
Learning Functional
Programming in Go

Lex Sheehan

BIRMINGHAM - MUMBAI

Learning Functional Programming in Go

Copyright © 2017 Packt Publishing

First published: November 2017

Production reference: 1221117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-139-4

www.packtpub.com

Preface 1

Chapter 1: Pure Functional Programming in Go 11

Motivation for using FP 12
Getting the source code 13

The directory structure of the source files 13
How to run our first Go application 14

Imperative versus declarative programming 15
Pure functions 18
Fibonacci sequence - a simple recursion and two performance
improvements 19

Memoization 21
The difference between an anonymous function and a closure 24

FP using Go's concurrency constructs 26
Testing FP using test-driven development 28

A note about paths 30
How to run our tests 31

A journey from imperative programming to pure FP and enlightenment 36
Benchmark test for the imperative SumLoop function 37
Benchmark test for the SumRecursive function 37
A time of reckoning 38

A quick example of a function literal 39
Summary 40

Chapter 2: Manipulating Collections 41

Iterating through a collection 42
Piping Bash commands 44
Functors 45

Functions that modify functions 46
A coding example of functions that modify functions 46
A visual example of functions that modify functions 47

Composition in Mindcraft 48
Tacit programming 48

Tacit programming with Unix pipes 49
Programming CMOS with Unix pipes 49
Tacit programming with FP 50

Non-TCO recursive example 50

Contents

TCO recursive example 51
The importance of recursion 52
Various intermediate and terminal functions 53
Reduce example 54
Intermediate functions 54

Common intermediate functions 55
Map Example 55

Terminal functions 56
Common terminal functions 56

Join example 56
GroupBy example 57
Reduce example 57

Predicates 57
Reflection 60
Combinator pattern 61

Map and filter 61
Contains 67

Iterating over a collection of cars 68
The empty interface 68
The Contains() method 69

If Go had generics 70
Map function 71
Testing our empty interface-based Map function 71

Itertools 72
Go channels used by the New function 74
Testing itertool's Map function 74
Testing iterators for element equality 75

Functional packages 76
Another time of reflection 76

Go is awesome 76
Go is awesome, but 76

The cure 77
Gleam - distributed MapReduce for Golang 77

LuaJIT's FFI library 78
Unix pipe tools 78

Processing Gleam collections 79
Summary 80

Chapter 3: Using High-Order Functions 81

Characteristics of FP 81
Function composition 92
Monads allow us to chain continuations 93

Generics 94
First-class functions 95
Closure 96

Dynamically scoped 97
Pure function 98
Immuable Data 98

Persistent data structures for Go 99
Use of expressions 101

Sample HOF application 101
The chapter4 application code 102

Build and runtime instructions 103
More application code 104
The Filter function 105

Reality check 106
FilterFunc 107

Filter function 107
RESTful resources 108

Chaining functions 109
More cars 110

Reality check 110
The Map function 111

Improved performance from the Map function 112
The Reduce function 113
More high-order functions 114
Generators 115
RESTful server 116
The GenerateCars function 116

Currying Goroutine 118
A closer look at currying 118
Extending our currying example 120
Using a WaitGroup variable to manage concurrency 121
Finishing up the GenerateCars function 121

Handling concurrency 122
The final HOF example 123

Summary 124

Chapter 4: SOLID Design in Go 125

Why many Gophers loath Java 125
More reasons for loathing Java 127
Digging deeper into error handling 128

A conversation - Java developer, idiomatic Go developer, FP developer 129
Software design methodology 132

Good design 133
Bad design 134

Good versus bad design over time 134

SOLID design principles 135
Single responsibility principle 136

Function composition 138
Open/closed principle 138

Open / close principle in functional programming 141
FantasyLand JavaScript specification 142

Setoid algebra 142
Ord algebra 143

The expression problem 143
Liskov substitution principle 144

This OOP method stinks 144
Our FP function smells like roses 145
In FP, contracts don't lie 146
Duck typing 150
What can go wrong with inheritance? 150
Interface segregation principle 152
Dependency inversion principle 152

The big reveal 153
MapReduce 154

MapReduce example 155
What else can Monads do? 157

Viva La Duck 158
Pass by value or reference? 161
Type embedding with Go interfaces 163

Interface embedding to add minor features 164
A Go error handling idiom 164
It's time to run our program 165

Summary 168

Chapter 5: Adding Functionality with Decoration 169

Interface composition 170
Go's complimentary Reader and Writer interfaces 170

Example usages of the Reader and Writer interfaces 171
Design with Duck Typing 171

More reasons to design using interfaces 172
Using the Reader and Writer interfaces 174

Decorator pattern 176
Type hierarchy UML 177
How Procedural design compares to functional Inversion of Control
(IoC) 178

Procedural design example 179
Functional IoC example 179

A decorator implementation 180

The main.go file 180
The decorator/simple_log.go file 182

Example InitLog calls 183
Back to our main package 184
Understanding our statistics using the easy-metrics GUI 187

Quick look at the Dot Init update 188
Easy-metrics - 1 of 3 189

The decorator/decorator.go file 190
A framework to inject dependencies 191

Wrapping a client request with decorators (in main) 191
Authorization decorator 192
Logging decorator 192
LoadBalancing decorator 193

Strategy pattern 193
Inversion of control and dependency injection 195
Our first failure 196
Easy metrics - 2 of 3 196
Groking our trace log file 197

The rest of the graph 198
Easy metrics - 3 of 3 199

Examining the trace log 200
The decorator/requestor.go file 200

The job variable declared in main() 201
Back to the requestor.go file 201
Using channels to manage the life cycle 202
All requests done 204
Launching our makeRequest goroutine 204
Our DI framework in action 205

Summary 206

Chapter 6: Applying FP at the Architectural Level 207

Application architectures 208
What is software architecture? 209
Client-server architecture 209
Cloud architecture 210
Why does architecture matter? 211

The role of systems engineering 212
Real systems 212
IT system specialty groups 212
Systems engineering is lean 213
Requirements, scope and terms 213

Defining terms 213
Software requirements 214
System 214
System architecture 214

System elements 214
System Boundaries 214

Managing Complexity 214
The best tool for the job 215
Divide and conquer 215
Designing for state management 216

Add a microservice 216
FP influenced architectures 219
Domain Driven Design 219

Dependency rule 220
Cyclic dependency 221

Working code 221
Code with cyclic dependency error 222
The Golang difference 223

Solution for cyclic dependencies 224
Domain Driven Design 224

Interface-driven development 225
Hollywood principle 226

Observer pattern 226
Dependency injection 229

A cloud bucket application 230
Directory structure 230

main.go 231
func HandlePanic 232

Dependency injection 233
func main() 234

Layers in the architecture 234
Domain layer 235
Use cases layer 240

Compatible interfaces 242
Interfaces layer 244

Why global variables are bad 252
Format the response 253
Testing our interfaces 258

Infrastructure layer 262
Context object 264

Benefits of DDD 266
Adaptability 266
Sustainability 267
Testability 267
Comprehensibility 267

A solid architectural foundation 267
FP and Micyoservices 267

Message passing 268

All parties must participate 269
Communication across boundaries 269

Polyglot Persistence 269
Lambda architecture 270

Speed 270
Batch 270
Servicing 271
Next generation big data architecture 271

CQRS 271
Benefits of CQRS 272

Infrastructure architecture 273
Share nothing architecture 274
Integrating services 274

Agreed upon protocol 274
Circuit breakers 274

Functional reactive architecture 275
Go is ideal for building microservices 276

Size matters 277
Benefits of gRPC 278
Who is using Go? 278

Summary 279

Chapter 7: Functional Parameters 280

Refactoring long parameter lists 281
What's wrong with a function signature with more than seven
parameters? 281
Refactoring - the book 282
Edsger W. Dijkstra says OOP is a bad idea 283

What else did Edsger W. Dijkstra say? 284
The underlying OOP problem 286
OOP inconsistency 287
Functional programming and cloud computing 287

A closer look at f(x) 289
A closer look at refactoring 289

Passing every parameter a function requires to do its job is not a good idea 289
Methods can query other objects' methods internally for data required to make
decisions 290
Methods should depend on their host class for needed data 290
Pass a whole object with required attributes to reduce the number of required
parameters 290
Replace parameter with method technique to reduce the number of required
parameters 291

Before applying Replace Parameter with Method technique 291
After applying Replace Parameter with Method technique 291

Use a parameter object when we have unrelated data elements to pass 291

Long parameter lists will change over time and are inherently difficult to understand 293
The solution 294

Three ways to pass multiple parameters 295
Simply passing multiple parameters 295
Passing a configuration object/struct that contains multiple attributes 295
Partial application 296

Functional parameters 297
Contexts 301

Context limitations 304
Report example 305

Writing good code is not unlike a good game of soccer 305
Functional parameters - Rowe 307
Report example 307

A more practical Context use case 307
src/server/server.go 309
The src/server/server_options.go file 315

Summary 318

Chapter 8: Increasing Performance Using Pipelining 319

Introducing the pipeline pattern 320
Grep sort example 320
Pipeline characteristics 321
Examples 322

Website order processing 322
Boss worker pattern 322
Load balancer 323
Data flow types 323

Building blocks 324
Generalized business application design 324

Example implementations 325
Imperative implementation 326

Decrypt, authenticate, charge flow diagram 326
Concurrent implementation 329
Buffered implementation 330

Leverage all CPU cores 332
Improved implementation 332

Imports 333
BuildPipeline 333
Immediately executable Goroutine 334
Receive order 334
Filterer interface 334
A Filterer object 335
Authenticate filter 335
Decrypt filter 336

Complete processing 336

The ChargeCard helper function 337
Charge filter 337
The encrypt and decrypt helper functions 338

Testing how the application handles invalid data 339
Invalid credit card cipher text 339
Invalid password 340
Changing the order of authenticate and decrypt filters 341
Attempting to charge before decrypting credit card number and authentication 341
Attempting to charge before authentication 342

Further reading 342
Summary 343

Chapter 9: Functors, Monoids, and Generics 344

Understanding functors 344
An imperative versus pure FP example 345

What did that Map function do for us? 345
What possible benefits can this afford us? 346

A magical structure 346
Color blocks functor 347
Fingers times 10 functor 347

Definition of a functor in Haskell 348
Kinds of types 349

Maybe 350
Polymorphism at a higher level 350
No Generics results in a lot of boilerplate code 351

Solve lack of generics with metaprogramming 352
Generics code generation tool 354

The clipperhouse/gen tool 354
If Go supported generics 359

Adding new methods 360
Defining a filter function 360

Nums revisited 361
The slice typewriter 364

Aggregate[T] 364
Generics implementation options 365

We used the gen tool 366
The shape of a functor 366

Functor implementation 367
ints functor 367

Functor definition 371
Identity operation 372

Composition operation 372
Composition example in Go 373

Haskell version of compose 374
(g.f)(x) = g(f(x)) composition in Go 378

The (g.f)(x) = g(f(x)) implementation 379
A note about composition naming conventions in Go 380

The directions of the arrows are significant 382
EmphasizeHumanize ordered incorrectly 382

Function composition is associative 384
Functional composition in the context of a legal obligation 384

Decisions determine state transitions 385
Category theory review 386

Categorical rules 386
Results oriented 386

The forgetful functor and the law 387
The rule of law 387
Lucy’s forgetful functor 388
Larry’s forgetful functor 388

Build a 12-hour clock functor 389
Clock functor helpers 390

The Unit function 390
The AmPmMapper function 391
The AmHoursFn helper 391
The String helper function 391
main.go 392
Terminal output log 394
Functor summary 394

The car functor 394
The functor package 394
main.go 397

Compare one line of FP to a bunch of imperative lines 398
Car functor terminal session 399

Monoids 399
Monoid rules 399

Closure rule 399
Closure rule examples 400
Closure axiom 400

Associativity rule 400
Identity rule 400

Identity rule examples 401
An identity of 0 401

Writing a reduction function 401
A semigroup is a missing neutral value 402

Converting binary operations into operations that work on lists 402
Using monoids with divide and conquer algorithms 403

Referential transparency 403

Handling no data 404
More examples of monoids 404
What are not monoids? 404

Monoid examples 406
Name monoid 407

Name monoid terminal session 408
Int slice monoid 408
Lineitem slice monoid 410
Int slice monoid terminal session 412

Summary 413

Chapter 10: Monads, Type Classes, and Generics 414

Mother Teresa Monad 415
The bind operation 418
The lift operation 419
Monadic functions 427

Basic monadic functions 429
Monadic list functions 429

Monadic workflow implementation 431
Lambda calculus 444

Y-Combinator 450
The Y in Y-Combinator 450
How the Y-Combinator works 451

The Lexical Workflow solution 452
Is our ProcessCar method idomatic Go code? 453

The non idiomatic parts 453
The idiomatic parts 453

An alternative workflow option 454
Business use case scenarios 456
Y-Combinator re-examined 457

What is tail recursion? 462
Big-Oh notation 463

InternationalizatioN (I18N) package 465
Type classes 471

Base class definitions 471
Int base class 472
String base class 472
Our main.go file 473
Sum parent type class 473
Sum base classes 473

Generics revisited 476
Impact of Golang 479

Personal opinion 480
Summary 481

Where to go from here 482

Chapter 11: Category Theory That Applies 483

Our goal 484
Break it down 486
Algebra and the unknown 486
Real-world application of algebra 489

Linear equation and the law of demand 489
Quadratic equations all around us 490
Function composition with linear and quadratic functions 491
More examples of quadratic equations 493

The golden ratio 493
Basic laws of algebra 495
Correspondence in mathematics 496

 Proof theory 497
Logical connectives 497

Logical inconsistency 498
Partial function 499

Truth table 499
Conditional propositions 499
Logical equivalence 500
Converse of a conditional proposition 501

Order matters 501
The Curry Howard isomorphism 501

Examples of propositions 502
Not propositions 502
Lambda calculus 502

Why so formal? 503
The importance of protocol 503

Historical Events in Functional Programming 503
George Boole (1815 - 1864) 504
Augustus De Morgan (1806 - 1871) 504
Friedrich Ludwig Gottlob Frege (1848 – 1925) 505

Modus Ponens 505
Charles Lutwidge Dodgson (1832 –1898) 506
Alfred Whitehead and Bertrand Russell (1903) 507
Moses Schonfinkel (1889–1942) 508
Haskell Curry - 1927 509
Gerhard Gentzen (1936) 510
Alonzo Church (1930, 1940) 510

Alan Turing (1950) 511
MacLane and Eilenberg (1945) 512
John McCarthy (1950) 512
Curry-Howard-Lambek Correspondence (1969) 513
Roger Godement (1958) 515
Moggi, Wadler, Jones (1991) 516
Gibbons, Oliveira (2006) 517
The history of FP in a nutshell 519

Where to go from here 520
Programming language categories 521

A declarative example 521
An imperative example 521
An OOP example 522
Venn diagram of four programming paradigms 522
Five generations of languages 523
The Forth language 524
The LINQ language 526
Type systems 526

The Lambda Calculus 527
Lambda Expressions 527

Anonymous function example and type inference 528
Lambda expression ingredients 528

Visualizing a lambda expression 530
A Lambda calculus is like chocolate milk 532

Lambda examples in other languages 532
JavaScript 532
JavaScript (ES6) 533

Ruby 533
The importance of Type systems to FP 535

Static versus dynamic typing 536
Type inference 536
Haskell 537

Type classes in Haskell 538
Domains, codomains, and morphisms 540
Set theory symbols 542
Category theory 543

Algebra of functions 544
Abstract functions 544
Official definition of a function 544
Intuitive definition of a function 545
Function composition with sets 545

Composition operation example using travel expenses 546

A Category 546
Category axioms 547
Category laws 547
More rules 548
More examples 548

Invalid categories 548
Morphisms 550

The behaviors of morphisms 550
Composition operation 550
Identity operation 551

Law of associativity 552
Only concerned with morphisms 553

Interface-driven development 553
More morphisms 553
A review of Category theory 555
Even more correspondence 556
Table of morphisms 557

Morphism examples 557
Modens ponens 557

Type theory version 558
Logic version 558

Correspondence between logic and type theory 558
Cartesian closed category 558
Unit type 559

Homomorphism 560
Homomorphisms preserve correspondence 561
Homomorphic encryption 562

An example of homomorphic encryption 562
Lesson learned 563

Isomorphism 563
Injective morphism 564
Surjective morphism 564
Endomorphism 564
SemiGroup homomorphism 564
SemiGroup Homomorphism Algebra 565

Homomorphism table 565
Car crash analogy 567

Composable concurrency 567
Finite state machines 568

Graph Database Example 570
Using mathematics and category theory to gain understanding 571

Laws of exponentials for building a lambda expression 575
Table legend 576
For the top right law... 576

Sums and products 576
Isomorphic equations 577

Fun with Sums, Products, Exponents and Types 578
Big data, knowledge-driven development, and data visualization 584

Data visualization 584
Summary 589

Chapter 12: Miscellaneous Information and How-Tos 590

How to build and run Go projects 590
TL;DR 590
Development workflow 591
Dot init features and benefits 591

Aliases available 592
Functions available 593

Motivation for using goenv 594
Motivation for using the init script 594
Ways to manage Go dependencies 594

The go get tool 595
The Godep tool 595
Vendoring in Go 596
Glide - the modern package manager 596

Each dot init step in detail 597
The cd command to project root directory 597

Using homebrew to install Go 597
Examining the initial directory structure and files 598
The init script contents 598
Running the init script 602
Re-examining the initial directory structure and files 603
The goenv shows what's been updated 604
Running glide-update to get third-party dependency files 604

Adding standard library imports 606
The Go standard library 607

Adding third-party imports 608
Importing statement referencing go_utils 609

Development workflow summary 612
Troubleshooting dot init 612

How to propose changes to Go 618
The first step - search specs 618
Second step - Google search 619
The official Golang change proposal process 619

Search for existing issues 620
Reading existing proposals 621
Adding a comment to the existing TCO proposal 623

Creating a new proposal 624
Creating a design document 625
Sending an email to notify the golang-dev group 625
An example proposal 626
Monitoring a proposal until the resolution is reached 626

FP resources 627
Minggatu - Catalan number 627

An explanation and call to action 629

Index 631

Preface
Until recently, the message has been Go and functional programming—don't do it.

Functional programming (FP) is a perfect fit for multicore, parallel processing. Go is a
concurrency baller (with Goroutines, channels, and so on) and already runs on every
available CPU core. FP reduces complexity; simplicity is one of Go's biggest strengths.

So, what can FP bring to Go that will actually improve our software applications? Here's
what it offers:

Composition: FP shows us how to decompose our apps and rebuild them by
reusing small building blocks.
Monads: Using monads, we are able to safely order our workflows into pipelines
of data transformations.
Error handling: We can leverage monadic error handling and still maintain
compatibility with idiomatic Go code.
Performance: Referential transparency is where we can evaluate our function
once and then subsequently refer to its pre-computed value.
Expressive code: FP allows us to concisely express business intent in our code.
We declare what our functions do, without the clutter of error checking after
every function call, and without having to follow state changes (pure FP means
immutable variables).
Simpler code: No shared data means not having to deal with semaphores, locks,
race conditions, or deadlocks.

Most people have difficulty grasping FP.

I did too. And when I got it, I wrote this book. Take this journey with me. We'll see
hundreds of illustrations, read easy-to-understand explanations, and implement FP in Go
code along the way.

I enjoyed coaching soccer. The litmus test I used to determine whether I succeeded as a
coach was the answer to this simple question: Did they all register for next season and request
me to be their coach? Just like planning practice, I planned each chapter, starting with simple
concepts and adding to them. Read this book, then you too will be able to say, I got it.

[2]

If you want to improve your FP skills, this book is for you.

What this book covers
Chapter 1, Pure Functional Programming in Go, introduces the declarative style of
programming and demonstrates recursion, memorization, and Go's concurrency constructs
using the Fibonacci Sequence. We will learn how to benchmark/performance test your
recursive code and we will get some bad news.

Chapter 2, Manipulating Collections, shows us how to use intermediate (Map, Filter, and
Sort) and terminal (Reduce, GroupBy, and Join) functions to perform data transformations.
We use a Mocha-like BDD Go framework to test predicate functions. Itertools helps us
grasp the breadth of FP collection manipulating function and we look at a distributed
MapReduce solution: Gleam = Go + LuaJIT + Unix Pipes.

Chapter 3, Using High-Order Functions, covers a list of 27 FP characteristics: Anonymous
function, closures, currying, Either data type, first-class functions, functions, functional
composition, Hindley-Milner type system, Idempotence, immutable state, immutable
variables, Lambda expressions, List Monad, Maybe data type, Maybe Monad, Monadic
error, handling, No side-effects, operator overloading, option type, parametric
polymorphism, partial function application, recursion, referential transparency, sum or
union types, Tail Call Optimization, typeclasses, and Unit type. It also covers an example of
Generics, and illustrates its value to FP programmers. We implement the Map, Filter, and
Reduce functions, as well as lazy evaluation using Goroutines and a Go channel.

Chapter 4, SOLID Design in Go, talks about why Gophers loath Java, principles of good
software design, how to apply the Single Responsibility principle, function composition, the
open/closed Principle, FP contracts, and duck typing. It also covers how to model behavior
using interfaces, compose software using the Interface Segregation principle and embedded
interfaces. We will learn about the law of Associativity with a purple Monoid chain and get
the big reveal—Monads chain continuations.

Chapter 5, Adding Functionality with Decoration, illustrates interface composition using Go's
complimentary Reader and Writer interfaces. Next, we will learn how procedural design
compares to functional Inversion of Control. We will implement the following decorators:
authorization, logging, and load balancing. Also, we will add easy-metrics to our app to see
our decorator pattern in action.

[3]

Chapter 6, Applying FP at the Architectural Level, builds an application framework using a
layered architecture, which solves cyclical dependency errors. We will learn how to apply
the Hollywood principle and the difference between the observer pattern and dependency
injection. We will use Inversion of Control (IoC) to control the flow of logic and build a
layered application. Also, we will build an effective table-driven framework to test our
application's API.

Chapter 7, Functional Parameters, enlightens us as to why a lot of we've learned from Java
and object-oriented programming does not apply to Go, teaches us a better way to refactor
long parameter lists using functional options, and helps us understand the difference
between currying and partial application. We will learn how to apply partial application to
create another function with a smaller arity. We will use a context to gracefully shut down
our server and see how to cancel and roll back a long-running database transaction using a
context.

Chapter 8, Increase Performance Using Pipelining, covers data flow types (Read, Split,
Transform, Merge, and Write) and teaches us when and how to build a data transformation
pipeline. We use buffering to increase throughput, goroutines and channels to process data
faster, improve API readability using interfaces, and implement some useful filters. We also
implement and compare imperative and functional pipeline designs for processing credit
card charges.

Chapter 9, Functors, Monoids, and Generics, gives us an appreciation for the lack of support
for Generics in Go. We will see how to use a code generation tool to solve the repetitive
boilerplate code problem. We will dive deep into function composition, implement a few
functors, and learn how to map between worlds. We will also learn how to write a Reduce
function to implement an invoice processing monoid.

Chapter 10, Monads, Type Classes, and Generics, shows us how a Monad works and teaches
us how to compose functions using the Bind operation. It shows us how Monads process
errors and deal with Input/Output (I/O). This chapter works through a monadic workflow
implementation in Go. We cover what The Lambda Calculus is and what it has to do with
Monads, see how The Lambda Calculus implements Recursion, and learn how the Y-
Combinator works in Go. Next, we use the Y-Combinator to control a workflow and learn
how to handle all errors at the end of the pipe. We will learn how type classes work and
implement a few in Go. Finally, we review the pros and cons of generics in Go.

[4]

Chapter 11, Category Theory That Applies, gives us a working understanding of category
theory. We will learn to appreciate the deep connection between category theory, logic, and
type theory. We will increase our understanding with a journey through the history of FP.
This chapter uses a Venn diagram to help explain various categories of programming
languages. We come to understanding of what binding, currying, and application mean in
the context of a lambda expression. This chapter shows us that the Lambda Calculus is like
chocolate milk. This chapter covers the type system implications of FP, shows us different
categories of homomorphisms and when to use them, and uses mathematics and the flight
of a soccer ball to increase our understanding of morphisms. We will cover function
composition with linear and quadratic functions, and we will learn about interface-driven
development. We'll explore the value in knowledge-driven systems, and we will learn how
to apply our understanding of category theory to build better applications.

Appendix, Miscellaneous Information and How-Tos, shows us how the author suggests that we
build and run the Go projects in this book. It shows us how to propose changes to Go,
introduces the Lexical Workflow Solution: a Go-compatible way to handle errors in one
place, provides a place to go to provide feedback and an FP resources page, discusses the
Minggatu-Catalan Number, and offers a solution for world peace.

What you need for this book
If you want to run the Go projects discussed in each chapter, you need to install Go. Next,
you need to get your Go development environment running and start writing code.

Read the TL;DR subsection of the How to build and run Go projects section of the Appendix.
Go to Chapter 1, Pure Functional Programming in Go in the book and start reading
the Getting the source code section. Continue reading on how to set up and run your first
project.

Other Go resources include:

Tour of Go (https:/ /tour. golang. org/ welcome/1)
Go by Example (https:/ /gobyexample. com/)
Learning Go book (https:/ / www.miek. nl/go/)
Go language specification (https:/ / golang.org/ ref/spec)

When I think of other things to add, I'll put that information here: https:/
/lexsheehan. blogspot. com/2017/ 11/ what- you-need-for-this-book.
html.

[5]

Who this book is for
A lot of the information in this book requires only a high school education.

For the programming sections in this book, you should have at least one year programming
experience. Proficiency with Go or Haskell is ideal, but experience with other languages
such as C/C++, Python, Javascript, Java, Scala or Ruby is also sufficient. You should have
some familiarity using the command line.

This book should appeal to two groups:

Non-programmers (read Chapter 11, Category Theory That Applies) If you are one1.
of these:

K-12 math teacher and want to see why what you are teaching matters
Math teacher and want to see how what you are teaching relates to other
branches of mathematics
Student in law school and want to understand what you will be doing when you
plead your client’s case
Soccer enthusiast and like math
Person interested in learning category theory
Lover of the Lambda Calculus and want to see it illustrated with diagrams,
pictures, and Go code
Manager of software projects and want to see a better correspondence between
requirement gathering, implementation, and testing
C-level executive and want to understand what motivates and excites your IT
staff

Programmers: If you are one of these:2.

Software enthusiast and want to learn Functional Programming
Software tester and want to see a better correspondence between requirement
gathering, implementation, and testing
Software architect and want to understand how to use FP
Go developer and like soccer
Go developer and want to implement your business use case programming tasks
with more expressive code
Go developer and want to understand Generics
Java developer and would like to understand why we say, less is more

[6]

Your_language_here developer who knows FP and wants to transfer your skills to
Go
Go developer looking for a better way to build data transformation pipelines
Go developer and would like to see a viable way to write less code, that is, fewer
if err != nil blocks
Experienced Go developer and want to learn FP or add some tools to your
toolbox
Person involved in software development and want to understand any of the
terms below.

If you are a Go developer looking for working code, with line-by-line explanations for any
of the following, this book is for you:

Benchmark testing
Concurrency (Goroutines/Channels)
Currying
Data transformation pipeline
Decorator Pattern
Dependency Injection
Duck typing
Embedding Interfaces
Error handler
Function composition
Funcitonal parameters
Functors
Generics via code generation
Hollywood Principle
Interface-driven development
I18N (language translation)
IoC
Lambda expressions in Go
Layered application framework
Log handler
Monads
Monoids
Observer Pattern
Partial application

[7]

Pipeline to process credit card payments
Recursion
Reduce function to sum invoice totals
Solve circular dependency errors
Table-driven http API test framework
Type Class
Upload/download files to/from Google Cloud Buckets
Y-Combinator

If I decide to change the format or update this info, I'll put it here: http://
lexsheehan . blogspot. com/2017/ 11/ who-this-book-is-for.html.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
update code, run the glide-update and go-run commands, and repeat until done." A
block of code is set as follows:

func newSlice(s []string) *Collection {
 return &Collection{INVALID_INT_VAL, s}
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

go get --help

[8]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ / www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.

[9]

Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github. com/
PacktPublishing/Learning- Functional- Programming- in-Go. We also have other code
bundles from our rich catalog of books and videos available at https:/ /github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ /www. packtpub. com/sites/ default/files/
downloads/LearningFunctionalProgramminginGo_ ColorImages. pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub. com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

1
Pure Functional Programming

in Go
"Go is an attempt to combine the safety and performance of statically typed languages with
the convenience and fun of dynamically typed interpretative languages."

- Rob Pike

Do you love Go? If so, why? Could it be better? Can you write your code better today?

Yes! Because Go is simple yet powerful; Go does not make me wait; its compiler is fast and
cross-platform; Go makes concurrent programming easy; Go also provides useful tooling,
and it has a great development community. Perhaps. Yes, that's what this book is about:
using the functional programming (FP) style of coding.

In this chapter, I will share the benefits of pure FP as well as its performance implications in
Go by working through Fibonacci sequence code samples. Starting with a simple
imperative implementation, you will explore functional implementations and learn some
test-driven development and benchmark techniques along the way.

The goal of this chapter is to:

Become grounded in the theory of FP
Learn how to implement functional solutions
Determine what type of FP will best fit your business requirements

Pure Functional Programming in Go Chapter 1

[12]

Motivation for using FP
The FP style of programming can help you write less code in a more concise and expressive
way, with fewer errors. How is that possible? Well, FP treats computation as an evaluation
of mathematical functions. FP leverages this computational model (and the work of some
brilliant mathematicians and logicians) to enable optimizations and performance gains that
are simply not possible using traditional imperative coding techniques.

Developing software is not easy. You must handle numerous non-functional requirements
(NFRs) first, such as:

Complexity
Extensibility
Maintainability
Reliability
Concurrency
Scalability

Software is becoming more and more complex. What is the average number of third-party
dependencies in your typical application? What did that look like 5 years ago? Our
applications often must integrate with other services within our own company and with our
partners as well as external customers. How can we manage this growing complexity?

Applications used to run on-site on servers that were given pet names, such as Apollo,
Gemini, and so on. It seems like every client would have a different naming scheme.
Nowadays, most applications are deploying into a cloud environment, for example, AWS or
the Google Cloud Platform. Do you have a lot of software applications that run on a lot of
servers? If so, you should treat your servers more like cattle; there's just so many of them.
Also, since you've got auto scaling, what's important is not a single server but the herd. As
long as you always have at least one server in your cluster running for the accounting
department, that's all that really matters.

With numbers comes complexity. Can you compose your applications to fit together like
Lego blocks, and do you find it easy to write useful tests that run really fast. Alternatively,
do you ever feel like there's too much scaffolding/for loops in your code? Do you like
handling the err != nil condition so frequently? Would you like to see a simpler, cleaner
way to do the same thing? Do your applications have any global variables? Do you have
code in place to always properly manage its state and prevent all the possible side effects?
Have race conditions ever been a problem?

Pure Functional Programming in Go Chapter 1

[13]

Are you aware of all the possible error conditions in your applications, and do you have
code in place to handle them? Can you look at the function signature of any function in
your code and immediately have an intuition as to what it does?

Are you interested in learning about a better way to achieve your NFRs and enjoy
developing Go software even more than you do right now? Looking for the silver bullet? If
so, please continue reading. (Note that the rest of this book will be written in first person
plural since we will be learning together.)

Getting the source code
The GitHub repository for this book's source code is https:/ /github. com/
l3x/ fp- go.

If you store your Go projects in the ~/myprojects directory, then run cd
~/myprojects; git clone https://github.com/l3x/fp-go.git.

Next, run the cd command into the first project directory: cd
~/myprojects/fp-go/1-functional-fundamentals/ch01-pure-

fp/01_oop.

The directory structure of the source files
Directories correspond to the book's units and chapters:

Pure Functional Programming in Go Chapter 1

[14]

Each chapter is divided into sequentially numbered directories that are in the order of their
appearance in the book.

How to run our first Go application
First, let's make sure we have Go installed, our GOPATH is properly set, and that we can run
a Go application.

If you are using a macOS, then check out the instructions on how to use
the brew command to install Go in the appendix; otherwise, to install Go,
visit: http:/ /golang. org/ doc/install. To set your GOPATH, visit: https:/
/github. com/ golang/ go/ wiki/ Setting- GOPATH.

Many people use a global GOPATH to store the source code for all their Go applications or,
frequently, manually reset their GOPATH. I found this practice to be troublesome when
working with multiple Go projects for multiple clients, each of which had differing Go
versions and third-party dependencies.

The example Go applications that we'll use in this chapter do not have dependencies; that
is, we don't have to import any third-party packages. So, all we have to do to run our first
app--cars.go--is verify that Go is installed, set our GOPATH, and type go run cars.go:

Using a global GOPATH is easy for projects that are super simple, like the examples in this
chapter.

In Chapter 2, Manipulating Collections, our Go applications will start getting more complex,
and we'll get introduced to a simple, more consistent way to manage our Go development
environments.

Pure Functional Programming in Go Chapter 1

[15]

Imperative versus declarative programming
Let's look at why the functional style of programming helps us be more productive than the
imperative alternative.

"We are not makers of history. We are made by history."

- Martin Luther King, Jr.

Nearly all computer hardware is designed to execute machine code, which is native to the
computer, written in the imperative style. The program state is defined by the contents of
memory, and the statements are instructions in the machine language where each statement
advances the state of computation forward, toward a final outcome. Imperative programs
change their state over time, step by step. High-level imperative languages, such as C and
Go, use variables and more complex statements, but they still follow the same paradigm.
Since the basic ideas in imperative programming are both conceptually similar to low-level
code that operates directly on computer hardware, most computer languages--such as Go,
also known as C of the 21st century--are largely imperative.

Imperative programming is a programming paradigm that uses statements that change a
program's state. It focuses on the step-by-step mechanics of how a program operates.

The term is often used in contrast to declarative programming. In declarative
programming, we declare what we want the results to be. We describe what we want, not
detailed instructions of how to get it.

Here's a typical, imperative way to find Blazer in a slice of cars:

var found bool
carToLookFor := "Blazer"
cars := []string{"Accord", "IS250", "Blazer" }
for _, car := range cars {
 if car == carToLookFor {
 found = true; // set flag
 }
}
fmt.Printf("Found? %v", found)

Here's a functional way of accomplishing the same task:

cars := []string{"Accord", "IS250", "Blazer" }
fmt.Printf("Found? %v", cars.contains("Blazer"))

That's nine lines of imperative code, compared to two lines in the functional programming
(FP) style.

Pure Functional Programming in Go Chapter 1

[16]

Functional constructs often express our intent more clearly than for loops in such cases and
are especially useful when we want to filter, transform, or aggregate the elements in a
dataset.

In the imperative example, we must code the how. We must:

Declare a Boolean flag
Declare and set a variable value
Create a looping structure
Compare each iterated value
Set the flag

In the functional example, we declare what we want to do. We are able to focus on what we
want to accomplish, rather than bloating our code with the mechanics of looping structures,
setting variable values, and so on.

In FP, iteration is implemented by the library function contains(). Leveraging library
functions means that we code less and allow library developers to focus on highly efficient
implementations, which have been typically vetted and performance enhanced by seasoned
professionals. We don't have to write, debug, or test such high-quality code for repetitive
logic.

Now, let's look at how we could look for Blazer using the object-oriented programming
paradigm:

type Car struct {
 Model string
}
accord := &Car{"Accord"}; is250 := &Car{"IS250"}; blazer := &Car{"Blazer"}
cars := []*Car{is250, accord, blazer}
var found bool
carToLookFor := is250
for _, car := range cars {
 if car == carToLookFor {
 found = true;
 }
}
fmt.Printf("Found? %v", found)

Pure Functional Programming in Go Chapter 1

[17]

First, we declare our object types:

type Car struct {
 Model string
}
type Cars []Car

Next, we add our methods:

func (cars *Cars) Add(car Car) {
 myCars = append(myCars, car)
}

func (cars *Cars) Find(model string) (*Car, error) {
 for _, car := range *cars {
 if car.Model == model {
 return &car, nil
 }
 }
 return nil, errors.New("car not found")
}

Here, we declare a global variable, namely myCars, where we will persist the state, that is,
the list of cars that we will build:

var myCars Cars

Add three cars to the list. The Car object encapsulates the data for each object, and the cars
object encapsulates our list of cars:

func main() {
 myCars.Add(Car{"IS250"})
 myCars.Add(Car{"Blazer"})
 myCars.Add(Car{"Highlander"})

Look for Highlander and print the results:

 car, err := myCars.Find("Highlander")
 if err != nil {
 fmt.Printf("ERROR: %v", car)
 } else {
 fmt.Printf("Found %v", car)
 }
}

Pure Functional Programming in Go Chapter 1

[18]

We are using car objects, but we are essentially doing the same operations as we were in
the simple imperative code example. We do have objects that have state and to which we
could add methods, but the underlying mechanisms are the same. We assign a state to
object properties, modify the internal state by making method calls, and advance the state
of execution until we arrive at the desired outcome. That's imperative programming.

Pure functions
"Insanity is doing the same thing over and over again and expecting different results."

- Albert Einstein

We can use this insanity principle to our advantage with pure functions.

Assigning values to variables during an imperative function's execution may result in the
modification of a variable in the environment in which it has run. If we run the same
imperative function again, using the same input, the result may differ.

Given the results of an imperative function and given the same input, different results may
be returned each time it is run. Is that not insanity?

Pure functions:

Treat functions as first-class citizens
Always return the same result given the same input(s)
Have no side effects in the environment in which they run
Do not allow an external state to affect their results
Do not allow variable values to change over time

Two characteristics of a pure function include referential transparency and idempotence:

Referential transparency: This is where a function call can be replaced with its
corresponding value without changing the program's behavior
Idempotence: This is where a function call can be called repeatedly and produce
the same result each time

Pure Functional Programming in Go Chapter 1

[19]

Referentially transparent programs are more easily optimized. Let's see whether we can
perform optimizations using a caching technique and Go's concurrency features.

Fibonacci sequence - a simple recursion and
two performance improvements
The Fibonacci sequence is a sequence of numbers where each number is equal to the
previous two numbers added together. Here's an example of this:

 1 1 2 3 5 8 13 21 34

So, 1 plus 1 is 2, 2 plus 3 is 5, 5 plus 8 is 13, and so on.

Let's use the Fibonacci sequence to help illustrate a number of concepts.

A recursive function is a function that calls itself in order to break down complex input into
simpler ones. With each recursive call, the input problem must be simplified in such a way
that eventually the base case must be reached.

The Fibonacci sequence can be easily implemented as a recursive function:

func Fibonacci(x int) int {
 if x == 0 {
 return 0
 } else if x <= 2 {
 return 1
 } else {
 return Fibonacci(x-2) + Fibonacci(x-1)
 }
}

In the preceding recursive function (Fibonacci), if the input is the simple case of 0 then it
returns 0. Similarly, if the input is 1 or 2 then return 1.

Pure Functional Programming in Go Chapter 1

[20]

An input of 0, 1 or 2 is called the base case or stopping condition; else, fib will call itself
twice, adding the previous value in the sequence to the one preceding it:

Fibonacci(5) calculation graph

In the preceding figure Fibonacci(5) calculation graph, we can visually see how the fifth
element in the Fibonacci sequence is calculated. We see f(3) is calculated twice and f(2) is
calculated thrice. Only the final leaf nodes of 1 are added together to calculate the sum total
of 8:

func main() {
 fib := Fibonacci
 fmt.Printf("%vn", fib(5))
}

Run that code and you'll get 8. Recursive functions perform identical calculations over and
over again; f(3) is calculated twice and f(2) is calculated thrice. The deeper the graph, the
more redundant calculations get executed. That is terribly inefficient. Try it yourself. Pass a
value greater than 50 to fib and see how long you have to wait for the final result.

Go provides many ways to improve this performance. We'll look at two options:
memoization and concurrency.

Memoization is an optimization technique used to increase performance by storing the
results of expensive function calls and returning the cached result when the same input
occurs again.

Pure Functional Programming in Go Chapter 1

[21]

Memoization works well because of the following two properties of pure functions:

They always return the same result given the same input(s)
They have no side effects in the environment in which they run

Memoization
Let's utilize a memoization technique to speed up our Fibonacci calculation.

First, let's create a function type named Memoized() and define our Fibonacci variable to be
of that type:

type Memoized func(int) int
var fibMem Memoized

Next, let's implement the Memoize() function. The key thing to realize here is that as soon
as our application starts, even before our main() function is executed, our fibMem variable
get wired up. If we were to step through our code we'd see that our Memoize function is
called. The cache variable is assigned and our anonymous function is returned and assigned
to our fibMem function literal variable.

func Memoize(mf Memoized) Memoized {
 cache := make(map[int]int)
 return func(key int) int {
 if val, found := cache[key]; found {
 return val
 }
 temp := mf(key)
 cache[key] = temp
 return temp
 }
}

Memoize takes a Memoized() function type as its input and returns a Memoized()
function.

In the first line of Memoize, we create a variable of the type map to act as our cache in order
to hold computed Fibonacci computations.

Pure Functional Programming in Go Chapter 1

[22]

Next, we create a closure that is of the type Memoized(), which is returned by the
Memoize() function. Note that a closure is an inner function that closes over or that has
access to variables in its outer scope.

Inside the closure, if we find the computation for the passed integer, we return its value
from the cache; else we call the recursive Fibonacci function (mf) with the integer parameter
(key), whose return value will be stored in cache[key]. Next time, when the same key is
requested its value will be returned directly from the cache.

An anonymous function is a function defined with no name. When an anonymous function
includes logic that can access variables defined in its scope, for example, cache, and if that
anonymous function can be passed as an argument or returned as the value of function
calls, which is true in this case, then we can refer to this anonymous function as a lambda
expression.

We'll implement the logic of the Fibonacci Sequence in a function named fib:

func fib(x int) int {
 if x == 0 {
 return 0
 } else if x <= 2 {
 return 1
 } else {
 return fib(x-2) + fib(x-1)
 }
}

The last thing we do in our memoize.go file is to create the following function:

func FibMemoized(n int) int {
 return fibMem(n)
}

Now, it's time to see if our wiring works properly. In our main() function when we execute
our println statement, we get the correct output.

println(fibonacci.FibMemoized(5))

The following is the output:

5

We can verify that 5 is the correct answer by glancing back at our Fibonacci(5) calculation
graph shown earlier in this chapter.

Pure Functional Programming in Go Chapter 1

[23]

If we were to step through our code using a debugger, we'd see that
fibonacci.FibMemoized(5) calls the following

func FibMemoized(n int) int {
 return fibMem(n)
}

And the value of n variable is 5. Since fibMem is pre-wired, we start executing at the return
statement (and we have access to the cache variable that has already been initialized) . So,
we begin executing at the return statement shown in the following code (from the
Memoize function):

return func(key int) int {
 if val, found := cache[key]; found {
 return val
 }
 temp := mf(key)
 cache[key] = temp
 return temp
}

Since this is the first time through, there are no entries in the cache and we skip past the
body of the if block and run temp := mf(key)

That calls the fib function:

func fib(x int) int {
 if x == 0 {
 return 0
 } else if x <= 2 {
 return 1
 } else {
 return fib(x-2) + fib(x-1)
 }
}

And since x is greater than 2 we run the last else statement that recursively calls fib twice.
Recursive calls to fib continues until the base conditions are reached and the final result is
calculated and returned.

Pure Functional Programming in Go Chapter 1

[24]

The difference between an anonymous
function and a closure
Let's look at a few simple code examples to understand the difference between an
anonymous function and a closure.

Here's a typical named function:

func namedGreeting(name string) {
 fmt.Printf("Hey %s!n", name)
}

The following is an example of the anonymous function:

func anonymousGreeting() func(string) {
 return func(name string) {
 fmt.Printf("Hey %s!n", name)
 }
}

Now, let's call them both and call an anonymous inline function to say Hey to Cindy:

func main() {
 namedGreeting("Alice")

 greet := anonymousGreeting()
 greet("Bob")

 func(name string) {
 fmt.Printf("Hello %s!n", name)
 }("Cindy")
}

The output will be as follows:

Hello Alice!
Hello Bob!
Hello Cindy!

Now, let's look at a closure named greeting and see the difference between it and the
anonymousGreeting() function.

Pure Functional Programming in Go Chapter 1

[25]

Since the closure function is declared in the same scope as the msg variable, the closure has
access to it. The msg variable is said to be in the same environment as the closure; later, we'll
see that a closure's environment variables and data can be passed around and referenced at
a later time during a program's execution:

func greeting(name string) {
 msg := name + fmt.Sprintf(" (at %v)", time.Now().String())

 closure := func() {
 fmt.Printf("Hey %s!n", msg)
 }
 closure()
}

func main() {
 greeting("alice")
}

The output will be as follows:

Hey alice (at 2017-01-29 12:29:30.164830641 -0500 EST)!

In the next example, instead of executing the closure in the greeting() function, we will
return it and assign its return value to the hey variable in the main function:

func greeting(name string) func() {
 msg := name + fmt.Sprintf(" (at %v)", time.Now().String())
 closure := func() {
 fmt.Printf("Hey %s!n", msg)
 }
 return closure
}

func main() {
 fmt.Println(time.Now())
 hey := greeting("bob")
 time.Sleep(time.Second * 10)
 hey()
}

The output will be as follows:

2017-01-29 12:42:09.767187225 -0500 EST
Hey bob (at 2017-01-29 12:42:09.767323847 -0500 EST)!

Pure Functional Programming in Go Chapter 1

[26]

Note that the timestamp is calculated when the msg variable is initialized, at the time the
greeting("bob") value is assigned to the hey variable.

So, 10 seconds later, when greeting is called and the closure is executed, it will reference
the message that was created 10 seconds ago.

This example shows how closures preserve state. Instead of manipulating the state in the
outside environment, closures allow states to be created, passed around, and subsequently
referenced.

With functional programming, you still have a state, but it's just passed through each
function and is accessible even when the outer scopes, from where they originated, have
already exited.

Later in this book, we'll see a more realistic example of how closures can be leveraged to
maintain a context of application resources required by an API.

Another way to speed up our recursive Fibonacci function is to use Go's concurrency
constructs.

FP using Go's concurrency constructs
Given the expression result := function1() + function2(), parallelization means
that we can run each function on a different CPU core and the total time will be
approximately the time it takes for the most expensive function to return its result. Consider
the following explanation for parallelization and concurrency:

Parallelization: Executing multiple functions at the same time (in different CPU
cores)
Concurrency: Breaking a program into pieces that can be executed independently

I recommend that you check out the video Concurrency is Not Parallelism,
by Rob Pike at https:/ /player. vimeo.com/ video/49718712. This is
where he explains concurrency as a decomposition of a complex problem
into smaller components, where individual components can be run
simultaneously resulting in improved performance, assuming
communication between them is managed.

Go enhances the concurrent execution of Goroutines with synchronization and messaging
using channels and provides multiway concurrent control with the Select statement.

Pure Functional Programming in Go Chapter 1

[27]

The following language constructs provide a model in Go for concurrent software
construction that is easy to understand, use, and reason about:

Goroutine: A lightweight thread managed by the Go runtime.
Go statements: The go instruction that starts the execution of a function call as an
independent concurrent thread of control, or Goroutine, in the same address
space as the calling code.
Channel: A typed conduit through which you can send and receive values with
the channel operator, namely <-.

In the following code, data is sent to channel in the first line. In the second line, data is
assigned the value received from channel:

channel <- data
data := <-channel

Since Go channels behave as FIFO queues, where the first items in are the first items out,
and since the calculation for the next number in a Fibonacci sequence is a small component,
it seems that our Fibonacci sequence function calculation is a great candidate for a
concurrency implementation.

Let's give it a go. First, let's define a Channel function that uses a channel to perform
Fibonacci calculations:

func Channel(ch chan int, counter int) {
 n1, n2 := 0, 1
 for i := 0; i < counter; i++ {
 ch <- n1
 n1, n2 = n2, n1 + n2
 }
 close(ch)
}

First, we declare the variables n1 and n2 to hold our initial sequence values of 0 and 1.

Then, we create a loop for the total number of times given. In each loop, we send the next
sequential number to the channel and calculate the next number in the sequence, until we
reach our counter value, which is the last sequential number in our sequence.

Pure Functional Programming in Go Chapter 1

[28]

The following FibChanneled function creates a channel, namely ch, using the make()
function and defines it as a channel that contains integers:

func FibChanneled(n int) int {
 n += 2
 ch := make(chan int)
 go Channel(ch, n)
 i := 0; var result int
 for num := range ch {
 result = num
 i++
 }
 return result
}

We run our Channel (Fibonacci) function as a Goroutine and pass it the ch channel and the
8 number, which tells Channel to produce the first eight numbers from the Fibonacci
sequence.

Next, we range over the channel and print any values that the channel produces for as long
as the channel has not been closed.

Now, let's take a breather and examine what we've accomplished with our Fibonacci
sequence examples.

Testing FP using test-driven development
Let's write some tests to verify each technique (simple recursive, memoized, and channeled)
works properly. We'll use TDD to help us design and write better code.

TDD, a software development method where the developer starts with requirements and
first writes a simple test that will fail. Then, it writes just enough code to make it pass. It
continues this unit testing pattern repeatedly until there are no more reasonable tests that
validate the code satisfies the requirements. The concept is to get something working now and
perfect it later. After each test, refactoring is performed to implement a little more of the
feature requirement.

Pure Functional Programming in Go Chapter 1

[29]

The same or similar test(s) are performed again as well as introducing new test code to test
the next piece of the feature. The process is iterated as many times as necessary until each
unit is functioning according to the desired specifications:

TDD workflow diagram

We can start using a table of input values and their corresponding result values to verify
that the function under test is working properly:

// File: chapter1/_01_fib/ex1_test.go
package fib

import "testing"

var fibTests = []struct {
 a int
 expected int
}{
 {1, 1},
 {2, 2},
 {3, 3},
 {4, 5},
 {20, 10946},
 {42, 433494437},
}

func TestSimple(t *testing.T) {

Pure Functional Programming in Go Chapter 1

[30]

 for _, ft := range fibTests {
 if v := FibSimple(ft.a); v != ft.expected {
 t.Errorf("FibSimple(%d) returned %d, expected %d", ft.a, v,
ft.expected)
 }
 }
}

Recall that the Fibonacci sequence looks like this: 1 1 2 3 5 8 13 21 34.
Here, the first element is 1 {1, 1}, the second element is 2 {2, 2}, and so on.

We use the range statement to iterate through the table, row by row, and check each
calculated result (v := FibSimple(ft.a)) against the expected value (ft.expected)
from that row.

Only if there is a mismatch do we report the error.

Later in the ex1_test.go file, we find the benchmark testing facility in action, which
allows us to examine the performance of our Go code:

func BenchmarkFibSimple(b *testing.B) {
 fn := FibSimple
 for i := 0; i < b.N; i++ {
 _ = fn(8)
 }
}

Let's open a terminal window and write the cd command to the first set of Go code, our
book's source code repository. For me, that directory is ~/clients/packt/dev/fp-go/1-
functional-fundamentals/ch01-pure-fp/01_fib.

A note about paths
In the first example, I used the ~/myprojects/fp-go path. The path that I actually used to
create the code in this book is ~/clients/packt/dev/fp-go. So, please don't be confused
by those paths. They are the same thing.

Also, later in the book, when we start using KISS-Glide, the screenshots may reference
the ~/dev directory. That comes from the init script, that is, MY_DEV_DIR=~/dev.

Pure Functional Programming in Go Chapter 1

[31]

Here are a few links in that directory:

01_duck@ -> /Users/lex/clients/packt/dev/fp-go/2-design-patterns/ch04-
solid/01_duck
01_hof@ -> /Users/lex/clients/packt/dev/fp-go/1-functional-
fundamentals/ch03-hof/01_hof
04_onion@ -> /Users/lex/clients/packt/dev/fp-go/2-design-patterns/ch07-
onion-arch/04_onion

For more information about KISS-Glide, see the appendix.

How to run our tests
In the first benchmark test, we examine the performance of computing the eighth number in
the Fibonacci sequence. Note that we pass the -bench=. argument, which means run all
benchmark tests. The ./... argument means to run all the tests in this directory and all the
child directories as well:

When we request the eighth number in the sequence, the simple recursive implementation
runs faster than the memoized and channeled (optimized) versions, 213 ns/op compared
to 1302 ns/op and 2224 ns/op, respectively.

Pure Functional Programming in Go Chapter 1

[32]

In fact, when the simple version is executed once, it only takes 3.94 ns/op.

One very cool feature of Go's benchmark testing facility is that it is smart enough to figure
out how many times to execute the function under test. The value of b.N will increase each
time until the benchmark runner is satisfied with the stability of the benchmark. The faster
the function runs under a test, the more times the benchmark facility will run it. The more
times the benchmark facility runs a function, the more accurate the performance metric, for
example, 3.94 ns/op.

Take the FibSimple test for example. When it is passed with 1, it means it only needs to
execute once. Since it only takes 3.94 ns/op, we see it is executed 10,000,000 times.
However, when FibSimple is passed with 40, we see that it takes 2,509,110,502 ns to
complete one operation, and the benchmark facility is smart enough to only run it once.
That way, we can be assured that running benchmark tests is as accurate as possible and
they run within a reasonable time. How nice is that?

Since the FibSimple implementation is recursive and has not been optimized, we can test
our assumption that the time it takes to calculate each successive number in the sequence
will increase exponentially. We can do this using a common testing technique by calling the
private function benchmarkFibSimple, which avoids directly invoking the test driver:

func benchmarkFibSimple(i int, b *testing.B) {
 for n := 0; n < b.N; n++ {
 FibSimple(i)
 }
}

func BenchmarkFibSimple1(b *testing.B) { benchmarkFibSimple(1, b) }
func BenchmarkFibSimple2(b *testing.B) { benchmarkFibSimple(2, b) }
func BenchmarkFibSimple3(b *testing.B) { benchmarkFibSimple(3, b) }
func BenchmarkFibSimple10(b *testing.B) { benchmarkFibSimple(4, b) }
func BenchmarkFibSimple20(b *testing.B) { benchmarkFibSimple(20, b) }
func BenchmarkFibSimple40(b *testing.B) { benchmarkFibSimple(42, b) }

We test the first four numbers in the sequence, 20 and then 42. Since it takes about 3
seconds for my computer to calculate the 42nd number in the sequence, I decided not to go
any higher. No need to wait longer than that when we can easily see the exponential growth
pattern, without having to wait for more than a minute to get our results.

Our benchmark testing has proven that our simple, recursive implementation of the
Fibonacci sequence behaves as expected. This behavior equates to poor performance.

Let's look at a few ways to increase performance.

Pure Functional Programming in Go Chapter 1

[33]

We have observed that our FibSimple implementation always returns the same result,
given the same input(s), and that there are no side effects in the environment in which it
runs. For example, if we pass FibSimple an 8 value, we know that every time the result
will be 13. We used this fact to leverage a caching technique called memoization to create
the FibMemoized function.

Now, let's write some tests to see how effective MemoizeFcn is.

Since our fibTests structure has been defined in another test in our package, in
chapter1/_01_fib/ex1_test.go, we don't need to define it again. This way, we only
define the test table once, and we're able to reuse it in subsequent Fibonacci function
implementations to get a reasonable apples-to-apples comparison of each solution.

Here's the basic unit test for the FibMemoized function:

func TestMemoized(t *testing.T) {
 for _, ft := range fibTests {
 if v := FibMemoized(ft.a); v != ft.expected {
 t.Errorf("FibMemoized(%d) returned %d, expected %d", ft.a, v,
ft.expected)
 }
 }
}

It won't return an error unless there is a bug in our code.

That's one of the great things about running unit tests. You don't hear about them unless
something breaks.

We should write unit tests in order to:

Ensure that what you implement meets your feature
requirements
Leverage testing to help you think about how best to implement
your solution
Produce quality tests that can be used in your constant
integration process
Verify that your implementation meets interface requirements
with other parts of your application
Make developing integration tests easier
Safeguard your work against other developers, who might
implement a component that could break your code in
production

Pure Functional Programming in Go Chapter 1

[34]

Here are the benchmark tests:

func BenchmarkFibMemoized(b *testing.B) {
 fn := FibMemoized
 for i := 0; i < b.N; i++ {
 _ = fn(8)
 }
}

As before, in the FibSimple example, we examine the performance of computing the
eighth number in the Fibonacci sequence:

func BenchmarkFibMemoized(b *testing.B) {
 fn := FibMemoized
 for i := 0; i < b.N; i++ {
 _ = fn(8)
 }
}

func benchmarkFibMemoized(i int, b *testing.B) {
 for n := 0; n < b.N; n++ {
 FibMemoized(i)
 }
}

func BenchmarkFibMemoized1(b *testing.B) {
 benchmarkFibMemoized(1, b) }
func BenchmarkFibMemoized2(b *testing.B) {
 benchmarkFibMemoized(2, b) }
func BenchmarkFibMemoized3(b *testing.B) {
 benchmarkFibMemoized(3, b) }
func BenchmarkFibMemoized10(b *testing.B) {
 benchmarkFibMemoized(4, b) }
func BenchmarkFibMemoized20(b *testing.B) {
 benchmarkFibMemoized(20, b) }
func BenchmarkFibMemoized40(b *testing.B) {
 benchmarkFibMemoized(42, b) }

As before, we carry out a test calling FibMemoized, using 1, 2, 3, 4, 20, and 42 as input.

Pure Functional Programming in Go Chapter 1

[35]

Here's the complete listing for the FibChanelled function:

package fib

import "testing"

func TestChanneled(t *testing.T) {
 for _, ft := range fibTests {
 if v := FibChanneled(ft.a); v != ft.expected {
 t.Errorf("FibChanneled(%d) returned %d, expected %d",
ft.a, v, ft.expected)
 }
 }
}

func BenchmarkFibChanneled(b *testing.B) {
 fn := FibChanneled
 for i := 0; i < b.N; i++ {
 _ = fn(8)
 }
}

func benchmarkFibChanneled(i int, b *testing.B) {
 for n := 0; n < b.N; n++ {
 FibChanneled(i)
 }
}

func BenchmarkFibChanneled1(b *testing.B) {
 benchmarkFibChanneled(1, b) }
func BenchmarkFibChanneled2(b *testing.B) {
 benchmarkFibChanneled(2, b) }
func BenchmarkFibChanneled3(b *testing.B) {
 benchmarkFibChanneled(3, b) }
func BenchmarkFibChanneled10(b *testing.B) {
 benchmarkFibChanneled(4, b) }
func BenchmarkFibChanneled20(b *testing.B) {
 benchmarkFibChanneled(20, b) }
func BenchmarkFibChanneled40(b *testing.B) {
 benchmarkFibChanneled(42, b) }

We performed two optimizations on our original Fibonacci sequence logic using a caching
technique and Go's concurrency features. We wrote both the optimization implementations.
More optimizations are possible. In some cases, optimization techniques can be combined to
produce even faster code.

Pure Functional Programming in Go Chapter 1

[36]

What if all we had to do was write a simple recursive version and then when we compiled
our Go code, the Go compiler would automatically generate object code with performance
optimizations?

Lazy evaluation: An evaluation strategy that delays the evaluation of an
expression until its value is needed, which improves performance by
avoiding needless calculations.

A journey from imperative programming to
pure FP and enlightenment
Let's take a journey from imperative to a pure functional way of programming a sum
function. First, let's look at the imperative sum function:

func SumLoop(nums []int) int {
 sum := 0
 for _, num := range nums {
 sum += num
 }
 return sum
}

The integer variable sum changes or mutates over time; sum is not immutable. There are no
for loops or mutating variables in pure FP.

So, how can we iterate through a series of elements using pure FP? We can do this using
recursion.

Immutable variable: A variable whose value is assigned during runtime
and cannot be modified.

Note that Go does have constants, but they differ from immutable variables in that values
are assigned to constants at compile time, rather than at runtime:

func SumRecursive(nums []int) int {
 if len(nums) == 0 {
 return 0
 }
 return nums[0] + SumRecursive(nums[1:])
}

Pure Functional Programming in Go Chapter 1

[37]

Notice that the last line of the preceding SumRecursive function calls itself:
SumRecursive(nums[1:]) . That's recursion.

Benchmark test for the imperative SumLoop
function
We have heard that recursion in Go can be slow. So, let's write some benchmark tests to
check it out. First, let's test the performance of the basic imperative function SumLoop:

func benchmarkSumLoop(s []int, b *testing.B) {
 for n := 0; n < b.N; n++ {
 SumLoop(s)
 }
}

func BenchmarkSumLoop40(b *testing.B) { benchmarkSumLoop([]int{1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}, b) }

Results: It took 46.1 ns/op.

Benchmark test for the SumRecursive function
Now that we know how long the imperative function SumLoop takes, let's write a
benchmark test to see how long our recursive version, namely SumRecursive, would take:

func benchmarkSumRecursive(s []int, b *testing.B) {
 for n := 0; n < b.N; n++ {
 SumRecursive(s)
 }
}

func BenchmarkSumRecursive40(b *testing.B) { benchmarkSumRecursive([]int{1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}, b)
}

Results: It took 178 ns/op.

Pure Functional Programming in Go Chapter 1

[38]

Tail call recursion is faster in languages such as Prolog, Scheme, Lua, and Elixir, and the
ECMAScript 6.0-compliant JavaScript engines embrace the pure functional style of
programming. So, let's give it a shot:

func SumTailCall(vs []int) int {
 if len(vs) == 0 {
 return 0
 }
 return vs[0] + SumTailCall(vs[1:])
}

Results of the benchmark test: It took 192 ns/op.

TCO: A tail call is where the last statement of a function is a function call.
An optimized tail call has been effectively replaced with a GoTo statement,
which eliminates the work required to set up the call stack before the
function call and restore it afterward.

We could even use GoTo statements to further speed up the tail call recursion, but it would
still be three times slower than the imperative version.

Why? This is because Go does not provide pure FP support. For example, Go does not
perform TCOs, nor does it provide immutable variables.

A time of reckoning
Why would we want to use pure FP in Go? If writing expressive, easy-to-maintain, and
insightful code is more important than performance, then perhaps.

What are our alternatives? Later, we'll look at some pure FP libraries that have done the
heavy lifting for us and have made strides toward being more performant.

Is that all there is to functional programming in Go? No. Not by a long shot. What we can
do with FP in Go is currently partially limited by the fact that the Go compiler currently
does not support TCO; However, that may change soon. For details see the How to Propose
Changes To Go section in the Appendix.

There is another aspect to functional programming that Go fully supports: function literals.
And as it turns out, that is the single most important characteristic that a language must
have to support FP.

Pure Functional Programming in Go Chapter 1

[39]

Function literals: These are functions that are treated as first-class citizens
of a language, for example, any variable type, such as int and string. In Go,
functions can be declared as a type, assigned to variables and fields of a
struct, passed as arguments to other functions, and returned as values
from other functions. Function literals are closures, giving them access to
the scope in which they are declared. When function literals are assigned
to a variable at runtime, for example, val := func(x int) int {
return x + 2}(5), we can call that anonymous function a function
expression. Function literals are used in lambda expressions along with
currying. (For details about lambda expressions, see Chapter 10, Functors,
Monoids, and Generics.)

A quick example of a function literal
See that {ret = n + 2} is our anonymous function/function literal/closure/lambda
expression.

Our function literal:

Is written like a function declaration, but without a function name following the
func keyword
Is an expression
Has access to all the variables available in its lexical scope (n in our case)

package main

func curryAddTwo(n int) (ret int) {
 defer func(){ret = n + 2}()
 return n
}

func main() {
 println(curryAddTwo(1))
}

The output is as follows:

3

Pure Functional Programming in Go Chapter 1

[40]

Note that we used the defer statement to delay the execution of our function literal until
after its surrounding function (curryAddTwo) is returned. Since our anonymous function
has access to all the variables in its scope (n), it can modify n. The modified value is what
gets printed.

Summary
When testing pure functions, we simply pass input arguments and verify the results. There
is no environment or context to set up. There is no need for stubs or mocks. There are no
side effects. Testing could not be easier.

Pure functions can be parallelized for performance gains in a horizontally scaled, multi-
CPU environment. However, given that Go has not yet been optimized to support pure
functional programming, a pure FP implementation in Go might not meet our performance
requirements. We won't let that hinder us from leveraging Go's many effective non-
pure functional programming techniques. We've already seen how we can gain
performance by adding caching logic and leveraging Go's concurrency features. There are
many functional patterns that we can use, and we'll soon see how. We'll also see how we
can leverage them to meet stringent performance requirements.

In the next chapter, you'll learn about high-order functions as we explore different ways to
manipulate collections using FP programming techniques.

2
Manipulating Collections

Handling lists of items is a common occurrence in life as well as in programming languages.
When a list has associated functions that help us manipulate the items in the list, we often
call that object a collection.

In this chapter, we will see how high-order functions can be used to greatly simplify the
task of manipulating collections. We'll see how we can code using functional programming
techniques and open source functional packages to create elegant solutions that are not only
insightful, but also performant in today's distributed processing environments.

Our goal in this chapter is to:

Iterate through a collection
Learn about intermediate and terminal functors
Use predicates to filter items in a collection
Test using a Mocha-like BDD library
Focus on Map functions
Grasp the breadth of the collection-manipulating functions in Itertools
Leverage routines and channels to iterate through a collection
See how we can use Go to process big data collections

Manipulating Collections Chapter 2

[42]

Iterating through a collection
In order to implement a collection, we must provide a way to access each element in the
collection, which can be accomplished using the int index value shown in the following
code. We will implement a first in, first out (FIFO) order queue. We will provide a way to
store the elements using a slice data structure. Lastly, we will implement a Next() method
to provide a way to traverse the elements in the collection.

In the following code, we define an interface for the Iterator object. It has one method,
Next(), which will return the next element in the collection and a Boolean flag to indicate
whether it's OK to continue iterating:

type CarIterator interface {
 Next() (value string, ok bool)
}
const INVALID_INT_VAL = -1
const INVALID_STRING_VAL = ""

Next, we define a collection object that has two properties: an int index used to access the
current element and a slice of strings, that is, the actual data in the collection:

type Collection struct {
 index int
 List []string
}

Now, we implement the collection's Next() method to meet the IntIterator interface's
specification:

func (collection *Collection) Next() (value string, ok bool) {
 collection.index++
 if collection.index >= len(collection.List) {
 return INVALID_STRING_VAL, false
 }
 return collection.List[collection.index], true
}

Manipulating Collections Chapter 2

[43]

The newSlice function is the constructor for the iterable collection intCollection:

func newSlice(s []string) *Collection {
 return &Collection{INVALID_INT_VAL, s}
}

Finally, we implement the main() function to test our Collection.

Let's open up a terminal window and use the .init toolset to run our simple Go
application:

The . init ("Dot Init") toolset ensures that we have Go installed and that
our GOPATH and GOBIN directories are properly configured. First, we
source the init script by typing .init. Since we have no import
statements, there is no need to run glide-update. To run our application,
we type go-run. For more details about Dot Init, see the Appendix,
Miscellaneous Information and How-Tos.

The problem with this implementation is that we are mixing what we want to do with how
we do it. We implement an explicit for loop to perform the mechanics of the iteration. We
define and mutate the value of the index value in order to traverse the elements. We can
immediately see that this is an imperative implementation.

Manipulating Collections Chapter 2

[44]

In functional programming, we declare what to, rather than imperatively implementing
each detail of each operation. We also avoid the sequential nature of for loops, which are
difficult to fit into a concurrent programming model.

Go is not a functional programming language, but it has a lot of functional features and we
can leverage those features to write concise, expressive, and hopefully, bug-free code.

A pure functional language does not maintain a state. Function calls are often chained,
where input is passed from function to function. Each function call transforms its input in
some way. These functions do not need to be concerned about the external state and do not
produce side effects. Each function call can be very efficient at what it does. This style of
programming lends itself to efficient testing.

Next, we'll see how function chaining is a lot like piping output through Bash commands.

Piping Bash commands
Executing a composition or chain of functions is very much like executing a series of Bash
commands, where the output from one command is piped into the next command. For
example, we might cat an input a file that contains a list of timestamps and IP addresses in
an awk command. The awk command removes all but the seventh column. Next, we sort the
list in descending order, and finally, we group that data by unique IP addresses.

Consider the following Bash command:

$ cat ips.log | awk '{print $7}' | sort | uniq -c

Let's give this command the following input:

Sun Feb 12 20:27:32 EST 2017 74.125.196.101
Sun Feb 12 20:27:33 EST 2017 98.139.183.24
Sun Feb 12 20:27:34 EST 2017 151.101.0.73
Sun Feb 12 20:27:35 EST 2017 98.139.183.24
Sun Feb 12 20:27:36 EST 2017 151.101.0.73
>Sun Feb 12 20:27:37 EST 2017 74.125.196.101
Sun Feb 12 20:27:38 EST 2017 98.139.183.24
Sun Feb 12 20:27:39 EST 2017 151.101.0.73
Sun Feb 12 20:27:40 EST 2017 98.139.183.24
Sun Feb 12 20:27:41 EST 2017 151.101.0.73
Sun Feb 12 20:27:42 EST 2017 151.101.0.73
Sun Feb 12 20:27:43 EST 2017 151.101.0.73

Manipulating Collections Chapter 2

[45]

We will get the following output:

6 151.101.0.73
2 74.125.196.101
4 98.139.183.24

This is a very common pattern in functional programming. We often input a collection of
data to a function, or chain of function calls, and get a result that has been transformed in
some way.

Collections are used frequently. When we implement them in a concise manner, chaining
function calls that explicitly declare what we want to accomplish, we greatly reduce code
ceremony. The result is that our code is more expressive, concise, and easier to read.

Functors
Go has three predeclared/raw data types: bool, string, numeric (float, int64, and so
on). Other data types in Go require type declarations, that is, they require we use the type
keyword. Functions fall in the later category of data types along with array, struct, pointer,
interface, slice, map, and channel types. In Go, functions are first-class data types, which
means that can be passed around as parameters and returned as values. Functions that can
take functions as arguments and return functions are called high-order functions.

We can write function factories--functions that return functions--and even function factory
factories. We can also write functions that modify functions or create functions for specific
purposes.

Functors: A functor is a collection of X variables that can apply a function,
f, over itself to create a collection of Y, that is, f (X) → Y. (To see what
we're talking about here, take a quick look at the Fingers times 10 functor
example in Chapter 9, Functors, Monoids, and Generics)

Manipulating Collections Chapter 2

[46]

Note that the Prolog software language defines a functor to simply be a function. The
preceding definition comes from the Category Theory influence on functional programming.
(For more details, see Chapter 11, Category Theory That Applies.)

Functions that modify functions
Before we explore intermediate and terminal functions lets' clarify the phrase functions that
modify functions using a few examples.

A coding example of functions that modify functions
The following is a snippet of the code we might write to build a section of a page with two
drop down lists, one for makes and the other for models of cars:

// http.Get :: String -> JSON
var renderPage = curry(func(makes, models) { /* render page */ })
// return two divs: one with makes and the other with models HTML/ULs
Task.Of(renderPage).Ap(http.Get("/makes")).Ap(http.Get("/models"))

Notice that each http.Get is a separate API call. Each API call is a partial application. In
order for renderPage to wait for each call to complete we must curry our API calls.

Here's what the resulting HTML might look like:

Manipulating Collections Chapter 2

[47]

A visual example of functions that modify functions
In the previous example we composed part of an HTML web page. In this example, let's
immerse ourselves into a Railroading world and lay down some train tracks using function
composition.

Immersive Railroading World

The following is our toolbox of reusable components. We modify our world by adding
items from our toolbox. Thus, our immersive railroading world function is modified by
adding and connecting a bunch of smaller component functions.

Manipulating Collections Chapter 2

[48]

Here's Christian laying down a railroad switch:

Composition in Mindcraft
We can find the source code for this Immersive Railroad application at https:/ /github.
com/cam72cam/ImmersiveRailroading.

Minecraft could have chosen to implement their world building UI exclusively with FP
techniques by currying partial applications, but when we look closer we find more of an
imperative implementation. Though generics are used:

// cam72cam.immersiverailroading.render.TileSteamHammerRender
public class TileSteamHammerRender extends
TileEntitySpecialRenderer<TileSteamHammer> {
 private List<String> hammer;
 private List<String> rest;

Tacit programming
Tacit programming is a style of programming where function definitions compose other
functions and combinators manipulate the arguments. A combinator is a higher-order
function that uses only function application and pre-defined combinators to define the
result from its arguments. For more details, see the Moses Schonfinkel section in Chapter
11, Category Theory That Applies.

Manipulating Collections Chapter 2

[49]

Tacit programming with Unix pipes
The following combinators are the functions in the pipeline, for example, head, awk, grep,
and so on. Each combinator is a function that sends output to standard out and reads input
from standard in. Note that arguments are not mentioned in the command.

$ cat access10k.log | head -n 1 | awk '{print $7}' | grep "\.json" | uniq -
c | sort -nr

Programming CMOS with Unix pipes
Unix pipes can also be used to model the flow control of NAND gates of a CMOS device.

Assuming nil represents and electron then, /dev/zero (aka VSS) provides an infinite
supply of electrons and /dev/null (aka VDD) will consume every electron sent to it.

CMOS NAND gate

In our model, the UNIX pipe acts like a wire. When the pipe is connected to Vss, its buffer
fills up with nil-bytes and the pipe acts like a negatively charged metal plate. When it is
connected to Vdd, the pipe's buffer is drained, and the pipe acts like a positively charged
metal plate. Unix pipes are used to model flow control in our NAND logic gate.

For more details, see http:/ / www. linusakesson. net/programming/ pipelogic/ index.php.

Manipulating Collections Chapter 2

[50]

Tacit programming with FP
We'll use Haskell to demonstrate a program that sums a list of integers. Both will be
recursive, the second benefits from Tail Call Optimization (TCO). We would use Go, but
currently Go does not support TCO.

We loop over the list of numbers to accumulate the sum. In imperative programming, we
would use a loop index to store the accumulated sum value. In functional programming, we
implement loops using recursion where the accumulated sum is passed as a parameter to
the next recursive call. What would be loop index variables/accumulator variables in an
imperative language become parameters in the tail-recursive version.

Non-TCO recursive example
First, we'll look at the imperative example:

rSum :: [Integer] -> Integer
rSum (x:xs) = x + (rSum xs)
rSum [] = 0

Note that x:xs means we store the head of the list in x and the rest of the list is in xs.

Manipulating Collections Chapter 2

[51]

Each call to rSum needs to get the return value of the recursive call and add it to its x
parameter before it can return. This means that each function must stay on the stack longer
than the frame of any function that it calls. We had to create four stack frames to sum three
numbers. Imagine the amount of RAM storage that this implementation will require when
we process lists with a lot of values. Without TCO the our implementation will require O(n)
of RAM storage space, based on the number of items in the list. (See Big-Oh notation in
Chapter 10, Monads, Type Classes, and Generics)

TCO recursive example
In our tail recursive function, our stack frames do not need to be preserved.

tSum :: [Integer] -> Integer
tSum lst = tSum lst 0 where
 tSum (x:xs) i = tSum xs (i+x)
 tSum [] i = i

The following diagram illustrates that unlike the previous example (rSum), no action needs
to be taken in the context of a frame after tSum makes its recursive call. rSum created a stack
frame for each member of the list. tSum only needs to create one stack frame, which it
reuses.

TCO avoids creating a new stack frame when the last call in a recursion is the function
itself. Go currently does not support TCO. What is the implication? Without TCO, we
should avoid using recursion to process lists with a lot of elements, that is, over a few
thousand; Otherwise, our program will likely run out of RAM and crash. Why not replace
recursive functions with functions that implement imperative loops? In other words, what
is the importance of recursion in functional programming?

Manipulating Collections Chapter 2

[52]

The importance of recursion
First, let's make sure we understand what recursion is. Let's think about how we pull apart
Russian Dolls.

Recursion works like the process of finding the smallest doll. We repeat the same process,
i.e., pulling apart the doll until we find a doll that is solid. Though our problems get
smaller, the problem solving process is the same as the previous because the structure of the
nesting dolls is the same. Each doll is a smaller than the previous one. Eventually, we get to
a doll that's too small to have a doll inside it and we're done. That's the fundamental idea
behind recursion.

We also need to understand how to to write a tail recursive function because that's the kind
of recursion that's a candidate for TCO. When our recursive function that calls itself as its
last action, then we can reuse the stack frame of that function. The tSum function in the
previous section is an example of tail recursion.

Understanding recursion marks a transition for us from a programmer to a computer
scientist. Recursion requires some mathematical sophistication to understand, but once we
master it we'll find that it opens up a plethora of ways to solve important problems.

A soccer coach would not have his player practice kicking balls down hill to a target; that
scenario will never occur in a game. Similarly, we will not spend a lot of time pursuing
recursive implementations in Go.

Manipulating Collections Chapter 2

[53]

A tail recursive function is the functional form of a loop, and with TCO it
executes just as efficiently as a loop. Without recursion, we must
implement most loops using imperative programming techniques. Thus,
having TCO in Go would actually be more beneficial to FP than Generics.
We'll learn more about Generics in Chapters 9, Functors, Monoids, and
Generics and Chapter 10, Monads, Type Classes, and Generics. See the How to
Propose Changes To Go section in the Appendix or jump directly to the
discussion regarding adding TCO to Go at https://github.com/ golang/
go/issues/ 22624.

Various intermediate and terminal functions
Look at the various intermediate and terminal functions in the following functor diagram.
They are all functors. When a function, for example, Map, is provided with a set of values as
input, it will apply a transformation on the elements and produce output that will be a
different set of values.

In functional programming, given the same input, a given function will always return the
same result set.

In the first row of preceding functors, Map and Sort, take a collection, transform it in some
way, and return a collection of equal size.

Manipulating Collections Chapter 2

[54]

In the second row of functors, Filter and GroupBy, take a collection and transform it into
another collection of smaller size.

In the third row, Reduce takes a collection, performs computations over its elements, and
returns a single result value.

Reduce example
Here's an implementation for reducing a collection, using the alediaferia/go-
collections package, to find the maximum value:

numbers := []interface{}{
 1,
 5,
 3,
 2,
}

coll := collections.NewFromSlice(numbers)
min := collections.Reduce(0, func(a, b interface{}) interface{} {
 if a > b { return a } else { return b }
})

The Join function takes two different collections and combines them into a single, larger
collection.

There are two basic types of functors in functional programming: intermediate functions
and terminal functions. They work together to transform the incoming collection into either
another collection or a single value. Any number of intermediate functions can be chained
together followed by the terminal function.

Intermediate functions
Intermediate functions are not evaluated until the terminal function has been processed.

Lazy evaluation is an evaluation strategy that delays the processing of
an intermediate function until its value is required. It can be combined
with memoization, where the evaluation is first cached so that subsequent
requests for that value return the cached value immediately without
reevaluating the expression that originally created it.

A few of the more popular intermediate functions include map, filter, and sort.

Manipulating Collections Chapter 2

[55]

We can create many other high-order functions to process the incoming stream, which is
often a collection. We'll soon see functional programming libraries that provide a
plethora of variations of these basic function types.

Common intermediate functions
Here's a table that describes some of the more common intermediate functions:

Function Gleam Preserves
type

Preserves
count

Preserves
order

Description

map Yes No Yes Yes This transforms each element in the list into
another element in the resulting list of the same
size.

filter Yes Yes No Yes This calls a predicate function. If true, the current
item is skipped and does not end up in the result
list.

sort Yes Yes Yes Yes This orders the result set by a criteria.

Map Example
Here's an example of mapping a collection using the alediaferia/go-collections
package:

names := []interface{}{
 "Alice",
 "Bob",
 "Cindy",
}
collection := collections.NewFromSlice(planets)
collection = collection.Map(func(v interface{}) interface{} {
 return strings.Join([]string{ "Hey ", v.(string) })
})
println(collection)

The output is as follows:

Hey Alice
Hey Bob
Hey Cindy

Manipulating Collections Chapter 2

[56]

Terminal functions
Terminal functions are eagerly executed. They execute immediately and once executed, they
execute all the previous intermediate, lazy functions in the call chain. Terminal
functions either return a single value or produce a side effect. The reduce example, we saw
earlier, returns a single value: 1. The ForEach function does not return a value but can
produce a side effect, such as printing out each item. The Collect, Join, and GroupBy
functions group items in a collection.

Common terminal functions
Here's a table that describes some of the more popular terminal functions:

Function Gleam Groups
items

Creates side
effects

Gathers
results

Description

Collect, Join,
and GroupBy

Yes Yes Produce another collection

ForEach Yes Yes Used for processing individual items

Reduce Yes Yes Forces the required lazy expressions to
fire and produce results

Join example
The following code shows an example of the Join() function:

 // left collection:
 0001, "alice", "bob"
 0001, "cindy", "dan"
 0002, "evelyn", "frank"
 // right collection:
 0001, "greg", "izzy"
 0002, "jenny", "alice"

left.Join(right)

The output is as follows:

 0001, "alice", "bob", "greg", "izzy"
 0001, "cindy", "dan", "greg", "izzy"
 0002, "evelyn", "frank", "jenny", "alice"

Manipulating Collections Chapter 2

[57]

GroupBy example
The following code shows an example of the GroupBy() function:

// input collection:
 0001, "alice", 0002
 0001, "bob", 0002
 0003, "cindy", 0002

 GroupBy(1,3)

The output is as follows:

 0001, 0002, ["alice", "bob"]
 0003, 0002, ["cindy"]

Reduce example
Here's an implementation for reducing a collection, using the alediaferia/go-
collections package, to find the maximum value:

numbers := []interface{}{
 1,
 5,
 3,
 2,
}
collection := collections.NewFromSlice(numbers)
min := collection.Reduce(0, func(a, b interface{}) interface{} {
 if a > b { return a } else { return b }
})

Predicates
We can use predicates to perform operations on input data. Predicates can be used to
implement many of the functions that we apply to collections to transform input data into
the result collection or value.

The predicate function is a function that takes one item as input and
returns either true or false, based on whether the item satisfies some
condition. They are often used conditionally to determine whether to
apply certain operations in the execution chain.

Manipulating Collections Chapter 2

[58]

Let's create some predicate functions that we can use to manipulate a collection of cars.

The All() function returns true only if all the values in the collection satisfy the
predicate condition:

package predicate

func All(vals []string, predicate func(string) bool) bool {
 for _, val := range vals {
 if !predicate(val) {
 return false
 }
 }
 return true
}

The Any() function returns true as long as any one of the values in the collection satisfies
the predicate condition:

func Any(vs []string, predicate func(string) bool) bool {
 for _, val := range vs {
 if predicate(val) {
 return true
 }
 }
 return false
}

The Filter() function returns a new, smaller, or equal-sized collection containing all the
strings in the collection that satisfy the predicate condition:

func Filter(vals []string, predicate func(string) bool) []string {
 filteredVals := make([]string, 0)
 for _, v := range vals {
 if predicate(v) {
 filteredVals = append(filteredVals, v)
 }
 }
 return filteredVals
}

The Count() function is a helper function:

func Count(vals []string) int {
 return len(vals)
}

Manipulating Collections Chapter 2

[59]

Now, let's use a Mocha-like BDD Go testing framework, named goblin, to test our
predicates.

Declare the package and define the basic imports. We only need to define one function.
Let's call it TestPredicateSucceed:

package predicate

import (
 "testing"
 "strings"
 . "github.com/franela/goblin"
)

func TestPredicateSucceed(t *testing.T) {
 fakeTest := testing.T{}
 g := Goblin(&fakeTest)

Let's wrap all our unit tests with a Describe block named Predicate Tests, where we
define the cars variable to hold a list of our car models:

 g.Describe("Predicate Tests", func() {
 cars := []string{"CRV", "IS250", "Highlander"}

Here's our first test. It starts with a Describe block and contains one It block. Inside our
It block, we assign our first-class function bs, the return value of calling the Any()
function. Our predicate function is the function literal that calls the strings.HasPrefix()
function. The last line of our unit test asserts that bs is true:

g.Describe("Starts High", func() {
 g.It("Should be true", func() {
 bs := Any(cars, func(v string) bool {
 return strings.HasPrefix(v, "High")
 })
 g.Assert(bs).Equal(true)
 })
})

Our next unit test says Highlander should be High and asserts that it should be true.
We pass the strings.Contains() function as our predicate to the Filter() function to
return only those items in the list that contain the High substring:

g.Describe("Highlander should be High", func() {
 high := Filter(cars, func(v string) bool {
 return strings.Contains(v, "High")
 })

Manipulating Collections Chapter 2

[60]

 highlander := []string{"Highlander"}
 g.It("Should be true", func() {
 g.Assert(high).Equal(highlander)
 })
})

This test counts the number of cars that contain the High substring and asserts that
the count should be 1:

g.Describe("One is High", func() {
 high := Count(Filter(cars, func(v string) bool {
 return strings.Contains(v, "High")
 }))
 g.It("Should be true", func() {
 g.Assert(high).Equal(1)
 })
})

Our last test asserts that not all cars contain the High substring:

g.Describe("All are High", func() {
 high := All(cars, func(v string) bool {
 return strings.Contains(v, "High")
 })
 g.It("Should be false", func() {
 g.Assert(high).Equal(false)
 })
})

Let's take a moment to reflect on this implementation.

Reflection
Our implementation of predicates is performant but restrictive. Take the Any() function
signature, for example:

func Any(vs []string, predicate func(string) bool) bool

The Any function only works for slices of string. What if we wanted to iterate over a tree
or map structure? We'd have to write separate functions for each. This is a valid argument
for requesting Go to support generics. If Go supported generics, our implementations
would likely require much less code.

Manipulating Collections Chapter 2

[61]

An alternative implementation could be to use empty interfaces. This would solve the
problem of having to implement separate functions for each type of data we want to handle,
given that an empty interface can take on a value of any type. To use a value of
the interface{} type, you must use reflection or type assertion or a type switch to
determine the type of value, and there will be a performance hit for any of those methods.

Another alternative implementation could be to use Goroutines and channels. Itertools uses
empty interfaces, Goroutines, and channels.

The github.com/ahl5esoft/golang-underscore is a package that uses a lot of
reflection and empty interfaces to provide an underscore-like implementation of high-order
functions.

Combinator pattern
Since Go supports passing functions around as values, we can create predicate combinators
to build more complex predicates from simpler ones.

Combinator pattern: Creating systems by combining more primitive
functions into more complex functions.

We'll dive deeper into the composition and the combinator pattern later in the book. Now,
let's look a little closer at the map and filter functions.

Map and filter
The next code example demonstrates the use of a few standard intermediate functions: map
and filter.

The code in this example can be copy/pasted into The Go playground,
which is a service that takes your Go program, compiles, links, and runs
your program with the latest version of Go inside a sandbox and then
returns the output to the screen. You can find it at https://play. golang.
org/ .

Executable commands must always use package main. We can separate each import
statement on a separate line for readability.

Manipulating Collections Chapter 2

[62]

External packages can be referenced using their remote GitHub repository path. We can
preface long package names with a shorter alias. The go_utils package can now be
referenced with the u letter. Note that if we aliased a package name with _, its exported
functions can be referenced directly in our Go code without indicating which package it
came from:

package main
import (
 "fmt"
 "log"
 "strings"
 "errors"
 u "github.com/go-goodies/go_utils"
)

iota: A Go identifier used in const declarations that represents
successive untyped integer constants. It is reset to 0 whenever the reserved
word const appears:

const (
 SMALL = iota // 0
 MEDIUM // 1
 LARGE // 2
)

We can apply expressions to iota to set increment values greater than 1.
We do this as discussed in the next section.

Let's define a type of ints called WordSize and use an iota expression to create an
enumeration from our constants. The first iota elements are assigned values that start at 0
and then increase by 1. Since we multiplied the iota element by 6, the sequence will look
like 0, 6, 12, 18, and so on. We explicitly assign the value of 50 to the last element in the
enumeration:

type WordSize int
const (
 ZERO WordSize = 6 * iota
 SMALL
 MEDIUM
 LARGE
 XLARGE
 XXLARGE WordSize = 50
 SEPARATOR = ", "
)

Manipulating Collections Chapter 2

[63]

The ChainLink type allows us to chain function/method calls. It also keeps data internal to
ChainLink, avoiding the side effect of mutated data:

type ChainLink struct {
 Data []string
}

The Value() method will return the value of the referenced element or link in the chain:

func (v *ChainLink) Value() []string {
 return v.Data
}

Let's define stringFunc as a function type. This first-class method is used in the following
code as a parameter to the Map function:

type stringFunc func(s string) (result string)

The Map function uses stringFunc to transform (up-case) each string in the slice:

func (v *ChainLink)Map(fn stringFunc) *ChainLink {
 var mapped []string
 orig := *v
 for _, s := range orig.Data {
 mapped = append(mapped, fn(s))
 }
 v.Data = mapped
 return v
}

This line is worth repeating:

mapped = append(mapped, fn(s))

We execute the fn() function parameter against each element in the slice.

The Filter function uses embedded logic to filter the slice of strings. We could have
chosen to use a first-class function, but this implementation is faster:

func (v *ChainLink)Filter(max WordSize) *ChainLink {
 filtered := []string{}
 orig := *v
 for _, s := range orig.Data {
 if len(s) <= int(max) { // embedded logic
 filtered = append(filtered, s)
 }
 }
 v.Data = filtered

Manipulating Collections Chapter 2

[64]

 return v
}

What's wrong, from a pure FP perspective, about our filter function in the preceding code?

We are using an imperative loop
We are saving the filtered results to the Data field our ChainLink structure

Why not use recursion? We discussed this earlier. The short version is that until Go gets
TCO we need to avoid recursion if our list of elements we're processing could be over a few
thousand elements.

Why are we storing the filtered data rather than returning it? Good question. This
implementation of the filter function serves as a learning lesson. It shows us how we can
chain functions in a non-pure FP way. We'll look at an improved filter implementation in
the next chapter. Here's sneak peek:

func (cars Collection) Filter(fn FilterFunc) Collection {
 filteredCars := make(Collection, 0)
 for _, car := range cars {
 if fn(car) {
 filteredCars = append(filteredCars, car)
 }
 }
 return filteredCars
}

Let's display our constants using a here-doc with interpolation. Note that the first argument
to the fmt.Printf statement is our here-doc, constants, and the remaining arguments
are interpolated in constants.

func main() {
 constants := `
** Constants ***
ZERO: %v
SMALL: %d
MEDIUM: %d
LARGE: %d
XLARGE: %d
XXLARGE: %d
`
 fmt.Printf(constants, ZERO, SMALL, MEDIUM, LARGE, XLARGE, XXLARGE)

Manipulating Collections Chapter 2

[65]

The output will be as follows:

** Constants ***
ZERO: 0
SMALL: 6
MEDIUM: 12
LARGE: 18
XLARGE: 24
XXLARGE: 50

Let's initialize ChainLink with our slice of words:

words := []string{
 "tiny",
 "marathon",
 "philanthropinist",
 "supercalifragilisticexpialidocious"}

data := ChainLink{words};
fmt.Printf("unfiltered: %#v\n", data.Value())

The output will be as follows:

unfiltered: []string{"tiny", "marathon", "philanthropinist",
"supercalifragilisticexpialidocious"}

Now, let's filter our list of words:

 filtered := data.Filter(SMALL)
 fmt.Printf("filtered: %#vn", filtered)

The output will be as follows:

filtered: &main.ChainLink{Data:[]string{"tiny"}}

Next, let's apply the ToUpper mapping to our small-sized words:

 fmt.Printf("filtered and mapped (<= SMALL sized words): %#vn",
 filtered.Map(strings.ToUpper).Value())

The output will be as follows:

filtered and mapped (<= SMALL sized words): []string{"TINY"}

Manipulating Collections Chapter 2

[66]

Let's apply a MEDIUM filter and the ToUpper filter:

 data = ChainLink{words}
 fmt.Printf("filtered and mapped (<= MEDIUM and smaller sized words):
%#vn",
 data.Filter(MEDIUM).Map(strings.ToUpper).Value())

The output will be as follows:

filtered and mapped (<= MEDIUM and smaller sized words): []string{"TINY",
"MARATHON"}

Next, let's apply our XLARGE filter and map then ToUpper:

 data = ChainLink{words}
 fmt.Printf("filtered twice and mapped (<= LARGE and smaller sized
words):
 %#vn",
 data.Filter(XLARGE).Map(strings.ToUpper).Filter(LARGE).Value())

The output will be as follows:

filtered twice and mapped (<= LARGE and smaller sized words):
[]string{"TINY", "MARATHON", "PHILANTHROPINIST"}

Now, let's apply our XXLARGE filter and map with ToUpper:

 data = ChainLink{words}
 val := data.Map(strings.ToUpper).Filter(XXLARGE).Value()
 fmt.Printf("mapped and filtered (<= XXLARGE and smaller sized words):
%#vn",
 val)

The output will be as follows:

mapped and filtered (<= XXLARGE and smaller sized words): []string{"TINY",
"MARATHON", "PHILANTHROPINIST", "SUPERCALIFRAGILISTICEXPIALIDOCIOUS"}

The output will be as follows:

** Constants ***
ZERO: 0
SMALL: 6
MEDIUM: 12
LARGE: 18
XLARGE: 24
XXLARGE: 50

Manipulating Collections Chapter 2

[67]

Here, we use the Join() function to join the items in the list to help with formatting our
output:

 fmt.Printf("norig_data : %vn", u.Join(orig_data, SEPARATOR))
 fmt.Printf("data: %vnn", u.Join(data.Value(), SEPARATOR))

The output will be as follows:

 orig_data : tiny, marathon, philanthropinist,
supercalifragilisticexpialidocious
 data: TINY, MARATHON, PHILANTHROPINIST,
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

Now, let's compare our original collection of words with the value that we passed through
our chain of functions to see whether there were side effects:

This is what your terminal console should look like:

Contains
Let's consider another common collection operation: contains.

In Go, lists of things are often stored in a slice. Wouldn't it be nice if Go provided a
contains method to tell us whether the item we are looking for is contained in the slice?
Since there is no generic contains method for working with lists of items in Go, let's
implement one to iterate over a collection of car objects.

Manipulating Collections Chapter 2

[68]

Iterating over a collection of cars
First, let's create a Car struct that we can use to define the Cars collection as a slice of Car.
Later, we'll create a Contains() method to try out on our collection:

package main
type Car struct {
 Make string
 Model string
}
type Cars []*Car

Here's our Contains() implementation. Contains() is a method for Cars. It takes a
modelName string, for example, Highlander, and returns true if it was found in the slice
of Cars:

func (cars Cars) Contains(modelName string) bool {
 for _, a := range cars {
 if a.Model == modelName {
 return true
 }
 }
 return false
}

This seems simple enough to implement, but what happens when we are given a list of
boats or boxes to iterate over? That's right, we'll have to reimplement the Contains()
method for each one. That's ugly!

This is yet another situation where it would be nice to have generics.

The empty interface
Another alternative would be to use the empty interface like so:

type Object interface{}
type Collection []Object
func (list Collection) Contains(e string) bool {
 for _, t := range list { if t == e { return true } }
 return false
}

However, reflection or typecasting would be required and that would again adversely affect
the performance.

Manipulating Collections Chapter 2

[69]

The Contains() method
Now, let's exercise our Contains() method:

func main() {
 crv := &Car{"Honda", "CRV"}
 is250 := &Car{"Lexus", "IS250"}
 highlander := &Car{"Toyota", "Highlander"}
 cars := Cars{crv, is250, highlander}
 if cars.Contains("Highlander") {
 println("Found Highlander")
 }
 if !cars.Contains("Hummer") {
 println("Did NOT find a Hummer")
 }
}

The output will be as follows:

Found Highlander
Did NOT find a Hummer

In order to understand how to make the leap from imperative programming to functional
programming, let's look at pure functional programming languages and how to implement
high-order functions such as Map() that manipulate collections.

With pure functional types, you had a function, f, that takes a cube and returns a heart, as
shown in the following diagram:

If you pass f a list of cubes, you could use f to return a list of hearts.

In order to implement this in Go, we can replace the cube with a string and the heart with a
bool value:

func Map(f func(v string) bool, vs [] string) []bool {
 if len(vs) == 0 {
 return nil
 }
 return append(
 []bool{f(vs[0])},
 Map(f, vs[1:])...)
}

Manipulating Collections Chapter 2

[70]

First, we define a map of vowels that we later test for a key without retrieving the value,
using an underscore in place of the first value:

func main() {
 vowels := map[string]bool{
 "a": true,
 "e": true,
 "i": true,
 "o": true,
 "u": true,
 }
 isVowel := func(v string) bool { _, ok := vowels[v]; return ok }
 letters := []string{"a", "b", "c", "d", "e"}
 fmt.Println(Map(isVowel, letters))
}

We define isVowel to be a literal function that takes a string and returns a bool result. We
define letters to be a slice of strings (a, b,... e) and then call our Map function, passing our
isVowel function and the list of strings to check.

This works well, but the problem is that we would have to rewrite our logic for every data
type that we want to use. If we want to check whether a specific rune character exists in a
list of runes, we would have to write a new Map function. We would have to be concerned
about things such as this: does len() work with runes like it works with strings? If not, we
would have to replace this logic. This would include a lot of effort and code, which would
perform similar operations and would not be good style.

This is yet another example of why having generics in Go would be a delight.

If Go had generics
If Go had generics, we could have written a function signature like the following to replace
strings with runes, and we would not have to rewrite the inner logic:

func Map(f func(v <string>) <bool>, vs [] <string>) []<bool>

However, Go does not have generics, so we can use empty interfaces and reflection to
achieve the same result.

Manipulating Collections Chapter 2

[71]

Map function
Let's create a Map function to transform the contents of a Collection.

First, let's define Object to be the empty interface type and create a Collection type to be
a slice of objects:

package main
import "fmt"
type Object interface{}
type Collection []Object
func NewCollection(size int) Collection {
 return make(Collection, size)
}

The NewCollection function creates a new instance of the collection with the given size:

type Callback func(current, currentKey, src Object) Object

The Callback type is a first-class function type that returns the calculated result:

func Map(c Collection, cb Callback) Collection {
 if c == nil {
 return Collection{}
 } else if cb == nil {
 return c
 }
 result := NewCollection(len(c))
 for index, val := range c {
 result[index] = cb(val, index, c)
 }
 return result
}

The Map function returns a new collection where every element is the result of calling the
Callback function.

Testing our empty interface-based Map function
We'll test our new empty interface-based Map function by defining a transformation
function. This function will multiply every item in the collection by 10:

func main() {
 transformation10 := func(curVal, _, _ Object) Object {
 return curVal.(int) * 10 }
 result := Map(Collection{1, 2, 3, 4}, transformation10)

Manipulating Collections Chapter 2

[72]

 fmt.Printf("result: %vn", result)

We pass a collection of the numbers 1, 2, 3, and 4 as well as the transformation function.

The output will be as follows:

result: [10 20 30 40]

Now, let's pass our Map function a collection of strings:

 transformationUpper := func(curVal, _, _ Object) Object { return
strings.ToUpper(curVal.(string)) }
 result = Map(Collection{"alice", "bob", "cindy"}, transformationUpper)
 fmt.Printf("result: %vn", result)
}

This time we pass a collection of strings and transform each by calling ToUpper.

Here's the output:

result: [ALICE BOB CINDY]

Notice how in each case, we had to cast each curVal? With transformation10, we can
cast each item in the collection to an int variable; with transformationUpper, we can
cast each item to a string variable. We could choose to use reflection to avoid explicit
casting, but that is even worse for performance than casting.

As with our earlier example, we could pass the collection to a chain of transformation
functions to arrive at the result, which could be another collection or a single terminal
value.

Instead of reinventing the wheel each time, we need another high-order function; let's use
any one of the number of Go packages available that easily enable the functional style of
programming in Go.

Itertools
Itertools is a Go package that provides many of the same high-order functions from the
Python standard library.

Next, we see the different types of high-order functions provided by Itertools. High-order
functions provide the vocabulary for the declarative coding style.

Manipulating Collections Chapter 2

[73]

Infinite iterator creators:

Count(i): Infinite count from i
Cycle(iter): Infinite cycling of iter (requires memory)
Repeat(element [, n]): Repeat the element n times (or infinitely)

Iterator destroyers:

Reduce(iter, reducer, memo): Reduce (or Foldl) across the iterator
List(iter): Create a list from the iterator

Iterator modifiers:

Chain(iters...): Chain together multiple iterators.
DropWhile(predicate, iter): Drop elements until predicate(el) == false.
TakeWhile(predicate, iter): Take elements until predicate(el) == false.
Filter(predicate, iter): Filter out elements when predicate(el) == false.
FilterFalse(predicate, iter): Filter out elements when predicate(el) ==
true.
Slice(iter, start[, stop[, step]]): Drop elements until the start (zero-
based index). Stop upon stop (exclusive) unless not given. Step is 1 unless given.

More iterator modifiers:

Map(mapper func(interface{}) interface{}, iter): Map each element
to mapper(el).
MultiMap(multiMapper func(interface{}...)interface{},

iters...): Map all the iterators as variadic arguments to
multiMaper(elements...); stop at the shortest iterator.
MultiMapLongest(multiMapper func(interface{}...)interface{},

iters...): Same as MultiMap, except that here you need to stop at the longest
iterator. Shorter iterators are filled with nil after they are exhausted.
Starmap(multiMapper func(interface{}...)interface{}, iter): If
iter is an iterator of []interface{}, then expand it to multiMapper.
Zip(iters...): Zip multiple iterators together.
ZipLongest(iters...): Zip multiple iterators together. Take the longest;
shorter ones are appended with nil.
Tee(iter, n): Split an iterator into n equal versions.
Tee2(iter): Split an iterator into two equal versions.

Manipulating Collections Chapter 2

[74]

Go channels used by the New function
In the itertools.go file, we see that the iterator uses Go channels to range over each
element in the collection:

type Iter chan interface{}
func New(els ... interface{}) Iter {
 c := make(Iter)
 go func () {
 for _, el := range els {
 c <- el
 }
 close(c)
 }()
 return c
}

The New function can be used as follows to take a list of values and turn it into a new
iterable collection:

New(3,5,6)

Testing itertool's Map function
Let’s test itertool's Map function by passing it a collection of words of various lengths and a
literal function to operate on each word to return its length:

package itertools
import (
 "testing"
 "reflect"
 . "github.com/yanatan16/itertools"
)

Let's not forget to run go get -u github.com/yanatan16/itertools to download the
itertools package along with its dependencies.

Manipulating Collections Chapter 2

[75]

Testing iterators for element equality
First, let's create the testIterEq function to test whether two collections are equivalent:

func testIterEq(t *testing.T, it1, it2 Iter) {
 t.Log("Start")
 for el1 := range it1 {
 if el2, ok := <- it2; !ok {
 t.Error("it2 shorter than it1!", el1)
 return
 } else if !reflect.DeepEqual(el1, el2) {
 t.Error("Elements are not equal", el1, el2)
 } else {
 t.Log(el1, el2)
 }
 }
 if el2, ok := <- it2; ok {
 t.Error("it1 shorter than it2!", el2)
 }
 t.Log("Stop")
}

In our test function TestMap, we define a mapper function literal that is passed to our Map
function to perform the transformation. The mapper function returns the length of each
string passed to it:

func TestMap(t *testing.T) {
 mapper := func (i interface{}) interface{} {
 return len(i.(string))
 }
 testIterEq(t, New(3,5,10), Map(mapper, New("CRV", "IS250",
"Highlander")))
}

Let's go to the directory with this test file and run the following to verify that the Map
function works as we expect. Here's what my console output looks like:

~/clients/packt/dev/go/src/bitbucket.org/lsheehan/fp-in-go-
work/chapter2/itertools $ go test
PASS
ok bitbucket.org/lsheehan/fp-in-go-work/chapter2/itertools 0.008s

Manipulating Collections Chapter 2

[76]

Functional packages
There are many other Go packages that provide the high-order functions (HOF) that we've
come to expect when writing declarative code for manipulating collections. They typically
use empty interfaces and reflection, which have negative performance impacts. A well
known HOF implementation is Rob Pike's Reduce package (see https:/ /github. com/
robpike/filter) where he states his preference for using for loops and clearly states, don't
use this.

Another time of reflection
Are we frustrated yet? We learned how to code in a concise, declarative functional
programming style only to learn that it would probably run too slow to be viable in
production. We tried various techniques to speed it up, but nothing we've done thus far
with pure functional programming can match the performance of old-school imperative
programming.

Our goal is to find a way to program using the declarative functional programming style in
Go with performance numbers that meet or exceed expectations.

Go is awesome
Go is our favorite language for many reasons including:

Performance
Fast and easy deployment
Cross-platform support
Protected source code
Concurrent processing

Go is awesome, but
Since Go was not designed to be a pure functional language and lacks generics, we must
take a performance hit to force Go into a functional style of programming, right? (Keep the
faith! There's hope around the corner.)

Manipulating Collections Chapter 2

[77]

We have covered the core principles of implementing and using collections. You learned
that in functional programming, a single function can take input and return a result and
transformations to the collection that occurs inside the function. You learned that we can
compose functions by chaining them together.

If Go had generics that would simplify our implementation task, but more importantly, if
Go were designed to perform tail-call optimization (TCO) and other performance-boosting
optimizations, then it would be an easy decision to choose to program in the functional
style in Go.

One of Go's best features is its performance, and if we are developing a solution that runs
on a single server and performance is more important to us than having concise, intuitive,
and declarative code, then most likely we would not program Go in the functional style.

The cure
However, if we are looking to implement a distributed computing solution using Go, then
we're in luck.

Let's take a quick look at the features of a new Go package for performing distributed
MapReduce for data processing at scale.

Gleam - distributed MapReduce for Golang
"First, generics are needed. Of course, we can use reflection. But it is noticeably slower, to
the point that I do not want to show the performance numbers. Second, dynamic remote
code execution is also needed if we want to dynamically adjust the execution plan. We
could pre-build all the execution DAGs first and choose one of them during runtime. But it
is very limiting. As everyone else here, I enjoyed the beauty of Go. How to make it work for
big data?"

- Chris Lu

That's the right question.

Manipulating Collections Chapter 2

[78]

Chris resolved the performance issues of reflection and the lack of Generics using a
scripting language named LuaJIT. Rather than building the entire directed acyclic graph
(DAG) and then choosing one branch during runtime, the scripting nature of LuaJIT allows
dynamic remote code execution, allowing us to dynamically adjust the execution plan
during runtime.

LuaJIT's FFI library
LuaJIT's FFI library makes it easy to call C functions and C data structures by parsing C
declarations:

local ffi = require("ffi")
Load LuaJIT's FF library
ffi.cdef[[
int printf(const char *fmt, ...);
]]
Add a C declaration for the function.
ffi.C.printf("Hello %s!", "world")

Call the named C function. Simple!

Unix pipe tools
Gleam also leverages Unix pipe tools.

Gleam = Go + LuaJIT + Unix Pipes

Let's look at how we can use Gleam to process collections.

Manipulating Collections Chapter 2

[79]

Processing Gleam collections
Let's see how Gleam processes collections. The input we'll use is a collection of lines that
comprises words in the /etc/paths file:

$ cat /etc/paths
/usr/local/bin
/usr/bin
/bin
/usr/sbin
/sbin

Gleam reads the file content as lines and feeds each line into the flow. From this, it creates
the stream through which the functions Map and Reduce are called to count the number of
occurrences of each word:

package main
import (
 "os"
 "github.com/chrislusf/gleam/flow"
)
func main() {
 flow.New().TextFile("/etc/paths").Partition(2).FlatMap(`
 function(line)
 return line:gmatch("%w+")
 end
 `).Map(`
 function(word)
 return word, 1
 end
 `).ReduceBy(`
 function(x, y)
 return x + y
 end
 `).Fprintf(os.Stdout, "%s,%dn").Run()
}

Here's the output of this:

bin,3
local,1
sbin,2
usr,3

Manipulating Collections Chapter 2

[80]

Disappointed? Were you hoping that there was a practical use of pure
functional programming in pure Go? (Where practical means the
performance of using recursion is not an issue and where you can write
your business logic and control flow logic in a declarative style, free from
empty interfaces, downcasting/unboxing and those noisy if err != nil
blocks?) Keep working through the book and you'll find a solution in the
last unit.

Summary
We manipulate collections constantly in our code. We often start with a list of items and
need to transform our initial list into another list of different items. Sometimes, we want to
map our list to another list of equal size. Sometimes, we want to group and sort our list.
Other times, we need to arrive at a single result value.

In this chapter, we explored the different types (intermediate and terminal) of collection
functors. We dived into a few key areas of collection manipulation, including iterators, the
map function, the contains method, and chaining of functions.

We looked at a few Go packages that provide a cadre of high-order functions that we can
use in our new functional style of programming.

We gained an appreciation for Unix pipes and discovered that a new distributed processing
Go package, named Gleam, leverages pipe to deliver a lightweight Go-based functional
solution.

In the next chapter, we'll dive deeper into pipelining and see how it can improve
performance.

3
Using High-Order Functions

We frequently encounter questions such as, "Just curious, what are the benefits of applying
pure functional programming concepts to imperative languages (other than making the
code hard to read for others)?"

In this chapter, we will address this common misconception using high-order functions.

Our goal in this chapter is to:

Understand the characteristics of functional programming (FP)
Understand the purpose of generics
Understand how FP improves performance
Understand currying
Implement Map, Filter, and Reduce functions
Implement lazy evaluation using Goroutines and a Go channel

Characteristics of FP
Let's start by looking at the requirements for a pure FP language. A pure FP language must
include support for things like:

First-class functions
Tail-call optimization (TCO)
High-order functions
Pure functions
Immutable Data

Using High-Order Functions Chapter 3

[82]

In order to accomplish pure FP, a language must treat functions as it does any other
variable type. How can an immutable language have variables that vary? The way we
accomplish this in an FP way is by creating new variables, rather than modifying existing
ones. We will see how to accomplish this later in the chapter, when we look at the Map
function.

Go is a multidimensional language that supports imperative, object-oriented, and FP styles.
We could write a purely imperative or functional program in Go. It is our choice of
programming style that dictates this. This is one of the great things about Go and FP. It's not
an all or nothing issue. We can migrate our code toward FP when and where it makes sense
to do so.

Go requires tail-call optimization (TCO) to handle production performance
requirements. Each time a recursive function calls itself, a new block is added to the stack
frame; we soon feel the sluggish effects of this Go compiler omission. We will see how to
mitigate this issue when we implement the Reduce function.

The last requirement is support for high-order functions (HOF). High-order functions take
functions as arguments and/or return functions as their result. HOFs allow us to chain our
functions together in a readable manner with less code.

HOFs are arguably the focal point of any FP language, and after a quick look at FP
characteristics, we'll study how we can exploit them in Go:

Characteristic Supported
in Go?

Description

Anonymous
Function

Yes A function without a name. For example, this function call an
anonymous function that prints a message.
func anonymousGreeting() func(string) {
 return func(name string) {
 fmt.Printf("Hey %s!n", name)
 }
}

Closures Yes A closure is an inner function that closes over, that is, has access
to, variables in its outer scope. In other words, a closure is a
function's scope that is kept alive by a reference to that function.

Composition Yes Composition is what allows us to combine simple functions to
build more complicated ones. Currying and pipelining are
example implementations of the concept of composition.

Using High-Order Functions Chapter 3

[83]

Continuations Yes Continuations are like a GOTO statements with arguments. A
continuation is a function parameter (next) we pass to a function
(factorial) that specifies where the function should return.
The factorial function does not define a return value. It's a
function that accepts an int and another function that passes along
its current state.
func factorial(x int, next func(int)) {
 if x == 0 {
 next(1)
 } else {
 factorial(x-1, func(y int) {
 next(x * y)
 })
 }
}

Calls continue until a base condition is met (x == 0) and then all
the partially executed next functions on the stack are popped off
and evaluated .
We can call factorial like this:
factorial(4, func(result int) {
 fmt.Println("result", result)
})

It will print: result: 24
Programming with Monads is a form of continuation passing
style (CPS) that gives us more control; Using the Lexical
Workflow Solution, upon encountering an error we can direct
execution to the error path (bypassing subsequent chained
function calls) to our workflow's single idiomatic Go error
handler.
CPS can also be programmed using Goroutines and channels.

Currying Yes Currying is where we get a function that accepts x parameters
and return a composition of x functions each of which take 1
parameter. In FP, every function is a function of one argument.

Declarative Yes Declarative style, as opposed to an imperative style, means that
we write expressions as opposed to step by step instructions.
The imperative function is not used as data; Instead, it's used for
its side effect, i.e., printing "Hello".
Info.Println("Hello")

Using High-Order Functions Chapter 3

[84]

Either Data
Type

Yes Either is a type constructor that takes two arguments. It allows us
to say a value is either one of two types. For example, Either
Car Truck. We can use Either to create an error handling system
if we make our result of type Either Success Failure.
Slightly more complicated that the Maybe data type.
data Either a b = Left a | Right b

First Class
Functions

Yes! First-class functions can be passed around as parameters and
returned as values.

Functional
Composition

Yes Functional composition means that we decompose monolithic
applications into our smallest units of computation. We can then
re-combine our functions in new ways to create new functionality
by chaining our function calls.

Hindley-Milner
type system

No HM infers types without requiring any type definitions. HM type
systems support polymorphic types, where lists can contain items
of different types. If Go used HM, then the type of b would be
inferred as float64 below (rather than throwing the runtime
error, constant 1.8 truncated to integer)
a := 1
b := a + 1.8

Idempotence Yes Idempotence means that we can call our function repeatedly and
it will produce the same result each time.

Immutable data Yes Immutable immutable data structures, once created, do not
change. Data cannot be added, removed, or reordered. In order to
make an update we need to create a copy with our changes.
Immutability is a core tenant of FP because without it, the data
flow in our applications become lossy and inconsistent. The true
constant in FP (as in life) is change. Mutation hides change. For
more reasons see the Immutable Data section below.

Immutable
variables

Yes Go has the const keyword, but that only works for ints and
strings. In order to have a immutable object, we could to write it
like this:
type Car struct {
 const Make, Model string
}

Or only allow access to fields via method calls that could be coded
to prevent mutation.

Using High-Order Functions Chapter 3

[85]

Lambda
expressions

Yes A Lambda expression is an anonymous function, often used as
data, passed as a parameter, and returned as data and used to
invoke another function. Note that a lambda expression executes
in the context of their appearance, that is, they only have access to
the variables in their lexical scope and they take only one
parameter.
For an example of what is and what is not a lambda expression
check: 2-design-patterns/ch04-solid/01_lambda/main.go
Tip 1: If we can call a function without using its return value then
it’s impure.
Tip 2: If we need to pass more than one parameter, use a partially
applied function.
Tip 3: When we see some code like that like the following, we're
likely looking at a Lambda Expression:
return f(func(x int) int {
 return r(r)(x)
})

Using High-Order Functions Chapter 3

[86]

List Monad Yes List monads are used to model nondeterministic computations
that can return an arbitrary number of results. A list monad can
return zero or more results.
The return function inserts a value into a list like this:
return a = [a]

The bind function pulls values from the list, applies a function to
them and produces a new list like this:
[a] -> (a -> [b]) -> [b]

Given the following function definitions:
f :: String -> [String]
f a = [a, prevChar a, nextChar a]
g :: String -> [String]
g a = [lower a, upper a]

The list monad allows us to compose f and g as follows:
 g | w
 | W ---> |
 | | W
 |
 f | g | x
X --> | X ---> |
 | | X
 |
 | g | y
 | Y ---> |
 | Y

f looks like this:
f "X" --> ["W", "X", "Y"]

g looks like this:
map g (f "X") --> [["w", "W"], ["x", "X"], ["y",
"Y"]]

When we compose f and g we get
["w", "W","x", "X","y", "Y"]

Using the composition operator "." we can write the List monad
composition as follows:
f >=> g = concat . map g . f

Using High-Order Functions Chapter 3

[87]

Maybe data
type

Yes Maybe represents a computation that might not return a result,
i.e., an optional value. Maybe a is a value that either contains a
value of type a (represented as Just a), or it is empty (represented
as Nothing)
 The following definition of Maybe:
data Maybe a = Nothing | Just a

Says, Maybe a is either not there or it is there. If it's not there, its
Nothing; If it is there is is Just a, where a is a value.
Maybe is a polymorphic type that can be used to define a function
that can produce a value of another type or nothing at all.
f :: a -> Maybe b

Maybe Monad Yes The Maybe Monad is a type of error monad, where all errors are
represented by Nothing. (The Either type provides more
functionality.)
Given the polymorphic nature of Maybe and associativity, we can
say.
f :: a -> Maybe b
g :: b -> Maybe c
h :: a -> Maybe c
h = f >=> g

h is the Monadic composition of f and g.
The definition of the Maybe monad is a follows:
instance Monad Maybe where
 return x = Just x

 Nothing >>= f = Nothing
 Just x >>= f = f x

Monadic error
handling

Yes Maybe helps us handle errors. It represents something
expected rather than an unexpected error. Either is like a Maybe
that also lets us return an arbitrary value instead of
Nothing. Instead of worrying about receiving a null from a
function call, which could cause a null pointer exception, our type
system will force to handle error conditions a type-safe way.
Using Either as our return type, e can run a task, get a result,
check for the value:
func runTask(success bool) maybe.Either {

And even if the task failed, we'll get a non-nil result.
func (e either) Succeeded() StringOption {
 if e.err == nil {
 return SomeString(e.val)
 }
 return EmptyString()
}

For details, see 2-design-patterns/ch04-solid/02_maybe

Using High-Order Functions Chapter 3

[88]

No side-effects Yes No side effects means that the only thing that occurs when we call a
pure function is:
• We pass in parameters
• We get a result; Nothing else happens.
Tip 1: If our function prints output it is impure.
Tip 2: If any state/data changes anywhere else in our system as a
result of calling our function then our function is impure.
Tip 3: If our function has no return value then it is either impure
or completely useless.

Operator
overloading

No Operator overloading, also known as ad hoc polymorphism, is a
specific case of polymorphism, where different operators like +, =
or == are treated as polymorphic functions and as such have
different behaviors depending on the types of its arguments.

Option type Yes We can create an Option typeclass in Go:
fmt.Println("Has value:", option.SomeString("Hi"))
fmt.Println("Is empty :", option.Empty())

The following is the output:
Has value: Hi
Is empty : <EMPTY>

Parametric
polymorphism

No Parametric Polymorphism means Generics. This is a style of
datatype generic programming where we code our functions
using non-specific data types. For example, we can implement
generic algorithms that work on collections of non-specific types.
Generics provides code reuse, type safety and easy-to-read code.
See the following Generics section for a simple example.

Partial function
application

Yes Giving a function fewer arguments than it expects is called Partial
function application. Here, our function accepts a function with
multiple parameters and returns a function with fewer
parameters.

Using High-Order Functions Chapter 3

[89]

Pure functions Yes Pure functions map inputs to outputs. When given the same input
a pure function will always return the same output (also known
as determinism) and will not have any observable side effects.
The determinism of pure functions means that our FP programs'
correctness can be proven formally, which is a great benefit for
mission critical applications.
Just like a mathematical function, the output of our function
depends entirely on its input and nothing else.
For example, the output of the function below will always return
two more than the value (x) passed to it:
func addTwo(x int) int {
 return x + 2
}

Pattern
matching

No Pattern matching enables the compiler to match a value against
some patterns to select a branch of the code.
type ErrorMessage =
| YourNameInvalid
| YourPhoneInvalid
| NoTicketsMustBeGreaterThan0
| CreditCardNoInvalid
| CreditCardExpDateInvalid

The value of our ErrorMessage in the preceding code will be one
of five different error choices (YourNameInvalid,
YourPhoneInvalid, and so on)
In Go, we can accomplish this at runtime using a union type.

Pipelining Yes Pipelining allows us to pass the output of one function as input to
another. Function calls can be chained in a sequence to implement
a workflow. Pipelining encourages code reuse and parallel
execution.

Recursion Yes Recursion is used by FP languages in place of loops where a
function calls itself until an end condition is reached. In Go, every
recursive call creates a call stack. TCO avoids creating a new stack
by making last call in a recursion the function itself. Even though
we can code recursively in Go without TCO, it's just not practical
because of poor performance. Note that recursion in pure FP
languages are abstracted from sight by HOFs.

Using High-Order Functions Chapter 3

[90]

Referential
rransparency

Yes Referential transparency is a property of pure functions where
our function that always return the same output for the same
inputs. Our function expression f(x) and the results of evaluating
our function are interchangeable. For example, 1 + 1 is always
equals 2. As we saw in Chapter 2, Manipulating Collections, this
means that we can cache the results of the first function
invocation and improve performance.

Tip: If we can cache results from previous function calls then we
have referential integrity.

Sum or Union
types

Yes We can implement a union type using an interface with
Success() and Failure() methods that will return either
Success or Failure.For details see 2-design-patterns/ch04-
solid/02_maybe
package maybe

type SuccessOrFailure interface {
 Success() bool
 Failure() bool
}

Tail Call
Optimization

No Tail Call Optimization makes recursive function calls performant.
A tail call happens when a function calls another as its last action.
TCO acts like a GOTO statement. For example:
 func f(x) {// some code;return g(x)}

The program does not need to return to the calling function when
the called function g(x) ends b/c there is no executable code after
that last line. After the tail call, the program does not need any
call stack information about g. Without TCO the program will
create a needless call stack for g; A lot of recursive calls will cause
a stack overflow. With TCO, the recursive program will be faster
and consume far fewer resources.

Typeclasses Yes Type classes allow us to define functions that can be used on
different types with a potentially different implementation for
each type. Each class represents a set of types and is associated
with a particular set of member functions. For example, the type
class Eq represents the set of all equality types, which is precisely
the set of types on which the (==) operator can be used.

Using High-Order Functions Chapter 3

[91]

Unit type Yes A Unit type has exactly a one value. It is also known as the
identity. The unit for multiplication is 1, for addition is 0, for
string concatenation is the empty string.
How many values can a type defined as a tuple of of type int
contain? Infinite. (-∞, …, 0, 1, 2... ∞)
How many values can a type defined as the empty tuple contain?
The value of a Unit type is that you can use it in places where we
might otherwise return nil (or null). We return a Unit when we
don’t care what the value is. We don’t return nil, we return a
value; the Unit value. All functions return values; No more null
pointer exceptions!
The Unit type is also useful in places that need an empty value.
For example, in F# an Async action which may create side effects
but does not return a value is an instance of type Async<unit>

These are not all characteristics of a pure FP, just some of the more significant ones.
Probably the most important one is support for first class functions.

The preceding table introduces a lot of concepts that we'll cover in greater
detail later in our book. Feel free to skip ahead if your curiosity is too
great; Otherwise, just go with the flow and we'll eventually get to it.

In the Supported in Go? column in the preceding table:

Yes!: Indicates that the FP characteristic exists in Go.
Yes: Indicates that the characteristic or requirement can be achieved with some
effort in Go.
No: Indicates that this FP characteristic or requirement is missing and is difficult
or not possible to achieve without a major upgrade to the Go compiler, or
without using another technology in tandem with Go.

Using High-Order Functions Chapter 3

[92]

Function composition
Function composition is what happens when we combine functions. The output of one
function is the the input of the next function. We can use objects and morphisms of category
theory to help us get the order right. Take the following diagram for example...

>

We see that we can combine our functions f and g to get from A to B to C. Note that the
order matters. We must first go from A to B via f and then from B to C via g.

We express this with the following notation (f.g)(x). That reads, f-compose-g with input x. This
expression equals g(f(x)), which reads f of x of g. So (f.g)(x) == g(f(x)).

This is what the compose function looks like in Go:

func Compose(f StrFunc, g StrFunc) StrFunc {
 return func(s string) string {
 return g(f(s))
 }
}

Where StrFunc is defined as:

type StrFunc func(string) string

In our main.go, we define our f and g functions, recognize and emphasize, respectively:

func main() {
 var recognize = func(name string) string {
 return fmt.Sprintf("Hey %s", name)
 }
 var emphasize = func(statement string) string {
 return fmt.Sprintf(strings.ToUpper(statement) + "!")
 }

Using High-Order Functions Chapter 3

[93]

We compose f and g as follows:

var greetFoG = Compose(recognize, emphasize)
fmt.Println(greetFoG("Gopher"))

The following is the output:

HEY GOPHER!

Note that order matters. What happens if we flip the order of f and g and then compose?

var greetGoF = Compose(emphasize, recognize)
fmt.Println(greetGoF("Gopher"))

The following is the output:

Hey GOPHER!

Monads allow us to chain continuations
Chaining continuations means that we can execute a series of functions, where the output of
one function is the input of the next. Check out the following example of chaining high-
order functions:

cars := LoadCars()
for _, car := range cars.Filter(ByHasNumber()).
 Filter(ByForeign()).
 Map(Upgrade()).
 Reduce(JsonReducer(cars), Collection{}) {
 log.Println(car)
}

You will see the following output:

{"car": {"make": "Honda", "model": " Accord ES2 LX"}}
{"car": {"make": "Lexus", "model": " IS250 LS"}}
{"car": {"make": "Lexus", "model": " SC 430 LS"}}
{"car": {"make": "Toyota", "model": " RAV4 EV"}}

How much more code would be required if we were to implement the for loops, error
checking, and other scaffolding that is typically required when coding Go in the typical
imperative style of programming?

Using High-Order Functions Chapter 3

[94]

Instead of telling Go how to filter, map, and reduce our collection, we declare what we want
to accomplish. Later in this chapter, we do implement the Filter, Map, and Reduce
functions, but what if the Go standard library already provides these for us?

How can we expect Go to provide HOF implementations for cars? That would not be
reasonable, right? What's missing? The answer is generics.

The ChainLink implementation in this chapter is sort of a poor man's
monad. We'll explore a real monad in the last chapter of this book and
discover that there are more operations involved (Bind, Return, monadic
error handling). Real monads also do not rely on global variables. What is
similar is that they both allow us to execute operations in order, where the
output of one function is the input to the next. That is a key concept to
remember.

Generics
Parametric polymorphism means generics. A generic function or a data type can be written
to handle any data value using the same logic, without having to cast the value to a specific
data type. This greatly improves code reuse.

The following is a C# code example of a generic IsEqual implementation. The generic
IsEqual function will accept any type (that implements Equals). We pass
IsEqual integers and strings by simply indicating the type T during runtime, at the
moment IsEqual is executed:

namespace Generics
{
 private static void Main() {
 if(Compute<int>.IsEqual(2, 2)) {
 Console.WriteLine("2 isEqualTo 2");
 }
 if(!Compute<String>.IsEqual("A", "B")) {
 Console.WriteLine("A is_NOT_EqualTo B");
 }
 }
 public class Compute<T> {
 public static bool IsEqual(T Val1, T Val2) {
 return Val1.Equals(Val2);
 }
 }
}

Using High-Order Functions Chapter 3

[95]

Currently, to do this in Go, we will have to use an empty interface and perform a type
conversion. It's type conversion that will cause the performance hit that usually makes this
sort of generics handling in Go impractical.

First-class functions
First-class functions allow us to make new functions by providing our base functions with
function parameters. In the following code, our base function is Filter. By passing
ByMake("Toyota") to Filter, we remove most of the car items from our collection,
leaving only Toyota:

cars := Filter(ByMake("Toyota"))

We also have the ability to transform any function that works on single elements into a
function that works on lists, by wrapping it with the Map function. Without our new
functional style of programming, we might be tempted to implement a for loop and apply
the fmt.Sprintf transformation on each individual car, as follows:

// cars: Honda Accord, Honda Accord ES2, Lexus IS250, Honda CR-V, Lexus SC
430,...
for _, car := range cars {
 thisCar := fmt.Sprintf("%s %s", car, map[string]string{
 "Honda": "LX",
 "Lexus": "LS",
 "Toyota": "EV",
 "Ford": "XL",
 "GM": "X",
 }[GetMake(car)])
 // upgrade a car by appending "LX" ... to the end of the model name
 mappedCars = append(mappedCars, thisCar)
}
// mappedCars: Honda Accord LX, Honda Accord ES2 LX, Lexus IS250 LS...

Instead, we can simply pass the Upgrade function to Map as we compose our data
transformation:

Filter(ByMake("Toyota")).Map(Upgrade())

We no longer need to write for loops that manipulate arrays because we can call Map
inline.

Using High-Order Functions Chapter 3

[96]

HOFs can greatly reduce the time that it takes to develop complex logic. We can quickly
compose smaller, task-specific functions into solutions for complex business logic much
faster, with less scaffolding code, which means we'll have fewer bugs to fix. Our functions
are in essence reusable building blocks.

HOFs are independent, making them easy to reuse, refactor, and reorganize in our code
base. This makes our programs more flexible and resilient to future code changes.

More readable code, faster implementation, fewer bugs. The benefits of FP are adding up!

Closure
A closure is a function that closes over variables in its outer scope. We really need an
example to understand that statement! Here's a good one:

func addTwo() func() int {
 sum := 0
 return func() int { // anonymous function
 sum += 2
 return sum
 }
}

func main() {
 twoMore := addTwo()
 fmt.Println(twoMore())
 fmt.Println(twoMore())
}

You will see the following output:

2
4

The preceding closure is formed by the addTwo function. Inside addTwo, both sum and the
anonymous function are declared in the same lexical scope. Since addTwo closes over both
sum and the anonymous function, and because sum was declared before the anonymous
function, the anonymous function always has access to, and can modify, the sum variable.
As soon as addTwo is assigned to twoMore, the addTwo functions's anonymous function
gets access to the sum variable and holds on to it as long as the application continues to run.

Using High-Order Functions Chapter 3

[97]

Dynamically scoped
What if we accidentally initialized sum in an outer scope from where we defined
our function? Notice that there is no sum variable initialization in the same scope as our
anonymous function:

func addTwoDynamic() func() int {
 return func() int {
 sum += 2
 return sum
 }
}

When we run this in our main() function:

twoMoreDynamic := addTwoDynamic()
fmt.Println(twoMoreDynamic())
fmt.Println(twoMoreDynamic())

Our Go runtime looks in the environment in which the anonymous function was called,
rather than where it was defined (as is the case in lexical scoping). If addTwoDynamic had
been nested several stack frames deep, our Go runtime would look where addTwoDynamic
was defined for sum. If it was not found there, it would continue up the stack until sum is
found. So, we see that dynamic scoping adds complexity and might cause the value of sum
to change in unpredictable ways, or at least in ways that are more difficult to debug.

The following is the output:

7
9

What happened? Since sum was not defined in the scope in which our anonymous function
was defined, Go found it in the global scope. It's value was 5. addTwoDynamic added 2 to 5
and got 7. addTwoDynamic did it again and got 9. Probably not what we wanted.

Being able to pass around lexical context is powerful and guarantees that we won't have
side effects that might occur with dynamic scoping. We'll look at a practical example where
we create an application context, for example, database connection, logger, and so on, at
application startup and pass that context around where needed throughout our application.

Using High-Order Functions Chapter 3

[98]

Pure function
A pure function is a function that when given the same input will always return the same
output and will not have any observable side effects. How is that a benefit? Let's see. We
can run any pure function in parallel since our functions do not need access to shared
memory. Race condition due to side effects are not possible with pure functions. The
performance gains of running our code concurrently on multiple cores is another awesome
benefit of FP.

Immuable Data
Immutable data structures:

Have one state and never change
Are simpler to construct, debug, test, and reason about
Are side-effect free
Improve performance and are more scalable because they are easier to cache
Are safer in that they prevent null pointer references
Are thread safe
Are always in a stable state

Since immutable data structures are never changed, that means that failures never occur
during a data modification operation. When an immutable data structure is initialized
it will either fail or succeed, returning a valid data structure that never changes.

In order to make changes to an immutable data structure, we must create a new tree.
Suppose we want to update the value of g in the existing tree data structure (previous root).
First, we would create the g' node and build the new tree by traversing the nodes connected
to g and copying only those values necessary to rebuild the tree. References to other nodes
can be created without creating new nodes (these are the nodes in white). With the new root
in place, new leaf nodes are added to the new tree structure.

Using High-Order Functions Chapter 3

[99]

Once the new root has been created the previous/old root can be preserved or it can be
marked for deletion.

This may seem like a lot of work, but one of the greatest benefits is that we no longer need
to worry about our data unexpectedly changing. For example, what if one Goroutine is
looping through our data structure while another one is removing elements from it? We no
longer need to concern ourselves with dealing with race conditions and verifying that our
preconditions are still valid. When we use immutable data structures, our code becomes
more robust and easier to reason about.

Can you think of any solutions today that make use of immutable data structures?

Ever wondered how git works?

Interested in full stack development? How does ReactJS update its models?

In the game of soccer, we may loose to a team because they have a player with specific
skills. When we face the team again we may forget the past, but that does not change
history; It is not possible to change the past. When the past is not preserved, we cannot
learn from it and history will repeat itself. Mutability hides changes.

Persistent data structures for Go
Check out https:// godoc. org/ github.com/ mndrix/ ps

Using High-Order Functions Chapter 3

[100]

From it's documentation:

Fully persistent data structures. A persistent data structure is a data structure that always
preserves the previous version of itself when it is modified. Such data structures are
effectively immutable, as their operations do not update the structure in-place, but instead
always yield a new structure.

Persistent data structures typically share structure among themselves. This allows
operations to avoid copying the entire data structure.

ps has small but effective API for manipulating lists and maps of data:

type List interface {
 Cons(val interface{}) List
 ForEach(f func(interface{}))
 Head() interface{}
 IsNil() bool
 Reverse() List
 Size() int
 Tail() List
}
func NewList() List
type Map interface {
 Delete(key string) Map
 ForEach(f func(key string, val interface{}))
 IsNil() bool
 Keys() []string
 Lookup(key string) (interface{}, bool)
 Set(key string, value interface{}) Map
 Size() int
 String() string
 UnsafeMutableSet(key string, value interface{}) Map
}
func NewMap() Map

For more details see https:/ / godoc.org/ github. com/mndrix/ ps

Using High-Order Functions Chapter 3

[101]

Use of expressions
Use of expressions (rather than statements) means that in FP, we pass a value to a function
that typically transforms it in some way and then returns a new value. Since FP functions
have no side effects, an FP function that does not return a value is useless and a sign of code
smell. In Chapter 1, Pure Functional Programming in Go, we saw that imperative
programming focuses on the step-by-step mechanics of how a program operates, whereas
in declarative programming, we declare what we want the results to be.

Here's an example of imperative programming:

var found bool
car_to_look_for := "Blazer"
cars := []string{"Accord", "IS250", "Blazer" }

for _, car := range cars {
 if car == car_to_look_for {
 found = true;
 }
}
fmt.Printf("Found? %v", found)

Here's an example of declarative programming:

fmt.Printf("Found? %v", cars.contains("Blazer"))

We have less, declarative FP code that is easier to read.

Sample HOF application
Let’s build a sample app that will demonstrate the benefits of applying functional
programming concepts to Go.

Our app will read from the following cars.csv file:

"Honda Accord"
"Honda Accord ES2"
"Lexus IS250"
"Honda CR-V"
"Lexus SC 430"
"Ford F-150"
"Toyota Highlander"
"Toyota RAV4"
"GM Hummer H2"
"GM Hummer H3"

Using High-Order Functions Chapter 3

[102]

We will apply high-order functions and various functional programming constructs to the
list of cars to filter, map, reduce, and transform it to our heart's content.
Our project is structured as follows:

$ tree
.
├── README.md
└── chapter4
 ├── 01_hof
 │ ├── cars.csv
 │ ├── cars.go
 │ ├── generator.go
 │ ├── more_cars.csv
 │ ├── restful.go
 │ ├── types.go
 │ └── utils.go
 └── main.go

At the root of the chapter4 directory is our main.go file. Since we plan to build a Go
executable from main.go and run it, we use the package name of main and include a
main() function.

The other files will be in a subdirectory named 01_hof, where hof stands for high-order
functions.

The chapter4 application code
Let's examine our chapter4 implementation, starting with main.go:

package main

import (
 . "github.com/l3x/learn-fp-in-go/chapter4/01_hof"
 "log"
 "os"
 "github.com/julienschmidt/httprouter"
 "net/http"
)

Using High-Order Functions Chapter 3

[103]

The dot (.) in the . "github.com/l3x/learn-fp-in-go/chapter4/01_hof" import
keeps us from having to preface the functions in that directory with hof, which is the
package name used by all the Go files in that directory:

func init() {
 log.SetFlags(0)
 log.SetOutput(os.Stdout)
}

We'll use the log package to log output to stdout. Passing a 0 value to log.SetFlags tells
the logger to print without prepending timestamps. We also tell the logger to print to
stdout, rather than the default stderr because we want all of the output to be consistently
displayed for ease of reading. We'd likely not output any information to stdout for a
production application because there isn't anything useful for the program to send on
stdout other than command help and usage information.

The log function can easily be configured to prepend timestamps and line
numbers. The log.SetFlags(log.Lshortfile |
log.Ldate) setting will print the output to stdout: 2017/04/07
utils.go:17: car: Honda Accord.

Build and runtime instructions
After verifying that our Go environment is properly configured, we can change the
directory to a project directory and start a RESTful web server with the following
command:

$ RUN_HTTP_SERVER=TRUE ./chapter4

See the My Go build and runtime process section in the Appendix, Miscellaneous Information and
How-Tos, for details regarding how I manage my Go environment.

We'll need to open another Terminal window to run our chapter4 executable. Let's build
and run our chapter4 app to exercise our HOFs with the following command:

$ go build && ./chapter4

The top few lines of output should look like this:

ByMake - Honda

car: Honda Accord
car: Honda Accord ES2
. . .

Using High-Order Functions Chapter 3

[104]

More application code
The first thing we do in the main() function is check the RUN_HTTP_SERVER environment
variable. If it's set to true, then the program will set up two routes. The first
route /cars returns the index page that displays all the cars that have been loaded from the
.csv files. The second route /cars/:id retrieves an individual car object and returns its
JSON representation:

func main() {
 if os.Getenv("RUN_HTTP_SERVER") == "TRUE" {
 router := httprouter.New()
 router.GET("/cars", CarsIndexHandler)
 router.GET("/cars/:id", CarHandler)
 log.Println("Listening on port 8000")
 log.Fatal(http.ListenAndServe(":8000", router))

The IndexedCars variable is defined in types.go as follows:

IndexedCar struct {
 Index int `json:"index"`
 Car string` json:"car"`
}

Before we look at the else logic, let's take a peek at the following cars.go file. We declare
an exported package level variable CarsDB that is assigned a slice of IndexedCars:

package hof

import (
 "fmt"
 s "strings"
 "regexp"
 "log"
 "encoding/json"
)

var CarsDB = initCarsDB()

func initCarsDB() []IndexedCar {
 var indexedCars []IndexedCar
 for i, car := range LoadCars() {
 indexedCars = append(indexedCars, IndexedCar{i, car})
 }
 lenCars := len(indexedCars)
 for i, car := range LoadMoreCars() {
 indexedCars = append(indexedCars, IndexedCar{i + lenCars,
car})

Using High-Order Functions Chapter 3

[105]

 }
 return indexedCars
}

func LoadCars() Collection {
 return CsvToStruct("cars.csv")
}

Note that every Go source file in our 01_hof directory uses the package name hof.

We preface the strings package with s so that we can easily reference string utility
functions with s like this: s.Contains(car, make) rather
than strings.Contains(car, make).

Since var CarsDB = initCarsDB() is defined at the package level, it will be evaluated
when we start our chapter4 executable. The initCarsDB() function only needs to be
referenced in this cars.go file, so we do not need to capitalize its first character.

The LoadCars() function, on the other hand, is referenced by the main package, so we
need to capitalize its first character in order to make it accessible.

Now, let's turn our attention to the FP goodies in the else block.

The Filter function
The first HOF that we exploit is the Filter function:

} else {
 cars := LoadCars()

 PrintCars("ByMake - Honda", cars.Filter(ByMake("Honda")))

You will see the following output:

ByMake - Honda

car: Honda Accord
car: Honda Accord ES2
car: Honda CR-V

Using High-Order Functions Chapter 3

[106]

 The Filter function is in the cars.go file. Observe the fn argument. It is passed into the
Filter function and later called with a car parameter. If fn(car)--that is,
ByMake("Honda")--returns true, then the car is added to the collection:

func (cars Collection) Filter(fn FilterFunc) Collection {
 filteredCars := make(Collection, 0)
 for _, car := range cars {
 if fn(car) {
 filteredCars = append(filteredCars, car)
 }
 }
 return filteredCars
}

When we define the Filter function on the cars collection type, it's called a method.
A Go method is a function with a special receiver argument. In our Filter function, the
cars collection is the receiver. Notice that cars is in the first set of arguments, between the
func keyword and the Filter name. Note that cars is a data structure that has a Filter
behavior. The Filter method accepts FilterFun as its argument and returns a
filtered collection.

Reality check
What? A for loop? A mutating car variable? What gives? We must face the facts. The Go
compiler does not provide TCO, so a recursive implementation is simply not practical.
Perhaps Go 2.0 will provide a pure functional library with all our favorite HOFs as well as
generics. Until then, we will make do with using the functional programming style as much
as possible with a bit of imperative programming where necessary. Another option that
we'll explore later is an execution system named Gleam, which provides pure Go mappers
and reducers that provide high performance and concurrency.

Data transformations are so common that it's nice to have a shorthand for
it. HOF's ability to simplify both writing and reading code that performs
data transformations is one of FP's greatest benefits.

Using High-Order Functions Chapter 3

[107]

FilterFunc
In the types.go file, we see its definition:

FilterFunc func(string) bool

Looking back at the line in main.go, we see that we use the ByMake filter function:

PrintCars("ByMake - Honda", cars.Filter(ByMake("Honda")))

The ByMake function is defined in the cars.go file:

func ByMake(make string) FilterFunc {
 return func(car string) bool {
 return s.Contains(car, make)
 }
}

The ByMake function is a HOF because it returns a function. Recall that Filter is a HOF
because it accepts a function. In this case, ByMake is that function, fn, as we will see in the
next section.

Filter function
The Filter function is a HOF that takes another HOF, namely ByMake, and performs a
data transformation.

func (cars Collection) Filter(fn FilterFunc) Collection {
 filteredCars := make(Collection, 0)
 for _, car := range cars {
 if fn(car) {
 filteredCars = append(filteredCars, car)
 }
 }
 return filteredCars
}

Using High-Order Functions Chapter 3

[108]

RESTful resources
Let's open http://localhost:8000/cars to see the full list of cars from both cars.csv
and more_cars.csv:

Using High-Order Functions Chapter 3

[109]

Let's take a look at the next Filter function in action in main.go:

PrintCars("Numeric", cars.Filter(ByHasNumber()))

You will see the following output:

Numeric

car: Honda Accord ES2
car: Lexus IS250
car: Lexus SC 430
car: Ford F-150
car: Toyota 86
car: Toyota RAV4
car: GM Hummer H2
car: GM Hummer H3

The FilterFunc method used in this case is ByHasNumber(). It operates like ByMake
FilterFunc and uses Go's regexp MatchString function to return true if the car has a
number in it:

func ByHasNumber() FilterFunc {
 return func(car string) bool {
 match, _ := regexp.MatchString(".+[0-9].*", car)
 return match
 }
}

Chaining functions
Now that we have the hang of it, let's chain a few filters together:

PrintCars("Foreign, Numeric, Toyota",
 cars.Filter(ByForeign()).
 Filter(ByHasNumber()).
 Filter(ByMake("Toyota")))

You will see the following output:

Foreign, Numeric, Toyota

car: Toyota 86
car: Toyota RAV4

Using High-Order Functions Chapter 3

[110]

More cars
It's time to add more cars:

moreCars := LoadMoreCars()

PrintCars("More Cars, Domestic, Numeric, GM",
 cars.AddCars(moreCars).
 Filter(ByDomestic()).
 Filter(ByHasNumber()).
 Filter(ByMake("GM")))

The output of this is as follows:

More Cars, Domestic, Numeric, GM

car: GM Hummer H2
car: GM Hummer H3
car: GM Oldsmobile Delta 88
car: GM Oldsmobile 442

Wait, what? AddCars? How is that an HOF? AddCars neither takes a function nor returns a
function. Even worse, it mutates the cars collection.

Reality check
It's not important that the cars collection remain pure; frankly, that's not feasible, given that
the Go compiler currently does not provide TCO. What's important is that our code
improves with the use of functional programming techniques. Granted, this one, AddCars,
is the furthest function we have from pure, but it is useful and it does improve our
programs' readability. We do need to be careful when we use non-pure functions, especially
ones that mutate their state, but this usage is perfectly fine for our purposes.

We find AddCars in cars.go:

func (cars Collection) AddCars(carsToAdd Collection) Collection {
 return append(cars, carsToAdd...)
}

Using High-Order Functions Chapter 3

[111]

The Map function
Back to main.go. This time, you'll be introduced to the Map HOF. Whereas Filter acts to
reduce the number of items in the resulting collection, Map will return the same number of
items that it receives. The Map function transforms the collection into a new collection,
where each item is changed in some way:

PrintCars("Numeric, Foreign, Map Upgraded",
 cars.Filter(ByHasNumber()).
 Filter(ByForeign()).
 Map(Upgrade()))

Here's the output of this:

Numeric, Foreign, Map Upgraded

car: Honda Accord ES2 LX
car: Lexus IS250 LS
car: Lexus SC 430 LS
car: Toyota 86 EV
car: Toyota RAV4 EV

We pass a MapFunc function named Upgrade to Map:

func Upgrade() MapFunc {
 return func(car string) string {
 return fmt.Sprintf("%s %s", car, UpgradeLabel(car))
 }
}

Upgrade calls the UpgradeLabel function in order to append the appropriate upgrade
label to the end of the cars' model name:

func UpgradeLabel(car string) string {
 return map[string]string{
 "Honda": "LX",
 "Lexus": "LS",
 "Toyota": "EV",
 "Ford": "XL",
 "GM": "X",
 }[GetMake(car)]
}

Using High-Order Functions Chapter 3

[112]

Improved performance from the Map function
One of the greatest benefits of FP is performance.

Programs today achieve better performance largely by performing more than one operation
at a time using multiple CPU cores.

This means running code in parallel, and to do that, our code must be thread-safe.
Programs that have a shared mutable state are not thread-safe. These programs will be
bottlenecked in one core.

FP solves this bottleneck/thread safety issue by returning new instances of variables rather
than changing the original instance.

Let's look at the Map function to see how we can pull this off using FP:

func (cars Collection) Map(fn MapFunc) Collection {
 mappedCars := make(Collection, 0, len(cars))
 for _, car := range cars {
 mappedCars = append(mappedCars, fn(car))
 }
 return mappedCars
}

Instead of appending to the cars collection, that Map receives a new variable mappedCars.
The mappedCars collection is mutated, not the original cars collection.

What we are doing, tactically, when we call Map(Upgrade()) is pushing the moment that
our data changes out to the last moment--in this example, after mappedCars has been
populated.

Using High-Order Functions Chapter 3

[113]

We have been programming our way around FP concepts our entire career. Part of what we
do in this chapter is to identify these FP patterns and see how and why we should exploit
them.

The Reduce function
Next, let's look at the Reduce function. Reduce is the Swiss army knife of HOFs. With a
Reduce function, we can do anything that can be done with Filter or Map.

A Reduce function, also known as a fold, accumulate, aggregate, compress, or inject
takes a seed value and applies the logic of the reducer function to the seed, and potentially
multiple calls to itself to arrive at a result. Often, the reduce function will combine the data
elements to return a single aggregated value, hence the term fold. So, we fold all of the
data into a single result.

Back in main.go, we apply the ByMake filter to filter out all the cars that are not a Honda
product. Then, we call the Reduce function to transform the collection of Honda vehicles
into a collection of JSON strings:

PrintCars("Filter Honda, Reduce JSON",
 cars.Filter(ByMake("Honda")).
 Reduce(JsonReducer(cars), Collection{}))

The output of this will be as follows:

Filter Honda, Reduce JSON

car: {"car": {"make": "Honda", "model": " Accord"}}
car: {"car": {"make": "Honda", "model": " Accord ES2"}}
car: {"car": {"make": "Honda", "model": " CR-V"}}

The Reduce function is a method of the cars collection that accepts a Reducer function.
Again, we see a for loop and recall, No TCO, No recursion. That's okay. So, the guts of our
Reduce function is not pure. That's OK. It's still readable, performant, and safe; in the spirit
of Go programming, it gets the job done:

func (cars Collection) Reduce(fn ReducerFunc, accumulator Collection)
Collection {
 var result = accumulator
 for _, car := range cars {
 result = append(fn(car, result))
 }
 return result
}

Using High-Order Functions Chapter 3

[114]

The second parameter Collection{} is the accumulator, which is the initial value
assigned to the result. The Reducer function starts with the accumulator value, performs
transformations on each item in the collection, and returns the result. This Reduce function
provides the framework in which to perform a reduction, but it's the reducer function (fn)
that does the heavy lifting. Note that we can pass any valid reducer function (fn) into the
Reduce framework to get vastly different results.

Our JsonReducer function does the real work of transforming each item in the cars
collection into a JSON string:

func JsonReducer(cars Collection) ReducerFunc {
 return func(car string, cars Collection) Collection {
 carJson := fmt.Sprintf("{"car": {"make": "%s", "model":
"%s"}}", GetMake(car), GetModel(car))
 cars = append(cars, carJson)
 return cars
 }
}

Reduce is an HOF function that takes a function. JsonReducer is an HOF function that
returns a function.

More high-order functions
Now, let's return to main.go to look at a few more HOFs in action.

We apply our ByMake filter and a new type of reducer. This reducer, Reducer2, will return
a slice of CarTypes rather than JSON:

PrintCars2("Reduce - Lexus",
 cars.Filter(ByMake("Lexus")).
 Reduce2(CarTypeReducer(cars), []CarType{}))

Here's the output of this:

Reduce - Lexus

car: {Lexus IS250}
car: {Lexus SC 430}

Using High-Order Functions Chapter 3

[115]

The following is another example that shows how easy chaining, also known as function
composition, is:

PrintCars("ByModel - Accord up/downgraded",
 cars.Filter(ByModel("Accord")).
 Map(Upgrade()).
 Map(Downgrade()))

Here's the output of this:

ByModel - Accord up/downgraded

car: Honda Accord
car: Honda Accord ES2

We saw how the Upgrade map function adds the appropriate label to the end of the car
model. By applying Downgrade after Upgrade, we effectively undo Upgrade.

Generators
Time to check out generators. Generators are useful because they allow us to delay an
expression evaluation. We only compute the expression(s) we need when we need them.
Generators also conserve memory because with generators, we only create and use what we
need, no more:

PrintCars("GenerateCars(1, 3)",
 cars.GenerateCars(1, 3))

We will find the implementation of GenerateCars in the generate.go file:

package hof

import (
 "sync"
 "log"
)

func carGenerator(iterator func(int) int, lower int, upper int) func()
(int, bool) {
 return func() (int, bool) {
 lower = iterator(lower)
 return lower, lower > upper
 }
}

func iterator(i int) int {

Using High-Order Functions Chapter 3

[116]

 i += 1
 return i
}

We define our imports. The sync import is a clue that we have a need to synchronize our
Goroutines. The iterator function will be passed to the carGenerator function and will
track how many cars we've generated. We'll be creating cars as per need basis.

RESTful server
If we have our RESTful server running on port 8000, we can open our web browser to
http://localhost:8000/cars/1 and see the following:

{
 "index": 1,
 "car": "Honda Accord ES2"
}

This is a representation of an IndexedCar struct. It has an index and a car make and model
string.

Here's the actual IndexedCar struct in types.go:

IndexedCar struct {
 Index int `json:"index"`
 Car string` json:"car"`
}

The GenerateCars function
Here's the actual generator function:

func (cars Collection) GenerateCars(start, limit int) Collection {
 carChannel := make(chan *IndexedCar)

The GenerateCars is another method in the cars collection that makes it easy to compose
data transformations with other HOFs. GenerateCars takes a start index and limit, which
is the number of cars that we want to be returned. We create carChannel of pointers to
IndexedCars:

var waitGroup sync.WaitGroup

Using High-Order Functions Chapter 3

[117]

We use sync.WaitGroup as a counting semaphore to wait for our collection of Goroutines
to finish:

numCarsToGenerate := start + limit - 1
generatedCars := Collection{}
waitGroup.Add(numCarsToGenerate)

We calculate the number of cars we want to generate and pass that number to the
waitGroup.Add function:

next := carGenerator(iterator, start -1, numCarsToGenerate)

Our carGenerator function returns a function that we assign to a variable named next:

carIndex, done := next()

The next variable returns two variables: carIndex and done. As long as there are more
cars to generate, done will be false. So, we can use done to control a for loop that
launches a Goroutine, one for each car to generate:

for !done {
 go func(carIndex int) {
 thisCar, err := GetThisCar(carIndex)
 if err != nil {
 panic(err)
 }
 carChannel <- thisCar
 generatedCars = append(generatedCars, thisCar.Car)
 waitGroup.Done()
 }(carIndex)

 carIndex, done = next()
}

The next variable returns two variables GetThisCar(carIndex) in the code block;
immediately after this, the preceding code calls the RESTful car service that returns the
requested car.

If an error is encountered, we use the built-in function panic to stop the execution of the
current Goroutine. Since we used a deferred function, namely csvfile.Close(), in the
call stack, it will be executed if a panic occurs. Note that we could have had more control
over the termination sequence using the built-in recover function.

The thisCar variable is sent to carChannel, and the Car field is appended to the
generatedCars collection.

Using High-Order Functions Chapter 3

[118]

Currying Goroutine
Notice anything special about the generatedCars collection? (Hint: Our Goroutine is an
anonymous function).

That's right. We are currying the generatedCars collection. Our Goroutine covers over the
generatedCars collection. That's what enables us to reference and append to it from the
Goroutine, regardless of which core it happens to be running in.

We are standing on the shoulders of giants. We're using a Go channel and Goroutines to
emulate an FP generator and other HOFs. Our code is readable, and it doesn't take much
code to make it all work.

A closer look at currying
Before we move on, let's look at the following curried versus non-curried code example to
improve our understanding of currying:

package main

import "fmt"

// numberIs numberIs a simple function taking an integer and returning
boolean
type numberIs func(int) bool

func lessThanTwo(i int) bool { return i < 2 }

// No curried parameters
func lessThan(x int, y int) (bool) {
 return x < y
}

func main() {
 fmt.Println("NonCurried - lessThan(1,2):", lessThan(1, 2))
 fmt.Println("Curried - LessThanTwo(1):", lessThanTwo(1))
}

You would immediately see that the curried example takes only one parameter, whereas
the non-curried example requires two. The idea behind currying is to create new, more
specific functions from smaller, more general, functions by partially applying them. We'll
see more of this in Chapter 8, Functional Parameters.

Using High-Order Functions Chapter 3

[119]

Another take away is the use of a function type. The numberIs is a data type that is a
function that takes an int and returns a bool. That's right. In FP, we are not scared of
functions. We treat them as a regular old data type. In FP everything is data, and data never
changes. It only gets passed around, created and returned.

The value of angle x is equal to the length of the (A)djacent side divided by
the length of the (H)ypotenuse (http:/ /www. mathopenref. com/cosine.
html):

cos x = A / H

In imperative programming, we are led to believe that functions and data are different
things. In FP, we see that functions have no side effects. A good FP example is the geometric
cosine function. For a right-angle triangle, if we pass 15 for the (A)djacent side and 30 for
the (H)ypotenuse, then we get 0.5 as the cosine of angle A. Since we can rely on that fact--
pass 15 and 30 and get 0.5 every time--even with our imperative programming hats on, we
know we can put those values in a lookup table. Imagine a spreadsheet where row numbers
represent the A's and the columns represent the H's. The cell at row 15, column 30, would
have the value 0.5.

See, functions are data! However, we don't always want to store every computed value for
every possible parameter combination in every use case, just where it makes sense to do so.

Imagine the performance of a system where every function call is a table lookup. Now
imagine our reuse potential, where the evaluation parts of the applications are generic. If
your mind is still intact, wait until Chapter 9, Category Theory That Applies, where we will
discuss the application of category theory and type classes.

Using High-Order Functions Chapter 3

[120]

Extending our currying example
But wait, there's more! Let's add the following, just above func main():

func (f numberIs) apply(s ...int) (ret []bool) {
 for _, i := range s {
 ret = append(ret, f(i))
 }
 return ret
}

The apply function is a method bound to a function type, namely numberIs. Our apply
function applies the numberIs function to each argument. Each calculated value is
appended to the newly created array of bools that is then returned to the caller.

Next, we update main() as follows:

func main() {
 fmt.Println("NonCurried - lessThan(1,2):", lessThan(1,2))
 fmt.Println("Curried - LessThanTwo(1):", lessThanTwo(1))
 // use anonymous function
 isLessThanOne := numberIs(func(i int) bool { return i < 1 }).apply
 isLessThanTwo := numberIs(lessThanTwo).apply // use named function
 s := []int{0, 1, 2}
 fmt.Println("Curried, given:", s, "...")
 fmt.Println("isLessThanOne:", isLessThanOne(s...))
 fmt.Println("isLessThanTwo:", isLessThanTwo(s...))
}

Here's the output of this:

NonCurried - lessThan(1,2): true
Curried - LessThanTwo(1): true
Curried, given: [0 1 2]...
isLessThanOne: [true false false]
isLessThanTwo: [true true false]

In pure FP, every function is a function of one argument. We can use currying in Go to
achieve this.

Now, back to cars.

Using High-Order Functions Chapter 3

[121]

Using a WaitGroup variable to manage concurrency
After appending thisCar to the generatedCars collection, we execute
waitGroup.Done(). This decrements the count of the WaitGroup variable. This count
corresponds to the iterator value we assign to the lower variable, and applies to the lower
> upper expression that is assigned to the done return variable:

func carGenerator(iterator func(int) int, lower int, upper int) func()
(int, bool) {
 return func() (int, bool) {
 lower = iterator(lower)
 return lower, lower > upper
 }
}

We use the iterator to know how many Goroutines to launch:

func iterator(i int) int {
 i += 1
 return i
}

Finishing up the GenerateCars function
At the end of our GenerateCars function, we execute another anonymous Goroutine. The
purpose of this Goroutine is to wait for all the previously launched Goroutine generators to
complete. We use waitGroup.Wait to know when the last generator was completed. Then,
it's safe to close carChannel:

 go func() {
 waitGroup.Wait()
 println("close channel")
 close(carChannel)
 }()

 for thisCar := range carChannel {
 generatedCars = append(generatedCars, thisCar.Car)
 }
 return generatedCars
}

The carChannel will block until it receives a new car; this is a result of calling
GetThisCar(carIndex). Recall that WaitGroup.Add(numCarsToGenerate) told
WaitGroup how many cars we'd process. The waitGroup.Done() function counts that
number down to 0, at which time waitGroup.Wait() is executed and carChannel is
closed.

Using High-Order Functions Chapter 3

[122]

We wait until all our Goroutines have fetched data from the RESTful HTTP server
before returning the generatedCars collection. This is a common pattern in FP: we
eliminate as much state change in our data transformation operation as possible. We wait
until all of our data collection processing has completed and then we finally return the final
result.

Our FP work is much like that of an electrician. Electricians turn off the power, hook up all
the wires in the building, and when everything is in place, they flip the power switch and
all the lights come on. Data is power. Don't let your data fly until the last possible moment.

In the main.go file, add the following code:

PrintCars("GenerateCars(1, 3)",
 cars.GenerateCars(1, 3))

The following is its output:

GenerateCars(1, 3)

car: Honda CR-V
car: Honda Accord ES2
car: Lexus IS250

Handling concurrency
We are managing our GetThisCar Goroutines by counting how many we've launched, and
we leverage a WaitGroup variable to decrement that count when they complete. While it is
true that many of our GetThisCar Goroutines execute in parallel, what's important is the
way we handle their concurrency. Using the next iterator and the waitGroup variable, we
are able to simply and effectively deal with their life cycle: starting with each Goroutine,
receiving their results and closing carChannel when our counter indicates all the
Goroutines are completed. Ever tried managing multiple threads of operation using Java or
C++? Notice how we don't have to deal with managing mutexes and hard-to-debug race
conditions? The ease of concurrency implementation is one of Go's many strengths.

Using High-Order Functions Chapter 3

[123]

Concurrency: A property of systems in which several processes are
executing at the same time and potentially interacting with each other.
Concurrency is about dealing with lots of things at once.

Parallelism: This is a type of computation in which many calculations are
carried out simultaneously, operating on the principle that large problems
can often be divided into smaller ones, which are then solved in parallel.
Parallelism is about doing lots of things at once.

See Rob Pike's epic video, Concurrency Is Not Parallelism, at https:/ /www.
youtube. com/ watch? v= cN_ DpYBzKso.

The final HOF example
Our final HOF example is a doozy. We generate 14 cars, filter ByDomestic, map them with
an Upgrade function, filter them by ByHasNumber, and reduce them to a collection of JSON
strings:

PrintCars("GenerateCars(1, 14), Domestic, Numeric, JSON",
 cars.GenerateCars(1, 14).
 Filter(ByDomestic()).
 Map(Upgrade()).
 Filter(ByHasNumber()).
 Reduce(JsonReducer(cars), Collection{}))

The output of this is as follows:

GenerateCars(1, 14), Domestic, Numeric, JSON

car: {"car": {"make": "Ford", "model": " F-150 XL"}}
car: {"car": {"make": "GM", "model": " Hummer H2 X"}}
car: {"car": {"make": "GM", "model": " Hummer H3 X"}}

That's six lines of code. How many lines of code do you think it would take to do this using
an imperative coding style?

Using High-Order Functions Chapter 3

[124]

"This program is already so bloated a little more bloat won't hurt." No. Eventually, it will.
And then it will be too late to fix."

- Rob Pike

"The problem is that adding more bloat is often much easier than integrating properly,
which requires thought, time, and hard decisions."

- Roger Peppe

Summary
FP is a programming style that is declarative. It is more readable and usually requires much
less code than our imperative or object-oriented implementation options.

In this chapter, we implemented the Map, Filter, and Reduce high-order functions.
We studied closures and looked at how currying enables function composition.

Our Reduce implementation demonstrated how to use Goroutines and a Go channel to
perform lazy evaluation. We managed its concurrency using a WaitGroup variable and
some common sense.

In the next chapter, we'll consider the API software design. We'll look at how to build
composable systems using interfaces and closures to enforce the single responsibility
principle and  the open/close principle.

4
SOLID Design in Go

Ever seen comments such as If you like design patterns, use Java, not Go?

In this chapter, we will address this common sentiment regarding software design patterns
and how they fit with developing high-quality Go applications.

Our goal in this chapter is to understand the following topics:

Why many Gophers loath Java
Why Go does not support inheritance
The principles of good software design
How to apply the single responsibility principle in Go
The open/closed principle
Duck typing in Go
How to model behavior in Go using interfaces
How to compose software using the interface segregation principle
Inner type promotion and how to embed interfaces

Why many Gophers loath Java
If you like design patterns, use Java, not Go.

Let's think about where this thinking comes from. Java (as well as C++) tends to focus on
type hierarchies and type taxonomies.

SOLID Design in Go Chapter 4

[126]

Take the ObjectRetrievalFailureException class from the Spring Framework for
example:

This looks far too complicated and over-abstracted, right?

Unlike Java, Go is designed to be a pragmatic language where we won't get lost in infinite
levels of inheritance and type hierarchies.

When we implement a solution in a language that places so much emphasis on a type
hierarchy, levels of abstractions, and class inheritance, our code refactorings tend to be
much more time-consuming. It's best to get the design right before we begin coding.
Leveraging design patterns can save a lot of time when implementing Java solutions.

Inheritance creates a high level of coupling in object-oriented programming. In the
preceding example, a change in the DataAccessException class could cause unwanted
side effects in every class above it in the hierarchy.

It's easy to see why anyone might think there is no place for design patterns in Go.

"If C++ and Java are about type hierarchies and the taxonomy of types, Go is about
composition."

- Rob Pike

SOLID Design in Go Chapter 4

[127]

However, with careful use of abstraction, software design patterns can be entirely
compatible with Go's composable simple design philosophy.

More reasons for loathing Java
Consider the following table:

Java Golang

Language specification (PDF) 788 pages (https://docs. oracle.com/
javase/specs/jls/se8/ jls8.pdf)

89 pages (https://
golang.org/ref/
spec)

Java JDK versus Go SDK (compressed) 279.59 MB (http:// jdk.java. net/9/) 13 MB

Concurrency implementation
complexity

Difficult Easy

The following is a diagram that compares the Java and Go technology stacks from a high
level:

The Java/JVM alternative has a much bigger footprint; The JVM does more (some of which
your application will use) and requires more RAM. Furthermore, since there is more raw
source code to the Java/JVM solution than Go, that means that there is a larger attack
surface for hackers to attack. Performance? It takes time for the JIT compiler to convert your
application's source code to executable binary code than Go, which is natively compiled.

SOLID Design in Go Chapter 4

[128]

Go is smaller and simpler. Java was created for profit and has been aggressively marketed.
Go is not marketed. There is a streamlined process for proposing changes to the Go
language. See "How to Propose Changes To Go" in the Appendix. (I have found no such
process for proposing changes to Java or the JVM, but I can only image that there would be
much more time and effort involved).

Given the preceding comparisons of Go v. Java it seems to boil down to Simplicity v.
Complexity. Gophers tend to prefer simplicity.

"Less is exponentially more."

- Rob Pike

Digging deeper into error handling
In Java, when an exception occurs in a method, the process of creating the exception object
and handing it over to the runtime environment is called throwing an exception.

The normal flow of the program halts when this happens, and JRE tries to find a handler in
the call stack that can process the raised exception.

The exception object contains a lot of debugging information, such as the line number
where the exception occurred, type of exception, the method hierarchy, call stack, and so
on.

Dozens of common exception handling antipatterns exist in Java largely due to the design
and misunderstanding of proper use of Java's type hierarchy.

"Don’t just check errors, handle them gracefully."

- Dave Cheney

SOLID Design in Go Chapter 4

[129]

Rather than asserting the error is a specific type or value and passing up the line, we can
assert that the error implements a particular behavior:

type errorBehavior interface {
 Retryable() bool
}

func IsRetryable(err error) bool {
 eb, ok := err.(errorBehavior)
 return ok && eb.Retryable()
}

If the IsRetryable error occurs, then the caller would know they can retry the operation
that generated the error. The caller does not need to import the library that implements the
thrown error and attempt to understand the intricacies of its type hierarchy to handle the
error properly.

The github.com/pkg/errors package allows you to wrap errors with
context so that later you can recover the cause like this:
 func IsRetryable(err error) bool {
 eb, ok := errors.Cause(err).(errorBehavior)
 return ok && eb.Retryable()
 }

Once the error value has been inspected, it should be handled once. Repackaging the error
and throwing it up for another handler to deal with is not considered a best practice in Go.

A conversation - Java developer, idiomatic Go
developer, FP developer
Java developer: I hate having to write if err != nil everywhere.

Go developer: Get used to it.

Java developer: Why not just throw an exception and let a handler up the call chain deal
with it?

SOLID Design in Go Chapter 4

[130]

Go developer: All good programmers are lazy and that's extra typing.

Developer Conversation

Java I hate having to write if err != nil everywhere

Go Get used to it.

Java Why not just throw an exception and let a handler up the call chain deal with
it? That's less typing and all good programmers are lazy, right?

Go Errors should always be handled immediately.
What if our buggyCode function returns an error yet we continue processing?
Can you see how fragile and wrong that is?
val, err := buggyCode()
// more code
return val, err

FP What bothers me the most about throwing a Java exception is that when we
throw an error up for another function to deal with we have just created a side
effect. Our function is not pure. We have introduce indeterminism into our
application. Since any caller in the call stack can handle an exception, how do
we know which handler handles it? Since we wrote the code closest to the
error, we should know better than any other developer what happened and
how best to deal with it.

Java Okay. I get it, but I am not only lazy but I all that extra if err != nil code
looks like scaffolding that litters my code and makes me want to barf. Let me
clarify my feelings with a couple of photos.

Our code:

SOLID Design in Go Chapter 4

[131]

Java You can see the difference, right?

Go Touche! But you need to realize I am mainly interested in programming backend
systems where correctness trumps pretty. You can take your pretty J2EE enterprise
business applications and wrap them with as many exception handlers as you like.

Java Seriously? You say you like simplicity, but more code looks more complex to me.
That's more code to maintain. That means that instead of having the option to
handle all of my error handling in one place I have to insert little snippets of error
handling code all throughout my application? Shit! I absolutely love Go's fast
compiles times, Go's tiny footprint, the ease of programming concurrent
applications, and so on. I am so frustrated. Is there no better error handling solution
in Go?

FP Glad you asked. Depending on what you want to accomplish, there is a better way.
This way will not only allow you to handle all your errors in one place, but will also
do so with the determinism of pure FP.

Go B.S. I will stop reading this book now because there is no way this will work.

Java Yeah! What's the catch?

FP The solution requires thought, time, and hard decisions, but just like learning to ride
a bike. Once you get up and running you'll keep doing it. It's fun and gets you where
you want to go more efficiently and it's good for you.

Java What's it called?

FP The Lexical Workflow solution

Go You caught me. I'm still reading. Just long enough to say, That's a ridiculous claim
and the name is even more so.

FP I know it sounds like magic and it sort of is. It's built on a things will even more
ridiculous names: the Y-Combinator and Monads. But we have a way to go before
we discuss the details. It will take thought and time and decision making skills.

Java What's there to decide? If it works, I'll use it.

FP The best use case for Lexical Workflow Solution is where you have data you want to
transform. Do you have any workflows where you input data, transform it in some
way and then produce an output? This covers a lot of business use case scenarios
and some system level ones, too.

Java Sounds good. What does it do and what does it not do?

SOLID Design in Go Chapter 4

[132]

FP It handles your typical workflow use case where when you encounter an error, that
error is handled and no further processing occurs in that workflow. If you want to
keep processing even with errors, then we'd be better off using applicative functors.
If Go supported TCO, then that would open up the door to many more FP
possibilities. For now, we need to keep it real (and not worry about stack overflows
or performance implications of using recursion). If/when Go does support TCO then
us FP coders will be able to unleash a plethora of robust, expressive and performant
FP solutions.

Software design methodology
Software design is where we:

Gather requirements
Create specifications from requirements
Implement a solution based on the specifications
Review results and iterate to improve the solution

Traditional waterfall development depends on a perfect understanding of the product
requirements at the outset and minimal errors being executed in each
phase. Source: http://scrumreferencecard.com/scrum-reference-card/

SOLID Design in Go Chapter 4

[133]

Scrum blends all the development activities into each iteration, adapting to discovered
realities at fixed intervals:

 Source: http://scrumreferencecard.com/scrum-reference-card/

In the process of creating specifications, artifacts such as Unified Markup Language (UML)
diagrams are often created to help us think about the problem and craft a viable solution.

Analysis is where we model real-world operations, breaking apart pieces into components.
Design is where we craft a software solution based on the analysis work, our IT
environment, and the frameworks/technology stacks at our disposal.

We abstract away all the concerns that are not pertinent. So, during analysis and design, we
take away and break apart our problem into components that do simple things.

Implementation is when we put those simple things back together again.

Good design
Good design is about saving money in the long run.

If our project is small and the value of our time to market is high, then we can skip the
design process. Otherwise, we should put effort into having a proper software design. This
is a universal truth, regardless of the technology (Java, Go, and so on).

SOLID Design in Go Chapter 4

[134]

Bad design
If our application architecture diagram looks something like the following one, we have
failed to properly design our application:

Simplicity is not easy, but it is worth striving for.

The more we add features to our already complex system, the more complex it becomes.

In a system like this, we cannot consider one thing at a time; we must think of everything
together and all the possible weird interactions that may break our system.

Good versus bad design over time
The following diagram depicts the value of good design over time. As with most graphs,
the x axis depicts the progression of time. The higher we go on the y axis, the more
functionality and feature rich our application becomes. Below the design payoff line,
applications with no design or poor design can quickly produce results.

SOLID Design in Go Chapter 4

[135]

However, there comes a point at which lack of design makes the application brittle, non-
extensible, and difficult to understand:

The application that has been properly designed can be extended easily and becomes much
more maintainable in the long run.

"Over 90% of software cost happens during maintenance phase."

- Fred Brooks, Mythical Man Month

SOLID design principles
The SOLID design principles of Object-Oriented Programming (OOP) apply to designing
Go software solutions.

SOLID Design in Go Chapter 4

[136]

Single responsibility principle
Single responsibility principle says, Do One Thing and Do It Well. We see the SRP at play in
the Go standard libraries. Here're a few examples:

If a pull request enhances the aes/crypto package, would you expect that code merge to
affect the functionality of the database/sql/driver package (or any package)? No. Of
course not. Each package is clearly name spaced and highly cohesive; they perform specific
tasks and do not cross over into other concerns.

"A class should have one, and only one, reason to change."

– Robert C Martin

When Mr. Martin said that a class should have only one reason to change, it's obvious that
he was talking about OOP design, but the same principle applies to our Go application.
Should the tax calculation update affect the user interface or layout of any reports, other
than showing a different amount? No. Why? Because one is cosmetic in nature and the
other is not. Those are two separate responsibilities that should be handled by different,
loosely coupled classes/modules.

Our classes/modules should be highly cohesive, performing as specific a role as
possible. Code that has a single responsibility can handle the changing requirements better
without adversely affecting other parts of our application. If we have a request to change
our class/module and since it does only one thing then the reason for the change can only be
related to its one responsibility.

SOLID Design in Go Chapter 4

[137]

Application of the SRP will drive our design towards smaller and smaller interfaces.
Eventually, we will arrive at the ultimate interface. The interface with one method. For
example, in Chapter 5, Adding Functionality with Decoration, we'll look at Go’s
complimentary Reader and Writer interfaces:

type Reader interface {
 Read(p []byte) (n int, err error)
}
type Writer interface {
 Write(p []byte) (n int, err error)
}

What the SRP means to FP is aligned with the Unix philosophy.

"Although that philosophy can't be written down in a single sentence, at its heart is the
idea that the power of a system comes more from the relationships among programs than
from the programs themselves. Many UNIX programs do quite trivial things in isolation,
but, combined with other programs, become general and useful tools."

- Rob Pike

In lambda calculus, each function has exactly one parameter. It may look like our pure
function accepts multiple parameters, but it's actually just currying the parameters.
Our function takes the first argument in the list and returns a function which takes the rest
of the arguments; It continues to process each argument until they are all consumed.
Function composition works when every function accepts only one parameter.

three := add(1, 2)
func add1 := + 1
three == add1(2)

That was pseudo code for what happens when we curry. It converts a two parameter call
into a one parameter call. Currying stores data (the number 1) and an operation (the
addition operator) for use later. How is that like an object in OOP?

SOLID Design in Go Chapter 4

[138]

Function composition
Function composition is where we combine two smaller functions to create a new function
that accomplishes the same goal as the two smaller ones. Both ways get us from an a to c.
Below, f1 accepts an a and returns a b. f2 accepts a b and returns a c. We can
compose/combine those two functions and get a single function that accepts an a and
returns a c:

Function composition is the cornerstone to pure FP; It's what allows us to build larger
abstractions out of smaller ones.

Open/closed principle
Software should be open for extension but closed for modification. Embedding fields in a
struct allows us to extend one type with another. The object (CarWithSpare) that
embedded the other (Car) has access to its fields and methods. The CarWithSpare object
can call Car methods, but cannot modify the Car object's methods. Therefore, Go's types,
while being open for extension, are closed for modification. Let's look at an example:

package car

import "fmt"

type Car struct {
 Make string
 Model string
}
func (c Car) Tires() int { return 4 }
func (c Car) PrintInfo() {
 fmt.Printf("%v has %d tires\n", c, c.Tires())
}

SOLID Design in Go Chapter 4

[139]

We defined our Car type and two methods, Tires and PrintInfo. Next, we'll define our
CarWithSpare type and embed the Car type as an unnamed field:

type CarWithSpare struct {
 Car
}
func (o CarWithSpare) Tires() int { return 5 }

In our main.go file, we create a Honda Accord and call its PrintInfo method. As
expected it returns 4 tires.

Next, we create a Toyota Highlander, but when we print its info, it prints 4 tires instead of
5. Why?

package main

import (
 . "car"
 "fmt"
)

func main() {
 accord := Car{"Honda", "Accord"}
 accord.PrintInfo()
 highlander := CarWithSpare{Car{"Toyota", "Highlander"}}
 highlander.PrintInfo()
 fmt.Printf("%v has %d tires", highlander.Car, highlander.Tires())
}

The following is the output:

{Honda Accord} has 4 tires
{Toyota Highlander} has 4 tires
{Toyota Highlander} has 5 tires

That's because PrintInfo is a method of Car, but since CarWithSpare is missing that
method, when we call highlander.PrintInfo we're actually executing Car's method (not
CarWithSpare).

In order to print the actual number of tires our highlander has, we must manually delegate
the call by executing highlander.Tires directly from within our fmt.Printf statement.

SOLID Design in Go Chapter 4

[140]

Do we have other options? Yes. We can override the PrintInfo method. In other words,
we can define a PrintInfo method for our CarWithSpare as follows:

func (c CarWithSpare) PrintInfo() {
 fmt.Printf("%v has %d tires\n", c, c.Tires())
}

The following is the output:

{Honda Accord} has 4 tires
{Toyota Highlander} has 5 tires
{Toyota Highlander} has 5 tires

What if we call accord.PrintInfo() again? We get the following output:

{Honda Accord} has 4 tires

So, Go allows us to:

implicitly call an embedded object's method (if not defined)
manually delegate to call our object's method
override an embedded object's method

What about method overloading?

Not allowed. If we were to attempt to create another PrintInfo method with a different
argument signature, Go would throw a compiler error:

Using the decorator pattern in the next chapter, we'll see how we can extend functionality
without modifying the existing code.

SOLID Design in Go Chapter 4

[141]

Open / close principle in functional programming
Similar to our preceding Go example where we added a new method (PrintInfo) to our
base type (Car), pure functional programming languages also add new functions over
existing data types without having to recompile existing code and while retaining static
type safety.

The expression problem also known as the extensibility problem addresses a
software language's ability to add new methods and types to a program in
a type safe manner. For details, see Feature Oriented Software
Development (FOSD) Program Cubes where a base program (in a family
of related programs called a software product line) (http:/ /
softwareproductlines. com/) is incrementally augmented with features
to produce a complex program.

The following diagram shows how programs can be built by composing models from
features and then transforming those models into executables:

The FOSD methodology advocates that complex systems can be built by adding features
incrementally where the domain models are functions and constants and the programs,
which are represented as expressions, can be generated to perform specific tasks.

SOLID Design in Go Chapter 4

[142]

FantasyLand JavaScript specification
The FantasyLand project specifies interoperability of common algebraic structures:

Each data type in the hierarchical diagram is called an algebraic data type because each
consists of algebra, that is, a set of values, a set of operators that it is closed under, and the
rules it must obey.

Let's take a simple example, the Setoid.

Setoid algebra
The following are the Setoid rules:

Name of rule Description

Reflexivity a.equals(a) === true

Symmetry a.equals(b) === b.equals(a)

Transitivity if a.equals(b) and b.equals(c), then a.equals(c)

If b is not the same Ord, behavior of lte is unspecified (returning false is
recommended).
lte must return a Boolean (true or false).

The values used in the rules are a, b, and c. A value which has an Ord must provide an lte
method. The equals method is this algebra's operator and it takes one argument.

That's it. That's all there is to it!

SOLID Design in Go Chapter 4

[143]

Ord algebra
Here're the Ord rules:

Name of rule Description

Totality a.lte(b) or b.lte(a)

Anti-symmetry If a.lte(b) and b.lte(a), then a.equals(b)

Transitivity If a.lte(b) and b.lte(c), then a.lte(c)

b must be a value of the same Ord as a. If b is not the same Setoid, then
the behavior of equals is unspecified (returning false is recommended).
The equals variable must return a Boolean (true or false).

The values used in the rules are a, b and c. A value which has a Setoid must provide an lte
method. The lte method is this algebra's operator and it takes one argument.

From the preceding diagram, we see that an Ord is a Setoid, so the Ord has an Equals
operator and the Ord must obey the same rules that a Setoid does, as well as its own rules.

Later in our book, we'll explore Haskell's type class hierarchy and look at the Functor,
Monoid, and Monad algebras.

The expression problem
Different languages solve the expression problem in various ways:

Open classes
Multimethods
Coproducts of functors
Type classes
Object algebras

The problem they solve is the same as what we looked at with our CarWithSpare example;
It's all about how to add new functions over existing data types without having to
recompile existing code and while retaining static type safety.

Go has rudimentary support for the expression problem. Type classes,
object algebras, and so on. are not part of Go's standard library, but there's
nothing stopping us from building any of the aforementioned solutions.
Here's a great start: https:/ /github. com/ SimonRichardson/ wishful.

SOLID Design in Go Chapter 4

[144]

Liskov substitution principle
In OOP terms, the Liskov Substitution Principle says that objects of the same type or subtype
should be substituted and can be replaced by the other, without affecting the caller. In other
words, when we implement an interface, our class should implement all the methods
defined in the interface and satisfy all interface requirements. And in even fewer words,
satisfy interface contracts.

The compiler will enforce that our methods have the correct signatures. The LSP goes a bit
further and demands that our implementation should also have the same invariant,
postconditions, and other properties stated or implied by the documentation of the
superclass or interface.

This OOP method stinks
This is what a method contract looks like in the OOP world:

Our method m is passed an a, does some processing and returns b. An exception can occur,
which may or may not be caught and handled and errors can be returned. Additionally, in
order for the method to properly satisfy its contract, it's up to us to read the documentation
(which of course will always be completely accurate and up-to-date.... not!) in hopes that we
cover all the preconditions, invariant, and postconditions.

An invariant is something that must be always be true for the life of the method. For
example, if our class has a duration member variable, that value must always be a positive
float. Another example could be that our internal latitude and longitude values must
always be in the northern hemisphere. We could go so far as to write invariance validator
private methods to ensure our invariant are in compliance with their range of acceptable
values.

SOLID Design in Go Chapter 4

[145]

A precondition is something that must be true at the time our method is called. For
example, before we execute our consummateMarriage method we should ensure that our
chosen wouldBeSpouse is not already married to another; Otherwise, we'd likely be in
violation of our state's anti-polygamy laws. We would likely do our checking by executing
another verifyPersonIsSingle method.

Let's not forget the postconditions. An example might be: After executing
our consummateMarriage method we should ensure that the person with whom we
consummate is actually the same person on our marriage certificate. Marrying the wrong
person could cause all sorts of problems.

The last issue to deal with is side effects. A side effect is what happens when our method
changes something other than the b (or the error) that it outputs. For example, if our
postcondition check caused a credit card charge from a private investigation firm, that
charge would be a side effect.

Our FP function smells like roses
This is what our function contract looks like in the FP world:

See the difference? We can almost smell the difference! Hey, wait a minute! (An OOP
programmer might be thinking...)

This pure function is missing some stuff! This is an unfair comparison!

That's right. It's not fair, but it's real.

And what makes it real is our inputs type.

SOLID Design in Go Chapter 4

[146]

In FP, contracts don't lie
Let's look an example of some imperative code:

type Dividend struct {
 Val int
}
func (n Dividend) Divide(divisor int) int {
 return n.Val/divisor
}

func main() {
 d := Dividend{2}
 fmt.Printf("%d", d.Divide(0))
}

What is our contract in the preceding code?

The contract is our method's signature: func (n Dividend) Divide(divisor int)
int

What three questions must our contract answer?

What does our contract expect? 1.

Answer: It expects the following:
The Dividend.Val to be populated with an int
The divisor to be an int

What does our contract guarantee? 2.

Answer: It promises to return an integer

What does the contract maintain? 3.

Answer: Not applicable in this simple case

SOLID Design in Go Chapter 4

[147]

What happens when we run the preceding code?

We get a runtime panic! Did our contract hold true, or did it lie to us?

In pure FP, we don't rely on lowly types like int, char, or even string. We leverage the full
power of an amazing type class system.

In a pure FP language like Haskell, we can define a PostiveInt type. So, instead of writing
a method to validated that an input parameter is positive, we define a type named
PostiveInt that guarantees that only positive integers will be input:

PositiveInt :: Int -> Maybe Positive
PositiveInt n = if (n < 0) then Nothing else Just (Positive n)

SOLID Design in Go Chapter 4

[148]

In FP terms, LSP says, Contracts don't lie;

In FP, we don't have to rely on our test suite to verify that our application properly enforces
it requirements. In FP, assuming we have designed our software properly, if it compiles
then it is correct. We let our type system enforce our requirements.

In an OOP courting relationship, the input (candidate spouse) is only verified to be Female.
When we later discover that she is not the right type of woman, that is, she's already
married, that would render the marriage contract invalid.

This is what happens when we don't properly type check our input:

SOLID Design in Go Chapter 4

[149]

This is the picture when we use pure FP:

Looks simple, but where are the external interactions like in-laws that can lead to divorce?
What about children? Aren't they what we might call side-effects of a marriage?

Monads provide a way for our couple to interact with the external world; To handle
possibly harmful influences and generate beautiful side effects. It looks something like this:

The trick to Monads is that all external interactions are contained (in the box). We'll cover
Monads in depth in our last chapter.

This book is about learning functional programming in Go. Hence, we will
embrace the full meaning of the term functional. Functional does not only
mean pure. If we're using functions, we're doing functional programming.
Go is a multi-paradigm language that does not force us to be completely
pure or completely imperative. The vast majority of Go code these days is
imperative... take the standard libraries as an example. There is a time and
a place for implementing pure functional programming techniques. The
more we learn about all aspects of Go's functional capabilities, and pure
functional programming concepts, the better equipped we will be to
prudently apply the proper style of coding to meet our application
development requirements.

SOLID Design in Go Chapter 4

[150]

Let's see the LSP at work with a duck typing example.

Duck typing
Go does not have inheritance or subtypes, but we have interfaces. Functions that implement
the methods of an interface satisfy the interface contract implicitly.

Go supports what's called duck typing. If it walks like a duck and quacks like a duck, then
it's a duck. In other words, if we have a Go struct with methods that implement the Duck
interface, that is, if it has the Walk() and Quack() methods, then for all intents and
purposes, our struct is a duck.

In object-oriented languages, such as Java, we'd be tempted to design our ducks as follows.

What can go wrong with inheritance?
We are told that ducks can walk and quack. So we implement those behaviors in our parent
class, namely Duck:

We start out with Mallard and BlueBilled ducks. We are able to reuse the walk() and
quack() methods via inheritance.

SOLID Design in Go Chapter 4

[151]

Next, we hear that ducks can fly. So we implement the fly behavior in our Duck class and all
the child classes inherit this new behavior:

All is well until we add Pekins ducks to our flock.

The problem that we did not account for in our original design is that most domestically
bred ducks cannot fly:

The good news for us is that this sort of a design flaw is not even a possibility in Go!

SOLID Design in Go Chapter 4

[152]

The way we model behavior in Go is by using interfaces (Go does not support inheritance).

Interface segregation principle
It is better to have a lot of single purpose-specific interfaces than one general purpose
interface. Our APIs should not accept references to structures that it does not need, and
conversely, our client implementations should not depend on code that it does not use.

We'll see this soon in our Viva La Duck code example in the form of separate EatBehavior
and StrokeBehavior interfaces.

When we strictly apply the integration segregation principle we end up with interfaces
with a single method. Such objects represent data with behavior, but it can also be modeled
as behavior with data, which is what closures are in FP.

This is another area where it would be nice if Go supported Generics. Why create boiler
plate code to handle slices of Int types, Customers, or AvailableWomen when a single
enumeration of T would work (with less code)?

Dependency inversion principle
The dependency inversion principle (DIP) states that we should depend upon
abstractions, not concretions. DIP is about removing hardwired dependencies from our
code.

For example, the following code violates DIP:

import "theirpkg"

func MyFunction(t *theirpkg.AType)

func MyOtherFunction(i theirpkg.AnInterface)

The MyOtherFunction function is not quite as bad as the MyFunction function, but both
implementations couple our implementation with a type and an interface of another
package.

In general, good software design relies on high cohesion, where we write functions that do
one thing and do it well and are loosely coupled.

In pure functional programming, dependency injection is accomplished by passing partially
applied functions around. Some call it the hollywood principle, as in, Don't call us, we'll call
you. In JavaScript, this is frequently accomplished using callbacks.

SOLID Design in Go Chapter 4

[153]

Note that there is a subtle difference between callbacks and continuations. Callback
functions may be called multiple times in the flow of an application and each time they
return a result and processing continues. When a function calls another function as the last
thing it does then the second function is called a continuation of the first.

The big reveal
A monad chains continuations.

Recall the monad from the hierarchy diagram of Fantasy Land algebras earlier in this
chapter?

We'll talk a lot more about Monads in the last unit of our book, but for now let's take a
sneak peak at the big picture.

Earlier we saw composition of functions:

That's actually a problem because that's not a Monoid. A Monoid looks like this:

And that's the big reveal. Monads are purple!

Ha. Gotcha!

Besides the color, what can you see that's different between the monadic function and the
ones above it?

What about the a going in and the a coming out? That means that if a Monoid accepts a
parameter of type A (by convention, a lower case a variable is a value of type A), then it will
spit out another a value.

SOLID Design in Go Chapter 4

[154]

Guess what that's called? When our function returns the same type that it's fed? We call that
an endomorphism where en means same and morphism means function; So, it changes from an
a to an a. Simple.

What about the chain word used in the a monad chains continuations statement?

How about a nice monoidal purple chain of functions?

What else do we know about this purple monoid chain?

If all functions are monids then we can combine them in any order (associativity rule).

Great, but what can we do with a Monoid chain? Can we run the processes in parallel?

Run in parallel? Well, that depends on what we're dealing with. Many things can run in
parallel.

In theory, yes but in practice we'll need to deal with the same considerations other
Map/Reduce solutions such as Hadoop must deal with.

MapReduce
MapReduce is a technique that splits big datasets into many smaller ones. Each small
dataset is separately, but simultaneously processed on different servers. The results are then
gathered and aggregated to produce a final result.

SOLID Design in Go Chapter 4

[155]

How does it work?

Suppose we have a lot of web servers and we want to determine the top requested pages
across all of them. We can analyze web server access logs to find all the requested URLs,
count them, and sort the results.

The following are the good use cases for MapReduce:

Gathering statistics from servers, for example, top 10 users, top 10 requested URL
Compute the frequencies of all keywords found in your data

The following are the use cases not good for MapReduce:

Jobs that require shared state
Finding individual records
Small data

MapReduce example
Suppose we have an Apache web server access log files with entries that look like this one:

198.0.200.105 - - [14/Jan/2014:09:36:51 -0800] "GET
/example.com/music/js/main.js HTTP/1.1" 200 614
"http://www.example.com/music/" "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.63
Safari/537.36"

What if we are interested in knowing the top 5 most accessed JSON files?

We could perform a MapReduce directly from the terminal using standard Unix string
processing commands:

$ cat access10k.log | while read line; do echo "$line" | awk '{print $7}' |
grep "\.json";done | sort | uniq -c | sort -nr
 234 /example.com/music/data/artist.json
 232 /example.com/music/data/songs.json
 227 /example.com/music/data/influencers.json
 28 /example.com/music-no-links/data/songs.json
 28 /example.com/music-no-links/data/influencers.json
 28 /example.com/music-no-links/data/artist.json
 8 /example.com/music/data/influencers2.json

SOLID Design in Go Chapter 4

[156]

That works great for a few thousand lines. If we type time in front of that last command we
get something like the following:

real 1m3.932s
user 0m38.125s
sys 0m42.863s

But what if each server has millions of lines of code and we have a lot of servers?

Time for MapReduce!

On each server we can perform our mapping; Starting log file entries as input and resulting
in a set of key value pairs:

Next, we take each intermediate result from each server and feed them into our reduce
function which then spits out the results:

SOLID Design in Go Chapter 4

[157]

Our top 5 most requested JSON files might look like this:

85733 /example.com/music/data/artist.json
71938 /example.com/music/data/songs.json
57837 /example.com/music/data/influencers.json
17500 /example.com/music-no-links/data/songs.json
17500 /example.com/music-no-links/data/influencers.json

What can we glean from this example? It looks like good candidates for MapReduce include
use cases where:

We have so much data that running it all sequentially on one server would take
too long
Our output, from the map phase, consists of a list of key, value pairs
We can run each map or reduce function in isolation, knowing that the output of
our function relies only on its input

But what else is going on here that might not be readily apparent?

What else makes this process of Map/Reduce work?

What FP patterns are lurking in the shadows? (Hint: We've already seen it and it has to do
with data types.)

What else can Monads do?
Monads can be used to clearly convey our business logic and manage our applications
processing flows and more.

SOLID Design in Go Chapter 4

[158]

You know what I'm talking about. Consider the following piece of code:

if err != nil {
 return nil, fmt.Errorf("%s:%d: %v", sourceFile, sourceLine, err)
}

Those if err != nil blocks litter our code and obscure our code's original intent. If this
is our happy path code:

happy path code

This is what it looks like after we add error checking:

add error checking

Guess what our FP code would look like after including error handling?

FP code including error handling

How can this be? No inline error checking? We'll cover this topic in
Chapter 9, Functors, Monoids, and Generics.

Viva La Duck
Our next code example will illustrate several of the SOLID design principles applied to our
Go implementation.

In our Viva La Duck application, our duck must visit a number of ponds looking for bugs to
eat. To keep things simple, we'll assume that each stroke will require the duck to eat one
bug. Each time the duck paddles its feet (one stroke), the duck's supply of strokes is
decreased by one.

We're not concerned with how the duck moves from pond to pond, but rather the number
of strokes the duck must make to traverse the length of the pond. If a pond has bugs to eat,
they will be found on the other side of the pond. If the duck runs out of energy, it dies.

Our program is a self-contained runnable Go source file. Its package name is main and it
has a main() function. We'll use the DASHES constant later when we print the statistics
indicating what the duck encountered at each pond.

SOLID Design in Go Chapter 4

[159]

The Pond struct contains the state of each pond, that is, the number of bugs it supplies for
the duck to eat and how many strokes are required to cross the pond:

package main

import (
 "fmt"
 "errors"
 "log"
)
const DASHES = "----------------------"

type Pond struct {
 BugSupply int
 StrokesRequired int
}

One of the first things we should do is define our system's behaviors in the form of simple
interfaces. We should think about how we can embed our interfaces into a larger set of
interfaces as we compose our system's behavior patterns. It makes sense to categorize a
thing by its abilities because a thing is defined by its actions.

Since this is a book about functional programming, now would be a good time to mention
that a major benefit of using interfaces is that they allow us to group our application's
functions in order to model real-life behaviors:

type StrokeBehavior interface {
 PaddleFoot(strokeSupply *int)
}

type EatBehavior interface {
 EatBug(strokeSupply *int)
}

Each interface (StrokeBehavior and EatBehavior) represents a fine-grained, well-
defined behavior. Breaking apart our system into small parts will make our application
more flexible and more easily composable:

type SurvivalBehaviors interface {
 StrokeBehavior
 EatBehavior
}

By declaring small, single purpose interfaces, we are now free to embed them in new, more
feature-rich interfaces.

SOLID Design in Go Chapter 4

[160]

Grouping interfaces is a common pattern we can find in the Go standard
library. For example, in the httputil package, we find the following:

type writeFlusher interface {
 io.Writer
 http.Flusher
}

Next, we define our duck. Our duck is stateless and has no fields:

type Duck struct{}

We define two methods for our duck. The receiver, Duck, must be defined in the same
package as our method, Stroke. Since we are only using a main package, that's not a
problem.

Modeling our system after the real world, we define a Foot struct and a PaddleFoot
method for that foot. Each time our duck paddles its foot, we'll decrement our duck's
strokeSupply type:

type Foot struct{}
func (Foot) PaddleFoot(strokeSupply *int) {
 fmt.Println("- Foot, paddle!")
 *strokeSupply--
}

Similarly, we define a Bill type and its EatBug method that increments our duck's
strokeSupply type:

type Bill struct{}
func (Bill) EatBug(strokeSupply *int) {
 *strokeSupply++
 fmt.Println("- Bill, eat a bug!")
}

For every stroke, our duck will paddle its foot.

SOLID Design in Go Chapter 4

[161]

Our Stroke method will return an error if the duck runs out of energy and gets stuck in the
middle of a pond:

func (Duck) Stroke(s StrokeBehavior, strokeSupply *int, p Pond) (err error)
{
 for i := 0; i < p.StrokesRequired; i++ {
 if *strokeSupply < p.StrokesRequired - i {
 err = errors.New("Our duck died!")
 }
 s.PaddleFoot(strokeSupply)
 }
 return err
}

Now, we define our duck's eating behavior. When our duck reaches the end of the pond, it
gets to eat all the pond's bugs:

func (Duck) Eat(e EatBehavior, strokeSupply *int, p Pond) {
 for i := 0; i < p.BugSupply; i++ {
 e.EatBug(strokeSupply)
 }
}

The SwimAndEat method's signature is slightly different than that of Eat and Stroke
methods. Notice the differences?

All three methods have a Duck as their receiver, but the SwimAndEat method defines the
variable d. That's because we need to reference the Stroke and Eat methods within the
SwimAndEat method.

Also, they all take an interface as their first parameter, but SwimAndEat takes a composed
set of interfaces, namely StrokeAndEatBehaviors, which it uses polymorphically for both
Stroke and Eat:

func (d Duck) SwimAndEat(se SurvivalBehaviors, strokeSupply *int, ponds
[]Pond) {
 for i := range ponds {
 pond := &ponds[i]
 err := d.Stroke(se, strokeSupply, *pond)
 if err != nil {
 log.Fatal(err) // the duck died!
 }
 d.Eat(se, strokeSupply, *pond)
 }
}

SOLID Design in Go Chapter 4

[162]

Pass by value or reference?
Here's the rule of thumb--if you want to share a state, then pass by reference, that is, use a
pointer type; otherwise, pass by value. Since we need to update our duck's
strokeSupply type in this Stroke method, we pass it as an int pointer (*int). So, pass a
pointer parameter only when absolutely necessary. We should begin to code defensively,
assuming that someone may try to run our code concurrently. When we pass our
parameters by value, it's safe for concurrent use. When we pass by reference, we may need
to add sync.mutex or some channels to coordinate concurrency.

Our duck builds its energy back by eating more bugs that it gets from the pond:

func (Duck) Eat(e EatBehavior, strokeSupply *int, p Pond) {
 for i := 0; i < p.BugSupply; i++ {
 e.EatBug(strokeSupply)
 }
}

Since we are designing our software application to model the real world, things such as
duck feet and duck bills are natural candidates for struct names to represent real-life
objects. Feet are used to paddle and duck bills are used to eat bugs. Each paddle, that is,
stroke, reduces our duck's supply of possible strokes. Each bug is worth one stroke.

We tell our duck's foot to paddle. As long as the duck has energy, that is, it's
strokeSupply type is greater than zero, the duck will obey. However, if strokeSupply is
zero, then our duck will be stranded in the middle of the pond before it gets to its next
supply of bugs to eat:

type Foot struct{}
func (Foot) PaddleFoot(strokeSupply *int) {
 fmt.Println("- Foot, paddle!")
 *strokeSupply--
}

Notice that we are passing a pointer to our supply of strokes. This means that our
application is maintaining a state. We know that pure functional programming does not
permit variable mutations. That's okay because this chapter is about good software design
using Go. Pure functional programming in Go is covered in Chapter 1, Pure Functional
Programming in Go:

type Bill struct{}
func (Bill) EatBug(strokeSupply *int) {
 *strokeSupply++
 fmt.Println("- Bill, eat a bug!")
}

SOLID Design in Go Chapter 4

[163]

For every pond that our duck encounters, it must swim and eat bugs to survive.

Since our duck's SwimAndEat method requires both StrokeBehavior and EatBehavior,
we pass the SurvivalEatBehaviors interface set as its first parameter:

func (d Duck) SwimAndEat(se SurvivalBehaviors, strokeSupply *int, ponds
[]Pond) {
 for i := range ponds {
 pond := &ponds[i]
 err := d.Stroke(se, strokeSupply, pond)
 if err != nil {
 log.Fatal(err) // the duck died!
 }
 d.Eat(se, strokeSupply, pond)
 }
}

Recall that the duck's Stroke method takes StrokeBehavior, not StrokeEatBehavior!
How is this possible? This is part of the magic of type embedding.

Type embedding with Go interfaces
Go allows us to declare a type inside another type. In our SurvivalBehaviors interface,
we have declared two fields of type interface. Through inner type promotion, the Go
compiler performs interface conversions and the inner interface becomes part of the outer
interface:

type SurvivalBehaviors interface {
 StrokeBehavior
 EatBehavior
}

The d.Stroke function takes a SurvivalBehaviors type as though it received
StrokeBehavior, and the d.Eat function takes a SurvivalBehaviors type as if it
received EatBehavior.

This means that the outer type, SurvivalBehaviors, now implements the interface of
both StrokeBehavior and EatBehavior.

SOLID Design in Go Chapter 4

[164]

Interface embedding to add minor features
Here's another example of using interface embedding:

type BytesReadConn struct {
 net.Conn
 BytesRead uint64
}

func (brc *BytesReadConn) Read(p []byte) (int, error) {
 n, err := brc.Conn.Read(p)
 brc.BytesRead += uint64(n)
 return n, err
}

By embedding net.Conn in our BytesReadConn we are able to override its Read method
not only perform the Conn.Read operation, but also to count the number of bytes read.

There's an ELO song that's ringing in my head now.

A Go error handling idiom
There's yet another common Go pattern at play in our code:

err := d.Stroke(se, strokeSupply, pond)
if err != nil {
 log.Fatal(err) // the duck died!
}

Errors should be handled once and as soon as possible.

SOLID Design in Go Chapter 4

[165]

Some consider this as an antipattern that litters code with if err != nil blocks. We'll
overlook that sentiment, for now, in favor of its simplicity and pragmatism.

Next, we'll define a Capabilities struct that embeds both behavior interfaces and all the
important strokes fields. The Capabilities type defines what the duck can do. It has a
number of strokes that it can use to cross each pond and two behaviors--one that increases
its stroke count and the other that reduces the count but helps it to get close to its next
source of food:

type Capabilities struct {
 StrokeBehavior
 EatBehavior
 strokes int
}

In Go, any method or field of an embedded/inner interface is accessible to the outer
interface. Note that we're not saying parent or child, as that might imply inheritances. What
we have is called inner type promotion, not inheritance. As long as an inner field or method
name begins with a capital letter, it will be accessible to the outer object.

It's time to run our program
Now, it's time to provide the duck with its starting resources and a list of ponds to swim in
and see whether our duck survives to live another day.

Let's assume our duck has five bugs in its belly, which is worth five strokes (we made our
ponds and bugs very small to simplify our model):

func main() {
 var duck Duck
 capabilities := Capabilities{
 StrokeBehavior: Foot{},
 EatBehavior: Bill{},
 strokes: 5,
 }

Our duck's first set of ponds will consist of two ponds. Each supplies only one bug. The first
pond requires three strokes to reach the other side. The second pond requires two strokes:

ponds := []Pond{
 {BugSupply: 1, StrokesRequired: 3},
 {BugSupply: 1, StrokesRequired: 2},
}
duck.SwimAndEat(&capabilities, &capabilities.strokes, ponds)
displayDuckStats(&capabilities, ponds)

SOLID Design in Go Chapter 4

[166]

The call to the duck's SwimAndEat method uses the address of its capabilities because we
want to share the duck's Capabilities object as our duck moves from one set of ponds to
another.

At the end of each day, after the duck has crossed each pond and eaten the bugs it finds, we
display the duck's statistics:

func displayDuckStats(c *Capabilities, ponds []Pond) {
 fmt.Printf("%s\n", DASHES)
 fmt.Printf("Ponds Processed:")
 for _, pond := range ponds {
 fmt.Printf("\n\t%+v", pond)
 }
 fmt.Printf("\nStrokes remaining: %+v\n", c.strokes)
 fmt.Printf("%s\n\n", DASHES)
}

Here's the output of this:

- Foot, paddle!
- Foot, paddle!
- Foot, paddle!
- Bill, eat a bug!
- Foot, paddle!
- Foot, paddle!
- Bill, eat a bug!

Ponds Processed:
{BugSupply:1 StrokesRequired:3}
{BugSupply:1 StrokesRequired:2}
Strokes remaining: 2

At the end of the first day, the duck crossed two ponds and has two strokes in reserve to
start a new day.

The next day, our duck has only one pond to swim. Our duck has two bugs in its belly.
There're two bugs in this pond. Let's see whether our duck makes it to the other side:

ponds = []Pond{
 {BugSupply: 2, StrokesRequired: 3},
}
duck.SwimAndEat(&capabilities, &capabilities.strokes, ponds)
displayDuckStats(&capabilities, ponds)

SOLID Design in Go Chapter 4

[167]

Here's the output of this:

- Foot, paddle!
- Foot, paddle!
- Foot, paddle!

2017/05/12 19:11:51 Our duck died!
exit status 1

Unfortunately, our duck did not have enough strokes to cross the pond. Bummer!

The moral of our story is as follows:

Model applications in meaningful (like real world) ways
Start by creating a set of behaviors as single responsibility interface types
Compose simple interface types into larger, coherent sets of behaviors
Ensure each function accepts only the types of behaviors it requires
Don't be a duck

SOLID Design in Go Chapter 4

[168]

Summary
In this chapter, we saw how to use bad design using inheritance in Java and contrasted that
solution to using composition in Go.

The Gang of Four's (GoF) epic book, Design Patterns: Elements of Reusable Object-Oriented
Software, discussed design patterns that addressed design flaws in the object oriented
languages like Java. For example, in the Putting Reuse Mechanisms to Work section, the GoF
book states, Favor object composition over class inheritance.

This design principle is not even applicable to Go. Go does not support inheritance. No
extra thought or work is required for Go developers. Go promotes composition out-of-the-
box.

"These compositional techniques are what give Go its flavor, which is profoundly different
from the flavor of C++ or Java programs."

- Rob Pike

Composition is a software design pattern we should use to build better APIs.

We start by breaking our system into small parts: single responsibility interfaces. We can
then put the pieces back together again. When we architect our APIs using composition, our
applications have a better chance to grow and adapt to the requirements that may change
over time. Our applications become easier to reason about and maintain.

In the next chapter, we'll persist in our pursuit of good design and will focus on the
decorator pattern. We'll study Go's Reader and Writer interfaces and see why less is more.
We'll implement channels in order to control the life cycle of a concurrent program and
much more.

5
Adding Functionality with

Decoration
In this chapter, we'll continue to address this remark: If you like design patterns, use Java, not
Go. We'll do so with the help of the decorator and strategy patterns.

Our goal in this chapter is to understand:

Go's Reader and Writer interfaces
Why designing using the interface composition is better than type hierarchy
design
How to design with and implement the Decorator Pattern
Inversion of Control (IoC) by implementing an IoC framework
How to set up a request timeout using a proxy
How to apply the Strategy Pattern when load balancing requests
How to understand easy-metrics graphs
How to implement a simple yet effective logger using standard library interfaces
How to enrich HTTP requests with logging using dependency injection
How to use channels to control the flow of events in a concurrent program
A better way to extend our application's functionality

Adding Functionality with Decoration Chapter 5

[170]

Interface composition
Much like a writer composes a book from a set of chapters or a chapter from a set of
sections, as Go programmers, we can compose our software applications using functional
composition.

We can take the functional composition approach to design a software solution that enables
us to design complex APIs from a set of smaller ones.

For example, in the Viva La Duck example from the previous chapter, we composed the
SurvivalBehaviors interface from two smaller ones:

type SurvivalBehaviors interface {
 StrokeBehavior
 EatBehavior
}

Nothing is difficult. Complex things are simply built upon smaller, simpler things! When
we approach all our software design problems from this perspective, we are able to more
easily model the real world--our applications become much easier to read and reason about.

Go's complimentary Reader and Writer interfaces
To help us appreciate how Go encourages composition, let's look at Go's complimentary
Reader and Writer interfaces:

type Reader interface {
 Read(p []byte) (n int, err error)
}

Adding Functionality with Decoration Chapter 5

[171]

type Writer interface {
 Write(p []byte) (n int, err error)
}

What can we observe from these interface declarations? Simplicity.

They both have a single method that takes a single parameter and returns a single result
(along with the requisite error value).

What does that buy us? For starters, we can compose broad interfaces by simply adding
simpler interfaces.

Example usages of the Reader and Writer interfaces
The Hash interface from Go's standard library is composed of the io.Writer interface and
four others. Therefore, Hash can be used anywhere the io.Writer interface is required:

type Hash interface {
 io.Writer
 Sum(b []byte) []byte
 Reset()
 Size() int
 BlockSize() int
}

Design with Duck Typing
As mentioned in the previous chapter, this is known as Duck Typing. It's a powerful design
pattern. A thing is defined not by its type hierarchy but by its behaviors.

Here's an example of a File interface from the github.com/couchbase/moss package:

// The File interface is implemented by os.File. App specific
// implementations may add concurrency, caching, stats, fuzzing, etc.
type File interface {
 io.ReaderAt
 io.WriterAt
 io.Closer
 Stat() (os.FileInfo, error)
 Sync() error
 Truncate(size int64) error
}

Adding Functionality with Decoration Chapter 5

[172]

Here's another example of it from Go's mime/multipart project:

// File is an interface to access the file part of a multipart message.
// Its contents may be either stored in memory or on disk.
type File interface {
 io.Reader
 io.ReaderAt
 io.Seeker
 io.Closer
}

When composing with interfaces, keep things as simple as possible. Similarly, function
signatures should be designed to only accept the smallest possible interface required to get
the job done.

Note the application of the single responsibility principle and open/close principle in action:
our software should be open for extension but closed for modifications.

More reasons to design using interfaces
As if that's not enough reason to design using interfaces.

We also get access to a plethora of functionality. For example, when working with readers
and writers, we get the following for free:

Free functionality Description

io.Copy // Copy copies from src to dst until either EOF is reached
// on src or an error occurs. It returns the number of bytes
// copied and the first error encountered while copying, if
any.
func Copy(dst Writer, src Reader) (written int64, err error)
{
 return copyBuffer(dst, src, nil)
}

io.LimitReader // A LimitedReader reads from R but limits the amount of
// data returned to just N bytes. Each call to Read
// updates N to reflect the new amount remaining.
// Read returns EOF when N <= 0 or when the underlying R
returns EOF.
type LimitedReader struct {
 R Reader // underlying reader
 N int64 // max bytes remaining
}

Adding Functionality with Decoration Chapter 5

[173]

io.MultiReader // MultiReader returns a Reader that's the logical
concatenation of
// the provided input readers. They're read sequentially.
Once all
// inputs have returned EOF, Read will return EOF. If any of
the readers
// return a non-nil, non-EOF error, Read will return that
error.
func MultiReader(readers ...Reader) Reader {
 r := make([]Reader, len(readers))
 copy(r, readers)
 return &multiReader{r}
 }

io.RuneReader // ReadRune reads a single UTF-8 encoded Unicode character
// and returns the rune and its size in bytes. If no
character is
// available, err will be set.
type RuneReader interface {
 ReadRune() (r rune, size int, err error) }

io.ReadSeeker // WriteSeeker is the interface that groups the basic Write
and Seek methods.
type WriteSeeker interface {
 Writer
 Seeker
 }

io.MultiWriter // MultiWriter creates a writer that duplicates its writes
to all the
// provided writers, similar to the Unix tee(1) command.
func MultiWriter(writers ...Writer) Writer {
 w := make([]Writer, len(writers))
 copy(w, writers)
 return &multiWriter{w}
 }

bufio.ScanBytes ScanBytes is a split function for a Scanner that returns each byte as a
token.

bufio.ScanLines ScanLines is a split function for a Scanner that returns each line of
text, stripped of any trailing end-of-line marker. The returned line
may be empty. The end-of-line marker is one optional carriage
return, followed by one mandatory newline. In regular expression
notation, it is \r?\n.
The last non-empty line of input will be returned even if it has no
newline.

Adding Functionality with Decoration Chapter 5

[174]

bufio.ScanRunes ScanRunes is a split function for a Scanner that returns each UTF-8-
encoded rune as a token. The sequence of runes returned is
equivalent to that of a range loop over the input as a string,
which means that erroneous UTF-8 encodings translate to U+FFFD =
"\xef\xbf\xbd".
Because of the Scan interface, this makes it impossible for the client
to distinguish correctly encoded replacement runes from encoding
errors.

ioutil.ReadDir ReadDir reads the directory named by dirname and returns a list of
directory entries sorted by filename.

ioutil.ReadFile TheaddKeyFromFileToConfigMap adds a key with the given name to
a ConfigMap, populating the value with the content of the given file
path; alternatively, it returns an error.

That's a lot of out-of-the-box functionality that we didn't have to test and code. Reusing Go
standard library interfaces and functions is nearly always a win!

Using the Reader and Writer interfaces
Let's exercise what we've learned about the io.Reader and io.Writer interfaces:

package main

import (
 "io"
 "strings"
 "os"
)

type titlizeReader struct {
 src io.Reader
}

func NewTitlizeReader(source io.Reader) *titlizeReader {
 return &titlizeReader{source}
}

Recall that the Reader interface looks like this:

type Reader interface {
 Read(p []byte) (n int, err error)
}

Adding Functionality with Decoration Chapter 5

[175]

When we implement the Read method, our titlizeReader struct now satisfies the
Reader interface:

func (t *titlizeReader) Read(p []byte) (int, error) {
 count, err := t.src.Read(p)
 if err != nil {
 return count, err
 }
 for i := 0; i < len(p); i++ {
 if i == 0 {
 if (p[i] >= 't' && p[i] <= 'z') {
 p[i] = p[i] - 32
 }
 } else {
 if (p[i] >= 'A' && p[i] <= 'Z') {
 p[i] = p[i] + 32
 }
 }
 }
 return count, io.EOF
}

Our titlizeReader type will capitalize the first word in the sentence and change all the
subsequent letters to lowercase. As we iterate through each byte, we check its ASCII value.
The ASCII value of A is 97. The decimal value of a is 65. So, 97 minus 65 equals 32.

Here we use the string's NewReader method to create an io.Reader interface from the
string, which is "this IS a tEsT":

func main() {
 var r io.Reader
 r = strings.NewReader("this IS a tEsT")
 r = io.LimitReader(r, 12)
 r = NewTitlizeReader(r)

We individually assigned the reader value on each line. We could have performed this in
one line:

r := NewTitlizeReader(io.LimitReader(strings.NewReader("this IS a tEsT",
12))

We use three Readers: one from the strings package, another free one used to truncate our
string to 12 characters, and the one we wrote ourselves.

Adding Functionality with Decoration Chapter 5

[176]

Given that we have separated our logic into individual function calls, Go's concurrency
constructs enable us to process them independently to improve performance:

 var w io.Writer
 w = os.Stdout
 io.Copy(w, r)
}

We use the os.Stdout writer to output our results to standard output (our terminal
console).

Since we are using the Reader and Writer interfaces, we get to use the io.Copy interface for
free.

With Readers and Writers interfaces, we are able to process streams piece by piece.
Granted, our example only used a 14-character string, but we could have handled more
data than could fit in RAM at the same time.

Gang of Four (GOF) refers to four authors who wrote the Design Patterns:
Elements of Reusable Object-Oriented Software (https:/ /en.wikipedia. org/
wiki/ Design_ Patterns) book. Though the examples in the book are
in SmallTalk and C++, the book is frequently referenced by
many resourceful developers as they build object-oriented software.
Languages such as Java, which supports inheritance, can greatly
benefit from all the patterns in the GOF book. Not all patterns are equally
important for Go. Though, as we saw in the previous chapter, we can
definitely benefit from the structural Decorator pattern and the behavioral
Strategy pattern.

Decorator pattern
Though it is easier to write quality Go code--than quality Java code--without an
understanding of the GOF design patterns, it doesn't mean that we, as Go developers,
cannot benefit from GOF's insight.

We'll soon see how we can put the Decorator pattern to good use in Go.

Adding Functionality with Decoration Chapter 5

[177]

Type hierarchy UML
This is the type hierarchy UML that we might have created while designing the Decorator
pattern back in the day that we used object-oriented languages:

This is the design work needed to represent the same Decorator pattern using Go:

"Less is exponentially more"

- Rob Pike

Adding Functionality with Decoration Chapter 5

[178]

How Procedural design compares to functional
Inversion of Control (IoC)
The client request is wrapped by the Authorization, LoadBalancing, Logging, and
FaultTolerance decorators. When a client request is executed, the functionality in those
decorators will be injected into the flow by our Decorator framework, as shown in the
following diagram:

In procedural programming, the main() function would be in control of the flow of logic.
The code would be monolithic and tightly coupled. For example, to implement
Authorization, the programmer would insert the following line somewhere before the
request is performed:

request.Header.Add("Authorization", token)

The logic of FaultTolerance and LoadBalancing would likely look like spaghetti code.

By programming the Decorator functions, we adhere to the client interface as follows:

type Client interface {
 Do(*http.Request) (*http.Response, error)
}

Each decorator will be a separate function-specific component.

Adding Functionality with Decoration Chapter 5

[179]

Procedural design example
Procedural programming is like interacting with a Bash script in the terminal:

Pick a Product Type:
(1) Appliance
(2) Book
(3) Clothing
3

Pick a Clothing Type:
(1) Men
(2) Women
(3) Children
2

In procedural design, user interaction is predefined and sequential in nature.

Functional IoC example
Contrast the text-based Bash script example to a web application where the user is in
control:

Adding Functionality with Decoration Chapter 5

[180]

In a GUI application, control is inverted. Instead of the program forcing the next user
interaction, the user is mostly in control of what happens next. The IoC container is a web
application framework that runs an event loop and handles the callback when the user
clicks on controls, such as an item in the drop-down list or a submit button.

For some J2EE applications, IoC can also come in the form of XML configuration files that
are injected into a Spring framework.

In a product shopping example, dependencies would be things such as Select Product or
Enter Shipping Address. In our decorator implementation, dependencies
include Authorization, LoadBalancing, etc., each of which decorate the request. Our
IoC container is the decorator framework where functions
like Authorization and LoadBalancing implement the Client interface.

A decorator implementation
Our decorator pattern example will be runnable, so we'll put it in the main package and
define a main() function.

We use the easy-metrics package for recording and displaying our metrics. It comes out of
the box with a nice GUI for displaying statistics.

We also import the decorator package and preface that import with a dot (.) in order to
access the identifiers in the decorator package, in the local file block without a qualifier.

The main.go file
Let's have a look at the contents of main.go:

package main

import (
 "crypto/tls"
 "flag"
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
 "net/url"
 "os"

Adding Functionality with Decoration Chapter 5

[181]

 "os/signal"
 "time"
 "easy_metrics"
 . "decorator"
)

const (
 host = "127.0.0.1"
 protocol = "http://"
)
var (
 serverUrl string
 proxyUrl string
)

This is what the imports looked like before using the init script and its
aliases (and glide):

import (
. . .
 "time"
 "github.com/l3x/fp-in-
go/chapter5/02_decorator/easy_metrics"
 . "github.com/l3x/fp-in-go/chapter5/02_decorator"
)

I never liked long repository paths in my imports. I suppose it's time to
give this technique a name. Let's call it Keep It Simple Stupid-Glide
(KISS-Glide).

We define a host as a constant because we will always run this example code on our local
workstation. We'll keep things simple and use the HTTP protocol (no SSL).

Our example uses a proxy server and also uses Go's standard library HTTP server
implementation to listen to handle requests:

Adding Functionality with Decoration Chapter 5

[182]

Any function named init() will be executed before the main() function. We define
default port numbers for our two servers and permit the user to specify different ports at
runtime using the flag package, which implements command-line flag parsing:

func init() {
 serverPort := 3000
 proxyPort := 8080
 flag.IntVar(&serverPort, "serverPort", serverPort, "Server Port")
 flag.IntVar(&proxyPort, "proxyPort", proxyPort, "Server Port")
 flag.Parse()
 serverUrl = fmt.Sprintf("%s:%d", host, serverPort)
 proxyUrl = fmt.Sprintf("%s:%d", host, proxyPort)
}

Simple Logger

We'll implement a simple logger that will:

Provide log file tracing
Provide Debug, Info, and Error log levels
Permit us to specify which log level(s) we want
Enable us to more easily swap out our underlying logging framework

The decorator/simple_log.go file
Our logger leverages Go's Logger package, as follows:

package decorator

import (
 "io"
 "log"
 "os"
)

var (
 Debug *log.Logger
 Info *log.Logger
 Error *log.Logger
 InfoHandler io.Writer
)

Adding Functionality with Decoration Chapter 5

[183]

A simple logger exports one function, namely InitLog, which the calling package uses to
enable the logging features:

func InitLog(
 traceFileName string,
 debugHandler io.Writer,
 infoHandler io.Writer,
 errorHandler io.Writer,
) {

Example InitLog calls
Here we pass the name of our trace file, called trace-log.txt, which will receive all of the
logging output. We don't want Debug information, but we do want Info and Error output:

InitLog("trace-log.txt", ioutil.Discard, os.Stdout, os.Stderr)

This time we pass nil for the name of our trace log file, which tells our logger not to create a
trace log file. We do want Debug, Info, and Error data displayed to standard out in our
terminal console.

InitLog(nil, os.Stdout, os.Stdout, os.Stderr)

When we specify traceFileName, we'll need to create an io.MultiWriter interface to
send the output to two places at the same time:

if len(traceFileName) > 0 {
 _ = os.Remove(traceFileName)
 file, err := os.OpenFile(traceFileName,
 os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0666)
 if err != nil {
 log.Fatalf("Failed to create log file: %s", traceFileName)
 }
 debugHandler = io.MultiWriter(file, debugHandler)
 infoHandler = io.MultiWriter(file, infoHandler)
 errorHandler = io.MultiWriter(file, errorHandler)
}

InfoHandler = infoHandler

Debug = log.New(debugHandler, "DEBUG : ",
 log.Ldate|log.Ltime|log.Lshortfile)

Info = log.New(infoHandler, "INFO : ",
 log.Ltime)

Adding Functionality with Decoration Chapter 5

[184]

Error = log.New(errorHandler, "ERROR : ",
 log.Ldate|log.Ltime|log.Lshortfile)
}

We'll preface each log line with DEBUG, INFO, or ERROR to indicate its log level.

Back to our main package
The first line of our main block calls our InitLog function:

func main() {
 InitLog("trace-log.txt",
 ioutil.Discard, os.Stdout, os.Stderr)

We use the INFO level to indicate which our server is listening.

We launch our server using a Goroutine, and since this is the main() function, we use the
log.Fatal method, which is equivalent to println with a panic. This is because if we fail
to start our server at this point, there are no buffers to flush, no outstanding defer
statements, and no temporary files to process. We also wait for a second in order to give our
server time to start:

Info.Printf("Metrics server listening on %s", serverUrl)
go func() {
 log.Fatal(easy_metrics.Serve(serverUrl))
}()
time.Sleep(1 * time.Second)

Next, we declare our request using req, which we'll later execute NumRequests times:

req, err := http.NewRequest(http.MethodGet, protocol + serverUrl, nil)
if err != nil {
 log.Fatalln(err)
}

In our example, we use a proxy server to pass all our requests through. This gives us the
flexibility to handle proxy-level processing on a per-call basis. Our simple example does no
such processing, but we do specify a proxy timeout of 1 second:

Info.Printf("Proxy listening on %s", proxyUrl)
proxyURL, _ := url.Parse(proxyUrl)
tr := &http.Transport{
 Proxy: http.ProxyURL(proxyURL),
 TLSClientConfig: &tls.Config{
 InsecureSkipVerify: true,
 },

Adding Functionality with Decoration Chapter 5

[185]

}

Our client uses the decorator pattern to wrap our proxyTimeoutClient client with the
Authorization, LoadBalancing, Logging, and FaultTolerance functionality:

tr.TLSNextProto = make(map[string]func(string, *tls.Conn)
http.RoundTripper)
proxyTimeoutClient := &http.Client{Transport: tr, Timeout: 1 * time.Second}

We do not modify our client implementation, rather extend its functionality (remember the
open/close principle?):

client := Decorate(proxyTimeoutClient,
 Authorization("mysecretpassword"),
 LoadBalancing(RoundRobin(0, "web01:3000", "web02:3000",
"web03:3000")),
 Logging(log.New(InfoHandler, "client: ", log.Ltime)),
 FaultTolerance(2, time.Second),
)

This is a declarative form of programming. There is no code ceremony. We chain our
function calls, passing only the minimally required information to configure its behavior.

To get the load balancing working locally, you can add the following line to your
/etc/hosts file:

127.0.0.1 localhost web01 web02 web03

Next, we define our job. We pass our client, request, the number of requests to process, and
the time to wait before processing each request:

job := &Job{
 Client: client,
 Request: req,
 NumRequests: 10,
 IntervalSecs: 10,
}

In order to better comprehend the statistics, later in the easy-metrics web app, we'll set the
IntervalSecs value to 10. There will 10 seconds between each of our 10 request-
processing attempts.

Adding Functionality with Decoration Chapter 5

[186]

We set our start time and kick off our job processing with job.Run(). The Run function
uses the sync package to wait until all the running jobs have completed before returning
the control, at which time we print out how long the request-processing bit took:

start := time.Now()
job.Run()
Info.Printf("\n>> It took %s", time.Since(start))

Once our processing is complete, we call DisplayResults from the easy_metrics
package, which displays a message like the following:

INFO : 12:48:30 Go to http://127.0.0.1:3000/easy-metrics?show=Stats

Info.Printf("metrics")
err = easy_metrics.DisplayResults(serverUrl)
if err != nil {
 log.Fatalln(err)
}

Our server needs to keep running so that we can visit the easy-metrics URL to view our
statistics with the user-friendly easy-metrics web app.

We create a channel to capture the Ctrl + C key sequence, which will signal our program to
stop:

 Info.Printf("CTRL+C to exit")
 c := make(chan os.Signal, 1)
 signal.Notify(c, os.Interrupt)
 <-c
}

Adding Functionality with Decoration Chapter 5

[187]

Understanding our statistics using the easy-metrics GUI
The next few screenshots will display our terminal console and our web browser at
http://127.0.0.1:3000/easy-metrics?show=Stats immediately after executing Go's
main.go command:

In the following sections, we'll split this image into three parts.

Adding Functionality with Decoration Chapter 5

[188]

Quick look at the Dot Init update
This is what our terminal looks like using the KISS-Glide toolset:

KISS-Glide makes it simpler and requires less typing to achieve the same result. That's a
win-win situation.

When I originally wrote this chapter, I used the standard go get, go
build, and go run main.go commands. As the projects became more
complicated (requiring more third-party dependencies), I found it helpful
to create the KISS-Glide tool. Later, I returned to all the projects and
simplified them using the KISS-Glide tool. Feel free to use any
dependency management tool and build and run your Go applications as
you prefer.

Adding Functionality with Decoration Chapter 5

[189]

That's one of the great things about Go. As long as tool makers adhere to
standard Go conventions, such as using the GOPATH, and not break other
Go tools, such as go test, go doc, and go vet, it's all good. I prefer
simple, yet powerful (KISS-Glide).

Easy-metrics - 1 of 3

This first screenshot is more about what we see in our terminal console than the easy-
metrics GUI:

Adding Functionality with Decoration Chapter 5

[190]

The first two lines of output come from our main.go file. The next three lines come from
this decorator: Logging(log.New(InfoHandler, "client: ", log.Ltime)),.

Each line is prefaced with either INFO or client. The client lines indicate an individual
request attempt. The INFO lines indicate whether the initial request, which could have been
tried twice, succeeded or failed.

The decorator/decorator.go file
Let's look at our decorator.go implementation. It's in the 02_decorator directory, and
the package name is decorator:

package decorator

import (
 "log"
 "net/http"
 "sync/atomic"
 "time"
)

type Client interface {
 Do(*http.Request) (*http.Response, error)
}

// ClientFunc is a function type that implements the client interface.
type ClientFunc func(*http.Request) (*http.Response, error)

func (f ClientFunc) Do(r *http.Request) (*http.Response, error) {
 return f(r)
}

The ClientFunc function is a function type that implements the Client interface.

We also define two additional methods that act as the getter and setter for the
ratelimitDuration value:

var ratelimitDuration time.Duration

func (f ClientFunc) SetRatelimit(duration time.Duration) (error) {
 ratelimitDuration = duration
 return nil
}

Adding Functionality with Decoration Chapter 5

[191]

func (f ClientFunc) GetRatelimit() (time.Duration, error) {
 return ratelimitDuration, nil
}

Next, we define the Decorator function type to wrap our Client with additional
behavior:

type Decorator func(Client) Client

A framework to inject dependencies
Next, we'll look closer at the implementation of our IoC container framework.

We'll see that by wrapping decorators, which implement the Client interface, around our
core client call and using the decorator pattern, our framework is able to extend our
application functionality in a modular and easy-to-understand manner.

The Decorator notation indicates that this is a variadic parameter that can take any
number of values. Remember our call in main where we passed in our decorators?

Wrapping a client request with decorators (in main)
client := Decorate(proxyTimeoutClient,
 Authorization("mysecretpassword"),
 LoadBalancing(RoundRobin(0, "web01:3000", "web02:3000",
"web03:3000")),
 Logging(log.New(InfoHandler, "client: ", log.Ltime)),
 FaultTolerance(2, time.Second),
)

Our Decorate function extends our client's functionality by iterating over each decorator in
order.

Note that there are several ways to implement this wrapping functionality. We could have
used recursion, line-by-line wrapping, or inline wrapping like we did earlier in this chapter:

r := NewTitlizeReader(io.LimitReader(strings.NewReader("this IS a tEsT",
12))

Using a variadic parameter in conjunction with a range construct, when we are unsure of
the number of decorators we need to wrap, is probably the best choice:

func Decorate(c Client, ds ...Decorator) Client {
 decorated := c
 for _, decorate := range ds {

Adding Functionality with Decoration Chapter 5

[192]

 decorated = decorate(decorated)
 }
 return decorated
}

Authorization decorator
Our first decorator is Authorization. We call the Header helper function that adds the
Authorization header with the given token to each request at runtime:

func Authorization(token string) Decorator {
 return Header("Authorization", token)
}

func Header(name, value string) Decorator {
 return func(c Client) Client {
 return ClientFunc(func(r *http.Request)(*http.Response,
error) {
 r.Header.Add(name, value)
 return c.Do(r)
 })
 }
}

Logging decorator
The Logging decorator takes a pointer to the log from the Logger package, from Go's
standard library. Note that we are able to pass our custom InfoHandler since we chose to
implement it using the io.Writer interface:

Logging(log.New(InfoHandler, "client: ", log.Ltime)),
func Logging(l *log.Logger) Decorator {
 return func(c Client) Client {
 return ClientFunc(func(r *http.Request) (*http.Response,
error) {
 l.Printf("%s %s", r.Method, r.URL)
 return c.Do(r)
 })
 }
}

We execute the Printf command just before running the client's Do method.

Adding Functionality with Decoration Chapter 5

[193]

LoadBalancing decorator
We leverage the strategy pattern to implement our load balancing decorator.

The LoadBalancing decorator applies the strategy pattern to apply the logic that
determines which backend server will receive the next incoming client request.

Strategy pattern

The strategy pattern uses composition rather than inheritance to choose which behavior is
executed. The behavior in our example implements a load balancing algorithm. Production
implementations of the strategy pattern often have an administrative application that is
used to choose which strategy it selected during runtime:

Rather than using the context of the request or configuration instructions from an
administrative application to selecting our load balancing strategy, we hardcode our
example to use the RoundRobin behavior.

Here's the call:

LoadBalancing(RoundRobin(0, "web01:3000", "web02:3000", "web03:3000")),

The first parameter, RoundRobin, is the selected strategy. We pass the RoundRobin
function We pass the iterating RoundRobin function in order over the backend server's host
addresses. They are passed over the variadic parameter, namely backends.

Adding Functionality with Decoration Chapter 5

[194]

Instead of using a request to gather context to determine the strategy to employ, we define a
Director function type that takes the request. We select the RoundRobin strategy and
modify the request's embedded URL member to specify the server to connect to:

The following is the RoundRobin function where we make the r.URL.Host assignment:

func RoundRobin(robin int64, backends ...string) Director {
 return func(r *http.Request) {
 if len(backends) > 0 {
 r.URL.Host = backends[atomic.AddInt64(&robin, 1) %
int64(len(backends))]
 }
 }
}

Alternatively, if we had defined other load balancing strategies, such as Least Loaded or
Random, we'd only need to implement that function and pass it to our LoadBalancing
function as its director.

The LoadBalancing function returns a decorator that spreads client requests across
multiple backend servers, based on the given director, that is, RoundRobin in our example:

func LoadBalancing(dir Director) Decorator {
 return func(c Client) Client {
 return ClientFunc(func(r *http.Request)(*http.Response,
error) {
 dir(r)
 return c.Do(r)
 })
 }
}

Adding Functionality with Decoration Chapter 5

[195]

The Director modifies each HTTP request to follow the chosen load balancing strategy:

type Director func(*http.Request)

Finally, we have our FaultTolerance decorator that extends a client with fault tolerance,
based on the given attempts and backoff time duration:

func FaultTolerance(attempts int, backoff time.Duration) Decorator {
 return func(c Client) Client {
 return ClientFunc(func(r *http.Request) (*http.Response,
error) {
 var res *http.Response
 var err error
 for i := 0; i <= attempts; i++ {
 if res, err = c.Do(r); err == nil {
 Info.Println("SUCCESS!")
 break
 }
 Debug.Println("backing off...")
 time.Sleep(backoff * time.Duration(i))
 }
 if err != nil { Info.Println("FAILURE!") }
 return res, err
 })
 }
}

We only want the backing off information output to our trace file, so we use our
Debug.Println function.

Notice what each decorator has in common? They provide additional functionality and
eventually call c.Do(r). Some provide the additional functionality before calling
c.Do(r); some could do it before and after the call.

Inversion of control and dependency injection
This is a form Dependency Injection (DI). DI is where a service; for example,
FaultTolerance, is passed to a dependent object--for instance, the client--where it is used.

This can also be considered Inversion of Control (IoC) (DI is a subset of IoC). It's the
director function that we pass into the LoadBalancing function that provides the flow of
control. This determines which backend server to direct the request to.

IoC is a design principle where a framework determines the flow of control. Contrast that to
procedural programming, where the custom code determines the application's flow of
control in a predetermined manner.

Adding Functionality with Decoration Chapter 5

[196]

Our first failure
Our first failure consisted of three requests:

Easy metrics - 2 of 3
Our easy-metrics graph shows when the requests occurred and their average response time:

Adding Functionality with Decoration Chapter 5

[197]

When you open the easy-metrics web application, move your mouse pointer over the lines
for more context information. For example, when you move your mouse where the red
arrow is pointing in the preceding screenshot, you'll see that another request occurred at
that point.

Groking our trace log file
In order to get a deeper understanding of why our attempts failed, we can look in our trace
file.

Groking is an old Scots term meaning to look at somebody while they're eating in the hope
that they'll give you some of their food. In our case, we'll be looking intently at a trace log
file in hope of getting some morsel of understanding:

INFO : 13:46:19 Metrics server listening on 127.0.0.1:3000
INFO : 13:46:20 Proxy listening on 127.0.0.1:8080
DEBUG : 2017/05/17 13:46:30 requester.go:114: makeRequest:
client: 13:46:30 GET http://127.0.0.1:3000
DEBUG : 2017/05/17 13:46:30 metrics.go:66: - randInt: 3081
DEBUG : 2017/05/17 13:46:31 decorator.go:107: backing off...
client: 13:46:31 GET http://web02:3000
DEBUG : 2017/05/17 13:46:31 metrics.go:66: - randInt: 2887
DEBUG : 2017/05/17 13:46:32 decorator.go:107: backing off...
client: 13:46:33 GET http://web03:3000
DEBUG : 2017/05/17 13:46:33 metrics.go:66: - randInt: 1847
DEBUG : 2017/05/17 13:46:34 decorator.go:107: backing off...
INFO : 13:46:36 FAILURE!

Here's the call to our call to the FaultTolerance function:

FaultTolerance(2, time.Second),

The key lines from our FaultTolerance decorator are as follows:

func FaultTolerance(attempts int, backoff time.Duration) Decorator
 . . .
 for i := 0; i <= attempts; i++ {
 if res, err = c.Do(r); err == nil {
 Info.Println("SUCCESS!")
 break
 }
 Debug.Println("backing off...")
 time.Sleep(backoff * time.Duration(i))
 }
 if err != nil { Info.Println("FAILURE!") }
 return res, err

Adding Functionality with Decoration Chapter 5

[198]

 . . .

This indicates that if we don't succeed at first, we'll try again twice and wait for a second
between each attempt.

The work is performed in the metrics.go file. Note that work can take anywhere from 0 to
5,000 milliseconds:

func work() {
 randInt := rand.Intn(5000)
 decorator.Debug.Printf("- randInt: %v", randInt)
 workTime := time.Duration(randInt) * time.Millisecond
 time.Sleep(workTime)
}

Lastly, recall that we set our per request timeout to 1 second when we defined
proxyTimeoutClient:

proxyTimeoutClient := &http.Client{Transport: tr, Timeout: 1 * time.Second}

We tried thrice and none of our attempts took less than a second, so our first set of requests
resulted in a failure.

The rest of the graph
The rest of the graph shows multiple requests. We'll focus on the following two:

Notice that in the first set of requests, in green, we made three attempts. Note also, in red,
the requests were load-balanced, in a round-robin manner, among web03, web01, and
web02. INFO indicates a FAILURE!.

The first request of the next set of requests began 10 seconds later and was sent to the web03
backend server. INFO indicates SUCCESS!

Adding Functionality with Decoration Chapter 5

[199]

Easy metrics - 3 of 3
We can see the FAILURE! and SUCCESS! requests in the following easy-metrics graph:

Adding Functionality with Decoration Chapter 5

[200]

Examining the trace log
Similar to the failed attempts we saw earlier, none of the three requests were performed in
under a second. Thus, they failed.

However, the next request will take only 0.495 seconds and it will immediately succeed:

DEBUG : 2017/05/17 13:47:30 requester.go:114: makeRequest:
client: 13:47:30 GET http://web03:3000
DEBUG : 2017/05/17 13:47:30 metrics.go:66: - randInt: 1445
DEBUG : 2017/05/17 13:47:31 decorator.go:107: backing off...
client: 13:47:31 GET http://web01:3000
DEBUG : 2017/05/17 13:47:31 metrics.go:66: - randInt: 3237
DEBUG : 2017/05/17 13:47:32 decorator.go:107: backing off...
client: 13:47:33 GET http://web02:3000
DEBUG : 2017/05/17 13:47:33 metrics.go:66: - randInt: 4106
DEBUG : 2017/05/17 13:47:34 decorator.go:107: backing off...
INFO : 13:47:36 FAILURE!
DEBUG : 2017/05/17 13:47:36 requester.go:65: > 7 requests done.
DEBUG : 2017/05/17 13:47:40 requester.go:114: makeRequest:
client: 13:47:40 GET http://web03:3000
DEBUG : 2017/05/17 13:47:40 metrics.go:66: - randInt: 495
INFO : 13:47:41 SUCCESS!
DEBUG : 2017/05/17 13:47:41 requester.go:65: > 8 requests done.

The last thing to observe in this trace output are the two lines that indicate how many
requests have been performed: > 8 requests done.

Since this is DEBUG output, we don't need to guess which file and line this output came
from.

The decorator/requestor.go file
The DEBUG output leads us to our last go source file, namely requestor.go:

package decorator

import (
 "io"
 "io/ioutil"
 "net/http"
 "os"
 "os/signal"
 "sync"
 "syscall"
 "time"

Adding Functionality with Decoration Chapter 5

[201]

)

type response struct {
 duration time.Duration
 err error
}

The response struct is used to record the duration and any error from running our request.
When we capitalize names of symbols, for example, the "J" in our struct named Job in the
following code, we are telling Go to export it. When we import a package we will only be
able to access exported symbols.

type Job struct {
 Client Client
 NumRequests int
 Request *http.Request
 IntervalSecs int
 responseChan chan *response
}

The private field, responses, is a channel of response pointers with a buffer that has a size
equal to NumRequests.

The job variable declared in main()
It begins with a capital J to export it. We use it in our main function to declare the total
number of requests we want to run as well as how long to wait between making each
request:

job := &Job{
 Client: client,
 Request: req,
 NumRequests: 10,
 IntervalSecs: 10,
}

Back to the requestor.go file
After the Job struct definition comes the displayProgress method:

func (b *Job) displayProgress(stopChan chan struct{}) {
 var prevResponseCount int
 for {
 select {
 case <-time.Tick(time.Millisecond * 500):

Adding Functionality with Decoration Chapter 5

[202]

 responseCount := len(b.responseChan)
 if prevResponseCount < responseCount {
 prevResponseCount = responseCount
 Debug.Printf("> %d requests done.",
responseCount)
 }
 case <-stopChan:
 return
 }
 }
}

Every 500 milliseconds, displayProgress checks to see whether a new response has been
processed. It does this by checking the size of the job's response channel. If it finds a new
response, it prints out a line like the following:

DEBUG : 2017/05/17 19:04:36 requestor.go:38: > 3 requests done.

It will continue to loop until a value is received on the stopChan channel.

Using channels to manage the life cycle
We use three channels to manage the life cycle of our requestor component:

responseChan chan *response

stopChan chan struct{}

interruptChan := make(chan os.Signal, 1)

Every 5,000 milliseconds, we check responseChan to see whether we've received a new
response. If so, we print a message indicating that the request is completed.

First, stopChan is used to stop the running of the displayProgress function.

Then, interruptChan is used to signal everything to shut down when the user presses
Ctrl + C.

The Run method of Job makes all the requests, displays summary results, and blocks until
all responses are received:

func (j *Job) Run() {
 j.responseChan = make(chan *response, j.NumRequests)
 stopChan := make(chan struct{})
 go j.displayProgress(stopChan)

Adding Functionality with Decoration Chapter 5

[203]

We start by creating responseChan as a buffered channel with a size equal to the number
of requests to process. Next, we create stopChan as a channel of empty structs. We use the
empty struct because it takes up no space. We've seen in displayProgress that we are not
concerned with the value in the channel. As long as anything, even the empty struct, is
received on stopChan, that's enough to signal that it's time to stop processing. We
launch j.displayProgress(stopChan) as a Goroutine.

We create interruptChan in a way it is unbuffered (with a size of 1). Since we want to
catch SIGTERM, which is the default signal sent by the kill command (Ctrl + C), and since we
wish this to work for both Unix and Windows systems, we use syscall.SIGTERM as the
third parameter to signal.Notify:

interruptChan := make(chan os.Signal, 1)
signal.Notify(interruptChan, os.Interrupt, syscall.SIGTERM)
go func() {
 <-interruptChan
 stopChan <- struct{}{}
 close(j.responseChan)
 os.Exit(130)
}()

Our Goroutine blocks wait for a signal from interruptChan. If one is received, it will send
an empty struct instance to stopChan and then close j.responseChan and finally run
os.Exit(130), indicating a fatal error caused by Ctrl + C.

For every intervalSecs, we add 1 to WaitGroup and launch the next request. Once we've
iterated j.NumRequests times, we break out of our loop and run wg.Wait(). This blocks
until all the requests have completed processing. Note that the last line of each request-
processing Goroutine is the wg.Done() function, which is used to decrements the
WaitGroup counter:

var wg sync.WaitGroup
intervalSecs := time.Duration(j.IntervalSecs)
requestsPerformed := 0
for range time.Tick(intervalSecs * time.Second) {
 wg.Add(1)
 go func() {
 client := j.Client
 j.makeRequest(client)
 wg.Done()
 }()
 requestsPerformed++
 if requestsPerformed >= j.NumRequests {
 break
 }

Adding Functionality with Decoration Chapter 5

[204]

}
wg.Wait()

All requests done
When the WaitGroup counter reaches zero, wg.Wait() is unblocked and the processing
continues to the next line, where we pass an instance of the empty struct to stopChan. As
we've seen previously, stopChan signals to the displayProgress method of Job to stop
processing:

 stopChan <- struct{}{}
 Debug.Printf("All requests done.")
 close(j.responseChan)
}

Lastly, we use our Debug logger to print All requests done. and close
responseChan of Job.

Launching our makeRequest goroutine
Our Run method launches a Goroutine j.NumRequests times. Each Goroutine runs this
code:

go func() {
 client := j.Client
 j.makeRequest(client)
 wg.Done()
}()

The makeRequest function is called in a goroutine and passed to the client. We use our
Debug logger to indicate that we are about to make a request and record the start time:

func (j *Job) makeRequest(c Client) {
 Debug.Printf("makeRequest: ")
 start := time.Now()
 resp, err := c.Do(j.Request)
 if err == nil {
 io.Copy(ioutil.Discard, resp.Body)
 resp.Body.Close()
 }
 t := time.Now()
 finish := t.Sub(start)
 j.responseChan <- &response{
 duration: finish,

Adding Functionality with Decoration Chapter 5

[205]

 err: err,
 }
}

The key line is resp, err := c.Do(j.Request).

Our DI framework in action
This is when we actually perform the request. This is when all the decorators are executed:

client := Decorate(proxyTimeoutClient,
 Authorization("mysecretpassword"),
 LoadBalancing(RoundRobin(0, "web01:3000", "web02:3000",
"web03:3000")),
 Logging(log.New(InfoHandler, "client: ", log.Ltime)),
 FaultTolerance(2, time.Second),
)

The decorators are executed in order. Authorization goes first, followed by
LoadBalancing, Logging, and FaultTolerance.

We create our IoC framework by defining the client interface with a single Do method:

type Client interface {
 Do(*http.Request) (*http.Response, error)
}

Wrap each decorator around a return c.Do(r) statement that fires once the following line
is executed in the makeRequest method of Job:

resp, err := c.Do(j.Request)

We created a simple framework for controlling the execution and enriching each HTTP
request with our decorators wrapped around the client interface. This is IoC, and as we see,
it's not too complicated.

Adding Functionality with Decoration Chapter 5

[206]

Summary
In this chapter, we learned how no design or bad design using type hierarchies can lead to
technical debt. We studied the decorator pattern and learned a great way to extend the
functionality of our application using IoC.

We saw multiple examples of single method interfaces and learned to appreciate the fact
that less is more and that good design is worthwhile.

Hopefully, by the end of this chapter, we can all agree that we can leverage design patterns
to write better Go code.

In our next chapter, we'll use the adapter design pattern and other functional programming
techniques to design and build better APIs.

6
Applying FP at the Architectural

Level
Most Functional programming (FP) books only talk about the code level benefits but FP
principles provide better returns when applied at the architecture level.

In this chapter, we will discuss some architectural styles that are based on the same ideas
and philosophies of FP.

We'll also build a layered application that solves the problem of circular dependencies with
the aid of Inversion of Control (IoC) to control the flow of logic. The application we
build allows an admin to move files between two cloud storage service provider accounts.

Our goals in this chapter are as follows:

Understand the basics of systems engineering and application architecture
Discuss architecture styles that carry the same ideas of FP
Prevent cyclic dependency errors
Understand how to apply the Hollywood Principle
Learn the difference between the observer pattern and dependency injection
Use IoC to control the flow of logic
Build a layered application architecture
Create an effective table-driven framework to test our API
Discuss where FP and Go fit into microservice architectures

Applying FP at the Architectural Level Chapter 6

[208]

Application architectures
Four years ago, I posted an article entitled Application Architecture Considerations.

Consider the following diagram:

I had talked about things to consider when evaluating an application's architecture.

For a list of things to consider when designing an application architecture,
see http:/ /lexsheehan. blogspot. com/2013/05/application-
architecture- considerations. html.

Some of these things are listed as follows:

Functionality: Does the application satisfy its business requirements?
Performance: Does the application run fast enough? For example, if there are any
views that take longer than 7 seconds to display, then you need to re-engineer
something.
Scalability: How well does your application scale? Can you easily add and
remove components without affecting your application's performance or
reliability? How loosely (or tightly) coupled is your application code?

It was all high level, mainly discussing nonfunctional requirements and cross-cutting
concerns, for example, security, error handling, and logging.

Applying FP at the Architectural Level Chapter 6

[209]

If you are only interested in pure functional programming techniques, you
can safely skip this chapter. However, if you want to build an application
framework in which you can place pure function programming
components, this will be a good chapter for you.

What is software architecture?
Designing software architecture is the process of defining a structured solution to address
our application's user, business, and system requirements. In each case, we must ask, "What
do you need?" that is, the requirements, and "Why do you need it?" and document our
understanding in a way that the business stakeholders understand. Finally, we must
implement the "How?":

The art of software architecture lies in the ability to understand what is important, to make
the key decisions in structuring application components and their interfaces, and to make
the right decisions regarding things that are hard to change.

Whereas the Application Architecture Considerations article focused mainly on the "What?",
this chapter focuses on the "How?" using Go.

Client-server architecture
The client-server model could be implemented as shown in the following diagram:

Applying FP at the Architectural Level Chapter 6

[210]

In our example, the client goes through a load balancer to talk to an application server's
API. Each application server uses a database API client to interact with the database. The
small, unlabeled boxes represent an API client. Some clients communicate directly to their
server, for example, our database client. Others, like our application server client, go
through intermediaries that provide services, for example, load balancing.

Cloud architecture
APIs expose the functions that are available and define the requirements that govern how
applications or services can talk to each other.

As we move into cloud-based architectures, our systems begin to look more like this:

What do both the client/server and cloud architectures have most in common?

See all the APIs that expose the functionality of the underlying resources?

Applying FP at the Architectural Level Chapter 6

[211]

Go is well suited for server-side applications, that is, everything in the virtual network (the
big gray box). That's pretty much the entire cloud infrastructure and everything running
within it.

That's great for the big picture, but what about building applications? How much do APIs
come into play when building an individual Go application?

It depends. Are we talking about a small utility application or an enterprise CRM
application?

The interface to a small utility application can simply be defined by the command-line
parameters that it accepts.

Large customer relationship management (CRM) applications will be composed of layers
of functionality, not unlike the virtual network diagram we saw earlier. For example, the
opportunity management system will need an API to the quote generation and electronic
signatures components. The service and provisioning system will need API access to the
billing and invoicing system.

If we intend to build large, complex applications, we must put effort into architecting our
solutions.

Why does architecture matter?
Much like large buildings, complex software applications must be built on a solid
foundation. In software, we sometimes call this our application framework.

If we do not consider the things mentioned in my article; things like functionality, security,
extensibility, testability, and performance, then we will likely be unprepared for the
consequences of our lack of forethought.

Our exposure to risk will increase as we find our application becomes more costly to test,
deploy, and maintain over time.

Applying FP at the Architectural Level Chapter 6

[212]

Design takes some time and effort, but it does not take long before that effort pays off.

The role of systems engineering
Systems engineering is a discipline that focuses on the design and application of the whole
 system, which may be comprised of many parts.

Real systems
A real system includes things like:

Products
Processes
People
Information
Techniques
Resources
Services

IT system specialty groups
Systems engineering focuses on identifying requirements early in the development life
cycle. It considers the entire problem space. Taking all aspects and variables into account
and relating the social to the technical aspects. Then it proceeds with design synthesis,
integrating all the specialty groups such as:

• Cost
• Development
• Disposal
• Manufacturing
• Operations
• Performance
• Process Improvement

• Risk Assessment
• Schedule
• Support
• Test
• Training
• Verification

Into a team effort in a structured development process that proceeds from concept, design
synthesis, validation, deployment to production and operation.

Applying FP at the Architectural Level Chapter 6

[213]

Systems engineering is lean
Systems engineering is all about creating more value for our customer with fewer resources.

A lean IT department understands its customer’s business and what customer value means
and focuses its efforts to continuously increase it. The goal is to provide maximum value to
the customer through a perfect value creation process that has zero waste.

For example, if your customer sells chicken to consumers, then every new project must start
with this question: Will this project help our customer sell more chicken?

To accomplish this, lean thinking changes the focus of management from optimizing
separate technologies, and vertical departments to optimizing the flow of products and
services through entire value streams that flow horizontally across technologies and
departments to customers.

Eliminating waste along entire value streams, instead of at isolated points, creates processes
that requires less human effort, less capital, and less time to make products and services at
far less costs and with much fewer defects, compared with traditional business systems.
Lean companies are able to respond to changing customer desires with high variety, high
quality, low cost, and with fast throughput times. Information management becomes
simpler and more accurate.

Requirements, scope and terms
Everytime we develop software, we address both the business and technical needs of our
customer with the goal of providing a quality product that meets our users’ needs.

Some requirements are task-specific. For example, if we are required to write a script to
move a specific log file from one server to another. Other times, we need may be required to
write a command line input tool to parse the text a user types in their console input and
count the characters, words, or lines they entered. This chapter is not about those types of
applications. We'll consider system-level requirements only in this chapter.

Defining terms
Let’s start by defining a few terms.

Applying FP at the Architectural Level Chapter 6

[214]

Software requirements
Conditions or capabilities needed by our customer to achieve an objective/solve problem(s).

System
An integrated set of subsystems and/or elements that accomplish a defined objective.

System architecture
The fundamental properties of a system in its environment embodied in its subsystems,
elements, relationships along with the principles of its design and evolution.

System elements
Atomic: elements that cannot to be broken down further

Decomposable: elements that can to be broken into smaller elements

System Boundaries
Defines the scope of a system, creating a distinction between the system and the
environment in which a system exists.

Managing Complexity
As systems engineers, we must build and integrate elements and subsystems to achieve a
desired objective. There can be a lot of moving parts: various APIs and communication
protocols, various data schemas, various security interfaces to traverse. Our biggest
challenge is, How do we manage all this complexity?

Applying FP at the Architectural Level Chapter 6

[215]

The best tool for the job
The best tool we have to help manage complexity is composition. Functional programming
to the rescue!

Our job is to decompose the elements of our system into atomic parts, fit them back together
into subsystems and wire them together in a distributed, microservice based environment.

How do we know when have we sufficiently decomposed an element?

A: When we can treat the element as a black box, i.e., when we do not need visibility into
the function to understand what it does.

Divide and conquer
FP gives us the tools and techniques we need to divide our monolithic applications into
microservices.

Applying FP at the Architectural Level Chapter 6

[216]

In Chapter 4, SOLID Design in Go, we learned that our applications should be built from
components that follow the Unix philosophy of doing one thing well. We follow the same
precepts when building microservices. Furthermore, following the Single Responsibility
Principle (SRP) we treat each microservice as a separate entity that, whose entire life cycle
is kept separate within its predefined boundaries. This decoupling of our microservices is
what allows us to create, move and restart our microservice, isolated from its
surroundings.

"This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together." - Doug McIlroy

Designing for state management
Often, we find that application APIs are designed properly, giving the illusion that the
application services are stateless. However, upon closer examination we find problems with
their architecture.

Add a microservice
When they add one microservice it looks like this:

Applying FP at the Architectural Level Chapter 6

[217]

When they add two more it looks like this:

They are feeling good about their architecture until they launch their application and
onboard users.

Problems begin to appear:

Scalability
Availability
State management
Data integrity issues

Rather than creating a stateless architecture, what really happened was that they pushed
their application state down to a single database, which only complicated their issues.

Applying FP at the Architectural Level Chapter 6

[218]

All of their so supposedly stateless microservices are now coupled to the single, shared
monolithic database.

This is what they should have designed...

… where each microservice owns their own data. Lookup tables can be shared and
managed with database replication, but the data in their domain remains isolated.

Applying FP at the Architectural Level Chapter 6

[219]

FP influenced architectures
Let’s discuss a few popular architectures that borrow ideas from FP.

Domain driven design (DDD)
Event based architectures
CQRS
Functional reactive architecture

Let’s start with DDD.

Other names for DDD include Hexagonal Architecture, Clean
Architecture, Ports and Adapters, Onion Architecture and Applicative-
Style-Architecture. We'll call it DDD or layered architecture.

Domain Driven Design
In order to create good software, we must understand our customer's business. We cannot
create a prospect management software application unless we have a good understanding
of how a sales pipeline works; We must understand the domain of sales. This is what
Domain-Driven Design (DDD) is about. Look for layered application architecture diagram
later in this chapter. What's in the center?

A firm understanding of our business domain and our requirements is the key to
successfully engineering a system solution.

In this model we consider two main layers. The inside, with applicative use case handlers,
and business domain logic and the outside, with all our infrastructure code, with database
connections, and messaging.

Combining this model with the dependency inversion principle which states that high level
modules should not depend on low level modules. We see that our dependencies should
always point inwards towards the domain layer.

Interactions between those two areas are achieved by ports and adapters. Clients requests
or events arrive from the outside world at an API port and the technology specific adapter
converts it into a function call or message that can be passed into the application layer.

Applying FP at the Architectural Level Chapter 6

[220]

Dependency rule
One issue that we soon face when building large Go applications is how to manage our
dependencies. The larger your Go application gets, the more likely we are to encounter
cyclic dependency errors unless our design accounts for the dependency rule.

What is the dependency rule and why does the Go compiler deem it so important?

The dependency rule says that source code in a lower-level layer can make use of code in
higher-level layers yet higher-level layers may not make use of code in lower-level layers.
Dependencies may only point in one direction.

What's the difference between a lower-level and a higher-level layer?

Consider the following diagram:

We'll see the code above in action later in this chapter.

In functional terms, the dependency rule says that if function A (from package A) calls
function B (from package B), then function B cannot call any function from package A.

However, the flow of application control could go in nearly any direction (between
packages).

Applying FP at the Architectural Level Chapter 6

[221]

In practical terms, when writing a CRM application, we might find that our marketing
campaign component may need to reference a function in our opportunity component. If
our opportunity component needs to reference a function in our campaign component, then
we could experience a circular dependency error.

Cyclic dependency
A cyclic dependency is a compilation error in Go. It indicates that our code has broken the
dependency rule. It occurs when a package imports another package that in turn imports
the original package. This can occur from package A to B to A or any combination that
results in package A getting imported anywhere down the call chain.

Working code
Let's look at some example code to illustrate this concept. First, let's look at the working
code. The packageb package has one, simple public function and no imports:

dependency-rule-good/src/packagea/featurea.go

package packageb

func Btask() {
 println("B")
}

The packagea package has one, simple public function and imports packageb:

// dependency-rule-good/src/packageb/featureb.go

package packagea

import b "packageb"

func Atask() {
 println("A")
 b.Btask()
}

Applying FP at the Architectural Level Chapter 6

[222]

Here's our main function where we run Atask from packagea:

// dependency-rule-good/main.go

package main

import a "packagea"

func main() {
 a.Atask()
}

Output:

A
B

Code with cyclic dependency error
This time, we will import packagea into featureb.go:

// circulardep/src/packageb/featureb.go

package packageb

import a "packagea"

func Btask() {
 println("B")
 a.Atask()
}

The featurea.go file remains unchanged:

package packagea

import b "packageb"

func Atask() {
 println("A")
 b.Btask()
}

Applying FP at the Architectural Level Chapter 6

[223]

The main.go file also remains unchanged:

package main

import a "packagea"

func main() {
 a.Atask()
}

The following is the output:

import cycle not allowed
package main
imports packagea
imports packageb
imports packagea

We violated the dependency rule when we imported packagea into featureb.go.

The Golang difference
If you have spent most of your time up to now programming in other languages such as
Ruby, you may be surprised when you get cyclic dependency errors.

Why are there no cyclic dependency errors in a language like Ruby?

First, Ruby is an interpreted language, so we will never get a compile error. Furthermore,
Ruby determines the scope by namespaces. As long as Ruby has a unique reference to a
block of code and that code has been loaded into memory, there should be no dependency
reference errors.

Does that mean Ruby is better than Go in this respect?

It depends. Do we want to develop as quickly as possible without concerning ourselves
with the dependency rule? Do we expect our application to grow complex over time? Do
we want to put more time into design at the beginning of our project?

Go not only encourages us to write better code, like this instance, Go makes us write better
code.

Applying FP at the Architectural Level Chapter 6

[224]

Solution for cyclic dependencies
How can we write Go code that adheres to the dependency rule and still reflect multi-
directional flow of control that we frequently encounter in a business application logic?

We can accomplish this using a layered architecture, an interface-driven development and a
form of the Hollywood Principle called dependency injection.

Let’s take it one step at a time.

Domain Driven Design
We can use a layered domain driven architecture as a tool for structuring our large-scale
functional programs in a modular and composable manner. This architecture helps us
visualize the separate application concerns and enables us to write Go code whose source
code dependencies only point inwards.

All references, that is, import statements must point inwards. An import domain statement
can be found in all other packages. Import use cases can be found in the interfaces and
infrastructure packages. Import interfaces can be found in the infrastructure package and
no package (except the import_test package that we'll cover later) is permitted to import
the infrastructure package:

Applying FP at the Architectural Level Chapter 6

[225]

The preceding diagram is somewhat of a paradox. The more we move inwards, the higher
level our software becomes. The domain entities are high-level concepts. Whereas, the more
we move outwards, the more low-level our software is. The infrastructure is where we
interact with the filesystem, cloud provider, or other data repositories, for example,
databases or cloud storage.

When we adhere to the dependency rule, our source code dependencies only point inwards.
Our system becomes highly cohesive, that is, components with closely related
responsibilities are separated into the appropriate layer, thereby increasing cohesion. By
programming to interfaces and leveraging dependency injection, we create a loose coupling
that enables us to swap out pieces of the system without affecting other components.

Interface-driven development
Recall the following quote from Chapter 4, SOLID Design in Go?

"It makes sense to categorize a thing by its abilities, because everything is defined by its
actions."

Since this is a book about functional programming, now would be a good time to mention
that a major benefit of using interfaces is that they allow us to group our application's
functions in order to model real-life behaviors.

In the previous chapter, we modeled the behavior of a duck:

type StrokeBehavior interface {
 PaddleFoot(strokeSupply *int)
}

type EatBehavior interface {
 EatBug(strokeSupply *int)
}

In this chapter, we will look at manipulating files in the Google Cloud Platform (GCP).
Our interface defines the four behaviors of interest:

type GcpHandler interface {
 ListBuckets(flowType domain.FlowType, projectId string) (buckets
[]domain.Bucket, err error)
 FileExists(fileName string) (fileExists bool, err error)
 DownloadFile(fileName string) (success bool, err error)
 UploadFile(fileName string) (success bool, err error)
}

Applying FP at the Architectural Level Chapter 6

[226]

Let's not get confused with the interface terminology. We just spoke about a Go interface,
whereas when we talk about the interface layer in a layered architecture that is a way of
layering our application into separate, cohesive concerns.

This chapter will focus on the mechanics of how we accomplish this task using Go.

What are our best options for decoupling dependencies between high-level and low-level
layers?

We'll look at two-candidate solutions, the observer pattern and dependency injection in the
upcoming sections.

Hollywood principle
Actors suffer through crushing blows of humiliation in their quest to climb one step higher
in the Hollywood hierarchy. Who determines whether an actor winds up as a stage hand or
Brad Pitt? The casting director.

Actors audition for a part in a movie and are advised not to ask whether they got the part.
The fact is that if the director wants you, he'll find you. That's the Hollywood principle of
"Don't call us. We'll call you".

In traditional programming, the actor would audition and then ask the director if they got
the part. That's not how the Hollywood Principle works.

What is required for this inversion of control?

We require an API that exposes public functions and a framework where dependent
components are bound to a subject during runtime.

What are our framework options?

Observer pattern
The observer pattern is one option. It works by injecting a callback object (observer) into the
subject to be observed. The subject simply raises an event in all observers when its state
changes.

Applying FP at the Architectural Level Chapter 6

[227]

How the observer reacts to the event is outside the scope or care of the subject.

Here’s an implementation of that pattern:

//main.go

package main

import (
 . "observer"
)

func main() {

 subject := Subject{}
 oa := Observable{Name: "A"}
 ob := Observable{Name: "B"}
 subject.AddObserver(&Observer{})
 subject.NotifyObservers(oa, ob)

 oc := Observable{Name: "C"}
 subject.NotifyObservers(oa, ob, oc)

 subject.DeleteObserver(&Observer{})
 subject.NotifyObservers(oa, ob, oc)

 od := Observable{Name: "D"}
 subject.NotifyObservers(oa, ob, oc, od)
}

Applying FP at the Architectural Level Chapter 6

[228]

The observer implements the Callback interface. We implement a Notify method for the
observer receiver. Notify is the observer's callback function:

// src/observer.go

package observer

type Observable struct {
 Name string
}

type Observer struct {
}

func (ob *Observer) Notify(o *Observable) {
 println(o.Name)
}

type Callback interface {
 Notify(o *Observable)
}

The subject implements three methods: AddObserver, DeleteObserver, and
NotifyObservers:

// src/subject.go

package observer

type Subject struct {
 callbacks []Callback
}

func (o *Subject) AddObserver(c Callback) {
 o.callbacks = append(o.callbacks, c)
}
func (o *Subject) DeleteObserver(c Callback) {
 o.callbacks = append(o.callbacks, c)

 newCallbacks := []Callback{}
 for _, cb := range o.callbacks {
 if cb != c {
 newCallbacks = append(newCallbacks, cb)
 }
 }
 o.callbacks = newCallbacks
}

Applying FP at the Architectural Level Chapter 6

[229]

func (o *Subject) NotifyObservers(oes ...Observable) {
 for _, oe := range oes {
 for _, c := range o.callbacks {
 c.Notify(&oe)
 }
 }
}

The AddObserver method is where the subscription, that is, the relationship between the
observer and the subject occurs.

The NotifyObservers method acts as a simple service locator. It iterates through its list of
subscribed observers and executes its callbacks.

The following is the output:

A
B
A
B
C

When we remove the observer from our service locator by executing
 subject.DeleteObserver(&Observer{}), all subsequent notifications have no effect
since there are no observers subscribed to respond to the published events.

Dependency injection
Dependency injection (DI) is a form of Inversion of Control and also impacts the flow of
control in an application. Although the observer pattern's callback mechanism can modify
the flow at many times and in many places in an application, DI typically performs the flow
of control configuration during application initialization.

Since this chapter is mainly about a layered architecture and the management of
dependencies to prevent circular dependency errors, we will not explore pub/sub
architectures and the observer pattern. Instead, we will choose DI to reconcile our
dependencies in our main function.

Applying FP at the Architectural Level Chapter 6

[230]

A cloud bucket application
Pictures are worth a thousand words, right? Let's use some diagrams to help describe our
basic application architecture.

Next, we will see the high-level architecture of our application that we'll call onion. (An
onion has layers, so we'll use that metaphor to remind us of the layers.) It moves files from
the SOURCE Cloud Bucket to the local filesystem and then to the SINK Cloud Bucket.

The purple API box in the following diagram represents the web services API that our
onion.go application exposes for the administrative user. The red API represents the
Google Cloud Platform storage API:

The admin will direct the onion.go application to download a log file from the SOURCE
Cloud Bucket to the local filesystem. The admin can subsequently tell onion.go to upload
the file to the SINK Cloud Bucket.

The purple paths, for example, /health, /list-source-buckets, and /list-sink-
buckets are the web service APIs that our onion application exposes to the administrative
user.

Applying FP at the Architectural Level Chapter 6

[231]

Directory structure
The directory structure of our application looks like this:

├── downloads
├── keys
│ └── google-cloud-storage
├── pkg
│ └── darwin_amd64
├── src
│ ├── domain
│ ├── infrastructure
│ ├── interfaces
│ ├── usecases
│ └── utils
└── vendors
 ├── pkg
 └── src

The source code for our project is main.go, which lives in the project root. The rest of our
application is separated into directories corresponding to our application's architectural
layers (domain, use cases, interfaces, and infrastructure).

Before looking into the details of the other layers, let's see how we tie them together. That
work is done in our main.go file. We start by initializing our configuration options with
GetOptions().

main.go
Let's have a look at the contents of main.go:

func init() {
 GetOptions()
 if Config.LogDebugInfo {
 InitLog("trace-debug-log.txt", os.Stdout, os.Stdout, os.Stderr)
 } else {
 InitLog("trace-log.txt", ioutil.Discard, os.Stdout, os.Stderr)
 }
 // use a filename in a downloads subdirectory
 fileName = os.Getenv("TEST_FILENAME")
 if len(fileName) == 0 {
 fileName = defaultFileName // CloudflareLogFilename(time.Now())
 }
 // . . .
 HandlePanic(os.Chdir(Config.ProjectRoot))
}

Applying FP at the Architectural Level Chapter 6

[232]

We direct Debug statements to standard out if our log_debug_info setting is true;
otherwise, we discard them. We hardcode the name of the log file for simplicity, but we
could have used a config value or a function call to dynamically generate the filename.

The last thing we do in our init function is to change our application's working directory
to our project root directory. If there is an error doing so, the HandlePanic() function from
our utils package will display a stack trace for debugging purposes.

We find the HandlePanic() function in our utils package. Unlike most functions, we do
not return an error from HandlePanic(). We handle it by adding the filename and line
number of the source code file where the error originated and alert.

func HandlePanic
Here is our HandlePanic() function:

func HandlePanic(err error) {
 if err != nil {
 _, filePath, lineNo, _ := runtime.Caller(1)
 _, fileName := path.Split(filePath)
 msg := fmt.Sprintf("[file:%s line:%d]: %s", fileName, lineNo,
err.Error())
 panic(msg)
 }
}

It is worth noting that we import our utils package by prefacing it with a period like this:

import . "utils"

This allows us to reference public functions (starting with capital letters) without including
the utils package name.

Applying FP at the Architectural Level Chapter 6

[233]

Dependency injection
In the decorator chapter, we looked at inversion of control. We saw how a decorator, for
example, the FaultTolerance, can be injected into the flow (of main) by our decorator
framework using dependency injection.

We will use the same concept of dependency injection to wire up our application and to
provide control over function calls and the data that flows between our interfaces.

Remember our electrician analogy? This is a great time to revisit the concept. Our work is
much like the electrician who first turns off the power to the house: who lays the wires and
subsequently turns the power on. After the power is turned on, our electrician can test the
switches to verify that the home's electrical system has been wired properly.

We create the interfaces that connect the layers of our application. In the main function we
instantiate our interactors. Our interactors use the interfaces through which we call
functions and thereby control the flow of data between the parts of our loosely coupled
system.

We have two interactors--one for interacting with the Google Cloud Platform, the
GcpInteractor, and the other, LocalInteractor, for reading and writing files to the
local filesystem.

Applying FP at the Architectural Level Chapter 6

[234]

func main()
Now, let's go through the main() function:

func main() {
 gcpi, err := infrastructure.GetGcpInteractor()
 HandlePanic(errors.Wrap(err, "unable to get gcp interactor"))
 li, err := infrastructure.GetLocalInteractor()
 HandlePanic(errors.Wrap(err, "unable to get local interactor"))

 wsh = WebserviceHandler{}
 wsh.GcpInteractor = gcpi
 wsh.LocalInteractor = li

We inject both our interactors into our web service handler, which allows our admin user to
manipulate our repositories via our public web service APIs, for example, /list-source-
buckets.

Note that DI occurs at object creation time. Contrast DI with parameterized functions or the
use of a context--that contains all pertinent information for a single function
invocation—that can be passed through a chain of function calls.

DI typically occurs once during the lifetime of an application. Parameterized functions and
the passing of context, occurs many times.

Layers in the architecture
We are building an application framework based on a layered achitecture that will allow us
to grow our application with less difficulty.

After building a solid application framework based on a layered architecture, we'll return to
pure functional programming topics and techniques in subsequent chapters.

We will separate our Onion application into four layers:

Domain
Use cases
Interfaces
Infrastructure

We will discuss them in detail in the upcoming sections.

Applying FP at the Architectural Level Chapter 6

[235]

Domain layer
The following diagram illustrates the layers in our layered architecture. The arrow indicates
that we only import packages in one direction. Domain will never import from use cases,
interfaces, or infrastructure. The red background in the domain layer indicates that we're
looking into that layer in this section:

The domain layer is where we define our business entities. These are the core business
objects that we would initially think of when defining the essence of what our application
does.

From our following type definitions, we quickly glean that our application moves files to
and from buckets of a cloud storage provider:

type (
 HostProvider int
 FlowType int
)

type CloudStorage struct {
 HostProvider HostProvider //Host location for log files, e.g., google
cloud bucket
 ProjectId string //Project Id for this GCP storage account
 FlowType FlowType //source or sink
}

type LocalRepository interface {
 FileExists(fileName string) (fileExists bool, err error)
}

Applying FP at the Architectural Level Chapter 6

[236]

type BucketRepository interface {
 List(projectId string) (buckets []Bucket, err error)
 FileExists(fileName string) (fileExists bool, err error)
 DownloadFile(fileName string) (success bool, err error)
 UploadFile(fileName string) (success bool, err error)
}

type FileRepository interface {
 Store(file File)
 FindById(id int) File
}

type Bucket struct {
 Name string `json:"name"`
}
type Buckets struct {
 Buckets []Bucket `json:"buckets"`
}

The LocalRepository and BucketRepository do not refer to specific implementations.
The domain layer does not care whether the bucket is Google bucket or an AWS bucket.
The term repository is used. To the domain layer a repository is just a place in which files
are persisted and retrieved.

Before moving on, let’s look at the contents of the log files we’re moving around:

// downloads/eventset1.jsonl

{"eventId":1000,"timestamp":1500321544026000125,"description":"something
bad
happened","userId":997776,"country":"AF","deviceType":"UD10","ip":"19.123.3
.22","srcPort":80}{"eventId":1001,"timestamp":1500321544026000126,"descript
ion":"something pretty bad
happened","userId":429444,"country":"AL","deviceType":"KG90","ip":"44.74.43
.30","srcPort":80}{"eventId":1002,"timestamp":1500321544026000127,"descript
ion":"something super bad
happened","userId":458696,"country":"NZ","deviceType":"VM30","ip":"101.4.66
.210","srcPort":8000}

This .jsonl file comprises three JSON objects.

Applying FP at the Architectural Level Chapter 6

[237]

The format of each line is defined in our domain/log_file.go file:

// domain/log_file.go

type User struct {
 UserId int `json:"userId"`
 Country string `json:"country"`
 DeviceType string `json:"deviceType"`
 IP string `json:"ip"`
 SrcPort int `json:"srcPort"`
}

type LogFile struct {
 EventId int `json:"eventId"`
 Timestamp int64 `json:"timestamp"`
 Description string `json:"description"`
 User
}

We define one function to convert our JSON text into a Go struct:

func NewLogFile(logfileJson string) (logFile *LogFile, err error) {
 err = json.Unmarshal([]byte(logfileJson), &logFile)
 if err != nil {
 return nil, errors.Wrap(err, "unable to unmarshal json")
 }
 return
}

We define a method to operate on a LogFile object, transforming it into a JSON text
representation:

func (lf *LogFile) ToJson() (logFileJson string, err error) {
 logFileBytes, err := json.Marshal(lf)
 if err != nil {
 return "", errors.Wrap(err, "unable to marshal json")
 }
 logFileJson = string(logFileBytes)
 return
}

It's worth noting that in both cases we wrap the underlying error with our own more
specific error message before returning the error to our function’s caller.

Applying FP at the Architectural Level Chapter 6

[238]

The fewer packages our application references the easier the job will be to maintain our
application. Third-party packages can be frequently updated, which is usually a good thing,
for example, if they fix a security issue, but can be a bad thing for our application if they
change their public interfaces in such a way as to break our application.

The github.com/pkg/errors package is one of the few packages that is worththe trouble.
It allows us to add context to the error message without changing or hiding the
original error message.

Package errors (https:/ / github. com/ pkg/ errors) provide simple error
handling primitives. You can also refer to: https:/ /dave.cheney.net/
2016/ 04/ 27/ dont- just- check- errors-handle-them-gracefully.

The Write method allows us to write the content of a LogFile object to disk:

func (lf *LogFile) Write(logFilename, contents string) (err error) {
 overwrite := true
 flag := os.O_WRONLY | os.O_CREATE
 if overwrite {
 flag |= os.O_TRUNC
 } else {
 flag |= os.O_EXCL
 }
 osFile, err := os.OpenFile(logFilename, flag, 0666)
 if err != nil {
 return errors.Wrapf(err, "unable to open %s", logFilename)
 }
 bytes := []byte(contents)
 n, err := osFile.Write(bytes)
 if err == nil && n < len(bytes) {
 err = io.ErrShortWrite
 return errors.Wrapf(io.ErrShortWrite, "not all bytes written for %s",
logFilename)
 }
 if err1 := osFile.Close(); err1 != nil {
 return errors.Wrapf(err, "unable to close %s", logFilename)
 }
 return
}

Applying FP at the Architectural Level Chapter 6

[239]

In file.go, we define our File struct, which comprises file attributes. For example,
filename and bytes. It also has the LogFile defined as an embedded field.

// domain/file.go

type File struct {
 Id int
 Name string `json:"name"`
 ErrorMsg string `json:"error"`
 Contents LogFile `json:"logFile"`
 Bytes []byte `json:"bytes"`
}

We also define structs for manipulating the .jsonl files that we receive from (and send to)
GCP buckets:

type CloudFile struct {
 Name string `json:"name"`
}
type CloudFiles struct {
 Names []CloudFile
}

type CloudPath struct {
 Path string `json:"path"`
}
type CloudPaths struct {
 Paths []CloudPath
}

The file.go file also contains the following functions for manipulating a file:

NewFile

NameOnly

Exists

Path

Read

Write

Parse

Applying FP at the Architectural Level Chapter 6

[240]

Our api.go file defines the structs we use to communicate whether a file exists or whether
operations performed on our files were successful:

// domain/api.go

type Existence struct {
 Exists bool `json:"exists"`
}

type Outcome struct {
 Success bool `json:"success"`
}

type OutcomeAndMsg struct {
 Success bool `json:"success"`
 Message string `json:"message"`
}

type MultiStatus struct {
 OutcomeAndMsgs []OutcomeAndMsg
}

Use cases layer
Let's look at the use cases layer now:

The use cases layer has to do with what the user wants to do, that is, their use cases for
using this application.

Applying FP at the Architectural Level Chapter 6

[241]

It references the repositories, local filesystem, and the source and sink buckets in the cloud.

We can directly reference domain entities and we can reference interface entities via the
local and GCP interactors.

If we can reference an infrastructure entity in any way, then our design is broken. For
example, we should be able to swap out the Google Cloud Platform storage APIs with AWS
S3 bucket APIs and without our use case layer changing in any way.

In our application, a user may want to check whether a local file exists or get the file, in
order to upload it to a bucket in GCP.

The LocalInteractor struct controls the flow to and from the local filesystem:

// usecases/usecases.go
type LocalInteractor struct {
 LocalRepository domain.LocalRepository
}

func (interactor *LocalInteractor) LocalFileExists(fileName string)
(fileExists bool, err error) {
 return interactor.LocalRepository.FileExists(fileName)
}

The GcpInteractor struct controls the flow of files and information regarding files in a
cloud bucket. Doing things with buckets includes things such as listing the files in a bucket,
checking whether a file exists, uploading, and downloading a file:

type GcpInteractor struct {
 SourceBucketRepository domain.BucketRepository
 SinkBucketRepository domain.BucketRepository
}

There are two types of buckets. One acts as a source of files and the other acts as the sink (or
destination) for files.

Note that we can reference the BucketRepository struct from the usecases package, but
there will be no reference to usecases in any file in the domain package:

func (interactor *GcpInteractor) ListSinkBuckets(projectId string) (buckets
[]domain.Bucket, err error) {
 return interactor.SinkBucketRepository.List(projectId)
}

Applying FP at the Architectural Level Chapter 6

[242]

The GcpInteractor methods in usecases.go define the use cases for manipulating files
in our Google Cloud account:

func (interactor *GcpInteractor) SourceFileExists(fileName string)
(fileExists bool, err error) {
 return interactor.SourceBucketRepository.FileExists(fileName)
}

The DownloadFile and UploadFile methods are arguably our most important ones:

func (interactor *GcpInteractor) DownloadFile(fileName string) (success
bool, err error) {
 return interactor.SourceBucketRepository.DownloadFile(fileName)
}

func (interactor *GcpInteractor) UploadFile(fileName string) (success bool,
err error) {
 return interactor.SinkBucketRepository.UploadFile(fileName)
}

The logic in this layer is very lean. When we develop more complex applications that have
business rules to enforce, these use cases would likely be the best place to put them.

For example, if we had implemented security in our application, we could define the
following rules as:

Only users in the sink group or above can list the files in a sink bucket
Only users in the source-downloads group can download files
Only users in the super-admins group can upload files

Then we'd likely put our authorization logic here in the use cases layer.

Compatible interfaces
In order for the dependency injection to work, our application must have compatible
interfaces, for example, FileExists(fileName string) (fileExists bool, err
error) in domain.go and gcphandler.go.

Applying FP at the Architectural Level Chapter 6

[243]

The line return interactor.SourceBucketRepository.FileExists(fileName) is
delegating the FileExists behavior to the interface, which is implemented by
gcphandler.go and then injected into the interactor. Below, we define our interface for our
BucketRepository:

// domain/domain.go

type BucketRepository interface {
 List(projectId string) (buckets []Bucket, err error)
 FileExists(fileName string) (fileExists bool, err error)
 DownloadFile(fileName string) (success bool, err error)
 UploadFile(fileName string) (success bool, err error)
}

The BucketRepository interface is compatible with the GcpHandler interface:

// interfaces/gcpstorage.go

type GcpHandler interface {
 ListBuckets(flowType domain.FlowType, projectId string) (buckets
[]domain.Bucket, err error)
 FileExists(fileName string) (fileExists bool, err error)
 DownloadFile(fileName string) (success bool, err error)
 UploadFile(fileName string) (success bool, err error)
}
// infrastructure/gcphandler.go
func (handler *GcpHandler) FileExists(fileName string) (fileExists bool,
err error) {
 . . .
 br, err :=
handler.Client.Bucket(bucketName).Object(fullPath).NewReader(ctx)
 . . .
 return true, err
}

Let's not forget the wiring up that occurred in main, that associated the /source-file-
extsts URL end point with the GcpInteractor:

main.go

func main() {
 gcpi, err := infrastructure.GetGcpInteractor()
 . . .
 wsh = WebserviceHandler{}
 wsh.GcpInteractor = gcpi
 . . .
 {Api{wsh.SourceFileExists, "/source-file-exists"},

Applying FP at the Architectural Level Chapter 6

[244]

"fileName="+fileName}

This is the crux of the framework that performs the dependency injection and allows us to
write code that spans the layers of our application without violating the dependency rule.

Interfaces layer
In this section, we will be looking at the interfaces layer:

The interfaces layer provides a means to communicate with external repositories, for
example, cloud bucket or local files storage. If our external repositories need to
communicate events back to our application, for example, out of disk space, these events
would flow through this interfaces layer.

We begin by defining our interface, that is, the functions that our interfaces layer supports.

This file contains handlers for interfacing with the Google Cloud Platform’s (GCP) storage
API:

// interfaces/gcpstorage.go

type GcpHandler interface {
 ListBuckets(flowType domain.FlowType, projectId string) (buckets
[]domain.Bucket, err error)
 FileExists(fileName string) (fileExists bool, err error)
 DownloadFile(fileName string) (success bool, err error)
 UploadFile(fileName string) (success bool, err error)
}

Applying FP at the Architectural Level Chapter 6

[245]

To simplify our implementation, we’ll only define one GcpHandler interface for both
source and sink buckets. The consequence is that DownloadFile will be available, but not
useful for the sink bucket and UploadFile will not be useful for the source bucket.

Next, we define a structure in which we can register our interface handlers:

type GcpRepo struct {
 gcpHandlers map[string]GcpHandler
 gcpHandler GcpHandler
}

type SourceBucketRepo GcpRepo
type SinkBucketRepo GcpRepo

We have two types of GCP repositories. A source bucket and a sink bucket.

Earlier, we provided the interface that satisfies the needs of the use cases. In the following
code, we implement the code that injects that actual implementation (at run time):

func NewSourceBucketRepo(gcpHandlers map[string]GcpHandler)
*SourceBucketRepo {
 bucketRepo := new(SourceBucketRepo)
 bucketRepo.gcpHandlers = gcpHandlers
 bucketRepo.gcpHandler = gcpHandlers["SourceBucketRepo"]
 return bucketRepo
}

func (repo *SourceBucketRepo) List(projectId string) (buckets
[]domain.Bucket, err error) {
 return repo.gcpHandler.ListBuckets(domain.SourceFlow, projectId)
}

func (repo *SourceBucketRepo) FileExists(fileName string) (fileExists bool,
err error) {
 return repo.gcpHandler.FileExists(fileName)
}

func (repo *SourceBucketRepo) DownloadFile(fileName string) (success bool,
err error) {
 return repo.gcpHandler.DownloadFile(fileName)
}
// UploadFile is not operational for a source bucket
func (repo *SourceBucketRepo) UploadFile(fileName string) (success bool,
err error) {
 return false, nil
}

Applying FP at the Architectural Level Chapter 6

[246]

How can the code above be improved?

Our NewSinkBucketRepo function could be rewritten as follows:

func NewSourceBucketRepo(gcpHandlers map[string]GcpHandler)
*SourceBucketRepo {
 return &SourceBucketRepo{
 gcpHandlers: gcpHandlers,
 gcpHandler: gcpHandlers["SourceBucketRepo"],
 }
}

See the difference? Note that, unlike in C, it's perfectly OK to return the address of our local
variable SourceBucketRepo. When we return our SourceBucketRepo composite literal,
the expression is evaluated and Go will allocate a fresh instance of SourceBucketRepo. So,
the storage associated with our SourceBucketRepo variable will survive after
our NewSourceBucketRepo function returns.

The code for wiring up the injection to handle the sink bucket dependencies is very similar
to the source bucket code:

func NewSinkBucketRepo(gcpHandlers map[string]GcpHandler) *SinkBucketRepo {
 return &SinkBucketRepo{
 gcpHandlers: gcpHandlers,
 gcpHandler: gcpHandlers["SinkBucketRepo"],
 }
}

func (repo *SinkBucketRepo) List(projectId string) (buckets
[]domain.Bucket, err error) {
 return repo.gcpHandler.ListBuckets(domain.SinkFlow, projectId)
}

func (repo *SinkBucketRepo) FileExists(fileName string) (fileExists bool,
err error) {
 return repo.gcpHandler.FileExists(fileName)
}

func (repo *SinkBucketRepo) DownloadFile(fileName string) (success bool,
err error) {
 return false, nil
}

func (repo *SinkBucketRepo) UploadFile(fileName string) (success bool, err
error) {
 return repo.gcpHandler.UploadFile(fileName)

Applying FP at the Architectural Level Chapter 6

[247]

}

func (repo *SinkBucketRepo) ListFileNamesToFetch(fileName string)
(cloudFiles domain.CloudFiles, err error) {
 return cloudFiles, err
}

The local storage interface is similar to the GCP bucket interface. Both have a means to
check whether a file exists and to retrieve a file. We have added some logic that shows that
this would be a good place to implement a caching mechanism in order to increase
performance (at the expense of additional RAM requirements):

// interfaces/localstorage.go

type LocalHandler interface {
 FileExists(fileName string) (fileExists bool, err error)
}

var FileCache map[string][]string //slice of json values, one for each
LogFile

type LocalRepo struct {
 localHandlers map[string]LocalHandler
 localHandler LocalHandler
 fileCache map[string]domain.File
}

type LocalFileSystemRepo LocalRepo

We see the same dependency injection logic in the NewLocalRepo() function:

func NewLocalRepo(localHandlers map[string]LocalHandler)
*LocalFileSystemRepo {
 localRepo := new(LocalFileSystemRepo)
 localRepo.localHandlers = localHandlers
 localRepo.localHandler = localHandlers["LocalFileSystemRepo"]
 return localRepo
}

Next, we implement the FileExists() function:

func (repo *LocalFileSystemRepo) FileExists(fileName string) (fileExists
bool, err error) {
 return repo.localHandler.FileExists(fileName)
}

Applying FP at the Architectural Level Chapter 6

[248]

If we want to implement file caching, we could create a FileCache global variable in the
interfaces layer like this:

var FileCache map[string][]string //slice of json values, one for each
LogFile

We could initialize it in the init() function:

func init() {
 FileCache = make(map[string][]string)
}

But if we did, what else should we do?

What if two requests occur at the same time to upload a file? What could happen?

What if we implemented a DeleteFile function?

Some form of resource locking and race condition mitigation would be needed.

The big win for us is that now we have a place to put this caching logic. The layering helps
when the time comes to extend our application's functionality.

Now we'll have a look at the interfaces/webservice.go file.

First, let's define an Api struct:

type Api struct {
 Handler func(res http.ResponseWriter, req *http.Request)
 Url string
}

We've seen how we used the Api struct to associate our application endpoints with their
corresponding web service implementations.

The main.go file defines an enpoint struct that embeds this Api struct:

type endpoint struct {
 Api
 uriExample string
}

Applying FP at the Architectural Level Chapter 6

[249]

In main, we initialize the endpoints slice with our web service endpoint (handler and
URL):

var endpoints = []endpoint{
 {Api{wsh.Health, "/health"}, ""},
 {Api{wsh.ListSourceBuckets, "/list-source-buckets"},
"projectId="+Config.GcpSourceProjectId},
 {Api{wsh.ListSinkBuckets, "/list-sink-buckets"},
"projectId="+Config.GcpSinkProjectId},
 {Api{wsh.SourceFileExists, "/source-file-exists"},
"fileName="+fileName},
 {Api{wsh.DownloadFile, "/download-file"}, "fileName="+fileName},
 {Api{wsh.UploadFile, "/upload-file"}, "fileName="+fileName},
 {Api{wsh.LocalFileExists, "/local-file-exists"}, "fileName="+fileName},
}

Later in main, we iterate through our endpoints and associate our URLs with their
respective handlers:

Info.Println("Example API endpoints:")
{
 for _, ep := range endpoints {
 http.HandleFunc(ep.Api.Url, ep.Api.Handler)
 printApiExample(ep.Api.Url, ep.uriExample)
 }
}

We created a printApiExample() helper function to print the following in our console:

Example API endpoints:
http://localhost:8080/health
http://localhost:8080/list-source-buckets?projectId=rdbx-168418
http://localhost:8080/list-sink-buckets?projectId=rdbx-168418
http://localhost:8080/source-file-exists?fileName=eventset1.jsonl
http://localhost:8080/download-file?fileName=eventset1.jsonl
http://localhost:8080/upload-file?fileName=eventset1.jsonl
http://localhost:8080/local-file-exists?fileName=eventset1.jsonl
http://localhost:8080/get-local-file?fileName=eventset1.jsonl

Next, we define our interactor interfaces. There is only one for our local filesystem:

type LocalInteractor interface {
 LocalFileExists(fileName string) (fileExists bool, err error)
}

Applying FP at the Architectural Level Chapter 6

[250]

We define five interfaces for our GCP buckets:

type GcpInteractor interface {
 ListSourceBuckets(projectId string) (buckets []domain.Bucket, err error)
 ListSinkBuckets(projectId string) (buckets []domain.Bucket, err error)
 SourceFileExists(fileName string) (fileExists bool, err error)
 DownloadFile(fileName string) (success bool, err error)
 UploadFile(fileName string) (success bool, err error)
}

We create a WebserviceHandler struct to provide access to both local files and cloud
bucket files:

type WebserviceHandler struct {
 LocalInteractor LocalInteractor
 GcpInteractor GcpInteractor
}

Health API

Health is a useful, simple utility web service, which is defined as follows:

func (handler WebserviceHandler) Health(res http.ResponseWriter, req
*http.Request) {
 res.WriteHeader(http.StatusOK)
 res.Header().Set("Content-Type", "application/json")
 io.WriteString(res, `{"alive": true}`)
}

If we want the JSON results, it is defined as follows:

$ curl http://localhost:8080/health
{"alive": true}

If we only need the HTTP header status code, it is defined as follows:

$ curl -s -I http://localhost:8080/health
HTTP/1.1 200 OK
Date: Sun, 23 Jul 2017 22:19:03 GMT
Content-Length: 15
Content-Type: text/plain; charset=utf-8

Applying FP at the Architectural Level Chapter 6

[251]

File exists APIs

Here's a web service method for checking whether a local file exists:

func (handler WebserviceHandler) LocalFileExists(res http.ResponseWriter,
req *http.Request) {
 fileName := req.FormValue("fileName")
 exists, err := handler.LocalInteractor.LocalFileExists(fileName)
 handleExists(sf("Running LocalFileExists for fileName: %s...",
fileName), "find file", req, res, err, exists)
}

Here’s one for checking whether a file exists in our source cloud bucket:

func (handler WebserviceHandler) SourceFileExists(res http.ResponseWriter,
req *http.Request) {
 fileName := req.FormValue("fileName")
 exists, err := handler.GcpInteractor.SourceFileExists(fileName)
 handleExists(sf("Running SourceFileExists for fileName: %s...",
fileName), "file exists", req, res, err, exists)
}

Extending functionality

We could easily extend our application by adding WebserviceHandler methods that
could access both source and sink buckets as well as the local filesystem, all in the same
function invocation.

Our design using interfaces is flexible in other ways, too. For example, using a testing
configuration setting when starting our application we could instruct our application’s main
function to use a test mock implementation when wiring up the interactors. This could
enable our tests to interact with a speedy test stub bucket interface that provides canned
responses to test the control flow within our application rather than taking time to initialize
connections and deal with the latency of the network.

Now we'll look at the interfaces/webservice_helpers.go file.

First, we define the sf variable to be the fmt.Sprintf function. This allows us to
abbreviate our code, replacing sf with fmt.Sprintf:

var sf = fmt.Sprintf

Applying FP at the Architectural Level Chapter 6

[252]

Next, we define one of the few global variables in our application. This is the standard
response we return to the web clients when an error is encountered. This value never
changes. So, it is for all intents and purposes a constant:

var ErrorResponse = []byte("Error")

In the following code, we implement a function to determine the format of the data to
return to the user:

func getFormat(r *http.Request) (format string) {
 //format = r.URL.Query()["format"][0]
 // Hard code json for now
 format = "json"
 return
}

Granted, we’ve hardcoded the value to json, but we could have just as easily pulled the
value from a query parameter. The idea to remember is that we use a function to return this
value. The value returned from the function can change from one request to the next. We do
not need to write code to synchronize results to ensure that each format returned
corresponds properly with each request. Neither do we need data modification locking
logic nor do we need to write code to prevent race conditions.

What if we had defined format to be a global string? What errors might that cause? Could
we use it to scale this application horizontally?

The general rule is, only if a value is constant, use a global reference. Otherwise, we should
return all results via a function call. Why? Because using global variables that change makes
our application state unpredictable.

Why global variables are bad
In Chapter 1, Pure Functional Programming in Go, we briefly discussed immutable variables,
but did not dive much into why they are so bad. Let's do that now that we have a concrete
example in mind.

Functional impurity

Also covered in Chapter 1, Pure Functional Programming in Go, pure functions always return
the same result, given the same inputs and never have side effects. Global variables cause
any function that references it to be impure.

Applying FP at the Architectural Level Chapter 6

[253]

Code complexity and bugs

Global variables by definition are available to a number of functions. It quickly becomes
difficult to understand the cause and effect aspects of program flow when a function
behaves differently based on its value and other functions are changing that global value.

Performance and race conditions

Mutable global variables require a locking mechanism to allow only one function at a time
to update its value. This is often difficult to program and frequently results in race
conditions, where a number of functions, that want to update the global variable, must wait
in line.

Testing difficulties

Testing must take into account the value of global variables. This typically means that each
tester must be aware of the global variable's existence, it's permissible values, and do the
work of initializing the global variable's value prior to running each test.

Format the response
In each web service request handler, we use the setFormat function in conjunction with
the getFormat function to format the response data. We are simply using JSON in our
example code, it is easy to see how we could extend our implementation to include formats
such as XML and CSV.

(We're still in interfaces/webservice_helpers.go.):

func setFormat(format string, data interface{}) ([]byte, error) {
 var apiOutput []byte
 if format == "json" {
 output, err := json.Marshal(data)
 if err != nil {
 return nil, errors.Wrap(err, "unable to marshal data to json")
 }
 apiOutput = output
 } else {
 Error.Printf("invalid data format encountered")
 apiOutput = ErrorResponse
 }
 return apiOutput, nil
}

Applying FP at the Architectural Level Chapter 6

[254]

The handler helpers are similar in format. Let’s first look at how we handle a success or
failure.

Our function signature contains seven arguments. That’s a lot, which makes it a likely
candidate for a refactoring. In the next chapter, we’ll study how we can simplify complex
APIs by passing functions instead of simple values.

Since debugMsg and msg are both strings, they share a single string declaration. Similarly,
err, error, and success are all of the type bool; bool only needs to be typed once after
the list of bool arguments. This is idiomatic Go. It is a style of programming, unique to Go,
that helps us write simpler, more easily understood code.

Let's examine the handleSuccess() function:

func handleSuccess(debugMsg, msg string, req *http.Request, res
http.ResponseWriter, err error, success bool) {
 Debug.Printf(debugMsg)
 response := domain.Outcome{}
 response.Success = success
 if err != nil {
 Error.Printf("Failed to %s. %v", msg, err)
 }
 output, err := setFormat(getFormat(req), response)
 if err != nil {
 output = ErrorResponse
 Error.Printf("Failed to setFormat. %v", err)
 }
 Debug.Printf("string(output): %s", string(output))
 fmt.Fprintln(res, string(output))
}

The handleSuccess() function is called by the SourceFileExists() function in
webservices.go:

func (handler WebserviceHandler) SourceFileExists(res http.ResponseWriter,
req *http.Request) {
 fileName := req.FormValue("fileName")
 exists, err := handler.GcpInteractor.SourceFileExists(fileName)
 handleExists(sf("Running SourceFileExists for fileName: %s...",
fileName), "file exists", req, res, err, exists)
}

Applying FP at the Architectural Level Chapter 6

[255]

We start with a Debug.Printf statement. It takes the first parameter from a web service
handler method such as SourceFileExists:

sf("Running SourceFileExists for fileName: %s...", fileName)

It’s worth noting that the sf function is defined as a function variable at the top of our
webservice_helpers.go file:

var sf = fmt.Sprintf

Prior to calling our handleExists helper function, we pull the fileName value from a
query parameter.

What happens when we call exists, err :=
handler.GcpInteractor.SourceFileExists(fileName) ?

Let’s look at the series of function calls that will eventually return our results.

First, we visit usecases.go in the usecases layer. The SourceFileExists is a
GcpInteractor method linked to SourceBucketRepository:

func (interactor *GcpInteractor) SourceFileExists(fileName string)
(fileExists bool, err error) {
 return interactor.SourceBucketRepository.FileExists(fileName)
}

That call to FileExists brings us back the interfaces layer and calls the FileExists
method in the infrastructure layer:

func (repo *SourceBucketRepo) FileExists(fileName string) (fileExists bool,
err error) {
 return repo.gcpHandler.FileExists(fileName)
}

Applying FP at the Architectural Level Chapter 6

[256]

The /source-file-exists API flow of control

The following chart and the upcoming diagram show the call stack starting from main
where the SourceExists API is called:

The flow of control goes from main.go to Layer

webservices.go (SourceFileExists) to interfaces (to user)

usecases.go (SourceFileExists) to 1 use cases

gcpstorage.go (FileExists) to 2 interfaces (to GCP)

gcphandler.go (FileExists) to 3 infrastructure

file.go (NewFile) to 4 domain

Notice that the interfaces layer is traversed twice during this API call. The function call to
SourceFileExists in webservices.go provides the programmatic interface between the
user that requested the /source-file-exists end point and the use cases layer’s
analogous SourceFileExists function, which defines what the user wants to do. The next
interface in this call stack interacts with the Google Cloud Platform.

The /source-file-exists API call stack

The following screenshot shows a single API call to the /source-file-exists web
service. The call originates in main, where the web service endpoint is associated with the
SourceFileExists function in webservices.go.

See how the flow of control moves from a user requesting a web service endpoint (in main)
and flows upwards, from layer to layer?--interfaces | use cases | interfaces |
interfaces | infrastructure | domain.

Applying FP at the Architectural Level Chapter 6

[257]

This is a powerful form of flow control that allows us to build complex applications, with
many multidirectional logic flows and still adheres to the dependency rule, that is, we only
import packages in one direction:

Applying FP at the Architectural Level Chapter 6

[258]

Testing our interfaces
In order to test our application, we'll create an interfaces_test directory inside our
interfaces directory.

Since interfaces_test is a different package than interfaces, we are unable to access
the private functions and other symbols within the interfaces package. We are able to
change our web service internals without breaking any tests. This also helps us focus on the
API. We see just what any other client of our API will see when it's deployed and it
simplifies our task of creating tests.

We use the testing package from the Go standard library:

package interfaces_test

import (
 . "interfaces"
 . "utils"
 "infrastructure"
 "github.com/pkg/errors"
 "io/ioutil"
 "net/http"
 "net/http/httptest"
 "os"
 "strings"
 "testing"
)

const failure = "\u2717"
const defaultFileName = "eventset1.jsonl"

var fileName string
var wsh WebserviceHandler

We declare fileName and WebserviceHandler that we populate in our following init()
function:

func init() {
 GetOptions()
 if Config.LogDebugInfoForTests {
 InitLog("trace-debug-log.txt", os.Stdout, os.Stdout, os.Stderr)
 } else {
 InitLog("trace-debug-log.txt", ioutil.Discard, os.Stdout, os.Stderr)
 }
 HandlePanic(os.Chdir(Config.ProjectRoot))
 Debug.Printf("Config: %+v\n", Config)
 // use a filename in a downloads subdirectory

Applying FP at the Architectural Level Chapter 6

[259]

 fileName = os.Getenv("TEST_FILENAME")
 if len(fileName) == 0 {
 fileName = defaultFileName
 }
 // instantiate interactors
 gcpi, err := infrastructure.GetGcpInteractor()
 HandlePanic(errors.Wrap(err, "unable to get gcp interactor"))
 li, err := infrastructure.GetLocalInteractor()
 HandlePanic(errors.Wrap(err, "unable to get local interactor"))
 // wire up interactors to webservice handler
 wsh = WebserviceHandler{}
 wsh.GcpInteractor = gcpi
 wsh.LocalInteractor = li
}

We reuse the Api struct that we used in our main. Instead of associating our APIs with a
sample URL, we associate our Api with expectedBody:

type endpoint struct {
 Api
 expectedBody string
}

We only need one function to test our end points. We use an anonymous struct and a set of
composite literals to create a group to test our data together in a simple, readable format:

func TestEndpoints(t *testing.T) {
 Debug.Printf("fileName: %s", fileName)

 var endpoints = []endpoint{
 {Api{wsh.Health,
 "/health"},
 `{"alive": true}`},
 {Api{wsh.ListSourceBuckets,
 "/list-source-buckets?projectId="+Config.GcpSourceProjectId},
 `{"buckets":[{"name":"my-backup-bucket"},{"name":"my-source-
bucket"}]}`},
 {Api{wsh.ListSinkBuckets,
 "/list-sink-buckets?projectId="+Config.GcpSinkProjectId},
 `{"buckets":[{"name":"my-backup-bucket"},{"name":"my-source-
bucket"}]}`},
 {Api{wsh.SourceFileExists,
 "/source-file-exists?fileName="+fileName},
 `{"exists":true}`},
 {Api{wsh.UploadFile,
 "/upload-file?fileName="+fileName},
 `{"success":true}`},
 {Api{wsh.DownloadFile,

Applying FP at the Architectural Level Chapter 6

[260]

 "/download-file?fileName="+fileName},
 `{"success":true}`},
 {Api{wsh.LocalFileExists,
 "/local-file-exists?fileName="+fileName},
 `{"exists":true}`},
 }

As we iterate over our slice of endpoints, we call each Api.Url:

t.Log("Testing API endpoints...")
{
 for _, ep := range endpoints {
 {
 req, err := http.NewRequest("GET", ep.Api.Url, nil)
 if err != nil {
 t.Fatal(err)
 }

We create a ResponseRecorder type that satisfies the http.ResponseWriter interface to
record the response:

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(ep.Api.Handler)

Since our handlers implement http.Handler, we can call their ServeHTTP method
directly and fail the test if the status code is not okay:

 handler.ServeHTTP(rr, req)
 t.Logf("\tChecking \"%s\" for status code \"%d\"",
 ep.Api.Url, http.StatusOK)
 if status := rr.Code; status != http.StatusOK {
 t.Errorf("\t\t%v handler returned wrong status code: got
 %v want %v", failure, status, http.StatusOK)
 }

Lastly, we compare the returned response with the value we stored in the expectedBody
field of endpoint (ep):

 t.Logf("\tChecking \"%s\" for expected body", ep.Api.Url)
 Debug.Println("rr.Body.String(): ", rr.Body.String())
 if strings.TrimSpace(rr.Body.String()) != ep.expectedBody {
 t.Errorf("\t\t%v handler returned unexpected body: got
 %v want %v", failure, rr.Body.String(), ep.expectedBody)
 }
 }
 }
 }
}

Applying FP at the Architectural Level Chapter 6

[261]

The output should look like this:

$ go test interfaces/interfaces_test -config ../../../config.toml
webservice_test.go:79: Testing API endpoints...
webservice_test.go:93: Checking "/health" for status code "200"
webservice_test.go:98: Checking "/health" for expected body
webservice_test.go:93: Checking "/list-source-
buckets?projectId=rdbx-168418" for status code "200"
webservice_test.go:98: Checking "/list-source-
buckets?projectId=rdbx-168418" for expected body
webservice_test.go:93: Checking "/list-sink-
buckets?projectId=rdbx-168418" for status code "200"
webservice_test.go:98: Checking "/list-sink-
buckets?projectId=rdbx-168418" for expected body
webservice_test.go:93: Checking "/upload-file?fileName=eventset1.jsonl"
for status code "200"
webservice_test.go:98: Checking "/upload-file?fileName=eventset1.jsonl"
for expected body
webservice_test.go:93: Checking "/download-
file?fileName=eventset1.jsonl" for status code "200"
webservice_test.go:98: Checking "/download-
file?fileName=eventset1.jsonl" for expected body
webservice_test.go:93: Checking "/source-file-
exists?fileName=eventset1.jsonl" for status code "200"
webservice_test.go:98: Checking "/source-file-
exists?fileName=eventset1.jsonl" for expected body
webservice_test.go:93: Checking "/local-file-
exists?fileName=eventset1.jsonl" for status code "200"
webservice_test.go:98: Checking "/local-file-
exists?fileName=eventset1.jsonl" for expected body

If you have any errors, the output will look something like this:

$ go test interfaces/interfaces_test -config ../../../config.toml
Failed to file exists. bucket reader error for source-
events/eventset1.jsonl: storage: object doesn't exist
Failed to upload file. unable to get file (eventset1.jsonl) from
bucket(lexttc3-my-source-bucket): storage: object doesn't exist
--- FAIL: TestEndpoints (1.45s)
webservice_test.go:79: Testing API endpoints...
webservice_test.go:93: Checking "/health" for status code "200"
webservice_test.go:98: Checking "/health" for expected body
webservice_test.go:93: Checking "/list-source-
buckets?projectId=rdbx-168418" for status code "200"
webservice_test.go:98: Checking "/list-source-
buckets?projectId=rdbx-168418" for expected body
webservice_test.go:93: Checking "/list-sink-
buckets?projectId=rdbx-168418" for status code "200"

Applying FP at the Architectural Level Chapter 6

[262]

webservice_test.go:98: Checking "/list-sink-
buckets?projectId=rdbx-168418" for expected body
webservice_test.go:93: Checking "/source-file-
exists?fileName=eventset1.jsonl" for status code "200"
webservice_test.go:98: Checking "/source-file-
exists?fileName=eventset1.jsonl" for expected body
webservice_test.go:102: X handler returned unexpected body: got
{"exists":false}
want {"exists":true}
webservice_test.go:93: Checking "/upload-file?fileName=eventset1.jsonl"
for status code "200"
webservice_test.go:98: Checking "/upload-file?fileName=eventset1.jsonl"
for expected body
webservice_test.go:93: Checking "/download-
file?fileName=eventset1.jsonl" for status code "200"
webservice_test.go:98: Checking "/download-
file?fileName=eventset1.jsonl" for expected body
webservice_test.go:102: X handler returned unexpected body: got
{"success":false}
want {"success":true}
webservice_test.go:93: Checking "/local-file-
exists?fileName=eventset1.jsonl" for status code "200"
webservice_test.go:98: Checking "/local-file-
exists?fileName=eventset1.jsonl" for expected body
FAIL
FAIL interfaces/interfaces_test 1.475s

Infrastructure layer
This section will now talk about the infrastructure layer:

Applying FP at the Architectural Level Chapter 6

[263]

The infrastructure layer is where the code that communicates with the external
services exists, such as databases, cloud storage, or even a local filesystem.

Since our code is separated into layers, we should be able to take all the functions from a
layer and use them in a different application. The functions in our infrastructure layer have
the least to do with our current problem domain, making them more applicable to other
applications that need to interact with the Google Cloud Platform.

While our source and sink functions in our interfaces layer may only make sense to our
business and what we want to accomplish, the functions in the infrastructure layer such
as FileExists and ListBuckets are less specific and hence more reusable.

Much of what we find in Go’s standard library, as shown in the following list, would belong
in the infrastructure layer:

database/sql

log/syslog

net/http

net/rpc

net/snmp

net/textproto

If a package potentially handles interactions with external systems, then it likely belongs in
the infrastructure layer.

This function signature is also Go idiomatic. It takes a single parameter and returns two
values. The first is the results, while the second is an error:

func (handler *GcpHandler) FileExists(fileName string) (fileExists bool,
err error) {
 ctx := context.Background()
 bucketName := Config.SourceBucketName
 newFile := domain.NewFile(fileName)
 fullPath := newFile.FullHostPath(Config.GcpSourceDir)

The FileExists() function returns true if the files exist in the specified Google Cloud
provider bucket. We build a function call chain to retrieve the bucket reader. In Go
idiomatic fashion, it returns two values--one for the bucket reader and the other for a
potential error.

Applying FP at the Architectural Level Chapter 6

[264]

Context object
We must pass a context object that is passed to a withContext function that creates a new
request object, based on the context. However, since the context is empty, this is what we
might refer to as code ceremony. Note that in the next chapter on functional APIs we’ll
cover passing request contexts in more depth. In this case, ctx is something we must pass
so that our code compiles:

 ctx := context.Background()
 . . .
 br, err :=
handler.Client.Bucket(bucketName).Object(fullPath).NewReader(ctx)

Our errors package allows us to wrap our error with a specific error message and not lose
the error message from GCP:

if err != nil {
 return false, errors.Wrapf(err, "bucket reader error for %s", fullPath)
} else {

Again, we see the idiomatic return of two values—the result and the error.

We use another idomatic Go construct using a defer call to close our bucket reader. This is
yet another example of how Go helps us write better code by making it easy to do the right
thing. In languages that do not have a defer statement, we must remember to close our
connection after performing our work. With Go, we can grab a handle to a data reader and
immediately tell the application to close the connection when the function exits:

 data, err := ioutil.ReadAll(br)
 defer br.Close()
 if err != nil {
 return false, errors.Wrapf(err, "ioutil.ReadAll error for %s",
 fullPath)
 } else if len(data) == 0 {
 return false, errors.Wrapf(err, "File size must be greater
 than 0 for %s", fullPath)
 }
 }
 return true, err
}

Typically, when we encounter an error, it is best practice to wrap the error with a message
that makes sense in context and to immediately return the error and whatever makes sense
for the result value. In this case, since this is a call to FileExists, we return false if any
error is encountered.

Applying FP at the Architectural Level Chapter 6

[265]

If we make it to the last return statement, then the file in question exists and is of nonzero
length. If the GCP API had a public FileExists function, we could call it, but this method
will suffice for our purposes.

We design each layer to be as simple and concise as possible. The interfaces layer's job is to
move and possibly transform data as it flows between use cases and the underlying
infrastructure.

Now, we'll look at the infrastructure/localhandler.go file. Since there is only one
local filesystem in our example, we do not need to provide a key to
register NewLocalHandler:

type LocalHandler struct {}

var LocalInteractor *usecases.LocalInteractor

func NewLocalHandler() *LocalHandler {
 gcpHandler := new(LocalHandler)
 return gcpHandler
}

The FileExists() function calls the standard library os.Stat function. All files in our
example application will be stored in the download directory. Since the names of two
return values have been defined in the FileExists() function signature, we only need to
set their values where appropriate and execute a bare return statement.

func (handler *LocalHandler) FileExists(fileName string) (fileExists bool,
err error) {
 _, err = os.Stat(fmt.Sprintf("%s/%s", Config.DownloadDir, fileName))
 if !os.IsNotExist(err) {
 fileExists = true
 }
 return
}

The GetLocalInteractor function ties its repository (the local filesystem) to its interfaces.
Our small example has only one method, FileExists:

func GetLocalInteractor() (localInteractor *usecases.LocalInteractor, err
error) {
 if LocalInteractor == nil {
 localHandler := NewLocalHandler()
 localHandlers := make(map[string] interfaces.LocalHandler)
 localHandlers["LocalFileSystemRepo"] = localHandler
 localInteractor = new(usecases.LocalInteractor)
 localInteractor.LocalRepository =

Applying FP at the Architectural Level Chapter 6

[266]

interfaces.NewLocalRepo(localHandlers)
 LocalInteractor = localInteractor
 }
 return LocalInteractor, nil
}

Granted, this is a lot of code for wiring up just one method, but a typical enterprise
application has external persistence dependencies each with a potentially large number of
methods. Our layered architecture provides the structure required to extend a large
application with minimal effort.

In a nutshell, a layered architecture:

Provides the structure required to extend a large application with minimal effort
Enforces high cohesion, based on a layered approach
Keeps components loosely coupled by managing function references
Adheres to the dependency rule
Uses the Hollywood Principle by injecting dependencies during application
initialization

If your application is growing large and you are having issues with cyclic dependencies, the
layered architecture is worth your consideration.

Benefits of DDD
The following are the benefits of DDD technique:

Adaptability
DDD makes adding a new ways to interact with our application easy. We simply add a new
interactor, that is, our port/adapter, to our WebServiceHandler. In our onion.go
application, we have two different ways to communicate with our application: the local file
system and the Google Cloud Platform.

Applying FP at the Architectural Level Chapter 6

[267]

Sustainability
By decoupling our application business logic from the tools we are using, for example,
Google Cloud Platform, we make it less vulnerable vendor lock-in and issues and
dependency on services that become defunct or out dated.

Testability
The use of interactors eases the usage of mocks in order to test our applicative services and
domain code. Tests can be written for our application service layer before we decide which
technology (REST, Messaging, etc.) to be plugged with its corresponding port/adapter.

Comprehensibility
The applicative use case layer clearly indicates our application's functional intentions.

A solid architectural foundation
This layered architecture can form the basis for supporting additional architectural patterns
including REST, CQRS, event driven architectures and event sourcing. That's why we
focused on DDD.

FP and Micyoservices
Let's look hints of FP philosophies in microservices and related architecturesof event
driven architectures, CQRS, Lambda Architecture and functional reactive programming.

The architectures we will consider leverage FP philosophies in different ways to achieve
their goals of being:

Event driven
Scalable
Responsive
Resilient

Applying FP at the Architectural Level Chapter 6

[268]

Message passing
These architectures frequently employ fanout strategies to improve performance. For
example, an application might have a series of requests that block while performing each
request as follows:

If each request takes 1 second the total time required to send, receive and compose all
responses will be 3 seconds.

When possible, we should opt to perform each request asynchronously by fanning out our
requests as follows:

Applying FP at the Architectural Level Chapter 6

[269]

This would reduce the time required to process all requests from 3 seconds to 1 second.

Asynchronous processing takes less time which frees up our resources faster. This
minimizes latency and reduces contention for our shared resources. We have just solved
one of the biggest hurdles to scalability and improved overall throughput and performance.

All parties must participate
In order to reap the full benefits of non-blocking execution all parts in a request/response
chain needs to participate in the non-blocking asynchronous call. If any resource, whether
inside or outside the service boundary blocks, then we’ve got a problem.

What’s the problem with blocking?

Usually resources provide access via a processing thread. Threads are limited. If all the
threads are busy, subsequent requests must wait until one becomes available.

Asynchronous message passing helps us focus on workflows and interaction patterns
between our services.

Communication across boundaries
When communicating between our independent, isolated services we can only request its
state. Each service responds to requests with immutable data that reflects its current state.

Polyglot Persistence
Each service may use different storage repository technologies such as:

Eventlog
Graph DB
NoSQL
RDBMS
Timeseries DB

Applying FP at the Architectural Level Chapter 6

[270]

The storage technology does not matter. What's important is that each service is responsible
for its state, providing access to immutable data only via its API.

Lambda architecture
The Lambda architecture is a generic, scalable and fault-tolerant data processing
architecture that handles data at-rest as well as data in-motion. It’s comprised of three
layers:

Speed
This layer for real time processing. The Realtime views may not be as accurate or complete
as the ones eventually produced by the batch layer, but they are available as soon as data is
received and can be replaced when the batch layer's views for the same data becomes
available.

Batch
This layer can store a large amount of data. Output is typically stored in a read-only
database. Any errors can be fixed by recomputing based on a complete data set at which
time views can be updated. Apache Hadoop is the de facto standard batch-processing
system used in most high-throughput architectures. Response times can be measured in
minutes or even hours.

Applying FP at the Architectural Level Chapter 6

[271]

Servicing
Output from the batch and speed layers are stored in the serving layer, which responds to
ad-hoc queries by returning precomputed views or building views from processed data.

Some Lambda implementations have various storage and technology decisions, but they all
have a batch and a real time components that both consume the same data and a real time
view that can be updated by corrected data from batch processing.

The problem with this architecture is that the same data is ingested by both the Speed and
by the Batch layer and typically stored in two separate databases, Cassandra and HBASE in
the example above. Plus, extra processing occurs when the batch jobs return fixed up batch
view data that needs to be merged into the related real time views.

Next generation big data architecture
The next generation big data architecture has dropped the batch layer completely. The
purely real time system brings stream processing directly into the services architecture
where the data is stored via event logging. The most current data is stored in the database
and the history of events is stored in the event logs.

CQRS
Command and Query Responsibility Segregation (CQRS) is an architecture style that
separates read operations from write operations.

Applying FP at the Architectural Level Chapter 6

[272]

Traditionally, the same data model is used to query and update a database. However, more
complex applications, problems with this shared data model appear. For example, To
satisfy the write requirements our data model need to contain complex validation and
business logic. Our read requirements will have no need for that extra logic. Instead, it may
need to perform many different queries, using data structures that are needed by our write
component. Complexity is increased on both sides.

CQRS addresses these problems by separating reads and writes into separate models, using
commands to update data, and queries to read data.

Commands are based on tasks, rather than specific create or update commands. For
example, Upgrade Car, rather than append LX to model_name field. Commands are placed on
a queue for asynchronous processing.

Queries return plain data objects that have no behavior or domain knowledge.

Benefits of CQRS
CQRS optimizes performance. The command service/event store side can be optimized for
updates while the query service/materialized view side can be optimized for queries.

CQRS simplifies queries by storing a materialized view in the read database. Complex
joins can be avoided and performance improved.

CQRS separates of writing and reading which greatly simplifies the business logic in the
query model and puts the complex validation and business logic in the command model
where it belongs.

CQRS allows the reads and writes to scaleindependently.

Applying FP at the Architectural Level Chapter 6

[273]

CQRS relies on messaging which is a good fit for message-based microservices.

Above, microservice1 writes to its database which publishes a write event. Microservice2
and microservice3 subscribe to microservice1's write event and get updated every time that
event occurs.

Infrastructure architecture
Developing an isolated microservice is very easy in comparison to designing, developing
and configuring its infrastructure. Infrastructure includes things like:

Accessing and ingesting logs
Balancing loads
Checking application health
Database replication
Debugging applications
Distributing secrets
Integrating other services
Monitoring resources
Mounting storage systems
Naming and discovering
Orchestrating/Coordination
Providing authentication and authorization

Applying FP at the Architectural Level Chapter 6

[274]

Replicating application instances
Rolling updates
Using Horizontal Autoscaling

Share nothing architecture
A share nothing architecture (SN) is a distributed computing architecture where each node
is independent and self-sufficient. Nodes do not share data storage and there is no single
point of contention across the system. Sounds a lot like a microservice, right?

The problem with SN architectures is that join operation between the nodes can be time
consuming.

SN eliminates shared mutable state, minimizes resource contention and increases
scalability.

Integrating services
Microservices have no control over other microservices externally or internally. It is
important that our digital fabric of microservices agree on acceptable communication
protocols.

Agreed upon protocol
The protocol should enforce policies regarding security, the direction and velocity of the
flow of data as well as flow control.

Circuit breakers
In order to prevent cascading failures there should be mechanisms in place such as fail fast
circuit breakers. Management of retries for failed requests should consider things like:

How long should we wait to retry?
Should we monitor the endpoint and wait for it to get back online and then try
again?
When do we notify devops about the failure?

Applying FP at the Architectural Level Chapter 6

[275]

Functional reactive architecture
Functional reactive architecture (FRP) is similar to other architectures in that it embraces
many of the FP concepts such as immutable data structures, event streaming and data
transformation, but different in that it is a front-end architecture.

Reactive Functional Programming (RFP) incorporates aspects from both Reactive
Programming (RP) and Functional Programming (FP).

Let’s look at an example to get a better appreciation for the connection between FRP and FP.

Suppose we have a User Interface (UI) application that sums two numbers:

Applying FP at the Architectural Level Chapter 6

[276]

There is a lot more to RFP (immutable data structures, memoization, state
and event management, and so on). Since this is a front end technology the
logic will not be Go, but rather JavaScript (which is one of my specialties).

So, if you like my style of writing and would like me to write a book
combining Go, ReactJS and some distributed data store technology let me
hear from you. Please post your feedback here: https:/ /www.amazon.com/
Learning- Functional- Programming- Lex-Sheehan- ebook/ dp/ B0725B8MYW

Go is ideal for building microservices
Distributed computing involves the horizontal scaling our our microservices. We have seen
that when we can dramatically improve performance by running our tasks in parallel. In
order to manage, order and orchestrate our workloads we need a simple mechanism. What
simpler solution exists for creating and running applications concurrently? (Answer: None.)

Here're some of Go's features that make it ideal for microservice environments:

Simplicity
Concurrency
Speed at compile time
Speed at runtime
Security
Networking/gRPC/Protocol buffers
Systems programming
Small footprint

Go is built upon the philosophy of simplicity. To write go code is to write practical code.

Concurrency is baked into the Go language in the form of goroutines and channels.

For a coding example using goroutines and channels see Chapter
5, Adding Functionality with Decoration.

Go's compile times are extremely fast. Once compiled, Go binaries are native executables.

Applying FP at the Architectural Level Chapter 6

[277]

There are no virtual environments to install, configure, import dependencies from, deploy
and manage. The only footprint is a small native executable. That's less surface area for
attackers to exploit.

Size matters
Let's face it. Size matters. If you are paying for the resources (CPU, storage, networking, and
so on) which would you prefer to pay for:

1,000 of these?

Or 1,000 of these?

Applying FP at the Architectural Level Chapter 6

[278]

Benefits of gRPC
If you need to employ a request/response architecture, using gRPC with protocol buffers is
the way to go. gRPC allow us to easily release SDKs. Now integration is a matter of and
asking the other developers to copy-paste example code written in their language. This
represents a big win for companies what want to integrate with our products, while not
requiring us to implement entire SDKs in all the various languages that our vendors and
partners use.

gRPC is built on HTTP/2 HTTP/2's client-side and/or server-side streaming allow for faster
response times and support for bulk ingestion and bi-directional streaming. We
can asynchronously stream requests/responses; The server would stream back status
messages, allowing for easy checkpoint operations. This allows us to process uploads as fast
as possible without blocking for confirmations.

By using protocol buffers with gRPC, we'll improve serialization and deserialization
performance. Clients receive typed objects rather than free form JSON. This allows our
clients can reap the benefits of type-safety, auto-completion in their IDEs, and improved
version management.

gRPC enables us to write one interface definition, in the proto format, for both the client
and server side of our APIs. Interface driven development enables both development teams
to work in parallel. That makes us leaner, providing more value faster.

Who is using Go?
A short list of systems and infrastructure tools being built in Go includes:

Docker
Kubernetes
Packer
CoreOS
InfluxDB
Etcd
NSQ,

Applying FP at the Architectural Level Chapter 6

[279]

Summary
In this chapter, we learned the importance of the dependency rule. We learned that we can
only import packages in one direction. We learned how to separate a complex application
into layers.

We learned how to use dependency injection to interact between our application layers and
implemented an application using a layered architecture.

The key to selecting the right architecture is a deep understanding our system's
requirements, existing components and the capabilities of available technologies choices.
At the end of the day it’s the system engineer’s job to ensure the entire system works
properly.

In the next chapter, we'll learn about functors, monoids, type classes, and other functional
programming concerns.

7
Functional Parameters

While writing this chapter, my mind wandered back a few years to when I used to program
in FoxPro. As I recall, I wrote a lot of functions in FoxPro. The functions I wrote were
typically singular in purpose and rarely required more than four parameters. After
Microsoft purchased Fox Software, newer versions of FoxPro began to be less functional.
The UI builder was becoming more like Visual Basic. Functions began to be replaced by
classes. Logic that was once readily accessible became hidden behind buttons and GUI
objects. The lines of code increased, testing took more time and development cycles took
longer. I felt a lack of productivity and could not adequately explain my feelings.

"He who does not understand the supreme certainty of mathematics is wallowing in
confusion."

- Leonardo Da Vinci

When I discovered Go, it was like paradise regained; A return to simplicity with added
benefits of concurrency, networking, great development tools, first class functions as well as
the best parts of OOP.

Our goal in this chapter is to do the following:

Learn a better way to refactor long parameter lists
Recognize the difference between a dead data object and a functional parameter
Learn the difference between currying and partial application
Learn how to apply a partial application to create another function with a smaller
arity
Use a context to gracefully shut down our server
Use a context to cancel and rollback a long-running database transaction
Implement functional options to improve our APIs

Functional Parameters Chapter 7

[281]

If you think it's okay to simplify a long parameter list by either passing
pointers to mutable data objects or by calling other functions hidden
within your function, please read this chapter with an open mind.

Refactoring long parameter lists
Long parameter lists are typically considered code smell.

How long is too long?

When we look at a parameter list and are unable to keep track of it all, then it's likely too
long.

Mind's limit found - 4 things at once

Working memory relates to the information we can pay attention to and
grasp. Keeping our parameter lists short helps others easily understand
our function's purpose.
https:/ /www. livescience. com/ 2493- mind- limit-4.html

Four parameters or fewer is the sweet spot, but seven is the maximum.

Consider our telephone numbers. How many digits? Seven. For example: 867-5309

Why do you think the seven digits are separated into two sets of numbers with the largest
set having four digits?

What's wrong with a function signature with more
than seven parameters?
A function signature should not be so long and complicated that we are unable to
comprehend it. Keep it simple. Use thoughtful, reasonable, and meaningful parameter
names.

Functional Parameters Chapter 7

[282]

Ever noticed that functions with a long parameter list are typically some type of
constructor? And that those functions are prone to get even more parameters over time?

It is natural for software engineers to want to reduce their functions' parameter lists. That's
part of what we do when we refactor our application. As long as we keep the goal of
comprehensibility in mind, we'll be fine. Sometimes, we might have a function signature
that has ten parameters. If other alternatives would make our function signature
ambiguous, then go for it. Clarity trumps ambiguity. How many parameters should we
use? It depends.

Refactoring code is the process of changing the structure of our code
without changing its behavior. We are not adding features. Instead, we are
making our code more readable and more easily maintained. Often, we
take large functions (over 200 lines of code) and break them into smaller,
more comprehensible units of code.

Some ways of accomplishing this feat are better than others.

Refactoring - the book
Ever read the book Refactoring? It covers the topic of refactoring long parameter lists.

The following points are made:

Methods can query other objects' methods internally for data required to make
decisions
Methods should depend on their host class for needed data
We should pass one or more objects to simplify our call signature

Functional Parameters Chapter 7

[283]

We should use a technique called replace parameter with method to reduce the
number of required parameters
Pass a whole object with required attributes to reduce the number of required
parameters
Use a parameter object when we have unrelated data elements to pass
We can send separate parameters when we do not want to create a dependency
on a larger parameter object; this is an exception and we should probably not do
it
Long parameter lists will change over time and are inherently difficult to
understand

This advice is consistent with the pure object-oriented language design methodology.
However, we as good Go programmers should only be in agreement with the last point.
Why?

How can it be that the advice that many have followed for almost 20 years could be so
horribly wrong?

Edsger W. Dijkstra says OOP is a bad idea
The Dutch computer scientist, Dijkstra, provides the following insight on OOP:

"Object-oriented programming is an exceptionally bad idea which could only have
originated in California."

- Edsger W. Dijkstra

What? OOP is an exceptionally bad idea? Why?

First, let's understand a little bit more about Edsger W. Dijkstra.

Functional Parameters Chapter 7

[284]

What else did Edsger W. Dijkstra say?
Dijkstra said things such as:

"The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility, and among other things he
avoids clever tricks like the plague."

- Edsger W. Dijkstra

He also said the following:

 "Simplicity is prerequisite for reliability."

- Edsger W. Dijkstra

Mozart composition

"Neither a lofty degree of intelligence nor imagination nor both together go to the making
of genius. Love, love, love, that is the soul of genius."

- Wolfgang Amadeus Mozart

Functional Parameters Chapter 7

[285]

Dijkstra shared his thoughts about the differing programming styles found in software
development. Dijkstra compared the difference between the way Mozart and Beethoven
composed music. Dijkstra explained that Mozart began composing with the entire
composition in mind. Beethoven, on the other hand, would write parts of the music before
the composition was completed and would literally glue the corrections to create the final
composition.

Beethoven composition

Edsger seems to prefer Mozart's style of programming. His own approach to programming
illustrates that programs should be designed and correctly composed, not just hacked and
debugged into correctness.

The reason Mozart was able to perform detailed design before implementation was due to
the fact that he was a master of the art of music composition and had a lot of experience.
Sometimes, when developing software, we won't have that luxury. When we are unable to
identify a framework suited for our project, there will be much more trial-and-error
programming.

Functional Parameters Chapter 7

[286]

Personally, when I am not under a tight deadline, I prefer the Beethoven style of
development. I think of it as recreational programming. It's self-exploratory in nature. For
me, Mozart development requires more discipline. Typically, the end result is the same.
Mozart development takes less time to complete, but Beethoven development is more
enjoyable. I suppose that's why the developers enjoy R&D projects so much.

The underlying OOP problem
As noted in Chapter 4, SOLID Design in Go, you learned how Java (and OOP languages)
places emphasis on a type hierarchy. The designers of OOP focused on nouns rather than
verbs. Everything is an object. An object has attributes (data) and can perform actions
(methods).

An inactive noun

One of the underlying problems with OOP is that it promotes storing and hiding data in the
object's properties/attributes. It is assumed that our application will eventually want to
access this object's data while executing one or more of the object's methods.

Functional Parameters Chapter 7

[287]

OOP inconsistency
An OOP application can recall its hidden information and mutate it. An object's method can
be called multiple times during the lifetime of the application. Each call to the same method
with the same call signature can produce different results every time. This characteristic of
its behavior makes OOP unreliable and difficult to test effectively.

OOP is inconsistent with basic mathematics. In OOP, due to an object's mutable state, we
cannot always call a method with the same parameters each time and always get the same
results. There is no mathematical model for OOP. For example, if we call myMethod(1,2)
and get 3 the first time and get 4 the next time, due to the mutable state and internal calls to
other objects, then the correctness of an OOP program cannot be defined.

Functional programming and cloud computing
The essence of functional programs is very different from OOP. Functional programs, given
the same set of input parameters, will always yield the same results. We can easily run them
in parallel. We can chain/compose them in ways that are faster and not possible with OOP.

Our deployment model has changed from in-house servers, where admins would spend so
much time configuring and optimizing them that they gave the server pet names. We used
to see names follow a pattern such as Greek gods. There's Zeus, our database server, and
Apollo our HR server.

Now that our servers are deployed in the cloud, our admins can add new servers with the
click of a button or set up auto scaling: if the average CPU goes above 80%, then add a new
server. It looks something like this:

Functional Parameters Chapter 7

[288]

The Pods in the preceding diagram represent a server, which might have a few related
containers. One container in the pod would be running our f(x) function. If a server
crashes, our auto scaling logic that's running in our container orchestrator would be notified
and it will automatically start another server to replace it. Pods can quickly be provisioned
and can be taken out of service based on our cloud deployment profile settings and our
sites' traffic patterns. Since servers come and go so easily and quickly these days, we refer to
them as cattle rather than pets. We are more concerned with the health of our herd of
servers than we are about any one particular pet server.

The term Pod is taken from Kubernetes. Refer to https:/ / kubernetes. io/
docs/ concepts/ workloads/ pods/ pod- overview/ to know more.

Pods are the rough equivalent of OpenShift v2 gears and logically
represent a logical host, where all service containers can communicate with
each other via localhost.

Other container orchestrators include Docker Swarm, Mesos, Marathon,
and Nomad. Refer to https:/ /github. com/KaivoAnastetiks/ container-
orchestration- comparison.

Functional Parameters Chapter 7

[289]

Applications with FP characteristics behave reliably in our cloud environments; however,
applications with OOP characteristics of mutable state do not do so.

A closer look at f(x)
Let's examine a basic function definition, where f is the function name and x is the input
value. Another name for x is the input parameter.

The entire expression f(x) represents the output value:

If f(x) = x + 1, then we know that every time we input the value 2, the output value will
always be 3.

This pure and simple characteristic is what makes functional programming so powerful.

If, on the other hand, we had an object with an AddOne method that would sometimes
return 3 when given the value of 2, then how could we reliably scale our object.AddOne
method? We can't, and that is the main reason why, in the context of cloud computing, the
following equation is true: FP > OOP.

A closer look at refactoring
Let's examine each point made in the Refactoring book in the light of functional
programming.

Passing every parameter a function requires to do its
job is not a good idea
Why wouldn't we want our function signature to indicate the values (parameters) that it
needs to make decisions?

How can we reduce the parameters that a function requires?

Functional Parameters Chapter 7

[290]

Methods can query other objects' methods internally for
data required to make decisions
So, instead of calling the GetTravelTime(startLocation, endLocation) method, it
would be better to call GetTravelTime()?

Where would we get the startLocation and endLocation values from?

How can we be sure that there aren't other values, such as modeOfTransportation, that
would impact our travel time result?

Doesn't that create internal, undocumented dependencies (assuming we document our
external APIs)?

Methods should depend on their host class for needed
data
Does this mean that we are relying on mutable data that could be updated before and
during our function call?

If we want to prevent updates on data during the time our function is running, what extra
code must we write to ensure data consistency? What locking mechanisms will we need to
implement?

Will this prevent us from writing code that runs in parallel?

Is concurrent programming possible?

Pass a whole object with required attributes to reduce
the number of required parameters
So, instead of GetTravelTime(startLocation, endLocation, speed), our call should
look like this: GetTravelTime(info).

There are times when a function call like this Initialize(Config) makes sense, and it
depends on our use case.

However, maybe we should strive to simplify what our function does so that it naturally
requires fewer parameters rather than finding ways to jam more parameter values into a
single input parameter object.

Functional Parameters Chapter 7

[291]

Replace parameter with method technique to reduce the
number of required parameters
This technique instructs us to remove the parameter and let the receiver invoke the method.

Before applying Replace Parameter with Method technique
We start with a getDiscountedPrice function that takes two parameter: lineItemPrice
and discount:

 lineItemPrice := quantity * itemPrice;
 discount := getDiscount();
 totalPrice := getDiscountedPrice(lineItemPrice, discount);

Replace Parameter with Method aggressively strives to reduce the number of parameters.

In this case we have two parameters. That is clearly fewer than the four parameters. Why
reduce this low number of parameters?

After applying Replace Parameter with Method technique
After refactoring our code per our instructions, we have removed a parameter. Now we
only have one parameter:

 lineItemPrice := quantity * itemPrice;
 totalPrice := getDiscountedPrice(lineItemPrice);

How will code maintainers know that the totalPrice can be reduced by a discount?

Does hiding the discount parameter improve understandability or does it actually increase
code complexity?

Use a parameter object when we have unrelated data
elements to pass
A parameter object contains only fields and crude methods for accessing them (getters and
setters). It is a dead data structure used only to transfer data.

If we are passing a lot of unrelated data items into a function, then what are the odds that
our function would fail the Single Responsibility Principle?

Functional Parameters Chapter 7

[292]

What if we wanted to add logic that could modify a data value based on our runtime
context?

However, if we have a set of parameters that describe a new customer, we could consider
grouping them into a data objects. Something like the following could be considered a
reasonable thing to do:

We grouped the FullName attributes (salutation, firstName, middleName, lastName,
suffix) together to form a FullName data object. We also grouped address attributes to
create an Address data object. Now, we can call CreateCustomer passing only two
attributes:

CreateCustomer(fullName, address)

The call with two parameters is an improvement over the following one with eight:

CreateCustomer(salutation, firstName, middleName, lastName, suffix,
street1, street2, city, state, zip)

So, as with most things in the world, the right thing to do depends on our situation.

Can you think of a problem with this approach?

Doesn't this create a dependency upon the fullName and address objects?

What if either the fullName or address data objects changed after we began executing our
CreateCustomer function but before it was complete? What data inconsistencies would we
have then?

Functional Parameters Chapter 7

[293]

Long parameter lists will change over time and are
inherently difficult to understand
This statement makes a lot of sense. The rest of this chapter will expound on this statement.
We'll explore how we can manage an API that could change over time and that might need
more than a few parameters to get the information it needs to complete its task(s).

If we compose our application like Beethoven, starting with a general idea of what we want
to accomplish and beating our program into shape, then we might not know exactly what
parameters an API will need at first.

An action verb

How do we design an API that requires more than a few parameters, yet has the following
qualities?

Provides sensible defaults
Indicates which parameters are required/optional
Provides the entire power of language to init complex values rather than relaying
via dead structures
Can grow over time
Is safe
Is discoverable
Is self-documenting
Is highly configurable

Functional Parameters Chapter 7

[294]

What about passing a configuration struct?

Like the fullName and address data objects we saw earlier, passing a configuration data
object creates a dependency. The configuration object is retained by both the caller and
the function called.

If we pass pointers to our configuration object that would complicate issues if any
mutations occurred, either by the caller or the callee.

The solution
The solution we're looking for would allow a new constructor to accept a variable number
of parameters with the following characteristics:

Predefining default values (where no parameter is passed for that particular
setting)
Only passing values that have meaning
Harnessing the power of the Go programming language to customize the value
of the parameter passed

Much of this design comes from one of Rob Pike's blog posts.

Refer to self-referential functions and the design of options, by Rob Pike in
his blog post at https:/ / commandcenter. blogspot. com/2014/01/self-
referential- functions- and-design. html.

Kudos for sharing the closure technique of returning a function literal in which we set the
value of our server setting. We'll see exactly how this works later in this chapter.

Functional Parameters Chapter 7

[295]

Three ways to pass multiple parameters
Let's keep in mind that there are three ways to pass multiple parameters to a function. We
will discuss them in the next sections.

Simply passing multiple parameters
Here, we pass four parameters to the InitLog function:

func InitLog (
 traceFileName string,
 debugHandler io.Writer,
 infoHandler io.Writer,
 errorHandler io.Writer,
) {
// . . .
}

Passing a configuration object/struct that contains multiple attributes
Here, we pass the ClientConfig configuration data object and print its values out:

func printClientConfig(config *ClientConfig) {
 Info.Printf(" - security params: %v", config.SecurityParams)
 Info.Printf(" - core limit: %v", config.CoreLimit)
 Info.Printf(" - payload config: %v", config.PayloadConfig)
 Info.Printf(" - channel number: %v", config.ClientChannels)
 Info.Printf(" - load params: %v", config.LoadParams)
 // . . .

A disadvantage of this approach is that we create a dependency between the caller and the
callee. What if the caller or some other part of the caller's system modifies the configuration
object while our function is processing?

Sometimes, as in the example provided earlier, it is fairly safe to assume that the
configuration object will not change. In that case, passing a configuration object is the right
thing to do. It's easy and effective with little chance of a mutation causing an inconsistent
state.

But what if the parameter might need to be modified due to the additional complexity that
lies inside the called function? Static values from a dead structure can't help.

Functional Parameters Chapter 7

[296]

Partial application
Our third option is called partial application. We can accomplish this with currying.

The idea behind currying is to create new, more specific functions from other more general
functions by partially applying them.

Consider that we have have an add function that takes two numbers:

func add(x, y int) int {
 return x + y
}

We can create another function that returns the add function with one of the parameters
pre-inserted. We'll take a simple example of adding one to any other number:

func addOnePartialFn() func(int) int {
 return func(y int) int {
 return add(1, y)
 }
}

The results of calling add(1,2) will be the same as calling addOne(2):

func main() {
 fmt.Printf("add(1, 2): %d\n", add(1, 2))
 addOne := addOnePartialFn()
 fmt.Printf("addOne(2): %d\n", addOne(2))
}

The following is the output of the preceding code:

add(1, 2): 3
addOne(2): 3

Currying is the ability of a function to return a new single argument
function until the original function receives all of its arguments.

Calling a curried function with only a few of its arguments is called partial
application.

Function currying is a technique we can use to chop up complex functionality into smaller
parts that are easier to reason about. Smaller units of logic are also easier to test. Our
 application becomes a clean composition of the smaller parts.

Functional Parameters Chapter 7

[297]

However, the solution that we will be pursuing in this chapter will be of the first variety,
that is, we will pass all the required parameters. However, we will only need to pass the
required parameters and we will use sensible default values for unprovided parameters.

How can we accomplish this? By using functional parameters!

Functional parameters
We'll use the GetOptions() utils function as we have in previous chapters and we'll call
GetOptions and InitLog in our init function so that our configuration values and logger
will be set up prior to running any commands in the main package:

package main

import (
 "server"
 . "utils"
 "context"
 "io/ioutil"
 "net/http"
 "os"
 "os/signal"
 "time"
 "fmt"
)

func init() {
 GetOptions()
 InitLog("trace-log.txt", ioutil.Discard, os.Stdout, os.Stderr)
}

Let's subscribe to the SIGINT signal using signal Notify. Now, we can catch a Ctrl + C
event before our program abruptly stops. We'll create a quit channel to hold our signal. It
only needs to have a buffer size of 1.

When our quit channel receives a SIGINT signal, we can begin our graceful, orderly
shutdown procedure:

func main() {
 quit := make(chan os.Signal, 1)
 signal.Notify(quit, os.Interrupt)

Functional Parameters Chapter 7

[298]

Pay close attention to the following code. This is where we pass our functional parameters!

newServer, err := server.New(
 server.MaxConcurrentConnections(4),
 server.MaxNumber(256), // Config.MaxNumber
 server.UseNumberHandler(true),
 server.FormatNumber(func(x int) (string, error) { return
fmt.Sprintf("%x", x), nil }),
 //server.FormatNumber(func(x int) (string, error) { return "",
errors.New("FormatNumber error") }), // anonymous fcn
)

In our example, we chose to provide four parameters (MaxConcurrentConnections,
MaxNumber, FormatNumber, and UseNumberHandler) to our server's New constructor.

Note that the parameter names are self-explanatory. We passed the actual scalar values (4,
256, true) for the first three parameters. We could have chosen to use config values
(Config.MaxConcurrentConnections, Config.MaxNumber, and
Config.UseNumberHandler) or use environment variables. We could also use
environment variables. We'd likely not use an environment variable for
UseNumberHandler. Mostly, environment variables are used for settings that are likely to
vary from development, test, QA and production environments, for example, IPADDRESS
and PORT.

Here's a handy library for dealing with environment variables in Go:

https:/ /github. com/ caarlos0/ env

The last parameter FormatNumber accepts an anonymous function to change the display
format of the number:

server.FormatNumber(func(x int) (string, error) { return fmt.Sprintf("%x",
x), nil })

The %x argument in the fmt.Sprintf statement instructs our handler to display the
entered number in binary format.

Functional Parameters Chapter 7

[299]

 When the user enters the number 2 in their request, this is what's displayed:

If the call to Server.New fails, then log the error and exit the program:

if err != nil {
 Error.Printf("unable to initialize server: %v", err)
 os.Exit(1)
}

Next, we provide the parameters required for a running HTTP server. The Addr parameter
is the address the server listens on.

Rather than letting the http.Server default to using http.DefaultServeMux to handle
requests, we we pass our newServer function type variable to accept our custom
ServerOption functional parameters to customize its behavior:

srv := &http.Server{
 Addr: ":"+Config.Port,
 Handler: newServer,
}

Next, we'll create a Goroutine for an anonymous function call.

Our Goroutine will wait until the user triggers a SIGINT interrupt (by pressing Ctrl + C in
the terminal session where the server was started). At that time, the quit channel will
receive the signal.

Functional Parameters Chapter 7

[300]

Though Context can be used to pass request-scoped variables, we're only going to use it to
pass a cancellation signal. We'll go into more detail about Context in the next section.

The quit channel is closed when the 2 second deadline expires or when the returned
cancel function is called. As long as the server shutdown logic takes less than two seconds,
the defer cancel() will be called; otherwise, the deadline will close the quit channel:

go func() {
 <-quit
 ctx, cancel := context.WithDeadline(context.Background(),
time.Now().Add(2 * time.Second))
 defer cancel()
 Info.Println("shutting down server...")
 if err := srv.Shutdown(ctx); err != nil {
 Error.Printf("unable to shutdown server: %v", err)
 }
}()

The call to Shutdown will stop the server without interrupting any active connections. First,
Shutdown closes open listeners, then it closes idle connections. Without a deadline, it could
wait indefinitely for connections to return to idle before shutting them down.

The ListenAndServe function listens on the localhost port Config.Port and calls serve to
handle requests on incoming connections:

Error.Println("server started at localhost:"+Config.Port)
err = srv.ListenAndServe()

At this point, our server will be listening for requests and our terminal will look like this:

Functional Parameters Chapter 7

[301]

Note that we can get that config information printed to our terminal by inserting the
following as our first line in our main function:

Info.Printf("Config %+v", Config)

The "+" in %+v tells the Printf function to print the field names as well as the values.

When we press Ctrl + C, the code in the following line signals our Goroutine on the quit
channel:

signal.Notify(quit, os.Interrupt)

The srv.Shutdown method runs and then the last line in main executes to print server
shutdown gracefully.

Before diving into more of our func-param project code, let's look more closely at to Go's
Context package functionality.

Contexts
Contexts are primarily used for requests spanning multiple processes and API boundaries.
Contexts help maintain background information on the state of the object during different
phases of a process life cycle as it traverses various API boundary processes.

Functional Parameters Chapter 7

[302]

Here's an example (from https:/ /blog. golang. org/context) of passing a Context
parameter:

func httpDo(ctx context.Context, req *http.Request, f func(*http.Response,
error) error) error {
 // Run the HTTP request in a goroutine and pass the response to f.
 tr := &http.Transport{}
 client := &http.Client{Transport: tr}
 c := make(chan error, 1)
 go func() { c <- f(client.Do(req)) }()
 select {
 case <-ctx.Done():
 tr.CancelRequest(req)
 <-c // Wait for f to return.
 return ctx.Err()
 case err := <-c:
 return err
 }
 }

Passing the Context parameter to every function in every request provides control over
timeouts and cancellation for requests that span APIs and process boundaries. Furthermore,
it helps to ensure that critical values such as security credentials do not stay in transit longer
than necessary.

Third-party libraries and frameworks, for example, Gorilla's (http://github. com/ gorilla/
context) package, provide a bridge between their packages and others that take a Context
request-scoped parameter. This improves interoperability between heterogeneous packages
when building scalable services.

We will use an application context to provide control over stopping our server. The
deadline ensures that our shutdown process does not exceed a reasonable amount of time (2
seconds in our example). Also, by sending the cancel signal, we provide our server with the
opportunity to run its cleanup processes prior to shutting down.

Functional Parameters Chapter 7

[303]

Here's an illustration of what's going on with our Context parameter:

When the admin user presses Ctrl + C, the os.interrupt signals the quit (buffered)
channel. A Context (ctx) is created with a deadline of 2 seconds. That Context parameter
is sent to the srv.Shutdown function, where the server's cleanup code is executed. If it
takes longer than 2 seconds, then our Goroutine will be canceled. The result is that our
server is gracefully shut down and we can be assured that it won't take longer than 2
seconds.

Functional Parameters Chapter 7

[304]

We could build elaborate Context trees like the one here:

However, before doing so, we should be aware of our Context limitations, which we will
discuss next.

Context limitations
Trees can be traversed upward, that is, from children nodes to parent nodes (not the other
way).

We should only use values that advise, for example, this user's localname is en_US. The
en_US can be used to enhance the user experience, but not to change the flow of the
application. We should not store values that can affect the flow of control in the
Context package.

Functional Parameters Chapter 7

[305]

Report example
As an example of the effects caused by storing the flow of control values in the Context,
let's consider the following:

func Report(ctx context.Context) {
 reportName, _ := ctx.Value("reportName").(string)
 filter, _ := ctx.Value("filter").(string)
 RunReport(reportName, filter)
}

In the preceding example, we passed only the context as a parameter. Inside our Report
function, we extract the flow of control modifying values, reportName and filter. Now, we
have the format in which the Report function needs to do its job.

Why do some people think that it's a good idea to query other objects' methods internally
for data required to make decisions or to make a habit of passing a big amorphous object,
filled with data that we must then extract inside our function in order to know what to do
next?

It is typically best practice to pass all of the parameters that a function requires. This coding
style creates self-documenting APIs. If we find that our parameter list is growing large, that
is, over six parameters, then we should consider whether our function should be refactored.
Is there any reusable code in our large function? Maybe we can create a helper function and
reduce our parameter footprint?

Let's not forget what we discussed in the Chapter 4, SOLID Design in Go. The (S)ingle
Responsibility principle states that a class should have only a single responsibility.

If we are passing a ton of parameters, could it be possible that our function is performing
more than one task?

Writing good code is not unlike a good game of
soccer
Play it simple. Make your passes crisp and short. Be intentional. Maintain control of the
ball. Always keep your eye on the ball.

Watch a recreational player and then watch an elite player (EP) play the game. What is the
the main difference? How well does EP receive the ball? How well does EP pass the ball?
Does EP play the ball into space in the path of their teammate or does EP kick long balls in
the general direction of the opponent's goal?

Functional Parameters Chapter 7

[306]

Move (to open space), receive (the ball), then pass (the ball). Teams that do that well
consistently win. What are we talking about here? Interfaces. Teams that pass the ball
effectively from player to player win more games.

We can learn from this. If we strive to write self-documenting APIs (move to open space)
then our API becomes more accessible to our clients. When the APIs that we call are
similarly designed (as simple as possible, requiring only mandatory parameters, with
sensible defaults) our system will be highly interoperable and efficient.

Real Madrid, an amazing team, plays combinations and passing. Our APIs
should interoperate like the Real Madrid team in the video at https:/ /
www. youtube. com/ watch? v= b6_ IUVBAJJ0.

Was that a typical use case? Assuming the soccer ball is our data/message, when would we
want to pass a message along, avoiding opponents, to move API endpoints and deposit it in
the goal unchanged?

Functional Parameters Chapter 7

[307]

Functional parameters - Rowe
Watch the throw-in to Rowe. What Kelyn Rowe does with the ball is like what a functional
parameter can do in its callee. Compare that magic with the passing we see in recreational
soccer or with passing a dead value in a Context.

Dom Dwyer scored Team USA 1-0 over Panama; refer to this video
at https:/ /www. youtube. com/watch? v=CVXPeGhPXkE.

Report example
The values in the Context are affecting the control flow of the application. Let's refactor it:

RunReport(reportName, filter)

In this case, using Context to pass values only obfuscates our intention and makes our
code less readable. We'd be hard pressed to find a good use case for Context values in real-
world applications.

A more practical Context use case
A more practical Context use case would be to send a Cancel message to a long-running
function.

Functional Parameters Chapter 7

[308]

Several use cases come to mind when dealing with database transactions.

In some cases a request could generate a number of child requests, each running for varying
amounts of time and consuming various resources. If during our database transaction, one
of our child requests panics, we could use the Context to signal all routines to cancel and
to free up all transaction-related resources:

import (
 "database/sql"
 "github.com/pkg/errors"
)

Provide access to the sql.DB commit and rollback:

type Transaction interface {
 Commit() error
 Rollback() error
}

The TxFunc param is a functional parameter provided to the db.WithTransaction
function. It will execute the given function within the context of the database transaction. If
an error occurs, the transaction will be rolled back:

type TxFunc func(tx Transaction) error

Db uses the sql.DB implementation to access the Begin and Commit transaction:

type Dbms struct {
 db *sql.DB
}

The WithTransaction function is a function that provides a Transaction interface that
can be used to perform SQL operations in a transaction. If the function returns an error,
then the transaction will be rolled back:

func (s Dbms) WithTransaction(fn TxFunc) error {
 var tx Transaction
 var isCommitted bool
 var err error

Begin the transaction:

tx, err = s.db.Begin()
if err != nil {
 return errors.Wrap(err, "error starting transaction")
}

Functional Parameters Chapter 7

[309]

Rollback if an error occurred during the transaction:

defer func() {
 if isCommitted != true {
 tx.Rollback()
 }
}()

Execute the function that performs the SQL operations in the transaction.

See the fn(tx) function?

That's where our functional parameter is executed. That's where the real work is performed.
It's where the logic that performs SQL queries runs. It executes in the context of the
transaction. So, if any of the queries or subqueries fail, the entire transaction will be rolled
back:

if err = fn(tx); err != nil {
 return errors.Wrap(err, "error in TxFunc")
}

Commit the transaction and set isCommitted to true to indicate success:

 if err = tx.Commit(); err != nil {
 return errors.Wrap(err, "error committing transaction")
 }
 isCommitted = true
 return nil
}

We're done with our look at Context. Now, back to the functional parameters solution...

src/server/server.go
We can skim the imports to get an idea of what we'll be doing in this file. We'll process
some HTTP requests, marshal some JSON-converting strings to integers, handle errors, and
implement a logger for our server:

package server

import (
 "encoding/json"
 "fmt"
 "github.com/pkg/errors"
 "log"
 "net/http"

Functional Parameters Chapter 7

[310]

 "os"
 "strconv"
)

We'll define three constants and use them when defining our default values:

const (
 defaultServerMaxMessageSize = 1024 * 1024 * 4
 defaultMaxNumber = 30
 defaultMaxConcurrentConnections = 2
)

var defaultServerOptions = options {
 maxMessageSize: defaultServerMaxMessageSize,
 maxNumber: defaultMaxNumber,
 maxConcurrentConnections: defaultMaxConcurrentConnections,
}

Our Server struct has three fields:

type Server struct {
 logger Logger
 opts options
 handler http.Handler
}

Here's the Logger type:

type Logger interface {
 Printf(format string, v ...interface{})
}

We use the handler to provide the ServeHTTP, which is a Handler that responds to HTTP
requests:

func (s *Server) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 s.handler.ServeHTTP(w, r)
}

New is our server constructor. New is a variadic function that receives an arbitrary number
of functional parameters of type ServerOption.

Note that the opt param is a variadic parameter of type ServerOption.

We return a pointer to our newly created Server object and the idiomatic error value:

func New(opt ...ServerOption) (*Server, error) {

Functional Parameters Chapter 7

[311]

First, we prepopulate our options with default values:

 opts := defaultServerOptions

Then, we iterate through each ServerOption. The following is the signature for a
ServerOption. We see that we use it to define the function type variables that accept a
pointer to the options:

type ServerOption func(*options) error

If an error is found, we wrap our error to be returned and exit this function:

 for _, f := range opt {
 err := f(&opts)
 if err != nil {
 return nil, errors.Wrap(err, "error setting option")
 }
 }

Here, we create our Server variable and populate it with the functional parameters (opts)
as well as a logger:

 s := &Server{
 opts: opts,
 logger: log.New(os.Stdout, "", 0),
 }
 s.register()
 return s, nil
}

Before returning a call, our server's register method with our HTTP multiplexer (mux). A
mux matches the URL incoming requests against registered patterns and calls the handler
for the pattern that most closely matches the requested URL.

Here's the the register method:

func (s *Server) register() {
 mux := http.NewServeMux()
 if s.opts.useNumberHandler {
 mux.Handle("/", http.HandlerFunc(s.displayNumber))
 } else {
 mux.Handle("/", http.FileServer(http.Dir("./")))
 }
 s.handler = mux
}

Functional Parameters Chapter 7

[312]

Note that we use the useNumberHandler option to determine which handler to associate
with our root path "/".

This is a contrived mux example used to illustrate a use for server options.
In production, you're likely better off using packages such as https://
github. com/ gorilla/ mux and https:/ /github. com/justinas/ alice on
top of https:/ / golang. org/ pkg/net/ http/ .

If s.opts.useNumberHandler is true, then the mux will call the http.HandlerFunc
function and pass the displayNumber function as its only functional parameter.

The displayNumber function in an HTTP that uses a few server options to determine how
to handle the request:handler:

func (s *Server) displayNumber(w http.ResponseWriter, r *http.Request) {
 s.logger.Printf("displayNumber called with number=%s\n",
r.URL.Query().Get("number"))
 if numberParam := r.URL.Query().Get("number"); numberParam != "" {
 number, err := strconv.Atoi(numberParam)
 if err != nil {
 writeJSON(w, map[string]interface{}{
 "error": fmt.Sprintf("invalid number (%v)", numberParam),
 }, http.StatusBadRequest)
 }

In the following block of code we compare the number entered by the user to the
maxNumber server option value. If the entered value is greater than the max value, we
display an error message; otherwise, we continue processing:

 if number > s.opts.maxNumber {
 writeJSON(w, map[string]interface{}{
 "error": fmt.Sprintf("number (%d) too big. Max number: %d",
number, s.opts.maxNumber),
 }, http.StatusBadRequest)
 } else {

If there is no convert function (convertFn), then we set the number to be displayed
(displayNumber) to the value entered by the user.

Functional Parameters Chapter 7

[313]

However, if convertFn is defined, we pass the number to it, execute it, and assign the
return value to displayNumber:

 var displayNumber string
 if s.opts.convertFn == nil {
 displayNumber = numberParam
 } else {
 displayNumber, err = s.opts.convertFn(number)
 }

See how we use a function literal in main() with the fmt.Sprintf command to affect the
displayed number?

server.FormatNumber(func(x int) (string, error) { return fmt.Sprintf("%x",
x), nil }),

To see our number in a hexadecimal format, we'll open a web browser and enter this in the
address bar: http://localhost:8080/?number=255:

Want to see the displayNumber in different format? If so: stop the app by entering Ctrl + C
in the terminal console. In main.go, change fmt.Sprintf("%x", x) to
fmt.Sprintf("%b", x) and restart the app by entering the go-run command.

server.FormatNumber(func(x int) (string, error) { return fmt.Sprintf("%b",
x), nil }),

Functional Parameters Chapter 7

[314]

When we go back to our web browser and refresh we see our number 255 in a binary
format:

If we were to comment out the server.FormatNumber parameter, we'd get the number
entered by the user without formatting:

//server.FormatNumber . . . <= comment out FormatNumber parameter

Refer to the following resource for more Sprintf options http://
lexsheehan. blogspot. com/ search? q= octal+hex+printf.

Functional Parameters Chapter 7

[315]

If there is an error, we display it. If there are no errors, we display our (possibly formatted)
number:

 if err != nil {
 writeJSON(w, map[string]interface{}{
 "error": "error running convertFn number",
 }, http.StatusBadRequest)
 } else {
 writeJSON(w, map[string]interface{}{
 "displayNumber": displayNumber,
 })
 }
 }
 } else {
 writeJSON(w, map[string]interface{}{
 "error": "missing number",
 }, http.StatusBadRequest)
 }
}

Our last project file that we'll examine contains our ServerOption functions.

The src/server/server_options.go file
We'll use the Go standard library errors package because we simply want to create an error
object:

package server

import (
 . "utils"
 "errors"
)

We define a ServerOption type to simplify our function signatures:

type ServerOption func(*options) error

Currying allows functions to yield new functions as their return value. Is that what
MaxNumber is doing? MaxNumber is a function and returns a ServerOption. A
SeverOption is a function. So, yes. We have some currying going on here.

Functional Parameters Chapter 7

[316]

Our first ServerOption function is MaxNumber. It has a simple responsibility: assigning the
value of its argument (n) to our option's maxNumber field:

func MaxNumber(n int) ServerOption {
 return func(o *options) error {
 o.maxNumber = n
 return nil
 }
}

Note that MaxNumber is a function that returns a function that returns an error. Since there
is no possibility of an error occurring in this function, we simply return nil.

Other ServerOption functions can be more complicated and we might run into an error
condition in one of those non-trivial functions and have the need to return an error.

The MaxConcurrenConnections function has a conditional statement, as shown here:

func MaxConcurrentConnections(n int) ServerOption {
 return func(o *options) error {
 if n > Config.MaxConcurrentConnections {
 return errors.New("error setting MaxConcurrentConnections")
 }
 o.maxConcurrentConnections = n
 return nil
 }
}

The next two functions provide the ability to format our input number.

The convert type is a function type that accepts an int and returns a string and possibly an
error:

type convert func(int) (string, error)

The FormatNumber function is another ServerOption. Unlike the other ones, which accept
scalar input values, FormatNumber accepts a function parameter of type convert:

func FormatNumber(fn convert) ServerOption {
 return func(o *options) (err error) {
 o.convertFn = fn
 return
 }
}

Functional Parameters Chapter 7

[317]

Let's take another look at main(), where FormatNumber is called:

server.FormatNumber(func(x int) (string, error) { return fmt.Sprintf("%x",
x), nil }),

The FormatNumber function's argument is passed in as a functional parameter. It is an
anonymous function that satisfies the signature of a convert function type:

type convert func(int) (string, error)

The function accepts an int and returns a string and and error.

FormatNumber has one statement--the return statement. It returns a ServerOption
function after it executes the convert function (fn).

Don't be confused by the fact that we know that the convert function receives an int but we
do not see it in the anonymous return function: o.convertFn = fn.

The line of code, o.convertFn = fn, is executed by main(); when it runs it creates the
newServer value:

newServer, err := server.New(. . .

What it's doing is assigning the fn function to the convertFn function's SeverOption
value:

func New(opt ...ServerOption) (*Server, error) {
 opts := defaultServerOptions
 for _, f := range opt {
 err := f(&opts)

It's not until the user submits a request and that request is handled by the displayNumber
function that the following line is executed:

displayNumber, err = s.opts.convertFn(number)

That's where the int number is actually passed to the convertFn function.

The last ServerOption function is UserNumberHandler. It is simple, quite like
MaxNumber:

func UseNumberHandler(b bool) ServerOption {
 return func(o *options) error {
 o.useNumberHandler = b
 return nil
 }
}

Functional Parameters Chapter 7

[318]

Summary
Go is designed using good ideas from both FP and OOP world. For example, go borrowed
interfaces, duck typing, and composition over inheritance from OOP world and functions as
first class citizens from the FP world.

Go is a perfect example of being pragmatic. Go took the better principles from both OOP
and FP paradigms, while clearly ignoring many ideas from each. Perhaps, this perfectly
balanced design is what makes Go so special? In that way, Go is the perfect ratio of software
languages.

See Chapter 11, Category Theory That Applies, for a discussion about the
golden ration.

In the next chapter, we'll delve more deeply into pure functional programming. We'll see
how to leverage category theory and class types to abstract away details in order to glean
new insights. We'll look at functors along with slightly stronger and more useful versions of
functors called applicative functors. You'll also learn how to bring the world of side-effects
under control using Monads and Monoids.

8
Increasing Performance Using

Pipelining
Often, we feel the need to work on some data and pass it along a series of steps,
transforming it along the way before it arrives at its destination. We come across these sort
of processes occurring in real-life scenarios, especially in factory assembly line
environments.

In this chapter, we will see how the pipeline patterns can be used to build component-based
applications. We'll see how we can use function composition data flow programming
techniques to create flexible solutions that are not only robust, but also performant in
today's distributed processing environments.

Our goal in this chapter is to do the following:

Be able to identify when to use the pipeline pattern
Learn how to build a pipeline
Understand how we can leverage buffering to increase throughput
Use Goroutines and channels to process data faster
Improve API readability using interfaces
Implement useful filters
Build a flexible pipeline
See what happens when you change the order of filters and submit invalid data

Increasing Performance Using Pipelining Chapter 8

[320]

Introducing the pipeline pattern
The pipeline software design pattern is used in cases where data flows through a sequence
of stages where the output of the previous stage is the input of the next. Each step can be
thought of as a filter operation that transforms the data in some way. Buffering is frequently
implemented between filters to prevent deadlock or data loss when one filter runs faster
than another filter connected to it. Connecting the filters into a pipeline is analogous to
function composition.

The following diagram depicts the flow of data from a data source, for example, a file. The
data is transformed as it passes from one filter to the next, until the result is finally
displayed on standard out in the console:

Grep sort example
The /etc/group file is the data source. Grep is the first filter whose input is all the lines
from the /etc/group file. The grep command removes all lines that do not begin with
"com", and then sends its output to the Unix pipe, which sends that data to the sort
command:

$ grep "^com" /etc/group | sort
com.apple.access_disabled:*:396:
com.apple.access_ftp:*:395:
com.apple.access_screensharing:*:398:
com.apple.access_sessionkey:*:397:
com.apple.access_ssh:*:399:

Let's be clear. What we're covering in this chapter behaves like Unix pipes, but what we'll
study are pipelines that are implemented in Go, mainly using Go channels and Goroutines.
Similarly, we will not discuss Go Pipes (https:/ /golang. org/pkg/os/#Pipe) other than to
say that they are unbuffered, unstructured streams of bytes.

Increasing Performance Using Pipelining Chapter 8

[321]

Pipeline characteristics
The pipeline pattern affords a number of valuable benefits that are desirable in properly
engineered applications; these benefits are as follows:

Provides the structure for a system that processes data
Divides tasks into sequential steps
Encapsulates each step in a filter
Independent filters (run in isolation) with a set of inputs and outputs
Data passes through a pipeline in one direction
Configurable modularity (read, write, split, and merge operations)
High cohesion, where filter logic is self-contained
Low coupling, where filters communicate through connecting pipes
Distinction between batch and online processing disappears

The pipeline pattern has many characteristics that make it appealing for a variety of use
cases. We see it in use in technologies ranging from constant integration and deployment
pipelines, to batch and stream data processing. If there is a need to handle the flow of data
in an assembly line fashion, then we should consider using this pipeline pattern.

Let's take a look at the advantages:

Extensibility: Add another filter to the pipeline
Flexibility: Function composition by connecting filters
Performance: Utilizes multi-processor systems
Testability: Easy to analyze, evaluate, and test pipe filter systems

As with any pattern, we must consider its potential issues.

Here are some of the disadvantages:

Potential data transformation overhead
Potential deadlock and buffer overflow
Potential reliability issues if infrastructure loses the data flowing between filters
Potential reprocessing of data if a filter fails after sending results downstream,
but before indicating that processing was successfully completed (design filters in
a pipeline to be idempotent)
Potentially large context, since each filter must be provided with sufficient
context to perform its work

Increasing Performance Using Pipelining Chapter 8

[322]

Here are some high-level use cases, which if applicable, make this pipeline pattern an
attractive design solution candidate:

Processing requirements can be decomposed into a set of independent steps
Filter operations can take advantage of multi-core processors or distributed
computing
Each filter has different scalability requirements
A system that must accommodate reordering of processing steps

Examples
Now, let's look at some examples to help appreciate the value and applicability of this
pipeline pattern.

Website order processing
The following diagram depicts the flow of an order from the website that displays the order
form to the user. The filters along the way perform various tasks, such as decrypting the
request payload, authenticating the user credentials, charging the customer's credit card,
sending the customer a confirmation email, and finally, displaying the thank you page:

Boss worker pattern
In the boss worker pattern, the Boss filter pushes data down to the workers that process the
data and merge the results into the Product:

Increasing Performance Using Pipelining Chapter 8

[323]

Load balancer
The following example shows a Load Balancer that takes requests from clients and sends
them to the server that has the smallest backlog and is most available to handle the request
information packet:

Data flow types
The data flow types can be viewed as Read, Split, Merge, and Write operations:

Filter type Image Receive Send Description

Read A Read filter reads data from the
data source and sends the
information packet downstream.

Split Multiple functions read from the
same channel until that channel is
closed. It improves the
performance by distributing work
among a group of workers to
parallelize CPU usage.

Transform This filter receives data from
upstream, transforms it, and
sends it downstream.

Increasing Performance Using Pipelining Chapter 8

[324]

Merge This function reads from multiple
input channels onto a single
channel that's closed when all the
inputs are closed. Work can be
distributed to multiple
Goroutines that all read from the
same input channel.

Write This filter receives data from
upstream and writes it to the
sink.

Building blocks
These are the basic building blocks of a flow-based programming system. With these basic
operations, we can build any component-based system:

Flow-based programming is a component-based programming model that
defines applications as a network of asynchronous processing operations
(aka filters) that exchange streams (https://en. wikipedia. org/wiki/
Stream_ (computing)) of structured information packets with defined
lifetimes, named ports, and separate definitions of connections.

Generalized business application design
The following diagram depicts the component composition diagram for a generalized
business application that processes input requests and routes the requests to backend
servers. Responses from the servers are subsequently handled, processed, and returned. A
few alternate data flows exist for responses that need to be re-routed or re-processed:

Increasing Performance Using Pipelining Chapter 8

[325]

Note that each operation can be swapped, as long as its input and output sets are identical,
without impacting the flow of data or overall operation of the application.

Example implementations
Now that we see the value in the pipeline pattern, let's start planning a Go implementation
of one.

In Go, pipelines are implemented using a series of stages connected by Go channels. A Go
pipeline begins with a data source (aka producer), has stages that are connected via
channels, and ends with a data sink (aka consumer).

The data source can be a generator function that sends data to the first stage and then closes
the initial outbound channel.

Each filter (step or stage) in the pipeline:

Consists of one or more Goroutines that run the same function (aka filter)
Receives upstream data via one or more inbound channels
Transforms the data in some way
Sends data downstream via one or more outbound channels
Closes its outbound channels when all the send operations are completed
Keeps receiving values from inbound channels until those channels are closed

Example transformer functions include the following:

Accumulator
Aggregator
Delta (to calculate the change between two sample data points of a resource)
Arithmetic

Increasing Performance Using Pipelining Chapter 8

[326]

Example data sinks include the following:

File storage (for example, NFS and CIFS/SMB protocol access to NAS or DAS)
Message broker (for example, Kafka, NATS, and RabbitMQ)
Database (for example, PostgreSQL, MongoDB, and DynamoDB)
Cloud storage (for example, S3, OpenStack Swift and Ceph)

Imperative implementation
Let's start our coding examples with the simplest form of a pipeline, which of course is
implemented using the imperative style of programming.

Decrypt, authenticate, charge flow diagram
We'll base our coding examples on the following flow diagram:

We'll be passing order data from stage to stage until the entire process has been completed.
The order data can be transformed along the way, for example, when the Decrypt step
converts the credit card number into plain text. We'll refer to each stage or step as a filter. In
our example, each filter will receive one order from the upstream and send one order
downstream. The flow is unidirectional. It starts at the data source and moves to the
Decrypt filter, then to the Authenticate filter, and ends in the Charge Credit Card filter:

package main

import (
 "fmt"
 gc "github.com/go-goodies/go_currency"
)

We'll import the go_currency package, which will help us handle the prices in the order
line items:

type Order struct {
 OrderNumber int
 IsAuthenticated bool
 IsDecrypted bool
 Credentials string

Increasing Performance Using Pipelining Chapter 8

[327]

 CCardNumber string
 CCardExpDate string
 LineItems []LineItem
}
type LineItem struct {
 Description string
 Count int
 PriceUSD gc.USD
}

The GetOrders() function will be our order generating data source. Note that the credit
card numbers are stored in an encrypted format. We'll need to decrypt them later in order
to charge the credit card:

func GetOrders() []*Order {

 order1 := &Order{
 10001,
 false,
 false,
 "alice,secret",
 "7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY=",
 "0922",
 []LineItem{
 LineItem{"Apples", 1, gc.USD{4, 50}},
 LineItem{"Oranges", 4, gc.USD{12, 00}},
 },
 }

Note that our credit card number is encrypted and the last field is a slice of LineItem
structs:

 order2 := &Order{
 10002,
 false,
 false,
 "bob,secret",
 "EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q=",
 "0123",
 []LineItem{
 LineItem{"Milk", 2, gc.USD{8, 00}},
 LineItem{"Sugar", 1, gc.USD{2, 25}},
 LineItem{"Salt", 3, gc.USD{3, 75}},
 },
 }
 orders := []*Order{order1, order2}
 return orders
}

Increasing Performance Using Pipelining Chapter 8

[328]

In our example, we'll only process two orders. We return them from the GetOrders()
function as a slice of the Order structs.

We call the GetOrder() function to generate our orders. Next, we range over our orders,
running each one in turn through our order processing pipeline:

func main() {
 orders := GetOrders()
 for _, order := range orders {
 fmt.Printf("Processed order: %v\n", Pipeline(*order))
 }
}

Our pipeline has three steps. Each step is a function that we'll refer to as a filter. There are
three sequential filters that our order runs through as it is processed:

func Pipeline(o Order) Order {
 o = Authenticate(o)
 o = Decrypt(o)
 o = Charge(o)
 return o
}

The following is the output:

Order 10001 is Authenticated
Order 10001 is Decrypted
Order 10001 is Charged
Processed order: {10001 true alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
Order 10002 is Authenticated
Order 10002 is Decrypted
Order 10002 is Charged
Processed order: {10002 true bob,secret
EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q= 0123 [{Milk 2 8.00} {Sugar 1
2.25} {Salt 3 3.75}]}

Since we're starting with the simplest example possible, in each filter is output which filter
action is occurring and we pass the order along, in this simple example without
transforming it in any way:

func Authenticate(o Order) Order {
 fmt.Printf("Order %d is Authenticated\n", o.OrderNumber)
 return o
}

func Decrypt(o Order) Order {

Increasing Performance Using Pipelining Chapter 8

[329]

 fmt.Printf("Order %d is Decrypted\n", o.OrderNumber)
 return o
}

func Charge(o Order) Order {
 fmt.Printf("Order %d is Charged\n", o.OrderNumber)
 return o
}

This is the basic idea of a pipeline. We take a data packet, for example, an order, and pass it
from step to step, where each step is a filter function with a specific speciality. The data can
be transformed along the way and travels in one direction from the data source to the sink,
which ends the process.

Concurrent implementation
In order to increase performance, we should consider running things concurrently. Go has a
few concurrency constructs that we can use: Goroutines and channels. Let's give that a try:

func main() {
 input := make(chan Order)
 output := make(chan Order)

 go func() {
 for order := range input {
 output <- Pipeline(order)
 }
 }()

 orders := GetOrders()
 for _, order := range orders {
 fmt.Printf("Processed order: %v\n", Pipeline(*order))
 }
 close(input)
}

We created an input channel and an output channel for our pipeline.

Next, we created an immediately executable Goroutine function. Note the open/close
parenthesis at the end of the Goroutine block: }() . This Goroutine won't exit until we close
the input channel in the last line of our main function.

We generate an order, just as in our imperative example. Then, we process each order by
passing the next order to the pipeline.

Increasing Performance Using Pipelining Chapter 8

[330]

The output is identical to the imperative example and it runs slower. So, we have reduced
performance and increased code complexity. We can do better.

Buffered implementation
Let's try using input/output buffers.

In the following diagram, each stage of the pipeline reads from its input buffer and writes to
its output buffer. For example, the Decrypt filter reads from its instream buffer, coming
from the data source and writes its output buffer:

Since there are two orders, the buffer size is two. Since concurrent queues' buffer shared
inputs and outputs, if we had four orders, then all filters in the pipeline could execute at the
same time. If we had four CPU cores available, then all filters could run concurrently.

As long as there is room in its output buffer, a stage of the pipeline can add the value it
produces to its output queue. If the output buffer is full, the producer of the new value
waits until space becomes available.

Filters can block, waiting for orders to arrive in its instream buffer or until its input channel
has been closed.

Buffers can be effectively used that hold more than one order at a time and this can
compensate for variability in the time it takes each filter to process each order.

In the best case scenario, each filter along the pipeline would process its input order in
about the same time as the other filters. However, if the Decrypt filter takes substantially
longer to process an order than the Authenticate filter, the Authenticate filter will block,
waiting on Decrypt to send the decrypted order into its input buffer.

Increasing Performance Using Pipelining Chapter 8

[331]

Here's how we would modify our program to include buffered channels:

func main() {
 orders := GetOrders()
 numberOfOrders := len(orders)
 input := make(chan Order, numberOfOrders)
 output := make(chan Order, numberOfOrders)
 for i := 0; i < numberOfOrders; i++ {
 go func() {
 for order := range input {
 output <- Pipeline(order)
 }
 }()
 }
 for _, order := range orders {
 input <- *order
 }
 close(input)
 for i := 0; i < numberOfOrders; i++ {
 fmt.Println("The result is:", <-output)
 }
}

The following is the output:

Order 10001 is Authenticated
Order 10001 is Decrypted
Order 10001 is Charged
Order 10002 is Authenticated
Order 10002 is Decrypted
Order 10002 is Charged
The result is: {10001 true alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
The result is: {10002 true bob,secret
EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q= 0123 [{Milk 2 8.00} {Sugar 1
2.25} {Salt 3 3.75}]}

This is great, right? We increased performance by adding buffered channels. Our solution
runs filters concurrently on multiple cores at the same time.

That's great, but what if we process a large number of orders?

Increasing Performance Using Pipelining Chapter 8

[332]

Leverage all CPU cores
We could increase the number of buffers by the number of CPU cores available:

func main() {
 orders := GetOrders()
 numberOfOrders := len(orders)
 cpus := runtime.NumCPU()
 runtime.GOMAXPROCS(cpus)
 input := make(chan Order, cpus)
 output := make(chan Order, cpus)
 for i := 0; i < numberOfOrders; i++ {
 go func() {
 for order := range input {
 output <- Pipeline(order)
 }
 }()
 }
 for _, order := range orders {
 input <- *order
 }
 close(input)
 for i := 0; i < numberOfOrders; i++ {
 fmt.Println("The result is:", <-output)
 }
}

The use of I/O buffers is an improvement on our design, but there is actually a better
solution.

Improved implementation
Let's take another look at our order processing pipeline:

Now, let's implement the Decrypt, Authenticate, and Charge Credit Card filters with a
closer to real life example.

Increasing Performance Using Pipelining Chapter 8

[333]

The Order and LineItem structs will remain the same and so will the GetOrders()
generator.

Imports
We have more imports. We'll use go_utils for its Dashes function to anonymize the credit
card number. Also, we'll import a number of crypto packages for decrypting the credit
card number:

package main

import (
 "log"
 "fmt"
 gc "github.com/go-goodies/go_currency"
 gu "github.com/go-goodies/go_utils"
 "strings"
 "crypto/aes"
 "crypto/cipher"
 "crypto/rand"
 "encoding/base64"
 "errors"
 "io"
 "bytes"
)

BuildPipeline
We have a new function, BuildPipeline(), which takes a list of filters and connects them
using each filter's input and output channels. The BuildPipeline() function lays the
pipe, starting with the data source and ending with the sink, that is, the Charge filter:

func main() {
 pipeline := BuildPipeline(Authenticate{}, Decrypt{}, Charge{})

Increasing Performance Using Pipelining Chapter 8

[334]

Immediately executable Goroutine
Next, is the immediately executable Goroutine that iterates over the orders that it generates
and sends each order to the input of that filter:

go func(){
 orders := GetOrders()
 for _, order := range orders {
 fmt.Printf("order: %v\n", order)
 pipeline.Send(*order)
 }
 log.Println("Close Pipeline")
 pipeline.Close()
}()

When all of the orders have been sent into the pipeline, it's time to close the pipeline's input
channel.

Receive order
Next, we execute the pipeline's Receive() function to wait for the orders to arrive on the
output channel, and then we print out the order:

 pipeline.Receive(func(o Order){
 log.Printf("Received: %v", o)
 })
}

The following is the output:

order: &{10001 true alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
order: &{10002 true bob,secret EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q=
0123 [{Milk 2 8.00} {Sugar 1 2.25} {Salt 3 3.75}]}
Credit card XXXXXXXXXXXX1111 charged 16.50
Credit card XXXXXXXXXXXX5100 charged 14.00
2017/03/08 03:05:36 Close Pipeline
2017/03/08 03:05:36 Received: {10001 true alice,secret 4111111111111111
0922 [{Apples 1 4.50} {Oranges 4 12.00}]}
2017/03/08 03:05:36 Received: {10002 true bob,secret 5105105105105100 0123
[{Milk 2 8.00} {Sugar 1 2.25} {Salt 3 3.75}]}

Increasing Performance Using Pipelining Chapter 8

[335]

Filterer interface
Our pipeline API is constructed around the Filterer interface:

type Filterer interface {
 Filter(input chan Order) chan Order
}

A Filterer object
A Filterer object has one method, Filter, which has an input channel of type Order and
returns an output channel of type Order:

We define types to act as receivers of Filter executions. The first filter encountered in the
pipeline is the Authenticate filter. The following Authenticate filter has a single input
parameter of type Order channel and it returns a single value of type Order channel.

Authenticate filter
Our authentication logic is hardcoded and simple, that is, not what I'd call production
ready. The password secret will work for any username. If Authenticate encounters
secret in the Credentials field, the order will flow unchanged to the next step in the
pipeline. However, if the password is not secret, then the order's isValid field will be set
to false. The behavior or subsequent filters in the pipeline can be affected by this value:

type Authenticate struct {}
func (a Authenticate) Filter(input chan Order) chan Order {
 output := make(chan Order)
 go func(){
 for order := range input {
 usernamePwd := strings.Split(order.Credentials, ",")
 if usernamePwd[1] == "secret" {
 order.IsAuthenticated = true
 output <- order
 } else {
 order.IsAuthenticated = false
 errMsg := fmt.Sprintf("Error: Invalid password
for order Id: %d", order.OrderNumber)

Increasing Performance Using Pipelining Chapter 8

[336]

 log.Println("Error:", errors.New(errMsg))
 output <- order
 }
 }
 close(output)
 }()
 return output
}

Decrypt filter
The following Decrypt filter has a single input parameter of type Order channel and it
returns a single value of type Order channel:

type Decrypt struct {}
func (d Decrypt) Filter(input chan Order) chan Order {
 output := make(chan Order)
 go func(){
 for order := range input {
 creditCardNo, err := decrypt(order.CCardNumber)
 if err != nil {
 order.IsDecrypted = false
 log.Println("Error:", err.Error())
 } else {
 order.IsDecrypted = true
 order.CCardNumber = creditCardNo
 output <- order
 }
 }

Note that we handle errors by logging the error. Even though we are told that the
IsDecrypted field value is always false when it arrives from the source, we play it safe and
set order.IsDecrypted = false if we encounter an error.

We only process this order if the order is valid. The order can be invalid if the decrypt
function fails, refer to the the preceding code. The order can also be invalidated in a
previous step in the flow, for example, if the order's Authenticate filter failed.

Complete processing
When this filter's processing is complete, we close its output channel:

 close(output)
 }()
 return output

Increasing Performance Using Pipelining Chapter 8

[337]

}

The ChargeCard helper function
The ChargeCard function is a helper function used by the Charge filter to charge the credit
card number found in the order. This implementation simply prints that the credit card was
charged. It's a good placeholder for a real charge credit card logic:

func ChargeCard(ccardNo string, amount gc.USD) {
 fmt.Printf("Credit card %v%v charged %v\n",
gu.Dashes(len(ccardNo)-4, "X"), ccardNo[len(ccardNo)-4:], amount)
}

Charge filter
Like all the other filters in the API, Charge accepts an input channel of type Order and
returns an output channel of type Order.

If the order is valid, then we initialize the total to $0.00 using the total := gc.USD{0,
0} statement and iterate over the order's line items, executing the Add function to arrive at
the order's total amount. We then pass that amount to the ChargeCard helper function to
collect our money:

type Charge struct {}
func (c Charge) Filter(input chan Order) chan Order {
 output := make(chan Order)
 go func(){
 for order := range input {
 if order.IsAuthenticated && order.IsDecrypted {
 total := gc.USD{0, 0}
 for _, li := range order.LineItems {
 total, _ = total.Add(li.PriceUSD)
 }
 ChargeCard(order.CCardNumber, total)
 output <- order
 } else {
 errMsg := fmt.Sprintf("Error: Unable to charge
order Id: %d", order.OrderNumber)
 log.Println("Error:", errors.New(errMsg))
 }
 }
 close(output)
 }()
 return output
}

Increasing Performance Using Pipelining Chapter 8

[338]

The encrypt and decrypt helper functions
The decrypt helper function in the following code is used by the Decrypt filter. We also
have the encrypt helper function, though not in our pipeline, can be nice to have, to
encrypt plain text and for testing purposes.

The decrypt function accepts the encrypted string value. The aes.NewCipher accepts
our 32-byte long AES encryption key and returns an AES-256 cipher block, which is passed
to NewCBCDecrypter. The NewCBCDecrypter function also accepts an initialization vector
(iv), which it uses to decrypt the block in cipher block chaining mode. Its CryptBlocks
function is used to decrypt the value, and RightTrim is used to slice off the trailing \x00.
Voila! we've got our decrypted string value:

var AESEncryptionKey = "a very very very very secret key"

func encrypt(rawString string) (string, error) {
 rawBytes := []byte(rawString)
 block, err := aes.NewCipher([]byte(AESEncryptionKey))
 if err != nil {
 return "", err
 }
 if len(rawBytes)%aes.BlockSize != 0 {
 padding := aes.BlockSize - len(rawBytes)%aes.BlockSize
 padText := bytes.Repeat([]byte{byte(0)}, padding)
 rawBytes = append(rawBytes, padText...)
 }
 ciphertext := make([]byte, aes.BlockSize+len(rawBytes))
 iv := ciphertext[:aes.BlockSize]
 if _, err := io.ReadFull(rand.Reader, iv); err != nil {
 return "", err
 }
 mode := cipher.NewCBCEncrypter(block, iv)
 mode.CryptBlocks(ciphertext[aes.BlockSize:], rawBytes)
 return base64.StdEncoding.EncodeToString(ciphertext), nil
}

func decrypt(encodedValue string) (string, error) {
 block, err := aes.NewCipher([]byte(AESEncryptionKey))
 if err != nil {
 return "", err
 }
 b, err := base64.StdEncoding.DecodeString(encodedValue)
 if err != nil {
 return "", err
 }
 if len(b) < aes.BlockSize {
 return "", errors.New("ciphertext too short")

Increasing Performance Using Pipelining Chapter 8

[339]

 }
 iv := b[:aes.BlockSize]
 b = b[aes.BlockSize:]
 if len(b)%aes.BlockSize != 0 {
 return "", errors.New("ciphertext is not a multiple of the
block size")
 }
 mode := cipher.NewCBCDecrypter(block, iv)
 mode.CryptBlocks(b, b)
 b = bytes.TrimRight(b, "\x00")
 return string(b), nil
}

Testing how the application handles invalid data
Let's see how our application handles bad data.

Invalid credit card cipher text
Note the XXX that has been appended to the encrypted credit card number value:

func GetOrders() []*Order {

 order1 := &Order{
 10001,
 true,
 "alice,secret",
 "7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY=XXX",
 "0922",
 []LineItem{
 LineItem{"Apples", 1, gc.USD{4, 50}},
 LineItem{"Oranges", 4, gc.USD{12, 00}},
 },
 }

The following is the output:

2017/03/08 04:23:03 Error: illegal base64 data at input byte 44
2017/03/08 04:23:03 Close Pipeline
2017/03/08 04:23:03 Received: {10002 true bob,secret 5105105105105100 0123
[{Milk 2 8.00} {Sugar 1 2.25} {Salt 3 3.75}]}
order: &{10001 true alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY=XXX 0922 [{Apples 1 4.50}
{Oranges 4 12.00}]}
order: &{10002 true bob,secret EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q=

Increasing Performance Using Pipelining Chapter 8

[340]

0123 [{Milk 2 8.00} {Sugar 1 2.25} {Salt 3 3.75}]}
Credit card XXXXXXXXXXXX5100 charged 14.00

The order that had the invalid credit card number was not fully processed. Note the error
message in the log.

Invalid password
Note the XXX that has been appended to the credentials field value:

func GetOrders() []*Order {

 order1 := &Order{
 10001,
 false,
 "alice,secretXXX",
 "7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY=",
 "0922",
 []LineItem{
 LineItem{"Apples", 1, gc.USD{4, 50}},
 LineItem{"Oranges", 4, gc.USD{12, 00}},
 },
 }

The following is the output:

order: &{10001 false alice,secretXXX
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
2017/03/08 04:49:30 Close Pipeline
order: &{10002 false bob,secret
EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q= 0123 [{Milk 2 8.00} {Sugar 1
2.25} {Salt 3 3.75}]}
2017/03/08 04:49:30 Error: Error: Invalid password for order Id: 10001
Credit card XXXXXXXXXXXX5100 charged 14.00
2017/03/08 04:49:30 Received: {10002 true bob,secret 5105105105105100 0123
[{Milk 2 8.00} {Sugar 1 2.25} {Salt 3 3.75}]}

The order that had the invalid password was not fully processed. Note the error message in
the log.

Increasing Performance Using Pipelining Chapter 8

[341]

Changing the order of authenticate and decrypt filters
Previously, the order was Decrypt{},Authenticate{}, Charge{}:

func main() {
 pipeline := BuildPipeline(Authenticate{}, Decrypt{}, Charge{})

The following is the output:

order: &{10001 false alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
2017/03/08 04:52:46 Close Pipeline
order: &{10002 false bob,secret
EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q= 0123 [{Milk 2 8.00} {Sugar 1
2.25} {Salt 3 3.75}]}
2017/03/08 04:52:46 Received: {10001 true alice,secret 4111111111111111
0922 [{Apples 1 4.50} {Oranges 4 12.00}]}
Credit card XXXXXXXXXXXX1111 charged 16.50
2017/03/08 04:52:46 Received: {10002 true bob,secret 5105105105105100 0123
[{Milk 2 8.00} {Sugar 1 2.25} {Salt 3 3.75}]}
Credit card XXXXXXXXXXXX5100 charged 14.00

There was difference. In both cases, both invoices were fully processed.

Attempting to charge before decrypting credit card
number and authentication
We start by building our pipeline of functions: Charge,Decrypt and Authenticate.

func main() {
 pipeline := BuildPipeline(Charge{}, Decrypt{}, Authenticate{})

The following is the output:

order: &{10001 false alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
order: &{10002 false bob,secret
EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q= 0123 [{Milk 2 8.00} {Sugar 1
2.25} {Salt 3 3.75}]}
2017/03/08 04:58:27 Error: Error: Unable to charge order Id: 10001
2017/03/08 04:58:27 Error: Error: Unable to charge order Id: 10002
2017/03/08 04:58:27 Close Pipeline

Increasing Performance Using Pipelining Chapter 8

[342]

Attempting to charge before authentication
No surprise here either. If we attempt to charge the credit card before we authenticate the
request, the charge will not be processed:

func main() {
 pipeline := BuildPipeline(Decrypt{}, Charge{}, Authenticate{})

The following is the output:

2017/03/08 05:10:32 Close Pipeline
2017/03/08 05:10:32 Error: Error: Unable to charge order Id: 10001
2017/03/08 05:10:32 Error: Error: Unable to charge order Id: 10002
order: &{10001 false false alice,secret
7b/HWvtIB9a16AYk+Yv6WWwer3GFbxpjoR+GO9iHIYY= 0922 [{Apples 1 4.50} {Oranges
4 12.00}]}
order: &{10002 false false bob,secret
EOc3kF/OmxY+dRCaYRrey8h24QoGzVU0/T2QKVCHb1Q= 0123 [{Milk 2 8.00} {Sugar 1
2.25} {Salt 3 3.75}]}

Further reading
An entire book could be written on the topic of the pipeline pattern.

Some of the topics not covered in this chapter, but you should research on your own,
include the following:

Designing and implementing the Split and Merge filters
Understanding how the sync.WaitGroup type helps you manage
synchronization of channel communication
Add branching and conditional workflow patterns to the pipeline

Good reads: Go Concurrency Patterns: Pipelines and cancellation (https:/ /
blog. golang. org/ pipelines) and Go by Example: Channels (https:/ /
gobyexample. com/ channels)

Increasing Performance Using Pipelining Chapter 8

[343]

Summary
Building applications that have high cohesion and low coupling is a major goal in software
engineering. In this chapter, we explored the pipeline pattern and you learned how to build
component-based systems using flow-based programming (FPB) techniques. We studied
FPB patterns and use cases that would benefit from applying the pipeline pattern.

We studied an example order processing flow. We progressed from an imperative
implementation to a concurrent one using Goroutines and channels. We learned how I/O
buffers can effectively be used to hold more than one order at a time and how this can
compensate for variability in the time it takes each filter to process each order.

Our last implementation was an improvement upon the prior attempts. We created an
elegant API based on the Filterer interface. We were able to define and control our entire
order processing flow with this one command:

pipeline := BuildPipeline(Decrypt{}, Charge{}, Authenticate{})

Lastly, we implemented various FPB error handling techniques and tested their
effectiveness.

In the next chapter, we'll look at another technique used to improve performance: being
lazy.

9
Functors, Monoids, and

Generics
"Here's my attempt at functional programming in Go. I think it's a good idea, but I'm
really not sure."

I have seen comments like this on over a dozen blog articles. I hope that after reading this
chapter and working through the examples, you'll have a new-found love for functional
programming (FP). Not because it's so pure that you worry that side-effect programming
will send you to hell, but rather, because you feel comfortable with concepts that form the
basis of pure FP and you see that its benefits outweigh the costs of learning how to use it.

Our goals in this chapter are as follows:

Appreciate how the lack of generics support in Go can be a good thing
Learn how to use a generics code generation tool to solve the boilerplate problem
Deeply understand how function composition works
Build a few functors and understand how to map between worlds
Build a few monoids and learn how to write your own reduce functions

Understanding functors
A functor is a structure-preserving transformation between categories. In other words, a
functor is a mappable type. Let's see what that means with an example.

Functors, Monoids, and Generics Chapter 9

[345]

An imperative versus pure FP example
Suppose we start with a slice of ints, ints := []int{1,2,3}.

In imperative programming, we write all the scaffold code to implement exactly how to
process this slice of ints. In pure FP, however, we tell our functor what we want the loop to
do:

Here's the output:

imperative loop: [2 3 4]
fp map: [2 3 4]

Let's see how this works.

What did that Map function do for us?
The Map function abstracted the loop. We don't have to bother writing the same old
range/for looping code. We simply pass in our original ints list and tell our functor to map
that slice into a slice where each element is one greater than it was before. This is a lot like
SQL, where we declare what data we want and let the database engine worry about how to
get the data.

Functors, Monoids, and Generics Chapter 9

[346]

What possible benefits can this afford us?
Do we have to change our SQL query code to benefit from a database engine update that
increases the query performance? The answer is no, and the same goes for our pure FP
code.

What if all we had to do was write Functor(list).Map(add1) and define our custom
add1 function? What if Functor was part of the Go Standard Library (or another very
stable third-party package), and what if the next version of Go came out and it knew how to
optimize performance based on the size of the list we passed it? Would that not be an
automatic, significant benefit gained from simply compiling with the latest version of Go
(or that other, very stable third-party package)?

This may not seem like a big win in terms of the lines of code written, or
even clarity. In this case, and in smaller utility or administrative programs,
it might not be of great benefit. The IMHO place where using FP style
offers the greatest benefit is in business use case logic. We look for places
where we need to be careful to not clutter business intent with noisy code
like for loop scaffolding and error checking code blocks. Those are great
places for FP-style programming. Other good places are where we would
like to horizontally scale our application without worrying about race
conditions or side effects.

A magical structure
A functor can be thought of as a magical structure that can be mapped over, where the
magical structure can be thought of as a shape with a constant set of elements accompanied
by the ability to apply a transformation operation to each element.

Let's look at some examples.

Functors, Monoids, and Generics Chapter 9

[347]

Color blocks functor
A functor consists of a structure, usually a slice in Go, and a transformation operation, that
is, the mapping function:

Structure Eight blocks, each filled with a different color

Transformation operation f(x) = x - 30, where x is the hue

Below, is a functor that maps eight colored blocks to eight corresponding blocks whose color has been altered
by applying the transformation operations above to adjust the hue of the color displayed in the boxes.

The preceding diagram shows a single f(x) arrow to keep the clutter to a minimum, but a
more accurate representation would show arrows from each original element to its
corresponding, new, transformed element. That's what actually occurs--each element is
processed inside the structure and transformed into a new value that is returned inside the
structure:

Fingers times 10 functor
As mentioned before, a functor consists of a structure and a transformation operation:

Structure Five fingers, each representing an integer

Transformation operation f(x) = x * 10

Functors, Monoids, and Generics Chapter 9

[348]

From the last chapter, we know that a category consists of the following:

Grouping of objects
Objects: Dots/points/a primitive with no properties and no structure
Morphism (arrow): Something that goes between two objects/elements

Can you see the objects (the numbers on each finger)?

Can you see the mappings (1 to 10, 2 to 20, 3 to 30, and so on)?

The fact that our category is closed under multiplication, has an identity element, and has a
mapping function (times 10), means that we've got a functor. See it?

This is a shape-preserving map that maps from one category to another; hence, the functor
is called a category homomorphism. The f(x) illustrates that the functor is a function
between two categories.

Counting on our fingers (functors) is more proof that all we really need to
know, we are taught in kindergarten!

Definition of a functor in Haskell
We've seen a functor in the previous chapter in the type class hierarchy diagram. A functor
has only one type class method, fmap, which has a type of fmap :: (a -> b) -> f a
-> f b. It says--give me a function that takes an a and returns a b, a structure with an a
inside it, and I'll give you a structure with a b inside it. The function is applied to each
element inside the structure. The fmap function transforms values inside the structure.

Functors, Monoids, and Generics Chapter 9

[349]

We could use the following terms interchangeably:

Structure
Container
Box

The important thing to remember is that a functor operates on the element
inside the thing (structure/container/box) and returns the structure with
the transformed value (not the raw value).

Kinds of types
Functors in Haskell must have the kind * -> *. Kinds are another layer of types, above the
concrete types in Haskell. Kinds allow us to define what behavior types are capable of and
then connect them with the appropriate type classes. For example, an Int can act like a
showable, readable, ordered, or enumerable thing. Values in Haskell can be classified by
their type. Let's use Haskell's concise syntax to look at some examples:

Type(Class) __Kind__ Description

Int * * represents concrete types (such as Bool, Char, or Int).

Char * * represents concrete types (such as Bool, Char, or Int).

[] * -> * [] takes a single type of kind * and returns a new type of
kind *.

Maybe * -> * A higher-kinded type that takes a single type of kind * and
returns a new type of kind *.

Either * -> * -> * A higher-kinded type that takes a single type of kind * and
either returns a new type of kind * or returns a new type of
kind *.

Functor (* -> *) ->

Constraint
A functor is a type class, not a type. We define the behavior
of the higher-kinded type that is a functor to be something
that takes a kind * and maps it into another kind, *. The
constraint refers to the fact that the functor must obey the
rules defined in its algebra. A constraint enforces some sort
of limitation. For example, a Numeric constraint might
constrain all values of the Numeric type to be numeric.
123 passes, but "ABC" fails for the Numeric constraint.

Functors, Monoids, and Generics Chapter 9

[350]

Maybe
Maybe is a functor that maps every type to the same type with an additional Nothing
value. Maybe is like an optional value (note that types are the objects in our category):

data Maybe a = Just a | Nothing

The value of Maybe Int can be either just a number, such as Just 2, or Nothing.

The Maybe type maps types to types. For example, it maps Char to Maybe Char. fmap,
defined in the following snippet, shows how every a -> b function has a corresponding
version, Maybe a -> Maybe b, which just returns Nothing when given Nothing and
behaves normally otherwise:

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Polymorphism at a higher level
Haskell's rich type features (type classes, parameterized algebraic data types, recursive data
types, and so on) allow us to implement polymorphism on a much higher level than is
currently possible in Go.

It is possible to implement polymorphic behavior in Go. However, due to language
limitations (the lack of generics), it requires additional code to specify each type that
implements the desired behaviors.

For a Golang code example that demonstrates how to leverage structs and
methods to derive polymorphic behavior, see http://l3x.github. io/
golang- code- examples/ 2014/07/ 15/ polymorphic- shapes.html.

Functors, Monoids, and Generics Chapter 9

[351]

No Generics results in a lot of boilerplate code
Without support for generics, when we implement a list function, we must implement it for
each type our application requires. It's a lot of repetitive, boilerplate code. For example, if
we must implement a Sum function for int8, int32, float64, and complex128, this is
what it might look like:

package main

import (
 "fmt"
)

func int8Sum(list []int8) (int8) {
 var result int8 = 0
 for x := 0; x < len(list); x++ {
 result += list[x]
 }
 return result
}

func int32Sum(list []int32) (int32) {
 var result int32 = 0
 for x := 0; x < len(list); x++ {
 result += list[x]
 }
 return result
}

func float64Sum(list []float64) (float64) {
 var result float64 = 0
 for x := 0; x < len(list); x++ {
 result += list[x]
 }
 return result
}

func complex128Sum(list []complex128) (complex128) {
 var result complex128 = 0
 for x := 0; x < len(list); x++ {
 result += list[x]
 }
 return result
}

func main() {
 fmt.Println("int8Sum:", int8Sum([]int8 {1, 2, 3}))

Functors, Monoids, and Generics Chapter 9

[352]

 fmt.Println("int32Sum:", int32Sum([]int32{1, 2, 3}))
 fmt.Println("float64Sum:", float64Sum([]float64{1, 2, 3}))
 fmt.Println("complex128Sum:", complex128Sum([]complex128{1, 2, 3}))
}

Here's the output:

int8Sum: 6
int32Sum: 6
float64Sum: 6
complex128Sum: (6+0i)

With generics, we would only need to implement a Sum function similar to the following
one. <T> is a placeholder for any type we pass into Sum that supports the + operator:

func Sum(list []<T>) (<T>) {
 var ret <T> = 0
 for item := range list {
 ret += item
 }
 return ret
}

It would be nice to not have to write all that repetitive boilerplate code. Are there any other
options?

Yes. We could use the empty interface{} everywhere and perform reflection and type
casting to pull the data out of the list structure and put it back into the generic
interface{}, but that is not performant, and it's a lot of extra code.

Solve lack of generics with
metaprogramming
Metaprogramming (MP) is about writing code that writes code. In MP, we write programs
that treat programs, even themselves, as input data. Our MP will read, analyze, transform,
and generate code.

Maybe we can use MP to fix what's missing in Go due to its lack of support for generics?

Maybe. First, let's get a better understanding of what MP is about.

Functors, Monoids, and Generics Chapter 9

[353]

Here are some examples:

Lexers, parsers, interpreters, and compilers
Domain-Specific Languages (DSLs)
Aspect-Oriented Programming (AOP)
Attributes (.NET)
Annotations (Java)
Generics (.NET, Java)
Templates (C++)
Macros (C)
method_missing (Ruby)
Reflection (Go, C#, Ruby)

There are several types of MP.

Programs that support the eval function can generate new code by concatenating strings
that represent executable commands. Note: this can pose security risks and is generally not
a best practice.

Some languages, such as LISP, can change their own application code based on state
information, which provides the flexibility to make new decisions at runtime.

Other statically typed languages, such as C++, have the ability to evaluate expressions and
make compile-time decisions to generate code that can be compiled statically into the final
executable. This is the type of MP that we'll look at in the next section.

Reflection is a form of MP where a program can observe and modify its own structure and
behavior, such as by determining what type of data a pointer is referring to or returning a
list of all the properties of an object.

Go does not come with support for macros or generics, so it looks like we must use
reflection. Reflection allows our program to manipulate objects whose types are not known
at compile time.

For example, we can create a linked list of items using the empty interface{}. That will
allow us to put any type of data in our list. When we pull an item out of our list, we must
use type assertion to assign a data type to it in order to use it. The problem is that this is not
a type-safe operation, it's cumbersome to use, and it is a slow operation. Using reflection is
generally not a best practice. Some possible use cases include the following (none of which
help us with generics):

Calling functions

Functors, Monoids, and Generics Chapter 9

[354]

Recognizing interfaces
Validating fields

For more information on reflection in Go, have a look at the following
information:
golang.org/pkg/reflect/
blog.golang.org/laws-of-reflection
blog.ralch.com/tutorial/golang-reflection/
blog.gopheracademy.com/birthday-bash-2014/advanced-reflection-
with-go-at-hashicorp/

If we shouldn't use reflection, then how can we solve this problem of repetitive, boilerplate
code?

Generics code generation tool
How can we not write all that repetitive code and not take a performance hit, nor lose any
type safety of our strongly-typed language?

Let's look at using Go tooling to generate the boilerplate code for us. We'll use it to
replace interface{} in our code with <T>. Here, <T> represents any type that works in
the context in which it is found.

Since we'll be using real types, we'll get compile-time type safety.

The clipperhouse/gen tool
Though there are several generics code generation tools available, let's look at my personal
favorite, clipperhouse/gen.

We get the following functions for free with the clipperhouse/gen tool:

Aggregation Filter Map Misc
Aggregate[T] All Select[T] List

Average Any Where Ring

Average[T] Distinct Set

Count DistinctBy stringer

Max First

Functors, Monoids, and Generics Chapter 9

[355]

Max[T] GroupBy[T]

MaxBy Shuffle

Min Sort

Min[T] SortBy

MinBy

gen is a code-generation tool for Go. It's intended to offer generics-like
functionality for your types. Out of the box, it offers LINQ/underscore-
inspired methods.

https:/ /github. com/ clipperhouse/ gen

https:/ /en. wikipedia. org/ wiki/ Language_ Integrated_ Query

https:/ /en. wikipedia. org/ wiki/ Underscore. js

Using the gen tool, we'll gain most of the benefits of generics without the performance hits
of either reflection or type assertion.

What generics do for us is a lot like code generation. At runtime, when we pass an a of type
A to a function, it seems magical that our function can accept the a and do the right thing.
What happens most of the time at runtime (by JIT or a regular Go compiler, depending on
the situation) is that Go does a code generation replacement operation. What happens at
runtime is that our a gets swapped in/out of A-shaped holes in our code. This is the same
pattern that our generics code generation tool will use to generate generic code for us:

"List <A>".Replace("<A>", a)

We'll use our generics generation tool to swap out any type that fits in the T-shaped hole:

"List <T>".Replace("<T>", "Foo")
"List <T>".Replace("<T>", "Bar")

We can use our gen tool to generate code at development time. It spits out code for us,
much like an IDE might do.

We mark up our types using annotations in a comment line above the type of our code for
which we want code generation.

Let's work through an example. First, let's go to the correct directory and initialize our Go
environment by sourcing the init script, running glide-update, and pulling gen into our
vendors directory.

Functors, Monoids, and Generics Chapter 9

[356]

Here's the list of the commands we use:

cd <DEVDIR>/fp-go/4-purely-functional/ch11-functor-monoid/03_generics_cars
. init
glide-update
go get github.com/clipperhouse/gen

This is what our directory structure looks like before running gen:

Functors, Monoids, and Generics Chapter 9

[357]

Here's our directory structure after running gen:

Now, let's look at our project's code in src/car/types.go:

package car

// +gen slice:"Where,Sum[Dollars],GroupBy[string],Select[Dollars]"
type Car struct {
 Make string
 Model string
 Price Dollars
}

type Dollars int

Do you see the // +gen
slice:"Where,Sum[Dollars],GroupBy[string],Select[Dollars] annotation? It
tells our gen tool to generate a slice of Car and give us the following methods:

CarSlice.Where

CarSlice.SelectDollars

CarSlice.SumDollars

Functors, Monoids, and Generics Chapter 9

[358]

When we run gen in the directory with types.go, gen will generate a src/cars/car_slice.go
file with the following content:

// Generated by: gen
// TypeWriter: slice
// Directive: +gen on Car

package car

// CarSlice is a slice of type Car. Use it where you would use []Car.
type CarSlice []Car

// Where returns a new CarSlice whose elements return true for func. See:
http://clipperhouse.github.io/gen/#Where
func (rcv CarSlice) Where(fn func(Car) bool) (result CarSlice) {
 for _, v := range rcv {
 if fn(v) {
 result = append(result, v)
 }
 }
 return result
}

// SumDollars sums Car over elements in CarSlice. See:
http://clipperhouse.github.io/gen/#Sum
func (rcv CarSlice) SumDollars(fn func(Car) Dollars) (result Dollars) {
 for _, v := range rcv {
 result += fn(v)
 }
 return
}

// GroupByString groups elements into a map keyed by string. See:
http://clipperhouse.github.io/gen/#GroupBy
func (rcv CarSlice) GroupByString(fn func(Car) string) map[string]CarSlice
{
 result := make(map[string]CarSlice)
 for _, v := range rcv {
 key := fn(v)
 result[key] = append(result[key], v)
 }
 return result
}

// SelectDollars projects a slice of Dollars from CarSlice, typically
called a map in other frameworks. See:
http://clipperhouse.github.io/gen/#Select
func (rcv CarSlice) SelectDollars(fn func(Car) Dollars) (result []Dollars)

Functors, Monoids, and Generics Chapter 9

[359]

{
 for _, v := range rcv {
 result = append(result, fn(v))
 }
 return
}

So, gen is generating all that boilerplate code for us. That keeps our source files clean and
tidy. If Go supported generics, our code would be similar to the code we write that works
with gen. How similar? Let's see.

Here's our main.go file:

package main

import (
 "fmt"
 . "car"
)

func main() {
 var cars = CarSlice{
 Car{"Honda", "Accord", 3000},
 Car{"Lexus", "IS250", 40000},
 Car{"Toyota", "Highlander", 3500},
 Car{"Honda", "Accord ES", 3500},
 }
 fmt.Println("cars:", cars)

Here's the output:

Output:cars: [{honda accord 3000} {lexus is250 40000} {toyota highlander
3500} {honda accord es 3500}]

See that CarSlice type? That's what gen created for us. We must type in the actual struct
types, such as Car, and gen will create the CarSlice type and all the methods that we tell it
to generate for us in our annotation (just above the type definition).

If Go supported generics
This is what the same block of code might look like if Go supported generics:

 var cars = Slice<Car>{
 Car{"Honda", "Accord", 3000},
 Car{"Lexus", "IS250", 40000},
 Car{"Toyota", "Highlander", 3500},

Functors, Monoids, and Generics Chapter 9

[360]

 Car{"Honda", "Accord ES", 3500},
 }
 fmt.Println("cars:", cars)

Looking at this code block from a lazy programmer's perspective, if Go supported generics,
we'd have to type two extra characters, < and >.

It looks like the biggest feature of generic code support has just been neutralized. When we
consider this information along with the functions we get for free with gen and the fact that
the performance hit is guaranteed to occur at compile time (rather than runtime), it makes
Go's direct support of generics seem like a benefit or, at the very least, much less of a
problem.

Adding new methods
If we want to add methods that gen does not provide to our CarSlice, we can put those in
a separate file. The thing we need to remember is to not type any of our source code into the
files generated by gen. That's because our code would be overwritten the next time we told
gen to run.

Defining a filter function
A few lines down in our main.go file, let's define a filter function that will return cars
whose Make is Honda. We use our new Where method and pass it our honda literal
function:

honda := func (c Car) bool {
 return c.Make == "Honda"
}
fmt.Println("filter cars by 'Honda':", cars.Where(honda))

Here's the output:

filter cars by 'honda': [{honda accord 3000} {honda accord es 3500}]

Cool. Next, let's create a mapping function to return the price field:

price := func (c Car) Dollars {
 return c.Price
}
fmt.Println("Hondas prices:", cars.Where(honda).SelectDollars(price))

Here's the output:

hondas prices: [3000 3500]

Functors, Monoids, and Generics Chapter 9

[361]

Since we have already filtered by Honda, the result only contains the prices of Honda cars.

Aggregation? Sure, we can do aggregation. Let’s call the SumDollars function that we got
for free when we ran our annotation:

fmt.Println("Hondas sum(prices):", cars.Where(honda).SumDollars(price))

Here's the output:

hondas sum(prices): 6500

Nums revisited
Remember those four numerics types that we implemented a Sum method for without
generics? Let's revisit that code and see if we can improve our code base now that we know
about gen:

cd <DEVDIR>/fp-go/4-purely-functional/ch11-functor-monoid/04_generics_nums
. init
glide-update

Note that we need to run glide-update so that the vendors directory will be created for us. It
will first be placed in our GOPATH so that when we run the next command, the gen
package and its dependencies will go in our vendors directory rather than our project’s src
directory:

go get github.com/clipperhouse/gen

Now, let's cd to ~/dev/04_generics_nums/src/num and run gen:

cd src/num;gen;cd -

We can see that gen created four files, one for each slice type:

Functors, Monoids, and Generics Chapter 9

[362]

We have to define each type and annotate that we want gen to create a Sum method for each
slice. Note that we never need to create a type for a slice, only the types. Gen creates the
slices for each type for us, along with the methods that we request in the gen slice
annotations.

Here is the code from src/num/types.go:

package num

// +gen slice:"Sum[Int8]"
type Int8 int8

// +gen slice:"Sum[Int32]"
type Int32 int32

// +gen slice:"Sum[Float64]"
type Float64 float64

// +gen slice:"Sum[Complex128]"
type Complex128 complex128

This is what one of the generated files (src/num/int8_slice.go) looks like:

// Generated by: gen
// TypeWriter: slice
// Directive: +gen on Int8

package num

// Int8Slice is a slice of type Int8. Use it where you would use []Int8.
type Int8Slice []Int8

// SumInt8 sums Int8 over elements in Int8Slice. See:
http://clipperhouse.github.io/gen/#Sum
func (rcv Int8Slice) SumInt8(fn func(Int8) Int8) (result Int8) {
 for _, v := range rcv {
 result += fn(v)
 }
 return
}

Functors, Monoids, and Generics Chapter 9

[363]

Remember the price function that we passed to the Select<T> function in our previous
cars example? Let's have a look at it:

price := func (c Car) Dollars {
 return c.Price
}
fmt.Println("Hondas prices:", cars.Where(honda).SelectDollars(price))

That's the kind of function we'll create in our src/num/vars.go file:

package num

var (
 Int8fn = func (n Int8) Int8 { return n }
 Int32fn = func (n Int32) Int32 { return n }
 Float64fn = func (n Float64) Float64 { return n }
 Complex128fn = func (n Complex128) Complex128 { return n }
)

We'll simply return the value that's passed into our literal function definitions in our
fmt.Println statements:

package main

import (
 "fmt"
 . "num"
)

func main() {
 fmt.Println("int8Sum:", Int8Slice{1, 2, 3}.SumInt8(Int8fn))
 fmt.Println("int32Sum:", Int32Slice{1, 2, 3}.SumInt32(Int32fn))
 fmt.Println("float64Sum:", Float64Slice{1, 2, 3}.SumFloat64(Float64fn))
 fmt.Println("complex128Sum:", Complex128Slice{1, 2,
3}.SumComplex128(Complex128fn))
}

Here's the output:

int8Sum: 6
int32Sum: 6
float64Sum: 6
complex128Sum: (6+0i)

Even with this simple sum numbers example, we see that our gen tool saves us from typing
the boilerplate loop structures for summing numbers.

We have only used the Sum method, but there are about two dozen more to choose from.

Functors, Monoids, and Generics Chapter 9

[364]

A snippet of documentation describing the Aggregate method can be
found at https:/ / clipperhouse. github.io/gen/ slice/#.

The slice typewriter
The slice typewriter is built into gen by default. It generates functional convenience
methods that will look familiar to users of C#'s LINQ or JavaScript's array methods. It is
intended to save you some loops, using a pass a function pattern. It offers easier ad hoc
sorting.

The annotation looks like this:

// +gen slice:"Where,GroupBy[int],Any"
 type Example struct {}

Here, Example is used as a placeholder for your type.

A new type, ExampleSlice, is generated, and becomes the receiver for the following
methods:

Aggregate[T]
AggregateT iterates over a slice, aggregating each element into a single result.
AggregateT is comparable to LINQ's Aggregate and underscores reduce function.

Here is the signature:

func (ExampleSlice) AggregateT(func(T, Example) T) T

In the following example, we specify in our comment annotation that we want gen to create
an Aggregate function that operates over a slice of strings. We define a join function that
we pass to AggregateString, which performs the join operation:

// +gen slice:"Aggregate[string]"
 type Employee struct{
 Name string
 Department string
 }

 employees := EmployeeSlice {
 {"Alice", "Accounting"},
 {"Bob", "Back Office"},

Functors, Monoids, and Generics Chapter 9

[365]

 {"Carly", "Containers"},
 }

 join := func(state string, e Employee) string {
 if state != "" {
 state += ", "
 }
 return state + e.Name
 }

 employees.AggregateString(join) // => "Alice, Bob, Carly"

Generics implementation options
Below is a decision matrix that can be used to evaluate which generics implementation is
best.

There are many aspects to consider when we think about how to implement generics. For
example, let's consider the difference between Haskell's parametric polymorphism and
C++'s ad hoc polymorphism.

In Haskell, polymorphic functions are defined uniformly for all types. We could call this
compile time polymorphism.

In C++, dynamic polymorphism, via substitution, virtual functions and interfaces enable
polymorphic behavior, but whether our implementation works for any particular type is
decided at runtime when the concrete type is substituted for its parameter.

C++ templates offer a similar functionality without the runtime overhead of dynamic
polymorphism. The tradeoff is the fact that the flexibility is fixed at compile time.

Functors, Monoids, and Generics Chapter 9

[366]

Type classes in Haskell allow us to define different behaviors for the same function for
different types. In C++, we do this using template specialization and function overloading.

Note that we are only scratching the surface of the issues, and only with a discussion of two
languages (C++ and Haskell). There are plenty of edge cases to consider. For example,
should the Go compiler perform aggressive optimizations? If so, that would mean
specializing polymorphic functions for all types in which they are used, which opens up
another level of complexity to manage.

If generics support were added to Go, there would be a cost and risk involved. The cost
would come up front, either at compile time or runtime. In all cases, the pros and cons of
each approach should be carefully evaluated and we should be careful what we ask for.
We'll talk more about generics in the next chapter.

For more information on generics and Go, including more tools like gen,
you can refer
to docs.google.com/document/d/1vrAy9gMpMoS3uaVphB32uVXX4pi-
HnNjkMEgyAHX4N4. Another resource is golang.org/doc/faq#generics.

We used the gen tool
We used the gen tool, which is more aligned with the C++/Template approach. While using
gen caused us to write a little more code, we were in control, and we got some LINQ-like
functionality out of the box, which keeps us from having to write a lot of boilerplate code
for handling slices. Nice!

So, does Go support generics? No. But we can use a tool such as gen to solve the big
problem of having repetitive boilerplate code. We still have our type safety and do not pay
the performance penalty for using reflection.

The shape of a functor
A functor is an algebraic type that accepts a value (or usually, a list of values) and has a
map function that applies to each element in the list to produce a new functor of the same
shape. What is a shape?

Functors, Monoids, and Generics Chapter 9

[367]

Let's look at an imperative example:

ints := []int{1,2,3}
impInts := []int{}
for _, v := range ints {
 impInts = append(impInts, v + 2)
}
fmt.Println("imperative loop:", impInts)

Here's the output:

imperative loop: [3 4 5]

The shape in this example means a slice with three ints. We started with a slice with three
ints, ran our imperative code, and ended up with a slice with three ints.

A functor gets the same results (three elements in and three elements out) but a functor
does it in a different way.

We give our functor the same slice of three ints. The functor executes add2 for each int and
returns a slice with three ints (each of which is two greater than before):

add2 := func(i int) int { return i + 2 }
fpInts := Functor(ints).Map(add2)
fmt.Println("fp map:", fpInts)

Here's the output:

fp map: [3 4 5]

There must be more to a functor than that, right?

Yes. The devil is in the details. So, let's shine some light on it.

Functor implementation
Let's look at our ints functor implementation.

ints functor
Like the good programmers that we are, we declare our interface at the top of our file. Our
interface, that is, our contract, has only one function, Map. Our IntFunctor type accepts
a func(int) int function and returns another IntFunctor.

Functors, Monoids, and Generics Chapter 9

[368]

What? It returns an IntFunctor? What is that, and how did it print correctly?

Let's have a look at src/functor/ints.go:

package functor

import (
 "fmt"
)

type IntFunctor interface {
 Map(f func(int) int) IntFunctor
}

One feature of a functor is that it applies that f function inside its container. Now, what is a
container?

type intBox struct {
 ints []int
}

That's our functor's container. We'll call it a box, because a box is a container, and since we
are good, lazy programmers, we prefer names that are short.

Okay. I see the box. What happens in our magical box?

func (box intBox) Map(f func(int) int) IntFunctor {
 for i, el := range box.ints {
 box.ints[i] = f(el)
 }
 return box
}

Firstly, we notice that Map is a method and box is the receiver. Map takes a function and
returns another IntFunctor. Ah, so we map from one IntFunctor to another? Yes,
indeed.

Since a functor needs to map one structure to another one, and since there may be more
than one element to map (and when we say map, we mean transform element for
element/three in, three out). It's safe to assume we're going to be mapping lists of elements.

Functors, Monoids, and Generics Chapter 9

[369]

How are list shapes in Go usually implemented? With a slice, right? It should be no surprise
that the receiver of our Map method is a slice. Every slice can be iterated over using range,
and that's what we use to iterate through our list of elements and apply our function (f) to
each element and return the box we were passed. The difference is that the box now
contains transformed elements.

Wait a second, what's a range with iterator variables i and el, that are mutating, doing in
our pure FP world? And even more disturbing is the fact that we are mutating the contents
of our box. That's right, mutations did occur, but only in the box. It's magical, remember?
Inside this box is where things can change and not affect our otherwise pure world of FP.

How can we draw a line between pure and impure? This is where we do it:

func Functor(ints []int) IntFunctor {
 return intBox{ints: ints}
}

That's it. That's the place where we allow our execution to be lowered into the gutter of
mutation:

fpInts := Functor(ints).Map(add2)

See the Functor(ints) part in the preceding line? That's where we wrap our ints inside
the magical box, and that is where we allow the naughty add2 mutation function to apply
itself to each int in our slice.

This action of lowering elements into the gutter of mutation is typically
referred to as lifting. I would argue that, according to the upcoming
analogy, lifting is a misnomer. Lowering would be a more appropriate
name for it. For more information, see https:/ / en.wikipedia. org/ wiki/
Lambda_ lifting.

What happens in the functor box is not unlike what happens when a person entertains
impure thoughts. The structure would be the list of three lovely cows dressed in polka-dot
dresses in one's mind. The impure person would allow their thoughts to be lowered to a
place where they would apply the Undress<T> literal function, where the T type in this
case would be a Cow:

Functors, Monoids, and Generics Chapter 9

[370]

Pure FP goes to Hell

The person may feel safe knowing that their mind is the magical box where all sorts of
impure mutations are permitted. When this occurs, a person exercises an Undress functor
and maps lovely, dressed cows from one world down into another.

When your Momma says, "Get your mind out of the gutter!", this is exactly
what she's talking about.

The last thing we do in src/functor.ints.go is create a String() method:

func (box intBox) String() string {
 return fmt.Sprintf("%+v", box.ints)
}

Since we have implemented this one String() method, per the duck typing rules of Go,
our IntFunctor is a Stringer:

type Stringer interface {
 String() string
}

This is a beautiful, one-method interface. fmt looks for this interface to print values.

Functors, Monoids, and Generics Chapter 9

[371]

The Go Standard Library is very accessible and a great place to go to see how things really
work. In our example, we see that we passed v as the verb (when we
returned fmt.Sprintf("%+v", box.ints)) around line 577 in the print.go file. Here is
the snippet from print.go that starts on line 577:

// /usr/local/Cellar/go/1.9/libexec/src/fmt/print.go
// If a string is acceptable according to the format, see if
// the value satisfies one of the string-valued interfaces.
// Println etc. set verb to %v, which is "stringable".
switch verb {
case 'v', 's', 'x', 'X', 'q':
 // Is it an error or Stringer?
 // The duplication in the bodies is necessary:
 // setting handled and deferring catchPanic
 // must happen before calling the method.
 switch v := p.arg.(type) {
 case error:
 handled = true
 defer p.catchPanic(p.arg, verb)
 p.fmtString(v.Error(), verb)
 return

 case Stringer:
 handled = true
 defer p.catchPanic(p.arg, verb)
 p.fmtString(v.String(), verb)
 return
 }
}

Functor definition
The Functor (https:/ / hackage. haskell. org/package/ base- 4.8.1.0/docs/Data-Functor.
html#t:Functor) class is used for types that can be mapped over.

We'll use Haskell syntax because it so clearly defines FP algebraic data
types, including their structures, rules, and logic. fmap is the map
function. The period . notation is the compose operator.

Instances of Functor should satisfy the following identity and associativity laws:

fmap id == id
fmap (f . g) == fmap f . fmap g

Functors, Monoids, and Generics Chapter 9

[372]

We should recognize these two rules from Chapter 11, Category Theory That Applies.

Identity operation
The identity law of our category says that the identity morphism of A is A:

If our operation is a map and the elements in our list are numbers, then the identity
morphism is +0. If we add 0 to every element of our input list, our transformed list will
consist of the same elements.

HEADS UP! We are going to hammer home the concept of composition.
Your understanding of what composition is and how it works is essential
to your ability to be productive in pure functional programming. If you
read only a few pages in this book, let your reading begin now.

Composition operation
The composition operation, g.f or g after f, applies function f to x (which takes us from A to
B) and passes the result of that to g (which takes us from B to C), and that nested set of
operations is equivalent to the composition operation of g.f.

In Haskell, we define our composition operation on the first line and request to see the type
definition of our composition operation on the second line. The third line is what the
composition means:

> (.) g f = \x -> g (f x)
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

The a, b, and c above correspond to the A, B, and C in the following diagram.

It says, when we pass the A to B function (f) to the B to C function (g), we get the A to C
function (g.f).

Functors, Monoids, and Generics Chapter 9

[373]

This is basic composition. Assuming we start at A, this diagram says we can get to C either
by way of B (A to B to C) or by going directly from A to C. When we choose the short route
(A to C), or g.f, we compose g and f in a nested manner, like g(f(x)), where x is the value
that we get from A:

Not quite there? Hang in there. After a few examples you will be.

Composition example in Go
We're going to create two functions, Humanize and Emphasize (representing f and g), and
a composition function of Emphasize(Humanize(true)) to illustrate the path A to B to C:

The src/compose/compose.go file contains the following code:

package compose

func Humanize(b bool) string {
 if b { return "yes" } else { return "no" }
}

func Emphasize(s string) string {
 return s + "!!"
}

func EmphasizeHumanize(b bool) string {
 return Emphasize(Humanize(b))
}

Functors, Monoids, and Generics Chapter 9

[374]

main.go looks like this:

package main

import (
 "fmt"
 . "compose"
)

func main() {
 fmt.Println("A to B - Humanize(true):", Humanize(true))
 fmt.Println("B to C - Emphasize(\"yes\"):", Emphasize("yes"))
 fmt.Println("A to C - EmphasizeHumanizeFG(true)",
EmphasizeHumanizeFG(true))
}

If you're using the init script, then your terminal should look like this:

If this was a more complicated example that included external packages,
then you would have run the following (in this order):
. init, glide-update, and go-run

Functors, Monoids, and Generics Chapter 9

[375]

Haskell version of compose
We'll cover the Haskell version of composing Humanize and Emphasize:

humanize b = if b then "yes" else "no"
emphasize str = str ++ "!"
compose g f = \x -> g (f x)
emphasizeHumanize = compose emphasize humanize
emphasizeHumanize True

That's it! Those five lines are equivalent to the 25 lines of Go code!

I am not at all advocating for any Gophers to switch to Haskell--there are
far too many reasons to keep coding and deploying Go solutions to
address here. I include the Haskell code for informational purposes. As
mentioned earlier in the book, category theory trickles down from the
brains of the mathematicians directly into Haskell. So, if we want to be
good, pure functional programming Gophers, then we should learn
Haskell.

Here's the REPL terminal log of our session:

Functors, Monoids, and Generics Chapter 9

[376]

Let's look a bit closer at some of the lines.

We can ask our Haskell REPL to tell us the type of what we define using :t <symbol>.

For example, :t humanize tells us that it is a function (->) that takes a Bool and returns a
list of characters:

:t humanize
humanize :: Bool -> [Char]

The \x tells Haskell that compose is a lambda expression. We name our lambda
compose and pass the g and f functions as parameters.

The g (f x) says, apply f to x, take that result, and pass it to g:

compose g f = \x -> g (f x)

Now, let's see what type compose is:

:t compose
 compose :: (t2 -> t1) -> (t -> t2) -> t -> t1

That's a little hard to follow. So, let's see how Haskell says the type is of its default
implementation of the compose operator:

:t (.)
 (.) :: (b -> c) -> (a -> b) -> a -> c

We've seen that before:

Great! Now we're making progress. Time to define our emphasizeHumanize composition
lambda:

emphasizeHumanize = compose emphasize humanize

Functors, Monoids, and Generics Chapter 9

[377]

compose is our function, and we pass it two parameters--emphasize and humanize. Being
good, careful programmers, we'll check our function literal's type:

:t emphasizeHumanize
 emphasizeHumanize :: Bool -> [Char]

Rock solid! It takes a Bool and returns a string.

So far, so good. Now it's time to run this Haskell compose function and see if we get the
same results as we did in Go:

emphasizeHumanize True
 "yes!"

Woot!

Given that a lot of Haskellers are mathematicians, we know that they like to use symbols
instead of words. Furthermore, we know they like their code to look like math equations.
So, let's think like good, math-minded programmers and spice up the syntax.

Let's redefine the composition function name with the . symbol (notice that we have to put
the . in parentheses; otherwise, Haskell complains):

(.) g f = \x -> g (f x)

And now let's check its type:

:t (.)
(.) :: (t2 -> t1) -> (t -> t2) -> t -> t1

Okay, we can grok that now...it's basic composition. We can use our period in place of
compose:

emphasizeHumanize = (.) emphasize humanize
emphasizeHumanize True
 "yes!"

But that's not good enough. We can do better. Let's use the infix notation by moving the (.)
in between our two parameters, like so:

emphasizeHumanize = emphasize . humanize

Functors, Monoids, and Generics Chapter 9

[378]

And let's verify that it works:

emphasizeHumanize True
 "yes!"
emphasizeHumanize False
 "no!"

(g.f)(x) = g(f(x)) composition in Go
This is a graphical representation of our final example of composition in Go:

>

Don't gloss over that diagram. Study it. Let it sink in.

This is composition, the fundamental principle of functional programming.

That (g.f)(x) = g(f(x)) equation is quite literal. It says that we can execute the f function,
Humanize(true), and then pass that value "yes" to g ... Emphasize("yes") to get "yes!!".

That (g.f)(x) = g(f(x)) equation says one more thing. It says that we can nest our
functions, g(f(x)), which is like going from A to B and then B to C, or we can simply go
directly from A to C by executing EmphasizeHumanize(true).

Functors, Monoids, and Generics Chapter 9

[379]

So, according to the left-hand diagram, (g.f)(x) == g(f(x)), and similarly, according to the
right-hand diagram, EmphasizeHumanize(true) == Emphasize(Humanize(true)).

Bam!

The (g.f)(x) = g(f(x)) implementation
Now let's take a peek at the code.

Here are the f and g functions from the preceding diagram:

package compose

func Humanize(b bool) string {
 if b { return "yes" } else { return "no" }
}

func Emphasize(s string) string {
 return s + "!!"
}

func EmphasizeHumanize(b bool) string {
 return Emphasize(Humanize(b))
}

Functors, Monoids, and Generics Chapter 9

[380]

Now for the new stuff.

We'll create two types. Fbs represents f (or A to B), which takes a bool (true), and returns a
string, "yes". Fss represents g (or B to C). Fss takes a string, "yes", and returns a string,
"yes!!":

type Fbs func(bool) string
type Fss func(string) string

Here's our Compose function:

func Compose(g Fss, f Fbs) Fbs {
 return func(x bool) string {
 return g(f(x))
 }
}

Nested inside our Compose function is an anonymous function. It's our Lambda. In Haskell,
it looked like \x -> g (f x).

Lambdas are expressions, and we could pass them around anywhere. We need a function
that takes a Boolean and returns a "yes!!" or a "no!!".

Lastly, we define our g.f function literal:

var Emphasize_Humanize = Compose(Emphasize, Humanize)

A note about composition naming conventions in Go
In Go, we don't have the luxury of renaming a function name with the . symbol or a way to
easily convert a function call that looks like compose(f, g) to one that looks like g compose
f, much less one that looks like g . f. But no worries! We'll just use the following naming
convention to represent a compose function: Emphasize_Humanize (which reads, g . f,
where g is Emphasize and f is Humanize). Typically, a camelcased symbol would look like
EmphasizeHumanize, but with the _ separating the camel humps, it's obvious that this a
special symbol.

Functors, Monoids, and Generics Chapter 9

[381]

Here's main.go:

package main

import (
 "fmt"
 . "compose"
)

func main() {
 fmt.Println("A to B - Humanize(true):", Humanize(true))
 fmt.Println("B to C - Emphasize(\"yes\"):", Emphasize("yes"))
 fmt.Println("A to C - EmphasizeHumanize(true):",
EmphasizeHumanize(true))
 fmt.Println("A to C - Emphasize_Humanize(true):",
Emphasize_Humanize(true))
}

And here's what it looks like when we run it:

Functors, Monoids, and Generics Chapter 9

[382]

The directions of the arrows are significant
In the last chapter, we used the following chart to solve f(x) = x + 2:

Remember when we composed f(x) = x + 2 with g(x) = x2 + 1? We solved g(f(1)) = 10:

We also proved that f(g(1)) = 4, which is obviously not 10. So, we know that function
composition is not commutative. The arrows go one way only.

EmphasizeHumanize ordered incorrectly
When we try to reverse the order of operations, this is what we're trying to do:

Functors, Monoids, and Generics Chapter 9

[383]

This does not compute.

We start by passing a Boolean true to Emphasize, but what does that mean? What are we
trying to do? We are not changing the direction of the arrows, but we are attempting to
change the order in which we call them. Given our context of beginning with a Boolean and
trying to get a "yes!!" or a "no!!" out, it only makes sense to apply our Humanize and
Emphasize functions in one direction. We are, in effect, trying to compose backwards:

func Compose(f Fss, g Fbs) Fbs {
 return func(n bool) string {
 return g(f(n))
 }
}

Note that the rest of the code is identical to before. We only swapped the nesting order of f
and g in our return statement.

Our function literal that calls our Compose function looks like this:

var EmphasizeHumanizeFoG = Compose(Emphasize, Humanize)

That says, "Emphasize the true and then Humanize the result of that", which is clearly not going
to work (see the preceding diagram).

This code won't even compile:

Functors, Monoids, and Generics Chapter 9

[384]

Function composition is associative
So, function composition does not commute, but it is associative:

That diagram says that we can compose our functions to get from A to D by either choosing
the upper (A→C→D) path or the lower (A→B→D) path.

The idea of a functor is that it translates the diagrams we can draw in one category into
diagrams in another category. This often lets us convert ideas and theorems from one
category into another.

Let's look at an example of a particular functor, the forgetful functor, to get a better feel for
what it means to convert things from one category into another.

Functional composition in the context of a
legal obligation
Assume that Larry agreed to pay Lucy $5,000 by 1st October and that date has passed. Lucy
wants to get paid $5,000 and Larry wants to pay her, but he does not have the money.

Should Lucy sue Larry to get him to pay?

Functors, Monoids, and Generics Chapter 9

[385]

The following category diagram describes their situation:

The category states are as follows:

A = Where we are today (12th October)
B = Lucy demands a lawsuit
C = Lucy gets paid

The category morphisms are as follows:

f = Legal expense (for both, $2,000+)
g = Larry pays Lucy $5,000
h = Larry pays Lucy $5,000

Decisions determine state transitions
If Larry, in good faith, communicates the following to Lucy, which path will Lucy take?

To be clear, I'm simply asking for more time to pay or for you to allow me to make
scheduled payments directly to you without going through the court system.

Your thoughts?

Larry

Functors, Monoids, and Generics Chapter 9

[386]

It's obvious that these two will eventually get from A to C, but which path is the shortest?
Which path is more costly, both in terms of time and financial expenses?

Category theory review
We connect two arrows from A to B and B to C, and another equivalent arrow from A to
C. A, B, and C are called objects. They can represent anything. In this example, they
represent states--beginning (A), intermediate (B), and final (C) states. In the next example,
the domain and range represent different court cases, different worlds. The facts of each
case make up the structure of each, and the arrows between the two worlds are the
mappings the attorneys perform to make their case.

Categorical rules
There are only two rules that must be followed:

Identity
Associativity

Results oriented
Category theory is results oriented. It's all about getting from A to C. The arrows are one-
directional. When we compose the two paths (A → B and B → C), we get an equivalent path
(A → C). That is what we are doing when we compose functions. We can call one Compose
function (shown in the following snippet) rather than two functions (f and g):

func Compose(g Fss, f Fbs) Fbs {
 return func(x bool) string {
 return g(f(x))
 }
}

Functors, Monoids, and Generics Chapter 9

[387]

The forgetful functor and the law
Suppose Lucy chooses the longer path; how will Lucy's attorneys make the case for their
client?

Let's assume there is more to this story. Let's assume that Lucy has injured Larry in some
way in the past, and now that Lucy is forcing Larry into a lawsuit, he will in turn choose to
convey this new information to his attorney in order to file a counterclaim.

The rule of law
How will the law work when they go to court? The attorneys research the law to find a case
from prior court cases that might yield favorable results for their client. They then use that
case's ruling as a precedent to win the current case for their client.

It is impossible to refer to the entirety of case history to prove their point. So, attorneys for
both sides will use a rhetorical device, known to category theorists as the forgetful functor.
The forgetful functor necessarily leaves behind some structure. It is very difficult to find a
case from the past that is identical in every way to the case at hand.

Each attorney attempts to convince others that the structure that they present--that is, the
one court case that, if chosen, would yield the best results for their client--is the one that
should be applied.

The reality is that there is a very large number of court rulings in the past that could apply,
but each attorney will try to convince the judge and/or jury that the case that they choose is
the way the the law actually is.

The winning side will have effectively mapped a prior court ruling from a world that
included different parties (plaintiff, defendants, and case facts) onto the current case. Some
of the details will be different, but the winning attorney is the one that best communicates
that they have identified the most relevant and applicable case to apply in court today.

Each attorney identifies the bilateral symmetry between an old case that will best help their
client and the present court case, and does their part to convince others to apply that case.
We might hear the argument begin this way, "Ladies and gentlemen, the essential structure you
need to apply is this one".

Functors, Monoids, and Generics Chapter 9

[388]

Lucy’s forgetful functor
Given that G is their current case, with its current set of facts, Lucy's attorney maps the facts
from the case (E) that helps Lucy the most:

fLucy is the mapping function from the facts of case E, with precedence in favor of Lucy.

Larry’s forgetful functor
Larry's attorney maps the facts from the case (F) that helps Larry the most:

It's up to the judge and/or jury to decide which mapping fits best with the current case
under review. The side with the best mapping wins.

It's time to code another functor (pun intended).

Functors, Monoids, and Generics Chapter 9

[389]

Build a 12-hour clock functor
We'll build a 12-hour clock functor like this one:

Structure A clock with 12 places for the hours

Transformation operation f(x) = x + 12, where x is the hour

First, let’s examine the functor implementation:

// src/functor/clock.go

package functor

import (
 "fmt"
)

Define our ClockFunctor interface to include a single function (Map):

type ClockFunctor interface {
 Map(f func(int) int) ClockFunctor
}

Create a container to hold our list of 12 hours:

type hourContainer struct {
 hours []int
}

Functors, Monoids, and Generics Chapter 9

[390]

When called, Map will be executed/applied to each element in the container:

func (box hourContainer) Map(f func(int) int) ClockFunctor {
 for i, el := range box.hours {
 box.hours[i] = f(el)
 }
 return box
}

It's okay for the implementation of Map to be impure, as long as the side effects are limited
to variables, such as the loop variables, scoped to the Map function. Notice that return the
container, that we call box, whose elements have been transformed in some way by the
mapper function, f.

Next, we create a function named Functor that wraps our list of 12 hours into the magical
box for transformation. This is where we lower our values into the gutter. Some call this
process lifting, where the mapping transformation from one world to another occurs (for
details, see Pure FP goes to Hell earlier in this chapter):

func Functor(hours []int) ClockFunctor {
 return hourContainer{hours: hours}
}

Clock functor helpers
Towards the end of our clock.go file, we'll add some helpers, as discussed in the
following sections.

The Unit function
Our Unit function is our identity function. When applied to elements in the slice, it will
have no effect. It's trivial, but it's a requirement to satisfy the functor algebraic laws:

var Unit = func(i int) int {
 return (i)
}

Functors, Monoids, and Generics Chapter 9

[391]

The AmPmMapper function
This is the mapper we apply when we want to change from AM to PM hours. It will be
passed to the Map method and applied to each hour contained in the box. It converts an AM
hour (1, 2...12) to its corresponding PM hour (13, 14..0).

var AmPmMapper = func(i int) int {
 return (i + 12) % 24
}

The AmHoursFn helper
We can call this handy function any time we want the list of AM hours. Note that if we
create an AmHours variable to pass to our clock's functor, its value can be changed. So, this
is like a slice constant of AM hours:

func AmHoursFn() []int {
 return []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
}

In real-world scenarios, we'll use functors as intended, that is, we will pass
an initial slice of values in and allow each functor to transform the slice of
values each time a new functor's Map function is called. In our main.go
file, we want to reset the set of hours for learning purposes.

The String helper function
Create a String helper function to use when printing the functor's contents:

func (box hourContainer) String() string {
 return fmt.Sprintf("%+v", box.hours)
}

Functors, Monoids, and Generics Chapter 9

[392]

main.go
We start with our typical package main and import statements and the main() function:

package main

import (
 . "functor"
 "fmt"
)

func main() {

Note that we preface our internal functor package (found in the src directory) with a dot.
That allows us to refer to symbols that it exports, such as Functor and Map.

First, we call our Functor method and pass in our slice of AmHours. Functor wraps our
hours structure in a function of type ClockFunctor:

fmt.Println("initial state :", Functor(AmHoursFn()))

Here's the output:

initial state : [1 2 3 4 5 6 7 8 9 10 11 12]

The Functor function is what connects our two worlds: the world of AM hours and the
world of PM hours (or vice versa). We can say that Functor lowers our hours into a
magical box where the transformation mapping function, amPmMapper, is applied to each
element, transforming it into its corresponding PM (or AM) hour.

Note that the mapper function must be free of any side effects:

fmt.Println("unit application :", Functor(AmHoursFn()).Map(Unit))

Here's the output:

unit application : [1 2 3 4 5 6 7 8 9 10 11 12]

We can see that when we pass our functor's identity function, unit, to its Map method, it
returns what we passed it, that is, the AM hours.

Now for the fun part. Let's pass our mapping function to our functor:

fmt.Println("1st application :", Functor(AmHoursFn()).Map(AmPmMapper))

Functors, Monoids, and Generics Chapter 9

[393]

Here's the output:

1st application : [13 14 15 16 17 18 19 20 21 22 23 0]

Awesome! Our list of AM hours has been transformed into a list of PM hours.

Now, let's show off and chain two Map calls:

fmt.Println("chain applications:",
Functor(AmHoursFn()).Map(AmPmMapper).Map(AmPmMapper))

Here's the output:

chain applications: [1 2 3 4 5 6 7 8 9 10 11 12]

Why was that showing off? It does not look like anything changed. Lame. Right?

Wrong. We're chaining our functors.

The reason why the output doesn't look like it's changed is because it went from AM hours
to PM hours and back to AM hours.

Functors, Monoids, and Generics Chapter 9

[394]

Terminal output log
Here's what it looks like in our terminal:

Functor summary
Our clock functor comprises a structure (an int slice) that holds 12 hours and a Map method
that accepts a mapper function that is used to transform each of the 12 hours into the
subsequent set of 12 hours (AM/PM). Each time the Map method is executed, it returns a
new functor; because of this feature, we can chain our Map method calls.

In other words, have a look at the following example:

Functor([]int{1, 2, 3}).Map(mapperFn).Map(mapperFn))

We see that with functors, we wrap and Map (and can chain our maps).

The car functor
Let's use a functor to upgrade (and downgrade) some cars! We'll start by opening our
car.go file in our functor package.

Functors, Monoids, and Generics Chapter 9

[395]

The functor package
Let's have a look at src/functor/car.go:

package functor

import (
 "fmt"
 "strings"
)

type (
 Car struct {
 Make string `json:"make"`
 Model string `json:"model"`
 }
)

It's good practice to define our types at the top. Putting them in a type block helps to keep
our code clean and tidy. Another good practice is to add JSON annotations to each field of a
struct to enable easy (un)marshalling of JSON into our Car struct.

If you want to omit empty fields from a struct, you can add the
omitempty clause to the end of your field annotation. For example, if the
Make was optional or sometimes not included and we didn't want the
json created from a Car struct to include empty Make fields, our struct
definition would look like this:

Car struct {
 Make string `json:"make"`
 Model string `json:"model,omitempty"`
}

Next comes our interface definition that includes the single Map method:

type CarFunctor interface {
 Map(f func(Car) Car) CarFunctor
}

 And here's our magical box that consists of the slice we'll be transforming:

type carContainer struct {
 cars []Car
}

Functors, Monoids, and Generics Chapter 9

[396]

Here's our Map method implementation, where we iterate through the elements of the slice
of cars in our magical box, applying the mapping function f to each element:

func (box carContainer) Map(f func(Car) Car) CarFunctor {
 for i, el := range box.cars {
 box.cars[i] = f(el)
 }
 return box
}

Here's our Wrap method that is used to lower our slice of cars into the magical box for
transformation:

func Wrap(cars []Car) CarFunctor {
 return carContainer{cars: cars}
}

Here we define our helper functions. Unit we've seen before--it's our identity morphism.
The other two are Upgrade and Downgrade. We'll keep it simple and simply append an "
LX" to the end of the model name when we upgrade or remove it to downgrade a car:

var (
 Unit = func(i Car) Car {
 return (i)
 }

 Upgrade = func(car Car) Car {
 if !strings.Contains(car.Model, " LX") {
 car.Model += " LX"
 } else if !strings.Contains(car.Model, " Limited") {
 car.Model += " Limited"
 }
 return car
 }

 Downgrade = func(car Car) Car {
 if strings.Contains(car.Model, " Limited") {
 car.Model = strings.Replace(car.Model, " Limited", "", -1)
 } else if strings.Contains(car.Model, " LX") {
 car.Model = strings.Replace(car.Model, " LX", "", -1)
 }
 return car
 }
)

Functors, Monoids, and Generics Chapter 9

[397]

Lastly, we include a String method so that our fmt package knows how to print our cars:

func (box carContainer) String() string {
 return fmt.Sprintf("%+v", box.cars)
}

main.go
We'll manipulate strings and some JSON, as well as a car functor:

package main

import (
 "encoding/json"
 "fmt"
 "functor"
 "strings"
)

Create a cars variable to hold a Car type and initialize it with two cars. Since we annotated
our Make and Model fields with 'json', we can easily unmarshal a Toyota Highlander
into a car:

func main() {

 cars := []functor.Car{
 {"Honda", "Accord"},
 {"Lexus", "IS250"}}

 str := `{"make": "Toyota", "model": "Highlander"}`
 highlander := functor.Car{}
 json.Unmarshal([]byte(str), &highlander)
 cars = append(cars, highlander)

Now, let's exercise our car functor and verify that it works properly:

fmt.Println("initial state :", functor.Wrap(cars))
fmt.Println("unit application:", functor.Wrap(cars).Map(functor.Unit))
fmt.Println("one upgrade :", functor.Wrap(cars).Map(functor.Upgrade))
fmt.Println("chain upgrades :",
functor.Wrap(cars).Map(functor.Upgrade).Map(functor.Upgrade))
fmt.Println("one downgrade :", functor.Wrap([]functor.Car{{"Honda",
"Accord"}, {"Lexus", "IS250 LX"}, {"Toyota", "Highlander LX
Limited"}}).Map(functor.Downgrade))

Functors, Monoids, and Generics Chapter 9

[398]

Compare one line of FP to a bunch of imperative lines
It takes one line of FP-style code to apply an upgrade and downgrade to a car. Granted, the
Upgrade and Downgrade mapper functions were defined in the functor package, but
that's a great benefit. We can keep the boilerplate implementation of looping through the
slice of cars separate from our business use case logic.

With the imperative implementation style, we first implement the for...range iteration
block into which we insert our Upgrade/Downgrade logic:

// FUNCTIONAL STYLE
fmt.Println("up and downgrade:",
functor.Wrap(cars).Map(functor.Upgrade).Map(functor.Downgrade))

// IMPERATIVE STYLE
cars2 := []functor.Car{}
for _, car := range cars {
 // upgrade
 if !strings.Contains(car.Model, " LX") {
 car.Model += " LX"
 } else if !strings.Contains(car.Model, " Limited") {
 car.Model += " Limited"
 }
 cars2 = append(cars2, car)
}
cars3 := []functor.Car{}
for _, car := range cars2 {
 // downgrade
 if strings.Contains(car.Model, " Limited") {
 car.Model = strings.Replace(car.Model, " Limited", "", -1)
 } else if strings.Contains(car.Model, " LX") {
 car.Model = strings.Replace(car.Model, " LX", "", -1)
 }
 cars3 = append(cars3, car)
}
fmt.Println("up and downgrade:", cars3)

See the difference?

Which style of coding will be easier to maintain?

Functors, Monoids, and Generics Chapter 9

[399]

Car functor terminal session
Let's run our car functor example:

Monoids
Monoids are the most basic way to combine any values. A monoid is algebra that is closed
under an associative binary operation and has an identity element.

We can think of a monoid as a design pattern that allows us to quickly reduce (or fold) on a
collection of a single type in a parallel way.

Monoid rules
A monoid is anything that satisfies the following rules:

Closure rule
Associativity rule
Identity rule

Let's discuss these rules in brief.

Functors, Monoids, and Generics Chapter 9

[400]

Closure rule
“If you combine two values of same type, you get another value of the same type.”

Given two inputs of the same type, a monoid returns one value of the same type as the
input.

Closure rule examples
1 + 2 = 3, and 3 is an integer.

1 + 2 + 3 also equals an integer.

1 + 2 + 3 + 4 also equals an integer.

Our binary operation has been extended into an operation that works on lists!

Closure axiom
If a, b ∈ S, then a + b ∈ S.

That says, if a and b are any two values in the set S of integers and if we apply the binary
operation + to any two values, then the result of that addition operation will be a value that
is also in the set of integers.

Associativity rule
“If you combine several more values, the order in which you combine does not matter”

(1 + 2) + 3 == 1 + (2 + 3) // left and right associativity

So, if we have 1 + 2 + 3 + 4, we can transform that into (1 + 2) + (3 + 4).

Note that associativity works for addition and multiplication and string concatenation, but
not for subtraction and division.

Identity rule
“There is an identity element that doesn’t do anything.”

- Identity rule

Functors, Monoids, and Generics Chapter 9

[401]

A monoid will take two values of the same type and return one value of the same type.

Identity rule examples
Under the + operator, the set of integers has an identity of 0.

Rule Example

Left identity 0 + 1 == 1

Right identity 1 + 0 == 1

Notice that the operator is binary, that is, it takes two inputs, and those inputs must be of
the same type.

The result of combining the identity element (sometimes called empty or zero) with x is
always x.

An identity of 0
Under the * operator the set of integers has an identity of 1.

1 * 0 == 0
1 * 2 == 2

Writing a reduction function
Given the previous three rules, we can write a reduction function. When we run a reduction
on an array of integers using addition, we seed our operation with a 0 (the identity
element).

When we run a reduction on an array of integers using multiplication, we seed our
operation with a 1 (the identity element).

Functors, Monoids, and Generics Chapter 9

[402]

That's the idea. The following table summarizes a number of possible reductions:

Type Operation Unit/zero/neutral value

ints + 0

ints * 1

string + (concat strings) “”

bool && true

bool || false

list << (concat list) []

A semigroup is a missing neutral value
If we are missing the unit/zero/neutral value, then we don’t have a monoid, we have a
semigroup. Note that a semigroup can be converted into a monoid.

That was a very interesting discussion of the algebra of monoids, but what the heck are they
good for, and why should we care?

Here are a couple of good uses for monoids.

Converting binary operations into operations that work
on lists
Consider the following operation:

1 + 2 + 3 ⇒ [1,2,3] |> List.reduce(+)

Instead of having to write all that code where we type a number, type a +, type another
number, and we can feed a list of numbers into our reduce function that applies the +
operation to each item and accumulates the sum.

Functors, Monoids, and Generics Chapter 9

[403]

Here's an example of appending strings:

"a" + "b" + "c" ⇒ ["a", "b", "c] |> List.reduce(+)

What was the neutral/identity element used in each of the preceding examples?

The preceding code is F# code. The |> symbol is just a pipe symbol, like
we use in a Unix terminal. It allows us to pipe the list of integers [1,2,3]
or a list strings ["a", "b", "c"] into List.reduce(+). The greater
than symbol is just an indication of the direction of the flow of data, that is,
from left to right.

Using monoids with divide and conquer algorithms
Monoids are frequently used to solve large computations. Monoids help us to break our
computations into pieces. We can run smaller computations in separate cores or on separate
servers and recombine/reduce/fold the results into a single result. We often employ parallel
or concurrency techniques along with incremental accumulation of our result.

As a very simple example, if we need to add these numbers: 1 + 2 + 3 + 4.

We can add (1 + 2) on one CPU/core and (3 + 4) on another:

3 + 7 = 10

Where associativity holds, we can parallelize our computations.

Referential transparency
Identifying when using monoid can help us make design decisions that affect performance.

Functors, Monoids, and Generics Chapter 9

[404]

On day one, we're asked to add 1 + 2 + 3. Then, on day two, we're asked to add 1 more. We
don't have to add 1 + 2 + 3 again. We can simply store that and add our new 1 to it: 6 + 1 = 7.

Given that nothing is free, what did it cost us to gain the performance boost of not having to
add 1 + 2 + 3? Storage. The question becomes, which is more costly? The answer to that will
tell us whether to leverage referential transparency or not. Just because we can do
something does not mean we always should.

Handling no data
What if we have no data but we're asked to reduce it? Similarly, what if we have no data
but we’re asked to incrementally add to it?

This is when the identity element comes in handy! It can be the initial value for missing
data.

More examples of monoids
Lists are monoids. The operation to combine them is simply concatenation. Many types of
containers are also monoids, including monads.

What are not monoids?
Integers are not monoids, but integers under addition (a way to combine them) are
monoids.

Whole numbers (integers starting at 1), and even whole numbers under addition, are not
monoids. What is the neutral element for addition? The answer is zero.

Functors, Monoids, and Generics Chapter 9

[405]

Invoices are not monoids:

Functors, Monoids, and Generics Chapter 9

[406]

How can we combine two invoices?

What does it mean to add invoices? Are we going to merge the colors or somehow smash
them together? If we stack them, how can we do anything with them, other than take the
top one off the list? How do we combine the customer addresses? Sure, we can add the
work order numbers, 1,000 + 1,000 = 2,000, but what value is that to us?

How could we possibly add invoices? Maybe if we choose some fields that are statistical in
nature?

Monoid examples
We'll cover three types of monoid here:

Name monoid
Int slice monoid
Line item monoid

That's right. We're going to turn that invoice into a monoid!

Functors, Monoids, and Generics Chapter 9

[407]

Name monoid
Let's see what we can do with a name. First, we define an interface that has two methods,
Append and Zero. We wrap our name in nameContainer.

Our nameContainer is a struct with a single string field, name. Our Append method
appends the given name to the long name string it's building up that lives in the magical
nameContainer. Our zero morphism for our name string is an empty string.

The content of src/monoid/name_monoid.go would look as follows:

package monoid

type NameMonoid interface {
 Append(s string) NameMonoid
 Zero() string
}

func WrapName(s string) NameMonoid {
 return nameContainer{name: s}
}

type nameContainer struct {
 name string
}

func (s nameContainer) Append(name string) NameMonoid {
 s.name = s.name + name
 return s
}

func (nameContainer) Zero() string {
 return ""
}

func (s nameContainer) String() string {
 return s.name
}

Functors, Monoids, and Generics Chapter 9

[408]

Here's what main.go looks like:

package main

import (
 "monoid"
 "fmt"
)

func main() {

 const name = "Alice"
 stringMonoid := monoid.WrapName(name)
 fmt.Println("NameMonoid")
 fmt.Println("Initial state:", stringMonoid)
 fmt.Println("Zero:", stringMonoid.Zero())
 fmt.Println("1st application:", stringMonoid.Append(name))
 fmt.Println("Chain applications:",
stringMonoid.Append(name).Append(name))

Name monoid terminal session
Let's run our monoid:

Here, we ran our app and got good results. The initial state is Alice, and the Zero value is
the empty string; after the first append we get AliceAlice, and when we chain another we
get AliceAliceAlice.

Int slice monoid
Let's see what we can do with a slice of ints.

First, we define an interface that has two methods, Append and Zero. We wrap our int in
intContainer. intContainer is a struct with a single int field, ints. Our Append method
appends the given int slice to the slice of ints it's building up that lives in the magical
intContainer. The Zero morphism for a slice is nil.

Functors, Monoids, and Generics Chapter 9

[409]

Here is the content of src/monoid/int_monoid.go:

package monoid

type IntMonoid interface {
 Zero() []int
 Append(i ...int) IntMonoid
 Reduce() int
}

func WrapInt(ints []int) IntMonoid {
return intContainer{ints: ints}
}

type intContainer struct {
 ints []int
}

func (intContainer) Zero() []int {
return nil
}

func (i intContainer) Append(ints ...int) IntMonoid {
 i.ints = append(i.ints, ints...)
return i
}

func (i intContainer) Reduce() int {
 total := 0
 for _, item := range i.ints {
 total += item
 }
return total
}

That is just about the same logic as the Name monoid, except for that Reduce method. The
Reduce method will allow us to combine all of our ints with our binary operator, addition,
and arrive at a sum of all ints in the intMonoid container.

Functors, Monoids, and Generics Chapter 9

[410]

The contents of main.go are as follows:

ints := []int{1, 2, 3}
intMonoid := monoid.WrapInt(ints)
fmt.Println("\nIntMonoid")
fmt.Println("Initial state:", intMonoid)
fmt.Println("Zero:", intMonoid.Zero())
fmt.Println("1st application:", intMonoid.Append(ints...))
fmt.Println("Chain applications:",
intMonoid.Append(ints...).Append(ints...))
fmt.Println("Reduce chain:",
intMonoid.Append(ints...).Append(ints...).Reduce())

We call the same list of methods we did for our nameMonoid and get correct results. The
interesting line is the last one, where we chain our Appends and then call Reduce to sum up
our ints:

Int slice monoid terminal session

Lineitem slice monoid
Let's see what we can do with a slice of line items.

First, we define an interface that has three methods, Append, Zero, and Reduce. We wrap
our line items in the lineitemContainer. Our lineitemContainer is a struct with three
fields that correspond to our invoice's line items:

type Lineitem struct {
 Quantity int
 Price int
 ListPrice int
}

Our Append method appends the given line item to the slice of line items it's building up
that lives in the magical lineitemContainer.

The Zero morphism for a slice is nil.

Functors, Monoids, and Generics Chapter 9

[411]

The src/monoid/lineitem_monoid.go file will have the following code:

package monoid

type LineitemMonoid interface {
 Zero() []int
 Append(i ...int) LineitemMonoid
 Reduce() int
}

func WrapLineitem(lineitems []Lineitem) lineitemContainer {
return lineitemContainer{lineitems: lineitems}
}

type Lineitem struct {
 Quantity int
 Price int
 ListPrice int
}

type lineitemContainer struct {
 lineitems []Lineitem
}

func (lineitemContainer) Zero() []Lineitem {
return nil
}

func (i lineitemContainer) Append(lineitems ...Lineitem) lineitemContainer
{
 i.lineitems = append(i.lineitems, lineitems...)
return i
}

func (i lineitemContainer) Reduce() Lineitem {
 totalQuantity := 0
 totalPrice := 0
 totalListPrice := 0
 for _, item := range i.lineitems {
 totalQuantity += item.Quantity
 totalPrice += item.Price
 totalListPrice += item.ListPrice
 }
return Lineitem{totalQuantity, totalPrice, totalListPrice}
}

Functors, Monoids, and Generics Chapter 9

[412]

That is just about the same logic as the Int slice monoid, except for that Reduce method.
The Reduce method will allow us to combine all of our line item fields with our binary
operator, addition, and arrive at a sum total of all line item entries in the lineitemMonoid
container.

The main.go file will have the following code:

lineitems := []monoid.Lineitem{
 {1, 12978, 22330},
 {2, 530, 786},
 {5, 270, 507},
}
lineitemMonoid := monoid.WrapLineitem(lineitems)
fmt.Println("\nLineItemMonoid")
fmt.Println("Initial state:", lineitemMonoid)
fmt.Println("Zero:", lineitemMonoid.Zero())
fmt.Println("1st application:", lineitemMonoid.Append(lineitems...))
fmt.Println("Chain applications:",
lineitemMonoid.Append(lineitems...).Append(lineitems...))
fmt.Println("Reduce chain:",
lineitemMonoid.Append(lineitems...).Append(lineitems...).Reduce())

That's the same stuff we verified with the other monoids. Our feeder value, line items, is a
slice of three line item tuples. Verify that the math of the Reduce works.

Int slice monoid terminal session
Looking at the last line of output, we can see that we have called our Reduce function to
sum our totals (totalQuantity, totalPrice, and totalListPrice):

For a quick manual verification, let's look at totalQuantity--1+2+5+1+2+5+1+2+5 = 24.
Looks good!

Functors, Monoids, and Generics Chapter 9

[413]

Summary
In this chapter, we learned how to use tooling to solve issues that arise in Go because of its
lack of support for generics. We were able to use this tooling to generate underscore like
features in our Go code by starting with properly defined base types. With no more worries
about potential generics support slowing down our runtime executables (as is the case with
Java), we jumped for joy with an unexpected productivity boost.

We continued forward into the land of pure FP, where we tackled the concept of function
composition. With g.f(x) == g(f(x)) in our tool belt, we studied functors and learned
how to transform lists of items. We chained our maps and even learned how attorneys can
use the forgetful functor to win cases in court for their clients.

We wrapped up the chapter with monoids. We not only learned the algebraic laws of
monoids, but we implemented them. We chained Append methods and even wrote a couple
of reductions.

In the next chapter, we'll continue our on our path towards pure enlightenment, and
maintain our quest for simpler code and improved error handling.

10
Monads, Type Classes, and

Generics
Functional programming in Go:

“Not sure if it’s a good idea, but let’s try it anyway.”

"Fun to think about; Not sure how to use it."

"The Y-Combinator is a theoretical concept with no practical value."

"Who can understand the code in this Monad package. Lambda what? Generics?"

Please put your prejudices aside, work through this chapter, and then ask yourself, How
relevant is functional programming in Go?

Our goals in this chapter are as follows:

Understand how a Monad works
Learn how to compose functions using the bind operation
Understand how the Success and Failure paths work
Understand how a Monad deals with impure operations
Work through a Monadic workflow implementation in Go
Learn what Lambda Calculus is and what it has to do with Monads
See how Lambda Calculus implements recursion
Learn how the Y-Combinator works
Use the Y-Combinator to control workflow
Learn to write concise workflow code and handle all errors at the end

Monads, Type Classes, and Generics Chapter 10

[415]

Understand how Type classes work and implement a few in Go
Review the pros and cons of generics

Mother Teresa Monad
Who are you? Are you a good person or a bad person? What would other people say? How
did you become the person you are now?

Ponder those questions for a few minutes.

What is a Monad?

The explanation is like answering the question: How were you raised as a child and what
have you become?

In the following diagram, we explore a Monad:

The chain of blue boxes represents moments in the flow of Mother Teresa’s life.

The closed blue boxes represent her private time from birth to death. The open boxes
represent events in which she opened herself up to interactions with the world around her.

Let's suppose she was nurtured as a baby and received positive input (the blue incoming
arrow). Also suppose that along the way, she was exposed to some negative input (the dark
incoming arrows) as well as positive input. Her life (the data) was transformed in some way
during every interaction. As she grew, her actions were her side effects (the outgoing
arrows from the open box).

Success might be defined as entering the gates of Heaven after death (or Hell, for failure).

Monads, Type Classes, and Generics Chapter 10

[416]

So, what is a Monad? It’s a mechanism into which data flows, interacts with an impure
environment, is transformed, and eventually comes out the other end; it's a way to structure
and control the workflow in a real application that interfaces with external endpoints, such
as log files, external APIs, notifications, and so on.

The previous diagram should prompt a few questions.

In Chapter 4, SOLID Design in Go, we saw how a function f receives a and returns b, but we
also recognized that in the real world, where connections fail and RAM and disk space
might fill up, errors may occur:

To keep our diagram clean-looking, we’ll just move the errors arrow up and shoot it out the
right side, rather than underneath. We’ll also color the input and output arrows blue. That’s
our pure, happy path. See? No side effects:

But real programs can have side-effects, right? Real programs interface with external APIs,
accept input from users, print invoices, and send emails, right? Where’s the real stuff?

Monads, Type Classes, and Generics Chapter 10

[417]

We have two inputs matching our two outputs so that we can easily link our blue boxes
into a chain. Remember when we discussed the decomposition of finite state machines? We
pulled apart the pieces (C1, C2, and C5) of our application. These are our reusable
components.

That was done in order to fill our toolbox with individual components, which we can
subsequently use to re-compose our application:

Ever wonder how our pieces will fit back together?

It’s not going to work if all our pieces look like this:

However, consider if the pieces looked like this:

Monads, Type Classes, and Generics Chapter 10

[418]

Then they will all fit together like legos! See how they fit together?

How can we go from a one-input to a two-input thing?

The bind operation
We accomplish this feat using the Monad's bind operation:

In Haskell, it’s called the bind operation. Other names for bind include
flatMap, flatten, andThen, collect, and SelectMany. (That's part of
what makes functional programming confusing--different languages use
different names for the same thing.) The Lexical Workflow calls it Next.

More descriptive names might be adapt, link, or even hard shove. (In our code example,
we'll use the name Next, because it makes the most sense in the context of moving to the
Next step.) Bind is a pattern that adapts the one-input, two-output block to a two-input,
two-output block.

Now, let’s talk about the two paths--the top blue path is the Success path. That’s our Happy
Path, through which our data flows, as long as all goes well. The bottom red path is where
errors go.

Monads, Type Classes, and Generics Chapter 10

[419]

The lift operation
Let’s examine what happens when an error occurs in the lift operation of our second
component in the chain:

Lifting lifts a function into a wrapped type. Lift connects our functions from
one world and another.

A functor lifts single parameter functions. An applicative functor lifts
second multi parameter functions.

This is the type definition of the the lift operation in Haskell:

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b ->
f c

See the following terminal console for an example of using the lift operation (liftA2) to
transform the the replicate function into a wrapped type. We're using the applicative
style since we are lifting with an arbitrary number of arguments.

Monads, Type Classes, and Generics Chapter 10

[420]

Notice that we do not throw an exception (or panic); instead, we move our application flow
from the Success path to the Failure path. Practically, what this means is that we no
longer need to check for errors after executing each command that could possibly fail in our
code. Using the monad pattern, we are able to redirect program flow to the Failure path
and handle all of our errors for this execution chain at the tail end.

Now that we understand why and how we got two inputs and two outputs, let’s look at
what’s going on under our chain of blue boxes:

See the open box with the arrows coming in and going out? Those are impure arrows.

Remember our discussion about the action of lowering elements into the gutter of mutation
in Chapter 9, Functors, Monoids, and Generics, in the section about functors?

This is where our monad allows us to open our box outside the pure world of FP. Our
monad is a functor, and here, we're using the functor operation of lifting.

For details about lifting, see the previous chapter.

Monads, Type Classes, and Generics Chapter 10

[421]

The in arrow represents interactions with the external world. Things like:

Managing state
Reading log files
Accepting input from external APIs
Concurrent processing

The out arrow represents interactions with the external world. Things like:

Managing state
Writing log files
Sending output to external APIs
Concurrent processing

Remember, in pure functional programming, if a program receives a certain input value,
then it will always return the same output. However, when a program writes to a log file,
how could it possibly have the same timestamp each time? Monads allow pure FP
programs to remain pure and still interact with an impure world.

This is where the mapping/data transformation function is applied to the data.

In our Mother Teresa life monad example, this (in the box) is where the positive
interactions, perhaps with her loving mother, occurred, which helped to point her in a
positive direction. What other interactions might have occurred to transform her life?

How can any useful application not manage state? How can an FP application manage state
and remain pure? Monads. (See the state monad in the upcoming table.)

Why use Monads to manage state? Monads allow the manipulation of state in an elegant,
type-safe, constrained, deferred, and controlled manner.

Monads, Type Classes, and Generics Chapter 10

[422]

Elegant? What’s elegant about a Monad? Elegance is in the eye of the beholder. Elegance
gets out of the way. It is simple, obvious, straightforward, and allows us to very little
intellectual effort to immediately understand our code's purpose:

step := Get(lineBase64)
step = Next(step, Base64ToBytes)
step = Next(step, BytesToData)
step = Next(step, TimestampData)
step = Next(step, DataToJson)

That's a Monad. It's clutter-free and it's easy to see what the workflow does.

Deferred? What are we talking about? Why not just bake in all the control flow logic up
front? We know what should happen in all our use cases. Why not write all our if/then/else
logic and for loops and bake them all into a single executable?

With Monads, we attempt to write our applications using as many pure, side effect free
functions as possible. This style of programming mostly defers the decisions about how and
when to mutate states until the moment they are required. That’s what happens when we
open the box.

Constrained? What’s constrained? Well, that’s an overloaded term. From a framework
perspective, we are constraining/quarantining our side effect causing and real-world
interfacing code to this little, purposeful box. Its job is to perform the specific data mapping
transformation functions that have been provided to it. If any errors occur, the framework
will capture them and package the errors for us, and will ensure that they quickly travel
down the Failure path until they get spit out the end of the execution pipe, where all
errors for this execution chain are handled. From a data perspective, we use our type
system to constrain the input to only valid data types. (If we have a division operation, we
can constrain our input type to be PositiveNumbers to ensure that a divide by zero
exception will never occur.) From a type class perspective, our operations are constrained
by the laws of Monads.

What operations? What laws? The operations are the sequences of tasks that we chain
together to perform various operations on our data. If we start with a list of cars, we might
want to transform our list by applying the following transformations:

Filter(ByDomestic()).Map(Upgrade()).Reduce(JsonReducer())

And finally, what do we mean by controlled? This is where the Monad shines. The Monad
provides the structure for chaining the transformation operations. It provides the Success
and Failure paths. Now, rather than littering our code with if err != nil error
checking blocks, we can put all of our error handling logic at the end of all of the steps we
need to perform for our particular use case.

Monads, Type Classes, and Generics Chapter 10

[423]

One more time: What is a Monad? A Monad is a design pattern that provides a way of
chaining operations together. The bind function is what links the operations together in a
chain; it takes the output from one step and feeds it into the next one.

We can write the calls that directly use the bind operator, or we can use a sugar syntax, in a
language like Haskell, which makes the compiler insert those function calls for use. But
either way, each step is separated by a call to the bind function.

Since Haskell is a fully baked pure functional programming language,
we'll often refer to its FP in order to think about how we can best
incorporate that method of thinking/design into our Go solutions.

In Haskell, there are many kinds of monads. What makes each monad unique and
especially useful is what it does in addition to the bind operation. We can use the following
table of monads found in Haskell as a starting point for building a package of monads in
Go:

Monad Description

Either The Either type is similar to the Maybe type, with one key difference--it can
carry attached data of both Success and Failure. The Left return value to
indicates failure, and Right indicates success. Here's a useful pun: use Either to
get the Right answer.

Error Allows us to define exactly how exception handling works for our application.
For example, we can choose to ignore a specific exception if a similar one has
been handled in the past 60 seconds.

Eval Used for modularizing parallel code by separating the algorithm from the
parallelism, allowing us to change the way we parallelize our code by replacing
the Strategy function. Eval and the swappable Strategies leverage lazy
evaluation to express parallelism.

Failure Aborts the chain of execution steps automatically without requiring an if err
!= nil conditional error check after every function call.

Free Allows us to construct a monad from an arbitrary type. The free monad allows
us to abstractly specify control flow between pure functions and separately
define an implementation. We use monads to glue together pure functions with
special purpose control-flow, such as fail fast error handling (Maybe/Either) or
asynchronous computation.

Monads, Type Classes, and Generics Chapter 10

[424]

Identity The Identity monad is a monad that does not embody any computational
strategy. It simply applies the bound function to its input without any
modification. Computationally, there is no reason to use the Identity monad
instead of the much simpler act of applying functions to their arguments. The
purpose of the Identity monad is its fundamental role in the theory of monad
transformers. Any Monad transformer applied to the Identity monad yields a
non-transformer version of that Monad. The Identity monad is like the
number zero in addition. You cannot increase another number with zero, but
zero comes in handy when you need to write a Reduce function.

If Provides simple control flow to evaluate the results of a clause if the logic
condition is true, or else it will evaluate the false block (if one is provided).

IO Separates I/O from the rest of the (pure) language. In Haskell, it's the return
statement that takes the impure I/O and puts it into the IO Monad. It allows
access to impure I/O sources, such as memory, global variables, network, native
operating system calls, standard input, and so on. The following example
Haskell code illustrates the IO monad:
loveGo :: IO Bool
 loveGo =
 do putStrLn "Do you love Go? (yes/no)"
 inpStr <- getLine
 return ((inpStr) == "yes")

Lazy It's the same as the StateThread (ST) monad, except that this monad delays the
evaluation of state operations until a value depending on them is required.

List We can make each step return a list of results. Our bind function can iterate over
the list, feeding each one into the next step. This eliminates the need to write
looping constructs to iterate over lists of elements. Write it once and reuse it.

Maybe Used to deal with nil values, as it deals with computations that might not return
results. Instead of returning nil (or throwing an exception/panic), monadic
operations return a Just value or Nothing. Errors are propagated down the
monad structure until they reach the exit point at which all errors are handled.
Here’s how it’s defined in Haskell:
data Maybe a = Nothing | Just a

Monads, Type Classes, and Generics Chapter 10

[425]

Option Used as the return type for data that might otherwise return a nil/null value. If
the data is invalid, None is returned inside the Option monad, or else Some is
returned with the valid data inside of it. The monadic functions will then chain
fail states, so if a function requires the data is valid but receives an Option with
None in it, it will simply return Option None to the Next function. This pattern
is similar to returning Null in an imperative language and it solves the Billion
Dollar Mistake.

Par Used for modularizing parallel code by requiring the programmer to provide
more details about the data dependencies. Par provides more control and does
not rely on lazy evaluation to manage parallel tasks.

Parser Used to create a parser. For example, our grammar might look like this:
addop = "+" | "-".
digit = "0" | "1" | ... | "8" | "9".
expr = term { addop term }.
factor = "(" expr ")" | number.
mulop = "*".
number = ["-"] digit { digit }.
term = factor { mulop factor }.

We could use our Parser monad to perform math operations such as:
ghci> 1+2
 3

Pause Used when computations need to be interrupted and resumed. Could provide a
step function, which runs the computation until it calls the yield function where
the computation is paused, returning to the caller enough information to resume
the computation later. For an example of about a dozen possible
implementations, see stackoverflow.com/questions/10236953/the-pause-
monad.

Reader Provides access to the global state. During initialization, an application can read
configuration into a single context that can be passed along to subsequent steps.
Also known as Environment.

State Provides access to state values. A run function that performs some computation
will update the state and return the final state. For example, in an online first
person shooter video game, the player needs to know the state of the player
during every phase of the game: their health, amount of ammo, types of
weapons on hand, location, or an overlay a map of the surrounding area. State is
not global, but rather, a new state created in each step of the game. Since the
state is not actually performing destructive updates, reverting to an older
version or performing undo operations is easier.

Monads, Type Classes, and Generics Chapter 10

[426]

ST Allows us to safely work with a mutable states. For example, we can thaw an
immutable/frozen array and modify it in place and freeze a new immutable
array. ST also allows us to create data structures that we can then modify, as we
can do in imperative languages. Also known as a State Thread monad.

STM The Software Transactional Memory (STM) monad helps us with the problem
of synchronizing multiple tasks by preventing us from accidentally performing
non-transactional I/O operations that may cause deadlocks. In order to perform
concurrent programming in imperative programming, we use threads that must
share data. We must be careful that the different threads don't improperly
update the shared data. We often lock data blocks using a a technique called a
semaphore lock. With STM, we don't need to worry about semaphores since our
code contains no locks. Note that in Go, the language constructs we use to
perform concurrent programming include Goroutines, channels, and
sync.WaitGroup.

Writer Used to signal some side effect. Often used for logging or debug printing.

In addition to learning from Haskell's implementation of Monads, other features we can
learn from include:

Lazy evaluation
Type classes
Syntax based on layout
Pattern matching on data structures
Bounded and Parametric polymorphism

Check out more about Haskell at the following resources:

https:/ /en. wikipedia. org/ wiki/ Haskell_ (programming_
language)

https:/ /www. haskell. org/

http:/ /learnyouahaskell. com/

https:/ /www. huffingtonpost. com/aaroncontorer/ haskell-
the- language- most_ b_4242119. html

Monads, Type Classes, and Generics Chapter 10

[427]

Monadic functions
Monads are implemented as a type class with two methods, return and bind (>>=):

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

Note that m refers to a type constructor, such as Either or Maybe, that implements the
Monad type class.

We'll include a few more monadic functions from the Standard Library in the following
table:

Function Description

fail The fail function supports a monad's implementation of failure. We get the
fail function from the Monad type class, and it enables a failed pattern
matching to result in a failure in the context of the current monad instead of a
program crash. For example, the fail function is called when pattern matching
fails in a do expression.
fail :: Monad m => String -> m a

fmap fmap comes from the Functor type class. fmap applies a function over ordinary
values a -> b, and lifts them to become a function over containers f a -> f
b, where f is the container type:
fmap :: Functor f => (a -> b) -> f a -> f b

mplus
mzero

MonadPlus is a type class which extends a Monad class and provides mzero
and mplus:
class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

mplus combines two results into one.
mzero represents an empty result.

return Return is our lift function. Don't confuse return with what return means in Go.
Think of it like this: Return a pure value a (of type A) into a monad m a (of type
Monad A). The Lexical Workflow Solution calls this function Get.

Monads, Type Classes, and Generics Chapter 10

[428]

(>>=) (>>=) runs an action and then passes its result to a function that also returns an
action. Both actions are run and the final result is the result of the second action.
We can think of (>>=) as our chaining function:
main.hs:

module Main (main) where
 import Lib
 main :: IO ()
 main = do
 putStrLn "Enter your first name:" >>
 getLine >>=
 (\yourName -> putStrLn $ "Hello, " ++ yourName)

Add the following to your Haskell ghci console:
*Main Lib> main
 Enter your first name:
 CocoPuff
 Hello,
CocoPuff

(>>=) is also known as bind. The Lexical Workflow Solution calls this function
Get.
Here's its type definition:
(>>=) :: Monad m => m a -> (a -> m b) -> m b

(>>) (>>) performs two actions in sequence. The result of the first action is discard.
What we keep is the result of the second operation:
*Main Lib> putStr "Hello, " >> putStrLn "CocoPuff"
 Hello, CocoPuff

(>>) is defined in terms of the bind operation that discarded its argument. The
following says that (>>) has a left and right argument that are monadic with
types m a and m b:
(>>) :: Monad m => m a -> m b -> m

Monads, Type Classes, and Generics Chapter 10

[429]

Basic monadic functions
The following table consists of some of the more frequently used Monads (for composition,
looping, and mapping):

Function Description

forM forM acts like an iterator that maps an action over a list and returns the
transformed list. forM serves the same purpose as mapM and exists for
readability. The rule of thumb is that if there are multiple lines of code in the
for loop, then use forM. For example:
results <- forM items $ \item -> do
 -- A big do-block using `item`.
forM :: (Monad m, Traversable t) => t a -> (a -> m b) -> m (t b)

forever forever is a combinator used to repeat an action forever, as follows:
forever :: Applicative f => f a -> f b

mapM The map operation performs mutations when it transforms elements in a list,
right? But how can that be? Pure functions cannot mutate variables. We're able
to execute actions indirectly by using mapM. mapM can change the element's
values in the list because it runs in the IO monad, as follows:
mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)

sequence Used to evaluate each action in the sequence from left to right and collect the
results, as follows:
sequence :: (Monad m, Traversable t) => t (m a) -> m (t a)

void Used to discard the return value of an IO action, as follows:
void :: Functor f => f a -> f ()

(=<<) This is the same as >>= but with the arguments interchanged, as follows:
(=<<) :: Monad m => (a -> m b) -> m a -> m b

(>=>) Used to compose monads via left-to-right Kleisli composition, as follows:
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

(<=<) This is the same as >=> but with the arguments interchanged (using right-to-
left Kleisli composition), as follows:
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

Note that functionName_ functions not listed here are used for side-effects. For example,
when we want to evaluate such a list for effects, we use sequence_ and mapM_, which
discard the results.

Monads, Type Classes, and Generics Chapter 10

[430]

Monadic list functions
The thing to remember with lists is that they model non-determinism. A list of values a
represents a number of different possibilities for the value of a.

Function Description

filterM Used in place of filter inside a monad, as follows:
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]

foldM Used in place of foldl where monadic computations built from a list are
bound left-to-right, as follows:
foldM :: (Monad m, Foldable t) => (b -> a -> m b) -> b -> t a -> m
b

join Used to flatten the nesting of groups, as follows:
> join [[[1]]]
 [[1]]
 > join [[1]]
 [1]
join :: Monad m => m (m a) -> m a

msum A list based concat function that is best described by the following example:
> msum [Nothing, Nothing, Just "A", Just "B"]
 Just "A"

> msum [[],[1,2],[],[3]]
 [1,2,3]
msum :: (MonadPlus m, Foldable t) => t (m a) -> m a

replicateM Used to perform an action n times and gather the results, as follows:
replicateM :: Applicative m => Int -> m a -> m [a]

zipWithM Used to merge two lists together, applying a special rule in the process.
zipWithM is a monadic version of the zipWith function on lists. It is useful
when only the side-effects of the monadic computation matter, as follows:
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]

Monads, Type Classes, and Generics Chapter 10

[431]

Monadic workflow implementation
Let's start by reading our car data in from a file with base64 encoded text strings that
represent cars, found in cars.base64:

4-purely-functional/ch10-monads/01_car_steps/data/cars.base64
eyJjYXIiOnsidmluIjoiREc1NDVIRzQ5NDU5WiIsIm1ha2UiOiJUb3lvdGEiLCJtb2RlbCI6Ikh
pZ2hsYW5kZXIiLCJvcHRpb25zIjp7Im9wdGlvbl8xIjoiSGVhdGVkIFNlYXRzIiwib3B0aW9uXz
IiOiJQb3dlciBTdGVlcmluZyIsIm9wdGlvbl8zIjoiR1BTIn19fQ0K
eyJjYXIiOnsidmluIjoiMzQ4NTQzOTg1QVpERCIsIm1ha2UiOiJMZXh1cyIsIm1vZGVsIjoiSVM
gMjUwIiwib3B0aW9ucyI6eyJvcHRpb25fMSI6IlN0aWNrIFNoaWZ0Iiwib3B0aW9uXzIiOiJNb2
9uIFJvb2YiLCJvcHRpb25fMyI6IkxlYXRoZXIifX19DQo=
eyJjYXIiOnsidmluIjoiTUZORkg2NkZCWlE5OSIsIm1ha2UiOiJIb25kYSIsIm1vZGVsIjoiQWN
jb3JkIiwib3B0aW9ucyI6eyJvcHRpb25fMSI6IkFsbG95IFdoZWVscyIsIm9wdGlvbl8yIjoiUG
93ZXIgU3RlZXJpbmcifX19

Our car processing monad will take that base64 text, timestamp it, and output JSON, as
shown in the following code:

{
 "car": {
 "vin": "MFNFH66FBZQ99",
 "make": "Honda",
 "model": "Accord",
 "options": {
 "option_1": "GPS",
 "option_2": "Alloy Wheels"
 }
 },
 "timestamp": "20171030003135"
}

Let’s start by looking at main.go. We import two project packages, workflow and utils.
We also import bufio and os from the Go Standard Library for processing our base64 text
file.

We put our project packages at the top of our list of imported packages. We import workflow
and utils. In this book, we use the logging and configuration features from the utils package
a lot. In order to be lazy, we'll just remember that we can use the Config object anywhere
we want and refer to a value from our config.toml file. Similarly, to use our info logger,
we can simply type Info.Println.

Monads, Type Classes, and Generics Chapter 10

[432]

In Go, it is considered best practice to write tests first. That's called test
driven development. We discussed that in the first chapter. You should
code your applications that way. However, after Chapter 2, Manipulating
Collections, example code is more frequently found in the main.go file
(with no test files). I did that because I am a lazy programmer and don't
like to type more than is absolutely necessary, and I think it conveys the
lesson quicker/better. I used similar reasoning when I chose to eliminate
the package reference requirement when calling Config and the Info,
Debug, and Error loggers. Should you use a global logger and config
object at your job? Probably not. Why? Because they are dependencies that
should be explicitly passed into each function that uses them. Chapter 7,
Functional Parameters, illustrates how this can can accomplished. For more
information, see http:/ /peter. bourgon. org/go-best-practices- 2016/.

In the following main.go we import packages and run our initializer.

package main

import (
 "workflow"
 . "utils"
 "bufio"
 "os"
)

func init() {
 GetOptions()
 InitLog("trace.log", os.Stdout, os.Stdout, os.Stderr)
 Info.Println("AppEnv:", Config.AppEnv)
}

The init function will be executed before our main function. We call GetOptions to read
the values in our config.toml file into a global Config variable.

Yes. It’s a global variable. And there’re more. For example, Debug, Info, and Error are our
global loggers.

Monads, Type Classes, and Generics Chapter 10

[433]

Are you wondering why I would dare put global variables in an example
application using a pure FP concept like Monads?

This book is about improving the way you approach application
development. Go is a multi paradigm language and allows us to mix pure
FP with our existing code. The 01_car_steps application consists of an
imperative framework with a global logger object, as well as some pure FP
code to handle workflow.

This is a small application, so having one global logger is convenient. If
this were a larger project, it would be better to have one logger for each
instance of your service.
While this book does cover theory as well as some of the history of pure
FP, this book’s main goal is to be practical. I hope you will be able to use
some of the code in this book in your own projects (or at least some of the
concepts) to build better applications yourself.

Debug, Info, and Error are each assigned a log.New object (https:/ /
golang. org/ pkg/ log/ #New) that returns a *Logger . If you want to use it
concurrently from various goroutines, you should pass those logger
objects around as pointers.

We can adjust our application settings in the config.toml file as follows:

Full path to the file containing the base64 car strings
data_filepath = "./data/cars.base64"

Runtime environment
app_env = "development"

Level options: panic, error, info, debug
log_level = "debug"

The character(s) used to preface debug lines
log_debug_chars = ">>"

Whether to include timestamps and log level on all log entries
log_verbose = true

Enable or disable logging of utils/TimeTrack() (For
benchmarking/debugging)
log_timetrack = true

i18n translation file name, see github.com/nicksnyder/go-i18n

Monads, Type Classes, and Generics Chapter 10

[434]

i18n_filename = "en-us.all.json"

The last setting can tell our application which translation file to use. Later in this chapter,
we'll see how we can use go-i18n to use message IDs to reference the appropriate message,
and how to change the translation text based on the appropriate language/locale. We won't
add the internationalization (I18N) of error messages in this first example to keep things
simple, and so that we can focus on understanding how monads work.

The log_ settings can affect what gets logged as our application runs. We’ll see a few
examples of how to use them later in this chapter.

Our main function initializes a carCntr to count how many cars we’ve processed. Next, we
open our data file using the Config.DataFilepath value set in our config file.

An idiom is a manner of speaking that is natural to the native speakers of
a language. In English, idioms often have figurative meanings, utilizing
pictures to help us visualize that meaning. For example, Hit the nail on the
head, A hot potato, It takes two to tango, and so on.

The following if statement that opens a file in idomatic style Go.

The Config.DataFilepath value, ./data/cars.base64, comes from our config.toml
file:

Full path to the file containing the base64 car strings
data_filepath = "./data/cars.base64"

Let’s look closely at that line of code to see what we can learn:

We start with the if statement, like in a typical if...then else statement, but rather than
immediately checking for a Boolean (true/false), after the if, we execute a statement that
opens our data file. That statement assigns err a value. If err == nil, then we know the
file opened successfully. This particular idiom is used about 100 times in the Go standard
library. The coding styles we find in the Go Standard Library should be emulated,
especially ones that appear that many times.

Monads, Type Classes, and Generics Chapter 10

[435]

The goal of this book is not to remove idiomatic Go from your toolbox, but
rather to add simple yet powerful FP tools to it. If your only hammer is
imperative in programming, then every iterative nail looks like a for loop. That's
just not the case. Some iterative tasks are better solved with maps, filters,
reductions, functors, monoids, and/or monads.

In the following main function we initialize our car counter and open our configuration file.

func main() {
 carCntr := 0
 if file, err := os.Open(Config.DataFilepath); err == nil {

After opening a file, it’s best practice to immediately defer the closing of the file. (The Go
standard library uses defer over 100 times.) This way, we won’t forget to close our file,
which is a frequent mistake that causes memory leaks and can be difficult to troubleshoot.
defer is another delightful tool Go gives us to help us write better code.

We execute bufio's NewScanner command to open the file and load its contents into the
scanner variable in order to read the file line by line.

For simplicity, we chose to read cars from a file, but we could read our data from a stream
of input coming from another I/O source such as:

ActiveMQ
NATS
Kafka
Kestrel
NSQ
RabbitMQ
Redis
Ruby-NATS
ZeroMQ

What’s important is that the interface to the source you read from needs to implement the
Reader interface. If we look at the NewScanner implementation in the Go standard library,
we can see it takes an io.Reader:

// NewScanner returns a new Scanner to read from r.
// The split function defaults to ScanLines.
func NewScanner(r io.Reader) *Scanner {
 return &Scanner{
 r: r,

Monads, Type Classes, and Generics Chapter 10

[436]

 split: ScanLines,
 maxTokenSize: MaxScanTokenSize,
 }
}

The io.Reader is an interface with one method, Read. So, in other words, the API that we
get our data from needs to have a Read method:

type Reader interface {
 Read(p []byte) (n int, err error)
}

This is another pattern that we should learn to emulate from the Go Standard Library:
Program to the interface. Here, the interface of interest is an object with a Read method.

We can use the scanner's Scan method in a for loop. We will continue to iterate until there
are no more lines to be read:

 defer file.Close()
Info.Println("----")
 scanner := bufio.NewScanner(file)
 for scanner.Scan() {
 carCntr += 1
 Info.Println("Processing car #", carCntr)
 line := scanner.Text()
 Info.Println("IN :", line)

Now, we’re in the loop and have printed out the first line read (the first car):

Processing car # 1
IN :
eyJjYXIiOnsidmluIjoiREc1NDVIRzQ5NDU5WiIsIm1ha2UiOiJUb3lvdGEiLCJtb2RlbCI6Ikh
pZ2hsYW5kZXIiLCJvcHRpb25zIjp7Im9wdGlvbl8xIjoiSGVhdGVkIFNlYXRzIiwib3B0aW9uXz
IiOiJQb3dlciBTdGVlcmluZyIsIm9wdGlvbl8zIjoiR1BTIn19fQ0K

Next, we call our monad to execute the workflow required to process our input line (our
first car):

err, carJson := workflow.ProcessCar(line)

if err == nil {
Info.Println("OUT:", carJson)
}

Monads, Type Classes, and Generics Chapter 10

[437]

After we process our input, we check for errors and output the result:

OUT:
{"car":{"vin":"DG545HG49459Z","make":"Toyota","model":"Highlander","options
":{"option_1":"Heated Seats","option_2":"Power
Steering","option_3":"GPS"}},"timestamp":"20171030145251"}

The remainder of main prints a few dashes, checks for scanner errors and closes another if
else block.

 Info.Println("----")
 }
 if err = scanner.Err(); err != nil {
 Error.Error(err)
 }
 } else {
 Error.Error(err)
 }
}

The output for the preceding code is as follows:

AppEnv: development

Processing car # 1
IN :
eyJjYXIiOnsidmluIjoiREc1NDVIRzQ5NDU5WiIsIm1ha2UiOiJUb3lvdGEiLCJtb2RlbCI6Ikh
pZ2hsYW5kZXIiLCJvcHRpb25zIjp7Im9wdGlvbl8xIjoiSGVhdGVkIFNlYXRzIiwib3B0aW9uXz
IiOiJQb3dlciBTdGVlcmluZyIsIm9wdGlvbl8zIjoiR1BTIn19fQ0K
OUT:
{"car":{"vin":"DG545HG49459Z","make":"Toyota","model":"Highlander","options
":{"option_1":"Heated Seats","option_2":"Power
Steering","option_3":"GPS"}},"timestamp":"20171030145251"}

Processing car # 2
IN :
eyJjYXIiOnsidmluIjoiMzQ4NTQzOTg1QVpERCIsIm1ha2UiOiJMZXh1cyIsIm1vZGVsIjoiSVM
gMjUwIiwib3B0aW9ucyI6eyJvcHRpb25fMSI6IlN0aWNrIFNoaWZ0Iiwib3B0aW9uXzIiOiJNb2
9uIFJvb2YiLCJvcHRpb25fMyI6IkxlYXRoZXIifX19DQo=
OUT: {"car":{"vin":"348543985AZDD","make":"Lexus","model":"IS
250","options":{"option_1":"Stick Shift","option_2":"Moon
Roof","option_3":"Leather"}},"timestamp":"20171030145251"}

Processing car # 3
IN :
eyJjYXIiOnsidmluIjoiTUZORkg2NkZCWlE5OSIsIm1ha2UiOiJIb25kYSIsIm1vZGVsIjoiQWN
jb3JkIiwib3B0aW9ucyI6eyJvcHRpb25fMSI6IkFsbG95IFdoZWVscyIsIm9wdGlvbl8yIjoiUG
93ZXIgU3RlZXJpbmcifX19

Monads, Type Classes, and Generics Chapter 10

[438]

OUT:
{"car":{"vin":"MFNFH66FBZQ99","make":"Honda","model":"Accord","options":{"o
ption_1":"Alloy Wheels","option_2":"Power
Steering"}},"timestamp":"20171030145251"}

Let's see what happens when we run this line:

err, carJson := workflow.ProcessCar(line)

We import utils so that we can log errors:

//src/workflow/process_car_steps.go

package workflow

import (
 . "utils"
)

Our ProcessCar function clearly expresses our business intent. It accepts a base64 encoded
string and, in idiomatic Go style, returns an error and result (carJson). If all goes well, our
error will be nil and carJson will be populated.

The workflow embodies our business logic. The rest of our code is framework.

Notice that ProcessCar is not cluttered with error checking code, but rather, each step in
the workflow is self-explanatory.

This diagram illustrates each step in our workflow:

Monads, Type Classes, and Generics Chapter 10

[439]

We initialize our step variable by calling the Get function with our input lineBase64. This
starts our workflow:

func ProcessCar(lineBase64 string) (err error, carJson string) {
 step := Get(lineBase64)
 step = Next(step, Base64ToBytes)
 step = Next(step, BytesToData)
 step = Next(step, TimestampData)
 step = Next(step, DataToJson)
 json, err := step(nil)
 if err != nil {
 Error.Error(err)
 } else {
 carJson = json.(string)
 }
 return
}

Let’s look in monad.go for the Get function's implementation:

src/workflow/monad.go

package workflow

type Data interface{}

That’s the empty interface! Look out for pirates!

This pirate is right. In our example, we do use reflection in our toolbox of functions. For
example, in order to get the filename to pass to the ioutil.Readfile function, we must
downcast our filename argument from the empty interace{} data to a string.

Monads, Type Classes, and Generics Chapter 10

[440]

Here is a snippet from src/workflow/toolbox.go:

func Base64ToBytes(d Data) Monad {
 dString := d.(string)
 return func(e error) (Data, error) {
 return base64.StdEncoding.DecodeString(dString)
 }
}

If Go supported generics, we would not need to do this. We'd just need to modify our code
slightly to accept generic data types. So, the above ReadFile function would look
something like this:

func Base64ToBytes(<T>) Monad {
 return func(e error) (Data, error) {
 return base64.StdEncoding.DecodeString(T)
 }
}

That’s about 30% less code, and it will run faster because typecasting is a relatively
expensive operation. In this case, if Go supported generics, the compiler would create a
string shaped hole in the compiled ReadFile function, into which we could pass our string.

In this case, if Go supported generics, we’d have about 30% less code to write and our code
would be type-safe and very fast.

It’s easy to see why so many programmers are making such a big deal about this topic.

If the runtime cost of reflection is too much to bear, then we can leverage meta-
programming tools like clipperhouse/gen to generate the repetitive, boilerplate code
necessary to handle all the data types that reflection would otherwise handle for us. (If we
went down this type-safe route, and we compared the code necessary to support type-safe,
reflection free code to what we'd need to write if Go supported generics, we’d likely find
that we’d have around 80% less code to maintain than if we had generics.)

Before you start thinking about jumping onto the Haskell or Java
bandwagon for generics, consider what is good about Go: simplicity,
performance, concurrency support, and so on. It's easy enough to use tools
to generate type-safe code, and when Go does one day (fingers crossed)
support generics, we should be able to fairly easily remove our generated
boilerplate code and simply use generics.

Monads, Type Classes, and Generics Chapter 10

[441]

Here is our Monad type. It is a function that accepts an error and returns transformed Data
and an error:

type Monad func(error) (Data, error)

What can we guess about the way a Monad works? Maybe if it gets an error, it will fail fast
and pass the error along, or otherwise, it will continue processing and pass the data along
with nil for the error?

Sounds a bit like Continuation Passing Style (CPS) programming, but how does it
work? Remember in Chapter 4, SOLID Design in Go, when we learned that Monads are
purple?

We saw a composition of functions like this:

We learned that in order to be a Monad, we need our functions to accept a and return a like
this:

That would give us associativity:

Monads, Type Classes, and Generics Chapter 10

[442]

We’ll call the Get method that lifts our data into the world of pure FP. It accepts data and
returns a Monad. Note that our Data, d, is curried:

func Get(d Data) Monad {
 return func(e error) (Data, error) {
 return d, e
 }
}

This is where we put our data in the first blue box in our monad chain:

After initializing our step, we call our first data transformation function, Base64ToBytes
(in workflow/process_car_steps.go):

step := Get(lineBase64)

Let’s jump back to monad.go and look at Next function's implementation:

func Next(m Monad, f func(Data) Monad) Monad {
 return func(e error) (Data, error) {
 newData, newError := m(e)
 if newError != nil {
 return nil, newError
 }
 return f(newData)(newError)
 }
}

The Next function accepts a monad and a function that returns a monad and itself returns a
monad.

Monads, Type Classes, and Generics Chapter 10

[443]

That's it. This is how we get purple Monads that take a and return a.

The first line in our Next function looks familiar:

return func(e error) (Data, error) {

That’s because that line is exactly the same as the first line in our Get method. In the line
that follows, we call our monad, passing our error as its parameter, and get transformed
data, newData, as well as the newError value in return:

newData, newError := m(e)

It is here that our stack fills up with workflow.Next monad functions. Our call stack will
look like this:

workflow.Next (Base64ToBytes)
workflow.Next (BytesToData)
workflow.Next (TimestampData)
workflow.Next (DataToJson)
workflow.ProcessCar
main.main

This is where we wire up our steps and jump back to Get to grab our data (in the return
statement):

func Get(d Data) Monad {
 return func(e error) (Data, error) {
 return d, e
 }
}

If we were electricians, we’d turn off the power, wire up the lights in the house, and turn
the power back on to see if our wiring was correct.

Monads, Type Classes, and Generics Chapter 10

[444]

As soon as execution returns from the return d, e statement, we hit the if newError
!= nil error check block:

func Next(m Monad, f func(Data) Monad) Monad {
 return func(e error) (Data, error) {
 newData, newError := m(e)
 if newError != nil {
 return nil, newError
 }
 return f(newData)(newError)
 }
}

If an error occurs, then we return nil for the data and the newError; all subsequent error
checks will pass the same newError along until our execution spits out the error at the end
of the monad chain.

If an error does not occur, the last return is executed: return
f(newData)(newError). What is this? Ever seen a function call like this before?

someFunction(val1)(val2)

This language construct is known as the Y-Combinator. Before diving into the details of the
Y-Combinator implementation in Go, let's think about what it is and its origin, the Lambda
Calculus.

Lambda calculus
The Lambda calculus defines what a function is from a computational perspective. It's
comprised of three things:

Variables (x, y, z, and so on)
A way of creating functions (with the "\" notation)
A way to apply functions (substitution)

Everything else is defined in terms of encoding those three things.

Monads, Type Classes, and Generics Chapter 10

[445]

In Chapter 7, Functional Parameters, we defined a function where f is the function name, x is
the input value, and the result is the whole expression f(x):

If f(x) = x + 2, then we know that every time we input the value three, five will always be the
output value. So, functions are like black boxes where we put values in and get different
values out. There’s neither internal hidden data nor side-effects.

However, in lambda calculus, we use anonymous, unnamed functions. How would we
express f(x) = x + 2 in lambda calculus?

The way we build functions in lambda calculus is with expressions, as shown in the
following diagram:

The period after \x is just a notation that separates our function signature (its arguments, x)
from its body (x+2 in our example).

In the following example, 3 is the input parameter:

(\x. x+2) 3

The result is 5.

In math class, we’re used to writing function applications like this: f(3). In lambda calculus,
we say (f 3).

Monads, Type Classes, and Generics Chapter 10

[446]

The function application associates to the left, so (f a b c) = (((f a) b) c).

When a function is applied, we are simply substituting our parameter for x in our body,
where the computation, such as x+2, is performed. Let’s try another one that takes two
parameters:

(\x.\y. (x+y)/2) 3 5

This returns one parameter function that also returns one parameter function, which then
returns the result:

What we just did was called currying, where functions of multiple arguments are really just
higher order functions that take one argument and return function(s).

The numbers we used earlier (2, 3, 5) and the operators (+, /) are not part of lambda calculus.
We just used them to encode computations.

Lambda calculus does not have data types, but we can represent data types by using
functions. Let's create the Boolean data type:

Boolean functions Description

true := \x.\y.x The true function is a function of two parameters (x and y) and
returns the first parameter (x).

false := \x.\y.y The false function is a function of two parameters (x and y) and
returns the second parameter (y).

Monads, Type Classes, and Generics Chapter 10

[447]

Let's define the logical negation function, not:

Boolean expressions Description

(\b. b false true) true lambda b b applied to false and true returns true

(\b. b true false) false lambda b b applied to true and false returns false

We've seen that the Fibonacci function is recursive:

We defined the fib function in terms of itself. That makes the fib function recursive.

Let's start by defining a for loop using Lambda Calculus.

Maybe we could form an expression a that would call itself, as in, apply the function to
itself. That would that look like?

forLoop := (\x.x x) (\x.x x)

Let's see how that works:

\x.x x takes input x and applies x to itself. Our function takes x as its input and makes
two copies of x. That's called self application.

Recursion is about defining something in terms of itself.

Monads, Type Classes, and Generics Chapter 10

[448]

Let's see what it looks like when we perform recursion twice:

We can see how this process can continue indefinitely. This is how we encode for loop
behavior using Lambda calculus.

Now that we know how to encode a for loop, how can we encode recursion?

Let's define a general recursive function as follows:

recursive f = f(recursive f)

That reads, recursive f equals f applied to recursive f.

When we run this function, it will repeatedly apply f and we'll get: f(f(f(...))). The
following is the Y-Combinator:

Y = \f.(\x.f(x x)) (\x.f(x x))

It's not recursive, but it encodes recursion. This is how we can implement recursion in a
language that does not support recursion.

Ready to see how to implement the Y-Combinator in Go?

But wait, there's more.

Monads, Type Classes, and Generics Chapter 10

[449]

Let's stop to think about where the Y-Combinator could be used in bioengineering. The
recursive genome function could be modeled using the Y-Combinator. What proof is there
that the Lambda Calculus is practical? Look in the mirror:

For more information on the Recursive Genome Function - the Pellionisz
Principle, see http:/ /www. junkdna. com/recursivegenomefunction/ .

Did you know that your genes can be sequenced and anomalies detected
to indicate your predisposition to certain diseases, like Parkinson's
Disease? The sooner you know, the sooner preventative measures can be
taken.
See https:/ / en. wikipedia. org/ wiki/ Disease_gene_identification.

The Lambda Calculus (which provides recursion) and Monads (which control the
composition of operations) are deeply woven into the fabric of life. What happens when we
sleep? Have you ever worked long hours to solve a problem without success, only to wake
the next morning with the solution in mind? Did you know that we are about 25% more
susceptible to illness when we are sleep deprived? What do you think causes DNA
mutations that lead to cancerous cell growth? What is it about restorative time (sleep) that
allows our body to compose properly?

When we follow basic rules, we thrive.

"Early to bed, early to wise makes a man healthy wealthy and wise."

- Benjamin Franklin

Monads, Type Classes, and Generics Chapter 10

[450]

Y-Combinator
The Y-combinator is one of most beautiful ideas in all of programming. This code
demonstrates how amazingly powerful the simple ideas of functional programming are.
The Y-Combinator is a higher order function. It accepts a single argument, which is a
function that isn't recursive. It returns a copy of the function which is recursive. It requires
that our language supports first class functions and that functions be named or anonymous.
Go supports all of that.

The Y in Y-Combinator
Ever wonder the Y in the Y-Combinator comes from?

See how A and B and C connect the dots to form the top part of the "y"?

Monads, Type Classes, and Generics Chapter 10

[451]

How the Y-Combinator works
The diagram below illustrates how the Y-Combinator works:

The following are the steps to wire up the Y-Combinator:

f(newData) calls Base64ToByes with the base64 encoded text. dString is1.
downcast into a string.

The return func(e error) (Data, error) { statement is executed and2.
returns execution back to the return statement in the Next function.

At that time, f(newData), which itself is a function, has its newError parameter3.
populated and can now be executed.

Runtime execution returns to the return func(e error) (Data, error) line4.
in Base64ToBytes and enters its code block, which is the return statement that
decodes the base64 string into a regular string.

Execution again returns to Next, in the last return line. This is where recursion5.
happens. It calls itself, passing the error value.

On line 14 we call our next monad. This is where continuation passing happens.6.

Monads, Type Classes, and Generics Chapter 10

[452]

We wrote a recursive function of one bound variable using only functions of one variable
and no assignments. The Y-combinator performs the magic of associating the anonymous
inner function (func(e error) (Data, error) {) with the parameter name (newError)
of the function (f) that was originally passed to Next.

Now that we know how one of our reusable functions in toolbox.go works, we don’t need
to go through the rest of them. They all work the same way. We can simply move on to the
Next step through each line of our workflow until we come out the other end. If an error is
encountered in any of our reusable functions, we simply kick the can down the road.

This makes it easy and simple to handle errors. Errors only need to be handled at the very
end of the process, in one place. Simple.

The Lexical Workflow solution
Here's our entire ProcessCar workflow:

func ProcessCar(lineBase64 string) (err error, carJson string) {
 step := Get(lineBase64)
 step = Next(step, Base64ToBytes)
 step = Next(step, BytesToData)
 step = Next(step, TimestampData)
 step = Next(step, DataToJson)
 json, err := step(nil)
 if err != nil {
 Error.Error(err)
 } else {
 carJson = json.(string)
 }
 return
}

How's that for clarity? Each step one after the next and error handling at the very end.

This Go idiomatic Monadic workflow solution needs a label, and because I
thought of it first, its name is The Lexical Workflow. It's how we can do
Monadic composition of impure components in Go. Lex means law, and
since it controls and rules over our workflow, the name fits. (The fact that
it has my name in it must be purely coincidental!)

Monads, Type Classes, and Generics Chapter 10

[453]

Is our ProcessCar method idomatic Go code?
Let's start with what's not idiomatic.

The non idiomatic parts
There are no if err != nil error checks until the end of our processing pipeline. That’s by
design.

The benefits of using a monadic pipeline are as follows:

Enables us to clearly express business logic without the clutter
Eliminates if err != nil error checks after every operative line of code
Provides structure for pipeline processing
Orders all of our Next steps in our workflow
Provides a framework for plugging in reusable components

The idiomatic parts
We have a typical if err != nil error check at the end of our pipeline:

if err != nil {
 Error.Error(err)
} else {
 carJson = json.(string)
}

This is where we should perform error checking, so having an error check is natural.

We could choose to implement an Either monad to wrap our response in a struct that
might look like this:

type Either struct {
 Value interface{}
 Error error
}

Monads, Type Classes, and Generics Chapter 10

[454]

We could include a sum or union type which would return only either Success() or
Failure():

type SuccessOrFailure interface {
 Success() bool
 Failure() bool
}

Then we would have to create another interface to convert our Either to a Success or a
Failure. It might look something like this:

type Either interface {
 SuccessOrFailure
 Succeeded() StringOption
 Failed() ErrorOption
}

But we'll no longer pursue these monadic error handling techniques. The Go idiomatic error
check works great for our purposes (to handle errors for this workflow) and it does so
without the added complexities of additional layers of interfaces or other external
dependencies (that we'll discuss at the end of this chapter).

An alternative workflow option
Suppose we have a text file that looks like this:

4-purely-functional/ch10-monads/02_error_checker/alphabet.txt
ABCDEFGHIJKLMNOP

This code will read three sets of two characters:

func main() {
 file, err := os.Open("alphabet.txt")
 if err != nil {
 log.Fatal(err)
 }

 byteSlice := make([]byte, 2)
 numBytesRead, err := io.ReadFull(file, byteSlice)
 if err != nil {
 log.Fatal(err)
 }
 logInfo(numBytesRead, byteSlice)

 byteSlice = make([]byte, 2)

Monads, Type Classes, and Generics Chapter 10

[455]

 numBytesRead, err = io.ReadFull(file, byteSlice)
 if err != nil {
 log.Fatal(err)
 }
 logInfo(numBytesRead, byteSlice)

 byteSlice = make([]byte, 2)
 numBytesRead, err = io.ReadFull(file, byteSlice)
 if err != nil {
 log.Fatal(err)
 }
 logInfo(numBytesRead, byteSlice)

We can improve our code by defining a struct with an error field and an io.Reader field:

type twoByteReader struct {
 err error
 reader io.Reader
}

You might remember from Chapter 3, Using High-Order Functions, that the io.Reader
interface only requires one method, read. So, we implement that and add the logInfo call:

func (tbr *twoByteReader) read() (numBytesRead int, byteSlice []byte) {
 if tbr.err != nil {
 return
 }
 byteSlice = make([]byte, 2)
 numBytesRead, tbr.err = io.ReadFull(tbr.reader, byteSlice)
 logInfo(numBytesRead, byteSlice)
 return
}

Now, our code to print three sets of two bytes looks like this:

 tbr := &twoByteReader{reader: file}
 byteSlice = make([]byte, 2)
 tbr.read()
 tbr.read()
 tbr.read()
}

Monads, Type Classes, and Generics Chapter 10

[456]

Much better! But that is more like a utility function than a workflow solution. It simplifies
our code and reduces the number of if err != nil blocks.

However, for every step in our workflow, if possible, we’d need to create a separate utility
function, and each would have its own if err != nil blocks.

 Compare that to our monad workflow pipeline that only requires one if err != nil
block.

Business use case scenarios
The monad workflow provides a solution for business use case scenarios. If we work with a
team that implements application features or manages tasks using use case scenarios, the
steps in the monad workflow pipeline would likely correspond directly to our task’s
requirements. Using this workflow could simplify testing, as well as development.

Here’s an example that requires five steps:

Each requirement maps directly to a workflow step (as well as a test).

Monads, Type Classes, and Generics Chapter 10

[457]

If we make it through the last step with no errors, then we downcast our data into a string.
It will contain JSON and look something like this:

{
 "car": {
 "vin": "348543985AZDD",
 "make": "Lexus",
 "model": "IS 250",
 "options": {
 "option_1": "Stick Shift",
 "option_2": "Moon Roof",
 "option_3": "Leather"
 }
 },
 "timestamp": "20171030205535"
}

Y-Combinator re-examined
Let’s look at another Y-Combinator example in Go to improve our grasp of the topic.
Remember the Fibonacci function in Chapter 1, Pure Functional Programming in Go? It
looked like this:

func fib(x int) int {
 if x == 0 {
 return 0
 } else if x <= 2 {
 return 1
 } else {
 return fib(x-2) + fib(x-1)
 }
}

If it passes a 0, 1, or 2, it simply returns a value (0 or 1). Otherwise, it will call itself
(recursion) with two functions that look like this--fib(x-2) + fib(x-1). Since values are
continually being decremented by two or one, processing will eventually complete, at
which time the accumulated values will be summed up.

Monads, Type Classes, and Generics Chapter 10

[458]

The following diagram illustrates this recursive processing. The orange and red boxes
highlight functions that only need to be executed once. Referential integrity allows us to
store the value of those functions. Subsequent execution only needs to look up the stored
value, rather than re-execute the function:

We define three function types in main.go, as follows:

Func: A simple function that takes an int and returns an int
FuncFunc: A function that takes a function of type Func and returns a function of
type Func
RecursiveFunc: A function that takes a RecursiveFunc function and returns a
function of type Func

//4-purely-functional/ch10-monads/03_y_combinator/main.go

package main

import "fmt"

type Func func(int) int
type FuncFunc func(Func) Func
type RecursiveFunc func (RecursiveFunc) Func

Let's look at what happens when we initialize the yCombo variable:

yCombo := yCombinator(fibFuncFunc)

The yCombinator function is called and we initialize our g variable with a recursive
lambda expression.

Monads, Type Classes, and Generics Chapter 10

[459]

Let's take a closer look at the wiring that occurs when we initialize the yCombo variable:

Monads, Type Classes, and Generics Chapter 10

[460]

Compare that to the minimal wiring required for the basic recursive variable initialization:

Monads, Type Classes, and Generics Chapter 10

[461]

The execution path looks to be nearly the opposite when we evaluate our Lambda
expressions on line 13 and line 14. The slightly wider red lines are the two steps the yCombo
function requires to evaluate the expression. The thinner black lines are the eight (plus one)
steps that it takes to evaluate the regular recursive function:

These patterns of execution indicate major differences. The yCombinator (lambda
expression) does hold on to state and only references the argument (x). In contrast, the
regular recursive function holds on to the state of x after arriving at the Recurse function
(step 2). When Recurse gets to step 6 (line 43), the value for x is supplied from line 42 (left
there from step 2).

Monads, Type Classes, and Generics Chapter 10

[462]

Since the yCombinator (lambda expression) has been prewired, when it's time to evaluate
the lambda expression (line 13), only two steps are required. Compare that to the twelve
steps required to evaluate the regular recursive function (Recurse).

Since recursion is necessary in our lambda expression implementation, now would be a
good time to re-emphasize the need for the Go compiler to support Tail Call Optimization
(TCO). Chapter 3, Using High-Order Functions, mentioned that TCO avoids creating a new
stack by making the last call in a recursion the function itself.

What is tail recursion?
Recursion is where a function calls itself. Tail recursion is where a recursive call is the last
line of our function. For example, the last line of our fib function calls itself twice:

func fib(x int) int {
 if x == 0 {
 return 0
 } else if x <= 2 {
 return 1
 } else {
 return fib(x-2) + fib(x-1)
 }
}

In this case, there is no reason to preserve the state. There are no other lines of code left to
execute in the function and we don’t care about any values of any variables that may have
been assigned prior to reaching our return statement.

If our return statement occurred in the middle of our function, the Go runtime would need
to remember our function’s address in order to return to it, and it would need to store
function-local variable values for when our recursive call completes and returns to resume
execution.

The problem we currently have is that Go treats all recursive calls the same. Even though
tail recursion has no need for a return address or to access any other function-local variable
values, Go does it anyway.

If Go were tail call optimized, then it would not allocate additional space on the stack but
would instead execute a GOTO statement from the tail call directly to itself. That would
improve performance and save stack space.

Why not optimize tail calls? One reason is that inserting GOTO statements could make
debugging stack frame information more difficult.

Monads, Type Classes, and Generics Chapter 10

[463]

When was the last time you debugged a stack frame? I’m sure system programmers debug
stack frames all day, but most of us don’t. It’s probably safe to assume that we all care about
performance. Perhaps a trade-off would be to allow functional programmers to add an
annotation above a tail call to indicate to the compiler to perform TCO for us?

Without TCO, we need to be aware of recursion depth, because in Go each level of
recursion means another layer of information that Go runtime needs to store on the stack.

If we are traversing a binary tree, our recursive algorithm will likely be O(log n), which
means that we will likely not run into runtime performance issues.

However, if our recursion depth is O(n), this could lead to some troubles with stack.
Anything over that should be avoided.

Big-Oh notation
Big-Oh notation is frequently used to indicate the relative complexity of algorithms.

It’s used to indicate the order of an algorithm. For example, if we have three algorithms, one
O(n), one O(n log n), and one O(n2), the times for various n are:

n O(n) O(n log n) O(n2)

10 10 33 100

100 100 664 10000

500 500 4483 250000

1000 1000 9966 1000000

5000 5000 61438 25000000

Let’s assume our unit of measurement is one second per operation. The first line in the table
tells us that executing 10 operations takes from 10 seconds for an O(n) algorithm to about
1.5 minutes for a O(n2) algorithm. The last line tells us that executing 5,000 operations
would take from 1.4 hours for the O(n) to around three quarters of a year for the O(n2)
algorithm. Order of magnitude matters.

What does this have to do with tail recursion? Recursive function calls make our stack grow
linearly O(n). So, the lack of TCO probably won't make our applications crash, but it will
definitely slow them down. Performing computations with an order of magnitude greater
than O(n) would be difficult at best.

Monads, Type Classes, and Generics Chapter 10

[464]

In other words, when we use recursive function calls, we can quickly run out of stack space.
TCO can reorganize/optimize our code so that our program uses constant stack space,
which will prevent our stack from growing too large and will reduce stack errors.

The benefits of TCO are:

Improved execution speed, since no stack pushes and pops are required
Function recursion depth is no longer a constraint
Stack overflow runtime errors will not be an issue

The languages that support TCO are:

Common Lisp
JavaScript (ECMAScript 6.0)
Lua
Python
Scheme
Racket
Tcl
Kotlin
Elixir
Perl
Scala

Where's Haskell? Haskell performs more optimized optimizations than just the tail call
elimination. Haskell uses guarded recursion. It's a lazy runtime system that does not
evaluate a thunk unless it has to.

There are a few reasons to not include it. With TCO enabled, calls would no longer be
clearly delineated, making debugging stack frames more difficult. How would TCO affect
defer statements?

What if Go supported an annotation (such as //@tco) that would allow us to turn on TCO
for a particular function call?

Monads, Type Classes, and Generics Chapter 10

[465]

See the How to Propose Changes To Go section of the appendix for more
information about Go and TCO.

InternationalizatioN (I18N) package
Remember earlier in the chapter when we looked at the monad workflow and saw how we
could push all errors that occurred in any step into the error pipe and wait until the very
end to process them?

One thing we might need to do when we process errors is to localize the error messages for
the language of the individuals tasked with reading them.

This sample application explores how we might do that using the go-i18n library.

The Go package go-i18n (https:/ /github. com/nicksnyder/ go-i18n) a
command (https:/ / github. com/ nicksnyder/ go-i18n#goi18n- command)
that helps you translate Go programs into multiple languages. It supports
pluralized strings (http:/ / cldr.unicode. org/index/ cldr- spec/ plural-
rules) for all 200+ languages in the Unicode Common Locale Data
Repository (CLDR) http:/ /www. unicode. org/cldr/charts/ 28/
supplemental/ language_ plural_ rules. html.

In main.go, we import the github.com/nicksnyder/go-i18n/i18n library as well at
the text/template library from Go’s Standard Library:

package main

import (
"os"
 "text/template"
 "github.com/nicksnyder/go-i18n/i18n"
 "fmt"
)

Monads, Type Classes, and Generics Chapter 10

[466]

Here, we initialize the funcMap function with the "T" key, and give it the value
i18n.TranslateFunc:

var funcMap = map[string]interface{}{
"T": i18n.IdentityTfunc,
}

Next, we define our templates:

var tmplIllegalBase64Data =
template.Must(template.New("").Funcs(funcMap).Parse(`
{{T "illegal_base64_data" .}}
`))
var tmplUnexpectedEndOfJson=
template.Must(template.New("").Funcs(funcMap).Parse(`
{{T "unexpected_end_of_json_input"}}
`))
var tmplJsonUnsupportedValue =
template.Must(template.New("").Funcs(funcMap).Parse(`
{{T "json_unsupported_value" .}}
`))

We define their corresponding functions:

func illegalBase64(T i18n.TranslateFunc, bytePos string) {
 tmplIllegalBase64Data.Execute(os.Stdout, map[string]interface{}{
 "BytePos": bytePos,
 })
}
func unexpectedEndOfJson(T i18n.TranslateFunc) {
 tmplUnexpectedEndOfJson.Execute(os.Stdout, map[string]interface{}{
 })
}
func jsonUnsupportedValue(T i18n.TranslateFunc, bytePos string) {
 tmplJsonUnsupportedValue.Execute(os.Stdout, map[string]interface{}{
 "Val": bytePos,
 })
}

Notice that if our error message accepts parameters, then we define them in the body of the
Execute function. For example, illegalBase64 defines BytePos. Here’s how it might be
output:

illegal base64 data at input byte 136

Monads, Type Classes, and Generics Chapter 10

[467]

In our main function, we load our translation files. In this sample application, we’ll show
the support for English and German:

func main() {
 i18n.MustLoadTranslationFile("en-us.all.json")
 i18n.MustLoadTranslationFile("de-de.all.json")

Next, we range over a list of our two languages, en-US, and de-DE, printing out three
messages for each language:

for _, locale := range []string{"en-US", "de-DE"} {
 fmt.Println("\nERROR MESSAGES FOR", locale)
 T, _ := i18n.Tfunc(locale)
 tmplIllegalBase64Data.Funcs(map[string]interface{}{
 "T": T,
 })
 tmplUnexpectedEndOfJson.Funcs(map[string]interface{}{
 "T": T,
 })
 tmplJsonUnsupportedValue.Funcs(map[string]interface{}{
 "T": T,
 })

 illegalBase64(T, "136")
 unexpectedEndOfJson(T)
 jsonUnsupportedValue(T, "+Inf")
 }
}

This is where we tell i18n which translation to use:

T, _ := i18n.Tfunc(locale)

Three lines follow, in which we assign our en-US translation function to the "T" key of our
tmplIllegalBase64Data variable:

tmplIllegalBase64Data.Funcs(map[string]interface{}{
 "T": T,
})

When it is evaluated, the Funcs method in text/template/template.go is executed and
is passed to our funcMap variable.

Monads, Type Classes, and Generics Chapter 10

[468]

This is what Funcs looks like (mine is in
/usr/local/Cellar/go/1.9/libexec/src/text/template/template.go):

func (t *Template) Funcs(funcMap FuncMap) *Template {
 t.init()
 t.muFuncs.Lock()
 defer t.muFuncs.Unlock()
 addValueFuncs(t.execFuncs, funcMap)
 addFuncs(t.parseFuncs, funcMap)
 return t
}

Notice that since Func is a method of *Template and returns a *Template, Func can be
chained.

At the end of the range loop, we call our error message printing functions:

illegalBase64(T, "136")
unexpectedEndOfJson(T)
jsonUnsupportedValue(T, "+Inf")

The output is as follows:

ERROR MESSAGES FOR en-US
illegal base64 data at input byte 136
unexpected end of JSON input
json: unsupported value: +Inf

ERROR MESSAGES FOR de-DE
ungültige base64-Daten am Eingangsbyte 136
unerwartetes Ende der JSON-Eingabe
json: nicht unterstützter Wert: +Inf

The English translation file 4-purely-functional/ch10-monads/04_i18n/en-
us.all.json has the following content:

{
 "illegal_base64_data": {
 "other": "illegal base64 data at input byte {{.BytePos}}"
 },
 "json_unsupported_value": {
 "other": "json: unsupported value: {{.Val}}"
 },
 "unexpected_end_of_json_input": {
 "other": "unexpected end of JSON input"
 }
}

Monads, Type Classes, and Generics Chapter 10

[469]

The German translation file 4-purely-functional/ch10-monads/04_i18n/de-
de.all.json has the following content:

{
 "illegal_base64_data": {
 "other": "ungültige base64-Daten am Eingangsbyte {{.BytePos}}"
 },
 "json_unsupported_value": {
 "other": "json: nicht unterstützter Wert: {{.Val}}"
 },
 "unexpected_end_of_json_input": {
 "other": "unerwartetes Ende der JSON-Eingabe"
 }
}

I used Google Translate. Just type sentences in your native language in the
left pane (English) and select the language you want it translated to
(German) in the right pane's drop-down.

We can use Google Translate to translate sentences into other languages:

Assuming you are using the init script that is included in every Go project for this book,
you should have the get-go-binary Bash function loaded in your shell and ready to use.

Monads, Type Classes, and Generics Chapter 10

[470]

Here's the workflow to initialize our project and install i18n:

Monads, Type Classes, and Generics Chapter 10

[471]

The i18n site describes a workflow we can use if we are sending our files out to a translation
service.

Type classes
Type classes allow us to define behavior on types.

As discussed in Chapter 3, Using High-Order Functions, type classes add an additional layer
to our type system.

We accomplish this by:

Defining behavior using Go interfaces (parent type class)1.
Declaring a new type (base type class) to wrap base types2.
Implementing behavior on our new type classes3.

Let’s look at our Equals type class implementation.

Parent class definition:

//4-purely-functional/ch11-monads/05_typeclasss/src/typeclass/equals.go
package typeclass

import (
 "strconv"
)
type Equals interface {
 Equals(Equals) bool
}

Equals is our parent type class. All base classes must implement the Equals method.

Base class definitions
We'll define two base types, Int and String.

Monads, Type Classes, and Generics Chapter 10

[472]

Int base class
The Equals method of Int will check whether other types are equal, using whatever logic
we deem appropriate:

type Int int

func (i Int) Equals(e Equals) bool {
 intVal := int(i)
 switch x := e.(type) {
 case Int:
 return intVal == int(x)
 case String:
 convertedInt, err := strconv.Atoi(string(x))
 if err != nil {
 return false
 }
 return intVal == convertedInt
 default:
 return false
 }
}

String base class
It's just like the Int class, but for strings:

type String string

func (s String) Equals(e Equals) bool {
 stringVal := string(s)
 switch x := e.(type) {
 case String:
 return stringVal == string(x)
 case Int:
 return stringVal == strconv.Itoa(int(x))
 default:
 return false
 }
}

Monads, Type Classes, and Generics Chapter 10

[473]

Our main.go file
We start by importing our typeclass code (located in the src directory, where we store all
project-local packages):

package main

import (
 "typeclass"
 "fmt"
)

func main() {
 int42 := typeclass.Int(42)
 str42 := typeclass.String("42")
 fmt.Println("str42.Equals(int42):", str42.Equals(int42))

The output is as follows:

str42.Equals(int42): true

Sum parent type class
Let’s create another type class to sum values:

4-purely-functional/ch10-monads/05_typeclasss/src/typeclass/sum.go
package typeclass

type Sum interface {
 Sum(Sum) int64
}

Sum is our parent type class. All base type classes must implement the Sum method.

Sum base classes
Here are our base classes:

type Int32 int32
type Int64 int64
type Float32 float32
type IntSlice []int

We can see from our type definitions that we will be able to sum any two of these base
types.

Monads, Type Classes, and Generics Chapter 10

[474]

Here’s the Int32 implementation of Sum:

func (i Int32) Sum(s Sum) int64 {
 it := int64(i)
 switch x := s.(type) {
 case Int64:
 return it + int64(x)
 case Int32:
 return it + int64(x)
 case Float32:
 return it + int64(x)
 case IntSlice:
 sum := int64(0)
 for _, num := range x {
 sum += int64(num)
 }
 return it + sum
 default:
 return 0
 }
}

Notice that we return zero if the value we are trying to add our Int32 to is not in the
accepted list of types.

Another option would be to implement a result type, like Haskell’s Either
type. This is a recent Golang specification addition which was rejected. For
details, see https:/ /github. com/ golang/go/issues/19991.

The Sum implementations for Int64 and Float64 are similar:

func (i Int64) Sum(s Sum) int64 {
 it := int64(i)
 switch x := s.(type) {
 case Int64:
 return it + int64(x)
 case Int32:
 return it + int64(x)
 case Float32:
 return it + int64(x)
 case IntSlice:
 sum := int64(0)
 for _, num := range x {
 sum += int64(num)
 }
 return it + sum

Monads, Type Classes, and Generics Chapter 10

[475]

 default:
 return 0
 }
}

func (i Float32) Sum(s Sum) int64 {
 it := int64(i)
 switch x := s.(type) {
 case Int64:
 return it + int64(x)
 case Int32:
 return it + int64(x)
 case Float32:
 return it + int64(x)
 case IntSlice:
 sum := int64(0)
 for _, num := range x {
 sum += int64(num)
 }
 return it + sum
 default:
 return 0
 }
}

In our implementation for int slices, we implement a range iteration for each type we wish
to add to our slice of ints:

func (i IntSlice) Sum(s Sum) int64 {
 it := i
 switch x := s.(type) {
 case Int64:
 sum := int64(0)
 for _, num := range it {
 sum += int64(num)
 }
 return int64(x) + sum
 case Int32:
 sum := int64(0)
 for _, num := range it {
 sum += int64(num)
 }
 return int64(x) + sum
 case Float32:
 sum := int64(0)
 for _, num := range it {
 sum += int64(num)
 }

Monads, Type Classes, and Generics Chapter 10

[476]

 return int64(x) + sum
 case IntSlice:
 sum := int64(0)
 for _, num := range it {
 sum += int64(num)
 }
 for _, num := range x {
 sum += int64(num)
 }
 return sum
 default:
 return 0
 }
}

Here, we exercise our Sum type classes:

 int64One := typeclass.Int64(1)
 int64Two := typeclass.Int64(2)
 fmt.Println("int64Two.Sum(int64One):", int64Two.Sum(int64One))

 int32One := typeclass.Int32(1)
 fmt.Println("int32One.Sum(int64One):", int32One.Sum(int64One))

 float32Five := typeclass.Float32(5)
 fmt.Println("int32One.Sum(int64One):", float32Five.Sum(int64One))

 int64Slice123 := typeclass.IntSlice([]int{1, 2, 3})
 int64Slice234 := typeclass.IntSlice([]int{2, 3, 4})
 fmt.Println("int64Slice123.Sum(int64Slice234):",
int64Slice123.Sum(int64Slice234))
}

The output is as follows:

int64Two.Sum(int64One): 3
int32One.Sum(int64One): 2
int32One.Sum(int64One): 6
int64Slice123.Sum(int64Slice234): 15

Generics revisited
In the last chapter, we discussed some of the benefits of generics:

Type safety
Eliminates the need to write repetitive, boilerplate code

Monads, Type Classes, and Generics Chapter 10

[477]

Reuses and shares code for different types
Enforces consistent APIs across different types
Time spent optimizing generic code has more impact
Don’t need to re-implement algorithms that are hard to get right
Able to specify domain constraints

Given the following type definitions:

type Car struct {
 Make, Model string
 Price Dollars
}
type Truck struct {
 Make, Model string
 BedSize int
 Price Dollars
}
price := func (c T) Dollars {
 return c.Price
}

Instead of writing both of these:

type CarSlice []Car
func (rcv CarSlice) SumDollars(fn func(Car) Dollars) (result Dollars) {
 for _, v := range rcv {
 result += fn(v)
 }
 return
}

type TruckSlice []Truck
func (rcv TruckSlice) SumDollars(fn func(Truck) Dollars) (result Dollars) {
 for _, v := range rcv {
 result += fn(v)
 }
 return
}

We can print the price sums as follows:

fmt.Println("Car Prices:", cars.SumDollars(price))
fmt.Println("Truck Prices:", trucks.SumDollars(price))

Monads, Type Classes, and Generics Chapter 10

[478]

If Go supported generics, we could write it once. It would look something like this:

func (rcv []T) SumDollars(fn func(T) Dollars) (result Dollars) {
 for _, v := range rcv {
 result += fn(v)
 }
 return
}

We can print the price sums as follows:

fmt.Println("Car Prices:", cars.SumDollars(<Car>))
fmt.Println("Truck Prices:", trucks.SumDollars(<Truck>))

Covariance and contravariance (https:/ /www. ibm.com/developerworks/
library/ j- jtp01255/ index. html) refers to the ability to use a less specific
or more more specific type than originally specified. Covariant and
contravariant generic type parameters provide greater flexibility when
assigning and using generic types.

Considering that example code, what's not to love about generics?

Go's fast compilation speed is partly due to incremental compilation.
Incremental compilation is not possible with generics because the concrete
type only knows where the generic function is used at runtime, not where
it is defined.

Not counting the fact that the implementation of generics into the Go compiler would be
incredibly complex, in terms of both semantics and implementation, here are some of the
disadvantages of adding generics to Go from a developer's perspective:

Generic algorithms tend to accumulate features (affecting code quality).
It's difficult to optimize generic algorithms.
It's difficult to debug generic code.
Error handling complexities.
Usage complexities: covariance, contravariance, erasure.
Slows down compile time (or runtime).
Generic/existing non-generic code incompatibilities.

The fourth and the seventh disadvantage and 7 are the most concerning.

Monads, Type Classes, and Generics Chapter 10

[479]

First, let’s better understand what is meant by error handling complexities. What about
Maybe, Either, and Option solving the nil pointer errors?

In order for pure FP monadic error handling to work, all the packages referenced in our
applications would need to return a monadic error type, like Either. (Either it succeeded or
not, but nil would never be returned.)

Granted, that would eliminate the need for the the following ubiquitous error check:

if err != nil {
 return nil, err
}

However, we would now need to change the way we handle errors, using new language
extensions like Maybe monads, Either, Option, Nothing, Just, and so on. (For some code
examples, see 2-design-patterns/ch04-solid/02_maybe.) That’s another layer of
complexity.

Furthermore, how would we integrate this new error handling paradigm into existing
applications? If we were creating a new application, but wanted to use any standard library
packages or any package that had not been converted to use generics-compatible error
handling, would we write an adapt layer? That's another layer of complexity.

The impact of going generic would be signification. What percentage of the Go Standard
Library would need to change?

Do we replace the ubiquitous slice with a collection type? How much existing code would
be affected by that?

How would support for generics affect concurrency?

How would performance be impacted if go were to lose type erasure and implement
reification in order to add explicit type annotations to generic arguments?

Impact of Golang
A minimal set of language constructs that would need modification includes:

Type assertions
Type switches
Range statements
Function calls

Monads, Type Classes, and Generics Chapter 10

[480]

They are all deeply impactful, and the last one is deep and broad.

The entire type system will likely need an overhaul.

Personal opinion
Before writing this book, I was of the opinion that the benefits of generics far outweighed its
disadvantages. Writing this book forced me to really think about it.

I thought about the pros and cons as well as alternatives, such as using metaprogramming
and code generation tools (see the clipperhouse/gen tool in the last chapter).

I thought about how monadic error handling works and its similarities to Go’s return
successValue, err error handling idiom (as well as its similarities to the Unix
stdout / stderr). I found a way to get the most significant feature from pure FP (Monads)
to work in Go while maintaining Go’s error handling idiom.

The benefits of using The Lexical (Monadic) Workflow Solution in Go are:

Type-safe
No empty interfaces/unboxing/downcasting/reflection required
Expressive, easy-to-understand workflow code
Get(data) then Next(step), Next(step) until done
Mostly idiomatic error handling in one place (at the end)
Directly mirrors business requirements
Allows us to compose new workflows easily using reusable components (see
toolbox.go)
Designed to be optimized for horizontal scaling
Does not impose any requirements on external packages
Does not require additional Monadic error handling logic

Since this solution uses a lambda expression, there is recursion, and since Go currently does
not provide TCO, there is a performance hit, but the recursion is limited to controlling the
workflow.

The burden is that I must manually create repetitive code or generate the generic code
(using a tool like clipperhouse/gen) to avoid the performance penalty of using the empty
interface{} and reflection.

Monads, Type Classes, and Generics Chapter 10

[481]

I concluded that generics are a trade-off between compilation time, runtime, and my
time. Given the risk and the list of disadvantages of adding generics to Go, I’m okay with
doing a little more work.

"Simplicity and elegance are unpopular because they require hard work and discipline to
achieve and education to be appreciated."

- Edsger Dijkstra

Summary
Function programming in Go is a paradigm shift, a fundamentally different approach to the
way we write software. Just like we can get the results we want with an imperative Turing
Machine or with Lambda Calculus, we can choose to code imperatively with idiomatic Go
or declaratively using the FP style of programming.

We began our journey with a light introduction to FP. We learned how to write
intermediate functions like Map, Filter, and Sort, as well as terminal functions like
Reduce and Join, to transform collections. We saw how to use tools like Gleam
and Itertool and implemented lazy evaluation using Go routines and a Go channel.

We thought about the characteristics of FP and worked through examples of function
composition, closures, and high order functions.

We studied both the imperative-functional and pure-functional styles of software design
(and later mixed both styles). We learned how the Reader/Writer interface in Go
implements the single responsibility principle. Just one whiff of OOP gave us an
appreciation for the simplicity (and honesty) of pure FP. (FP contracts don't lie.) The secret
to function composition was revealed to us: Monads chain continuations.

We learned how Map and Reduce work. As the constant flow of diagrams began to heighten
our awareness of the value of FP, we were tossed back to the world of imperative
programming using functions.

Duck typing, embedding, the decorator, strategy, and pipeline patterns, inversion of
control, dependency injection, the use of channels to control the flow of events in a
concurrent program... we even learned how to avoid circular dependencies using a layered
application architecture. We learned the difference between currying and partial application
and how to implement functional parameters to improve our APIs.

Monads, Type Classes, and Generics Chapter 10

[482]

Category theory was presented in a way never seen before: using over 100 images, 17 tables
of information, and code samples, along with simple and concise wording. We led you
through the history of functional programming and learned the deep connection between
category theory, logic, and type theory. We learned that the math we learned in grade
school, middle school, and high school is applicable to functional programming. (Maybe
that even inspired someone to send their old math teacher a note of appreciation?)

With a solid understanding of category theory, we embarked on a pure FP journey where
we learned how to map between worlds using functors. We built a few monoids and
learned how to write a reduce function. We also learned how to use a generics code
generation tool to solve the boilerplate problem.

Armed with the knowledge of pure and imperative functional programming, we dove into
the world of Monads. We learned about Lambda Calculus and how the Y-Combinator
works, and how to use it to control workflow.

We implemented the Lexical Workflow Solution that leveraged the Y-Combinator to control
a sequence of impure operations. We witnessed our data as it was transformed from one
step to the next. We saw how the Success and Failure pipes work and how we could
handle all errors at the end of the pipeline using the idiomatic Go techniques. We gained a
much better understanding of the pros and cons of adding generics to Go.

Where to go from here
Here are some ideas:

Look for places to use the Lexical Workflow Solution to control data
transformation workflows
Build a reusable set of components, to put in your toolbox, that you can use in
our workflows
Build your own type classes, monads and pure FP components in Go
Support the request to add TCO to Go (see the Appendix, Miscellaneous Information
and How-To's)

I hope the information you found in this book is useful for what you're building both today
and tomorrow and that it inspires you to continue to improve upon these ideas so that we
can all build even better applications going forward.

"Talk is cheap. Show me the code."

- Linus Torvalds

11
Category Theory That Applies

In kindergarten, we learned how to read time. In advanced math, we learned how to
abstract a 12-hour clock and called it a monad.

In elementary school, we learned geometry, logical reasoning, and functions.

Category Theory That Applies Chapter 11

[484]

In high school, we learned algebra, linear, and quadratic equations. We were so busy going
through the motions deep in the minutiae of our problems that we could see no use for any
of it.

Check out the learning material used in K-12 education here: https:/ /
www. ixl. com/ math/ kindergarten/ match-analog- clocks- and-times.

Fast forward to our day job. To appear smart, we often ask, Will it scale? No matter what it
is.

Wondering how reading time and horizontal scaling are related? They are, deeply. We'll
find out how in this chapter.

Our goal in this chapter is to do the following:

Gain a working understanding of the category theory
Appreciate the deep connection between category theory, logic, and type theory
Understand what binding, currying and application means in the context of a
lambda expression
Understand the different categories of homomorphisms and how to use them
Learn to use composition techniques from category theory
Understand what interface-driven development is about
See the value of knowledge driven systems
Apply our understanding of category theory to build better apps

Our goal
By the end of this chapter, we will see value in those math classes we took back in school.
We'll understand how the things we learned in our high school math classes can be applied
when horizontally scaling our software solutions.

Category Theory That Applies Chapter 11

[485]

The following diagram implies that Category Theory, functional programming, and logic
are equivalent:

Huh?

I thought Category Theory was about a sets of objects and the arrows that connect them and
that Proof Theory was about using logic to prove something. And we all know that function
programming is about software. How can all three things be related?

This seems about as useful as all those math classes we had to take in school, right?

Your pessimism is understandable. Please proceed with an open mind and remain seated.
Mathematics, logic, and computation. They are just three different ways to approach
solving the same problems.

How can Category Theory, Proof Theory, and functional programming be the same thing?
(and why care?)

"Scientists derive satisfaction from figuring out the puzzle. It's about the quest, not the
grail."

-Isaac Asimov

Category Theory That Applies Chapter 11

[486]

Break it down
Let's break each part down to get a firm grasp of the breadth of our problem:

If the WHY is the motivation for building your application, then the HOW describes how
our application is better, and the WHAT is our end product/application.

The HOW relates to how we, as humans, reason. This is the realm of the Category Theory.

The WHAT pertains to the specifics of what it is. This is the realm of mathematics and
computation. We will use algebra to help define the WHAT. Later, we'll see that our work
in algebra is directly transferable to functional programming.

Algebra and the unknown
Algebra is a branch of mathematics that is very similar to arithmetic. It uses the four main
operations that math uses: addition, subtraction, multiplication, and division (+, -, /, *).
Algebra also introduces a new element: the unknown. In math, the unknown is on the right-
hand side of the equation. Remember math problems like 2 + 3. The answer is unknown
until we perform the math operation on the operands (2 and 3). In algebra, we use symbols
in place of the unknown placeholder. An algebraic equation would be 2 + 3 = x. That is an
algebraic equation that states both sides of the equals sign are equivalent. The operands 2
and 3 operands are known and the x is the unknown.

Category Theory That Applies Chapter 11

[487]

The goal in algebra is to solve the equation by determining the value(s) of the unknown
symbol(s):

Remember what our math teachers would do next?

They would swap the symbol and a number to make the problem more difficult for us to
figure out! Then, they would give us more and more complicated equations like this:

They forced us to perform multiple steps to simplify our problem. Since both sides must
remain equal, we can visualize the problem using a weight balance:

How did we solve the more complicated problem? Answer: By chopping it up into smaller
pieces that are easier to work with, as shown in the following figure:

Category Theory That Applies Chapter 11

[488]

Algebra, not unlike in the real world, relies on rules for things to work properly. Here are
the few rules:

Rule 1: The variable x in an algebraic equation cannot represent two different
values in the same equation at the same time

For example, if we have the equation, x + x = 6, the following is true: 1 + 5 = 6;
However, since x cannot represent the two different values in the same
equation, the only value that would work for x is 3 (using 1 and 5 for x would
violate Rule 1).

Rule 2: If we want two variables to represent two different values, we must use
two different symbols. For example, x + y = 6.
Rule 3: When the same variable symbol is used multiple times in the same
equation, it represents the same value.
Rule 4: The default operation is multiplication. 2 * x is the same as 2x. So, if there
is no operator, we can assume we are dealing with the default operation,
multiplication.
Rule 5: Parenthesis can be used to group terms. If we see 3(2), that is the same as
3 * (2) which is the same as 3*2. All three groupings of terms are equal to 6 (not
32).

Our job now is to break this problem down into smaller steps and figure out
what the value of x is. (Hint: you've seen it before.)

Rule 6: Different symbols can represent the same value in the same equation, but
they don't have to.

As we saw, x and y have the same value, but only in the second if statement. As the value of
x varies (from 0 to 1 to 2), the value of y varies (from 2 to 1 to 0). That's the main reason why
the symbols x and y are called variables. They can vary.

The way variables are handled in a Turing-based language as opposed to a Lambda
calculus (pure functional programming) language is very different.

Category Theory That Applies Chapter 11

[489]

In a Turing-based language like C, the value of a variable x is stored in a specific location in
the memory in the computer running the C program. It can be a global variable, which
means other running procedures can access and change (aka mutate) its value:

In a pure functional language like Haskell, values are never stored. New ones can be
created and passed along the execution chain.

Real-world application of algebra
Ever wondered what good are these equations?

They can be useful when trying to model things in the real world. Let's take some algebraic
equations and graph their solutions. Graphing an equation is like using the results of
equations (output of functions) to draw lines and curves that can be used to illustrate
and/or predict things in real life.

Linear equation and the law of demand
Linear equations can be used to describe things with straight line slopes:

Category Theory That Applies Chapter 11

[490]

The law of demand states that as the price of a product increases, the demand for that
product will decrease. That's because people naturally avoid buying a product that will
force them to forfeit the purchase of something else that they value more. The graph
indicates that the demand curve is a downward slope. The lower the price, the more
products will be sold.

Building architects use linear equations to determine slopes of roof lines and Google Maps
uses linear equations to tell you how long your trip will take.

What do we know about linear equation functions like f(x) = 3x + 2?

For every input x, we get one and only one result. That's why if we were to input every
possible number (as the value x), we get a line! And that's why vertical lines are difficult to
achieve in geometry.

Quadratic equations all around us
Equations like the following are said to be linear:

y = x + 2

This is because all the variables are to the power of one.

Given the x values of -4 to 2, we can easily calculate the y values, as follows:

Category Theory That Applies Chapter 11

[491]

If we were to input every possible x value (including those with decimals like 0.1, 0.11, 0.12,
and so on), we'd get a straight line. We can say that the domain is the set of all possible x
values and the range is the set of all possible y values. Note that any non-vertical or non-
horizontal line is a function with its domain and range consisting of all real numbers.

It's easy to see that our preceding f(x) function is just a mapping from one set of numbers to
another.

When we use exponents of 2 or greater, then the equation is said to be quadratic. Here's an
example:

y = x2 + 1

Function composition with linear and quadratic
functions
Let's compose our f(x) = x2 + 1 quadratic equation with our g(x) = x + 2 linear equation table.
Here's one way we could compose our two functions: y = f(g(x)). We'd say y equals f-
compose-g of x or y = f o g where o is our composition operator. The way it works is that we
assign a value for x, then we plug that value into g, compute g(x), and then plug the result
into f.

We input 1 to g and to express that as g(1). We input g(1) to f to get f(g(1)).

Let's make it work by replacing g(1) with the value that maps from 1 to g(1), which is 3:

Category Theory That Applies Chapter 11

[492]

Replacing g(1) with 3, we get the following:

When we input 3 to g, we evaluate the x2 + 1 or 32 + 1 expression, which equals 10:

So, f(g(1)) equals 10.

What if we reverse our nesting of functions like g(f(1))? Will we get the same answer?

f(1) = x2 + 1 = 1 + 1 = 2
g(2) = 4

We got f(2)=4 from the preceding linear equation table.

Since g(f(1)) = 10 and f(g(1)) = 4, we know that composing the same functions in a different
order will likely give different results.

We also see that when we compose, we are either replacing a function/value with the
corresponding/mapped value from a table or we are evaluating a function expression and
replacing with that value. We've already seen how the referential integrity characteristic of
our functions allow us to cache its value. So, after a function is evaluated the first time, all
we're doing is a bunch of value replacements when we compose functions.

"If A equals success, then the formula is A equals X plus Y and Z, with X being work, Y
play, and Z keeping your mouth shut."

 - Albert Einstein

Category Theory That Applies Chapter 11

[493]

More examples of quadratic equations
Are all of the following quadratic?

Plot your own equations online at: https:/ /www.desmos.com/ calculator

The golden ratio
Let's look at one more fascinating quadratic equation. The Greeks believed that the
rectangular shape, which had the most aesthetic proportions, was one where the large and
the small rectangles have the same proportions.

This became known as the golden rectangle. The solution to x2 + x = 1 is x = 1.61803398875,
which we'll shorten to x = 1.61.

Category Theory That Applies Chapter 11

[494]

The Greeks weren't the only ones that thought the golden ratio was perfect.

When we look closely, we'll see the Golden Ratio in business:

Remember the Fibonacci sequence and its relationship to recursion from Chapter 1, Pure
Functional Programming in Go? 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. In this
sequence, each term is the sum of the previous two terms. If we look closely, we'll see this
sequence in nature. For example, lilies have 3 petals, buttercups 5, marigolds 13, asters 21.
Most daisies have 34, 55 or 89 petals.

Category Theory That Applies Chapter 11

[495]

The seeds of a sunflower head radiate from its center in two families of interlaced spirals,
one winding clockwise and the other counterclockwise. There are usually 34 spirals twisting
clockwise and 55 in the opposite direction.

The more we learn about the relationship between mathematics, programming, the arts and
sciences and nature, the more evidence we find of the hand of a master architect at work
around us.

The more we understand how systems around us work, the more patterns we see. Later,
when we look closer at the category theory, we'll study the important patterns of
decomposition (chopping problems up into small, comprehensible pieces) and composition
(putting those pieces back together again). FP allows us to break a monolithic application
down into a set of Lego building blocks that can be assembled in different configurations
for different systems if desired, and we do can do so in an easy-to-understand, declarative
manner.

Given the guarantees of immutability and referential transparency, the time at which an
operation occurs is much less of a concern. This simplifies the combinatorial complexity of
coding concurrent solutions. This also allows performance to be improved harmlessly by
the use of parallelism, and it pays off in distributed systems, where time is not even
perfectly defined.

Basic laws of algebra
Study these basic laws of algebra. We'll see them again soon!

Category Theory That Applies Chapter 11

[496]

Later, you'll learn that function composition has the following features:

It is associative
It is typically not commutative
It is distributive via (g+h) ∘ f = g ∘ f+h ∘ f (g + h) ∘ f = g ∘ f + h ∘ f
It is typically not distributive via f ∘ (g + h) = f ∘ g + f ∘ h

Correspondence in mathematics
The category theory presents mathematics as abstractly as possible and removes all
nonessential properties, providing a framework for all mathematics.

Remember your math classes? Here are a few of the classes:

Branch of
mathematics

Description

Algebra Algebra describes relationships between its elements using laws, for
example, associative, commutative properties. There are different
types of algebra, such as, linear, lie, commutative, and abstract. In
algebra, we often replace numbers with letters in an equation. For
example,
The 1 + 2 = 3 form becomes x + y = z. Boolean algebra is another type of
algebra in which the variables are truth values (true and false) instead
of numbers.

Geometry Geometry studies the properties of shapes and position in space. It
provides formulas for determining things such as the circumference of
a circle (c = 2πr) and determining the area of various shapes.

Logic Logic provides rules of mathematical reasoning. Boolean algebra is a
form of mathematical logic.

Numerical
analysis

Numerical analysis provides algorithms to approximate solutions to
mathematical problems. It typically uses computing power to quickly
get close to the true solution that might not be solvable manually.

Calculus Calculus is the application of the results proven in analysis.

Mathematics is the study of data structures: shapes, numbers, groups, sets, and so on. We
study their structure, their behaviors, and how they interact with each other.

Category Theory That Applies Chapter 11

[497]

Curry, Howard, and Lambek discovered that all branches of mathematics are the exact
same thing! They realized that at a certain level of abstraction, the structure of all
mathematical theories are the same. We can morph the structure of our logic into category
classes and we can change that structure into type theory. All morphisms, and hence all
activities, in the universe can be described by the category theory.

For example, when we consider a photon particle in an electromagnetic field, a soccer ball
in flight, and a bouncy C (musical note), they don't seem to have much in common until we
provide context. From the point of view of wave theory, they are all the same problem.
Now, change or context to centripetal force; again, they are all the same problem, only in a
different context. When we abstract away all the non-essential details, what remains is the
mathematical structure.

The advantage of using abstraction in this way is that we begin to see connections between
things that were previously hidden from view. When can create and use tools that allow us
to contextualize problem sets in different ways. We have the full power of category theory
to enlighten our way. Software engineers who understand these concepts are better
equipped to perform data analytics. Software engineers who learn to apply functional
programming concepts build more reliable solutions that scale horizontally across multiple
cores and across multiple compute instances in their cloud native clusters. It's not difficult
to see what all the fuss regarding functional programming is about, right?

 Proof theory
Proof theory is a branch of mathematics where we make assumptions and apply logic to
prove something. For example, if a and b can be proven to be true, then a is true and so is b.

Logical connectives
The following table depicts logical connectives, in order of precedence:

Symbol Math name English name Go
operator

Example Meaning

¬ Negation NOT ! ¬a not a

∧ Conjunction AND && a ∧ b a and b

⊕ Exclusive
disjunction

exclusive or (XOR) NA a ⊕ b either a or b (but
not both)

Category Theory That Applies Chapter 11

[498]

∨ Disjunction OR || a ∨ b a or b

∀ Universal
quantification

∀ x: A(x) means
A(x) is true for all
x

NA ∀a:A all values a of
type A

∃ Existential
quantification

∃ x: A(x) means
there is at least one
x such that A(x) is
true

NA ∃a:A there exists
some value a of
type A

⇒ Material
implication

Implies NA a ⇒ b if a then b

⇔ Material
equivalence

a ⇔ b is true only
if both a and b are
false, or both a and
b are true

NA a ⇔ b a if and only if b

≡ Is defined as a ≡ b means a is
defined to be
another name for b

NA a ≡ b a is logically
equivalent to b

⊢ Turnstile a ⊢ b means a is
provable from b

NA a ⊢ b a is provable
from b

NA = Not Applicable, that is, there is no symbol for this in Go.

There are other logic symbols, but these are some of the more important
ones.

In software, we use logic by combining these symbols and other terms like variables to
prove whether something is true.

The following is an example using quantification symbols:

f: A ⇒ B means ∀a:A∃b:B such that b = f(b)

In other words, there is a function from A to B, where for all values a of type A, there exists
some value b of type B such that b = f(a).

Category Theory That Applies Chapter 11

[499]

Logical inconsistency
The following function signature represents a function with logical inconsistency:

def factorial(i int) int

The problem is that factorial is not defined for negative integers.

Partial function
If our function is not defined/consistent for all values in our domain, it's said to be a partial
function (as opposed to a total function). If our function is inconsistent, then we run the risk
of running into unexpected errors during runtime.

There are two main ways to solve this problem:

We can solve this inconsistency by reducing the size of our domain to only
positive integers
We can use failure monads like either validation or disjunction to capture things
that go wrong

Truth table
The truth tables contains interpretations of a proposition. An interpretation is the
calculation of the value of a proposition:

a b ¬a ¬b a ∧ b a ∨ b a ⊕ b a → b a ↔ b

T T F F T T F T T

T F F T F T T F F

F T T F F T F T F

F F T T F F F T T

"The opposite of a correct statement is a false statement. The opposite of a profound truth
may well be another profound truth."

- Niels Bohr

Category Theory That Applies Chapter 11

[500]

Conditional propositions
The following propositions say the same thing:

If a, then b
a implies b
a → b
a ⇒ b

The variable a is the hypothesis and b is the conclusion. The conclusion is always true,
except when a is true and b is false. One way of thinking about this is: "If pigs could fly,
then…" anything you conclude is true after such an obviously false statement. If a and b are
both true, then obviously going from a to b will be true. However, if a is true and b is false,
then when going from a to b we'll end up with a false value.

Logical equivalence
Now, we can use our truth table to determine the outcome of compound propositions. Since
¬a ∨ b and a → b have the same truth values, they are said to be logically equivalent and we
express that with the ¬a ∨ b ≡ a → b equation.

a b ¬a ¬a ∨ b a → b

T T F T T

T F F F F

F T T T T

F F T T T

A logically equivalent statement could be, "If Jenny were sitting at her desk then she'd be at
home." That is a logical statement. A logical equivalent statement might be, "If Jenny were not
at home, then she would not be sitting at her desk."

We create logical equivalences by creating a hypothesis and its conclusion. The preceding
hypothesis is: "If Jenny were sitting at her desk, and the conclusion is "she'd be at home." We
determine the truth of each and compare their truth (true or false).

Category Theory That Applies Chapter 11

[501]

Converse of a conditional proposition
Let's use a truth table to prove the (a → b)∧(b → a) ≡ a ↔ b equation:

a b a → b b → a (a → b)∧(b → a) a ↔ b

T T T T T T

T F F T F F

F T T T F F

F F T T T T

In other words, a biconditional proposition (a ↔ b) is equivalent to the conjunction of a
conditional proposition (a → b) and its converse (b → a).

Order matters
Remember the statement: "If Jenny were sitting at her desk, then she'd be at home?"

Its converse would be, "If Jenny were at home then she'd be sitting at her desk." The converse is
created by swapping the hypothesis and conclusion. How does the converse change the
logic of the sentence? (Could "Jenny be at home, but not at her desk?") The same words in a
different order can change the resulting truth value.

Similarly, the inverse of a conditional can also change the logic. For example, consider the
negative form of "If Jenny were sitting at her desk, then she'd be at home," which is "If Jenny were
not sitting at her desk, then she would not be at home." (Could Jenny be at home, but not at her
desk?)

See how we can use truth tables to combine statements and determine its resulting truth
value?

The Curry Howard isomorphism
The Curry Howard Isomorphism said that types are propositions and programs are their
proofs. A proposition is an assertion (declarative statement), which is either true or false
(but not both).

Category Theory That Applies Chapter 11

[502]

Examples of propositions
Consider the following examples of propositions:

The equation 2 * 3 = 5
If it is storming outside, then I take an Uber to class; otherwise, I walk, and if it is
sunny, then I ride my bicycle:

Variable Clause

a It is storming outside

b I take an Uber to class

c I walk

d It is sunny

e I ride my bicycle

The following is the written logic version:

a implies b and ((not a) implies (c and (d implies e)))

The following is the logical symbols version:

(a ⇒ b) ∧ (¬a ⇒ (c ∧ (d⇒ e)))

Not propositions
The following are the examples of not propositions:

x = 5 (this is not an assertion of truth, it's an assignment)
x + y = 5 (not enough information to be an assertion, answer depends on missing
data)

Propositions can combine terms using connectives (and, or not).

Lambda calculus
Alonzo Church brought formal logic, called untyped Lambda calculus, to computer science
that includes substitution, abstraction, and application. Let's remember these terms and use
them when implementing a lambda expression in Go later in this chapter.

Category Theory That Applies Chapter 11

[503]

Why so formal?
Why do we care about adhering to the formalism and rules of logical (and algebraic)
equations?

"The irony is that the constraints of formalism is what liberates us to be our best."

The importance of protocol
Respecting your elders, saying "Yes, Ma'am" and "Yes Sir" is not just social formalism.
That's called following protocol. It helps us communicate in a consistent way. Following
formalisms helps us to act appropriately. Examples of practicing the civil virtues include
things like these:

Being honest
Maintaining self-control
Showing kindness toward fellow human beings

When we lead through an example of serving one another with transparency and kindness
and to guard against greed and other forms of evil, we can freely engage with others in
ways that are less likely to offend.

How does offensive language and inappropriate behavior from our leaders affect the
strength of our society? What good comes from showing blatant disrespect toward officers
of the law?

When everyone understands the importance of being polite and showing guarded
generosity, we live in a strong social system in which we all have the opportunity to thrive.
When we transfer this concept to our software development efforts, we end up with better
solutions. The way we implement this system is through logic. If our systems are logically
sound, then they will reliably help us achieve our goals.

Historical Events in Functional Programming
The history of functional programming is nothing short of fascinating. Functional
programming languages are based on an elegant yet simple mathematical foundation,
Lambda calculus.

"To understand a science, it is necessary to know its history."
 - Auguste Comte

Let's look at the discoveries that led up to Lambda calculus.

Category Theory That Applies Chapter 11

[504]

George Boole (1815 - 1864)

Logic came from ancient Greeks such as Aristotle and Euclid. Prior to Boole, logic was
literally in Greek; it was expressed in the form of language. Boole was the first to translate
logic into algebraic symbols:

true = 1
false = 0
and = product (AxB)
or = sum(A+B)

Augustus De Morgan (1806 - 1871)

Category Theory That Applies Chapter 11

[505]

De Morgan's Law stated that all logical operations can be expressed in terms of and, or, and
not. Furthermore, all logical operations can also be expressed in terms of just and and not, or
just or and not:

a ∧ b = ¬ ((¬ a) ∨ (¬ b))
a ∨ b = ¬ ((¬ a) ∧ (¬ b))

The first equation says that a and b are both true if and only if at least one of a or b is false.
The second equation says that at least one of a or b is true if and only if both a and b are
false.

Friedrich Ludwig Gottlob Frege (1848 – 1925)

Frege was a German mathematician who is considered by many as the father of analytic
philosophy. He studied the use of functions in logic and was the first to use currying. Frege
invented axiomatic predicate logic. Axioms are statements/propositions that we accept as
true; they are so self-evident that no other reasoning could make it plainer. They are simple
truths.

Modus Ponens
The following rule of propositional logic is called Modus Ponens:

If the tree is still on the power line, then we have no power1.
The tree is still on the power line2.
We have no power3.

Category Theory That Applies Chapter 11

[506]

Charles Lutwidge Dodgson (1832 –1898)

Charles Dodson (pen name: Lewis Carroll) authored several books in which he stripped
away intuition and any preconception by manipulating logic, even if it seems like nonsense.
Let's look at the literary nonsense in his fiction book, Alice in Wonderland. Dodson often
defied common sense by creating an entirely new world through the manipulation of
language. The story maintained a balance between sense and nonsense, remaining logical,
even though it appeared at times to be completely illogical. For example, as Alice moves
within the back-to-front world of Looking-Glass Land, she discovers a book written in a
seemingly unintelligible language:

Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:All mimsy were the borogoves,

And the mome raths outgrabe.

"Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!Beware the Jubjub bird, and shun

The frumious Bandersnatch!"

In Through The Looking Glass, Alice tries to keep up with the Red Queen; though constantly
running, she remains in the same spot. Alice remarked:

Well, in our country, said Alice, still panting a little, you'd generally get to somewhere else—if
you run very fast for a long time, as we've been doing.

Category Theory That Applies Chapter 11

[507]

The Red Queen's race is often used to illustrate deep concepts such as these:

Time travel
The relativistic effect on light from galaxies near the edge of the expanding
observable universe
Our efforts in the IT industry to adopt new technologies in an effort to keep up
with our competitors (though years later, when looking back, we realize we did
not actually improve our systems, we merely changed technologies sometimes to
our detriment)

We'll later look at an FP library named Fantasy Land, which likely gets its name from the
nonsense logic found in works such as Alice in Wonderland.

Alfred Whitehead and Bertrand Russell (1903)

In a letter Russell wrote to Frege, the proposed the Barbers Paradox found a problem with
Frege's logic:

Given that a town's only barber shaves everybody, except those who shave themselves. We
can deduce two things:

If a person does not shave her/himself, the barber will
If person shaves her/himself, the barber won't

The paradox is: The barber cannot be shaven.

The first statement says that if the barber does not shave himself, then barber will shave
himself. However, the second statement directly contradicts that first statement.

Category Theory That Applies Chapter 11

[508]

Russell and Whitehead collaborated to prove/solve the Barber's Paradox and to prove that
mathematics is a formal, logical framework. In 1912, they arrogantly produced a work
entitled Principia Mathematica (that's the same name that Isaac Newton used to name his
works that included the laws of motion, forming the foundation of classical mechanics, the
law of universal gravitation, and a derivation of Kepler's laws of planetary motion).

Russell and Whitehead's work proved to be impractical (it includes a 450-page proof to
show that 1 + 1 = 2). The irony is that logical substitution was not formalized in their
Principa Mathematica. (We'll look at what logical substitution means when we look at
Lambda calculus.)

Moses Schonfinkel (1889–1942)

Schonfinkel was a Russian mathematician who invented combinatory logic around 1924. A
combinator is a higher order function that uses only function application and earlier
defined combinators to define a result from its arguments. This replacement technique
reduced multiple function arguments to a single argument, and was later known as
currying, after Haskell Curry.

Category Theory That Applies Chapter 11

[509]

The following table explains Schonfinkel combinators:

Definition Acroymn - German Function Type

λx. x I - Identitatsfunktion Identity

λx,y. x K - Konstanzfunktion Constant

λx,y,z. xz(yz) S - Verschmelzungsfunktion Amalgamation

λx,y,z. xzy T - Vertauschungsfunktion Exchange

λx,y,z. x(yz) Z - Zusammensetzungsfunktion Composition

Haskell Curry - 1927

Haskell Curry introduced Combinatory Logic in 1927 that eliminated the use of variables
that change. It is based on combinators. A combinator is a higher order function that uses
function application and previously defined combinators to produce a result from its
arguments. Alonzo Church later devised a similar formalism called The Lambda Calculus,
where lambda expressions represent functional abstractions are replaced by a limited set of
combinators. For details, see The Lambda Calculus section later in this chapter.

Category Theory That Applies Chapter 11

[510]

Gerhard Gentzen (1936)

In 1936, a German mathematician named Gerhard Gentzen provided proof that first-order
arithmetic (addition and multiplication) is consistent using primitive recursive arithmetic.
Gentzen used sequent calculus, which is a conditional tautology (a series of true statements)
to build arguments according to rules and procedures of inference (https:/ /en.wikipedia.
org/wiki/Inference) with zero or more assertions. Note that sequent calculus is very
similar to natural deduction, which is composed of one or more assertions.

Alonzo Church (1930, 1940)

Church read the Principa Mathematica and decided to improve upon it. Church applied
formal mathematical logic to computer science using function abstraction and application
using variable binding and substitution. In 1930, Church's released the first version of
Lambda calculus, which formed the basis of what he called effectively computable functions.

Category Theory That Applies Chapter 11

[511]

In 1935, Kleene and Rosser proved that it was logically inconsistent. Church quickly
responded with an improved version named simply typed Lambda calculus that fixed the
issue of non-terminating programs with a typed system that defined the syntax of high
order logic, but did not include recursive functions. Later, in 1940, Church invented The
Lambda Calculus, which is composed only of functions, which does not concern itself with
concrete values like strings and numbers. It works with only functions.

Functions can take functions and return functions. Haskell Curry intended Lambda calculus
to be a foundation for mathematics. You need some form of recursive type to write any
interesting kind of program in it. Haskell Curry's work with combinatory logic is a
foundation of the functional programming language.

Alan Turing (1950)

At about the same time as Alonzo Church published his Lambda calculus, Alan Turing
introduced the Turing machine, which could perform any computational task, that is,
anything Lambda calculus could calculate. Turing completeness is an abstract statement of
ability, rather than a prescription of specific language features used to implement that
ability. The features used to achieve Turing completeness can be quite different; Fortran
systems would use loop constructs or possibly even goto statements to achieve repetition.
Pure functional languages like Haskell and Prolog use recursion.

Category Theory That Applies Chapter 11

[512]

MacLane and Eilenberg (1945)

Saunders Mac Lane (left) and Samuel Eilenberg (right) introduced the concepts of
categories, functors, and natural transformations in 1945 with their paper titled, A general
theory of natural equivalences. In their study of algebraic topology, they gave explicit
definitions for objects, maps, and composition of maps, with the goal of understanding the
processes that preserve mathematical structure.

John McCarthy (1950)

Next came John McCarthy who published the paper Recursive functions of symbolic
expressions and their computation by machine, Part I (http:/ /dl.acm. org/citation. cfm?id=
367199). In 1958, one of his students wrote an interpreter based on McCarthy's teachings,
which became a programming language based on pure mathematics called Lisp. Lisp was
the first functional language. The first popular computer languages based on type systems
were Fortran and Cobol, which emerged in the 1950s.

Category Theory That Applies Chapter 11

[513]

Curry-Howard-Lambek Correspondence (1969)

Curry, Howard, and Lambek (CHL) discovered the one-to-one correspondence between
objects in category theory, propositions in logic, and types in programming languages.

CHL looked at the types of rules for natural deduction rules and typed Lambda calculus
and discovered that they are identical.

Category Theory That Applies Chapter 11

[514]

If we remove the red terms in the preceding table, they are identical. Hence, Church's
lambda types correspond one-to-one with Gentzen's logical formulas. Type checking is the
same as proof checking.

Logic includes and, or and implication constructs
Programming has data records and function constructs
Category theory has arrows which are functions (that can also be data)

As an example of how they relate, consider that a proposition in logic can be true or false.
Similarly, a type can be either inhabited or not. True propositions are inhabited. The void
type is false. If we can produce an element of a type, then we have proven our proposition.

CHL realized that Cartesian closed categories, intuitionistic propositional logic, and the
simply typed Lambda calculus are all essentially the same thing.

Let's have a look at the correspondence table:

Category theory Logic theory Type theory/Lambda calculus

Objects Propositions Types

Morphisms Proofs Functions

Equivalences between
morphisms

Equivalences between
proofs

Beta-eta equivalences between
Lambda calculus term

All three areas of study arrived at the same discoveries independently, from different
perspectives, but the mathematical structures they describe in each case are essentially
identical.

Category Theory That Applies Chapter 11

[515]

Roger Godement (1958)

In 1958, Roger Godement wrote a book on the sheaf theory that first introduced the concept
of monads. Sheaves are objects that capture local data about a manifold, yet in doing so,
allows one to see global properties of space as a whole. What's a manifold? It's a geometric
object, for example, the Earth. From where you stand or walk, it looks like it goes on for
ever. However, if you walk around the Earth enough times, you'll realize that it's a sphere.
What Godement called a standard construction was subsequently called a monad by
Saunders Mac Lane, and that name stuck.

Category Theory That Applies Chapter 11

[516]

Moggi, Wadler, Jones (1991)

In 1991, Eugenio Moggi wrote Notions of computation and monads, which introduced the
concept of categorical semantics of computation in order to understand features in new
programming languages. Languages often add new features to solve particular problems,
but the features are rarely specified carefully in a formal way. In order to understand
programs written in these languages, we need a framework to help us understand how
information flows through our applications.

Moggi described a category C and an endomorphic functor f with an object A.

A is a type in C, where members are values of type A
f applies to A and returns another A

It is amazing how far we have gone with so little. Less really is more!

Philip Wadler and Simon Peyton Jones and others began to use monads and it trickled
down into the Haskell language. Now, monads are part of its standard library. Uses for
monads include the following:

Chain/link/connect/compose functions
Handling input
Handling side effects

Category Theory That Applies Chapter 11

[517]

Asynchronous/concurrent processing
Logging
Error handling

Gibbons, Oliveira (2006)

Gibbons and Oliveira explored an FP solution to the OOP iterator pattern. They used
imperative iterations patterns and observed that data is mapped element-by-element with
accumulation and can return an object of the same shape, that is, a transformed list of
elements.

They took Kernighan and Ritchie's imperative wordcount program (in the following C#
code) and created an alternative implementation using traversal operators and applicative
functor techniques:

public static int[] wc<char> (IEnumerable<char> coll) {
 int nl = 0, nw = 0, nc = 0;
 bool state = false;
 foreach(char c in coll) {
 ++nc;
 if(c == '\n') ++nl;
 if (c == ' ' || c == '\n' || c == '\t') {
 state = false;
 } else if (state == false) {
 state = true;
 ++nw;
 }
 }
 int[] res = {nc, nw, nl};

Category Theory That Applies Chapter 11

[518]

 return res;
}

Here's an iteration example in Go:

Given that different traversals perform different functions:

Function Map element Create state Mapped dependent
on state

State dependent on
element

collect X X X

disperse X X X

measure X X

traverse X X X X

reduce X X

reduceConst X

map X

The computation is in this form (K is the type of computation and T is data type): K[T]

Category Theory That Applies Chapter 11

[519]

The nature of the following FP computations:

Computation Description New computations Use computations Functor map

Option[T] 0 || 1 element Some(t) Some(3) change value

List[T] >= 0 elements List(t) List(1, 2, 3) change values

Future[T] perform later future(t) future(sum) change later

State[S, T] dependency on state state(s => (s,t)) state(s => (s, s+2)) change tx

IO[T] external effects IO(t) IO(putStr("hi")) modify action

Starting with this applicative: f(a, b) ==> f(K[a], K[b]) with this pointed f(a:A,
b:B):C ==> fk: K[A => B => C] and with currying:

K[A => B => C] <*>
K[A] <*> K[B]
K[B => C] <*> K[B] == K[C]

Then, apply f to a and b inside K: K(f) <*> K(a) <*> K(b)

We can use applicative composition to compose functions with Traversables and show
that transformations on iterators are applicative.

That's the big picture. For the details, read their paper: https:/ /www.cs.ox. ac. uk/jeremy.
gibbons/publications/iterator. pdf.

The history of FP in a nutshell
In the 1930s, two very different approaches to solve computing problems emerged . The
first school of thought rallied behind Alonzo Church. (Church developed Lambda calculus
around 1929.) Church said that design should be top-down rather than bottom-up. He said
we should start by treating all computation as the evaluation of mathematical functions and
then remove abstractions to move toward the machine-level operations. The ability to
control complexity via composition was arguably the main concern (definitely not
performance). Languages that sprang from this line of thinking include ML, Lisp,
SmallTalk, Erlang, Clojure and Haskell.

Category Theory That Applies Chapter 11

[520]

The other computing solution came from Alan Turing (a former student of Church,
developed the Turing machine around 1937). Turing said that software design should first
consider the hardware upon which the software would run. Later, abstraction could be as
needed to achieve the desired result. Performance was their paramount concern. Languages
that sprang from this line of thought include Fortran, C, C++, C#, Pascal, and Java.

Lambda calculus and Turing Machines are both Turing Complete. A Turing Complete
machine is basically a general purpose computer (has if, then, else, branching logic and
looping constructs like for or while loops and a way to read and write data) that can help us
solve problems. Church proved that a Turing Machine can be implemented using Lambda
calculus.

The Lambdas warned against the fragility of locking down the software design based on
hardware that may be obsoleted. Until recently, the bottom up approach has won out. With
the recent advent of multi-core computers and distributed processing environments,
Lambda calculus is gaining ground.

Recently, Turing-based languages have begun to embrace the top down approach. For
example, we began to see FP characteristics in Java 7. More and more FP features are added
to each subsequent version. We're also seeing FP constructs being added to Python, C++, C#,
PHP, and more.

What is the most important concern today? Raw performance, or the ability to control
complexity? As usual, It Depends, but given the industry shift to cloud computing
environments, the ever increasing need to integrate with third-party libraries and even with
other in-house departments, it looks like functional programming is not only catching on,
it's taking over.

Where to go from here
As the need to run applications concurrently in distributed cloud environments rises, so
will the demand to build and maintain those solutions. We know that pure FP scales, but
how can we use FP to improve overall performance and control its complexity?

Knowledge is power. Keep learning. And apply what you know to build a better future.

Category Theory That Applies Chapter 11

[521]

Functional Programming Resources:

https:/ /www. cambridge. org/core/ journals/ journal- of-functional-
programming/

Check out today's FP giants here:

https:/ /scholar. google. com/citations? view_op=search_
authors hl= en mauthors= label:functional_ programming

http:/ /learnyouahaskell. com/

http:/ /learnyousomeerlang. com/

Programming language categories
Here, we can see four categories of programming languages. The two big categories are
imperative and declarative. When programming in a declarative language, we tell the
computer what we want. For example, in the following declarative code, we tell the
computer that we want to find a Highlander car.

A declarative example
The following is an example of declarative programming language:

car, err := myCars.Find("Highlander")

Contrast that with an imperative language with all code ceremony where we must construct
a for loop.

An imperative example
The following is an example of an imperative programming language:

func (cars *Cars) Find(model string) (*Car, error) {
 for _, car := range *cars {
 if car.Model == model {
 return &car, nil
 }
 }
 return nil, errors.New("car not found")

Category Theory That Applies Chapter 11

[522]

}

An OOP example
Object-oriented programs (OOP) consists of stateful objects that support object-related
operations, called methods, whose implementation and internal structure is hidden. This
means you can evolve or replace the internals of an object without the clients of that object
also having to change. It also means that changes can occur to the hidden data without your
knowledge, which, as we've seen, can be a bad thing. OOP also includes the idea of
inheritance, where a new object could base its state and implementation on another object
higher up in its hierarchy, which can cause your program to become rigid and more
difficult to change. Here is a Car object and its Add method:

type Car struct {
 Model string
}

func (cars *Cars) Add(car Car) {
 myCars = append(myCars, car)
}

Venn diagram of four programming paradigms
Note that Go supports all three of those styles of programming. Originally, idiomatic Go
programming style directed us to code using for loops. That is beginning to change.
Similarly, Java was originally a mix of object-oriented and imperative coding styles. Java
supported Generics in 2004 to provide type safety for collections and to eliminate the need
of typecasting. 8 years later, Java added support for lambda expressions. The JDK's
java.util.stream package leverages FP language features to provide aggregate
operations on data structures like collections and arrays in a declarative and parallel-
processing-friendly manner.

Category Theory That Applies Chapter 11

[523]

Five generations of languages
Another way to group programming languages is by their generation.

The first generation (1GL) language consists only of 1's and 0's which represent the on and
off positions of electrical switches. The 1GL machine language is difficult for humans to
understand.

Assembly language (2GL) allows the programming to user words to represent operations
and operands, for example, CMP means compare the data in the AX register with the
number 99. The result is stored in the the EFLAGS register and used by the jump (JL)
command. 2GL's are specific to a particular processor family, that is, they are machine
dependent.

Category Theory That Applies Chapter 11

[524]

A 3GL is a higher level language and most are not machine dependent. For example, Go is a
3GL. Go abstracts more details than a 2GL and allows us to program in more familiar
notations. Go provides curly braces { } to indicate blocks of code, control structures like if,
switch and range and other abstractions such as functions and interfaces.

A 4GL language are declarative. They allow us to declare what we want to compute, rather
than telling the computer how to do it. This is yet another higher level of abstraction. For
example in SQL we may write SELECT * FROM USERS which says, give me all the
columns and all the rows of data in the USERS table. We did not have to include and
looping, order, parsing or any other details, we just said what we wanted.

A 5GL languages allow use to program using human languages like English. They are
typically built on Lisp and emulate human-like qualities such as learning, reasoning, seeing
and communicating.

The Forth language
Let's look at the Forth language. It is imperative, but incorporates key FP aspects, such as
abstraction, replacement and chaining functions. We can open a forth console and start
typing commands and get results. Rather than hide the fact that the runtime will use a stack
to push and pop operators and operands on and off the stack, it's built into the language.
There are no anonymous functions. Forth uses words which act like named functions. Words
can reference other words which provides a very elegant form of abstraction. Common
stack operations in Forth work with the top two or three values on the stack and can change
the order of things or duplicate things.

Category Theory That Applies Chapter 11

[525]

Let's look at an example:

We define our a function name/word starting with a colon. Comments are enclosed in
parentheses. (x -- x-squared) says our function/word will take one input off the
stack (x) and return that value squared. We define a second word that takes the top two
values from the stack and returns a result. To test, we type 3 squared ., the "." means
evaluate this expression. The result is 9 (3 duplicated and multiplied). Next, we type 2 3
sumOfSquares negate . this pushes 2 and 3 on the stack, executes squared (which
returns 9 since 3 is on the top), swaps 3 with 9 and runs square which takes the next value
(2) and then evaluates "+" which takes the top two values on the stack (9 and 4). We chain
the builtin word to get our result: -13.

If you're using a mac then you can install forth using brew install
forth. For details and more Forth references, visit: https://github. com/
lawrencewoodman/ awesome- forth

Unlike the FP languages, Forth is untyped. Also, Forth directly uses values on the stack
rather than passing parameters. Forth is a compiled language with a small footprint and is
often used for embedded programming application, for example, NASA space crafts. We'd
probably not consider Forth for enterprise system development since it lacks type safety.

Category Theory That Applies Chapter 11

[526]

The LINQ language
Most languages are multi-paradigm, meaning that depending on our coding style, we can
use declarative, object-oriented and imperative features in the same program. Knowing
when to use which style is more of an art than science. The more we learn, the better
equipped we will be to make the right design choice, and the sooner in our development
process we do it, the better. One final not, see the dotted line from imperative/declarative
FoxPro to object-oriented Visual FoxPro? That's Microsoft killing its competition; FoxPro
was once a well designed multi-paradigm language. FoxPro's procedural language was
extended using Language Integrated Query (LINQ). LINQ added query expressions
similar to SQL to the FoxPro language. For example, the scatter and gather commands were
used with the prebaked context of manipulating a database table:

select User
scatter memvar
select Customer
gather memvar

These 4th generation language (4GL) features increased developer productivity and code
consistency.

Type systems
What comes to mind when we see the word type? Data type? Like integer, string, date, or a
composite type (struct in Go) that can contain multiple fields of various data types..

What are they good for? When we compile our program, strongly typed language
compilers can catch errors that might cause runtime errors or possibly worse, incorrect
results that don't crash the program. For example, JavaScript uses type coercion to
dynamically change data types of variables during runtime. The statement MyBalance +
100.00 will equal MyBalance100.00, which might not be what we really want and may cause
problems that are caught by online bank customers that complain that their balances don't
add up. Weakly typed languages such as JavaScript and Ruby require much more rigorous
testing than strongly typed language alternatives. Type systems not only detect errors in
programs prior to running them, thereby increasing code quality, but they also help IDEs
provide useful code navigation features.

Category Theory That Applies Chapter 11

[527]

The Lambda Calculus
Lambda calculus is a logical system of rules for expressing computation using variable
binding, abstraction, and function application. We can define anonymous functions and
apply those functions. Lambda calculus would be limited if it weren't for recursion. Pure
functional programming languages derived from lambda calculus include LISP, Haskell,
and ML.

Lambda Expressions
A lambda expression is an instance of a functional interface consisting of a set of terms.
These terms can be variables like x, y, and z. These are not mutating variables, but rather
placeholders for values or other lambda terms. The variable inside of x is applied to
whatever it is bound to. The variable x is inside the term t. The lambda abstraction is
defined as λ x.t.

For example, if we have the equation f(x) = x2 and replace x with 5, we have f(5) = 52.

When the function f is applied to x, we get x2. In our example, the function f is applied to the
argument 5 and we get 52.

We can eliminate the parentheses for brevity and we have the term f applied to another
term 5: f 5 = 52.

When we abstract, we remove information that we don't need: Lambda of x where x2 is applied
to 5: (λx.x2) 5 = 52.

We could use a term that is not a constant or a variable in place of 5. Lambda of x where x2 is
applied to lambda of y + 1: (λx.x2) (λy.y + 1) = λy.(y + 1)2.

Now, we have a new function. We passed a function to a function and got a function.

Since the lambda expression is an instance of a functional interface, when we write our code
as though it were data we are effectively generating code with code.

When we only need to use a function once, it is usually more convenient to not give the
function a name. In that case, it would be an anonymous function. Another name for the
anonymous function is a lambda expression. Why create a new local function and then refer
to the named function, when we can simply use a lambda expression?

Category Theory That Applies Chapter 11

[528]

Anonymous function example and type inference
First, let's look at what we mean by the term anonymous function.

Function literals in Go require us to declare its type (int in our preceding example). In pure
functional languages like Haskell and even Java 8 and above, the compilers of those
languages are able to infer the type of the lambda expression without requiring use to
declare it inline. Those compilers need minimal information to infer the types of expressions
at runtime. If the compiler sees an expression with an argument of 5 and the "+" operator, a
language with type inference will not require us to specifically indicate that we are dealing
with integers.

Check out an example of lambda expression type inference in Java 8 here:
https:/ /www. youtube. com/ watch? v= a8jvxBbswp4.

Lambda expression ingredients
A lambda expression is an unnamed block of code with parameters.

A lambda expression consists of three things:

A block of code x + 2
Parameters x
Values for the free variables (not defined inside the code block) 5

Category Theory That Applies Chapter 11

[529]

Lambda calculus uses the following three concepts to describe how to perform a unit of
computation:

Abstraction (defining a function)
Binding (defining a variable)
Application (executing a function)

Variables that are unbound are referred to as free variables. Computation is achieved by
performing single steps of reduction:

Alpha reduction 1.
Beta reduction2.
Eta reduction3.

Consider the following untyped Lambda calculus statement:

(λx.xx)(λx.xx)

The lambda symbol (from whence the name is derived) "λ" binds the name. In the example,
the first parenthetical captures a statement that binds the name x. The second parenthetical
serves as an argument. During beta-reduction, when we are applying the function, the
parameter is bound to the name x. This is just substitution.

Confused? That's understandable, since we are using a mixture of Greek and English to
describe what the code does. Let's look at some Go code that performs these steps for
clarity:

Refer to the Lambda calculus Reduction steps post for a more detailed
description of the 3 steps: https:/ /stackoverflow. com/ questions/
34140819/ lambda- calculus- reduction- steps

Now that we've got some formalism out of the way, let's look at what it means in practice.

Category Theory That Applies Chapter 11

[530]

Visualizing a lambda expression
This is what happens when we evaluate a lambda expression:

Let's describe our visualization.

First, we define our function as the abstract operation of a + b. This operation requires two
values, a and b. Second, when we execute add2 := add(2) , we are binding the value 2 to the
variable a. (a is technically a variable, but we treat it like a constant. Remember? Functional
programming does not permit mutation.) Since our inner, anonymous function closes over
a, the a variable's value is stored in the context of our closure structure and remains
available for use later when we apply b and finally evaluate our a + b expression.

We define our add function to be of type lambda, that is, a function that accepts an int and
returns an int. (Note that unlike our abstract add operation that requires two values, all of
our functions accept only one argument and return only one value.) The output of our
closure structure returns an expression representing the function definition f(b) = 2 + b.

We call our closure when we execute three := add2(1), where three is a lambda, that is, it is a
function that accepts an input function. That input function accepts an int, that is, 1 in our
example. 1 is bound to the unbound terminal b. Now that we know that all of our variables
are bound, that is, they all have values, we can evaluate our expression 2 + 1 and return the
result 3:

Category Theory That Applies Chapter 11

[531]

The following is the output:

Pass 1 to to add2 expression to get: 3
Pass 2 to to add2 expression to get: 4

In step 1, we define our add function. The add function accepts the argument a of type int
and returns an anonymous function of type lambda.

In step 2, we call our lambda function and pass the integer 2. 2 is accepted as argument a.
We can say that add is partially invoked in this step and that the value 2 stored in a is
curried. What we return is a closure, that is, a function that closes over the a variable.

In step 3, we pass our free variable 1 to our add2 lambda function. This is where the magic
happens. add2 is a variable that contains a function with the curried value 2. When we pass
1 to that lambda, it assigns 1 to the free argument, which next gets assigned to the b
argument of the inner, anonymous, application function where our a + b expression is
evaluated and returned.

Pretty cool, huh? Go allows us to directly implement lambda expressions. Maybe this
lambda closure application functionality will become part of Go's standard library one day.
There's not much code here, but understanding it and then implementing it was
challenging. However, now that we have it, we can reuse our add2 function and pass it
around like a variable. A variable that contains contextual data and logic. Sweet!

Granted our example was rudimentary, but consider all the naturally scalable reuse and
compositional capabilities that we now have in our arsenal!

Category Theory That Applies Chapter 11

[532]

A Lambda calculus is like chocolate milk
The closure is like the shot glass, chocolate syrup is like our curried variable a. Every shot
glass partially filled with chocolate syrup is like our partially invoked lambda expression
that we set aside, just waiting for the milk.

When we add good ole' milk and stir, that's like passing the 1 and executing 2 + 1. The
result (that is, 3) is a tasty treat called chocolate milk. For our lactose intolerant friends, we
can take a glass of chocolate syrup (partially invoked function with curried chocolate syrup)
and add almond milk. For our crazy lactose intolerant uncle, we can take another curried
glass of chocolate syrup and add hemp milk. See, Lambda calculus isn't confusing after all;
it's delicious!

Lambda examples in other languages
Let's look at the same add2 lambda function in a few other languages:

JavaScript
Since JavaScript is a weakly typed language, we don't need to specify that the type of our a
and b variables are integers:

var add = function (a) {
 return function (b) {
 return a + b;
 };
};
add2 = add(2);

Category Theory That Applies Chapter 11

[533]

JavaScript (ES6)
ES6 provide arrow functions (also known as fat arrow functions) that provide a more concise
syntax for writing function expressions. Fat arrows indicate an anonymous function and
allow us to not type the keywords function and return:

const add = a => b => a + b;
add2 = add(2);

Ruby
Let's study lambda expressions in Ruby; it's quite insightful.

Ruby lets us define an anonymous lambda function in two ways. One uses the lambda
keyword:

add = lambda {|a, b| a + b}

The other uses the stabby symbol:

add = -> a, b{a + b}

In the IRB console, we can call the lambda expression like this:

>> add.call(2, 1)
=> 3

There's a lot we can do just with Ruby lambda. A Ruby lambda is a special kind of closure.
Like Ruby blocks and procs, a Ruby lambda acts like a code snippet that can be passed
around.

Where do we often see lambdas used with Ruby in real world applications? Ever worked
with Rails? Ruby on Rails is a web application framework with an Object Relational
Mapping (ORM) library named ActiveRecord. Ruby classes of type
ActiveRecord::Base map to database tables. We call those Ruby classes models. They
have a method named scope used for retrieving rows from their associated tables. We can
define a scope using a lambda, as follows:

class Make < ApplicationRecord
end

class Car < ApplicationRecord
 belongs_to :make
 scope :by_make, -> (id) { where(:make_id => id) }
end

Category Theory That Applies Chapter 11

[534]

Consider seeding our tables, as follows:

Make.create({name: 'Lexus'})
 Make.create({name: 'Honda'})
 Car.create({make_id: 1, model: 'IS250'})
 Car.create({make_id: 2, model: 'Accord'})
 Car.create({make_id: 2, model: 'Highlander'})

We can use our by_make scope to retrieve only records containing Honda cars, as follows:

>> ar.by_make(2)
Car Load (1.2ms) SELECT "cars".* FROM "cars" WHERE "cars"."make_id" = $1
+----+---------+------------+
| id | make_id | model |
+----+---------+------------+
| 2 | 2 | Accord |
| 3 | 2 | Highlander |
+----+---------+------------+

In the preceding, we are able to pass the key id value for a Honda (2) which the scope
method passes to the lambda function.

In order to leverage the full power of lambda expressions in Ruby, we'll need to curry our
function. For example, to call our add function from earlier with one parameter like we did
in the JavaScript examples, we add the curry method to create a lexical scope for our
anonymous lambda function. Next, we store it in a variable named add2:

add2 = add.curry.call(2)

The lambda provides a closure, that is, an anonymous, first class literal function that we
store as a variable add. The curry adds a special ability to access other variables local to the
scope in which that lambda was created.

We can call the lambda expression in the add2 variable by executing its call method:

>> add2.call(1)
=> 3

Look at the following call to the anonymous function:

>> add.call(2, 1)

Category Theory That Applies Chapter 11

[535]

What is immediately obviously different between that and the following call to the curried
function?

>> add2.call(1)

Curried functions take one argument.

Why use currying instead of a regular function with multiple arguments?

A: How many arguments can you pass to the regular function?

In this case it's rigidly set to two. However, if we use currying we can easily add more
without breaking our interface. This is a powerful tool in our toolbox of composition. We
can easily replace the pieces in our chain of function calls with more easily reusable
functions.

Thus, we learned that a lambda expression is a curried, anonymous function. We just saw
how those two concepts (anonymous and curried function) are defined and accessed in
Ruby. In other languages, such as Go, while the syntax varies, the concepts remain the
same.

The importance of Type systems to FP
The purpose of a type system is to reduce bugs by defining the interfaces between the
different functions in a program and verifying that those functions can be reliably
connected. Types can be a simple as strings, ints, and booleans or can be a complex data
structure with embedded fields and interfaces. Types can be checked at compile time or
runtime.

The Lambda Calculus was originally untyped, but Alonzo Church found that that though it
was more expressive, it caused inconsistencies. So, Church introduced a typed version to
simplify computation. We use type systems for similar reasons, that is, to improve
determinism and to help prevent bugs.

Since in FP a function is a data type, we need to define our functions' type for the type
system.

Category Theory That Applies Chapter 11

[536]

A type system can also increase our programs' runtime performance. Go is a statically
compiled language, so the data types are known at compile time. This makes type erasure
possible. So, Go does not have to require our programs to carry around explicit type
annotations. Contrast this to languages that support Generics. Generics employs a process
called reification that allows programmers to pass generic data types, along with explicit
type annotations, so that called functions that need to know their type can make the generic
data a first class citizen, that is, convert it to an actual data type that the program
recognizes.

The added complexity of reification and the performance degradation of using generics
contradict Go's core principles of simplicity and performance.

Static versus dynamic typing
In Go and other statically typed languages, such as C, C++, Java, and Scala, the compiler
will catch type mismatches at compile time. In contrast, dynamically typed languages such
as Ruby, SmallTalk, and Python catch these type errors at runtime and rely more on error
handling to keep our programs from crashing.

In statical yet dynamic typed languages, we can easily write a function definition without
mentioning the data types, like this:

def add(a, b)
 a+b
end

This works great when we pass it the correct data:

>> add(1,2)
=> 3

However, runtime exceptions occur when we pass types that are compatible:

>> add(1,Time.now)
TypeError: Time can't be coerced into Integer

Type inference
Type inference is the process of determining the appropriate types for expressions based on
how they are used.

Category Theory That Applies Chapter 11

[537]

Go can determine that the type of the variable a in the following examples is int:

var a = 5
a := 5

Go properly infers data types in many scenarios, such as the one here:

a := 1.8
b := math.Floor(a + 1)
fmt.Println("b:", reflect.TypeOf(b))

The following is the output:

b: float64

However, since Go does not fully implement the Hindley-Milner type system, Go fails to
infer the type of b in this example:

a := 1
b := math.Floor(a + 1.8)
println(b)

Rather than inferring that the type of b is float64, Go reports the following compile errors:

constant 1.8 truncated to integer
cannot use a + 1.8 (type int) as type float64 in argument to math.Floor

While it's unfortunate that Go's type system implementation is not perfect, it is
understandable why it does not fully implement the HM type system. HM supports
polymorphic functions. Go supports neither generics or polymorphic functions, nor
parametric polymorphism. However, polymorphic list manipulation can be achieved in Go
using the interface{} for any unknown types. We can store that in a slice of
interface{}, that is, []interface{} and use normal slice operations (append, copy,
shift, and so on) on the list. When we later retrieve them from the slice, we'll need to cast the
items to their appropriate type.

Haskell
Functional programming has been popularized largely as a result of Haskell (named after
Haskell Curry), which is a programming language that was designed by a group of
academics that are intimately familiar with the category theory. Since Haskell syntax is so
clear and closely aligned with the original formal logical notations, we may see a few
example in the following texts to help express category theory concepts.

Category Theory That Applies Chapter 11

[538]

Things are a bit different in Haskell than they are in Go. For example, Haskell variables are
immutable, that is, they are not allowed to change. We use them only as bindings to
expressions.

I highly recommend learning Haskell. It's a great, pure, functional
programming language. Here are some good resources to get you started:

http:/ /www. happylearnhaskelltutorial. com/

http:/ /learnyouahaskell. com/ chapters

http:/ /haskellbook. com/

https:/ /wiki. haskell. org/ Tutorials

In Haskell, we don't implement the steps in our algorithms. Instead, we declare what our
functions do. Consider the following example:

The sum of a list of numbers is zero plus the sum of all the numbers
The product of a list of numbers is one times the product of all the numbers
The factorial of a number is the product of all the numbers from 1 to that number
Our new list is the result of adding two to all the numbers in our original list of
numbers

In Haskell, the our functions can only calculate a value and return it. This feature enables
referential integrity. If a function is called more than once with the same parameters, it's
guaranteed to return the same result every time. This allows the compiler to reason about
our program's behavior and to improve its performance. This feature also allows us to
compose our functions together to build more complex functions.

Haskell boils away the syntax and code ceremony that is non-essential.

Learning a bit of Haskell will help open our minds up to the new functional programming
paradigms that we will cover in Chapter 10, Monoids, and Type Classes, and Generics.

Type classes in Haskell
Haskell is strongly typed and fully supports the HM type type system. Haskell has an
additional layer above what we normally think of a type. Recall that a type defines the
structure of the data stored in a variable of that type (string, int, user defined struct, and
so on). A type class allows us to be more specific and specify not only what the data is, but
also how it behaves.

Category Theory That Applies Chapter 11

[539]

Type classes define the sets of operations. A particular object may be an instance of a class
and will have a method corresponding to each operation. Type classes may be arranged
hierarchically, forming notions of superclasses and sub classes and permitting inheritance
of operations/methods. A default method may also be associated with an operation.

Type classes are not objects; there is no internal mutable state. Type classes are type-safe;
any attempt to apply a method to a value whose type is not in the required class will be
detected at compile time. In other words, methods are not looked up at runtime, but are
simply passed as higher order functions.

Like an interface declaration, a type class declaration defines a protocol for using an object,
rather than defining an object itself. For example, a type is an instance of the Functor class if
it is parameterized by another type where its values can be modified using the fmap
function.

Looking at Haskell's type class hierarchy here, we can see that a Monad is a Monoid, as well
as an Applicative. So, we know that a Monad inherits operations from both.

So, we don't need to add the int type to the argument signatures and we still get the type
safety features to catch errors at compile time. The following defines a lambda function that
adds 2:

(\a -> a + 2)

Category Theory That Applies Chapter 11

[540]

On the following, we're in a Haskell REPL console, where we can enter Haskell commands
interactively:

The lambda character allows us to define an anonymous function that performs the curry
operation. We pass our lambda function to map, which is a high order function. Map
transforms each element in our original list to a new list that results from adding 2 to each
item in the list.

Domains, codomains, and morphisms
If we look closely, we can find ordered pairs of data all around us. Let's look at some
statistics of Lionel Messi. The following table shows how many goals Messi scored for 10
consecutive years:

Category Theory That Applies Chapter 11

[541]

We say that the domain is set A: {2007, 2007, 2007, 2010, 2011, 2012, 2013,
2014, 2015, 2016} and the range (or codomain) is set B: {5, 6, 7, 8, 10} and that
the ordered pairs are {(2007,10), (2008, 6), (2008, 8), (2010, 5), (2011,
8), (2012, 5), (2013, 5), (2014, 7), (2015, 6), (2016, 10)}.

Each year maps to a number of goals scored.

If the year where x and y was calculated by calling a function named f, we could get y by
calling f(x). For example, f(2010) = 5 and f(2016) = 10.

Does the following relation make sense?

How can Messi score exactly 6 goals and exactly 7 goals and exactly 10 goals in the same
year? That makes no sense, right? (Right!)

We can say that the relation of {(2007, 6), (2007, 7), (2007, 10)} which is defined by our
arrows is not a function because it contains ordered pairs with the same x value.

Category Theory That Applies Chapter 11

[542]

Set theory symbols
Before moving forward with category theory, let's get familiar with the symbols of set
theory:

Symbol Symbol name Meaning/definition Example

{ } Set A collection of objects (also known as
elements)

A = {5,6,7,8},
B = {5,8,10}

| Such that So that A = {x | x ∈
ℝ, x<0}

A∩B Intersection Objects that belong to set A and set B A ∩ B = {5,8}

A∪B Union Objects that belong to set A or set B A ∪ B =
{5,6,7,8,10}

A⊆B Subset A is a subset of B. Set A is included in
set B

{5,8,10} � {5,8,10}

A⊂B Proper subset / Strict
subset

A is a subset of B, but A is not equal
to B

{5,8} ⊂ {
5,8,10}

A⊄B Not subset Set A is not a subset of set B {8,15} � {8,10,25}

a∈A Element of Set membership A ={5,10,15}, 5 ∈
A

x∉A Not element of No set membership A ={5,10,15}, 2 ∉
A

(a,b) Ordered pair A collection of 2 elements

A×B Cartesian product A set of all ordered pairs from A and
B

|A| Cardinality The number of elements of set A A ={5,10,15},
|A|=3

Ø Empty set Ø = {} A = Ø

↦ Maps to f: a ↦ b means the function f maps
from the element a to the element b

f: a ↦ f(a)

U Universal set set of all possible values

Category Theory That Applies Chapter 11

[543]

ℕo Natural numbers /
Whole numbers set
(with zero)

ℕo = {0, 1, 2, 3, ...} 0 ∈ ℕo

ℕ1 Natural numbers /
Whole numbers set
(without zero)

ℕ1 = {1, 2, 3, 4, ...} 5 ∈ ℕ1

ℤ Integer numbers set ℤ = {... -2, -1, 0, 1, 2, ..} -5 ∈ ℤ

ℝ Real numbers set ℝ= {x | -∞ < x <∞} 5.166667 ∈ ℝ

In set theory, we look at elements in a set. For example, set A may have 2 elements: {5, 6}
and set B may have 3 elements: {7, 8, 10}. A Cartesian product has every possible
combination of each: {(5, 7), (5, 8), (5, 10), (6, 7), (6, 8), (6, 10)}.

In category theory, we no longer look at elements inside sets, we only look at the
relationships between sets. In other words, we only look at the arrows.

Category theory
Category theory is a branch of mathematics that deals with structure, rather than with
particulars. It deals with the kinds of structures that make programs composable.

Category theory is a branch of mathematics that is similar to Set theory. A basic example of
a category is the category of sets, where the objects are sets and the arrows are functions
from one set to another. Objects of a category need are typically sets, and arrows are
typically functions. Any way of formalizing a mathematical concept so that it meets the
basic conditions on the behavior of objects and arrows is a valid category.

Category Theory That Applies Chapter 11

[544]

I could not find an easy-to-understand resource for learning category
theory. Most of what's out there is geared toward mathematicians. Though
I did take a good number of advanced math classes in college, I am not a
practicing mathematician. While understanding the logical and
mathematical formalism is important (and we'll cover the enough to be
conversant), what I really wanted was something that I could wrap my
head around. I wanted practical information. I wondered, how can I
implement this Lambda calculus in Go? How can I build better scalable
software using these lambdas? How can I tease apart the details and
compose a better application from smaller, simple pieces? Can I use this
new found knowledge to better architect my big data/data analytics
project? I hope this chapter does that for you.

Algebra of functions
Category theory is the abstract algebra of functions. In fact, the Lambda calculus is a
calculus for specifying, manipulating, and calculating functions. There is a deep connection
between Lambda calculus and category theory. We're looking at the same thing from two
different perspectives--from the logical, syntactic way on the Lambda calculus side and
from a more algebraic, geometric perspective from category theory.

Abstract functions
Abstract functions are any process, expression or assignment that can be read in a
functional way. This is an abstract algebra of abstract functions.

We'll look at set theoretical functions on sets in order to arrive at the basic principles of
category theory.

We'll look at functions on set. Given sets are A, B, and C. And a function f going from A to
B:

f: A -> B

Official definition of a function
A function is a subset of Cartesian product of A and B, which is relation of AxB (A cross B):

f is equal to or subset of AxB

Here, f is a subset of pairs.

Category Theory That Applies Chapter 11

[545]

For all of A, there is a unique B (b:B) such that the subset <a,b> is a relation of that relation f:

<a,b> ∈ f

Intuitive definition of a function
In a more intuitive way, we'll think of the function f as: taking an element of set A and
returning an element of set B.

Function composition with sets
Function composition is where we take the output of one function (f: A → B) and use it as
input for another (g: B → C). Through the law of associativity, we know that if A → B → C,
then this is true: A → C. (We can go from A to B to C or we can go from A directly to C.)

Category Theory That Applies Chapter 11

[546]

Composition operation example using travel expenses
In the following composition table, we enter our budget for travelling from the US to
Europe:

If we travel from the US to Europe, we use the f arrow (function) to convert dollars to euros.
If we travel from Europe to Mexico, we use the g arrow to convert euros to pesos. Here, the
output of function f is the input to function g; this is called function composition.

If we decided to not travel to and from Europe and travel directly to Mexico from the US,
we use the gof arrow. Either way, f($) → g(€) → ₱ or f(g($)) → ₱ , we still should
get the same amount of pesos for our dollar!

A Category
A category is defined by its objects and the arrows that connect the objects and all
compositions.

For every two arrows (f and g), we must define their composition (g o f).

Category Theory That Applies Chapter 11

[547]

The elements/data of a category theory include:

Categories/sets: is a grouping of objects
Objects: dots/points/a primitive with no properties no structure
Morphisms: (arrows) something that goes between two objects/elements

We write objects with upper case letters (such as A, B, C, and so on). We write arrows in
lower case letters (such as f, g, h, and so on).

Arrows have a beginning and an end. Objects in the beginning of the arrow are in the
domain; arrows at the end arrows are in the range (also known as codomain).

Category axioms
For each f, we have an arrow that goes from the domain of f to the codomain of f:

f: dom(f) → cod(f)

For each A, we have an identity arrow that goes from A to A:

1A: A → A

For each composable pair, A → B → C we have a composition operation from A → C.

Category laws
The following are the category laws:

Associativity: h o (g o f) = (h o g) o f
Identity: f o 1A = f = f o 1B
Unit: Every composite is equal to itself

We'll look more closely at those laws later in this chapter.

Category Theory That Applies Chapter 11

[548]

More rules
Here are some more rules that apply to categories:

We can have zero or more arrows between objects.
There can no more than one arrow from any object in the domain. Remember? x
values must not be repeated.
We can put all compositions in a composition table (how we compose
morphisms).
Different compositions will give you different categories.
Objects and arrows have no structure and no information; the composition has
the information.
Category theory is based on the more general notion.
The s value of objects and morphisms. Objects generalize types and morphisms
generalize functions.
A category does not take time into account.
There is also a spacial relationship between objects.

When it comes to programming and computers, time is important. For example, if we are
studying the motion of a soccer ball in flight, the ball moves in an three dimensional (x,y,z)
space with respect to time. If we wish to know the exact position of the ball with respect to
time, we need to take time into account in our calculations.

More examples
Here're a few examples to help get a better intuition about what a category is, what it means
to be a category, what things are required, and what rules must be obeyed.

Invalid categories
Here, we have two valid categories. The first one is of a car. The objects include the car
itself, the car's model name, and the car's age. We show two identity morphisms. One arrow
goes from a car to itself (upgrade a car and it's another car). The other arrow goes from the
integer object to itself (the "++" operator means add one to the current value). We left off the
arrow from the model name to itself, but it exists (a name is a name):=

Category Theory That Applies Chapter 11

[549]

Why is this invalid? It looks like it composes, but does it really?

The next example should be a bit more obvious. (Funny, but obviously not a category.)

There's a link from the Favorite's page (A) to the link on the Reddit home page (B), and one
from there to the image (C), but not one from the Favorite's page (A) to the image (C).

Category Theory That Applies Chapter 11

[550]

Morphisms
A morphism is an arrow from one object (A, B, C in our example) in a category (our
grouping of A, B, C). There can be more than one arrow from A to B (or from B to C, or A to
C). Also, arrows can go from any object to itself; this is called the identity morphism.

f:A→B statement is a morphism (f) from A to B
Hom(A,B) is the collection of all arrows from A to B
Hom(A,B) is also known as the Hom-Set of A to B
idA:A→A is a morphism from A to A

The behaviors of morphisms
Let's look at at a couple things we can do with morphisms. W can compose them and run
the identity morphism to verify an object's identity.

Composition operation
Below, is our basic composition operation.

The composition operation is g o f, g after f applies arg x (from A) to give us g applied to f
applied to x: (g o f)(x) = g(f(x)).

Category Theory That Applies Chapter 11

[551]

If f(g(x)) = g(f(x)) for all x, then we can say that f and g commute under composition.

However, that's not typical. Function composition is generally not commutative.

Let's take an example. Remember when we composed f(x) = x + 2 with g(x) = x2 + 1 earlier in
the chapter? We solved g(f(1)) = 10, but what about f(g(1))? Does that also equal 10? Let's see
now:

g(1) = 12 + 1 = 2 and f(2) = 4

So, no, our functions f and g are not associative: g(f(1)) != f(g(1)).

Identity operation
Identity law of our category says the identity morphism of A is A.

Every object has a morphism pointing back to itself.

When we have more than one object, we denote which ID we're talking about with a
subscript, for example, idA.

This graph says f o idA = f.

In other words, the morphism of f after idA is the same as the morphism of f. Here's a
concrete example:

Category Theory That Applies Chapter 11

[552]

The identity morphism for the natural number 3 is a function that multiplies any number
by

There is a symmetric identity morphism: idA o g = g

Law of associativity
In the following diagram, we see that we can get from A to C by way of the g o f
composition.

From C, we can get to D using the h arrow, which we can write as ho(gof).

Note that this is the same as h(f(g)). This notation seems more intuitive than using the
composition operation, but they mean the same thing.

From the following diagram, we see that ho(gof) is the same as (hog)of.

So, our category obeys the law of associativity. The next diagram is another illustration of
the associativity of composition:

Category Theory That Applies Chapter 11

[553]

That diagram says that if the arrows exist from A→B→C→D, then if we start at A, we can
use composition of functions to shortcut a set either by choosing the red path ho(gof) or the
green path (hog)of.

Associativity helps us manage complexity. It is the basis for composition.

Only concerned with morphisms
In a category theory, we only have objects and arrows between them.

We can compose functions by applying a function to an argument to get a result. Then, we
apply another function to the result and so on, until we end up where we started.

We put all of our compositions in a table and only concern ourselves with the morphisms. It
is the morphisms that define the interface for our application. What's important is how
objects are connected/mapped.

Interface-driven development
One concept of the category theory that we can use when we develop software is that our
design should be concerned only with interfaces, that is, the arrows/morphisms. We have
seen the theme of composition repeated throughout this book. From Mozart compositions
to function compositions with linear and quadratic functions, and later with finite state
machines. We've seen that the way to solve complex problems is to break them apart into
understandable pieces. We can then reach into our toolbox of pieces and compose elegant,
reliable solutions. We design our application programming interfaces (APIs) to connect
our pieces and can leverage concurrent programming constructs and concurrency-aware
frameworks to arrange how the pieces work together to arrive at our desired result.

Design the architecture, name the components, document the details.
Clear is better than clever. Don't communicate by sharing memory; share
memory by communicating. Channels orchestrate; mutexes serialize. The
bigger the interface, the weaker the abstraction.

For more Go proverbs, visit: https:/ /www.youtube. com/watch? v=
PAAkCSZUG1c, and for Concurrency Is Not Parallelism, visit: https:/ /www.
youtube. com/ watch? v= cN_ DpYBzKso.

Category Theory That Applies Chapter 11

[554]

More morphisms
The example below shows two identity morphisms and a morphism from A to B.

If we take A and any f to B and the Identity on A (1A), then this composite f after the
identity on A (f o 1A) is equal to f.

Here's another way to look at it:

If we take A and any f and we take the identity on A, then this composite f after the identity
on A is equal to f.

Here's the morphism f from A to B:

And here's a concrete example:

Category Theory That Applies Chapter 11

[555]

The identity axiom says that if there is an arrow f from the identity of A to B and there is an
arrow f from the identity of B to B, then the arrow from A to B is the same arrow f.

The associativity axiom says that the composition of arrows is associative, which is another
way of saying the diagram is commutative.

Therefore, for all arrows, 𝑓 ∶ 𝑎 → 𝑏, 𝑔 ∶ 𝑏 → 𝑐, and h ∶ 𝑐 → 𝑑, h ∘ 𝑔 ∘ 𝑓 denotes h ∘ (𝑔 ∘ 𝑓).

And it follows the this is true: h∘(𝑔∘𝑓) = h∘𝑔∘𝑓 = (h∘𝑔)∘𝑓.

A review of Category theory
Category theory is about composing functions.

A, B, C = type = algebras/mathematical structure(homomorphisms)

Note that we no longer concern ourselves with the objects/elements inside the sets (only the
arrows).

f = function = arrow that goes between objects (and maintains algebraic structure)

The f variable is a function that accepts arguments of type A and can, for example, return
objects of type B.

Identity arrow (idA) goes from A to A and does nothing. f;g (composition of 1 arrow after
another) is a function that accepts arguments of type A and B, and returns C.

idA;f = f; idB = f

Category Theory That Applies Chapter 11

[556]

There are three ways to compose two things: (f;g);h = f;(g;h).

C (category C) = set of all arrows in Category from A to C is in C.

Even more correspondence
Remember the filter types (Read, Split, Transform, Merge, and Write) from our flow-based
programming discussion in Chapter 6, Building on an Onion Architecture (increase
performance with pipelining)? Let's see how flow-based programming corresponds to
category theory, logic, and types.

Logic has and, or, and implication operations
Programming has data records and function operations
Flow-based programming has merge, split, and transform operations

Category theory has arrows that are functions (that can also be data).

Just like a proposition in logic can be true or false, a type can be either inhabited or not.
True propositions are inhabited. The void type is false. If we can produce an element of a
type, then we have proven our proposition.

Category Theory That Applies Chapter 11

[557]

Table of morphisms
The following table summarizes our basic operations, as well as our initial and terminal
states:

Morphism examples
The a → b statement says that if we provide an element a to our function, then our function
will produce an element of b. The same goes for logical implication: if a is true then b is
true.

If we have a function type a ⇒ b and pair it with an element of a, we get an element of b.

Modens ponens
In Latin, modens ponens means, "the mode of affirming".

Category Theory That Applies Chapter 11

[558]

Type theory version
((a ⇒ b), a) → b says that if we have function (a ⇒ b) and an argument a, it will produce b.

Logic version
If we know b follows from a and that a is true, then you can prove b.

a ⇒ b ∧ a → b

This is called Modens ponens also known as an implication.

Correspondence between logic and type theory
Do you see the one-to-one correspondence between logic and type theory?

Add the category theory correspondence and we get the Curry Howard Lambek
correspondence.

Cartesian closed category
A cartesian closed category, where a product exists for any two elements and an
exponential exists for any two elements, is a model for logic and type theory.

Though many categories have products and sums, only a few have map objects. Such
categories are called cartesian closed categories.

There is a deep connection between λ-calculus, logic, and cartesian closed categories.

A cartesian closed category (CCC) is an abstraction having a small vocabulary with
associated laws:

The category part means we have a notion of morphisms each having a domain and codomain
object. There is an identity morphism for and associative composition operator.

The cartesian part means that we have products, with projection functions and an operator
(fst or snd in Haskell) to combine two functions into a pair-producing function

The closed part means that we have a way to represent morphisms via objects, referred to as
exponentials.

Category Theory That Applies Chapter 11

[559]

The corresponding operations are curry and apply. These exponential objects are first class
functions.

Lambda expressions can be systematically translated into the CCC vocabulary.

A CCC is a category that is closed with respect to both products and exponentials.

This is what it looks like in terms of products and sums of objects:

a × (b + c) = a × b + a × c
(b + c) × a = b × a + c × a

See the correspondence to the following distributive law?

(a ∨ b) ∧ c = (a ∧c) ∨ (b ∧ c)

The objects in a CCC represent the types of the language, for example, strings, integers, and
floats. The morphisms represent computable functions, for example, length(string).
Exponential objects allow us to consider computable functions as the input to other
functions.

Joachim Lambek discovered that the models of the simply typed λ-calculus (STLC) are
exactly the cartesian closed categories (CCCs).

The generic type mechanism in Java is based on the generic type systems that originated in
Lambda calculus. In fact, Java uses the Hindley-Milner Lambda calculus type inference,
which is based on CCC.

We will revisit the topic of CCCs when we cover Mondads in a later chapter.

Unit type
A tuple is a list of items that are ordered and immutable. You can select an element based
on its position.

A unit type has exactly a one value. It is also known as the identity. The unit for
multiplication is 1, for addition is 0, and for string concatenation, it is the empty string.

How many values can a type defined as a tuple of type int contain? Infinite (-∞, …, 0, 1, 2...
∞).

How many values can a type defined as the empty tuple contain? One. The unit is also
represented as () in Haskell.

Category Theory That Applies Chapter 11

[560]

The value of a unit type is that you can use it in places where we might otherwise return nil
(or null). We return a unit when we don't care what the value is. We don't return nil, we
return a value; the unit value. All functions return values; no more null pointer exceptions!
Now, we can chain functions and never worry that one on the middle with throw a null
pointer exception and crash our program.

Homomorphism
Here's a Venn diagram depicting how the different categories of homomorphisms relate to
one another:

Abbreviation Description

Mono Set of monomorphisms (injective)

Epi Set of epimorphism (surjective)

Iso Set of isomorphisms (bijective)

Auto Set of automorphisms (bijective and endomorphic)

A homomorphism is a correspondence between set A (the domain) and set B (the codomain
or range), so that each object in A determines a unique object in B and each object in B has
an arrow/function/morphism pointing to it from A.

If operations, for example, addition and multiplication, are defined for A and B, it is
required that they correspond. That is, a * b must correspond to f(a) * f(b).

Category Theory That Applies Chapter 11

[561]

Homomorphisms preserve correspondence
Correspondence must be as follows:

Single-valued: The morphism must at least be a partial function
Surjective: Each a in A has at least one f(a) in B

Homomorphism is a way to compare two groups for structural similarities. It's a function
between two groups that preserve their structure. Suppose we have two groups, G and H.
G and H have different group operations. Let's also suppose that G has the group operation
☆ and H has the group operation (heart). Given any two elements in G: a, b ∈ G. And let's
suppose a ☆ b = c. We also have a function f that maps G to H: f: G→ H. The elements a, b,
and c are mapped to elements in H. The a variable maps to f(a), b maps to f(b), and c maps
to f(c):

f: a ↦ f(a)
f: b ↦ f(b)
f: c ↦ f(c)

The purpose of homomorphism is to find the structural similarities between two groups.

So, if in G, a ☆ b = c, then we like f(a) (heart) f(b) = f(c) in the group H.

a ☆ b = c ⇒ f(a) (heart) f(b) = f(c) and since a ☆ b = c, we can substitute to get the definition
of a homomorphism:

f(a) (heart) f(b) = f(a ☆ b)

There's a way to compare two groups.

Let's look at an example. G is a group of real numbers (ℝ) with a group operator of addition
(+) and identity operator 0, and H is a group of real numbers (ℝ) with a group operator of
multiplication (*) and identity operator 1.

We can define the homomorphism that maps elements of G to H that maps element a to ea.

f: G ↦ H

a ↦ ea

Category Theory That Applies Chapter 11

[562]

Let’s ensure that this is a homomorphism by verifying that f(a + b) = f(a) * f(b).

By the definition of f given above, this says that:

ea + b = ea * ea

This is true. It is a rule of exponents. So, f is a homomorphism.

Homomorphic encryption
Homomorphic encryption allows operations to be performed on ciphertexts without the
knowledge of corresponding plaintexts:

EncryptFcn(a) (heart) EncryptFcn(b) = EncryptFcn(a ☆ b)

An example of homomorphic encryption
Alice downloads a snippet of music she likes from an untrusted source and wants to use it
to find the name of the song.

Bob has a song recognition capability and could identify the song for Alice.

The problem is that Alice and Bob do not trust each other.

Alice fears that if she gives Bob her snippet of music, Bob might turn her into the
authorities. Bob could give Alice his music catalog but fears that she may sell it to his
competitors.

The solution is for Alice to encrypt her music snippet and send that to Bob. Bob could find
the encrypted result and send that back to Alice to decrypt.

Category Theory That Applies Chapter 11

[563]

Lesson learned
We can perform complex collaborative operations without revealing private information
through the use of cryptography and category theory.

Isomorphism
Sometimes, groups are more than just similar. If they are identical, they are isomorphic.
Isomorphism is comprised of two Greek words that mean equal and form. In mathematics,
isomorphism is a perfect one-to-one, bijective mapping between two groups (structures or
sets). Every object in group A maps directly to an object in group B.

In an isomorphism, every object in A is mapped to an object in B. The morphisms are also
injective because no two objects from A map to the same object in B. So, if the objects in A
are x, y, and z, then the following are not possible: f(x) = f(y), f(x) = f(z), f(y) =
f(z). The only mappings we find are x -> f(x), y -> f(y), and z -> f(z) and none
of those three values are the same.

This morphism is also surjective, since every object in codomain B has at least one mapping
from domain A. Furthermore, since we have a one-to-one correspondence between every
object in A and B. We can see that we've got both surjection and injection; this is also called
a bijection.

Category Theory That Applies Chapter 11

[564]

Injective morphism
An injective morphism is where every object in A maps to different object in B. Mappings to
the same object in B are not allowed.

Surjective morphism
Surjective morphism is where every object in the codomain B is connected to a morphism
from the domain A. In other words, every object in B has the value of f(x), where x is in A.
This mapping is called many-to-one, since there are more than one mappings from A to a
single object in B.

Endomorphism
If the objects are in the same set, the morphism is known as an endomorphism. In other
words, the morphism maps back onto itself. An example of this would be a domain A of
natural numbers (positive integers), morphisms comprised of addition and multiplication
operations, and a range of B, which will consist of natural numbers. Another example
would be the set of numbers 1 to 12 on a 12-hour analog clock.

SemiGroup homomorphism
A semigroup is a set with an associative operation. Adding any two positive integers results
in another positive integer; hence, addition is an associative property for natural numbers.

Category Theory That Applies Chapter 11

[565]

Another example is a monoid with a unit morphism that acts as the identity operator. For
example, the set of natural numbers and multiplication morphisms, whose unit morphism
is the mutliplyByOne function, or the set of natural numbers and addition morphisms,
whose unit morphism is the addZero function.

SemiGroup Homomorphism Algebra
Consider that we're given semigroups (A, *) and (B, +) and a function f: A => B. Then f is a
semigroup homomorphism if f(x) + f(y) = f(x*y) .

Note that "+" is the operation in range B and "*" is the operation in the domain A.

So, a semigroup homomorphism is a mapping between two semigroups that preserve the
semigroup operation.

Homomorphism table
The following table contains the categories of homomorphisms that correspond to the Venn
diagram of homomorphisms.

A → A

Morphism Description Diagram Example

Epi- Surjective
"onto"

A → B ⇉ C

Category Theory That Applies Chapter 11

[566]

Mono- Injective "1 to 1"

C ⇉ A → B

Iso- Bijective "onto"
and "1 to 1"

Bijective =
Injective +
Surjective

Each element in
the domain will
have a
corresponding
element in the
range (aka
"codomain").

A ⇄ B

An isomorphism between G and H. Ordered
pairs:
f(a) = 1, f(b) = 6,... f(j) = 7

Endo- From a
structure to
itself.

An
endomorphism
is an
homomorphism
whose domain
equals the
range.

A → A

Same pixels, rearranged.

Category Theory That Applies Chapter 11

[567]

Auto- Bijective
endomorphism
is an
endomorphism
that is also an
isomorphism;
an
isomorphism
with itself.

Automorphism
= Bijective +
Endomorphism

Car crash analogy
We are looking at the same structures/ideas (decomposition, composition, transformation,
and so on) from different points of view. Whether it's from a
mathematical/algebraic/geometric, logical/syntactic, Lambda calculus or flow-based
perspective, it's all the same thing. We just express the same concepts using different
notations. It's sort of like asking four different individuals what they saw immediately after
a car crash. They all saw the same thing, but the way it's expressed is differently.
Considering all points of view can bring more clarity and provide better understanding.

Composable concurrency
Functional programming is not only about composing functions and algebraic data
structures--it makes concurrency composable--something that's virtually impossible with
other programming paradigms.

How can we take what we've learned about morphisms and apply it to creating highly
concurrent processing models? Suppose we start with a monolithic application with a single
binary executable.

What if we can focus only on the morphisms, that is, the interface of inputs and outputs, in
our system?

Consider that we're given the following:

Inputs and outputs can be mapped through isomorphisms
The state exists in the groupings of our objects
Morphisms are stateless

Category Theory That Applies Chapter 11

[568]

Finite state machines
Can we assume that the finite state machines (FSMs) of our system exist within our
groupings? (Where the FSM would be like the A and B groupings that we looked at
previously.)

Let's imagine systematically decomposing our FSMs into the smallest possible components.

Starting with our context component C, by observing behavior/morphisms and applying
the Schreier Refinement Theorem and what we know about isomorphism, can we
systematically decompose a large FSM into a grouping of the smallest possible FSMs of
equivalent behavior?

Here's the first decomposition:

Here's the second decomposition:

Category Theory That Applies Chapter 11

[569]

We have been wiring up our components in parallel; we can also (de)compose them in
serial:

Now that we have a complete set of FSMs that comprise our system, we have filled our
toolbox with the building blocks of our system. Now, we can rebuild our system by re-
wiring our simple components and fitting them together in a distributed, microservice-
based environment. Once we've tested our new configurations, we'll be in a position to
deploy our building blocks and scale them horizontally.

This power and flexibility comes at some cost. In order to put our components to good use,
we must build a framework to glue them together and sequence the work. We'll need to
think about the following:

Compatibility of interfaces
Determining how to partition our work
Scheduling morphisms
Managing resources

Category Theory That Applies Chapter 11

[570]

Graph Database Example
Suppose we just got hired to build a graph database solution for a local college. First, we
should build the information model. It might look something like this:

Every course has one instructor and many students.

An instructor can teach more than one class.

An advisor has more than one student, but a student can have only one advisor.

A student may have more than one tutor, and a tutor may help more than one student.

Category Theory That Applies Chapter 11

[571]

We have five sets of objects:

Set Description

A Instructors

B Courses

C Students

D Tutors

E Advisor

Our actual database schema could look something like this:

Using mathematics and category theory to
gain understanding
Let's work with something we can relate to soccer!

How can we know the position of a ball in the air as it moves from Messi's foot into the
goal?

Note that due to spin on the ball and the imbalance of air pressure, when in the air, the ball
may curve left to right and up and sharply down.

Category Theory That Applies Chapter 11

[572]

Check out Messi's curving goals here:

https:/ /www. youtube. com/ embed/ CmSwaK6RsB4? start= 11end=
15M

https:/ /www. youtube. com/ watch? v=rNlGmhFSkxw

Suppose we have a small soccer field with the dimensions of 50 yards X 100 yards and a net
that is 8 feet tall. The height of the goal is the z dimension:

If the sun is directly overhead and makes a shadow on the field, then we can know the x, y
coordinates. If we can also measure the height of the ball as it moves, then we know the z
coordinate. Combining both of those pieces of information, we can know the ball's position
in the three-dimensional space.

The following diagram says that if we know A and B, then we also know C.

Category Theory That Applies Chapter 11

[573]

In category theory, this is called a product <f,g> of two sets of arrows, f and g.

Given that first extracts A from AxB and second extracts B from AxB and h = <f,g>, we can
say that <f,g>; first = f and <f,g>; second = g.

So, we have a commuting diagram. In other words, we have two paths <f,g> from C to AxB
and first to A is equal to f, which goes from C to A, and vice versa for g.

The Universality Condition says that the only way to get from C to AxB is to apply <f,g> to
C.

This diagram says that any arrow <f,g> is in one-to-one correspondence with the f and g
arrows.

The cartesian product of the sets (C,A) x (C,B) is equal to the set (C, AxB).

In logic, this means if A is true and B is true then we know that A and B is true. So, the
product is logical conjunction.

The identify function is depicted in the table. It says that the identity function of AxB is
AxB. While this seems simple, it is important. The identity function is also known as the
unit, which we've already discussed as it relates to types and will encounter again in the
chapter about monads.

We've seen the following laws for multiplication in elementary school:

Law Example

Identity A x 1 = A and 1 x A = A

Associative A x (B x C) = (AxB) x C

Commutative A x B = B x A

Distributive A x (B + C) = (A x B) + (A x C)

Category Theory That Applies Chapter 11

[574]

The following diagram depicts the identity law for a product in category theory. It says that
the identity of AxB is the arrow pair of <first, second>:

The following diagram depicts the sum operation:

It says that there are two ways to build a sum, with inLeft or inRight.

In code, we'd need a case statement or an if/then statement to get the result.

The bracket in [f,g] indicates that the result is either f or g.

Our morphism must terminate if we are to have either a true sum or a true product.

Our diagram also says that an arrow from A+B is isomorphic with an arrow from A to C
paired with an arrow from B to C; or formally, (A,C) x (B,C) = (A+B, C)

Category Theory That Applies Chapter 11

[575]

So, if we know A or we know B, we have proof of C. (This is also known as disjunction.)

The set theory equation is A ∪ (B∩C) = (A∪B) ∩ (A∪C)

For more information on distributive law, visit: https:/ /ncatlab.org/
nlab/ show/ distributive+law.

Laws of exponentials for building a lambda
expression
Laws of exponentials for building a lambda expression are as follows:

Category Theory That Applies Chapter 11

[576]

Table legend
Gamma (Γ) represents the environment, that is, free variables paired with a bunch of types.
We give names to free variables (for example, x of type A in the context, y of type B,...) and
their type.

Turnstile (⊢) a ⊢ b means a is provable from b.

The term (M) represent expressions we write in a programming language.

We show types A and B.

For the top right law...
Consider f represents the semantics (above) and curry(f) and we pair f and g to get A to B
with a and apply it, categorically, exponentials give us implication A ⇒ B.

For the bottom left law:

How do we know A implies B? By assuming A, we can prove B and we know A implies B.

If we know A implies B and we know A, then we can conclude B.

This is also known as modus ponens.

Sums and products
What can we see when we compare the diagrams for sums and products?

If we were to flip the arrows, then they would be identical!

This is called a Dual. We say the co of a dual is the thing we started with.

Negation in logic is an example of a dual.

Category theory jokes:

What are the morphisms in the category of cars? AUTO morphisms

A Priest, a Rabbi, and an Automorphism walk into a bar.... "I think we
should talk, one-to-one", "We can't... He's onto us."

What does a categorical mathematician call a coconut?

Category Theory That Applies Chapter 11

[577]

Isomorphic equations
We have learned the following isomorphic equations:

(C,A) x (C,B) = (C, AxB)
(A,C) x (C,B) = (A+B, C)
(C x A,B) = (C, [A⇒B])

In first equation, what does it mean to have an arrow from C to AxB?

A: We have a pair of arrows, an arrow from C to A and an arrow from C to B.

Similarly for 2 and 3.

If C is a finite set with exactly C objects in it, and A is a finite set with exactly A things in it,
then how many ways are there to get from C to A?

Answer: There are A X C different ways of getting from C to A

How many functions are there from n variables onto 2?

Answer: 2n

Do you see the direct correspondence between the categorical isomorphic equations and the
laws of exponents we learned in high school?

Category Theory That Applies Chapter 11

[578]

Fun with Sums, Products, Exponents and
Types
Here's the sum of cows with tigers and elephants:

Here's a product of cows with tigers and elephants:

Category Theory That Applies Chapter 11

[579]

Here's the exponents of cows with tigers and elephants:

If we have a getCow method that will return DressedCows and if we have 3 types of
DressedCows then if we call getCow then there are 31 possible DressedCows that it can
return.

Note that functions with no arguments are Units. A Unit is a singleton type that carries no
information. In Chapter 9, Functors, Monoids, and Generics,we'll see how Units are useful
when we build a 12-hour clock functor and when writing a reduce function. A Unit is our
identity morphism.

Looking at structures algebraically lets us find matching structure.

Category Theory That Applies Chapter 11

[580]

Once we've identified an isomorphism we have proven ways to optimize for memory
usage, performance or data augmentation.

Proving what our code allows us to us it.

Proving what our code isn't prevents errors.

In this way, types are a fundamental part of functional programming.

Our sums are isomorphic to products. The tiger on the left and the tiger on the right are dual
to each other. Same for the elephant and the football. A tiger's dual is called a cotiger.
Similarly sums are called coproducts.

Category Theory That Applies Chapter 11

[581]

A monomorphism is shown below. f is monic:

An epimorphism is shown below. f is epic:

The following diagrams shows that monomorphisms are dual to epimorphisms.

Category Theory That Applies Chapter 11

[582]

If we don't lose data going from tigers to elephants to tigers:

Also, we don't lose data going from elephants to tigers to elephants:

Then, our morphism are isomorphic.

Algebraic data structures give us certainty when move, map and transform data that we
won't lose data.

It is essential to understand how our data structures are preserved during our workflows.

Functional programming brings us the certainty we need for data integrity as well as the
composition we need to help manage complexity.

Category Theory That Applies Chapter 11

[583]

When Aubie goes to buy his tickets to the Iron Bowl he enters is order data...

When he clicks the Submit button the data flows from one endpoint to another. As the data
flows, it may be transformed in some way but the structure of the data is kept intact:

Category Theory That Applies Chapter 11

[584]

Isomorphisms guarantee data integrity (no data loss). Computation uses data types to map
morphisms. Interface definitions (using data types) allow us to connect functions.
Immutable data structures can leverage memoization, improve concurrency, and reduce
memory usage. Using FP in Go helps us to simplify our development process. We no longer
need to worry about a whole classification of data/interface incompatibility issues.

Benefits of using FP an Go include better:

performance
data reliability
component reuse
management of complexity
resource utilization

Big data, knowledge-driven development,
and data visualization
Big data implies there's a lot of data. When there is a lot of data, it becomes difficult to find
meaning. The category theory helps us to remove the unimportant details and see the
meaningful information that is there waiting to be discovered.

Data visualization
How can we apply what we've learned in the real world?

Composition sounds great but how can we go from this:

Category Theory That Applies Chapter 11

[585]

And an I/O Monad:

To something useful.

We can read data from server logs and integrate a graphical user interface (GUI) that
renders a presentation that our users can view and derive an understanding from the data
that is presented in a meaningful way.

What if our data had a corresponding schema?

Can we generalize the presentation of the data to different layouts? For example,
spreadsheet programs allow their users to display different types of graphs based on the
same set of rows and columns (pie charts, bar charts, and so on). If we can do that, then the
following is feasible:

Category Theory That Applies Chapter 11

[586]

From the practical side of things, the data from our log files might feed into tables with
rows and columns, much like a spreadsheet. From the category side, we could say that our
schema is a Cartesian product of object instances and their attributes: Schema = Instances x
Attributes.

We can then combine our diagrams to get this:

Category Theory That Applies Chapter 11

[587]

Now, if we want to allow our users to input queries to gain a working knowledge of their
domain, we could arrive at the following diagram:

Category Theory That Applies Chapter 11

[588]

The category shown here defines a well-formed vizualisation process; if the arrows, objects,
and data are accurate, then the diagram will commute. We can be confident that the
knowledge we gain is reliable.

Knowledge-driven systems can make the difference between success and failure. Our
proverbial hay stack could be every interaction, every gesture of body language/facial
expression, words spoken, commitments kept/broken, and so on. If our key performance
indicator is the health of our relationship, a knowledge-based system could sift through the
minutia and highlight the one remark that mattered, "I wish you would stop work and greet me
when I arrive."

Category Theory That Applies Chapter 11

[589]

Sometimes, we need to start with the correct data set. If our goal is to find the next great
location to build a shopping mall, we could gather two data sets, one for all cell phone
records and another of population demographics. Though both sets of data have copious
amounts of data that don't provide guidance, if we build our system with rules designed to
find the actionable needles of truth, the given geolocation information of both cell phone
records and demographics combined with income statistics, our system could bring to light
the most ideal locations for our investors.

You might be thinking, "I can do that with my imperative language." Perhaps, but will it scale?

Summary
In this chapter, you learned what we need to know about category theory to be dangerous.
We walked through history together, learning how functional programming came to be
what it is today. We looked at logical propositions and proofs, sets, objects, and arrows as
well as Lambda calculus. We shared in the amazement of the correspondence between
category theory, logic, and Lambda calculus. And you saw how to apply what you learned
in real-world scenarios (such as the flight of a soccer ball and doing business with untrusted
partners). Lastly, we gained insight into how to design knowledge-based systems to derive
value from big data.

In the next chapter, we'll dig deeper into pure functional programming. We'll see how to
leverage category theory and class types to abstract away details in order to glean new
insights. We'll look at functors, along with slightly stronger and more useful versions of
functors called applicative functors. We'll also learn how to bring the world of side-effects
under control using monads and monoids.

12
Miscellaneous Information and

How-Tos
This appendix has four sections:

How to build and run Go projects
How to propose changes to Go
FP Resources
Minggatu-Catalan Number

How to build and run Go projects
There are various ways to build and run Go applications. In this section, I'll show you what
I used to build the example Go projects for this book.

TL;DR
Use the cd command to direct to your project root directory. Run . init once.

Ready to run your app? Did you change a (non-standard library) import statement? If so,
run glide-update.

To run your app, execute go-run.

Miscellaneous Information and How-Tos Chapter 12

[591]

Development workflow
This is what our development workflow looks like:

We put cd into our project source code root directory and run init. Then, we updated
code, run the glide-update and go-run commands, and repeat until done. Note that if
we only added imports for packages from Go's standard library, we won't need to run the
glide-update command, though running the glide-update command won't hurt.

Dot init features and benefits
The dot init solution will do the following:

Create a link to this project root directory in your MY_DEV_DIR directory.1.
Verify that you are running the correct version of Go.2.
Verify that you have a src directory (it will create one if you don't have one). 3.
Simplify references to project-local packages.4.

Miscellaneous Information and How-Tos Chapter 12

[592]

Verify that you have a toml config file (if you set USES_TOML_CONFIG_YN to5.
yes).
Create aliases for your convenience.6.
Verify that you have glide installed.7.

In step 1, it's nice to have one place to go MY_DEV_DIR, for example, ~/myprojects to see
all the projects I've worked on. I can sort by date and easily delete the links to inactive
projects.

Use step 2 to avoid messing with GOPATH, GOROOT, or GOBIN.

As explained in step 3, the src directory is where we put our project-local package source
files. We also have a file (typically named main.go) in our project root directory with the
main() function in the main package.

Perform step 4 so that we no longer need to include the full GitHub repository path for
project-local packages!

Instead of ".github.comlearn-fp-go/2-design-patterns/ch05-
decoration/02_decorator/decorator", we simply use ". decorator". Note that if
you just really do not want to use dot init, you'll need to go through the source code and
replace all of the simple project-local package references with the full repository path
references and move the code. You may also need to move the code out of the project-local
package's src directory up a level; it won't conflict with your global GOPATH's src
directory.

In step 5, the toml config file (https:/ / github. com/ BurntSushi/ toml) is the default config
file solution. The .init file includes the toml config file runtime flag automatically (as long
as you set this in the init script: USES_TOML_CONFIG_YN=yes).

Aliases available
Here're the available alias commands:

alias go-test='go test ./... 2>&1 | grep -v "$(basename $(pwd))\t\[no test
files"'
alias go-test-bench='go test -bench=. ./... 2>&1 | grep -v
"$(basename $(pwd))\t\[no test files"'
alias glide-ignore-project-dirs="printf \"ignore:\n$(find ./src -maxdepth 1
-type d | tail -n +2 | sed 's|./src\/||' | sed -e 's/^/- \.\//')\n\""
alias mvglide='mkdir -p vendors && mv vendor/ vendors/src/ && export
GOPATH=$(pwd)/vendors:$(pwd);echo "vendor packages have been moved to
$(pwd)/vendors and your GOPATH: $GOPATH"'

Miscellaneous Information and How-Tos Chapter 12

[593]

alias glide-update='if [! -z $(readlink `pwd`)]; then export LINKED=true
&& pushd "$(readlink `pwd`)"; fi;rm -rf {vendor,vendors};rm glide.*;export
GOPATH=$(pwd):$(pwd)/vendors && export GOBIN=$(pwd)/bin && glide init --
non-interactive && glide-ignore-project-dirs >> glide.yaml && glide up &&
mvglide && if [$LINKED==true]; then popd;fi'
alias prune-project="(rm -rf bin pkg vendors;rm glide.lock;rm -rf
./src/mypackage;sed -i -e '/mypackage/ s/^#*/\/\//' main.go) 2>/dev/null"
alias show-path='echo $PATH | tr ":" "\n"'
alias prune-path='export PATH="$(echo $PATH | tr ":" "\n" | uniq | grep -v
"$(dirname $ORIG_DIR)" | tr "\n" ":")"; if [["$PATH" =~ ':'$]]; then
export PATH="${PATH::-1}";fi'
alias find-imports='find . -type f -name "*.go" -exec grep -A3 "import" {}
\; -exec echo {} \; -exec echo --- \;'
alias go-fmt='set -x;goimports -w main.go src/*;{ set +x; } 2>/dev/null'

In summary, dot init will allow you to update your dependencies with one command
(glide-update) and compile and run your application with one other command (go-run).
All you have to do to start using it is make sure that the init script exists in your project root
directory and run . init one time. The .init initialization reduces the code you have to
write and maintain, and it keeps building and running your Go app as simply as possible.

Functions available
Here're the functions available:

tdml() {
 if [-z $1]; then LEVEL=2; else LEVEL=$1;fi
 tree -C -d -L $LEVEL
}
get-go-binary() {
 GO_BINARY_URL="$1"
 if [-z $GO_BINARY_URL]; then
 echo "Missing GO_BINARY_URL. Usage: get-go-binary <GO_BINARY_URL>
Example: get-go-binary github.com/nicksnyder/go-i18n/goi18n"
 return
 fi
 TMP_DIR="tmp_dir_$RANDOM"; mkdir "$TMP_DIR"; pushd "$TMP_DIR"; export
GOPATH="$(pwd)"; go get -u $GO_BINARY_URL; popd; rm -rf "$TMP_DIR"
}

Miscellaneous Information and How-Tos Chapter 12

[594]

Motivation for using goenv
If you always use the latest version of Go or if do your development work
on a non-Macintosh computer, you can skip this section.

If we need to support multiple go runtimes, we put our Go project code in different
directories. To help us manage our go runtime environments, let's look at a little utility
script named goenv and the init script found in our project root directories.

This section assumes that you are using a Mac computer. Manage your Go
runtime environment with goenv; visit: https://github.com/ l3x/
goenv. For more information on the go command, visit: https:/ /golang.
org/ cmd/ go

Motivation for using the init script
The init script and the alias commands that it provides has one purpose:

To make building and running our Go apps easy.

Managing dependencies (third-party packages) can be a pain. Import statements can be too
long for our local source files. Always keeping our GOPATH, GOBIN, PATH, and so on up to
date can also be a pain.

I created the init script to simplify the process of building and running the example apps in
this book. I found it so useful that I use it for other projects too. I hope it works well for you,
too.

Ways to manage Go dependencies
There are over a dozen ways to manage Go dependencies. We can do so with the tools that
we will discuss in this section.

Miscellaneous Information and How-Tos Chapter 12

[595]

The go get tool
When I started developing in Go, I used the go get tool. Here's a snippet from its help
message:

go get --help
...When checking out or updating a package, get looks for a branch or tag
that matches the locally installed version of Go. The most important rule
is that if the local installation is running version "go1", get
searches for a branch or tag named "go1". If no such version exists it
retrieves the default branch of the package...

I soon learned that it would get the most recent version of all packages. Not what I wanted.

I was looking for something more like Ruby's Gemfile or the npm package manager where
I could specify the specific version of each package and create a .lock file to keep it from
changing every time I run my build tool.

The Godep tool
I used Godep for a while. And it worked fine, but it was a hassle to use.

Godep created a Godeps.json file in a Godeps directory in the root of my project. Godep
then created copies of all of my third-party packages into the Godeps directory at the root of
my project. I typically checked those third-party packages into version control with the rest
of my code.

Godep requires a number of steps that I find quirky. For example, to update a project's
dependency, you will have to update it in your GOPATH via the go get -u
github.com/another-thirdparty/package command, and then copy it from my
$GOPATH to my project's Godeps directory via the godep save github.com/another-
thirdparty/package command.

In my humble opinion, having to modify a dependency using $GOPATH is quirky.
Modifying dependencies of multiple projects using different versions of dependencies
concurrently is even more quirky (quirky == more user errors).

I like simple, not quirky.

Miscellaneous Information and How-Tos Chapter 12

[596]

Vendoring in Go
Vendoring in Go was introduced in Go 1.5. It allows Go apps to fetch dependencies not
only from $GOPATH/src, but also from a child folder named vendor, located at the root
your project. Previously, you had to save your third-party packages in the globally shared
$GOPATH path. Now, you can place your dependencies into your project's vendor folder.

I was still looking for a way to pin down the version of each package or to specify a
MAJOR.MINOR version and have my package manager grab the latest MAJOR.MINOR.PATCH
version.

For more information, visit https:/ /docs.google. com/document/ d/ 1Bz5-
UB7g2uPBdOx- rw5t9MxJwkfpx90cqG9AFL0JAYo/ edit

Glide - the modern package manager
I found Glide and appreciated its features and the fact that it's under active
development/improvement. It reminded me of Ruby's Gem package management. It's
great, but still a lot to remember.

Glide references

https:/ /github. com/ Masterminds/ glide

https:/ /glide. sh/

https:/ /glide. readthedocs. io/en/latest/getting- started/

https:/ /glide. readthedocs. io/en/latest/commands/

I just wanted to run one command to build my code and one command to run my code. I
wanted something simple, so I created the init script and its aliased commands to wrap the
functionality of Glide.

I find the init, glide-update, and go-run set of commands super easy to use. Hopefully,
you will too. Granted, when you use it to build very large projects, you will initially need to
deal with import/dependency errors, as with any dependency management tool, but I find
Glide to be the best one out there. So, what you see in this appendix is a simple set of build
and run commands that's built on top of the full featured build tool, Glide.

Miscellaneous Information and How-Tos Chapter 12

[597]

Each dot init step in detail
First, use the cd command to direct to the project directory with our source code. Let's look
at the 01_dependency-rule-good source code. This happens to be the first code project
from Chapter 7, Functional Parameters. Next, let's run goenv info, which will inform us
about our Go environment.

The cd command to project root directory
Before using dot init, you might see invalid settings for GOROOT, GOPATH, and GOBIN:

The * on the last line of output in the preceding screenshot indicates that our Go version is
set to version 1.8.3. Note that running go version returns go1.9 darwin/amd64, which
was the most recent version of Go when our book was published.
We see that our GOPATH is not properly set and that we have three versions of Go installed.

Using homebrew to install Go
On a Mac, we can use homebrew to install and manage our Go installations:

brew search go

Running the preceding command might return result like this:

go
go@1.4
go@1.5

Miscellaneous Information and How-Tos Chapter 12

[598]

go@1.6
go@1.7
go@1.8

The checks indicate which versions of Go are already installed. To install
go version 1.5, we can run brew install go@1.5. To install the latest
version of go (currently 1.9), run brew install go.

Examining the initial directory structure and files
Let's examine our initial directory structure and files:

 ~/clients/packt/dev/fp-go/2-design-patterns/ch07-onion-
arch/01_dependency-rule-good $ tree -C -d -L 2; find . -type f
.
└── src
 ├── packagea
 └── packageb

3 directories
./.bash_exports
./config.toml
./glide.yaml
./init
./main.go
./src/packagea/featurea.go
./src/packageb/featureb.go

The init script contents
Before we run our init script, let's look at the contents of our init script:

#!/bin/bash
Author : Lex Sheehan
Purpose: This script initializes a go project with glide dependency
management
For details see:
https://www.amazon.com/Learning-Functional-Programming-Lex-Sheehan-ebook/dp
/B0725B8MYW
License: MIT, 2017 Lex Sheehan LLC
MY_DEV_DIR=~/dev
CURRENT_GO_VERSION=1.9.2
USES_TOML_CONFIG_YN=no

Miscellaneous Information and How-Tos Chapter 12

[599]

LOCAL_BIN_DIR=/usr/local/bin/

Verify variables above are correct. Do not modify lines below.
if [-L "$(pwd)"]; then
 echo "You must be in the real project directory to run this init
script. You are currently in a linked directory"
 echo "Running: ln -l \"$(pwd)\""
 ls -l "$(pwd)"
 return
fi
CURRENT_GOVERSION="go$CURRENT_GO_VERSION"
ORIG_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
DEV_DIR="$MY_DEV_DIR/$(basename $ORIG_DIR)"
PROJECT_DIR_LINK="$MY_DEV_DIR/$(basename $ORIG_DIR)"
if [-L "$PROJECT_DIR_LINK"]; then
 rm "$PROJECT_DIR_LINK"
fi
if [! -d "$MY_DEV_DIR"]; then
 mkdir "$MY_DEV_DIR"
fi
Create link to project directory in MY_DEV_DIR
set -x
ln -s "$ORIG_DIR" "$PROJECT_DIR_LINK"
{ set +x; } 2>/dev/null
cd "$PROJECT_DIR_LINK"
export GOPATH=$ORIG_DIR
export GOBIN=$ORIG_DIR/bin
if [-e "$GOBIN"]; then
 rm "$GOBIN/*" 2>/dev/null
else
 mkdir "$GOBIN"
fi
#[$(which "$(basename $(pwd))")] && { echo "An executable named
$(basename $(pwd)) found on path here: $(which $(basename $(pwd))).
Continue anyway? (yes/no)"; read CONTINUE_YN; if [["$CONTINUE_YN" =~
^(yes|y)$]]; then echo 'Okay, but when you run go-run it may run the pre-
existing binary.'; else echo "You might want to rename this project
directory ($(basename $(pwd))) to a name that does not match a pre-existing
binary name."; return; fi; } 2>/dev/null
APP_NAME=$(basename $(pwd))
GOVERSION=$(go version)
echo "Installed Go version: $GOVERSION"
if [[$(type goenv)]]; then
 # Attempt to automatically set desired/current go version. This
requires goenv.
 . goenv "$CURRENT_GO_VERSION"
 echo "GOVERSION: $GOVERSION"
 echo "CURRENT_GOVERSION: $CURRENT_GOVERSION"

Miscellaneous Information and How-Tos Chapter 12

[600]

 if [-z "$GOVERSION"] || [["$(echo $GOVERSION | awk '{print $3}')" !=
"$CURRENT_GOVERSION"]]; then
 echo "Expected Go version $CURRENT_GOVERSION to be installed"
 return
 fi
else
 if [-z "$GOVERSION"] || [["$(echo $GOVERSION | awk '{print $3}')" !=
"$CURRENT_GOVERSION"]]; then
 echo "Expected Go version $CURRENT_GOVERSION to be installed.
Consider using github.com/l3x/goenv to manage your go runtimes."
 return
 fi
fi
command -v goimports >/dev/null 2>&1 || { echo >&2 "Missing goimports. For
details, see: https://github.com/bradfitz/goimports"; return; }
command -v glide >/dev/null 2>&1 || { echo >&2 "Missing glide. For
details, see: https://github.com/Masterminds/glide"; return; }
if [! -e ./src]; then
 mkdir src
fi

if [! -e ./src/mypackage/]; then
 mkdir ./src/mypackage
fi

if [! -e ./src/mypackage/myname.go]; then
 cat > ./src/mypackage/myname.go <<TEXT
package mypackage

func MyName() string { return "Alice" }
TEXT
fi

if [! -e ./main.go]; then
 cat > ./main.go <<TEXT
package main

import (
 "mypackage"
)

func main() {
 println("hello from main.go")
 println(mypackage.MyName() + " says hi from mypackage")
}
TEXT
fi

Miscellaneous Information and How-Tos Chapter 12

[601]

if [! -e ./.gitignore]; then
 cat > ./.gitignore <<TEXT
Binaries for programs and plugins
*.exe
*.dll
*.so
*.dylib

Test binary, build with `go test -c`
*.test

Output of the go coverage tool, specifically when used with LiteIDE
*.out

Project-local glide cache, RE:
https://github.com/Masterminds/glide/issues/736
.glide/

Temporary backup file created by sed in prune-project alias
main.go-e
TEXT
fi

if ["${PATH/$GOBIN}" == "$PATH"] ; then
 export PATH=$PATH:$GOBIN
fi

if [["$USES_TOML_CONFIG_YN" =~ ^(yes|y)$]]; then
 if [! -e ./config.toml]; then
 echo You were missing the config.toml configuration file...
Creating bare config.toml file ...
 echo -e "# Runtime environment\napp_env = \"development\"" >
config.toml
 fi
 ls -l config.toml
 alias go-run="go install && $APP_NAME -config ./config.toml"
else
 alias go-run="go install && $APP_NAME"
fi
alias go-test='go test ./... 2>&1 | grep -v "$(basename $(pwd))\t\[no test
files"'
alias go-test-bench='go test -bench=. ./... 2>&1 | grep -v "$(basename
$(pwd))\t\[no test files"'
alias glide-ignore-project-dirs="printf \"ignore:\n$(find ./src -maxdepth 1
-type d | tail -n +2 | sed 's|./src\/||' | sed -e 's/^/- \.\//')\n\""
alias mvglide='mkdir -p vendors && mv vendor/ vendors/src/ && export
GOPATH=$(pwd)/vendors:$(pwd);echo "vendor packages have been moved to
$(pwd)/vendors and your GOPATH: $GOPATH"'

Miscellaneous Information and How-Tos Chapter 12

[602]

alias glide-update='if [! -z $(readlink `pwd`)]; then export LINKED=true
&& pushd "$(readlink `pwd`)"; fi;rm -rf {vendor,vendors};rm glide.*;export
GOPATH=$(pwd):$(pwd)/vendors && export GOBIN=$(pwd)/bin && glide init --
non-interactive && glide-ignore-project-dirs >> glide.yaml && glide up &&
mvglide && if [$LINKED==true]; then popd;fi'
alias prune-project="(rm -rf bin pkg vendors;rm glide.lock;rm -rf
./src/mypackage;sed -i -e '/mypackage/ s/^#*/\/\//' main.go) 2>/dev/null"
alias show-path='echo $PATH | tr ":" "\n"'
alias prune-path='export PATH="$(echo $PATH | tr ":" "\n" | uniq | grep -v
"$(dirname $ORIG_DIR)" | tr "\n" ":")"; if [["$PATH" =~ ':'$]]; then
export PATH="${PATH::-1}";fi'
alias find-imports='find . -type f -name "*.go" -exec grep -A3 "import" {}
\; -exec echo {} \; -exec echo --- \;'
alias go-fmt='set -x;goimports -w main.go src/*;{ set +x; } 2>/dev/null'
tdml() {
 if [-z $1]; then LEVEL=2; else LEVEL=$1;fi
 tree -C -d -L $LEVEL
}
get-go-binary() {
 GO_BINARY_URL="$1"
 if [-z $GO_BINARY_URL]; then
 echo "Missing GO_BINARY_URL. Usage: get-go-binary <GO_BINARY_URL>
Example: get-go-binary github.com/nicksnyder/go-i18n/goi18n"
 return
 fi
 TMP_DIR="tmp_dir_$RANDOM"; mkdir "$TMP_DIR"; pushd "$TMP_DIR"; export
GOPATH="$(pwd)"; go get -u $GO_BINARY_URL; popd; rm -rf "$TMP_DIR"
}
echo You should only need to run this init script once.
echo Add Go source code files under the src directory.
echo After updating dependencies, i.e., adding a new import statement, run:
glide-update
echo To build and run your app, run: go-run

All we need to do is verify that the preceding variables the dotted line are correct:

MY_DEV_DIR=~/dev
CURRENT_GO_VERSION=1.9.2
USES_TOML_CONFIG_YN=no
LOCAL_BIN_DIR=/usr/local/bin/

If we don't change anything, the script will work using go version 1.9 and it will create a
~/dev directory if it does not already exist.

Miscellaneous Information and How-Tos Chapter 12

[603]

Running the init script
To get our project ready for development, in our terminal, just run . init.

Note that source and "." do the same thing; they run the following command in the
context of the current shell environment.

Note that our current directory path is shorter. We're in a newly linked directory. It's a link
file in MY_DEV_DIR. A benefit or side-effect of running this script is that we can go to
our MY_DEV_DIR to see what projects we've worked on lately. It's also nice not to have such
a long path name in our terminal (assuming we display our full, current directory path in
our shell prompt).

Re-examining the initial directory structure and files
We also ran the tree command to see our project directories and ran the file command to see
our files.

The only new file the init script created is PROJECT_DIR_LINK (in this example,
/home/lex/dev/01_dependency-rule-good).

Miscellaneous Information and How-Tos Chapter 12

[604]

The goenv shows what's been updated
That init script must have done something else for us, right? Let's run our goenv info
command again to see what else it did:

We get a warning because the GOPATH is actually a path. (Most other vendor solutions will
not work properly if GOPATH is anything other than a single directory.) Our GOPATH is
constructed just like our PATH environment variable. It's composed of paths appended
together, separated by a colon character.

Our GOPATH is comprised of two values: the src path (with our project source files) and the
vendors path (with our third-party dependency source files).

Running glide-update to get third-party dependency
files
After we add files to our src directory and have some import statements and before we run
our Go app, let's ensure that Go has all the source files for our dependencies that it requires
to build our application.

Miscellaneous Information and How-Tos Chapter 12

[605]

Anytime we update any import statement (and before we run our application), we run
glide-update.

We can run our Go application by typing go-run . This will compile our application
(putting the binary in our GOBIN directory) and run it. Our application outputs two lines
with the characters A and B.

Running glide-update will create the typical vendor directory and quickly rename it to
vendors (which is a further indication that this is not a standard glide installation). We don't
have to be a glide expert to get our dependencies managed by glide. Anytime we update
dependencies (and change an import statement), we just run the glide-update alias and all
the dependencies' code will go into the vendors directory and our GOPATH will know to
look there when it compiles. Also note that if you use a fancy IDE that requires you to enter
your GOROOT, GOBIN, and GOPATH, you just need to run goenv-info to see what our project
correct settings are.

If glide-update reports any errors, it will be up to us resolve them.

Miscellaneous Information and How-Tos Chapter 12

[606]

Adding standard library imports
We'll add the fmt package to the import statement in packagea:

package packagea

import (
 b "packageb"
 "fmt"
)

func Atask() {
 fmt.Println("A")
 b.Btask()
}

We'll add the log package to the import statement in packageb:

package packageb

import (
 "log"
)

func Btask() {
 log.Println("B")
}

After adding our imports, we source init:

Miscellaneous Information and How-Tos Chapter 12

[607]

Next, we update our dependencies:

Now, we can run our app:

The only difference is that the log.Println command adds a time stamp. We see that it
works, but what about the dependencies? Does the vendor's directory now have some files?

Nope. Still no files. Why?

That's because fmt and log are both from Go's standard library.

Miscellaneous Information and How-Tos Chapter 12

[608]

The Go standard library
The Go standard library is a set of core packages that enhance and extend the language.
By core, we mean that every time we compile our Go app, we'll get that pkg directory and it
will be filled with the Go standard library packages.
Go standard library packages have the following features:

They add no extra overhead
They are guaranteed to always exist
They are guaranteed to always be backwards compatible (won't break between
release cycles)

Using packages from Go's standard library will make our code easier to manage and more
reliable.
Example packages include the following:

log

fmt

encoding/json

database/sql/driver

net/http

For details regarding Go's Standard Library, refer to: https:/ /golang.
org/ pkg/

Adding third-party imports
For this example, we'll import a simple third-party utility package, go-
goodies/go_utils. I created go-goodies/go_utils back in 2015 (when I was still very
much learning the language). I have not modified much of the code in a while, so that I can
look back to see how much I've learned. It all should still work properly, but in many cases,
there are better ways to accomplish things. You've been warned, so please don't judge.

Miscellaneous Information and How-Tos Chapter 12

[609]

Importing statement referencing go_utils
Let's add a third import, u "github.com/go-goodies/go_utils".

Note that we use the preceding u in the Atask function to reference the PadLeft function:

package packagea

import (
 b "packageb"
 "fmt"
 u "github.com/go-goodies/go_utils"
)

func Atask() {
 fmt.Println(u.PadLeft("A", 3))
 b.Btask()
}

We can use the grep command on our source files for import statements:

Miscellaneous Information and How-Tos Chapter 12

[610]

Since we updated an import statement, we need to run glide-update before we run our
app:

Miscellaneous Information and How-Tos Chapter 12

[611]

This time, we can see that glide-update pulled in the third-party (go_utils) files under
the vendor's directory:

We can see that the go-goodies/go_utils references the following third-party packages:

http:// github. com/ margnus1/ go-deepcopy

http:// github. com/ nu7hatch/ gouuid

When we run our app, we see the effect of using the PadLeft function:

You can use the init script and the aliases it provides with confidence that
they will not touch your source files (well, except prune-project will
comment out lines in ./main.go that reference mypackage). The files
they modify include the soft linked directory file in your ~/dev directory
and the bin, pkg and vendors directories.

Miscellaneous Information and How-Tos Chapter 12

[612]

Development workflow summary
How you manage your dependencies, build, run, and deploy your applications is a matter
of preference. It's often a good idea to get all of the developers in your team to build
applications the same way. The techniques shared in this section demonstrate the way I
built the demo applications for this book. I kept it simple. However, the rest of the story is
that I rarely build applications in isolation like I did for this book. Nearly every time, I use
Docker in my development/test/deployment workflow. Note that the use of Docker is
out of scope of this book.

Troubleshooting dot init
This is how I resolved the build errors that occurred when converting Chapter 4, SOLID
Design in Go, to the dot init technique.

First, I used the cd command to direct to the project's root directory (where the project is
Chapter 4, SOLID Design in Go, source code):

Miscellaneous Information and How-Tos Chapter 12

[613]

Next, I ran glide-update to tell Glide to put the dependencies in the vendors directory:

But, that failed because the import statement was incorrect:

Miscellaneous Information and How-Tos Chapter 12

[614]

Here's what the imports look like now:

Tell Glide to put third-party packages in the vendor's directory.

Miscellaneous Information and How-Tos Chapter 12

[615]

Compile and run:

Bummer! .init can't find the binary.

No worries, just cd back to the original project root directory and re-source init:

If you run go-run and you see command not found, just rerun init,
glide-update, and go-run.

Still more problems!

Miscellaneous Information and How-Tos Chapter 12

[616]

Oh, right. I forgot to read the init's message and failed to run glide-update. Let's do that
next:

Miscellaneous Information and How-Tos Chapter 12

[617]

Success!

What might happen when we try to run our tests?

When we cd into our 02_fib example application and type go test -bench=. ./...,
we might run into a few errors:

This could happen if our GOROOT and/or GOPATH gets set to an invalid value.

There are two obvious errors here. The environment variables, GOROOT and GOPATH, are
both invalid.

We find the path for GOROOT on a Mac computer by typing brew info go|grep
Cellar|grep -v export:

We just happen to know that we need to add the libexec directory to the path that
returned the result as shown in previous screenshot, to set our GOPATH. We'll set our
GOPATH to the root directory of our current application, that is, our current directory. We
also set the GOBIN path to tell Go where to store the executable file that gets created when
we compile our source code.

Miscellaneous Information and How-Tos Chapter 12

[618]

Since we won't need to handle any third-party packages in this chapter,
we don't need to deal with dependency management. There are more than
a dozen Go dependency management tools available. For subsequent
chapters, we'll use Glide (https:/ / github.com/ Masterminds/ glide) for
package management and a very lightweight wrapper dot init that further
simplifies our build and run processes. For details, see the Appendix.

Note that dot init eliminates the possibility of these sort of errors.

That was a lot of information for a tool that is supposed to simplify things. True, but nearly
every time, all you need to know is in the TL;DR section.

How to propose changes to Go
I am certain that Generics are not supported in Go (not even in Go 2.0), and as mentioned in
the summary, I'm okay with that.

However, the feature that we'd benefit most greatly from, if Go had it, is Tail Call
Optimization (TCO).

The first step - search specs
Is it possible that Go already supports TCO? Time to find out.

First, I looked at the Go language specification for any mention of a TCO feature (https://
golang.org/ref/ spec).

I found nothing about TCO.

Miscellaneous Information and How-Tos Chapter 12

[619]

Second step - Google search
Next, I did the requisite Google search, and found this:

The official Golang change proposal process
Then, I learned about the process of proposing changes to Go (https:/ /github.com/
golang/proposal/).

Miscellaneous Information and How-Tos Chapter 12

[620]

Search for existing issues
Here's the process.

First, visit https:// github. com/ golang/ go/issues and search the language feature you'd
like to be added to go, for example, type tail call optimization, as shown in the
following screenshot:

Miscellaneous Information and How-Tos Chapter 12

[621]

Reading existing proposals
I clicked on the line (with 13 comments) to see details:

This is the feature that would dramatically improve our recursive function calls, for
example, the Y-Combinator.

Remember our benchmark test results from running the SumRecursive function in Chapter
1, Pure Functional Programming in Go? It was about three times slower that the imperative
version. The lack of TCO is the single most important reason why using FP on Go today is
generally not recommended. Adding TCO to the list of Go's compiler features would solve
this problem. That is why this low impact, high reward feature is so important.

Miscellaneous Information and How-Tos Chapter 12

[622]

There are other proposals that included more information in the initial post, which is a
better way to present our idea. However, when we read the subsequent comments, details
become more apparent. When I read the following comments, I was convinced that this
proposal gets my vote:

I think sharing an example of the @tco annotation I have in mind could bring more
attention to this proposal. But it is about a month before my book is published. Do I enter
the following comment in now and say, "wait for my book to get all, the glory details." or wait?
What the heck, I'm going for it.

Miscellaneous Information and How-Tos Chapter 12

[623]

Adding a comment to the existing TCO proposal
You can read the comment at https:/ /github. com/ golang/ go/issues/ 16798.

Now, I wonder if my request warrants a separate proposal for the compiler directive? For
example, Proposal: Add compiler hints in the form of comment annotations.

We'll just leave that comment as is and see what happens.

The comment turned into a new proposal (https:/ / github.com/ golang/ go/ issues/ 22624).

The conversation is ongoing as this book goes to the press.

Miscellaneous Information and How-Tos Chapter 12

[624]

Creating a new proposal
If I had not found this existing proposal, this is what I would have done. Go to https:/ /
github.com/golang/ go/ issues/ new to create an issue:

Assuming after writing the proposal, if it becomes obvious from the questions that I failed
to clearly define the proposal in the proposal message, I could then create a design
document to help clarify the request.

Miscellaneous Information and How-Tos Chapter 12

[625]

Creating a design document
I would go here, https:/ / github. com/ golang/ proposal/ click on the Create new
file button, and save it as design/NNNN-tco-annotation.md, where NNNN is the GitHub
issue number and tco-annotation is its short name. For example, 15292-generics.md
(https:// github. com/ golang/ proposal/ blob/ master/design/ 15292-generics. md).

The design doc should follow the design template format at: https:/ /github. com/golang/
proposal/blob/master/ design/ TEMPLATE. md.

Sending an email to notify the golang-dev group
After saving the design document, I would post a NEW TOPIC to the golang-dev mail
group, as follows:

Miscellaneous Information and How-Tos Chapter 12

[626]

An example proposal
Here's an example of the notification email for a well-written proposal:

Monitoring a proposal until the resolution is
reached
I would monitor my inbox for new messages regarding the proposal to check whether I
needed to add clarification. Once comments and revisions on the design doc wind down,
there will be a final discussion about the proposal and it will either be accepted or declined.

Miscellaneous Information and How-Tos Chapter 12

[627]

FP resources
Rather than compiling a list of functional programming resources that would interest Go
developers here, I'll make a github repo that can be updated over time:

 https://github.com/l3x/fp-resources

If you are aware of any missing links, feel free to submit a pull request so that I can update
the information for everyone to see.

Minggatu - Catalan number

The discovery of the Catalan number is generally credited to Eugene Catalan in 1844, even
though it was actually originally discovered more than 100 years earlier by the Chinese
mathematician Minggatu (1730).

The nth Catalan number can be represented by the following equation:

The first few Catalan numbers for n = 0, 1, 2, 3, 4, 5, 6 are 1, 1, 2, 5, 14, 42, 132.

The Catalan numbers are a sequence of numbers that appear in many counting and
computer science solutions.

Miscellaneous Information and How-Tos Chapter 12

[628]

The easiest way for me to explain the concept is by answering, How many mountain tops can
you form with n upstroke and n downstroke that all stay above the original line?

The variable Cn number of mountain tops containing n pairs of matching /\ characters:

 /\
 /\ /\ /\ /\ / \
/\/\/\, /\/ \, / \/\, / \, / \

Let's use use textual delimiters (of open and close parenthesis) to represent containers.

Catalan numbers are a fundamental concept of containment often used to assist the
conceptualization and design of new software and hardware architectures based in
combinatory logic.

The variable Cn is the number of expressions containing n pairs with matching parentheses:

()()(), ()(()), (())(), (()()), ((()))

The connection to lambda calculus is that that combinatory logic of matching parenthesis is
sufficiently expressive to formalize recursive functions, and we know from our study of the
Y-Combinator that recursive functions are fundamental.

For a better intuition, consider that in most programming languages, code is represented
internally by the interpreter or compiler using an abstract syntax tree (AST). An AST
decomposes blocks of code into its smallest parts, making it easy to transform, analyze, or
execute the code:

if b !=0 {
 result := a/b
} else {
 result := NaN
}
return result

Miscellaneous Information and How-Tos Chapter 12

[629]

The following AST chart represents the preceding code block:

Here's about what that code block looks like in LISP:

(if (b != 0) (/ a b) (NaN))

We use parentheses to represent the AST. An open parenthesis, "(", means step down a level
of the tree, and a close parenthesis, ")", means step back up a level of the tree.

There are other ways we could represent a tree structure in code.

An explanation and call to action
Though this information is directly applicable and meaningful to functional programming,
it was not placed in the History of Functional Programming because the discovery dates were
not in line with the sequence of events that lead directly to the invention/discovery of The
Lambda calculus by Alonzo Church.

This serves to show that people often think along the same lines, but for lack of
communication/collaboration, nobody knows and nobody benefits from each other's work.

Today, we are neither bound by distance nor by planes, trains, or automobiles, but by
human nature.

Miscellaneous Information and How-Tos Chapter 12

[630]

I believe that if it were up to software engineers and mathematicians, we would all share
equally and rapidly. We are eager to share what we have learned and created (and love),
but it's the corporation owners and governments (motivated by greed and power) that shut
our mouths.

I would like to acknowledge the great thinkers around the world like Minggatu and urge
my fellow engineers, of all nations, to join in an effort to replace the lust for power with our
love and passion for science.

f(x) is pure. Humanity can be impure.

The Lambda Calculus (refer to the Y-Combinator and DNA Double Helix section in the last
chapter) is empirical proof that we (Chinese, Russian, Korean, Indian, African, Arab,
American, and so on) are all more alike than we are different.

We are all created equal. Let's substitute the love for power with the power of love. Let's
put our differences aside and collaborate, whenever possible, to make a better world.

Peace,

Lex

Index

1
12-hour clock functor
 building 389
 helpers 390

4
4th generation language (4GL) 526

A
abstract syntax tree (AST) 628
Aggregate method
 reference 363
Alan Turing 511
Alfred Whitehead 507
algebra
 about 486
 laws 495
 real-world application 489
 rules 488
Alonzo Church 510
alternative workflow option 454
annotations 355
application architectures
 about 208
 functionality 208
 importance 211
 performance 208
 reference 208
 scalability 208
application programming interfaces (APIs) 553
Aspect-Oriented Programming (AOP) 353
Augustus De Morgan 505
authenticate and decrypt filters
 charging, before credit card number decryption

341

B
base class
 Int base class 472
 main.go file 473
 string base class 472
 sum base class 473, 476
 sum parent type class 473
Bash commands
 piping 44, 45
Bertrand Russell 507
big data 584
Big-Oh notation 463
boilerplate code
 for lack of generics 351
buffered implementation, pipeline pattern
 CPU cores, leveraging 332
business use case
 scenarios 456

C
car functor
 about 394
 example, executing 399
 main.go file 397
 one line of FP, comparing to bunch of imperative

lines 398
 package 395
category theory
 about 485, 543, 555
 abstract functions 544
 as algebra of functions 544
 composition operation example, using travel

expenses 546
 elements 547
 function composition, with sets 545
 function, defining 544

[632]

 function, intuitive definition 545
 using 571
category
 about 546
 axioms 547
 examples 548
 invalid categories 548
 laws 547
 rules 548
cd command
 for projecting root directory 597
chapter4 application code
 about 102, 104
 build and runtime instructions 103
 Filter function 105, 107
 FilterFunc 107
Charles Lutwidge Dodgson 506
clipperhouse/gen tool
 about 355, 359
 filter function, defining 360
 generics, supported by GO 359
 new methods, adding 360
closure rule, monoid
 axiom 400
 examples 400
codomain 540, 547
collection of cars
 Contains() method 69
 empty interface 68
 iterating over 68
collection
 iterating through 42, 43, 44
composable concurrency
 about 567
 finite state machines 568
composition operation
 (g.f)(x) = g(f(x)) composition, implementing 379
 (g.f)(x) = g(f(x)) composition, in Go 378
 about 372
 arrow directions 382
 example, in Go 373
 function composition, as associative 384
 Haskell version 375
 incorrect order of EmphasizeHumanize 382
 naming conventions 380

concurrency
 managing, WaitGroup variable used 121
container orchestrator
 reference 289
contains 67
contexts
 about 301
 functional parameters 307
 good code, writing 305
 limitations 304
 reference 301
 report example 305, 307
 src/server/server.go 309, 312
 src/server/server_options.go file 315, 317
 use case 308
converse of a conditional proposition
 about 501
 orders 501
credit card number
 charging, before authentication 342
Curry Howard Isomorphism
 about 501
 examples, of not propositions 502
 examples, of propositions 502
 Lambda calculus 502
Curry-Howard-Lambek (CHL) Correspondence

513

currying
 about 118
 example 120, 296
customer relationship management (CRM) 211
cyclic dependency
 about 221
 error code 222
 Golang difference 223
 solution 224
 working code 221

D
data visualization 584, 589
decorator pattern
 about 176
 decorator.go file 190
 implementation 180
 main.go file 180

[633]

 requestor.go file 200
 simple_log.go file 182
 type hierarchy UML 177
decorator.go file
 authorization decorator 192
 client request, wrapping up with decorators 191
 framework, for injecting dependencies 191
 graph 198
 LoadBalancing decorator 193
 Logging decorator 192
 trace log, examining 200
Decrypt filter
 ChargeCard helper function 337
 complete processing 336
Dependency Injection (DI) 195
dependency injection, Onion Architecture
 about 233
 func() main 234
dependency rule
 cyclic dependency 221
design document
 creating 625
development workflow
 about 612
 dot Init, troubleshooting 612, 618
directed acyclic graph (DAG) 78
directory structure, Onion Architecture
 func HandlePanic 232
 main.go 231
domain entities 225
Domain-Specific Languages (DSLs) 352
domains 540
duck typing
 about 150
 design 171

E
Eilenberg 512
elite player (EP) 305
empty interface-based Map function
 testing 71, 72
endomorphism 564
environment
 about 425
 variables, reference 298

error handling 128
example proposal 626
examples, quadratic equations
 about 493
 golden ratio 493, 495

F
f(x) 289
FantasyLand JavaScript specification
 about 142
 Ord algebra 143
 Setoid algebra 142
FaultTolerance 233
Feature Oriented Software Development (FOSD)

141

filter function 61, 63, 67
first in, first out (FIFO) 42
forgetful functor
 about 388
 and law 387
 rule of law 387
Forth language 524
function signature, with more than seven

parameters
 issues 282
functional composition
 about 385
 category theory, result oriented 386
 category theory, review 386
 category theory, rules 386
 forgetful functor 387
 state transitions, determining 385
functional Inversion of Control (IoC)
 example 179
 procedural design 178
functional packages 76
functional parameters 297, 301
functional programming (FP)
 about 11, 81
 characteristics 81
 closure 96
 expressions, using 101
 first-class functions 95
 functional programming 287
 generics 94

[634]

 history, in nutshell 519
 immutable state 98
 motivation 12
 reference 520
 resources 627
functors
 about 45, 54, 344, 346
 benefits, of using map function 346
 color blocks functor 347
 defining, in Haskell 348
 definition 371
 fingers times 10 functor 347
 identity operations 372
 imperative, versus pure FP example 345
 implementation 367
 implementing, with ints functors 367
 intermediate functions 54
 map function 345
 Reduce example 54
 shape 366
 terminal functions 56
 types 349

G
Gang of Four (GOF) 176
gen
 reference 355
GenerateCars function
 finishing up 121
generics code generation tool
 about 354
 clipperhouse/gen tool 354
 nums 361
generics
 about 476
 reference 366
Gibbons 517
Gleam
 about 78
 collections, processing 79
 LuaJIT, FFI library 78
 reality check 106
 Unix pipe tools 78
glide-update
 executing, for obtaining third-party dependency

files 604
Glide
 reference 596
Go dependencies
 Glide 596
 managing, with go get tool 595
 managing, with godep tool 595
 vendoring 596
Go interfaces
 used, for type embedding 163
Go projects
 building 590
 dependencies, managing 594
 development workflow 591
 dot init features 591
 dot init step 597
 executing 590
 goenv, using 594
 init script, using 594
 standard library imports, adding 606
 third-party imports, adding 608
Go proverbs
 reference 553
Go
 advantages 76
 changes, proposing 618
 disadvantages 76
 distributed computing solution, implementing 77
 error handling idiom 164
 functional programming style 76
 generics 70
 Google search 619
 map function 71
 Reader and Writer interfaces 170
 Reader and Writer interfaces, examples 171
 reference 61
 specs, searching 618
goenv
 reference 594
 updated scenarios, displaying 604
Golang 479
Golang change proposal process
 comment, adding to existing TCO proposal 623
 existing Issues, searching for 620
 existing proposals, reading 621

[635]

 reference 619
golang-dev group
 notifying, by sending email 625
Gorilla's package
 reference 302
Goroutine
 currying 118
graph database
 example 570

H
Haskell Curry 509
Haskell
 reference 426, 537
 type classes 538
helpers, 12-hour clock functor
 AmHoursFn helper 391
 AmPmMapper function 391
 main.go 392
 String helper function 391
 summary 394
 terminal output log 394
 Unit function 390
high-order functions (HOF) 82
historical events, functional programming 503,

505, 506, 507, 508, 509, 510, 511, 512, 513,
515, 516, 518

HOF application
 about 101
 chapter4 application code 103
 example 123
 RESTful resources 108
homebrew
 used, for installing Go 597
homomorphism encryption
 about 562
 example 562
homomorphism
 about 560
 car crash analogy 567
 categories 565
 encryption 562
 preserve correspondence 561

I
identity rule, monoid
 examples 401
 identity of 0 401
imperative implementation, pipeline pattern
 charge flow diagram 326
improved implementation
 Authenticate filter 335
 BuildPipeline 333
 Charge filter 337
 Decrypt filter 336
 decrypt helper function 338
 encrypt helper functions 338
 executable Goroutine 334
 Filterer interface 335
 Filterer object 335
 imports 333
 order, receiving 334
inference
 reference 510
infrastructure layers, Onion Architecture
 about 262
 context object 264
init script
 contents 598
 executing 603
init, features
 aliases 592
 functions 593
initial directory structure and files
 examining 598
 reexamining 603
interface composition 170
interface layers, Onion Architecture
 about 244
 global variables, limitations 252
 interface, testing 258
 response, formatting 253
interfaces
 used, for creating design 172
intermediate functions
 about 54
 filter 55
 map 55

[636]

 mapping example 55
 sort 55
InternationalizatioN (I18N) package 465, 469
invalid data, handling
 about 339
 attempt to charge, before credit card number

decryption 341
 authenticate and decrypt filters, order change

341

 credit card charging attempt, before
authentication 342

 invalid credit card cipher text 339
 invalid password 340
invariant 144
Inversion of Control (IoC) 195
isomorphism 563
Itertools
 about 72, 73
 Go channels, used by new function 74
 iterators, testing for element equality 75
 map function, testing 74

J
Java
 loathing 125
 loathing, reasons 127
John McCarthy 512
Jones 516

K
Keep It Simple Stupid-Glide (KISS-Glide) 181, 188
knowledge-driven development 584

L
Lambda calculus
 about 502, 509, 527
 formalism 503
 importance of protocol 503
 reference 529
lambda expressions
 about 527
 anonymous function example 528
 building, with laws of exponentials 575
 contents 528
 describing 532

 in JavaScript 532
 in JavaScript (ES6) 533
 in other languages 532
 in Ruby 533
 reference 528
 type inference 528
 visualizing 530
lambda lifting 369
Language Integrated Query (LINQ) 526
laws of exponentials
 for building lambda expression 575
 isomorphic equations 576, 577
 table legend 576
layers, Onion Architecture
 infrastructure layer 262
 interfaces layer 244, 248
 use cases layer 240
lazy evaluation 54
Liskov substitution principle
 about 144
 code example 146
 dependency inversion principle (DIP) 152
 duck typing 150
 FP function 145
 inheritance 150
 interface segregation principle 152
 OOP method 144
LoadBalancing decorator
 about 193
 dependency injection 195
 easy-metrics graph 196
 first failure 196
 Inversion of Control (IoC) 195
 strategy pattern 193
 trace log file, groking 197
logical connectives
 about 497
 function 499
 partial function 499
long parameter lists
 refactoring 281, 282

M
MacLane 512
Map function

[637]

 about 61, 63, 67, 111
 performance 112
MapReduce
 about 154
 example 155
mathematics
 correspondence 496
 using 571
maybe functor 350
memoization 55
metaprogramming (MP)
 used, for solving lack of generics 352
methods 522
Minggatu-Catalan Number 627
Modus Ponens
 about 505
 logic version 558
 type theory version 558
Moggi 516
monad
 about 153, 515
 activities 157
monadic functions
 fail 427
 fmap 427
 forever 429
 forM 429
 mapM 429
 mplus 427
 mzero 427
 return 428
 sequence 429
 void 429
monadic list functions
 filterM 430
 foldM 430
 join 430
 msum 430
 replicateM 430
 zipWithM 430
monadic workflow implementation
 about 431, 436, 441
 Lambda Calculus 444, 449
Monads, Haskell
 Error 423

 Eval 423
 Failure 423
 Free 423, 424
 Identity 424
 If 424
 IO 424
 Lazy 424
 List 424
 Maybe 424
 Option 425
 Par 425
 Parser 425
 Pause 425
 Reader 425
 Software Transactional Memory (STM) 426
 ST 426
 State 425
 Writer 426
monoid
 about 399
 examples 404, 406
 name monoid 407
 no data, handling 404
 not monoids 404
 reduction function, writing 401
 referential transparency 403
 rules 399
 semigroup 402
morphism
 about 540, 550, 554
 cartesian closed category (CCC) 558
 composition operation 551
 correspondence 556
 correspondence, between logic and type theory

558

 examples 557
 focusing on 553
 identity operation 551
 injective morphism 564
 interface-driven development 553
 law of associativity 552
 operations 557
 subjective morphism 564
 unit type 559
Moses Schonfinkel 508

[638]

Mother Teresa Monad 422
 about 415
 bind operation 418
 lift operation 419, 420
multiple parameters
 configuration object/struct, passing 295
 partial application 296
 passing, ways 295
 simply pass 295

N
name monoid
 about 407
 Int slice monoid terminal session 412
 Lineitem slice monoid 410, 412
 terminal session 408, 409
new proposal
 creating 624
non-functional requirements (NFRs) 12

O
Object Relational Mapping (ORM) 533
Object-Oriented Programming (OOP)
 about 135, 522
 cloud computing 287
 inconsistency 287
 issue 286
 limitation 283
Oliveira 517
Onion Architecture
 about 230
 client-server architecture 209
 cloud architecture 210
 dependency injection 233
 dependency injection (DI) 229
 dependency rule 220
 directory structure 231
 domain statement 224
 hollywood principle 226
 implementing 207
 infrastructure 224
 interface-driven development 225
 layers 234
 observer pattern 226
 use cases 224

 using 224
open/closed principle
 about 138
 expression problem 143
 FantasyLand JavaScript specification 142
 in functional programming 141
options, for implementing generics
 about 365
 gen tool 366

P
package errors
 reference 238
partial application 296
pipeline pattern
 about 320
 advantages 321
 buffered implementation 330
 characteristics 321
 concurrent implementation 329
 data flow types 323
 disadvantages 321
 example implementations 325
 examples 322
 generalized business application design 324
 grep sort example 320
 imperative implementation 326
 improved implementation 332
 invalid data handling, by application 339
 load balancer 323
 reference 342
 website order processing 322
Pod
 reference 288
polymorphism
 at higher level 350
post conditions 145
precondition 145
predicates
 about 57, 58, 59, 60
 combinator pattern 61
 reflection 60
problem
 splitting up 486
procedure design

[639]

 comparing, to functional Inversion of Control
(IoC) 178

 example 179
programming language
 2GL 523
 3GL 524
 4GL 524
 5GL 524
 categories 521
 declarative category 521
 first generation (1GL) language 523
 imperative category 521
 imperative example 521
 type systems 526
programming paradigms
 Venn diagram 522
proof theory
 about 497
 logical connectives 497
 truth table 499
proposal
 monitoring 626

R
Reader and Writer interfaces
 using 174
real-world application, algebra
 about 489
 law of demand 489
 linear and quadratic functions 491
 linear equation 489
 quadratic equations 490, 493
Recursive Genome Function
 reference 449
refactoring
 considerations 289, 291, 293
 solution 294
reflection, Go
 reference 353
Replace Parameter with Method
 applying 291
requestor.go file
 about 200, 201
 channels, used for managing lifecycle 202
 DI framework 205

 job, declared in main() function 201
 makeRequest goroutine, launching 204
 request, completing 204
RESTful resources
 about 108
 cars, adding 110
 chaining functions 109
 concurrency, handling 122
 GenerateCars function 116
 generators 115
 high-order functions 114
 Map function 111
 Reduce functions 113
 RESTful server 116
Roger Godement 515
rules, monoid
 associativity rule 400
 closure rule 400
 identity rule 401

S
self-referential functions
 reference 294
semaphore lock 426
semiGroup homomorphism
 about 564
 algebra 565
set theory symbols 542
simple_log.go file
 about 183
 easy-metrics GUI, used for explaining statistics

187

 InitLog calls example 183
 main package 184
single responsibility principle
 about 136
 function composition 138
SINK Cloud Bucket 230
slice typewriter
 about 364
 Aggregate[T] 364
software architecture 209
software design
 bad design 134
 good design 133

 good, versus bad design over time 134
 methodology 132
software product line
 reference 141
Software Transactional Memory (STM) 426
SOLID design principles
 about 135
 Liskov substitution principle 144
 open/closed principle 138
 single responsibility principle 136
SOURCE Cloud Bucket 230
Sprintf options
 reference 315
standard construction 515
standard library imports
 adding 606
 Go standard library 608
State Thread (ST) monad 426

T
tail recursion 462
tail-call optimization (TCO) 77, 82, 462
terminal functions
 about 56
 Collect, Join, GroupB 56
 ForEach 56
 GroupBy example 57
 Join example 56
 Reduce 56
 Reduce example 57
third-party imports
 statement referencing go_utils, importing 609
toml config file
 reference 592
truth table
 about 499
 conditional propositions 500
 converse of conditional proposition 501

 logical equivalence 500
type classes
 about 471
 base class definitions 471
type system implications
 Haskell 537
 static, versus dynamic typing 536
 type inference 536

U
Unicode Common Locale Data Repository (CLDR)
 reference 465
Unified Markup Language (UML) 133
untyped Lambda calculus 502
use cases layers, Onion Architecture
 about 240
 compatible interfaces 242

V
Viva La Duck application
 about 158
 executing 165, 167
 pass by reference 162
 pass by value 162

W
Wadler 516

Y
Y-Combinator
 about 450, 457, 462
 big-Oh notation 463
 idiomatic 453
 Lexical Workflow solution 452
 not idiomatic 453
 tail recursion 462
 working 451

	Contents
	Preface
	Pure Functional Programming in Go
	Motivation for using FP
	Getting the source code
	Imperative versus declarative programming
	Pure functions
	Fibonacci sequence - a simple recursion and two performance improvements
	The difference between an anonymous function and a closure
	Testing FP using test-driven development
	A journey from imperative programming to pure FP and enlightenment
	Summary

	Manipulating Collections
	Iterating through a collection
	Piping Bash commands
	Functors
	Predicates
	Map and filter
	Contains
	If Go had generics
	Itertools
	Functional packages
	Another time of reflection
	The cure
	Summary

	High-Order Functions
	Characteristics of FP
	Sample HOF application
	Summary

	SOLID Design in Go
	Why many Gophers loath Java
	Software design methodology
	SOLID design principles
	The big reveal
	Viva La Duck
	Summary

	Functionality with Decoration
	Interface composition
	Decorator pattern
	A decorator implementation
	Summary

	Applying FP at Architectural Level
	Application architectures
	The role of systems engineering
	Managing Complexity
	FP influenced architectures
	Domain Driven Design
	A cloud bucket application
	FP and Micyoservices
	Summary

	Functional Parameters
	Refactoring long parameter lists
	Functional parameters
	Contexts
	Summary

	Pipelining
	Introducing the pipeline pattern
	Example implementations
	Summary

	Functors, Monoids & Generics
	Understanding functors
	Solve lack of generics with metaprogramming
	Generics code generation tool
	Generics implementation options
	The shape of a functor
	Composition operation
	Functional composition in the context of a legal obligation
	Build a 12-hour clock functor
	The car functor
	Monoids
	Monoid examples
	Summary

	Monads, Type Classes & Generics
	Mother Teresa Monad
	Monadic workflow implementation
	Y-Combinator
	An alternative workflow option
	Business use case scenarios
	Y-Combinator re-examined
	Type classes
	Generics revisited
	Summary

	Category Theory
	Our goal
	Proof theory
	The Curry Howard isomorphism
	Historical Events in Functional Programming
	Programming language categories
	The Lambda Calculus
	The importance of Type systems to FP
	Domains, codomains, and morphisms
	Set theory symbols
	Category theory
	Morphisms
	Homomorphism
	Composable concurrency
	Graph Database Example
	Using mathematics and category theory to gain understanding
	Fun with Sums, Products, Exponents and Types
	Big data, knowledge-driven development, and data visualization
	Summary

	Misc Info & How-to
	How to build and run Go projects
	Development workflow summary
	How to propose changes to Go
	FP resources
	Minggatu - Catalan number

	Index

