$ file usedByC.o
usedByC.o: Mach-O 64-bit dynamically linked shared library x86_64

Understanding Go Internals Chapter 2

[66]

You should not make any changes to usedByC.h.

The C code
The relevant C code can be found in the willUseGo.c source file, which will be presented
in two parts. The first part of willUseGo.c is as follows:

#include <stdio.h>
#include "usedByC.h"

int main(int argc, char **argv) {
 GoInt x = 12;
 GoInt y = 23;

 printf("About to call a Go function!\n");
 PrintMessage();

If you already know C, you should understand why you need to include usedByC.h. This
is the way that the C code knows about the available functions of a library.

The second part of the C program follows next:

 GoInt p = Multiply(x,y);
 printf("Product: %d\n",(int)p);
 printf("It worked!\n");
 return 0;
}

The GoInt p variable is needed for getting an integer value from a Go function, which is
converted to a C integer using the (int) p notation.

Compiling and executing willUseGo.c on a macOS High Sierra machine will create the
following output:

$ gcc -o willUseGo willUseGo.c ./usedByC.o
$./willUseGo
About to call a Go function!
A Go function!
Product: 276
It worked!

Understanding Go Internals Chapter 2

[67]

The defer keyword
The defer keyword postpones the execution of a function until the surrounding function
returns. It is widely used in file input and output operations because it saves you from
having to remember when to close an opened file: the defer keyword allows you to put the
function call that closes an opened file near to the function call that opened it. As you will
learn about the use of defer in file-related operations in Chapter 8, Telling a Unix System
What to Do, this section will present a different usage of defer. You will also see defer in
action in the section that talks about the panic() and recover() built-in Go functions.

It is very important to remember that deferred functions are executed in Last In First Out
(LIFO) order after the return of the surrounding function. Put simply, this means that if you
defer function f1() first, function f2() second, and function f3() third in the same
surrounding function, when the surrounding function is about to return, function f3() will
be executed first, function f2() will be executed second, and function f1() will be the last
one to get executed.

As this definition of defer is a little unclear, I think that you will understand the use of
defer a little better by looking at the Go code and the output of the defer.go program,
which will be presented in three parts.

The first part of the program is as follows:

package main

import (
 "fmt"
)

func d1() {
 for i := 3; i > 0; i-- {
 defer fmt.Print(i, " ")
 }
}

Apart from the import block, the preceding Go code implements a function named d1()
with a for loop and a defer statement that will be executed three times.

The second part of defer.go contains the following Go code:

func d2() {
 for i := 3; i > 0; i-- {
 defer func() {
 fmt.Print(i, " ")

Understanding Go Internals Chapter 2

[68]

 }()
 }
 fmt.Println()
}

In this part of the code, you can see the implementation of another function that is named
d2(). The d2() function also contains a for loop and a defer statement that will be also
executed three times. However, this time the defer keyword is applied to an anonymous
function instead of a single fmt.Print() statement. Additionally, the anonymous function
takes no parameters.

The last part of the Go code is as follows:

func d3() {
 for i := 3; i > 0; i-- {
 defer func(n int) {
 fmt.Print(n, " ")
 }(i)
 }
}

func main() {
 d1()
 d2()
 fmt.Println()
 d3()
 fmt.Println()
}

Apart from the main() function that calls the d1(), d2(), and d3() functions, you can also
see the implementation of the d3() function, which has a for loop that uses the defer
keyword on an anonymous function. However, this time the anonymous function requires
one integer parameter named n. The Go code tells us that the n parameter takes its value
from the i variable used in the for loop.

Executing defer.go will create the following output:

$ go run defer.go
1 2 3
0 0 0
1 2 3

Understanding Go Internals Chapter 2

[69]

You will most likely find the generated output complicated and challenging to understand.
This underscores the fact that the operation and the results of the use of defer can be tricky
if your code is not clear and unambiguous.

Let's examine the results in order to get a better idea of how tricky defer can be if you do
not pay close attention to your code. We will start with the first line of the output (1 2 3),
which is generated by the d1() function. The values of i in d1() are 3, 2, and 1 in that
order. The function that is deferred in d1() is the fmt.Print() statement. As a result,
when the d1() function is about to return, you get the three values of the i variable of the
for loop in reverse order because deferred functions are executed in LIFO order.

Now, let's inspect the second line of the output that is produced by the d2() function. It is
really strange that we got three zeros instead of 1 2 3 in the output. The reason for this,
however, is relatively simple. After the for loop has ended, the value of i is 0, because it is
that value of i that made the for loop terminate. However, the tricky part here is that the
deferred anonymous function is evaluated after the for loop ends, because it has no
parameters. This means that is evaluated three times for an i value of 0, hence the
generated output! This kind of confusing code is what might lead to the creation of nasty
bugs in your projects, so try to avoid it!

Also, we will talk about the third line of the output, which is generated by the d3()
function. Due to the parameter of the anonymous function, each time the anonymous
function is deferred, it gets and uses the current value of i. As a result, each execution of the
anonymous function has a different value to process, thus the generated output.

After this, it should be clear that the best approach to the use of defer is the third one,
which is exhibited in the d3() function. This is so because you intentionally pass the
desired variable in the anonymous function in an easy to understand way.

Panic and Recover
This section will present you with a tricky technique that was first mentioned in Chapter
1, Go and the Operating System. This technique involves the use of the panic() and
recover() functions, and it will be presented in panicRecover.go, which you will
review in three parts.

Understanding Go Internals Chapter 2

[70]

Strictly speaking, panic() is a built-in Go function that terminates the current flow of a Go
program and starts panicking! On the other hand, the recover() function, which is also a
built-in Go function, allows you to take back the control of a goroutine that just panicked
using panic().

The first part of the program follows:

package main

import (
 "fmt"
)

func a() {
 fmt.Println("Inside a()")
 defer func() {
 if c := recover(); c != nil {
 fmt.Println("Recover inside a()!")
 }
 }()
 fmt.Println("About to call b()")
 b()
 fmt.Println("b() exited!")
 fmt.Println("Exiting a()")
}

Apart from the import block, this part includes the implementation of the a() function.
The most important part of the a() function is the defer block of code, which implements
an anonymous function that will be called when there is a call to panic().

The second code segment of panicRecover.go follows next:

func b() {
 fmt.Println("Inside b()")
 panic("Panic in b()!")
 fmt.Println("Exiting b()")
}

The last part of the program, which illustrates the panic() and recover() functions, is as
follows:

func main() {
 a()
 fmt.Println("main() ended!")
}

Understanding Go Internals Chapter 2

[71]

Executing panicRecover.go will create the following output:

$ go run panicRecover.go
Inside a()
About to call b()
Inside b()
Recover inside a()!
main() ended!

What just happened here is really impressive! However, as you can see from the output, the
a() function did not end normally, because its last two statements did not get executed:

 fmt.Println("b() exited!")
 fmt.Println("Exiting a()")

Nevertheless, the good thing is that panicRecover.go ended according to our will
without panicking because the anonymous function used in defer took control of the
situation! Also note that function b() knows nothing about function a(). However,
function a() contains Go code that handles the panic condition of the b() function!

Using the panic function on its own
You can also use the panic() function on its own without any attempt to recover, and this
subsection will show you its results using the Go code of justPanic.go, which will be
presented in two parts.

The first part of justPanic.go follows next:

package main

import (
 "fmt"
 "os"
)

As you can see, the use of panic() does not require any extra Go packages.

Understanding Go Internals Chapter 2

[72]

The second part of justPanic.go is shown in the following Go code:

func main() {
 if len(os.Args) == 1 {
 panic("Not enough arguments!")
 }

 fmt.Println("Thanks for the argument(s)!")
}

If your Go program does not have at least one command-line argument, it will call the
panic() function. The panic() function takes one parameter, which is the error message
that you want to print on the screen.

Executing justPanic.go on a macOS High Sierra machine will create the following
output:

$ go run justPanic.go
panic: Not enough arguments!
goroutine 1 [running]:
main.main()
 /Users/mtsouk/ch2/code/justPanic.go:10 +0x9e
exit status 2

Thus, using the panic() function on its own will terminate the Go program without giving
you the opportunity to recover! Therefore use of the panic() and recover() pair is much
more practical and professional than just using panic() alone.

The output of the panic() function looks like the output of the Panic()
function from the log package. However, the panic() function sends
nothing to the logging service of your Unix machine.

Two handy Unix utilities
There are times that a Unix program fails for some unknown reason or does not perform
well, and you want to find out why without having to rewrite your code and add a plethora
of debugging statements.

Understanding Go Internals Chapter 2

[73]

Consequently, this section presents two command-line utilities that allow you to see the C
system calls executed by an executable file. The names of the two tools are strace(1) and
dtrace(1), and they allow you to inspect the operation of a program.

Remember that, at the end of the day, all programs that work on Unix
machines end up using C system calls to communicate with the Unix
kernel and perform most of their tasks.

Although both tools can work with the go run command, you will get less unrelated
output if you first create an executable file using go build and use that file. This occurs
mainly because, as you already know, go run creates various temporary files before
actually running your Go code, and both tools will see that and try to display information
about the temporary files, which is not what you want.

The strace tool
The strace(1) command-line utility allows you to trace system calls and signals. As
strace(1) is not available on macOS, this section will use a Debian Linux machine to
showcase strace(1).

The strace(1) tool only works on Linux machines.

The output that strace(1) generates looks like the following:

$ strace ls
execve("/bin/ls", ["ls"], [/* 15 vars */]) = 0
brk(0) = 0x186c000
fstat(3, {st_mode=S_IFREG|0644, st_size=35288, ...}) = 0

The strace(1) output displays each system call with its parameters as well as its return
value. Note that in the Unix world, a return value of 0 is a good thing!

Understanding Go Internals Chapter 2

[74]

In order to process a binary file, you will need to put the strace(1) command in front of
the executable that you want to process. However, you will need to interpret the output on
your own in order to use it to make useful conclusions. The good thing is that tools like
grep(1) can get you the output that you are actually seeking:

$ strace find /usr 2>&1 | grep ioctl
ioctl(0, SNDCTL_TMR_TIMEBASE or SNDRV_TIMER_IOCTL_NEXT_DEVICE or TCGETS,
0x7ffe3bc59c50) = -1 ENOTTY (Inappropriate ioctl for device)
ioctl(1, SNDCTL_TMR_TIMEBASE or SNDRV_TIMER_IOCTL_NEXT_DEVICE or TCGETS,
0x7ffe3bc59be0) = -1 ENOTTY (Inappropriate ioctl for device)

The strace(1) tool can count time, calls, and errors for each system call when used with
the -c command-line option:

$ strace -c find /usr 1>/dev/null
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- -------------
 82.88 0.063223 2 39228 getdents
 16.60 0.012664 1 19587 newfstatat
 0.16 0.000119 0 19618 13 open

As the normal program output is printed in standard output form, and the output of
strace(1) is printed in standard error form, the previous command discards the output of
the command that is examined and shows the output of strace(1). As you can see from
the last line of the output, the open(2) system call was called 19,618 times, generated 13
errors, and took about 0.16% percent of the execution time of the entire command, or about
0.000119 seconds.

The dtrace tool
Although debugging utilities such as strace(1) and truss(1) can trace system calls
produced by a process, they can be slow and therefore not appropriate for solving
performance problems on busy Unix systems. Another tool named DTrace allows you to
see what happens behind the scenes on a system-wide basis without the need to modify or
recompile anything. It also allows you to work on production systems and watch running
programs or server processes dynamically without introducing a big overhead.

Although there is a version of dtrace(1) that works on Linux, the
dtrace(1) tool works best on macOS and the other FreeBSD variants.

Understanding Go Internals Chapter 2

[75]

This subsection will use the dtruss(1) command-line utility that comes with macOS,
which is just a dtrace(1) script that shows the system calls of a process and saves you
from having to write dtrace(1) code. Note that both dtrace(1) and dtruss(1) need
root privileges to run.

The output that dtruss(1) generates looks like the following:

$ sudo dtruss godoc
ioctl(0x3, 0x80086804, 0x7FFEEFBFEC20) = 0 0
close(0x3) = 0 0
access("/AppleInternal/XBS/.isChrooted\0", 0x0, 0x0) = -1 Err#2
thread_selfid(0x0, 0x0, 0x0) = 1895378 0
geteuid(0x0, 0x0, 0x0) = 0 0
getegid(0x0, 0x0, 0x0) = 0 0

So, dtruss(1) works in the same way as the strace(1) utility. Analogously to
strace(1), dtruss(1) will print system call counts when used with the -c parameter:

$ sudo dtruss -c go run unsafe.go 2>&1
CALL COUNT
access 1
bsdthread_register 1
getuid 1
ioctl 1
issetugid 1
kqueue 1
write 1
read 244
kevent 474
fcntl 479
lstat64 553

The preceding output will quickly inform you about potential bottlenecks in your Go code
or allow you to compare the performance of two different command-line programs.

You need to get used to using utilities such as strace(1), dtrace(1),
and dtruss(1), but such tools can make your lives so much easier and
better. I strongly suggest that you start learning at least one such tool right
now!

Understanding Go Internals Chapter 2

[76]

You can learn more about the dtrace(1) utility by reading DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD by Brendan Gregg and Jim Mauro (Prentice Hall,
2011) and by visiting http://dtrace.org/. Please bear in mind that dtrace(1) is much
more powerful than strace(1) because it has its own programming language. However,
strace(1) is more versatile when all you want to do is to watch the system calls of an
executable file.

Your Go environment
This section will help you find out information about your current Go environment using
the functions and properties of the runtime package. The name of the program that will be
developed in this section is goEnv.go, and it will be presented in two parts.

The first part of goEnv.go follows:

package main

import (
 "fmt"
 "runtime"
)

As you will see shortly, the runtime package contains functions and properties that will
reveal the desired information. The second portion of the code of goEnv.go contains the
implementation of the main() function:

func main() {
 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("Using Go version", runtime.Version())
 fmt.Println("Number of CPUs:", runtime.NumCPU())
 fmt.Println("Number of Goroutines:", runtime.NumGoroutine())
}

Executing goEnv.go on a macOS High Sierra machine with Go version 1.9.2 will create the
following output:

$ go run goEnv.go
You are using gc on a amd64 machine
Using Go version go1.9.2
Number of CPUs: 8
Number of Goroutines: 1

http://dtrace.org/

Understanding Go Internals Chapter 2

[77]

The same program generates the following output on a Debian Linux machine with Go
version 1.3.3:

$ go run goEnv.go
You are using gc on a amd64 machine
Using Go version go1.3.3
Number of CPUs: 1
Number of Goroutines: 4

The real benefit you can get from being able to find information about your Go
environment, however, is illustrated in the next program, named requiredVersion.go,
which tells you if you are using Go version 1.8 or higher:

package main

import (
 "fmt"
 "runtime"
 "strconv"
 "strings"
)

func main() {
 myVersion := runtime.Version()
 major := strings.Split(myVersion, ".")[0][2]
 minor := strings.Split(myVersion, ".")[1]
 m1, _ := strconv.Atoi(string(major))
 m2, _ := strconv.Atoi(minor)

 if m1 == 1 && m2 < 8 {
 fmt.Println("Need Go version 1.8 or higher!")
 return
 }

 fmt.Println("You are using Go version 1.8 or higher!")
}

The strings Go standard package is used for splitting the Go version string you get from
runtime.Version() in order to get its first two parts, whereas the strconv.Atoi()
function is used for converting a string to an integer.

Understanding Go Internals Chapter 2

[78]

Executing requiredVersion.go on the macOS High Sierra machine will create the
following output:

$ go run requiredVersion.go
You are using Go version 1.8 or higher!

If you run requiredVersion.go on the Debian Linux machine, however, it will generate
the following output:

$ go run requiredVersion.go
Need Go version 1.8 or higher!

Thus using the Go code of requiredVersion.go, you will be able to identify whether your
Unix machine has the required Go version or not.

The Go Assembler
This section will briefly talk about the assembly language and the Go assembler, which is a
Go tool that allows you to see the assembly language used by the Go compiler.

As an example, you can see the assembly language of the goEnv.go program from the
previous section by executing the following command:

$ GOOS=darwin GOARCH=amd64 go tool compile -S goEnv.go

The value of the GOOS variable defines the name of the target operating system, whereas the
value of the GOARCH variable defines the compilation architecture. The preceding command
was executed on a macOS High Sierra machine, hence the use of the darwin value for the
GOOS variable.

The output of the preceding command is pretty large, even for a small program such as
goEnv.go. Some of the output is shown next:

"".main STEXT size=859 args=0x0 locals=0x118
 0x0000 00000 (goEnv.go:8) TEXT "".main(SB), $280-0
 0x00be 00190 (goEnv.go:9) PCDATA $0, $1
 0x0308 00776 (goEnv.go:13) PCDATA $0, $5
 0x0308 00776 (goEnv.go:13) CALL runtime.convT2E64(SB)
"".init STEXT size=96 args=0x0 locals=0x8
 0x0000 00000 (<autogenerated>:1) TEXT "".init(SB), $8-0
 0x0000 00000 (<autogenerated>:1) MOVQ (TLS), CX
 0x001d 00029 (<autogenerated>:1) FUNCDATA $0, gclocals
d4dc2f11db048877dbc0f60a22b4adb3(SB)

Understanding Go Internals Chapter 2

[79]

 0x001d 00029 (<autogenerated>:1) FUNCDATA $1, gclocals
33cdeccccebe80329f1fdbee7f5874cb(SB)

The lines that contain the FUNCDATA and PCDATA directives are read and used by the Go
garbage collector and are automatically generated by the Go compiler.

An equivalent variant of the preceding command follows:

$ GOOS=darwin GOARCH=amd64 go build -gcflags -S goEnv.go

The list of valid GOOS values includes android, darwin, dragonfly, freebsd, linux,
nacl, netbsd, openbsd, plan9, solaris, windows, and zos. On the other hand, the list of
valid GOARCH values includes 386, amd64, amd64p32, arm, armbe, arm64, arm64be, ppc64,
ppc64le, mips, mipsle, mips64, mips64le, mips64p32, mips64p32le, ppc, s390, s390x,
sparc, and sparc64.

If you are really interested in the Go assembler and you want to learn
more, visit https://golang.org/doc/asm.

Node Trees
Now it's time for something completely different and low level. You are free to skip this
section if you like, but I bet that you are not reading this book for its easy topics but for the
difficult ones, such as node trees!

The go tool 6g -W test.go command does not work on newer Go
versions. You should use go tool compile -W test.go instead.

A Go node is a struct with a large number of properties. You will learn more about
defining and using Go structures in Chapter 4, The Uses of Composite Types. Everything in a
Go program is being parsed and analyzed by the modules of the Go compiler according to
the grammar of the Go programming language. The final product of this analysis is a tree
that is specific to the provided Go code, and it represents the program in a different way
that is suited for the compiler rather than for the developer.

https://golang.org/doc/asm

Understanding Go Internals Chapter 2

[80]

This section will start with the following Go code, which is saved as nodeTree.go. It is
presented here as an example of the kind of low-level information that the go tool can
provide:

package main

import (
 "fmt"
)

func main() {
 fmt.Println("Hello there!")
}

The Go code of nodeTree.go is pretty easy to understand, so you will not be surprised by
its output, which comes next:

$ go run nodeTree.go
Hello there!

Now it's time to see some of the internal workings of Go by executing the following
command:

$ go tool compile -W nodeTree.go
before main
. CALLFUNC l(8) tc(1) STRUCT-(int, error)
. . NAME-fmt.Println a(true) l(4) x(0) class(PFUNC) tc(1) used FUNC-
func(...interface {}) (int, error)
. . DDDARG l(8) esc(no) PTR64-*[1]interface {}
. CALLFUNC-list
. . CONVIFACE l(8) esc(h) tc(1) implicit(true) INTER-interface {}
. . . NAME-main.statictmp_0 a(true) l(8) x(0) class(PEXTERN) f(1)
tc(1) used string
. VARKILL l(8) tc(1)
. . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N) used
ARRAY-[1]interface {}
after walk main
. CALLFUNC-init
. . AS l(8) tc(1)
. . . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) addrtaken assigned used ARRAY-[1]interface {}
. . AS l(8) tc(1)
. . . NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) assigned used PTR64-*[1]interface {}
. . . ADDR l(8) tc(1) PTR64-*[1]interface {}
. . . . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) addrtaken assigned used ARRAY-[1]interface {}

Understanding Go Internals Chapter 2

[81]

. . BLOCK l(8)

. . BLOCK-list

. . . AS l(8) tc(1) hascall

. . . . INDEX l(8) tc(1) assigned bounded hascall INTER-interface
{}
. IND l(8) tc(1) implicit(true) assigned hascall ARRAY-
[1]interface {}
. NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO)
esc(N) tc(1) assigned used PTR64-*[1]interface {}
. LITERAL-0 a(true) l(8) tc(1) int
. . . . EFACE l(8) tc(1) INTER-interface {}
. ADDR a(true) l(8) tc(1) PTR64-*uint8
. NAME-type.string a(true) x(0) class(PEXTERN) tc(1)
uint8
. ADDR l(8) tc(1) PTR64-*string
. NAME-main.statictmp_0 a(true) l(8) x(0)
class(PEXTERN) f(1) tc(1) addrtaken used string
. . BLOCK l(8)
. . BLOCK-list
. . . AS l(8) tc(1) hascall
. . . . NAME-main..autotmp_1 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) assigned used SLICE-[]interface {}
. . . . SLICEARR l(8) tc(1) hascall SLICE-[]interface {}
. NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO)
esc(N) tc(1) assigned used PTR64-*[1]interface {}
. CALLFUNC l(8) tc(1) hascall STRUCT-(int, error)
. . NAME-fmt.Println a(true) l(4) x(0) class(PFUNC) tc(1) used FUNC-
func(...interface {}) (int, error)
. . DDDARG l(8) esc(no) PTR64-*[1]interface {}
. CALLFUNC-list
. . AS l(8) tc(1)
. . . INDREGSP-SP a(true) l(8) x(0) tc(1) addrtaken main.__ SLICE-
[]interface {}
. . . NAME-main..autotmp_1 a(true) l(8) x(0) class(PAUTO) esc(N)
tc(1) assigned used SLICE-[]interface {}
. VARKILL l(8) tc(1)
. . NAME-main..autotmp_0 a(true) l(8) x(0) class(PAUTO) esc(N) tc(1)
addrtaken assigned used ARRAY-[1]interface {}
before init
. IF l(1) tc(1)
. . GT l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 a(true) l(1) tc(1) uint8
. IF-body
. . RETURN l(1) tc(1)
. IF l(1) tc(1)
. . EQ l(1) tc(1) bool

Understanding Go Internals Chapter 2

[82]

. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 a(true) l(1) tc(1) uint8
. IF-body
. . CALLFUNC l(1) tc(1)
. . . NAME-runtime.throwinit a(true) x(0) class(PFUNC) tc(1) used
FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-1 a(true) l(1) tc(1) uint8
. CALLFUNC l(1) tc(1)
. . NAME-fmt.init a(true) l(4) x(0) class(PFUNC) tc(1) used FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-2 a(true) l(1) tc(1) uint8
. RETURN l(1) tc(1)
after walk init
. IF l(1) tc(1)
. . GT l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 a(true) l(1) tc(1) uint8
. IF-body
. . RETURN l(1) tc(1)
. IF l(1) tc(1)
. . EQ l(1) tc(1) bool
. . . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1)
assigned used uint8
. . . LITERAL-1 a(true) l(1) tc(1) uint8
. IF-body
. . CALLFUNC l(1) tc(1) hascall
. . . NAME-runtime.throwinit a(true) x(0) class(PFUNC) tc(1) used
FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-1 a(true) l(1) tc(1) uint8
. CALLFUNC l(1) tc(1) hascall
. . NAME-fmt.init a(true) l(4) x(0) class(PFUNC) tc(1) used FUNC-func()
. AS l(1) tc(1)
. . NAME-main.initdone a(true) l(1) x(0) class(PEXTERN) tc(1) assigned
used uint8
. . LITERAL-2 a(true) l(1) tc(1) uint8
. RETURN l(1) tc(1)

Understanding Go Internals Chapter 2

[83]

As you can appreciate, the Go compiler and its tools do many things behind the scenes,
even for a small program such as nodeTree.go.

The -W parameter tells the go tool compile command to print the
debug parse tree after the type checking.

Look at the output of the next two commands:

$ go tool compile -W nodeTree.go | grep before
before main
before init
$ go tool compile -W nodeTree.go | grep after
after walk main
after walk init

As you can see, the before keyword is about the beginning of the execution of a function. If
your program had more functions, you would have gotten more output. This is illustrated
in the following example:

$ go tool compile -W defer.go | grep before
before d1
before d2
before d3
before main
before d2.func1
before d3.func1
before init
before type..hash.[2]interface {}
before type..eq.[2]interface {}

The preceding example uses the Go code of defer.go, which is much more complicated
than nodeTree.go. However, it should be obvious than the init() function is
automatically created by Go as it exists in both examples (nodeTree.go and defer.go).

I will now present you with a juicier version of nodeTree.go, named nodeTreeMore.go:

package main

import (
 "fmt"
)

func functionOne(x int) {
 fmt.Println(x)

Understanding Go Internals Chapter 2

[84]

}

func main() {
 varOne := 1
 varTwo := 2
 fmt.Println("Hello there!")
 functionOne(varOne)
 functionOne(varTwo)
}

The nodeTreeMore.go program has two variables, named varOne and varTwo, and one
additional function named functionOne. Searching the output of go tool compile -W
for varOne, varTwo, and functionOne reveals the following information:

$ go tool compile -W nodeTreeMore.go | grep functionOne | uniq
before functionOne
after walk functionOne
. . NAME-main.functionOne a(true) l(7) x(0) class(PFUNC) tc(1) used
FUNC-func(int)
$ go tool compile -W nodeTreeMore.go | grep varTwo | uniq
. . NAME-main.varTwo a(true) g(2) l(13) x(0) class(PAUTO) f(1) tc(1)
used int
. . . NAME-main.varTwo a(true) g(2) l(13) x(0) class(PAUTO) f(1)
tc(1) used int
$ go tool compile -W nodeTreeMore.go | grep varOne | uniq
. . NAME-main.varOne a(true) g(1) l(12) x(0) class(PAUTO) f(1) tc(1)
used int
. . . NAME-main.varOne a(true) g(1) l(12) x(0) class(PAUTO) f(1)
tc(1) used int

Thus, varOne is represented as NAME-main.varOne while varTwo is indicated by NAME-
main.varTwo. The functionOne() function is referenced as NAME-main.functionOne.
Consequently, the main() function is referenced as NAME-main.

Now let's examine the following code of the debug parse tree of nodeTreeMore.go:

before functionOne
. AS l(8) tc(1)
. . NAME-main..autotmp_2 a(true) l(8) x(0) class(PAUTO) esc(N) tc(1)
assigned used int
. . NAME-main.x a(true) g(1) l(7) x(0) class(PPARAM) f(1) tc(1) used
int

Understanding Go Internals Chapter 2

[85]

This data is related to the definition of functionOne(). The l(8) string tells us that the
definition of this node can be found in line 8; that is, after reading line 7. The NAME-
main..autotmp_2 integer variable is automatically generated by the compiler.

The next part of the debug parse tree output that I will explain below follows:

. CALLFUNC l(15) tc(1)

. . NAME-main.functionOne a(true) l(7) x(0) class(PFUNC) tc(1) used
FUNC-func(int)
. CALLFUNC-list
. . NAME-main.varOne a(true) g(1) l(12) x(0) class(PAUTO) f(1) tc(1)
used int

The first line says that in line 15 of the program, which is specified by l(15), you will call
NAME-main.functionOne, which is defined in line 7 of the program, as specified by l(7),
which is a function that requires a single integer parameter, as specified by FUNC-
func(int). The function list of parameters, which is specified after CALLFUNC-list,
includes the NAME-main.varOne variable that is defined in line 12 of the program as l(12)
shows.

Learning more about go build
If you want to learn more about what is happening behind the scenes when you execute a
go build command, you should add the -x flag to it, as in the next example:

$ go build -x defer.go
WORK=/var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/go-build563076777
mkdir -p $WORK/command-line-arguments/_obj/
mkdir -p $WORK/command-line-arguments/_obj/exe/
cd /Users/mtsouk/Desktop/masterGo/ch/ch2/code
/usr/local/Cellar/go/1.9.2/libexec/pkg/tool/darwin_amd64/compile -o
$WORK/command-line-arguments.a -trimpath $WORK -goversion go1.9.2 -p main -
complete -buildid 594c089b099f8acfb529046cd09a886b401d57c8 -D
_/Users/mtsouk/Desktop/masterGo/ch/ch2/code -I $WORK -pack ./defer.go
cd .
/usr/local/Cellar/go/1.9.2/libexec/pkg/tool/darwin_amd64/link -o
$WORK/command-line-arguments/_obj/exe/a.out -L $WORK -extld=clang -
buildmode=exe -buildid=594c089b099f8acfb529046cd09a886b401d57c8
$WORK/command-line-arguments.a
mv $WORK/command-line-arguments/_obj/exe/a.out defer

Understanding Go Internals Chapter 2

[86]

Once again, there are many things happening in the background, and it is important to be
aware of them. However, most of the time, you will not have to deal with the commands of
the compilation process.

General Go coding advices
The following list offers practical advices that will help you write better Go code:

If you have an error in a Go function, either log it or return it, do not do both
unless you have a really good reason for doing so!
Go interfaces define behaviors, not data and data structures.
Use the io.Reader and io.Writer interfaces because they make your code
more extensible.
Make sure that you pass a pointer to a variable of a function only when needed.
The rest of the time, just pass the value of the variable.
Error variables are not string variables; they are error variables!
Do not test your Go code on production machines!
If you don't really know a Go feature, test it before using it for the first time,
especially if you are developing an application or a utility that will be used by a
large number of users.
If you are afraid of making mistakes, you will most likely end up doing nothing
really useful! So, experiment as much as you can!

Additional Resources
Have a look at the following resources:

Learn more about the unsafe standard Go package by visiting its documentation
page at https://golang.org/pkg/unsafe/.
Visit the website of DTrace at http://dtrace.org/.
You can find out more information about the functions of the runtime package
by visiting https://golang.org/pkg/runtime/.

https://golang.org/pkg/unsafe/
http://dtrace.org/
https://golang.org/pkg/runtime/

Understanding Go Internals Chapter 2

[87]

Reading research papers might be difficult, but it is very rewarding. Be sure to
download the On-the-fly Garbage Collection: An Exercise in Cooperation paper and
read it. The paper can be found in many places,
including https://dl.acm.org/citation.cfm?id=359655.
Visit https://github.com/gasche/gc-latency-experiment in order to find
benchmarking code for the garbage collector of various programming languages.
Should you wish to learn more about garbage collection, definitely visit
http://gchandbook.org/.
Visit the documentation page of cgo at https://golang.org/cmd/cgo/.

Exercises
Write an example where you use your own C code from a Go program.
Use strace(1) on your Linux machine to inspect the operation of some
standard Unix utilities such as cp(1) and ls(1). What do you see?
If you are using a macOS machine, use dtruss(1) to see how the sync(8)
utility works.
Write a Go function, and use it in a C program.

Summary
This chapter covered many interesting Go topics including theoretical and practical
information about the Go garbage collector; how to call C code from your Go programs; the
handy, yet sometimes tricky, defer keyword; the panic() and recover() functions; the
strace(1), dtrace(1), and dtruss(1) Unix tools; and the use of the unsafe standard
Go package. The chapter also presented some assembly language generated by Go.

Toward the end of the chapter, it told you how to find out information about your Go
environment using the runtime package and how to reveal and explain the node tree of a
Go program before giving you some handy Go coding advice.

https://dl.acm.org/citation.cfm?id=359655
https://github.com/gasche/gc-latency-experiment
http://gchandbook.org/
https://golang.org/cmd/cgo/

Understanding Go Internals Chapter 2

[88]

At the end of the day, what you should remember from this chapter is that tools such as the
unsafe Go package and the ability to call C code from Go are usually used for three
occasions: first, when you want the best performance and you are willing to sacrifice some
Go safety for it; second, when you want to communicate with another programming
language; and third, when you want to implement something that cannot be implemented
in Go.

In the next chapter, you will start to learn about the basic data types that come with Go
including arrays, slices, and maps. Despite their simplicity, those data types are the
building blocks of almost every Go application because they are the basis of more complex
data structures that allow you to store your data and move information inside your Go
projects. Additionally, you will learn about pointers, which are also found in other
programming languages, Go loops, and the unique way that Go works with dates and
times.

3
Working with Basic Go Data

Types
In the previous chapter, we covered many fascinating topics including the way the Go
garbage collector works, the panic() and recover() functions, the unsafe package, how
to call C code from a Go program, and how to call Go code from a C program. We also
addressed the node tree created by the Go compiler when compiling a Go program.

The core subject matter of this chapter is the basic data types of Go. This list includes arrays,
slices, and maps. Despite their simplicity, these data types can help you store, retrieve, and
alter the data in your programs in a very convenient and quick way. Moreover, this chapter
will talk about pointers, constants, loops, and working with dates and times, which is a
very interesting subject.

In this chapter, you will learn the following topics:

Go arrays

Go slices and why slices are much better than arrays

Go maps

Pointers in Go

Looping in Go

Constants in Go

Working with times

Operating with dates

Working with Basic Go Data Types Chapter 3

[90]

Go loops
Every programming language has a way of looping, and Go is no exception. Go offers the
for loop, which allows you to iterate over many kinds of data types.

Go does not offer support for the while keyword. However, the for loops
in Go can replace while loops!

The for loop
The most common programming loop type is the for loop, which allows you to iterate for a
predefined number of times or for as long as a condition is valid or according to a value that
is calculated at the beginning of the for loop. Such values include the size of a slice or an
array and the number of the keys on a map. This means that one of the most common ways
for accessing all of the elements of an array, a slice, or a map is the for loop. The other way
is with the use of the range keyword.

The following code shows the simplest form of a for loop, where a given variable takes a
range of predefined values:

for i := 0; i < 100; i++ {
}

In the preceding loop, the values that i will take are from 0 to 99. As soon as i reaches 100,
the execution of the for loop will stop. In this case, i is a local and temporary variable,
which means that after the termination of the for loop, i will be garbage collected at some
point and disappear. However, if i was defined outside the for loop, it would have kept its
value after the termination of the for loop. In that case, the value of i after the termination
of the for loop would have been 100.

You can completely exit a for loop using the break keyword. The break keyword also
allows you to create a for loop without an exit condition, such as i < 100 used in the
preceding example, because the exit condition can be included in the code block of the for
loop. You are also allowed to have multiple exit conditions in a for loop.

Additionally, you can skip a single iteration of a for loop using the continue keyword.
The continue keyword stops running the block, jumps back up to the top of the for loop,
and carries on for the next item.

Working with Basic Go Data Types Chapter 3

[91]

The while loop
As discussed earlier, Go does not offer the while keyword for writing while loops, but it
allows you to use a for loop instead of a while loop. This section will present two
examples where a for loop does the job of a while loop.

The following is the typical case where you want to write something like
while(condition):

for {
}

It is the job of the developer to use the break keyword to exit this for loop!

However, the for loop can also emulate a do...while loop that are found in other
programming languages. As an example, the following Go code is equivalent to a
do...while(anExpression) loop:

for ok := true; ok; ok = anExpression {
}

As soon as the ok variable reaches the false value, the for loop will terminate.

The range keyword
Go also offers the range keyword, which is used in for loops and allows you to write easy
to understand code for iterating over Go data types.

The main advantage of the range keyword is that you do not need to know the cardinality
of a slice or a map in order to process its elements one by one. You will see range in action
in a while.

Examples of Go for loops
This section will display multiple examples of for loops. The name of the file is loops.go,
and it will be presented in four parts. The first code segment of loops.go is as follows:

package main

import (
 "fmt"
)

Working with Basic Go Data Types Chapter 3

[92]

func main() {

 for i := 0; i < 100; i++ {
 if i%20 == 0 {
 continue
 }

 if i == 95 {
 break
 }

 fmt.Print(i, " ")
 }

The preceding code shows a typical for loop as well as the use of the continue and break
keywords.

The next code segment is as follows:

 fmt.Println()
 i := 10
 for {
 if i < 0 {
 break
 }
 fmt.Print(i, " ")
 i--
 }
 fmt.Println()

The preceding code emulates a typical while loop. Note the use of the break keyword to
exit the for loop.

The third part of loops.go follows next:

 i = 0
 anExpression := true
 for ok := true; ok; ok = anExpression {
 if i > 10 {
 anExpression = false
 }

 fmt.Print(i, " ")
 i++
 }
 fmt.Println()

Working with Basic Go Data Types Chapter 3

[93]

In this part, you see the use of a for loop that does the job of a do...while loop as
discussed earlier in this chapter.

The last part of loops.go is shown in the following Go code:

 anArray := [5]int{0, 1, -1, 2, -2}
 for i, value := range anArray {
 fmt.Println("index:", i, "value: ", value)
 }
}

Applying the range keyword to an array variable returns two values: an array index and
the value of the element at that index, respectively. You can use both of them, one of them,
or none of them; that is, in case you just want to count the elements of the array.

Executing loops.go will produce the following output:

$ go run loops.go
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
56 57 58 59 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 81 82
83 84 85 86 87 88 89 90 91 92 93 94
10 9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9 10 11
index: 0 value: 0
index: 1 value: 1
index: 2 value: -1
index: 3 value: 2
index: 4 value: -2

Go arrays
Arrays are one of the most popular data structures for two reasons: arrays are simple and
easy to understand and they are very versatile and can store many different kinds of data.

You can declare an array that stores four integers as follows:

anArray := [4]int{1, 2, 4, -4}

The size of the array is stated before its type, which is defined before its elements. You can
find the length of an array with the help of the len() function: len(anArray).

Working with Basic Go Data Types Chapter 3

[94]

The index of the first element of any dimension of an array is 0, the index of the second
element of any array dimension is 1, and so on. This means that for an array with one
dimension named a, the valid indexes are from 0 to len(a)-1.

Although you might be familiar with accessing the elements of an array in other
programming languages using a for loop and a numeric variable, there are cooler ways to
visit all of the elements of an array in Go that involve the use of the range keyword and
that allow you to bypass the use of the len() function in the for loop. Look to the Go code
of loops.go for such an example.

Multi-dimensional arrays
Arrays can have more than one dimension. However, using more than three dimensions
without a serious reason can make your program difficult to read and might create bugs.

Arrays can store all the types of elements. We are just using integers here
because they are easier to understand and type.

The following Go code shows how you can create an array with two dimensions (twoD) and
another one with three dimensions (threeD):

twoD := [4][4]int{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},
{13, 14, 15, 16}}
threeD := [2][2][2]int{{{1, 0}, {-2, 4}}, {{5, -1}, {7, 0}}}

Accessing, assigning, or printing a single element from one of the previous two arrays can
be done easily. As an example, the first element of the twoD array is twoD[0][0] and its
value is 1.

Therefore, accessing all of the elements of the twoD array with the help of multiple for
loops can be done as follows:

 for i := 0; i < len(threeD); i++ {
 for j := 0; j < len(v); j++ {
 for k := 0; k < len(m); k++ {
 }
 }
 }

Working with Basic Go Data Types Chapter 3

[95]

As you can see, you need as many for loops as the dimensions of the array in order to
access all of its elements. The same rules apply to slices, which will be presented in the next
section.

The code of usingArrays.go, which will be presented in three parts, presents a complete
example of how to deal with arrays in Go.

The first part of the code is as follows:

package main

import (
 "fmt"
)

func main() {
 anArray := [4]int{1, 2, 4, -4}
 twoD := [4][4]int{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},
 {13, 14, 15, 16}}
 threeD := [2][2][2]int{{{1, 0}, {-2, 4}}, {{5, -1}, {7, 0}}}

Here, you define three array variables, named anArray, twoD, and threeD, respectively.

The second part of usingArrays.go is shown here:

 fmt.Println("The length of", anArray, "is", len(anArray))
 fmt.Println("The first element of", twoD, "is", twoD[0][0])
 fmt.Println("The length of", threeD, "is", len(threeD))

 for i := 0; i < len(threeD); i++ {
 v := threeD[i]
 for j := 0; j < len(v); j++ {
 m := v[j]
 for k := 0; k < len(m); k++ {
 fmt.Print(m[k], " ")
 }
 }
 fmt.Println()
 }

What you get from the first for loop is a two-dimensional array (threeD[i]), whereas
what you get from the second for loop is an array with one dimension (v[j]). The last for
loop iterates over the elements of the array with one dimension.

Working with Basic Go Data Types Chapter 3

[96]

The last code part is shown in the following Go code:

 for _, v := range threeD {
 for _, m := range v {
 for _, s := range m {
 fmt.Print(s, " ")
 }
 }
 fmt.Println()
 }
}

The range keyword does exactly the same job as the iteration variables used in the for
loops of the preceding code segment, but it does so in a more elegant and clearer way.

The range keyword also works with Go maps, which makes it pretty
handy and my preferred way of iteration.

Executing usingArrays.go generates the following output:

$ go run usingArrays.go
The length of [1 2 4 -4] is 4
The first element of [[1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16]] is 1
The length of [[[1 0] [-2 4]] [[5 -1] [7 0]]] is 2
1 0 -2 4
5 -1 7 0
1 0 -2 4
5 -1 7 0

One of the biggest problems with arrays is out-of-bounds errors, which means trying to
access an element that does not exist. It's like trying to access the sixth element of an array
with only five elements. The Go compiler considers issues that can be detected as compiler
errors because this helps the development workflow. Therefore, the Go compiler can detect
out-of-bounds array access errors as follows:

./a.go:10: invalid array index -1 (index must be non-negative)

./a.go:10: invalid array index 20 (out of bounds for 2-element array)

Working with Basic Go Data Types Chapter 3

[97]

The shortcomings of Go arrays
Go arrays have many disadvantages that will make you reconsider using them in your Go
projects. First of all, once you define an array, you cannot change its size, which means that
Go arrays are not dynamic. Putting it simply, if you need to add an element to an existing
array that has no space left, you will need to create a bigger array and copy all of the
elements of the old array to the new one. Second, when you pass an array to a function as a
parameter, you actually pass a copy of the array, which means that any changes you make
to an array inside a function will be lost after the function exits. Last, passing a large array
to a function can be pretty slow, mostly because Go has to create a copy of the array. The
solution to all of these problems is to use Go slices, which will be presented in the next
section.

WARNING: Because of their disadvantages, arrays are rarely used in Go!

Go slices
Go slices are very powerful, and it would not be an exaggeration to say that slices could
totally replace the use of arrays in Go. There are only a few occasions where you will need
to use an array instead of a slice. The most obvious one is when you are absolutely sure that
you will need to store a fixed number of elements.

Slices are implemented using arrays internally, which means that Go uses
an underlying array for each slice.

As slices are passed by reference to functions, which means that what is actually passed is
the memory address of the slice variable, any modifications that you make to a slice inside a
function will not get lost after the function exits. Additionally, passing a big slice to a
function is significantly faster than passing an array with the same number of elements
because Go will not have to make a copy of the slice—it will just pass the memory address
of the slice variable.

Working with Basic Go Data Types Chapter 3

[98]

Performing basic operations on slices
You can create a new slice literal as follows:

 aSliceLiteral := []int{1, 2, 3, 4, 5}

This means that slice literals are defined just like arrays but without the element count. If
you put an element count in a definition, you will get an array instead!

However, there is also the make() function that allows you to create empty slices with the
desired length and capacity as the parameters passed to make(). The capacity parameter
can be omitted. In that case, the capacity of the slice will be the same as its length.

You can define a new empty slice with 20 places that can be automatically expanded when
needed as follows:

 integer := make([]int, 20)

Please note that Go automatically initializes the elements of an empty slice to the zero value
of its type, which means that the value of the initialization depends on the type of the object
stored in the slice. Although it is good to know that Go initializes the elements of every slice
created with make, you should not make any assumptions based on this fact because that
behavior might change in the future.

After that, you can access all of the elements of a slice in the following way:

 for i := 0; i < len(integer); i++ {
 fmt.Println(integer[i])
 }

If you want to empty an existing slice, the zero value for a slice variable is nil.

aSliceLiteral = nil

You can add an element to the slice, which will automatically increase its size, using the
append() function:

integer = append(integer, -5000)

You can access the first element of the integer slice as integer[0], whereas you can
access the last element of the integer slice as integer[len(integer)-1].

Working with Basic Go Data Types Chapter 3

[99]

Also, you can access multiple continuous slice elements using the [:] notation. The next
statement selects the second and the third elements of a slice:

integer[1:3]

Additionally, you can use [:] notation for creating a new slice from an existing slice or
array:

s2 := integer[1:3]

Please note that this process is called re-slicing, and it can cause problems in some cases.
Examine the following program:

package main

import "fmt"

func main() {

 s1 := make([]int, 5)
 reSlice := s1[1:3]
 fmt.Println(s1)
 fmt.Println(reSlice)

 reSlice[0] = -100
 reSlice[1] = 123456
 fmt.Println(s1)
 fmt.Println(reSlice)

}

First, note that in order to select the second and third elements of a slice using the [:]
notation, you should use [1:3], which means starting with index number 1 and going up
to index number 3, without including index number 3.

Given an array a1, you can create a slice s1 that references that array by
executing s1 := a1[:].

Working with Basic Go Data Types Chapter 3

[100]

Executing the preceding code, which is saved as reslice.go, will create the next output:

$ go run reslice.go
[0 0 0 0 0]
[0 0]
[0 -100 123456 0 0]
[-100 123456]

At the end of the program, the contents of the s1 slice will be [0 -100 123456 0 0], even
though we did not change them directly. This means that altering the elements of a re-slice
modifies the element of the original slice because both slices point to the same memory
address! Put simply, the re-slice process does not make a copy of the original slice.

The second problem of re-slicing is that, even if you re-slice a slice in order to use a small
part of the original slice, the underlying array from the original slice will be kept in memory
for as long as the smaller re-slice exists because the original slice is being referenced by the
smaller re-slice. Although this is not truly important for small slices, it can cause problems
when you are reading big files into slices and you only want to use a small part of them.

Slices are being expanded automatically
Slices have two main properties: capacity and length. The tricky part is that usually these
two properties have different values. The length of a slice is the same as the length of an
array with the same number of elements and can be found using the len() function. The
capacity of a slice is the current room that has been allocated for this particular slice, and it
can be found with the cap() function. As slices are dynamic in size, if a slice runs out of
room, Go automatically doubles its current length to make room for more elements.

Put simply, if the length and the capacity of a slice have the same values and you try to add
another element to the slice, the capacity of the slice will be doubled, whereas its length will
be increased by one. Although this might work well for small slices, adding a single element
to a really huge slice might take more memory than expected.

The code of lenCap.go illustrates the concepts of capacity and length in more detail, and it
will be presented in three parts. The first part of the program follows:

package main

import (
 "fmt"
)

func printSlice(x []int) {

Working with Basic Go Data Types Chapter 3

[101]

 for _, number := range x {
 fmt.Print(number, " ")
 }
 fmt.Println()
}

The printSlice() function helps you print a one-dimensional slice without having to
repeat the same Go code all of the time.

The second part of lenCap.go contains the next piece of Go code:

func main() {
 aSlice := []int{-1, 0, 4}
 fmt.Printf("aSlice: ")
 printSlice(aSlice)

 fmt.Printf("Cap: %d, Length: %d\n", cap(aSlice), len(aSlice))
 aSlice = append(aSlice, -100)
 fmt.Printf("aSlice: ")
 printSlice(aSlice)
 fmt.Printf("Cap: %d, Length: %d\n", cap(aSlice), len(aSlice))

In this part, as well as the next one, you will add some elements to the aSlice slice to alter
its length and its capacity.

The last portion of Go code is as follows:

 aSlice = append(aSlice, -2)
 aSlice = append(aSlice, -3)
 aSlice = append(aSlice, -4)
 printSlice(aSlice)
 fmt.Printf("Cap: %d, Length: %d\n", cap(aSlice), len(aSlice))
}

The execution of lenCap.go will create the following output:

$ go run lenCap.go
aSlice: -1 0 4
Cap: 3, Length: 3
aSlice: -1 0 4 -100
Cap: 6, Length: 4
-1 0 4 -100 -2 -3 -4
Cap: 12, Length: 7

Working with Basic Go Data Types Chapter 3

[102]

As you can see, the initial size of the slice was 3. As a result, the initial value of its capacity
was also 3. After adding one element to the slice, its size became 4, whereas its capacity
became 6. After adding three more elements to the slice, its size became 7, whereas its
capacity was doubled one more time and became 12.

Byte slices
A byte slice is a slice where its type is byte. You can create a new byte slice named s as
follows:

s := make([]byte, 5)

There is nothing special in the way that you can access a byte slice compared to the other
types of slices. It is just that byte slices are used in file input and output operations. You will
see byte slices in action in Chapter 8, Telling a Unix System What to Do.

The copy() function
You can create a slice from the elements of an existing array, and you can copy an existing
slice to another one using the copy() function. However, as the use of copy() can be very
tricky, this subsection will try to clarify its usage with the help of the Go code of
copySlice.go, which will be presented in four parts.

You should be very careful when using the copy() function on slices
because the built-in copy(dst, src) copies the minimum of the
len(dst) and len(src) elements.

The first part of the program is shown in the following Go code:

package main

import (
 "fmt"
)

func main() {

 a6 := []int{-10, 1, 2, 3, 4, 5}
 a4 := []int{-1, -2, -3, -4}
 fmt.Println("a6:", a6)
 fmt.Println("a4:", a4)

Working with Basic Go Data Types Chapter 3

[103]

 copy(a6, a4)
 fmt.Println("a6:", a6)
 fmt.Println("a4:", a4)
 fmt.Println()

In the preceding code, we define two slices named a6 and a4, print them, and then try to
copy a4 to a6. As a6 has more elements than a4, all of the elements of a4 will be copied to
a6. However, as a4 has only four elements and a6 has six elements, the last two elements of
a6 will remain the same.

The second part of copySlice.go is as follows:

 b6 := []int{-10, 1, 2, 3, 4, 5}
 b4 := []int{-1, -2, -3, -4}
 fmt.Println("b6:", b6)
 fmt.Println("b4:", b4)
 copy(b4, b6)
 fmt.Println("b6:", b6)
 fmt.Println("b4:", b4)

In this case, only the first four elements of b6 will be copied to b4 because b4 has only four
elements.

The third code segment of copySlice.go is shown in the following Go code:

 fmt.Println()
 array4 := [4]int{4, -4, 4, -4}
 s6 := []int{1, 1, -1, -1, 5, -5}
 copy(s6, array4[0:])
 fmt.Println("array4:", array4[0:])
 fmt.Println("s6:", s6)
 fmt.Println()

Here you try to copy an array with four elements to a slice with six elements. Note that the
array is converted to a slice with the help of the [:] notation (array4[0:]).

Working with Basic Go Data Types Chapter 3

[104]

The last code portion of copySlice.go is as follows:

 array5 := [5]int{5, -5, 5, -5, 5}
 s7 := []int{7, 7, -7, -7, 7, -7, 7}
 copy(array5[0:], s7)
 fmt.Println("array5:", array5)
 fmt.Println("s7:", s7)
}

Here you can see how to copy a slice to an array that has places for five elements. As
copy() only accepts slice arguments, you should also use the [:] notation to convert the
array into a slice.

If you try to copy an array into a slice or vice versa without using the [:] notation, the
program will fail to compile and will display one of the following error messages:

command-line-arguments
./a.go:42:6: first argument to copy should be slice; have [5]int
./a.go:43:6: second argument to copy should be slice or string; have
[5]int
./a.go:44:6: arguments to copy must be slices; have [5]int, [5]int

Executing copySlice.go will create the following output:

$ go run copySlice.go
a6: [-10 1 2 3 4 5]
a4: [-1 -2 -3 -4]
a6: [-1 -2 -3 -4 4 5]
a4: [-1 -2 -3 -4]

b6: [-10 1 2 3 4 5]
b4: [-1 -2 -3 -4]
b6: [-10 1 2 3 4 5]
b4: [-10 1 2 3]
array4: [4 -4 4 -4]
s6: [4 -4 4 -4 5 -5]
array5: [7 7 -7 -7 7]
s7: [7 7 -7 -7 7 -7 7]

Working with Basic Go Data Types Chapter 3

[105]

Multidimensional slices
Slices can have many dimensions as is also the case with arrays. The next statement creates
a slice with two dimensions:

s1 := make([][]int, 4)

If you find yourselves using slices with many dimensions all of the time,
you might need to reconsider your approach and choose a simpler design
that does not require multidimensional slices.

You will find a code example with a multidimensional slice in the next section.

Another example of slices
The Go code of the slices.go program will hopefully clarify many things about slices for
you, and it will be presented in five parts.

The first part of the program contains the expected preamble as well as the definition of two
slices:

package main

import (
 "fmt"
)

func main() {
 aSlice := []int{1, 2, 3, 4, 5}
 fmt.Println(aSlice)
 integer := make([]int, 2)
 fmt.Println(integer)
 integer = nil
 fmt.Println(integer)

Working with Basic Go Data Types Chapter 3

[106]

The second part of the program shows how to use the [:] notation to create a new slice that
references an existing array. Remember that you are not creating a copy of the array, just a
reference to it, which will be verified in the output of the program:

 anArray := [5]int{-1, -2, -3, -4, -5}
 refAnArray := anArray[:]

 fmt.Println(anArray)
 fmt.Println(refAnArray)
 anArray[4] = -100
 fmt.Println(refAnArray)

The third code segment defines a slice with one dimension and another one with two
dimensions using the make() function:

 s := make([]byte, 5)
 fmt.Println(s)
 twoD := make([][]int, 3)
 fmt.Println(twoD)
 fmt.Println()

As slices are automatically initialized by Go, all of the elements of the two preceding slices
will have the zero value of the slice type, which for integers is 0 and for slices is nil. Keep
in mind that the elements of a multidimensional slice are slices!

In the fourth part of slices.go that is shown in the next piece of Go code, you will learn
how to initialize all the elements of a slice with two dimensions manually:

 for i := 0; i < len(twoD); i++ {
 for j := 0; j < 2; j++ {
 twoD[i] = append(twoD[i], i*j)
 }
 }

The preceding Go code shows that in order to expand an existing slice and make it grow,
you will need to use the append() function and not reference an index that does not exist!
The latter would create a panic: runtime error: index out of range error
message! Note that the values of the slice elements have been chosen arbitrarily.

Working with Basic Go Data Types Chapter 3

[107]

The last part of the program shows you how to use the range keyword to visit and print all
of the elements of a slice with two dimensions:

 for _, x := range twoD {
 for i, y := range x {
 fmt.Println("i:", i, "value:", y)
 }
 fmt.Println()
 }
}

If you execute slices.go, you will get the following output:

$ go run slices.go
[1 2 3 4 5]
[0 0]
[]
[-1 -2 -3 -4 -5]
[-1 -2 -3 -4 -5]
[-1 -2 -3 -4 -100]
[0 0 0 0 0]
[[] [] []]
i: 0 value: 0
i: 1 value: 0
i: 0 value: 0
i: 1 value: 1
i: 0 value: 0
i: 1 value: 2

It should not come as a surprise to you that the objects of the slice with the two dimensions
are initialized to nil and therefore printed as empty. This happens because the zero value
for the slice type is nil.

Working with Basic Go Data Types Chapter 3

[108]

Sorting slices using sort.slice()
This subsection will illustrate the use of the sort.Slice() function that was first
introduced in Go version 1.8. This means that the code presented, which is saved in
sortSlice.go, will not run on older Go versions. The program will be presented in three
parts. The first part of the program is as follows:

package main

import (
 "fmt"
 "sort"
)

type aStructure struct {
 person string
 height int
 weight int
}

Apart from the expected preamble, you can also see the definition of a Go structure for the
first time in this book. Chapter 4, The Uses of Composite Types, will totally explore Go
structures. For now, however, keep in mind that structures are data types with multiple
variables of various types.

The second part of sortSlice.go is shown in the following Go code:

func main() {

 mySlice := make([]aStructure, 0)
 mySlice = append(mySlice, aStructure{"Mihalis", 180, 90})
 mySlice = append(mySlice, aStructure{"Bill", 134, 45})
 mySlice = append(mySlice, aStructure{"Marietta", 155, 45})
 mySlice = append(mySlice, aStructure{"Epifanios", 144, 50})
 mySlice = append(mySlice, aStructure{"Athina", 134, 40})

 fmt.Println("0:", mySlice)

Here you create a new slice named mySlice with elements from the aStructure structure
created earlier.

The final part of the program is as follows:

 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].height < mySlice[j].height
 })

Working with Basic Go Data Types Chapter 3

[109]

 fmt.Println("<:", mySlice)
 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].height > mySlice[j].height
 })
 fmt.Println(">:", mySlice)
}

Here you sort mySlice two times using sort.Slice() and two anonymous functions, one
anonymous function at a time, using the height field of aStructure.

The sort.Slice() function changes the order of the elements in the slice
according to the sorting function.

Executing sortSlice.go will create the following output:

$ go run sortSlice.go
0: [{Mihalis 180 90} {Bill 134 45} {Marietta 155 45} {Epifanios 144
50} {Athina 134 40}]
<: [{Bill 134 45} {Athina 134 40} {Epifanios 144 50} {Marietta 155
45} {Mihalis 180 90}]
>: [{Mihalis 180 90} {Marietta 155 45} {Epifanios 144 50} {Bill 134
45} {Athina 134 40}]

If you try to execute sortSlice.go on a Unix machine with an older than 1.8 Go version,
you will get the next error message:

$ go version
go version go1.3.3 linux/amd64
$ go run sortSlice.go
command-line-arguments
./sortSlice.go:24: undefined: sort.Slice
./sortSlice.go:28: undefined: sort.Slice

Working with Basic Go Data Types Chapter 3

[110]

Go maps
A Go map is equivalent to the well-known hash table found in many other programming
languages. The main advantage of maps is that they can use any data type as their index,
which in this case is called a map key or just a key. Although Go maps do not exclude any
data types from being used as keys, for a data type to be used as a key, it must be
comparable, which means that the Go compiler must be able to differentiate one key from
another or, put simply, that the keys of a map must support the == operator. The good news
is that almost all data types are comparable. However, as you can understand, using the
bool data type as the key to a map will definitely limit your options! Additionally, using
floating-point numbers as keys might present problems caused by the precision used
among different machines and operating systems.

A Go map is a reference to a hash table! The good thing is that Go hides
the implementation of the hash table and therefore its complexity. You
will learn more about implementing a hash table on your own in Go in
Chapter 5, Enhancing Go Code with Data Structures.

You can create a new empty map with string keys and int values with the help of the
make() function:

iMap = make(map[string]int)

Alternatively, you can use the next map literal in order to create a new map that will be
populated with data:

anotherMap := map[string]int {
 "k1": 12
 "k2": 13
}

You can access the two objects of anotherMap as anotherMap["k1"] and
anotherMap["k1"]. You can delete an object of a map using the delete() function:

delete(anotherMap, "k1")

You can iterate over all of the elements of a map using the following technique:

 for key, value := range iMap {
 fmt.Println(key, value)
 }

Working with Basic Go Data Types Chapter 3

[111]

The Go code of usingMaps.go will illustrate the use of maps in more detail. The program
will be presented in three parts. The first part is shown in the following Go code:

package main

import (
 "fmt"
)

func main() {

 iMap := make(map[string]int)
 iMap["k1"] = 12
 iMap["k2"] = 13
 fmt.Println("iMap:", iMap)

 anotherMap := map[string]int{
 "k1": 12,
 "k2": 13,
 }

The second part of usingMaps.go contains the following code:

 fmt.Println("anotherMap:", anotherMap)
 delete(anotherMap, "k1")
 delete(anotherMap, "k1")
 delete(anotherMap, "k1")
 fmt.Println("anotherMap:", anotherMap)

 _, ok := iMap["doesItExist"]
 if ok {
 fmt.Println("Exists!")
 } else {
 fmt.Println("Does NOT exist")
 }

Here you see a technique that allows you to determine whether a given key is in the map or
not. This is a vital technique because without it you would not know whether a given map
has the required information or not.

The bad thing is that if you try to get the value of a map key that does not
exist in the map, you will end up getting zero, which gives you no way of
determining whether the result was zero because the key you requested
was not there, or because the element with the corresponding key actually
had the zero value.

Working with Basic Go Data Types Chapter 3

[112]

Additionally, you can see the delete() function in action-calling the same delete()
statement multiple times does not make any difference and does not generate any warning
messages.

The last part of the program is as follows:

 for key, value := range iMap {
 fmt.Println(key, value)
 }
}

Here you see the use of the range keyword on a map, which is pretty elegant and handy.

If you execute usingMaps.go, you will get the following output:

$ go run usingMaps.go
iMap: map[k1:12 k2:13]
anotherMap: map[k1:12 k2:13]
anotherMap: map[k2:13]
Does NOT exist
k1 12
k2 13

You cannot and should not make any assumptions about the order in
which the map pairs will be displayed because that order is totally
random!

Storing to a nil map
The following Go code will work:

aMap := map[string]int{}
aMap["test"] = 1

However, the following Go code will not work because you have assigned the nil value to
the map you are trying to use:

aMap := map[string]int{}
aMap = nil
fmt.Println(aMap)
aMap["test"] = 1

Working with Basic Go Data Types Chapter 3

[113]

Saving the preceding code to failMap.go and trying to compile it will generate the
following error message:

$ go run failMap.go
map[]
panic: assignment to entry in nil map

This means that trying to insert data into a nil map will fail, however, looking up, deleting,
finding the length, and using range loops on nil maps will not crash your code!

When you should use a map?
Maps are more versatile than both slices and arrays, but this flexibility comes at a cost; that
is, the extra processing power required for the implementation of a Go map. Nevertheless,
built-in Go structures are very fast, so do not hesitate using a Go map when you need to use
one.

What you should remember is that Go maps are very convenient and can store many
different kinds of data, while being both easy to understand and fast when you are working
with them.

Go constants
Go supports constants, which are variables that cannot change their values. Constants in Go
are defined with the help of the const keyword.

Generally speaking, constants are usually global variables. Thus, you
might rethink your approach if you find yourself defining too many
constant variables with a local scope!

The main benefit that you get from using constants in your programs is the guarantee that
their value will not change during program execution!

Strictly speaking, the value of a constant variable is defined at compile time-not at run time.
Behind the scenes, Go uses Boolean, string, or number as the type for storing a constant
variable because this gives Go more flexibility when dealing with constants!

Working with Basic Go Data Types Chapter 3

[114]

You can define a new constant as follows:

const HEIGHT = 200

Additionally, if you want to declare many constants at once, mainly because they are
related to each other, you can use the following notation:

const (
 C1 = "C1C1C1"
 C2 = "C2C2C2"
 C3 = "C3C3C3"
)

Please note that the Go compiler considers the results of all operations applied to constants
as constants. However, if a constant is part of a larger expression, this will not be the case.

And now for something completely different! The following three variable declarations
mean exactly the same thing in Go:

 s1 := "My String"
 var s2 = "My String"
 var s3 string = "My String"

However, as none of these variable declarations contains the const keyword in its
declaration, none of them is a constant. This does not mean that you cannot define two
constants in a similar way as follows:

 const s1 = "My String"
 const s2 string = "My String"

Although both s1 and s2 are constants, s2 comes with a type declaration (string), which
makes its declaration more restrictive than the declaration of s1. This is because a typed Go
constant must follow all of the strict rules of a typed Go variable. On the other hand, a
constant without a type need not follow all of the strict rules of a typed variable, which
means that it can be mixed with expressions more liberally. Additionally, even constants
without a type have a default type that is used when, and only when, no other type
information is available. The main reason for this behavior is that as you do not know how
a constant will be used. In that case, you do not want to use all of the available Go rules. A
simple example is the definition of a numeric constant such as const value = 123. As
you might use the value constant in many expressions, declaring a type would make your
job much more difficult. Look at the following Go code:

 const s1 = 123
 const s2 float64 = 123

Working with Basic Go Data Types Chapter 3

[115]

 var v1 float32 = s1 * 12
 var v2 float32 = s2 * 12

Although the compiler will not have a problem with the definition of v1, the code used for
the definition of v2 will not compile because s2 and v2 have different types:

$ go run a.go
command-line-arguments
./a.go:12:6: cannot use s2 * 12 (type float64) as type float32 in
assignment

As general advice, if you are using lots of constants in your programs, it
might be a good idea to gather all of them in a Go package.

The constant generator iota
The constant generator iota is used for declaring a sequence of related values that uses
incrementing numbers without the need to type each one of them explicitly.

Most of the concepts related to the const keyword, including the constant generator iota,
will be illustrated in the constants.go file, which will be presented in four parts.

The first code segment of constants.go is as follows:

package main

import (
 "fmt"
)

type Digit int
type Power2 int

const PI = 3.1415926

const (
 C1 = "C1C1C1"
 C2 = "C2C2C2"
 C3 = "C3C3C3"
)

Working with Basic Go Data Types Chapter 3

[116]

In this part, we declare two new types, named Digit and Power2, and four new constants,
named PI, C1, C2 and C3.

A Go type is a way of defining a new named type that uses the same
underlying type as an existing one. This is mainly used for differentiating
between different types that might use the same kind of data.

The second part of constants.go is shown in the following Go code:

func main() {

 const s1 = 123
 var v1 float32 = s1 * 12
 fmt.Println(v1)
 fmt.Println(PI)

In this part of the program, you define another constant (s1) that is used in an expression
(v1).

The third part of the program is as follows:

 const (
 Zero Digit = iota
 One
 Two
 Three
 Four
)
 fmt.Println(One)
 fmt.Println(Two)

Here you see the definition of a constant generator iota based on Digit, which is
equivalent to the following declaration of four constants:

 const (
 Zero = 0
 One = 1
 Two = 2
 Three = 3
 Four = 4
)

Working with Basic Go Data Types Chapter 3

[117]

The last part of the program of constants.go is as follows:

 const (
 p2_0 Power2 = 1 << iota
 _
 p2_2
 _
 p2_4
 _
 p2_6
)

 fmt.Println("2^0:", p2_0)
 fmt.Println("2^2:", p2_2)
 fmt.Println("2^4:", p2_4)
 fmt.Println("2^6:", p2_6)

}

There is another constant generator iota here, which is a little different than the previous
one. First, notice the use of the underscore character in a const block with a constant
generator iota. This allows you to skip unwanted values. Second, the value of iota always
increments, and it can be used in expressions, which is what occurred in this case.

Now let's see what really happens inside the const block. For p2_0, iota has the value of 0
and p2_0 is defined as 1. For p2_2, iota has the value of 2 and p2_2 is defined as the
result of the expression 1 << 2, which is 00000100 in binary representation-the decimal
value of 00000100 is 4, which is the result and the value of p2_2. Analogously, the value of
p2_4 is 16, and the value of p2_6 is 32.

As you can see, the use of iota can save your time when it fits your needs!

Executing constants.go will generate the following output:

$ go run constants.go
1476
3.1415926
1
2
2^0: 1
2^2: 4
2^4: 16
2^6: 64

Working with Basic Go Data Types Chapter 3

[118]

Go pointers
Go supports pointers! Pointers are memory addresses that offer improved speed in
exchange for difficult-to-debug code and nasty bugs-C programmers should know more
about this. You have already seen pointers in action in Chapter 2, Understanding Go
Internals, when we talked about unsafe code and the unsafe package, but this section will
try to shed more light on this difficult and tricky subject. Additionally, native Go pointers
are safe provided that you know what you are doing.

When working with pointers, you need * to get the value of a pointer, which is called
dereferencing the pointer, and & to get the memory address of a non-pointer variable.

Generally speaking, amateur developers should use pointers only when
the libraries that they use require it, because pointers can be the cause of
horrible and difficult to discover bugs when used carelessly.

You can make a function accept a pointer parameter as follows:

func getPointer(n *int) {
}

Similarly, a function can return a pointer as follows:

func returnPointer(n int) *int {
}

The use of safe Go pointers is illustrated in pointers.go, which will be presented in four
parts. The first code segment of pointers.go follows next:

package main

import (
 "fmt"
)

func getPointer(n *int) {
 *n = *n * *n

}

func returnPointer(n int) *int {
 v := n * n
 return &v
}

Working with Basic Go Data Types Chapter 3

[119]

The good thing with getPointer() is that it allows you to update the variable passed to it
without needing to return anything to the caller function. This happens because the pointer
passed as a parameter contains the memory address of the variable.

On the other hand, returnPointer() gets an integer parameter and returns a pointer to
an integer, which is denoted by return &v. Although this might not appear to be that
useful, you will really appreciate this capability in Chapter 4, The Uses of Composite Types,
when we talk about pointers to Go structures, as well as in later chapters where more
complex data structures will be involved.

Both the getPointer() and returnPointer() functions find the square of an integer.
However, they use a totally different approach, as getPointer() stores the result to the
provided parameter whereas returnPointer() returns the result and requires a different
variable for storing it.

The second part of the program contains the following Go code:

func main() {
 i := -10
 j := 25

 pI := &i
 pJ := &j

 fmt.Println("pI memory:", pI)
 fmt.Println("pJ memory:", pJ)
 fmt.Println("pI value:", *pI)
 fmt.Println("pJ value:", *pJ)

Both i and j are normal integer variables. However, pI and pJ are both pointers pointing
to i and j, respectively. The pI is the memory address of the pointer, whereas *pI is the
value stored to that memory address.

The third part of pointers.go is as follows:

 *pI = 123456
 *pI--
 fmt.Println("i:", i)

Here you can see how you can change the i variable through the pI pointer that points to i
in two different ways. First, it does so by directly assigning a new value to it and second,
using the -- operator.

Working with Basic Go Data Types Chapter 3

[120]

The last code portion of pointers.go is shown in the following Go code:

 getPointer(pJ)
 fmt.Println("j:", j)
 k := returnPointer(12)
 fmt.Println(*k)
 fmt.Println(k)
}

Here you call the getPointer() function using pJ as its parameter. As we discussed
before, any changes made to the pJ variable inside getPointer() will have an effect on
the value of the j variable because the pJ variable points to the j variable, which can be
verified by the output of the fmt.Println("j:", j) statement. The call to
returnPointer() returns a pointer that is assigned to the k pointer variable.

Running pointers.go will create the following output:

$ go run pointers.go
pI memory: 0xc420012088
pJ memory: 0xc420012090
pI value: -10
pJ value: 25
i: 123455
j: 625
144
0xc4200120c8

I realize that you may have trouble understanding the Go code of pointers.go because we
have not yet discussed functions and function definitions, so feel free to look at Chapter 6,
What You Might Not Know About Go Packages, where topics related to functions are explained
in more detail.

Strings in Go are value types, not pointers as in C.

Working with Basic Go Data Types Chapter 3

[121]

Dealing with times and dates
In this section, you will learn how to parse date and time strings in Go, how to convert
between different date and time formats, and how to print dates and times in the format
you desire. Although this task might look insignificant at first, it can truly be critical when
you want to synchronize multiple tasks, or when your application needs to read the date
from one or more text files or directly from the user.

The time package is the star of working with times and dates in Go. You will see some of
its functions in action in this section.

Before learning how to parse a string and convert it into a time or a date, you will review a
simple program named usingTime.go that will introduce the time package. The program
will be presented in three parts. The first part of this program follows:

package main

import (
 "fmt"
 "time"
)

The second code segment of usingTime.go is shown in the following Go code:

func main() {
 fmt.Println("Epoch time:", time.Now().Unix())
 t := time.Now()
 fmt.Println(t, t.Format(time.RFC3339))
 fmt.Println(t.Weekday(), t.Day(), t.Month(), t.Year())

 time.Sleep(time.Second)
 t1 := time.Now()
 fmt.Println("Time difference:", t1.Sub(t))

The time.Now().Unix() function returns the Unix epoch time, which is the number of
seconds that have elapsed since 00:00:00 UTC, 1 January 1970. The Format() function
allows you to convert a time variable to another format-in this case, the RFC3339 format.

Working with Basic Go Data Types Chapter 3

[122]

You will see the time.Sleep() function many times in this book as an easy way of
emulating the delay from the execution of a true function. The time.Second constant
allows you to use a one second duration in Go. If you want to define a duration of 10
seconds, you will need to multiply time.Second by 10! Other similar constants include
time.Nanosecond, time.Microsecond, time.Millisecond, time.Minute, and
time.Hour. Thus, the smallest amount of time that can be defined with the time package is
the nanosecond. Last, the time.Sub() function allows you to find the time difference
between two times.

The last part of the program is as follows:

 formatT := t.Format("01 January 2006")
 fmt.Println(formatT)
 loc, _ := time.LoadLocation("Europe/Paris")
 londonTime := t.In(loc)
 fmt.Println("Paris:", londonTime)
}

Here you define a new date format using time.Format() in order to use it for printing out
a time variable.

Executing usingTime.go generates the following output:

$ go run usingTime.go
Epoch time: 1510427100
2017-11-11 21:05:00.226749 +0200 EET m=+0.000268522
2017-11-11T21:05:00+02:00
Saturday 11 November 2017
Time difference: 1.004278426s
11 November 2017
Paris: 2017-11-11 20:05:00.226749 +0100 CET

Now that you know the basics of the time package, it is "time" to dig deeper into its
functionality starting by working with times.

Working with Basic Go Data Types Chapter 3

[123]

Working with times
When you have a time variable, it is easy to convert it into anything that is related to time
or date. However, the main problem occurs when you have a string and you want to see
whether it is a valid time or not. The function used for parsing time and date strings is
time.Parse(), and it accepts two parameters. The first parameter denotes the expected
format of the string that you will parse, while the second parameter is the actual string that
will be parsed. The first parameter is composed of elements derived from a list of Go
constants related to date and time parsing.

The list of constants that can be used for creating your own parse format
can be found at https://golang.org/src/time/format.go. Go does not
define the format of a date or a time in a form like DDYYYYMM or %D%Y%M as
do the rest of the programming languages, rather it uses its own approach.
Although you might find this approach strange at first, you will certainly
appreciate it as it prevents the developer from making silly mistakes.

The Go constants for working with times are 15 for parsing the hour, 04 for parsing the
minutes, and 05 for parsing the seconds. You can easily guess that all of these numeric
values must be unique! You can use PM for parsing the PM string in uppercase and pm for
parsing the lowercase version.

You are not obligated to use every available Go constant. The main task of
the developer is putting the various Go constants in the desired order in
order to match the kind of strings that the program will have to process.

You can consider the final version of the string that is passed as the first parameter to the
time.Parse() function as a regular expression.

Parsing times
This section will tell you how to parse a string, which is given as a command-line argument
to the parseTime.go utility in order to convert it into a time variable. This is not always
possible, however, because the given string might not be in the correct format or might
contain invalid characters. The parseTime.go utility will be presented in three parts.

https://golang.org/src/time/format.go

Working with Basic Go Data Types Chapter 3

[124]

The first code segment of parseTime.go is as follows:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "time"
)

The second part is shown in the following Go code:

func main() {
 var myTime string
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s string\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 myTime = os.Args[1]

The last portion of parseTime.go, which is where the magic happens, is as follows:

 d, err := time.Parse("15:04", myTime)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Time:", d.Hour(), d.Minute())
 } else {
 fmt.Println(err)
 }
}

Thus, in order to parse an hour and minute string, you will need to use "15:04". The value
of the err variable tells you whether the parsing was successful or not.

Executing parseTime.go will create the following output:

$ go run parseTime.go
usage: parseTime string
exit status 1
$ go run parseTime.go 12:10
Full: 0000-01-01 12:10:00 +0000 UTC
Time: 12 10

Working with Basic Go Data Types Chapter 3

[125]

As you can see here, Go prints a full date time string because this is what is stored in a time
variable. If you are only interested in the time and not in the date, you should print only the
parts of a time variable that you want.

If you use a wrong Go constant like 22:04 when trying to parse a string and convert it into
a time, you will get the following error message:

$ go run parseTime.go 12:10
parsing time "12:10" as "22:04": cannot parse ":10" as "2"

However, if you use a Go constant like 11, which is used for parsing months when the
month is given as a number, the error message will be slightly different:

$ go run parseTime.go 12:10
parsing time "12:10": month out of range

Working with dates
In this subsection, you will learn how to parse strings that denote dates in Go. Doing this
still requires the use of the time.Parse() function.

The Go constants for working with dates are Jan for parsing the three-letter abbreviation
used for describing a month, 2006 for parsing the year, and 02 for parsing the day of the
month. If you use January instead of Jan, you will get the long name of the month instead
of its three-letter abbreviation, which makes perfect sense.

Additionally, you can use Monday for parsing strings that contain a long weekday string
and Mon for the abbreviated version of the weekday.

Parsing dates
The name of the Go program that will be developed in this subsection is parseDate.go,
and it will be presented in two parts.

The first part of parseDate.go is as follows:

package main

import (
 "fmt"
 "os"
 "path/filepath"

Working with Basic Go Data Types Chapter 3

[126]

 "time"
)

func main() {

 var myDate string
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s string\n",
 filepath.Base(os.Args[0]))
 return
 }

 myDate = os.Args[1]

The second part of parseDate.go contains the following Go code:

 d, err := time.Parse("02 January 2006", myDate)
 if err == nil {
 fmt.Println("Full:", d)
 fmt.Println("Time:", d.Day(), d.Month(), d.Year())
 } else {
 fmt.Println(err)
 }
}

If there is a character such as - between the name of the month and the year, you can use
"02 January-2006" instead of "02 January 2006" as the first parameter to
time.Parse().

Executing parseDate.go will generate the following output:

$ go run parseDate.go
usage: parseDate string
$ go run parseDate.go "20 July 2000"
Full: 2000-07-20 00:00:00 +0000 UTC
Time: 20 July 2000

As parseDate.go does not expect data about the time, the 00:00:00 +0000 UTC string is
automatically added to the end of the full date and time string.

Working with Basic Go Data Types Chapter 3

[127]

Changing date and time formats
In this section, you will learn how to change the format of a string that contains both a date
and a time. A very common place for finding such strings is the log files of web servers such
as Apache and Nginx. As we do not know how to read a text file line by line, the text will
be hard coded in the program, This fact, however, does not change the functionality of the
program.

The Go code of timeDate.go will be presented in four parts. The first part of this program
is the following expected preamble:

package main

import (
 "fmt"
 "regexp"
 "time"
)

You need to import the regexp standard Go package for supporting regular expressions.

The second code portion of timeDate.go is as follows:

func main() {

 logs := []string{"127.0.0.1 - - [16/Nov/2017:10:49:46 +0200]
 325504",
 "127.0.0.1 - - [16/Nov/2017:10:16:41 +0200] \"GET /CVEN
 HTTP/1.1\" 200 12531 \"-\" \"Mozilla/5.0 AppleWebKit/537.36",
 "127.0.0.1 200 9412 - - [12/Nov/2017:06:26:05 +0200] \"GET
 \"http://www.mtsoukalos.eu/taxonomy/term/47\" 1507",
 "[12/Nov/2017:16:27:21 +0300]",
 "[12/Nov/2017:20:88:21 +0200]",
 "[12/Nov/2017:20:21 +0200]",
 }

As you cannot be sure about your data and its format, the sample data used for this
program tries to cover many different cases, including incomplete data like
[12/Nov/2017:20:21 +0200], where there are no seconds in the time part, and
erroneous data such as [12/Nov/2017:20:88:21 +0200], where the value of the minutes
is 88.

Working with Basic Go Data Types Chapter 3

[128]

The third part of timeDate.go contains the following Go code:

 for _, logEntry := range logs {
 r :=
regexp.MustCompile('.*\[(\d\d\/\w+/\d\d\d\d:\d\d:\d\d:\d\d.*)\].*')
 if r.MatchString(logEntry) {
 match := r.FindStringSubmatch(logEntry)

The main benefit that you receive from such a difficult-to-read regular expression in this
particular program is that it allows your code to find out whether you have a date and time
string somewhere in your line or not. After you get that string, you will feed
time.Parse() with it and let that do the rest of the job!

The last part of the program is shown in the following Go code:

 dt, err := time.Parse("02/Jan/2006:15:04:05 -0700",
 match[1])
 if err == nil {
 newFormat := dt.Format(time.RFC850)
 fmt.Println(newFormat)
 } else {
 fmt.Println("Not a valid date time format!")
 }
 } else {
 fmt.Println("Not a match!")
 }
 }
}

Once you find a string that matches the regular expression, you parse it using
time.Parse() to make sure that it is a valid date/time string. If yes, timeDate.go will
print the date and time according to the RFC850 format.

If you execute timeDate.go, you will get the following output:

$ go run timeDate.go
Thursday, 16-Nov-17 10:49:46 EET
Thursday, 16-Nov-17 10:16:41 EET
Sunday, 12-Nov-17 06:26:05 EET
Sunday, 12-Nov-17 16:27:21 +0300
Not a valid date time format!
Not a match!

Working with Basic Go Data Types Chapter 3

[129]

Additional resources
Consider looking at the following resources:

Visit the documentation page of the time package that can be found at
https://golang.org/pkg/time/

Visit the documentation page of the regexp standard Go package at
https://golang.org/pkg/regexp/

Exercises
Write a constant generator iota for the powers of number 4.
Write a constant generator iota for the days of the week.
Write a Go program that converts an existing array into a map.
Write your own version of parseTime.go. Do not forget to test your program.
Can you create a version of timeDate.go that can process two date and time
formats?
Write your own version of parseDate.go.

Summary
In this chapter, you learned about many interesting Go topics including maps, arrays, and
slices, as well as Go pointers, Go constants and loops, and how Go allows you to work with
dates and times. By now, you should understand why slices are superior to arrays.

The next chapter will cover building and using composite types in Go, which mainly
includes types that are created with the struct keyword and are called structures. After
that, we will talk about string variables and tuples.

Additionally, the next chapter will address Regular expressions and Pattern matching,
which are tricky subjects, not only in Go but also in every other programming language as
well. When used properly and carefully, however, regular expressions and pattern
matching can make the life of a developer so much easier that it is totally worth learning
more about them.

Also, you will learn about the switch keyword and the strings package that allow you to
manipulate UTF-8 strings.

https://golang.org/pkg/time/
https://golang.org/pkg/regexp/

4
The Uses of Composite Types

In the previous chapter, we talked about many core Go topics including arrays, slices, maps,
pointers, constants, the for loop, the range keyword, and how to work with times and
dates. This chapter will investigate more advanced Go features such as tuples and strings,
the strings standard Go package, the switch statement, but most importantly structures
that are created using the struct keyword. Another important topic of this chapter will be
defining regular expressions and performing Pattern matching in Go. After all these topics,
the last section of this chapter will implement a simple key-value store in Go.

In this chapter, you will learn the following topics:

Go structures and the struct keyword

Go tuples

Go strings, runes, byte slices, and string literals

Regular expressions in Go

Pattern matching in Go

The switch statement

The functionality that the strings package offers

Calculating Pi with great accuracy

Developing a key-value store

The Uses of Composite Types Chapter 4

[131]

About composite types
Although standard Go types are pretty handy, fast, and flexible, they most likely cannot
cover every kind of data that you want to support in your Go code. Go solves this problem
by supporting structures, which are custom types defined by the developer. Additionally,
Go has its own way of supporting tuples, which mainly allows functions to return multiple
values without needing to group them in structures as is the case in C.

Structures
Although arrays, slices, and maps are all very useful, they cannot group and hold multiple
values in the same place. When you need to group various types of variables and create a
new handy type, you can use a structure. The various elements of a structure are called
fields of the structure or just fields.

We will start this section by explaining a simple structure that was first defined in the
sortSlice.go source file of the previous chapter:

type aStructure struct {
 person string
 height int
 weight int
}

For reasons that will become evident in Chapter 6, What You Might Not Know About Go
Packages, the fields of a structure usually begin with an uppercase letter. This convention
will be used throughout the rest of the book.

This structure has three fields named person, height, and weight, respectively. You can
create a new variable of the aStructure type as follows:

var s1 aStructure

Additionally, you can access a specific field of a structure by its name. So, in order to get the
value of the person field of the s1 variable, you should type s1.person.

A structure literal can be defined as follows:

p1 := aStructure{"fmt", 12, -2}

The Uses of Composite Types Chapter 4

[132]

However, since remembering the order of the fields of a structure can be pretty hard, Go
allows you to use another form for defining a structure literal:

p1 := aStructure{weight: 12, height: -2}

In this case, you do not need to define an initial value for every field of the structure.

Now that you know the basics of structures, it is time to show you a more practical
example, which is named structures.go and will be presented in four parts.

The first part of structures.go contains the following code:

package main

import (
 "fmt"
)

Structures in particular and Go types in general are usually defined
outside the main() function in order to have a global scope and be
available to the entire Go package, unless you want to clarify that a type is
only useful within the current scope and is not expected to be used
elsewhere.

The second code segment of structures.go is shown in the following Go code:

func main() {

 type XYZ struct {
 X int
 Y int
 Z int
 }

 var s1 XYZ
 fmt.Println(s1.Y, s1.Z)

As you can see, there is nothing that prevents you from defining a new structure type inside
a function, but you should have a reason for doing so.

The Uses of Composite Types Chapter 4

[133]

The third portion of structures.go follows next:

 p1 := XYZ{23, 12, -2}
 p2 := XYZ{Z: 12, Y: 13}
 fmt.Println(p1)
 fmt.Println(p2)

Here you define two structure literals named p1 and p2 that you print afterwards.

The last part of structures.go contains the following Go code:

 pSlice := [4]XYZ{}
 pSlice[2] = p1
 pSlice[0] = p2
 fmt.Println(pSlice)
 p2 = XYZ{1, 2, 3}
 fmt.Println(pSlice)
}

In this last part, we created an array of structures named pSlice. As you will understand
from the output of structures.go, when you assign a structure to an array of structures,
the structure is copied into the array, so changing the value of the original structure will
have no effect on the objects of the array.

Executing structures.go will generate the following output:

$ go run structures.go
0 0
{23 12 -2}
{0 13 12}
[{0 13 12} {0 0 0} {23 12 -2} {0 0 0}]
[{0 13 12} {0 0 0} {23 12 -2} {0 0 0}]

Note that the order in which you put the fields in the definition of a
structure type is significant for the type identity of the defined structure.
Put simply, two structures with the same fields will not be considered
identical in Go if their fields are not in exactly the same order.

The output of structures.go illustrates that the zero value of a struct variable is
constructed by zeroing all of the fields of the struct variable according to their types.

The Uses of Composite Types Chapter 4

[134]

Pointers to structures
In the previous chapter, we talked about pointers. In this section, we will continue our
discussion of pointers and present an example that is related to pointers to structures. The
name of the program is pointerStruct.go and will be presented in four parts.

The first part of the program contains the following Go code:

package main

import (
 "fmt"
)

type myStructure struct {
 Name string
 Surname string
 Height int32
}

The second code segment from pointerStruct.go follows next:

func createStruct(n, s string, h int32) *myStructure {
 if h > 300 {
 h = 0
 }
 return &myStructure{n, s, h}
}

The approach used in createStruct() for creating a new structure variable has many
advantages over initializing structure variables on your own, including the fact that you are
allowed to check whether the information provided is both correct and valid. Additionally,
this approach is cleaner-there is a central point where structure variables are initialized so
that if there is something wrong with your struct variables, you know where to look and
who to blame! Note that some people might prefer to name the createStruct() function
as NewStruct().

For those with a C or C++ background, it is perfectly legal for a Go
function to return the memory address of a local variable. Nothing gets
lost, so everybody is happy!

The Uses of Composite Types Chapter 4

[135]

The third portion of pointerStruct.go is as follows:

func retStructure(n, s string, h int32) myStructure {
 if h > 300 {
 h = 0
 }
 return myStructure{n, s, h}
}

This part presents the no pointer version of the createStruct() function named
retStructure(). Both functions work fine, so choosing between the implementation of
createStruct() and retStructure() is just a matter of personal preference. A more
appropriate name for these functions might have been NewStructurePointer and
NewStructure, respectively.

The last part of pointerStruct.go is shown in the following Go code:

func main() {
 s1 := createStruct("Mihalis", "Tsoukalos", 123)
 s2 := retStructure("Mihalis", "Tsoukalos", 123)
 fmt.Println((*s1).Name)
 fmt.Println(s2.Name)
 fmt.Println(s1)
 fmt.Println(s2)
}

If you execute pointerStruct.go, you will get the following output:

$ go run pointerStruct.go
Mihalis
Mihalis
&{Mihalis Tsoukalos 123}
{Mihalis Tsoukalos 123}

Here you can see one more time that the main difference between createStruct() and
retStructure() is that the former returns a pointer to a structure, which means that you
will need to dereference that pointer in order to use the object to which it points. This can
make your code look a little uglier.

The Uses of Composite Types Chapter 4

[136]

Structures are very important in Go, and they are being used extensively
in real-world programs because they allow you to group as many values
as you want and treat those values as a single entity.

Using the new keyword
Go supports the new keyword that allows you to allocate new objects. However, there is a
very important detail that you need to remember about new: new returns the memory
address of the allocated object. Put simply, new returns a pointer!

You can create a fresh aStructure variable as follows:

pS := new(aStructure)

After executing the new statement, you are ready to work with your fresh variable that has
its allocated memory zeroed, but not initialized.

The main difference between new and make is that variables created with
make are properly initialized without just zeroing the allocated memory
space. Additionally, make can only be applied to maps, channels, and
slices, and it does not return a memory address, which means that make
does not return a pointer.

The next statement will create a slice with new that points to nil:

sP := new([]aStructure)

Tuples
Strictly speaking, a tuple is a finite ordered list with multiple parts. The most important
thing about tuples is that Go has no support for the tuple type, which means that Go does
not officially care about tuples despite the fact that it has support for certain uses of tuples.

The Uses of Composite Types Chapter 4

[137]

One interesting point here is that we have been using Go tuples in this book since Chapter 1,
Go and the Operating System. They are used in statements like the next one, where a function
returns two values that you get in a single statement:

min, _ := strconv.ParseFloat(arguments[1], 64)

The name of the Go program that will illustrate Go tuples is tuples.go, and it will be
presented in three code segments. Please note that the code presented uses a function that
returns three values as a tuple. You will learn more about functions in Chapter 6, What You
Might Not Know About Go Packages.

The first part of tuples.go is as follows:

package main

import (
 "fmt"
)

func retThree(x int) (int, int, int) {
 return 2 * x, x * x, -x
}

Here you can see the implementation of a function named retThree() that returns a tuple
containing three integer values. This capability permits the function to return multiple
values without needing to group the various return values into a structure and to return a
structure variable instead.

In Chapter 6, What You Might Not Know About Go Packages, you will learn how to assign
names to the return values of a Go function, which is a very handy feature that can save you
from various types of bugs.

The second part of tuples.go is as follows:

func main() {
 fmt.Println(retThree(10))
 n1, n2, n3 := retThree(20)
 fmt.Println(n1, n2, n3)

Here, we use the retThree() function twice. First, we do this without saving its return
values. Second, by saving the three return values of retThree() in three different variables
using a single statement, which in Go terminology is called a tuple assignment, hence the
confusion about Go supporting tuples! If you do not care about one or more return values
of a function, you can use an underscore character (_) in its place. Note that it is a compile
time error in Go if you declare a variable and do not use it afterwards.

The Uses of Composite Types Chapter 4

[138]

The third part of the tuples.go program is shown in the following Go code:

 n1, n2 = n2, n1
 fmt.Println(n1, n2, n3)

 x1, x2, x3 := n1*2, n1*n1, -n1
 fmt.Println(x1, x2, x3)
}

As you can see, tuples can do many intelligent things like swapping values without the
need for a temporary variable as well as evaluating expressions.

Executing tuples.go will create the following output:

$ go run tuples.go
20 100 -10
40 400 -20
400 40 -20
800 160000 -400

Regular expressions and pattern matching
Pattern matching, which plays a key role in Go, is a technique used for searching a string
for some set of characters based on a specific search pattern that is based on regular
expressions and grammars. If pattern matching is successful, it allows you to extract the
desired data from the string, replace it, or delete it.

The Go package responsible for defining regular expressions and performing pattern
matching is called regexp. You will see it in action in a while.

When using a regular expression in your code, you should consider the
definition of the regular expression as the most important part of your
program.

The Uses of Composite Types Chapter 4

[139]

Now for some theory
Every regular expression is compiled into a recognizer by building a generalized transition
diagram called a finite automaton. A finite automaton can be either deterministic or
nondeterministic. Nondeterministic means that more than one transition out of a state can
be possible for the same input. A recognizer is a program that takes a string x as input and
is able to tell if x is a sentence of a given language.

A grammar is a set of production rules for strings in a formal language. The production
rules describe how to create strings from the alphabet of the language that are valid
according to the syntax of the language. A grammar does not describe the meaning of a
string or what can be done with it in whatever context-it only describes its form. What is
important here is to realize that grammars are the heart of regular expressions because,
without a grammar, you cannot define or use a regular expression.

Although regular expressions allow you to solve problems that would be
extremely difficult to solve otherwise, do not try to solve every problem
you face with a regular expression. Always use the right tool for the job!

The rest of this section will present three examples of regular expressions and pattern
matching.

A simple example
In this subsection, you will learn how to select a particular column from a line of text. To
make things more interesting, you will also learn how to read a text file line by line.
However, file I/O is the subject of Chapter 8, Telling a Unix System What to Do, so you refer
to that chapter in order to get more information about the relevant Go code.

The name of the Go source file for this example is selectColumn.go. It will be presented
in five segments. The utility needs at least two command-line arguments to operate; the first
one is the column number you want, and the second one is the path of the text file to
process. Nonetheless, you can put as many text files as you want—selectColumn.go will
process all of them one by one!

The Uses of Composite Types Chapter 4

[140]

The first part of selectColumn.go is follows next:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "strconv"
 "strings"
)

The second code portion of selectColumn.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) < 2 {
 fmt.Printf("usage: selectColumn column <file1> [<file2> [...
<fileN]]\n")
 os.Exit(1)
 }

 temp, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Column value is not an integer:", temp)
 return
 }

 column := temp
 if column < 0 {
 fmt.Println("Invalid Column number!")
 os.Exit(1)
 }

The first test that the program performs is to make sure that it has an adequate number of
command-line arguments (len(arguments) < 2). Additionally, you need two more tests
to make sure that the provided column value is actually a number and that it is bigger than
0.

The third part of selectColumn.go follows:

 for _, filename := range arguments[2:] {
 fmt.Println("\t\t", filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)

The Uses of Composite Types Chapter 4

[141]

 continue
 }
 defer f.Close()

The program performs various tests to make sure that the text file does exist and that you
can read it. The os.Open() function is used for opening the text file. Remember that the
Unix file permissions of a text file might not allow you to read it.

The fourth code piece of selectColumn.go is as follows:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

As you will learn in Chapter 8, Telling a Unix System What to Do, the bufio.ReadString()
function reads a file until the first occurrence of its parameter. As a result,
bufio.ReadString('\n') tells Go to read a file line by line because \n is the Unix
newline character! The bufio.ReadString() function returns a byte slice.

The last code segment of selectColumn.go is as follows:

 data := strings.Fields(line)
 if len(data) >= column {
 fmt.Println((data[column-1]))
 }
 }
 }
}

The logic behind the program is pretty simple: you split each line of text and select the
desired column. However, as you cannot be sure that the current line has the required
number of fields, you check that before printing any output. This is the simplest form of
pattern matching because each line is split using space characters as word separators.

The Uses of Composite Types Chapter 4

[142]

If you want to have more information about the splitting of the lines—and I am sure that
you do—then you will find very useful the fact that the strings.Fields() function splits
a string based on the whitespace characters that are defined in the unicode.IsSpace()
function and returns a slice of strings.

Executing selectColumn.go will generate the next type of output:

$ go run selectColumn.go 15 /tmp/swtag.log /tmp/adobegc.log | head
/tmp/swtag.log /tmp/adobegc.log
AdobeGCData
Successfully
Initializing
Stream
***********AdobeGC
Perform
Perform
Trying

The selectColumn.go utility prints the name of each processed file, even if you get no
output from that file.

The important thing to remember here is that you should never trust your
data, especially when it comes from nontechnical users. Put simply,
always verify that the data you expect to grab is there!

A more advanced example
In this section, you will learn how to match a date and time string as found in the log files of
an Apache web server. To make things even more interesting, you will also learn how to
change the date and time format of the log file into a different format. Once again, this
requires reading the Apache log file, which is a plain text file, line by line.

The name of the command-line utility is changeDT.go, and it will be presented in five
parts. Note that changeDT.go is an improved version of the timeDate.go utility presented
in Chapter 3, Working with Basic Go Data Types, not only because it gets its data from an
external file, but also because changeDT.go uses two regular expressions and therefore is
able to match strings in two different time and date formats.

The Uses of Composite Types Chapter 4

[143]

The very important point to note here is not try to implement every
possible feature in the first version of your utilities! A better approach is to
build a working version with fewer features and improve that version in
small steps.

The first chunk of code of changeDT.go follows:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "regexp"
 "strings"
 "time"
)

Lots of packages are needed because changeDT.go does so many fascinating things.

The second piece for code of changeDT.go is the following:

func main() {

 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide one text file to process!")
 os.Exit(1)
 }

 filename := arguments[1]
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

 notAMatch := 0
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break

The Uses of Composite Types Chapter 4

[144]

 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

In this part, you just try to open your input file for reading in order to read it line by line.
The notAMatch variable holds the number of lines in the input file that did not match any
one of the two regular expressions of the program.

The third code segment of changeDT.go is shown in the following Go code:

 r1 := regexp.MustCompile
('.*\[(\d\d\/\w+/\d\d\d\d:\d\d:\d\d:\d\d.*)\] .*')
 if r1.MatchString(line) {
 match := r1.FindStringSubmatch(line)
 d1, err := time.Parse("02/Jan/2006:15:04:05 -0700", match[1])
 if err == nil {
 newFormat := d1.Format(time.Stamp)
 fmt.Print(strings.Replace(line, match[1], newFormat, 1))
 else {
 notAMatch++
 }
 continue
 }

Here you can see that if the first date and time format is not a match, the program will
continue its execution. However, if it enters the if block, the continue statement will get
executed, which means that it will skip the remaining code of the surrounding for loop.
Thus, in the first supported format, the time and date string has the
21/Nov/2017:19:28:09 +0200 format.

The regexp.MustCompile() function is like regexp.Compile(), but it panics if the
expression cannot be parsed. The parenthesis around the regular expression allows you to
use the matches afterwards. In this case, you can only have one match, which you will get
using the regexp.FindStringSubmatch() function.

The fourth part of changeDT.go follows next:

 r2 := regexp.MustCompile('.*\[(\w+\-\d\d-\d\d:\d\d:\d\d:\d\d.*)\] .*')
 if r2.MatchString(line) {
 match := r2.FindStringSubmatch(line)
 d1, err := time.Parse("Jan-02-06:15:04:05 -0700", match[1])
 if err == nil {
 newFormat := d1.Format(time.Stamp)
 fmt.Print(strings.Replace(line, match[1], newFormat, 1))
 else {
 notAMatch++

The Uses of Composite Types Chapter 4

[145]

 }
 continue
 }

The second supported time and date format is Jun-21-17:19:28:09 +0200. As you can
understand, there are not that many differences between the two formats. Note that
although the program uses just two date and time formats, you can have as many of these
types of formats as you desire.

The last code portion of changeDT.go contains the following Go code:

 }
 fmt.Println(notAMatch, "lines did not match!")
}

Here you just print the number of lines that did not match any one of the two formats.

The text file that will be used for testing changeDT.go contains the following lines:

$ cat logEntries.txt
- - [21/Nov/2017:19:28:09 +0200] "GET /AMEv2.tif.zip HTTP/1.1" 200 2188249
"-"
- - [21/Jun/2017:19:28:09 +0200] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [25/Lun/2017:20:05:34 +0200] "GET /MongoDjango.zip HTTP/1.1" 200 118362
- - [Jun-21-17:19:28:09 +0200] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [20/Nov/2017:20:05:34 +0200] "GET /MongoDjango.zip HTTP/1.1" 200 118362
- - [35/Nov/2017:20:05:34 +0200] "GET MongoDjango.zip HTTP/1.1" 200 118362

Executing changDT.go will generate the following output:

$ go run changeDT.go logEntries.txt
- - [Nov 21 19:28:09] "GET /AMEv2.tif.zip HTTP/1.1" 200 2188249 "-"
- - [Jun 21 19:28:09] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [Jun 21 19:28:09] "GET /AMEv2.tif.zip HTTP/1.1" 200
- - [Nov 20 20:05:34] "GET /MongoDjango.zip HTTP/1.1" 200 118362
2 lines did not match!

Matching IPv4 addresses
An IPv4 address, or simply an IP address, has four discrete parts. As an IPv4 address is
stored using 8-bit binary numbers. Each part can have values from 0, which is 00000000 in
the binary format, to 255, which is equal to 11111111 in the binary format.

The Uses of Composite Types Chapter 4

[146]

The format of an IPv6 address is much more complicated than the format
of an IPv4 address so the program presented here will not work with IPv6
addresses.

The name of the program is findIPv4.go, and it will be presented in five parts. The first
part of findIPv4.go is shown here:

package main

import (
 "bufio"
 "fmt"
 "io"
 "net"
 "os"
 "path/filepath"
 "regexp"
)

As findIPv4.go is a pretty sophisticated utility, it needs many standard Go packages.

The second part is shown in the following Go code:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

The preceding code contains the definition of the regular expression that will help you
discover an IPv4 address inside a function. This is the most critical part of the program,
because if you define the regular expression incorrectly, you will never be able to catch any
IPv4 addresses!

I will explain the regular expression a little further shortly, but before I do that, it is
important to understand that prior to defining one or more regular expressions, you should
be aware of the problem that you are trying to solve. In other words, if you are not aware of
the fact that the decimal values of an IPv4 address cannot be larger than 255, no regular
expression can save you!

Now that we are on the same page, let's talk about the next two statements:

partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP

The Uses of Composite Types Chapter 4

[147]

The regular expression defined in partIP matches each one of the four parts of an IP
address. A valid IPv4 address can begin with 25 and end with 0, 1, 2, 3, 4, or 5 because that
is the biggest 8-bit binary number (25[0-5]), or it can begin with 2 followed by 0, 1, 2, 3, or
4 and end with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 (2[0-4][0-9]). Alternatively, it can begin with 1
followed by two more digits from 0 to 9 (1[0-9][0-9]). The last alternative would be a
natural number that has one or two digits. The first digit, which is optional, can be from 1 to
9, and the second, which is mandatory, can be from 0 to 9 ([1-9]?[0-9]).

The grammar variable tells us that what we are looking for has four distinct parts, and each
one of them must match partIP. This grammar variable is what matches the complete IPv4
address that we seek!

As findIPv4.go works with regular expressions to find an IPv4 address
in a file, it can also process any kind of text file that contains valid IPv4
addresses!

One last thing: if you have any special requirements, such as excluding certain IPv4
addresses or watching for specific addresses or networks, you can easily change the Go
code of findIPv4.go and add the extra functionality you desire. This is the kind of
flexibility achieved when you develop your own tools.

The third part of the findIPv4.go utility contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) < 2 {
 fmt.Printf("usage: %s logFile\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }

 for _, filename := range arguments[1:] {
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)
 os.Exit(-1)
 }
 defer f.Close()

First, you make sure that you have a sufficient number of command-line parameters by
checking the length of os.Args. Then, you can use a for loop to iterate over all of the
command-line arguments.

The Uses of Composite Types Chapter 4

[148]

The fourth code portion of findIPv4.go is as follows:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }

As happened in selectColumn.go, you use bufio.ReadString() to read your input
line by line.

The last part of findIPv4.go contains the following Go code:

 ip := findIP(line)
 trial := net.ParseIP(ip)
 if trial.To4() == nil {
 continue
 } else {
 fmt.Println(ip)
 }
 }
 }
}

For each line of the input text file, you call the findIP() function. The net.ParseIP()
function double checks that you are dealing with a valid IPv4 address-it is never a bad thing
to double check! If the call to net.ParseIP() is successful, you print the IPv4 that you just
found. After that, the program will deal with the next line of input.

If you want, you can remove the else block from the preceding code and put the
fmt.Println(ip) statement after the if block since continue will just jump away.

Executing findIPv4.go will generate the following type of output:

$ go run findIPv4.go /tmp/auth.log
116.168.10.9
192.31.20.9
10.10.16.9
10.31.160.9
192.168.68.194

The Uses of Composite Types Chapter 4

[149]

Thus the output of findIPv4.go can have lines that are displayed multiple times. Apart
from that detail, the output of the utility is pretty straightforward.

Processing the preceding output with some traditional Unix command line utilities might
help you reveal more information about your data:

$ go run findIPv4.go /tmp/auth.log.1 /tmp/auth.log | sort -rn | uniq -c |
sort -rn
 38 xxx.zz.116.9
 33 x.zz.2.190
 25 xx.zzz.1.41
 20 178.132.1.18
 18 x.zzz.63.53
 17 178.zzz.y.9
 15 103.yyy.xxx.179
 10 213.z.yy.194
 10 yyy.zzz.110.4
 9 yy.xx.65.113

What we did here is to find out the top-10 IPv4 addresses located in the processed text files
using the sort(1) and uniq(1) Unix command-line utilities. The logic behind this pretty
long bash(1) shell command is simple: the output of the findIPv4.go utility will become
the input of the first sort -rn command in order to be sorted numerically in reverse order.
Then the uniq -c command removes the lines that appear multiple times by replacing
them with a single line that is preceded with the count of the number of times the line
occurred in the input. The output then is sorted once again so that the IPv4 addresses with
the higher number of occurrences will appear first!

Once again, it is important to realize that the core functionality of
findIPv4.go is implemented through the regular expression. If the
regular expression is defined incorrectly, or if it does not match all of the
cases (false negative), or if it matches things that should not be matched
(false positive), then your program will not work correctly!

The Uses of Composite Types Chapter 4

[150]

Strings
Strictly speaking, a string is not a composite type, but there are so many Go functions that
support strings that I will describe strings in this chapter. As discussed in Chapter 3,
Working with Basic Go Data Types, strings in Go are value types not pointers, as is the case
with C strings. Additionally, Go supports UTF-8 strings by default, which means that you
do not need to load any special packages or do anything tricky in order to print Unicode
characters. However, there are subtle differences between a character, a rune, and a byte, as
well as differences between a string and a string literal, which will be clarified here.

A Go string is a read-only byte slice that can hold any type of bytes, and it can have an
arbitrary length.

You can define a new string literal as follows:

const sLiteral = "\x99\x42\x32\x55\x50\x35\x23\x50\x29\x9c"

You might be surprised by the look of a string literal in Go. You can define a string variable
as follows:

s2 := "€£³"

You can find the length of a string variable or a string literal using the len() function.

The strings.go file will illustrate many standard operations related to strings. It will be
presented in five parts. The first part is shown in the following Go code:

package main

import (
 "fmt"
)

The second portion of Go code is as follows:

func main() {
 const sLiteral = "\x99\x42\x32\x55\x50\x35\x23\x50\x29\x9c"
 fmt.Println(sLiteral)
 fmt.Printf("x: %x\n", sLiteral)
 fmt.Printf("sLiteral length: %d\n", len(sLiteral))

Each \xAB sequence represents a single character of sLiteral. As a result, calling
len(sLiteral) will return the number of characters of sLiteral. Using %x in
fmt.Printf() will return the AB part of a \xAB sequence.

The Uses of Composite Types Chapter 4

[151]

The third code segment of strings.go is shown in the following Go code:

 for i := 0; i < len(sLiteral); i++ {
 fmt.Printf("%x ", sLiteral[i])
 }
 fmt.Println()

 fmt.Printf("q: %q\n", sLiteral)
 fmt.Printf("+q: %+q\n", sLiteral)
 fmt.Printf(" x: % x\n", sLiteral)

 fmt.Printf("s: As a string: %s\n", sLiteral)

Here you see that you can access a string literal as if it were a slice. Using %q in
fmt.Printf() with a string argument will print a double-quoted string safely escaped
with Go syntax. Using %+q in fmt.Printf() with a string argument will guarantee ASCII-
only output.

Last, using % x (note the space between the % character and the x character) in
fmt.Printf() will put spaces between the printed bytes. In order to print a string literal as
a string, you will need to call fmt.Printf() with %s.

The fourth portion of the code of strings.go is as follows:

 s2 := "€£³"
 for x, y := range s2 {
 fmt.Printf("%#U starts at byte position %d\n", y, x)
 }

 fmt.Printf("s2 length: %d\n", len(s2))

Here you define a string named s2 with three Unicode characters. Using fmt.Printf()
with %#U will print the characters in the U+0058 format. Using the range keyword on a
string that contains Unicode characters allows you to process its Unicode characters one by
one.

The output of len(s2) might surprise you a little. As the s2 variable contains Unicode
characters, its byte size is larger than the number of characters in it.

The Uses of Composite Types Chapter 4

[152]

The last part of strings.go is as follows:

 const s3 = "ab12AB"
 fmt.Println("s3:", s3)
 fmt.Printf("x: % x\n", s3)

 fmt.Printf("s3 length: %d\n", len(s3))

 for i := 0; i < len(s3); i++ {
 fmt.Printf("%x ", s3[i])
 }
 fmt.Println()
}

Running strings.go will generate the following output:

$ go run strings.go
�B2UP5#P)�
x: 9942325550352350299c
sLiteral length: 10
99 42 32 55 50 35 23 50 29 9c
q: "\x99B2UP5#P)\x9c"
+q: "\x99B2UP5#P)\x9c"
 x: 99 42 32 55 50 35 23 50 29 9c
s: As a string: �B2UP5#P)�
U+20AC '€' starts at byte position 0
U+00A3 '£' starts at byte position 3
U+00B3 '³' starts at byte position 5
s2 length: 7
s3: ab12AB
x: 61 62 31 32 41 42
s3 length: 6
61 62 31 32 41 42

It's no surprise if you find the information presented in this section pretty strange and
complex, especially if you are unfamiliar with Unicode and UTF-8 representations of
characters and symbols. The good thing is that you will not need most of them in your
everyday life as a Go developer, and that you will most likely get away with using simple
fmt.Println() and fmt.Printf() commands in your programs to print your output.
However, if you are living outside of Europe or the USA, you might find some of the
information in this section pretty handy.

The Uses of Composite Types Chapter 4

[153]

What is a rune?
A rune is an int32 value, and therefore it is a Go type that is used for representing a
Unicode code point. A Unicode code point or code position is a numerical value that is
usually used for representing single Unicode characters; however, it can also have
alternative meanings, such as providing formatting information.

NOTE: You can consider a string as a collection of runes.

A rune literal is a character in single quotes. You may also consider a rune literal as a rune
constant. Behind the scenes, a rune literal is associated with a Unicode code point.

Runes will be illustrated in runes.go, which is will be presented in three parts. The first
part of runes.go follows next:

package main

import (
 "fmt"
)

The second part of runes.go contains the following code:

func main() {
 const r1 = '€'
 fmt.Println("(int32) r1:", r1)
 fmt.Printf("(HEX) r1: %x\n", r1)
 fmt.Printf("(as a String) r1: %s\n", r1)
 fmt.Printf("(as a character) r1: %c\n", r1)

So, first you define a rune literal named r1. (Please note that the Euro sign does not belong
to the ASCII table of characters.) Then you print r1 using various statements. First you print
its int32 value and then its hexadecimal value. After that, you try printing it as a string.
Finally, you print it as a character, which is what gives you the same output as the one used
in the definition of r1.

The third and last code segment of runes.go is shown in the following Go code:

 fmt.Println("A string is a collection of runes:", []byte("Mihalis"))
 aString := []byte("Mihalis")
 for x, y := range aString {
 fmt.Println(x, y)

The Uses of Composite Types Chapter 4

[154]

 fmt.Printf("Char: %c\n", aString[x])
 }
 fmt.Printf("%s\n", aString)
}

Here you see that a byte slice is a collection of runes, and that printing a byte slice with
fmt.Println() might not return what you may have expected. In order to convert a rune
into a character, you should use %c in a fmt.Printf() statement, and in order to print a
byte slice as a string, you will need to use fmt.Printf() with %s.

Executing runes.go will create the following output:

$ go run runes.go
(int32) r1: 8364
(HEX) r1: 20ac
(as a String) r1: %!s(int32=8364)
(as a character) r1: €
A string is a collection of runes: [77 105 104 97 108 105 115]
0 77
Char: M
1 105
Char: i
2 104
Char: h
3 97
Char: a
4 108
Char: l
5 105
Char: i
6 115
Char: s
Mihalis

Finally, the easiest way to get an illegal rune literal error message is by using single
quotes instead of double quotes when importing a package:

$ cat a.go
package main
import (
 'fmt'
)
func main(){
}
$ go run a.go
package main:a.go:4:2: illegal rune literal

The Uses of Composite Types Chapter 4

[155]

The Unicode package
The unicode standard Go package contains various handy functions. One of them, which is
called unicode.IsPrint(), can help you identify the parts of a string that are printable
using runes. This technique will be illustrated in the Go code of unicode.go, which will be
presented in two parts.

The first part of unicode.go is as follows:

package main

import (
 "fmt"
 "unicode"
)

func main() {
 const sL = "\x99\x00ab\x50\x00\x23\x50\x29\x9c"

The second code segment of unicode.go is shown in the following Go code:

 for i := 0; i < len(sL); i++ {
 if unicode.IsPrint(rune(sL[i])) {
 fmt.Printf("%c\n", sL[i])
 } else {
 fmt.Println("Not printable!")
 }
 }
}

As stated before, all of the dirty work is done by the unicode.IsPrint() function that
returns true when a rune is printable and false otherwise. If you are really into Unicode
characters, you should definitely check the documentation page of the unicode package.

Executing unicode.go will generate the following output:

$ go run unicode.go
Not printable!
Not printable!
a
b
P
Not printable!
#

The Uses of Composite Types Chapter 4

[156]

P
)
Not printable!

The strings package
The strings standard Go package allows you to manipulate UTF-8 strings in Go and
includes many powerful functions. Most of these functions will be illustrated in the
useStrings.go source file, which will be presented in five parts. Note that the functions of
the strings package that are related to file input and output will be demonstrated in
Chapter 8, Telling a Unix System What to Do.

The first part of useStrings.go follows next:

package main

import (
 "fmt"
 s "strings"
 "unicode"
)

var f = fmt.Printf

You can apply this great tip to all Go packages. There is a difference in the
way that the strings package is imported. This kind of import statement
makes Go create an alias for that package. So, instead of writing
strings.FunctionName(), you can now write s.FunctionName(),
which is a bit shorter. Please note that you will not be able to call a
function of the strings package as strings.FunctionName() anymore!

Another handy trick is that if you find yourself using the same function all of the time, and
you want to use something shorter instead, you can assign a variable name to that function
and use that variable name instead. Here you see that feature applied to the fmt.Printf()
function. Nevertheless, you should not overuse this feature because you might end up
having difficult to read code!

The second part of the useStrings.go program contains the following Go code:

func main() {
 upper := s.ToUpper("Hello there!")
 f("To Upper: %s\n", upper)
 f("To Lower: %s\n", s.ToLower("Hello THERE"))

The Uses of Composite Types Chapter 4

[157]

 f("%s\n", s.Title("tHis wiLL be A title!"))

 f("EqualFold: %v\n", s.EqualFold("Mihalis", "MIHAlis"))
 f("EqualFold: %v\n", s.EqualFold("Mihalis", "MIHAli"))

In this code segment, you see many functions that allow you to play with the case of a
string. Additionally, you see that the strings.EqualFold() function allows you to
determine whether two strings are the same in spite of their differences in their letters.

The third code portion of useStrings.go follows here:

 f("Prefix: %v\n", s.HasPrefix("Mihalis", "Mi"))
 f("Prefix: %v\n", s.HasPrefix("Mihalis", "mi"))
 f("Suffix: %v\n", s.HasSuffix("Mihalis", "is"))
 f("Suffix: %v\n", s.HasSuffix("Mihalis", "IS"))

 f("Index: %v\n", s.Index("Mihalis", "ha"))
 f("Index: %v\n", s.Index("Mihalis", "Ha"))
 f("Count: %v\n", s.Count("Mihalis", "i"))
 f("Count: %v\n", s.Count("Mihalis", "I"))
 f("Repeat: %s\n", s.Repeat("ab", 5))

 f("TrimSpace: %s\n", s.TrimSpace(" \tThis is a line. \n"))
 f("TrimLeft: %s", s.TrimLeft(" \tThis is a\t line. \n", "\n\t "))
 f("TrimRight: %s\n", s.TrimRight(" \tThis is a\t line. \n", "\n\t "))

The strings.Count() function counts the number of non-overlapping times the second
parameter appears in the string that is given as the first parameter. The
strings.HasPrefix() function returns true when the first parameter string begins with
the second parameter string and false otherwise. Similarly, the strings.HasSuffix()
function returns true when the first parameter, which is a string, ends with the second
parameter, which is also a string, and false otherwise.

The fourth code segment of useStrings.go contains the following Go code:

 f("Compare: %v\n", s.Compare("Mihalis", "MIHALIS"))
 f("Compare: %v\n", s.Compare("Mihalis", "Mihalis"))
 f("Compare: %v\n", s.Compare("MIHALIS", "MIHalis"))

 f("Fields: %v\n", s.Fields("This is a string!"))
 f("Fields: %v\n", s.Fields("Thisis\na\tstring!"))

 f("%s\n", s.Split("abcd efg", ""))

The Uses of Composite Types Chapter 4

[158]

This code portion contains some pretty advanced and ingenious functions. The first handy
function is strings.Split(), which allows you to split the given string according to the
desired separator string. The strings.Split() function returns a string slice.

Using "" as the second parameter of strings.Split() will allow you to process a string
character by character!

The strings.Compare() function compares two strings lexicographically, and it may
return 0 if the two strings are identical and -1 or +1 otherwise.

Last, the strings.Fields() function splits the string parameter using white space
characters as separators. The white space characters are defined in the
unicode.IsSpace() function.

strings.Split() is a powerful function that you should learn because
sooner rather than later you will have to use it in your programs!

The last part of useStrings.go is shown in the following Go code:

 f("%s\n", s.Replace("abcd efg", "", "_", -1))
 f("%s\n", s.Replace("abcd efg", "", "_", 4))
 f("%s\n", s.Replace("abcd efg", "", "_", 2))

 lines := []string{"Line 1", "Line 2", "Line 3"}
 f("Join: %s\n", s.Join(lines, "+++"))

 f("SplitAfter: %s\n", s.SplitAfter("123++432++", "++"))

 trimFunction := func(c rune) bool {
 return !unicode.IsLetter(c)
 }
 f("TrimFunc: %s\n", s.TrimFunc("123 abc ABC \t .", trimFunction))
}

As in the previous part of useStrings.go, the last code segment contains functions that
implement some very intelligent functionality in a simple to understand and easy to use
way.

The Uses of Composite Types Chapter 4

[159]

The strings.Replace() function takes four parameters. The first one is the string that
you want to process. The second parameter contains the string that, if found, will be
replaced by the third parameter of strings.Replace(). The last parameter is the
maximum number of replacements that will happen. If that parameter has a negative value,
then there is no limit to the number of replacements that can take place.

The last two statements of the program define a trim function, which allows you to keep
the runes of a string that interest you and utilize that function as the second argument to the
strings.TrimFunc() function.

Last, the strings.SplitAfter() function splits its first parameter string into substrings
based on the separator string that is given as the second parameter to the function.

For the full list of functions similar to unicode.IsLetter(), you should
visit the documentation page of the unicode standard Go package.

Executing useStrings.go will display the following output:

$ go run useStrings.go
To Upper: HELLO THERE!
To Lower: hello there
THis WiLL Be A Title!
EqualFold: true
EqualFold: false
Prefix: true
Prefix: false
Suffix: true
Suffix: false
Index: 2
Index: -1
Count: 2
Count: 0
Repeat: ababababab
TrimSpace: This is a line.
TrimLeft: This is a line.
TrimRight: This is a line.
Compare: 1
Compare: 0
Compare: -1
Fields: [This is a string!]
Fields: [Thisis a string!]
[a b c d e f g]
_a_b_c_d_ _e_f_g
__a_b_c_d efg

The Uses of Composite Types Chapter 4

[160]

_a_bcd efg
Join: Line 1+++Line 2+++Line 3
SplitAfter: [123++ 432++]
TrimFunc: abc ABC

Please note that the list of functions presented from the strings package is far from
complete. You should examine the documentation page of the strings package at
https://golang.org/pkg/strings/ for the complete list of available functions.

If you are working with text and text processing, you will definitely need to learn all of the
gory details and functions of the strings package, so make sure that you experiment with
all these functions a lot and create many examples that will help you clarify things.

The switch statement
The main reason for presenting the switch statement in this chapter is because a switch
case can use regular expressions! First, however, take a look at this simple switch block:

switch asString {
case "1":
 fmt.Println("One!")
case "0":
 fmt.Println("Zero!")
default:
 fmt.Println("Do not care!")
}

The preceding switch block can differentiate the asString value among the "1" string, the
"0" string, and everything else (default).

Having a match all remaining cases case in a switch block is considered a
very good practice. However, as the order of the cases in a switch block
does matter, the match all remaining cases case should be put last. In Go, the
name of the match all remaining cases case is default.

A switch statement, however, can be much more flexible and adaptable:

switch {
case number < 0:
 fmt.Println("Less than zero!")
case number > 0:
 fmt.Println("Bigger than zero!")
default:

https://golang.org/pkg/strings/

The Uses of Composite Types Chapter 4

[161]

 fmt.Println("Zero!")
}

The preceding switch block does the job of identifying whether you are dealing with a
positive integer, a negative integer, or zero. As you can see, the branches of a switch
statement can have conditions. You will soon see that the branches of a switch statement
can also have regular expressions in them!

All of these examples and some additional ones can be found in switch.go, which will be
presented in five parts.

The first part of switch.go is as follows:

package main

import (
 "fmt"
 "os"
 "regexp"
 "strconv"
)

func main() {

 arguments := os.Args
 if len(arguments) < 2 {
 fmt.Println("usage: switch number")
 os.Exit(1)
 }

The regexp package is needed for supporting regular expressions in switch.

The second code segment of switch.go is shown in the following Go code:

 number, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("This value is not an integer:", number)
 } else {
 switch {
 case number < 0:
 fmt.Println("Less than zero!")
 case number > 0:
 fmt.Println("Bigger than zero!")
 default:
 fmt.Println("Zero!")
 }
 }

The Uses of Composite Types Chapter 4

[162]

The third part of switch.go is as follows:

 asString := arguments[1]
 switch asString {
 case "5":
 fmt.Println("Five!")
 case "0":
 fmt.Println("Zero!")
 default:
 fmt.Println("Do not care!")
 }

In this code segment, you can see that a switch case can also contain hardcoded values.
This mainly occurs when the switch keyword is followed by the name of a variable.

The fourth code portion of switch.go contains the following Go code:

 var negative = regexp.MustCompile('-')
 var floatingPoint = regexp.MustCompile('\d?\.\d')
 var email = regexp.MustCompile('^[^@]+@[^@.]+\.[^@.]+')
 switch {
 case negative.MatchString(asString):
 fmt.Println("Negative number")
 case floatingPoint.MatchString(asString):
 fmt.Println("Floating point!")
 case email.MatchString(asString):
 fmt.Println("It is an email!")
 fallthrough
 default:
 fmt.Println("Something else!")
 }

Many interesting things are happening here. First, you define three regular expressions
named negative, floatingPoint, and email, respectively. Then you use all three of
them in the switch block with the help of the regexp.MatchString() function that does
the actual matching.

Last, the fallthrough keyword also tells Go to execute the branch that follows the current
one, which in this case is the default branch. This means that when the code of the
email.MatchString(asString) case is the one that will get executed, the default case
will also be executed.

The Uses of Composite Types Chapter 4

[163]

The last part of switch.go is as follows:

 var aType error = nil
 switch aType.(type) {
 case nil:
 fmt.Println("It is nil interface!")
 default:
 fmt.Println("Not nil interface!")
 }
}

Here you can see that switch can differentiate between types. You will learn more about
working with switch and Go interfaces at Chapter 7, Reflection and Interfaces for All
Seasons.

Executing switch.go with various input arguments will generate the following type of
output:

$ go run switch.go
usage: switch number.
exit status 1
$ go run switch.go mike@g.com
This value is not an integer: 0
Do not care!
It is an email!
Something else!
It is nil interface!
$ go run switch.go 5
Bigger than zero!
Five!
Something else!
It is nil interface!
$ go run switch.go 0
Zero!
Zero!
Something else!
It is nil interface!
$ go run switch.go 1.2
This value is not an integer: 0
Do not care!
Floating point!
It is nil interface!
$ go run switch.go -1.5
This value is not an integer: 0
Do not care!
Negative number
It is nil interface!

The Uses of Composite Types Chapter 4

[164]

Calculating Pi with great accuracy
In this section, you will learn how to calculate Pi with great accuracy using a standard Go
package named math/big and the special purpose types offered by that package.

This section contains the ugliest Go code that I have even seen! Even Java
code looks better than this.

The name of the program that uses Bellard's formula to calculate Pi is calculatePi.go,
and it will be presented in four parts.

The first part of calculatePi.go follows next:

package main

import (
 "fmt"
 "math"
 "math/big"
 "os"
 "strconv"
)

var precision uint = 0

The precision variable holds the desired precision of the calculations, and it is made
global in order to be accessible from everywhere in the program.

The second code segment of calculatePi.go is shown in the following Go code:

func Pi(accuracy uint) *big.Float {
 k := 0
 pi := new(big.Float).SetPrec(precision).SetFloat64(0)
 k1k2k3 := new(big.Float).SetPrec(precision).SetFloat64(0)
 k4k5k6 := new(big.Float).SetPrec(precision).SetFloat64(0)
 temp := new(big.Float).SetPrec(precision).SetFloat64(0)
 minusOne := new(big.Float).SetPrec(precision).SetFloat64(-1)
 total := new(big.Float).SetPrec(precision).SetFloat64(0)

 two2Six := math.Pow(2, 6)
 two2SixBig := new(big.Float).SetPrec(precision).SetFloat64(two2Six)

The Uses of Composite Types Chapter 4

[165]

The new(big.Float) call creates a new big.Float variable with the desired precision,
which is set by SetPrec().

The third part of calculatePi.go contains the remaining Go code of the Pi() function:

 for {
 if k > int(accuracy) {
 break
 }
 t1 := float64(float64(1) / float64(10*k+9))
 k1 := new(big.Float).SetPrec(precision).SetFloat64(t1)
 t2 := float64(float64(64) / float64(10*k+3))
 k2 := new(big.Float).SetPrec(precision).SetFloat64(t2)
 t3 := float64(float64(32) / float64(4*k+1))
 k3 := new(big.Float).SetPrec(precision).SetFloat64(t3)
 k1k2k3.Sub(k1, k2)
 k1k2k3.Sub(k1k2k3, k3)
 t4 := float64(float64(4) / float64(10*k+5))
 k4 := new(big.Float).SetPrec(precision).SetFloat64(t4)
 t5 := float64(float64(4) / float64(10*k+7))
 k5 := new(big.Float).SetPrec(precision).SetFloat64(t5)
 t6 := float64(float64(1) / float64(4*k+3))
 k6 := new(big.Float).SetPrec(precision).SetFloat64(t6)
 k4k5k6.Add(k4, k5)
 k4k5k6.Add(k4k5k6, k6)
 k4k5k6 = k4k5k6.Mul(k4k5k6, minusOne)
 temp.Add(k1k2k3, k4k5k6)

 k7temp := new(big.Int).Exp(big.NewInt(-1), big.NewInt(int64(k)),
nil)
 k8temp := new(big.Int).Exp(big.NewInt(1024), big.NewInt(int64(k)),
nil)
 k7 := new(big.Float).SetPrec(precision).SetFloat64(0)
 k7.SetInt(k7temp)
 k8 := new(big.Float).SetPrec(precision).SetFloat64(0)
 k8.SetInt(k8temp)

 t9 := float64(256) / float64(10*k+1)
 k9 := new(big.Float).SetPrec(precision).SetFloat64(t9)
 k9.Add(k9, temp)
 total.Mul(k9, k7)
 total.Quo(total, k8)
 pi.Add(pi, total)

 k = k + 1
 }

The Uses of Composite Types Chapter 4

[166]

 pi.Quo(pi, two2SixBig)
 return pi
}

This part of the program is the Go implementation of Bellard's formula. The bad thing
about math/big is that you need a special function of it for almost every type of calculation.
This is the case primarily because those functions keep the precision at the desired level.
Thus, without using big.Float and big.Int variables, as well as the functions of
math/big all of the time, you cannot compute Pi with the desired precision.

The last part of calculatePi.go shows the implementation of the main() function:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide one numeric argument!")
 os.Exit(1)
 }

 temp, _ := strconv.ParseUint(arguments[1], 10, 32)
 precision = uint(temp) * 3

 PI := Pi(precision)
 fmt.Println(PI)
}

Executing calculatePi.go will generate the following type of output:

$ go run calculatePi.go
Please provide one numeric argument!
exit status 1
$ go run calculatePi.go 20
3.141592653589793258
$ go run calculatePi.go 200
3.1415926535897932569603993617387624040191831562485732434931792835710464502
489134671185117843176153542820179294162928090508139378752834356105863133635
48602436768047706489838924381929

The moral of this section is that there are many different data types, and that you should
use the right data type each time!

The Uses of Composite Types Chapter 4

[167]

Developing a key/value store in Go
In this section, you will learn how to develop an unsophisticated version of a key-value
store in Go, which means that you will learn how to implement the core functionality of a
key-value store without any additional bells and whistles. The idea behind a key-value
store is modest: answer queries fast and, generally speaking, work as fast as possible. This
translates into using simple algorithms and simple data structures.

The program presented now will basically implement the four fundamental tasks of a key-
value store:

Adding a new element1.
Deleting an existing element from the key-value store based on a key2.
Looking up for the value of a specific key in the store, and3.
Changing the value of an existing key4.

These four functions allow you to have full control over the key-value store. The commands
for these four functions will be named ADD, DELETE, LOOKUP, and CHANGE, respectively.
This means that the program will only operate when its gets one of these four commands.
Additionally, the program will stop when you enter the STOP word as input, and it will
print the full contents of the key-value store when you enter the PRINT command.

The name of the program in this example will be keyValue.go, and it will be presented in
five code segments.

The first code segment of keyValue.go follows next:

package main

import (
 "bufio"
 "fmt"
 "os"
 "strings"
)

type myElement struct {
 Name string
 Surname string
 Id string
}

var DATA = make(map[string]myElement)

The Uses of Composite Types Chapter 4

[168]

The key-value store is stored in a native Go map because using a built-in Go structure is
usually faster. The map variable is defined as a global variable, where its keys are string
variables and its values are myElement variables. You can also see the definition of the
myElement struct type here.

The second code segment of keyValue.go is as follows:

func ADD(k string, n myElement) bool {
 if k == "" {
 return false
 }

 if LOOKUP(k) == nil {
 DATA[k] = n
 return true
 }
 return false
}

func DELETE(k string) bool {
 if LOOKUP(k) != nil {
 delete(DATA, k)
 return true
 }
 return false
}

This code contains the implementation of two functions that support the functionality of the
ADD and DELETE commands. Note that if the user tries to add a new element to the store
without giving enough values to populate the myElement struct, the ADD function will not
fail. For this particular program, the missing fields of the myElement struct will be set to the
empty string. However, if you try to add a key that already exists, you will get an error
message instead of modifying the existing key-value.

Notice that I rarely use function names with all caps unless I want them to stand out in the
code.

The third portion of keyValue.go contains the following code:

func LOOKUP(k string) *myElement {
 _, ok := DATA[k]
 if ok {
 n := DATA[k]
 return &n
 } else {
 return nil

The Uses of Composite Types Chapter 4

[169]

 }
}

func CHANGE(k string, n myElement) bool {
 DATA[k] = n
 return true
}

func PRINT() {
 for k, d := range DATA {
 fmt.Printf("key: %s value: %v\n", k, d)
 }
}

In this Go code segment, you see the implementation of the functions that support the
functionality of the LOOKUP and CHANGE commands. If you try to change a key that does not
exist, the program will add that key to the store without generating any error messages.

In this part, you can also see the implementation of the PRINT() function that prints the full
contents of the key-value store.

The fourth part of keyValue.go is as follows:

func main() {
 scanner := bufio.NewScanner(os.Stdin)
 for scanner.Scan() {
 text := scanner.Text()
 text = strings.TrimSpace(text)
 tokens := strings.Fields(text)

 switch len(tokens) {
 case 0:
 continue
 case 1:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 2:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 3:
 tokens = append(tokens, "")
 tokens = append(tokens, "")

The Uses of Composite Types Chapter 4

[170]

 case 4:
 tokens = append(tokens, "")
 }

In this part of keyValue.go, you read the input from the user. First, the for loop makes
sure that the program will keep running for as long as the user provides some input.
Additionally, the program makes sure that the tokens slice has at least five elements, even
though only the ADD command requires that number of elements. Thus, for an ADD
operation to be complete and not to have any missing values, you will need an input that
looks like ADD aKey Field1 Field2 Field3.

The last part of keyValue.go is shown in the following Go code:

 switch tokens[0] {
 case "PRINT":
 PRINT()
 case "STOP":
 return
 case "DELETE":
 if !DELETE(tokens[1]) {
 fmt.Println("Delete operation failed!")
 }
 case "ADD":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !ADD(tokens[1], n) {
 fmt.Println("Add operation failed!")
 }
 case "LOOKUP":
 n := LOOKUP(tokens[1])
 if n != nil {
 fmt.Printf("%v\n", *n)
 }
 case "CHANGE":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !CHANGE(tokens[1], n) {
 fmt.Println("Update operation failed!")
 }
 default:
 fmt.Println("Unknown command - please try again!")
 }
 }
}

The Uses of Composite Types Chapter 4

[171]

In this part of the program, you process the input from the user. The switch statement
makes the design of the program very clean, and it saves you from having to use multiple
if...else statements.

Executing and using keyValue.go will create the following output:

$ go run keyValue.go
UNKNOWN
Unknown command - please try again!
ADD 123 1 2 3
ADD 234 2 3 4
ADD 345
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: { }
ADD 345 3 4 5
Add operation failed!
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: { }
CHANGE 345 3 4 5
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: {3 4 5}
DELETE 345
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
DELETE 345
Delete operation failed!
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
ADD 345 3 4 5
ADD 567 -5 -6 -7
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}
key: 345 value: {3 4 5}
key: 567 value: {-5 -6 -7}
CHANGE 345
PRINT
key: 123 value: {1 2 3}
key: 234 value: {2 3 4}

The Uses of Composite Types Chapter 4

[172]

key: 345 value: { }
key: 567 value: {-5 -6 -7}
STOP

You will have to wait until Chapter 8, Telling a Unix System What to Do, in order to learn
how to add data persistence to the key-value store.

You can also improve keyValue.go by adding goroutines and channels to it. However,
adding goroutines and channels to a single user application has no practical meaning.
Nevertheless, if you make keyValue.go capable of operating over TCP/IP networks, then
the use of goroutines and channels will allow it to accept multiple connections and serve
multiple users. You will learn more about routines and channels in Chapter 9, Go
Concurrency – Goroutines, Channels and Pipelines and Chapter 10, Go Concurrency – Advanced
topics. You will also learn about creating network applications in Go in Chapter 12,
The Foundations of Network Programming in Go, and in Chapter 13, Network Programming –
Building Servers and Clients.

Additional resources
You might find the following resources useful:

Read the documentation of the regexp standard Go package that can be found
at https://golang.org/pkg/regexp/
Visit the man page of the grep(1) utility
Develop a Go program that finds all of the IPv4 addresses of a log file that
downloaded ZIP files
You can find more information about the math/big Go package
at https://golang.org/pkg/math/big/
Review the documentation of the unicode standard Go package
at https://golang.org/pkg/unicode/
Although you might find it hard at first, start reading The Go Programming
Language Specification at https://golang.org/ref/spec

https://golang.org/pkg/regexp/
https://golang.org/pkg/math/big/
https://golang.org/pkg/unicode/
https://golang.org/ref/spec

The Uses of Composite Types Chapter 4

[173]

Exercises
Try to write a Go program that prints the invalid part or parts of an IPv4 address
Describe the differences between make and new without looking at the chapter
Describe the differences between a character, a byte, and a rune
Using the code of findIPv4.go, write a Go program that prints the most
popular IPv4 addresses found in a log file without processing the output with
any Unix utilities
Develop a Go program that finds the IPv4 addresses in a log file that generated a
404 HTML error message
Using the math/big standard Go package, write a Go program that calculates
square roots with high precision. Choose the algorithm on your own
Write a Go utility that finds a given date and time format in its input and returns
just the time part of it
Develop a Go utility that uses a regular expression in order to match integers
from 200 to 400
Try to improve keyValue.go by adding logging to it
Modify the findIP() function of the findIPv4.go utility so that the regular
expression is compiled only once and not every time the findIP() function is
called

Summary
In this chapter, you learned about many handy Go features, including creating and using
structures, tuples, strings, runes, and the functionality of the unicode standard Go
package. Additionally, you learned about pattern matching and regular expressions, the
switch statement, the strings standard Go package, you developed a key-value store in
Go, and learned how to use the types of the math/big package to calculate Pi with the
required accuracy.

In the next chapter, you will learn how to arrange and manipulate data using more
advanced features like binary trees, linked lists, doubly-linked lists, queues, stacks and hash
tables, as well as the structures that can be found in the container standard Go package.
The last topic of the next chapter will be random numbers and generating difficult-to-guess
strings that can be used as passwords.

5
Enhancing Go Code with Data

Structures
In the previous chapter, we discussed composite data types, which are constructed using
the struct keyword as well as topics such as regular expressions, pattern matching, tuples,
runes, strings and the unicode and strings standard Go packages before developing a
simple key-value store in Go.There are times, however, that the structures offered by a
programming language will not fit a particular problem. In such cases, you will need to
create your own data structures to store, search, and receive your data in explicit and
specialized ways.Consequently, this chapter is all about developing and using many well-
known data structures in Go including binary trees, linked lists, hash tables, stacks, and
queues and learning about their advantages. As nothing describes a data structure better
than an image, you will see many explanatory figures in this chapter! The last part of the
chapter will address random number generation, which can help you generate difficult-to-
guess passwords!In this chapter of Mastering Go, you will learn about the following topics:

Graphs and nodes
Measuring the complexity of an algorithm
Binary trees in Go
Hash tables in Go
Linked lists in Go
Doubly linked lists in Go
Queues in Go
Stacks in Go
The data structures offered by the container standard Go package

Enhancing Go Code with Data Structures Chapter 5

[175]

Generating random numbers in Go
Building random strings that can be used as difficult-to-crack passwords

About graphs and nodes
A graph G(V,E) is a finite, nonempty set of vertices V (or nodes) and a set of edges E. There
are two main types of graphs: cyclic graphs and acyclic graphs. A cyclic graph is one where
all or a number of its vertices are connected in a closed chain. In acyclic graphs, there are no
closed chains. A Directed Graph is one whose edges have a direction associated with them.
A Directed Acyclic Graph is a directed graph with no cycles in it.

As a node may contain any kind of information, nodes are usually
implemented using Go structures.

Algorithm complexity
The efficiency of an algorithm is judged by its computational complexity, which mostly has
to do with the number of times the algorithm needs to access its input data to do its job.

The Big O notation is used in computer science for describing the complexity of an
algorithm. Thus, an O(n) algorithm, which needs to access its input only once, is considered
better than an O(n2) algorithm, which is better than an O(n3) algorithm, and so on. The worst
algorithms, however, are the ones with an O(n!) running time, which makes them almost
unusable for inputs with more than 300 elements.

Last, most Go lookup operations in built-in types, such as finding the value of a map key or
accessing an array element, have a constant time, which is represented by O(1). This means
that built-in types are generally faster than custom types, and that you should generally
favor using them, unless you want full control over what is going on behind the scenes.
Furthermore, not all data structures are created equal. Generally speaking, array operations
are faster than map operations, which is the price you have to pay for the versatility of a
map.

Although every algorithm has its drawbacks, if you do not have lots of
data, the algorithm is not really important as long as it performs the
desired job accurately.

Enhancing Go Code with Data Structures Chapter 5

[176]

Binary trees in Go
A binary tree is a data structure where underneath each node there are two other nodes at
most. At most means that a node can be connected to one, two, or no other nodes. The root
of a tree is the first node of the tree. The depth of a tree, which is also called the height of a
tree, is defined as the longest path from the root to a node, whereas the depth of a node is
the number of edges from the node to the root of the tree. A leaf is a node with no children.

A tree is considered balanced when the longest distance from the root to a leaf is at most
one more than the shortest such distance. As the name suggests, an Unbalanced Tree is a
tree that is not balanced. Balancing a tree might be a difficult and slow operation, so it is
better to keep your tree balanced from the very beginning than trying to balance it after you
have created it, especially when your tree has many nodes.

The following figure shows an unbalanced binary tree. Its root node is J, and nodes A, G, W,
and D are leaves.

An unbalanced binary tree

Enhancing Go Code with Data Structures Chapter 5

[177]

Implementing a binary tree in Go
This section illustrates how to implement a binary tree in Go using the source code found in
binTree.go as an example. The contents of binTree.go will be presented in five parts.
The first part follows next:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

type Tree struct {
 Left *Tree
 Value int
 Right *Tree
}

What you see here is the definition of the node of the tree using a Go structure. The
math/rand package is used for populating the tree with random numbers, as we do not yet
have any real data.

The second code part of binTree.go is shown in the following Go code:

func traverse(t *Tree) {
 if t == nil {
 return
 }
 traverse(t.Left)
 fmt.Print(t.Value, " ")
 traverse(t.Right)
}

The traverse() function reveals how you can visit all of the nodes of a binary tree using
recursion.

Enhancing Go Code with Data Structures Chapter 5

[178]

The third code segment of binTree.go is as follows:

func create(n int) *Tree {
 var t *Tree
 rand.Seed(time.Now().Unix())
 for i := 0; i < 2*n; i++ {
 temp := rand.Intn(n * 2)
 t = insert(t, temp)
 }
 return t
}

The create() function is only used for populating the binary tree with random integers.

The fourth part of the program is as follows:

func insert(t *Tree, v int) *Tree {
 if t == nil {
 return &Tree{nil, v, nil}
 }

 if v == t.Value {
 return t
 }

 if v < t.Value {
 t.Left = insert(t.Left, v)
 return t
 }
 t.Right = insert(t.Right, v)
 return t
}

The insert() function does many important things using if statements. The first if
statement checks whether you are dealing with an empty tree or not. If it is indeed an
empty tree, then the new node will be the root of the tree and it will be created as
&Tree{nil, v, nil}. The second if statement determines whether the value you are
trying to insert already exists in the binary tree or not. If it exists, the function returns
without doing anything else. The third if statement determines whether the value you are
trying to insert will go to the left or to the right side of the node that is currently being
examined and acts accordingly.

Enhancing Go Code with Data Structures Chapter 5

[179]

Notice that the presented implementation creates unbalanced binary trees.

The last part of binTree.go contains the following Go code:

func main() {
 tree := create(10)
 fmt.Println("The value of the root of the tree is", tree.Value)
 traverse(tree)
 fmt.Println()
 tree = insert(tree, -10)
 tree = insert(tree, -2)
 traverse(tree)
 fmt.Println()
 fmt.Println("The value of the root of the tree is", tree.Value)
}

Executing binTree.go will generate the following type of output:

$ go run binTree.go
The value of the root of the tree is 18
0 3 4 5 7 8 9 10 11 14 16 17 18 19
-10 -2 0 3 4 5 7 8 9 10 11 14 16 17 18 19
The value of the root of the tree is 18

Advantages of binary trees
You cannot beat a tree when you need to represent hierarchical data. For that reason, trees
are extensively used when the compiler of a programming language parses a computer
program.

Additionally, trees are ordered by design, which means that you do not have to make any
special effort to order them; putting an element into its correct place keeps them ordered.
However, deleting an element from a tree is not always trivial because of the way that trees
are constructed.

Enhancing Go Code with Data Structures Chapter 5

[180]

If a binary tree is balanced, its search, insert, and delete operations take about log(n) steps,
where n is the total number of elements that the tree holds. Additionally, the height of a
balanced binary tree is approximately log2(n), which means that a balanced tree with 10,000
elements has a height of about 14, and that is remarkably small. Similarly, the height of a
balanced tree with 100,000 elements will be about 17, and the height of a balanced tree with
1,000,000 elements will be about 20. In other words, putting a significantly large number of
elements into a balanced binary tree does not change the speed of the tree in an extreme
way. Stated differently, you can reach any node of a tree with 1,000,000 nodes in less than
20 steps!

A major disadvantage of binary trees is that the shape of the tree depends on the order in
which its elements were inserted. If the keys of a tree are long and complex, then inserting
or searching for an element might be slow due to the large number of comparisons
required. Last, if a tree is not balanced, then the performance of the tree is unpredictable.

Although you can create a linked list or an array faster than a binary tree,
the flexibility that a binary tree offers in search operations might worth the
extra overhead and maintenance. When searching for an element on a
binary tree, you check whether the value of the element that you are
looking for is bigger or smaller than the value of the current node and use
that decision to choose which part of the tree you will go down next,.
Doing this saves you a lot of time.

Hash tables in Go
Strictly speaking, a Hash table is a data structure that stores one or more key and value
pairs and uses a hash function to compute an index into an array of buckets or slots from
which the correct value can be discovered. Ideally, the hash function should assign each
key to a unique bucket, provided that you have the required number of buckets, which is
usually the case.

A good hash function must be able to produce a uniform distribution of the hash values,
because it is inefficient to have unused buckets or big differences in the cardinalities of the
buckets. Additionally, the hash function should work consistently and output the same
hash value for identical keys. Otherwise, it would be impossible to locate the information
you want!

Enhancing Go Code with Data Structures Chapter 5

[181]

The next figure shows what a hash table with 10 buckets looks like.

A hash table with 10 buckets

Implementing a hash table in Go
The Go code of hashTable.go, which will be presented in five parts, will help clarify many
things about hash tables.

The first part of hashTable.go is as follows:

package main

import (
 "fmt"
)

const SIZE = 15

type Node struct {
 Value int
 Next *Node
}

Enhancing Go Code with Data Structures Chapter 5

[182]

In this part, you can see the definition of the node of the hash table, which, as expected, is
defined using a Go structure. The SIZE constant variable holds the number of buckets of
the hash table.

The second segment from hashTable.go is shown in the following Go code:

type HashTable struct {
 Table map[int]*Node
 Size int
}

func hashFunction(i, size int) int {
 return (i % size)
}

In this code segment, you can see the implementation of the hash function used in this
particular hash. The hashFunction() uses the modulo operator. The main reason for
choosing the modulo operator is because this particular hash table has to cope with integer
values. If you were dealing with strings or floating-point numbers, then you should have
used a different logic in your hash function.

The actual hash is stored in a HashTable structure that has two fields. The second field is
the size of the hash table, and the first field is a map that associates an integer with a linked
list (*Node). As a result, this hash table will have as many linked lists as the number of its
buckets. This also means that the nodes of each bucket of the hash table will be stored in
linked lists. You will learn more about linked lists in a little while.

The third code portion of hashTable.go is as follows:

func insert(hash *HashTable, value int) int {
 index := hashFunction(value, hash.Size)
 element := Node{Value: value, Next: hash.Table[index]}
 hash.Table[index] = &element
 return index
}

The insert() function is called for inserting elements into the hash table. Note that the
current implementation of the insert() function does not check for duplicate values.

The fourth part of hashTable.go comes next:

func traverse(hash *HashTable) {
 for k := range hash.Table {
 if hash.Table[k] != nil {
 t := hash.Table[k]

Enhancing Go Code with Data Structures Chapter 5

[183]

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
 }
 }
}

The traverse() function is used for printing all of the values in the hash table. The
function visits each one of the linked lists of the hash table and prints the stored values,
linked list by linked list.

The last code portion of hashTable.go is as follows:

func main() {
 table := make(map[int]*Node, SIZE)
 hash := &HashTable{Table: table, Size: SIZE}
 fmt.Println("Number of spaces:", hash.Size)
 for i := 0; i < 120; i++ {
 insert(hash, i)
 }
 traverse(hash)
}

In this part of the code, you create a new hash table named hash using the table variable,
which is a map that holds the buckets of the hash table. As you already know, the slots of a
hash table are implemented using linked lists. The main reason for using a map to hold the
linked lists of a hash table instead of a slice or an array is that the keys of a slice or an array
can only be positive integers, while the keys of a map can be almost anything you need.

Executing hashTable.go will produce the following output:

$ go run hashTable.go
Number of spaces: 15
108 -> 93 -> 78 -> 63 -> 48 -> 33 -> 18 -> 3 ->
109 -> 94 -> 79 -> 64 -> 49 -> 34 -> 19 -> 4 ->
117 -> 102 -> 87 -> 72 -> 57 -> 42 -> 27 -> 12 ->
119 -> 104 -> 89 -> 74 -> 59 -> 44 -> 29 -> 14 ->
111 -> 96 -> 81 -> 66 -> 51 -> 36 -> 21 -> 6 ->
112 -> 97 -> 82 -> 67 -> 52 -> 37 -> 22 -> 7 ->
116 -> 101 -> 86 -> 71 -> 56 -> 41 -> 26 -> 11 ->
114 -> 99 -> 84 -> 69 -> 54 -> 39 -> 24 -> 9 ->
118 -> 103 -> 88 -> 73 -> 58 -> 43 -> 28 -> 13 ->
105 -> 90 -> 75 -> 60 -> 45 -> 30 -> 15 -> 0 ->
106 -> 91 -> 76 -> 61 -> 46 -> 31 -> 16 -> 1 ->
107 -> 92 -> 77 -> 62 -> 47 -> 32 -> 17 -> 2 ->

Enhancing Go Code with Data Structures Chapter 5

[184]

110 -> 95 -> 80 -> 65 -> 50 -> 35 -> 20 -> 5 ->
113 -> 98 -> 83 -> 68 -> 53 -> 38 -> 23 -> 8 ->
115 -> 100 -> 85 -> 70 -> 55 -> 40 -> 25 -> 10 ->

This particular hash table is perfectly balanced because it has to deal with continuous
numbers that are placed in a slot according to the results of the modulo operator. Real-
world problems might not generate such convenient results!

The remainder of a Euclidean division between two natural numbers a
and b can be calculated according to the a = bq + r formula, where q is the
quotient and r is the remainder. The values allowed for the remainder can
be between 0 and b-1, which are the possible results of the modulo
operator.

Note that if you execute hashTable.go several times, you will most likely get an output
where the lines are in a different order, because the way that Go outputs the key and value
pairs of a map is totally random!

Implementing the lookup functionality
In this section, you will see an implementation of the lookup() function that allows you to
determine whether a given element is already in the hash table or not. The code of the
lookup() function is based on that of the traverse() function, as follows:

func lookup(hash *HashTable, value int) bool {
 index := hashFunction(value, hash.Size)
 if hash.Table[index] != nil {
 t := hash.Table[index]
 for t != nil {
 if t.Value == value {
 return true
 }
 t = t.Next
 }
 }
 return false
}

You can find the preceding code in the hashTableLookup.go source file. Executing
hashTableLookup.go will create the following output:

$ go run hashTableLookup.go
120 is not in the hash table!
121 is not in the hash table!

Enhancing Go Code with Data Structures Chapter 5

[185]

122 is not in the hash table!
123 is not in the hash table!
124 is not in the hash table!

The preceding output means that the lookup() function does its job pretty well!

Advantages of hash tables
If you think that hash tables are not that useful, handy, or smart, consider the following:
When a hash table has n keys and k buckets, the search speed for the n keys goes from O(n)
for a linear search down to O(n/k)! Although the improvement might look small, you must
realize that for a hash array with only 20 slots, the search time will be reduced by 20 times!
This makes hash tables perfect for applications such as dictionaries or any other analogous
application where you have to search large amounts of data.

Linked lists in Go
A Linked list is a data structure with a finite set of elements where each element uses at
least two memory locations, one for storing the actual data and the other for storing a
pointer that links the current element to the next one, thus creating a sequence of elements
that construct the linked list.

The first element of a linked list is called the head whereas the last element of a linked list is
often called the tail. The first thing that you should do when defining a linked list is to keep
the head of the list in a separate variable because the head is the only thing that you have to
access the entire linked list. Note that if you lose the pointer to that first node of a single
linked list, there is no way to find it again.

The following figure shows a linked list with five nodes:

A linked list with five nodes

The next figure shows you how to remove an existing node from a linked list in order to
understand better the steps that are involved in the process. The main thing that you will
need to do is to arrange the pointer to the left node of the node that you are removing in
order to point to the right node of the node that is being removed.

Enhancing Go Code with Data Structures Chapter 5

[186]

Removing a node from a linked list

The linked list implementation that follows is relatively simple and will not include the
delete node functionality, which is left as an exercise for the reader to tackle.

Implementing a linked list in Go
The Go source file for the implementation of the linked list is called linkedList.go, and it
will be presented in five parts.

The first code segment of linkedList.go follows next:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

var root = new(Node)

Enhancing Go Code with Data Structures Chapter 5

[187]

In this part of the program, you define the Node structure type that will be used for the
nodes of the linked list as well as the root global variable that holds the first element of the
linked list, which will be accessible from everywhere in the code.

The second part of linkedList.go is shown in the following Go code:

func addNode(t *Node, v int) int {
 if root == nil {
 t = &Node{v, nil}
 root = t
 return 0
 }

 if v == t.Value {
 fmt.Println("Node already exists:", v)
 return -1
 }

 if t.Next == nil {
 t.Next = &Node{v, nil}
 return -2
 }

 return addNode(t.Next, v)
}

Due to the way linked lists work, they do not normally contain duplicate entries.
Furthermore, new nodes are usually added at the end of a linked list when the linked list is
not sorted.

Thus, the addNode() function is used for adding new nodes to the linked list. There are
three distinct cases in the implementation that are examined using if statements. In the
first case, you test whether you are dealing with an empty linked list or not. In the second
case, you check whether the value that you want to add is already in the list. In the third
case, you check whether you have reached the end of the linked list. In this case, you add a
new node at the end of the list with the desired value using t.Next = &Node{v, nil}. If
none of these conditions is true, you repeat the same process with the addNode() function
for the next node of the linked list using return addNode(t.Next, v).

The third code segment of the linkedList.go program contains the implementation of the
traverse() function:

func traverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")

Enhancing Go Code with Data Structures Chapter 5

[188]

 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

The fourth part of linkedList.go is as follows:

func lookupNode(t *Node, v int) bool {
 if root == nil {
 t = &Node{v, nil}
 root = t
 return false
 }

 if v == t.Value {
 return true
 }

 if t.Next == nil {
 return false
 }

 return lookupNode(t.Next, v)
}

func size(t *Node) int {
 if t == nil {
 fmt.Println("-> Empty list!")
 return 0
 }

 i := 0
 for t != nil {
 i++
 t = t.Next
 }
 return i
}

Enhancing Go Code with Data Structures Chapter 5

[189]

In this part, you see the implementation of two very handy functions: lookupNode() and
size(). The former checks whether a given element exists in the linked list, while the latter
returns the size of the linked list, which is the number of nodes in the linked list.

The logic behind the implementation of the lookupNode() function is easy to understand:
You start accessing all of the elements of the single linked list in order to search for the
value you crave. If you reach the tail of the linked list without having found the desired
value, then you know that the linked list does not contain that value.

The last part of linkedList.go contains the implementation of the main() function:

func main() {
 fmt.Println(root)
 root = nil
 traverse(root)
 addNode(root, 1)
 addNode(root, -1)
 traverse(root)
 addNode(root, 10)
 addNode(root, 5)
 addNode(root, 45)
 addNode(root, 5)
 addNode(root, 5)
 traverse(root)
 addNode(root, 100)
 traverse(root)

 if lookupNode(root, 100) {
 fmt.Println("Node exists!")
 } else {
 fmt.Println("Node does not exist!")
 }

 if lookupNode(root, -100) {
 fmt.Println("Node exists!")
 } else {
 fmt.Println("Node does not exist!")
 }
}

Executing linkedList.go will generate the following output:

$ go run linkedList.go
&{0 <nil>}
-> Empty list!
1 -> -1 ->
Node already exists: 5

Enhancing Go Code with Data Structures Chapter 5

[190]

Node already exists: 5
1 -> -1 -> 10 -> 5 -> 45 ->
1 -> -1 -> 10 -> 5 -> 45 -> 100 ->
Node exists!
Node does not exist!

Advantages of linked lists
The greatest advantages of linked lists are that they are easy to understand and implement,
and they are generic enough so that they can be used in many different situations. This
means that they can be used to model many different kinds of data. Additionally, linked
lists are really fast at sequential searching when used with pointers.

Linked lists cannot only help you sort your data, but they can also assist you in keeping
your data sorted even after inserting or deleting elements. Deleting a node from a sorted
linked list is the same as in an unsorted linked list; however, inserting a new node into a
sorted linked list is different because the new node has to go to the right place in order to
keep the list sorted. In practice, this means that if you have lots of data and you know that
you will need to delete data all the time, using a linked list is a better choice than using a
hash table or a binary tree.

Last, sorted linked lists allow you to use various optimization techniques when searching
or inserting a node. The most common technique is keeping a pointer at the center node of
the sorted linked list and starting your lookups from there. This simple optimization can
reduce the time of the lookup operation in half!

Doubly linked lists in Go
A doubly linked list is one where each node keeps a pointer to the previous element on the
list as well as the next element.

The following figure shows what a doubly linked list looks like:

A doubly linked list

Enhancing Go Code with Data Structures Chapter 5

[191]

Thus, on a doubly linked list, the next link of the first node points to the second node, while
its previous link points to nil (also called as NULL). Analogously, the next link of the last
node points to nil, while its previous link points to the next-to-last node of the doubly
linked list.

The last figure of this chapter illustrates the addition of a node in a doubly linked list. As
you can imagine, the main task that needs to be accomplished is dealing with the pointers
of three nodes: the new node, the node that will be on the left of the new node, and the node
that will be on the right of the new node.

Inserting a new node in the middle of a doubly linked list

Thus in reality, the main difference between a single linked list and a doubly linked list is
that the latter requires more housekeeping. This is the price that you will have to pay for
being able to access your doubly linked list both ways.

Enhancing Go Code with Data Structures Chapter 5

[192]

Implementing a doubly linked list in Go
The name of the program with the Go implementation of a doubly linked list is
doublyLList.go, and will be offered to you in five parts. The general idea behind a
doubly linked list is that same as in a single linked list, but you just have to do more
housekeeping due to the presence of two pointers in each node of the list.

The first part of doublyLList.go follows next:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Previous *Node
 Next *Node
}

In this part, you can see the definition of the node of the doubly linked list using a Go
structure. However, this time, the struct has two pointer fields for apparent reasons.

The second code portion of doublyLList.go contains the following Go code:

func addNode(t *Node, v int) int {
 if root == nil {
 t = &Node{v, nil, nil}
 root = t
 return 0
 }

 if v == t.Value {
 fmt.Println("Node already exists:", v)
 return -1
 }

 if t.Next == nil {
 temp := t
 t.Next = &Node{v, temp, nil}
 return -2
 }

 return addNode(t.Next, v)
}

Enhancing Go Code with Data Structures Chapter 5

[193]

As happened in the case of the single linked list, each new node is placed at the end of the
current doubly linked list. However, this is not mandatory as you can decide that you want
to have a sorted doubly linked list.

The third part of doublyLList.go is as follows:

func traverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

func reverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 temp := t
 for t != nil {
 temp = t
 t = t.Next
 }

 for temp.Previous != nil {
 fmt.Printf("%d -> ", temp.Value)
 temp = temp.Previous

}
 fmt.Printf("%d -> ", temp.Value)
 fmt.Println()
}

Here you see the Go code for the traverse() and reverse() functions. The
implementation of the traverse() function is the same as in the linkedList.go
program. However, the logic behind the reverse() function is very interesting, as we do
not keep a pointer to the tail of the doubly linked list, we need to go to the end of the
doubly linked list before being able to access its nodes in reverse order.

Enhancing Go Code with Data Structures Chapter 5

[194]

The fourth part of doublyLList.go contains the following Go code:

func size(t *Node) int {
 if t == nil {
 fmt.Println("-> Empty list!")
 return 0
 }

 n := 0
 for t != nil {
 n++
 t = t.Next
 }
 return n
}

func lookupNode(t *Node, v int) bool {
 if root == nil {
 return false
 }

 if v == t.Value {
 return true
 }

 if t.Next == nil {
 return false
 }

 return lookupNode(t.Next, v)
}

The last code segment of doublyLList.go contains the following Go code:

var root = new(Node)

func main() {
 fmt.Println(root)
 root = nil
 traverse(root)
 addNode(root, 1)
 addNode(root, 1)
 traverse(root)
 addNode(root, 10)
 addNode(root, 5)
 addNode(root, 0)
 addNode(root, 0)
 traverse(root)

Enhancing Go Code with Data Structures Chapter 5

[195]

 addNode(root, 100)
 fmt.Println("Size:", size(root))
 traverse(root)
 reverse(root)
}

If you execute doublyLList.go, you will get the following output:

$ go run doublyLList.go
&{0 <nil> <nil>}
-> Empty list!
Node already exists: 1
1 ->
Node already exists: 0
1 -> 10 -> 5 -> 0 ->
Size: 5
1 -> 10 -> 5 -> 0 -> 100 ->
100 -> 0 -> 5 -> 10 -> 1 ->

As you can see, the reverse() function works just fine!

Advantages of doubly linked lists
Doubly linked lists are more versatile than single linked lists because you can traverse them
in any direction you want and also you can insert and delete elements from a doubly linked
list more easily. Additionally, even if you lose the pointer to the head of a doubly linked list,
you can still find the head node of that list. However, this versatility comes at a price; that
is, maintaining two pointers for each node. It is up to the developer to decide whether that
extra complexity is justified or not.

After all, your music player might be using a doubly linked list to represent your current
list of songs and be able to go to the previous song as well as the next one!

Queues in Go
A Queue is a special kind of a linked list where each new element is inserted to the head
and removed from the tail of the linked list. We do not need a figure to describe a queue;
imagine going to a bank and waiting for the people that came before you to finish their
transactions before you can talk to a bank teller. That is a queue!

Enhancing Go Code with Data Structures Chapter 5

[196]

The main advantage of queues is simplicity! You only need two functions to access a queue,
which means that you have to worry about fewer things going wrong and you can
implement a queue any way you want so long as you can offer support for those two
functions!

Implementing a queue in Go
The program that will illustrate the Go implementation of a queue is called queue.go, and
it will be presented in five parts. Note that a linked list will be used for the implementation
of the queue. The Push() and a Pop() functions are used for adding and removing nodes
from the queue, respectively.

The first part of the code for queue.go follows next:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

var size = 0
var queue = new(Node)

Having a variable (size) for keeping the number of nodes that you have on the queue is
handy but not compulsory. However, the implementation presented here supports this
functionality because it makes things simpler.

The second code portion of queue.go contains the following Go code:

func Push(t *Node, v int) bool {
 if queue == nil {
 queue = &Node{v, nil}
 size++
 return true
 }

 t = &Node{v, nil}
 t.Next = queue
 queue = t

Enhancing Go Code with Data Structures Chapter 5

[197]

 size++

 return true
}

This part displays the implementation of the Push() function, which is straightforward. If
the queue is empty, then the new node will become the queue. If the queue is not empty,
then you create a new node that is placed in front of the current queue. After that, the head
of the queue becomes the node that was just created.

The third part of queue.go contains the following Go code:

func Pop(t *Node) (int, bool) {
 if size == 0 {
 return 0, false
 }

 if size == 1 {
 queue = nil
 size--
 return t.Value, true
 }

 temp := t
 for (t.Next) != nil {
 temp = t
 t = t.Next
 }

 v := (temp.Next).Value
 temp.Next = nil

 size--
 return v, true
}

The preceding code shows the implementation of the Pop() function, which removes the
oldest element of the queue. If the queue is empty (size == 0), there is nothing to extract.
If the queue has only one node, then you extract the value of that node and the queue
becomes empty. Otherwise, you extract the last element of the queue, remove the last node
of the queue, and fix the required pointers before returning the desired value.

The fourth part of queue.go contains the following Go code:

func traverse(t *Node) {
 if size == 0 {

Enhancing Go Code with Data Structures Chapter 5

[198]

 fmt.Println("Empty Queue!")
 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

Strictly speaking, the traverse() function is not necessary for the operation of a queue,
but it gives you a practical way of looking at all of the nodes of the queue.

The last code segment of queue.go is shown in the following Go code:

func main() {
 queue = nil
 Push(queue, 10)
 fmt.Println("Size:", size)
 traverse(queue)

 v, b := Pop(queue)
 if b {
 fmt.Println("Pop:", v)
 }
 fmt.Println("Size:", size)

 for i := 0; i < 5; i++ {
 Push(queue, i)
 }
 traverse(queue)
 fmt.Println("Size:", size)

 v, b = Pop(queue)
 if b {
 fmt.Println("Pop:", v)
 }
 fmt.Println("Size:", size)

 v, b = Pop(queue)
 if b {
 fmt.Println("Pop:", v)
 }
 fmt.Println("Size:", size)
 traverse(queue)
}

Enhancing Go Code with Data Structures Chapter 5

[199]

Almost all of the Go code in main() is for checking the operation of the queue. The most
important code in here are the two if statements that let you know whether the Pop()
function returned an actual value, or if the queue was empty and there is nothing to return.

Executing queue.go will produce the following type of output:

$ go run queue.go
Size: 1
10 ->
Pop: 10
Size: 0
4 -> 3 -> 2 -> 1 -> 0 ->
Size: 5
Pop: 0
Size: 4
Pop: 1
Size: 3
4 -> 3 -> 2 ->

Stacks in Go
A Stack is a data structure that looks like a pile of plates. The last plate that goes on the top
of the pile is the one that will be used first when you need to use a new plate.

The main advantage of a stack is its simplicity because you only have to worry about
implementing two functions in order to be able to work with a stack-adding a new node to
the stack and removing a node from the stack.

Implementing a stack in Go
It is now time to look at the implementation of a stack in Go. This will be illustrated in the
stack.go source file. Once again, a linked list will be used for implementing the stack. As
you know, you will need two functions: one function named Push() for putting things on
the stack and another one named Pop() for removing things from the stack. Although it is
not necessary, it is useful to keep the number of elements that you have on the stack on a
separate variable in order to be able to tell whether you are dealing with an empty stack or
not without having to access the linked list itself.

Enhancing Go Code with Data Structures Chapter 5

[200]

The source code of stack.go will be presented in four parts. The first part follows next:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

var size = 0
var stack = new(Node)

The second part of stack.go contains the implementation of the Push() function:

func Push(v int) bool {
 if stack == nil {
 stack = &Node{v, nil}
 size = 1
 return true
 }

 temp := &Node{v, nil}
 temp.Next = stack
 stack = temp
 size++
 return true
}

If the stack is not empty, then you create a new node (temp), which is placed in front of the
current stack. After that, this new node becomes the head of the stack. The current version
of the Push() function always returns true, but if your stack does not have unlimited
space, you might want to modify it and return false when you are about to exceed its
capacity.

The third part contains the implementation of the Pop() function:

func Pop(t *Node) (int, bool) {
 if size == 0 {
 return 0, false
 }

 if size == 1 {
 size = 0

Enhancing Go Code with Data Structures Chapter 5

[201]

 stack = nil
 return t.Value, true
 }

 stack = stack.Next
 size--
 return t.Value, true
}

The fourth code segment of stack.go is as follows:

func traverse(t *Node) {
 if size == 0 {
 fmt.Println("Empty Stack!")
 return
 }

 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

As the stack is implemented using a linked list, it is traversed as such.

The last part of stack.go is shown in the following Go code:

func main() {
 stack = nil
 v, b := Pop(stack)
 if b {
 fmt.Print(v, " ")
 } else {
 fmt.Println("Pop() failed!")
 }

 Push(100)
 traverse(stack)
 Push(200)
 traverse(stack)

 for i := 0; i < 10; i++ {
 Push(i)
 }

 for i := 0; i < 15; i++ {
 v, b := Pop(stack)

Enhancing Go Code with Data Structures Chapter 5

[202]

 if b {
 fmt.Print(v, " ")
 } else {
 break
 }
 }
 fmt.Println()
 traverse(stack)
}

As you just saw, the source code of stack.go is a little shorter than the Go code of
queue.go, primarily because the idea behind a stack is simpler than the idea behind a
queue.

Executing stack.go will generate the following type of output:

$ go run stack.go
Pop() failed!
100 ->
200 -> 100 ->
9 8 7 6 5 4 3 2 1 0 200 100
Empty Stack!

So far, you have seen how a linked list is used in the implementation of a
hash table, queue, and a stack. These examples should help you to realize
the usefulness and the importance of linked lists in programming and
computer science in general!

The container package
In this section, I will explain the use of the container standard Go package. The
container package supports three data structures: a heap, list, and ring. These data
structures are implemented in container/heap, container/list, and container/ring,
respectively.

For those of you who are unfamiliar with rings, a ring is a circular list, which means that
the last element of a ring points to its first element. In essence, this means that all of the
nodes of a ring are equivalent and that a ring does not have a beginning and an end. As a
result, each element of a ring can help you traverse the entire ring.

Enhancing Go Code with Data Structures Chapter 5

[203]

The next three subsections will illustrate each one of the packages contained in the
container package. The rational advice is that if the functionality of the container
standard Go package suits your needs, use it; otherwise, you should implement and use
your own data structures.

Using container/heap
In this subsection, you will see the functionality that the container/heap package offers.
First of all, you should know that the container/heap package implements a heap, which
is a tree where the value of each node of the tree is the smallest element in its subtree. Note
that I am using the phrase smallest element instead of minimum value in order to make clear
that a heap does not only support numerical values.

However, as you can guess, in order to implement a heap tree in Go, you will have to
develop a way to tell which one of two elements is smaller than the other on your own. In
such cases, Go uses interfaces because they allow you to define such a behavior.

This means that the container/heap package is more advanced than the other two
packages found in container, and that you will have to define some things before being
able to use the functionality of the container/heap package. Strictly speaking, the
container/heap package requires that you implement the container/heap.Interface,
which is defined as follows:

type Interface interface {
 sort.Interface
 Push(x interface{}) // add x as element Len()
 Pop() interface{} // remove and return element Len() - 1.
}

You will learn more about Interfaces in Chapter 7, Reflection and Interfaces for All Seasons.
For now, just remember that compliance with a Go interface requires the implementation of
one or more functions or other interfaces, which in this case is sort.Interface as well as
the Push() and Pop() functions. The sort.Interface requires that you implement the
Len(), Less(), and Swap() functions, which makes perfect sense because you cannot
perform any kind of sorting without being able to swap two elements, being able to
calculate a value for the things that you want to sort, and being able to tell which element
between two elements is bigger than the other based on the value that you calculated
previously. Although you might think that this is a lot of work, keep in mind that most of
the times the implementation of these functions is either trivial or rather simple.

Enhancing Go Code with Data Structures Chapter 5

[204]

Since the purpose of this section is to illustrate the use of container/heap and not to make
your life difficult, the data type for the elements in this example will be float32.

The Go code of conHeap.go will be presented in five parts. The first part follows next:

package main

import (
 "container/heap"
 "fmt"
)

type heapFloat32 []float32

The second part of the conHeap.go is shown in the following Go code:

func (n *heapFloat32) Pop() interface{} {
 old := *n
 x := old[len(old)-1]
 new := old[0 : len(old)-1]
 *n = new
 return x
}

func (n *heapFloat32) Push(x interface{}) {
 *n = append(*n, x.(float32))
}

Although you define two functions named Pop() and Push() here, these two functions are
used for interface compliance. In order to add and remove elements from the heap, you
should call heap.Push() and heap.Pop() respectively.

The third code segment of conHeap.go contains the following Go code:

func (n heapFloat32) Len() int {
 return len(n)
}

func (n heapFloat32) Less(a, b int) bool {
 return n[a] < n[b]
}

func (n heapFloat32) Swap(a, b int) {
 n[a], n[b] = n[b], n[a]
}

Enhancing Go Code with Data Structures Chapter 5

[205]

This part implements the three functions needed by the sort.Interface interface.

The fourth part of conHeap.go is as follows:

func main() {
 myHeap := &heapFloat32{1.2, 2.1, 3.1, -100.1}
 heap.Init(myHeap)
 size := len(*myHeap)
 fmt.Printf("Heap size: %d\n", size)
 fmt.Printf("%v\n", myHeap)

The last code portion of conHeap.go follows next:

 myHeap.Push(float32(-100.2))
 myHeap.Push(float32(0.2))
 fmt.Printf("Heap size: %d\n", len(*myHeap))
 fmt.Printf("%v\n", myHeap)
 heap.Init(myHeap)
 fmt.Printf("%v\n", myHeap)
}

In this last part of conHeap.go, you add two new elements to myHeap using heap.Push().
However, in order for the heap to get properly re-sorted, you will need to make another call
to heap.Init().

Executing conHeap.go will generate the following output:

$ go run conHeap.go
Heap size: 4
&[-100.1 1.2 3.1 2.1]
Heap size: 6
&[-100.1 1.2 3.1 2.1 -100.2 0.2]
&[-100.2 -100.1 0.2 2.1 1.2 3.1]

If you find it strange that the 2.1 1.2 3.1 triplet in the last line of the output is not sorted
in the linear logic, remember that a heap is a tree-not a linear structure like an array or a
slice.

Enhancing Go Code with Data Structures Chapter 5

[206]

Using container/list
This subsection will illustrate the operation of the container/list package using the Go
code of conList.go, which will be presented in three parts.

The container/list package implements a linked list.

The first part of conList.go contains the following Go code:

package main

import (
 "container/list"
 "fmt"
 "strconv"
)

func printList(l *list.List) {
 for t := l.Back(); t != nil; t = t.Prev() {
 fmt.Print(t.Value, " ")
 }
 fmt.Println()

 for t := l.Front(); t != nil; t = t.Next() {
 fmt.Print(t.Value, " ")
 }

 fmt.Println()
}

Here, you see a function named printList(), which allows you to print the contents of a
list.List variable passed as a pointer. The Go code shows you how to print the elements
of a list.List starting from the first element and going to the last element and vice versa.
Usually, you will need to use only one of the two methods in your programs. The Prev()
and Next() functions allow you to iterate over the elements of a list backwards and
forward.

Enhancing Go Code with Data Structures Chapter 5

[207]

The second code segment of conList.go follows next:

func main() {

 values := list.New()

 e1 := values.PushBack("One")
 e2 := values.PushBack("Two")
 values.PushFront("Three")
 values.InsertBefore("Four", e1)
 values.InsertAfter("Five", e2)
 values.Remove(e2)
 values.Remove(e2)
 values.InsertAfter("FiveFive", e2)
 values.PushBackList(values)

 printList(values)

 values.Init()

The list.PushBack() function allows you to insert an object at the back of a linked list,
whereas the list.PushFront() function allows you to insert an object at the front of a list.
The return value of both functions is the element inserted in the list. If you want to insert a
new element after a specific element, then you should use the list.InsertAfter()
function. Similarly, if you want to insert a new element before a specific element, you
should use the list.InsertBefore() function. If the element does not exist, then the list
will not change. The list.PushBackList() inserts a copy of an existing list at the end of
another list, whereas the list.PushFrontList() function puts a copy of an existing list at
the front of another list. The list.Remove() function removes a specific element from a
list.

Note the use of the values.Init() function that either empties an existing list or
initializes a new list.

The last portion of the code of conList.go is shown in the following Go code:

 fmt.Printf("After Init(): %v\n", values)

 for i := 0; i < 20; i++ {
 values.PushFront(strconv.Itoa(i))
 }

 printList(values)
}

Enhancing Go Code with Data Structures Chapter 5

[208]

Here, you create a new list using a for loop-the strconv.Itoa() function converts an
integer value into a string.

In conclusion, the use of the functions of the container/list package is straightforward
and comes with no surprises.

Executing conList.go will generate the following type of output:

$ go run conList.go
Five One Four Three Five One Four Three
Three Four One Five Three Four One Five
After Init(): &{{0xc420074180 0xc420074180 <nil> <nil>} 0}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Using container/ring
This section will illustrate the use of the container/ring package using the Go code of
conRing.go, which will be presented in four parts. Note that the container/ring
package is much simpler than both container/list and container/heap, which means
that it contains fewer functions than the other two packages.

The first code segment of conRing.go follows next:

package main

import (
 "container/ring"
 "fmt"
)

var size int = 10

The size variable holds the size of the ring that will be created.

The second part of conRing.go contains the following Go code:

func main() {
 myRing := ring.New(size + 1)
 fmt.Println("Empty ring:", *myRing)

 for i := 0; i < myRing.Len()-1; i++ {
 myRing.Value = i
 myRing = myRing.Next()

Enhancing Go Code with Data Structures Chapter 5

[209]

 }

 myRing.Value = 2

Thus, a new ring is created with the help of the ring.New() function, which requires a
single parameter-the size of the ring. The myRing.Value = 2 statement at the end adds the
value 2 to the ring. That value, however, already exists in the ring as it was added in the
for loop. Last, the zero value of a ring is a ring with a single element whose value is nil.

The third part of conRing.go is shown in the following Go code:

 sum := 0
 myRing.Do(func(x interface{}) {
 t := x.(int)
 sum = sum + t
 })
 fmt.Println("Sum:", sum)

The ring.Do() function allows you to call a function for each element of a ring in forward
order. However, if that function makes any changes to the ring, then the behavior of
ring.Do() is undefined. The x.(int) statement is called type assertion. You will learn
more about type assertions in Chapter 7, Reflection and Interfaces for All Seasons. For now,
just know that it shows that x is of type int.

The last part of the conRing.go program is as follows:

 for i := 0; i < myRing.Len()+2; i++ {
 myRing = myRing.Next()
 fmt.Print(myRing.Value, " ")
 }
 fmt.Println()
}

The only problem with rings is that you can keep calling ring.Next() indefinitely, so you
will need to find a way to put a stop to that. In this case, this is accomplished with the help
of the ring.Len() function. Personally, I prefer to use the ring.Do() function for iterating
over all of the elements of a ring because it generates cleaner code, but using a for loop is
just as good!

Executing conRing.go will generate the following type of output:

$ go run conRing.go
Empty ring: {0xc42000a080 0xc42000a1a0 <nil>}
Sum: 47
0 1 2 3 4 5 6 7 8 9 2 0 1

Enhancing Go Code with Data Structures Chapter 5

[210]

The output verifies that a ring can contain duplicate values, which means that unless you
use the ring.Len() function, you have no safe way of knowing the size of a ring.

Generating random numbers
Random number generation is an art as well as a research area in Computer science. This
happens because computers are purely logical machines, and it turns out that using them to
generate random numbers is extremely difficult!

Go uses the math/rand package for generating random numbers. It needs a seed to start
producing random numbers. The seed is used for initializing the entire process, and it is
extremely important because if you always start with the same seed, you will always get the
same sequence of random numbers. This means that everybody can regenerate that
sequence, and that particular sequence will not be random after all!

The name of the utility that will help us generate random numbers is randomNumbers.go,
and it will be presented in four parts. The utility takes various parameters, which are the
lower and upper limits of the random numbers that will be generated as well as the amount
of random numbers to generate. If you use a fourth command parameter, the program will
use that as the seed of the random number generator, which will help you regenerate the
same number sequence in the future that mainly happens for testing purposes.

The first part of the utility follows next:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The random() function does all of the job, which is generating random numbers in the
given range by calling rand.Intn().

Enhancing Go Code with Data Structures Chapter 5

[211]

The second part of the command-line utility follows next:

func main() {
 MIN := 0
 MAX := 100
 TOTAL := 100
 SEED := time.Now().Unix()

 arguments := os.Args

In this part, you initialize the variables that will be used in the program.

The third part of randomNumbers.go contains the following Go code:

 switch len(arguments) {
 case 2:
 fmt.Println("Usage: ./randomNumbers MIN MAX TOTAL SEED")
 MIN, _ = strconv.Atoi(arguments[1])
 MAX = MIN + 100
 case 3:
 fmt.Println("Usage: ./randomNumbers MIN MAX TOTAL SEED")
 MIN, _ = strconv.Atoi(arguments[1])
 MAX, _ = strconv.Atoi(arguments[2])
 case 4:
 fmt.Println("Usage: ./randomNumbers MIN MAX TOTAL SEED")
 MIN, _ = strconv.Atoi(arguments[1])
 MAX, _ = strconv.Atoi(arguments[2])
 TOTAL, _ = strconv.Atoi(arguments[3])
 case 5:
 MIN, _ = strconv.Atoi(arguments[1])
 MAX, _ = strconv.Atoi(arguments[2])
 TOTAL, _ = strconv.Atoi(arguments[3])
 SEED, _ = strconv.ParseInt(arguments[4], 10, 64)
 default:
 fmt.Println("Using default values!")
 }

The logic behind this switch block is relatively simple: depending on the number of
command-line arguments you have, you use either the initial values of the missing
arguments or the values given by the user. For reasons of simplicity, the error variables of
the strconv.Atoi() and strconv.ParseInt() functions are not being ignored using
underscore characters. If this was a commercial program, the error variables of the
strconv.Atoi() and strconv.ParseInt() functions would not have been ignored!

Enhancing Go Code with Data Structures Chapter 5

[212]

Last, the reason for using strconv.ParseInt() for setting a new value to the SEED
variable is that the rand.Seed() function requires an int64 parameter. The first
parameter of strconv.ParseInt() is the string to parse, the second parameter is the base
of the generated number, and the third parameter is the bit size of the generated number.
As we want to create a decimal integer that uses 64 bits, we are using 10 as the base and 64
as the bit size. Note that should you have wished to parse an unsigned integer, you should
have used the strconv.ParseUint() function instead.

The last part of randomNumbers.go is shown in the following Go code:

 rand.Seed(SEED)
 for i := 0; i < TOTAL; i++ {
 myrand := random(MIN, MAX)
 fmt.Print(myrand)
 fmt.Print(" ")
 }
 fmt.Println()
}

Instead of using the Unix epoch time as the seed for the random number
generator, you can use the /dev/random system device. You will learn
about reading from /dev/random in Chapter 8, Telling a Unix system What
to Do.

Executing randomNumbers.go will create the following type of output:

$ go run randomNumbers.go
Using default values!
75 69 15 75 62 67 64 8 73 1 83 92 7 34 8 70 22 58 38 8 54 34 91 65 1 50 76
5 82 61 90 10 38 40 63 6 28 51 54 49 27 52 92 76 35 44 9 66 76 90 10 29 22
20 83 33 92 80 50 62 26 19 45 56 75 40 30 97 23 87 10 43 11 42 65 80 82 25
53 27 51 99 88 53 36 37 73 52 61 4 81 71 57 30 72 51 55 62 63 79
$ go run randomNumbers.go 1 3 2
Usage: ./randomNumbers MIN MAX TOTAL SEED
1 1
$ go run randomNumbers.go 1 3 2
Usage: ./randomNumbers MIN MAX TOTAL SEED
2 2
$ go run randomNumbers.go 1 5 10 10
3 1 4 4 1 1 4 4 4 3
$ go run randomNumbers.go 1 5 10 10
3 1 4 4 1 1 4 4 4 3

Enhancing Go Code with Data Structures Chapter 5

[213]

If you are really interested in random number generation, you should start by reading the
second volume of The Art of Computer Programming by Donald E. Knuth (Addison-Wesley
Professional, 2011).

Should you wish to generate more secure random numbers in Go, use the crypto/rand
package. This package implements a cryptographically secure pseudorandom number
generator. You can find more information about the crypto/rand package by visiting its
documentation page at https://golang.org/pkg/crypto/rand/.

Generating random strings
Once you know how a computer represents single characters, it is not difficult to go from
random numbers to random strings. This section will present a technique for creating
difficult-to-guess passwords based on the Go code of randomNumbers.go, which was
presented in the previous section. The name of the Go program for this task will be
generatePassword.go, and it will be presented in four parts. The utility requires just one
command-line parameter, which is the length of the password that you want to generate.

The first part of generatePassword.go contains the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

https://golang.org/pkg/crypto/rand/

Enhancing Go Code with Data Structures Chapter 5

[214]

The second code portion of generatePassword.go contains the following Go code:

func main() {
 MIN := 0
 MAX := 94
 SEED := time.Now().Unix()
 var LENGTH int64 = 8

 arguments := os.Args

As we only want to get printable ASCII characters, we limit the range of random numbers
that can be generated. The number of printable characters in the ASCII table is 94. This
means that the range of the random numbers that the program can generate should be from
0 to 94, not including 94.

The third code segment of generatePassword.go is shown in the following Go code:

 switch len(arguments) {
 case 2:
 LENGTH, _ = strconv.ParseInt(os.Args[1], 10, 64)
 default:
 fmt.Println("Using default values!")
 }

 rand.Seed(SEED)

The last part of generatePassword.go is as follows:

 startChar := "!"
 var i int64 = 1
 for {
 myRand := random(MIN, MAX)
 newChar := string(startChar[0] + byte(myRand))
 fmt.Print(newChar)
 if i == LENGTH {
 break
 }
 i++
 }
 fmt.Println()
}

Enhancing Go Code with Data Structures Chapter 5

[215]

The startChar variable holds the first ASCII character that can be generated by the utility,
which in this case is the exclamation mark that has a decimal ASCII value of 33. Given that
the program can generate random numbers up to 94, the maximum ASCII value that can be
generated is 93 + 33, which is equal to 126, which is the ASCII value of ~. The following
output shows the ASCII table with the corresponding decimal values for each character:

The decimal set:

 0 nul 1 soh 2 st 3 etx 4 eot 5 enq 6 ack 7 bel
 8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si
 16 dle 17 dc1 18 dc 19 dc3 20 dc4 21 nak 22 syn 23 etb
 24 can 25 em 26 su 27 esc 28 fs 29 gs 30 rs 31 us
 32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '
 40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
 48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
 56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
 64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
 72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
 88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _
 96 ' 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

Typing man ascii on your favorite Unix shell will also generate the
ASCII table in a readable form.

Executing generatePassword.go with the appropriate command-line parameters will
create the following type of output:

$ go run generatePassword.go
Using default values!
ugs$5mvl
$ go run generatePassword.go
Using default values!
PA/8hA@?
$ go run generatePassword.go 20
HBR+=3\UA'B@ExT4QG|o
$ go run generatePassword.go 20
XLcr|R{*pX/::'t2u^T'

Enhancing Go Code with Data Structures Chapter 5

[216]

Additional Resources
You should find the following resources very useful:

Examine the Graphviz utility website. This utility lets you draw graphs using its
own language: http://graphviz.org/.
Read the documentation page of the sub packages of the container standard Go
package by visiting https://golang.org/pkg/container/.
Should you wish to learn more about data structures, you should read The Design
and Analysis of Computer Algorithms by Alfred V. Aho,‎ John E. Hopcroft, and ‎ Jeffrey
D. Ullman (Addison-Wesley, 1974). It is an excellent book!
Other really interesting books about algorithms and data structures
are Programming Pearls by Jon Bentley (Addison-Wesley Professional, 1999) and More
Programming Pearls: Confessions of a Coder also by John Bentley (Addison-Wesley
Professional, 1988). Reading both books will make you a better programmer!

Exercises
Try to change the logic behind generatePassword.go by picking the password
from a list of passwords found in a Go slice combined with the current system
time or date.
Make the necessary changes to the code of queue.go in order to store floating-
point numbers instead of integers.
Change the Go code of stack.go so that its nodes have three data fields of
integer type, named Value, Number, and Seed. Apart from the apparent changes
to the definition of the Nodestruct, what is the main change that you will need
to make to the rest of the program?
Can you change the code in linkedList.go in order to keep the nodes of the
linked list sorted?
Similarly, can you change the Go code of doublyLList.go in order to keep the
nodes of the list sorted? Can you develop a function for deleting existing nodes?
Change the code of hashTableLookup.go so that you do not have duplicate
values in your hash table. Use the lookup() function for that!

http://graphviz.org/
https://golang.org/pkg/container/

Enhancing Go Code with Data Structures Chapter 5

[217]

Can you modify the Go code of generatePassword.go in order to generate
passwords that only contain uppercase letters?
Try to change the code of conHeap.go in order to support a custom and more
complex structure instead of just float32 elements.
Implement the delete node functionality that is missing from linkedList.go.
Do you think that a doubly linked list would make the code of the queue.go
program better? Try to implement a queue using a doubly linked list instead of a
single linked list.

Summary
In this chapter, we discussed many interesting and useful topics related to Go data
structures, including implementing linked lists, doubly linked lists, hash tables, queues, and
stacks, as well as using the functionality of the container standard Go package and
generating random numbers and difficult-to-guess passwords in Go. What you should
remember from this chapter is that the foundation of every data structure is the definition
and the implementation of its node.

I am sure that you will find the next chapter as one of the most interesting and valuable
chapters of this book. The main topic of the next chapter is Go packages. It also includes
information about how to define and use the various types of Go functions in your
programs. So don't waste any more time—start reading it now!

6
What You Might Not Know

About Go Packages
In the previous chapter, we talked about developing and using custom data structures such
as linked lists, binary trees, and hash tables as well as generating random numbers and
difficult-to-guess passwords in Go.

The main focus of this chapter is Go packages, which is the Go way of organizing,
delivering, and using code. The most common components of a Go package are functions,
which are pretty flexible in Go. In the last part of this chapter you will see some advanced
packages that belong to the Go standard library in order to understand better that not all Go
packages are created equal.

In this chapter of Mastering Go, you will learn the following topics:

Developing functions in Go
Anonymous functions
Functions that return multiple values
Naming the return values of a function
Functions that return other functions
Functions that get other functions as parameters
Developing Go packages
Private and Public package objects
Using the init() function in packages
The sophisticated html/template standard Go package

What You Might Not Know About Go Packages Chapter 6

[219]

The text/template standard package, another truly sophisticated Go package
that has its own language
The syscall standard Go package, which is a low-level package that, although
you might not use directly, it is used extensively by other Go packages

About Go packages
Everything in Go is delivered in the form of packages. A Go package is a Go source file that
begins with the package keyword followed by the name of the package. Some packages
have a structure. For example, the net package has several subdirectories, named http,
mail, rpc, smtp, textproto, and url, which should be imported as net/http, net/mail,
net/rpc, net/smtp, net/textproto, and net/url, respectively.

Packages are mainly used for grouping related functions, variables, and constants so that
you can transfer them easily and use them in your own Go programs. Note that apart from
the main package, Go packages are not autonomous programs and cannot be compiled into
executable files. This means that they need to be called directly or indirectly from a main
package in order to be used. As a result, if you try to execute a Go package as if it was an
autonomous program, you will be disappointed:

$ go run aPackage.go
go run: cannot run non-main package

About Go functions
Functions are an important element of every programming language because they allow
you to break big programs into smaller and more manageable parts. Functions must be as
independent from each other as possible and must do one job and only one job well. So, if
you find yourselves writing functions that do multiple things, you might consider replacing
them by multiple functions instead! The single most popular Go function is main(), which
is used in every independent Go program. You should already know that function
definitions begin with the func keyword.

What You Might Not Know About Go Packages Chapter 6

[220]

Anonymous functions
Anonymous functions can be defined inline without the need for a name, and they are
usually used for implementing things that require a small amount of code. In Go, a function
can return an anonymous function or take an anonymous function as one of its arguments.
Additionally, anonymous functions can be attached to Go variables.

Note that anonymous functions are also called closures, especially in functional
programming terminology.

It is considered a good practice for anonymous functions to have a small
implementation and a local focus. If an anonymous function does not have
a local focus, then you might need to consider making it a regular
function.

When an anonymous function is suitable for a job, then it is extremely convenient and
makes your life easier; just do not use too many anonymous functions in your programs
without having a good reason. You will see anonymous functions in action in a little while.

Functions that return multiple values
As you already know from functions such as strconv.Atoi(), Go functions can return
multiple distinct values, which saves you from having to create a dedicated structure in
order to be able to receive multiple values at once from a function. You can declare a
function that returns four values, two int values, a float64 value, and a string, as
follows:

func aFunction() (int, int, float64, string) {
}

It is now time to illustrate functions; that is, anonymous functions and functions that return
multiple values in more detail using the Go code of functions.go as an example. The
relevant code will be presented in five parts.

The first code portion of functions.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
)

What You Might Not Know About Go Packages Chapter 6

[221]

The second code segment from functions.go is shown in the following Go code:

func doubleSquare(x int) (int, int) {
 return x * 2, x * x
}

Here you can see the definition and implementation of a function named doubleSquare(),
which requires a single int parameter and returns two int values.

The third part of the functions.go program is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("The program needs 1 argument!")
 return
 }

 y, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println(err)
 return
 }

The preceding code deals with the command line arguments of the program.

The fourth portion of the functions.go program contains the following Go code:

 square := func(s int) int {
 return s * s
 }
 fmt.Println("The square of", y, "is", square(y))

 double := func(s int) int {
 return s + s
 }
 fmt.Println("The double of", y, "is", double(y))

Each one of the square and double variables holds an anonymous function. The bad part
is that you are allowed to change the value of square, double, or any other variable that
holds an anonymous function afterwards, which means that the meaning of those variables
can change and calculate something else instead.

What You Might Not Know About Go Packages Chapter 6

[222]

It is not considered a good programming practice to alter the code of
variables that hold anonymous functions because this might be the root
cause of nasty bugs!

The last part of functions.go is as follows:

 fmt.Println(doubleSquare(y))
 d, s := doubleSquare(y)
 fmt.Println(d, s)
}

So, you can either print the return values of a function, such as doubleSquare(), or assign
them to distinct variables.

Executing functions.go will generate the following output:

$ go run functions.go 1 21
The program needs 1 argument!
rMacBook:code mtsouk
$ go run functions.go 10
The square of 10 is 100
The double of 10 is 20
20 100
20 100

The return values of a function can be named!
Unlike C, Go allows you to name the return values of a Go function. Additionally, when
such a function has a return statement without any arguments, then the function
automatically returns the current value of each named return value in the order in which
they were declared in the definition of the function!

Named returned values are a very handy Go feature that can save you
from various types of bugs, so use them! My personal advice is to name
the return values of your functions unless there is a very good reason not
to do so.

The source code that illustrates Go functions that have named return values is
returnNames.go, and it will be presented in three parts.

What You Might Not Know About Go Packages Chapter 6

[223]

The first part of the returnNames.go program is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
)

func namedMinMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return
}

In this code segment, you can see the implementation of the namedMinMax() function,
which uses named return parameters. However, there is a tricky point here: the
namedMinMax() function does not explicitly return any variables in its return statement.
Nevertheless, as this function has named return values in its signature, the min and max
parameters are automatically returned in the order in which they were put into the function
definition.

The second code segment from returnNames.go follows next:

func minMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return min, max
}

The minMax() function also uses named return values, but its return statement
specifically defines the order and the variables that are going to be returned.

What You Might Not Know About Go Packages Chapter 6

[224]

The last code portion from returnNames.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) < 3 {
 fmt.Println("The program needs at least 2 arguments!")
 return
 }

 a1, _ := strconv.Atoi(arguments[1])
 a2, _ := strconv.Atoi(arguments[2])

 fmt.Println(minMax(a1, a2))
 min, max := minMax(a1, a2)
 fmt.Println(min, max)

 fmt.Println(namedMinMax(a1, a2))
 min, max = namedMinMax(a1, a2)
 fmt.Println(min, max)
}

The purpose of the Go code in the main() function is to verify that all methods generate the
same results.

Executing returnNames.go will produce the following output:

$ go run returnNames.go -20 1
-20 1
-20 1
-20 1
-20 1

Functions with pointer parameters
Function can take pointer parameters provided that their signature allows it. The Go code
of ptrFun.go will illustrate the use of pointers as function parameters.

The first part of ptrFun.go follows next:

package main

import (
 "fmt"
)

What You Might Not Know About Go Packages Chapter 6

[225]

func getPtr(v *float64) float64 {
 return *v * *v
}

So, the getPtr() function accepts a pointer parameter that points to a float64 value.

The second part of the program is shown in the following Go code:

func main() {
 x := 12.2
 fmt.Println(getPtr(&x))
 x = 12
 fmt.Println(getPtr(&x))
}

The tricky part here is that you need to pass the address of the variable to the getPtr()
function because it requires a pointer parameter, which can be done by putting an
ampersand in front of a variable (&x).

Executing ptrFun.go will generate the following kind of output:

$ go run ptrFun.go
148.83999999999997
144

If you try to pass a plain value such as 12.12 to getPtr() and call it like getPtr(12.12),
the compilation of the program will fail, as shown in the following the next error message:

$ go run ptrFun.go
command-line-arguments
./ptrFun.go:15:21: cannot use 12.12 (type float64) as type *float64 in
argument to getPtr

Functions that return pointers
As you learned in Chapter 4, The Uses of Composite Types, as illustrated in the
pointerStruct.go program, it is considered a good practice to create new structure
variables using a separate function and return a pointer to them from that function. So, the
scenario of functions returning pointers is very common. Generally speaking, such a
function simplifies the structure of a program and allows the developer to concentrate on
more important things instead of copying the same Go code all the time. This section will
use a much simpler example, as found in the Go code of returnPtr.go.

What You Might Not Know About Go Packages Chapter 6

[226]

The first part of returnPtr.go contains the following Go code:

package main

import (
 "fmt"
)

func returnPtr(x int) *int {
 y := x * x
 return &y
}

Apart from the expected preamble, this portion defines a new function that returns a
pointer to an int variable. The only thing to remember is to use &y in the return statement
in order to return the memory address of the y variable.

The second part of returnPtr.go is as follows:

func main() {
 sq := returnPtr(10)
 fmt.Println("sq:", *sq)

As you already know, the * character dereferences a pointer variable, which means that it
returns the actual value stored at the memory address instead of the memory address itself.

The last code segment from returnPtr.go is shown in the following Go code:

 fmt.Println("sq:", sq)
}

The preceding code will return the memory address of the sq variable, not the int value
stored in it!

If you execute returnPtr.go, you will see the following output (the memory address will
differ):

$ go run returnPtr.go
sq: 100
sq: 0xc420014088

What You Might Not Know About Go Packages Chapter 6

[227]

Functions that return other functions
In this section, you are going to learn how to implement a Go function that returns another
function using the Go code of returnFunction.go, which will be presented in three
segments.

The first code segment of returnFunction.go is as follows:

package main

import (
 "fmt"
)

func funReturnFun() func() int {
 i := 0
 return func() int {
 i++
 return i * i
 }
}

As you can see from the implementation of funReturnFun(), its return value is an
anonymous function!

The second code segment from returnFunction.go contains the following code:

func main() {
 i := funReturnFun()
 j := funReturnFun()

In this code, you call funReturnFun() two times and assign its return value, which is a
function, to two separate variables named i and j. As you will see in the output of the
program, the two variables are totally unrelated to each other.

The last code section of returnFunction.go follows next:

 fmt.Println("1:", i())
 fmt.Println("2:", i())
 fmt.Println("j1:", j())
 fmt.Println("j2:", j())
 fmt.Println("3:", i())
}

What You Might Not Know About Go Packages Chapter 6

[228]

So, in this Go code, you use the i variable three times as i() and the j variable two times as
j(). The important thing here is that although both i and j were created by calling
funReturnFun(), they are totally independent of each other and share nothing. As a result,
although their return values come from the same sequence, they do not interfere with each
other in any way.

Executing returnFunction.go will produce the following output:

$ go run returnFunction.go
1: 1
2: 4
j1: 1
j2: 4
3: 9

As you can see from the output of returnFunction.go, the value of i in
funReturnFun() keeps increasing and does not become 0 after each call either to i() or
j().

Functions that accept other functions as
parameters
Go functions can accept other Go functions as parameters, which is a feature that adds
versatility to what you can do with a Go function. The single most common use of this
functionality is for sorting elements. However, in the example presented here, which is
named funFun.go, we will implement a much simpler case that deals with integer values.
The relevant code will be presented in three parts.

The first code segment of funFun.go is shown in the following Go code:

package main

import "fmt"

func function1(i int) int {
 return i + i
}

func function2(i int) int {
 return i * i
}

What You Might Not Know About Go Packages Chapter 6

[229]

What we have here is two functions that both accept an int and return an int. These
functions will be used as parameters to another function in a short while.

The second code segment of funFun.go contains the following code:

func funFun(f func(int) int, v int) int {
 return f(v)
}

The funFun() function accepts two parameters, a function parameter named f and an int
value. The f parameter should be a function that takes one int argument and returns an
int value.

The last code segment of funFun.go follows next:

func main() {
 fmt.Println("function1:", funFun(function1, 123))
 fmt.Println("function2:", funFun(function2, 123))
 fmt.Println("Inline:", funFun(func(i int) int {return i * i *i}, 123))
}

The first fmt.Println() call uses funFun() with function1 without any parentheses as
its first parameter, whereas the second fmt.Println() call uses funFun() with
function2 as its first parameter.

In the last fmt.Println() statement, something magical happens: the implementation of
the function parameter is defined inside the call to funFun()! Although this method works
fine for simple and small function parameters, it might not work that well for functions
with many lines of Go code.

Executing funFun.go will produce the following output:

$ go run funFun.go
function1: 246
function2: 15129
Inline: 1860867

What You Might Not Know About Go Packages Chapter 6

[230]

Developing your own Go packages
The source code of a Go package, which can contain multiple files and multiple directories,
can be found within a single directory that is named after the package name with the
obvious exception of the main package that can be located anywhere.

For the purposes of this section, a simple Go package named aPackage will be developed.
The source file of the package is called aPackage.go, and its source code will be presented
in two parts.

The first part of aPackage.go is shown in the following Go code:

package aPackage

import (
 "fmt"
)

func A() {
 fmt.Println("This is function A!")
}

The second code segment of aPackage.go follows next:

func B() {
 fmt.Println("privateConstant:", privateConstant)
}

const MyConstant = 123
const privateConstant = 21

As you can see, developing a new Go package is pretty easy! Right now you cannot use that
package on its own, and you need to create a package named main with a main() function
in it in order to create an executable file. In this case, the name of program that will use
aPackage is useAPackage.go, and it's included in the following Go code:

package main

import (
 "aPackage"
 "fmt"
)

func main() {
 fmt.Println("Using aPackage!")
 aPackage.A()

What You Might Not Know About Go Packages Chapter 6

[231]

 aPackage.B()
 fmt.Println(aPackage.MyConstant)
}

If you try to execute useAPackage.go right now, however, you will get an error message,
which means that you are not done yet:

$ go run useAPackage.go
useAPackage.go:4:2: cannot find package "aPackage" in any of:
 /usr/local/Cellar/go/1.9.2/libexec/src/aPackage (from $GOROOT)
 /Users/mtsouk/go/src/aPackage (from $GOPATH)

There is another thing that you will also need to handle. As you already know from Chapter
1, Go and the Operating System, Go requires to execute specific commands from the Unix
shell in order to install all external packages, which also includes packages that you have
developed. Therefore, you will need to put the preceding package in the appropriate
directory and make it available to the current Unix user. Thus, installing one of your own
packages involves the execution of the following commands from your favorite Unix shell:

$ mkdir ~/go/src/aPackage
$ cp aPackage.go ~/go/src/aPackage/
$ go install aPackage
$ cd ~/go/pkg/darwin_amd64/
$ ls -l aPackage.a
-rw-r--r-- 1 mtsouk staff 4980 Dec 22 06:12 aPackage.a

If the ~/go directory does not already exist, you will need to create it with
the help of the mkdir(1) command. In that case, you will also need to do
the same for the ~/go/src directory.

Executing useAPackage.go will create the following output:

$ go run useAPackage.go
Using aPackage!
This is function A!
privateConstant: 21
123

What You Might Not Know About Go Packages Chapter 6

[232]

Compiling a Go package
Although you cannot execute a Go package if it does not include a main() function, you are
still allowed to compile it and create an object file as follows:

$ go tool compile aPackage.go
$ ls -l aPackage.*
-rw-r--r--@ 1 mtsouk staff 201 Dec 22 06:06 aPackage.go
-rw-r--r-- 1 mtsouk staff 4677 Dec 22 06:20 aPackage.o

If you successfully compile a Go package that you are developing using the preceding
method, you must also make sure that you do not have any syntax errors in your code.

Private variables and functions
What differentiates private variables and functions from public ones is that private ones can
be strictly used and called internally in a package. Controlling which functions, constants,
and variables are public or not is also known as encapsulation.

Go follows a simple rule which states that functions, variables, types, and so forth that
begin with an uppercase letter are public, whereas functions, variables, types, and so on
that begin with a lowercase letter are private. This is the reason that fmt.Println() is
named Println() instead of println(). However, this rule does not affect package
names that are allowed to begin with uppercase and lowercase letters.

The init() function
Every Go package can optionally have a function named init() that is automatically
executed at the beginning of the execution time.

The init() function is a private function by design, which means that it
cannot be called from outside the package in which it is contained.
Additionally, as the user of a package has no control over the init()
function, you should think carefully before using an init() function in
public packages.

What You Might Not Know About Go Packages Chapter 6

[233]

I will now present a code example with multiple init() functions from multiple Go
packages. Examine the code of the following basic Go package, which is simply called a:

package a

import (
 "fmt"
)

func init() {
 fmt.Println("init() a")
}

func FromA() {
 fmt.Println("fromA()")
}

The a package implements an init() function and a public one named FromA().

After that, you will need to execute the following commands from your Unix shell so that
the package becomes available to the current Unix user:

$ mkdir ~/go/src/a
$ cp a.go ~/go/src/a/
$ go install a

Now, look at the code of the next Go code package, which is named b:

package b

import (
 "a"
 "fmt"
)

func init() {
 fmt.Println("init() b")
}

func FromB() {
 fmt.Println("fromB()")
 a.FromA()
}

What You Might Not Know About Go Packages Chapter 6

[234]

What is happening here? Package a uses the fmt standard Go package. However, package b
needs to import package a as it uses a.FromA(). Both a and b have an init() function.

As before, you will need to install that package and make it available to the current Unix
user by executing the following commands from your Unix shell:

$ mkdir ~/go/src/b
$ cp b.go ~/go/src/b
$ go install b

Thus, we currently have two Go packages that both have an init() function. Now try to
guess the output that you will get from executing manyInit.go, which has the following
code:

package main

import (
 "a"
 "b"
 "fmt"
)

func init() {
 fmt.Println("init() manyInit")
}

func main() {
 a.FromA()
 b.FromB()
}

The actual question could have been: How many times is the init() function of package a
going to be executed? Executing manyInit.go will generate the following output and shed
some light on this question:

$ go run manyInit.go
init() a
init() b
init() manyInit
fromA()
fromB()
fromA()

What You Might Not Know About Go Packages Chapter 6

[235]

The preceding output shows that the init() function of a was executed only once, despite
the fact that the a package is imported two times by two different packages. Additionally,
as the import block from manyInit.go is executed first, the init() function of package a
and package b are executed before the init() function of manyInit.go, which makes
perfect sense. The main reason for this is that the init() function of manyInit.go is
allowed to use an element from either a or b.

Reading the Go code of a standard Go
package
In this section, you will learn some techniques for reading the Go code of existing Go
packages. Generally speaking, regularly studying Go code developed by experienced
programmers is a very good habit that will increase the quality of your own Go code, so do
not underestimate its value.

Now we are going to have a quick look at the Go code of net/url and log/syslog.

Exploring the code of the net/url package
On a macOS machine that uses Homebrew, you can find the Go code of the net/url
package at /usr/local/Cellar/go/1.9.2/libexec/src/net/url/url.go. If for some
reason you cannot locate the source code of the net/url package on your Unix machine,
you can execute the following command and wait for its output:

$ find / -name url.go 2>/dev/null

The output of the preceding command on a Debian Linux machine is as follows:

/usr/share/go/src/pkg/net/url/url.go
/usr/share/go/src/pkg/html/template/url.go

Apart from the net/url package, there is also an url.go file that belongs to the
html/template standard Go package. However, what interests us is the
/usr/share/go/src/pkg/net/url/url.go file. Now that you have located the url.go
file, we can start playing with it.

What You Might Not Know About Go Packages Chapter 6

[236]

The preamble of the net/url package is as follows:

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package url parses URLs and implements query escaping.
package url

More or less, all packages in the standard Go library have a similar preamble. Now, imagine
that you want to get a list of all the functions in the net/url package. Standard Unix
command line utilities such as grep(1) are here to help you:

$ grep '^func' /usr/local/Cellar/go/1.9.2/libexec/src/net/url/url.go
func (e *Error) Error() string { return e.Op + " " + e.URL + ": " +
e.Err.Error() }
func (e *Error) Timeout() bool {
func (e *Error) Temporary() bool {
func ishex(c byte) bool {
func unhex(c byte) byte {
func (e EscapeError) Error() string {
...
func (u *URL) MarshalBinary() (text []byte, err error) {
func (u *URL) UnmarshalBinary(text []byte) error {

Now let's say that you want to look at the implementation of one of the functions found in
net/url, and the function that interests you is, say, User(). Its implementation is as
follows:

// User returns a Userinfo containing the provided username
// and no password set.
func User(username string) *Userinfo {
 return &Userinfo{username, "", false}
}

The documentation of the User() function states that it returns a Userinfo, which is a
structure defined in net/url:

// The Userinfo type is an immutable encapsulation of username and
// password details for a URL. An existing Userinfo value is
// guaranteed to have a username set (potentially empty,
// as allowed by RFC 2396), and optionally a password.
type Userinfo struct {
 username string
 password string
 passwordSet bool
}

What You Might Not Know About Go Packages Chapter 6

[237]

Now things are becoming clearer. If you continue delving into the code of net/url, you
will find more in-depth information about it.

The general advice here is that if you have doubts about the inner
workings of a package in which you are interested, and its documentation
does not help you very much, you can always look at its implementation
to clarify things.

The next subsection will look into the Go code of a more interesting package.

Looking at the Go code of the log/syslog package
This subsection will examine the contents of the log/syslog standard Go package. On a
Homebrew Go 1.9.2 installation on a macOS machine, the syslog.go file can be found
inside the /usr/local/Cellar/go/1.9.2/libexec/src/log/syslog directory. The
full contents of that directory are as follows:

$ ls -l /usr/local/Cellar/go/1.9.2/libexec/src/log/syslog/
total 64
-rw-r--r-- 1 mtsouk admin 1010 Oct 25 21:30 doc.go
-rw-r--r-- 1 mtsouk admin 543 Oct 25 21:30 example_test.go
-rw-r--r-- 1 mtsouk admin 7567 Oct 25 21:30 syslog.go
-rw-r--r-- 1 mtsouk admin 8589 Oct 25 21:30 syslog_test.go
-rw-r--r-- 1 mtsouk admin 785 Oct 25 21:30 syslog_Unix.go

Now let us try to discover the constants found in the syslog.go file:

$ grep -n const syslog.go
26:const severityMask = 0x07
27:const facilityMask = 0xf8
29:const (
44:const (

As the third and the fourth const definitions have more than one line, you should go at
lines 29 and 44 to have a better look at them. So, the first const definition contains the
following constants:

const (
 // Severity.

 // From /usr/include/sys/syslog.h.
 // These are the same on Linux, BSD, and OS X.
 LOG_EMERG Priority = iota
 LOG_ALERT

What You Might Not Know About Go Packages Chapter 6

[238]

 LOG_CRIT
 LOG_ERR
 LOG_WARNING
 LOG_NOTICE
 LOG_INFO
 LOG_DEBUG
)

Similarly, you can search for new Go type declarations as follows:

$ grep -n type syslog.go
24:type Priority int
76:type Writer struct {
91:// return a type that satisfies this interface and simply calls the C
93:type serverConn interface {
98:type netConn struct {

Now that you know where the type declarations are located, it should be easy to go there
and have a more detailed look. So, the definition of the netConn struct, which allows
you to send logging data over the network, is as follows:

type netConn struct {
 local bool
 conn net.Conn
}

Should you wish to go deeper and have a look at the implementation of the functions
contained in the log/syslog standard Go package, feel free to continue searching on your
own.

Creating good Go packages
This section will provide some handy advice that will help you generate better Go
packages. Up until now, you know that Go packages are organized in directories and can
contain public and private elements. Public elements can be use both internally and
externally from other packages, whereas private elements can only be used internally in a
package.

What You Might Not Know About Go Packages Chapter 6

[239]

Here are several good rules to follow to create superior Go packages:

The first unofficial rule of a successful package is that its elements must be related
in some way. Thus, you can create a package for supporting cars, but it would
not be a good idea to create a single package for supporting both cars and
bicycles. Put simply, it is better to split the functionality of a package
unnecessarily into many packages than to add too much functionality to a single
Go package. Additionally, packages should be made simple and stylish-but not
too simplistic and fragile.
A second practical rule is that you should use your own packages first for a
reasonable amount of time before giving them to the public. This will help you
discover silly bugs and make sure that your packages operate as expected. After
that, give them to some fellow developers for additional testing before making
them publicly available.
Next, try to imagine the kinds of users who will use your packages, and make
sure that these types of users will use your packages happily and that your
packages will not create more problems for them than they can solve.
Unless there is a very good reason, your packages should not export an endless
list of functions. Packages that export a short list of functions are understood
better and used more easily. After that, try to title your functions using
descriptive yet not very long names.
Interfaces can improve the usefulness of your functions, so when you think it is
appropriate, use an interface instead of a single type as a function parameter or
return type.
When updating one of your packages, try not to break things and create
incompatibilities with older versions unless it is absolutely necessary. This is a
really important rule that you should always try to follow.
When developing a new Go package, try to use multiple files in order to group
similar tasks or concepts.
Additionally, try to follow the rules that exist in the Go packages of the standard
library. Reading the code of a Go package that belongs to the standard library
will help you on this.
Do not create a package that already exists from scratch! Make changes to the
existing package and maybe create your own version of it.
Nobody wants a Go package that prints logging information on the screen. It
would be more professional to have a flag for turning on logging when needed.

What You Might Not Know About Go Packages Chapter 6

[240]

The Go code of your package should be in harmony with the other Go code of a
program. This means that if you look at a program that uses your packages and
your function names stand out in the code in a bad way, it would be better to
change the names of your functions. As the name of a package is used almost
everywhere, try to use a concise and expressive package name.
It is more convenient if you put new Go-type definitions near the place that they
will be used for the first time because nobody, including you, wants to search
source files for finding definitions of new data types!
Try to create test files for your packages, because packages with test files are
considered more professional than ones without them-small details make all the
difference and give people confidence that you are a serious developer! You will
learn more about testing in Chapter 11, Code Testing, Optimization, and Profiling.
Finally, do not write a Go package because you do not have anything better to
do—in that case, find something better to do and do not waste your time!

Always remember that apart from the fact that the actual Go code in a
package should be bug-free, the next most important element of a
successful package is its documentation, as well as some code examples
that clarify its use and showcase the idiosyncrasies of the functions of the
package.

The syscall package
This section will present a small portion of the functionality of the syscall standard Go
package. Note that the syscall package offers a plethora of functions and types related to
low-level operating system primitives. Additionally, the syscall package is extensively
used by other Go packages such as os, net, and time, which all provide a portable
interface to the operating system. This means that the syscall package is not the most
portable package in the Go library-that's not its job. Although Unix systems have many
similarities, they also exhibit various differences, especially when we talk about their
system internals. The job of the syscall package is to deal with all of these
incompatibilities as gently as possible. The fact that this is not a secret and is well-
documented makes syscall a successful package.

What You Might Not Know About Go Packages Chapter 6

[241]

Strictly speaking, a system call is a programmatic way for an application to request
something from the kernel of an operating system. As a consequence, system calls are
responsible for accessing and working with most Unix low-level elements such as
processes, storage devices, printing data, network interfaces and all kinds of files. Put
simply, you cannot work on a Unix system without using system calls! You can inspect the
system calls of a Unix process using utilities such as strace(1) and dtrace(1), which
were presented in Chapter 2, Understanding Go Internals.

The use of the syscall package will be illustrated in the useSyscall.go program, which
will be presented in four parts.

You might not directly need to use the syscall package unless you are
working on pretty low-level stuff. Not all Go packages are for everyone!

The first code portion of useSyscall.go is as follows:

package main

import (
 "fmt"
 "os"
 "syscall"
)

This is the easy part of the program, where you just import the required Go packages.

The second part of useSyscall.go is shown in the following Go code:

func main() {
 pid, _, _ := syscall.Syscall(39, 0, 0, 0)
 fmt.Println("My pid is", pid)
 uid, _, _ := syscall.Syscall(24, 0, 0, 0)
 fmt.Println("User ID:", uid)

In this part, you find out information about the process id and the user id using two
syscall.Syscall() calls. The first parameter of the syscall.Syscall() call determines
the information that you request.

The third code segment of useSyscall.go contains the following Go code:

 message := []byte{'H', 'e', 'l', 'l', 'o', '!', '\n'}
 fd := 1
 syscall.Write(fd, message)

What You Might Not Know About Go Packages Chapter 6

[242]

In this part, you print a message on the screen using syscall.Write(). The first
parameter is the file descriptor to which you will write and the second parameter is a byte
slice that holds the actual message. The syscall.Write() function is portable.

The last part of the useSyscall.go program is as follows:

 fmt.Println("Using syscall.Exec()")
 command := "/bin/ls"
 env := os.Environ()
 syscall.Exec(command, []string{"ls", "-a", "-x"}, env)
}

In the last part of the program, you see how to use the syscall.Exec() function for
executing an external command. However, you have no control over the output of the
command, which is automatically printed on the screen.

Executing useSyscall.go on macOS High Sierra will generate the following output:

$ go run useSyscall.go
My pid is 14602
User ID: 501
Hello!
Using syscall.Exec()
. .. a.go
funFun.go functions.go html.gohtml
htmlT.db htmlT.go manyInit.go
ptrFun.go returnFunction.go returnNames.go
returnPtr.go text.gotext textT.go
useAPackage.go useSyscall.go

Executing the same program on a Debian Linux machine will generate the following
output:

$ go run useSyscall.go
My pid is 20853
User ID: 0
Hello!
Using syscall.Exec()
. .. a.go
funFun.go functions.go html.gohtml
htmlT.db htmlT.go manyInit.go
ptrFun.go returnFunction.go returnNames.go
returnPtr.go text.gotext textT.go
useAPackage.go useSyscall.go

What You Might Not Know About Go Packages Chapter 6

[243]

So, although most of the output is the same as before, the syscall.Syscall(39, 0, 0,
0) call does not work on Linux because the user id of the Linux user is not 0, which means
that this command is not portable!

If you want to discover which standard Go packages use the syscall package, you can
execute the following command from your Unix shell:

$ grep \"syscall\" `find /usr/local/Cellar/go/1.9.2/libexec/src -name
"*.go"`

Please replace /usr/local/Cellar/go/1.9.2/libexec/src with the appropriate
directory path.

Finding out how fmt.Println() really works
If you really want to grasp the usefulness of the syscall package, start by reading this
subsection. The implementation of the fmt.Println() function, as found in
https://golang.org/src/fmt/print.go, is as follows:

func Println(a ...interface{}) (n int, err error) {
 return Fprintln(os.Stdout, a...)
}

This means that, at the end of the day, the fmt.Println() function calls fmt.Fprintln()
to do its job. The implementation of fmt.Fprintln(), as found in the same file, follows
next:

func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
 p := newPrinter()
 p.doPrintln(a)
 n, err = w.Write(p.buf)
 p.free()
 return
}

This means that the actual writing in fmt.Fprintln() is done by the Write() function of
the io.Writer interface. In this case, the io.Writer is os.Stdout, which is defined as
follows in https://golang.org/src/os/file.go:

var (
 Stdin = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
 Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
 Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")
)

https://golang.org/src/fmt/print.go
https://golang.org/src/os/file.go

What You Might Not Know About Go Packages Chapter 6

[244]

Now look at the implementation of NewFile(), which can be found inside
https://golang.org/src/os/file_plan9.go:

func NewFile(fd uintptr, name string) *File {
 fdi := int(fd)
 if fdi < 0 {
 return nil
 }
 f := &File{&file{fd: fdi, name: name}}
 runtime.SetFinalizer(f.file, (*file).close)
 return f
}

When you see a Go source file named file_plan9.go, you should suspect that it contains
commands specific to a Unix variant, which means that it contains code that is not portable!

What we have here is the file structure type that is embedded in the File type, which is
the one that is being exported due to its name. So, start looking for functions inside
https://golang.org/src/os/file_plan9.go that are applied to a File structure or to a
pointer to a File structure and that allow you to write data. As the function we are seeking
is named Write()-look at the implementation of Fprintln()-we will have to search all of
the source files of the os package to find it:

$ grep "func (f *File) Write(" *.go
file.go:func (f *File) Write(b []byte) (n int, err error) {

The implementation of Write() as found in https://golang.org/src/os/file.go follows
next:

func (f *File) Write(b []byte) (n int, err error) {
 if err := f.checkValid("write"); err != nil {
 return 0, err
 }
 n, e := f.write(b)
 if n < 0 {
 n = 0
 }
 if n != len(b) {
 err = io.ErrShortWrite
 }

 epipecheck(f, e)

 if e != nil {
 err = f.wrapErr("write", e)
 }

https://golang.org/src/os/file_plan9.go
https://golang.org/src/os/file_plan9.go
https://golang.org/src/os/file.go

What You Might Not Know About Go Packages Chapter 6

[245]

 return n, err
}

This means that we now have to search for the write() function. Searching for the write
string in https://golang.org/src/os/file_plan9.go reveals the following function inside
https://golang.org/src/os/file_plan9.go:

func (f *File) write(b []byte) (n int, err error) {
 if len(b) == 0 {
 return 0, nil
 }
 return fixCount(syscall.Write(f.fd, b))
}

This tells us that, at the end of the day, a call to the fmt.Println() function is
implemented using a call to syscall.Write(). This underscores how useful and
necessary the syscall package is!

Text and HTML templates
The subject of this section will surely surprise you in a good way, because both packages
presented give you so much flexibility that I am sure you will find many creative ways to
use them.

Templates are mainly used for separating the formatting part and the data part of the
output. Please note that a Go template can be either a file or a string-the general idea is to
use inline strings for smaller templates and external files for bigger ones.

You cannot import both text/template and html/template on the
same Go program because these two packages share the same package
name (template). If absolutely necessary, you should define an alias for
one of them. See the useStrings.go code in Chapter 4, The Uses of
Composite Types.

Text output is usually presented on your screen, whereas HTML output is seen with the
help of a web browser. However, as text output is usually cleaner than HTML output, if you
think that you will need to process the output of a Go utility using other Unix command
line utilities, you should use text/template instead of html/template.

https://golang.org/src/os/file_plan9.go
https://golang.org/src/os/file_plan9.go

What You Might Not Know About Go Packages Chapter 6

[246]

Note that both the text/template and html/template packages are good examples of
how sophisticated a Go package can be! As you will see shortly, both packages support
their own kind of programming language-good software makes complex things look
simple!

Generating text output
If you need to create plain text output, then using the text/template package is a good
choice. The use of the text/template package will be illustrated in textT.go, which will
be presented in five parts.

As templates are usually stored in external files, the example presented will use the
text.gotext template file, which will be analyzed in three parts. Data is typically read
from text files or from the Internet. However, for reasons of simplicity, the data for
textT.go will be hardcoded in the program using a slice.

We will start by looking at the Go code of textT.go. The first code portion of textT.go
follows next:

package main

import (
 "fmt"
 "os"
 "text/template"
)

The second code segment from textT.go is as follows:

type Entry struct {
 Number int
 Square int
}

You will need to define a new data type for storing your data unless you are dealing with
very simplistic data.

The third part of textT.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Need the template file!")
 return

What You Might Not Know About Go Packages Chapter 6

[247]

 }

 tFile := arguments[1]
 DATA := [][]int{{-1, 1}, {-2, 4}, {-3, 9}, {-4, 16}}

The DATA variable, which is a slice with two dimensions, holds the initial version of your
data.

The fourth part of textT.go contains the following Go code:

 var Entries []Entry

 for _, i := range DATA {
 if len(i) == 2 {
 temp := Entry{Number: i[0], Square: i[1]}
 Entries = append(Entries, temp)
 }
 }

The preceding code creates a slice of structures from the DATA variable.

The last code segment from textT.go is the following:

 t := template.Must(template.ParseGlob(tFile))
 t.Execute(os.Stdout, Entries)
}

The template.Must() function is used for making the required initializations. Its return
data type is Template, which is a structure that holds the representation of a parsed
template. The template.ParseGlob() reads the external template file. Note that I like to
use the gohtml extension for the template files, but you can use any extension that you
want-just be consistent. Also, the template.Execute() function does all the work, which
includes processing the data and printing the output to the desired file, which in this case is
os.Stdout.

Now it is time to look at the code of the template file. The first part of the text template file
is as follows:

Calculating the squares of some integers

Note that empty lines in a text template file are significant and will be shown as empty lines
in the final output.

What You Might Not Know About Go Packages Chapter 6

[248]

The second part of the template is the following:

{{ range . }} The square of {{ printf "%d" .Number}} is {{ printf "%d"
.Square}}

There are many interesting things happening here. The range keyword allows you to
iterate over the lines of the input, which is given as a slice of structures. Plain text is printed
as such, whereas variables and dynamic text must begin with {{ and end with }}. The
fields of the structure are accessed as .Number and .Square. Note the dot character in front
of the field name of the Entry data type. Also, the printf command is used for formatting
the final output.

The third part of the text.gotext file follows next:

{{ end }}

So, a {{ range }} command is ended with {{ end }}. Accidentally putting {{ end }}
in the wrong place will affect your output. Once again, keep in mind that empty lines in text
template files are significant and will be shown in the final output.

Executing textT.go will generate the following type of output:

$ go run textT.go text.gotext
Calculating the squares of some integers
 The square of -1 is 1
 The square of -2 is 4
 The square of -3 is 9
 The square of -4 is 16

Constructing HTML output
This section illustrates the use of the html/template package with an example named
htmlT.go. It will be presented in six parts. The philosophy of the html/template package
is the same with the text/template package. The main difference between these two
packages is that the html/template package generates HTML output that is safe against
code injection.

Although you can create HTML output with the text/template
package-after all, HTML is just plain text-if you want to create HTML
output, then you should use the html/template package instead.

What You Might Not Know About Go Packages Chapter 6

[249]

For reasons of simplicity, the example presented below will read data from an SQLite
database, but you can use any database that you want, provided that you have or you can
write the appropriate Go drivers. To make things even easier, the example will populate a
database table before reading from it!

The first code portion from htmlT.go follows next:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/mattn/go-sqlite3"
 "html/template"
 "net/http"
 "os"
)

type Entry struct {
 Number int
 Double int
 Square int
}

var DATA []Entry
var tFile string

You can see a new package named net/http in the import block, which is used for
creating HTTP servers and clients in Go. You will learn more about network programming
in Go and the use of the net and net/http standard Go packages in Chapter 12, The
foundations of Network Programming in Go and Chapter 13, Network Programming – Building
Servers and Clients.

Apart from net/http, you can also see the definition of the Entry data type that will hold
the records read from the SQLite3 table as well as two global variables named DATA and
tFile, which hold the data that is going to be passed to the template file and the filename
of the template file, respectively.

Also, you can see the use of the https://github.com/mattn/go-sqlite3 package for
communicating with the SQLite3 database with the help of the database/sql interface.

https://github.com/mattn/go-sqlite3

What You Might Not Know About Go Packages Chapter 6

[250]

The second part of htmlT.go is the following:

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Printf("Host: %s Path: %s\n", r.Host, r.URL.Path)
 myT := template.Must(template.ParseGlob(tFile))
 myT.ExecuteTemplate(w, tFile, DATA)
}

The simplicity and the effectiveness of the myHandler() function is phenomenal, especially
if you consider the size of the function! The template.ExecuteTemplate() function does
all the work for you. Its first parameter is the variable that holds the connection with the
HTTP client, its second parameter is the template file that will be used for formatting the
data, and its third parameter is the slice of structures with the data that will be processed.

The third code segment from htmlT.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Println("Need Database File + Template File!")
 return
 }

 database := arguments[1]
 tFile = arguments[2]

The fourth code portion from htmlT.go is where you start dealing with the database:

 db, err := sql.Open("sqlite3", database)
 if err != nil {
 fmt.Println(nil)
 return
 }

 fmt.Println("Emptying database table.")
 _, err = db.Exec("DELETE FROM data")
 if err != nil {
 fmt.Println(nil)
 return
 }

 fmt.Println("Populating", database)
 stmt, _ := db.Prepare("INSERT INTO data(number, double, square)
values(?,?,?)")
 for i := 20; i < 50; i++ {
 _, _ = stmt.Exec(i, 2*i, i*i)
 }

What You Might Not Know About Go Packages Chapter 6

[251]

The sql.Open() function opens the connection with the desired database. With
db.Exec(), you can execute database commands without expecting any feedback from
them. Also, the db.Prepare() function allows you to execute a database command
multiple times by changing only its parameters and calling Exec() afterwards.

The fifth part of htmlT.go contains the following Go code:

 rows, err := db.Query("SELECT * FROM data")
 if err != nil {
 fmt.Println(nil)
 return
 }

 var n int
 var d int
 var s int
 for rows.Next() {
 err = rows.Scan(&n, &d, &s)
 temp := Entry{Number: n, Double: d, Square: s}
 DATA = append(DATA, temp)
 }

In this part of the program, we read the data from the desired table using db.Query() and
multiple calls to Next() and Scan(). While reading the data, you put it into a slice of
structures and you are done dealing with the database.

The last part of the program is all about setting up the web server, and it contains the
following Go code:

 http.HandleFunc("/", myHandler)
 err = http.ListenAndServe(":8080", nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

Here, the http.HandleFunc() function tells the web server embedded in the program
which URLs will be supported and by which handler function (myHandler()). The current
handler supports the / URL, which in Go matches all URLs. This saves you from having to
create any extra static or dynamic pages.

The code of the htmlT.go program is divided in two virtual parts. The first part is about
getting the data from the database and putting it into a slice of structures, whereas the
second part, which is similar to textT.go, is about displaying your data in a web browser.

What You Might Not Know About Go Packages Chapter 6

[252]

The two biggest advantages of SQLite are that you do not need to run a
server process for the database server and that SQLite databases are stored
in self-contained files, which means that single files hold entire SQLite
databases.

Note that in order to reduce the Go code and be able to run the htmlT.go program multiple
times, you will need to create the database table and the SQLite3 database manually, which
is as simple as executing the following commands:

$ sqlite3 htmlT.db
SQLite version 3.19.3 2017-06-27 16:48:08
Enter ".help" for usage hints.
sqlite> CREATE TABLE data (
 ...> number INTEGER PRIMARY KEY,
 ...> double INTEGER,
 ...> square INTEGER);
sqlite> ^D
$ ls -l htmlT.db
-rw-r--r-- 1 mtsouk staff 8192 Dec 26 22:46 htmlT.db

The first command is executed from the Unix shell, and it is needed for creating the
database file. The second command is executed from the SQLite3 shell and has to do with
creating a database table named data, which has three fields named number, double, and
square, respectively.

Additionally, you are going to need an external template file, which will be named
html.gohtml. It is going to be used for the generation of the output of the program.

The first part of html.gohtml is the following:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Doing Maths in Go!</title>
 <style>
 html {
 font-size: 14px;
 }
 table, th, td {
 border: 2px solid blue;
 }
 </style>
 </head>
 <body>

What You Might Not Know About Go Packages Chapter 6

[253]

The HTML code that a web browser will read is going to be based on the contents of
html.gohtml. This means that you will need to create proper HTML output, hence the
preceding HTML code, which also includes some in-line CSS code for formatting the
generated HTML table.

The second part of html.gohtml contains the following code:

<table>
 <thead>
 <tr>
 <th>Number</th>
 <th>Double</th>
 <th>Square</th>
 </tr>
 </thead>
 <tbody>
{{ range . }}
 <tr>
 <td> {{ .Number }} </td>
 <td> {{ .Double }} </td>
 <td> {{ .Square }} </td>
 </tr>
{{ end }}
 </tbody>
</table>

As you can see from the preceding code, you still have to use {{ range }} and {{ end
}} in order to iterate over the elements of the slice of structures that was passed to
template.ExecuteTemplate(). However, this time the html.gohtml template file
contains lots of HTML code in order to format the data in the slice of structures better.

The last part of the HTML template file is the following:

</body>
</html>

The last part of html.gohtml is mainly used for properly ending the generated HTML code
according to the HTML standards.

Before being able to compile and execute htmlT.go, you will need to download the
package that will help the Go programming language to communicate with SQLite3. You
can do this by executing the following command:

$ go get github.com/mattn/go-sqlite3

What You Might Not Know About Go Packages Chapter 6

[254]

As you already know, you can find the source code of the downloaded package inside
~/go/src and its compiled version inside ~/go/pkg/darwin_amd64 if you are on a
macOS machine. Otherwise, check the contents of ~/go/pkg to find out your own
architecture. Note that the ~ character denotes the home directory of the current user.

Keep in mind that additional Go packages exist that can help you communicate with an
SQLite3 database. However, the one used here is the only one that currently supports the
database/sql interface.

Executing htmlT.go will produce the kind of output on a web browser that you can see in
the following screenshot:

The output of the htmlT.go program

What You Might Not Know About Go Packages Chapter 6

[255]

Moreover, htmlT.go will generate the following type of output in your Unix shell, which is
mainly debugging information:

$ go run htmlT.go htmlT.db html.gohtml
Emptying database table.
Populating htmlT.db
Host: localhost:8080 Path: /
Host: localhost:8080 Path: /favicon.ico
Host: localhost:8080 Path: /123

If you want to see the HTML output of the program from the Unix shell, you can use the
wget(1) utility as follows:

$ wget -qO- http://localhost:8080
<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Doing Maths in Go!</title>
 <style>
 html {
 font-size: 14px;
 }
 table, th, td {
 border: 2px solid blue;
 }
 </style>
 </head>
 <body>

<table>
 <thead>
 <tr>

Both text/template and html/template are powerful packages that can save you a lot
of time, so I suggest that you use them when they fit the requirements of your applications.

What You Might Not Know About Go Packages Chapter 6

[256]

Basic SQLite3 commands
This section will help you find your way to SQLite3 by presenting some simple commands.

You can create a new table as follows:

sqlite> CREATE TABLE data (
 ...> number INTEGER PRIMARY KEY,
 ...> double INTEGER,
 ...> square INTEGER);

You can check the contents of a table named data as follows:

sqlite> select * from data;
20|40|400
21|42|441
22|44|484

You can completely delete an existing table using the following command:

$ DROP TABLE ATABLE;

You can delete the data from an existing table as follows:

$ DELETE FROM ATABLE;

Finally, if you want to delete an entire SQLite3 database, you can simply delete its database
file using the rm(1) Unix command.

Additional resources
You will find the following resources very useful:

Visit the documentation page of the syscall standard Go package at
https://golang.org/pkg/syscall/. This is one of the biggest Go documentation
pages that I have ever seen!
Visit the documentation page of the text/template package, which can be
found at https://golang.org/pkg/text/template/.
Similarly, go to https://golang.org/pkg/html/template/ for the documentation
of the html/template package.
Visit the home page of SQLite3 at https:/ ​/​www. ​sqlite. ​org/​.

https://golang.org/pkg/syscall/
https://golang.org/pkg/text/template/
https://golang.org/pkg/html/template/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/

What You Might Not Know About Go Packages Chapter 6

[257]

Watch the Writing Beautiful Packages in Go video by Mat Ryer at
https://www.youtube.com/watch?v=cAWlv2SeQus.
If you want to know about Plan 9, look at https://plan9.io/plan9/.
Take the time to look at the find(1) command line tool by visiting its man page
(man 1 find).

Exercises
Seek out more information about the actual implementation of the
fmt.Printf() function.
Can you write a function that sorts three int values? Try to write two versions of
the function: one with named returned values and another without named return
values. Which one do you think is better?
Can you modify the Go code of htmlT.go in order to use text/template
instead of html/template?
Can you modify the Go code of htmlT.go in order to use either
https://github.com/feyeleanor/gosqlite3 or the
https://github.com/phf/go-sqlite3 package for communicating with the
SQLite3 database?
Write a Go program like htmlT.go that reads data from a MySQL database.
Write down the code changes that you made.

Summary
In this chapter, we presented two primary topics: Go functions and Go packages. We
offered you ample advice about developing good Go packages. We also talked about the
text/template and html/template packages, which allow you to create plain text and
HTML output based on templates. Last, we talked about the syscall standard Go package
that offers advanced features.

In the next chapter, we will discuss two important Go features: interfaces and reflection.
Additionally, we will talk about object-oriented programming in Go and Go type methods.
All of these topics are pretty advanced, and you might find them difficult at first. However,
learning more about them will unquestionably make you a better Go programmer!

https://www.youtube.com/watch?v=cAWlv2SeQus
https://plan9.io/plan9/
https://github.com/feyeleanor/gosqlite3
https://github.com/phf/go-sqlite3

7
Reflection and Interfaces for All

Seasons
In the previous chapter, we talked about developing packages and functions in Go. We also
discussed how to work with text and HTML templates with the help of the text/template
and html/template packages. Finally, we explained the use of the syscall package.

In this chapter, you will learn three very interesting, handy, and somewhat advanced Go
concepts: reflection, interfaces, and type methods. Although Go interfaces are used all of the
time, reflection is not, mainly because it is usually unnecessary for your programs to make
use of it. Furthermore, you will learn about type assertions and object-oriented
programming (OOP) in Go.

In this chapter, you will learn the following topics:

Type methods
Go Interfaces
Type assertions
Developing and using your own interfaces
Object-oriented programming the Go way
Reflection and the reflect standard Go package

Type methods
A Go type method is a function with a special receiver argument. You declare methods as
ordinary functions with an additional parameter that appears in front of the function name.
This particular parameter connects the function to the type of that extra parameter. As a
result, that parameter is called the receiver of the method.

Reflection and Interfaces for All Seasons Chapter 7

[259]

The following Go code represents the implementation of the Close() function as found
in https://golang.org/src/os/file_plan9.go:

func (f *File) Close() error {
 if err := f.checkValid("close"); err != nil {
 return err
 }
 return f.file.close()
}

The Close() function is a type method because there is that (f *File) parameter in front
of its name and after the func keyword. The f parameter is called the receiver of the
method; in object-oriented programming terminology this process can be described as
sending a message to an object. In Go, the receiver of a method is defined using a regular
variable name—usually using a single letter—without the need to use a dedicated keyword,
such as this or self.

Now let's review a complete example using the Go code of the methods.go file, which will
be presented in four parts.

The first part of methods.go is shown in the following Go code:

package main

import (
 "fmt"
)

type twoInts struct {
 X int64
 Y int64
}

In the preceding Go code, you can see the definition of a new structure with two fields
named twoInts.

The second code segment of methods.go follows next:

func regularFunction(a, b twoInts) twoInts {
 temp := twoInts{X: a.X + b.X, Y: a.Y + b.Y}
 return temp
}

https://golang.org/src/os/file_plan9.go

Reflection and Interfaces for All Seasons Chapter 7

[260]

In this part, you define a new function named regularFunction() that accepts two
parameters of type twoInts and returns just one twoInts value.

The third part of the methods.go program contains the following Go code:

func (a twoInts) method(b twoInts) twoInts {
 temp := twoInts{X: a.X + b.X, Y: a.Y + b.Y}
 return temp
}

The method() function is equivalent to the regularFunction() function defined in the
preceding part of methods.go. However, the method() function is a type method, and you
will need to learn a different way for calling it in a moment.

The really interesting thing here is that the implementation of method() is
exactly the same as the implementation of regularFunction().

The last code segment of methods.go is as follows:

func main() {
 i := twoInts{X: 1, Y: 2}
 j := twoInts{X: -5, Y: -2}
 fmt.Println(regularFunction(i, j))
 fmt.Println(i.method(j))
}

As you can see, the way that you are calling a type method (i.method(j)) is different from
the way that you would call a conventional function (regularFunction(i, j)).

Executing methods.go will create the following output:

$ go run methods.go
{-4 0}
{-4 0}

Notice that type methods are also associated with interfaces, which will be the subject of the
next section. As a result, you will see more type methods in a little while.

Reflection and Interfaces for All Seasons Chapter 7

[261]

Go interfaces
Strictly speaking, a Go interface type defines the behavior of other types by specifying a
set of methods that need to be implemented. For a type to satisfy an interface, it needs to
implement all of the methods required by that interface. Put simply, interfaces are abstract
types that define a set of functions that need to be implemented so that a type can be
considered an instance of the interface. When this happens, we say that the type satisfies
this interface. So, an interface is two things: a set of methods and a type, and it is used for
defining the behavior of other types.

The biggest advantage that you receive from having and using an interface is that you can
pass a variable of a type that implements that particular interface to any function that
expects a parameter of that specific interface. Without that amazing capability, interfaces
would only be a formality without any practical or real benefit.

If you find yourselves defining an interface and its implementation in the
same Go package, then you might have been using interfaces the wrong
way!

Two very common Go interfaces are io.Reader and io.Writer, which are used in file
input and output operations. More specifically, io.Reader is used for reading a file,
whereas io.Writer is used for writing to a file.

The definition of io.Reader, as found in https:/ ​/​golang. ​org/​src/ ​io/ ​io.​go, is as follows:

type Reader interface {
 Read(p []byte) (n int, err error)
}

In order for a type to satisfy the io.Reader interface, you will need to implement the
Read() method as described in the interface.

Similarly, the definition of io.Writer, as found in https:/ ​/​golang. ​org/ ​src/​io/ ​io. ​go, is
the following:

type Writer interface {
 Write(p []byte) (n int, err error)
}

https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go
https://golang.org/src/io/io.go

Reflection and Interfaces for All Seasons Chapter 7

[262]

To satisfy the io.Writer interface, you will just need to implement a single method named
Write().

Each one of the io.Reader and io.Writer interfaces requires the implementation of just
one method, yet both interface are very powerful. Most likely, their power comes from their
simplicity! Generally speaking, interfaces should be as simple as possible.

In the following subsections, you will learn how to define an interface on your own and
how to use it in other Go packages. Notice that it is not necessary for an interface to be fancy
or impressive, as long as it does what you want it to do.

Put simply, interfaces should be utilized when there is a need for making
sure that certain conditions will be met and certain behaviors will be
anticipated from a Go element.

About type assertion
A type assertion is the x.(T) notation where x is of interface type and T is a type.
Additionally, the actual value stored in x is of type T, and T must satisfy the interface type
of x! The following paragraphs, as well as the code example, will clarify this relatively
eccentric definition of type assertion.

Type assertions help you do two things. The first thing is to check whether an interface value
keeps a particular type. When used this way, a type assertion returns two values: the
underlying value and a bool value. Although the underlying value is what you might want
to use, the Boolean value tells you whether the type assertion was successful or not!

The second thing a type assertion does is to allow you to use the concrete value stored in an
interface or assign it to a new variable. This means that if there is an int variable in an
interface, you can get that value using type assertion.

However, if a type assertion is not successful and you do not handle that failure on your
own, your program will panic. Now study the Go code of the assertion.go program,
which will be presented in two parts. The first part contains the following Go code:

package main

import (
 "fmt"
)

Reflection and Interfaces for All Seasons Chapter 7

[263]

func main() {
 var myInt interface{} = 123

 k, ok := myInt.(int)
 if ok {
 fmt.Println("Success:", k)
 }

 v, ok := myInt.(float64)
 if ok {
 fmt.Println(v)
 } else {
 fmt.Println("Failed without panicking!")
 }

First, you declare the myInt variable, which has dynamic type int and value 123. Then,
you use type assertion two times to test the interface of the myInt variable—once for int
and once for float64.

As the myInt variable does not contain a float64 value, the myInt.(float64) type
assertion will fail unless handled properly. Fortunately, in this case the correct use of the ok
variable will save your program from panicking.

The second part of the assertion.go program is shown in the following Go code:

 i := myInt.(int)
 fmt.Println("No cheking:", i)

 j := myInt.(bool)
 fmt.Println(j)
}

There are two type assertions taking place here. The first type assertion is successful, so
there will be no problem with that. But let's review this particular type assertion a bit
further. The type of variable i will be int, and its value will be 123, which is the value
stored in myInt. So, as int satisfies the myInt interface, which in this case occurs because
the myInt interface requires no functions in order to be implemented, the value of
myInt.(int) is an int value.

Reflection and Interfaces for All Seasons Chapter 7

[264]

However, the second type assertion, which is myInt.(bool), will trigger a panic because
the underlying value of myInt is not Boolean (bool). Therefore, executing assertion.go
will generate the following output:

$ go run assertion.go
Success: 123
Failed without panicking!
No cheking: 123
panic: interface conversion: interface {} is int, not bool
goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/masterGo/ch/ch7/code/assertion.go:25 +0x1d9
exit status 2

Go states pretty clearly the reason for panicking: interface {} is int, not bool.

Generally speaking, when working with interfaces, expect to use type assertions as well.
You will see more type assertions in the useInterface.go program that will be presented
in a short while.

Developing your own interfaces
In this section, you will learn how to develop your own interfaces, This is a relatively easy
process as long as you know what you want to develop.

The technique will be illustrated using the Go code of myInterface.go, which will be
presented below. The interface that will be created will help you work with geometric
shapes of the plane.

The Go code of myInterface.go follows next:

package myInterface

type Shape interface {
 Area() float64
 Perimeter() float64
}

Reflection and Interfaces for All Seasons Chapter 7

[265]

The definition of the shape interface is truly simple and straightforward, as it requires that
you implement just two functions named Area() and Perimeter(), which both return a
float64 value. The first function will be used for calculating the area of a shape in the
plane and the second one will be used for calculating the perimeter of a shape in the plane.
After that, you will need to install the myInterface.go package and make it available to
the current user. As you already know, the installation process involves the execution of the
following Unix commands:

$ mkdir ~/go/src/myInterface
$ cp myInterface.go ~/go/src/myInterface
$ go install myInterface

Using a Go interface
This subsection will teach you how to use the interface defined in myInterface.go in a Go
program named useInterface.go, which will be presented in five parts.

The first part of useInterface.go is shown in the following Go code:

package main

import (
 "fmt"
 "math"
 "myInterface"
)

type square struct {
 X float64
}

type circle struct {
 R float64
}

As the desired interface is defined in its own package, it should come as no surprise that
you are importing the myInterface package.

Reflection and Interfaces for All Seasons Chapter 7

[266]

The second code portion of useInterface.go contains the following code:

func (s square) Area() float64 {
 return s.X * s.X
}

func (s square) Perimeter() float64 {
 return 4 * s.X
}

In this part, you implement the shape interface for the square type.

The third part contains the following Go code:

func (s circle) Area() float64 {
 return s.R * s.R * math.Pi
}

func (s circle) Perimeter() float64 {
 return 2 * s.R * math.Pi
}

In this part, you implement the shape interface for the circle type.

The fourth part of useInterface.go is shown in the following Go code:

func Calculate(x myInterface.Shape) {
 _, ok := x.(circle)
 if ok {
 fmt.Println("Is a circle!")
 }

 v, ok := x.(square)
 if ok {
 fmt.Println("Is a square:", v)
 }

 fmt.Println(x.Area())
 fmt.Println(x.Perimeter())
}

Thus, in the preceding code, you implement one function that requires a single shape
parameter (myInterface.Shape). The magic here should be obvious once you understand
that it requires any shape parameter, which is any parameter whose type implements the
shape interface!

Reflection and Interfaces for All Seasons Chapter 7

[267]

The code at the beginning of the function shows how you can differentiate between the
various data types that implement the desired interface. In the second block, you see how
you can find the values stored in a square parameter. You can use this technique for any
type that implements the myInterface.Shape interface.

The last code segment includes the following code:

func main() {
 x := square{X: 10}
 fmt.Println("Perimeter:", x.Perimeter())
 Calculate(x)
 y := circle{R: 5}
 Calculate(y)
}

In this part, you see how you can use both circle and square variables as parameters to
the Calculate() function that you implemented earlier.

If you execute useInterface.go, you will get the following as output:

$ go run useInterface.go
Perimeter: 40
Is a square: {10}
100
40
Is a circle!
78.53981633974483
31.41592653589793

Using switch with interface and data types
In this subsection, you will learn how to use the switch statement to differentiate between
different data types using the Go code of switch.go, which will be presented in four parts.
The Go code of switch.go is partially based on useInterface.go, but it will add another
type named rectangle and it will not need to implement the methods of any interface.

The first part of the switch.go program follows next:

package main

import (
 "fmt"
)

Reflection and Interfaces for All Seasons Chapter 7

[268]

As the code in switch.go will not work with the interface defined in myInterface.go,
there is no need to import the myInterface package.

The second part of switch.go is where you define the three types that will be used in the
program:

type square struct {
 X float64
}

type circle struct {
 R float64
}

type rectangle struct {
 X float64
 Y float64
}

All three types are pretty simple.

The third code segment of switch.go comes with the following Go code:

func tellInterface(x interface{}) {
 switch v := x.(type) {
 case square:
 fmt.Println("This is a square!")
 case circle:
 fmt.Printf("%v is a circle!\n", v)
 case rectangle:
 fmt.Println("This is a rectangle!")
 default:
 fmt.Printf("Unknown type %T!\n", v)
 }
}

Here you can see the implementation of a function named tellInterface() with a single
parameter named x and type interface{}.

The trick presented here will help you differentiate between the different data types of the x
parameter. All of the magic is performed by the use of the x.(type) statement that returns
the type of the x element. The %v verb used in fmt.Printf() allows you to acquire the
value of the type.

Reflection and Interfaces for All Seasons Chapter 7

[269]

The last part of switch.go contains the implementation of the main() function:

func main() {
 x := circle{R: 10}
 tellInterface(x)
 y := rectangle{X: 4, Y: 1}
 tellInterface(y)
 z := square{X: 4}
 tellInterface(z)
 tellInterface(10)
}

Executing switch.go will generate the following type of output:

$ go run switch.go
{10} is a circle!
This is a rectangle!
This is a square!
Unknown type int!

Reflection
Reflection is an advanced Go feature that allows you to dynamically learn the type of an
arbitrary object as well as information about its structure. Go offers the reflect package
for working with reflection. What you should remember is that you will most likely not
need to use reflection in each one of your Go programs.

The first two questions that might arise are why is reflection necessary and when should I
use it?

Reflection is necessary for the implementation of packages such as fmt, text/template,
and html/template. In the fmt package, reflection saves you from having to deal
explicitly with every data type that exists. However, even if you had the patience to write
code for working with every data type that you knew, you still would not be able to work
with all possible types! In this case, reflection makes it possible for the methods of the fmt
package to find the structure and to work with new types!

Consequently, you might need to use reflection when you want to be as generic as possible,
or when you want to make sure that you will be able to deal with data types that do not
exist at the time that you are writing your code. Additionally, reflection is handy when
working with values of types that do not implement a common interface.

Reflection and Interfaces for All Seasons Chapter 7

[270]

Reflection helps you work with unknown types and unknown values of
types.

The stars of the reflect package are two types named reflect.Value and
reflect.Type. The former type is used for storing values of any type, whereas the latter
type is used for representing Go types.

A simple Reflection example
This section will present a relatively simple reflection example in order to start feeling
comfortable with this advanced Go feature.

The name of the Go source file is reflection.go, and it will be presented in four parts.
The purpose of reflection.go is to examine an "unknown" structure variable and to find
out more about it at runtime. For added interest, the program will define two new struct
types. Based on these two types, it will also define two new variables; however, it will
examine only one of them. If the program has no command-line arguments, it will examine
the first one; otherwise, it will explore the second one. For practical purposes, this means
that the program will not know in advance the kind of struct variable it will have to
process.

The first part of reflection.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "reflect"
)

type a struct {
 X int
 Y float64
 Z string
}

type b struct {
 F int
 G int
 H string

Reflection and Interfaces for All Seasons Chapter 7

[271]

 I float64
}

In this part of the program, you can see the definition of the struct data types that will be
used.

The second code segment of reflection.go is as follows:

func main() {
 x := 100
 xRefl := reflect.ValueOf(&x).Elem()
 xType := xRefl.Type()
 fmt.Printf("The type of x is %s.\n", xType)

The preceding Go code presents a small and simplistic reflection example. First you declare
a variable named x, and then you call the reflect.ValueOf(&x).Elem() function. Next
you call xRefl.Type() in order to get the type of the variable, which is stored in xType.
These three lines of code illustrate how you can get the data type of a variable using
reflection. However, if all you care about is the data type of a variable, you can just call
reflect.TypeOf(x) instead.

The third code portion of reflection.go contains the following Go code:

 A := a{100, 200.12, "Struct a"}
 B := b{1, 2, "Struct b", -1.2}
 var r reflect.Value

 arguments := os.Args
 if len(arguments) == 1 {
 r = reflect.ValueOf(&A).Elem()
 } else {
 r = reflect.ValueOf(&B).Elem()
 }

In this part, you declare two variables named A and B. The type of the A variable is a, and
the type of the B variable is b. The type of the r variable should be reflect.Value because
this is what the reflect.ValueOf() function returns. The Elem() method returns the
value contained in the reflection interface (reflect.Value).

The last part of the reflection.go code follows next:

 iType := r.Type()
 fmt.Printf("i Type: %s\n", iType)
 fmt.Printf("The %d fields of %s are:\n", r.NumField(), iType)

 for i := 0; i < r.NumField(); i++ {

Reflection and Interfaces for All Seasons Chapter 7

[272]

 fmt.Printf("Field name: %s ", iType.Field(i).Name)
 fmt.Printf("with type: %s ", r.Field(i).Type())
 fmt.Printf("and value %v\n", r.Field(i).Interface())
 }
}

In this part of the program, you use the appropriate functions of the reflect package in
order to obtain the desired information. The NumField() method returns the number of
fields in a reflect.Value structure, whereas the Field() function returns the field of the
structure that is specified by its parameter. The Interface() function returns the value of
a field of the reflect.Value structure as an interface.

Executing reflection.go two times will generate the following output:

$ go run reflection.go 1
The type of x is int.
i Type: main.b
The 4 fields of main.b are:
Field name: F with type: int and value 1
Field name: G with type: int and value 2
Field name: H with type: string and value Struct b
Field name: I with type: float64 and value -1.2
$ go run reflection.go
The type of x is int.
i Type: main.a
The 3 fields of main.a are:
Field name: X with type: int and value 100
Field name: Y with type: float64 and value 200.12
Field name: Z with type: string and value Struct a

It is important to see that Go uses its internal representation to print the data types of
variables A and B, which is main.a and main.b, respectively. However, this is not the case
with variable x, which is an int.

A more advanced reflection example
In this section, we will explore more advanced uses of reflection as illustrated in relatively
small code blocks using the Go code of advRefl.go.

Reflection and Interfaces for All Seasons Chapter 7

[273]

The advRefl.go program will be presented in five parts. The first part of the code follows
next:

package main

import (
 "fmt"
 "os"
 "reflect"
)

type t1 int
type t2 int

Note that although both t1 and t2 types are based on int and therefore are essentially the
same type as int, Go treats them as totally different types. Their internal representation
after Go parses the code of the program will be main.t1 and main.t2, respectively.

The second code portion of advRefl.go is as follows:

type a struct {
 X int
 Y float64
 Text string
}

func (a1 a) compareStruct(a2 a) bool {
 r1 := reflect.ValueOf(&a1).Elem()
 r2 := reflect.ValueOf(&a2).Elem()

 for i := 0; i < r1.NumField(); i++ {
 if r1.Field(i).Interface() != r2.Field(i).Interface() {
 return false
 }
 }
 return true
}

In this code segment, we define a Go structure type named a and implement a Go function
named compareStruct(). The purpose of this function is to find out whether two
variables of the a type are exactly the same or not. As you can see, compareStruct() uses
Go code from reflection.go to perform its task.

Reflection and Interfaces for All Seasons Chapter 7

[274]

The third code segment of advRefl.go is shown in the following Go code:

func printMethods(i interface{}) {
 r := reflect.ValueOf(i)
 t := r.Type()
 fmt.Printf("Type to examine: %s\n", t)

 for j := 0; j < r.NumMethod(); j++ {
 m := r.Method(j).Type()
 fmt.Println(t.Method(j).Name, "-->", m)
 }
}

The printMethods() function prints the methods of a variable. The variable type that will
be used in advRefl.go for illustrating printMethods() will be os.File.

The fourth code segment of advRefl.go contains the following Go code:

func main() {
 x1 := t1(100)
 x2 := t2(100)
 fmt.Printf("The type of x1 is %s\n", reflect.TypeOf(x1))
 fmt.Printf("The type of x2 is %s\n", reflect.TypeOf(x2))

 var p struct{}
 r := reflect.New(reflect.ValueOf(&p).Type()).Elem()
 fmt.Printf("The type of r is %s\n", reflect.TypeOf(r))

The last code portion of advRefl.go is as follows:

 a1 := a{1, 2.1, "A1"}
 a2 := a{1, -2, "A2"}

 if a1.compareStruct(a1) {
 fmt.Println("Equal!")
 }

 if !a1.compareStruct(a2) {
 fmt.Println("Not Equal!")
 }

 var f *os.File
 printMethods(f)
}

Reflection and Interfaces for All Seasons Chapter 7

[275]

As you will see in a short while, the a1.compareStruct(a1) call returns true because we
are comparing a1 with itself, whereas the a1.compareStruct(a2) call will return false
because the a1 and a2 variables have different values.

Executing advRefl.go will create the following output:

$ go run advRefl.go
The type of x1 is main.t1
The type of x2 is main.t2
The type of r is reflect.Value
Equal!
Not Equal!
Type to examine: *os.File
Chdir --> func() error
Chmod --> func(os.FileMode) error
Chown --> func(int, int) error
Close --> func() error
Fd --> func() uintptr
Name --> func() string
Read --> func([]uint8) (int, error)
ReadAt --> func([]uint8, int64) (int, error)
Readdir --> func(int) ([]os.FileInfo, error)
Readdirnames --> func(int) ([]string, error)
Seek --> func(int64, int) (int64, error)
Stat --> func() (os.FileInfo, error)
Sync --> func() error
Truncate --> func(int64) error
Write --> func([]uint8) (int, error)
WriteAt --> func([]uint8, int64) (int, error)
WriteString --> func(string) (int, error)

You can see that the type of the r variable, which is returned by reflect.New(), will be
reflect.Value. Additionally, the output of the printMethods() method tells us that the
*os.File type supports a plethora of methods, such as Chdir(), Chmod(), and so on.

The three disadvantages of reflection
Without a doubt, reflection is a powerful Go feature. However, as it happens with all tools,
reflection should be used sparingly for three main reasons.

Reflection and Interfaces for All Seasons Chapter 7

[276]

The first reason is that extensive use of reflection will make your programs hard to read and
maintain. A potential solution to this problem is good documentation; however, developers
are famous for not having the time to write the required documentation.

The second reason is that the Go code which uses reflection will make your programs
slower. Generally speaking, Go code that is made to work with a particular data type will
always be faster than Go code that uses reflection to work dynamically with any Go data
type. Additionally, such dynamic code will make it difficult for tools to refactor or analyze
your code.

The last reason is that reflection errors cannot be caught at build time and are reported at
runtime as a panic. This means that reflection errors can potentially crash your programs!
This can happen months or even years after the development of a Go program! One
solution to this problem is extensive testing before a dangerous function call. However, this
will add even more Go code to your programs, which will make them even slower.

Object-oriented programming in Go!
You should know by now that Go lacks inheritance, but that it supports composition and
that Go interfaces provide a kind of polymorphism. So, although Go is not an object-
oriented programming language, it has some features that let you mimic object-oriented
programming.

If you really want to develop applications using object-oriented
methodology, then choosing Go might not be your best option. As I am
not really into Java, I would suggest looking at C++ or Python instead. On
the other hand, Go prohibits you from building complicated and deep
type hierarchies that are hard to work with and maintain!

First let me explain the two techniques that will be used in the Go program in this section.
The first technique uses methods in order to associate a function with a type. This means
that, in some way, you can consider that the function and type construct an object.

Reflection and Interfaces for All Seasons Chapter 7

[277]

With the second technique, you embed a type into a new structure type in order to create a
kind of hierarchy.

There is also a third technique where you use a Go interface to make two or more
elements—objects of the same class. This technique will not be illustrated in this section, as it
has been demonstrated earlier in this chapter. The key point here is that a Go interface
allows you to define a common behavior between different elements in a way such that all
of these different elements share the characteristics of an object. This might allow you to say
that these different elements are objects of the same class. However, objects and classes of
an actual object-oriented programming language can do many more things.

The first two techniques will be illustrated in the program ooo.go, which will be presented
in four parts. The first code segment of ooo.go contains the following Go code:

package main

import (
 "fmt"
)

type a struct {
 XX int
 YY int
}

type b struct {
 AA string
 XX int
}

The second part of the ooo.go program is as follows:

type c struct {
 A a
 B b
}

Composition allows you to create a structure in your Go elements using multiple struct
types. In this case, data type C groups an a variable and a b variable.

Reflection and Interfaces for All Seasons Chapter 7

[278]

The third portion of ooo.go is shown in the following Go code:

func (A a) A() {
 fmt.Println("Function A() for A")
}

func (B b) A() {
 fmt.Println("Function A() for B")
}

The two methods defined here can have the same name (A()) because they have different
function headers. The first method works with a variables, whereas the second method
works with b variables. This technique allows you to share the same function name between
multiple types.

The last part of ooo.go follows next:

func main() {
 var i c
 i.A.A()
 i.B.A()
}

All the Go code in ooo.go is pretty simplistic when compared with the code of an object-
oriented programming language, which would implement abstract classes and inheritance.
However, it is more than adequate for generating types and elements with a structure in
them, as well as having different data types with the same method names.

Executing ooo.go will generate the following output:

$ go run ooo.go
Function A() for A
Function A() for B

As the following code illustrates, however, composition is not inheritance, and the first
type knows nothing about the changes made to the shared() function by the second type:

package main

import (
 "fmt"
)

type first struct{}

func (a first) F() {

Reflection and Interfaces for All Seasons Chapter 7

[279]

 a.shared()
}

func (a first) shared() {
 fmt.Println("This is shared() from first!")
}

type second struct {
 first
}

func (a second) shared() {
 fmt.Println("This is shared() from second!")
}

func main() {
 first{}.F()
 second{}.shared()
 i := second{}
 j := i.first
 j.F()
}

Note that type second embeds type first, and the two types share a function, named
shared().

Saving the former Go code as goCoIn.go and executing it will generate the following
output:

$ go run goCoIn.go
This is shared() from first!
This is shared() from second!
This is shared() from first!

Although the calls to first{}.F() and second{}.shared() generated the expected
results, the call to j.F() still calls first.shared() instead of the second.shared()
function, despite the fact that type second changed the implementation of the shared()
function. This is called method overriding in object-oriented terminology.

Reflection and Interfaces for All Seasons Chapter 7

[280]

Note that the j.F() call can be written as (i.first).F() or as (second{}.first).F()
without the need to define too many variables. Breaking it into three lines of code makes it a
little easier to understand!

Additional resources
You will find the following two resources very handy:

Visit the documentation page of the reflect Go standard package, which can be
found at https:/ ​/​golang. ​org/ ​pkg/ ​reflect/ ​. This package has many more
capabilities than the ones presented in this chapter.
If you are really into reflection or you want to learn more about it, you can refer
to the reflectwalk library by Mitchell Hashimoto at
https://github.com/mitchellh/reflectwalk. The reflectwalk library allows
you to walk complex values in Go using reflection. If you have the time, explore
the Go code of the library!

Exercises
Write your own interface, and use it in another Go program. Then state why your
interface is useful.
Write an interface for calculating the volume of shapes with three dimensions,
such as cubes and spheres.
Write an interface for calculating the length of line segments and the distance
between two points in the plane.
Explore reflection using your own example.
How does reflection work on Go maps?
If you are good in mathematics, try to write an interface that implements the four
basic mathematical operations for both real numbers and complex numbers. Do
not use the complex64 and complex128 standard Go types—define your own
structure for supporting complex numbers.

https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://github.com/mitchellh/reflectwalk

Reflection and Interfaces for All Seasons Chapter 7

[281]

Summary
In this chapter, you learned about interfaces, which are like contracts, and also about type
methods, type assertion, and reflection in Go. You also learned about creating Go code that
follows the principles of object-oriented programming.

Although reflection is a very powerful Go feature, it might slow down your Go programs
because it adds a layer of complexity at runtime. Additionally, your Go programs could
crash if you use reflection carelessly.

If you will remember just one thing from this chapter, it should be that Go is not an object-
oriented programming language, but that it can mimic some of the functionality offered by
object-programming languages, such as Java and C++. This means that if you plan to
develop software using the object-oriented paradigm all of the time, it would be best if you
choose a programming language other than Go. Nevertheless, object-oriented programming
is not a panacea, and you might create a better, cleaner, and more robust design if you
choose a programming language such as Go!

Although there might have been more theory in this chapter than you expected, the next
chapter will pay off your patience, as it will address systems programming in Go. File I/O,
working with Unix system files, handling Unix signals, and supporting Unix pipes will be
discussed. Additionally, the next chapter will talk about using the flag package to support
multiple command-line arguments and options in your command-line tools, traversing
directory structures, Unix file permissions, and some advanced uses of the functionality
offered by the syscall standard Go package.

If you are really into systems programming with Go, it might be a good idea to read my
book, Go Systems Programming, Packt Publishing, 2017.

8
Telling a Unix System What to

Do
In the previous chapter, we talked about two advanced, but somewhat theoretical, Go
topics: interfaces and reflection. The Go code that you will find in this chapter is anything
but theoretical!

The subject of this chapter is systems programming because, after all, Go is a serious
systems programming language that was born out of frustration; its spiritual fathers were
unsatisfied with the programming language choices they had for creating systems software,
so they decided to create a new programming language!

If you are really into Systems programming with Go, then Go Systems
Programming, Packt Publishing, 2017, truly will definitely help you along in
your journey. However, this chapter contains some interesting and
somewhat advanced topics that cannot be found in my Go Systems
Programming book.

In this chapter of Mastering Go, you will learn about the following topics:

Unix Processes
The flag package
The use of io.Reader and io.Writer interfaces
Handling Unix signals in Go with the help of the os/signal package
Supporting Unix pipes in your Unix system utilities
Reading text files
Reading CSV files
Writing to files
The bytes package

Telling a Unix System What to Do Chapter 8

[283]

Advanced uses of the syscall package
Traversing directory structures
Unix file permissions

About Unix processes
Strictly speaking, a process is an execution environment that contains instructions, user
data and system data parts, and other types of resources that are obtained during runtime.
On the other hand, a program is a binary file that contains instructions and data that are
used for initializing the instruction and user data parts of a process. Each running Unix
process is uniquely identified by an unsigned integer, which is called the process ID of the
process.

There are three categories of processes: user processes, daemon processes, and kernel
processes. User processes run in user space and usually have no special access rights.
Kernel processes are executed in kernel space only and can fully access all kernel data
structures. Daemon processes are programs that can be found in the user space and run in
the background without the need for a terminal.

The C way for creating new processes involves calling the fork() system
call. The return value of fork() allows the programmer to differentiate
between the parent and child process. In contrast, Go does not support a
similar functionality but offers goroutines.

The flag package
Flags are specially-formatted strings that are passed into a program to control its behavior.
Dealing with flags on your own might become very difficult if you want to support
multiple flags. Thus, if you are developing Unix system command-line utilities, you will
find the flag package very interesting and useful-if not downright irreplaceable. Among its
other characteristics, the flag package makes no assumptions about the order of the
command-line arguments and options, and it prints helpful messages in case there is an
error in the way the command-line utility was executed.

Telling a Unix System What to Do Chapter 8

[284]

The biggest advantage of the flag package is that it is part of the standard
Go library, which means that it has been extensively tested and debugged.

I will present two Go programs that use the flag package: a simple one and a more
advanced one.

The first one, named simpleFlag.go, will be offered in four parts. The simpleFlag.go
program will recognize two command-line options: the first one will be a Boolean option
and the second one will require an integer value.

The first part of simpleFlag.go contains the following Go code:

package main

import (
 "flag"
 "fmt"
)

The second code portion from simpleFlag.go is as follows:

func main() {
 minusK := flag.Bool("k", true, "k")
 minusO := flag.Int("O", 1, "O")
 flag.Parse()

The flag.Bool("k", true, "k") statement defines a Boolean command-line option
named k with the default value of true. The last parameter of the statement is the usage
string that will be displayed with the usage information of the program. Similarly, the
flag.Int() function adds support for an integer command-line option.

You always need to call flag.Parse() after defining the command-line
options that you want to support.

The third part of the simpleFlag.go program contains the following Go code:

 valueK := *minusK
 valueO := *minusO
 valueO++

Telling a Unix System What to Do Chapter 8

[285]

In the preceding Go code, you see how you can obtain the values of your options. The good
thing here is that the flag package automatically converts the input associated with the
flag.Int() flag to an integer value. This means that you do not have to do that on your
own. Additionally, the flag package makes sure that it was given an acceptable integer
value.

The remaining Go code from simpleFlag.go follows next:

 fmt.Println("-k:", valueK)
 fmt.Println("-O:", valueO)
}

After getting the values of the desired parameters, you are now ready to use them.

Interacting with simpleFlag.go will create the following type of output:

$ go run simpleFlag.go -O 100
-k: true
-O: 101
$ go run simpleFlag.go -O=100
-k: true
-O: 101
$ go run simpleFlag.go -O=100 -k
-k: true
-O: 101
$ go run simpleFlag.go -O=100 -k false
-k: true
-O: 101
$ go run simpleFlag.go -O=100 -k=false
-k: false
-O: 101

If there is an error in the way simpleFlag.go was executed, you will get the following
type of error message from the flag package:

$ go run simpleFlag.go -O=notAnInteger
invalid value "notAnInteger" for flag -O: strconv.ParseInt: parsing
"notAnInteger": invalid syntax
Usage of /var/folders/sk/ltk8cnw50lzdtr2hxcj5sv2m0000gn/T/go-
build020625525/command-line arguments/_obj/exe/simpleFlag:
 -O int
 O (default 1)
 -k k (default true)
exit status 2

Telling a Unix System What to Do Chapter 8

[286]

Notice the convenient usage message that is automatically printed when there is an error in
the command-line options given to your program.

Now it is time to present a more realistic and advanced program that uses the flag
package. Its name is funWithFlag.go, and it will be presented in five parts. The
funWithFlag.go utility will recognize various kinds of options, including one that accepts
multiple values which are separated by commas. Additionally, it will illustrate how you can
access the command-line arguments that are located at the end of the executable and that do
not belong to any option.

The flag.Var() function used in funWithFlag.go creates a flag of any type that satisfies
the flag.Value interface, which is defined as follows:

type Value interface {
 String() string
 Set(string) error
}

The first part of funWithFlag.go contains the following Go code:

package main

import (
 "flag"
 "fmt"
 "strings"
)

type NamesFlag struct {
 Names []string
}

The NamesFlag structure will be used in a short while for the flag.Value interface.

The second part of funWithFlag.go is as follows:

func (s *NamesFlag) GetNames() []string {
 return s.Names
}

func (s *NamesFlag) String() string {
 return fmt.Sprint(s.Names)
}

Telling a Unix System What to Do Chapter 8

[287]

The third code portion from funWithFlag.go contains the following code:

func (s *NamesFlag) Set(v string) error {
 if len(s.Names) > 0 {
 return fmt.Errorf("Cannot use names flag more than once!")
 }

 names := strings.Split(v, ",")
 for _, item := range names {
 s.Names = append(s.Names, item)
 }
 return nil
}

First, the Set() method makes sure that the related command-line option is not already set.
After that, it gets the input and separates its arguments using the strings.Split()
function. Then the arguments are saved in the Names field of the NamesFlag structure.

The fourth code segment from funWithFlag.go is shown in the following Go code:

func main() {
 var manyNames NamesFlag
 minusK := flag.Int("k", 0, "An int")
 minusO := flag.String("o", "Mihalis", "The name")
 flag.Var(&manyNames, "names", "Comma-separated list")

 flag.Parse()
 fmt.Println("-k:", *minusK)
 fmt.Println("-o:", *minusO)

The last part of the funWithFlag.go utility follows next:

 for i, item := range manyNames.GetNames() {
 fmt.Println(i, item)
 }

 fmt.Println("Remaining command-line arguments:")
 for index, val := range flag.Args() {
 fmt.Println(index, ":", val)
 }
}

Telling a Unix System What to Do Chapter 8

[288]

The flag.Args() slice keeps the command-line arguments left, while the manyNames
variable holds the values from the flag.Var() command-line option.

Executing funWithFlag.go will create the following type of output:

$ go run funWithFlag.go -names=Mihalis,Jim,Athina 1 two Three
-k: 0
-o: Mihalis
0 Mihalis
1 Jim
2 Athina
Remaining command-line arguments:
0 : 1
1 : two
2 : Three
$ go run funWithFlag.go -Invalid=Marietta 1 two Three
flag provided but not defined: -Invalid
Usage of funWithFlag:
 -k int
 An int
 -names value
 Comma-separated list
 -o string
 The name (default "Mihalis")
exit status 2
$ go run funWithFlag.go -names=Marietta -names=Mihalis
invalid value "Mihalis" for flag -names: Cannot use names flag more than
once!
Usage of funWithFlag:
 -k int
 An int
 -names value
 Comma-separated list
 -o string
 The name (default "Mihalis")
exit status 2

Unless you are developing a trivial command-line utility that requires no
command-line options, you will most likely need to use the flag package
for processing the command-line arguments of your program.

Telling a Unix System What to Do Chapter 8

[289]

The io.Reader and io.Writer interfaces
As stated in the previous chapter, compliance with the io.Reader interface requires the
implementation of the Read() method, whereas if you want to satisfy the io.Writer
interface guidelines, you will need to implement the Write() method. Both these interfaces
are very popular in Go, and we will put them to use in a little while.

Buffered and unbuffered file input and output
Buffered file input and output happens when there is a buffer for temporarily storing data
before reading data or writing data. Thus, instead of reading a file byte by byte, you read
many bytes at once. You put it in a buffer and wait for someone to read it in the desired
way. Unbuffered file input and output happens when there is no buffer to temporarily store
data before actually reading or writing it.

The next question that you might ask is how to decide when to use buffered and when to
use unbuffered file input and output. When dealing with critical data, unbuffered file input
and output is generally a better choice because buffered reads might result in out-of-date
data and buffered writes might result in data loss when the power of your computer is
interrupted. However, most of the time, there is no definitive answer to that question. This
means that you can use whatever makes your tasks easier to implement.

The bufio package
As the name suggests, the bufio package is about buffered input and output. However, the
bufio package still uses (internally) the io.Reader and io.Writer objects, which it wraps
in order to create the bufio.Reader and bufio.Writer objects, respectively.

As you will see in the forthcoming sections, the bufio package is very popular for reading
text files.

Telling a Unix System What to Do Chapter 8

[290]

Reading text files
A text file is the most common kind of file that you can find on a Unix system. In this
section, you will learn how to read text files in three ways: line by line, word by word, and
character by character. As you will see, reading a text file line by line is the easiest method
to access a text file, while reading a text file word by word is the most difficult method of
all.

If you look closely at the byLine.go, byWord.go, and byCharacter.go programs, you
will see many similarities in their Go code. First, all three utilities read the input file line by
line. Second, all three utilities have the same main() function, with the exception of the
function that is called in the for loop of the main() function. Last, the three functions that
process the input text files are almost identical, except for the part that implements the
actual functionality of the function.

Reading a text file line by line
Going line by line is the most common method of reading a text file. This is the main reason
it is being shown first. The Go code of byLine.go, which will be presented in three parts,
will help you understand the technique.

The first code segment from byLine.go is shown in the following Go code:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
)

As you can see by the presence of the bufio package, we will use buffered input.

The second part of byLine.go contains the following Go code:

func lineByLine(file string) error {
 var err error

 f, err := os.Open(file)
 if err != nil {
 return err

Telling a Unix System What to Do Chapter 8

[291]

 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }
 fmt.Print(line)
 }
 return nil
}

All the magic happens in the lineByLine() function. After making sure that you can open
the given filename for reading, you create a new reader using bufio.NewReader(). Then
you use that reader with bufio.ReadString() in order to read the input file line by line.
The trick is done by the parameter of bufio.ReadString(), which is a character that tells
bufio.ReadString() to keep reading until that character is found. Constantly calling
bufio.ReadString() when that parameter is the newline character results in reading the
input file line by line! Note that the use of fmt.Print() for printing the read line instead of
fmt.Println() shows that the newline character is included in each input line.

The third part of byLine.go follows next:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: byLine <file1> [<file2> ...]\n")
 return
 }

 for _, file := range flag.Args() {
 err := lineByLine(file)
 if err != nil {
 fmt.Println(err)
 }
 }
}

Telling a Unix System What to Do Chapter 8

[292]

Executing byLine.go and processing its output with wc(1) will generate the following
type of output:

$ go run byLine.go /tmp/swtag.log /tmp/adobegc.log | wc
 4761 88521 568402

The following command will verify the accuracy of the preceding output:

$ wc /tmp/swtag.log /tmp/adobegc.log
 131 693 8440 /tmp/swtag.log
 4630 87828 559962 /tmp/adobegc.log
 4761 88521 568402 total

Reading a text file word by word
The technique presented in this subsection will be demonstrated by the byWord.go file,
which is shown in four parts. As you will see in the Go code, separating the words of a line
can be tricky. The first part of this utility is as follows:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
)

The second code portion of byWord.go is shown in the following Go code:

func wordByWord(file string) error {
 var err error
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {

Telling a Unix System What to Do Chapter 8

[293]

 fmt.Printf("error reading file %s", err)
 return err
 }

This part of the wordByWord() function is the same as the lineByLine() function of the
byLine.go utility.

The third part of byWord.go is as follows:

 r := regexp.MustCompile("[^\\s]+")
 words := r.FindAllString(line, -1)
 for i := 0; i < len(words); i++ {
 fmt.Println(words[i])
 }
 }
 return nil
}

The remaining code of the wordByWord() function is totally new, and it uses regular
expressions to separate the words found in each line of the input. The regular expression
defined in the regexp.MustCompile("[^\\s]+") statement states that empty characters
will separate one word from another.

The last code segment of byWord.go is as follows:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: byWord <file1> [<file2> ...]\n")
 return
 }

 for _, file := range flag.Args() {
 err := wordByWord(file)
 if err != nil {
 fmt.Println(err)
 }
 }
}

Executing byWord.go will produce the following type of output:

$ go run byWord.go /tmp/adobegc.log
01/08/18
20:25:09:669
|
[INFO]

Telling a Unix System What to Do Chapter 8

[294]

You can verify the validity of byWord.go with the help of the wc(1) utility:

$ go run byWord.go /tmp/adobegc.log | wc
 91591 91591 559005
$ wc /tmp/adobegc.log
 4831 91591 583454 /tmp/adobegc.log

As you can see, the number of words calculated by wc(1) is the same as the number of lines
and words that you took from the execution of byWord.go.

Reading a text file character by character
In this section, you will learn how to read a text file character by character, which is a pretty
rare requirement unless you want to create a text editor. The relevant Go code will be saved
as byCharacter.go, which will be presented in four parts.

The first part of byCharacter.go is shown in the following Go code:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
)

As you can see, you will not need to use regular expressions for this task.

The second code segment from byCharacter.go is as follows:

func charByChar(file string) error {
 var err error
 f, err := os.Open(file)
 if err != nil {
 return err
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break

Telling a Unix System What to Do Chapter 8

[295]

 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 return err
 }

The third part of byCharacter.go is where the logic of the program is found:

 for _, x := range line {
 fmt.Println(string(x))
 }
 }
 return nil
}

Here you take each line that you read and split it using range. The range returns two
values: You discard the first, which is the location of the current character in the line
variable, and you use the second. However, that value is a not a character-that is the reason
why you have to convert it into a character using the string() function.

Note that due to the fmt.Println(string(x)) statement, each character is printed in a
distinct line, which means that the output of the program will be large. If you want a more
compressed output, you should use the fmt.Print() function instead.

The last part of byCharacter.go contains the following Go code:

func main() {
 flag.Parse()
 if len(flag.Args()) == 0 {
 fmt.Printf("usage: byChar <file1> [<file2> ...]\n")
 return
 }

 for _, file := range flag.Args() {
 err := charByChar(file)
 if err != nil {
 fmt.Println(err)
 }
 }
}

The execution of byCharacter.go will generate the following type of output:

$ go run byCharacter.go /tmp/adobegc.log
0
1
/
0

Telling a Unix System What to Do Chapter 8

[296]

8
/
1
8

Note that the Go code presented here can be used for counting the number of characters
found in the input file, which can help you implement a Go version of the handy wc(1)
command-line utility.

Reading from /dev/random
In this section, you will learn how to read from the /dev/random system device. The
purpose of the /dev/random system device is to generate random data, which you might
use for testing your programs or, in this case, you will plant the seed for a random number
generator. Getting data from /dev/random can be a little bit tricky, and this is the main
reason for specifically discussing it here.

On a macOS High Sierra machine, the /dev/random file has the following permissions:

$ ls -l /dev/random
crw-rw-rw- 1 root wheel 14, 0 Jan 8 20:24 /dev/random

Similarly, on a Debian Linux machine, the /dev/random system device has the following
Unix file permissions:

$ ls -l /dev/random
crw-rw-rw- 1 root root 1, 8 Jan 13 12:19 /dev/random

This means that the /dev/random file has analogous file permissions on both Unix variants.
The only difference between these two Unix variants is the group that owns the file, which
is wheel on macOS and root on Debian Linux, respectively.

The name of the program for this topic is devRandom.go, and it will be presented in three
parts. The first part of the program is as follows:

package main

import (
 "encoding/binary"
 "fmt"
 "os"
)

Telling a Unix System What to Do Chapter 8

[297]

In order to read from /dev/random, you will need to import the encoding/binary
standard Go package, because /dev/random returns binary data that needs to be decoded.

The second code portion of devRandom.go follows next:

func main() {
 f, err := os.Open("/dev/random")
 defer f.Close()

 if err != nil {
 fmt.Println(err)
 return
 }

You open /dev/random as usual because everything in Unix is a file.

The last code segment of devRandom.go is shown in the following Go code:

 var seed int64
 binary.Read(f, binary.LittleEndian, &seed)
 fmt.Println("Seed:", seed)
}

You need the binary.Read() function, which requires three parameters, in order to read
from the /dev/random system device. The value of the second parameter
(binary.LittleEndian) specifies that you want to use the little endian byte order. The
other option is binary.BigEndian, which is used when your computer is using the big
endian byte order.

Executing devRandom.go will generate the following type of output:

$ go run devRandom.go
Seed: -2044736418491485077
$ go run devRandom.go
Seed: -5174854372517490328
$ go run devRandom.go
Seed: 7702177874251412774

Telling a Unix System What to Do Chapter 8

[298]

Reading the amount of data you want from a
file
In this section, you will learn how to read exactly the amount of data you want. This
technique is particularly useful when reading binary files, where you have to decode the
data you read in a particular way. Nevertheless, this technique still works with text files.

The logic behind this technique is not that difficult: You create a byte slice with the size you
need and use that byte slice for reading. To make this more interesting, this functionality is
going to be implemented as a function with two parameters. One parameter will be used for
specifying the amount of data that you want you read, and the other parameter, which will
have the *os.File type, will be used for accessing the desired file. The return value of that
function will be the data you have read.

The name of the Go program for this topic will be readSize.go, and it will be presented in
four parts. The utility will accept a single parameter, which will be the size of the byte slice.

This particular program, when used with the present technique, can help
you copy any file using the buffer size you want.

The first part of readSize.go has the expected preamble:

package main

import (
 "fmt"
 "io"
 "os"
 "strconv"
)

The second part of readSize.go contains the following Go code:

func readSize(f *os.File, size int) []byte {
 buffer := make([]byte, size)

 n, err := f.Read(buffer)
 if err == io.EOF {
 return nil
 }

 if err != nil {

Telling a Unix System What to Do Chapter 8

[299]

 fmt.Println(err)
 return nil
 }

 return buffer[0:n]
}

This is the function discussed earlier. Although the code is straightforward, there is one
point that needs an explanation. The io.Reader.Read() method returns two parameters:
the number of bytes read as well as an error variable. The readSize() function uses the
former return value of io.Read() in order to return a byte slice of that size. Although this
is a tiny detail, and it is only significant when you reach the end of the file, it ensures that
the output of the utility will be same as the input and that it will not contain any extra
characters. Finally, there is code that checks for io.EOF, which is an error that signifies that
you have reached the end of a file. When that kind of error occurs, the function returns.

The third code portion of this utility is as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Println("<buffer size> <filename>")
 return
 }

 bufferSize, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 file := os.Args[2]
 f, err := os.Open(file)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

Telling a Unix System What to Do Chapter 8

[300]

The last code segment of readSize.go is as follows:

 for {
 readData := readSize(f, bufferSize)
 if readData != nil {
 fmt.Print(string(readData))
 } else {
 break
 }
 }
}

So, here you keep reading your input file until readSize() returns an error or nil.

Executing readSize.go by telling it to process a binary file and handling its output with
wc(1) will validate the correctness of the program:

$ go run readSize.go 1000 /bin/ls | wc
 80 1032 38688
$ wc /bin/ls
 80 1032 38688 /bin/ls

Why are we using binary format?
In the previous section, the readSize.go utility illustrated how you can read a file byte by
byte, which is a technique that best applies to binary files. So, you might ask why read data
in binary format when text formats are so much easier to understand? The main reason is
space reduction. Imagine that you want to store the number 20 as a string to a file. It is easy
to understand that you will need two bytes for storing 20 using ASCII characters, one for
storing 2 and another for storing 0. Storing 20 in binary format requires just one byte, since
20 can be represented as 00010100 in binary or as 0x14 in hexadecimal.

This difference might look insignificant when you are dealing with small amounts of data,
but it could be pretty substantial when dealing with data found in applications such as
database servers.

Telling a Unix System What to Do Chapter 8

[301]

Reading CSV files
CSV files are plain text files with a format. In this section, you will learn how to read a text
file that contains points of a plane, which means that each line will contain a pair of
coordinates. Additionally, you are also going to use an external Go library named Glot,
which will help you create a plot of the points that you read from the CSV file. Note that
Glot uses Gnuplot, which means that you will need to install Gnuplot on your Unix
machine in order to use Glot.

The name of the source file for this topic is CSVplot.go, and it is going to be presented in
five parts. The first code segment is as follows:

package main

import (
 "encoding/csv"
 "fmt"
 "github.com/Arafatk/glot"
 "os"
 "strconv"
)

The second part of CSVplot.go is shown in the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need a data file!")
 return
 }

 file := os.Args[1]
 _, err := os.Stat(file)
 if err != nil {
 fmt.Println("Cannot stat", file)
 return
 }

In this part, you see a technique for checking whether a file already exists or not using the
powerful os.Stat() function.

Telling a Unix System What to Do Chapter 8

[302]

The third part of CSVplot.go is as follows:

 f, err := os.Open(file)
 if err != nil {
 fmt.Println("Cannot open", file)
 fmt.Println(err)
 return
 }
 defer f.Close()

 reader := csv.NewReader(f)
 reader.FieldsPerRecord = -1
 allRecords, err := reader.ReadAll()
 if err != nil {
 fmt.Println(err)
 return
 }

The fourth code segment of CSVplot.go is shown in the following Go code:

 xP := []float64{}
 yP := []float64{}
 for _, rec := range allRecords {
 x, _ := strconv.ParseFloat(rec[0], 64)
 y, _ := strconv.ParseFloat(rec[1], 64)
 xP = append(xP, x)
 yP = append(yP, y)
 }

 points := [][]float64{}
 points = append(points, xP)
 points = append(points, yP)
 fmt.Println(points)

Here you convert the string values you read into numbers and put them into a slice with
two dimensions named points.

The last part of CSVplot.go contains the following Go code:

 dimensions := 2
 persist := true
 debug := false
 plot, _ := glot.NewPlot(dimensions, persist, debug)

 plot.SetTitle("Using Glot with CSV data")
 plot.SetXLabel("X-Axis")
 plot.SetYLabel("Y-Axis")

Telling a Unix System What to Do Chapter 8

[303]

 style := "circle"
 plot.AddPointGroup("Circle:", style, points)
 plot.SavePlot("output.png")
}

In the preceding Go code, you saw how you can create a PNG file with the help of the Glot
library and its glot.SavePlot() function.

As you can guess, you will need to download the Glot Go library before being able to
compile and execute the CSVplot.go source code, which requires the execution of the
following command from your favorite Unix shell:

$ go get github.com/Arafatk/glot

You can see the results of the preceding command by looking inside ~/go directory:

$ ls -l ~/go/pkg/darwin_amd64/github.com/Arafatk/
total 240
-rw-r--r-- 1 mtsouk staff 119750 Jan 22 22:12 glot.a
$ ls -l ~/go/src/github.com/Arafatk/glot/
total 120
-rw-r--r-- 1 mtsouk staff 1818 Jan 22 22:12 README.md
-rw-r--r-- 1 mtsouk staff 6092 Jan 22 22:12 common.go
-rw-r--r-- 1 mtsouk staff 552 Jan 22 22:12 common_test.go
-rw-r--r-- 1 mtsouk staff 3162 Jan 22 22:12 core.go
-rw-r--r-- 1 mtsouk staff 138 Jan 22 22:12 core_test.go
-rw-r--r-- 1 mtsouk staff 3049 Jan 22 22:12 function.go
-rw-r--r-- 1 mtsouk staff 511 Jan 22 22:12 function_test.go
-rw-r--r-- 1 mtsouk staff 4955 Jan 22 22:12 glot.go
-rw-r--r-- 1 mtsouk staff 220 Jan 22 22:12 glot_test.go
-rw-r--r-- 1 mtsouk staff 10536 Jan 22 22:12 pointgroup.go
-rw-r--r-- 1 mtsouk staff 378 Jan 22 22:12 pointgroup_test.go

The CSV data file containing the points that will be plotted has the following format:

$ cat /tmp/dataFile
1,2
2,3
3,3
4,4
5,8
6,5
-1,12
-2,10
-3,10
-4,10

Telling a Unix System What to Do Chapter 8

[304]

Executing CSVplot.go will generate the following kind of output:

$ go run CSVplot.go /tmp/doesNoExist
Cannot stat /tmp/doesNoExist
$ go run CSVplot.go /tmp/dataFile
[[1 2 3 4 5 6 -1 -2 -3 -4] [2 3 3 4 8 5 12 10 10 10]]

You can see the results of CSVplot.go in a much better format in the following figure:

The type of graphical output you can get from Glot.

Writing to a file
Generally speaking, you can use the functionality of the io.Writer interface for writing
data to files on a disk. Nevertheless, the Go code of save.go will show you five ways to
write data to a file. The save.go program will be presented in six parts.

Telling a Unix System What to Do Chapter 8

[305]

The first part of save.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "io"
 "io/ioutil"
 "os"
)

The second code portion of save.go is shown in the following Go code:

func main() {
 s := []byte("Data to write\n")

 f1, err := os.Create("f1.txt")
 if err != nil {
 fmt.Println("Cannot create file", err)
 return
 }
 defer f1.Close()
 fmt.Fprintf(f1, string(s))

Notice that the s byte slice will be used in every line that involves writing presented in this
Go program. Additionally, the fmt.Fprintf() function used here can help you write data
to your own log files using the format you want. In this case, fmt.Fprintf() writes your
data to the file identified by f1.

The third part of save.go contains the following Go code:

 f2, err := os.Create("f2.txt")
 if err != nil {
 fmt.Println("Cannot create file", err)
 return
 }
 defer f2.Close()
 n, err := f2.WriteString(string(s))
 fmt.Printf("wrote %d bytes\n", n)

In this case, f2.WriteString() is used for writing your data to a file.

Telling a Unix System What to Do Chapter 8

[306]

The fourth code segment of save.go follows next:

 f3, err := os.Create("f3.txt")
 if err != nil {
 fmt.Println(err)
 return
 }
 w := bufio.NewWriter(f3)
 n, err = w.WriteString(string(s))
 fmt.Printf("wrote %d bytesn", \n)
 w.Flush()

In this case, bufio.NewWriter() opens a file for writing and bufio.WriteString()
writes the data.

The fifth part of save.go will teach you another method for writing to a file:

 f4 := "f4.txt"
 err = ioutil.WriteFile(f4, s, 0644)
 if err != nil {
 fmt.Println(err)
 return
 }

This method needs just a single function call named ioutil.WriteFile() for writing
your data, and it does not require the use of os.Create().

The last code segment of save.go is as follows:

 f5, err := os.Create("f5.txt")
 if err != nil {
 fmt.Println(err)
 return
 }
 n, err = io.WriteString(f5, string(s))
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("wrote %d bytes\n", n)
}

The last technique uses io.WriteString() to write the desired data to a file.

Telling a Unix System What to Do Chapter 8

[307]

Executing save.go will create the following type of output:

$ go run save.go
wrote 14 bytes
wrote 14 bytes
wrote 14 bytes
$ ls -l f?.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f1.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f2.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f3.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f4.txt
-rw-r--r-- 1 mtsouk staff 14 Jan 23 20:30 f5.txt
$ cat f?.txt
Data to write
Data to write
Data to write
Data to write
Data to write

The next section will show you how to save data to a file with the help of a specialized
function of a package that is in the standard Go library.

Loading and saving data on disk
Do you remember the keyValue.go application from Chapter 4, The Uses of Composite
Types Well, it was far from complete, so in this section you will learn how to save the data of
a key-value store on disk and how to load it back into memory when you next start your
application.

We are going to create two new functions, one named save() for saving data to disk and
another named load() for retrieving the data from disk. Thus, we will only present the
code differences between keyValue.go and kvSaveLoad.go using the diff(1) Unix
command-line utility.

The diff(1) Unix command-line utility can be very convenient when you
want to spot the differences between two text files. You can learn more
about it by executing man 1 diff at the command-line of your favorite
Unix shell.

If you think about the task to be implemented here, you will recognize that what you need
is an easy way to save the contents of a Go map to disk, as well as a way to load the data
from a file and put it into a Go map.

Telling a Unix System What to Do Chapter 8

[308]

The process of converting your data into a stream of bytes is called serialization. The
process of reading a data file and converting it into an object is called deserialization. The
encoding/gob standard Go package will be used for the program kvSaveLoad.go. It will
help the serialization and deserialization process. The encoding/gob package uses the gob
format for storing its data. The official name for such formats is stream encoding. The good
thing about the gob format is that Go does all of the dirty work, so that you don't have to
worry about the encoding and decoding stages.

Other Go packages that can help you serialize and deserialize data are encoding/xml,
which uses the XML format, and encoding/json, which uses the JSON format.

The following output will reveal the code changes between kvSaveLoad.go and
keyValue.go without including the implementations of save() and load() functions that
will be fully presented here:

$ diff keyValue.go kvSaveLoad.go
4a5
> "encoding/gob"
16a18,55
> var DATAFILE = "/tmp/dataFile.gob"
> func save() error {
>
> return nil
> }
>
> func load() error {
>
> }
59a99,104
>
> err := load()
> if err != nil {
> fmt.Println(err)
> }
>
88a134,137
> err = save()
> if err != nil {
> fmt.Println(err)
> }

Telling a Unix System What to Do Chapter 8

[309]

An important part of the diff(1) output is the definition of the DATAFILE global variable
that holds the path to the file that is used by the key-value store. Apart from this, you see
where the load() function is called as well as the point where the save() function is
called. The load() function is used first in the main() function, while the save() function
is executed when the user issues the STOP command.

Each time you execute kvSaveLoad.go, the program checks whether there is data to be
read by trying to read the default data file. If there is no data file to read, you will start with
an empty key-value store. When the program is about to terminate, it writes all of its data
on the disk using the save() function.

The save() function has the following implementation:

func save() error {
 fmt.Println("Saving", DATAFILE)
 err := os.Remove(DATAFILE)
 if err != nil {
 fmt.Println(err)
 }

 saveTo, err := os.Create(DATAFILE)
 if err != nil {
 fmt.Println("Cannot create", DATAFILE)
 return err
 }
 defer saveTo.Close()

 encoder := gob.NewEncoder(saveTo)
 err = encoder.Encode(DATA)
 if err != nil {
 fmt.Println("Cannot save to", DATAFILE)
 return err
 }
 return nil
}

Note that the first thing the save() function does is to delete the existing data file using the
os.Remove() function in order to create it later on.

Telling a Unix System What to Do Chapter 8

[310]

One of the most critical tasks the save() function does is to make sure that you can actually
create and write to the desired file. Although there are many ways to do this, the save()
function uses the simplest way, which is by checking the error value returned by the
os.Create() function. If that value is not nil, then there is a problem and the save()
function finishes without saving any data.

The load() function is implemented as follows:

func load() error {
 fmt.Println("Loading", DATAFILE)
 loadFrom, err := os.Open(DATAFILE)
 defer loadFrom.Close()
 if err != nil {
 fmt.Println("Empty key/value store!")
 return err
 }

 decoder := gob.NewDecoder(loadFrom)
 decoder.Decode(&DATA)
 return nil
}

One of the tasks of the load() function is to make sure that the file which you are trying to
read is actually there and that you can read it without any problems. Once again, the
load() function uses the simplest approach, which is to look at the return value of the
os.Open() function. If the error value returned is equal to nil, then everything is fine.

It is also important to close the file after reading the data from it, as it will be overwritten by
the save() function later on. The release of the file is accomplished by the defer
loadFrom.Close() statement.

Executing kvSaveLoad.go will generate the following type of output:

$ go run kvSaveLoad.go
Loading /tmp/dataFile.gob
Empty key/value store!
open /tmp/dataFile.gob: no such file or directory
ADD 1 2 3
ADD 4 5 6
STOP
Saving /tmp/dataFile.gob
remove /tmp/dataFile.gob: no such file or directory
$ go run kvSaveLoad.go
Loading /tmp/dataFile.gob
PRINT
key: 1 value: {2 3 }

Telling a Unix System What to Do Chapter 8

[311]

key: 4 value: {5 6 }
DELETE 1
PRINT
key: 4 value: {5 6 }
STOP
Saving /tmp/dataFile.gob
rMacBook:code mtsouk$ go run kvSaveLoad.go
Loading /tmp/dataFile.gob
PRINT
key: 4 value: {5 6 }
STOP
Saving /tmp/dataFile.gob
$ ls -l /tmp/dataFile.gob
-rw-r--r-- 1 mtsouk wheel 80 Jan 22 11:22 /tmp/dataFile.gob
$ file /tmp/dataFile.gob
/tmp/dataFile.gob: data

In Chapter 13, Network Programming - Building Servers and Clients, you are going to see the
final version of the key-value store, which will be able to operate over a TCP/IP connection
and will serve multiple network clients using goroutines.

The strings package revisited
We first talked about the handy strings package back in Chapter 4, The Uses of Composite
Types. This section will address the functions of the strings package that are related to file
input and output.

The first part of str.go is shown in the following Go code:

package main

import (
 "fmt"
 "io"
 "os"
 "strings"
)

Telling a Unix System What to Do Chapter 8

[312]

The second code segment of str.go is as follows:

func main() {

 r := strings.NewReader("test")
 fmt.Println("r length:", r.Len())

The strings.NewReader() function creates a read-only Reader from a string. The
strings.Reader object implements the io.Reader, io.ReaderAt, io.Seeker,
io.WriterTo, io.ByteScanner, and io.RuneScanner interfaces.

The third part of str.go follows next:

 b := make([]byte, 1)
 for {
 n, err := r.Read(b)
 if err == io.EOF {
 break
 }

 if err != nil {
 fmt.Println(err)
 continue
 }
 fmt.Printf("Read %s Bytes: %d\n", b, n)
 }

Here you can see how you to use strings.Reader as an io.Reader interface in order to
read a string byte by byte using the Read() function.

The last code portion of str.go contains the following Go code:

 s := strings.NewReader("This is an error!\n")
 fmt.Println("r length:", s.Len())
 n, err := s.WriteTo(os.Stderr)

 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Wrote %d bytes to os.Stderr\n", n)
}

Telling a Unix System What to Do Chapter 8

[313]

In this code segment, you can see how you can write to standard error with the help of the
strings package.

Executing str.go will generate the following output:

$ go run str.go
r length: 4
Read t Bytes: 1
Read e Bytes: 1
Read s Bytes: 1
Read t Bytes: 1
r length: 18
This is an error!
Wrote 18 bytes to os.Stderr
$ go run str.go 2>/dev/null
r length: 4
Read t Bytes: 1
Read e Bytes: 1
Read s Bytes: 1
Read t Bytes: 1
r length: 18
Wrote 18 bytes to os.Stderr

About the bytes package
The bytes standard Go package contains functions for working with byte slices in the
same way that the strings standard Go package helps you work with strings. The name of
the Go source code file is bytes.go, and it will be presented in three code portions.

This section is not included in my Go Systems Programming, Packt Publising,
2017 book.

The first part of bytes.go follows next:

package main

import (
 "bytes"
 "fmt"
 "io"
 "os"
)

Telling a Unix System What to Do Chapter 8

[314]

The second code portion of bytes.go contains the following Go code:

func main() {
 var buffer bytes.Buffer
 buffer.Write([]byte("This is"))
 fmt.Fprintf(&buffer, " a string!\n")
 buffer.WriteTo(os.Stdout)
 buffer.WriteTo(os.Stdout)

First, you create a new bytes.Buffer variable, and you put data into it using
buffer.Write() and fmt.Fprintf(). Then you call buffer.WriteTo() two times.

The first buffer.WriteTo() call will print the contents of the buffer variable. However,
the second call to buffer.WriteTo() has nothing to print because the buffer variable
will be empty after the first buffer.WriteTo() call.

The last part of bytes.go is as follows:

 buffer.Reset()
 buffer.Write([]byte("Mastering Go!"))
 r := bytes.NewReader([]byte(buffer.String()))
 fmt.Println(buffer.String())
 for {
 b := make([]byte, 3)
 n, err := r.Read(b)
 if err == io.EOF {
 break
 }

 if err != nil {
 fmt.Println(err)
 continue
 }
 fmt.Printf("Read %s Bytes: %d\n", b, n)
 }
}

The Reset() method resets the buffer variable, and the Write() method puts some data
into it again. Then you create a new reader using bytes.NewReader(), and after that you
use the Read() method of the io.Reader interface to read the data found in the buffer
variable.

Telling a Unix System What to Do Chapter 8

[315]

Executing bytes.go will create the following type of output:

$ go run bytes.go
This is a string!
Mastering Go!
Read Mas Bytes: 3
Read ter Bytes: 3
Read ing Bytes: 3
Read Go Bytes: 3
Read ! Bytes: 1

File permissions
A popular topic in Unix systems programming is Unix file permissions. In this section, you
will learn how to print the permissions of any file, provided that you have adequate Unix
permission to do so! The name of the program is permissions.go, and it will be presented
in three parts.

The first part of permissions.go contains the following Go code:

package main

import (
 "fmt"
 "os"
)

The second code segment of permissions.go is shown in the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("usage: permissions filename\n")
 return
 }

The last part of this utility follows next:

 filename := arguments[1]
 info, _ := os.Stat(filename)
 mode := info.Mode()
 fmt.Println(filename, "mode is", mode.String()[1:10])
}

Telling a Unix System What to Do Chapter 8

[316]

The call to os.Stat(filename) returns a big structure with lots of data. As we are only
interested in the permissions of the file, we will call the Mode() method and print its
output. Actually, we are printing a part of the output denoted by mode.String()[1:10]
because this is where the data that interests us is found.

Executing permissions.go will create the following type of output:

$ go run permissions.go /tmp/adobegc.log
/tmp/adobegc.log mode is rw-rw-rw-
$ go run permissions.go /dev/random
/dev/random mode is crw-rw-rw

The output of the ls(1) utility verifies the correctness of permissions.go:

$ ls -l /dev/random /tmp/adobegc.log
crw-rw-rw- 1 root wheel 14, 0 Jan 8 20:24 /dev/random
-rw-rw-rw- 1 root wheel 583454 Jan 16 19:12 /tmp/adobegc.log

Handling Unix signals
Go provides the os/signal package to programmers to help them work with signals. This
section will show you how to use it for Unix signal handling.

First let's present some useful information about Unix signals. Have you ever pressed Ctrl +
C in order to stop a running program? If your answer is Yes, then you are already familiar
with signals because Ctrl + C sends the SIGINT signal to a program. Strictly speaking, Unix
Signals are software interrupts that can be accessed either by name or by number, and they
offer a way to handle asynchronous events on a Unix system. There are two ways to send a
signal: by name or by number. Generally speaking, it is safer to send a signal by name
because you are is less likely to send the wrong signal accidentally.

A program cannot handle all of the available signals: some signals cannot be caught, nor
can they be ignored. The SIGKILL and SIGSTOP signals cannot be caught, blocked, or
ignored. The reason for this is that they provide the kernel and the root user a way of
stopping any process they want. The SIGKILL signal, which is also known by the number 9,
is usually called in extreme conditions where you need to act fast. Thus, it is the only signal
that is usually called by number, simply because it is quicker to do so.

Telling a Unix System What to Do Chapter 8

[317]

signal.SIGINFO is not available on Linux machines, which means that if
you find it in a Go program that you want to run on a Linux machine, you
need to replace it with another signal, or your Go program will not be able
to compile and execute.

The most common way to send a signal to a process is by using the kill(1) utility. By
default, kill(1) sends the SIGTERM signal. If you want to find all of the supported signals
on your Unix machine, you should execute the kill -l command.

If you try to send a signal to a process without having the required permissions, kill(1)
will not do the job and you will get an error message similar to the following:

$ kill 1210
-bash: kill: (1210) - Operation not permitted

Handling two signals
In this subsection, you will learn how to handle two signals in a Go program using the code
found in handleTwo.go, which will be presented in four parts. The signals that will be
handled by handleTwo.go are SIGINFO and SIGINT, which in Golang are named
syscall.SIGINFO and os.Interrupt, respectively.

If you look at the documentation of the os package, you will find that the
only two signals that are guaranteed to be present on all systems are
syscall.SIGKILL and syscall.SIGINT, which in Go are also defined
as os.Kill and os.Interrupt, respectively.

The first part of handleTwo.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

Telling a Unix System What to Do Chapter 8

[318]

The second part of the handleTwo.go program follows next:

func handleSignal(signal os.Signal) {
 fmt.Println("handleSignal() Caught:", signal)
}

The handleSignal() function will be used for handling the syscall.SIGINFO signal,
while the os.Interrupt signal will be handled inline.

The third code segment of handleTwo.go is shown in the following Go code:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt, syscall.SIGINFO)
 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 fmt.Println("Caught:", sig)
 case syscall.SIGINFO:
 handleSignal(sig)
 return
 }
 }
 }()

This technique works as follows: first you define a channel named sigs that helps you pass
data around. Then you call signal.Notify() in order to state the signals that interest you.
Next, you implement an anonymous function that runs as a goroutine in order to act when
you receive any one of the signals you care about. You will have to wait for Chapter 9, Go
Concurrency - Goroutines, Channels, and Pipelines, to learn more about goroutines and
channels.

The last portion of the handleTwo.go program is as follows:

 for {
 fmt.Printf(".")
 time.Sleep(20 * time.Second)
 }
}

Telling a Unix System What to Do Chapter 8

[319]

The time.Sleep() call is used to prohibit the program from terminating, as it has no real
work to do. In an actual application, there would be no need to use similar code.

As we need the process ID of a program in order to send signals to it using the kill(1)
utility, we will first compile handleTwo.go and run the executable file instead of using go
runhandleTwo.go. Working with handleTwo will generate the following type of output:

$ go build handleTwo.go
$ ls -l handleTwo
-rwxr-xr-x 1 mtsouk staff 2005200 Jan 18 07:49 handleTwo
$./handleTwo
.^CCaught: interrupt
.Caught: interrupt
handleSignal() Caught: information request
.Killed: 9

Note that you will need an additional terminal in order to interact with handleTwo.go and
obtain the preceding output. You will execute the following commands in that Terminal:

$ ps ax | grep ./handleTwo | grep -v grep
47988 s003 S+ 0:00.00 ./handleTwo
$ kill -s INT 47988
$ kill -s INFO 47988
$ kill -s USR1 47988
$ kill -9 47988

The first command is used for finding the process ID of the handleTwo executable, while
the remaining commands are used for sending the desired signals to that process. The
SIGUSR1 signal is ignored, and it does not appear in the output.

The problem with handleTwo.go is that if it gets a signal which is not programmed to
handle, it will ignore it. Thus, in the next section you will see a technique that uses a
relatively different approach in order to handle signals in a more efficient way.

Handling all signals
In this subsection, you will learn how to handle all signals but respond only to the ones that
really interest you. This is a much better and safer technique than the one presented in the
previous subsection. The technique will be illustrated using the Go code of handleAll.go,
which will be presented in four parts.

Telling a Unix System What to Do Chapter 8

[320]

The first part of handleAll.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

func handle(signal os.Signal) {
 fmt.Println("Received:", signal)
}

The second code segment from handleAll.go is shown in the following Go code:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)

So, all the magic happens due to the signal.Notify(sigs) statement. As no signals are
specified, all incoming signals will be handled!

You are allowed to call signal.Notify() multiple times in the same
program using different channels and the same signals. In that case, each
relevant channel will receive a copy of the signals which it was
programmed to handle!

The third code portion of the handleAll.go utility follows next:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 handle(sig)
 case syscall.SIGTERM:
 handle(sig)
 os.Exit(0)
 case syscall.SIGUSR2:
 fmt.Println("Handling syscall.SIGUSR2!")
 default:

Telling a Unix System What to Do Chapter 8

[321]

 fmt.Println("Ignoring:", sig)
 }
 }
}()

It is very convenient to use one of the signals in order to exit your program. This gives you
the opportunity to do some housekeeping in your program when needed. In this case, the
syscall.SIGTERM signal is used for that purpose. This does not prevent you from using
SIGKILL to kill a program, though!

The remaining Go code for handleAll.go follows:

 for {
 fmt.Printf(".")
 time.Sleep(30 * time.Second)
 }
}

You still need to call time.Sleep() to prevent your program from terminating
immediately.

Once again, it would be better to build an executable file for handleAll.go using the go
build tool. Executing handleAll and interacting with it from another terminal will
generate the following type of output:

$ go build handleAll.go
$ ls -l handleAll
-rwxr-xr-x 1 mtsouk staff 2005216 Jan 18 08:25 handleAll
$./handleAll
.Ignoring: hangup
Handling syscall.SIGUSR2!
Ignoring: user defined signal 1
Received: interrupt
^CReceived: interrupt
Received: terminated

The commands issued from the second terminal are as follows:

$ ps ax | grep ./handleAll | grep -v grep
49902 s003 S+ 0:00.00 ./handleAll
$ kill -s HUP 49902
$ kill -s USR2 49902
$ kill -s USR1 49902
$ kill -s INT 49902
$ kill -s TERM 49902

Telling a Unix System What to Do Chapter 8

[322]

Programming Unix pipes in Go
According to the Unix philosophy, Unix command-line utilities should do one job and
perform that job well! In practice, this means that instead of developing huge utilities that
do lots of jobs, you should develop multiple smaller programs, which when combined,
should perform the desired job. The most common way for two or more Unix command-
line utilities to communicate is by using pipes. In a Unix pipe, the output of a command-
line utility becomes the input of another command-line utility. This process may involve
more than two programs! The symbol that is used for Unix pipes is the | character.

Pipes have two serious limitations: first, they usually communicate in one direction, and
second, they can only be used between processes that have a common ancestor. The general
idea behind the implementation of Unix pipes is that if you do not have a file to process,
you should wait to get your input from standard input. Similarly, if you are not told to save
your output to a file, you should write your output to standard output, either for the user to
see it or for another program to process it.

In Chapter 1, Go and the Operating System, you learned how to read from standard input
and how to write to standard output. If you have doubts about these two operations, it
would be a good time to review the Go code of stdOUT.go and stdIN.go.

Implementing the cat(1) utility in Go
In this section, you will see a Go version of the cat(1) utility. You will most likely be
surprised by the length of the program!

The source code of cat.go will be presented in three parts. The first part of cat.go follows
next:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
)

Telling a Unix System What to Do Chapter 8

[323]

The second code segment of cat.go contains the following Go code:

func printFile(filename string) error {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close()
 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 io.WriteString(os.Stdout, scanner.Text())
 io.WriteString(os.Stdout, "\n")
 }
 return nil
}

In this part, you can see the implementation of a function whose purpose is to print the
contents of a file in the standard output.

The last part of cat.go is as follows:

func main() {
 filename := ""
 arguments := os.Args
 if len(arguments) == 1 {
 io.Copy(os.Stdout, os.Stdin)
 return
 }

 for i := 1; i < len(arguments); i++ {
 filename = arguments[i]
 err := printFile(filename)
 if err != nil {
 fmt.Println(err)
 }
 }
}

The preceding code contains all of the magic of cat.go, because this is where you define
how the program will behave. First of all, if you execute cat.go without any command-line
arguments, then the program will just copy standard input to standard output as defined
by the io.Copy(os.Stdout, os.Stdin) statement. However, if there are command-line
arguments, then the program will process them all in the same order that they were given.

Telling a Unix System What to Do Chapter 8

[324]

Executing cat.go will create the following type of output:

$ go run cat.go
Mastering Go!
Mastering Go!
1 2 3 4
1 2 3 4

However, things get really interesting if you execute cat.go using Unix pipes:

$ go run cat.go /tmp/1.log /tmp/2.log | wc
 2367 44464 279292
$ go run cat.go /tmp/1.log /tmp/2.log | go run cat.go | wc
 2367 44464 279292

cat.go is also able to print multiple files on your screen:

$ go run cat.go 1.txt 1 1.txt
 2367 44464 279292
 2367 44464 279292
open 1: no such file or directory
 2367 44464 279292
 2367 44464 279292

Please note that if you try to execute cat.go as go run cat.go cat.go and expect that
you will get the contents of cat.go on your screen, the process will fail and you will get the
following error message instead:

package main: case-insensitive file name collision: "cat.go" and "cat.go"

The reason for this is that Go does not understand that the second cat.go should be used
as a command-line argument to the go run cat.go command. Instead go run tries to
compile cat.go twice, which causes the error message. The solution to this problem is to
execute go build cat.go first, and then use cat.go or any other Go source file as the
argument to the generated executable file.

Traversing directory trees
This section will present a relatively simple version of the find(1) command-line utility
written in Go.

Telling a Unix System What to Do Chapter 8

[325]

The name of the program is goFind.go, and it will be presented in four parts. The code of
goFind.go will support two command-line options. The -d option prints a star character in
front of paths that are directories, while the -f parameter prints a plus character in front of
paths that are regular files.

The first code portion of goFind.go is shown in the following Go code:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

As you can see, the goFind.go program uses the flag package for efficiently dealing with
its command-line parameters.

The second part of goFind.go contains the following code:

var minusD bool = false
var minusF bool = false

func walk(path string, info os.FileInfo, err error) error {
 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

 mode := fileInfo.Mode()
 if mode.IsRegular() && minusF {
 fmt.Println("+", path)
 return nil
 }

 if mode.IsDir() && minusD {
 fmt.Println("*", path)
 return nil
 }

 fmt.Println(path)
 return nil
}

Telling a Unix System What to Do Chapter 8

[326]

As both minusD and minusF should be accessible from everywhere in the program,
including the walk() function, I have decided to make both of them global variables. The
IsDir() function helps you identify directories and IsRegular() helps you identify
regular files.

The third code segment of goFind.go follows next:

func main() {
 starD := flag.Bool("d", false, "Signify directories")
 plusF := flag.Bool("f", false, "Signify regular files")
 flag.Parse()
 flags := flag.Args()

 Path := "."
 if len(flags) == 1 {
 Path = flags[0]
 }

The last part of goFind.go is shown in the following Go code:

 minusD = *starD
 minusF = *plusF

 err := filepath.Walk(Path, walk)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Executing goFind.go will create the following type of output:

$ go run goFind.go -d -f /tmp/
* /tmp/
+ /tmp/.keystone_install_lock
* /tmp/5580C65A-E7E2-4B27-AD91-506F85545E1D
* /tmp/569A57CB-8FD3-4879-A6A3-B86116CB0116
+ /tmp/ExmanProcessMutex
+ /tmp/adobegc.log
/tmp/com.adobe.AdobeIPCBroker.ctrl-mtsouk
* /tmp/com.apple.launchd.h3Izgq45dz
/tmp/com.apple.launchd.h3Izgq45dz/Listeners
* /tmp/lilo.46843
+ /tmp/swtag.log
/tmp/textmate-501.sock
$ go run goFind.go -f /tmp/
/tmp/

Telling a Unix System What to Do Chapter 8

[327]

+ /tmp/.keystone_install_lock
/tmp/5580C65A-E7E2-4B27-AD91-506F85545E1D
/tmp/569A57CB-8FD3-4879-A6A3-B86116CB0116
+ /tmp/ExmanProcessMutex
+ /tmp/adobegc.log
/tmp/com.adobe.AdobeIPCBroker.ctrl-mtsouk
/tmp/com.apple.launchd.h3Izgq45dz
/tmp/com.apple.launchd.h3Izgq45dz/Listeners
/tmp/lilo.46843
+ /tmp/swtag.log
/tmp/textmate-501.sock
$ go run goFind.go /tmp/
/tmp/
/tmp/.keystone_install_lock
/tmp/5580C65A-E7E2-4B27-AD91-506F85545E1D
/tmp/569A57CB-8FD3-4879-A6A3-B86116CB0116
/tmp/ExmanProcessMutex
/tmp/adobegc.log
/tmp/com.adobe.AdobeIPCBroker.ctrl-mtsouk
/tmp/com.apple.launchd.h3Izgq45dz
/tmp/com.apple.launchd.h3Izgq45dz/Listeners
/tmp/lilo.46843
/tmp/swtag.log
/tmp/textmate-501.sock

The output of goFind.go contains every kind of file that can be found under the specified
root directory, including sockets and symbolic links. If you make the necessary changes to
the walk() function, you can tell goFind.go to print only the information that really
interests you. This is left as an exercise for you to do it on your own.

Now imagine how difficult it would be to implement the same program
using the standard library functions of the C programming language!

Using eBPF from Go
eBPF stands for enhanced Berkeley Packet Filter, and it is an in-kernel virtual machine that
is integrated into the Linux kernel and can be used for Linux tracing. In order to be able to
use eBPF, you will need to have a kernel compiled with the CONFIG_BPF_SYSCALL option,
which is automatically activated on Ubuntu Linux.

Telling a Unix System What to Do Chapter 8

[328]

eBPF works on Linux machines with relatively new kernel versions but
does not work on macOS or Mac OS X machines.

You can learn more about eBPF at https://github.com/iovisor/bcc and about eBPF and
Go at https://kinvolk.io/blog/2016/11/introducing-gobpf---using-ebpf-from-go/.
The gobpf package can be found at https://github.com/iovisor/gobpf/.

Unfortunately, further discussion of eBPF and Go is beyond the scope of this book.

About syscall.PtraceRegs
You might have assumed that you are done dealing with the syscall standard Go
package, however you are mistaken! In this section, we will work with
syscall.PtraceRegs, which is a structure that holds information about the state of the
registers.

This section is not included in my Go Systems Programming book, Packt
Publishing, 2017.

You will learn now how to print the values of all of the following registers on your screen
using the Go code of ptraceRegs.go, which will be presented in four parts. The star of the
ptraceRegs.go utility is the syscall.PtraceGetRegs() function-there are also the
syscall.PtraceSetRegs(), syscall.PtraceAttach(), syscall.PtracePeekData(),
and syscall.PtracePokeData() functions that can help you work with registers, but
these functions will not be used in ptraceRegs.go.

The first part of the ptraceRegs.go utility follows next:

package main

import (
 "fmt"
 "os"
 "os/exec"
 "syscall"
 "time"
)

https://github.com/iovisor/bcc
https://kinvolk.io/blog/2016/11/introducing-gobpf---using-ebpf-from-go/
https://github.com/iovisor/gobpf/

Telling a Unix System What to Do Chapter 8

[329]

The second code portion of ptraceRegs.go is shown in the following Go code:

func main() {
 var r syscall.PtraceRegs
 cmd := exec.Command(os.Args[1], os.Args[2:]...)

 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr

The third part of ptraceRegs.go contains the following Go code:

 cmd.SysProcAttr = &syscall.SysProcAttr{Ptrace: true}
 err := cmd.Start()
 if err != nil {
 fmt.Println("Start:", err)
 return
 }

 err = cmd.Wait()
 fmt.Printf("State: %v\n", err)
 wpid := cmd.Process.Pid

In the preceding Go code, you call an external command, which is specified in the
command-line arguments of the program, and you find its process ID, which will be used in
the syscall.PtraceGetRegs() call. The &syscall.SysProcAttr{Ptrace: true}
statement specifies that you want to use ptrace on the child process.

The last code segment of ptraceRegs.go follows next:

 err = syscall.PtraceGetRegs(wpid, &r)
 if err != nil {
 fmt.Println("PtraceGetRegs:", err)
 return
 }
 fmt.Printf("Registers: %#v\n", r)
 fmt.Printf("R15=%d, Gs=%d\n", r.R15, r.Gs)

 time.Sleep(2 * time.Second)
}

Here you call syscall.PtraceGetRegs(), and you print the results that are stored in the
r variable, which should be passed as a pointer.

Telling a Unix System What to Do Chapter 8

[330]

Executing ptraceRegs.go on a macOS High Sierra machine will generate the following
output:

$ go run ptraceRegs.go
command-line-arguments
./ptraceRegs.go:11:8: undefined: syscall.PtraceRegs
./ptraceRegs.go:14:9: undefined: syscall.PtraceGetRegs

This means that this program will not work on machines running macOS and OS X.

Executing ptraceRegs.go on a Debian Linux machine will create the following output:

$ go version
go version go1.3.3 linux/amd64
$ go run ptraceRegs.go echo "Mastering Go!"
State: stop signal: trace/breakpoint trap
Registers: syscall.PtraceRegs{R15:0x0, R14:0x0, R13:0x0, R12:0x0, Rbp:0x0,
Rbx:0x0, R11:0x0, R10:0x0, R9:0x0, R8:0x0, Rax:0x0, Rcx:0x0, Rdx:0x0,
Rsi:0x0, Rdi:0x0, Orig_rax:0x3b, Rip:0x7f8b1200e130, Cs:0x33, Eflags:0x200,
Rsp:0x7ffd9d53f320, Ss:0x2b, Fs_base:0x0, Gs_base:0x0, Ds:0x0, Es:0x0,
Fs:0x0, Gs:0x0}
R15=0, Gs=0
Mastering Go!

You can also find the list of registers in the documentation page of the syscall package.

Tracing system calls
This section will present a pretty advanced technique that uses the syscall package and
allows you to monitor the system calls executed in a Go program.

This section is not included in my Go Systems Programming book, Packt
Publishing, 2017.

Telling a Unix System What to Do Chapter 8

[331]

The name of the Go utility is traceSyscall.go, and it is going to be presented in five code
segments. The first part of traceSyscall.go follows next:

package main

import (
 "bufio"
 "fmt"
 "os"
 "os/exec"
 "strings"
 "syscall"
)

var maxSyscalls = 0

const SYSCALLFILE = "SYSCALLS"

You will learn more about the purpose of the SYSCALLFILE variable in a short while.

The second code segment from traceSyscall.go is the following:

func main() {
 var SYSTEMCALLS []string
 f, err := os.Open(SYSCALLFILE)
 defer f.Close()
 if err != nil {
 fmt.Println(err)
 return
 }

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 line := scanner.Text()
 line = strings.Replace(line, " ", "", -1)
 line = strings.Replace(line, "SYS_", "", -1)
 temp := strings.ToLower(strings.Split(line, "=")[0])
 SYSTEMCALLS = append(SYSTEMCALLS, temp)
 maxSyscalls++
 }

Note that the information of the SYSCALLS text file is taken from the documentation of the
syscall package, and it associates each system call with a number, which is the internal
Go representation of the system call. This file is mainly used for printing the names of the
system calls used by the program that is being traced.

Telling a Unix System What to Do Chapter 8

[332]

The format of the SYSCALLS text file is as follows:

SYS_READ = 0
SYS_WRITE = 1
SYS_OPEN = 2
SYS_CLOSE = 3
SYS_STAT = 4

After reading the text file, the program creates a slice named SYSTEMCALLS for storing that
information.

The third part of traceSyscall.go is as follows:

 COUNTER := make([]int, maxSyscalls)
 var regs syscall.PtraceRegs
 cmd := exec.Command(os.Args[1], os.Args[2:]...)

 cmd.Stdin = os.Stdin
 cmd.Stdout = os.Stdout
 cmd.Stderr = os.Stderr
 cmd.SysProcAttr = &syscall.SysProcAttr{Ptrace: true}

 err = cmd.Start()
 err = cmd.Wait()
 if err != nil {
 fmt.Println("Wait:", err)
 }

 pid := cmd.Process.Pid
 fmt.Println("Process ID:", pid)

The COUNTER slice stores the number of times each system call is found in the program that
is being traced.

The fourth code segment of traceSyscall.go contains the following Go code:

 before := true
 forCount := 0
 for {
 if before {
 err := syscall.PtraceGetRegs(pid, ®s)
 if err != nil {
 break
 }
 if regs.Orig_rax > uint64(maxSyscalls) {
 fmt.Println("Unknown:", regs.Orig_rax)
 return

Telling a Unix System What to Do Chapter 8

[333]

 }

 COUNTER[regs.Orig_rax]++
 forCount++
 }

 err = syscall.PtraceSyscall(pid, 0)
 if err != nil {
 fmt.Println("PtraceSyscall:", err)
 return
 }

 _, err = syscall.Wait4(pid, nil, 0, nil)
 if err != nil {
 fmt.Println("Wait4:", err)
 return
 }
 before = !before
 }

The syscall.PtraceSyscall() function tells Go to continue the execution of the
program that is being traced, but to stop when that program enters or exits a system call,
which is exactly what we want! As each system call is traced before being called and right
after it has finished its job, we use the before variable in order to count each system call
only once.

The last part of traceSyscall.go follows next:

 for i, x := range COUNTER {
 if x != 0 {
 fmt.Println(SYSTEMCALLS[i], "->", x)
 }
 }
 fmt.Println("Total System Calls:", forCount)
 }

In this part, we print the contents of the COUNTER slice. The SYSTEMCALLS slice is used here
for finding out the name of a system call when we know its numerical Go representation.

Executing traceSyscall.go on a macOS High Sierra machine will create the following
output:

$ go run traceSyscall.go
command-line-arguments
./traceSyscall.go:36:11: undefined: syscall.PtraceRegs
./traceSyscall.go:57:11: undefined: syscall.PtraceGetRegs
./traceSyscall.go:70:9: undefined: syscall.PtraceSyscall

Telling a Unix System What to Do Chapter 8

[334]

Once again, the traceSyscall.go utility will not run on macOS and Mac OS X.

Executing the same program on a Debian Linux machine will create the following output:

$ go run traceSyscall.go ls /tmp/
Wait: stop signal: trace/breakpoint trap
Process ID: 5657
go-build084836422 test.go upload_progress_cache
read -> 11
write -> 1
open -> 37
close -> 27
stat -> 1
fstat -> 25
mmap -> 39
mprotect -> 16
munmap -> 4
brk -> 3
rt_sigaction -> 2
rt_sigprocmask -> 1
ioctl -> 2
access -> 9
execve -> 1
getdents -> 2
getrlimit -> 1
statfs -> 2
arch_prctl -> 1
futex -> 1
set_tid_address -> 1
openat -> 1
set_robust_list -> 1
Total System Calls: 189

At the end of the program, traceSyscall.go prints the number of times each system call
was called in the program! The correctness of traceSyscall.go is verified by the output
of the strace -c utility.

$ strace -c ls /tmp
test.go upload_progress_cache
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 0.00 0.000000 0 11 read
 0.00 0.000000 0 1 write
 0.00 0.000000 0 37 13 open
 0.00 0.000000 0 27 close
 0.00 0.000000 0 1 stat
 0.00 0.000000 0 25 fstat

Telling a Unix System What to Do Chapter 8

[335]

 0.00 0.000000 0 39 mmap
 0.00 0.000000 0 16 mprotect
 0.00 0.000000 0 4 munmap
 0.00 0.000000 0 3 brk
 0.00 0.000000 0 2 rt_sigaction
 0.00 0.000000 0 1 rt_sigprocmask
 0.00 0.000000 0 2 ioctl
 0.00 0.000000 0 9 9 access
 0.00 0.000000 0 1 execve
 0.00 0.000000 0 2 getdents
 0.00 0.000000 0 1 getrlimit
 0.00 0.000000 0 2 2 statfs
 0.00 0.000000 0 1 arch_prctl
 0.00 0.000000 0 1 futex
 0.00 0.000000 0 1 set_tid_address
 0.00 0.000000 0 1 openat
 0.00 0.000000 0 1 set_robust_list
 ------ ----------- ----------- --------- --------- -------------
 100.00 0.000000 189 24 total

User ID and group ID
In the last section of this chapter, you will learn how to find the user ID of the current user
as well as the group IDs to which the current user belongs. Both user ID and group IDs are
positive integers kept in Unix system files.

The name of the utility is ids.go, and it will be presented in two parts. The first part of the
utility follows next:

package main

import (
 "fmt"
 "os"
 "os/user"
)

func main() {
 fmt.Println("User id:", os.Getuid())

Finding the user ID of the current user is as simple as calling the os.Getuid() function.

Telling a Unix System What to Do Chapter 8

[336]

The second part of ids.go is as follows:

 var u *user.User
 u, _ = user.Current()
 fmt.Print("Group ids: ")
 groupIDs, _ := u.GroupIds()
 for _, i := range groupIDs {
 fmt.Print(i, " ")
 }
 fmt.Println()
}

On the other hand, finding the group IDs to which a user belongs is a much trickier task.

Executing ids.go will generate the following type of output:

$ go run ids.go
User id: 501
Group ids: 20 701 12 61 79 80 81 98 33 100 204 250 395 398 399

Additional resources
You will find the following web links very useful:

Read the documentation page of the io package, which can be found
at https://golang.org/pkg/io/.
You can learn more about the Glot plotting library by visiting its official web
page at https://github.com/Arafatk/glot.
You can learn more about the encoding/binary standard package by
visiting https://golang.org/pkg/encoding/binary/.
Check the documentation page of the encoding/gob package, which can be
found at https://golang.org/pkg/encoding/gob/.
You can learn about eBPF at http://www.brendangregg.com/ebpf.html. You can
also watch https://www.youtube.com/watch?v=JRFNIKUROPE and
https://www.youtube.com/watch?v=w8nFRoFJ6EQ.
You can learn about Endianness in many places
including https://en.wikipedia.org/wiki/Endianness.
Visit the documentation page of the flag package, which can be found
at https://golang.org/pkg/flag/.

https://golang.org/pkg/io/
https://github.com/Arafatk/glot
https://golang.org/pkg/encoding/binary/
https://golang.org/pkg/encoding/gob/
http://www.brendangregg.com/ebpf.html
https://www.youtube.com/watch?v=JRFNIKUROPE
https://www.youtube.com/watch?v=JRFNIKUROPE
https://www.youtube.com/watch?v=JRFNIKUROPE
https://en.wikipedia.org/wiki/Endianness.
https://golang.org/pkg/flag/

Telling a Unix System What to Do Chapter 8

[337]

Exercises
Write a Go program that takes three arguments, the name of a text file, and two
strings. This utility should then replace every occurrence of the first string in the
file with the second string. For reasons of security, the final output will be printed
on screen, which means that the original text file will remain intact.
Use the encoding/gob package to serialize and deserialize a Go map as well as a
slice of structures.
Create a Go program that handles any three signals you choose.
Create a utility in Go that replaces all tab characters found in a text file with a
given number of spaces that is specified as a command-line parameter to the
program. Once again, the output will be printed on the screen.
Develop a utility that reads a text file line by line and removes the space
characters from each line using the strings.TrimSpace() function.
Modify kvSaveLoad.go in order to support a single command-line argument,
which is the filename that you will use both to load and save your data.
Can you create a Go version of the wc(1) utility? Look at the manual page of
wc(1) to find out about the command-line options that it supports.
Modify the code of goFind.go in order to print regular files only. This means
that it should not print directories, sockets, and symbolic links.
Can you write a program that uses Glot to plot a function?
Modify traceSyscall.go in order to display each system call at the time it is
being traced.
Modify cat.go just to do io.Copy(os.Stdout, f) in order to copy the
contents of a file straight out instead of scanning it all.
You can also use bufio.NewScanner() and bufio.ScanWords to read a line
word by word. Find out how, and create a new version of the byWord.go utility.

Telling a Unix System What to Do Chapter 8

[338]

Summary
This amazing chapter talked about many interesting topics including reading files, writing
to files, and the use of the flag package, Nevertheless, there are many more topics related
to systems programming not mentioned in this chapter, such as working with directories,
copying, deleting, and renaming files, dealing with Unix users, groups and Unix processes,
working with environment variables such as PATH, changing Unix file permissions,
generating sparse files, reading and saving JSON data, locking and creating files, using and
rotating your own log files, as well as the information found in the structure returned by the
os.Stat() call.

At the end of this chapter, we presented two advanced utilities written in Go. The first one
allowed you to inspect the state of the registers, while the second one showed you a
technique that allows you to trace the system calls of any program.

I am pretty sure that the next chapter will also astonish you, as it talks about goroutines,
channels, and pipelines, which are unique and powerful Go features.

9
Go Concurrency – Goroutines,

Channels, and Pipelines
The previous chapter discussed systems programming in Go, which encompasses the Go
functions and techniques that allow you to communicate with the operating system. Two of
the areas of systems programming that were not covered in the previous chapter are
concurrent programming and creating and manage multiple threads. Both these topics will
be addressed in this chapter and the next one.

Go offers its own unique and innovative way of achieving concurrency, which comes in the
form of goroutines and channels. Goroutines are the smallest Go entities that can be
executed on their own in a Go program, while channels can get data from goroutines in a
concurrent and efficient way and thus allow goroutines to have a point of reference and
communicate with each other. Everything in Go is executed using goroutines; this makes
perfect sense since Go is a concurrent programming language by design. Therefore, when a
Go program starts its execution, its single goroutine calls the main() function, which starts
the actual program execution.

The contents and the code of this chapter will be pretty simple, and you should have no
problem following and understanding them, as I left the more advanced parts of goroutines
and channels for Chapter 10, Go Concurrency – Advanced Topics.

In this chapter, you will learn the following topics:

The differences between processes, threads, and goroutines

The Go scheduler

Concurrency and parallelism

Creating goroutines

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[340]

Creating channels

Reading or receiving data from a channel

Writing or sending data to a channel

Creating pipelines

Waiting for your goroutines to finish

About processes, threads, and goroutines
A process is an execution environment that contains instructions and user-data and system-
data parts, as well as other types of resources that are obtained during runtime, whereas a
program is a file that contains the instructions and data that are used for initializing the
instruction and user-data parts of a process.

A thread is a smaller and lighter entity than a process or a program. Threads are created by
processes and have their own flow of control and stack. A quick and simplistic way to
differentiate a thread from a process is to consider a process as the running binary file and a
thread as a subset of a process.

A goroutine is the minimum Go entity that can be executed concurrently. The use of the
word minimum is very important here, as goroutines are not autonomous entities like Unix
processes—goroutines live in threads that live in Unix processes. The main advantage of
goroutines is that they are extremely lightweight and running thousands or hundreds of
thousands of them is no problem.

The good thing is that goroutines are lighter than threads, which, in turn are lighter than
processes. In practice, this means that a process can have multiple threads as well as lots of
goroutines, whereas a goroutine needs the environment of a process in order to exist. So, in
order to create a goroutine, you will need to have a process with at least one thread-Unix
takes care of the process and thread management, while Go and the developer need to take
care of the goroutines.

Now that you know the basics of processes, programs, threads, and goroutines, let's talk a
little bit about the Go scheduler.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[341]

The Go scheduler
The Unix kernel scheduler is responsible for the execution of the threads of a program. On
the other hand, the Go runtime has its own scheduler, which is responsible for the execution
of the goroutines using a technique known as m:n scheduling, where m goroutines are
executed using n operating system threads using multiplexing. The Go scheduler is the Go
component responsible for the way and the order in which the goroutines of a Go program
get executed. This makes the Go scheduler a really important part of the Go programming
language, as everything in a Go program is executed as a goroutine.

Be aware that as the Go scheduler only deals with the goroutines of a single program, its
operation is much simpler, cheaper, and faster than the operation of the kernel scheduler.

Chapter 10, Go Concurrency–Advanced Topics, will talk about the way the Go scheduler
operates in much more detail.

Concurrency and parallelism
It is a very common misconception that concurrency is the same thing as parallelism—this
is just not true! Parallelism is the simultaneous execution of multiple entities of some kind,
whereas concurrency is a way of structuring your components so that they can be executed
independently when possible.

It is only when you build software components concurrently that you can safely execute
them in parallel, when and if your operating system and your hardware permit it. The
Erlang programming language did this a long time ago—long before CPUs had multiple
cores and computers had lots of RAM.

In a valid concurrent design, adding concurrent entities makes the whole system run faster
because more things can run in parallel. So, the desired parallelism comes from a better
concurrent expression and implementation of the problem. The developer is responsible for
taking concurrency into account during the design phase of a system and benefit from a
potential parallel execution of the components of the system. So, the developer should not
think about parallelism, but about breaking things into independent components that solve
the initial problem when combined.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[342]

Even if you cannot run your functions in parallel on a Unix machine, a valid concurrent
design will still improve the design and the maintainability of your programs. In other
words, concurrency is better than parallelism!

Goroutines
You can define a new goroutine using the go keyword followed by a function name or the
full definition of an anonymous function. The go keyword makes the function call to return
immediately, while the function starts running in the background as a goroutine and the
rest of the program continues its execution.

However, as you will see in a moment, you cannot control or make any assumptions about
the order in which your goroutines are going to be executed because this depends on the
scheduler of the operating system, the Go scheduler, and the load of the operating system.

Creating a goroutine
In this subsection, you will learn two ways for creating goroutines. The first one is using
regular functions, while the second method is using anonymous functions—these two ways
are equivalent.

The name of the program covered in this section is simple.go, and it is presented in three
parts.

The first part of simple.go is the following Go code:

package main

import (
 "fmt"
 "time"
)

func function() {
 for i := 0; i < 10; i++ {
 fmt.Print(i)
 }
 fmt.Println()
}

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[343]

Apart from the import block, the preceding code defines a function named function()
that will be used in a short while.

The second part of simple.go follows next:

func main() {
 go function()

The preceding code starts with function() as a goroutine. After this, the program
continues its execution, while function() begins to run in the background.

The last code portion of simple.go is shown in the following Go code:

go func() {
 for i := 10; i < 20; i++ {
 fmt.Print(i, " ")
 }
}()

 time.Sleep(1 * time.Second)
}

With this code, you create a goroutine using an anonymous function. This method works
best for relatively small functions. However, if you have lots of code, it is considered better
practice to create a regular function and execute it using the go keyword.

As you will see in the next section, you can create multiple goroutines any way you wish,
including using a for loop.

Executing simple.go two times will generate the following type of output:

$ go run simple.go
10 11 12 13 14 0123456789
15 16 17 18 19
$ go run simple.go
10 11 12 13 14 15 16 17 18 19 0123456789

Although what you really want from your programs is to generate the same output for the
same input, the output you get from simple.go is not always the same. The preceding
output supports the fact that you cannot control the order in which your goroutines will be
executed without taking extra care. This means writing extra code specifically for this to
occur. In Chapter 10, Go Concurrency – Advanced Topics, you will learn how to control the
order in which your goroutines are executed as well as how to print the results of one
goroutine before printing the results of the following one.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[344]

Creating multiple goroutines
In this subsection, you will learn how to create a variable number of goroutines. The
program reviewed in this section is called create.go. It will be presented in four parts,
and it will allow you to create a dynamic number of goroutines. The number of goroutines
will be given as a command-line argument to the program, which uses the flag package to
process its command-line argument.

The first code part of create.go follows next:

package main

import (
 "flag"
 "fmt"
 "time"
)

The second code segment from create.go contains the following Go code:

func main() {
 n := flag.Int("n", 10, "Number of goroutines")
 flag.Parse()

 count := *n
 fmt.Printf("Going to create %d goroutines.\n", count)

The preceding code reads the value of the n command-line option, which determines the
number of goroutines that will be created.

The third code portion of create.go follows next:

 for i := 0; i < count; i++ {
 go func(x int) {
 fmt.Printf("%d ", x)
 }(i)
 }

A for loop is used for creating the desired number of goroutines. Once again, you should
remember that you cannot make any assumptions about the order in which they are going
to be created and executed.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[345]

The last part of the Go code from create.go is the following:

 time.Sleep(time.Second)
 fmt.Println("\nExiting...")
}

The purpose of the time.Sleep() statement is to give the goroutines enough time to finish
their jobs so that their output can be seen on the screen. In a real program, you will not need
a time.Sleep() statement, as you both want to finish as soon as possible and, moreover,
you will learn a better technique to make your program wait for the various goroutines to
finish before the main() function returns.

Executing create.go multiple times will generate the following type of output:

$ go run create.go -n 100
Going to create 100 goroutines.
5 3 2 4 19 9 0 1 7 11 10 12 13 14 15 31 16 20 17 22 8 18 28 29 21 52 30 45
25 24 49 38 41 46 6 56 57 54 23 26 53 27 59 47 69 66 51 44 71 48 74 33 35
73 39 37 58 40 50 78 85 86 90 67 72 91 32 64 65 95 75 97 99 93 36 60 34 77
94 61 88 89 83 84 43 80 82 87 81 68 92 62 55 98 96 63 76 79 42 70
Exiting...
$ go run create.go -n 100
Going to create 100 goroutines.
2 5 3 16 6 7 8 9 1 22 10 12 13 17 11 18 15 14 19 20 31 23 26 21 29 24 30 25
37 32 36 38 35 33 45 41 43 42 40 39 34 44 48 46 47 56 53 50 0 49 55 59 58
28 54 27 60 4 57 51 52 64 61 65 72 62 63 67 69 66 74 73 71 75 89 70 76 84
85 68 79 80 93 97 83 82 99 78 88 91 92 77 81 95 94 98 87 90 96 86
Exiting...

Once again, you can see that the output is nondeterministic and messy in the sense that you
will have to search the output to find what you are looking for. Additionally, if you do not
use a suitable delay in the time.Sleep() call, you will not be able to see the output of the
goroutines. The time.Second might be OK for now, but this kind of code can cause nasty
and unpredictable bugs down the road.

In the next section, you will learn how to give your goroutines enough time to finish what
they are doing before your program ends without the need to call time.Sleep().

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[346]

Waiting for your goroutines to finish
This section will present a way that prevents the main() function from ending while it is
waiting for its goroutines to finish, using the sync package. The logic of the syncGo.go
program will be based on create.go, which was presented in the previous section.

The first part of syncGo.go is as follows:

package main

import (
 "flag"
 "fmt"
 "sync"
)

As you can see in the preceding code block, there is no need for importing and using the
time package, as we will use the functionality of the sync package and wait for as long as
necessary for all the goroutines to end.

In Chapter 10, Go Concurrency – Advanced Topics, you will study two
techniques for timing out goroutines when they are taking longer than
expected.

The second code segment of syncGo.go is shown in the following Go code:

func main() {
 n := flag.Int("n", 20, "Number of goroutines")
 flag.Parse()
 count := *n
 fmt.Printf("Going to create %d goroutines.\n", count)

 var waitGroup sync.WaitGroup

In the preceding Go code, you define a sync.WaitGroup variable. If you look at the source
code of the sync Go package, and more specifically at the waitgroup.go file that is located
inside the sync directory, you will see that the sync.WaitGroup type is nothing more than
a structure with three fields:

 type WaitGroup struct {
 noCopy noCopy
 state1 [12]byte
 sema uint32
 }

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[347]

The output of syncGo.go will reveal more information about the way the
sync.WaitGroup variables work. The number of goroutines that belong to a
sync.WaitGroup group is defined by one or multiple calls to the sync.Add() function.

The third part of syncGo.go contains the following Go code:

 fmt.Printf("%#v\n", waitGroup)
 for i := 0; i < count; i++ {
 waitGroup.Add(1)
 go func(x int) {
 defer waitGroup.Done()
 fmt.Printf("%d ", x)
 }(i)
 }

Here you create the desired number of goroutines using a for loop. (You could have used
multiple sequential Go statements instead.)

Each call to sync.Add() increases a counter in a sync.WaitGroup variable. Notice that it
is really important to call sync.Add(1) before the go statement in order to prevent any
race conditions. When each goroutine finishes its job, the sync.Done() function will be
executed, which will decrease the same counter.

The last code portion of syncGo.go follows next:

 fmt.Printf("%#v\n", waitGroup)
 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

The sync.Wait() call blocks until the counter in the relevant sync.WaitGroup variable is
zero, giving your goroutines time to finish.

Executing syncGo.go will create the following output:

$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x14, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 7 8 9 10 11 12 13 14 15 16 17 0 1 2 5 18 4 6 3
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[348]

0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
1 0 4 5 17 7 8 9 10 11 12 13 2 sync.WaitGroup{noCopy:sync.noCopy{},
state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x17, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0}, sema:0x0}
29 15 6 27 24 25 16 22 14 23 18 26 3 19 20 28 21
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x1e, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
29 1 7 8 2 9 10 11 12 4 13 15 0 6 5 22 25 23 16 28 26 20 19 24 21 14 3 17
18 27
Exiting...

The output of syncGo.go still varies from execution to execution, especially if you are
dealing with a large number of goroutines. Most of the time this is acceptable; however,
there are times when this is not the desired behavior. Additionally, when the number of
goroutines is 30, some of the goroutines have finished their job before the second
fmt.Printf("%#v\n", waitGroup) statement. Finally, note that one of the elements of
the state1 field in sync.WaitGroup is the one that holds the counter which increases and
decreases according to the sync.Add() and sync.Done() calls.

What if the number of Add() and Done() calls do
not agree?
When the number of the sync.Add() and sync.Done() calls are equal, everything will be
fine in your programs. However, this section will tell you what will happen when these two
numbers do not agree with each other.

If you have executed more sync.Add() calls than sync.Done() calls, in this case, by
adding a waitGroup.Add(1) statement before the first fmt.Printf("%#v\n",
waitGroup) statement of the syncGo.go program, then the output of the go run
command will be similar to the following:

$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x15, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 10 11 12 13 17 18 8 5 4 6 14 1 0 7 3 2 15 9 16 fatal error: all

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[349]

goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc4200120bc)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/sema.go:56 +0x39
sync.(*WaitGroup).Wait(0xc4200120b0)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:131 +0x72
main.main()
 /Users/mtsouk/Desktop/masterGo/ch/ch9/code/syncGo.go:28 +0x2d7
exit status 2

The error message is pretty clear: fatal error: all goroutines are asleep -
deadlock! So, this happened because you told your program to wait for n+1 goroutines by
calling the sync.Add(1) function n+1 times while only n sync.Done() statements were
executed by your n goroutines! As a result, the sync.Wait() call will wait indefinitely for
one or more calls to sync.Done() without any luck, which is obviously a deadlock
situation.

If you have made fewer sync.Add() calls than sync.Done() calls, which can be emulated
by adding a waitGroup.Done() statement after the for loop of the syncGo.go program,
then the go run output will be similar to the following:

$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0,
0x12, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 6 1 2 9 7 8 15 13 0 14 16 17 3 11 4 5 12 18 10 panic: sync: negative
WaitGroup counter
goroutine 22 [running]:
sync.(*WaitGroup).Add(0xc4200120b0, 0xffffffffffffffff)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:75 +0x134
sync.(*WaitGroup).Done(0xc4200120b0)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:100 +0x34
main.main.func1(0xc4200120b0, 0x11)
 /Users/mtsouk/Desktop/masterGo/ch/ch9/code/syncGo.go:25 +0xd8
created by main.main
 /Users/mtsouk/Desktop/masterGo/ch/ch9/code/syncGo.go:21 +0x206
exit status 2

Once again, the root of the problem is stated pretty clearly: panic: sync: negative
WaitGroup counter.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[350]

Although the error messages are very descriptive in both cases and will help you solve the
real problem, you should be very careful with the number of sync.Add() and
sync.Done() calls that you put into your programs. Additionally, notice that in the second
error case (panic: sync: negative WaitGroup counter), the problem might not
appear all of the time.

Channels
A channel is a communication mechanism that allows goroutines to exchange data, among
other things. However, there are some definite rules here. First, each channel allows the
exchange of a particular data type, which is also called the element type of the channel, and
second, for a channel to operate properly, you will need someone to receive what is sent via
the channel. You should declare a new channel using the chan keyword, and you can close
a channel using the close() function.

Finally, a very important detail: when you are using a channel as a function parameter, you
can specify its direction; that is, whether it is going to be used for sending or receiving. In
my opinion, if you know the purpose of a channel in advance, you should use this
capability because it will make your programs more robust as well as safer because you will
not be able to send data accidentally to a channel from which you should only receive data
or receive data from a channel to which you should only be sending data. As a result, if you
declare that a channel function parameter will be used for reading only and you try to write
to it, you will get an error message that will most likely save you from nasty bugs. We will
talk about this later on in this chapter.

Although you will learn many things about channels in this chapter, you
will have to wait for Chapter 10, Go Concurrency –Advanced Topics, to fully
understand the power and flexibility that channels offer to the Go
developer.

Writing to a channel
The code in this subsection will teach you how to write to a channel. Writing the x value to
the c channel is as easy as writing c <- x. The arrow shows the direction of the value, and
you will have no problem with this statement as long as both x and c have the same type.
The example code in this section is saved in writeCh.go, and it will be presented in three
parts.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[351]

The first code segment from writeCh.go is as follows:

package main

import (
 "fmt"
 "time"
)

func writeToChannel(c chan int, x int) {
 fmt.Println(x)
 c <- x
 close(c)
 fmt.Println(x)
}

The chan keyword is used for declaring that the c function parameter will be a channel,
and it should be followed by the type of the channel (int). The c <- x statement allows
you to write the x value to the c channel, and the close() function closes the channel; that
is, it makes communicating with it impossible.

The second part of writeCh.go contains the following Go code:

func main() {
 c := make(chan int)

In the preceding code, you will find the definition of a channel variable which is named c,
and for the first time in this chapter you're using the make() function as well as the chan
keyword. All channels have a type associated with them.

The remaining code from writeCh.go is as follows:

 go writeToChannel(c, 10)
 time.Sleep(1 * time.Second)
}

Here you execute the writeToChannel() function as a goroutine and call time.Sleep()
in order to give enough time to the writeToChannel() function to execute.

Executing writeCh.go will create the following output:

$ go run writeCh.go
10

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[352]

The strange thing here is that the writeToChannel() function printed the given value only
once. The cause of this unexpected output is that the second fmt.Println(x) statement is
never executed. The reason for this is pretty simple once you understand how channels
work: the c <- x statement is blocking the execution of the rest of the writeChannel()
function because nobody is reading what was written to the c channel. Therefore, when the
time.Sleep(1 * time.Second) statement finishes, the program terminates without
waiting for writeChannel().

The next section will illustrate how to read data from a channel.

Reading from a channel
In this subsection, you will learn how to read from a channel. You can read a single value
from a channel named c by executing <-c. In this case, the direction is from the channel to
the outer world.

The name of the program that I will use to help you understand how to read from a channel
is readCh.go, and it will be presented in three parts.

The first code segment from readCh.go is shown in the following Go code:

package main

import (
 "fmt"
 "time"
)

func writeToChannel(c chan int, x int) {
 fmt.Println("1", x)
 c <- x
 close(c)
 fmt.Println("2", x)
}

The implementation of the writeToChannel() function is the same as before.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[353]

The second part of readCh.go follows next:

func main() {
 c := make(chan int)
 go writeToChannel(c, 10)
 time.Sleep(1 * time.Second)
 fmt.Println("Read:", <-c)
 time.Sleep(1 * time.Second)

In the preceding code, you read from the c channel using the <-c notation. If you want to
store that value to a variable named k instead of just printing it, you can use a k := <-c
statement. The second time.Sleep(1 * time.Second) statement gives you the time to
read from the channel.

The last code portion of readCh.go contains the following Go code:

 _, ok := <-c
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }
}

In the preceding code, you can see a technique for determining whether a given channel is
open or not. The current Go code works fine when the channel is closed; however, if the
channel were open, the Go code presented here would have discarded the read value of the
channel because of the use of the _ character in the _, ok := <-c statement. Use a proper
variable name instead of _ if you also want to read the value of the channel in case it is
open.

Executing readCh.go will generate the following output:

$ go run readCh.go
1 10
Read: 10
2 10
Channel is closed!
$ go run readCh.go
1 10
2 10
Read: 10
Channel is closed!

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[354]

Although the output is still not deterministic, both the fmt.Println(x) statements of the
writeToChannel() function are executed because the channel is unblocked when you
read from it.

Channels as function parameters
Although neither readCh.go nor writeCh.go used this feature, Go allows you to specify
the direction of a channel when used as a function parameter; that is, whether it will be
used for reading or writing. These two types of channels are called unidirectional channels,
whereas, by default, channels are bidirectional.

Examine the Go code of the following two functions:

func f1(c chan int, x int) {
 fmt.Println(x)
 c <- x
}
func f2(c chan<- int, x int) {
 fmt.Println(x)
 c <- x
}

Although both functions implement the same functionality, their definitions are slightly
different. The difference is created by the <- symbol found on the right of the chan
keyword in the definition of the f2() function. This denotes that the c channel can be used
for writing only. If the code of a Go function attempts to read from a write-only channel
(send-only channel) parameter, the Go compiler will generate the following error message:

command-line-arguments
a.go:19:11: invalid operation: range in (receive from send-only type chan<-
int)

Similarly, you can have the following function definitions:

func f1(out chan<- int64, in <-chan int64) {
 fmt.Println(x)
 c <- x
}

func f2(out chan int64, in chan int64) {
 fmt.Println(x)
 c <- x
}

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[355]

The definition of f2() combines a read-only channel named in with a write-only channel
named out. If you accidentally try to write and close a read-only channel (receive-only
channel) parameter of a function, you will get the following error message:

command-line-arguments
a.go:13:7: invalid operation: out <- i (send to receive-only type <-chan
int)
a.go:15:7: invalid operation: close(out) (cannot close receive-only
channel)

Pipelines
A pipeline is a virtual method for connecting goroutines and channels so that the output of
one goroutine becomes the input of another goroutine, using channels to transfer your data.

One of the benefits that you get from using pipelines is that there is a constant data flow in
your program, as no goroutine and channel have to wait for everything to be completed in
order to start their execution. Additionally, you are using fewer variables and therefore less
memory space because you do not have to save everything as a variable. Finally, the use of
pipelines simplifies the design of the program and improves its maintainability.

Pipelines will be illustrated using the code of pipeline.go. This program will be
presented in six parts. The task performed by the pipeline.go program is to generate
random numbers in a given range and stop when any number in the random sequence
appears a second time. However, before terminating, the program will print the sum of all
random numbers that appeared up to the point where the first random number appeared a
second time. You will need three functions for connecting the channels of the program. The
logic of the program is found in these three functions, but the data flows in the channels of
the pipeline.

This program will have two channels. The first channel (channel A) will be used for getting
the random numbers from the first function and sending them to the second function. The
second channel (channel B) will be used by the second function for sending the acceptable
random numbers to the third function. The third function will be responsible for getting the
data from channel B, calculating it, and presenting the results.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[356]

The first code segment of pipeline.go contains the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

var CLOSEA = false

var DATA = make(map[int]bool)

As the second() function will need a way to tell the first() function to close the first
channel, I will use a global variable named CLOSEA for that. The CLOSEA variable is only
checked by the first() function, and it can only be altered by the second() function.

The second part of pipeline.go as shown in the following Go code:

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func first(min, max int, out chan<- int) {
 for {
 if CLOSEA {
 close(out)
 return
 }
 out <- random(min, max)
 }
}

The preceding code presents the implementation of two functions named random() and
first(). You are already familiar with the random() function that generates random
numbers in a given range. However, the first() function is really interesting as it keeps
running using a for loop until a Boolean variable (CLOSEA) becomes true. In that case, it
will close its out channel.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[357]

The third code segment of pipeline.go is as follows:

func second(out chan<- int, in <-chan int) {
 for x := range in {
 fmt.Print(x, " ")
 _, ok := DATA[x]
 if ok {
 CLOSEA = true
 } else {
 DATA[x] = true
 out <- x
 }
 }
 fmt.Println()
 close(out)
}

The second() function receives data from the in channel and keeps sending it to the out
channel. However, as soon as the second() function finds a random number that already
exists in the DATA map, it sets the CLOSEA global variable to true and stops sending any
more numbers to the out channel. After that, it closes the out channel.

The fourth code portion of pipeline.go is shown in the following Go code:

func third(in <-chan int) {
 var sum int
 sum = 0
 for x2 := range in {
 sum = sum + x2
 }
 fmt.Printf("The sum of the random numbers is %d\n", sum)
}

The third() function keeps reading from the in function parameter channel. When that
channel is closed by the second() function, the for loop will stop getting any more data
and the function will display its output. At this point, it should become clear that the
second() function controls many things.

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[358]

The fifth code segment of pipeline.go is as follows:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Need two integer parameters!")
 os.Exit(1)
 }

 n1, _ := strconv.Atoi(os.Args[1])
 n2, _ := strconv.Atoi(os.Args[2])

 if n1 > n2 {
 fmt.Printf("%d should be smaller than %d\n", n1, n2)
 return
 }

The last part of the of the pipeline.go program follows next:

 rand.Seed(time.Now().UnixNano())
 A := make(chan int)
 B := make(chan int)

 go first(n1, n2, A)
 go second(B, A)
 third(B)
}

Here you define the required channels, and you execute two goroutines and one function.
The third() function is what prevents main() from returning, because it is not executed
as a goroutine.

Executing pipeline.go will produce the following type of output:

$ go run pipeline.go 1 10
2 2
The sum of the random numbers is 2
$ go run pipeline.go 1 10
9 7 8 4 3 3
The sum of the random numbers is 31
$ go run pipeline.go 1 10
1 6 9 7 1
The sum of the random numbers is 23
$ go run pipeline.go 10 20
16 19 16
The sum of the random numbers is 35
$ go run pipeline.go 10 20
10 16 17 11 15 10

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[359]

The sum of the random numbers is 69
$ go run pipeline.go 10 20
12 11 14 15 10 15
The sum of the random numbers is 62

The important point here is that although the first() function keeps generating random
numbers at its own pace and the second() function will print all of them on your screen,
the unwanted random numbers, that is, the random numbers that have already appeared,
will not be sent to the third() function, and therefore, will not be included in the final
sum!

Additional resources
Visit the following useful resources:

The documentation page of the sync package, which can be found
at https://golang.org/pkg/sync/.

The documentation page of the sync package once more. Pay close attention to
the sync.Mutex and sync.RWMutex types that will appear in the next chapter.

Exercises
Create a pipeline that reads text files, finds the number of occurrences of a given
phrase in each text file, and calculates the total number of occurrences of the
phrase in all files.

Create a pipeline for calculating the sum of the squares of all of the natural
numbers in a given range.

Remove the time.Sleep(1 * time.Second) statement from
the simple.go program and see what happens. Why does this happen?

https://golang.org/pkg/sync/

Go Concurrency – Goroutines, Channels, and Pipelines Chapter 9

[360]

Modify the Go code of pipeline.go in order to create a pipeline with five
functions and the appropriate number of channels.

Modify the Go code of pipeline.go in order to find out what will happen when
you forget to close the out channel of the first() function.

Summary
In this chapter, you learned many unique Go features, including goroutines, channels, and
pipelines. Additionally, you found out how to give your goroutines enough time to finish
their jobs using the functionality offered by the sync package. Finally, you learned that
channels can be used as parameters to Go functions. This allows developers to create
pipelines where your data can flow.

The next chapter will continue talking about Go concurrency by introducing the formidable
select keyword. This keyword helps Go channels perform many interesting jobs, and I
think that you will be truly amazed by its power. After this, you will see two techniques
that allow you to time out one or more goroutines that are stalled for some reason.
Afterwards, you will learn about nil channels, signal channels, channel of channels, and
buffered channels, as well as the context package.

You will also learn about shared memory in the next chapter, which is the traditional way
of sharing information among the threads of the same Unix process which also applies to
goroutines. Nevertheless, shared memory is not that popular among Go programmers
because Go offers better, safer, and faster ways for goroutines to exchange data.

10
Go Concurrency – Advanced

Topics
The previous chapter introduced goroutines, which is the most important feature of Go,
channels, and pipelines. This chapter will continue from the point where the previous one
left off in order to learn more about goroutines, channels, and the select keyword before
discussing shared variables and the sync.Mutex and sync.RWMutex types. This chapter
also includes code examples that demonstrate the use of signal channels, buffered channels,
nil channels, and channels of channels. Additionally, early on in this chapter, you will learn
two techniques for timing out a goroutine after a given amount of time, because nobody can
guarantee that all goroutines will finish before a desired time. The chapter will end by
examining race conditions, the context standard Go package, and worker pools.

In this chapter of Mastering Go, you will learn the following topics:

The select keyword
How the Go scheduler works
Two techniques that allow you to time-out a goroutine which takes longer than
expected to finish
Signals channels
Buffered channels
Nil channels
Monitor goroutines
Channels of channels
Shared memory and mutexes
The sync.Mutex and the sync.RWMutex types
The context package and its functionality
Worker pools
Detecting race conditions

Go Concurrency – Advanced Topics Chapter 10

[362]

The Go scheduler revisited
A scheduler is responsible for distributing the amount of work to be done over the
available resources in an efficient way. In this section, we will examine the way that the Go
scheduler operates in much greater depth than in the previous chapter. As you already
know, Go works using the m:n scheduler (or M:N scheduler) that schedules
goroutines—which are lighter than OS threads—using OS threads. First, though, let's
review the necessary theory and the definition of some useful terms.

Go uses the fork-join concurrency model. The fork part of the model states that a child
branch can be created at any point of a program. Analogously, the join part of the Go
concurrency model is where the child branch will end and join with its parent. Among
other things, both sync.Wait() statements and channels that collect the results of
goroutines are join points, whereas any new goroutine creates a child branch.

The fork phase of the fork-join model and the fork(2) C system call are
two totally different things.

The fair scheduling strategy, which is pretty straightforward and has a simple
implementation, shares evenly all the load between the available processors. At first, this
might look like the perfect strategy because it does not have to take many things into
consideration while keeping all processors equally occupied. It turns out that this is not
exactly the case because most of the distributed tasks usually depend on other tasks.
Therefore, at the end of the day, some processors are underutilized, or equivalently, some
processors are utilized more than others.

A goroutine in Go is a task, whereas everything after the calling statement of a goroutine is
a continuation. In the work stealing strategy used by Go scheduler, a (logical) processor
that is underutilized looks for additional work from other processors. When it finds such
jobs, it steals them from the other processor(s), hence the name, work stealing strategy.
Additionally, the work-stealing algorithm of Go queues and steals continuations. A stalling
join, as is suggested by its name, is a point where a thread of execution stalls at a join and
starts looking for other work to do. Although both task stealing and continuation stealing
have stalling joins, continuations happen more often than tasks; therefore, the Go algorithm
works with continuations rather than tasks.

The main disadvantage of continuation stealing is that it requires extra work from the
compiler of the programming language. Fortunately, Go provides that extra help and
therefore uses continuation stealing in its work-stealing algorithm.

Go Concurrency – Advanced Topics Chapter 10

[363]

One of the benefits of continuation stealing is that you get the same results when using just
functions or a single thread with multiple goroutines. This makes perfect sense as only one
thing is executed at any given time in both cases.

Now, let's return back to the m:n scheduling algorithm used in Go. Strictly speaking, at any
time, you have m goroutines that are executed, and therefore scheduled to run, on n OS
threads, using the most GOMAXPROCS number of logical processors. You will learn about
GOMAXPROCS shortly.

The Go scheduler works using three main kinds of entities: OS threads (M) that are related
to the operating system in use, goroutines (G), and logical processors (P). The number of
processors that can be used by a Go program is specified by the GOMAXPROCS
environment variable—at any given time there are most GOMAXPROCS processors.

The following figure illustrates this point:

How the Go scheduler works

Go Concurrency – Advanced Topics Chapter 10

[364]

What the illustration tells us is that there are two different kinds of queues: a global queue
and a local queue attached to each logical processor. Goroutines from the global queue are
assigned to the queue of a logical processor in order to be executed. As a result, the Go
scheduler needs to check the global queue in order to avoid executing goroutines that are
only located at the local queue of each logical processor. However, the global queue is not
checked all of the time, which means that it does not have an advantage over the local
queues. Additionally, each logical processor can have multiple threads, and the stealing
occurs between the local queues of the available logical processors. Finally, keep in mind
that the Go scheduler is allowed to create more OS threads when needed. OS threads are
pretty expensive, however, which means that dealing with OS threads too much might slow
down your Go applications.

Keep in mind that using more goroutines in a program is not a panacea for performance, as
more goroutines in addition to the various calls to sync.Add(), sync.Wait(), and
sync.Done() might slow down your program due to the extra work that needs to be done
by the Go scheduler.

The Go scheduler, as most Go components, is always evolving, which
means that the people who work on the Go scheduler continually try to
improve its performance by making small changes in the way it works.
The core principles, however, remain the same.

Are all these details useful? I think they are! Do you need to know all of these in order to
write Go code that uses goroutines? Absolutely not! However, knowing what occurs behind
the scenes can definitely help you when strange things start happening, or if you are
curious about how the Go scheduler works. It will certainly make you a better developer!

The GOMAXPROCS environment variable
The GOMAXPROCS environment variable (and Go function) allows you to limit the number of
operating system threads that can execute user-level Go code simultaneously. Starting with
Go version 1.5, the default value of GOMAXPROCS should be the number of cores available in
your Unix machine.

If you decide to assign a value to GOMAXPROCS that is less than the number of the cores in
your Unix machine, you might affect the performance of your program. However, using a
GOMAXPROCS value that is larger than the number of the available cores will not necessarily
make your program run faster.

Go Concurrency – Advanced Topics Chapter 10

[365]

You can programmatically discover the value of the GOMAXPROCS environment variable,
that is, the relevant code. It is be found in the following maxprocs.go program:

package main

import (
 "fmt"
 "runtime"
)

func getGOMAXPROCS() int {
 return runtime.GOMAXPROCS(0)
}

func main() {
 fmt.Printf("GOMAXPROCS: %d\n", getGOMAXPROCS())
}

Executing maxprocs.go on a machine with an Intel i7 processor will produce the following
output:

$ go run maxprocs.go
GOMAXPROCS: 8

You can modify the previous output by changing the value of the GOMAXPROCS
environment variable prior to the execution of the program, however. The following
commands are executed in the bash(1) Unix shell:

$ go version
go version go1.9.4 darwin/amd64
$ export GOMAXPROCS=800; go run maxprocs.go
GOMAXPROCS: 800
$ export GOMAXPROCS=4; go run maxprocs.go
GOMAXPROCS: 4

The select keyword
As you will learn in a short while, the select keyword is pretty powerful and it can do
many things in a variety of situations. The select statement in Go looks like a switch
statement for channels. In practice, this means that select allows a goroutine to wait on
multiple communications operations. Therefore, the main benefit that you receive from
select is that it gives you the power to work with multiple channels using a single select
block. As a consequence, you can have nonblocking operations on channels.

Go Concurrency – Advanced Topics Chapter 10

[366]

The biggest problem when using multiple channels and the select
keyword is deadlocks. This means that you should be extra careful during
the design and the development process in order to avoid such deadlocks.

The Go code of select.go will clarify the use of the select keyword. This program will
be presented in five parts.

The first part of select.go is shown in the following Go code:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

The second code portion from select.go follows next:

func gen(min, max int, createNumber chan int, end chan bool) {
 for {
 select {
 case createNumber <- rand.Intn(max-min) + min:
 case <-end:
 close(end)
 return
 case <-time.After(4 * time.Second):
 fmt.Println("n\time.After()!")
 }
 }
}

So, what is really happening in the code of this select block? This particular select
statement has three cases. Note that the select statements do not require a default
branch. You can consider the third branch of the select statement as a clever default
branch. The time.After() function will return after the specified time has passed, and
therefore it will unblock the select statement in case all of the other channels are blocked.

Go Concurrency – Advanced Topics Chapter 10

[367]

A select statement is not evaluated sequentially, as all of its channels are examined
simultaneously. If none of the channels in a select statement is ready, the select
statement will block until one of the channels is ready. If multiple channels of a select
statement is ready, then the Go runtime will make a random selection over the set of these
ready channels. The Go runtime tries to make this random selection between these ready
channels as uniformly and as fairly as possible.

The third part of select.go is as follows:

func main() {
 rand.Seed(time.Now().Unix())
 createNumber := make(chan int)
 end := make(chan bool)

 if len(os.Args) != 2 {
 fmt.Println("Please give me an integer!")
 return
 }

The fourth code portion of the select.go program contains the following Go code:

 n, _ := strconv.Atoi(os.Args[1])
 fmt.Printf("Going to create %d random numbers.\n", n)
 go gen(0, 2*n, createNumber, end)

 for i := 0; i < n; i++ {
 fmt.Printf("%d ", <-createNumber)
 }

The reason for not examining the error value returned by
strconv.Atoi() is to save some space. You should never do this in real
applications.

The remaining Go code of the select.go program is as follows:

 time.Sleep(5 * time.Second)
 fmt.Println("Exiting...")
 end <- true
}

Go Concurrency – Advanced Topics Chapter 10

[368]

The main purpose of the time.Sleep(5 * time.Second) statement is to give the
time.After() function of gen(), enough time to return, and therefore activate the
relevant branch of the select statement.

The last statement of the main() function is what terminates the program by activating the
case <-end branch of the select statement in gen() and executing the related Go code.

Executing select.go will generate the following output:

$ go run select.go 10
Going to create 10 random numbers.
13 17 8 14 19 9 2 0 19 5
time.After()!
Exiting...

The biggest advantage of select is that it can connect, orchestrate, and
manage multiple channels. As channels connect goroutines, select
connects channels that connect goroutines. Therefore, the select
statement is one of the most important, if not the single most important,
part of the Go concurrency model.

Timing out a goroutine
This section presents two very important techniques that will help you time out goroutines.
Put simply, these two techniques will save you from having to wait forever for a goroutine
to finish its job, and they will give you full control over the amount of time that you want to
wait for a goroutine to end. Both techniques use the capabilities of the handy select
keyword combined with the time.After() function that you experienced in the previous
section.

Timing out a goroutine – take 1
The source code of the first technique will be saved in timeOut1.go, and it will be
presented in four parts.

Go Concurrency – Advanced Topics Chapter 10

[369]

The first part of timeOut1.go is shown in the following Go code:

package main

import (
 "fmt"
 "time"
)

The second code segment from timeOut1.go is as follows:

func main() {
 c1 := make(chan string)
 go func() {
 time.Sleep(time.Second * 3)
 c1 <- "c1 OK"
 }()

The time.Sleep() call is used for emulating the time it will normally take for the function
to finish its job. In this case, the anonymous function that is executed as a goroutine will
take about 3 seconds (time.Second * 3) before writing a message to the c1 channel.

The third code segment from timeOut1.go contains the following Go code:

select {
 case res := <-c1:
 fmt.Println(res)
 case <-time.After(time.Second * 1):
 fmt.Println("timeout c1")
 }

The purpose of the time.After() function call is to wait for the chosen time. In this case,
you are not interested in the actual value returned by time.After(), but in the fact that
the time.After() function call has ended, which means that the time has passed. In this
case, as the value passed to the time.After() function is smaller than the value used in
the time.Sleep() call that was executed as the goroutine in the previous code segment,
you will most likely get a time-out message.

The remaining code from timeOut1.go follows next:

c2 := make(chan string)
 go func() {
 time.Sleep(3 * time.Second)
 c2 <- "c2 OK"
 }()

Go Concurrency – Advanced Topics Chapter 10

[370]

 select {
 case res := <-c2:
 fmt.Println(res)
 case <-time.After(4 * time.Second):
 fmt.Println("timeout c2")
 }
}

The preceding code both executes a goroutine that will take about 3 seconds to execute
because of the time.Sleep() call, and it defines a timeout period of 4 seconds using
time.After(4 * time.Second). If the time.After(4 * time.Second) call returns
after you get a value from the c2 channel found in the first case of the select block, then
there will not be any time out; otherwise, you will get a time out! However, in this case, the
value of the time.After() call provides enough time to the time.Sleep() call to return,
so you will most likely not get a time-out message here.

Executing timeOut1.go will generate the following output:

$ go run timeOut1.go
timeout c1
c2 OK

As expected, the first goroutine did not finish its job, whereas the second goroutine had
enough time to finish.

Timing out a goroutine – take 2
The source code of the second technique will be saved in timeOut2.go, and it will be
presented in five parts. This time, the time-out period is provided as a command-line
argument to the program.

The first part of timeOut2.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

Go Concurrency – Advanced Topics Chapter 10

[371]

The second code segment of timeOut2.go is shown in the following Go code:

func timeout(w *sync.WaitGroup, t time.Duration) bool {
 temp := make(chan int)
 go func() {
 time.Sleep(5 * time.Second)
 defer close(temp)
 w.Wait()
 }()

 select {
 case <-temp:
 return false
 case <-time.After(t):
 return true
 }
}

In the preceding code, the time duration that will be used in the time.After() call is a
parameter of the timeout() function, which means that it can vary. Once again, the
select block implements the logic of the timeout. Additionally, the w.Wait() call will
make the timeout() function wait for a matching sync.Done() function indefinitely in
order to end. When the w.Wait() call returns, the first branch of the select statement will
be executed.

The third code portion from timeOut2.go follows next:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Need a time duration!")
 return
 }

 var w sync.WaitGroup
 w.Add(1)

 t, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println(err)
 return
 }

Go Concurrency – Advanced Topics Chapter 10

[372]

The fourth part of the timeOut2.go program follows next:

 duration := time.Duration(int32(t)) * time.Millisecond
 fmt.Printf("Timeout period is %s\n", duration)

 if timeout(&w, duration) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }

The time.Duration() function converts an integer value into a time.Duration variable
that you can use afterwards.

The remaining Go code from timeOut2.go is as follows:

w.Done()
 if timeout(&w, duration) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }
}

Once the w.Done() call is executed, the previous timeout() function will return.
However, the second call to timeout() has no sync.Done() statement to wait for.

Executing timeOut2.go will generate the following type of output:

$ go run timeOut2.go 10000
Timeout period is 10s
Timed out!
OK!

Go Concurrency – Advanced Topics Chapter 10

[373]

In this execution of timeOut2.go, the time-out period is longer than the time.Sleep(5 *
time.Second) call of the anonymous goroutine. However, without the required call to
w.Done(), the anonymous goroutine cannot return and therefore the time.After(t) call
will end first, so the timeout() function of the first if statement will return true. In the
second if statement, the anonymous function does not have to wait for anything, so the
timeout() function will return false because time.Sleep(5 * time.Second) will
finish before time.After(t):

$ go run timeOut2.go 100
Timeout period is 100ms
Timed out!
Timed out!

In the second program execution, however, the time-out period is too short, so both
executions of timeout() do not have enough time to finish, therefore both will be timed
out.

So, when defining a time-out period, make sure that you choose an appropriate value or
your results might not be what you might expect.

Go channels revisited
Once the select keyword comes into play, Go channels can be used in several unique
ways to do many more things than what you experienced in Chapter 9, Go Concurrency –
Goroutines, Channels, and Pipelines. This section will reveal the many uses of Go channels.

It helps to remember that the zero value of the channel type is nil, and that if you send a
message to a closed channel, the program will panic. However, if you try to read from a
closed channel, you will get the zero value of the type of that channel. So, after closing a
channel, you can no longer write to it, but you can still read from it.

In order to be able to close a channel, the channel must not be receive-only. Additionally, a
nil channel always blocks, which means that trying to read or write from a nil channel
will block. This property of channels can be very useful when you want to disable a branch
of a select statement by assigning the nil value to a channel variable.

Go Concurrency – Advanced Topics Chapter 10

[374]

Finally, if you try to close a nil channel, your program will panic. This is best illustrated in
the closeNilChannel.go program, which is presented next:

package main

func main() {
 var c chan string
 close(c)
}

Executing closeNilChannel.go will generate the following output:

$ go run closeNilChannel.go
panic: close of nil channel
goroutine 1 [running]:
main.main()
 /Users/mtsouk/closeNilChannel.go:5 +0x2a
exit status 2

Signal channels
A signal channel is one that is used just for signaling. Put simply, you can use a signal
channel when you want to inform somebody else about something. Signal channels should
not be used for transferring data.

You should not confuse signal channels with Unix signal handling, which
was discussed in Chapter 8, Telling a Unix system What to Do, because
these two are totally different things.

You will see a code example that uses signal channels in the Specifying the order of execution
for your goroutines section later in this chapter.

Buffered channels
The topic of this subsection is buffered channels. These are channels that allow the Go
scheduler to put jobs in the queue quickly in order to be able to deal with more requests.
Moreover, you can use buffered channels as semaphores in order to limit the throughput of
your application.

Go Concurrency – Advanced Topics Chapter 10

[375]

The technique presented here works as follows:
All incoming requests are forwarded to a channel, which processes them one by one. When
the channel is done processing a request, it sends a message to the original caller saying that
it is ready to process a new one. So, the capacity of the buffer of the channel restricts the
number of simultaneous requests that it can keep.

The technique will be presented with the help of the code found in bufChannel.go, which
is broken into four parts.

The first part of the code of bufChannel.go is as follows:

package main

import (
 "fmt"
)

The second code segment of bufChannel.go contains the following Go code:

func main() {
 numbers := make(chan int, 5)
 counter := 10

The definition presented of the numbers channel gives it a place to store up to five integers.

The third part of the code of bufChannel.go is shown in the following Go code:

for i := 0; i < counter; i++ {
 select {
 case numbers <- i:
 default:
 fmt.Println("Not enough space for", i)
 }
}

In the preceding code, we tried to put 10 integers in the numbers channel. However, as the
numbers channel has room for only 5 integers, you will not be able to store all 10 integers in
it.

Go Concurrency – Advanced Topics Chapter 10

[376]

The remaining Go code of bufChannel.go follows next:

for i := 0; i < counter+5; i++ {
 select {
 case num := <-numbers:
 fmt.Println(num)
 default:
 fmt.Println("Nothing more to be done!")
 break
 }
 }
}

In the preceding Go code, we tried to read the contents of the numbers channel using a for
loop and a select statement. As long as there is something to read from the numbers
channel, the first branch of the select statement will get executed. As long as the numbers
channel is empty, the default branch will be executed.

Executing bufChannel.go will create the following type of output:

$ go run bufChannel.go
Not enough space for 5
Not enough space for 6
Not enough space for 7
Not enough space for 8
Not enough space for 9
0
1
2
3
4
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!

Go Concurrency – Advanced Topics Chapter 10

[377]

Nil channels
In this subsection, you will learn about nil channels. These are a special kind of channel
because they will always block. The use of the nil channels is illustrated in nilChannel.go,
which will be presented in four code segments.

The first part of nilChannel.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

The second code portion of nilChannel.go is shown in the following Go code:

func add(c chan int) {
 sum := 0
 t := time.NewTimer(time.Second)

 for {
 select {
 case input := <-c:
 sum = sum + input
 case <-t.c:
 c = nil
 fmt.Println(sum)
 }
 }
}

The add() function demonstrates how a nil channel is used. The <-t.C statement blocks
the C channel of the t timer for the time that is specified in the time.NewTimer() call. Do
not confuse the c channel, which is the parameter of the function, with the t.C channel,
which belongs to the t timer. When the time expires, the timer sends a value to the t.C
channel. This will trigger the execution of the relevant branch of the select statement,
which will assign the nil value to the c channel and print the sum variable.

Go Concurrency – Advanced Topics Chapter 10

[378]

The third code segment of nilChannel.go follows next:

func send(c chan int) {
 for {
 c <- rand.Intn(10)
 }
}

The purpose of the send() function is to generate random numbers and continue sending
them to a channel for as long as the channel is open.

The remaining Go code of nilChannel.go is as follows:

func main() {
 c := make(chan int)
 go add(c)
 go send(c)

 time.Sleep(3 * time.Second)
}

The time.Sleep() function is used for giving enough time to the two goroutines to
operate.

Executing nilChannel.go will generate the following output:

$ go run nilChannel.go
13167523
$ go run nilChannel.go
12988362

Since the number of times that the first branch of the select statement in the add()
function will be executed is not fixed, you will get different results from executing
nilChannel.go.

Channel of channels
A channel of channels is a special kind of channel variable that works with channels
instead of other types of variables. Nevertheless, you still have to declare a data type for a
channel of channels. You can define a channel of channels using the chan keyword two
times in a row, as shown in the following statement:

c1 := make(chan chan int)

Go Concurrency – Advanced Topics Chapter 10

[379]

The other types of channels presented in this chapter are far more popular
and handy than a channel of channels.

The use of channels of channels is illustrated using the code found in chSquare.go, which
will be presented in four parts.

The first part of chSquare.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "time"
)

var times int

The second code portion from chSquare.go is shown in the following Go code:

func f1(cc chan chan int, f chan bool) {
 c := make(chan int)
 cc <- c
 defer close(c)

 sum := 0
 select {
 case x := <-c:
 for i := 0; i <= x; i++ {
 sum = sum + i
 }
 c <- sum
 case <-f:
 return
 }
}

After declaring a regular int channel, you will send that to the channel of channels
variable. Then you use a select statement in order to be able to read data from the regular
int channel or exit your function using the f signal channel.

Go Concurrency – Advanced Topics Chapter 10

[380]

Once you read a single value from the c channel, you start a for loop that calculates the
sum of all integers from 0 up to the integer value that you just read. Next, you will send the
calculated value to the c int channel and you are done.

The third part of chSquare.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Need just one integer argument!")
 return
 }

 times, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 cc := make(chan chan int)

The last statement in the preceding code is where you declare a channel of channels variable
named cc, which is the star of the program because everything depends on that variable:
the cc variable is passed to the f1() function, and it will be used in the for loop which is
coming next.

The remaining Go code of chSquare.go is as follows:

for i := 1; i < times+1; i++ {
 f := make(chan bool)
 go f1(cc, f)
 ch := <-cc
 ch <- i
 for sum := range ch {
 fmt.Print("Sum(", i, ")=", sum)
 }
 fmt.Println()
 time.Sleep(time.Second)
 close(f)
 }
}

Go Concurrency – Advanced Topics Chapter 10

[381]

The f channel is a signal channel used for ending the goroutine when the real work is
finished. The ch := <-cc statement allows you to get a regular channel from the channel
of channels variable in order to be able to send an int value to it using ch <- i. After this,
you start reading from it using a for loop. Although the f1() function is programmed to
send a single value back, you can also read multiple values. Note that each value of i is
served by a different goroutine.

The type of a signal channel can be anything you want, including bool, which is used in the
preceding code, and struct{}, which will be used in the signal channel in the next section.
The main advantage of a struct{} signal channel is that no data can be sent to it, which
can save you from bugs and misconceptions.

Executing chSquare.go will generate the following type of output:

$ go run chSquare.go 4
Sum(1)=1
Sum(2)=3
Sum(3)=6
Sum(4)=10
$ go run chSquare.go 6
Sum(1)=1
Sum(2)=3
Sum(3)=6
Sum(4)=10
Sum(5)=15
Sum(6)=21

Specifying the order of execution for your
goroutines
Although you should not make any assumptions about the order in which your goroutines
will be executed, there are times when you need to be able to control this order. This
subsection illustrates such a technique using signal channels.

You might ask why choose to execute goroutines in a given order when
simple functions could do the same job much more easily. The answer is
simple: goroutines are able to operate concurrently and wait for other
goroutines to end, whereas functions executed in sequence cannot do that!

Go Concurrency – Advanced Topics Chapter 10

[382]

The name of the Go program for this topic is defineOrder.go, and it will be presented in
five parts.

The first part of defineOrder.go follows next:

package main

import (
 "fmt"
 "time"
)

func A(a, b chan struct{}) {
 <-a
 fmt.Println("A()!")
 time.Sleep(time.Second)
 close(b)
}

The A() function is blocked by the channel stored in the a parameter. Once that channel is
unblocked in the main() function, the A() function will start working. Finally, it will close
the b channel, which will unblock another function, in this case function B().

The second code portion of defineOrder.go is shown in the following Go code:

func B(a, b chan struct{}) {
 <-a
 fmt.Println("B()!")
 close(b)
}

The logic in B() is the same as in the A() function. The function is blocked until
the a channel is closed. Then it does its job and closes the b channel. Note that the a and
b channels refer to the names of the parameters of the function.

The third code segment of defineOrder.go follows next:

func C(a chan struct{}) {
 <-a
 fmt.Println("C()!")
}

The C() function is blocked and waits for the a channel to close in order to start working.

Go Concurrency – Advanced Topics Chapter 10

[383]

The fourth part of defineOrder.go contains the following code:

func main() {
 x := make(chan struct{})
 y := make(chan struct{})
 z := make(chan struct{})

These three channels will be the parameters for the three functions.

The last code segment of defineOrder.go contains the following Go code:

 go C(z)
 go A(x, y)
 go C(z)
 go B(y, z)
 go C(z)

 close(x)
 time.Sleep(3 * time.Second)
}

Executing defineOrder.go will generate the desired output even though
the C() function was called multiple times:

$ go run defineOrder.go
A()!
B()!
C()!
C()!
C()!

Calling the C() function multiple times as goroutines will work just fine because C() does
not close any channels. However, if you call A() or B() more than once, you will most
likely get an error message such as the following:

$ go run defineOrder.go
A()!
A()!
B()!
C()!
C()!
C()!
panic: close of closed channel

Go Concurrency – Advanced Topics Chapter 10

[384]

goroutine 7 [running]:
main.A(0xc420072060, 0xc4200720c0)
 /Users/mtsouk/Desktop/defineOrder.go:12 +0x9d
created by main.main
 /Users/mtsouk/Desktop/defineOrder.go:33 +0xfa
exit status

As you can see from the output, the A() function was called two times. However, as
the A() function closes a channel, one of its goroutines will find that channel already closed
and generate a panic situation. You will get a similar panic situation if you call B() more
than once.

Shared memory and shared variables
Shared memory and shared variables are the most common ways for Unix threads to
communicate with each other. A Mutex variable, which is an abbreviation for mutual
exclusion variable, is mainly used for thread synchronization and for protecting shared
data when multiple writes can occur at the same time. A mutex works like a buffered
channel of capacity one, which allows at most one goroutine to access a shared variable at
any given time. This means that there is no way for two or more goroutines to try to update
that variable simultaneously.

A critical section of a concurrent program is the code that cannot be executed
simultaneously by all processes, threads, or, in this case, by all goroutines. It is the code that
needs to be protected by mutexes. Therefore, identifying the critical sections of your code
will make the whole programming process so much simpler that you should pay attention
to this task.

A critical section cannot be embedded in another critical section when
both critical sections use the same sync.Mutex or sync.RWMutex
variable. Put simply avoid, at almost any cost, spreading mutexes across
functions because that makes it really hard to see whether you are
embedding or not!

The next two subsections will illustrate the use of the sync.Mutex and sync.RWMutex
types.

Go Concurrency – Advanced Topics Chapter 10

[385]

The sync.Mutex type
The sync.Mutex type is the Go implementation of a mutex. Its definition, which can be
found in the mutex.go file of the sync directory, is as follows:

// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
type Mutex struct {
 state int32
 sema uint32
}

The definition of the sync.Mutex type is nothing extraordinary. All of the interesting work
is being done by the sync.Lock() and sync.Unlock() functions that can lock and unlock
a sync.Mutex mutex, respectively. Locking a mutex means that nobody else can lock it
until it has been released using the sync.Unlock() function.

The mutex.go program, which is going to be presented in five parts, illustrates the use of
the sync.Mutex type.

The first code segment of mutex.go follows next:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

var (
 m sync.Mutex
 v1 int
)

The second part of mutex.go is shown in the following Go code:

func change(i int) {
 m.Lock()
 time.Sleep(time.Second)
 v1 = v1 + 1
 if v1%10 == 0 {

Go Concurrency – Advanced Topics Chapter 10

[386]

 v1 = v1 - 10*i
 }
 m.Unlock()
}

The critical section of this function is the Go code between the m.Lock() and m.Unlock()
statements.

The third part of mutex.go contains the following Go code:

func read() int {
 m.Lock()
 a := v1
 m.Unlock()
 return a
}

Similarly, the critical section of this function is defined by the m.Lock() and m.Unlock()
statements.

The fourth code segment of mutex.go follows next:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please give me an integer!")
 return
 }

 numGR, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 var waitGroup sync.WaitGroup

The last part of mutex.go is shown in the following Go code:

fmt.Printf("%d ", read())
 for i := 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func(i int) {
 defer waitGroup.Done()
 change(i)
 fmt.Printf("-> %d", read())
 }(i)
 }

Go Concurrency – Advanced Topics Chapter 10

[387]

 waitGroup.Wait()
 fmt.Printf("-> %d\n", read())
}

Executing mutex.go will generate the following output:

$ go run mutex.go 21
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9-> -30-> -29-> -28-> -27-> -26->
-25-> -24-> -23-> -22-> -21-> -210-> -209-> -209
$ go run mutex.go 21
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9-> -130-> -129-> -128-> -127-> -126->
-125-> -124-> -123-> -122-> -121-> -220-> -219-> -219
$ go run mutex.go 21
0 -> 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8-> 9-> -100-> -99-> -98-> -97-> -96->
-95-> -94-> -93-> -92-> -91-> -260-> -259-> -259

If you remove the m.Lock() and m.Unlock() statements from the change() function, the
program will generate output similar to the following:

$ go run mutex.go 21
0 -> 1-> 6-> 7-> 5-> -60-> -59-> 9-> 2-> -58-> 3-> -52-> 4-> -57-> 8->
-55-> -90-> -54-> -89-> -53-> -56-> -51-> -89
$ go run mutex.go 21
0 -> 1-> 7-> 8-> 9-> 5-> -99-> 4-> 2-> -97-> -96-> 3-> -98-> -95-> -100->
-93-> -94-> -92-> -91-> -230-> 6-> -229-> -229
$ go run mutex.go 21
0 -> 3-> 7-> 8-> 9-> -120-> -119-> -118-> -117-> 1-> -115-> -114-> -116->
4-> 6-> -112-> 2-> -111-> 5-> -260-> -113-> -259-> -259

The reason for such a change in the output is that all goroutines are simultaneously
changing the shared variable, which is the main reason that the output appears randomly
generated.

What happens if you forget to unlock a mutex?
In this section, you will see what happens if you forget to unlock sync.Mutex. You will do
this using the Go code of forgetMutex.go, which will be presented in two parts.

The first part of forgetMutex.go is shown in the following Go code:

package main

import (
 "fmt"
 "sync"
)

Go Concurrency – Advanced Topics Chapter 10

[388]

var m sync.Mutex

func function() {
 m.Lock()
 fmt.Println("Locked!")
}

All of the problems in this program are caused because the developer forgot to release the
lock on the m sync.Mutex mutex. However, if your program will call function() only
once, then everything will look just fine!

The second part of forgetMutex.go is as follows:

func main() {
 var w sync.WaitGroup

 go func() {
 defer w.Done()
 function()
 }()
 w.Add(1)

 go func() {
 defer w.Done()
 function()
 }()
 w.Add(1)

 w.Wait()
}

There is nothing wrong with the main() function that generates just two goroutines and
waits for them to finish.

Executing forgetMutex.go will produce the following output:

$ go run forgetMutex.go
Locked!
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42001209c)
 /usr/local/Cellar/go/1.9.4/libexec/src/runtime/sema.go:56 +0x39
sync.(*WaitGroup).Wait(0xc420012090)
 /usr/local/Cellar/go/1.9.4/libexec/src/sync/waitgroup.go:131
+0x72
main.main()
 /Users/mtsouk/forgetMutex.go:30 +0xb6

Go Concurrency – Advanced Topics Chapter 10

[389]

goroutine 5 [semacquire]:
sync.runtime_SemacquireMutex(0x115c6fc, 0x0)
 /usr/local/Cellar/go/1.9.4/libexec/src/runtime/sema.go:71 +0x3d
sync.(*Mutex).Lock(0x115c6f8)
 /usr/local/Cellar/go/1.9.4/libexec/src/sync/mutex.go:134 +0xee
main.function()
 /Users/mtsouk/forgetMutex.go:11 +0x2d
main.main.func1(0xc420012090)
 /Users/mtsouk/forgetMutex.go:20 +0x48
created by main.main
 /Users/mtsouk/forgetMutex.go:18 +0x58
exit status 2

So, forgetting to unlock a sync.Mutex mutex will create a panic situation even in the
simplest kind of program. The same applies to the sync.RWMutex type of mutex that you
will to work with in the next section.

The sync.RWMutex type
The sync.RWMutex type is another kind of mutex-actually, it is an improved version of
sync.Mutex, which is defined in the rwmutex.go file of the sync directory as follows:

type RWMutex struct {
 w Mutex // held if there are pending writers
 writerSem uint32 // semaphore for writers to wait for completing
readers
 readerSem uint32 // semaphore for readers to wait for completing
writers
 readerCount int32 // number of pending readers
 readerWait int32 // number of departing readers
}

In other words, sync.RWMutex is based on sync.Mutex with the necessary additions and
improvements.

Now let's talk about how sync.RWMutex improves sync.Mutex. Although only one
function is allowed to perform write operations using a sync.RWMutex mutex, you can
have multiple readers owning a sync.RWMutex mutex. However, there is one thing of
which you should be aware: until all of the readers of a sync.RWMutex mutex unlock that
mutex, you cannot lock it for writing, which is the small price you have to pay for allowing
multiple readers.

Go Concurrency – Advanced Topics Chapter 10

[390]

The functions that can help you work with a sync.RWMutex mutex are RLock() and
RUnlock(), which are used for locking and unlocking the mutex, respectively, for reading
purposes. The Lock() and Unlock() functions used in a sync.Mutex mutex should still
be used when you want to lock and unlock a sync.RWMutex mutex for writing purposes.
Thus, an RLock() function call that locks for reading purposes should be paired with an
RUnlock() function call. Finally, it should be apparent that you should not make changes
to any shared variables inside the RLock() and RUnlock() blocks of code.

The Go code found in rwMutex.go illustrates the use and usefulness of the sync.RWMutex
type. The program is presented in six parts, and it contains two slightly different versions of
the same function. The first one uses a sync.RWMutex mutex for reading, and the second
one uses a sync.Mutex mutex for reading. The performance difference between the two
functions will help you understand the benefits of the sync.RWMutex mutex better, when
used for reading purposes.

The first part of rwMutex.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "sync"
 "time"
)

var Password = secret{password: "myPassword"}

type secret struct {
 RWM sync.RWMutex
 M sync.Mutex
 password string
}

The secret structure holds a shared variable, a sync.RWMutex mutex, and a sync.Mutex
mutex.

The second code portion of rwMutex.go is shown in the following code:

func Change(c *secret, pass string) {
 c.RWM.Lock()
 fmt.Println("LChange")
 time.Sleep(10 * time.Second)

Go Concurrency – Advanced Topics Chapter 10

[391]

 c.password = pass
 c.RWM.Unlock()
}

The Change() function modifies a shared variable, which means that you need to use an
exclusive lock, which is the reason for using the Lock() and Unlock() functions. You
cannot get away with using exclusive locks when changing things!

The third part of rwMutex.go is as follows:

func show(c *secret) string {
 c.RWM.RLock()
 fmt.Print("show")
 time.Sleep(3 * time.Second)
 defer c.RWM.RUnlock()
 return c.password
}

The show() function uses the RLock() and RUnlock() functions because its critical section
is used for reading a shared variable. So, although many goroutines can read the shared
variable, no one can change it without using the Lock() and Unlock() functions.
However, the Lock() function will be blocked for as long as there is someone reading that
shared variable using the mutex.

The fourth code segment of rwMutex.go contains the following Go code:

func showWithLock(c *secret) string {
 c.M.Lock()
 fmt.Println("showWithLock")
 time.Sleep(3 * time.Second)
 defer c.M.Unlock()
 return c.password
}

The only difference between the code of the showWithLock() function and the code of the
show() function is that the showWithLock() function uses an exclusive lock for reading,
which means that only one showWithLock() function can read the password field of the
secret structure.

The fifth part of rwMutex.go contains the following Go code:

func main() {
 var showFunction = func(c *secret) string { return "" }
 if len(os.Args) != 2 {
 fmt.Println("Using sync.RWMutex!")
 showFunction = show

Go Concurrency – Advanced Topics Chapter 10

[392]

 } else {
 fmt.Println("Using sync.Mutex!")
 showFunction = showWithLock
 }

 var waitGroup sync.WaitGroup

 fmt.Println("Pass:", showFunction(&Password))

The remaining code of rwMutex.go follows next:

for i := 0; i < 15; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 fmt.Println("Go Pass:", showFunction(&Password))
 }()
 }

 go func() {
 waitGroup.Add(1)
 defer waitGroup.Done()
 Change(&Password, "123456")
 }()

 waitGroup.Wait()
 fmt.Println("Pass:", showFunction(&Password))
}

Executing rwMutex.go two times and using the time(1) command-line utility to
benchmark the two versions of the program will generate the following type of output:

$ time go run rwMutex.go 10 >/dev/null
real 0m51.206s
user 0m0.130s
sys 0m0.074s
$ time go run rwMutex.go >/dev/null
real 0m22.191s
user 0m0.135s
sys 0m0.071s

Note that the > /dev/null at the end of the preceding commands is for omitting the
output of the two commands. Thus, the version that uses the sync.RWMutex mutex is much
faster than the version that uses sync.Mutex.

Go Concurrency – Advanced Topics Chapter 10

[393]

Sharing memory using goroutines
The last subsection of this topic illustrates how you can share data using a dedicated
goroutine. Although shared memory is the traditional way that threads use to communicate
with each other, Go comes with built-in synchronization features that allow a single
goroutine to own a shared piece of data. This means that other goroutines must send
messages to this single goroutine that owns the shared data, which prevents the corruption
of the data. Such a goroutine is called a monitor goroutine. In Go terminology, this is
sharing by communicating instead of communicating by sharing.

The technique will be illustrated using the monitor.go source file, which will be presented
in five parts. The monitor.go program generates random numbers using a monitor
goroutine.

The first part of monitor.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "sync"
 "time"
)

var readValue = make(chan int)
var writeValue = make(chan int)

The readValue channel is used for reading the random numbers, whereas the writeValue
channel is used for getting new random numbers.

The second code portion of monitor.go is shown in the following code:

func set(newValue int) {
 writeValue <- newValue
}

func read() int {
 return <-readValue
}

Go Concurrency – Advanced Topics Chapter 10

[394]

The purpose of the set() function is to set the value of the shared variable, whereas the
purpose of the read() function is to read the value of the saved variable.

The third code segment of the monitor.go program is as follows:

func monitor() {
 var value int
 for {
 select {
 case newValue := <-writeValue:
 value = newValue
 fmt.Printf("%d ", value)
 case readValue <- value:
 }
 }
}

All of the logic of the program can be found in the implementation of the monitor()
function. Most specifically, the select statement orchestrates the operation of the entire
program. When you have a read request, the read() function attempts to read from the
readValue channel, which is controlled by the monitor() function. This returns the
current value that is kept in the value variable. On the other hand, when you want to
change the stored value, you call set(). This writes to the writeValue channel that is also
handled by the select statement. As a result, no one can deal with the value shared
variable without using the monitor() function.

The fourth code segment of monitor.go follows next:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please give an integer!")
 return
 }
 n, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("Going to create %d random numbers.\n", n)
 rand.Seed(time.Now().Unix())
 go monitor()

Go Concurrency – Advanced Topics Chapter 10

[395]

The last part of monitor.go contains the following Go code:

var w sync.WaitGroup

 for r := 0; r < n; r++ {
 w.Add(1)
 go func() {
 defer w.Done()
 set(rand.Intn(10 * n))
 }()
 }
 w.Wait()
 fmt.Printf("\nLast value: %d\n", read())
}

Executing monitor.go generates the following output:

$ go run monitor.go 20
Going to create 20 random numbers.
89 88 166 42 149 89 20 84 44 178 184 28 52 121 62 91 31 117 140 106
Last value: 106
$ go run monitor.go 10
Going to create 10 random numbers.
30 16 66 70 65 45 31 57 62 26
Last value: 26

Personally, I prefer to use a monitor goroutine instead of the traditional
shared memory techniques because the implementation that uses the
monitor goroutine is safer and closer to the Go philosophy.

Catching race conditions
A data race condition is a situation where two or more running elements such as threads
and goroutines try to take control or modify a shared resource or a variable of a program.
Strictly speaking, a data race occurs when two or more instructions access the same
memory address, where at least one of them performs a write operation.

Go Concurrency – Advanced Topics Chapter 10

[396]

Using the -race flag when running or building a Go source file will turn on the Go race
detector, which will make the compiler create a modified version of a typical executable file.
This modified version can record all accesses to shared variables as well as all
synchronization events that take place, including calls to sync.Mutex and
sync.WaitGroup. After analyzing the relevant events, the race detector prints a report that
can help you identify potential problems so that you can correct them.

Look at the following Go code, which is saved as raceC.go. This program is presented in
three parts.

The first part of raceC.go is as follows:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
)

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Give me a natural number!")
 os.Exit(1)
 }
 numGR, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

The second part of raceC.go contains the following Go code:

 var waitGroup sync.WaitGroup
 var i int

 k := make(map[int]int)
 k[1] = 12

 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 k[i] = i

Go Concurrency – Advanced Topics Chapter 10

[397]

 }()
 }

The remaining Go code of raceC.go is as follows:

 k[2] = 10
 waitGroup.Wait()
 fmt.Printf("k = %#v\n", k)
}

As if it were not enough that many goroutines are accessing the k map at the same time, we
added another statement that accesses the k map before calling the sync.Wait() function.

If you execute raceC.go, you will get the following output without any warning or error
messages:

$ go run raceC.go 10
k = map[int]int{7:10, 2:10, 10:10, 1:12}
$ go run raceC.go 10
k = map[int]int{2:10, 10:10, 1:12, 8:8, 9:9}
$ go run raceC.go 10
k = map[int]int{10:10, 1:12, 6:7, 7:7, 2:10}

If you execute raceC.go only once, then everything will look normal despite the fact that
you do not get what you would expect when printing the contents of the k map. However,
executing raceC.go multiple times tells us that there is something wrong here, mainly
because each execution generates a different output.

There are many more things that we can get from raceC.go and its unexpected output, if
we decide to use the Go race detector to analyze it:

$ go run -race raceC.go 10
==================
WARNING: DATA RACE
Read at 0x00c42007c008 by goroutine 6:
 main.main.func1()
 /Users/mtsouk/ch/ch10/code/raceC.go:32 +0x69
Previous write at 0x00c42007c008 by main goroutine:
 main.main()
 /Users/mtsouk/ch/ch10/code/raceC.go:28 +0x27b
Goroutine 6 (running) created at:
 main.main()
 /Users/mtsouk/ch/ch10/code/raceC.go:30 +0x24b
==================
==================
WARNING: DATA RACE
Write at 0x00c420074180 by goroutine 7:

Go Concurrency – Advanced Topics Chapter 10

[398]

 runtime.mapassign_fast64()
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/hashmap_fast.go:598
+0x0
 main.main.func1()
 /Users/mtsouk/ch/ch10/code/raceC.go:32 +0x90
Previous write at 0x00c420074180 by goroutine 6:
 runtime.mapassign_fast64()
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/hashmap_fast.go:598
+0x0
 main.main.func1()
 /Users/mtsouk/ch/ch10/code/raceC.go:32 +0x90
Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/ch/ch10/code/raceC.go:30 +0x24b
Goroutine 6 (finished) created at:
 main.main()
 /Users/mtsouk/ch/ch10/code/raceC.go:30 +0x24b
==================
k = map[int]int{3:4, 5:5, 9:9, 10:10, 1:1, 2:10, 4:4, 6:6, 7:7, 8:8}
Found 2 data race(s)
exit status 66

So, the race detector found two data races. Each one begins with the WARNING: DATA RACE
message in its output.

The first data race happens inside main.main.func1(), which is called by the for loop
that is called by a goroutine. The problem here is signified by the Previous write
message. After examining the related code, it is easy to see that the actual problem is that
the anonymous function takes no parameters, which means that the value of i that is used
in the for loop cannot be deterministically discerned, as it keeps changing due to the for
loop, which is a write operation.

The message of the second data race is Write at 0x00c420074180 by goroutine 7. If
you read the relevant output, you will see that the data race is related to a write operation,
and it is happening on a Go map by at least two goroutines. As the two goroutines have the
same name (main.main.func1()), it indicates that we are talking about the same
goroutine. Two goroutines trying to write the same variable is a data race condition!

The main.main.func1() notation is used by Go in order to name an
anonymous function internally. If you had different anonymous functions,
their names would have been different as well.

Go Concurrency – Advanced Topics Chapter 10

[399]

You might ask yourself, What can I do now in order to correct the problems coming from the two
data races?

Well, you can rewrite the main() function of raceC.go as follows:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {
 fmt.Println("Give me a natural number!")
 os.Exit(1)
 }
 numGR, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 var waitGroup sync.WaitGroup
 var i int

 k := make(map[int]int)
 k[1] = 12

 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func(j int) {
 defer waitGroup.Done()
 aMutex.Lock()
 k[j] = j
 aMutex.Unlock()
 }(i)
 }

 waitGroup.Wait()
 k[2] = 10
 fmt.Printf("k = %#v\n", k)
}

The aMutex variable is a global sync.Mutex variable defined outside the main() function
that is accessible from everywhere in the program. Although this is not required, having
such a global variable can save you from having to pass it to your functions all of the time.

Go Concurrency – Advanced Topics Chapter 10

[400]

Saving the new version of raceC.go as noRaceC.go and executing it will generate the
expected output:

$ go run noRaceC.go 10
k = map[int]int{1:1, 0:0, 5:5, 3:3, 6:6, 9:9, 2:10, 4:4, 7:7, 8:8}

Processing noRaceC.go with the Go race detector will generate the following output:

$ go run -race noRaceC.go 10
k = map[int]int{5:5, 7:7, 9:9, 1:1, 0:0, 4:4, 6:6, 8:8, 2:10, 3:3}

Note that you need to use a locking mechanism while accessing the k map. If you do not
use such a mechanism and just change the implementation of the anonymous function that
is executed as a goroutine, you will get the following output from go run noRaceC.go:

$ go run noRaceC.go 10
fatal error: concurrent map writes
goroutine 10 [running]:
runtime.throw(0x10ca0bd, 0x15)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/panic.go:605 +0x95
fp=0xc420024738 sp=0xc420024718 pc=0x10276b5
runtime.mapassign_fast64(0x10ae680, 0xc420074180, 0x5, 0x0)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/hashmap_fast.go:607
+0x3d2 fp=0xc420024798 sp=0xc420024738 pc=0x100b582
main.main.func1(0xc420010090, 0xc420074180, 0x5)
 /Users/mtsouk/Desktop/masterGo/ch/ch10/code/noRaceC.go:35 +0x6b
fp=0xc4200247c8 sp=0xc420024798 pc=0x1096f5b
runtime.goexit()
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/asm_amd64.s:2337 +0x1
fp=0xc4200247d0 sp=0xc4200247c8 pc=0x1050c21
created by main.main
 /Users/mtsouk/Desktop/masterGo/ch/ch10/code/noRaceC.go:32 +0x15a
goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42001009c)
 /usr/local/Cellar/go/1.9.3/libexec/src/runtime/sema.go:56 +0x39
sync.(*WaitGroup).Wait(0xc420010090)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:131 +0x72
main.main()
 /Users/mtsouk/Desktop/masterGo/ch/ch10/code/noRaceC.go:40 +0x17a
goroutine 12 [runnable]:
sync.(*WaitGroup).Done(0xc420010090)
 /usr/local/Cellar/go/1.9.3/libexec/src/sync/waitgroup.go:99 +0x43
main.main.func1(0xc420010090, 0xc420074180, 0x7)
 /Users/mtsouk/Desktop/masterGo/ch/ch10/code/noRaceC.go:37 +0x79
created by main.main
 /Users/mtsouk/Desktop/masterGo/ch/ch10/code/noRaceC.go:32 +0x15a
exit status 2

Go Concurrency – Advanced Topics Chapter 10

[401]

The root of the problem is pretty obvious: concurrent map writes.

The context package
The main purpose of the context package is to define the Context type and support
cancellation! Yes, you heard that right; the main purpose of the context package is
supporting cancellation because there are times that, for some reason, you want to abandon
what you are doing. However, it would be very helpful to be able to include some extra
information about your cancelling decisions. The context package allows you to do exactly
that!

If you take a look at the source code of the context package, you will realize that its
implementation is pretty simple—even the implementation of the Context type is pretty
simple, yet the context package is very important.

The context package existed for a while as an external Go package, but it
first appeared as a standard Go package in Go version 1.7. So, if you have
an older Go version, you will not be able to follow this section without
first downloading the context package.

The Context type is an interface with four methods, named Deadline(), Done(), Err(),
and Value(). The good news is that you do not need to implement all of these functions of
the Context interface—you just need to modify a Context variable using functions such as
context.WithCancel() and context.WithTimeout().

The following is a simple use of the context package using the Go code of the
simpleContext.go file, which will be presented in six parts.

The first code segment of simpleContext.go contains the following code:

package main

import (
 "context"
 "fmt"
 "os"
 "strconv"
 "time"
)

Go Concurrency – Advanced Topics Chapter 10

[402]

The second part of simpleContext.go follows next:

func f1(t int) {
 c1 := context.Background()
 c1, cancel := context.WithCancel(c1)
 defer cancel()

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

The f1() function requires just one parameter, which is the time delay, because everything
else is defined inside the function. Note that the type of the cancel variable is
context.CancelFunc.

You need to call the context.Background() function in order to initialize an empty
Context parameter. The context.WithCancel() function uses an existing Context and
creates a child of it with cancellation. The context.WithCancel() function also creates a
Done channel that can be closed, either when the cancel() function is called, as shown in
the preceding code, or when the Done channel of the parent context is closed.

The third code portion of simpleContext.go contains the rest of the code of the f1()
function:

select {
case <-c1.Done():
 fmt.Println("f1():", c1.Err())
 return
case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f1():", r)
 }
 return
}

Here you see the use of the Done() function of a Context variable. When this function is
called, you have a cancellation. The return value of Context.Done() is a channel, because
otherwise you would have not been able to use it in a select statement.

Go Concurrency – Advanced Topics Chapter 10

[403]

The fourth part of simpleContext.go contains the following Go code:

func f2(t int) {
 c2 := context.Background()
 c2, cancel := context.WithTimeout(c2, time.Duration(t)*time.Second)
 defer cancel()

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

 select {
 case <-c2.Done():
 fmt.Println("f2():", c2.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f2():", r)
 }
 return
}

This part showcases the use of the context.WithTimeout() function, which requires two
parameters: a Context parameter and a time.Duration parameter. When the timeout
period expires, the cancel() function is automatically called.

The fifth part of simpleContext.go is as follows:

func f3(t int) {
 c3 := context.Background()
 deadline := time.Now().Add(time.Duration(2*t) * time.Second)
 c3, cancel := context.WithDeadline(c3, deadline)
 defer cancel()

 go func() {
 time.Sleep(4 * time.Second)
 cancel()
 }()

 select {
 case <-c3.Done():
 fmt.Println("f3():", c3.Err())
 return
 case r := <-time.After(time.Duration(t) * time.Second):
 fmt.Println("f3():", r)

Go Concurrency – Advanced Topics Chapter 10

[404]

 }
 return
}

The preceding Go code illustrates the use of the context.WithDeadline() function that
requires two parameters: a Context variable and a time in the future that signifies the
deadline of the operation. When the deadline passes, the cancel() function is
automatically called.

The remaining Go code of simpleContext.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need a delay!")
 return
 }

 delay, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("Delay:", delay)

 f1(delay)
 f2(delay)
 f3(delay)
}

Executing simpleContext.go will generate the following output:

$ go run simpleContext.go 4
Delay: 4
f1(): 2018-02-13 23:30:00.271587 +0200 EET m=+4.003435078
f2(): 2018-02-13 23:30:04.272678 +0200 EET m=+8.004706996
f3(): 2018-02-13 23:30:08.273738 +0200 EET m=+12.005937567
$ go run simpleContext.go 10
Delay: 10
f1(): context canceled
f2(): context canceled
f3(): context canceled

Go Concurrency – Advanced Topics Chapter 10

[405]

The long lines of the output are the return values of the time.After() function calls. They
denote normal operation of the program. The point here is that the operation of the
program is cancelled when there are delays in its execution.

This is as simple as it gets for the use of the context package, as the code presented did not
do any serious work with the Context interface. However, the Go code included in the
next section will present a more realistic example.

An advanced example of the context package
The functionality of the context package will be illustrated much better and in greater
depth using the Go code of the useContext.go program, which is presented in five parts.

In this example, you will create an HTTP client that does not want to wait too long for a
server response, which is not an unusual scenario. In fact, as almost all HTTP clients
support such functionality, you will study another technique for timing out an HTTP
request in Chapter 12, The Foundations of Network Programming in Go.

The useContext.go program requires two command-line arguments: the URL of the
server to which it is going to connect and the delay for which it should wait. If the program
has only one command-line argument, then the delay would be 5 seconds.

The first code segment of useContext.go follows next:

package main

import (
 "context"
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
 "strconv"
 "sync"
 "time"
)

var (
 myUrl string
 delay int = 5
 w sync.WaitGroup
)

type myData struct {

Go Concurrency – Advanced Topics Chapter 10

[406]

 r *http.Response
 err error
}

Both myURL and delay are global variables, so they can be accessed from anything in the
code. Additionally, there is a sync.WaitGroup variable named w, which also has a global
scope, and the definition of a structure named myData for keeping together the response of
the web server, along with an error variable in case there is an error somewhere.

The second part of useContext.go is shown in the following Go code:

func connect(c context.Context) error {
 defer w.Done()
 data := make(chan myData, 1)

 tr := &http.Transport{}
 httpClient := &http.Client{Transport: tr}

 req, _ := http.NewRequest("GET", myUrl, nil)

The preceding Go code deals with the HTTP connection.

You will learn more about developing web servers and clients in Go in
Chapter 12, The Foundations of Network Programming in Go.

The third code portion of useContext.go contains the following Go code:

go func() {
 response, err := httpClient.Do(req)
 if err != nil {
 fmt.Println(err)
 data <- myData{nil, err}
 return
 } else {
 pack := myData{response, err}
 data <- pack
 }
 }()

Go Concurrency – Advanced Topics Chapter 10

[407]

The fourth code segment of useContext.go is shown in the following Go code:

 select {
 case <-c.Done():
 tr.CancelRequest(req)
 <-data
 fmt.Println("The request was cancelled!")
 return c.Err()
 case ok := <-data:
 err := ok.err
 resp := ok.r
 if err != nil {
 fmt.Println("Error select:", err)
 return err
 }
 defer resp.Body.Close()

 realHTTPData, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 fmt.Println("Error select:", err)
 return err
 }
 fmt.Printf("Server Response: %s\n", realHTTPData)

 }
 return nil
}

The remaining code of useContext.go, which is the implementation of the main()
function, is as follows:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Need a URL and a delay!")
 return
 }

 myUrl = os.Args[1]
 if len(os.Args) == 3 {
 t, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }
 delay = t
 }

Go Concurrency – Advanced Topics Chapter 10

[408]

 fmt.Println("Delay:", delay)
 c := context.Background()
 c, cancel := context.WithTimeout(c, time.Duration(delay)*time.Second)
 defer cancel()

 fmt.Printf("Connecting to %s \n", myUrl)
 w.Add(1)
 go connect(c)
 w.Wait()
 fmt.Println("Exiting...")
}

The timeout period is defined by the context.WithTimeout() method. The connect()
function that is executed as a goroutine will either terminate normally or when the
cancel() function is executed.

Although it is not necessary to know about the server part of the operation, it is good to see
how a Go version of a web server can be slow in a random way; that is, a random number
generator decides how slow your web server will be. The name of the source file is
slowWWW.go, and its contents are as follows:

package main

import (
 "fmt"
 "math/rand"
 "net/http"
 "os"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func myHandler(w http.ResponseWriter, r *http.Request) {
 delay := random(0, 15)
 time.Sleep(time.Duration(delay) * time.Second)

 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Fprintf(w, "Delay: %d\n", delay)
 fmt.Printf("Served: %s\n", r.Host)
}

func main() {
 seed := time.Now().Unix()
 rand.Seed(seed)

Go Concurrency – Advanced Topics Chapter 10

[409]

 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/", myHandler)
 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 os.Exit(10)
 }
}

As you can see, you do not need to use the context package in the slowWWW.go file
because it is the job of the web client to decide how much time it can wait for a response!

The code of the myHandler() function is responsible for the slowness of the web server
program. The delay can be from 0 seconds to 14 seconds, as introduced by the random(0,
15) function call.

If you try to use the slowWWW.go web server using a tool such as wget(1), you will receive
the following output:

$ wget -qO- http://localhost:8001/
Serving: /
Delay: 4
$ wget -qO- http://localhost:8001/
Serving: /
Delay: 13

This happens because the default timeout value of wget(1) is larger.

Executing useContext.go while slowWWW.go is already running in another Unix shell will
create the following output when processed with the handy time(1) utility:

$ time go run useContext.go http://localhost:8001/ 1
Delay: 1
Connecting to http://localhost:8001/
Get http://localhost:8001/: net/http: request canceled
The request was cancelled!
Exiting...
real 0m1.374s
user 0m0.304s
sys 0m0.117s

Go Concurrency – Advanced Topics Chapter 10

[410]

$ time go run useContext.go http://localhost:8001/ 10
Delay: 10
Connecting to http://localhost:8001/
Get http://localhost:8001/: net/http: request canceled
The request was cancelled!
Exiting...
real 0m10.381s
user 0m0.314s
sys 0m0.125s
$ time go run useContext.go http://localhost:8001/ 15
Delay: 15
Connecting to http://localhost:8001/
Server Response: Serving: /
Delay: 13
Exiting...
real 0m13.379s
user 0m0.309s
sys 0m0.118s

The output shows that only the third command actually got an answer from the HTTP
server—the first two commands timed out!

Worker pools
Generally speaking, a Worker pool is a set of threads that are about to process jobs assigned
to them. More or less, the Apache web server works that way: the main process accepts all
incoming requests that are forwarded to the worker processes for getting served. Once a
worker process has finished its job, it is ready to serve a new client. Nevertheless, there is a
central difference here because our worker pool will use goroutines instead of threads.
Additionally, threads do not usually die after serving a request because the cost of ending a
thread and creating a new one is too high, whereas goroutines do die after finishing their
job.

As you will see shortly, worker pools in Go are implemented with the help of buffered
channels, because they allow you to limit the number of goroutines running at the same
time.

Go Concurrency – Advanced Topics Chapter 10

[411]

The next program, workerPool.go, will be presented in five parts. The program will
implement a simple task: it will process integer numbers and print their square values using
a single goroutine for serving each request. Despite the deceptive simplicity of
workerPool.go, the Go code of the program can be easily used as a template for
implementing much more difficult tasks.

This is an advanced technique that can help you create server processes in
Go that can accept and serve multiple clients using goroutines!

The first part of workerPool.go follows next:

package main

import (
 "fmt"
 "os"
 "strconv"
 "sync"
 "time"
)

type Client struct {
 id int
 integer int
}

type Data struct {
 job Client
 square int
}

Here you can see a technique that uses the Client structure for assigning a unique id to
each request that will process. The Data structure is used for grouping the data of a Client
with the actual results generated by the program. Put simply, the Client structure holds
the input data of each request, whereas the Data structure holds the results of a request.

Go Concurrency – Advanced Topics Chapter 10

[412]

The second code portion of workerPool.go is shown in the following Go code:

var (
 size = 10
 clients = make(chan Client, size)
 data = make(chan Data, size)
)

func worker(w *sync.WaitGroup) {
 for c := range clients {
 square := c.integer * c.integer
 output := Data{c, square}
 data <- output
 time.Sleep(time.Second)
 }
 w.Done()
}

The preceding code has two interesting parts. The first part creates three global variables.
The clients and data buffered channels are used for getting new client requests and
writing the results, respectively. If you want your program to run faster, you can increase
the value of the size parameter.

The second part is the implementation of the worker() function, which reads the clients
channel in order to get new requests to serve. Once the processing is complete, the result is
written to the data channel. The delay that is introduced using the
time.Sleep(time.Second) statement is not necessary, but it gives you a better sense of
the way the generated output will be printed.

The third part of workerPool.go contains the following Go code:

func makeWP(n int) {
 var w sync.WaitGroup
 for i := 0; i < n; i++ {
 w.Add(1)
 go worker(&w)
 }
 w.Wait()
 close(data)
}

func create(n int) {
 for i := 0; i < n; i++ {
 c := Client{i, i}
 clients <- c
 }

Go Concurrency – Advanced Topics Chapter 10

[413]

 close(clients)
}

The preceding code implements two functions, named makeWP() and create(). The
purpose of the makeWP() function is to generate the required number of worker()
goroutines for processing all requests. Although the w.Add(1) function is called in
makeWP(), the w.Done() is called in the worker() function once a worker has finished its
job.

The purpose of the create() function is to create all requests properly using the Client
type and then to write them to the clients channel for processing. Note that the clients
channel is read by the worker() function.

The fourth code segment of workerPool.go is as follows:

func main() {
 fmt.Println("Capacity of clients:", cap(clients))
 fmt.Println("Capacity of data:", cap(data))

 if len(os.Args) != 3 {
 fmt.Println("Need #jobs and #workers!")
 os.Exit(1)
 }

 nJobs, err := strconv.Atoi(os.Args[1])
 if err != nil {
 fmt.Println(err)
 return
 }

 nWorkers, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println(err)
 return
 }

In the preceding code, you read your command-line parameters. First, however, you see
that you can use the cap() function to find the capacity of a channel.

If the number of workers is larger than the size of the clients buffered channel, then the
number of goroutines that is going to be created will be equal to the size of the clients
channel. Similarly, if the number of jobs is larger than the number of workers, the jobs will
be served in smaller sets.

Go Concurrency – Advanced Topics Chapter 10

[414]

The program allows you to define the number of workers and the number of jobs using its
command-line arguments. However, in order to change the size of the clients and data
channels, you will need to make changes to the source code of the program.

The remaining code of workerPool.go follows next:

go create(nJobs)
finished := make(chan interface{})
go func() {
 for d := range data {
 fmt.Printf("Client ID: %d\tint: ", d.job.id)
 fmt.Printf("%dtsquare: %d\n", d.job.integer, d.square)
 }
 finished <- true
 }()

 makeWP(nWorkers)
 fmt.Printf(": %v\n", <-finished)
}

First, you will call the create() function for mimicking the client requests that you will
have to process. An anonymous goroutine is used for reading the data channel and
printing the output to the screen. The finished channel is used for blocking the program
until the anonymous goroutine is done reading the data channel. Therefore, the finished
channel needs no particular type! Finally, you will call the makeWP() function for actually
processing the requests. The <-finished statement in fmt.Printf() blocks, which means
that it does not allow the program to end until somebody writes something to the
finished channel. That somebody is the anonymous goroutine of the main() function.
Additionally, although the anonymous function writes the value true to the finished
channel, you can write false to it and have the same result, which is unblocking the
main() function. Try it on your own!

Executing workerPool.go will generate the following output:

$ go run workerPool.go 15 5
Capacity of clients: 10
Capacity of data: 10
Client ID: 0 int: 0 square: 0
Client ID: 4 int: 4 square: 16
Client ID: 1 int: 1 square: 1
Client ID: 3 int: 3 square: 9
Client ID: 2 int: 2 square: 4
Client ID: 5 int: 5 square: 25

Go Concurrency – Advanced Topics Chapter 10

[415]

Client ID: 6 int: 6 square: 36
Client ID: 7 int: 7 square: 49
Client ID: 8 int: 8 square: 64
Client ID: 9 int: 9 square: 81
Client ID: 10 int: 10 square: 100
Client ID: 11 int: 11 square: 121
Client ID: 12 int: 12 square: 144
Client ID: 13 int: 13 square: 169
Client ID: 14 int: 14 square: 196
: true

When you want to serve each individual request without expecting an answer from it in the
main() function, as happened with workerPool.go, you have fewer things to worry
about. A simple way both to use goroutines for processing your requests and to get an
answer from them in the main() function is using shared memory or a monitor process that
will collect the data instead of just printing it on the screen.

Finally, the work of the workerPool.go program is much simpler because the worker()
function cannot fail. This will not be the case when you have to work over computer
networks or with other kinds of resources that can fail.

Additional resources
The following are very useful resources:

Visit the documentation page of the sync package, which can be found
at https://golang.org/pkg/sync/.
Visit the documentation page of the context package, which can be found
at https://golang.org/pkg/context/.
You can learn more about the implementation of the Go scheduler by
visiting https://golang.org/src/runtime/proc.go.
You can view the design document of the Go scheduler
at https://golang.org/s/go11sched.

https://golang.org/pkg/sync/
https://golang.org/pkg/context/
https://golang.org/src/runtime/proc.go
https://golang.org/s/go11sched

Go Concurrency – Advanced Topics Chapter 10

[416]

Exercises
Try to implement a concurrent version of wc(1) that uses a buffered channel.
Next, try to implement a concurrent version of wc(1) that uses shared memory.
Finally, try to implement a concurrent version of wc(1) that uses a monitor
goroutine.
Modify the Go code of workerPool.go in order to save the results in a file. Use a
mutex and a critical section while dealing with the file, or a monitor goroutine
that will keep writing your data on the disk.
What will happen to the workerPool.go program when the value of the size
global variable becomes 1? Why?
Modify the Go code of workerPool.go in order to implement the functionality
of the wc(1) command-line utility.
Modify the Go code of workerPool.go so that the size of the clients and data
buffered channels can be defined as command-line arguments.
Try to write a concurrent version of the find(1) command-line utility that uses a
monitor goroutine.
Modify the code of simpleContext.go so that the anonymous function used in
all f1(), f2(), and f3() functions becomes a separate function. What is the
main challenge of this code change?
Modify the Go code of simpleContext.go so that all the f1(), f2(), and f3()
functions use an externally created Context variable instead of defining their
own.
Modify the Go code of useContext.go in order to use either
context.WithDeadline() or context.WithCancel() instead of
context.WithTimeout().
Finally, try to implement a concurrent version of the find(1)command-line
utility using a sync.Mutex mutex.

Go Concurrency – Advanced Topics Chapter 10

[417]

Summary
This chapter addressed many important topics related to goroutines. Mainly, however, it
clarified the power of the select statement. Additionally, it demonstrated the use of the
context standard Go package.

Due to the capabilities of the select statement, channels are the preferred Go way for
interconnecting the components of a Go program.

There are many rules in concurrent programming; however, the most important rule is that
you should avoid sharing things unless you have a pretty good reason to do so. Shared data
is the root of all nasty bugs in concurrent programming.

What you must remember from this chapter is that although shared memory used to be the
only way for exchanging data over the threads of the same process, Go offers better ways
for goroutines to communicate with each other. So think in Go terms before deciding to use
shared memory in your Go code. Nonetheless, if you really have to use shared memory,
you might want to use a monitor goroutine instead.

The primary subjects of the next chapter will be code testing, code optimization, and code
profiling with Go. Apart from these topics, you will learn about benchmarking Go code,
cross compilation, and finding unreachable Go code.

At the end of the next chapter, you will also learn how to document your Go code and how
to generate HTML output using the godoc utility.

11
Code Testing, Optimization,

and Profiling
The previous chapter discussed concurrency in Go and how the select statement allows
you to use channels as glue for controlling goroutines and allowing goroutines to
communicate.

The Go topics in this chapter are just moderately advanced, yet they are very practical and
important, especially when you are interested in improving the performance of your Go
programs and discovering bugs quickly. This chapter primarily addresses code
optimization, code testing, code documentation, and code profiling.

Code optimization is a process where one or more developers try to make certain parts of a
program run faster, more efficient, or use fewer resources. Put simply, code optimization is
about eliminating the bottlenecks of a program.

Code testing is about making sure that your code does what you want it to do. In this
chapter, you will experience the Go way of testing code. The best time to write code to test
your program is during the development phase, as this can help reveal bugs in your code as
early as possible.

Code profiling relates to measuring certain aspects of a program in order to get a detailed
understanding of the way the code works. The results of code profiling may help you
decide which parts of your code need to change.

I hope that you already recognize the importance of documenting your code in order to
describe the decisions you made in developing the implementation of your program. In this
chapter, you will see how Go can help you generate documentation for the modules that
you implement.

Code Testing, Optimization, and Profiling Chapter 11

[419]

Documentation is so important that some developers write the
documentation first and the code afterwards!

In this chapter of Mastering Go, you will learn the following topics:

Profiling Go code
The go tool pprof utility
Using the web interface of the Go profiler
Testing Go code
The go test command
The go tool trace utility
Benchmarking Go code
Cross-compilation
Generating documentation for your Go code
Creating example functions
Finding unreachable Go code in your programs

The Go version used in this chapter
Note that in this chapter, we will be using the latest Go version on a macOS machine. At the
time of writing, this is Go version 1.10:

$ date
Fri Mar 9 23:17:49 EET 2018
$ go version
go version go1.10 darwin/amd64

The reason I mention this is that you will need at least Go version 1.10 in order to be able to
use the web interface of the Go code profiler. However, the rest of the presented commands
and code will work just fine with earlier Go versions.

Comparing Go version 1.10 with Go version 1.9
This section will list the most important differences between Go version 1.9 and Go version
1.10, just to give you an idea of the pace of Go changes.

Code Testing, Optimization, and Profiling Chapter 11

[420]

Some of the changes in Go version 1.10 are as follows:

There is a change in the way that the GOROOT and GOTMPDIR environment
variables are defined.

The go test command caches test results, which means that it might run a little
faster.

The go doc tool now includes output about functions that return slices of a type
or a pointer to a type when you tell go doc to display data about that type.

The runtime/pprof package that you will see later in this chapter now includes
symbol information about the blocking and mutex profiles.

The go fix tool replaces the import statements of
golang.org/x/net/context with just context.

The go tool proff includes a web interface. Although this is a major change, it
has nothing to do with the Go programming language itself and therefore does
not break any existing Go code. You will see that web interface in action later in
this chapter.

Go version 1.10 includes minor changes to some packages of the standard Go
library, including archive/tar and archive/zip, debug/macho, hash,
html/template, math/big, net/url, os, time, unicode, and net/smtp.

As you must realize, the Go programming language progresses without breaking things.
This might look insignificant at first, but it is a very important feature of Go which
guarantees that the existing Go code will continue to compile without changes while Go
evolves. A side effect of this is that this book will be relevant for many years!

Installing a beta or RC version of Go
If you are eager to try the latest version of Go, even if it means that you will need to install a
beta or a Release Candidate (RC) version of Go, there is a way!

Despite their name, Release Candidate versions of Go are pretty stable.
Just do not install a RC version on a production Unix machine without
having a very good reason to do so!

Code Testing, Optimization, and Profiling Chapter 11

[421]

If you have a version of Go that is older than 1.10 and you want to try Go version 1.10 RC1,
you can do that as follows:

$ go get golang.org/x/build/version/go1.10rc1

You should expect to execute an analogous command if you want to install a different
version of Go. On a macOS High Sierra system that runs release 10.13.3, the new Go binary
will be installed inside ~/go/bin:

$ cd ~/go/bin
$ ls -l
-rwxr-xr-x 1 mtsouk staff 6051164 Jan 30 19:04 go1.10rc1

If you try to execute go1.10rc1, you will get the following output:

$./go1.10rc1
go1.10rc1: not downloaded. Run 'go1.10rc1 download' to install to
/Users/mtsouk/sdk/go1.10rc1

Next you will have to execute the remaining files of Go version 1.10 RC1 as follows:

$./go1.10rc1 download
$ ls -l ~/sdk/go1.10rc1/
total 248016
-rw-r--r-- 1 mtsouk staff 47028 Jan 25 19:30 AUTHORS
-rw-r--r-- 1 mtsouk staff 1576 Jan 25 19:30 CONTRIBUTING.md
-rw-r--r-- 1 mtsouk staff 61940 Jan 25 19:30 CONTRIBUTORS
-rw-r--r-- 1 mtsouk staff 1479 Jan 25 19:30 LICENSE
-rw-r--r-- 1 mtsouk staff 1303 Jan 25 19:30 PATENTS
-rw-r--r-- 1 mtsouk staff 1601 Jan 25 19:30 README.md
-rw-r--r-- 1 mtsouk staff 9 Jan 25 19:30 VERSION
drwxr-xr-x 16 mtsouk staff 512 Jan 30 19:07 api
drwxr-xr-x 5 mtsouk staff 160 Jan 30 19:07 bin
drwxr-xr-x 4 mtsouk staff 128 Jan 30 19:07 blog
drwxr-xr-x 48 mtsouk staff 1536 Jan 30 19:07 doc
-rw-r--r-- 1 mtsouk staff 5686 Jan 25 19:30 favicon.ico
-rw-r--r-- 1 mtsouk staff 117832137 Jan 30 19:07 go1.10rc1.darwin-
amd64.tar.gz
drwxr-xr-x 3 mtsouk staff 96 Jan 30 19:07 lib
drwxr-xr-x 16 mtsouk staff 512 Jan 30 19:07 misc
drwxr-xr-x 8 mtsouk staff 256 Jan 30 19:07 pkg
-rw-r--r-- 1 mtsouk staff 26 Jan 25 19:30 robots.txt
drwxr-xr-x 68 mtsouk staff 2176 Jan 30 19:07 src
drwxr-xr-x 295 mtsouk staff 9440 Jan 30 19:07 test

Code Testing, Optimization, and Profiling Chapter 11

[422]

You can now use Go version 1.10 RC1 as go1.10rc1:

$ ~/go/bin/go1.10rc1 version
go version go1.10rc1 darwin/amd64

About optimization
Code optimization is both an art and a science! This means that there is no deterministic
way to help you optimize your Go code, or any other code in any programming language,
and that you should use your brain and try many things if you want to make your code run
faster.

You should make sure that you are optimizing code that does not contain
any bugs, because there is no point in optimizing a bug. If you have any
bugs in your program, you should debug it first!

If you are really into code optimization, you might want to read Compilers: Principles,
Techniques and Tools by Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Pearson
Education Limited, 2014, which focuses on compiler construction. Additionally, all volumes
in The Art of Computer Programming series by Donald Knuth, Addison-Wesley Professional, 1998,
are a great resource for all aspects of programming.

Always remember what Donald Knuth said about optimization:

The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the root of
all evil (or at least most of it) in programming.

Optimizing Go code
Code optimization is the process where you try to discover the parts of your code that have
a big influence on the performance of the entire program in order to make them run faster
or use fewer resources.

The benchmarking section that appears later in this chapter will greatly help you
understand what is going on with your code behind the scenes and which parameters of
your program have the greatest impact on the performance of your program.

Code Testing, Optimization, and Profiling Chapter 11

[423]

However, do not underestimate common sense. Put simply, if one of your functions is
executed ten-thousand times more than the rest of the functions of a program, try to
optimize that function first.

The general advice for optimization is that you must optimize bug-free
code only. This means that you must optimize working code only.
Therefore, you should first try to write correct code even if that code is
slow. Finally, the single most frequent mistake that programmers make is
trying to optimize the first version of their code, which is the root of most
bugs!

Again, code optimization is both an art and a science, which means that it is a pretty
difficult task. The next section about profiling Go code will definitely help you with code
optimization because the main purpose of profiling is to find the bottlenecks in your code in
order to optimize the right and most important parts of your program.

Profiling Go code
Profiling is a process of dynamic program analysis that measures various values related to
program execution in order to give you a better understanding on the behavior of your
program. In this section, you will learn how to profile Go code in order to understand your
code better and improve its performance. Sometimes, code profiling can even reveal bugs!

First, we will use the command-line interface of the Go profiler. Next, we will use the brand
new web interface of the Go profiler!

The single most important thing to remember is that if you want to profile Go code, you
will need to import the runtime/pprof standard Go package, either directly or indirectly.
You can find the help page of the pprof tool by executing the go tool pprof -help
command, which will generate lots of output.

Code Testing, Optimization, and Profiling Chapter 11

[424]

The net/http/pprof standard Go package
Although Go comes with the low-level runtime/pprof standard Go package, there is also
a high-level net/http/pprof package that should be used when you want to profile a web
application written in Go. As this chapter will not talk about creating HTTP servers in Go,
you will learn more about the net/http/pprof package in Chapter 12, The Foundations of
Network Programming in Go.

A simple profiling example
Go supports two kinds of profiling: CPU profiling and memory profiling. It is not
recommended that you profile an application for both kinds at the same time, because these
two different kinds of profiling do not work well with each other. The profileMe.go
application is an exception, however, because it is used for illustrating the two techniques.

The Go code to be profiled is saved as profileMe.go, and it will be presented in five parts.
The first part of profileMe.go is shown in the following Go code:

package main
import (
 "fmt"
 "math"
 "os"
 "runtime"
 "runtime/pprof"
 "time"
)
func fibo1(n int) int64 {
 if n == 0 || n == 1 {
 return int64(n)
 }
 time.Sleep(time.Millisecond)
 return int64(fibo2(n-1)) + int64(fibo2(n-2))
}

Notice that it is compulsory to import the runtime/pprof package directly or indirectly for
your program to create profiling data. The reason for calling time.Sleep() in the fibo1()
function is to slow it down a bit. You will learn why, near the end of this section.

Code Testing, Optimization, and Profiling Chapter 11

[425]

The second code segment of profileMe.go follows next:

func fibo2(n int) int {
 fn := make(map[int]int)
 for i := 0; i <= n; i++ {
 var f int
 if i <= 2 {
 f = 1
 } else {
 f = fn[i-1] + fn[i-2]
 }
 fn[i] = f
 }
 time.Sleep(50 * time.Millisecond)
 return fn[n]
}

The preceding code contains the implementation of another Go function that uses a
different algorithm for calculating the numbers of the Fibonacci sequence.

The third part of profileMe.go contains the following Go code:

func N1(n int) bool {
 k := math.Floor(float64(n/2 + 1))
 for i := 2; i < int(k); i++ {
 if (n % i) == 0 {
 return false
 }
 }
 return true
}
func N2(n int) bool {
 for i := 2; i < n; i++ {
 if (n % i) == 0 {
 return false
 }
 }
 return true
}

Both the N1() and N2() functions are used for finding out whether a given integer is a
prime number or not. The first function is optimized because its for loop iterates over
approximately half the numbers used in the for loop of N2(). As both functions are
relatively slow, there is no need for a call to time.Sleep() here.

Code Testing, Optimization, and Profiling Chapter 11

[426]

The fourth code segment of profileMe.go is as follows:

func main() {
 cpuFile, err := os.Create("/tmp/cpuProfile.out")
 if err != nil {
 fmt.Println(err)
 return
 }
 pprof.StartCPUProfile(cpuFile)
 defer pprof.StopCPUProfile()
 total := 0
 for i := 2; i < 100000; i++ {
 n := N1(i)
 if n {
 total = total + 1
 }
 }
 fmt.Println("Total primes:", total)
 total = 0
 for i := 2; i < 100000; i++ {
 n := N2(i)
 if n {
 total = total + 1
 }
 }
 fmt.Println("Total primes:", total)
 for i := 1; i < 90; i++ {
 n := fibo1(i)
 fmt.Print(n, " ")
 }
 fmt.Println()
 for i := 1; i < 90; i++ {
 n := fibo2(i)
 fmt.Print(n, " ")
 }
 fmt.Println()
 runtime.GC()

The call to os.Create() is used to have a file to which to write the profiling data. The
pprof.StartCPUProfile() call begins the CPU profiling of the program, and the call to
pprof.StopCPUProfile() stops it.

The last part of profileMe.go follows next:

 // Memory profiling!
 memory, err := os.Create("/tmp/memoryProfile.out")
 if err != nil {

Code Testing, Optimization, and Profiling Chapter 11

[427]

 fmt.Println(err)
 return
 }
 defer memory.Close()
 for i := 0; i < 10; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(50 * time.Millisecond)
 }
 err = pprof.WriteHeapProfile(memory)
 if err != nil {
 fmt.Println(err)
 return
 }
}

In the last part, you can see how the memory profiling technique works. It is pretty similar
to CPU profiling, and once again you will need a file for writing out the profiling data.

Executing profileMe.go will generate the following output:

$ go run profileMe.go
Total primes: 9592
Total primes: 9592
1 2 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946
17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309
3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155
165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073
4807526976 7778742049 12586269025 20365011074 32951280099 53316291173
86267571272 139583862445 225851433717 365435296162 591286729879
956722026041 1548008755920 2504730781961 4052739537881 6557470319842
10610209857723 17167680177565 27777890035288 44945570212853 72723460248141
117669030460994 190392490709135 308061521170129 498454011879264
806515533049393 1304969544928657 2111485077978050 3416454622906707
5527939700884757 8944394323791464 14472334024676221 23416728348467685
37889062373143906 61305790721611591 99194853094755497 160500643816367088
259695496911122585 420196140727489673 679891637638612258
1100087778366101931 1779979416004714189
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946
17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309
3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155
165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073
4807526976 7778742049 12586269025 20365011074 32951280099 53316291173
86267571272 139583862445 225851433717 365435296162 591286729879
956722026041 1548008755920 2504730781961 4052739537881 6557470319842

Code Testing, Optimization, and Profiling Chapter 11

[428]

10610209857723 17167680177565 27777890035288 44945570212853 72723460248141
117669030460994 190392490709135 308061521170129 498454011879264
806515533049393 1304969544928657 2111485077978050 3416454622906707
5527939700884757 8944394323791464 14472334024676221 23416728348467685
37889062373143906 61305790721611591 99194853094755497 160500643816367088
259695496911122585 420196140727489673 679891637638612258
1100087778366101931 1779979416004714189

Apart from the output, the program will also collect the profiling data in two files:

$ cd /tmp
$ ls -l *Profile*
-rw-r--r-- 1 mtsouk wheel 1965 Mar 8 16:53 cpuProfile.out
-rw-r--r-- 1 mtsouk wheel 484 Mar 8 16:53 memoryProfile.out

It is only after collecting the profiling data that you can start to inspect it. Thus, you can
now start the command-line profiler to examine the CPU data as follows:

$ go tool pprof /tmp/cpuProfile.out
Main binary filename not available.
Type: cpu
Time: Mar 8, 2018 at 4:53pm (EET)
Duration: 19.12s, Total samples = 4.18s (21.86%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

Typing help while in the profiler shell will generate the following output:

(pprof) help
Commands:
callgrind Outputs a graph in callgrind format
comments Output all profile comments
disasm Output assembly listings annotated with samples
dot Outputs a graph in DOT format
eog Visualize graph through eog
evince Visualize graph through evince
gif Outputs a graph image in GIF format
gv Visualize graph through gv
kcachegrind Visualize report in KCachegrind
list Output annotated source for functions matching regexp
pdf Outputs a graph in PDF format
peek Output callers/callees of functions matching regexp
png Outputs a graph image in PNG format
proto Outputs the profile in compressed protobuf format
ps Outputs a graph in PS format
raw Outputs a text representation of the raw profile
svg Outputs a graph in SVG format
tags Outputs all tags in the profile

Code Testing, Optimization, and Profiling Chapter 11

[429]

text Outputs top entries in text form
top Outputs top entries in text form
topproto Outputs top entries in compressed protobuf format
traces Outputs all profile samples in text form
tree Outputs a text rendering of call graph
web Visualize graph through web browser
weblist Display annotated source in a web browser
o/options List options and their current values
quit/exit/^D Exit pprof
Options:
call_tree Create a context-sensitive call tree
compact_labels Show minimal headers
divide_by Ratio to divide all samples before visualization
drop_negative Ignore negative differences
edgefraction Hide edges below <f>*total
focus Restricts to samples going through a node matching regexp
hide Skips nodes matching regexp
ignore Skips paths going through any nodes matching regexp
mean Average sample value over first value (count)
nodecount Max number of nodes to show
nodefraction Hide nodes below <f>*total
normalize Scales profile based on the base profile.
output Output filename for file-based outputs
positive_percentages Ignore negative samples when computing percentages
prune_from Drops any functions below the matched frame.
relative_percentages Show percentages relative to focused subgraph
sample_index Sample value to report (0-based index or name)
show Only show nodes matching regexp
source_path Search path for source files
tagfocus Restricts to samples with tags in range or matched by regexp
taghide Skip tags matching this regexp
tagignore Discard samples with tags in range or matched by regexp
tagshow Only consider tags matching this regexp
trim Honor nodefraction/edgefraction/nodecount defaults
unit Measurement units to display
Option groups (only set one per group):
cumulative
cum Sort entries based on cumulative weight
flat Sort entries based on own weight
granularity
addresses Aggregate at the function level.
addressnoinlines Aggregate at the function level, including functions'
addresses in the output.
files Aggregate at the file level.
functions Aggregate at the function level.
lines Aggregate at the source code line level.
noinlines Aggregate at the function level.
: Clear focus/ignore/hide/tagfocus/tagignore

Code Testing, Optimization, and Profiling Chapter 11

[430]

type "help <cmd|option>" for more information
(pprof)

Do find the time to try out all of the commands of the go tool pprof
utility and familiarize yourself with them.

The top command returns the top 10 entries in text form:

(pprof) top
Showing nodes accounting for 4120ms, 98.56% of 4180ms total
Dropped 26 nodes (cum <= 20.90ms)
Showing top 10 nodes out of 21
flat flat% sum% cum cum%
1950ms 46.65% 46.65% 1950ms 46.65% main.N2
1170ms 27.99% 74.64% 1170ms 27.99% runtime.usleep
910ms 21.77% 96.41% 910ms 21.77% main.N1
90ms 2.15% 98.56% 90ms 2.15% runtime.mach_semaphore_signal
0 0% 98.56% 2890ms 69.14% main.main
0 0% 98.56% 80ms 1.91% runtime.goready
0 0% 98.56% 80ms 1.91% runtime.goready.func1
0 0% 98.56% 80ms 1.91% runtime.goroutineReady
0 0% 98.56% 90ms 2.15% runtime.mach_semrelease
0 0% 98.56% 2890ms 69.14% runtime.main

As the first line of the output states, the functions presented are responsible for 98.56% of
the total execution time of the program. The main.N2 function in particular is responsible
for the 46.65% of the execution time of the program.

The top10 --cum command returns the cumulative time for each function:

(pprof) top10 --cum
Showing nodes accounting for 4030ms, 96.41% of 4180ms total
Dropped 26 nodes (cum <= 20.90ms)
Showing top 10 nodes out of 21
flat flat% sum% cum cum%
0 0% 0% 2890ms 69.14% main.main
0 0% 0% 2890ms 69.14% runtime.main
1950ms 46.65% 46.65% 1950ms 46.65% main.N2
0 0% 46.65% 1180ms 28.23% runtime.mstart
0 0% 46.65% 1180ms 28.23% runtime.mstart1
0 0% 46.65% 1180ms 28.23% runtime.sysmon
1170ms 27.99% 74.64% 1170ms 27.99% runtime.usleep
910ms 21.77% 96.41% 910ms 21.77% main.N1
0 0% 96.41% 130ms 3.11% runtime.systemstack
0 0% 96.41% 110ms 2.63% runtime.timerproc

Code Testing, Optimization, and Profiling Chapter 11

[431]

What if you want to find out what is happening with a particular function? You can use the
list command followed by the function name, combined with the package name, and
you'll get more detailed information about the performance of that function:

(pprof) list main.N1
Total: 4.18s
ROUTINE ======= main.N1 in /Users/mtsouk/ch11/code/profileMe.go
910ms 910ms (flat, cum) 21.77% of Total
. . 32: return fn[n]
. . 33:}
. . 34:
. . 35:func N1(n int) bool {
. . 36: k := math.Floor(float64(n/2 + 1))
60ms 60ms 37: for i := 2; i < int(k); i++ {
850ms 850ms 38: if (n % i) == 0 {
. . 39: return false
. . 40: }
. . 41: }
. . 42: return true
. . 43:}
(pprof)

The output shows that the for loop of main.N1 is responsible for almost all of the
execution time of the entire function. Specifically, the if (n % i) == 0 statement is
responsible for 850ms out of 910ms of the execution time of the entire function.

You can also create a PDF output of the profiling data from the shell of the Go profiler,
using the pdf command:

(pprof) pdf
Generating report in profile001.pdf

Note that you will need Graphviz in order to generate a PDF file that can be viewed using
your favorite PDF reader.

Finally, a warning: if your program executes too quickly, then the profiler will not have
enough time to get its required samples and you might see the Total samples = 0
output when you load the data file. In that case, you will not be able to get any useful
information from the profiling process. This is the reason for using the time.Sleep()
function in some of the functions of profileMe.go:

$ go tool pprof /tmp/cpuProfile.out
Type: cpu
Time: Mar 7, 2018 at 10:25pm (EET)
Duration: 202.29ms, Total samples = 0

Code Testing, Optimization, and Profiling Chapter 11

[432]

Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

A convenient external package for profiling
In this subsection, you will see the use of an external Go package that sets up the profiling
environment much more conveniently than when using the runtime/pprof standard Go
package. This point is illustrated in betterProfile.go, which will be presented in three
parts.

The first part of betterProfile.go is as follows:

package main
import (
 "fmt"
 "github.com/pkg/profile"
)
var VARIABLE int
func N1(n int) bool {
 for i := 2; i < n; i++ {
 if (n % i) == 0 {
 return false
 }
 }
 return true
}

In the preceding code, you can see the use of an external Go package that can be found
at, github.com/pkg/profile. You can download it with the help of the go get command,
as follows:

$ go get github.com/pkg/profile

The second code segment of betterProfile.go contains the following Go code:

func Multiply(a, b int) int {
 if a == 1 {
 return b
 }
 if a == 0 || b == 0 {
 return 0
 }
 if a < 0 {
 return -Multiply(-a, b)
 }

http://github.com/pkg/profile

Code Testing, Optimization, and Profiling Chapter 11

[433]

 return b + Multiply(a-1, b)
}
func main() {
 defer profile.Start(profile.ProfilePath("/tmp")).Stop()

The github.com/pkg/profile package by Dave Cheney requires that you insert just a single
statement in order to enable CPU profiling in your Go application. If you want to enable
memory profiling, you should insert the following statement instead:

defer profile.Start(profile.MemProfile).Stop()

The remaining Go code of the program is as follows:

total := 0
for i := 2; i < 200000; i++ {
 n := N1(i)
 if n {
 total++
 }
 }
 fmt.Println("Total: ", total)
 total = 0
 for i := 0; i < 5000; i++ {
 for j := 0; j < 400; j++ {
 k := Multiply(i, j)
 VARIABLE = k
 total++
 }
 }
 fmt.Println("Total: ", total)
}

Executing betterProfile.go generates the following output:

$ go run betterProfile.go
2018/03/08 17:01:28 profile: cpu profiling enabled, /tmp/cpu.pprof
Total: 17984
Total: 2000000
2018/03/08 17:01:56 profile: cpu profiling disabled, /tmp/cpu.pprof

http://github.com/pkg/profile

Code Testing, Optimization, and Profiling Chapter 11

[434]

The github.com/pkg/profile package will help you with the data
capturing portion; the processing part is the same as before!

$ go tool pprof /tmp/cpu.pprof
Main binary filename not available.
Type: cpu
Time: Mar 8, 2018 at 5:01pm (EET)
Duration: 27.51s, Total samples = 23.62s (85.87%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)

The web interface of the Go profiler
The good news is that with Go version 1.10, the go tool pprof command comes with a
web user interface!

For the web user interface feature to work, you will need to have
Graphviz installed and your web browser must support JavaScript. If you
want to play it safe, use either Chrome or Firefox.

You can start the interactive Go profiler as follows:

$ go tool pprof -http=[host]:[port] aProfile

A profiling example that uses the web interface
We will use the data captured from the execution of profileMe.go to study the web
interface of the Go profiler as there is no need for creating a specific code example for doing
this. As you learned in the previous subsection, you will first need to execute the following
command:

$ go tool pprof -http=localhost:8080 /tmp/cpuProfile.out
Main binary filename not available.

http://github.com/pkg/profile

Code Testing, Optimization, and Profiling Chapter 11

[435]

The following figure shows the initial screen of the web user interface of the Go profiler
after executing the preceding command:

The web interface of the Go profiler in action

Code Testing, Optimization, and Profiling Chapter 11

[436]

Similarly, the following figure shows the http://localhost:8080/source URL of the
Go profiler, which displays analytical information for each function of the program:

Using the /source URL of the Go profiler

Code Testing, Optimization, and Profiling Chapter 11

[437]

As I cannot possibly show every single page of the Go profiler web
interface, you should begin to familiarize yourself with it on your own, as
it is a great tool for examining the operation of your programs.

A quick introduction to Graphviz
Graphviz is a very handy compilation of utilities and a computer language that allows you
to draw complex graphs. Strictly speaking, Graphviz is a collection of tools for
manipulating both directed and undirected graph structures and generating graph layouts.
Graphviz has its own language, named DOT, which is simple, elegant, and powerful. The
good thing about Graphviz is that you can write its code using a simple plain text editor. A
wonderful side effect of this feature is that you can easily develop scripts that generate
Graphviz code! Also, most programming languages, including Python, Ruby, C++, and
Perl, provide their own interface for creating Graphviz files using native code.

You need not know all of these things about Graphviz in order to use the
web interface of the Go profiler. It is just useful to know how Graphviz
works and what its code looks like.

The following Graphviz code, which is saved as graph.dot, briefly illustrates the way that
Graphviz works and the look of the Graphviz language:

digraph G
{
 graph [dpi = 300, bgcolor = "gray"];
 rankdir = LR;
 node [shape=record, width=.2, height=.2, color="white"];
 node0 [label = "<p0> |<p1>|<p2>|<p3>|<p4>| | ", height = 3];
 node[width=2];
 node1 [label = "{<e> r0 | 123 | <p> }", color="gray"];
 node2 [label = "{<e> r10 | 13 | <p> }"];
 node3 [label = "{<e> r11 | 23 | <p> }"];
 node4 [label = "{<e> r12 | 326 | <p> }"];
 node5 [label = "{<e> r13 | 1f3 | <p> }"];
 node6 [label = "{<e> r20 | 143 | <p> }"];
 node7 [label = "{<e> r40 | b23 | <p> }"];
 node0:p0 -> node1:e [dir=both color="red:blue"];
 node0:p1 -> node2:e [dir=back arrowhead=diamond];
 node2:p -> node3:e;
 node3:p -> node4:e [dir=both arrowtail=box color="red"];
 node4:p -> node5:e [dir=forward];
 node0:p2 -> node6:e [dir=none color="orange"];

Code Testing, Optimization, and Profiling Chapter 11

[438]

 node0:p4 -> node7:e;
}

The color attribute changes the color of a node, whereas the shape attribute changes the
shape of a node. Additionally, the dir attribute, which can be applied to edges, defines
whether an edge is going to have two arrows, one, or none. Furthermore, the style of the
arrowhead can be specified using the arrowhead and arrowtail attributes.

Compiling the preceding code using one of the Graphviz command-line tools in order to
create a PNG image requires the execution of the following command in your favorite Unix
shell:

$ dot -T png graph.dot -o graph.png
$ ls -l graph.png
-rw-r--r--@ 1 mtsouk staff 94155 Mar 1 07:30 graph.png

The following diagram shows the graphics file generated from the execution of the
preceding command:

Using Graphviz to create graphs

Thus, if you want to visualize any kind of structure, you should definitely consider using
Graphviz and its tools, especially if you want to automate things with your own scripts.

The go tool trace utility
The go tool trace utility is a tool for viewing trace files that can be generated with any
one of the following three ways:

Using the runtime/trace package
Using the net/http/pprof package
Executing the go test -trace command

Code Testing, Optimization, and Profiling Chapter 11

[439]

This section will use the first technique only. The output of the following command will
greatly help you understand what the Go execution tracer does:

$ go doc runtime/trace
package trace // import "runtime/trace"
Go execution tracer. The tracer captures a wide range of execution events
like goroutine creation/blocking/unblocking, syscall enter/exit/block,GC-
related events, changes of heap size, processor start/stop, etc and writes
them to an io.Writer in a compact form. A precise nanosecond-precision
timestamp and a stack trace is captured for most events. A trace can be
analyzed later with 'go tool trace' command.
func Start(w io.Writer) error
func Stop()

In Chapter 2, Understanding Go Internals, we talked about the Go garbage collector and
presented a Go utility gColl.go, which allowed us to see some of the variables of the Go
garbage collector. In this section, we will gather even more information about the operation
of gColl.go, using the go tool trace utility.

First, let's examine the modified version of the gColl.go program, which tells Go to collect
performance data. It is saved as goGC.go, and it will be presented in three parts.

The first part of goGC.go is as follows:

package main
import (
 "fmt"
 "os"
 "runtime"
 "runtime/trace"
 "time"
)
func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC)
 fmt.Println("-----")
}

As you already know, you first need to import the runtime/trace standard Go package in
order to collect data for the go tool trace utility.

Code Testing, Optimization, and Profiling Chapter 11

[440]

The second code segment of goGC.go is shown in the following Go code:

func main() {
 f, err := os.Create("/tmp/traceFile.out")
 if err != nil {
 panic(err)
 }
 defer f.Close()
 err = trace.Start(f)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer trace.Stop()

This part is all about acquiring data for the go tool trace utility, and it has nothing to do
with the functionality of the actual program. First, you will create a new file that will hold
the tracing data for the go tool trace utility. Then you can start the tracing process,
using trace.Start(). When you are done, you will call the trace.Stop() function. The
defer call to this function means that you want to terminate tracing when your program
ends.

Using the go tool trace utility is a process with two phases that
requires extra Go code. First you collect the data, and then you display
and process it.

The remaining Go code is as follows:

var mem runtime.MemStats
 printStats(mem)
 for i := 0; i < 3; i++ {
 s := make([]byte, 50000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)
 for i := 0; i < 5; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 time.Sleep(time.Millisecond)

Code Testing, Optimization, and Profiling Chapter 11

[441]

 }
 printStats(mem)
}

Executing goGC.go produces the following output as well as a new file named
/tmp/traceFile.out with the tracing information:

$ go run goGC.go
mem.Alloc: 107264
mem.TotalAlloc: 107264
mem.HeapAlloc: 107264
mem.NumGC: 0

mem.Alloc: 50117672
mem.TotalAlloc: 150129416
mem.HeapAlloc: 50117672
mem.NumGC: 3

mem.Alloc: 117320
mem.TotalAlloc: 650174208
mem.HeapAlloc: 117320
mem.NumGC: 8

$ cd /tmp
$ ls -l traceFile.out
-rw-r--r-- 1 mtsouk wheel 8275 Mar 7 08:37 traceFile.out
$ file /tmp/traceFile.out
/tmp/traceFile.out: data

The go tool trace utility uses a web interface that starts automatically when you execute
the following command:

$ go tool trace /tmp/traceFile.out
2018/03/07 08:34:36 Parsing trace...
2018/03/07 08:34:36 Serializing trace...
2018/03/07 08:34:36 Splitting trace...
2018/03/07 08:34:36 Opening browser. Trace viewer is listening on
http://127.0.0.1:61428

Code Testing, Optimization, and Profiling Chapter 11

[442]

The following screenshot shows the initial image of the web interface of the go tool
trace utility when examining the /tmp/traceFile.out trace file:

The initial screen of the web interface of the go trace tool

Code Testing, Optimization, and Profiling Chapter 11

[443]

You should now select the View trace link. This will take you to the next figure, which
shows you another view of the web interface of the go tool trace utility that uses the
data from /tmp/traceFile.out:

Examining the operation of the Go Garbage Collector using the go tool trace

In the preceding figure, you can see that the Go GC runs on its own goroutine, but it does
not run all of the time. Additionally, you can see the number of goroutines used by the
program. You can learn more about this by selecting certain parts of the interactive view. As
we are interested in the operation of the GC, a useful piece of information that is displayed
is how often and for how much long the Go GC runs.

Code Testing, Optimization, and Profiling Chapter 11

[444]

Note that although go tool trace is a very handy and powerful utility, it cannot solve
every kind of performance problem. There are times where go tool pprof is more
appropriate, especially when you want to reveal where your program spends most of its
time by individual function.

Testing Go code
Software testing is a very large subject, and it cannot be covered in a single section of a
chapter in a book. So, this brief section will try to present as much practical information as
possible.

Go allows you to write tests for your Go code in order to detect bugs. Strictly speaking, this
section is about automated testing, which involves writing extra code to verify whether the
real code; that is, the production code, works as expected or not. Thus, the result of a test
function is either PASS or FAIL. You will see how this works shortly.

Although the Go approach to testing might look simple at first, especially if you compare it
with the testing practices of other programming languages, it is very efficient and effective
because it does not require too much of the developer's time.

Go follows certain conventions regarding testing. First of all, testing functions should be
included in Go source files that end with _test.go. So, if you have a package named
aGoPackage.go, then your tests should be placed in a file named aGoPackage_test.go.
A test function begins with Test, and it checks the correctness of the behavior of a function
of the production package.

Finally, you will need to import the testing standard Go package for the go test
subcommand to work correctly. As you will soon see, this import requirement also applies
to two additional cases.

Once the testing code is correct, the go test subcommand does all the dirty work for you,
which includes scanning all the *_test.go files for special functions, generating a
temporary main package properly, calling these special functions, getting the results, and
generating the final output.

Always put the testing code in a different source file. There is no need to
create a huge source file that is hard to read and maintain.

Code Testing, Optimization, and Profiling Chapter 11

[445]

Writing tests for existing Go code
In this section, you will learn how to write tests for an existing Go application that includes
two functions: one for calculating the numbers of the Fibonacci sequence and one for
finding out the length of a string. The main reason for using these two functions that
implement such relatively trivial tasks is simplicity. The tricky point here is that each
function will have two different implementations: one that works fine and another one that
has some issues.

The Go package in this example is named testMe, and it is saved as testMe.go. The code
of this package will be presented in three parts.

The first part of testMe.go has the following Go code:

package testMe
func f1(n int) int {
 if n == 0 {
 return 0
 }
 if n == 1 {
 return 1
 }
 return f1(n-1) + f1(n-2)
}

In the preceding code, you can see the definition of a function named f1() that calculates
natural numbers of the Fibonacci sequence.

The second part of testMe.go is shown in the following Go code:

func f2(n int) int {
 if n == 0 {
 return 0
 }
 if n == 1 {
 return 2
 }
 return f2(n-1) + f2(n-2)
}

In this code, you can see the implementation of another function that calculates the
numbers of the Fibonacci sequence named f2(). However, this function contains a bug
because it does not return 1 when the value of n is 1, which destroys the entire functionality
of the function.

Code Testing, Optimization, and Profiling Chapter 11

[446]

The remaining code of testMe.go is shown in the following Go code:

func s1(s string) int {
 if s == "" {
 return 0
 }
 n := 1
 for range s {
 n++
 }
 return n
}

func s2(s string) int {
 return len(s)
}

In this part, we implement two functions named s1() and s2(), which work on strings.
Both of these functions find the length of a string. However, the implementation of s1() is
wrong because the initial value of n is 1 instead of 0.

It is now time to start thinking about tests and test cases. First of all, you should create a
testMe_test.go file that will be used for storing your testing functions. Next, it is
important to realize that you do not need to make any code changes to testMe.go. Finally,
remember that you should try to write as many tests as required to cover all potential
inputs and outputs.

The first part of testMe_test.go is shown in the following Go code:

package testMe
import "testing"
func TestS1(t *testing.T) {
 if s1("123456789") != 9 {
 t.Error(`s1("123456789") != 9`)
 }
 if s1("") != 0 {
 t.Error(`s1("") != 0`)
 }
}

The preceding function performs two tests on the s1() function: one using "123456789"
as input and another one using "" as input.

Code Testing, Optimization, and Profiling Chapter 11

[447]

The second part of testMe_test.go is as follows:

func TestS2(t *testing.T) {
 if s2("123456789") != 9 {
 t.Error(`s2("123456789") != 9`)
 }
 if s2("") != 0 {
 t.Error(`s2("") != 0`)
 }
}

The preceding testing code performs the same two tests on the s2() function.

The remaining code of testMe_test.go comes next:

func TestF1(t *testing.T) {
 if f1(0) != 0 {
 t.Error(`f1(0) != 0`)
 }
 if f1(1) != 1 {
 t.Error(`f1(1) != 1`)
 }
 if f1(2) != 1 {
 t.Error(`f1(2) != 1`)
 }
 if f1(10) != 55 {
 t.Error(`f1(10) != 55`)
 }
}

func TestF2(t *testing.T) {
 if f2(0) != 0 {
 t.Error(`f2(0) != 0`)
 }
 if f2(1) != 1 {
 t.Error(`f2(1) != 1`)
 }
 if f2(2) != 1 {
 t.Error(`f2(2) != 1`)
 }
 if f2(10) != 55 {
 t.Error(`f2(10) != 55`)
 }
}

The previous code tests the operation of the f1() and the f2() functions.

Code Testing, Optimization, and Profiling Chapter 11

[448]

Executing the tests will generate the following output:

$ go test testMe.go testMe_test.go -v
=== RUN TestS1
--- FAIL: TestS1 (0.00s)
 testMe_test.go:7: s1("123456789") != 9
=== RUN TestS2
--- PASS: TestS2 (0.00s)
=== RUN TestF1
--- PASS: TestF1 (0.00s)
=== RUN TestF2
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
FAIL
FAIL command-line-arguments 0.005s

If you do not include the -v parameter, which produces richer output, you will get the
following output:

$ go test testMe.go testMe_test.go
--- FAIL: TestS1 (0.00s)
 testMe_test.go:7: s1("123456789") != 9
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
FAIL
FAIL command-line-arguments 0.005s

Should you wish to execute certain tests, you should use to -run command-line option that
accepts a regular expression and executes all tests that have a function name which matches
the given regular expression:

$ go test testMe.go testMe_test.go -run='F2' -v
=== RUN TestF2
--- FAIL: TestF2 (0.00s)
 testMe_test.go:50: f2(1) != 1
 testMe_test.go:54: f2(2) != 1
 testMe_test.go:58: f2(10) != 55
FAIL
FAIL command-line-arguments 0.005s
$ go test testMe.go testMe_test.go -run='F1'
ok command-line-arguments (cached)

The last command verifies that the go test command used caching.

Code Testing, Optimization, and Profiling Chapter 11

[449]

Software testing can only show the presence of one or more bugs, not the
absence of bugs! This means that you can never be absolutely sure that
your code has no bugs.

Benchmarking Go code
Benchmarking can give you information about the performance of a function or a program
in order to understand better how much faster or slower a function is compared to another
function, or compared to the rest of the application. Using that information, you can easily
reveal the part of the Go code that needs to be rewritten in order to improve its
performance.

Never benchmark your Go code on a busy Unix machine that is currently
being used for other, more important purposes unless you have a very
good reason to do so.

Go follows certain conventions regarding benchmarking. The most important convention is
that the name of a benchmark function must begin with Benchmark.

Once again, the go test subcommand is responsible for benchmarking a program. As a
result, you still need to import the testing standard Go package and include
benchmarking functions in Go files that end with _test.go.

A simple benchmarking example
In this section, I will show you a basic benchmarking example that will measure the
performance of three algorithms that generate numbers belonging to the Fibonacci
sequence. The good news is that such algorithms require lots of mathematical calculations,
which make them perfect candidates for benchmarking.

For the purposes of this section, I will create a new main package, which will be saved as
benchmarkMe.go and presented in three parts.

The first part of benchmarkMe.go is as follows:

package main
import (
 "fmt"

Code Testing, Optimization, and Profiling Chapter 11

[450]

)

func fibo1(n int) int {
 if n == 0 {
 return 0
 } else if n == 1 {
 return 1
 } else {
 return fibo1(n-1) + fibo1(n-2)
 }
}

The preceding code contains the implementation of the fibo1() function that uses
recursion in order to calculate the numbers of the Fibonacci sequence. Although the
algorithm works fine, this is a relatively simple and somehow slow approach.

The second code segment of benchmarkMe.go is shown in the following Go code:

func fibo2(n int) int {
 if n == 0 || n == 1 {
 return n
 }
 return fibo2(n-1) + fibo2(n-2)
}

In this part, you see the implementation of the fibo2() function that is almost identical to
the fibo1() function that you saw earlier. However, it will be interesting to see whether a
small code change—a single if statement as opposed to an if else if block—has any
impact to the performance of the function.

The third code portion of benchmarkMe.go contains yet another implementation of a
function that calculates numbers that belong to the Fibonacci sequence:

func fibo3(n int) int {
 fn := make(map[int]int)
 for i := 0; i <= n; i++ {
 var f int
 if i <= 2 {
 f = 1
 } else {
 f = fn[i-1] + fn[i-2]
 }
 fn[i] = f
 }
 return fn[n]
}

Code Testing, Optimization, and Profiling Chapter 11

[451]

The fibo3() function presented here uses a totally new approach that requires a Go map
and has a for loop. It remains to be seen whether this approach is indeed faster than the
other two implementations. The algorithm presented in fibo3() will be also used in
Chapter 13, Network Programming – Building Servers and Clients, where it will be explained
in greater detail. As you will see in a while, choosing an efficient algorithm can save you
from a lot of trouble!

The remaining code of benchmarkMe.go follows next:

func main() {
 fmt.Println(fibo1(40))
 fmt.Println(fibo2(40))
 fmt.Println(fibo3(40))
}

Executing benchmarkMe.go will generate the following output:

$ go run benchmarkMe.go
102334155
102334155
102334155

The good news is that all three implementations returned the same number. Now it is time
to add some benchmarks to benchmarkMe.go in order to understand the efficiency of the
each one of the three algorithms.

As the Go rules require, the version of benchmarkMe.go containing the benchmark
functions will be saved as benchmarkMe_test.go. This program is presented in five parts.

The first code segment of benchmarkMe_test.go contains the following Go code:

package main
import (
 "testing"
)

var result int
func benchmarkfibo1(b *testing.B, n int) {
 var r int
 for i := 0; i < b.N; i++ {
 r = fibo1(n)
 }
 result = r
}

Code Testing, Optimization, and Profiling Chapter 11

[452]

In the preceding code, you can see the implementation of a function with a name that
begins with the benchmark string instead of the Benchmark string. As a result, this
function will not run automatically because it begins with a lowercase b instead of an
uppercase B.

The reason for storing the result of fibo1(n) in a variable named r and using another
global variable named result afterwards is tricky. This technique is used for preventing
the compiler from performing any optimizations that will exclude the function that you
want to measure because its result are never used! The same technique will be applied in
functions benchmarkfibo2() and benchmarkfibo3(), which will be presented next.

The second part of benchmarkMe_test.go is shown in the following Go code:

func benchmarkfibo2(b *testing.B, n int) {
 var r int
 for i := 0; i < b.N; i++ {
 r = fibo2(n)
 }
 result = r
}

func benchmarkfibo3(b *testing.B, n int) {
 var r int
 for i := 0; i < b.N; i++ {
 r = fibo3(n)
 }
 result = r
}

The preceding code defines two more benchmark functions that will not run automatically
because they begin with a lowercase b instead of an uppercase B.

Now I will tell you a big secret: even if these three functions were named
BenchmarkFibo1(), BenchmarkFibo2(), and BenchmarkFibo3(), they would not have
been invoked automatically by the go test command because their signature is not
func(*testing.B). So, the reason for naming them with a lowercase b is this! However,
there is nothing that prevents you from invoking them from other benchmark functions
afterwards, as you will see shortly.

The third part of benchmarkMe_test.go follows next:

func Benchmark30fibo1(b *testing.B) {
 benchmarkfibo1(b, 30)
}

Code Testing, Optimization, and Profiling Chapter 11

[453]

This is a correct benchmark function with the correct name and the correct signature, which
means that it will get executed by go tool.

Note that although Benchmark30fibo1() is a valid benchmark function name,
BenchmarkfiboIII() is not because there is no uppercase letter or a number after the
Benchmark string. This is very important because a benchmark function with an incorrect
name will not get executed automatically.

The fourth code segment of benchmarkMe_test.go contains the following Go code:

func Benchmark30fibo2(b *testing.B) {
 benchmarkfibo2(b, 30)
}

func Benchmark30fibo3(b *testing.B) {
 benchmarkfibo3(b, 30)
}

Both the Benchmark30fibo2() and Benchmark30fibo3() benchmark functions are
similar to Benchmark30fibo1().

The last part of benchmarkMe_test.go is as follows:

func Benchmark50fibo1(b *testing.B) {
 benchmarkfibo1(b, 50)
}

func Benchmark50fibo2(b *testing.B) {
 benchmarkfibo2(b, 50)
}

func Benchmark50fibo3(b *testing.B) {
 benchmarkfibo3(b, 50)
}

In this part, you see three additional benchmark functions that calculate the 50th number in
the Fibonacci sequence.

Remember that each benchmark is executed for at least 1 second by
default. If the benchmark function returns in a time that is less than 1
second, the value of b.N is increased and the function is run again. The
first time the value of b.N is 1, then it becomes 2, 5, 10, 20, 50, and so on.
This happens because the faster the function, the more times you need to
run it to get accurate results.

Code Testing, Optimization, and Profiling Chapter 11

[454]

Executing benchmarkMe_test.go will generate the following output:

$ go test -bench=. benchmarkMe.go benchmarkMe_test.go
goos: darwin
goarch: amd64
Benchmark30fibo1-8 300 4494213 ns/op
Benchmark30fibo2-8 300 4463607 ns/op
Benchmark30fibo3-8 500000 2829 ns/op
Benchmark50fibo1-8 1 67272089954 ns/op
Benchmark50fibo2-8 1 67300080137 ns/op
Benchmark50fibo3-8 300000 4138 ns/op
PASS
ok command-line-arguments 145.827s

There are two important points here: first, the value of the -bench parameter specifies the
benchmark functions that will be executed. The . value used is a regular expression that
matches all valid benchmark functions. The second point is that if you omit the -bench
parameter, no benchmark function will be executed!

So, what does this output tell us? First of all, -8 at the end of each benchmark function
(Benchmark10fibo1-8) signifies the number of goroutines used during its execution,
which is essentially the value of the GOMAXPROCS environment variable. You will recall that
we talked about the GOMAXPROCS environment variable back in Chapter 10, Go
Concurrency – Advanced Topics. Similarly, you can see the values of GOOS and GOARCH, which
show the operating system and the architecture of your machine.

The second column in the output displays the number of times that the relevant function
was executed. Faster functions are executed more times than slower functions. As an
example, function Benchmark30fibo3() was executed 500,000 times, while function
Benchmark50fibo2() was executed only once! The third column in the output shows the
average time of each run.

As you can see, the fibo1() and fibo2() functions are really slow compared to
the fibo3() function. Should you wish to include memory allocation statistics in the
output, you can execute the following command:

$ go test -benchmem -bench=. benchmarkMe.go benchmarkMe_test.go
goos: darwin
goarch: amd64
Benchmark30fibo1-8 300 4413791 ns/op 0 B/op 0 allocs/op
Benchmark30fibo2-8 300 4430097 ns/op 0 B/op 0 allocs/op
Benchmark30fibo3-8 500000 2774 ns/op 2236 B/op 6 allocs/op
Benchmark50fibo1-8 1 71534648696 ns/op 0 B/op 0 allocs/op
Benchmark50fibo2-8 1 72551120174 ns/op 0 B/op 0 allocs/op
Benchmark50fibo3-8 300000 4612 ns/op 2481 B/op 10 allocs/op

Code Testing, Optimization, and Profiling Chapter 11

[455]

PASS
ok command-line-arguments 150.500s

The preceding output is similar to the one without the -benchmem command-line
parameter, but it includes two more columns in its output. The fourth column shows the
amount of memory that was allocated on average in each execution of the benchmark
function. The fifth column shows the number of allocations used for allocating the memory
value of the fourth column. So, Benchmark50fibo3() allocated 2481 bytes in 10 allocations
on average.

As you can understand, functions fibo1() and fibo2() do not need any special kind of
memory apart from the expected one, because neither of them is using any kind of data
structure, which is not the case with fibo3() which uses a map variable; hence the larger
than zero values in both the fourth and fifth columns of the output of
Benchmark10fibo3-8.

A wrong benchmark function
Look at the Go code of the following benchmark function:

func BenchmarkFiboI(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo1(i)
 }
}

The BenchmarkFibo() function has a valid name and the correct signature. The bad news,
however, is that this benchmark function is wrong, and you will not get any output from it
after executing the go test command!

The reason for this is that as the b.N value grows according to the way described in a
previous section, the run time of the benchmark function will also increase because of the
for loop. This fact prevents BenchmarkFiboI() from converging to a stable number,
which prevents the function from completing and therefore returning.

For analogous reasons, the next benchmark function is also wrongly implemented:

func BenchmarkfiboII(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo2(b.N)
 }
}

Code Testing, Optimization, and Profiling Chapter 11

[456]

Conversely, there is nothing wrong with the implementation of the following two
benchmark functions:

func BenchmarkFiboIV(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fibo3(10)
 }
}

func BenchmarkFiboIII(b *testing.B) {
 _ = fibo3(b.N)
}

Benchmarking buffered writing
In this section, we will explore how the size of the write buffer affects the performance of
the entire writing operation using the Go code of writingBU.go, which will be presented
in five parts.

The writingBU.go program generates dummy files with randomly generated data. The
variables of the program are the size of the buffer and the size of the output file.

The first part of writingBU.go is as follows:

package main
import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
)

var BUFFERSIZE int
var FILESIZE int

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second code portion of writingBU.go contains the following Go code:

func createBuffer(buf *[]byte, count int) {
 *buf = make([]byte, count)
 if count == 0 {
 return

Code Testing, Optimization, and Profiling Chapter 11

[457]

 }
 for i := 0; i < count; i++ {
 intByte := byte(random(0, 100))
 if len(*buf) > count {
 return
 }
 *buf = append(*buf, intByte)
 }
}

The third part of writingBU.go is shown in the following Go code:

func Create(dst string, b, f int) error {
 _, err := os.Stat(dst)
 if err == nil {
 return fmt.Errorf("File %s already exists.", dst)
 }
 destination, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer destination.Close()
 if err != nil {
 panic(err)
 }
 buf := make([]byte, 0)
 for {
 createBuffer(&buf, b)
 buf = buf[:b]
 if _, err := destination.Write(buf); err != nil {
 return err
 }
 if f < 0 {
 break
 }
 f = f - len(buf)
 }
 return err
}

The Create() function does all of the work in the program, and it is the function that needs
to be benchmarked.

Note that if the buffer size and the file size were not part of the signature of the Create()
function, you would a have problem writing a benchmark function for Create() because
you would be required to use the BUFFERSIZE and FILESIZE global variables which are
both initialized in the main() function of writingBU.go.

Code Testing, Optimization, and Profiling Chapter 11

[458]

This would be difficult to do in the writingBU_test.go file. This means that in order to
create a benchmark for a function, you should also think about it when you are writing your
code.

The fourth code segment of writingBU.go is as follows:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Need BUFFERSIZE FILESIZE!")
 return
 }
 output := "/tmp/randomFile"
 BUFFERSIZE, _ = strconv.Atoi(os.Args[1])
 FILESIZE, _ = strconv.Atoi(os.Args[2])
 err := Create(output, BUFFERSIZE, FILESIZE)
 if err != nil {
 fmt.Println(err)
 }

The remaining Go code of writingBU.go follows next:

 err = os.Remove(output)
 if err != nil {
 fmt.Println(err)
 }
}

Although the os.Remove() call that deletes the temporary file is inside of the main()
function, which is not called by the benchmark functions, it is easy to call os.Remove()
from the benchmark functions, so there is no problem here.

Executing writingBU.go twice on a macOS High Sierra machine with a SSD hard disk
using the time(1) utility to check the speed of the program generates the following output:

$ time go run writingBU.go 1 100000
real 0m1.193s
user 0m0.349s
sys 0m0.809s
$ time go run writingBU.go 10 100000
real 0m0.283s
user 0m0.195s
sys 0m0.228s

So, although it is obvious that the size of the write buffer plays a key role in the
performance of the program, we need to be much more specific and accurate. Therefore, we
will write benchmark functions that will be stored in writingBU_test.go.

Code Testing, Optimization, and Profiling Chapter 11

[459]

The first part of writingBU_test.go is shown in the following Go code:

package main
import (
 "fmt"
 "os"
 "testing"
)
var ERR error

func benchmarkCreate(b *testing.B, buffer, filesize int) {
 var err error
 for i := 0; i < b.N; i++ {
 err = Create("/tmp/random", buffer, filesize)
 }
 ERR = err
 err = os.Remove("/tmp/random")
 if err != nil {
 fmt.Println(err)
 }
}

As you will recall, this is not a valid benchmark function.

The second code segment of writingBU_test.go is as follows:

func Benchmark1Create(b *testing.B) {
 benchmarkCreate(b, 1, 1000000)
}

func Benchmark2Create(b *testing.B) {
 benchmarkCreate(b, 2, 1000000)
}

The remaining code of writingBU_test.go follows next:

func Benchmark4Create(b *testing.B) {
 benchmarkCreate(b, 4, 1000000)
}

func Benchmark10Create(b *testing.B) {
 benchmarkCreate(b, 10, 1000000)
}

func Benchmark1000Create(b *testing.B) {
 benchmarkCreate(b, 1000, 1000000)
}

Code Testing, Optimization, and Profiling Chapter 11

[460]

Here we created five benchmark functions that will check the performance of the
benchmarkCreate() function, which checks the performance of the Create() function for
various write buffer sizes.

Executing go test on both writingBU.go and writingBU_test.go files will generate
the following output:

$ go test -bench=. writingBU.go writingBU_test.go
goos: darwin
goarch: amd64
Benchmark1Create-8 1 6231302525 ns/op
Benchmark2Create-8 1 2956333326 ns/op
Benchmark4Create-8 1 1498240817 ns/op
Benchmark10Create-8 100000 10644 ns/op
Benchmark1000Create-8 300000 4653 ns/op
PASS
ok command-line-arguments 23.774s

The following output also checks the memory allocations of the benchmark functions:

$ go test -bench=. writingBU.go writingBU_test.go -benchmem
goos: darwin
goarch: amd64
Benchmark1Create-8 1 6209493161 ns/op 16000840 B/op 2000017
allocs/op
Benchmark2Create-8 1 3177139645 ns/op 8000584 B/op 1000013
allocs/op
Benchmark4Create 1 1632772604 ns/op 4000424 B/op 500011
allocs/op
Benchmark10Create-8 100000 11238 ns/op 336 B/op 7 allocs/op
Benchmark1000Create-8 200000 5122 ns/op 303 B/op 5 allocs/op
PASS
ok command-line-arguments 24.031s

It is now time to interpret the output of the two go test commands.

It is extremely obvious that using a write buffer with a size of 1 byte is totally inefficient and
slows everything down. Additionally, such a buffer size requires too many memory
operations, which slows down the program even more!

Using a write buffer with 2 bytes makes the entire program twice as fast, which is a good
thing. However, it is still very slow. The same applies to a write buffer with a size of 4 bytes.

Code Testing, Optimization, and Profiling Chapter 11

[461]

Where things get faster is when we decide to use a write buffer with a size of 10 bytes.
Finally, the results show that using a write buffer with a size of 1,000 bytes does not make
things 100 faster than when using a buffer size of 10 bytes, which means that the sweet spot
between speed and write buffer size is between these two values.

Finding unreachable Go code
Go code that cannot be executed is a logical error, and therefore it is pretty difficult to be
revealed by developers or a normal execution of the Go compiler. Put simply, there is
nothing wrong with unreachable code apart from the fact that there is no way for this code
to get executed!

Take a look at the following Go code, which is saved as cannotReach.go:

package main
import (
 "fmt"
)

func f1() int {
 fmt.Println("Entering f1()")
 return -10
 fmt.Println("Exiting f1()")
 return -1
}

func f2() int {
 if true {
 return 10
 }
 fmt.Println("Exiting f2()")
 return 0
}

func main() {
 fmt.Println(f1())
 fmt.Println("Exiting program...")
}

There is nothing syntactically incorrect with the Go code of cannotReach.go. As a result,
you can execute cannotReach.go without getting any error messages from the compiler:

$ go run cannotReach.go
Entering f1()

Code Testing, Optimization, and Profiling Chapter 11

[462]

-1
Exiting program...

Note that the f2() is never used in the program. However, it is easy to guess that the
following Go code of f2() never gets executed because the condition in the preceding
if statement is always true:

fmt.Println("Exiting f2()")
return 0

So, what can you do about it? You can execute go tool vet as follows:

$ go tool vet cannotReach.go
cannotReach.go:10: unreachable code

The output tells us that there is unreachable code at line 10 of the program. Now let's
remove the return -10 statement from function f1() and rerun go tool vet:

$ go tool vet cannotReach.go

Here there are no new error messages despite the fact the there is still unreachable code in
the f2() function. This means that go tool vet cannot catch every possible type of
logical error.

Cross-compilation
Cross-compilation is the process of generating a binary executable file for a different
architecture than the one on which you are working.

The main benefit that you receive from cross-compilation is that you do not need a second
or a third machine for creating executable files for different architectures. This means that
you basically need just a single machine for your development. Fortunately, Go has built-in
support for cross-compilation!

For the purpose of this section, we will use the Go code of xCompile.go for illustrating the
cross-compilation process. The Go code of xCompile.go is as follows:

package main
import (
 "fmt"
 "runtime"
)

func main() {

Code Testing, Optimization, and Profiling Chapter 11

[463]

 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("with Go version", runtime.Version())
}

Running xCompile.go on a macOS High Sierra machine generates the following output:

$ go run xCompile.go
You are using gc on a amd64 machine
with Go version go1.10

In order to cross compile a Go source file, you will need to set the GOOS and GOARCH
environment variables to the target operating system and architecture, respectively, which
is not as difficult as it sounds.

So, the cross-compilation process goes like this:

$ env GOOS=linux GOARCH=arm go build xCompile.go
$ file xCompile
xCompile: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
statically linked, with debug_info, not stripped
$./xCompile
-bash: ./xCompile: cannot execute binary file

The first command generates a binary file that works on Linux machines which use the
ARM architecture, while the output of file(1) verifies that the generated binary file is
indeed for a different architecture.

As the Debian Linux machine that will be used for this example has an Intel processor, we
will have to execute the go build command once more using the correct GOARCH value:

$ env GOOS=linux GOARCH=386 go build xCompile.go
$ file xCompile
xCompile: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, with debug_info, not stripped

Executing the generated binary executable file on a Linux machine will produce the
following expected output:

$./xCompile
You are using gc on a 386 machine
with Go version go1.10
$ go version
go version go1.3.3 linux/amd64
$ go run xCompile.go
You are using gc on a amd64 machine
with Go version go1.3.3

Code Testing, Optimization, and Profiling Chapter 11

[464]

One thing to notice here is that the cross-compiled binary file of xCompile.go prints the Go
version of the machine used for compiling it. The second thing to notice is that the
architecture of the Linux machine is actually amd64 instead of 386, which was used in the
cross-compilation process.

You can find the list of the available values for the GOOS and GOARCH
environment variables at https://golang.org/doc/install/source. Keep
in mind, however, that not all the GOOS and GOARCH pairs are valid.

Creating example functions
Part of the documentation process is generating example code that showcases the use of
some or all of the functions and types of a package.

Example functions have many benefits including the fact that they are executable tests
which are executed by go test! Therefore, if an example function contains an // Output:
line, the go test tool will check whether the calculated output matches the values found
after the // Output: line.

Additionally, examples are really useful when seen in the documentation of the package,
which is the subject of the next section. Finally, example functions that are presented on the
Go documentation server (https://golang.org/pkg/io/#example_Copy) allow the reader
of the documentation to experiment with the example code. The Go playground at
https://play.golang.org/ also supports this functionality.

As the go test subcommand is responsible for the examples of a program, you will need
to import the testing standard Go package and include example functions in Go files that
end with _test.go. Moreover, the name of each example function must begin with
Example. Lastly, example functions take no input parameters and return no results!

Now let's create some example functions for the following package, which is saved as
ex.go:

package ex
func F1(n int) int {
 if n == 0 {
 return 0
 }
 if n == 1 || n == 2 {
 return 1
 }

https://golang.org/doc/install/source
https://golang.org/pkg/io/#example_Copy
https://play.golang.org/

Code Testing, Optimization, and Profiling Chapter 11

[465]

 return F1(n-1) + F1(n-2)
}

func S1(s string) int {
 return len(s)
}

The ex.go source file contains the implementation of two functions named F1() and S1().
Note that ex.go does not need to import the fmt package.

As you know, the example functions will be included in the ex_test.go file, which will be
presented in three parts.

The first part of ex_test.go is as follows:

package ex
import (
 "fmt"
)

The second code portion of ex_test.go is shown in the following Go code:

func ExampleF1() {
 fmt.Println(F1(10))
 fmt.Println(F1(2))
 // Output:
 // 55
 // 1
}

The remaining Go code of ex_test.go follows next:

func ExampleS1() {
 fmt.Println(S1("123456789"))
 fmt.Println(S1(""))
 // Output:
 // 8
 // 0
}

Executing the go test command on the ex.go package will generate the following output:

$ go test ex.go ex_test.go -v
=== RUN ExampleF1
--- PASS: ExampleF1 (0.00s)
=== RUN ExampleS1
--- FAIL: ExampleS1 (0.00s)

Code Testing, Optimization, and Profiling Chapter 11

[466]

got:
9
0
want:
8
0
FAIL
FAIL command-line-arguments 0.006s

You will observe that the preceding output tells us that there is something wrong with the
S1() function based on the data after the // Output: comment.

Generating documentation
Go offers the godoc tool, which allows you to view the documentation of your
packages—provided that you have included some extra information in your files.

My general advice is that you should try to document everything, but
leave out obvious things. Put simply, do not say, Here I create a new int
variable. It would be better to state the use of that int variable!
Nevertheless, really good code does not usually need documentation!

The rule about writing documentation in Go is pretty simple and straightforward. In order
to document something, you have to put one or more regular comment lines that start with
// just before its declaration. This convention can be used for documenting functions,
variables, constants, or even packages!

Additionally, you'll notice that the first line of the documentation of a package of any size
will appear in the package list of godoc, as it happens in https:/ ​/​golang. ​org/​pkg/ ​. This
means that it should be pretty descriptive and complete.

Keep in mind that comments which begin with BUG(something) will appear in the Bugs
section of the documentation of a package, even if they do not precede a declaration. If you
are looking for such an example, you can visit the source code and the documentation page
of the bytes package, which can be found at https://golang.org/src/bytes/bytes.go
and https://golang.org/pkg/bytes/, respectively.

Lastly, all comments that are not related to a top-level declaration are omitted from the
output that is generated by the godoc utility.

https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/pkg/
https://golang.org/src/bytes/bytes.go
https://golang.org/pkg/bytes/

Code Testing, Optimization, and Profiling Chapter 11

[467]

Take a look at the following Go code, which is saved as documentMe.go:

// This package is for showcasing the documentation capabilities of Go
// It is a naive package!
package documentMe

// Pie is a global variable
// This is a silly comment!
const Pie = 3.1415912

// The S1() function finds the length of a string
// It iterates over the string using range
func S1(s string) int {
 if s == "" {
 return 0
 }
 n := 0
 for range s {
 n++
 }
 return n
}

// The F1() function returns the double value of its input integer
// A better function name would have been Double()!
func F1(n int) int {
 return 2 * n
}

As discussed in the previous section, we will need to create a documentMe_test.go file in
order to develop example functions for it. The contents of documentMe_test.go will
follow next:

package documentMe
import (
 "fmt"
)
func ExampleS1() {
 fmt.Println(S1("123456789"))
 fmt.Println(S1(""))
 // Output:
 // 9
 // 0
}

func ExampleF1() {
 fmt.Println(F1(10))

Code Testing, Optimization, and Profiling Chapter 11

[468]

 fmt.Println(F1(2))
 // Output:
 // 1
 // 55
}

In order to be able to see the documentation of documentMe.go, you will need to install the
package on your local machine as you learned back in Chapter 6, What You Might Not Know
About Go Packages. This will require the execution of the following commands from your
favorite Unix shell:

$ mkdir ~/go/src/documentMe
$ cp documentMe* ~/go/src/documentMe/
$ ls -l ~/go/src/documentMe/
total 16
-rw-r--r--@ 1 mtsouk staff 542 Mar 6 21:11 documentMe.go
-rw-r--r--@ 1 mtsouk staff 223 Mar 6 21:11 documentMe_test.go
$ go install documentMe
$ cd ~/go/pkg/darwin_amd64
$ ls -l documentMe.a
-rw-r--r-- 1 mtsouk staff 1626 Mar 6 21:11 documentMe.a

Next, you should execute the godoc utility as follows:

$ godoc -http=":8080"

Note that you can use you any port number you want, provided that the port is not already
in use by another process. If that is the case, you will see an error message similar to the
following:

$ godoc -http=":22"
2018/03/06 21:03:05 ListenAndServe :22: listen tcp :22: bind: permission
denied

After taking care of that, you will be able to browse the HTML documentation created using
your favorite web browser. The URL that will take you to the documentation is
http://localhost:8080/pkg/.

Code Testing, Optimization, and Profiling Chapter 11

[469]

The following screenshot shows the root directory of the godoc server that we just started.
There you can see the documentMe package that you created in documentMe.go among the
other Go packages:

The root directory of the godoc server

Code Testing, Optimization, and Profiling Chapter 11

[470]

The following screenshot shows the root directory of the documentation of the documentMe
package implemented in the documentMe.go source file:

The root page of the documentMe.go file

Code Testing, Optimization, and Profiling Chapter 11

[471]

Similarly, the following screenshot shows the documentation of the S1() function of the
documentMe.go package in greater detail, which also includes the example code. The
example code is not dynamic in this case, but you can see the code and its output:

The documentation page and the example of the S1() function

Code Testing, Optimization, and Profiling Chapter 11

[472]

Executing the go test command will generate the following output, which might reveal
potential problems and bugs in our code:

$ go test -v documentMe*
=== RUN ExampleS1
--- PASS: ExampleS1 (0.00s)
=== RUN ExampleF1
--- FAIL: ExampleF1 (0.00s)
got:
20
4
want:
1
55
FAIL
FAIL command-line-arguments 0.005s

Additional resources
Visit the following web links:

Visit the website of Graphviz at http://graphviz.org

Visit the documentation page of the testing package, which can be found at
https://golang.org/pkg/testing/

You can learn more about the godoc utility by visiting its documentation page at
https://godoc.org/golang.org/x/tools/cmd/godoc

Visit the documentation page of the runtime/pprof standard Go package that
can be found at https://golang.org/pkg/runtime/pprof/

You can view the Go code of the net/http/pprof package by visiting
https://golang.org/src/net/http/pprof/pprof.go

You can find the documentation page of the net/http/pprof package at
https://golang.org/pkg/net/http/pprof/

For the complete list of changes between Go version 1.10 and Go version 1.9, you
should visit https://golang.org/doc/go1.10

http://graphviz.org
https://golang.org/pkg/testing/
https://godoc.org/golang.org/x/tools/cmd/godoc
https://golang.org/pkg/runtime/pprof/
https://golang.org/src/net/http/pprof/pprof.go
https://golang.org/pkg/net/http/pprof/
https://golang.org/doc/go1.10

Code Testing, Optimization, and Profiling Chapter 11

[473]

You can learn more about the pprof tool by visiting its development page at
https://github.com/google/pprof

Watch the Advanced Testing with Go video presented in GopherCon 2017 by
Mitchell Hashimoto at https://www.youtube.com/watch?v=8hQG7QlcLBk

You can find the source code of the testing package at
https://golang.org/src/testing/testing.go

You can learn more about the profile package by visiting its web page at
https://github.com/pkg/profile

You can learn more about the go fix tool by visiting its web page at
https://golang.org/cmd/fix/

Exercises
Write testing functions for the byWord.go program that we developed in
Chapter 8, Telling a Unix System What to Do.

Write benchmark functions for the readSize.go program that we developed in
Chapter 8, Telling a Unix System What to Do.

Try to fix the problems in the Go code of documentMe.go and
documentMe_test.go.

Use the text interface of the go tool pprof utility to examine the
memoryProfile.out file generated by profileMe.go.

Next, use the web interface of the go tool pprof utility to examine the
memoryProfile.out file generated by profileMe.go.

https://github.com/google/pprof
https://www.youtube.com/watch?v=8hQG7QlcLBk
https://golang.org/src/testing/testing.go
https://github.com/pkg/profile
https://golang.org/cmd/fix/

Code Testing, Optimization, and Profiling Chapter 11

[474]

Summary
In this chapter, we talked about code testing, code optimization, and code profiling. Toward
the end of the chapter, you learned how to find unreachable code and how to cross-compile
Go code. The go test command is used for testing and benchmarking Go code, as well as
for offering extra documentation with the use of example functions.

Although the discussion of the Go profiler and go tool trace is far from complete, you
should understand that with topics such as profiling and code tracing, nothing can replace
experimenting and trying new techniques on your own!

In the next chapter, we will start talking about network programming in Go, which involves
programming applications that work over TCP/IP computer networks, which also includes
the internet. Some of the subjects in the next chapter are the net/http package, creating
web clients and web servers in Go, the http.Response and http.Request structures,
profiling HTTP servers, and timing out network connections.

Additionally, the next chapter will discuss the IPv4 and IPv6 protocols as well as the
Wireshark and tshark tools, which are used for capturing and analyzing network traffic.

12
The Foundations of Network

Programming in Go
In the previous chapter, we discussed benchmarking Go code using benchmark functions,
testing in Go, example functions, cross-compilation and profiling Go code, as well as
generating documentation in Go.

This chapter is all about network programming, which means that you will learn how to
create web applications that work over computer networks and the internet. However, you
will have to wait for the next chapter to learn how to develop TCP and UDP applications.

Note that in order to follow this chapter and the next one successfully, you'll need to know
some basic information about HTTP, networking, and how networks work.

In this chapter of Mastering Go, you will learn the following topics:

What TCP/IP is and why it is important
The IPv4 and IPv6 protocols
The netcat command-line utility
Performing DNS lookups in Go
The net/http package
The http.Response, http.Request, and http.Transport structures
Creating web servers in Go
Programming web clients in Go
Creating websites in Go
The http.NewServeMux type
Wireshark and tshark
Timing out HTTP connections that take too long to finish either on the server or
client end

The Foundations of Network Programming in Go Chapter 12

[476]

Feel free to skip some of the low-level information presented in this chapter—you can
always revisit it at another time.

About net/http, net, and http.RoundTripper
The star of this chapter will be the net/http package, which offers functions that allow you
to develop powerful web servers and web clients. The http.Get() and http.Get()
methods can be used for making HTTP and HTTPS requests, whereas the
http.ListenAndServe() function can be used for creating web servers by specifying the
IP address and the TCP port to which the server will listen, as well as the functions that will
handle incoming requests.

Apart from net/http, we will use the net package in some of the programs presented in
this chapter. The functionality of the net package, however, is going to be explained in
greater detail in Chapter 13, Network Programming – Building Servers and Clients.

Finally, if you know that http.RoundTripper is an interface that is used for making sure
that a Go element is capable of executing an HTTP transaction, it can be handy. Put simply,
this means that a Go element can get http.Response for given http.Request. You will
learn about http.Response and http.Request in a while.

The http.Response type
The definition of the http.Response structure, which can be found in the
https://golang.org/src/net/http/response.go file, is as follows:

type Response struct {
 Status string // e.g. "200 OK"
 StatusCode int // e.g. 200
 Proto string // e.g. "HTTP/1.0"
 ProtoMajor int // e.g. 1
 ProtoMinor int // e.g. 0
 Header Header
 Body io.ReadCloser
 ContentLength int64
 TransferEncoding []string
 Close bool
 Uncompressed bool
 Trailer Header

https://golang.org/src/net/http/response.go

The Foundations of Network Programming in Go Chapter 12

[477]

 Request *Request
 TLS *tls.ConnectionState
}

The goal of this pretty complex http.Response type is to represent the response of an
HTTP request. The source file contains more information about the purpose of each field of
the structure, which is the case with most struct types found in the standard Go library.

The http.Request type
The purpose of the http.Request type is to represent an HTTP request as received by a
server, or as it is about to be sent to a server by an HTTP client.

The http.Request structure type as defined in
https://golang.org/src/net/http/request.go is as follows:

type Request struct {
 Method string
 URL *url.URL
 Proto string // "HTTP/1.0"
 ProtoMajor int // 1
 ProtoMinor int // 0
 Header Header
 Body io.ReadCloser
 GetBody func() (io.ReadCloser, error)
 ContentLength int64
 TransferEncoding []string
 Close bool
 Host string
 Form url.Values
 PostForm url.Values
 MultipartForm *multipart.Form
 Trailer Header
 RemoteAddr string
 RequestURI string
 TLS *tls.ConnectionState
 Cancel <-chan struct{}
 Response *Response
 ctx context.Context
}

https://golang.org/src/net/http/request.go

The Foundations of Network Programming in Go Chapter 12

[478]

The http.Transport type
The definition of the http.Transport structure, which can be found in
https://golang.org/src/net/http/transport.go, is as follows:

type Transport struct {
 idleMu sync.Mutex
 wantIdle bool
 idleConn map[connectMethodKey][]*persistConn
 idleConnCh map[connectMethodKey]chan *persistConn
 idleLRU connLRU
 reqMu sync.Mutex
 reqCanceler map[*Request]func(error)
 altMu sync.Mutex
 altProto atomic.Value
 Proxy func(*Request) (*url.URL, error)
 DialContext func(ctx context.Context, network, addr string) (net.Conn,
error)
 Dial func(network, addr string) (net.Conn, error)
 DialTLS func(network, addr string) (net.Conn, error)
 TLSClientConfig *tls.Config
 TLSHandshakeTimeout time.Duration
 DisableKeepAlives bool
 DisableCompression bool
 MaxIdleConns int
 MaxIdleConnsPerHost int
 IdleConnTimeout time.Duration
 ResponseHeaderTimeout time.Duration
 ExpectContinueTimeout time.Duration
 TLSNextProto map[string]func(authority string, c *tls.Conn)
RoundTripper
 ProxyConnectHeader Header
 MaxResponseHeaderBytes int64
 nextProtoOnce sync.Once
 h2transport *http2Transport
}

As you can see, the http.Transport structure is pretty complex and contains a very large
number of fields. The good news is that you will not need to use the http.Transport
structure in all of your programs and that you are not required to deal with all of its fields
each time that you use it.

https://golang.org/src/net/http/transport.go

The Foundations of Network Programming in Go Chapter 12

[479]

The http.Transport structure implements the http.RoundTripper interface and
supports HTTP, HTTPS, and HTTP proxies. Note that http.Transport is pretty low level,
whereas the http.Client structure that is also used in this chapter implements a high-
level HTTP client.

About TCP/IP
TCP/IP is a family of protocols that help the internet operate. Its name came from its two
most well-known protocols—TCP and IP.

TCP stands for Transmission Control Protocol. TCP software transmits data between
machines using segments, which are also called TCP packets. The main characteristic of
TCP is that it is a reliable protocol, which means that it makes sure that a packet was
delivered without needing any extra code from the programmer. If there is no proof of a
packet delivery, TCP resends that particular packet. Among other things, a TCP packet can
be used for establishing connections, transferring data, sending acknowledgements, and
closing connections.

When a TCP connection is established between two machines, a full duplex virtual circuit,
similar to the telephone call, is created between those two machines. The two machines
constantly communicate to make sure that data are sent and received correctly. If the
connection fails for some reason, the two machines try to find the problem and report to the
relevant application.

IP stands for Internet Protocol. The main characteristic of IP is that it is not a reliable
protocol by nature. IP encapsulates the data that travels over a TCP/IP network because it is
responsible for delivering packets from the source host to the destination host according to
the IP addresses. IP has to find an addressing method to send the packet to its destination
effectively. Although there are dedicated devices called routers that perform IP routing,
every TCP/IP device has to perform some basic routing.

The UDP (User Datagram Protocol) protocol is based on IP, which means that it is also
unreliable. Generally speaking, the UDP protocol is simpler than the TCP protocol mainly
because UDP is not reliable by design. As a result, UDP messages can be lost, duplicated, or
arrive out of order. Furthermore, packets can arrive faster than the recipient can process
them. So, UDP is used when speed is more important than reliability.

The Foundations of Network Programming in Go Chapter 12

[480]

About IPv4 and IPv6
The first version of the IP protocol is now called IPv4 in order to differentiate it from the
latest version of the IP protocol, which is called IPv6.

The main problem with IPv4 is that it is at the verge of running out of IP addresses, which is
the main reason for creating the IPv6 protocol. This happens because an IPv4 address is
represented using 32 bits only, which allows a total number of 232 (4,294,967,296) different IP
addresses. On the other hand, IPv6 uses 128 bits for defining each one of its addresses.

The format of an IPv4 address is 10.20.32.245 (four parts separated by dots), while the
format of an IPv6 address is 3fce:1706:4523:3:150:f8ff:fe21:56cf (eight parts separated by
colons).

The nc(1) command-line utility
The nc(1) utility, which is also called netcat(1), comes in very handy when you want to
test TCP/IP servers and clients. This section will present some of its more common uses.

You can use nc(1) as a client for a TCP service that runs on a machine with the
10.10.1.123 IP address and listens to the port number 1234, as follows:

$ nc 10.10.1.123 1234

By default, nc(1) uses the TCP protocol. However, if you execute nc(1) with the -u flag,
then nc(1) will use the UDP protocol.

The -l option tells netcat(1) to act as a server, which means that netcat(1) will start
listening for connections at the given port number.

Finally, the -v and -vv options tell netcat(1) to generate verbose output, which can come
in handy when you want to troubleshoot network connections.

Although netcat(1) can help you test HTTP applications, it will become niftier in Chapter
13, Network Programming – Building Servers and Clients, when we will develop TCP and UDP
clients and servers. As a result, the netcat(1) utility will be used only once in this chapter.

The Foundations of Network Programming in Go Chapter 12

[481]

Reading the configuration of network
interfaces
There are four core elements in a network configuration: the IP address of the interface, the
network mask of the interface, the DNS servers of the machine, and the default gateway or
default router of the machine. However, there is a problem here: you cannot find every
piece of information using native and portable Go code. This means that there is no portable
way to discover the DNS configuration and the default gateway information of a Unix
machine.

As a result, in this section, you will learn how to read the configuration of the network
interfaces of a Unix machine with Go. For this purpose, I will present two portable utilities
that allow you to find out information about your network interfaces.

The source code of the first utility, netConfig.go, is presented in three parts.

The first part of netConfig.go is shown in the following Go code:

package main

import (
 "fmt"
 "net"
)

func main() {
 interfaces, err := net.Interfaces()
 if err != nil {
 fmt.Println(err)
 return
 }

The net.Interfaces() function returns all of the interfaces of the current machine as a
slice with elements of the net.Interface type. This slice will be used shortly to acquire
the desired information.

The Foundations of Network Programming in Go Chapter 12

[482]

The second code portion of netConfig.go contains the following Go code:

for _, i := range interfaces {
 fmt.Printf("Interface: %v\n", i.Name)
 byName, err := net.InterfaceByName(i.Name)
 if err != nil {
 fmt.Println(err)
 }

In the preceding code, you visit each element of the slice with the net.Interface elements
to retrieve the desired information.

The remaining Go code of netConfig.go is as follows:

 addresses, err := byName.Addrs()
 for k, v := range addresses {
 fmt.Printf("Interface Address #%v: %v\n", k, v.String())
 }
 fmt.Println()
 }
}

Executing netConfig.go on a macOS High Sierra machine with Go version 1.10 generates
the following output:

$ go run netConfig.go
Interface: lo0
Interface Address #0: 127.0.0.1/8
Interface Address #1: ::1/128
Interface Address #2: fe80::1/64
Interface: gif0
Interface: stf0
Interface: XHC20
Interface: en0
Interface Address #0: fe80::18fa:901a:ea9:eb5f/64
Interface Address #1: 192.168.1.200/24
Interface Address #2: 2a02:587:3006:b800:1cb8:bf1b:b154:4d0c/64
Interface Address #3: 2a02:587:3006:b800:d84a:f0c:c932:35d1/64
Interface: en1
Interface: p2p0
Interface: awdl0
Interface: en2
Interface: en3
Interface: bridge0
Interface: utun0
Interface Address #0: fe80::2514:c3a3:ca83:e1c6/64
Interface: utun1

The Foundations of Network Programming in Go Chapter 12

[483]

Interface Address #0: fe80::4e0b:a9a6:9abe:81a4/64
Interface: en5
Interface Address #0: fe80::1cb4:a29e:97bc:6fb5/64
Interface Address #1: 169.254.72.59/16

As you can see, the netConfig.go utility returns rather large output because today's
computers tend to have lots of network interfaces and because the program supports both
the IPv4 and IPv6 protocols.

Executing netConfig.go on a Debian Linux machine with Go version 1.7.4 will generate
the following output:

$ go run netConfig.go
Interface: lo
Interface Address #0: 127.0.0.1/8
Interface Address #1: ::1/128
Interface: dummy0
Interface: eth0
Interface Address #0: 10.74.193.253/24
Interface Address #1: 2a01:7e00::f03c:91ff:fe69:1381/64
Interface Address #2: fe80::f03c:91ff:fe69:1381/64
Interface: teql0
Interface: tunl0
Interface: gre0
Interface: gretap0
Interface: erspan0
Interface: ip_vti0
Interface: ip6_vti0
Interface: sit0
Interface: ip6tnl0
Interface: ip6gre0

Note that the main reason why a network interface may not have a network address is that
it is down, which essentially means that it is not currently configured.

Not all of the listed interfaces have a real hardware network device
attached to them. The more representative example is the lo0 interface,
which is the loopback device. The loopback device is a special, virtual
network interface that is used by your computer in order to communicate
with itself.

The Go code for the next utility, netCapabilities.go, is also presented in three parts. The
purpose of the netCapabilities.go utility is to reveal the capabilities of each network
interface found on your Unix system.

The Foundations of Network Programming in Go Chapter 12

[484]

The netCapabilities.go utility uses the fields of the net.Interface structure, which is
defined as follows:

type Interface struct {
 Index int
 MTU int
 Name string
 HardwareAddr HardwareAddr
 Flags Flags
}

The first part from the Go code of netCapabilities.go follows next:

package main

import (
 "fmt"
 "net"
)

The second code portion of netCapabilities.go contains the following Go code:

func main() {
 interfaces, err := net.Interfaces()

 if err != nil {
 fmt.Print(err)
 return
 }

The last part of netCapabilities.go comes in the following Go code:

 for _, i := range interfaces {
 fmt.Printf("Name: %v\n", i.Name)
 fmt.Println("Interface Flags:", i.Flags.String())
 fmt.Println("Interface MTU:", i.MTU)
 fmt.Println("Interface Hardware Address:", i.HardwareAddr)
 fmt.Println()
 }
}

The Foundations of Network Programming in Go Chapter 12

[485]

Running netCapabilities.go on a macOS High Sierra machine will generate the
following output:

$ go run netCapabilities.go
Name: lo0
Interface Flags: up|loopback|multicast
Interface MTU: 16384
Interface Hardware Address:
Name: gif0
Interface Flags: pointtopoint|multicast
Interface MTU: 1280
Interface Hardware Address:
Name: stf0
Interface Flags: 0
Interface MTU: 1280
Interface Hardware Address:
Name: XHC20
Interface Flags: 0
Interface MTU: 0
Interface Hardware Address:
Name: en0
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 98:5a:eb:d7:84:cd
Name: en1
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: d0:03:4b:cf:84:d3
Name: p2p0
Interface Flags: broadcast|multicast
Interface MTU: 2304
Interface Hardware Address: 02:03:4b:cf:84:d3
Name: awdl0
Interface Flags: broadcast|multicast
Interface MTU: 1484
Interface Hardware Address: 02:ac:d4:3b:d9:29
Name: en2
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 0a:00:00:a5:32:b0
Name: en3
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 0a:00:00:a5:32:b1
Name: bridge0
Interface Flags: up|broadcast|multicast
Interface MTU: 1500

The Foundations of Network Programming in Go Chapter 12

[486]

Interface Hardware Address: 0a:00:00:a5:32:b0
Name: utun0
Interface Flags: up|pointtopoint|multicast
Interface MTU: 2000
Interface Hardware Address:
Name: utun1
Interface Flags: up|pointtopoint|multicast
Interface MTU: 1380
Interface Hardware Address:
Name: en5
Interface Flags: up|broadcast|multicast
Interface MTU: 1500
Interface Hardware Address: 6e:72:e7:1b:cd:5f

Executing netCapabilities.go on a Debian Linux machine will generate similar output.

Finally, if you are really interested in finding out the default gateway of the machine, you
can execute the netstat -nr command either externally or using exec.Command(),
taking its output using a pipe or exec.CombinedOutput(), and processing it as text using
Go. This solution, however, is neither elegant nor perfect.

Performing DNS lookups
DNS stands for Domain Name System, which relates to the way an IP address is translated
into a name such as packt.com and vice versa. The logic behind the DNS.go utility, which
will be developed in this section, is pretty simple: if the given command-line argument is a
valid IP address, the program will process it as an IP address; otherwise, it will assume that
it is dealing with a hostname that needs to be translated into one or more IP addresses.

The code for the DNS.go utility will be presented in three parts. The first part of the
program contains the following Go code:

package main

import (
 "fmt"
 "net"
 "os"
)

func lookIP(address string) ([]string, error) {
 hosts, err := net.LookupAddr(address)
 if err != nil {
 return nil, err

The Foundations of Network Programming in Go Chapter 12

[487]

 }
 return hosts, nil
}

func lookHostname(hostname string) ([]string, error) {
 IPs, err := net.LookupHost(hostname)
 if err != nil {
 return nil, err
 }
 return IPs, nil
}

The lookIP() function gets an IP address as input and returns the list of names that match
that IP address with the help of the net.LookupAddr() function.

On the other hand, the lookHostname() function gets a host name as input and returns a
list with the associated IP addresses using the net.LookupHost() function.

The second part of DNS.go is the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 return
 }

 input := arguments[1]
 IPaddress := net.ParseIP(input)

The net.ParseIP() function parses a string as an IPv4 or an IPv6 address. If the IP
address is not valid, net.ParseIP() returns nil.

The remaining Go code of the DNS.go utility follows next:

 if IPaddress == nil {
 IPs, err := lookHostname(input)
 if err == nil {
 for _, singleIP := range IPs {
 fmt.Println(singleIP)
 }
 }
 } else {
 hosts, err := lookIP(input)
 if err == nil {
 for _, hostname := range hosts {
 fmt.Println(hostname)

The Foundations of Network Programming in Go Chapter 12

[488]

 }
 }
 }
}

Executing DNS.go with various kinds of input will generate the following output:

$ go run DNS.go 127.0.0.1
localhost
$ go run DNS.go 192.168.1.1
cisco
$ go run DNS.go packtpub.com
83.166.169.231
$ go run DNS.go google.com
2a00:1450:4001:816::200e
216.58.210.14
$ go run DNS.go www.google.com
2a00:1450:4001:816::2004
216.58.214.36
$ go run DNS.go cnn.com
2a04:4e42::323
2a04:4e42:600::323
2a04:4e42:400::323
2a04:4e42:200::323
151.101.193.67
151.101.1.67
151.101.129.67
151.101.65.67

Note that the output of the go run DNS.go 192.168.1.1 command is taken from my
/etc/hosts file, because the cisco hostname is an alias for the 192.168.1.1 IP address
in my /etc/hosts file.

The output of the last command shows that sometimes a single hostname (cnn.com) might
have multiple public IP addresses. Pay special attention to the word public here, because
although www.google.com has multiple IP addresses, it uses just a single public IP address
(216.58.214.36).

Getting the NS records of a domain
A very popular DNS request has to do with finding out the name servers of a domain,
which are stored in the NS records of that domain. This functionality is will be illustrated in
the code of NSrecords.go.

The Foundations of Network Programming in Go Chapter 12

[489]

The code of NSrecords.go will be presented in two parts. The first part of NSrecords.go
follows next:

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Need a domain name!")
 return
 }

In this part, you check whether you have at least one command-line argument in order to
have something with which you can work.

The remaining Go code of NSrecords.go is as follows:

 domain := arguments[1]
 NSs, err := net.LookupNS(domain)
 if err != nil {
 fmt.Println(err)
 return
 }

 for _, NS := range NSs {
 fmt.Println(NS.Host)
 }
}

All the work is done by the net.LookupNS() function, which returns the NS records of a
domain as a slice variable of the net.NS type. This is the reason for printing the Host field
of each net.NS element of the slice.

The Foundations of Network Programming in Go Chapter 12

[490]

Executing NSrecords.go will generate the following output:

$ go run NSrecords.go mtsoukalos.eu
ns5.linode.com.
ns4.linode.com.
ns1.linode.com.
ns2.linode.com.
ns3.linode.com.
$ go run NSrecords.go www.mtsoukalos.eu
lookup www.mtsoukalos.eu on 8.8.8.8:53: no such host

You can verify the correctness of the preceding output with the help of the host(1) utility:

$ host -t ns www.mtsoukalos.eu
www.mtsoukalos.eu has no NS record
$ host -t ns mtsoukalos.eu
mtsoukalos.eu name server ns3.linode.com.
mtsoukalos.eu name server ns1.linode.com.
mtsoukalos.eu name server ns4.linode.com.
mtsoukalos.eu name server ns2.linode.com.
mtsoukalos.eu name server ns5.linode.com.

Getting the MX records of a domain
Another very popular DNS request has to do with getting the MX records of a domain. The
MX records specify the mail servers of a domain. The code of the MXrecords.go utility will
perform this task with Go.

The first part of the MXrecords.go utility is shown in the following Go code:

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Need a domain name!")
 return
 }

The Foundations of Network Programming in Go Chapter 12

[491]

The second part of MXrecords.go contains the following Go code:

 domain := arguments[1]
 MXs, err := net.LookupMX(domain)
 if err != nil {
 fmt.Println(err)
 return
 }

 for _, MX := range MXs {
 fmt.Println(MX.Host)
 }
}

The code of MXrecords.go works in a similar way to the code of NXrecords.go presented
in the previous section. The only difference is that you use the net.LookupMX() function
instead of the net.LookupNS() function.

Executing MXrecords.go will generate the following output:

$ go run MXrecords.go golang.com
aspmx.l.google.com.
alt3.aspmx.l.google.com.
alt1.aspmx.l.google.com.
alt2.aspmx.l.google.com.
$ go run MXrecords.go www.mtsoukalos.eu
lookup www.mtsoukalos.eu on 8.8.8.8:53: no such host

Once again, you can verify the validity of the preceding output with the help of the
host(1) utility:

$ host -t mx golang.com
golang.com mail is handled by 2 alt3.aspmx.l.google.com.
golang.com mail is handled by 1 aspmx.l.google.com.
golang.com mail is handled by 2 alt1.aspmx.l.google.com.
golang.com mail is handled by 2 alt2.aspmx.l.google.com.
$ host -t mx www.mtsoukalos.eu
www.mtsoukalos.eu has no MX record

The Foundations of Network Programming in Go Chapter 12

[492]

Creating a web server in Go
Go allows you to create a web server on your own, using some of the functions of its
standard library. The first time that you saw a web server application programmed in Go in
this book was back in Chapter 10, Go Concurrency – Advanced Topics, when we talked about
the context package.

Although a web server programmed in Go can do many things efficiently
and securely, if what you really need is a powerful web server that will
support modules, multiple websites, and virtual hosts, then you would be
better off using a web server such as Apache or Nginx.

The name of the Go program for this example will be www.go, and it will be presented in
five parts. The first part of www.go contains the expected import statements:

package main

import (
 "fmt"
 "net/http"
 "os"
 "time"
)

The time package is not necessary for a web server to operate. However, it is needed in this
case because the server will send the time and the date to its clients.

The second code segment of www.go is shown in the following Go code:

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

This is the implementation of the first handler function of the program. A handler function
serves one or more URLs depending on the configuration used.

The Foundations of Network Programming in Go Chapter 12

[493]

The third part from www.go contains the following Go code:

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

In the preceding Go code, you can see the implementation of the second handler function of
the program. This function generates dynamic content.

The fourth section of code of our web server deals with the command-line arguments and
the definition of the supported URLs:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/time", timeHandler)
 http.HandleFunc("/", myHandler)

The http.HandleFunc() function associates a URL with a handler function.

The last part of the www.go program is as follows:

 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 return
 }
}

You should start the web server with the help of the http.ListenAndServe() function
using the desired port number.

The Foundations of Network Programming in Go Chapter 12

[494]

Executing www.go and connecting to its web server will generate the following output:

$ go run www.go
Using default port number: :8001
Served: localhost:8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001
Served time for: localhost:8001
Served: localhost:8001
Served: localhost:8001
Served: localhost:8001

Although the output of the program provides some handy material, I think that you would
prefer to see the real output of the program using your favorite web browser. The following
screenshot shows the output of the myHandler() function of our web server as displayed
in Google Chrome:

The home page of the www.go web server

The Foundations of Network Programming in Go Chapter 12

[495]

The following screenshot shows that www.go can generate dynamic pages as well. In this
case, it is a web page registered in /time, which displays the current time and date:

Getting the current time and date from the www.go web server

What is really interesting here is that all URLs apart from /time are served by the
myHandler() function because its first argument, which is /, matches every URL that is not
matched by another handler!

Profiling an HTTP server
As you learned in Chapter 11, Code Testing, Optimization, and Profiling, there is a standard
Go package named net/http/pprof that should be used when you want to profile a Go
application with its own HTTP server. Therefore, importing net/http/pprof will install
various handlers under the /debug/pprof/ URL. You will see more of this in a short
while. For now, it is enough that you remember that the net/http/pprof package should
be used for profiling web applications with an HTTP server, whereas the runtime/pprof
standard Go package should be used for profiling all other kinds of applications.

http://www.go

The Foundations of Network Programming in Go Chapter 12

[496]

Note that if your profiler works using the http://localhost:8080 address, you will get
support for the following web links:

http://localhost:8080/debug/pprof/goroutine

http://localhost:8080/debug/pprof/heap

http://localhost:8080/debug/pprof/threadcreate

http://localhost:8080/debug/pprof/block

http://localhost:8080/debug/pprof/mutex

http://localhost:8080/debug/pprof/profile

http://localhost:8080/debug/pprof/trace?seconds=5

The next program to be presented will use www.go as its starting point and add the
necessary Go code to allow you to profile it. The name of the new program is
wwwProfile.go, and it will be presented in four parts.

Note that wwwProfile.go will use an http.NewServeMux variable for registering the
supported paths of the program. The main reason for doing so is that the use of
http.NewServeMux requires defining the HTTP endpoints manually. Also note that you
are allowed to define a subset of the supported HTTP endpoints. If you decide not to use
http.NewServeMux, then the HTTP endpoints are registered automatically, which also
means that you will have to import the net/http/pprof package using the _ character in
front of it.

The first part of wwwProfile.go contains the following Go code:

package main

import (
 "fmt"
 "net/http"
 "net/http/pprof"
 "os"
 "time"
)

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)

The Foundations of Network Programming in Go Chapter 12

[497]

 fmt.Printf("Served: %s\n", r.Host)
}

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center\">%s</h2>\n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

The implementations of these two handler functions are exactly the same as before.

The second code segment from wwwProfile.go is as follows:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 fmt.Println("Using port number: ", PORT)
 }

 r := http.NewServeMux()
 r.HandleFunc("/time", timeHandler)
 r.HandleFunc("/", myHandler)

In the preceding Go code, you define the URLs that will be supported by your web server
using http.NewServeMux() and HandleFunc().

The third code portion from wwwProfile.go is shown in the following Go code:

 r.HandleFunc("/debug/pprof/", pprof.Index)
 r.HandleFunc("/debug/pprof/cmdline", pprof.Cmdline)
 r.HandleFunc("/debug/pprof/profile", pprof.Profile)
 r.HandleFunc("/debug/pprof/symbol", pprof.Symbol)
 r.HandleFunc("/debug/pprof/trace", pprof.Trace)

The preceding Go code defines the HTTP endpoints related to profiling. Without them, you
will not be able to profile your web application.

The Foundations of Network Programming in Go Chapter 12

[498]

The remaining Go code is as follows:

 err := http.ListenAndServe(PORT, r)
 if err != nil {
 fmt.Println(err)
 return
 }
}

This code begins the Go web server, and this allows it to serve connections from HTTP
clients. You'll notice that the second parameter to http.ListenAndServe() is no longer
nil.

As you can see, wwwProfile.go does not define the /debug/pprof/goroutine HTTP
endpoint, which makes perfect sense as wwwProfile.go does not use any goroutines!

Executing wwwProfile.go will generate the following output:

$ go run wwwProfile.go 1234
Using port number: :1234
Served time for: localhost:1234

Using the Go profiler to get data is a pretty simple task that requires the execution of the
next command, which will take you to the shell of the Go profiler automatically:

$ go tool pprof http://localhost:1234/debug/pprof/profile
Fetching profile over HTTP from http://localhost:1234/debug/pprof/profile
Saved profile in /Users/mtsouk/pprof/pprof.samples.cpu.003.pb.gz
Type: cpu
Time: Mar 27, 2018 at 10:04pm (EEST)
Duration: 30s, Total samples = 21.04s (70.13%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) top
Showing nodes accounting for 19.94s, 94.77% of 21.04s total
Dropped 159 nodes (cum <= 0.11s)
Showing top 10 nodes out of 75
 flat flat% sum% cum cum%
 13.73s 65.26% 65.26% 13.73s 65.26% syscall.Syscall
 1.58s 7.51% 72.77% 1.58s 7.51% runtime.kevent
 1.36s 6.46% 79.23% 1.36s 6.46% runtime.mach_semaphore_signal
 1.02s 4.85% 84.08% 1.02s 4.85% runtime.usleep
 0.80s 3.80% 87.88% 0.80s 3.80% runtime.mach_semaphore_wait
 0.53s 2.52% 90.40% 2.11s 10.03% runtime.netpoll
 0.44s 2.09% 92.49% 0.44s 2.09% internal/poll.convertErr
 0.26s 1.24% 93.73% 0.26s 1.24% net.(*TCPConn).Read

The Foundations of Network Programming in Go Chapter 12

[499]

 0.18s 0.86% 94.58% 0.18s 0.86% runtime.freedefer
 0.04s 0.19% 94.77% 1.05s 4.99% runtime.runqsteal
(pprof)

You can now use the profiling data and analyze it using go tool pprof, as you learned in
Chapter 11, Code Testing, Optimization, and Profiling.

You can visit http://HOSTNAME:PORTNUMBER/debug/pprof/ and see
the profiling results from there. When the value of HOSTNAME is
localhost and that of PORTNUMBER is 1234, you should visit
http://localhost:1234/debug/pprof/.

Should you wish to test the performance of your web server application, you can use the
ab(1) utility, which is more widely known as the Apache HTTP server benchmarking
tool, in order to create some traffic and benchmark wwwProfile.go. This will also allow go
tool pprof to collect more accurate data, as follows:

$ ab -k -c 10 -n 100000 "http://127.0.0.1:1234/time"
This is ApacheBench, Version 2.3 <$Revision: 1807734 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 127.0.0.1 (be patient)
Completed 10000 requests
Completed 20000 requests
Completed 30000 requests
Completed 40000 requests
Completed 50000 requests
Completed 60000 requests
Completed 70000 requests
Completed 80000 requests
Completed 90000 requests
Completed 100000 requests
Finished 100000 requests
Server Software:
Server Hostname: 127.0.0.1
Server Port: 1234
Document Path: /time
Document Length: 114 bytes
Concurrency Level: 10
Time taken for tests: 2.114 seconds
Complete requests: 100000
Failed requests: 0
Keep-Alive requests: 100000
Total transferred: 25500000 bytes
HTML transferred: 11400000 bytes
Requests per second: 47295.75 [#/sec] (mean)

The Foundations of Network Programming in Go Chapter 12

[500]

Time per request: 0.211 [ms] (mean)
Time per request: 0.021 [ms] (mean, across all concurrent requests)
Transfer rate: 11777.75 [Kbytes/sec] received
Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.0 0 0
Processing: 0 0 0.7 0 13
Waiting: 0 0 0.7 0 13
Total: 0 0 0.7 0 13
Percentage of the requests served within a certain time (ms)
50% 0
66% 0
75% 0
80% 0
90% 0
95% 0
98% 0
99% 0
100% 13 (longest request)

Can you use the net/http/pprof package for profiling command-line
applications? Yes! However, the net/http/pprof package is particularly
useful when you want to profile a running web application and capture
live data, which is the main reason for presenting it in this chapter.

Creating a website in Go
Do you remember the keyValue.go application from Chapter 4, The Uses of Composite
Types, and kvSaveLoad.go from Chapter 8, Telling a Unix System What to Do? In this
section, you will learn how to create a web interface for them, using the capabilities of the
standard Go library. The name of the new Go source code file is kvWeb.go, and it will be
presented in six parts.

The first difference between the Go code of kvWeb.go and www.go, developed earlier in this
chapter, is that kvWeb.go uses the http.NewServeMux type for dealing with HTTP
requests because it is much more versatile for nontrivial web applications.

The first part of kvWeb.go is as follows:

package main

import (
 "encoding/gob"
 "fmt"

The Foundations of Network Programming in Go Chapter 12

[501]

 "html/template"
 "net/http"
 "os"
)

type myElement struct {
 Name string
 Surname string
 Id string
}

var DATA = make(map[string]myElement)
var DATAFILE = "/tmp/dataFile.gob"

You have already seen this code in kvSaveLoad.go in Chapter 8, Telling a Unix System
What to Do.

The second part of kvWeb.go is shown in the following Go code:

func save() error {
 fmt.Println("Saving", DATAFILE)
 err := os.Remove(DATAFILE)
 if err != nil {
 fmt.Println(err)
 }

 saveTo, err := os.Create(DATAFILE)
 if err != nil {
 fmt.Println("Cannot create", DATAFILE)
 return err
 }
 defer saveTo.Close()

 encoder := gob.NewEncoder(saveTo)
 err = encoder.Encode(DATA)
 if err != nil {
 fmt.Println("Cannot save to", DATAFILE)
 return err
 }
 return nil
}

func load() error {
 fmt.Println("Loading", DATAFILE)
 loadFrom, err := os.Open(DATAFILE)
 defer loadFrom.Close()
 if err != nil {

The Foundations of Network Programming in Go Chapter 12

[502]

 fmt.Println("Empty key/value store!")
 return err
 }

 decoder := gob.NewDecoder(loadFrom)
 decoder.Decode(&DATA)
 return nil
}

func ADD(k string, n myElement) bool {
 if k == "" {
 return false
 }

 if LOOKUP(k) == nil {
 DATA[k] = n
 return true
 }
 return false
}

func DELETE(k string) bool {
 if LOOKUP(k) != nil {
 delete(DATA, k)
 return true
 }
 return false
}

func LOOKUP(k string) *myElement {
 _, ok := DATA[k]
 if ok {
 n := DATA[k]
 return &n
 } else {
 return nil
 }
}

func CHANGE(k string, n myElement) bool {
 DATA[k] = n
 return true
}

func PRINT() {
 for k, d := range DATA {

The Foundations of Network Programming in Go Chapter 12

[503]

 fmt.Printf("key: %s value: %v\n", k, d)
 }
}

You should also be familiar with the preceding Go code, as it first appeared in
kvSaveLoad.go in Chapter 8, Telling a Unix System What to Do.

The third code portion of kvWeb.go follows next:

func homePage(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Serving", r.Host, "for", r.URL.Path)
 myT := template.Must(template.ParseGlob("home.gohtml"))
 myT.ExecuteTemplate(w, "home.gohtml", nil)
}

func listAll(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Listing the contents of the KV store!")

 fmt.Fprintf(w, "Home sweet
home!")
 fmt.Fprintf(w, "List
all elements!")
 fmt.Fprintf(w, "<a href\="/change\" style=\"margin-right:
20px;\">Change an element!")
 fmt.Fprintf(w, "<a href\="/insert\" style=\"margin-right:
20px;\">Insert new element!")

 fmt.Fprintf(w, "<h1>The contents of the KV store are:</h1>")
 fmt.Fprintf(w, "")
 for k, v := range DATA {
 fmt.Fprintf(w, "")
 fmt.Fprintf(w, "%s with value: %v\n", k, v)
 fmt.Fprintf(w, "")
 }

 fmt.Fprintf(w, "")
}

The listAll() function does not use any Go templates for generating its dynamic output.
Instead, its output is generated on the fly, using Go. You may consider this an exception, as
web applications usually work better with HTML templates and the html/template
standard Go package.

The Foundations of Network Programming in Go Chapter 12

[504]

The fourth part of kvWeb.go contains the following Go code:

func changeElement(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Changing an element of the KV store!")
 tmpl := template.Must(template.ParseFiles("update.gohtml"))
 if r.Method != http.MethodPost {
 tmpl.Execute(w, nil)
 return
 }

 key := r.FormValue("key")
 n := myElement{
 Name: r.FormValue("name"),
 Surname: r.FormValue("surname"),
 Id: r.FormValue("id"),
 }

 if !CHANGE(key, n) {
 fmt.Println("Update operation failed!")
 } else {
 err := save()
 if err != nil {
 fmt.Println(err)
 return
 }
 tmpl.Execute(w, struct{ Success bool }{true})
 }
}

In the preceding Go code, you can see how to read the values from the fields of an HTML
form with the help of the FormValue() function. The template.Must() function is a
helper function which makes sure that the template file provided contains no errors.

The fifth code segment of kvWeb.go is contained in the following Go code:

func insertElement(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Inserting an element to the KV store!")
 tmpl := template.Must(template.ParseFiles("insert.gohtml"))
 if r.Method != http.MethodPost {
 tmpl.Execute(w, nil)
 return
 }

 key := r.FormValue("key")
 n := myElement{
 Name: r.FormValue("name"),
 Surname: r.FormValue("surname"),

The Foundations of Network Programming in Go Chapter 12

[505]

 Id: r.FormValue("id"),
 }

 if !ADD(key, n) {
 fmt.Println("Add operation failed!")
 } else {
 err := save()
 if err != nil {
 fmt.Println(err)
 return
 }
 tmpl.Execute(w, struct{ Success bool }{true})
 }
}

The remaining Go code is as follows:

func main() {
 err := load()
 if err != nil {
 fmt.Println(err)
 }

 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/", homePage)
 http.HandleFunc("/change", changeElement)
 http.HandleFunc("/list", listAll)
 http.HandleFunc("/insert", insertElement)
 err = http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 }
}

The main() function of kvWeb.go is much simpler than the main() function of
kvSaveLoad.go from Chapter 8, Telling a Unix System What to Do, because these two
program have a totally different design.

It is now time to look at the gohtml files used for this project starting with home.gohtml,
which is as follows:

The Foundations of Network Programming in Go Chapter 12

[506]

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Key Value Store!</title>
</head>
<body>

Home sweet home!
List all elements!
Change an element!
Insert new element!

<h2>Welcome to the Go KV store!</h2>

</body>
</html>

The home.gohtml file is static, which means that its contents do not change. However, the
remaining gohtml files display information dynamically.

The contents of update.gohtml are as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Key Value Store!</title>
</head>
<body>

Home sweet home!
List all elements!
Change an element!
Insert new element!

{{if .Success}} <h1>Element updated!</h1>{{else}}
<h1>Please fill in the fields:</h1>
 <form method="POST">
 <label>Key:</label>

 <input type="text" name="key">

 <label>Name:</label>

 <input type="text" name="name">

 <label>Surname:</label>

 <input type="text" name="surname">

 <label>Id:</label>

 <input type="text" name="id">

The Foundations of Network Programming in Go Chapter 12

[507]

 <input type="submit">
 </form>
{{end}}

</body>
</html>

The preceding is mainly HTML code. Its most interesting part is the if statement that
specifies whether you should see the form or the Element updated! message.

Finally, the contents of insert.gohtml are as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Key Value Store!</title>
</head>
<body>

Home sweet home!
List all elements!
Change an element!
Insert new element!

{{if .Success}}
 <h1>Element inserted!</h1>
{{else}}
 <h1>Please fill in the fields:</h1>
 <form method="POST">
 <label>Key:</label>

 <input type="text" name="key">

 <label>Name:</label>

 <input type="text" name="name">

 <label>Surname:</label>

 <input type="text" name="surname">

 <label>Id:</label>

 <input type="text" name="id">

 <input type="submit">
 </form>
{{end}}

</body>
</html>

As you can see, insert.gohtml and update.gohtml are identical apart from the text in
the <title> tag!

The Foundations of Network Programming in Go Chapter 12

[508]

Executing kvWeb.go will generate the following output on a Unix shell:

$ go run kvWeb.go
Loading /tmp/dataFile.gob
Using default port number: :8001
Serving localhost:8001 for /
Serving localhost:8001 for /favicon.ico
Listing the contents of the KV store!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Add operation failed!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Saving /tmp/dataFile.gob
Serving localhost:8001 for /favicon.ico
Inserting an element to the KV store!
Serving localhost:8001 for /favicon.ico
Changing an element of the KV store!
Serving localhost:8001 for /favicon.ico

Additionally, what is really interesting is how you can interact with kvWeb.go from a web
browser. The home page of the website as defined in home.gohtml is shown in the
following screenshot:

The static home page of our web application

The Foundations of Network Programming in Go Chapter 12

[509]

The following screenshot presents the contents of the key-value store:

The contents of the key-value store

The following screenshot shows the appearance of the web page that allows you to add new
data to the key-value store, using the web interface of the kvWeb.go web application:

Adding a new entry to the key-value store

The Foundations of Network Programming in Go Chapter 12

[510]

The following screenshot shows you how to update the value of an existing key, using the
web interface of the kvWeb.go web application:

Updating the value of a key in the key-value store

The kvWeb.go web application is far from perfect, so feel free to improve it as an exercise!

This section illustrated how you can develop entire websites and web
applications in Go. Although your requirements will undoubtedly vary,
the techniques are the same as the ones used in kvWeb.go. Note that
custom-made sites are considered more secure than sites created using
some popular content management system.

HTTP tracing
Go supports HTTP tracing with the help of the net/http/httptrace standard package!
This package allows you to trace the phases of an HTTP request. So, the use of the
net/http/httptrace standard Go package will be illustrated in httpTrace.go, which
will be presented in five parts.

The Foundations of Network Programming in Go Chapter 12

[511]

The first part of httpTrace.go is as follows:

package main

import (
 "fmt"
 "io"
 "net/http"
 "net/http/httptrace"
 "os"
)

As you might expect, you need to import the net/http/httptrace package in order to
enable HTTP tracing.

The second part of httpTrace.go contains the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: URL\n")
 return
 }

 URL := os.Args[1]
 client := http.Client{}

In this part, we read the command-line arguments and create a new http.Client variable.
As this is the first time you are seeing an http.Client object in action, we will talk a little
bit more about it. The http.Client object offers a way to send a request to a server and get
a reply. Its Transport field permits you to set various HTTP details instead of using the
default values.

Note that you should never use the default values of the http.Client object in production
software because these values do not specify request timeouts, which can jeopardize the
performance of your programs and your goroutines. Moreover, by design, http.Client
objects can be safely used in concurrent programs.

The third code segment of httpTrace.go is contained in the following Go code:

req, _ := http.NewRequest("GET", URL, nil)
trace := &httptrace.ClientTrace{
 GotFirstResponseByte: func() {
 fmt.Println("First response byte!")
 },
 GotConn: func(connInfo httptrace.GotConnInfo) {
 fmt.Printf("Got Conn: %+v\n", connInfo)

The Foundations of Network Programming in Go Chapter 12

[512]

 },
 DNSDone: func(dnsInfo httptrace.DNSDoneInfo) {
 fmt.Printf("DNS Info: %+v\n", dnsInfo)
 },
 ConnectStart: func(network, addr string) {
 fmt.Println("Dial start")
 },
 ConnectDone: func(network, addr string, err error) {
 fmt.Println("Dial done")
 },
 WroteHeaders: func() {
 fmt.Println("Wrote headers")
 },
}

The preceding code is all about tracing HTTP requests. The httptrace.ClientTrace
object defines the events that interest us. When such an event occurs, the relevant code is
executed. You can find more information about the supported events and their purpose in
the documentation of the net/http/httptrace package.

The fourth part of the httpTrace.go utility follows next:

req = req.WithContext(httptrace.WithClientTrace(req.Context(), trace))
fmt.Println("Requesting data from server!")
_, err := http.DefaultTransport.RoundTrip(req)
if err != nil {
 fmt.Println(err)
 return
}

The httptrace.WithClientTrace() function returns a new context, based on the given
parent context; while the http.DefaultTransport.RoundTrip() method wraps
http.DefaultTransport.RoundTrip in order to tell it to keep track of the current
request. Note that Go HTTP tracing is designed so that it can trace the events of a single
http.Transport.RoundTrip. However, as you may have multiple URL redirects when
serving a single HTTP request, you need to be able to identify the current request.

The remaining Go code of httpTrace.go is as followss:

 response, err := client.Do(req)
 if err != nil {
 fmt.Println(err)
 return

The Foundations of Network Programming in Go Chapter 12

[513]

 }

 io.Copy(os.Stdout, response.Body)
}

This last part is about performing the actual request to the web server using Do(), getting
the HTTP data, and displaying it on the screen.

Executing httpTrace.go will generate the following very informative output:

$ go run httpTrace.go http://localhost:8001/
Requesting data from server!
DNS Info: {Addrs:[{IP:::1 Zone:} {IP:127.0.0.1 Zone:}] Err:<nil>
Coalesced:false}
Dial start
Dial done
Got Conn: {Conn:0xc420142000 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
DNS Info: {Addrs:[{IP:::1 Zone:} {IP:127.0.0.1 Zone:}] Err:<nil>
Coalesced:false}
Dial start
Dial done
Got Conn: {Conn:0xc420142008 Reused:false WasIdle:false IdleTime:0s}
Wrote headers
First response byte!
Serving: /

Be aware that since httpTrace.go prints the full HTML response from the HTTP server,
you might get lots of output when you test it on a real web server, which is the main reason
for using the web server developed in www.go here.

If you have the time to look at the source code of the
net/http/httptrace package
at https://golang.org/src/net/http/httptrace/trace.go, you will
immediately realize that net/http/httptrace is a pretty low-level
package that uses the context, reflect, and internal/nettrace
packages to implement its functionality.

Testing HTTP handlers
In this section, we will learn how to test HTTP handlers in Go, which is a special case of
testing in Go. We will begin with the Go code of www.go and modify it where needed.

https://golang.org/src/net/http/httptrace/trace.go

The Foundations of Network Programming in Go Chapter 12

[514]

The new version of www.go is called testWWW.go, and it will be presented in three parts.
The first code portion of testWWW.go is as follows:

package main

import (
 "fmt"
 "net/http"
 "os"
)

func CheckStatusOK(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, `Fine!`)
}

The second part of testWWW.go is contained in the following Go code:

func StatusNotFound(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusNotFound)
}

func MyHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

The remaining Go code of testWWW.go follows next:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

 http.HandleFunc("/CheckStatusOK", CheckStatusOK)
 http.HandleFunc("/StatusNotFound", StatusNotFound)
 http.HandleFunc("/", MyHandler)

 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)

The Foundations of Network Programming in Go Chapter 12

[515]

 return
 }
}

We now need to start testing testWWW.go, which means that we should create a
testWWW_test.go file. The contents of that file will be presented in four parts.

The first part of testWWW_test.go is contained in the following Go code:

package main

import (
 "fmt"
 "net/http"
 "net/http/httptest"
 "testing"
)

Notice that you need to import the net/http/httptest standard Go package in order to
test web applications in Go.

The second code portion of testWWW_test.go contains the following code:

func TestCheckStatusOK(t *testing.T) {
 req, err := http.NewRequest("GET", "/CheckStatusOK", nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(CheckStatusOK)
 handler.ServeHTTP(rr, req)

The httptest.NewRecorder() function returns an httptest.ResponseRecorder
object, and it is used for recording the HTTP response.

The third part of testWWW_test.go is as follows:

 status := rr.Code
 if status != http.StatusOK {
 t.Errorf("handler returned %v", status)
 }

 expect := `Fine!`
 if rr.Body.String() != expect {

The Foundations of Network Programming in Go Chapter 12

[516]

 t.Errorf("handler returned %v", rr.Body.String())
 }
}

You first check that the response code is as expected, and then you verify that the body of
the response is also what you expected.

The remaining Go code of testWWW_test.go is as follows:

func TestStatusNotFound(t *testing.T) {
 req, err := http.NewRequest("GET", "/StatusNotFound", nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(StatusNotFound)
 handler.ServeHTTP(rr, req)

 status := rr.Code
 if status != http.StatusNotFound {
 t.Errorf("handler returned %v", status)
 }
}

This test function verifies that the StatusNotFound() function of the main package works
as expected.

Executing the two test functions of testWWW_test.go will generate the following output:

$ go test testWWW.go testWWW_test.go -v
=== RUN TestCheckStatusOK
--- PASS: TestCheckStatusOK (0.00s)
=== RUN TestStatusNotFound
--- PASS: TestStatusNotFound (0.00s)
PASS
ok command-line-arguments (cached)

Creating a web client in Go
In this section, you will learn more about developing web clients in Go. The name of the
web client utility is webClient.go, and it will be presented in four parts.

The Foundations of Network Programming in Go Chapter 12

[517]

The first part of webClient.go contains the following Go code:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"
 "path/filepath"
)

The second part of webClient.go is where you read the desired URL as a command-line
argument:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }

 URL := os.Args[1]

The third code portion of webClient.go, is where the real action takes place:

data, err := http.Get(URL)

if err != nil {
 fmt.Println(err)
 return

All of the work is done by the http.Get() call, which is pretty convenient when you do
not want to deal with parameters and options. However, this type of call gives you no
flexibility over the process. Note that http.Get() returns an http.Response variable.

The remaining Go code is as follows:

 } else {
 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

The Foundations of Network Programming in Go Chapter 12

[518]

What the previous code does is to copy the contents of the Body field of the
http.Response structure to standard output.

Executing webClient.go will generate the following type of output:

Only a small portion of the output is presented here.

$ go run webClient.go http://www.mtsoukalos.eu/ | head -20
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
version="XHTML+RDFa 1.0" dir="ltr"
xmlns:content="http://purl.org/rss/1.0/modules/content/"
xmlns:dc="http://purl.org/dc/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:og="http://ogp.me/ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sioc="http://rdfs.org/sioc/ns#"
xmlns:sioct="http://rdfs.org/sioc/types#"
xmlns:skos="http://www.w3.org/2004/02/skos/core#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<head profile="http://www.w3.org/1999/xhtml/vocab">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="shortcut icon" href="http://www.mtsoukalos.eu/misc/favicon.ico"
type="image/vnd.microsoft.icon" />
<meta name="HandheldFriendly" content="true" />
<meta name="MobileOptimized" content="width" />
<meta name="Generator" content="Drupal 7 (http://drupal.org)" />

The main problem with webClient.go is that it gives you almost no control over the
process—you either get the entire HTML output or nothing at all!

Making your Go web client more advanced
As the web client of the previous section is relatively simplistic and does not give you any
flexibility, in this section you will learn how to read a URL more elegantly without using
the http.Get() function and by having more options. The name of the utility is
advancedWebClient.go, and it will be presented in five parts.

The Foundations of Network Programming in Go Chapter 12

[519]

The first code segment of advancedWebClient.go contains the following Go code:

package main

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
 "path/filepath"
 "strings"
 "time"
)

The second part of advancedWebClient.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 return
 }

 URL, err := url.Parse(os.Args[1])
 if err != nil {
 fmt.Println("Error in parsing:", err)
 return
 }

The third code portion of advancedWebClient.go contains the following Go code:

c := &http.Client{
 Timeout: 15 * time.Second,
}
request, err := http.NewRequest("GET", URL.String(), nil)
if err != nil {
 fmt.Println("Get:", err)
 return
}

httpData, err := c.Do(request)
if err != nil {
 fmt.Println("Error in Do():", err)
 return
}

The Foundations of Network Programming in Go Chapter 12

[520]

The http.NewRequest() function returns an http.Request object given a method, a
URL, and an optional body. The http.Do() function sends an HTTP request
(http.Request) using an http.Client and gets an HTTP response (http.Response). So,
http.Do() does the job of http.Get() in a more comprehensive way.

The GET string used in http.NewRequest() can be replaced with http.MethodGet.

The fourth part of advancedWebClient.go is contained in the following Go code:

fmt.Println("Status code:", httpData.Status)
header, _ := httputil.DumpResponse(httpData, false)
fmt.Print(string(header))

contentType := httpData.Header.Get("Content-Type")
characterSet := strings.SplitAfter(contentType, "charset=")
if len(characterSet) > 1 {
 fmt.Println("Character Set:", characterSet[1])
}

if httpData.ContentLength == -1 {
 fmt.Println("ContentLength is unknown!")
} else {
 fmt.Println("ContentLength:", httpData.ContentLength)
}

In the preceding code, you can see how to start searching the server response in order to
find what you want.

The last part of the advancedWebClient.go utility is as follows:

 length := 0
 var buffer [1024]byte
 r := httpData.Body
 for {
 n, err := r.Read(buffer[0:])
 if err != nil {
 fmt.Println(err)
 break
 }
 length = length + n
 }
 fmt.Println("Calculated response data length:", length)
}

The Foundations of Network Programming in Go Chapter 12

[521]

In the preceding code, you can see a technique for discovering the size of the server HTTP
response. If you want to display the HTML output on your screen, you can print the
contents of the r buffer variable.

Using advancedWebClient.go for visiting a web page will generate the following output,
which is much richer than before:

$ go run advancedWebClient.go http://www.mtsoukalos.eu
Status code: 200 OK
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 0
Cache-Control: no-cache, must-revalidate
Connection: keep-alive
Content-Language: en
Content-Type: text/html; charset=utf-8
Date: Sat, 24 Mar 2018 18:52:17 GMT
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Server: Apache/2.4.25 (Debian) PHP/5.6.33-0+deb8u1 mod_wsgi/4.5.11
Python/2.7
Vary: Accept-Encoding
Via: 1.1 varnish (Varnish/5.0)
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Generator: Drupal 7 (http://drupal.org)
X-Powered-By: PHP/5.6.33-0+deb8u1
X-Varnish: 886025
Character Set: utf-8
ContentLength is unknown!
EOF
Calculated response data length: 50176

Executing advancedWebClient.go for visiting a different URL will return a slightly
different output:

$ go run advancedWebClient.go http://www.google.com
Status code: 200 OK
HTTP/1.1 200 OK
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-7
Date: Sat, 24 Mar 2018 18:52:38 GMT
Expires: -1
P3p: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Server: gws
Set-Cookie: 1P_JAR=2018-03-24-18; expires=Mon, 23-Apr-2018 18:52:38 GMT;
path=/; domain=.google.gr
Set-Cookie:

The Foundations of Network Programming in Go Chapter 12

[522]

NID=126=csX1_koD30SJcC_ljAfcM2V8kTfRkppmAamLjINLfclracMxuk6JGe4glc0Pjs8uD00
bqGaxkSW-J-ZNDJexG2ZX9pNB9E_dRc2y1KZ05V7pk0bOczE2FtS1zb50Uofl; expires=Sun,
23-Sep-2018 18:52:38 GMT; path=/; domain=.google.gr; HttpOnly
X-Frame-Options: SAMEORIGIN
X-Xss-Protection: 1; mode=block
Character Set: ISO-8859-7
ContentLength in unknown!
EOF
Calculated response data length: 10240

If you try to fetch an erroneous URL with advancedWebClient.go, you will get the
following output:

$ go run advancedWebClient.go http://www.google
Error in Do(): Get http://www.google: dial tcp: lookup www.google: no such
host
$ go run advancedWebClient.go www.google.com
Error in Do(): Get www.google.com: unsupported protocol scheme ""

Feel free to make any changes you want to advancedWebClient.go in order to make the
output match your requirements!

Timing out HTTP connections
This section will present a technique for timing out network connections that take too long
to finish. Remember that you already know such a technique from Chapter 10, Go
Concurrency – Advanced Topics, when we talked about the context standard Go package.
This technique was presented in the useContext.go source code file.

The method that will be presented in this section is much easier to implement. The relevant
code is saved in clientTimeOut.go, and it will be presented in four parts. The utility
accepts two command-line arguments, which are the URL and the timeout period in
seconds. Note that the second parameter is optional.

The first part code portion of clientTimeOut.go is as follows:

package main

import (
 "fmt"
 "io"
 "net"
 "net/http"
 "os"

The Foundations of Network Programming in Go Chapter 12

[523]

 "path/filepath"
 "strconv"
 "time"
)

var timeout = time.Duration(time.Second)

The second code segment of clientTimeOut.go contains the following Go code:

func Timeout(network, host string) (net.Conn, error) {
 conn, err := net.DialTimeout(network, host, timeout)
 if err != nil {
 return nil, err
 }
 conn.SetDeadline(time.Now().Add(timeout))
 return conn, nil
}

You will learn more about the functionality of SetDeadline() in the next subsection. The
Timeout() function will be used by the Dial field of a http.Transport variable.

The third code portion of clientTimeOut.go is contained in the following code:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("Usage: %s URL TIMEOUT\n", filepath.Base(os.Args[0]))
 return
 }

 if len(os.Args) == 3 {
 temp, err := strconv.Atoi(os.Args[2])
 if err != nil {
 fmt.Println("Using Default Timeout!")
 } else {
 timeout = time.Duration(time.Duration(temp) * time.Second)
 }
 }

 URL := os.Args[1]
 t := http.Transport{
 Dial: Timeout,
 }

The remaining Go code of the clientTimeOut.go utility is as follows:

 client := http.Client{
 Transport: &t,
 }

The Foundations of Network Programming in Go Chapter 12

[524]

 data, err := client.Get(URL)
 if err != nil {
 fmt.Println(err)
 return
 } else {
 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

The clientTimeOut.go web client will be tested using the slowWWW.go web server
developed in Chapter 10, Go Concurrency – Advanced Topics.

Executing clientTimeOut.go two times will generate the following output:

$ go run clientTimeOut.go http://localhost:8001
Serving: /
Delay: 0
$ go run clientTimeOut.go http://localhost:8001
Get http://localhost:8001: read tcp [::1]:57397->[::1]:8001: i/o timeout

As you can see from the generated output, the first request had no problem connecting to
the desired web server. However, the second http.Get() request took longer than
expected and therefore timed out!

More information about SetDeadline
The SetDeadline() function is used by the net package to set the read and write
deadlines of a given network connection. Due to the way the SetDeadline() function
works, you will need to call SetDeadline() before any read or write operations. Keep in
mind that Go uses deadlines to implement timeouts, so you do not need to reset it every
time your application receives or sends any data.

The Foundations of Network Programming in Go Chapter 12

[525]

Setting the timeout period on the server side
In this subsection, you will learn how to time out a connection on the server side. You need
to do this because there are times that clients take much longer than expected to end an
HTTP connection. This usually happens for two reasons: the first reason is when there are
bugs in the client software, and the second reason is when a server process is experiencing
an attack!

The technique will be implemented in the serverTimeOut.go source code file, which will
be presented in four parts.

The first part of serverTimeOut.go is as follows:

package main

import (
 "fmt"
 "net/http"
 "os"
 "time"
)

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

The second code portion of serverTimeOut.go contains the following Go code:

func timeHandler(w http.ResponseWriter, r *http.Request) {
 t := time.Now().Format(time.RFC1123)
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center">%s</h1>", Body)
 fmt.Fprintf(w, "<h2 align=\"center">%s</h2>n", t)
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served time for: %s\n", r.Host)
}

The third code segment of serverTimeOut.go is shown in the following Go code:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("Listening on http://0.0.0.0%s\n", PORT)
 } else {
 PORT = ":" + arguments[1]

The Foundations of Network Programming in Go Chapter 12

[526]

 fmt.Printf("Listening on http://0.0.0.0%s\n", PORT)
 }

 m := http.NewServeMux()
 srv := &http.Server{
 Addr: PORT,
 Handler: m,
 ReadTimeout: 3 * time.Second,
 WriteTimeout: 3 * time.Second,
 }

In this case, we are using an http.Server structure that supports two kinds of timeouts
with its fields. The first one is called ReadTimeout, and the second one is called
WriteTimeout. The value of the ReadTimeout field specifies the maximum duration for
reading the entire request, including the body.

The value of the WriteTimeout field specifies the maximum duration before timing out
writes of the response. Put simply, this is the time from the end of the request header read
to the end of the response write.

The remaining Go code of serverTimeOut.go is as follows:

 m.HandleFunc("/time", timeHandler)
 m.HandleFunc("/", myHandler)

 err := srv.ListenAndServe()
 if err != nil {
 fmt.Println(err)
 return
 }
}

We are now going to execute serverTimeOut.go in order to interact with it, using nc(1):

$ go run serverTimeOut.go
Listening on http://0.0.0.0:8001

The Foundations of Network Programming in Go Chapter 12

[527]

On the nc(1) part, which in this case acts as a dummy HTTP client, you should issue the
next command to connect to serverTimeOut.go:

$ time nc localhost 8001
real 0m3.012s
user 0m0.001s
sys 0m0.002s

As we did not issue any commands, the HTTP server ended the connection. The output of
the time(1) utility verifies the time it took the server to close the connection.

Yet another way to time out!
This subsection will present yet another way to timeout an HTTP connection from the client
side. As you will see, this is the simplest form of timeout, because you will just need to
define an http.Client object and set its Timeout field to the desired timeout value!

The name of the utility that showcases the last type of timeout is anotherTimeOut.go, and
it will be presented in four parts.

The first part of anotherTimeOut.go follows next:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"
 "strconv"
 "time"
)

var timeout = time.Duration(time.Second)

The second part of anotherTimeOut.go is containing the following Go code:

func main() {
 if len(os.Args) == 1 {
 fmt.Println("Please provide a URL")
 return
 }

 if len(os.Args) == 3 {
 temp, err := strconv.Atoi(os.Args[2])

The Foundations of Network Programming in Go Chapter 12

[528]

 if err != nil {
 fmt.Println("Using Default Timeout!")
 } else {
 timeout = time.Duration(time.Duration(temp) * time.Second)
 }
 }

 URL := os.Args[1]

The third code segment of anotherTimeOut.go contains the following Go code:

client := http.Client{
 Timeout: timeout,
}
client.Get(URL)

This is the place where the timeout period is defined using the Timeout field of the
http.Client variable.

The last code portion of anotherTimeOut.go follows next:

 data, err := client.Get(URL)
 if err != nil {
 fmt.Println(err)
 return
 } else {
 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

Executing anotherTimeOut.go and interacting with the slowWWW.go web server
developed in Chapter 10, Go Concurrency – Advanced Topics, will generate the following
output:

$ go run anotherTimeOut.go http://localhost:8001
Get http://localhost:8001: net/http: request canceled (Client.Timeout
exceeded while awaiting headers)
$ go run anotherTimeOut.go http://localhost:8001 15
Serving: /
Delay: 8

The Foundations of Network Programming in Go Chapter 12

[529]

Wireshark and tshark tools
This section will briefly mention the powerful Wireshark and tshark utilities. Wireshark,
which is a graphical application, is the dominant tool for analyzing network traffic of
almost any kind. Although Wireshark is very powerful, there may be times that you need
something lighter that you can execute remotely without a graphical user interface. In such
situations, you can use tshark, which is the command-line version of Wireshark.

Unfortunately, talking more about Wireshark and tshark is beyond the scope of this
chapter.

Additional resources
The following resources will definitely broaden your horizons, so please find some time to
visit them:

The official web page of the Apache web server is located
at http://httpd.apache.org/.

The official web page of the Nginx web server is located at http://nginx.org/.

Should you wish to learn more about the internet, TCP/IP, and its various
services, you should start by reading RFC documents. One of the places that you
can find such documents is at http://www.rfc-archive.org/.

Visit the website of both Wireshark and tshark at https://www.wireshark.org/
to learn more about them.

Visit the documentation page of the net standard Go package, which can be
found at https://golang.org/pkg/net/. This is one of the largest documentation
pages in the official Go documentation.

Visit the documentation page of the net/http Go package
at https://golang.org/pkg/net/http/.

If you want to create a website without writing any Go code, you can try the
Hugo utility, which is written in Go! You can learn more about the Hugo
framework at https://gohugo.io/. However, what would really be interesting
and educational for every Go programmer is to look at its Go code, which can be
found at https://github.com/gohugoio/hugo.

http://httpd.apache.org/
http://nginx.org/
http://www.rfc-archive.org/
https://www.wireshark.org/
https://golang.org/pkg/net/
https://golang.org/pkg/net/http/
https://gohugo.io/
https://github.com/gohugoio/hugo

The Foundations of Network Programming in Go Chapter 12

[530]

You can visit the documentation page of the net/http/httptrace package
at https://golang.org/pkg/net/http/httptrace/.

You can find the documentation page of the net/http/pprof package
at https://golang.org/pkg/net/http/pprof/.

Visit the manual page of the nc(1) command-line utility to learn more about its
capabilities and its various command-line options.

The httpstat utility that was developed by Dave Cheney can be found
at https://github.com/davecheney/httpstat. It is a good example of the use of
the net/http/httptrace Go package for HTTP tracing.

You can find more information about ab(1) by visiting its manual page
at https://httpd.apache.org/docs/2.4/programs/ab.html

Exercises
Write a web client in Go on your own without looking at the code of this chapter

Merge the code of MXrecords.go and NSrecords.go in order to create a single
utility that does both jobs based on its command-line arguments

Modify the code of MXrecords.go and NSrecords.go to also accept IP
addresses as input

Modify advancedWebClient.go in order to save the HTML output in an
external file

Try to create a simple version of ab(1) on your own using goroutines

Modify kvWeb.go in order to support the DELETE and the LOOKUP operations
found in the original version of the key-value store

Modify httpTrace.go in order to have a flag that disables the execution of the
io.Copy(os.Stdout, response.Body) statement

https://golang.org/pkg/net/http/httptrace/
https://golang.org/pkg/net/http/pprof/
https://github.com/davecheney/httpstat
https://httpd.apache.org/docs/2.4/programs/ab.html

The Foundations of Network Programming in Go Chapter 12

[531]

Summary
This chapter discussed Go code for programming web clients and web servers as well as
creating a website in Go! You also learned about the http.Response, the http.Request,
and the http.Transport structures that allow you to define the parameters of an HTTP
connection.

Additionally, you learned how to get the network configuration of a Unix machine, using
Go code, how to perform DNS lookups in a Go program, including getting the NS and MX
records of a domain.

Finally, we talked about Wireshark and tshark, which are two very popular utilities that
allow you to capture and, most importantly, analyze network traffic. At the beginning of
this chapter, we also mentioned the nc(1) utility.

In the final chapter of this book, we will continue our discussion of network programming
in Go. However, this time, we will present lower-level Go code that allows you to develop
TCP clients and servers as well as UDP client and server processes. Additionally, you will
learn about creating RCP clients and servers. I hope you'll enjoy it!

13
Network Programming –

Building Servers and Clients
The previous chapter discussed topics related to network programming; including
developing web clients, web servers, and web applications; performing DNS lookups; and
timing out HTTP connections.

This chapter will take you to the next level by showing you how to program your own TCP
clients and servers as well as your own UDP clients and servers. Additionally, it will
showcase how you can program a concurrent TCP server using two examples. The first
example will be relatively simple, as the concurrent TCP server will just return numbers of
the Fibonacci sequence. However, the second example will use the code of the
keyValue.go application from Chapter 4, The Uses of Composite Types, as its foundation
and convert the key-value store into a concurrent TCP application that can operate without
the need for a web browser!

In this chapter of Mastering Go, you will learn the following topics:

The net standard Go package
Developing TCP clients and TCP servers
Developing a concurrent TCP server
Developing UDP clients and UDP servers
Modifying kvSaveLoad.go from Chapter 8, Telling a Unix System What to Do, so
that it can serve requests through TCP connections
Creating an RCP client and RCP server

Network Programming – Building Servers and Clients Chapter 13

[533]

The net standard Go package
You cannot create a TCP or UDP client or server in Go without using the functionality
offered by the net package.

The net.Dial() function is used for connecting to a network as a client, whereas the
net.Listen() function is used for telling a Go program to accept network connections and
thus act as a server. The first parameter of both functions is the network type, but this is
where their similarities end. The return value of both the net.Dial() and net.Listen()
functions is of the net.Conn type, which implements the io.Reader and io.Writer
interfaces.

A TCP client
As you already know from the previous chapter, TCP stands for Transmission Control
Protocol, and its principal characteristic is that it is a reliable protocol. The TCP header of
each packet includes source port and destination port fields. These two fields, plus the
source and destination IP addresses, are combined to identify uniquely a single TCP
connection. The name of the TCP client that will be developed in this section is
TCPclient.go, and it will be presented in four parts. The first part of TCPclient.go is
shown in the following Go code:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second code segment of TCPclient.go follows next:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide host:port.")
 return
 }

 CONNECT := arguments[1]
 c, err := net.Dial("tcp", CONNECT)

Network Programming – Building Servers and Clients Chapter 13

[534]

 if err != nil {
 fmt.Println(err)
 return
 }

The net.Dial() function is used for connecting to the remote server. The first parameter
of the net.Dial() function defines the network that will be used, while the second
parameter defines the server address, which must also include the port number. Valid
values for the first parameter are tcp, tcp4 (IPv4-only), tcp6 (IPv6-only), udp, udp4 (IPv4-
only), udp6 (IPv6-only), ip, ip4 (IPv4-only), ip6 (IPv6-only), Unix (Unix sockets),
Unixgram, and Unixpacket.

The third part of TCPclient.go contains the following code:

for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(c, text+"\n")

The preceding code is for getting input from the user, which can be verified using the
os.Stdin file for reading. Ignoring the error value returned by reader.ReadString() is
not a good practice, but it saves some space here. Certainly, you should never do that on
production software.

The last part of TCPclient.go follows next:

 message, _ := bufio.NewReader(c).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 return
 }
 }
}

For testing purposes, TCPclient.go will connect to a TCP server that is implemented
using netcat(1), and it will create the following output:

$ go run TCPclient.go 8001
dial tcp: address 8001: missing port in address
$ go run TCPclient.go localhost:8001
>> Hello from TCPclient.go!
->: Hi from nc!

Network Programming – Building Servers and Clients Chapter 13

[535]

>> STOP
->:
TCP client exiting...

The output of the first command illustrates what will happen if you do not include a host
name in the command-line arguments of TCPclient.go. The output of the netcat(1)
TCP server, which should be executed first, is as follows:

$ nc -l 127.0.0.1 8001
Hello from TCPclient.go!
Hi from nc!
STOP

Note that a client for a given protocol such as TCP and UDP can be
reasonably generic in nature, which means that it can talk to many kinds
of servers that support its protocol. As you will soon see, this is not the
case with server applications that must implement a prearranged
functionality using a prearranged protocol.

A slightly different version of the TCP client
Go offers a different family of functions that also allow you to develop TCP clients and
servers. In this section, you will learn how to program a TCP client using these functions.

The name of the TCP client will be otherTCPclient.go, and it will be presented in four
parts. The first code segment from otherTCPclient.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second code portion from otherTCPclient.go contains the following code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a server:port string!")
 return
 }

Network Programming – Building Servers and Clients Chapter 13

[536]

 CONNECT := arguments[1]

 tcpAddr, err := net.ResolveTCPAddr("tcp4", CONNECT)
 if err != nil {
 fmt.Println("ResolveTCPAddr:", err.Error())
 return
 }

The net.ResolveTCPAddr() function returns the address of a TCP end point (type
TCPAddr) and can only be used for TCP networks.

The third part of otherTCPclient.go contains the following code:

 conn, err := net.DialTCP("tcp4", nil, tcpAddr)
 if err != nil {
 fmt.Println("DialTCP:", err.Error())
 return
 }

The net.DialTCP() function is equivalent to net.Dial() for TCP networks.

The remaining code of otherTCPclient.go follows next:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(conn, text+"\n")

 message, _ := bufio.NewReader(conn).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 conn.Close()
 return
 }
 }
}

Network Programming – Building Servers and Clients Chapter 13

[537]

Executing otherTCPclient.go and interacting with a TCP server will generate the
following type of output:

$ go run otherTCPclient.go localhost:8001
>> Hello from otherTCPclient.go!
->: Hi from netcat!
>> STOP
->:
TCP client exiting...

For this example, the TCP server is supported by the netcat(1) utility, which is executed
as follows:

$ nc -l 127.0.0.1 8001
Hello from otherTCPclient.go!
Hi from netcat!
STOP

A TCP server
The TCP server that is going to be developed in this section will return the current date and
time to the client in a single network packet. In practice, this means that after accepting a
client connection, the server will get the time and the date from the Unix system and send
this data back to the client.

The name of the utility is TCPserver.go, and it will be presented in four parts.

The first part of TCPserver.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
 "time"
)

Network Programming – Building Servers and Clients Chapter 13

[538]

The second code portion of TCPserver.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide port number")
 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

The net.Listen() function listens for connections. If the second parameter does not
contain an IP address, but only a port number, net.Listen() will listen on all available IP
addresses of the local system.

The third segment from TCPserver.go is as follows:

 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }

The Accept() function waits for the next connection and returns a generic Conn variable.
The only thing that is wrong with this particular TCP server is that it can only serve the first
TCP client, which is going to connect to it because the Accept() call is outside the for loop
that is coming next.

The remaining Go code of TCPserver.go is as follows:

 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 return
 }
 if strings.TrimSpace(string(netData)) == "STOP" {
 fmt.Println("Exiting TCP server!")
 return
 }

Network Programming – Building Servers and Clients Chapter 13

[539]

 fmt.Print("-> ", string(netData))
 t := time.Now()
 myTime := t.Format(time.RFC3339) + "\n"
 c.Write([]byte(myTime))
 }
}

Executing TCPserver.go and interacting with it using a TCP client application will
generate the following type of output:

$ go run TCPserver.go 8001
-> HELLO
Exiting TCP server!

On the client side, you will see the following output:

$ nc 127.0.0.1 8001
HELLO
2018-04-07T14:40:05+03:00
STOP

If the TCPserver.go utility attempts to use a TCP port that is already in use by another
Unix process, you will get the following error message:

$ go run TCPserver.go 9000
listen tcp :9000: bind: address already in use

Finally, if the TCPserver.go utility attempts to use a TCP port in the 1-1024 range that
requires root privileges on Unix systems, you will get the following error message:

$ go run TCPserver.go 80
listen tcp :80: bind: permission denied

A slightly different version of the TCP server
In this section, you will see an alternative implementation of a TCP server in Go. This time,
the TCP server implements the Echo service, which basically returns to the client, the data
that the client sent. The program is called otherTCPserver.go, and it will be presented in
four parts.

Network Programming – Building Servers and Clients Chapter 13

[540]

The first part of otherTCPserver.go is as follows:

package main

import (
 "fmt"
 "net"
 "os"
 "strings"
)

The second portion of otherTCPserver.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 SERVER := "localhost" + ":" + arguments[1]

 s, err := net.ResolveTCPAddr("tcp", SERVER)
 if err != nil {
 fmt.Println(err)
 return
 }

 l, err := net.ListenTCP("tcp", s)
 if err != nil {
 fmt.Println(err)
 return
 }

The net.ListenTCP() function is equivalent to net.Listen() for TCP networks.

The third segment of otherTCPserver.go is as follows:

 buffer := make([]byte, 1024)
 conn, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }

Network Programming – Building Servers and Clients Chapter 13

[541]

The remaining code of otherTCPserver.go is as follows:

 for {
 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }

 if strings.TrimSpace(string(buffer[0:n])) == "STOP" {
 fmt.Println("Exiting TCP server!")
 conn.Close()
 return
 }

 fmt.Print("> ", string(buffer[0:n-1]))
 _, err = conn.Write(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

Executing otherTCPserver.go and using a client for interacting with it will generate the
following output:

$ go run otherTCPserver.go 8001
> 1
> 2
> Hello!
> Exiting TCP server!

On the client side, which in this case will be otherTCPclient.go, you will see the
following output:

$ go run otherTCPclient.go localhost:8001
>> 1
->: 1
>> 2
->: 2
>> Hello!
->: Hello!
>> ->:
>> STOP
->: TCP client exiting...

Network Programming – Building Servers and Clients Chapter 13

[542]

Finally, I will present a way of finding out the name of the process that listens to a given
TCP or UDP port on a Unix machine. So, if you want to discover which process uses TCP
port number 8001, you should execute the following command:

$ sudo lsof -n -i :8001
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
TCPserver 86775 mtsouk 3u IPv6 0x98d55014e6c9360f 0t0 TCP *:vcom-
tunnel (LISTEN)

A UDP client
If you know how to develop a TCP client, then developing a UDP client should be much
simpler for you due to the simplicity of the UDP protocol.

The biggest difference between UDP and TCP is that UDP is not reliable
by design. This also means that in general, UDP is simpler than TCP
because UDP does not need to keep the state of a UDP connection.

The name of the utility presented for this topic is UDPclient.go, and it will be presented in
four code segments. The first part of UDPclient.go is as follows:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second segment of UDPclient.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string")
 return
 }
 CONNECT := arguments[1]

 s, err := net.ResolveUDPAddr("udp4", CONNECT)
 c, err := net.DialUDP("udp4", nil, s)

Network Programming – Building Servers and Clients Chapter 13

[543]

 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("The UDP server is %s\n", c.RemoteAddr().String())
 defer c.Close()

The net.ResolveUDPAddr() function returns an address of a UDP end point as defined by
its second parameter. The first parameter (udp4) specifies that the program will support the
IPv4 protocol only.

The net.DialUDP() function used is like net.Dial() for UDP networks.

The third segment of UDPclient.go contains the following code:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 data := []byte(text + "\n")
 _, err = c.Write(data)
 if strings.TrimSpace(string(data)) == "STOP" {
 fmt.Println("Exiting UDP client!")
 return
 }

The preceding code requires that the user types some text, which is sent to the UDP server.
The user text is read from standard input, using bufio.NewReader(os.Stdin). The
Write(data) method sends the data over the UDP network connection.

The rest of the Go code is as follows:

 if err != nil {
 fmt.Println(err)
 return
 }

 buffer := make([]byte, 1024)
 n, _, err := c.ReadFromUDP(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply: %s\n", string(buffer[0:n]))
 }
}

Network Programming – Building Servers and Clients Chapter 13

[544]

Once the client data is sent, you must wait for the data the UDP server has to send, which is
read using ReadFromUDP().

Executing UDPclient.go and interacting with the netcat(1) utility that acts as a UDP
server will generate the following output:

$ go run UDPclient.go localhost:8001
The UDP server is 127.0.0.1:8001
>> Hello!
Reply: Hi there!
>> Have to leave - bye!
Reply: OK.
>> STOP
Exiting UDP client!

On the UDP server side, the output will be as follows:

$ nc -v -u -l 127.0.0.1 8001
Hello!
Hi there!
Have to leave - bye!
OK.
STOP
^C

The reason for typing Control + C in order to terminate nc(1) is that nc(1) does not have
any code that tells it to terminate when it receives the STOP string as input.

Developing a UDP server
The purpose of the UDP server that will be developed in this section is to return random
numbers from 1 to 1,000 to its UDP clients. The name of the program is UDPserver.go, and
it is presented in four segments.

The first part of UDPserver.go is as follows:

package main

import (
 "fmt"
 "math/rand"
 "net"
 "os"
 "strconv"

Network Programming – Building Servers and Clients Chapter 13

[545]

 "strings"
 "time"
)

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The second segment of UDPserver.go is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }
 PORT := ":" + arguments[1]

 s, err := net.ResolveUDPAddr("udp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }

The third segment of UDPserver.go contains the following code:

 connection, err := net.ListenUDP("udp4", s)
 if err != nil {
 fmt.Println(err)
 return
 }

 defer connection.Close()
 buffer := make([]byte, 1024)
 rand.Seed(time.Now().Unix())

The net.ListenUDP() function acts like net.ListenTCP() for UDP networks.

The remaining Go code of UDPserver.go is as follows:

 for {
 n, addr, err := connection.ReadFromUDP(buffer)
 fmt.Print("-> ", string(buffer[0:n-1]))

 if strings.TrimSpace(string(buffer[0:n])) == "STOP" {
 fmt.Println("Exiting UDP server!")
 return
 }

Network Programming – Building Servers and Clients Chapter 13

[546]

 data := []byte(strconv.Itoa(random(1, 1001)))
 fmt.Printf("data: %s\n", string(data))
 _, err = connection.WriteToUDP(data, addr)
 if err != nil {
 fmt.Println(err)
 return
 }
 }
}

The ReadFromUDP() function allows you to read data from a UDP connection using a
buffer, which as expected is a byte slice.

Executing UDPserver.go and connecting to it with UDPclient.go will generate the
following output:

$ go run UDPserver.go 8001
-> Hello!
data: 156
-> Another random number please :)
data: 944
-> Leaving...
data: 491
-> STOP
Exiting UDP server!

On the client side, the output will be as follows:

$ go run UDPclient.go localhost:8001
The UDP server is 127.0.0.1:8001
>> Hello!
Reply: 156
>> Another random number please :)
Reply: 944
>> Leaving...
Reply: 491
>> STOP
Exiting UDP client!

A concurrent TCP server
In this section, you will learn how to develop a concurrent TCP server, using goroutines.
For each incoming connection to the TCP server, the TCP server will start a new goroutine
to handle that request. This allows it to accept more requests, which means that a
concurrent TCP server can serve multiple clients simultaneously.

Network Programming – Building Servers and Clients Chapter 13

[547]

The job of the TCP concurrent server is to accept a positive integer and return a natural
number from the Fibonacci sequence. If there is an error in the input, the return value will
be -1. As the calculation of numbers of the Fibonacci sequence can be slow, we will use an
algorithm that was first presented in Chapter 11, Code Testing, Optimization and Profiling,
and was included in benchmarkMe.go. Additionally, this time the algorithm used will be
explained a bit further.

The name of the program is fiboTCP.go, and its code is presented in five parts. As it is
considered good practice to be able to define the port number of a web service as a
command-line parameter, fiboTCP.go will do exactly that.

The first part of fiboTCP.go contains the following Go code:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strconv"
 "strings"
 "time"
)

The second code portion of fiboTCP.go contains the following Go code:

func f(n int) int {
 fn := make(map[int]int)
 for i := 0; i <= n; i++ {
 var f int
 if i <= 2 {
 f = 1
 } else {
 f = fn[i-1] + fn[i-2]
 }
 fn[i] = f
 }
 return fn[n]
}

Network Programming – Building Servers and Clients Chapter 13

[548]

In the preceding code, you can see the implementation of the f() function that generates
natural numbers that belong to the Fibonacci sequence. The algorithm used is difficult to
understand at first, but it is very efficient and therefore fast. First, the f() function uses a
Go map named fn, which is pretty unusual when calculating numbers of the Fibonacci
sequence. Second, the f() function uses a for loop, which is also fairly unusual. Finally,
the f() function does not use recursion, which is the main reason for the speed of its
operation.

The idea behind the algorithm used in f(), which uses a Dynamic Programming
technique, is that whenever a Fibonacci number is computed, it is put into the fn map so
that it will not be computed again. This simple idea saves a lot of time, especially when
large Fibonacci numbers need to be calculated because you do not have to calculate the
same Fibonacci number multiple times.

The third code segment of fiboTCP.go is as follows:

func handleConnection(c net.Conn) {
 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 temp := strings.TrimSpace(string(netData))
 if temp == "STOP" {
 break
 }

 fibo := "-1\n"
 n, err := strconv.Atoi(temp)
 if err == nil {
 fibo = strconv.Itoa(f(n)) + "\n"
 }
 c.Write([]byte(string(fibo)))
 }
 time.Sleep(5 * time.Second)
 c.Close()
}

The handleConnection() function deals with each client of the concurrent TCP server.

Network Programming – Building Servers and Clients Chapter 13

[549]

The fourth part of fiboTCP.go follows next:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

The remaining Go code of fiboTCP.go is as follows:

 for {
 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 return
 }
 go handleConnection(c)
 }
}

The concurrency of the program is implemented by the go handleConnection(c)
statement, which begins a new goroutine each time a new TCP client comes. The goroutine
is executed concurrently, which gives the server the opportunity to serve even more clients!

Executing fiboTCP.go and interacting with it using both netcat(1) and TCPclient.go
on two different Terminal windows will generate the following output:

$ go run fiboTCP.go 9000
n: 10
fibo: 55
n: 0
fibo: 1
n: -1
fibo: 0
n: 100
fibo: 3736710778780434371
n: 12
fibo: 144

Network Programming – Building Servers and Clients Chapter 13

[550]

n: 12
fibo: 144

The output will be as follows on the TCPclient.go side:

$ go run TCPclient.go localhost:9000
>> 12
->: 144
>> a
->: -1
>> STOP
->: TCP client exiting...

On the netcat(1) side, the output will be as follows:

$ nc localhost 9000
10
55
0
1
-1
0
100
3736710778780434371
ads
-1
STOP

When you send the STOP string to the server process, the goroutine that serves that
particular TCP client will terminate, which will cause the connection to end.

Finally, the impressive thing here is that both clients are served at the same time, which can
be verified by the output of the following command:

$ netstat -anp TCP | grep 9000
tcp4 0 0 127.0.0.1.9000 127.0.0.1.57309 ESTABLISHED
tcp4 0 0 127.0.0.1.57309 127.0.0.1.9000 ESTABLISHED
tcp4 0 0 127.0.0.1.9000 127.0.0.1.57305 ESTABLISHED
tcp4 0 0 127.0.0.1.57305 127.0.0.1.9000 ESTABLISHED
tcp4 0 0 *.9000 *.* LISTEN

The last line of the output of the preceding command tells us that there is a process that
listens to port 9000, which means that you can still connect to port 9000. The first two lines
of the output say that there is a client that uses port 57309 to talk to the server process. The
third and fourth lines of the preceding output verify that there is another client that
communicates with the server that listens to port 9000. This client uses the TCP port 57305.

Network Programming – Building Servers and Clients Chapter 13

[551]

A handy concurrent TCP server
Although the concurrent TCP server from the previous section works fine, it does not serve
a practical application. Therefore, in this section, you will learn how to convert the
keyValue.go application from Chapter 4, The Uses of Composite Types, into a fully featured
concurrent TCP application.

We will create our own kind of TCP protocol in order to be able to interact with the key-
value store from a network. You will need a keyword for each one of the functions of the
key-value store. For reasons of simplicity, each keyword will be followed by the relevant
data. The result of most commands will be a success or a failure message.

Designing your own TCP or UDP protocols is not an easy job. This means
that you should be particularly specific and careful when designing a new
protocol. The key here is to document everything before you start writing
production code.

The name of the utility shown in this topic is kvTCP.go, and it is presented in six parts.

The first part of kvTCP.go is as follows:

package main

import (
 "bufio"
 "encoding/gob"
 "fmt"
 "net"
 "os"
 "strings"
)

type myElement struct {
 Name string
 Surname string
 Id string
}

const welcome = "Welcome to the Key-value store!\n"

var DATA = make(map[string]myElement)
var DATAFILE = "/tmp/dataFile.gob"

Network Programming – Building Servers and Clients Chapter 13

[552]

The second part of kvTCP.go contains the following Go code:

func handleConnection(c net.Conn) {
 c.Write([]byte(welcome))
 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 return
 }

 command := strings.TrimSpace(string(netData))
 tokens := strings.Fields(command)
 switch len(tokens) {
 case 0:
 continue
 case 1:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 2:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 3:
 tokens = append(tokens, "")
 tokens = append(tokens, "")
 case 4:
 tokens = append(tokens, "")
 }

 switch tokens[0] {
 case "STOP":
 err = save()
 if err != nil {
 fmt.Println(err)
 }
 c.Close()
 return
 case "PRINT":
 PRINT(c)
 case "DELETE":
 if !DELETE(tokens[1]) {
 netData := "Delete operation failed!\n"
 c.Write([]byte(netData))
 } else {

Network Programming – Building Servers and Clients Chapter 13

[553]

 netData := "Delete operation successful!\n"
 c.Write([]byte(netData))
 }
 case "ADD":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !ADD(tokens[1], n) {
 netData := "Add operation failed!\n"
 c.Write([]byte(netData))
 } else {
 netData := "Add operation successful!\n"
 c.Write([]byte(netData))
 }
 err = save()
 if err != nil {
 fmt.Println(err)
 }
 case "LOOKUP":
 n := LOOKUP(tokens[1])
 if n != nil {
 netData := fmt.Sprintf("%v\n", *n)
 c.Write([]byte(netData))
 } else {
 netData := "Did not find key!\n"
 c.Write([]byte(netData))
 }
 case "CHANGE":
 n := myElement{tokens[2], tokens[3], tokens[4]}
 if !CHANGE(tokens[1], n) {
 netData := "Update operation failed!\n"
 c.Write([]byte(netData))
 } else {
 netData := "Update operation successful!\n"
 c.Write([]byte(netData))
 }
 err = save()
 if err != nil {
 fmt.Println(err)
 }
 default:
 netData := "Unknown command - please try again!\n"
 c.Write([]byte(netData))
 }
 }
}

The handleConnection() function communicates with each TCP client and interprets the
client input.

Network Programming – Building Servers and Clients Chapter 13

[554]

The third segment of kvTCP.go contains the following Go code:

func save() error {
 fmt.Println("Saving", DATAFILE)
 err := os.Remove(DATAFILE)
 if err != nil {
 fmt.Println(err)
 }

 saveTo, err := os.Create(DATAFILE)
 if err != nil {
 fmt.Println("Cannot create", DATAFILE)
 return err
 }
 defer saveTo.Close()

 encoder := gob.NewEncoder(saveTo)
 err = encoder.Encode(DATA)
 if err != nil {
 fmt.Println("Cannot save to", DATAFILE)
 return err
 }
 return nil
}

func load() error {
 fmt.Println("Loading", DATAFILE)
 loadFrom, err := os.Open(DATAFILE)
 defer loadFrom.Close()
 if err != nil {
 fmt.Println("Empty key/value store!")
 return err
 }

 decoder := gob.NewDecoder(loadFrom)
 decoder.Decode(&DATA)
 return nil
}

The fourth segment of kvTCP.go is as follows:

func ADD(k string, n myElement) bool {
 if k == "" {
 return false
 }

 if LOOKUP(k) == nil {
 DATA[k] = n

Network Programming – Building Servers and Clients Chapter 13

[555]

 return true
 }
 return false
}

func DELETE(k string) bool {
 if LOOKUP(k) != nil {
 delete(DATA, k)
 return true
 }
 return false
}

func LOOKUP(k string) *myElement {
 _, ok := DATA[k]
 if ok {
 n := DATA[k]
 return &n
 } else {
 return nil
 }
}

func CHANGE(k string, n myElement) bool {
 DATA[k] = n
 return true
}

The implementation of the preceding functions is the same as in keyValue.go. None of
them talks directly to a TCP client.

The fifth part of kvTCP.go contains the following Go code:

func PRINT(c net.Conn) {
 for k, d := range DATA {
 netData := fmt.Sprintf("key: %s value: %v\n", k, d)
 c.Write([]byte(netData))
 }
}

The PRINT() function sends data to a TCP client directly, one line at a time.

The remaining Go code of the program is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")

Network Programming – Building Servers and Clients Chapter 13

[556]

 return
 }

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer l.Close()

 err = load()
 if err != nil {
 fmt.Println(err)
 }

 for {
 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 go handleConnection(c)
 }
}

Executing kvTCP.go will generate the following output:

$ go run kvTCP.go 9000
Loading /tmp/dataFile.gob
Empty key/value store!
open /tmp/dataFile.gob: no such file or directory
Saving /tmp/dataFile.gob
remove /tmp/dataFile.gob: no such file or directory
Saving /tmp/dataFile.gob
Saving /tmp/dataFile.gob

For the purposes of this section, the netcat(1) utility will act as the TCP client of
kvTCP.go:

$ nc localhost 9000
Welcome to the Key-value store!
PRINT
LOOKUP 1
Did not find key!
ADD 1 2 3 4
Add operation successful!
LOOKUP 1

Network Programming – Building Servers and Clients Chapter 13

[557]

{2 3 4}
ADD 4 -1 -2 -3
Add operation successful!
PRINT
key: 1 value: {2 3 4}
key: 4 value: {-1 -2 -3}
STOP

The kvTCP.go file is a concurrent application that uses goroutines, and it can serve multiple
TCP clients simultaneously. However, all of these TCP clients will share the same data!

Remote Procedure Call (RPC)
Remote Procedure Call (RPC) is a client-server mechanism for Interprocess communication
that uses TCP/IP. Both the RPC client and the RPC server to be developed will use the
following package, which is named sharedRPC.go:

package sharedRPC

type MyFloats struct {
 A1, A2 float64
}

type MyInterface interface {
 Multiply(arguments *MyFloats, reply *float64) error
 Power(arguments *MyFloats, reply *float64) error
}

The sharedRPC package defines one interface called MyInterface and one structure called
MyFloats, which will be used by both the client and the server. However, only the RPC
server will need to implement that interface.

After this, you will need to install the sharedRPC.go package by executing the following
commands:

$ mkdir -p ~/go/src/sharedRPC
$ cp sharedRPC.go ~/go/src/sharedRPC/
$ go install sharedRPC

Network Programming – Building Servers and Clients Chapter 13

[558]

The RPC client
In this section, you will see the Go code of the RPC client, which will be saved as
RPCclient.go and presented in four parts.

The first part of RPCclient.go is as follows:

package main

import (
 "fmt"
 "net/rpc"
 "os"
 "sharedRPC"
)

The second segment of RPCclient.go contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string!")
 return
 }

 CONNECT := arguments[1]
 c, err := rpc.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 return
 }

Note the use of the rpc.Dial() function for connecting to the RPC server instead of the
net.Dial() function, even though the RCP server uses TCP.

The third segment of RPCclient.go is as follows:

 args := sharedRPC.MyFloats{16, -0.5}
 var reply float64

 err = c.Call("MyInterface.Multiply", args, &reply)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply (Multiply): %f\n", reply)

Network Programming – Building Servers and Clients Chapter 13

[559]

What is being exchanged between the RPC client and the RPC server with the help of the
Call() function are function names, their arguments, and the results of the function calls,
as the RPC client knows nothing about the actual implementation of the functions.

The remaining Go code of RPCclient.go is as follows:

 err = c.Call("MyInterface.Power", args, &reply)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Printf("Reply (Power): %f\n", reply)
}

If you try to execute RPCclient.go without having a RPC server running, you will get the
following type of error message:

$ go run RPCclient.go localhost:1234
dial tcp [::1]:1234: connect: connection refused

The RPC server
The RPC server will be saved as RPCserver.go, and it will be presented in five parts.

The first part of RPCserver.go is as follows:

package main

import (
 "fmt"
 "math"
 "net"
 "net/rpc"
 "os"
 "sharedRPC"
)

The second segment of RPCserver.go contains the following Go code:

type MyInterface struct{}

func Power(x, y float64) float64 {
 return math.Pow(x, y)
}

Network Programming – Building Servers and Clients Chapter 13

[560]

func (t *MyInterface) Multiply(arguments *sharedRPC.MyFloats, reply
*float64) error {
 *reply = arguments.A1 * arguments.A2
 return nil
}

func (t *MyInterface) Power(arguments *sharedRPC.MyFloats, reply *float64)
error {
 *reply = Power(arguments.A1, arguments.A2)
 return nil
}

In the preceding Go code, the RPC server implements the desired interface as well as a
helper function named Power().

The third segment of RPCserver.go is as follows:

func main() {
 PORT := ":1234"
 arguments := os.Args
 if len(arguments) != 1 {
 PORT = ":" + arguments[1]
 }

The fourth part of RPCserver.go contains the following code:

 myInterface := new(MyInterface)
 rpc.Register(myInterface)
 t, err := net.ResolveTCPAddr("tcp4", PORT)
 if err != nil {
 fmt.Println(err)
 return
 }
 l, err := net.ListenTCP("tcp4", t)
 if err != nil {
 fmt.Println(err)
 return
 }

What makes this program an RPC server is the use of the rpc.Register() function.
However, as the RPC server uses TCP, it still needs to make function calls to
net.ResolveTCPAddr() and net.ListenTCP().

Network Programming – Building Servers and Clients Chapter 13

[561]

The rest of the Go code of RPCclient.go is as follows:

 for {
 c, err := l.Accept()
 if err != nil {
 continue
 }
 fmt.Printf("%s\n", c.RemoteAddr())
 rpc.ServeConn(c)
 }
}

The RemoteAddr() function returns the IP address and the port number used for
communicating with the RPC client. The rpc.ServeConn() function serves the RPC client.

Executing RPCserver.go and waiting for RPCclient.go will create the following output:

$ go run RPCserver.go
127.0.0.1:52289

Executing RPCclient.go will create the following output:

$ go run RPCclient.go localhost:1234
Reply (Multiply): -8.000000
Reply (Power): 0.250000

Doing low-level network programming
Although the http.Transport structure allows you to modify the various low-level
parameters of a network connection, you can write Go code that permits you to read the
raw data of network packets. There are two tricky points here:

Network packets come in binary format, which requires you to look for specific
kinds of network packets and not just any type of network packet. Put simply,
when reading network packets, you should specify the protocol or protocols that
you will support in your applications in advance.
In order to send a network packet, you will have to construct it on your own.

The next utility to be shown is called lowLevel.go, and it will be presented in three parts.
Note that lowLevel.go captures ICMP packets, which use the IPv4 protocol and prints
their contents. Also note that working with raw network data requires root privileges for
security reasons.

Network Programming – Building Servers and Clients Chapter 13

[562]

The first segment of lowLevel.go is as follows:

package main

import (
 "fmt"
 "net"
)

The second part of lowLevel.go contains the following Go code:

func main() {
 netaddr, err := net.ResolveIPAddr("ip4", "127.0.0.1")
 if err != nil {
 fmt.Println(err)
 return
 }
 conn, err := net.ListenIP("ip4:icmp", netaddr)
 if err != nil {
 fmt.Println(err)
 return
 }

The ICMP protocol is specified in the second part of the first parameter (ip4:icmp) of
net.ListenIP(). Moreover, the ip4 part tells the utility to capture IPv4 traffic only.

The remaining part of lowLevel.go contains the following Go code:

 buffer := make([]byte, 1024)
 n, _, err := conn.ReadFrom(buffer)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Printf("% X\n", buffer[0:n])
}

The preceding code tells lowLevel.go to read just a single network packet because there is
no for loop.

Network Programming – Building Servers and Clients Chapter 13

[563]

The ICMP protocol is used by the ping(1) and traceroute(1) utilities, so one way to
create ICMP traffic is to use one of these two tools. The network traffic will be generated
using the following commands on both Unix machines while lowLevel.go is already
running:

$ ping -c 5 localhost
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.037 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.038 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.117 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.052 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.049 ms
--- localhost ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.037/0.059/0.117/0.030 ms
$ traceroute localhost
traceroute to localhost (127.0.0.1), 64 hops max, 52 byte packets
1 localhost (127.0.0.1) 0.255 ms 0.048 ms 0.067 ms

Executing lowLevel.go on a macOS High Sierra machine with root privileges will produce
the following output:

$ sudo go run lowLevel.go
03 03 CD DA 00 00 00 00 45 00 34 00 B4 0F 00 00 01 11 00 00 7F 00 00 01 7F
00 00 01 B4 0E 82 9B 00 20 00 00
$ sudo go run lowLevel.go
00 00 0B 3B 20 34 00 00 5A CB 5C 15 00 04 32 A9 08 09 0A 0B 0C 0D 0E 0F 10
11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

The first output example is generated by the ping(1) command, whereas the second
output example is generated by the traceroute(1) command.

Running lowLevel.go on a Debian Linux machine will generate the following output:

$ uname -a
Linux mail 4.14.12-x86_64-linode92 #1 SMP Fri Jan 5 15:34:44 UTC 2018
x86_64 GNU/Linux
go run lowLevel.go
08 00 61 DD 3F BA 00 01 9A 5D CB 5A 00 00 00 00 26 DC 0B 00 00 00 00 00 10
11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37
go run lowLevel.go
03 03 BB B8 00 00 00 00 45 00 00 3C CD 8D 00 00 01 11 EE 21 7F 00 00 01 7F
00 00 01 CB 40 82 9A 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D
4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Network Programming – Building Servers and Clients Chapter 13

[564]

The output of the uname(1) command prints useful information about the Linux system.
Note that on modern Linux machines you should execute ping(1) with the -4 flag in order
to tell it to use the IPv4 protocol.

Grabbing raw ICMP network data
In this subsection, you will learn how to use the syscall package to capture raw ICMP
network data and syscall.SetsockoptInt() in order to set the options of a socket. Keep
in mind that sending raw ICMP data is much more difficult, as you will have to construct
the raw network packets on your own. The name of the utility is syscallNet.go, and it
will be shown in four parts.

The first part of syscallNet.go is as follows:

package main

import (
 "fmt"
 "os"
 "syscall"
)

The second segment of syscallNet.go contains the following Go code:

func main() {
 fd, err := syscall.Socket(syscall.AF_INET, syscall.SOCK_RAW,
syscall.IPPROTO_ICMP)
 if err != nil {
 fmt.Println("Error in syscall.Socket:", err)
 return
 }

 f := os.NewFile(uintptr(fd), "captureICMP")
 if f == nil {
 fmt.Println("Error in os.NewFile:", err)
 return
 }

The syscall.AF_INET parameter tells syscall.Socket() that you want to work with
IPv4. The syscall.SOCK_RAW parameter is what makes the generated socket a raw socket.
The last parameter, which is syscall.IPPROTO_ICMP, tells syscall.Socket() that you
are interested in ICMP traffic only.

Network Programming – Building Servers and Clients Chapter 13

[565]

The third part of syscallNet.go is as follows:

 err = syscall.SetsockoptInt(fd, syscall.SOL_SOCKET, syscall.SO_RCVBUF,
256)
 if err != nil {
 fmt.Println("Error in syscall.Socket:", err)
 return
 }

The call to syscall.SetsockoptInt() sets the size of the receive buffer of the socket to
256. The syscall.SOL_SOCKET parameter is for stating that you want to work on the
socket layer level.

The remaining Go code of syscallNet.go is as follows:

 for {
 buf := make([]byte, 1024)
 numRead, err := f.Read(buf)
 if err != nil {
 fmt.Println(err)
 }
 fmt.Printf("% X\n", buf[:numRead])
 }
}

Due to the for loop, syscallNet.go will keep capturing ICMP network packets until you
terminate it manually.

Executing syscallNet.go on a macOS High Sierra machine will produce the following
type of output:

$ sudo go run syscallNet.go
45 00 40 00 BC B6 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 3F 36 71
45 00 00 5A CB 6A 90 00 0B 9F 1A 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 62 FB 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 31 EF 71
45 00 01 5A CB 6A 91 00 0B AC 5F 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 9A 5F 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 1D D6 71
45 00 02 5A CB 6A 92 00 0B C0 76 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 40 00 6E 0D 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 09 CF 71
45 00 03 5A CB 6A 93 00 0B D4 7B 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E

Network Programming – Building Servers and Clients Chapter 13

[566]

2F 30 31 32 33 34 35 36 37
45 00 40 00 3A 07 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 00 00 FE 9C 71
45 00 04 5A CB 6A 94 00 0B DF AB 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 24 00 45 55 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 03 03 AB 12 00
00 00 00 45 00 34 00 C5 73 00 00 01 11 00 00 7F 00 00 01 7F 00 00 01 C5 72
82 9B 00 20 00 00
45 00 24 00 E8 1E 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 03 03 AB 10 00
00 00 00 45 00 34 00 C5 74 00 00 01 11 00 00 7F 00 00 01 7F 00 00 01 C5 72
82 9C 00 20 00 00
45 00 24 00 2A 4B 00 00 40 01 00 00 7F 00 00 01 7F 00 00 01 03 03 AB 0E 00
00 00 00 45 00 34 00 C5 75 00 00 01 11 00 00 7F 00 00 01 7F 00 00 01 C5 72
82 9D 00 20 00 00

Running syscallNet.go on a Debian Linux machine will generate the following output:

go run syscallNet.go
45 00 00 54 7F E9 40 00 40 01 BC BD 7F 00 00 01 7F 00 00 01 08 00 6F 07 53
E3 00 01 FA 6A CB 5A 00 00 00 00 AA 7B 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 7F EA 00 00 40 01 FC BC 7F 00 00 01 7F 00 00 01 00 00 77 07 53
E3 00 01 FA 6A CB 5A 00 00 00 00 AA 7B 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 C0 00 44 68 54 00 00 34 01 8B 8E 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 40 4F 40 00 34 06 74 6A 6D 4A C1 FD 86 77 DC 57 B0 B8
DD 96 00 00 00 00 52 F1 AB DA 50 14 00 00 90 9E 00 00
45 00 00 54 80 4E 40 00 40 01 BC 58 7F 00 00 01 7F 00 00 01 08 00 7E 01 53
E3 00 02 FB 6A CB 5A 00 00 00 00 9A 80 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 4F 00 00 40 01 FC 57 7F 00 00 01 7F 00 00 01 00 00 86 01 53
E3 00 02 FB 6A CB 5A 00 00 00 00 9A 80 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 9B 40 00 40 01 BC 0B 7F 00 00 01 7F 00 00 01 08 00 93 EC 53
E3 00 03 FC 6A CB 5A 00 00 00 00 83 94 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 9C 00 00 40 01 FC 0A 7F 00 00 01 7F 00 00 01 00 00 9B EC 53
E3 00 03 FC 6A CB 5A 00 00 00 00 83 94 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 C0 00 44 68 55 00 00 34 01 8B 8D 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 40 D1 40 00 34 06 73 E8 6D 4A C1 FD 86 77 DC 57 8E 8E
DD 96 00 00 00 00 6C 6E D3 36 50 14 00 00 71 EF 00 00

Network Programming – Building Servers and Clients Chapter 13

[567]

45 00 00 54 80 F8 40 00 40 01 BB AE 7F 00 00 01 7F 00 00 01 08 00 F2 E7 53
E3 00 04 FD 6A CB 5A 00 00 00 00 23 98 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 80 F9 00 00 40 01 FB AD 7F 00 00 01 7F 00 00 01 00 00 FA E7 53
E3 00 04 FD 6A CB 5A 00 00 00 00 23 98 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 82 0D 40 00 40 01 BA 99 7F 00 00 01 7F 00 00 01 08 00 4A 82 53
E3 00 05 FE 6A CB 5A 00 00 00 00 CA FC 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 00 00 54 82 0E 00 00 40 01 FA 98 7F 00 00 01 7F 00 00 01 00 00 52 82 53
E3 00 05 FE 6A CB 5A 00 00 00 00 CA FC 06 00 00 00 00 00 10 11 12 13 14 15
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
2F 30 31 32 33 34 35 36 37
45 C0 00 44 68 56 00 00 34 01 8B 8C 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 41 74 40 00 34 06 73 45 6D 4A C1 FD 86 77 DC 57 2E 9B
DD 96 00 00 00 00 C3 D6 44 57 50 14 00 00 09 5A 00 00
45 C0 00 44 68 57 00 00 34 01 8B 8B 86 77 DC 57 6D 4A C1 FD 03 0A 8F 27 00
00 00 00 45 00 00 28 44 27 40 00 33 06 71 92 6D 4A C1 FD 86 77 DC 57 C5 C2
DD 96 00 00 00 00 CF DD DB BE 50 14 00 00 CE C3 00 00
45 C0 00 58 94 B4 00 00 40 01 E7 2E 7F 00 00 01 7F 00 00 01 03 03 F1 DA 00
00 00 00 45 00 00 3C 85 E1 00 00 01 11 35 CE 7F 00 00 01 7F 00 00 01 95 1E
82 9A 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B5 00 00 40 01 E7 2D 7F 00 00 01 7F 00 00 01 03 03 F9 EA 00
00 00 00 45 00 00 3C 85 E2 00 00 01 11 35 CD 7F 00 00 01 7F 00 00 01 8D 0D
82 9B 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B6 00 00 40 01 E7 2C 7F 00 00 01 7F 00 00 01 03 03 D2 EB 00
00 00 00 45 00 00 3C 85 E3 00 00 01 11 35 CC 7F 00 00 01 7F 00 00 01 B4 0B
82 9C 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B7 00 00 40 01 E7 2B 7F 00 00 01 7F 00 00 01 03 03 D6 AC 00
00 00 00 45 00 00 3C 85 E4 00 00 02 11 34 CB 7F 00 00 01 7F 00 00 01 B0 49
82 9D 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B8 00 00 40 01 E7 2A 7F 00 00 01 7F 00 00 01 03 03 F1 B4 00
00 00 00 45 00 00 3C 85 E5 00 00 02 11 34 CA 7F 00 00 01 7F 00 00 01 95 40
82 9E 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 B9 00 00 40 01 E7 29 7F 00 00 01 7F 00 00 01 03 03 CD 43 00
00 00 00 45 00 00 3C 85 E6 00 00 02 11 34 C9 7F 00 00 01 7F 00 00 01 B9 B0
82 9F 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BA 00 00 40 01 E7 28 7F 00 00 01 7F 00 00 01 03 03 9D 8F 00
00 00 00 45 00 00 3C 85 E7 00 00 03 11 33 C8 7F 00 00 01 7F 00 00 01 E9 63

Network Programming – Building Servers and Clients Chapter 13

[568]

82 A0 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BB 00 00 40 01 E7 27 7F 00 00 01 7F 00 00 01 03 03 A3 13 00
00 00 00 45 00 00 3C 85 E8 00 00 03 11 33 C7 7F 00 00 01 7F 00 00 01 E3 DE
82 A1 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BC 00 00 40 01 E7 26 7F 00 00 01 7F 00 00 01 03 03 D4 66 00
00 00 00 45 00 00 3C 85 E9 00 00 03 11 33 C6 7F 00 00 01 7F 00 00 01 B2 8A
82 A2 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BD 00 00 40 01 E7 25 7F 00 00 01 7F 00 00 01 03 03 A6 8D 00
00 00 00 45 00 00 3C 85 EA 00 00 04 11 32 C5 7F 00 00 01 7F 00 00 01 E0 62
82 A3 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BE 00 00 40 01 E7 24 7F 00 00 01 7F 00 00 01 03 03 F1 C6 00
00 00 00 45 00 00 3C 85 EB 00 00 04 11 32 C4 7F 00 00 01 7F 00 00 01 95 28
82 A4 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 BF 00 00 40 01 E7 23 7F 00 00 01 7F 00 00 01 03 03 A3 FE 00
00 00 00 45 00 00 3C 85 EC 00 00 04 11 32 C3 7F 00 00 01 7F 00 00 01 E2 EF
82 A5 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C0 00 00 40 01 E7 22 7F 00 00 01 7F 00 00 01 03 03 B9 AA 00
00 00 00 45 00 00 3C 85 ED 00 00 05 11 31 C2 7F 00 00 01 7F 00 00 01 CD 42
82 A6 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C1 00 00 40 01 E7 21 7F 00 00 01 7F 00 00 01 03 03 B3 B7 00
00 00 00 45 00 00 3C 85 EE 00 00 05 11 31 C1 7F 00 00 01 7F 00 00 01 D3 34
82 A7 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C2 00 00 40 01 E7 20 7F 00 00 01 7F 00 00 01 03 03 F2 62 00
00 00 00 45 00 00 3C 85 EF 00 00 05 11 31 C0 7F 00 00 01 7F 00 00 01 94 88
82 A8 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
45 C0 00 58 94 C3 00 00 40 01 E7 1F 7F 00 00 01 7F 00 00 01 03 03 DD BE 00
00 00 00 45 00 00 3C 85 F0 00 00 06 11 30 BF 7F 00 00 01 7F 00 00 01 A9 2B
82 A9 00 28 FE 3B 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Network Programming – Building Servers and Clients Chapter 13

[569]

Where to go next?
Philosophically speaking, no programming book can ever be perfect and neither is this one!
Did I leave some Go topics out? Absolutely yes! Why? Because there are always more topics
to cover in a book, so if I tried to cover everything, the book would never be ready for
publication! This situation is somehow analogous to the specifications of a program—you
can always add new and exciting features, but if you do not freeze its specifications, the
program will always be in development and it will never be ready for your intended
audience! Some of the Go topics I missed might even appear in the second edition of this
book!

The good thing is that after reading this book, you will be ready to learn on your own,
which is the biggest benefit that you can get from any good computer programming book.
The main purpose of this book is to help you learn how to program in Go and gain some
experience in doing so. However, there is no substitute for trying things out on your own,
and failing often becomes the only way to learn a programming language, so you must keep
developing nontrivial things.

So, this is the end of yet another Go book for me, but the beginning of a journey for you!
Thanks for buying this book. You are now ready to start writing your own software in Go
and learning new things!

Additional resources
Take a look at the following resources:

Visit the documentation of the net standard Go package, which can be found
at https:/ ​/​golang. ​org/ ​pkg/ ​net/​. This is one of the biggest documentation
found in the Go documentation.
Although this book talked about RPC, it did not talk about gRPC, which is an
open source, high-performance RPC framework. A package with the Go language
implementation of gRPC can be found at https://github.com/grpc/grpc-go.
The ICMP protocol for IPv4 is defined in RFC 792. It can be found in many places,
including https://tools.ietf.org/html/rfc792.
WebSocket is a protocol for two-way communication between a client and a
remote host. There is a WebSocket implementation for Go
at https://github.com/gorilla/websocket. You can learn more about
WebSocket at http://www.rfc-editor.org/rfc/rfc6455.txt.

https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://golang.org/pkg/net/
https://github.com/grpc/grpc-go
https://tools.ietf.org/html/rfc792
https://github.com/gorilla/websocket
https://www.rfc-editor.org/rfc/rfc6455.txt

Network Programming – Building Servers and Clients Chapter 13

[570]

If you are really into network programming and you want to be able to work
with RAW TCP packets, you mind find interesting and helpful information and
tools in the gopacket library, which can be found
at https://github.com/google/gopacket.
The raw package, which is located at https://github.com/mdlayher/raw allows
you to read and write data at the device driver level for a network device.

Exercises
Develop a FTP client in Go.
Next try to develop a FTP server in Go. Is it more difficult to implement the FTP
client or the FTP server? Why?
Try to implement a Go version of the nc(1) utility. The secret when
programming such fairly complex utilities is to start with a version that
implements the basic functionality of the original utility before trying to support
every possible option.
Modify TCPserver.go so that it returns the date in one network packet and the
time in another.
Modify TCPserver.go so that it can serve multiple clients in a sequential way.
Note that this is not the same as being able to serve multiple requests
concurrently. Put simply, use a for loop so that the Accept() call can be
executed multiple times.
TCP servers, such as fiboTCP.go, tend to terminate when they receive a given
signal, so add signal handling code to fiboTCP.go, as you learned in Chapter 8,
Telling a Unix System What to Do.
Modify kvTCP.go so that the save() function is protected using sync.Mutex. Is
this required?
Develop your own small web server in Go using a plain TCP instead of using the
http.ListenAndServe() function.

https://github.com/google/gopacket
https://github.com/mdlayher/raw

Network Programming – Building Servers and Clients Chapter 13

[571]

Summary
This chapter addressed many interesting things including developing UDP and TCP clients
and servers, which are applications that work over TCP/IP computer networks.

As this is the last chapter of this book, I would like to congratulate and thank you for
choosing this book. I hope that you found it useful and that you will continue using it as a
reference throughout your Go journey.

Soli Deo gloria

Other Books You May Enjoy
 If you enjoyed this book, you may be interested in these other books by Packt:

Go Systems Programming
Mihalis Tsoukalos

ISBN: 978-1-78712-564-3

Explore the Go language from the standpoint of a developer conversant with
Unix, Linux, and so on
Understand Goroutines, the lightweight threads used for systems and concurrent
applications
Learn how to translate Unix and Linux systems code in C to Golang code
How to write fast and lightweight server code
Dive into concurrency with Go
Write low-level networking code

https://www.packtpub.com/networking-and-servers/go-systems-programming

Other Books You May Enjoy

[573]

Distributed Computing with Go
V.N. Nikhil Anurag

ISBN: 978-1-78712-538-4

Gain proficiency with concurrency and parallelism in Go
Learn how to test your application using Go's standard library
Learn industry best practices with technologies such as REST, OpenAPI, Docker,
and so on
Design and build a distributed search engine
Learn strategies on how to design a system for web scale

https://www.packtpub.com/application-development/distributed-computing-go

Other Books You May Enjoy

[574]

Isomorphic Go
Kamesh Balasubramanian

ISBN: 978-1-78839-418-5

Create Go programs inside the web browser using GopherJS
Render isomorphic templates on both the client side and the server side
Perform end-to-end application routing for greater search engine discoverability
and an enhanced user experience
Implement isomorphic handoff to seamlessly transition state between the web
server and the web browser
Build real-time web application functionality with websockets to promote user
collaboration
Create reusable components (cogs) that are rendered using the virtual DOM
Deploy an Isomorphic Go application for production use

https://www.packtpub.com/web-development/isomorphic-go

Other Books You May Enjoy

[575]

Security with Go
John Daniel Leon

ISBN: 978-1-78862-791-7

Learn the basic concepts and principles of secure programming
Write secure Golang programs and applications
Understand classic patterns of attack
Write Golang scripts to defend against network-level attacks
Learn how to use Golang security packages
Apply and explore cryptographic methods and packages
Learn the art of defending against brute force attacks
Secure web and cloud applications

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

https://www.packtpub.com/networking-and-servers/security-go

Index

*
* character 226

=
= operator 23

A
abstract classes 278
abstract types 261
acyclic graphs 175
algorithm complexity 175
anonymous functions 220
Apache 127
Apache HTTP server benchmarking tool 499

B
basic data types, Go
 about 89
 arrays 93
 constants 113
 loops 90
 maps 110
 pointers 118
 slices 97
BenchmarkFibo() function 455, 456
benchmarking
 about 449
 example 449
beta version, Go
 installing 420, 421
big endian byte order 297
Big O notation 175
binary format
 using 300
binary tree

 about 176
 advantages 179, 180
 balanced tree 176
 depth of a node 176
 depth of a tree 176
 implementing, in Go 177, 178, 179
 leaf 176
 root of a tree 176
 unbalanced tree 176
black set 50
blank identifier 27
buffered channels 374, 375, 376, 384
buffered file input and output 289
buffered writing
 benchmarking 456, 458, 459, 460
bufio package 289
build command 85
byte slice 102
bytes package
 using 313, 314

C
C code
 about 66
 calling from Go 59
 calling from Go, same file used 59, 60
 calling from Go, separate files used 60
 example 61
 mixing, with Go code 63, 64
C++ 437
cat(1) utility
 implementing 322, 323, 324
channel of channels
 about 378
 using 379, 380, 381
channel

[577]

 about 53, 339, 350, 373
 as function parameters 354
 reading from 352
 receive-only channel 355
 send-only channel 354
 unidirectional channel 354
 writing to 350, 351, 353
circular list 202
closures 220
code optimization 418, 422, 423
code profiling
 about 418, 423
 convenient external package 432
 net/http/pprof standard Go package 424
 simple example 424, 425, 426, 430, 431
code testing 418
composite types 131
concurrency 341
concurrent TCP server
 developing 546, 547, 548, 549
 handy concurrent TCP server 551, 553, 554,

556

constant generator iota 115, 116, 117
container package
 about 202
 container/heap, using 203, 204, 205
 container/list, using 206, 207, 208
 container/ring, using 208, 209
context package
 about 401
 advanced example 405, 407, 409, 410
 using 401, 402, 403, 404, 405
 Worker pool 410
continuation 362
continuation stealing 362
copy() function 102
CPU profiling 424
cross-compilation 462, 464
CSV files
 reading 301, 302, 304
custom Go package
 compiling 232
 developing 230, 231
 init() function 232, 233, 234
 private functions 232

 private variables 232
custom interfaces
 developing 264
cyclic graphs 175

D
daemon processes 283
data race condition 395, 398
data
 loading, on disk 307, 308, 309, 310
 saving, on disk 307, 308, 309, 310
dates
 dealing with 121, 122
 format, changing 127, 128
 parsing 125
 working with 125
deadlocks 365
Debian Linux 8
debug parse tree 83
defer keyword 67, 68, 69
deferred functions 67
deserialization 308
Directed Acyclic Graph 175
Directed Graph 175
directives 11
directory trees
 traversing 324, 325, 326
DNS (Domain Name System) 486
DNS lookups
 MX records of domain, obtaining 490, 491
 NS records of domain, obtaining 488, 489, 490
 performing 486, 488
DNS.go utility 486
documentation
 generating 466, 467, 469, 470, 471, 472
DOT 437
doubly linked list
 about 190, 191
 advantages 195
 implementing, in Go 192, 193, 194
dtrace tool 74, 75
Dynamic Programming technique 548

[578]

E
eBPF (enhanced Berkeley Packet Filter)
 about 327
 reference links 328
 using 328
Echo service 539
encapsulation 232
Erlang programming language 341
error handling
 about 38, 40, 41, 42
 error data type 38, 40
error output 28
example functions
 creating 464, 466

F
fair scheduling strategy 362
Fibonacci sequence 449
file permissions 315, 316
file
 writing to 304, 305, 306, 307
finite automaton 139
flag package
 about 283
 using 284, 285, 286, 287, 288
fmt.Println() function
 about 243
 implementing 243, 244, 245
 URL 243
for loop 90
forgetMutex.go
 using 387
fork-join concurrency model 362
format specifier 20
functions
 about 219
 anonymous functions 220
 multiple values, returning 220, 221, 222
 other functions as parameters, accepting 228,

229

 other functions, returning 227, 228
 pointers, returning 225, 226
 return values, naming 222, 223, 224
 with pointer parameters 224, 225

G
garbage collection safe-point 53
Garbage Collection
 about 10, 47, 49
 exploring 53, 54, 55
 tricolor algorithm 50, 51, 52, 53
 unsafe code 55, 56
 unsafe package 57
Go arrays
 about 93, 94
 disadvantages 97
 multi-dimensional arrays 94, 95, 96
Go assembler 78, 79
Go channels
 about 373, 374
 buffered channels 374
 channel of channels 378
 nil channels 377
 order of execution, specifying for goroutines 381,

382, 383, 384
 signal channel 374
Go code, Go package
 exploring, of net/url package 235, 236, 237
 reading 235
 viewing, of log/syslog package 237, 238
Go code
 benchmarking 449
 compiling 13
 enhancing, with data structures 174
 example 62
 executing 14
 practical advices 86
 simple benchmarking example 449, 450, 452,

454

 testing 444
 tests, writing for 445, 447, 448
 unreachable Go code, finding 461, 462
Go compiler 46, 47
Go constants
 about 113, 114
 constant generator iota 115, 116, 117
Go documentation server
 URL 464
Go environment 76, 77, 78

[579]

Go execution tracer 439
Go functions
 calling, from C code 64
Go garbage collector 439
Go interfaces
 about 261, 262
 switch statement, using 267, 268, 269
 using 265, 266, 267
Go loops
 about 90
 examples, for loops 91, 93
 for loop 90
 range keyword 91
 while loop 91
Go maps
 about 110, 111, 112
 nil map, storing to 112, 113
Go node 79
Go package
 about 64, 65, 219
 custom Go package, developing 230, 231
 downloading 17, 18, 19
 Go code, reading 235
 resources 256
 rules, for creating 238, 240
Go playground
 URL 464
Go pointers
 about 118, 120
 dereferencing 118
Go profiler
 web interface 434
Go race detector 396
Go rules
 about 14
 curly braces, formatting 16, 17
 Go package, using 15, 16
Go scheduler 341, 362, 364
Go slices
 about 97
 byte slices 102
 capacity 100
 copy() function 102, 104
 example 105, 106, 107
 expanding automatically 100

 length 100
 multi-dimensional slices 105
 operations, performing on 98, 99, 100
 sorting, with sort.slice() 108
go tool trace utility
 about 438
 using 439, 440, 441, 442, 443
Go version 1.10
 about 419
 changes 420
 versus, Go version 1.9 419
Go
 about 8
 advantages 9, 10
 basic data types 89
 beta version, installing 420
 binary trees 176
 composite types 131
 concepts 8
 disadvantages 11
 doubly linked list 190
 error handling 38
 features 9
 functions 219
 hash tables 180
 history 8, 9
 key value store, developing 167
 linked list 185
 object-oriented programming 276, 277
 queues 195
 RC version, installing 420
 stacks 199
 URL 9
 web client, creating 516
 web server, creating 492
gob format 308
godoc utility 12
GOMAXPROCS environment variable 363, 364,

365

goroutine
 about 339, 340, 342
 Add() and Done() calls, not agreeing 348
 creating 342, 343
 multiple goroutines, creating 344, 345
 timing out 368, 369, 370, 371, 372, 373

[580]

 waiting to finish 346, 347
grammar 139
graphs
 about 175
 acyclic graphs 175
 cyclic graphs 175
Graphviz 437
gray set 50
group ID
 finding 336
gRPC 569

H
handler function 492
hash table
 about 110, 180
 advantages 185
 implementing, in Go 181, 182, 183
 lookup functionality, implementing 184
HTML output
 constructing 248, 249, 250, 251, 252, 253,

254, 255
HTML template 245
HTTP connections
 timeout period on server side, setting 525, 527
 timeout, from client side 527
 timing out 522
HTTP handlers
 testing 513, 514, 515, 516
HTTP tracing 510, 511, 513
http.Request type 477
http.Response structure 476
http.RoundTripper 476
http.Transport type 478
Hugo utility 529

I
inheritance 278
init() function 232, 233, 234
io.Reader interface 289
io.Writer interface 289
IP (Internet Protocol) 479
IPv4 480
IPv6 480

J
Java 55
JSON format 308

K
kernel processes 283
key value store
 developing 167, 168, 170, 171

L
Last In First Out (LIFO) 67
latency 54
linked list
 about 185
 advantages 190
 implementing, in Go 186, 187, 189
 node, removing from 186
little endian byte order 297
log files, writing to
 about 30
 information sending 32, 33, 34
 log servers 31
 logging levels 31
log levels, writing to
 logging facilities 31
log.Fatal() 35, 36
log.Panic() 36, 37
log/syslog package
 code, viewing 237, 238
logging facility 31
logging level 31
logical processors 363
low-level network programming
 performing 561, 562, 563
 raw ICMP network data, grabbing 564, 565

M
macOS High Sierra 8
map key 110
mark-and-sweep algorithm 54
memory profiling 424
method overriding 279
modulo operator 182

[581]

monitor goroutine 393
multi-dimensional arrays 94
multi-dimensional slices 105
mutator 51
mutual exclusion variable 384
MX records of domain 490

N
name servers, domain 488
nc(1) command-line utility 480
net package 476
net standard Go package 533
net/http package 476
net/url package
 code, exploring 235, 236, 237
netCapabilities.go utility 484
netConfig.go utility 481
network interfaces
 configuration, reading 481, 482, 483, 484, 486
new keyword
 using 136
Nginx 127
nil channels
 about 377
 using 377, 378
node trees 79, 80, 83, 85
nodes 175

O
object file 46
object-oriented programming (OOP) 11, 258
online references 43
output
 printing 19, 20, 21

P
panic() function
 about 69, 70, 71
 using 71, 72
parallelism 341
pattern matching
 about 138, 139
 advanced example 142, 143, 144
 example 142

 simple example 139, 140
Perl 437
Pi
 calculating, with accuracy 164, 165, 166
pipeline 355, 356
pragmas 11
preprocessor 10, 11
private functions 232
private variables 232
process 283, 340
process ID 283, 329
program 283
programming languages
 Alef 8
 C 8
 Oberon 8
 Pascal 8
ptraceRegs.go utility 328
Python 437

Q
queues
 about 195, 196
 implementing, in Go 196, 198, 199

R
race conditions
 catching 395, 396, 398, 399, 400
random numbers
 generating 210, 211, 212, 213
 random strings, generating 213, 214, 215
range keyword 91
re-slicing 99
read-only channel 355
receive-only channel 355
recognizer 139
recover() function 69, 70, 71
reflection
 about 269, 270
 advanced example 272, 273, 274, 275
 advantages 275
 disadvantages 276
 object-oriented programming 278
 simple reflection example 270, 272

[582]

regular expressions (regexp)
 about 138, 139
 advanced example 142, 143, 144
 IPv4 addresses, matching 145, 146, 147, 148,

149

 simple example 139, 140, 142
Release Candidate (RC) version, Go
 installing 420, 421
Remote Procedure Call (RPC) 557
RFC850 format 128
RPC client 558, 559
RPC server 559, 561
Ruby 437

S
scheduler 362
select keyword
 about 365
 using 366, 367, 368
semaphores 374
send-only channel 354
serialization 308
SetDeadline() function 524
shared memory
 about 384
 using goroutines 393, 394, 395
shared variables 384
short assignment statement 23
SIGINT signal 316
signal channel
 about 374
 using 381
slice literals 98
sort.Slice() function
 using 108
SQLite3
 commands 256
stacks
 about 199
 implementing, in Go 199, 200, 202
stalling join 362
standard output
 about 21
 using 21, 23
static linking 10

stop-the-world garbage collector 54
strace tool 73, 74
stream encoding 308
strings package
 using 311, 312, 313
strings
 about 150, 151, 152
 rune 153
 strings standard Go package 156, 158, 159
 Unicode package 155
structure literal 131
structures
 about 131, 132, 133
 new keyword, using 136
 pointers 134, 135
switch statement 160, 162, 163
sync.Mutex type 385
sync.RWMutex type
 about 389
 using 390, 391
syscall package
 about 240, 241, 242, 243
 fmt.Println() function 243, 244, 245
 using 330
syscall.PtraceRegs 328, 330
system calls
 about 241
 tracing 330, 331, 332, 334
systems programming 282

T
task 362
TCP (Transmission Control Protocol) 479
TCP client
 about 533, 535
 destination port 533
 different version 535, 537
 source port 533
TCP packets 479
TCP server
 about 537, 538
 different version 539, 540, 541
TCP/IP 479
templates 245
text files

 exact amount of data, reading 298, 300
 reading 290
 reading, character by character 294
 reading, from /dev/random 296, 297
 reading, line by line 290, 292
 reading, word by word 292, 294
text output
 generating 246, 247, 248
text template 245
thread 340
times
 dealing with 121, 122
 format, changing 127, 128
 parsing 123, 125
 working with 123
traceSyscall.go utility
 using 331
tricolor algorithm 50
tricolor mark-and-sweep algorithm 50
tshark 529
tuples 136, 137, 138
type assertion 262, 264
type methods 258, 259, 260

U
UDP (User Datagram Protocol) 479
UDP client
 developing 542, 544
UDP server
 developing 544, 546
unbuffered file input and output 289
Unicode 10
unidirectional channels 354
Unix epoch time 121
Unix operating system 8
Unix pipes
 programming 322
Unix processes 283
Unix signals
 all signals, handling 319, 320, 321
 handling 316, 317
 two signals, handling 317, 318, 319
Unix standard error 28
Unix utilities

 about 72, 73
 dtrace tool 74, 75
 strace tool 73, 74
Unix
 stderr 19
 stdin 19
 stdout 19
unsafe code 55, 56
unsafe package
 about 57
 example 57, 58, 59
user ID
 finding 335
user input
 acquiring 23
 command line arguments, working with 26, 27
 standard input, reading from 24, 25
user processes 283

W
web client, in Go
 creating 516, 517
 making advanced 518, 519, 520, 521
web interface, Go profiler
 about 434
 profiling example 434, 435, 436
web server
 creating 492, 493, 494, 495
 HTTP server, profiling 495, 496, 498, 499
website, Go
 creating 500, 503, 504, 506, 508, 509, 510
WebSocket 569
while loop 91
white set 50
Wireshark 529
work stealing strategy 362
Worker pools
 about 410
 implementing 411, 412, 414, 415
write barrier 50
write-only channel 355

X
XML format 308

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Go and the Operating System

	The structure of the book
	The history of Go
	Why learn Go?
	Go advantages
	Is Go perfect?
	What is a preprocessor?

	The godoc utility

	Compiling Go code
	Executing Go code
	Two Go rules
	You either use a Go package or do not include it
	There is only one way to format curly braces

	Downloading Go packages
	Unix stdin, stdout, and stderr
	About printing output
	Using standard output
	Getting user input
	About := and =
	Reading from standard input
	Working with command-line arguments

	About error output
	Writing to log files
	Logging levels
	Logging facilities
	Log servers
	A Go program that sends information to log files
	About log.Fatal()
	About log.Panic()

	Error handling in Go
	The error data type
	Error handling

	Additional resources
	Exercises
	Summary

	Chapter 2: Understanding Go Internals

	The Go compiler
	Garbage Collection
	The Tricolor algorithm
	More about the operation of the Go Garbage Collector
	Unsafe code
	About the unsafe package
	Another example of the unsafe package

	Calling C code from Go
	Calling C code from Go using the same file
	Calling C code from Go using separate files
	The C code
	The Go code
	Mixing Go and C code

	Calling Go functions from C code
	The Go package
	The C code

	The defer keyword
	Panic and Recover
	Using the panic function on its own

	Two handy Unix utilities
	The strace tool
	The dtrace tool

	Your Go environment
	The Go Assembler
	Node Trees
	Learning more about go build
	General Go coding advices
	Additional Resources
	Exercises
	Summary

	Chapter 3: Working with Basic Go Data Types

	Go loops
	The for loop
	The while loop
	The range keyword
	Examples of Go for loops

	Go arrays
	Multi-dimensional arrays
	The shortcomings of Go arrays

	Go slices
	Performing basic operations on slices
	Slices are being expanded automatically
	Byte slices
	The copy() function
	Multidimensional slices
	Another example of slices
	Sorting slices using sort.slice()

	Go maps
	Storing to a nil map
	When you should use a map?

	Go constants
	The constant generator iota

	Go pointers
	Dealing with times and dates
	Working with times
	Parsing times
	Working with dates
	Parsing dates
	Changing date and time formats

	Additional resources
	Exercises
	Summary

	Chapter 4: The Uses of Composite Types

	About composite types
	Structures
	Pointers to structures
	Using the new keyword

	Tuples
	Regular expressions and pattern matching
	Now for some theory
	A simple example
	A more advanced example
	Matching IPv4 addresses

	Strings
	What is a rune?
	The Unicode package
	The strings package

	The switch statement
	Calculating Pi with great accuracy
	Developing a key/value store in Go
	Additional resources
	Exercises
	Summary

	Chapter 5: Enhancing Go Code with Data Structures

	About graphs and nodes
	Algorithm complexity
	Binary trees in Go
	Implementing a binary tree in Go
	Advantages of binary trees

	Hash tables in Go
	Implementing a hash table in Go
	Implementing the lookup functionality
	Advantages of hash tables

	Linked lists in Go
	Implementing a linked list in Go
	Advantages of linked lists

	Doubly linked lists in Go
	Implementing a doubly linked list in Go
	Advantages of doubly linked lists

	Queues in Go
	Implementing a queue in Go

	Stacks in Go
	Implementing a stack in Go

	The container package
	Using container/heap
	Using container/list
	Using container/ring

	Generating random numbers
	Generating random strings

	Additional Resources
	Exercises
	Summary

	Chapter 6: What You Might Not Know About Go Packages

	About Go packages
	About Go functions
	Anonymous functions
	Functions that return multiple values
	The return values of a function can be named!
	Functions with pointer parameters
	Functions that return pointers
	Functions that return other functions
	Functions that accept other functions as parameters

	Developing your own Go packages
	Compiling a Go package
	Private variables and functions
	The init() function

	Reading the Go code of a standard Go package
	Exploring the code of the net/url package
	Looking at the Go code of the log/syslog package

	Creating good Go packages
	The syscall package
	Finding out how fmt.Println() really works

	Text and HTML templates
	Generating text output
	Constructing HTML output
	Basic SQLite3 commands

	Additional resources
	Exercises
	Summary

	Chapter 7: Reflection and Interfaces for All Seasons

	Type methods
	Go interfaces
	About type assertion
	Developing your own interfaces
	Using a Go interface
	Using switch with interface and data types

	Reflection
	A simple Reflection example
	A more advanced reflection example
	The three disadvantages of reflection

	Object-oriented programming in Go!
	Additional resources
	Exercises
	Summary

	Chapter 8: Telling a Unix System What to Do

	About Unix processes
	The flag package
	The io.Reader and io.Writer interfaces
	Buffered and unbuffered file input and output

	The bufio package
	Reading text files
	Reading a text file line by line
	Reading a text file word by word
	Reading a text file character by character
	Reading from /dev/random

	Reading the amount of data you want from a file
	Why are we using binary format?
	Reading CSV files
	Writing to a file
	Loading and saving data on disk
	The strings package revisited
	About the bytes package
	File permissions
	Handling Unix signals
	Handling two signals
	Handling all signals

	Programming Unix pipes in Go
	Implementing the cat(1) utility in Go

	Traversing directory trees
	Using eBPF from Go
	About syscall.PtraceRegs
	Tracing system calls
	User ID and group ID
	Additional resources
	Exercises
	Summary

	Chapter 9: Go Concurrency – Goroutines, Channels, and Pipelines

	About processes, threads, and goroutines
	The Go scheduler
	Concurrency and parallelism

	Goroutines
	Creating a goroutine
	Creating multiple goroutines

	Waiting for your goroutines to finish
	What if the number of Add() and Done() calls do not agree?

	Channels
	Writing to a channel
	Reading from a channel
	Channels as function parameters

	Pipelines
	Additional resources
	Exercises
	Summary

	Chapter 10: Go Concurrency – Advanced Topics

	The Go scheduler revisited
	The GOMAXPROCS environment variable

	The select keyword
	Timing out a goroutine
	Timing out a goroutine – take 1
	Timing out a goroutine – take 2

	Go channels revisited
	Signal channels
	Buffered channels
	Nil channels
	Channel of channels
	Specifying the order of execution for your goroutines

	Shared memory and shared variables
	The sync.Mutex type
	What happens if you forget to unlock a mutex?

	The sync.RWMutex type
	Sharing memory using goroutines

	Catching race conditions
	The context package
	An advanced example of the context package
	Worker pools

	Additional resources
	Exercises
	Summary

	Chapter 11: Code Testing, Optimization, and Profiling

	The Go version used in this chapter
	Comparing Go version 1.10 with Go version 1.9

	Installing a beta or RC version of Go
	About optimization
	Optimizing Go code
	Profiling Go code
	The net/http/pprof standard Go package
	A simple profiling example
	A convenient external package for profiling
	The web interface of the Go profiler
	A profiling example that uses the web interface
	A quick introduction to Graphviz

	The go tool trace utility
	Testing Go code
	Writing tests for existing Go code

	Benchmarking Go code
	A simple benchmarking example
	A wrong benchmark function

	Benchmarking buffered writing
	Finding unreachable Go code
	Cross-compilation
	Creating example functions
	Generating documentation
	Additional resources
	Exercises
	Summary

	Chapter 12: The Foundations of Network Programming in Go

	About net/http, net, and http.RoundTripper
	The http.Response type
	The http.Request type
	The http.Transport type

	About TCP/IP
	About IPv4 and IPv6
	The nc(1) command-line utility
	Reading the configuration of network interfaces
	Performing DNS lookups
	Getting the NS records of a domain
	Getting the MX records of a domain

	Creating a web server in Go
	Profiling an HTTP server
	Creating a website in Go

	HTTP tracing
	Testing HTTP handlers

	Creating a web client in Go
	Making your Go web client more advanced

	Timing out HTTP connections
	More information about SetDeadline
	Setting the timeout period on the server side
	Yet another way to time out!

	Wireshark and tshark tools
	Additional resources
	Exercises
	Summary

	Chapter 13: Network Programming – Building Servers and Clients

	The net standard Go package
	A TCP client
	A slightly different version of the TCP client

	A TCP server
	A slightly different version of the TCP server

	A UDP client
	Developing a UDP server
	A concurrent TCP server
	A handy concurrent TCP server

	Remote Procedure Call (RPC)
	The RPC client
	The RPC server

	Doing low-level network programming
	Grabbing raw ICMP network data

	Where to go next?
	Additional resources
	Exercises
	Summary

	Other Books You May Enjoy
	Index

