

Hands-On System Programming with Go

Build modern and concurrent applications for Unix and Linux systems using
Golang

Alex Guerrieri

BIRMINGHAM - MUMBAI

Hands-On System Programming
with Go
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or
its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this
book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar
Content Development Editor: Tiksha Sarang
Senior Editor: Afshaan Khan
Technical Editor: Sabaah Navlekar
Copy Editor: Safis Editing
Language Support Editor: Storm Mann
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Shraddha Falebhai

First published: July 2019

Production reference: 1040719

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-407-2

www.packtpub.com

http://www.packtpub.com

To my family, who laid the foundation of the path I am on today
– Alex Guerrieri

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and
videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://subscribe.packtpub.com/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.pa
ckt.com and, as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

http://www.packt.com
http://www.packt.com

Contributors

About the author
Alex Guerrieri is a software developer who specializes in backend and
distributed systems. Go has been his favorite tool for the job since first using
it in 2013. He holds a degree in computer science engineering and has been
working in the field for more than 6 years. Originally from Italy, where he
completed his studies and started his career as a full-stack developer, he now
lives in Spain, where he previously worked in two start-ups—source{d} and
Cabify. He is now working for three companies—as a software crafter for
BBVA, one of the biggest Spanish banks; as a software architect for Security
First, London, a company focusing on digital and physical security; and as a
cofounder of DauMau, the company behind Vidsey, software that generates
videos in a procedural manner.

To all the people in my life who supported me and put up with me throughout this endeavor of writing
this book, thank you.

About the reviewers
Corey Scott is a principal software engineer currently living in Melbourne,
Australia. He has been programming professionally since 2000, with the last
5 years spent building large-scale distributed services in Go.

A blogger on a variety of software-related topics, he is passionate about
designing and building quality software. He believes that software
engineering is a craft that should be honed, debated, and continuously
improved. He takes a pragmatic, non-zealous approach to coding, and is
always up for a good debate about software engineering, continuous delivery,
testing, or clean coding.

Janani Selvaraj is currently working as a data analytics consultant for
Gaddiel Technologies, Trichy, where she focuses on providing data analytics
solutions for start-up companies. Her previous experience includes training
and research development in relation to data analytics and machine learning.

She has a PhD in environmental management and has more than 5
years' research experience with regard to statistical modeling. She is also
proficient in a number of programming languages, including R, Python, and
Go.

She reviewed a book entitled Go Machine Learning Projects, and also
coauthored a book entitled Machine Learning Using Go, published by Packt
Publishing.

Arun Muralidharan is a software developer with over 9 years' experience as
a systems developer. Distributed system design, architecture, event systems,
scalability, performance, and programming languages are some of the aspects
of a product that interest him the most. Professionally, he spends most of his
time coding in C++, Python, and C (and perhaps Go in the near future). Away
from his job, he also develops software in Go and Rust.

I would like to take this opportunity to thank my family, who have provided me with unconditional
support over the years.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packtp
ub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

Hands-On System Programming with Go

Dedication

About Packt

Why subscribe?

Contributors

About the author

About the reviewers

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Code in Action

Playground examples

Conventions used

Get in touch

Reviews

1. Section 1: An Introduction to System Programming and Go

1. An Introduction to System Programming

Technical requirements

Beginning with system programming

Software for software

Languages and system evolution

System programming and software engineering

Application programming interfaces

Types of APIs

Operating systems

Libraries and frameworks

Remote APIs

Web APIs

Understanding the protection ring

Architectural differences

Kernel space and user space

Diving into system calls

Services provided

Process control

File management

Device management

Information maintenance

Communication

The difference between operating systems

Understanding the POSIX standard

POSIX standards and features

POSIX.1 – core services

POSIX.1b and POSIX.1c – real-time and thread extensions

POSIX.2 – shell and utilities

OS adherence

Linux and macOS

Windows

Summary

Questions

2. Unix OS Components

Technical requirements

Memory management

Techniques of management

Virtual memory

Understanding files and filesystems

Operating systems and filesystems

Linux

macOS

Windows

Files and hard and soft links

Unix filesystem

Root and inodes

Directory structure

Navigation and interaction

Mounting and unmounting

Processes

Process properties

Process life cycle

Foreground and background

Killing a job

Users, groups, and permissions

Users and groups

Owner, group, and others

Read, write, and execute

Changing permission

Process communications

Exit codes

Signals

Pipes

Sockets

Summary

Questions

3. An Overview of Go

Technical requirements

Language features

History of Go

Strengths and weaknesses

Namespace

Imports and exporting symbols

Type system

Basic types

Composite types

Custom-defined types

Variables and functions

Handling variables

Declaration

Operations

Casting

Scope

Constants

Functions and methods

Values and pointers

Understanding flow control

Condition

Looping

Exploring built-in functions

Defer, panic, and recover

Concurrency model

Understanding channels and goroutines

Understanding memory management

Stack and heap

The history of GC in Go

Building and compiling programs

Install

Build

Run

Summary

Questions

2. Section 2: Advanced File I/O Operations

4. Working with the Filesystem

Technical requirements

Handling paths

Working directory

Getting and setting the working directory

Path manipulation

Reading from files

Reader interface

The file structure

Using buffers

Peeking content

Closer and seeker

Writing to file

Writer interface

Buffers and format

Efficient writing

File modes

Other operations

Create

Truncate

Delete

Move

Copy

Stats

Changing properties

Third-party packages

Virtual filesystems

Filesystem events

Summary

Questions

5. Handling Streams

Technical requirements

Streams

Input and readers

The bytes reader

The strings reader

Defining a reader

Output and writers

The bytes writer

The string writer

Defining a writer

Built-in utilities

Copying from one stream to another

Connected readers and writers

Extending readers

Writers and decorators

Summary

Questions

6. Building Pseudo-Terminals

Technical requirements

Understanding pseudo-terminals

Beginning with teletypes

Pseudo teletypes

Creating a basic PTY

Input management

Selector

Command execution

Some refactor

Improving the PTY

Multiline input

Providing color support to the pseudo-terminal

Suggesting commands

Extensible commands

Commands with status

Volatile status

Persistent status

Upgrading the Stack command

Summary

Questions

3. Section 3: Understanding Process Communication

7. Handling Processes and Daemons

Technical requirements

Understanding processes

Current process

Standard input

User and group ID

Working directory

Child processes

Accessing child properties

Standard input

Beginning with daemons

Operating system support

Daemons in action

Services

Creating a service

Third-party packages

Summary

Questions

8. Exit Codes, Signals, and Pipes

Technical requirements

Using exit codes

Sending exit codes

Exit codes in bash

The exit value bit size

Exit and deferred functions

Panics and exit codes

Exit codes and goroutines

Reading child process exit codes

Handling signals

Handling incoming signals

The signal package

Graceful shutdowns

Exit cleanup and resource release

Configuration reload

Sending signals to other processes

Connecting streams

Pipes

Anonymous pipes

Standard input and output pipes

Summary

Questions

9. Network Programming

Technical requirements

Communicating via networks

OSI model

Layer 1 – Physical layer

Layer 2 – Data link layer

Layer 3 – Network layer

Layer 4 – Transport layer

Layer 5 – Session layer

Layer 6 – Presentation layer

Layer 7 – Application layer

TCP/IP – Internet protocol suite

Layer 1 – Link layer

Layer 2 – Internet layer

Layer 3 – Transport layer

Layer 4 – Application layer

Understanding socket programming

Network package

TCP connections

UDP connections

Encoding and checksum

Web servers in Go

Web server

HTTP protocol

HTTP/2 and Go

Using the standard package

Making a HTTP request

Creating a simple server

Serving filesystem

Navigating through routes and methods

Multipart request and files

HTTPS

Third-party packages

gorilla/mux

gin-gonic/gin

Other functionalities

HTTP/2 Pusher

WebSockets protocol

Beginning with the template engine

Syntax and basic usage

Creating, parsing, and executing templates

Conditions and loops

Template functions

RPC servers

Defining a service

Creating the server

Creating the client

Summary

Questions

10. Data Encoding Using Go

Technical requirements

Understanding text-based encoding

CSV

Decoding values

Encoding values

Custom options

JSON

Field tags

Decoder

Encoder

Marshaler and unmarshaler

Interfaces

Generating structs

JSON schemas

XML

Structure

Document Type Definition

Decoding and encoding

Field tags

Marshaler and unmarshaler

Generating structs

YAML

Structure

Decoding and encoding

Learning about binary encoding

BSON

Encoding

Decoding

gob

Interfaces

Encoding

Decoding

Interfaces

Proto

Structure

Code generation

Encoding

Decoding

gRPC protocol

Summary

Questions

4. Section 4: Deep Dive into Concurrency

11. Dealing with Channels and Goroutines

Technical requirements

Understanding goroutines

Comparing threads and goroutines

Threads

Goroutines

New goroutine

Multiple goroutines

Argument evaluation

Synchronization

Exploring channels

Properties and operations

Capacity and size

Blocking operations

Closing channels

One-way channels

Waiting receiver

Special values

nil channels

Closed channels

Managing multiple operations

Default clause

Timers and tickers

Timers

AfterFunc

Tickers

Combining channels and goroutines

Rate limiter

Workers

Pool of workers

Semaphores

Summary

Questions

12. Synchronization with sync and atomic

Technical requirements

Synchronization primitives

Concurrent access and lockers

Mutex

RWMutex

Write starvation

Locking gotchas

Synchronizing goroutines

Singleton in Go

Once and Reset

Resource recycling

Slices recycling issues

Conditions

Synchronized maps

Semaphores

Atomic operations

Integer operations

clicker

Thread-safe floats

Thread-safe Boolean

Pointer operations

Value

Under the hood

Summary

Questions

13. Coordination Using Context

Technical requirements

Understanding context

The interface

Default contexts

Background

TODO

Cancellation, timeout, and deadline

Cancellation

Deadline

Timeout

Keys and values

Context in the standard library

HTTP requests

Passing scoped values

Request cancellation

HTTP server

Shutdown

Passing values

TCP dialing

Cancelling a connection

Database operations

Experimental packages

Context in your application

Things to avoid

Wrong types as keys

Passing parameters

Optional arguments

Globals

Building a service with Context

Main interface and usage

Exit and entry points

Exclude list

Handling directories

Checking file names and contents

Summary

Questions

14. Implementing Concurrency Patterns

Technical requirements

Beginning with generators

Avoiding leaks

Sequencing with pipelines

Muxing and demuxing

Fan-out

Fan-in

Producers and consumers

Multiple producers (N * 1)

Multiple consumers (1 * M)

Multiple consumers and producers (N*M)

Other patterns

Error groups

Leaky bucket

Sequencing

Summary

Questions

5. Section 5: A Guide to Using Reflection and CGO

15. Using Reflection

Technical requirements

What's reflection?

Type assertions

Interface assertion

Understanding basic mechanics

Value and Type methods

Kind

Value to interface

Manipulating values

Changing values

Creating new values

Handling complex types

Data structures

Changing fields

Using tags

Maps and slices

Maps

Slices

Functions

Analyzing a function

Invoking a function

Channels

Creating channels

Sending, receiving, and closing

Select statement

Reflecting on reflection

Performance cost

Usage in the standard library

Using reflection in a package

Property files

Using the package

Summary

Questions

16. Using CGO

Technical requirements

Introduction to CGO

Calling C code from Go

Calling Go code from C

The C and Go type systems

Strings and byte slices

Integers

Float types

Unsafe conversions

Editing a byte slice directly

Numbers

Working with slices

Working with structs

Structures in Go

Manual padding

Structures in C

Unpacked structures

Packed structures

CGO recommendations

Compilation and speed

Performance

Dependency from C

Summary

Questions

Assessments

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
This book will provide good, in-depth explanations of various interesting Go
concepts. It begins with Unix and system programming, which will help you
understand what components the Unix operating system has to offer, from the
kernel API to the filesystem, and allow you to familiarize yourself with the
basic concepts of system programming.

Next, it moves on to cover the application of I/O operations, focusing on the
filesystem, files, and streams in the Unix operating system. It covers many
topics, including reading from and writing to files, among other I/O
operations.

This book also shows how various processes communicate with one another.
It explains how to use Unix pipe-based communication in Go, how to handle
signals inside an application, and how to use a network to communicate
effectively. Also, it shows how to encode data to improve communication
speed.

The book will, toward the end, help you to understand the most modern
feature of Go—concurrency. It will introduce you to the tools the language
has, along with sync and channels, and how and when to use each one.

Who this book is for
This book is for developers who want to learn system programming with Go.
Although no prior knowledge of Unix and Linux system programming is
necessary, some intermediate knowledge of Go will help you to understand
the concepts covered in the book.

What this book covers
Chapter 1, An Introduction to System Programming, introduces you to Go and
system programming and provides some basic concepts and an overview of
Unix and its resources, including the kernel API. It also defines many
concepts that are used throughout the rest of the book.

Chapter 2, Unix OS Components, focuses on the Unix operating system and the
components that you will interact with—files and the filesystem, processes,
users and permissions, threads, and others. It also explains the various
memory management techniques of the operating system, and how Unix
handles resident and virtual memory.

Chapter 3, An Overview of Go, takes a look at Go, starting with some history of
the language and then explaining, one by one, all its basic concepts, starting
with namespaces and the type system, variables, and flow control, and
finishing with built-in functions and the concurrency model, while also
offering an explanation of how Go interacts and manages its memory.

Chapter 4, Working with the Filesystem, helps you to understand how the Unix
filesystem works and how to master the Go standard library to handle file
path operations, file reading, and file writing.

Chapter 5, Handling Streams, helps you to learn about the interfaces for the
input and output streams that Go uses to abstract data flows. It explains how
they work and how to combine them and best use them without leaking
information.

Chapter 6, Building Pseudo-Terminals, helps you understand how a pseudo-
terminal application works and how to create one. The result will be an
interactive application that uses standard streams just as the command line
does.

Chapter 7, Handling Processes and Daemons, provides an explanation of what

processes are and how to handle them in Go, how to start child processes
from a Go application, and how to create a command-line application that
will stay in the background (a daemon) and interact with it.

Chapter 8, Exit Codes, Signals, and Pipes, discusses Unix inter-process
communication. It explains how to use exit codes effectively. It shows you
how signals are handled by default inside an application, and how to manage
them with some patterns for effective signal handling. Furthermore, it
explains how to connect the output and input of different processes using
pipes.

Chapter 9, Network Programming, explains how to use a network to make
processes communicate. It explains how network communication protocols
work. It initially focuses on low-level socket communication, such as TCP
and UDP, before moving on to web server development using the well-
known HTTP protocol. Finally, it shows how to use the Go template engine.

Chapter 10, Data Encoding Using Go, explains how to leverage the Go
standard library to encode complex data structures in order to facilitate
process communications. It analyzes both text-based protocols, such as XML
and JSON, and binary-based protocols, such as GOB.

Chapter 11, Dealing with Channels and Goroutines, explains the basics of
concurrency and channels and some general rules that prevent the creation of
deadlocks and resource-leaking inside an application.

Chapter 12, Synchronization with sync and atomic, discusses the
synchronization packages of the sync and sync/atomic standard libraries, and
how they can be used instead of channels to achieve concurrency easily. It
also focuses on avoiding the leaking of resources and on recycling resources.

Chapter 13, Coordination Using Context, discusses Context, a relatively new
package introduced in Go that offers a simple way of handling asynchronous
operations effectively.

Chapter 14, Implementing Concurrency Patterns, uses the tools from the
previous three chapters and demonstrates how to use and combine them to

communicate effectively. It focuses on the most common patterns used in Go
for concurrency.

Chapter 15, Using Reflection, explains what reflection is and whether you
should use it. It shows where it's used in the standard library and guides you
in creating a practical example. It also shows how to avoid using reflection
where there is no need to.

Chapter 16, Using CGO, explains how CGO works and why and when you
should use it. It explains how to use C code inside a Go application, and vice
versa.

To get the most out of this book
Some basic knowledge of Go is required to try the examples and to build
modern applications.

Each chapter includes a set of questions that will help you to gauge your
understanding of the chapter. The answers to these questions are provided in
the Assessments section of the book. These questions will prove very
beneficial for you, as they will help you revisit each chapter at a glance.

Apart from this, each chapter provides you with instructions on how to run
the code files, while the GitHub repository of the book provides the requisite
details.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pac
ktPublishing/Hands-On-System-Programming-with-Go. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-System-Programming-with-Go
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/downloa
ds/9781789804072_ColorImages.pdf.

https://static.packt-cdn.com/downloads/9781789804072_ColorImages.pdf

Code in Action
Visit the following link to check out videos of the code being run: http://bit.l
y/2ZWgJb5.

http://bit.ly/2ZWgJb5

Playground examples
In the course of the book you will find many snippets of code followed by a
link to https://play.golang.org, a service that allows you to run Go applications
with some limitations. You can read more about it at https://blog.golang.org/pla
yground.

In order to see the full source code of such examples, you need to visit the
Playground link. Once on the website, you can press the Run button to
execute the application. The bottom part of the page will show the output.
The following is an example of the code running in the Go Playground:

https://play.golang.org
https://blog.golang.org/playground

If you want, you have the possibility of experimenting by adding and editing
more code to the examples, and then running them.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "This type of service includes load, which adds a
program to memory and prepares for its execution before passing control to
the program itself, or execute, which runs an executable file in the context of a
pre-existing process."

A block of code is set as follows:

<meta name="go-import" content="package-name vcs repository-url">

Any command-line input or output is written as follows:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "In the meantime, systems started to get distributed,
and applications started to get shipped in containers, orchestrated by other
system software, such as Kubernetes."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packt.com/submi
t-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

Section 1: An Introduction to
System Programming and Go
This section is an introduction to Unix and system programming. It will help
you understand what components Unix operating systems have to offer, from
the kernel API to the filesystem, and you will become familiar with system
programming's basic concepts.

This section consists of the following chapters:

Chapter 1, An Introduction to System Programming
Chapter 2, Unix OS Components
Chapter 3, An Overview of Go

An Introduction to System
Programming
This chapter is an introduction to system programming, exploring a range of
topics from its original definition to how it has shifted in time with system
evolution. This chapter provides some basic concepts and an overview of
Unix and its resources, including the kernel and the application
programming interfaces (API). Many of these concepts are defined here
and are used in the rest of the book.

The following topics will be covered in this chapter:

What is system programming?
Application programming interfaces
Understanding how the protection ring works
An overview of system calls
The POSIX standard

Technical requirements
This chapter does not require you to install any special software if you're on
Linux.

If you are a Windows user, you can install the Windows Subsystem for
Linux (WSL). Follow these steps in order to install WSL:

1. Open PowerShell as administrator and run the following:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

2. Restart your computer when prompted.
3. Install your favorite Linux distribution from the Microsoft Store.

Beginning with system
programming
Over the years, the IT landscape has shifted dramatically. Multicore CPUs
that challenge the Von Neumann machine, the internet, and distributed
systems are just some of the changes that occurred in the last 30 years. So,
where does system programming stand in this landscape?

Software for software
Let's start with the standard textbook definition first.

System programming (or systems programming) is the activity of
programming computer system software. The primary distinguishing
characteristic of system programming when compared to application
programming is that application programming aims to produce software that
provides services directly to the user (for example, a word processor),
whereas system programming aims to produce software and software
platforms that provide services to other software, and are designed to work in
performance-constrained environments, for example, operating systems,
computational science applications, game engines and AAA video games,
industrial automation, and software as a service applications.

The definition highlights two main concepts of what system applications
are as follows:

Software that is used by other software, not directly by the final user.
The software is hardware aware (it knows how the hardware works), and
is oriented toward performance.

This makes it possible to easily recognize as system software operating
system kernels, hardware drivers, compilers, and debuggers, and not as
system software, a chat client, or a word processor.

Historically, system programs were created using Assembly and C. Then
came the shells and the scripting languages that were used to tie together the
functionality offered by system programs. Another characteristic of system
languages was the control of the memory allocation.

Languages and system evolution
In the last decade, scripting languages gained popularity to the point at which
some had significant performance improvement and entire systems were built
with them. For example, let's just think about the V8 Engine for JavaScript
and the PyPy implementation of Python, which dramatically shifted the
performance of these languages.

Other languages, such as Go, proved that garbage collection and performance
are not mutually exclusive. In particular, Go managed to replace its own
memory allocator written in C with a native version written in Go in release
1.5, improving it to the point where the performance was comparable.

In the meantime, systems started to get distributed and the applications
started to get shipped in containers, orchestrated by other system software,
such as Kubernetes. These systems are meant to sustain huge throughput and
achieve it in two main ways:

By scaling—augmenting the number or the resources of the machines
that are hosting the system
By optimizing the software in order to be more resource effective

System programming and software
engineering
Some of the practices of system programming—such as having an
application that is tied to the hardware, performance oriented, and working on
an environment that is resource constrained—are an approach that can also be
valid when building distributed systems, where constraining resource usage
allows the reduction of the number of instances needed. It looks like system
programming is a good way of addressing generic software engineering
problems.

This means that learning the concept of system programming with regards to
using the resource of the machine efficiently—from memory usage to
filesystem access—will be useful when building any type of application.

Application programming
interfaces
APIs are series subroutine definitions, communication protocols, and tools
for building software. The most important aspects of an API are the
functionalities that it offers, combined with its documentation, which
facilitates the user in the usage and implementation of the software itself in
another software. An API can be the interface that allows an application
software to use a system software.

An API usually has a specific release policy that is meant to be used by a
specific group of recipients. This can be the following:

Private and for internal use only
Partner and usable by determined groups only—this may include
companies that want to integrate the service with theirs
Public and available for every user

Types of APIs
We'll see that there are several types of APIs, from the ones used to make
different application software work together, to the inner ones exposed by the
operating system to other software.

Operating systems
An API can specify how to interface an application and the operating system.
For instance, Windows, Linux, and macOS have an interface that makes it
possible to operate with the filesystem and files.

Libraries and frameworks
The API related to a software library describes and prescribes (provides
instructions on how to use it) how each of its elements should behave,
including the most common error scenarios. The behavior and interfaces of
the API is usually referred to as library specification, while the library is the
implementation of the rules described in such specification. Libraries and
frameworks are usually language bound, but there are some tools that make it
possible to use a library in a different language. You can use C code in Go
using CGO, and in Python you can use CPython.

Remote APIs
These make it possible to manipulate remote resources using specific
standards for communication that allow different technologies to work
together, regardless of the language or platform. A good example is the Java
Database Connectivity (JDBC) API, which allows querying many different
types of databases with the same set of functions, or the Java remote method
invocation API (Java RMI), which allows the use of remote functions as if
they were local.

Web APIs
Web APIs are interfaces that define a series of specifications about the
protocol used, message encoding, and available endpoints with their expected
input and output values. There are two main paradigms for this kind of API—
REST and SOAP:

REST APIs have the following characteristics:
They treat data as a resource.
Each resource is identified by a URL.
The type of operation is specified by the HTTP method.

SOAP protocols have the following characteristics:
They are defined by the W3C standard.
XML is the only encoding used for messages.
They use a series of XML schema to verify the data.

Understanding the protection ring
The protection ring, also referred to as hierarchical protection domains, is
the mechanism used to protect a system against failure. Its name is derived
from the hierarchical structure of its levels of permission, represented by
concentric rings, with privilege decreasing when moving to the outside rings.
Between each ring there are special gates that allow the outer ring to access
the inner ring resources in a restricted manner.

Architectural differences
The number and order of rings depend on the CPU architecture. They are
usually numbered with decreasing privilege, making ring 0 the most
privileged one. This is true for i386 and x64 architecture that use four rings
(from ring 0 to ring 3) but it's not true for ARM, which uses reverse order
(from EL3 to EL0). Most operating systems are not using all four levels; they
end up using a two level hierarchy—user/application (ring 3) and kernel (ring
0).

Kernel space and user space
A software that runs under an operating system will be executed at user (ring
3) level. In order to access the machine resources, it will have to interact with
the operating system kernel (that runs at ring 0). Here's a list of some of the
operations a ring 3 application cannot do:

Modify the current segment descriptor, which determines the current
ring
Modify the page tables, preventing one process from seeing the memory
of other processes
Use the LGDT and LIDT instructions, preventing them from registering
interrupt handlers
Use I/O instructions such as in and out that would ignore file
permissions and read directly from disk

The access to the content of the disk, for instance, will be mediated by the
kernel that will verify that the application has permission to access the data.
This kind of negotiation improves security and avoids failures, but comes
with an important overhead that impacts the application performance.

Some applications can be designed to run directly on the hardware without
the framework provided by an operating system. This is true for real-time
systems, where there is no compromise on response times and performance.

Diving into system calls
System calls are the way operating systems provide access to the resources
for the applications. It is an API implemented by the kernel for accessing the
hardware safely.

Services provided
There are some categories that we can use to split the numerous functions
offered by the operating system. These include the control of the running
applications and their flow, the filesystem access, and the network.

Process control
This type of services includes load, which adds a program to memory and
prepares for its execution before passing control to the program itself,
or execute, which runs an executable file in the context of a pre-existing
process. Other operations that belong to this category are as follows:

end and abort—the first requires the application to exit while the second
forces it.
CreateProcess, also known as fork on Unix systems or NtCreateProcess in
Windows.
Terminate process.
Get/set process attributes.
Wait for time, wait event, or signal event.
Allocate and free memory.

File management
The handling of files and filesystems belongs to file management system
calls. There are create and delete files that make it possible to add or remove
an entry from the filesystem, and open and close operations that make it
possible to gain control of a file in order to execute read and write operations.
It is also possible to read and change file attributes.

Device management
Device management handles all other devices but the filesystem, such as
frame buffers or display. It includes all operations from the request of a
device, including the communication to and from it (read, write, seek), and its
release. It also includes all the operations of changing device attributes and
logically attaching and detaching them.

Information maintenance
Reading and writing the system date and time belongs to the information
maintenance category. This category also takes care of other system data,
such as the environment. Another important set of operations that belongs
here is the request and the manipulation of processes, files, and device
attributes.

Communication
All the network operations from handling sockets to accepting connections
fall into the communication category. This includes the creation,
deletion, and naming of connections, and sending and receiving messages.

The difference between operating
systems
Windows has a series of different system calls that cover all the kernel
operations. Many of these correspond exactly with the Unix equivalent.
Here's a list of some of the overlapping system calls:

Windows Unix

Process control
CreateProcess()

ExitProcess()

WaitForSingleObject()

fork()

exit()

wait()

File manipulation
CreateFile()

ReadFile()

WriteFile()

CloseHandle()

open()

read()

write()

close()

File protection
SetFileSecurity()

InitializeSecurityDescriptor()

SetSecurityDescriptorGroup()

chmod()

umask()

chown()

Device management
SetConsoleMode()

ReadConsole()

WriteConsole()

ioctl()

read()

write()

Information maintenance
GetCurrentProcessID()

SetTimer()

Sleep()

getpid()

alarm()

sleep()

Communication
CreatePipe()

CreateFileMapping()

MapViewOfFile()

pipe()

shmget()

mmap()

Understanding the POSIX standard
In order to ensure consistency between operating systems, IEEE formalized
some standards for operating systems. These are described in the following
sections.

POSIX standards and features
Portable Operating System Interface (POSIX) for Unix represents a series
of standards for operating system interfaces. The first version dates back to
1988 and covers a series of topics like filenames, shells, and regular
expressions.

There are many features defined by POSIX, and they are organized in four
different standards, each one focusing on a different aspect of the Unix
compliance. They are all named POSIX followed by a number.

POSIX.1 – core services
POSIX.1 is the 1988 original standard, which was initially named POSIX but
was renamed to make it possible to add more standards to the family without
giving up the name. It defines the following features:

Process creation and control
Signals:

Floating point exceptions
Segmentation/memory violations
Illegal instructions
Bus errors
Timers

File and directory operations
Pipes
C library (standard C)
I/O port interface and control
Process triggers

POSIX.1b and POSIX.1c – real-
time and thread extensions
POSIX.1b focuses on real-time applications and on applications that need
high performance. It focus on these aspects:

Priority scheduling
Real-time signals
Clocks and timers
Semaphores
Message passing
Shared memory
Asynchronous and synchronous I/O
Memory locking interface

POSIX.1c introduces the multithread paradigm and defines the following:

Thread creation, control, and cleanup
Thread scheduling
Thread synchronization
Signal handling

POSIX.2 – shell and utilities
POSIX.2 specifies standards for both a command-line interpreter and utility
programs as cd, echo, or ls.

OS adherence
Not all operating systems are POSIX compliant. Windows was born after the
standard and it is not compliant, for instance. From a certification point of
view, macOS is more compliant than Linux, because the latter uses another
standard built on top of POSIX.

Linux and macOS
Most Linux distributions follow the Linux Standard Base (LSB), which is
another standard that includes POSIX and much more, focusing on
maintaining the inter-compatibility between different Linux distributions. It is
not considered officially compliant because the developers didn't go into the
process of certification.

However, macOS became fully compatible in 2007 with the Snow Leopard
distribution, and it has been POSIX-certified since then.

Windows
Windows is not POSIX compliant, but there are many attempts to make it so.
There are open source initiatives such as Cygwin and MinGW that provide a
less POSIX-compliant development environment, and support C applications
using the Microsoft Visual C runtime library. Microsoft itself has made some
attempts at POSIX compatibility, such as the Microsoft POSIX subsystem.
The latest compatibility layer made by Microsoft is the Windows Linux
Subsystem, which is an optional feature that can be activated in Windows 10
and has been well received by developers (including myself).

Summary
In this chapter, we saw what system programming means—writing system
software that has some strict requirements, such as being tied to the
hardware, using a low-level language, and working in a resource-
constrained environment. Its practices can be really useful when building
distributed systems that normally require optimizing resource usage. We
discussed APIs, definitions that allows software to be used by other software,
and listed the different types—the ones in the operating system, libraries and
frameworks, and remote and web APIs.

We analyzed how, in operating systems, the access to resources is arranged in
hierarchical levels called protection rings that prevent uncontrolled usage in
order to improve security and avoid failures from the applications. The Linux
model simplifies this hierarchy to just two levels called user and kernel
space. All the applications are running in the user space, and in order to
access the machine's resources they need the kernel to intercede.

Then we saw one specific type of API called system calls that allows the
applications to request resources to the kernel, and mediates process control,
access and management of files, and devices and network communications.

We gave an overview of the POSIX standard, which defines Unix system
interoperability. Among the features defined, there are also the C API, CLI
utilities, shell language, environment variables, program exit status, regular
expressions, directory structures, filenames, and command-line utility API
conventions.

In the next chapter, we will explore the Unix operating system resources such
as the filesystem and the Unix permission model. We will look at what
processes are, how they communicate with each other, and how they handle
errors.

Questions
1. What is the difference between application and system programming?
2. What is an API? Why are APIs so important?
3. Could you explain how protection rings work?
4. Can you make some examples of what cannot be done in user space?
5. What's a system call?
6. Which calls are used in Unix to manage a process?
7. Why is POSIX useful?
8. Is Windows POSIX compliant?

Unix OS Components
This chapter will be focusing on Unix OS and on the components that the
user will interact with: files and filesystems, processes, users and
permissions, and so on. It will also explain some basic process
communication and how system program error handling works. All these
parts of the operating system will be the ones we will be interacting with
when creating system applications.

The following topics will be covered in this chapter:

Memory management
Files and filesystems
Processes
Users, groups, and permissions
Process communications

Technical requirements
In the same way as the previous chapter, this one does not require any
software to be installed: any other POSIX-compliant shell is enough.

You could choose, for instance, Bash (https://www.gnu.org/software/bash/), which
is recommended, Zsh (http://www.zsh.org/), or fish (https://fishshell.com/).

https://www.gnu.org/software/bash/
http://www.zsh.org/
https://fishshell.com/

Memory management
The operating system handles the primary and secondary memory usage of
the applications. It keeps track of how much of the memory is used, by which
process, and what parts are free. It also handles allocation of new memory
from the processes and memory de-allocation when the processes are
complete.

Techniques of management
There are different techniques for handling memory, including the following:

Single allocation: All the memory, besides the part reserved for the OS,
is available for the application. This means that there can only be one
application in execution at a time, like in Microsoft Disk Operating
System (MS-DOS).
Partitioned allocation: This divides the memory into different blocks
called partitions. Using one of these blocks per process makes it possible
to execute more than one process at once. The partitions can be
relocated and compacted in order to obtain more contiguous memory
space for the next processes.
Paged memory: The memory is divided into parts called frames, which
have a fixed size. A process' memory is divided into parts of the same
size called pages. There is a mapping between pages and frames that
makes the process see its own virtual memory as contiguous. This
process is also known as pagination.

Virtual memory
Unix uses the paged memory management technique, abstracting its memory
for each application into contiguous virtual memory. It also uses a technique
called swapping, which extends the virtual memory to the secondary memory
(hard drive or solid state drives (SSD)) using a swap file.

When memory is scarce, the operating system puts pages from processes that
are sleeping in the swap partition in order to make space for active processes
that are requesting more memory, executing an operation called swap-
out. When a page that is in the swap file is needed by a process in execution
it gets loaded back into the main memory for executing it. This is
called swap-in.

The main issue of swapping is the performance drop when interacting with
secondary memory, but it is very useful for extending multitasking
capabilities and for dealing with applications that are bigger than the physical
memory, by loading just the pieces that are actually needed at a given time.
Creating memory-efficient applications is a way of increasing performance
by avoiding or reducing swapping.

The top command shows details about available memory, swap, and memory
consumption for each process:

RES is the physical primary memory used by the process.
VIRT is the total memory used by the process, including the swapped
memory, so it's equal to or bigger than RES.
SHR is the part of VIRT that is actually shareable, such as loaded libraries.

Understanding files and filesystems
A filesystem is a method used to structure data in a disk, and a file is the
abstraction used for indicating a piece of self-contained information. If the
filesystem is hierarchical, it means that files are organized in a tree
of directories, which are special files used for arranging stored files.

Operating systems and filesystems
Over the last 50 years, a large number of filesystems have been invented and
used, and each one has its own characteristics regarding space management,
filenames and directories, metadata, and access restriction. Each modern
operating system mainly uses a single type of filesystem.

Linux
Linux's filesystem (FS) of choice is the extended filesystem (EXT) family,
but other ones are also supported, including XFS, Journaled File System
(JFS), and B-tree File System (Btrfs). It is also compatible with the older
File Allocation Table (FAT) family (FAT16 and FAT32) and New
Technology File System (NTFS). The filesystem most commonly used
remains the latest version of EXT (EXT4), which was released in 2006 and
expanded its predecessor's capacities, including support for bigger disks.

macOS
macOS uses the Apple File System (APFS), which supports Unix
permission and has journaling. It is also metadata-rich and case-preserving,
while being a case-insensitive filesystem. It offers support for other
filesystems, including HFS+ and FAT32, supporting NTFS for read-only
operations. To write to such a filesystem, we can use an experimental feature
or third-party applications.

Windows
The main filesystem used by Windows is NTFS. As well as being case-
insensitive, the signature feature that distinguishes Windows FS from others
is the use of a letter followed by a colon to represent a partition in paths,
combined with the use of backslash as a folder separator, instead of
a forward slash. Drive letters, and the use of C for the primary partition,
comes from MS-DOS, where A and B were reserved drive letters used for
floppy disk drives.

Windows also natively supports other filesystems, such as FAT, which is a
filesystem family that was very popular between the late seventies and the
late nineties, and Extended File Allocation Table (exFAT), which is a
format developed by Microsoft on top of FAT for removable devices.

Files and hard and soft links
Most files are regular files, containing a certain amount of data. For instance,
a text file contains a sequence of human-readable characters represented by a
certain encoding, while a bitmap contains some metadata about the size and
the bit used for each pixel, followed by the content of each pixel.

Files are arranged inside directories that make it possible to have different
namespaces to reuse filenames. These are referred to with a name, their
human-readable identifier, and organized in a tree structure. The path is a
unique identifier that represents a directory, and it is made by the names of all
the parents of the directory joined by a separator (/ in Unix, \ in Windows),
descending from the root to the desired leaf. For instance if a directory named
a is located under another named b, which is under one called c, it will have a
path that starts from the root and concatenates all the directories, up to the
file: /c/b/a.

When more than one file points to the same content, we have a hard link, but
this is not allowed in all filesystems (for example, NTFS and FAT). A soft
link is a file that points to another soft link or to a hard link. Hard links can
be removed or deleted without breaking the original link, but this is not true
for soft links. A symbolic link is a regular file with its own data that is the
path of another file. It can also link other filesystems or files and directories
that do not exist (that will be a broken link).

In Unix, some resources that are not actually files are represented as files, and
communication with these resources is achieved by writing to or reading
from their corresponding files. For instance, the /dev/sda file represents an
entire disk, while /dev/stdout, dev/stdin, and /dev/stderr are standard output,
input, and error. The main advantage of Everything is a file is that the same
tools that can be used for files can also interact with other devices (network
and pipes) or entities (processes).

Unix filesystem
The principles contained in this section are specific to the filesystems used by
Linux, such as EXT4.

Root and inodes
In Linux and macOS, each file and directory is represented by an inode,
which is a special data structure that stores all the information about the file
except its name and its actual data.

Inode 0 is used for a null value, which means that there is no inode. Inode 1 is
used to record any bad block on the disk. The root of the hierarchical
structure of the filesystem uses inode 2. It is represented by /.

From the latest Linux kernel source, we can see how the first inodes are
reserved. This is shown as follows:

#define EXT4_BAD_INO 1 /* Bad blocks inode */

#define EXT4_ROOT_INO 2 /* Root inode */

#define EXT4_USR_QUOTA_INO 3 /* User quota inode */

#define EXT4_GRP_QUOTA_INO 4 /* Group quota inode */

#define EXT4_BOOT_LOADER_INO 5 /* Boot loader inode */

#define EXT4_UNDEL_DIR_INO 6 /* Undelete directory inode */

#define EXT4_RESIZE_INO 7 /* Reserved group descriptors inode */

#define EXT4_JOURNAL_INO 8 /* Journal inode */

This link is the source for the preceding code block: https://elixir.bootlin.com/l
inux/latest/source/fs/ext4/ext4.h#L212.

https://elixir.bootlin.com/linux/latest/source/fs/ext4/ext4.h#L212

Directory structure
In Unix filesystems, there is a series of other directories under the root, each
one used for a specific purpose, making it possible to maintain a certain
interoperability between different operating systems and enabling compiled
software to run on different OSes, making the binaries portable.

This is a comprehensive list of the directories with their scope:

Directory Description
/bin Executable files for all users
/boot Files for booting the system
/dev Device drivers
/etc Configuration files for applications and system
/home Home directory for users
/kernel Kernel files
/lib Shared library files and other kernel-related files

/mnt
Temporary filesystems, from floppy disks and CDs to flash
drives

/proc File with process numbers for active processes
/sbin Executable files for administrators
/tmp Temporary files that should be safe to delete

/usr
Administrative commands, shared files, library files, and
others

/var Variable-length files (logs and print files)

Navigation and interaction
While using a shell, one of the directories will be the working directory,
when paths are relative (for example, file.sh or dir/subdir/file.txt). The
working directory is used as a prefix to obtain an absolute one. This is usually
shown in the prompt of the command line, but it can be printed with the pwd
command (print working directory).

The cd (change directory) command can be used to change the current
working directory. To create a new directory, there's the mkdir (make
directory) command.

To show the list of files for a directory, there's the ls command,
which accepts a series of options, including more information (-l), showing
hidden files and directories (-a), and sorting by time (-t) and size (-S).

There is a series of other commands that can be used to interact with files: the
touch command creates a new empty file with the given name, and to edit its
content you can use a series of editors, including vi and nano, while cat,
more, and less are some of the commands that make it possible to read them.

Mounting and unmounting
The operating system splits the hard drive into logical units called partitions,
and each one can be a different file system. When the operating system starts,
it makes some partitions available using the mount command for each line of
the /etc/fstab file, which looks more or less like this:

device # mount-point # fstype # options # dumpfreq # passno

/dev/sda1 / ext4 defaults 0 1

This configuration mounts /dev/sda1 to /disk using an ext4 filesystem and
default options, no backing up (0), and root integrity check (1). The mount
command can be used at any time to expose partitions in the filesystem. Its
counterpart, umount, is needed to remove these partitions from the main
filesystem. The empty directory used for the operation is called mount point,
and it represents the root under which the filesystem is connected.

Processes
When an application is launched, it becomes a process: a special instance
provided by the operating system that includes all the resources that are used
by the running application. This program must be in Executable and
Linkable Format (ELF), in order to allow the operating system to interpret
its instructions.

Process properties
Each process is a five-digit identifier process ID (PID), and it represents the
process for all its life cycle. This means that there cannot be two processes
with the same PID at the same time. Their uniqueness makes it possible to
access a specific process by knowing its PID. Once a process is terminated,
its PID can be reused for another process, if necessary.

Similar to PID, there are other properties that characterize a process. These
are as follows:

PPID: The parent process ID of the process that started this process
Nice number: Degree of friendliness of this process toward other
processes
Terminal or TTY: Terminal to which the process is connected
RUID/EUID: The real/effective user ID, which belongs to the owner of
the process
RGID/EGID: The real/effective group owner, the group owner of a
process

To see a list of the active processes, there's the ps (process status) command,
which shows the current list of running processes for the active user:

> ps -f

UID PID PPID C STIME TTY TIME CMD

user 8 4 0 Nov03 pts/0 00:00:00 bash -l -i

user 43 8 0 08:53 pts/0 00:00:00 ps -f

Process life cycle
The creation of a new process can happen in two different ways:

Using a fork: This duplicates the calling process. The child (new process)
is an exact copy (memory) of the parent (calling process), except for the
following:

PIDs are different.
The PPID of the child equals the PID of the parent.
The child does not inherit the following from the parent:

Memory locks
Semaphore adjustments
Outstanding asynchronous I/O operations
Asynchronous I/O contexts

Using an exec: This replaces the current process image with a new one,
loading the program into the current process space and running it from
its entry point.

Foreground and background
When a process is launched, it is normally in the foreground, which will
prevent communication with the shell until the job is finished or interrupted.
Launching a process with an & symbol at the end of the command (cat file.txt
&) will launch it in the background, making it possible to keep using the
shell. The SIGTSTP signal can be sent with Ctrl + Z, which allows the user to
suspend the foreground process from the shell. It can be resumed with the fg
command, or in the background with the bg command.

The jobs command reports the jobs running and their numbers. In the output,
the numbers in square brackets are the job numbers that are used by the
process control commands, such as fg and bg.

Killing a job
The foreground process can be terminated with the SIGINT signal using
Ctrl + Z. In order to kill a background process, or send any signal to the
process, the kill command can be used.

The kill command receives an argument that can be either of the following:

The signal sent to the process
The PID or the job number (with a % prefix)

The more notable signals used are as follows:

SIGINT: Indicates a termination caused by user input and can be sent by
kill command with the -2 value
SIGTERM: Represents a general purpose termination request not generated
by a user as well as a default signal for the kill command with
a -6 value
SIGKILL: A termination handled directly by the operating system that kills
the process immediately and has a -9 value

Users, groups, and permissions
Users and groups, together with permissions, are the main entities that are
used in Unix operating systems to control access to resources.

Users and groups
Authorization to files and other resources are provided by users and groups.
Users have unique usernames that are human-friendly identifiers, but from
the operating system side, each user is represent by a unique positive integer:
the User ID (UID). Groups are the other authorization mechanism and, as
users, they have a name and a Group ID (GID). In the operating system,
each process is associated with a user and each file and directory belongs to
both a user and a group.

The /etc/passwd file contains all this information and more:

username : encrypted password : UID : GID : full name : home directory : login shell

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

...

user:x:1000:1000:"User Name":/home/user:/bin/bash

Users don't use UID directly; they use a combination of username and
password in order to start their first process, the interactive shell. Children of
the first shell inherit their UID from it, so they keep belonging to the same
user.

The UID 0 is reserved for a user known as root, which has special privileges
and can do almost anything on the system, such as read/write/execute any
file, kill any process, and change running process UIDs.

A group is a logical collection of users, used to share files and directories
between them. Each group is independent of other groups and there is no
specific relationship between them. For a list of the groups that the current
user belongs to, there's the groups command. To change group ownership of a
file, there's chgrp.

Owner, group, and others
Unix files belong to a user and a group. This creates three levels of
authorization hierarchy:

Owner: The UID associated with the file
Group: UIDS that belong to the GID associated with the file
Others: Everyone else

Different permissions can be specified for each of these groups, and these
permissions are usually decreasing from owner to others. It does not make
sense that the owner of a file has less permission on it than its own group or
the users outside that group.

Read, write, and execute
Users and groups are used as the first two layers of protection for accessing a
file. The user that owns a file has a set of permissions that differs from the
file group. Whoever is not the owner and does not belong to the group has
different permissions. These three sets of permissions are known as owner,
group, and other.

For each element of the set there are three actions that may be carried out:
reading, writing, and executing. This is very straightforward for files but it
means something different for directories. Read makes it possible to list the
contents, write is used to add new links inside, and execute is used to
navigate it.

Three permissions are represented by an octal value, where the first bit is read
permission, the second is write, and the third is execute. They can also be
represented by the letters r, w, and x in sequence and the possible values are as
follows:

0 or ---: No permissions
1 or --x: Execute permission (execute a file or navigate to a directory)
2 or -w-: Write permission (write a file or add new files in a directory)
3 or -wx: Write and execute
4 or r--: Read permission (read a file or list the contents of a directory)
5 or r-x: Read and execute
6 or rw-: Read and write
7 or rwx: Read, write, and execute

The sequence of three octal values represent permission for user, group, and
others:

777: Everyone can read, write, and execute.
700: Owner can read, write, and execute.
664: Owner and group can read and write.
640: Owner can read and write and group can read.

755: Owner can read, write, and execute, while group and others can read
and execute.

The ls command with the -l flag (or its alias, ll) shows the list of files and the
folder for the current directory with their permissions.

Changing permission
The chmod command makes it possible to change permission on a file or
directory. This can be used to override current permissions or to modify
them:

In order to replace permissions, the chmod xxx file command must be
issued. xxx can be the three octal values representing the permission for
the respective tiers or a string that specifies permissions, such as u=rwx,
g=rx, or o=r.
To add or remove one or more permissions, chmod +x file or chmod -x file
can be used.

For more information, use the chmod command with the help flag (chmod --help).

Process communications
The operating system is responsible for communication between processes
and has different mechanisms to exchange information. These processes are
unidirectional, such as exit codes, signals, and pipes, or bidirectional, such as
sockets.

Exit codes
Applications communicate their result to the operating system by returning a
value called exit status. This is an integer value passed to the parent process
when the process ends. A list of common exit codes can be found in
the /usr/include/sysexits.h file, as shown here:

#define EX_OK 0 /* successful termination */

#define EX__BASE 64 /* base value for error messages */

#define EX_USAGE 64 /* command line usage error */

#define EX_DATAERR 65 /* data format error */

#define EX_NOINPUT 66 /* cannot open input */

#define EX_NOUSER 67 /* addressee unknown */

#define EX_NOHOST 68 /* host name unknown */

#define EX_UNAVAILABLE 69 /* service unavailable */

#define EX_SOFTWARE 70 /* internal software error */

#define EX_OSERR 71 /* system error (e.g., can't fork) */

#define EX_OSFILE 72 /* critical OS file missing */

#define EX_CANTCREAT 73 /* can't create (user) output file */

#define EX_IOERR 74 /* input/output error */

#define EX_TEMPFAIL 75 /* temp failure; user is invited to retry */

#define EX_PROTOCOL 76 /* remote error in protocol */

#define EX_NOPERM 77 /* permission denied */

#define EX_CONFIG 78 /* configuration error */

#define EX__MAX 78 /* maximum listed value */

The source for this is as follows: https://elixir.bootlin.com/linux/latest/source/fs
/ext4/ext4.h#L212.

The exit code of the last command is stored in the $? variable, and it can be
tested in order to control the flow of the operations. A commonly used
operator is && (double ampersand), which executes the next instruction only if
the exit code of the first one is 0, such as stat file && echo something >> file,
which appends something to a file only if it exists.

https://elixir.bootlin.com/linux/latest/source/fs/ext4/ext4.h#L212

Signals
Exit codes connect processes and their parents, but signals make it possible to
interface any process with another, including itself. They
are also asynchronous and unidirectional, but they represent communication
from the outside of a process.

The most common signal is SIGINT, which tells the application to terminate,
and can be sent to a foreground process in a shell with the Ctrl + C key
combination. However, there are many more options, as shown in the
following table:

Name Number Description
SIGHUP 1 Controlling terminal is closed
SIGINT 2 Interrupt signal (Ctrl + C)
SIGQUIT 3 Quit signal (Ctrl + D)
SIGFPE 8 Illegal mathematical operation is attempted
SIGKILL 9 Quits the application immediately
SIGALRM 14 Alarm clock signal

The kill command allows you to send a signal to any application, and a
comprehensive list of available signals can be shown with the -l flag:

Pipes
Pipes are the last unidirectional communication method between processes.
As the name suggests, pipes connect two ends – a process input with another
process output – making it possible to process on the same host to
communicate in order to exchange data.

These are classified as anonymous or named:

Anonymous pipes link one process standard output to another process
standard input. It can be easily done inside a shell with the | operator,
linking the output of the command before the pipe as input for the one
after the pipe. ls -l | grep "user" gets the output of the ls command and
uses it as input for grep.
Named pipes use a specific file in order to execute the redirect. The
output can be redirected to a file with the > (greater) operator, while the
< (less) sign allows you to use a file as input for another process. ls -l >
file.txt saves the output of the command to a file. cat < file.txt sends the
contents of the file to the command's standard input, and the standard
input copies them to the standard output.

It is also possible to append content to a named pipe using the >> (double
greater) operator, which will start writing from the end of the file.

Sockets
Unix domain sockets are a bidirectional communication method between
applications on the same machine. They are a logical endpoint that is handled
by the kernel and manages the data exchange.

The nature of sockets permits using them as stream-oriented, or datagram-
oriented. Stream-oriented protocols ensure that messages are delivered before
moving to the next chunk of data in order to preserve message integrity. In
contrast, message-oriented protocols ignore the data that is not received and
keeps sending the following messages, making it a faster but less reliable
protocol with very low latency.

The sockets are classified as follows:

SOCK_STREAM: Connection-oriented, ordered, and reliable transmission of a
stream of data
SOCK_SEQPACKET: Connection-oriented, ordered, and reliable transmission of
message data that has record boundaries
SOCK_DGRAM: Unordered and unreliable transmission of messages

Summary
This chapter provided a general overview of the main Unix components and
how they interact with each other. We started with memory management and
how it works in Unix, understanding concepts such as pagination and swap.

Then we analyzed the filesystem, taking a look at the support from modern
operating systems, and explained the difference between the existing file
types: files, directories, and hard and soft links.

After learning about the concept of inode, we took a look at the structure of a
directory in a Unix operating system and explained how to navigate and
interact with the filesystem, as well as how to mount and unmount other
partitions.

We moved on to processes, running applications in Unix, and their structure
and attributes. We analyzed process life cycle, from its creation through fork
or exec, to its end or termination with the kill command.

Another important topic was users, groups, and permissions. We saw what a
user is, what groups are, how to join them, and how these concepts are used
to divide permissions into three groups: user, group, and others. This helped
to better understand the Unix permission model, as well as how to change
permissions for files and directories.

Finally, we saw how communication between processes works with one-way
channels such as signals and exit codes, or bidirectional communication such
as sockets.

In the next chapter, we will have a quick overview of the Go language.

Questions
1. Which filesystem is used by modern operating systems?
2. What is an inode? What is inode 0 in Unix?
3. What's the difference between PID and PPID?
4. How do you terminate a process running in the background?
5. What is the difference between user and group?
6. What's the scope of the Unix permission model?
7. Can you explain the difference between signals and exit codes?
8. What's a swap file?

An Overview of Go
This chapter will provide an overview of the Go language and its basic
functionality. We will provide a short explanation of the language and its
features, which we will elaborate on in more detail in the following chapters.
This will help us to understand Go better while we're using all its features and
applications.

The following topics will be covered in this chapter:

Features of the language
Packages and imports
Basic types, interfaces, and user-defined types
Variables and functions
Flow control
Built-in functions
Concurrency model
Memory management

Technical requirements
From this chapter onward, you will need Go installed on your machine.
Follow these steps to do this:

1. Download the latest version of Go from https://golang.org/dl/.
2. Extract it with tar -C /usr/local -xzf go$VERSION.$OS-$ARCH.tar.gz.
3. Add it to PATH with export PATH=$PATH:/usr/local/go/bin.
4. Ensure that Go is installed with go version.

5. Add the export statement in your .profile to add it automatically.
6. You can also change the GOPATH variable (the default one is ~/go) if you

want to use a different directory for your code.

I also recommend installing Visual Studio Code (https://code.visualstudio.com/)
with its vscode-go (https://github.com/Microsoft/vscode-go) extension, which
contains a helper that will install all the tools that are needed to improve the
Go development experience.

https://golang.org/dl/
https://code.visualstudio.com/
https://github.com/Microsoft/vscode-go

Language features
Go is a modern server language with great concurrency primitives and a
memory system that is mostly automated. It is considered by some to be a
successor to C, and it manages to do so in many scenarios because it's
performant, has an extensive standard library, and has a great community that
provides many third-party libraries which cover, extend, and improve its
functionalities.

History of Go
Go was created in 2007 in order to try and address Google's engineering
problems, and was publicly announced in 2009, reaching version 1.0 in 2012.
The major version is still the same (version 1), while the minor version grows
(version 1.1, 1.2, and so on) together with its functionalities. This is done
to keep Go's promise of compatibility for all major versions. A draft for two
new features (generics and error handling), which will probably be included
in version 2.0, were presented in 2018.

The minds behind Go are as follows:

Robert Griesemer: A Google researcher who worked on many projects,
including V8 JavaScript engine and design, and the implementation of
Sawzall.
Rob Pike: A member of the Unix team, the Plan 9 and Inferno OS
development team, and the Limbo programming language design team.
Ken Thompson: A pioneer of computer science, the designer of the
original Unix, and inventor of B (direct predecessor of C). Ken was also
one of the creators and early developers of the Plan 9 operating system.

Strengths and weaknesses
Go is a very opinionated language; some people love it while some people
hate it, mostly due to some of its design choices. Some of the features that
have not been well received are as follows:

Verbose error handling
Lack of generics
Missing dependency and version management

The first two points will be addressed with the next major version, while the
latter was addressed by the community first (godep, glide, and govendor) and
by Google itself with dep for the dependencies, and by gopkg.in (http://labix.
org/gopkg.in) in terms of version management.

The strengths of the language are countless:

It's a statically typed language, with all the advantages that this brings,
like static type checking.
It does not require an integrated development environment (IDE),
even if it supports many of them.
The standard library is really impressive, and it could be the only
dependency of many projects.
It has concurrency primitives (channels and goroutines), which hides
the hardest parts of writing asynchronous code that are both efficient and
safe.
It comes with a formatting tool, gofmt, that unifies the format of Go code,
making other people's code look really familiar.
It produces binaries, with no dependencies, making deployments fast
and easy.
It's minimalistic and has a few keywords, and the code is really easy to
read and understand.
It's duck typed, with implicit interface definition (if it walks like a duck,
swims like a duck, and quacks like a duck, then it probably is a duck).
This comes in very handy when testing a specific function of a system

http://labix.org/gopkg.in)

because it can be mocked.
It is cross platform, meaning that it's able to produce binaries for
architecture and OS that are different from the hosting ones.
There are a huge amount of third-party packages and so it leaves very
little behind in terms of functionality. Each package that's hosted on a
public repository is indexed and searchable.

Namespace
Now, let's see how Go code is organized. The GOPATH environment
variable determines where the code resides. There are three subdirectories
inside this:

src contains all the source code.
pkg contains compiled packages, which are divided into architecture/OS.
bin contains the compiled binaries.

The path under the source folder corresponds to the name of the package
($GOPATH/src/my/package/name would be my/package/name).

The go get command makes it possible to fetch and compile packages using it.
Go get calls to http://package_name?go-get=1 and if it finds the go-import meta tag,
it uses this to fetch the package. The tag should contain the package name,
the VCS that was used, and the repository URL, all separated by a space.
Let's take a look at an example:

 <meta name="go-import" content="package-name vcs repository-url">

After go get downloads a package, it tries to do the same for the other
packages it can't resolve recursively until all the necessary source code is
available.

Each file starts with a package definition, that is, package package_name, that
needs to be the same for all the files in a directory. If the package produces a
binary, the package is main.

Imports and exporting symbols
The package declaration is followed by a series of import statements that
specify the packages that are needed.

Importing packages that are not used (unless they are ignored) is a
compilation error, which is why the Go formatting tool, gofmt, removes
unused packages. There are experimental or community tools like goimports
(https://godoc.org/golang.org/x/tools/cmd/goimports) or goreturns (https://github.com/
sqs/goreturns) that also add missing imports to a Go file. It's important to avoid
having circular dependencies because they will not compile.

Since circular dependencies are not allowed, the packages need to be
designed differently to other languages. In order to break the circular
dependency, it is good practice to export functionalities from a package or
replace the dependency with an interface.

Go reduces all the symbol visibility to a binary model – exported and not
exported – unlike many other languages, which have intermediate levels. For
each package, all the symbols starting with a capital letter are exported, while
everything else is used only inside the package. The exported values
can also be used by other packages, while the unexported ones can only be
used in the package itself.

An exception is made if one of the package path elements is internal (for
example, my/package/internal/pdf). This limits itself and its subpackages to be
imported only by the nearby packages (for example, my/package). This is useful
if there are a lot of unexported symbols and you want to break them down
into subpackages, while preventing other packages from using it, making
basically private subpackages. Take a look at the following list of internal
packages:

my/package/internal

my/package/internal/numbers

https://godoc.org/golang.org/x/tools/cmd/goimports
https://github.com/sqs/goreturns

my/package/internal/strings

These can only be used by my/package, and cannot be imported by any other
package, including my.

The import can have different forms. The standard import form is the
complete package name:

import "math/rand"

...

rand.Intn

A named import replaces the package name with a custom name, which must
be used when referencing the package:

import r "math/rand"

...

r.Intn

The same package import makes the symbol available with no namespace:

import . "math/rand"

...

Intn

Ignored imports are used to import packages without you having to use them.
This makes it possible to execute the init function of the package without
referencing the package in your code:

import _ math/rand

// still executes the rand.init function

Type system
The Go type system defines a series of basic types, including bytes, strings
and buffers, composite types like slices or maps, and custom types that have
been defined by the application.

Basic types
These are Go's basic types:

Category Types

String string

Boolean bool

Integer int, int8, int16, int32, and int64

Unsigned integer uint, uint8, uint16, uint32, and uint64

Pointer integer uinptr

Floating pointer float32 and float64

Complex number complex64 and complex128

The number of bits of int, uint, and uiptr depends on the architecture (for
example, 32 bits for x86, 64 bits for x86_64).

Composite types
Beside the basic types, there are others, which are known as composite types.
These are as follows:

Type Description Example

Pointer The address in the memory of a variable *int

Array A container of the element of the same type with
a fixed length

[2]int

Slice Contiguous segment of an array []int

Map Dictionary or associative array map[int]int

Struct A collection of fields that can have different
types

struct{

value int }

Function A set of functions with the same parameters and
output

func(int,

int) int

Channel Type pipes that are used for the communication
of elements of the same type

chan int

Interface A specific collection of methods, with an
underlying value that supports them

interface{}

The empty interface, interface{}, is a generic type that can contain any value.
Since this interface has no requirements (methods), it can be satisfied by any
value.

Interfaces, pointers, slices, functions, channels, and maps can have a void
value, which is represented in Go by nil:

Pointers are self-explanatory; they are not referring to any variable

address.
The interface's underlying value can be empty.
Other pointer types, like slices or channels, can be empty.

Custom-defined types
A package can define its own types by using the type defined
definition expression, where definition is a type that shares a defined memory
representation. Custom types can be defined by basic types:

type Message string // custom string

type Counter int // custom integer

type Number float32 // custom float

type Success bool // custom boolean

They can also be defined by composite types like slices, maps, or pointers:

type StringDuo [2]string // custom array

type News chan string // custom channel

type Score map[string]int // custom map

type IntPtr *int // custom pointer

type Transform func(string) string // custom function

type Result struct { // custom struct

 A, B int

}

They can also be used in combination with other custom types:

type Broadcast Message // custom Message

type Timer Counter // custom Counter

type News chan Message // custom channel of custom type Message

The main uses of custom types are to define methods and to make the type
specific for a scope, like defining a string type called Message.

Interface definitions work in a different way. They can be defined by
specifying a series of different methods, for instance:

type Reader interface {

 Read(p []byte) (n int, err error)

}

They can also be a composition of other interfaces:

type ReadCloser interface {

 Reader

 Closer

}

Alternatively, they can be a combination of the two interfaces:

type ReadCloser interface {

 Reader // composition

 Close() error // method

}

Variables and functions
Now that we've looked at types, we'll take a look at how we can instantiate
different types in the language. We'll see how variables and constants work
first, and then we'll talk about functions and methods.

Handling variables
Variables represent mapping to the content of a portion of contiguous
memory. They have a type that defines how much this memory extends, and
a value that specifies what's in the memory. Type can be basic, composite, or
custom, and its value can be initialized with their zero-value by a declaration,
or with another value by assignment.

Declaration
The zero value declaration for a variable is done using the var keyword and
by specifying the name and type; for example, var a int. This could be
counter-intuitive for a person that comes from another language, like Java,
where type and name order is inverted, but it's actually more human readable.

The var a int example describes a variable (var) with a name, a, that is an
integer (int). This kind of expression creates a new variable with a zero-value
for the selected type:

Type Zero value

Numerical types (int, uint, and float types) 0

Strings (string types) ""

Booleans false

Pointers, interfaces, slices, maps, and channels nil

The other way of initiating a variable is by assignment, which can have an
inferred or specific type. An inferred type is achieved with the following:

The variable name, followed by the := operator and the value (for
example, a := 1), also called short declaration.
The var keyword, followed by the name, the = operator, and a value (for
example, var a = 1).

Note that these two methods are almost equivalent, and redundant, but the Go
team decided to keep them both for the sake of the compatibility promise of
Go 1. The main difference in terms of the short declaration is that the type
cannot be specified and it's inferred by the value.

An assignment with a specific type is made with a declaration, followed by
an equals sign and the value. This is very useful if the declared type is an
interface, or if the type that's inferred is incorrect. Here are some examples:

var a = 1 // this will be an int

b := 1 // this is equivalent

var c int64 = 1 // this will be an int64

var d interface{} = 1 // this is declared as an interface{}

Some types need to use built-in functions so that they can be initialized
correctly:

new makes it possible to create a pointer of a certain type while already
allocating some space for the underlying variable.
make initializes slices, maps, and channels:

Slices need an extra argument for the size, and an optional one for
the capacity of the underlying array.
Maps can have one argument for their initial capacity.
Channels can also have one argument for its capacity. They are
unlike maps, which cannot change.

The initialization of a type using a built-in function is as follows:

a := new(int) // pointer of a new in variable

sliceEmpty := make([]int, 0) // slice of int of size 0, and a capacity of 0

sliceCap := make([]int, 0, 10) // slice of int of size 0, and a capacity of 10

map1 = make(map[string]int) // map with default capacity

map2 = make(map[string]int, 10) // map with a capacity of 10

ch1 = make(chan int) // channel with no capacity (unbuffered)

ch2 = make(chan int, 10) // channel with capacity of 10 (buffered)

Operations
We already saw the assignment operation, which gives a new value to a
variable using the = operator. Let's take a look at few more operators:

There are the comparison operators, == and !=, which compare two
values and return a Boolean.
There are some mathematical operations that can be executed on all
numerical variables of the same types, that is, +, -, *, and /. The sum
operation is also used for concatenating strings. ++ and -- are shorthand
for incrementing or decrementing a number by one. +=, -=, *=, and
/= execute the operation before the equals sign between what's before
and what's after the operator and assigns it to the variable on the
left. These four operations produce a value of the same type of the
variables involved; there are also other comparison operators that are
specific to numbers: <, <=, >, and >=.
Some operations are exclusive for integers and produce other
integers: %, , &, |, ^, &^, <<, and >>.
Others are just for Booleans and produce another Boolean: &&, ||, and !.
One operator is channel only, <-, and it's used to receive values from or
send them to a channel.
For all non-pointer variables, it is also possible to use &, the reference
operator, to obtain the variable address that can be assigned to a pointer
variable. The * operator makes it possible to execute a dereference
operation on a pointer and obtain the value of the variable indicated by
it:

Operator Name Description Example
= Assignment Assigns the value to a variable a = 10

:=

Declaration
and
assignment

Declares a variables and assigns
a value to it

a := 0

Compares two variables, returns

== Equals a Boolean if they are the same a == b

!= Not equals Compares two variables, returns
a Boolean if they are different

a != b

+ Plus Sum between the same numerical
type

a + b

- Minus Difference between the same
numerical type

a - b

* Times Multiplication between the same
numerical type

a * b

/ Divided Division between the same
numerical type

a / b

% Modulo Remainder after division of the
same numerical type

a % b

& AND Bit-wise AND a & b

&^ Bit clear Bit clear a &^ b

<< Left shift Bit shift to the left a << b

>> Right shift Bit shift to the right a >> b

&& AND Boolean AND a && b

|| OR Boolean OR a || b

! NOT Boolean NOT !a

<- Receive Receive from a channel <-a

-> Send Send to a channel a <- b

& Reference Returns the pointer to a variable &a

* Dereference Returns the content of a pointer *a

Casting
Converting a type into another type is an operation called casting, which
works slightly differently for interfaces and concrete types:

Interfaces can be casted to a concrete type that implements it. This
conversion can return a second value (a Boolean) and show whether the
conversion was successful or not. If the Boolean variable is omitted, the
application will panic on a failed casting.
With concrete types, casting can happen between types that have the
same memory structure, or it can happen between numerical types:

type N [2]int // User defined type

var n = N{1,2}

var m [2]int = [2]int(N) // since N is a [2]int this casting is possible

var a = 3.14 // this is a float64

var b int = int(a) // numerical types can be casted, in this case a will be rounded to 3

var i interface{} = "hello" // a new empty interface that contains a string

x, ok := i.(int) // ok will be false

y := i.(int) // this will panic

z, ok := i.(string) // ok will be true

There's a special type of conditional operator for casting called type switch
which allows an application to attempt multiple casts at once. The following
is an example of using interface{} to check out the underlying value:

func main() {

 var a interface{} = 10

 switch a.(type) {

 case int:

 fmt.Println("a is an int")

 case string:

 fmt.Println("a is a string")

 }

}

Scope
The variables have a scope or visibility that is also connected to its lifetime.
This can be one of the following:

Package: The variable is visible in all the packages; if the variable is
exported, it is also visible from other packages.
Function: The variable is visible inside the function that declares it.
Control: The variable is visible inside the block in which it's defined.

The visibility goes down, going from package to block. Since blocks can be
nested, outer blocks don't have visibility over the variables of inner blocks.

Two variables in the same scope cannot have the same name, but a variable
of an inner scope can reuse an identifier. When this happens, the outer
variable is not visible in the inner scope – this is called shadowing, and it
needs to be kept in mind in order to avoid issues that are hard to identify,
such as the following:

// this exists in the outside block

var err error

// this exists only in this block, shadows the outer err

if err := errors.New("Doh!"); err !=

 fmt.Println(err) // this not is changing the outer err

}

fmt.Println(err) // outer err has not been changed

Constants
Go doesn't have immutability for its variables, but defines another type of
immutable value called constant. This is defined by the const keyword
(instead of var), and they are values that cannot change. These values can be
base types and custom types, which are as follows:

Numeric (integer, float)
Complex
String
Boolean

The value that's specified doesn't have a type when it's assigned to a variable.
There's an automatic conversion of both numeric types and string-based
types, as shown in the following code:

const PiApprox = 3.14

var PiInt int = PiApprox // 3, converted to integer

var Pi float64 = PiApprox // is a float

type MyString string

const Greeting = "Hello!"

var s1 string = Greeting // is a string

var s2 MyString = Greeting // string is converted to MyString

Numerical constants are very useful for mathematical operations because
they are just regular numbers, so they can be used with any numerical
variable type.

Functions and methods
Functions in Go are identified by the func keyword, followed by an identifier,
eventual arguments, and return values. Functions in Go can return more than
one value at a time. The combination of arguments and returned types is
referred to as a signature, as shown in the following code:

func simpleFunc()

func funcReturn() (a, b int)

func funcArgs(a, b int)

func funcArgsReturns(a, b int) error

The part between brackets is the function body, and the return statement can
be used inside it for an early interruption of the function. If the function
returns values, then the return statement must return values of the same type.

The return values can be named in the signature; they are zero value variables
and if the return statement does not specify other values, these values are the
ones that are returned:

func foo(a int) int { // no variable for returned type

 if a > 100 {

 return 100

 }

 return a

}

func bar(a int) (b int) { // variable for returned type

 if a > 100 {

 b = 100

 return // same as return b

 }

 return a

}

Functions are first-class types in Go and they can also be assigned to
variables, with each signature representing a different type. They can also be
anonymous; in this case, they are called closures. Once a variable is
initialized with a function, the same variable can be reassigned with another
function with the same signature. Here's an example of assigning a closure to
a variable:

var a = func(item string) error {

 if item != "elixir" {

 return errors.New("Gimme elixir!")

 }

 return nil

}

The functions that are declared by an interface are referred to as methods and
they can be implemented by custom types. The method implementation looks
like a function, with the exception being that the name is preceded by a single
parameter of the implementing type. This is just syntactic sugar – the method
definition creates a function under the hood, which takes an extra parameter,
that is, the type that implements the method.

This syntax makes it possible to define the same method for different types,
each of which will act as a namespace for the function declaration. In this
way, it is possible to call a method in two different ways, as shown in the
following code:

type A int

func (a A) Foo() {}

func main() {

 A{}.Foo() // Call the method on an instance of the type

 A.Foo(A{}) // Call the method on the type and passing an instance as argument

}

It's important to note that a type and its pointer share the same namespace, so
the same method can be implemented just for one of them. The same method
cannot be defined for both the type and for its pointer, since declaring the
method twice (for a type and its pointer) will produce a compile error
(method redeclared). Methods cannot be defined for interfaces, only for
concrete types, but interfaces can be used in composite types, including
function parameters and return values, as we can see in the following
examples:

// use error interface with chan

type ErrChan chan error

// use error interface in a map

type Result map[string]error

type Printer interface{

 Print()

}

// use the interface as argument

func CallPrint(p Printer) {

 p.Print()

}

The built-in package already defines an interface that is used all over the
standard library and in all the packages that are available online –
 the error interface:

type error interface {

 Error() string

}

This means that whatever type has an Error() string method can be used as an
error, and each package can define its error types according to its needs. This
can be used to concisely carry information about the error. In this example,
we are defining ErrKey, which is specifying that a string key was not found.
We don't need anything else besides the key to represent our error, as shown
in the following code:

type ErrKey string

func (e Errkey) Error() string {

 returm fmt.Errorf("key %q not found", e)

}

Values and pointers
In Go, everything is passed by a value, so when a function or method is
invoked, a copy of the variable is made in the stack. This implies that
changes that are made to the value are not reflected outside of the called
function. Even slices, maps, and other reference types are passed by value,
but since their internal structure contains pointers, they act as if they were
passed by reference. If a method is defined for a type, it cannot be defined for
its pointer and vice versa. The following example has been used to check that
the value is updated only inside the method, and that the change does not
reflect the main function:

package main

import (

 "fmt"

)

type A int

func (a A) Foo() {

 a++

 fmt.Println("foo", a)

}

func main() {

 var a A

 fmt.Println("before", a) // 0

 a.Foo() // 1

 fmt.Println("after", a) // 0

}

In order to change the original variable, the argument must be a pointer to the
variable itself – the pointer will be copied, but it will reference the same
memory area, making it possible to change its value. Note that assigning
another value pointer, instead of its content, doesn't change what the original
pointer refers to because it is a copy.

If we use a method for the type instead of its pointer, we won't see the
changes being propagated outside the method.

In the following example, we are using a value receiver. This makes

the User value in the Birthday method a copy of the User value in main:

type User struct {

 Name string

 Age int

}

func (u User) Birthday() {

 u.Age++

 fmt.Println(u.Name, "turns", u.Age)

}

func main() {

 u := User{Name: "Pietro", Age: 30}

 fmt.Println(u.Name, "is now", u.Age)

 u.Birthday()

 fmt.Println(u.Name, "is now", u.Age)

}

The full example is available at https://play.golang.org/p/hnUldHLkFJY.

Since the change is applied to the copy, the original value is left intact, as we
can see from the second print statement. If we want to change the value in the
original object, we have to use the pointer receiver so that the one that's been
copied will be the pointer and the changes will be made to the underlying
value:

func (u *User) Birthday() {

 u.Age++

 fmt.Println(u.Name, "turns", u.Age)

}

The full example is available at https://play.golang.org/p/JvnaQL9R7U5.

We can see that using the pointer receiver allows us to change the underlying
value, and that we can change one field of the struct or replace the whole
struct itself, as shown in the following code:

func (u *User) Birthday() {

 *u = User{Name: u.Name, Age: u.Age + 1}

 fmt.Println(u.Name, "turns", u.Age)

}

The full example is available at https://play.golang.org/p/3ugBEZqAood.

If we try to change the value of the pointer instead of the underlying one, we
will edit a new object that is not related to the one that was created in main,

https://play.golang.org/p/hnUldHLkFJY
https://play.golang.org/p/JvnaQL9R7U5
https://play.golang.org/p/3ugBEZqAood

and the changes will not propagate:

func (u *User) Birthday() {

 u = &User{Name: u.Name, Age: u.Age + 1}

 fmt.Println(u.Name, "turns", u.Age)

}

The full example is available at https://play.golang.org/p/m8u2clKTqEU.

Some types in Go are automatically passed by reference. This happens
because these types are defined internally as structs that contain a pointer.
This creates a list of the types, along with their internal definition:

Types Internal definitions

map
struct {

 m *internalHashtable

}

slice

struct {

 array *internalArray

 len int

 cap int

}

channel
struct {

 c *internalChannel

}

https://play.golang.org/p/m8u2clKTqEU

Understanding flow control
In order to control the flow of an application, Go offers different tools – some
statements like if/else, switch, and for are used in sequential scenarios,
whereas others like go and select are used in concurrent ones.

Condition
The if statement verifies a binary condition and executes the code inside the
if block when the condition is true. When an else block is present, it's
executed when the condition is false. This statement also allows a short
declaration before the condition, separated by a ;. This condition can be
chained with an else if statement, as shown in the following code:

if r := a%10; r != 0 { // if with short declaration

 if r > 5 { // if without declaration

 a -= r

 } else if r < 5 { // else if statement

 a += 10 - r

 }

} else { // else statement

 a /= 10

}

The other condition statement is switch. This allows a short declaration, like
if, and this is followed by an expression. The value of such an expression can
be of any type (not just Boolean), and it's evaluated against a series of case
statements, each one followed by a block of code. The first statement that
matches the expression, if the switch and case condition are equal, has its block
executed.

If a break statement is present in the case where the block execution is
interrupted, but there's a fallthrough, the code inside the following case block
is executed. A special case called default can be used to execute its code if no
case is satisfied, as shown in the following code:

switch tier { // switch statement

case 1: // case statement

 fmt.Println("T-shirt")

 if age < 18{

 break // exits the switch block

 }

 fallthrough // executes the next case

case 2:

 fmt.Println("Mug")

 fallthrough // executes the next case

case 3:

 fmt.Println("Sticker pack")

default: // executed if no case is satisfied

 fmt.Println("no reward")

}

Looping
The for statement is the only looping statement in Go. This requires that you
specify three expressions, separated by ;:

A short declaration or an assignment to an existing variable
A condition to verify before each iteration
An operation to execute at the end of the iteration

All of these statements can be optional, and the absence of a condition means
that it is always true. A break statement interrupts the loop's execution,
while continue skips the current iteration and proceeds with the next one:

for { // infinite loop

 if condition {

 break // exit the loop

 }

}

for i < 0 { // loop with condition

 if condition {

 continue // skip current iteration and execute next

 }

}

for i:=0; i < 10; i++ { // loop with declaration, condition and operation

}

When a combination of switch and for are nested, the continue and break
statements refer to the inner flow control statement.

An outer loop or condition can be labelled using a name: expression, whereas
the name is its identifier, and both loop and continue can be followed by the
name in order to specify where to intervene, as shown in the following code:

label:

 for i := a; i<a+2; i++ {

 switch i%3 {

 case 0:

 fmt.Println("divisible by 3")

 break label // this break the outer for loop

 default:

 fmt.Println("not divisible by 3")

 }

 }

Exploring built-in functions
We already listed some of the built-in functions that are used to initialize
some variables, that is, make and new. Now, let's go over each function and
check out what they do:

func append(slice []Type, elems ...Type) []Type: This function appends
elements to the end of a slice. If the underlying array is full, it
reallocates the content to a bigger slice before appending.
func cap(v Type) int: Returns the number elements of an array, or of the
underlying array if the argument is a slice.
func close(c chan<- Type): Closes a channel.
func complex(r, i FloatType) ComplexType: Given two floating points, this
returns a complex number.
func copy(dst, src []Type) int: Copies elements from a slice to another.
func delete(m map[Type]Type1, key Type): Removes an entry from a map.
func imag(c ComplexType) FloatType: Returns the imaginary part of a complex
number.
func len(v Type) int: Returns the length of an array, slice, map, string, or
channel.
func make(t Type, size ...IntegerType) Type: Creates a new slice, map, or
channel.
func new(Type) *Type: Returns a pointer to a variable of the specified type,
initialized with a zero value.
func panic(v interface{}): Stops the execution of the current goroutine and,
if it's not intercepted, the program.
func print(args ...Type): Writes the arguments to the standard error.
func println(args ...Type): Writes the arguments to the standard error and
adds a new line at the end.
func real(c ComplexType) FloatType: Returns the real part of a complex
number.
func recover() interface{}: Stops a panic sequence and captures the panic
value.

Defer, panic, and recover
A very important keyword that hides a lot of complexity but makes it
possible to execute many operations easily is defer. This is applied to a
function, method, or closure execution and makes the function it precedes
execute before the function returns. A common and very useful usage is
closing resources. After opening the resource successfully, a deferred close
statement will ensure that it is executed independently of the exit point, as
shown in the following code:

f, err := os.Open("config.txt")

if err != nil {

 return err

}

defer f.Close() // it will be closed anyways

// do operation on f

During a function's lifetime, all the deferred statements are added to a list and
before exiting, they are executed in reverse order, from the last to the
first defer.

These statements are executed even when there's a panic, which is why a
deferred function with a recover call can be used to intercept a panic in the
respective goroutine and avoid the panic that would kill the application
otherwise. As well as a manual call to the panic function, there is a set of
operations that will cause a panic, including the following:

Accessing a negative or non-existent array/slice index (index out of
range)
Dividing an integer by 0
Sending to a closed channel
Dereferencing on a nil pointer (nil pointer)
Using a recursive function call that fills the stack (stack overflow)

Panic should be used for errors that are not recoverable, which is why errors
are just values in Go. Recovering a panic should be just an attempt to do

something with that error before exiting the application. If an unexpected
problem occurs, it's because it hasn't been handled correctly or some checks
are missing. This represents a serious issue that needs to be dealt with, and
the program needs to change, which is why it should be intercepted and
dismissed.

Concurrency model
Concurrency is so central to Go that two of its fundamental tools are just
keywords – chan and go. This is a very clever way of hiding the complexity of
a well-designed and implemented concurrency model that is easy to use and
understand.

Understanding channels and
goroutines
Channels are made for communicating, which is why Go's mantra is as
follows:

"Do not communicate by sharing memory, share memory by communicating."

A channel is made for sharing data, and it usually connects two or more
execution threads in an application, which makes it possible to send and
receive data without worrying about data safety. Go has a lightweight
implementation of a thread that is managed by the runtime instead of the
operating system, and the best way to make them communicate is through the
use of channels.

Creating a new goroutine is pretty easy – you just need to use the go operator,
followed by a function execution. This includes method calls and closures. If
the function has any arguments, they will be evaluated before the routine
starts. Once it starts, there is no guarantee that changes to variables from an
outer scope will be synchronized if you don't use channels:

a := myType{}

go doSomething(a) // function call

go func() { // closure call

 // ...

}() // note that the closure is executed

go a.someMethod() // method call

We already saw how to create a new channel with the make function. If a
channel is unbuffered (0 capacity), sending to the channel is a blocking
operation that will wait for another goroutine to receive data from the same
channel in order to unlock it. The capacity shows how many messages the
channel is capable of holding before sending the next becomes a blocking
operation:

unbuf := make(chan int) // unbuffered channel

buf := make(chan int, 3) // channel with size 3

In order to send to a channel, we can use the <- operator. If the channel is on
the left of the operator, it is a send operation, and if it's on the right, it is a
receive operation. The value that's received from a channel can be assigned to
a variable, as follows:

var ch = make(chan int)

go func() {

 b := <-ch // receive and assign

 fmt.Println(b)

}()

ch <- 10 // send to channel

Closing a channel can be done with the close() function. This operation means
that no more values can be sent to the channel. This is why it is usually the
responsibility of the sender. Sending to a close channel will cause a
panic anyway, which is why it should be done by the receiver. Also, when
receiving from a channel, a second Boolean variable can be specified in the
assignment. This will be true if the channel is still open so that the receiver
knows when a channel has been closed:

var ch = make(chan int)

go func() {

 b, ok := <-ch // channel open, ok is true

 b, ok = <-ch // channel closed, ok is false

 b <- ch // channel close, b will be a zero value

}()

ch <- 10 // send to channel

close(ch) // close the channel

There is a special control statement called select which works exactly
like switch, but with only operations on channels:

var ch1 = make(chan int)

var ch2 = make(chan int)

go func() { ch1 <- 10 }

go func() { <-ch2 }

switch { // the first operation that completes is selected

case a := <-ch1:

 fmt.Println(a)

case ch2 <- 20:

 fmt.Println(b)

}

Understanding memory
management
Go is garbage collected; it manages its own memory with a computational
cost. Writing an efficient application requires knowledge of its memory
model and internals in order to reduce the garbage collector's work and
increase general performance.

Stack and heap
Memory is arranged into two main areas – stack and heap. There is a stack
for the application entry point function (main), and additional stacks are
created with each goroutine, which are stored in the heap. The stack is, as its
name suggests, a memory portion that grows with each function call, and
shrinks when the function returns. The heap is made of a series of regions of
memory that are dynamically allocated, and their lifetime is not defined a
priori as the items in the stack; heap space can be allocated and freed at any
time.

All the variables that outlive the function where they are defined are stored in
the heap, such as a returned pointer. The compiler uses a process
called escape analysis to check which variables go on the heap. This can be
verified with the go tool compile -m command.

Variables in the stack come and go with the function's execution. Let's take a
look at a practical example of how the stack works:

func main() {

 var a, b = 0, 1

 f1(a,b)

 f2(a)

}

func f1(a, b int) {

 c := a + b

 f2(c)

}

func f2(c int) {

 print(c)

}

We have the main function calling a function called f1, which calls another
function called f2. Then, the same function is called directly by main.

When the main function starts, the stack grows with the variables that are
being used. In memory, this would look something like the following table,
where each column represents the pseudo state of the stack, which it

represents how the stack changes in time, going from left to right:

main

invoked
f1

invoked
f2

invoked
f2

return
f1

returns
f2

invoked
f2

returns
main

returns

main() main() main() main() main() main() main()
//
empty

a = 0 a = 0 a = 0 a = 0 a = 0 a = 0 a = 0

b = 1 b = 1 b = 1 b = 1 b = 1 b = 1 b = 1

f1() f1() f1() f2()

a = 0 a = 0 a = 0 c = 0

b = 1 b = 1 b = 1

c = 1 c = 1 c = 1

f2()

c = 1

When f1 gets called, the stack grows again by copying the a and b variables in
the new part and adding the new variable, c. The same thing happens for f2.
When f2 returns, the stack shrinks by getting rid of the function and its
variables, which is what happens when f1 finishes. When f2 is called directly,
it grows again by recycling the same memory part that was used for f1.

The garbage collector is responsible for cleaning up the unreferenced values
in the heap, so avoiding storing data in it is a good way of lowering the work
of the garbage collector (GC), which causes a slight decrease in
performance in the app when the GC is running.

The history of GC in Go
The GC is responsible for freeing the areas of the heap that are not referenced
in any stack. This was originally written in C and had a stop the
world behavior. The program stopped for a fraction of time, freed the
memory, and then resumed its flow.

Go 1.4 started the process of converting the runtime, including the garbage
collector, into Go. Translating these parts in Go lays the foundations for
easier optimization that already begun with version 1.5, where the GC
became much faster and could run concurrently with other goroutines.

From that point on, there has been a lot of optimization and improvement of
the process, which managed to reduce the GC time by several orders of
magnitude.

Building and compiling programs
Now that we have had a quick overview of all the language features and
capabilities, we can focus on how to run and build our applications.

Install
In Go, there are different commands to build packages and applications. The
first one is go install, followed by a path or a package name, which creates a
compiled version of the packages in the pkg directory inside $GOPATH.

All the compiled packages are organized by the operating system and
architecture, which are stored in the $GOOS and $GOARCH environment variables.
These settings are visible by using the go env command, together with other
information, like compilation flags:

$ go env

GOARCH="amd64"

...

GOOS="linux"

GOPATH="/home/user/go"

...

GOROOT="/usr/lib/go-1.12"

..."
"

For the current architecture and operating system, all the compiled packages
will be placed in the $GOOS_$GOARCH subdirectory:

$ ls /home/user/go/pkg/

linux_amd64

If the package name is main and it contains a main function, the command will
produce an executable binary file, which will be stored in $GOPATH/bin. If a
package is already installed and the source file didn't change, it will not be
compiled again, which will speed up build time significantly after the first
compile.

Build
A binary can also be built in a specific location using the go build command.
A specific output file can be defined using the -o flag, otherwise it will be
built in the working directory, using the package name as a binary name:

building the current package in the working directory

$ go build .

building the current package in a specific location

$ go build . -o "/usr/bin/mybinary"

When executing the go build command, the argument can be one of the
following:

A package as a relative path (like go build . for the current package or go
build ../name)
A package as an absolute path (go build some/package) that will be looked
up in$GOPATH
A specific Go source file (go build main.go)

The latter case allows you to build a file that is outside $GOPATH and will ignore
any other source file in the same directory.

Run
There is a third command that works similarly to build, but also runs the
binary. It creates the binary using the build command using a temporary
directory as output, and executes the binary on the fly:

$ go run main.go

main output line 1

main output line 2

$

Run can be used over build or install when you're making changes to the
source code. If the code is the same, it is probably better to build it once and
execute it many times.

Summary
In this chapter, we looked at some of the history of Go and its current pros
and cons. After understanding the namespace by looking at how the package
system and imports work, we explored its type system with basic, composite,
and user-defined types.

We focused on variables by looking at how they can be declared and
initialized, which operations are allowed between types, how to cast variables
to other types, and how to see what the underlying type of interface is. We
saw how scope and shadowing work and the difference between constants
and variables. After this, we jumped into functions, a first-class type, and
how each signature represents a different type. We then understood how
methods are basically functions in disguise and attached to a type that allows
custom types to satisfy interfaces.

In addition, we learned how to control the application flow using statements
like if, for, and switch. We analyzed the differences between the various
control statements and the looping statement and viewed what each built-in
function does. Then, we saw how basic concurrency works with channels and
goroutines. Finally, we got some notion of how Go's internal memory
allocation works, some history and performance of its garbage collector, and
how to build, install, and run Go binaries.

In the next chapter, we are going to see how to put some of this into practice
by interacting with the filesystem.

Questions
1. What's the difference between an exported and an unexported symbol?
2. Why are custom types important?
3. What is the main limit of a short declaration?
4. What is scope and how does it affect variable shadowing?
5. How can you access a method?
6. Explain the difference between a series of if/else and switch.
7. In a typical use case, who is generally responsible for closing a channel?
8. What is escape analysis?

Section 2: Advanced File I/O
Operations
This section covers the application's input and output operations, focusing on
files/the filesystem and streams in the Unix OS. It covers many topics,
including reading from and writing to files, and other I/O operations. Then
we explain how much more Go has to offer in terms of I/O with its interfaces
and implementations.

This section consists of the following chapters:

Chapter 4, Working with the Filesystem
Chapter 5, Handling Streams
Chapter 6, Building Pseudo Terminals

Working with the Filesystem
This chapter is all about interacting with the Unix filesystem. Here, we will
look at everything from the basic read and write operations to more advanced
buffered operations, like token scanning and file monitoring.

All of the information for the user or the system is stored as a file in Unix, so
in order to interact with the system and user data, we must interact with the
filesystem.

In this chapter, we will see that there are different ways of executing read and
write operations, and how each one is focused more on simplicity of the code,
the memory usage of the application and its performance, as well as the speed
of execution.

The following topics will be covered in this chapter:

File path manipulation
Reading files
Writing files
Other filesystem operations
Third-party packages

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, please refer to Chapter 3, An Overview of Go.

Handling paths
Go offers a series of functions that make it possible to manipulate file paths
that are platform-independent and that are contained mainly in the
path/filepath and os packages.

Working directory
Each process has a directory associated with it called the working directory,
which is usually inherited from the parent process. This makes it possible to
specify relative paths – one that doesn't start with the root folder. This will
be / on Unix and macOS and C:\ (or any other drive letter) on Windows.

An absolute/full path starts with the root directory and it represents the same location in
a filesystem, that is, /usr/local.

A relative path doesn't start with a root, and the path starts with the current working
directory, that is, documents.

The operating system interprets these paths as being relative to the current
directory, so their absolute version is a concatenation of the working
directory and the relative path. Let's take a look at the following example:

user:~ $ cd documents

user:~/documents $ cd ../videos

user:~/videos $

Here, the user is in their home folder, ~. The user specifies to change
directory to documents, and the cd command automatically adds the working
directory as a prefix to it and moves to ~/documents.

Before moving on to the second command, let's introduce two special files
that are available in all the directories for all operative systems:

 .: The dot is a reference to the current directory. If it's the first element
of the path, it is the process working directory, otherwise it refers to the
path element that precedes it (for example, in ~/./documents, . refers to ~).
..: The double dot refers to the parent of the current directory if it's the
first element of the path, or to the parent of the directory that it precedes
if not (for example, in ~/images/../documents, .. refers to the parent of
~/images, ~).

Knowing this, we can easily infer that the second path is first joined
in ~/documents/../videos, the parent element, .., gets resolved, and the final
path, ~/videos, is obtained.

Getting and setting the working
directory
We can use the func Getwd() (dir string, err error) function of the os package to
find out which path represents the current working directory.

Changing the working directory is done with another function of the same
package, that is, func Chdir(dir string) error, as shown in the following code:

wd, err := os.Getwd()

if err != nil {

 fmt.Println(err)

 return

}

fmt.Println("starting dir:", wd)

if err := os.Chdir("/"); err != nil {

 fmt.Println(err)

 return

}

if wd, err = os.Getwd(); err != nil {

 fmt.Println(err)

 return

}

fmt.Println("final dir:", wd)

Path manipulation
The filepath package contains less than 20 functions, which is a small number
compared to the packages of the standard library, and it's used to manipulate
paths. Let's take a quick look at these functions:

func Abs(path string) (string, error): Returns the absolute version of the
path that's passed by joining it to the current working directory (if it's
not already absolute), and then cleans it.
func Base(path string) string: Gives the last element of the path (base). For
instance, path/to/some/file returns the file. Note that if the path is empty,
this function returns a . (dot) path.
func Clean(path string) string: Returns the shortest version of the path by
applying a series of defined rules. It does operations like replacing . and
.., or removing trailing separators.
func Dir(path string) string: Gets the path without its last element. This
usually returns the parent directory of the element.
func EvalSymlinks(path string) (string, error): Returns the path after
evaluating symbolic links. The path is relative if the provided path is
also relative and doesn't contain symbolic links with absolute paths.
func Ext(path string) string: Gets the file extension of the path, the suffix
that starts with the final dot of the last element of the path, and it's an
empty string if there's no dot (for example, docs/file.txt returns .txt).
func FromSlash(path string) string: Replaces all / (slashes) found in the path
with the operative system path separator. This function does nothing if
the OS is Windows, and it executes a replacement under Unix or
macOS .
func Glob(pattern string) (matches []string, err error): Finds all files
matching the specified pattern. If there are no matching files, the result
is nil. It doesn't report eventual errors that occur during path exploration.
It shares syntax with Match.
func HasPrefix(p, prefix string) bool: This function is deprecated.
func IsAbs(path string) bool: Shows if the path is absolute or not.
func Join(elem ...string) string: Concatenates multiple path elements by
joining them with the filepath separator. Note that this also calls Clean on

the result.
func Match(pattern, name string) (matched bool, err error): Verifies that the
given name matches the pattern, allowing the use of the wild char
characters * and ?, and groups or sequences of characters using square
brackets.
func Rel(basepath, targpath string) (string, error): Returns the relative path
from the base to the target path, or an error if this is not possible. This
function calls Clean on the result.
func Split(path string) (dir, file string): Divides the path into two parts
using the final trailing slash. The result is usually the parent path and the
file name of the input path. If there is no separator, dir will be empty and
the file will be the path itself.
func SplitList(path string) []string: Returns a list of paths, separating them
with the list separator character, which is : in Unix and macOS and ; in
Windows.
func ToSlash(path string) string: Operates the opposite substitution that
the FromSlash function executes, changing each path separator to a /,
doing nothing on Unix and macOS, and executing the replacement in
Windows.
func VolumeName(path string) string: This does nothing in platforms that
aren't Windows. It returns the path component which refers to the
volume. This is done for both local paths and network resources.
func Walk(root string, walkFn WalkFunc) error: Starting from the root
directory, this function travels recursively through the file tree,
executing the walk function for each entry of the tree. If the walk
function returns an error, the walk stops and that error is returned. The
function is defined as follows:

type WalkFunc func(path string, info os.FileInfo, err error) error

Before moving on to the next example, let's introduce an important variable: os.Args. This
variable contains at least one value, which is the path that invoked the current process.
This can be followed by eventual arguments that are specified in the same call.

We want to realize a small application that lists and counts the number of
files in a directory. We can use some of the tools we just saw to achieve this.

An example of the list and count files is shown in the following code:

package main

import (

 "fmt"

 "os"

 "path/filepath"

)

func main() {

 if len(os.Args) != 2 { // ensure path is specified

 fmt.Println("Please specify a path.")

 return

 }

 root, err := filepath.Abs(os.Args[1]) // get absolute path

 if err != nil {

 fmt.Println("Cannot get absolute path:", err)

 return

 }

 fmt.Println("Listing files in", root)

 var c struct {

 files int

 dirs int

 }

 filepath.Walk(root, func(path string, info os.FileInfo, err error) error {

 // walk the tree to count files and folders

 if info.IsDir() {

 c.dirs++

 } else {

 c.files++

 }

 fmt.Println("-", path)

 return nil

 })

 fmt.Printf("Total: %d files in %d directories", c.files, c.dirs)

}

Reading from files
Getting the contents of a file can be done with an auxiliary function in the
io/ioutil package, as well as with the ReadFile function, which opens, reads,
and closes the file at once. This uses a small buffer (512 bytes) and loads the
whole content in memory. This is not a good idea if the file size is very large,
unknown, or if the content of the file can be processed one part at a time.

Reading a huge file from disk at once means copying all the file's content into
the primary memory, which is a limited resource. This can cause memory
shortages, as well as runtime errors. Reading chunks of a file at a time can
help read the content of big files without causing huge memory usage. This is
because the same part of the memory will be reused when reading the next
chunk.

An example of reading all the content at once is shown in the following code:

package main

import (

 "fmt"

 "io/ioutil"

 "os"

)

func main() {

 if len(os.Args) != 2 {

 fmt.Println("Please specify a path.")

 return

 }

 b, err := ioutil.ReadFile(os.Args[1])

 if err != nil {

 fmt.Println("Error:", err)

 }

 fmt.Println(string(b))

}

Reader interface
For all operations that read from a disk, there's an interface that is paramount:

type Reader interface {

 Read(p []byte) (n int, err error)

}

Its job is really simple – fill the given slice of bytes with the content that's
been read and return the number of bytes that's been read and an error, if one
occurs. There is a special error variable that's defined by the io package,
called EOF (End Of File), which should be returned when there is no more
input available.

A reader makes it possible to process data in chunks (the size is determined
by the slice), and if the same slice is reused for the operations that follow, the
resulting program is consistently more memory efficient because it is using
the same limited part of the memory that allocates the slice.

The file structure
The os.File type satisfies the reader interface and is the main actor that's used
to interact with file contents. The most common way to obtain an instance for
reading purposes is with the os.Open function. It's very important to remember
to close a file when you're done using it – this will not be obvious with short-
lived programs, but if an application keeps opening files without closing the
ones that it's done with, the application will reach the limit of open files
imposed by the operating system and start failing the opening operations.

The shell offers a couple of utilities, as follows:

One to get the limit of open files – ulimit -n
Another to check how many files are open by a certain process – lsof -p
PID

The previous example opens a file just to show its contents to standard
output, which it does by loading all its content in memory. This can be easily
optimized with the tools we just mentioned. In the following example, we are
using a small buffer and printing its content before it gets overridden by the
next read, using a small buffer to keep memory usage at a minimum.

An example of using a byte array as a buffer is shown in the following code:

func main() {

 if len(os.Args) != 2 {

 fmt.Println("Please specify a file")

 return

 }

 f, err := os.Open(os.Args[1])

 if err != nil {

 fmt.Println("Error:", err)

 return

 }

 defer f.Close() // we ensure close to avoid leaks

 var (

 b = make([]byte, 16)

)

 for n := 0; err == nil; {

 n, err = f.Read(b)

 if err == nil {

 fmt.Print(string(b[:n])) // only print what's been read

 }

 }

 if err != nil && err != io.EOF { // we expect an EOF

 fmt.Println("\n\nError:", err)

 }

}

The reading loop, if everything works as expected, will continue executing
read operations until the file content is over. In that case, the reading loop
will return an io.EOF error, which shows that there is no more content
available.

Using buffers
A data buffer, or just a buffer, is a part of memory that is used to store
temporary data while it is moved. Byte buffers are implemented in the bytes
package, and they are implemented by an underlying slice that is capable of
growing every time the amount of data that needs to be stored will not fit.

If new buffers get allocated each time, the old ones will eventually be cleaned
up by the GC itself, which is not an optimal solution. It's always better to
reuse buffers instead of allocating new ones. This is because they make it
possible to reset the slice while keeping the capacity as it is (the array doesn't
get cleared or collected by the GC).

A buffer also offers two functions to show its underlying length and capacity.
In the following example, we can see how to reuse a buffer with Buffer.Reset
and how to keep track of its capacity.

An example of buffer reuse and its underlying capacity is shown in the
following code:

package main

import (

 "bytes"

 "fmt"

)

func main() {

 var b = bytes.NewBuffer(make([]byte, 26))

 var texts = []string{

 `As he came into the window`,

 `It was the sound of a crescendo

He came into her apartment`,

 `He left the bloodstains on the carpet`,

 `She ran underneath the table

He could see she was unable

So she ran into the bedroom

She was struck down, it was her doom`,

 }

 for i := range texts {

 b.Reset()

 b.WriteString(texts[i])

 fmt.Println("Length:", b.Len(), "\tCapacity:", b.Cap())

 }

}

Peeking content
In the previous example, we fixed a number of bytes in order to store the
content at every read before printing it. Some functionality is offered by
the bufio package that makes it possible to use an underlying buffer that is not
directly controlled by the user, and makes it possible to execute a very
important operation named peek.

Peeking is the ability to read content without advancing the reader cursor.
Here, under the hood, the peeked data is stored in the buffer. Each reading
operation checks whether there's data in this buffer and if there is any, that
data is returned while removing it from the buffer. This works like a queue
(first in, first out).

The possibilities that this simple operation opens are endless, and they all
derive from peeking until the desired sequence of data is found, and then the
interested chunk is actually read. The most common uses of this operation
include the following:

The buffers keeps reading from the reader until it finds a newline
character (read one line at time).
The same operation is used until a space is found (read one word at a
time).

The structure that allows an application to achieve this behavior is
bufio.Scanner. This makes it possible to define what the splitting function is
and has the following type:

type SplitFunc func(data []byte, atEOF bool) (advance int, token []byte, err error)

This function stops when an error is returned, otherwise it returns the number
of bytes to advance in the content, and eventually a token. The implemented
functions in the package are as follows:

ScanBytes: Byte tokens

ScanRunes: Runes tokens
ScanWord: Words tokens
ScanLines: Line tokens

We could implement a file reader that counts the number of lines with just a
reader. The resulting program will try to emulate what the Unix wc -l
command does.

An example of printing a file and counting lines is shown in the following
code:

func main() {

 if len(os.Args) != 2 {

 fmt.Println("Please specify a path.")

 return

 }

 f, err := os.Open(os.Args[1])

 if err != nil {

 fmt.Println("Error:", err)

 return

 }

 defer f.Close()

 r := bufio.NewReader(f) // wrapping the reader with a buffered one

 var rowCount int

 for err == nil {

 var b []byte

 for moar := true; err == nil && moar; {

 b, moar, err = r.ReadLine()

 if err == nil {

 fmt.Print(string(b))

 }

 }

 // each time moar is false, a line is completely read

 if err == nil {

 fmt.Println()

 rowCount++

 }

 }

 if err != nil && err != io.EOF {

 fmt.Println("\nError:", err)

 return

 }

 fmt.Println("\nRow count:", rowCount)

}

Closer and seeker
There are two other interfaces that are related to readers: io.Closer and
io.Seeker:

type Closer interface {

 Close() error

}

type Seeker interface {

 Seek(offset int64, whence int) (int64, error)

}

These are usually combined with io.Reader, and the resulting interfaces are as
follows:

type ReadCloser interface {

 Reader

 Closer

}

type ReadSeeker interface {

 Reader

 Seeker

}

The Close method ensures that the resource gets released and avoids leaks,
while the Seek method makes it possible to move the cursor of the current
object (for example, a Writer) to the desired offset from the start/end of the
file, or from its current position.

The os.File structure implements this method so that it satisfies all the listed
interfaces. It is possible to close the file when the operations are concluded,
or to move the current cursor around, depending on what you are trying to
achieve.

Writing to file
As we have seen for reading, there are different ways to write files, each one
with its own flaws and strengths. In the ioutil package, for instance, we have
another function called WriteFile that allows us to execute the whole operation
in one line. This includes opening the file, writing its contents, and then
closing it.

An example of writing all a file's content at once is shown in the following
code:

package main

import (

 "fmt"

 "io/ioutil"

 "os"

)

func main() {

 if len(os.Args) != 3 {

 fmt.Println("Please specify a path and some content")

 return

 }

 // the second argument, the content, needs to be casted to a byte slice

 if err := ioutil.WriteFile(os.Args[1], []byte(os.Args[2]), 0644); err != nil {

 fmt.Println("Error:", err)

 }

}

This example writes all the content at once in a single operation. This
requires that we allocate all the content in memory using a byte slice. If the
content is too large, memory usage can become a problem for the OS, which
could kill the process of our application.

If the size of the content isn't very big and the application is short-lived, it's
not a problem if the content gets loaded in memory and written with a single
operation. This isn't the best practice for long-lived applications, which are
executing reads and writes to many different files. They have to allocate all
the content in memory, and that memory will be released by the GC at some
point – this operation is not cost-free, which means that is has disadvantages

regarding memory usage and performance.

Writer interface
The same principle that is valid for reading also applies for writing – there's
an interface in the io package that determines writing behaviors, as shown in
the following code:

type Writer interface {

 Write(p []byte) (n int, err error)

}

The io.Writer interface defines one method that, given a slice of bytes, returns
how many of them have been written and/or if there's been any errors. A
writer makes it possible to write data one chunk at a time without there being
a requirement to have it all at once. The os.File struct also happens to be a
writer, and can be used in such a fashion.

We can use a slice of bytes as a buffer to write information piece by piece. In
the following example, we will try to combine reading from the previous
section with writing, using the io.Seeker capabilities to reverse its content
before writing it.

An example of reversing the contents of a file is shown in the following code:

// Let's omit argument check and file opening, we obtain src and dst

cur, err := src.Seek(0, os.SEEK_END) // Let's go to the end of the file

if err != nil {

 fmt.Println("Error:", err)

 return

}

b := make([]byte, 16)

After moving to the end of the file and defining a byte buffer, we enter a loop
that goes a little backwards in the file, then reads a section of it, as shown in
the following code:

for step, r, w := int64(16), 0, 0; cur != 0; {

 if cur < step { // ensure cursor is 0 at max

 b, step = b[:cur], cur

 }

 cur = cur - step

 _, err = src.Seek(cur, os.SEEK_SET) // go backwards

 if err != nil {

 break

 }

 if r, err = src.Read(b); err != nil || r != len(b) {

 if err == nil { // all buffer should be read

 err = fmt.Errorf("read: expected %d bytes, got %d", len(b), r)

 }

 break

 }

Then, we reverse the content and write it to the destination, as shown in the
following code:

 for i, j := 0, len(b)-1; i < j; i, j = i+1, j-1 {

 switch { // Swap (\r\n) so they get back in place

 case b[i] == '\r' && b[i+1] == '\n':

 b[i], b[i+1] = b[i+1], b[i]

 case j != len(b)-1 && b[j-1] == '\r' && b[j] == '\n':

 b[j], b[j-1] = b[j-1], b[j]

 }

 b[i], b[j] = b[j], b[i] // swap bytes

 }

 if w, err = dst.Write(b); err != nil || w != len(b) {

 if err != nil {

 err = fmt.Errorf("write: expected %d bytes, got %d", len(b), w)

 }

 }

}

if err != nil && err != io.EOF { // we expect an EOF

 fmt.Println("\n\nError:", err)

}

Buffers and format
In the previous section, we saw how bytes.Buffer can be used to store data
temporarily and how it handles its own growth by appending the underlying
slice. The fmt package extensively uses buffers to execute its operations; these
aren't the ones in the bytes package for dependency reasons. This approach is
inherent to one of Go's proverbs:

"A little copy is better than a little dependency."

If you have to import a package to use one function or type, you should
consider just copying the necessary code into your own package. If a package
contains much more than what you need, copying allows you to reduce the
final size of the binary. You can also customize the code and tailor it to your
needs.

Another use of buffers is to compose a message before writing it. Let's write
some code so that we can use a buffer to format a list of books:

const grr = "G.R.R. Martin"

type book struct {

 Author, Title string

 Year int

}

func main() {

 dst, err := os.OpenFile("book_list.txt", os.O_CREATE|os.O_WRONLY, 0666)

 if err != nil {

 fmt.Println("Error:", err)

 return

 }

 defer dst.Close()

 bookList := []book{

 {Author: grr, Title: "A Game of Thrones", Year: 1996},

 {Author: grr, Title: "A Clash of Kings", Year: 1998},

 {Author: grr, Title: "A Storm of Swords", Year: 2000},

 {Author: grr, Title: "A Feast for Crows", Year: 2005},

 {Author: grr, Title: "A Dance with Dragons", Year: 2011},

 // if year is omitted it defaulting to zero value

 {Author: grr, Title: "The Winds of Winter"},

 {Author: grr, Title: "A Dream of Spring"},

 }

 b := bytes.NewBuffer(make([]byte, 0, 16))

 for _, v := range bookList {

 // prints a msg formatted with arguments to writer

 fmt.Fprintf(b, "%s - %s", v.Title, v.Author)

 if v.Year > 0 {

 // we do not print the year if it's not there

 fmt.Fprintf(b, " (%d)", v.Year)

 }

 b.WriteRune('\n')

 if _, err := b.WriteTo(dst); true { // copies bytes, drains buffer

 fmt.Println("Error:", err)

 return

 }

 }

}

The buffer is used to compose the book description, where the year is omitted
if it's not present. This is very efficient when handling bytes and even better if
the buffer is reused each time. If the output of this kind of operation should
be a string, there is a very similar struct in the strings package called
Builder that has the same write methods but some differences, such as the
following:

The String() method uses the unsafe package to convert the bytes into a
string, instead of copying them.
It is not permitted to copy a strings.Builder and then write to the
copy since this causes a panic.

Efficient writing
Each time the os.File method, that is, Write, is executed, this translates to a
system call, which is an operation that comes with some overhead. Generally
speaking, it's a good idea, to minimize the number of operations by writing
more data at once, thus reducing the time that's spent on such calls.

The bufio.Writer struct is a writer that wraps another writer, like os.File, and
executes write operations only when the buffer is full. This makes it possible
to execute a forced write with the Flush method, which is generally reserved
until the end of the writing process. A good pattern of using a buffer would
be the following:

 var w io.WriteCloser

 // initialise writer

 defer w.Close()

 b := bufio.NewWriter(w)

 defer b.Flush()

 // write operations

defer statements are executed in reverse order before returning the current
function, so the first Flush ensures that whatever is still on the buffer gets
written, and then Close actually closes the file. If the two operations were
executed in reverse order, flush would have tried to write a closed file,
returning an error, and failed to write the last chunk of information.

File modes
We saw that the os.OpenFile function makes it possible to choose how to open
a file with the file mode, which is a uint32 where each bit has a meaning (like
Unix files and folder permissions). The os package offers a series of values,
each one specifying a mode, and the correct way to combine them is with
| (bitwise OR).

The following code shows the ones that are available, and have been taken
directly from Go's source:

// Exactly one of O_RDONLY, O_WRONLY, or O_RDWR must be specified.

O_RDONLY int = syscall.O_RDONLY // open the file read-only.

O_WRONLY int = syscall.O_WRONLY // open the file write-only.

O_RDWR int = syscall.O_RDWR // open the file read-write.

// The remaining values may be or'ed in to control behavior.

O_APPEND int = syscall.O_APPEND // append data to the file when writing.

O_CREATE int = syscall.O_CREAT // create a new file if none exists.

O_EXCL int = syscall.O_EXCL // used with O_CREATE, file must not exist.

O_SYNC int = syscall.O_SYNC // open for synchronous I/O.

O_TRUNC int = syscall.O_TRUNC // if possible, truncate file when opened.

The first three represent the operation that's allowed (read, write, or both),
and the others are as follows:

O_APPEND: Before each write, the file offset is positioned at the end of the
file.
O_CREATE: Makes it possible to create the file if it doesn't exist.
O_EXCL: If this is used with create, it fails if the file already exists
(exclusive creation).
O_SYNC: Executes a read/write operation and verifies its competition.
O_TRUNC: If the file exists, its size is truncated to 0.

Other operations
Read and write are not the only operations that can be executed on a file. In
the following section, we'll look at how to use them using the os package.

Create
In order to create an empty file, we can call a helper function called Create,
which opens a new file with a 0666 permission and truncates it if it doesn't
exist. Alternatively, we can use OpenFile with the O_CREATE|O_TRUNCATE mode to
specify custom permissions, as shown in the following code:

package main

import "os"

func main() {

 f, err := os.Create("file.txt")

 if err != nil {

 fmt.Println("Error:", err)

 return

 }

 f.Close()

}

Truncate
To truncate the content of a file under a certain dimension, and leave the file
untouched if it's smaller, there is the os.Truncate method. Its usage is pretty
simple, as shown in the following code:

package main

import "os"

func main() {

 // let's keep thing under 4kB

 if err := os.Truncate("file.txt", 4096); err != nil {

 fmt.Println("Error:", err)

 }

}

Delete
In order to delete a file, there is another simple function, called os.Remove, as
shown in the following code:

package main

import "os"

func main() {

 if err := os.Remove("file.txt"); err != nil {

 fmt.Println("Error:", err)

 }

}

Move
The os.Rename function makes it possible to change a file name and/or its
directory. Note that this operation replaces the destination file if it already
exists.

The code for changing a file's name or its directory is as follows:

import "os"

func main() {

 if err := os.Rename("file.txt", "../file.txt"); err != nil {

 fmt.Println("Error:", err)

 }

}

Copy
There's no unique function that makes it possible to copy a file, but this can
easily be done with a reader and a writer with the io.Copy function. The
following example shows how to use it to copy from one file to another:

func CopyFile(from, to string) (int64, error) {

 src, err := os.Open(from)

 if err != nil {

 return 0, err

 }

 defer src.Close()

 dst, err := os.OpenFile(to, os.O_WRONLY|os.O_CREATE, 0644)

 if err != nil {

 return 0, err

 }

 defer dst.Close()

 return io.Copy(dst, src)

}

Stats
The os package offers the FileInfo interface, which returns the metadata of a
file, as shown in the following code:

type FileInfo interface {

 Name() string // base name of the file

 Size() int64 // length in bytes for regular files; system-dependent for others

 Mode() FileMode // file mode bits

 ModTime() time.Time // modification time

 IsDir() bool // abbreviation for Mode().IsDir()

 Sys() interface{} // underlying data source (can return nil)

}

The os.Stat function returns information about the file with the specified path.

Changing properties
In order to interact with the filesystem and change these properties, three
functions are available:

func Chmod(name string, mode FileMode) error: Changes the permissions of a
file
func Chown(name string, uid, gid int) error: Changes the owner and group of
a file
func Chtimes(name string, atime time.Time, mtime time.Time) error: Changes the
access and modification time of a file

Third-party packages
The community offers many packages that accomplish all kinds of tasks. We
will take a quick look at some of these in this section.

Virtual filesystems
Files are a struct in Go, a concrete type, and there's no abstraction around
them, whereas a file's information is represented by os.FileInfo, which is an
interface. This is slightly inconsistent, and there have been many attempts to
create a full and consistent abstraction on the filesystem, commonly referred
to as a virtual filesystem.

Two of the most used packages are as follows:

vfs: github.com/blang/vfs
afero: github.com/spf13/afero

Even if they are developed separately, they both do the same thing – they
define an interface with all the methods of os.File, and then they define an
interface that implements the function that's available in the os package, like
creating, opening, and deleting files, and so on.

They offer a version based on os.File that's implemented using the standard
package, but there's also a memory version that uses data structures that
emulate a filesystem. This can be very useful for building a test for any
package.

https://github.com/blang/vfs
https://github.com/spf13/afero

Filesystem events
Go has some experimental features in the golang.org/x/ package that are
located under Go's GitHub handler (https://github.com/golang/). The
golang.org/x/sys package is part of this list and includes a subpackage
dedicated to Unix system events. This has been used to build a feature that is
missing from Go's file functionality and can be really useful – observing a
certain path for events on files like creation, deletion, and update.

The two most famous implementations are as follows:

notify: github.com/rjeczalik/notify
fsnotify: github.com/fsnotify/fsnotify

Both packages expose a function that allows the creation of watchers.
Watchers are structures that contain channels that are in charge of delivering
file events. They also expose another function that 's responsible for
terminating/closing the watchers and underlying channels.

https://github.com/golang/
https://github.com/rjeczalik/notify
https://github.com/fsnotify/fsnotify

Summary
In this chapter, we looked at an overview of how to execute file operations in
Go. In order to locate files, an extensive array of functions are offered by the
filepath package. These can help you execute all kind of operations, from
composing paths to extracting elements from it.

We also looked at how to read an operation using various methods, from the
easiest and less memory efficient ones that are located in the io/ioutil
package to the ones that require an io.Writer implementation to read a fixed
chunk of bytes. The importance of the ability to peek content, as
implemented in the bufio package, allows for a whole set of operations like
read word or read line, which stop the reading operation when a token is
found. There are other interfaces that are satisfied by files that are very
useful; for example, io.Closer ensures that the resource is released, and
io.Seeker is used to move the reading cursor around without the need to
actually read the file and discard the output.

Writing a slice of bytes to a file can be achieved in different ways – the
io/ioutil package makes it possible to do so with a function call, while for
more complex or more memory-efficient operations, there's the io.Writer
interface. This makes it possible to write a slice of bytes at a time, and can be
used by the fmt package to print formatted data. The buffered writing is used
to reduce the amount of actual writing on the disk. This is done with a buffer
that collects the content, which then transfers it to a disk every time it gets
full.

Finally, we saw how to accomplish other file operations on the filesystem
(creating, deleting, copying/moving, and changing a file's attributes) and took
a look at some of the filesystem-related third-party packages, that is, virtual
filesystem abstraction and filesystem events notifications.

The next chapter will be about streams, and will focus on all the instances of
readers and writers that are not related to the filesystem.

Questions
1. What's the difference between absolute and relative paths?
2. How do you obtain or change the current working directory?
3. What are the advantages and downfalls of using ioutil.ReadAll?
4. Why are buffers important for reading operations?
5. When should you use ioutil.WriteFile?
6. Which operations are available when using a buffered reader that allows

peeking?
7. When is it better to read content using a byte buffer?
8. How can buffers be used for writing? What's the advantage of using

them?

Handling Streams
This chapter deals with streams of data, extending input and output interfaces
beyond the filesystem, and how to implement custom readers and writers to
serve any purpose.

It also focuses on the missing parts of the input and output utilities that
combine them in several different ways, with the goal being to have full
control of the incoming and outgoing data.

The following topics will be covered in this chapter:

Streams
Custom readers
Custom writers
Utilities

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, refer to Chapter 3, An Overview of Go.

Streams
Writers and readers are not just for files; they are interfaces that abstract
flows of data in one direction or another. These flows, often referred to as
streams, are an essential part of most applications.

Input and readers
Incoming streams of data are considered the io.Reader interface if the
application has no control over the data flow, and will wait for an error to end
the process, receiving the io.EOF value in the best case scenario, which is a
special error that signals that there is no more content to read, or another error
otherwise. The other option is that the reader is also capable of terminating
the stream. In this case, the correct representation is
the io.ReadCloser interface.

Besides os.File, there are several implementations of readers spread across the
standard package.

The bytes reader
The bytes package contains a useful structure that treats a slice of bytes as an
io.Reader interface, and it implements many more I/O interfaces:

io.Reader: This can act as a regular reader
io.ReaderAt: This makes it possible to read from a certain position onward
io.WriterTo: This makes it possible to write the contents with an offset
io.Seeker: This can move the reader's cursor freely
io.ByteScanner: This can execute a read operation for each byte separately
io.RuneScanner: This can do the same with characters that are made of
more bytes

The difference between runes and bytes can be clarified by this example,
where we have a string made up of one rune, ⌘, which is represented by three
bytes, e28c98:

func main() {

 const a = `⌘`

 fmt.Printf("plain string: %s\n", a)

 fmt.Printf("quoted string: %q\n",a)

 fmt.Printf("hex bytes: ")

 for i := 0; i < len(a); i++ {

 fmt.Printf("%x ", a[i])

 }

 fmt.Printf("\n")

}

The full example is available at https://play.golang.org/p/gVZOufSmlq1.

There is also bytes.Buffer, which adds writing capabilities on top of bytes.Reader
and makes it possible to access the underlying slice or get the content as a
string.

The Buffer.String method converts bytes to string, and this type of casting in
Go is done by making a copy of the bytes, because strings are immutable.
This means that eventual changes to the buffer are made after the copy will
not propagate to the string.

https://play.golang.org/p/gVZOufSmlq1

The strings reader
The strings package contains another structure that is very similar to the
io.Reader interface, called strings.Reader. This works exactly like the first but
the underlying value is a string instead of a slice of bytes.

One of the main advantages of using a string instead of the byte reader, when
dealing with strings that need to be read, is the avoidance of copying the data
when initializing it. This subtle difference helps with both performance and
memory usage because it does fewer allocations and requires the Garbage
Collector (GC) to clean up the copy.

Defining a reader
Any Go application can define a custom implementation of
the io.Reader interface. A good general rule when implementing interfaces is
to accept interfaces and return concrete types, avoiding unnecessary
abstraction.

Let's look at a practical example. We want to implement a custom reader that
takes the content from another reader and transforms it into uppercase; we
could call this AngryReader, for instance:

func NewAngryReader(r io.Reader) *AngryReader {

 return &AngryReader{r: r}

}

type AngryReader struct {

 r io.Reader

}

func (a *AngryReader) Read(b []byte) (int, error) {

 n, err := a.r.Read(b)

 for r, i, w := rune(0), 0, 0; i < n; i += w {

 // read a rune

 r, w = utf8.DecodeRune(b[i:])

 // skip if not a letter

 if !unicode.IsLetter(r) {

 continue

 }

 // uppercase version of the rune

 ru := unicode.ToUpper(r)

 // encode the rune and expect same length

 if wu := utf8.EncodeRune(b[i:], ru); w != wu {

 return n, fmt.Errorf("%c->%c, size mismatch %d->%d", r, ru, w, wu)

 }

 }

 return n, err

}

This is a pretty straightforward example that uses unicode and unicode/utf8 to
achieve its goal:

utf8.DecodeRune is used to obtain the first rune and its width is a portion of
the slice read
unicode.IsLetter determines whether a rune is a letter
unicode.ToUpper converts the text into uppercase

ut8.EncodeLetter writes the new letter in the necessary bytes
The letter and its uppercase version should be the same width

The full example is available at https://play.golang.org/p/PhdSsbzXcbE.

https://play.golang.org/p/PhdSsbzXcbE

Output and writers
The reasoning that applies to incoming streams also applies to outgoing ones.
We have the io.Writer interface, in which the application can only send data,
and the io.WriteCloser interface, in which it is also able to close the connection.

The bytes writer
We already saw that the bytes package offers Buffer, which has both reading
and writing capabilities. This implements all the methods of the ByteReader
interface, plus more than one Writer interface:

io.Writer: This can act as a regular writer
io.WriterAt: This makes it possible to write from a certain position
onward
io.ByteWriter: This makes it possible to write single bytes

bytes.Buffer is a very flexible structure considering that it works for both,
Writer and ByteWriter and works best if reused, thanks to the Reset and Truncate
methods. Instead of leaving a used buffer to be recycled by the GC and make
a new buffer, it is better to reset the existing one, keeping the underlying
array for the buffer and setting the slice length to 0.

In the previous chapter, we saw a good example of buffer usage:

 bookList := []book{

 {Author: grr, Title: "A Game of Thrones", Year: 1996},

 {Author: grr, Title: "A Clash of Kings", Year: 1998},

 {Author: grr, Title: "A Storm of Swords", Year: 2000},

 {Author: grr, Title: "A Feast for Crows", Year: 2005},

 {Author: grr, Title: "A Dance with Dragons", Year: 2011},

 {Author: grr, Title: "The Winds of Winter"},

 {Author: grr, Title: "A Dream of Spring"},

 }

 b := bytes.NewBuffer(make([]byte, 0, 16))

 for _, v := range bookList {

 // prints a msg formatted with arguments to writer

 fmt.Fprintf(b, "%s - %s", v.Title, v.Author)

 if v.Year > 0 { // we do not print the year if it's not there

 fmt.Fprintf(b, " (%d)", v.Year)

 }

 b.WriteRune('\n')

 if _, err := b.WriteTo(dst); true { // copies bytes, drains buffer

 fmt.Println("Error:", err)

 return

 }

 }

A buffer is not made for composing string values. For this reason, when the

String method is called, bytes get converted into strings, which are immutable,
unlike slices. The new string created this way is made with a copy of the
current slice, and changes to the slice do not touch the string. It's neither a
limit nor a feature; it is an attribute that can lead to errors if used incorrectly.
Here's an example of the effect of resetting a buffer and using the String
method:

package main

import (

 "bytes"

 "fmt"

)

func main() {

 b := bytes.NewBuffer(nil)

 b.WriteString("One")

 s1 := b.String()

 b.WriteString("Two")

 s2 := b.String()

 b.Reset()

 b.WriteString("Hey!") // does not change s1 or s2

 s3 := b.String()

 fmt.Println(s1, s2, s3) // prints "One OneTwo Hey!"

}

The full example is available at https://play.golang.org/p/zBjGPMC4sfF

https://play.golang.org/p/zBjGPMC4sfF

The string writer
A byte buffer executes a copy of the bytes in order to produce a string. This is
why, in version 1.10, strings.Builder made its debut. It shares all the write-
related methods of a buffer and does not allow access to the underlying slice
via the Bytes method. The only way of obtaining the final string is with the
String method, which uses the unsafe package under the hood to convert the
slice to a string without copying the underlying data.

The main consequence of this is that this struct strongly discourages copying
—that's because the underlying slice of the copied slice points to the same
array, and writing in the copy would influence the other one. The resulting
operation would panic:

package main

import (

 "strings"

)

func main() {

 b := strings.Builder{}

 b.WriteString("One")

 c := b

 c.WriteString("Hey!") // panic: strings: illegal use of non-zero Builder copied by value

}

Defining a writer
Any custom implementation of any writer can be defined in the application.
A very common case is a decorator, which is a writer that wraps another
writer and alters or extends what the original writer does. As for the reader, it
is a good habit to have a constructor that accepts another writer and possibly
wraps it in order to make it compatible with a lot of the standard library
structures, such as the following:

*os.File

*bytes.Buffer

*strings.Builder

Let's get a real-world use case—we want to produce some texts with
scrambled letters in each word to test when it starts to become unreadable by
a human. We will create a configurable writer that will scramble the letters
before writing it to the destination writer and we will create a binary that
accepts a file and creates its scrambled version. We will use
the math/rand package to randomize the scrambling.

Let's define our struct and its constructor. This will accept another writer, a
random number generator, and a scrambling chance:

func NewScrambleWriter(w io.Writer, r *rand.Rand, chance float64) *ScrambleWriter {

 return &ScrambleWriter{w: w, r: r, c: chance}

}

type ScrambleWriter struct {

 w io.Writer

 r *rand.Rand

 c float64

}

The Write method needs to execute the bytes without letters as they are, and
scramble the sequence of letters. It will iterate the runes, using the
ut8.DecodeRune function we saw earlier, print whatever is not a letter, and stack
all the sequences of letters it can find:

func (s *ScrambleWriter) Write(b []byte) (n int, err error) {

 var runes = make([]rune, 0, 10)

 for r, i, w := rune(0), 0, 0; i < len(b); i += w {

 r, w = utf8.DecodeRune(b[i:])

 if unicode.IsLetter(r) {

 runes = append(runes, r)

 continue

 }

 v, err := s.shambleWrite(runes, r)

 if err != nil {

 return n, err

 }

 n += v

 runes = runes[:0]

 }

 if len(runes) != 0 {

 v, err := s.shambleWrite(runes, 0)

 if err != nil {

 return n, err

 }

 n += v

 }

 return

}

When the sequence is over, it will be handled by the shambleWrite method,
which will effectively execute a shamble and write the shambled runes:

func (s *ScrambleWriter) shambleWrite(runes []rune, sep rune) (n int, err error) {

 //scramble after first letter

 for i := 1; i < len(runes)-1; i++ {

 if s.r.Float64() > s.c {

 continue

 }

 j := s.r.Intn(len(runes)-1) + 1

 runes[i], runes[j] = runes[j], runes[i]

 }

 if sep!= 0 {

 runes = append(runes, sep)

 }

 var b = make([]byte, 10)

 for _, r := range runes {

 v, err := s.w.Write(b[:utf8.EncodeRune(b, r)])

 if err != nil {

 return n, err

 }

 n += v

 }

 return

}

The full example is available at https://play.golang.org/p/0Xez--6P7nj.

https://play.golang.org/p/0Xez--6P7nj

Built-in utilities
There are a number of other functions in the io and io/ioutil packages that
help with managing readers, writers, and more. Knowing all the tools
available will help you to avoid writing unnecessary code, and will guide you
in using the best tool for the job.

Copying from one stream to another
There are three main functions in the io package that make it possible to
transfer data from a writer to a reader. This is a very common scenario; you
could be writing the contents from a file opened for reading to another file
opened for writing, for instance, or draining a buffer and writing its content
as standard output.

We already saw how to use the io.Copy function on a file to simulate the
behavior of the cp command in Chapter 4, Working with the Filesystem. This
behavior can be extended to any sort of reader and writer implementation,
from buffers to network connections.

If the writer is also an io.WriterTo interface, the copy calls the WriteTo method.
If not, it executes a series of writes using a buffer of fixed size (32 KB). If the
operation ends with the io.EOF value, no error is returned. A common case
scenario is the bytes.Buffer struct, which is capable of writing its content to
another writer and will behave accordingly. Alternatively, if the destination is
an io.ReaderFrom interface, the ReadFrom method is executed.

If the interface is a simple io.Writer interface, this method uses a temporary
buffer that will be cleaned afterwards. To avoid wasting computing power on
garbage collection, and maybe reuse the same buffers, there's another
function—the io.CopyBuffer function. This has an additional argument, and a
new buffer gets allocated only if this extra argument is nil.

The last function is io.CopyN, which works exactly like io.Copy but makes it
possible to specify a limit to the number of bytes to be written to the extra
argument. If the reader is also io.Seeker, it can be useful to write partial
content—the seeker first moves the cursor to the correct offset, then a certain
number of bytes is written.

Let's make an example of copying n bytes at once:

func CopyNOffset(dst io.Writer, src io.ReadSeeker, offset, length int64) (int64, error) {

 if _, err := src.Seek(offset, io.SeekStart); err != nil {

 return 0, err

 }

 return io.CopyN(dst, src, length)

}

The full example is available at https://play.golang.org/p/8wCqGXp5mSZ.

https://play.golang.org/p/8wCqGXp5mSZ

Connected readers and writers
The io.Pipe function creates a pair of readers and writers that are connected.
This means that whatever is sent to the writer will be received from the
reader. Write operations are blocked if there is still data that is hanging from
the last one; only when the reader has finished consuming what has been sent
will the new operation be concluded.

This is not an important tool for non-concurrent applications, which are more
likely to use concurrent tools such as channels, but when the reader and
writer are executing on different goroutines, this can be an excellent
mechanism for synchronization, as in the following program:

 pr, pw := io.Pipe()

 go func(w io.WriteCloser) {

 for _, s := range []string{"a string", "another string",

 "last one"} {

 fmt.Printf("-> writing %q\n", s)

 fmt.Fprint(w, s)

 }

 w.Close()

 }(pw)

 var err error

 for n, b := 0, make([]byte, 100); err == nil; {

 fmt.Println("<- waiting...")

 n, err = pr.Read(b)

 if err == nil {

 fmt.Printf("<- received %q\n", string(b[:n]))

 }

 }

 if err != nil && err != io.EOF {

 fmt.Println("error:", err)

 }

The full example is available at https://play.golang.org/p/0YpRK25wFw_c.

https://play.golang.org/p/0YpRK25wFw_c

Extending readers
When it comes to incoming streams, there are a lot of functions available in
the standard library to improve the capabilities of readers. One of the easiest
examples is ioutil.NopCloser, which takes a reader and returns io.ReadCloser,
which does nothing. This is useful if a function is in charge of releasing a
resource, but the reader used is not io.Closer (like in bytes.Buffer).

There are two tools that constrain the number of bytes read. The ReadAtLeast
function defines a minimum number of bytes to read. The result will be EOF
only if there are no bytes to read; otherwise, if a smaller number of bytes is
read before EOF, ErrUnexpectedEOF will be returned. If the bytes buffer is shorter
than the bytes requested, which does not make sense, there will be a
ErrShortBuffer. In the event of a reading error, the function manages to read at
least the desired number of bytes, and that error is dropped.

There is then ReadFull, which is expected to fill the buffer and will
return ErrUnexpectedEOF otherwise.

The other constraining function is LimitReader. This function is a decorator that
gets a reader and returns another reader that will return EOF once the desired
bytes are read. This could be used for a preview of the content of an actual
reader, as in the following example:

s := strings.NewReader(`Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged.`)

 io.Copy(os.Stdout, io.LimitReader(s, 25)) // will print "Lorem Ipsum is simply dum"

The full example is available at https://play.golang.org/p/LllOdWg9uyU.

More readers can be combined in a sequence with the MultiReader function will
read each part sequentially until it reaches EOF, and then jump to the next one.

One reader and one writer can be connected so that whatever comes from the
reader is copied to the writer—the opposite of what happens with io.Pipe. This
is done via io.TeeReader.

https://play.golang.org/p/LllOdWg9uyU

Let's try to use it to create a writer that acts as a search engine in the
filesystem, printing only the rows with a match to the query requested. We
want a program that does the following:

Reads a directory path and a string to search from the arguments
Gets a list of files in the selected path
Reads each file and passes the lines that contain the selected string to
another writer
This other writer will inject color characters to highlight the string and
copy its content to the standard output

Let's start with color injection. In a Unix shell, colored output is obtained
with the following sequence:

\xbb1: An escape character
[: An opening bracket
39: A number
m: The letter m

The number determines both the background and foreground color. For this
example, we'll use 31 (red) and 39 (default).

We are creating a writer that will print the rows with a match and highlight
the text:

type queryWriter struct {

 Query []byte

 io.Writer

}

func (q queryWriter) Write(b []byte) (n int, err error) {

 lines := bytes.Split(b, []byte{'\n'})

 l := len(q.Query)

 for _, b := range lines {

 i := bytes.Index(b, q.Query)

 if i == -1 {

 continue

 }

 for _, s := range [][]byte{

 b[:i], // what's before the match

 []byte("\x1b[31m"), //star red color

 b[i : i+l], // match

 []byte("\x1b[39m"), // default color

 b[i+l:], // whatever is left

 } {

 v, err := q.Writer.Write(s)

 n += v

 if err != nil {

 return 0, err

 }

 }

 fmt.Fprintln(q.Writer)

 }

 return len(b), nil

}

This will be used with TeeReader with an open file, so that reading the file will
write to queryWriter:

func main() {

 if len(os.Args) < 3 {

 fmt.Println("Please specify a path and a search string.")

 return

 }

 root, err := filepath.Abs(os.Args[1]) // get absolute path

 if err != nil {

 fmt.Println("Cannot get absolute path:", err)

 return

 }

 q := []byte(strings.Join(os.Args[2:], " "))

 fmt.Printf("Searching for %q in %s...\n", query, root)

 err = filepath.Walk(root, func(path string, info os.FileInfo,

 err error) error {

 if info.IsDir() {

 return nil

 }

 fmt.Println(path)

 f, err := os.Open(path)

 if err != nil {

 return err

 }

 defer f.Close()

 _, err = ioutil.ReadAll(io.TeeReader(f, queryWriter{q, os.Stdout}))

 return err

 })

 if err != nil {

 fmt.Println(err)

 }

}

As you can see, there is no need to write; reading from the file automatically
writes to the query writer that is connected to the standard output.

Writers and decorators
There are a plethora of tools to enhance, decorate, and use for readers, but the
same thing does not apply to writers.

There is also the io.WriteString function, which prevents unnecessary
conversions from strings to bytes. First, it checks whether the writer supports
string writing, attempting a cast to io.stringWriter, an unexported interface
with just the WriteString method, then writes the string if successful, or
converts it into bytes otherwise.

There is the io.MultiWriter function, which creates a writer that replicates the
information to a series of other writers, which it receives upon creation. A
practical example is writing some content while showing it on the standard
output, as in the following example:

 r := strings.NewReader("let's read this message\n")

 b := bytes.NewBuffer(nil)

 w := io.MultiWriter(b, os.Stdout)

 io.Copy(w, r) // prints to the standard output

 fmt.Println(b.String()) // buffer also contains string now

The full example is available at https://play.golang.org/p/ZWDF2vCDfsM.

There is also a useful variable, ioutil.Discard, which is a writer that writes to
/dev/null, a null device. This means that writing to this variable ignores the
data.

https://play.golang.org/p/ZWDF2vCDfsM

Summary
In this chapter, we introduced the concept of streams for describing incoming
and outgoing flows of data. We saw that the reader interface represents the
data received, while the writer is the sent data.

We compared the different readers that are available in the standard package.
We looked at files in the previous chapter, and in this one we added byte and
string readers to the list. We learned how to implement custom readers with
an example, and saw that it's always good to design a reader to be built on top
of another.

Then, we focused on writers. We discovered that files are also writers if
opened correctly and that there are several writers in the standard package,
including the byte buffer and the string builder. We also implemented a
custom writer and saw how to handle bytes and runes with the utf8 package.

Finally, we explored the remaining functionality in io and ioutil, analyzing
the various tools offered for copying data, and connecting readers and
writers. We also saw which decorators are available for improving or
changing readers' and writers' capabilities.

In the next chapter, we will talk about pseudo terminal applications, and we
will use all that knowledge to build some of them.

Questions
1. What's a stream?
2. What interfaces abstract incoming streams?
3. Which interfaces represent outgoing streams?
4. When should a bytes reader be used? When should a string reader be

used instead?
5. What's the difference between a string builder and a bytes buffer?
6. Why should readers and writers implementations accept an interface as

input?
7. How does a pipe differ from TeeReader?

Building Pseudo-Terminals
This chapter will introduce pseudo-terminal applications. Many programs
(such as SQL or SSH clients) are built as pseudo-terminal because it enables
interactive use from inside a terminal. These types of application are very
important because they allow us to have control of an application in an
environment where there is no graphical interface available, such as when
connecting via Secure Shell (SSH) to a server. This chapter will guide you
through the creation of some applications of this type.

The following topics will be covered in this chapter:

Terminals and pseudo-terminals
Basic pseudo-terminals
Advanced pseudo-terminals

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, you can refer to Chapter 3, An Overview of Go.

Understanding pseudo-terminals
Pseudo-terminals, or pseudo teletypes, are applications that run under a
Terminal or teletype and emulate its behavior. It's a very convenient way of
creating interactive software that is capable of running inside a Terminal
without any graphical interface. This is because it uses the Terminal itself to
emulate one.

Beginning with teletypes
Teletype (TTY) or teleprinter is the name for typewriters with an
electromechanical system that was controlled through a serial port. It was
connected to a computer that was capable of sending information to the
device to print it. The data was made by a sequence of finite symbols such as
ASCII characters, with a fixed font. These devices acted as user interfaces for
early computers, so they were—in a sense—precursors to the modern
screens.

When screens to replaced printers as output devices, their content was
organized in a similar fashion: a two dimensional matrix of characters. In
their early stages they were called glass TTY, and the character display was
still part of the display itself, controlled by its own logic circuits. With the
arrival of the first video display cards, computers were capable of having an
interface that was not hardware-dependent.

Text-only consoles used as a main interface for operating systems inherit
their name from TTY and are referred to as consoles. Even if the OS runs a
graphical environment like on a modern OS, a user can always access a
certain number of virtual consoles that work as a Command-Line Interface
(CLI), often referred to as a shell.

Pseudo teletypes
Many applications are designed to work inside a shell, but some of them are
mimicking the shell's behavior. Graphical interfaces have a Terminal
emulator that is designed for executing shells. These types of applications are
called pseudo-teletypes (PTY). In order to be considered a PTY, an
application needs to be capable of the following:

Accepting input from the user
Sending input to the console and receiving the output
Showing this output to the user

There are some examples already in the available Linux
utilities, screen being the most notable. It is a pseudo-terminal application
that allows the user to use multiple shells and control them. It can open and
close new shells, and switch between all opened shells. It allows the user to
name a session, so that, if it's killed for any unexpected reason, the user can
resume the session.

Creating a basic PTY
We'll start with a simple version of a pseudo-terminal by creating an input
manager, then by creating a command selector, and finally by creating the
command execution.

Input management
The standard input can be used to receive user commands. We can start by
using a buffered input to read lines and print them. In order to read a line,
there is a useful command, bufio.Scanner, that already provides a line reader.
The code will look similar to the following code snippet:

s := bufio.NewScanner(os.Stdin)

w := os.Stdout

fmt.Fprint(w, "Some welcome message\n")

for {

 s.Scan() // get next the token

 fmt.Fprint(w, "You wrote \"")

 w.Write(s.Bytes())

 fmt.Fprintln(w, "\"\n") // writing back the text

}

Since this code has no exit point, we can start by creating the first
command, exit, that will terminate the shell execution. We can do a small
change in the code to make this work, as shown in the following:

s := bufio.NewScanner(os.Stdin)

w := os.Stdout

fmt.Fprint(w, "Some welcome message\n")

for {

 s.Scan() // get next the token

 msg := string(s.Bytes())

 if msg == "exit" {

 return

 }

 fmt.Fprintf (w, "You wrote %q\n", msg) // writing back the text

}

Now the application has an exit point other than the kill command. For now,
it does not implement any command, besides the exit one, and all it does is
print back whatever you type.

Selector
In order to be able to interpret the commands correctly, the message needs to
be split into arguments. This is the same logic that the operating system
applies to argument passed to a process. The strings.Split function does the
trick, by specifying a space as a second argument and breaking the string into
words, as shown in the following code:

args := strings.Split(string(s.Bytes()), " ")

cmd := args[0]

args = args[1:]

It's possible to execute any sort of check on cmd, such as the following switch
statement:

switch cmd {

case "exit":

 return

case "someCommand":

 someCommand(w, args)

case "anotherCommand":

 anotherCommand(w, args)

}

This allows the user to add a new command by defining a function and
adding a new case to the switch statement.

Command execution
Now that everything is set, it only remains to define what the various
commands will actually do. We can define the type of the function that
executes a command and how the switch behaves:

var cmdFunc func(w io.Writer, args []string) (exit bool)

switch cmd {

case "exit":

 cmdFunc = exitCmd

}

if cmdFunc == nil {

 fmt.Fprintf(w, "%q not found\n", cmd)

 continue

}

if cmdFunc(w, args) { // execute and exit if true

 return

}

The return value tells the application whether it needs to terminate or not and
allows us to define our exit function easily, without it being a special case:

func exitCmd(w io.Writer, args []string) bool {

 fmt.Fprintf(w, "Goodbye! :)")

 return true

}

We could implement any type of command now, depending on the scope of
our application. Let's create a shuffle command, which will print the
arguments in a shuffled order with the help of the math/rand package:

func shuffle(w io.Writer, args ...string) bool {

 rand.Shuffle(len(args), func(i, j int) {

 args[i], args[j] = args[j], args[i]

 })

 for i := range args {

 if i > 0 {

 fmt.Fprint(w, " ")

 }

 fmt.Fprintf(w, "%s", args[i])

 }

 fmt.Fprintln(w)

 return false

}

We could interact with the filesystem and files by creating a print command

that will show in the output of the contents of a file:

func print(w io.Writer, args ...string) bool {

 if len(args) != 1 {

 fmt.Fprintln(w, "Please specify one file!")

 return false

 }

 f, err := os.Open(args[0])

 if err != nil {

 fmt.Fprintf(w, "Cannot open %s: %s\n", args[0], err)

 }

 defer f.Close()

 if _, err := io.Copy(w, f); err != nil {

 fmt.Fprintf(w, "Cannot print %s: %s\n", args[0], err)

 }

 fmt.Fprintln(w)

 return false

}

Some refactor
The current version of the pseudo-terminal application could be improved
with a little refactoring. We could start by defining a command as a custom
type, with a couple of methods that describe its behavior:

type cmd struct {

 Name string // the command name

 Help string // a description string

 Action func(w io.Writer, args ...string) bool

}

func (c cmd) Match(s string) bool {

 return c.Name == s

}

func (c cmd) Run(w io.Writer, args ...string) bool {

 return c.Action(w, args...)

}

All of the information about each command can be self-contained in a
structure. We can also start defining commands that depend on other
commands, such as a help command. If we have a slice or a map of
commands defined somewhere in the var cmds []cmd package, the help
command will be as follows:

help := cmd{

 Name: "help",

 Help: "Shows available commands",

 Action: func(w io.Writer, args ...string) bool {

 fmt.Fprintln(w, "Available commands:")

 for _, c := range cmds {

 fmt.Fprintf(w, " - %-15s %s\n", c.Name, c.Help)

 }

 return false

 },

}

The part of the main loop that selects the correct command will be slightly
different; it will need to find the match in the slice and execute it:

for i := range cmds {

 if !cmds[i].Match(args[0]) {

 continue

 }

 idx = i

 break

}

if idx == -1 {

 fmt.Fprintf(w, "%q not found. Use `help` for available commands\n", args[0])

 continue

}

if cmds[idx].Run(w, args[1:]...) {

 fmt.Fprintln(w)

 return

}

Now that there is a help command that shows the list of available commands,
we can advocate using it each time the user specifies a command that does
not exist—as we are currently doing when checking whether the index has
changed from its default value, -1.

Improving the PTY
Now that we have seen how to create a basic pseudo-terminal, we will see
how to improve it with some additional features.

Multiline input
The first thing that can be improved is the relationship between arguments
and spacing, by adding support for quoted strings. This can be done with
bufio.Scanner with a custom split function that behaves like bufio.ScanWords apart
from the fact that it's aware of quotes. The following code demonstrates this:

func ScanArgs(data []byte, atEOF bool) (advance int, token []byte, err error) {

 // first space

 start, first := 0, rune(0)

 for width := 0; start < len(data); start += width {

 first, width = utf8.DecodeRune(data[start:])

 if !unicode.IsSpace(first) {

 break

 }

 }

 // skip quote

 if isQuote(first) {

 start++

 }

The function has a first block that skips spaces and finds the first non-space
character; if that character is a quote, it is skipped. Then, it looks for the first
character that terminates the argument, which is a space for normal
arguments, and the respective quote for the other arguments:

 // loop until arg end character

 for width, i := 0, start; i < len(data); i += width {

 var r rune

 r, width = utf8.DecodeRune(data[i:])

 if ok := isQuote(first); !ok && unicode.IsSpace(r) || ok

 && r == first {

 return i + width, data[start:i], nil

 }

 }

If the end of file is reached while in a quoted context, the partial string is
returned; otherwise, the quote is not skipped and more data is requested:

 // token from EOF

 if atEOF && len(data) > start {

 return len(data), data[start:], nil

 }

 if isQuote(first) {

 start--

 }

 return start, nil, nil

}

The full example is available at: https://play.golang.org/p/CodJjcpzlLx.

Now we can use this as our line for parsing the arguments, while using
the helper structure, argsScanner, defined as follows:

type argsScanner []string

func (a *argsScanner) Reset() { *a = (*a)[0:0] }

func (a *argsScanner) Parse(r io.Reader) (extra string) {

 s := bufio.NewScanner(r)

 s.Split(ScanArgs)

 for s.Scan() {

 *a = append(*a, s.Text())

 }

 if len(*a) == 0 {

 return ""

 }

 lastArg := (*a)[len(*a)-1]

 if !isQuote(rune(lastArg[0])) {

 return ""

 }

 *a = (*a)[:len(*a)-1]

 return lastArg + "\n"

}

This custom slice will allow us to receive lines with quotes and new lines
between quotes by changing how the loop works:

func main() {

 s := bufio.NewScanner(os.Stdin)

 w := os.Stdout

 a := argsScanner{}

 b := bytes.Buffer{}

 for {

 // prompt message

 a.Reset()

 b.Reset()

 for {

 s.Scan()

 b.Write(s.Bytes())

 extra := a.Parse(&b)

 if extra == "" {

 break

 }

 b.WriteString(extra)

 }

 // a contains the split arguments

 }

}

https://play.golang.org/p/CodJjcpzlLx

Providing color support to the
pseudo-terminal
The pseudo-terminal can be improved by providing colored output. We have
already seen that, in Unix, there are escape sequences that can change the
background and foreground color. Let's start by defining a custom type:

type color int

func (c color) Start(w io.Writer) {

 fmt.Fprintf(w, "\x1b[%dm", c)

}

func (c color) End(w io.Writer) {

 fmt.Fprintf(w, "\x1b[%dm", Reset)

}

func (c color) Sprintf(w io.Writer, format string, args ...interface{}) {

 c.Start(w)

 fmt.Fprintf(w, format, args...)

 c.End(w)

}

// List of colors

const (

 Reset color = 0

 Red color = 31

 Green color = 32

 Yellow color = 33

 Blue color = 34

 Magenta color = 35

 Cyan color = 36

 White color = 37

)

This new type can be used to enhance commands with colored output. For
instance, let's take the shuffle command and use alternate colors to
distinguish between strings, now that we support arguments with spaces:

func shuffle(w io.Writer, args ...string) bool {

 rand.Shuffle(len(args), func(i, j int) {

 args[i], args[j] = args[j], args[i]

 })

 for i := range args {

 if i > 0 {

 fmt.Fprint(w, " ")

 }

 var f func(w io.Writer, format string, args ...interface{})

 if i%2 == 0 {

 f = Red.Fprintf

 } else {

 f = Green.Fprintf

 }

 f(w, "%s", args[i])

 }

 fmt.Fprintln(w)

 return false

}

Suggesting commands
When the specified command does not exist, we can suggest some similar
commands. In order to do so, we can use the Levenshtein distance formula,
which measures the similarity between strings by counting deletions,
insertions, and substitutions needed to go from one string to the other.

In the following code, we will use the agnivade/levenshtein package, which will
be obtained through the go get command:

go get github.com/agnivade/levenshtein/...

Then, we define a new function to call when there is no match with existing
commands:

func commandNotFound(w io.Writer, cmd string) {

 var list []string

 for _, c := range cmds {

 d := levenshtein.ComputeDistance(c.Name, cmd)

 if d < 3 {

 list = append(list, c.Name)

 }

 }

 fmt.Fprintf(w, "Command %q not found.", cmd)

 if len(list) == 0 {

 return

 }

 fmt.Fprint(w, " Maybe you meant: ")

 for i := range list {

 if i > 0 {

 fmt.Fprint(w, ", ")

 }

 fmt.Fprintf(w, "%s", list[i])

 }

}

Extensible commands
The current limitation of our pseudo-terminal is its extensibility. If a new
command needs to be added, it needs to be added directly into the main
package. We can think of a way of separating the commands from the main
package and allowing other users to extend the functionality with their
commands:

1. The first step is creating an exported command. Let's use an interface to
define a command, so that the user can implement their own:

// Command represents a terminal command

type Command interface {

 GetName() string

 GetHelp() string

 Run(input io.Reader, output io.Writer, args ...string) (exit bool)

}

2. Now we can specify a list of commands and a function for other
packages to add other commands:

// ErrDuplicateCommand is returned when two commands have the same name

var ErrDuplicateCommand = errors.New("Duplicate command")

var commands []Command

// Register adds the Command to the command list

func Register(command Command) error {

 name := command.GetName()

 for i, c := range commands {

 // unique commands in alphabetical order

 switch strings.Compare(c.GetName(), name) {

 case 0:

 return ErrDuplicateCommand

 case 1:

 commands = append(commands, nil)

 copy(commands[i+1:], commands[i:])

 commands[i] = command

 return nil

 case -1:

 continue

 }

 }

 commands = append(commands, command)

 return nil

}

3. We can provide a base implementation of the command, to execute
simple functions:

// Base is a basic Command that runs a closure

type Base struct {

 Name, Help string

 Action func(input io.Reader, output io.Writer, args ...string) bool

}

func (b Base) String() string { return b.Name }

// GetName returns the Name

func (b Base) GetName() string { return b.Name }

// GetHelp returns the Help

func (b Base) GetHelp() string { return b.Help }

// Run calls the closure

func (b Base) Run(input io.Reader, output io.Writer, args ...string) bool {

 return b.Action(input, output, args...)

}

4. We can provide a function that matches a command to the name:

// GetCommand returns the command with the given name

func GetCommand(name string) Command {

 for _, c := range commands {

 if c.GetName() == name {

 return c

 }

 }

 return suggest

}

5. We can use the logic from the previous example to make this function
return the suggestion command, which will be defined as follows:

var suggest = Base{

 Action: func(in io.Reader, w io.Writer, args ...string) bool {

 var list []string

 for _, c := range commands {

 name := c.GetName()

 d := levenshtein.ComputeDistance(name, args[0])

 if d < 3 {

 list = append(list, name)

 }

 }

 fmt.Fprintf(w, "Command %q not found.", args[0])

 if len(list) == 0 {

 return false

 }

 fmt.Fprint(w, " Maybe you meant: ")

 for i := range list {

 if i > 0 {

 fmt.Fprint(w, ", ")

 }

 fmt.Fprintf(w, "%s", list[i])

 }

 return false

 },

}

6. We can already register a couple of commands in the exit and
help packages. Only help can be defined here, because the list of
commands is private:

func init() {

 Register(Base{Name: "help", Help: "...", Action: helpAction})

 Register(Base{Name: "exit", Help: "...", Action: exitAction})

}

func helpAction(in io.Reader, w io.Writer, args ...string) bool {

 fmt.Fprintln(w, "Available commands:")

 for _, c := range commands {

 n := c.GetName()

 fmt.Fprintf(w, " - %-15s %s\n", n, c.GetHelp())

 }

 return false

}

func exitAction(in io.Reader, w io.Writer, args ...string) bool {

 fmt.Fprintf(w, "Goodbye! :)\n")

 return true

}

This approach will allow a user to use the commandBase struct to create a simple
command, or to embed it or use a custom struct if their command requires it
(like a command with a state):

// Embedded unnamed field (inherits method)

type MyCmd struct {

 Base

 MyField string

}

// custom implementation

type MyImpl struct{}

func (MyImpl) GetName() string { return "myimpl" }

func (MyImpl) GetHelp() string { return "help string"}

func (MyImpl) Run(input io.Reader, output io.Writer, args ...string) bool {

 // do something

 return true

}

The difference between the MyCmd struct and the MyImpl struct is that one can be
used as decorator for another command, while the second is a different
implementation so it can't interact with another command.

Commands with status
Until now, we have created commands that don't have an internal state. But
some commands can keep an internal state and change its behavior
accordingly. The state could be limited to the session itself or it could be
shared across multiple sessions. The more obvious example is the command
history in the Terminal, where all commands executed are stored and retained
between sessions.

Volatile status
The easiest thing to implement is a status that is not persistent and gets lost
when the application exits. All we need to do is create a custom data structure
that hosts the status and satisfies the command interface. The methods will
belong to the pointer to the type, as otherwise they will not be able to modify
the data.

In the following example, we will create a very basic memory storage that
works as a stack (first in, last out) with arguments. Let's start with the push
and pop functionalities:

type Stack struct {

 data []string

}

func (s *Stack) push(values ...string) {

 s.data = append(s.data, values...)

}

func (s *Stack) pop() (string, bool) {

 if len(s.data) == 0 {

 return "", false

 }

 v := s.data[len(s.data)-1]

 s.data = s.data[:len(s.data)-1]

 return v, true

}

The strings stored in the stack represent the state of the command. Now, we
need to implement the methods of the command interface—we can start with
the easiest ones:

func (s *Stack) GetName() string {

 return "stack"

}

func (s *Stack) GetHelp() string {

 return "a stack-like memory storage"

}

Now we need to decide how it works internally. There will be two sub-
commands:

push, followed by one or more arguments, will push to the stack.
pop will take the topmost element of the stack and it will not need any
argument.

Let's define a helper method, isValid, that checks whether the arguments are
valid:

func (s *Stack) isValid(cmd string, args []string) bool {

 switch cmd {

 case "pop":

 return len(args) == 0

 case "push":

 return len(args) > 0

 default:

 return false

 }

}

Now, we can implement the command execution method that will use the
validity check. If this is passed, it will execute the selected command or show
a help message:

func (s *Stack) Run(r io.Reader, w io.Writer, args ...string) (exit bool) {

 if l := len(args); l < 2 || !s.isValid(args[1], args[2:]) {

 fmt.Fprintf(w, "Use `stack push <something>` or `stack pop`\n")

 return false

 }

 if args[1] == "push" {

 s.push(args[2:]...)

 return false

 }

 if v, ok := s.pop(); !ok {

 fmt.Fprintf(w, "Empty!\n")

 } else {

 fmt.Fprintf(w, "Got: `%s`\n", v)

 }

 return false

}

Persistent status
The next step is to persist the status between sessions, and this requires some
action to be executed when the application starts and another one to be
executed when the application ends. These new behaviors could be integrated
with some changes on the command interface:

type Command interface {

 Startup() error

 Shutdown() error

 GetName() string

 GetHelp() string

 Run(r io.Reader, w io.Writer, args ...string) (exit bool)

}

The Startup() method is responsible for the status and loading it when the
application starts, and the Shutdown() method needs to save the current status to
the disk before exit. We can update the Base structure with these methods;
however, this will not do anything, because there's no status:

// Startup does nothing

func (b Base) Startup() error { return nil }

// Shutdown does nothing

func (b Base) Shutdown() error { return nil }

The command list is not exported; it is the unexported variable, commands. We
can add two functions that will interact with such a list, and make sure we
execute these methods, Startup and Shutdown, on all available commands:

// Shutdown executes shutdown for all commands

func Shutdown(w io.Writer) {

 for _, c := range commands {

 if err := c.Shutdown(); err != nil {

 fmt.Fprintf(w, "%s: shutdown error: %s", c.GetName(), err)

 }

 }

}

// Startup executes Startup for all commands

func Startup(w io.Writer) {

 for _, c := range commands {

 if err := c.Startup(); err != nil {

 fmt.Fprintf(w, "%s: startup error: %s", c.GetName(), err)

 }

 }

}

The final step is using these functions within the main application before
starting the main loop:

func main() {

 s, w, a, b := bufio.NewScanner(os.Stdin), os.Stdout, args{}, bytes.Buffer{}

 command.Startup(w)

 defer command.Shutdown(w) // this is executed before returning

 fmt.Fprint(w, "** Welcome to PseudoTerm! **\nPlease enter a command.\n")

 for {

 // main loop

 }

}

Upgrading the Stack command
We want the command we defined before, Stack, to be able to save its state
between sessions. The simplest solution is to save the contents of the stack as
a text file, with one element per line. We can make this file unique for each
user, using the OS/user package to place it in the user home directory:

func (s *Stack) getPath() (string, error) {

 u, err := user.Current()

 if err != nil {

 return "", err

 }

 return filepath.Join(u.HomeDir, ".stack"), nil

}

Let's start writing; we will create and truncate the file (setting its size to 0
using the TRUNC flag) and write the following lines:

func (s *Stack) Shutdown(w io.Writer) error {

 path, err := s.getPath()

 if err != nil {

 return err

 }

 f, err := os.OpenFile(path, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, 0600)

 if err != nil {

 return err

 }

 defer f.Close()

 for _, v := range s.data {

 if _, err := fmt.Fprintln(f, v); err != nil {

 return err

 }

 }

 return nil

}

The method used during the shutdown will read the file line by line and will
add the elements to the stack. We can use bufio.Scanner, as we saw in a
previous chapter, to do this easily:

func (s *Stack) Startup(w io.Writer) error {

 path, err := s.getPath()

 if err != nil {

 return err

 }

 f, err := os.Open(path)

 if err != nil {

 if os.IsNotExist(err) {

 return nil

 }

 return err

 }

 defer f.Close()

 s.data = s.data[:0]

 scanner := bufio.NewScanner(f)

 for scanner.Scan() {

 s.push(string(scanner.Bytes()))

 }

 return nil

}

Summary
In this chapter, we went through some terminology, in order to understand
why modern Terminal applications exist and how they evolved.

Then, we focused on how to implement a basic pseudo-terminal. The first
step was to create a loop that handled input management, then it was
necessary to create a command selector and finally an executor. The selector
could choose between a series of functions defined in the package, and we
created a special command to exit the application. With some refactoring, we
went from functions to structs containing both the name and action.

We saw how to improve the application in various ways. First, we created a
support for multiline input (using a custom split function for a scanner) that
supported quoted strings, with new lines. Then, we created some tools to add
colored output to our functions and used them in one of the commands
previously defined. We also used Levenshtein distance to suggest similar
commands when the user specifies a non-existing one.

Finally, we separated commands from the main application and created a way
of registering new commands from the outside. We used an interface because
this allows better extension and customization, together with a basic
implementation of the interface.

In the next chapter, we will start talking about process properties and child
processes.

Questions
1. What is a Terminal, and what is a pseudo-terminal?
2. What should a pseudo-terminal be able to do?
3. What Go tools did we use in order to emulate a Terminal?
4. How can my application get instructions from standard input?
5. What is the advantage of using interfaces for commands?
6. What's the Levenshtein distance? Why can it be useful in pseudo-

terminals?

Section 3: Understanding Process
Communication
This section explores how various processes communicate with each other. It
explains how to use Unix's pipe-based communication in Go, how to handle
signals inside an application, and how to use the network to communicate
effectively. Finally, it shows how to encode data to improve communication
speed.

This section consists of the following chapters:

Chapter 7, Handling Processes and Daemons
Chapter 8, Exit Codes, Signals, and Pipes
Chapter 9, Network Programming
Chapter 10, Data Encoding Using Go

Handling Processes and Daemons
This chapter will introduce you to how to handle the properties of the current
process using the Go standard library, and how to change them. We will also
focus on how to create child processes and give an overview of
the os/exec package.

Finally, we will explain what daemons are, what properties they have, and
how to create them using the standard library.

The following topics will be covered in this chapter:

Understanding processes
Child processes
Beginning with daemons
Creating a service

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, you can refer to Chapter 3, An Overview of Go.

Understanding processes
We have already seen the importance of processes in the Unix operating
system, so now we will look at how to obtain information on the current
process and how to create and handle child processes.

Current process
The Go standard library allows us to get information on the current process.
This is done by using a series of functions that are available in
the os package.

Standard input
The first two things that a program may want to know are its identifier and
the parent identifier, that is, PID and PPID. This is actually pretty
straightforward – the os.Getpid() and os.Getppid() functions both return an
integer value with both of the identifiers, as shown in the following code:

package main

import (

 "fmt"

 "os"

)

func main() {

 fmt.Println("Current PID:", os.Getpid())

 fmt.Println("Current Parent PID:", os.Getppid())

}

The full example is available at https://play.golang.org/p/ng0m9y4LcD5.

https://play.golang.org/p/ng0m9y4LcD5

User and group ID
Another piece of information that can be handy is the current user and the
groups that the process belongs to. A typical user case could be to compare
them with a file-specific permission.

The os package offers the following functions:

os.Getuid(): Returns the user ID of the process owner
os.Getgid(): Returns the group ID of the process owner
os.Getgroups(): Returns additional group IDs of the process owner

We can see that these three functions return IDs in their numerical form:

package main

import (

 "fmt"

 "os"

)

func main() {

 fmt.Println("User ID:", os.Getuid())

 fmt.Println("Group ID:", os.Getgid())

 groups, err := os.Getgroups()

 if err != nil {

 fmt.Println(err)

 return

 }

 fmt.Println("Group IDs:", groups)

}

The full example is available at https://play.golang.org/p/EqmonEEc_ZI.

In order to get the names of users and groups, there are some helper functions
in the os/user package. These functions (with a pretty self-explanatory name)
are as follows:

func LookupGroupId(gid string) (*Group, error)

func LookupId(uid string) (*User, error)

Even if the user ID is an integer, it takes a string as an argument, and so a

https://play.golang.org/p/EqmonEEc_ZI

conversion needs to be done. The easiest way to do that is to
use the strconv package, which offers a series of utilities to convert from
strings into the other basic data types, and vice versa.

We can see them in action in the following example:

package main

import (

 "fmt"

 "os"

 "os/user"

 "strconv"

)

func main() {

 uid := os.Getuid()

 u, err := user.LookupId(strconv.Itoa(uid))

 if err != nil {

 fmt.Println("Error:", err)

 return

 }

 fmt.Printf("User: %s (uid %d)\n", u.Username, uid)

 gid := os.Getgid()

 group, err := user.LookupGroupId(strconv.Itoa(gid))

 if err != nil {

 fmt.Println("Error:", err)

 return

 }

 fmt.Printf("Group: %s (uid %d)\n", group.Name, uid)

}

The full example is available at https://play.golang.org/p/C6EWF2c50DT.

https://play.golang.org/p/C6EWF2c50DT

Working directory
Another very useful piece of information that a process can give us access to
is the working directory so that we can change it. In Chapter 4, Working with
the Filesystem, we learned about which tools we can use –
 os.Getwd and os.Chdir.

In the following practical example, will look at how to use these functions to
manipulate the working directory:

1. First, we will obtain the current working directory and use it to get the
path of the binary.

2. Then, we will join the working directory with another path and use it
create a directory.

3. Finally, we will use the path of the directory we just created to change
the current working directory.

Check out the following code:

// obtain working directory

wd, err := os.Getwd()

if err != nil {

 fmt.Println("Error:", err)

 return

}

fmt.Println("Working Directory:", wd)

fmt.Println("Application:", filepath.Join(wd, os.Args[0]))

// create a new directory

d := filepath.Join(wd, "test")

if err := os.Mkdir(d, 0755); err != nil {

 fmt.Println("Error:", err)

 return

}

fmt.Println("Created", d)

// change the current directory

if err := os.Chdir(d); err != nil {

 fmt.Println("Error:", err)

 return

}

fmt.Println("New Working Directory:", d)

The full example is available at https://play.golang.org/p/UXAer5nGBtm.

https://play.golang.org/p/UXAer5nGBtm

Child processes
A Go application can interact with the operating system to create some other
processes. Another subpackage of os offers the functionality to create and run
new processes. Inside the os/exec package, there is the Cmd type, which
represents command execution:

type Cmd struct {

 Path string // command to run.

 Args []string // command line arguments (including command)

 Env []string // environment of the process

 Dir string // working directory

 Stdin io.Reader // standard input`

 Stdout io.Writer // standard output

 Stderr io.Writer // standard error

 ExtraFiles []*os.File // additional open files

 SysProcAttr *syscall.SysProcAttr // os specific attributes

 Process *os.Process // underlying process

 ProcessState *os.ProcessState // information on exited processte

}

The easiest way to create a new command is by using the
exec.Command function, which takes the executable path and a series of
arguments. Let's look at a simple example with an echo command and some
arguments:

package main

import (

 "fmt"

 "os/exec"

)

func main() {

 cmd := exec.Command("echo", "A", "sample", "command")

 fmt.Println(cmd.Path, cmd.Args[1:]) // echo [A sample command]

}

The full example is available at https://play.golang.org/p/dBIAUteJbxI.

One very important detail is the nature of standard input, output, and error –
 they are all interfaces that we are already familiar with:

The input is an io.Reader, which could be bytes.Reader, bytes.Buffer,

https://play.golang.org/p/dBIAUteJbxI

strings.Reader, os.File, or any other implementation.
The output and the error are io.Writer, can also be os.File or bytes.Buffer,
and can also be strings.Builder or any another writer implementation.

There are different ways to launch the process, depending on what the parent
application needs:

Cmd.Run: Executes the command, and returns an error that is nil if the
child process is executed correctly.
Cmd.Start : Executes the command asynchronously and lets the parent
continue its flow. In order to wait for the child process to finish its
execution, there is another method, Cmd.Wait.
Cmd.Output: Executes the command and returns its standard output, and
returns an error if Stderr isn't defined but the standard error produced the
output.
Cmd.CombinedOutput: Executes the command and returns both a standard
error and output combined, which is very useful when the entire output
of the child process-standard output plus standard error needs to be
checked or saved.

Accessing child properties
Once the command has started its execution, synchronously or not, the
underlying os.Process gets populated and it is possible to see its PID, as we can
see in the following example:

package main

import (

 "fmt"

 "os/exec"

)

func main() {

 cmd := exec.Command("ls", "-l")

 if err := cmd.Start(); err != nil {

 fmt.Println(err)

 return

 }

 fmt.Println("Cmd: ", cmd.Args[0])

 fmt.Println("Args:", cmd.Args[1:])

 fmt.Println("PID: ", cmd.Process.Pid)

 cmd.Wait()

}

Standard input
Standard input can be used to send some data from the application to the
child process. A buffer can be used to store the data and let the command
read it, as shown in the following example:

package main

import (

 "bytes"

 "fmt"

 "os"

 "os/exec"

)

func main() {

 b := bytes.NewBuffer(nil)

 cmd := exec.Command("cat")

 cmd.Stdin = b

 cmd.Stdout = os.Stdout

 fmt.Fprintf(b, "Hello World! I'm using this memory address: %p", b)

 if err := cmd.Start(); err != nil {

 fmt.Println(err)

 return

 }

 cmd.Wait()

}

Beginning with daemons
In Unix, all of the programs that are running in the background are called
daemons. They usually have a name that ends with the letter d,
like sshd or syslogd, and they provide many functionalities of the OS.

Operating system support
In macOS, Unix, and Linux, a process is a daemon if it survives its parent life
cycle, that is, when the parent process terminates its execution and the child
process lives on. That's because the process parent is changed to
the init process, a special daemon with no parent, and PID 1, which starts and
terminates with the OS. Before going into this further, let's introduce two
very important concepts – sessions and process groups:

A process group is a collection of processes that share signal handling.
The first process of the group is called the group leader. There is a
Unix system call, setpgid, that is capable of changing the group for a
process, but it has some limits. The process can change its own process
group, or change the group of one of its child processes before the exec
system call is executed on it. When the process group changes, the
session group needs to be changed accordingly, the same as for the
leader of the destination group.
A session is a collection of process groups that allow us to impose a
series of restrictions on process groups and other operations. A session
doesn't allow process group migration to another session, and it prevents
processes from creating process groups in different
sessions. The setsid system call allows us to change the process session
to a new session if the process isn't a process group leader. Also, the first
process group ID sets the session ID. If this ID is the same as the one of
the running process, that process is called the session leader.

Now that we've explained these two properties, we can look at the standard
operations that are needed to create a daemon, which are usually the
following:

Clean up the environment to remove unnecessary variables.
Create a fork so that the main process can terminate the process
normally.
Use the setsid system call, which accomplishes these three steps:

1. Remove the PPID from the forked process so that it gets adopted

by the init process
2. Create a new session for the fork, which will become the session

leader
3. Set the process as the group leader

The fork's current directory is set to the root directory to avoid having
other directories in use, and all the files opened by the parent are closed
(the child will open them if needed).
Setting standard input to /dev/null and using some log files as standard
output and error.
Optionally, the fork can be forked again, and can then exit. The first fork
will be the group leader, and the second one will have the same group,
allowing us to have another fork that isn't a group leader.

This is valid for Unix-based operating systems, though Windows also
has support for permanent background processes, which are called services.
Services can start automatically at boot or be started and stopped manually
using a visual application called Service Control Manager (SCM). They
can also be controlled from a command line, using the sc command in the
regular prompt, and via the Start-Service and Stop-Service cmdlets in
PowerShell.

Daemons in action
Now that we understand what a daemon is and how it works, we can attempt
to use the Go standard library to create one. Go applications are
multithreaded and don't allow us to call to the fork system call directly.

We have learned that the Cmd.Start method in the os/exec package allows us to
start a process asynchronously. The second step is to use the release method to
close all the resources from the current process.

The following example shows us how to do this:

package main

import (

 "fmt"

 "os"

 "os/exec"

 "time"

)

var pid = os.Getpid()

func main() {

 fmt.Printf("[%d] Start\n", pid)

 fmt.Printf("[%d] PPID: %d\n", pid, os.Getppid())

 defer fmt.Printf("[%d] Exit\n\n", pid)

 if len(os.Args) != 1 {

 runDaemon()

 return

 }

 if err := forkProcess(); err != nil {

 fmt.Printf("[%d] Fork error: %s\n", pid, err)

 return

 }

 if err := releaseResources(); err != nil {

 fmt.Printf("[%d] Release error: %s\n", pid, err)

 return

 }

}

Let's see what the forkProcess function does, create another process, and start
it:

1. First, the process working directory gets set to root, and the output and
error streams are set to the standard ones:

func forkProcess() error {

 cmd := exec.Command(os.Args[0], "daemon")

 cmd.Stdout, cmd.Stderr, cmd.Dir = os.Stdout, os.Stderr, "/"

 return cmd.Start()

}

2. Then, we can release the resources – first, though, we need to find the
current process. Then, we can call the os.Process method, Release, to
ensure that the main process releases its resources:

func releaseResources() error {

 p, err := os.FindProcess(pid)

 if err != nil {

 return err

 }

 return p.Release()

}

3. The main function will contain the daemon logic, which in this example is
very simple – it will just print what is running every few seconds:

func runDaemon() {

 for {

 fmt.Printf("[%d] Daemon mode\n", pid)

 time.Sleep(time.Second * 10)

 }

}

Services
We have already seen how the first process that lives from boot to the
shutdown of the OS is called init or init.d since it's a daemon. This process is
responsible for handling the other daemons, and stores its configuration in the
/etc/init.d directory.

Each Linux distribution uses its own version of the daemon control process,
like upstart for Chrome OS or systemd in Arch Linux. They all serve the same
purpose and have similar behavior.

Each daemon has a control script or application that resides
inside /etc/init.d and should be able to interpret a series of commands as first
arguments, such as status, start, stop, and restart. In most cases, the init.d file
is a script that executes a switch on the argument and behaves accordingly.

Creating a service
Some applications are capable of automatically handling their service file,
and this is what we will try to achieve, step by step. Let's start with
an init.d script:

#!/bin/sh

"/path/to/mydaemon" $1

This is a sample script that passes the first argument to the daemon. The path
to the binary will be dependent on where the file is located. This needs to be
defined at runtime:

// ErrSudo is an error that suggest to execute the command as super user

// It will be used with the functions that fail because of permissions

var ErrSudo error

var (

 bin string

 cmd string

)

func init() {

 p, err := filepath.Abs(filepath.Dir(os.Args[0]))

 if err != nil {

 panic(err)

 }

 bin = p

 if len(os.Args) != 1 {

 cmd = os.Args[1]

 }

 ErrSudo = fmt.Errorf("try `sudo %s %s`", bin, cmd)

}

The main function will handle the different commands, as follows:

func main() {

 var err error

 switch cmd {

 case "run":

 err = runApp()

 case "install":

 err = installApp()

 case "uninstall":

 err = uninstallApp()

 case "status":

 err = statusApp()

 case "start":

 err = startApp()

 case "stop":

 err = stopApp()

 default:

 helpApp()

 }

 if err != nil {

 fmt.Println(cmd, "error:", err)

 }

}

How can we make sure that our app is running? A very sound strategy is to
use a PID file, which is a text file that contains the current PID of the running
process. Let's define a couple of auxiliary functions to achieve this:

const (

 varDir = "/var/mydaemon/"

 pidFile = "mydaemon.pid"

)

func writePid(pid int) (err error) {

 f, err := os.OpenFile(filepath.Join(varDir, pidFile), os.O_CREATE|os.O_WRONLY, 0644)

 if err != nil {

 return err

 }

 defer f.Close()

 if _, err = fmt.Fprintf(f, "%d", pid); err != nil {

 return err

 }

 return nil

}

func getPid() (pid int, err error) {

 b, err := ioutil.ReadFile(filepath.Join(varDir, pidFile))

 if err != nil {

 return 0, err

 }

 if pid, err = strconv.Atoi(string(b)); err != nil {

 return 0, fmt.Errorf("Invalid PID value: %s", string(b))

 }

 return pid, nil

}

The install and uninstall functions will take care of adding or removing the
service file located at /etc/init.d/mydaemon and requires us to launch the app
with root permissions because of the file's location:

const initdFile = "/etc/init.d/mydaemon"

func installApp() error {

 _, err := os.Stat(initdFile)

 if err == nil {

 return errors.New("Already installed")

 }

 f, err := os.OpenFile(initdFile, os.O_CREATE|os.O_WRONLY, 0755)

 if err != nil {

 if !os.IsPermission(err) {

 return err

 }

 return ErrSudo

 }

 defer f.Close()

 if _, err = fmt.Fprintf(f, "#!/bin/sh\n\"%s\" $1", bin); err != nil {

 return err

 }

 fmt.Println("Daemon", bin, "installed")

 return nil

}

func uninstallApp() error {

 _, err := os.Stat(initdFile)

 if err != nil && os.IsNotExist(err) {

 return errors.New("not installed")

 }

 if err = os.Remove(initdFile); err != nil {

 if err != nil {

 if !os.IsPermission(err) {

 return err

 }

 return ErrSudo

 }

 }

 fmt.Println("Daemon", bin, "removed")

 return err

}

Once the file is created, we can install the app as a service with the mydaemon
install command and remove it with mydaemon uninstall.

Once the daemon has been installed, we can use sudo service mydaemon
[start|stop|status] to control the daemon. Now, all we need to do is implement
these actions:

status will look for the pid file, read it, and send a signal to the process to
check whether it's running.
start will run the application with the run command and write the pid file.
stop will get the pid file, find the process, kill it, and then remove the pid
file.

Let's take a look at how the status command is implemented. Note that
the 0 signal doesn't exist in Unix, and doesn't trigger an action from the
operating system or the app, but the operation will fail if the process isn't
running. This tells us whether the process is alive or not:

func statusApp() (err error) {

 var pid int

 defer func() {

 if pid == 0 {

 fmt.Println("status: not active")

 return

 }

 fmt.Println("status: active - pid", pid)

 }()

 pid, err = getPid()

 if err != nil {

 if os.IsNotExist(err) {

 return nil

 }

 return err

 }

 p, err := os.FindProcess(pid)

 if err != nil {

 return nil

 }

 if err = p.Signal(syscall.Signal(0)); err != nil {

 fmt.Println(pid, "not found - removing PID file...")

 os.Remove(filepath.Join(varDir, pidFile))

 pid = 0

 }

 return nil

}

In the start command, we will create the daemon by following the steps we
covered in the Operating system support section:

1. Use files for standard output and input
2. Set the working directory to root
3. Start the command asynchronously

In addition to these operations, the start command saves the PID value of the
process in a specific file, which will be used to see whether the process is
alive:

func startApp() (err error) {

 const perm = os.O_CREATE | os.O_APPEND | os.O_WRONLY

 if err = os.MkdirAll(varDir, 0755); err != nil {

 if !os.IsPermission(err) {

 return err

 }

 return ErrSudo

 }

 cmd := exec.Command(bin, "run")

 cmd.Stdout, err = os.OpenFile(filepath.Join(varDir, outFile),

 perm, 0644)

 if err != nil {

 return err

 }

 cmd.Stderr, err = os.OpenFile(filepath.Join(varDir, errFile),

 perm, 0644)

 if err != nil {

 return err

 }

 cmd.Dir = "/"

 if err = cmd.Start(); err != nil {

 return err

 }

 if err := writePid(cmd.Process.Pid); err != nil {

 if err := cmd.Process.Kill(); err != nil {

 fmt.Println("Cannot kill process", cmd.Process.Pid, err)

 }

 return err

 }

 fmt.Println("Started with PID", cmd.Process.Pid)

 return nil

}

Lastly, stopApp will terminate the process identified by the PID file, if it exists:

func stopApp() (err error) {

 pid, err := getPid()

 if err != nil {

 if os.IsNotExist(err) {

 return nil

 }

 return err

 }

 p, err := os.FindProcess(pid)

 if err != nil {

 return nil

 }

 if err = p.Signal(os.Kill); err != nil {

 return err

 }

 if err := os.Remove(filepath.Join(varDir, pidFile)); err != nil {

 return err

 }

 fmt.Println("Stopped PID", pid)

 return nil

}

Now, all of the parts that are needed for an application's control are there, and
all that is missing is the main application part, which should be a loop so that
the daemon stays alive:

func runApp() error {

 fmt.Println("RUN")

 for {

 time.Sleep(time.Second)

 }

 return nil

}

In this example, all it does is sleep for a fixed amount of time, between the

loop iterations. This is generally a good idea in a main loop, because an
empty for loop would use a lot of resources for no reason. Let's assume that
your application is checking for a certain condition in a for loop. If that is
satisfied, continually checking for this will use a lot of resources. Adding an
idle sleep of a few milliseconds can help reduce idle CPU consumption by
90-95%, so keep it in mind when designing your daemons!

Third-party packages
So far, we have seen how to implement daemons from scratch using
the init.d service. Our implementation is very simple and limited. It could be
improved, but there are already many packages that offer the same
functionalities. They offer support for different providers such as init.d
and systemd, and some of them also work across non-Unix OSes such as
Windows.

One of the more famous packages (more than 1,000 stars on GitHub)
is kardianos/service, which supports all major platforms – Linux, macOS, and
Windows.

It defines a main interface that represents a daemon and has two methods –
one for starting the daemon, and the other for stopping it. Both are non-
blocking:

type Interface interface {

 // Start provides a place to initiate the service. The service doesn't not

 // signal a completed start until after this function returns, so the

 // Start function must not take more than a few seconds at most.

 Start(s Service) error

 // Stop provides a place to clean up program execution before it is terminated.

 // It should not take more than a few seconds to execute.

 // Stop should not call os.Exit directly in the function.

 Stop(s Service) error

}

The package already offers some use cases, from simple to more convoluted
ones, in the example
(https://github.com/kardianos/service/tree/master/example) directory. The best
practice is to start a goroutine with the main activity loop. The Start method
can be used to open and prepare the necessary resources, while Stop should be
used to free them, and for other deferred activities such as buffer flushing.

Some other packages only offer compatibility with Unix systems, such as
takama/daemon (https://github.com/takama/daemon), which works in a similar fashion.
It also offers some usage examples.

https://github.com/kardianos/service/tree/master/example
https://github.com/takama/daemon

Summary
In this chapter, we reviewed how to get information related to the current
process, PID and PPID, UID and GID, and the working directory. Then, we
saw how the os/exec package allows us to create child processes, and how
their properties can be read similar to the current process.

Next, we looked at what daemons are and how various operating systems
support them. We verified how simple it is to execute a process that outlives
its parent with os/exec using Cmd.Run.

Then, we went through the automated daemon management systems that are
available with Unix, and created an application capable of running
with service step by step.

In the next chapter, we are going to improve the control we have over child
processes by checking out how to use exit codes and how to manage and send
signals.

Questions
1. What information is available for the current process inside a Go

application?
2. How do you create a child process?
3. How do you ensure that a child process survives its parent?
4. Can you access child properties? How can you use them?
5. What's a daemon in Linux and how are they handled?

Exit Codes, Signals, and Pipes
This chapter will continue on from the previous one and will demonstrate the
communication between parent and child processes. In particular, the chapter
will show you how communication can be managed with the correct usage of
exit codes, through custom signal handling and by connecting processes with
pipes. These forms of communication will be used to allow our application to
communicate effectively with the operating system and other processes.

The following topics will be covered in this chapter:

Returning exit codes
Reading exit codes
Intercepting signals
Sending signals
Using pipes
Using other stream utilities

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, you can refer to Chapter 3, An Overview of Go.

Using exit codes
An exit code, or exit status, is a small integer number that is passed from a
process to its parent when the process exits. It is the simplest way of
notifying you of the result of the application execution. In Chapter 2, Unix OS
Components, we briefly mentioned exit codes. We will now learn how to use
them inside applications and how to interpret the exit codes of child
processes.

Sending exit codes
Exit codes are the way in which a process notifies its parent about its status
after terminating. In order to return any exit status from the current process,
there is one function that does the job in a straightforward way: os.Exit.

This function takes one argument, that is, an integer, and represents the exit
code that will be returned to the parent process. This can be verified using a
simple program, as shown in the following code:

package main

import (

 "fmt"

 "os"

)

func main() {

 fmt.Println("Hello, playground")

 os.Exit(1)

}

The full example is available at https://play.golang.org/p/-6GIY7EaVD_V.

The exit code, 0, is used when the application is executed successfully. Any
other exit code symbolizes some type of error that may have occurred during
the execution. When the main function finishes, it returns a 0; when a panic is
not recovered, it returns a 2.

https://play.golang.org/p/-6GIY7EaVD_V

Exit codes in bash
Every time a command gets executed in a shell, the resulting exit code gets
stored in a variable. The status of the last command executed gets stored in
the $? variable, and it can be printed as follows:

> echo $? # will print 1

It is important to note that the exit code only works when you run a binary
obtained with go build or go install. If you use go run, it will return 1 for any
code that is not 0.

The exit value bit size
The exit status is an 8-bit integer; this means that even if the argument for the
Go function is an integer, then the status that is returned will be the result of a
modulo operation between the passed value and 256.

Let's take a look at the following program:

package main

import (

 "fmt"

 "os"

)

func main() {

 fmt.Println("Hello, playground")

 os.Exit(-1)

}

The full example is available at https://play.golang.org/p/vzwI1kDiGrP.

This will have an exit status of 255 even if the function argument is -1 because
(-1)%256=255. This happens because the exit code is an 8-bit number (0, 255).

https://play.golang.org/p/vzwI1kDiGrP
https://play.golang.org/p/vzwI1kDiGrP

Exit and deferred functions
One important caveat about this function's use is that deferred functions are
not executed.

The following example will have no output:

package main

import (

 "fmt"

 "os"

)

func main() {

 defer fmt.Println("Hello, playground")

 os.Exit(0)

}

The full example is available at https://play.golang.org/p/2zbczc_ckgb.

https://play.golang.org/p/2zbczc_ckgb

Panics and exit codes
If the application terminates for a panic that is not recovered, then the
deferred function will be executed, but the exit code will be 2:

package main

import (

 "fmt"

)

func main() {

 defer fmt.Println("Hello, playground")

 panic("panic")

}

The full example is available at https://play.golang.org/p/mjOMb0KsM3e.

https://play.golang.org/p/mjOMb0KsM3e

Exit codes and goroutines
If the os.Exit function happens in a goroutine, all the goroutines (including the
main one) will terminate immediately without executing any deferred call, as
follows:

package main

import (

 "fmt"

 "os"

 "time"

)

func main() {

 go func() {

 defer fmt.Println("go end (deferred)")

 fmt.Println("go start")

 os.Exit(1)

 }()

 fmt.Println("main end (deferred)")

 fmt.Println("main start")

 time.Sleep(time.Second)

 fmt.Println("main end")

}

The full example is available at https://play.golang.org/p/JVEB5MTcEoa.

It is necessary for you to use os.Exit carefully because, since all the deferred
operations will not be executed, this could lead to resource leaks or errors,
such as not flushing a buffer and not writing all the content to a file.

https://play.golang.org/p/JVEB5MTcEoa

Reading child process exit codes
We explored how to create child processes in the previous chapter. Go makes
it possible for you to easily check child exit codes, however, it's not
straightforward because there is a field in the exec.Cmd struct that has an
os.ProcessState attribute.

The os.ProcessState attribute has a Sys method that returns an interface. Its
value is a syscall.WaitStatus struct in Unix, which makes it possible to access
the exit code using the ExitCode method. This is demonstrated using the
following code:

package main

import (

 "fmt"

 "os"

 "os/exec"

 "syscall"

)

func exitStatus(state *os.ProcessState) int {

 status, ok := state.Sys().(syscall.WaitStatus)

 if !ok {

 return -1

 }

 return status.ExitStatus()

}

func main() {

 cmd := exec.Command("ls", "__a__")

 if err := cmd.Run(); err != nil {

 if status := exitStatus(cmd.ProcessState); status == -1 {

 fmt.Println(err)

 } else {

 fmt.Println("Status:", status)

 }

 }

}

If the command variable cannot be accessed, then the error returned is
exec.ExitError and this wraps the os.ProcessState attribute, as follows:

func processState(e error) *os.ProcessState {

 err, ok := e.(*exec.ExitError)

 if !ok {

 return nil

 }

 return err.ProcessState

}

We can see that obtaining the exit code is not straightforward and requires
some typecasting.

Handling signals
Signals are the other inter-process communication tools that Unix operating
systems offer. They are integer values that can be sent from one process to
another process, giving our application the capability of communicating with
more processes than just the parent. By doing so, the application is capable of
interpreting the incoming signals and can also send signals to other processes.

Handling incoming signals
The normal behavior for a Go application is to handle some incoming signals,
including SIGHUP, SIGINT, and SIGABRT, by terminating the application. We can
replace this standard behavior with a custom behavior that intercepts all or
some of the signals and acts accordingly.

The signal package
The custom behavior is accomplished using the os/signal package, which
exposes the necessary functions.

For instance, if the application does not need to intercept a signal, the
signal.Ignore function allows you to add a signal to the ignored list. The
signal.Ignored function also permits you to verify whether a certain signal has
been ignored.

In order to intercept signals with a channel, you can use the core function,
that is, signal.Notify. This makes it possible to specify a channel and to choose
which signals should be sent to that channel. The application can then use the
channel in any goroutine to handle signals with a custom behavior. Note that
if no signal is specified, then the channel will receive all the signals that are
sent to the application, as follows:

signal.Notify(ch, signalList...)

The signal.Stop function is used to halt the reception of signals from a certain
channel, while the signal.Reset function stops intercepting one or more signals
to all channels. In order to reset all the signals, no argument needs to be
passed to Reset.

Graceful shutdowns
An application executes a graceful shutdown when it waits for a task to finish
and clears all of its resources before terminating. Using custom signal
handling is a very good practice, because it gives us time to release resources
that are still open. Before shutting down, we can perform any other task that
should be done before exiting the application; for instance, saving the current
status.

Now that we know how exit codes work, we can introduce the log package. This will be
used from now on to print a statement to the standard output instead of fmt. This makes it
possible to execute the Print statement and the Fatal statement, which is the equivalent of
printing and executing os.Exit(1). The log package also allows the user to define log flags
to print the date, time, and/or file/line with each print.

We can start with a very basic example, handling all signals as follows:

package main

import (

 "log"

 "os"

 "os/signal"

 "syscall"

)

func main() {

 log.Println("Start application...")

 c := make(chan os.Signal)

 signal.Notify(c)

 s := <-c

 log.Println("Exit with signal:", s)

}

In order to test this application, you can use two different Terminals. First,
you can launch the application in the first Terminal and use the other
Terminal to execute the ps command to find the PID application, in order to
send signals to it with the kill command.

The second method, which uses just one Terminal, launches the application
in the background. This will show the PID on the screen and will be used in
the kill command, as follows:

$ go build -o "signal" ch8/signal/base/base.go

$./signal &

[1] 265

[Log] Start application...

$ kill -6 265

[Log] Exit with signal: aborted

Note that if you're using macOS, you'll get an abort trap signal name.

Exit cleanup and resource release
A more practical and common example of a clean shutdown is resource
cleanup. When using exit statements, deferred functions such as Flush for
a bufio.Writer struct are not executed. This can lead to information loss, as
shown in the following example:

package main

import (

 "bufio"

 "fmt"

 "log"

 "os"

 "time"

)

func main() {

 f, err := os.OpenFile("file.txt", os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0644)

 if err != nil {

 log.Fatal(err)

 }

 defer f.Close()

 w := bufio.NewWriter(f)

 defer w.Flush()

 for i := 0; i < 3; i++ {

 fmt.Fprintln(w, "hello")

 log.Println(i)

 time.Sleep(time.Second)

 }

}

If a TERM signal is sent to this application before it finishes, the file will be
created and truncated, but the flush will never be executed—resulting in an
empty file.

This could, perhaps, be the intended behavior, but this is rarely the case. It is
better to do any cleanup in the signal handling part, as shown in the following
example:

func main() {

 c := make(chan os.Signal, syscall.SIGTERM)

 signal.Notify(c)

 f, err := os.OpenFile("file.txt", os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0644)

 if err != nil {

 log.Fatal(err)

 }

 defer f.Close()

 w := bufio.NewWriter(f)

 go func() {

 <-c

 w.Flush()

 os.Exit(0)

 }()

 for i := 0; i < 3; i++ {

 fmt.Fprintln(w, "hello")

 log.Println(i)

 time.Sleep(time.Second)

 }

}

In this case, we are using a goroutine in combination with the signal channel
to flush the writer before exiting. This will ensure that whatever is written to
the buffer gets persisted on the file.

Configuration reload
Signals can be used for more than just terminating an application. An
application can react differently to each signal, so that it can be used to
accomplish different functions, making it possible to control the application
flow.

The next example will have some settings stored in a text file. The settings
will be of the time.Duration type stored as its string version. A duration is
an int64 value with a string version that is in a human-readable format, such
as 2m10s, which also has many useful methods. This is used in different
functions of the time package.

The app will execute a certain operation with a frequency that depends on the
current settings value. Possible operations with signals include the following:

SIGHUP (1): This loads the interval from the settings file.
SIGTERM (2): This saves the current interval values, and exits the
application.
SIGQUIT (6): This exits without saving.
SIGUSR1 (10): This increases the interval by doubling it.
SIGUSR2 (11): This decreases the interval by halving it.
SIGALRM (14): This saves the current interval value.

Capturing these signals is done with the signal.Notify function, which is called
for all the different signals. The value received from the channel requires a
condition statement, a type switch, to allow the application to execute a
different action according to the value:

func main() {

 c := make(chan os.Signal, 1)

 d := time.Second * 4

 signal.Notify(c,

 syscall.SIGHUP, syscall.SIGINT, syscall.SIGQUIT,

 syscall.SIGUSR1, syscall.SIGUSR2, syscall.SIGALRM)

 // initial load

 if err := handleSignal(syscall.SIGHUP, &d); err != nil &&

 !os.IsNotExist(err) {

 log.Fatal(err)

 }

 for {

 select {

 case s := <-c:

 if err := handleSignal(s, &d); err != nil {

 log.Printf("Error handling %s: %s", s, err)

 continue

 }

 default:

 time.Sleep(d)

 log.Println("After", d, "Executing action!")

 }

 }

}

The handleSignal function will contain the switch statement in the signal:

func handleSignal(s os.Signal, d *time.Duration) error {

 switch s {

 case syscall.SIGHUP:

 return loadSettings(d)

 case syscall.SIGALRM:

 return saveSettings(d)

 case syscall.SIGINT:

 if err := saveSettings(d); err != nil {

 log.Println("Cannot save:", err)

 os.Exit(1)

 }

 fallthrough

 case syscall.SIGQUIT:

 os.Exit(0)

 case syscall.SIGUSR1:

 changeSettings(d, (*d)*2)

 return nil

 case syscall.SIGUSR2:

 changeSettings(d, (*d)/2)

 return nil

 }

 return nil

}

The following describes the different behaviors that will be implemented in
the signal handing function:

Changing the value will just use the duration pointer to store the new
value.
Loading will try to scan the content of the file (if present) as a duration
and change the settings value.
Saving will write the duration to the file, and it will use its string format.
The following code depicts this:

func changeSettings(d *time.Duration, v time.Duration) {

 *d = v

 log.Println("Changed", v)

}

func loadSettings(d *time.Duration) error {

 b, err := ioutil.ReadFile(cfgPath)

 if err != nil {

 return err

 }

 var v time.Duration

 if v, err = time.ParseDuration(string(b)); err != nil {

 return err

 }

 *d = v

 log.Println("Loaded", v)

 return nil

}

func saveSettings(d *time.Duration) error {

 f, err := os.OpenFile(cfgPath,

 os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0644)

 if err != nil {

 return err

 }

 defer f.Close()

 if _, err = fmt.Fprint(f, d); err != nil {

 return err

 }

 log.Println("Saved", *d)

 return nil

We will get the path of the user's home directory in the init function
and use it to compose the path of the settings file, as follows:

var cfgPath string

func init() {

 u, err := user.Current()

 if err != nil {

 log.Fatalln("user:", err)

 }

 cfgPath = filepath.Join(u.HomeDir, ".multi")

}

We can launch the application in a Terminal and use another Terminal
to send signals, as follows:

Terminal 1 Terminal 2

$ go run ch08/signal/multi/multi.go

Loaded 1s

After 1s Executing action!

$ kill -SIGUSR1 $(pgrep multi)

Changed 2s

After 2s Executing action!

Changed 4s

After 4s Executing action!

Changed 2s

After 2s Executing action!

Saved 1s

$

$ kill -SIGUSR1 $(pgrep multi)

$ kill -SIGUSR2 $(pgrep multi)

$ kill -SIGINT $(pgrep multi)

In the left column, we can see the output from the application; in the right
column, we can see the commands we launched to trigger them. In order to
get the PID of the running application, we are using the pgrep command and
nesting in kill.

Sending signals to other processes
After seeing the way in which incoming signals are handled, let's take a look
at how to send signals to other processes programmatically. The os.Process
structure is the only tool we need—its Signal method makes it possible to send
a signal to the project. It's that easy!

The less simple part is obtaining the process. There are two use cases, as
follows:

The process is a child, and we have the process value already as a result
of os.StartProcess or exec.Command structs.
The process is already existing but we do not have it, so we need to
search for it using its PID.

The first use case is simpler, as we already have the process as a variable, or
as an attribute of an exec.Cmd variable, and we can call the method directly.

The other use case requires searching for the process by PID using the
os.FindProcess method, as follows:

p, err := os.FindProcess(pid)

if err != nil {

 panic(err)

}

Once we have os.Process, we can use its Signal method to send a specific signal
to it, as follows:

if err = p.Signal(syscall.SIGTERM); err != nil {

 panic(err)

}

The type of signal we will send to a process depends on the destination
process and the behavior we want to suggest, such as an interruption or a
termination.

Connecting streams
Streams in Go are an abstraction that makes it possible to see any sort of
communication or data flow as a series of readers and writers. We have
already learned that streams are an important element of Go. We'll now learn
how to use what we already know about input and output to control the
streams related to a process—the input, output, and error.

Pipes
Pipes are one of the best ways of connecting input and output in a
synchronous way, allowing processes to communicate.

Anonymous pipes
Different commands can be chained in a sequence when using a shell,
making one command output the following command input. For example,
consider the following command:

cat book_list.txt | grep "Game" | wc -l

Here, we are displaying a file, using the preceding command to filter rows
containing a certain string and, finally, using the filtered output to count the
lines.

This can be done programmatically in Go when the processes are created
inside the application.

The io.Pipe function returns a reader/writer couple that is connected; whatever
gets written to the pipe writer will be read by the pipe reader. The write
operation is a blocking one, which means that all of the written data has to be
read before a new write operation can be executed.

We already saw that exec.Cmd allows generic streams for its output and input—
this allows us to use the values returned by the io.Pipe function to connect one
process to the other.

First, we define the three commands, as follows:

cat with index 0
grep with index 1
wc with index 2

Then, we can define the two pipes we need, as shown in the following code:

r1, w1 := io.Pipe()

r2, w2 := io.Pipe()

var cmds = []*exec.Cmd{

 exec.Command("cat", "book_list.txt"),

 exec.Command("grep", "Game"),

 exec.Command("wc", "-l"),

}

Next, we link the input and output streams. We connect the cat (command 0)
output and the grep (command 1) input, and we do the same for the grep output
and the wc input:

cmds[1].Stdin, cmds[0].Stdout = r1, w1

cmds[2].Stdin, cmds[1].Stdout = r2, w2

cmds[2].Stdout = os.Stdout

We then start our commands, as follows:

for i := range cmds {

 if err := cmds[i].Start(); err != nil {

 log.Fatalln("Start", i, err)

 }

}

We wait until the end of the execution of each command and we close the
respective pipe writer; otherwise, the next command reader will hang. To
make things easier, each pipe writer is an element in a slice, and each writer
has the same index as the command that it is linked to. The last one is
nil because the last command is not linked by a pipe:

for i, closer := range []io.Closer{w1, w2, nil} {

 if err := cmds[i].Wait(); err != nil {

 log.Fatalln("Wait", i, err)

 }

 if closer == nil {

 continue

 }

 if err := closer.Close(); err != nil {

 log.Fatalln("Close", i, err)

 }

}

There are also other tools provided by the io package that can help simplify
some operations.

Standard input and output pipes
The io.MultiWriter function makes it possible to write the same content to
several readers. This will be extremely useful when the output of a command
needs to be broadcast to a series of different commands automatically.

Let's say that we want to do what we did before (that is, look for a word in a
file), but for different words. We can use the MultiWriter function to copy the
output to a series of grep commands, each of which will be connected to its
own wc command.

We will use two auxiliary methods of exec.Command in this example:

Cmd.StdinPipe: This returns a PipeWriter struct that will be connected to the
command standard input.
Cmd.StdoutPipe: This returns a PipeReader struct that will be connected to the
command standard output.

Let's start by defining a list of search terms: one for the command's tuples
(grep and wc), one for writers connected to the first command, and one for the
final output of each command chain:

var (

 words = []string{"Game", "Feast", "Dragons", "of"}

 cmds = make([][2]*exec.Cmd, len(words))

 writers = make([]io.Writer, len(words))

 buffers = make([]bytes.Buffer, len(words))

 err error

)

Now let's define the commands and their connection—each grep command
will be connected on one side to cat using the MultiWriter function with the
piped writers, and on the other side to the input of the wc command:

for i := range words {

 cmds[i][0] = exec.Command("grep", words[i])

 if writers[i], err = cmds[i][0].StdinPipe(); err != nil {

 log.Fatal("in pipe", i, err)

 }

 cmds[i][1] = exec.Command("wc", "-l")

 if cmds[i][1].Stdin, err = cmds[i][0].StdoutPipe(); err != nil {

 log.Fatal("in pipe", i, err)

 }

 cmds[i][1].Stdout = &buffers[i]

}

cat := exec.Command("cat", "book_list.txt")

cat.Stdout = io.MultiWriter(writers...)

We can run the main cat command and, when it finishes, we can close the
first set of writing pipes, so that the grep command can terminate, as follows:

for i := range cmds {

 if err := writers[i].(io.Closer).Close(); err != nil {

 log.Fatalln("close 0", i, err)

 }

}

for i := range cmds {

 if err := cmds[i][0].Wait(); err != nil {

 log.Fatalln("grep wait", i, err)

 }

}

Then we can wait for the other command to finish and show the results, as
follows:

for i := range cmds {

 if err := cmds[i][1].Wait(); err != nil {

 log.Fatalln("wc wait", i, err)

 }

 count := bytes.TrimSpace(buffers[i].Bytes())

 log.Printf("%10q %s entries", cmds[i][0].Args[1], count)

}

Note that, when the StdinPipe method is used, the resulting writer must be
closed, but this is not necessary with StdoutPipe method.

Summary
In this chapter, we learned how to handle communications between processes
using three main functionalities: exit codes, signals, and pipes.

Exit codes are 8-bit values between 0 and 255 that are returned by a process to
their parent. An exit code of 0 means that the application execution was
successful. It's pretty easy to return an exit code in Go, but doing so using the
os.Exit function shortcuts the execution of the deferred functions. When a
panic occurs, all the deferred functions are executed and the returned code is
2. Getting an exit code from a child process is relatively trickier, because it's
OS-dependent; however, in Unix systems, it can be accomplished using a
series of type assertions.

Signals are used to communicate with any process. They are 6-bit values,
between 1 and 64, sent from one process to another using a system call.
Receiving signals can be done using a channel and the signal.Notify function.
Sending signals is easily done with the Process.Signal method.

Pipes are a tuple of input and output streams that are synchronously
connected. They are used to connect a process input to another process
output. We saw how to connect multiple commands in the same way that a
Terminal does and we learned how to use io.MultiReader to broadcast one
command output to many commands.

In the next chapter, we are going to dig into network programming, starting
from TCP all the way up to HTTP servers.

Questions
1. What is an exit code? Who makes use of it?
2. What happens when an application panics? Which exit code is returned?
3. What is the default behavior of a Go application when receiving

all signals?
4. How do you intercept signals and decide how the application must

behave?
5. Can you send signals to other processes? If so, how?
6. What are pipes and why are they important?

Network Programming
This chapter will cover network programming. This will allow our
applications to communicate with other programs that are running on any
remote computer, on the same local network, or even on the internet.

We will start with some theory about network and architectures. We will then
discuss socket-level communication and explain how to create a web server.
Finally, we will discuss how the Go built-in template engine works.

The following topics will be covered in this chapter:

Networking
Socket programming
Web servers
Template engine

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, you can refer to Chapter 3, An Overview of Go.

Additionally, it requires OpenSSL to be installed on your machine. Many
Linux distributions are already shipped with some OpenSSL versions. It can
also be installed on Windows, using the official installer or a third-party
package manager, such as Chocolatey or Scoop.

Communicating via networks
Communication between applications can happen through a network, even if
the applications are on the same machine. In order to transfer information,
they need to establish a common protocol that specifies what happens all the
way from the application to the wire.

OSI model
The Open Systems Interconnect (OSI) model is a theoretical model that
dates back to the early 1970s. It defines a standard of communication
that works regardless of the physical or technical structure of a network, with
the goal of providing interoperability for different networks.

The model defines seven different layers, numbered from one to seven, and
each layer has a higher level of abstraction to the previous one. The first three
layers are often referred to as media layers, while the other four are the host
layers. Let's examine each, one by one, in the following sections.

Layer 1 – Physical layer
The very first layer of the OSI model is the physical one, which is in charge
of the transmission of unprocessed data from a device, similar to an Ethernet
port, and its transmission medium, such as an Ethernet cable. This layer
defines all the characteristics that are related to the physical/material nature
of the connection—size, shape, voltages of the connector, frequencies, and
timings.

Another aspect defined by the physical layer is the direction of the
transmission, which can be one of the following:

Simplex: The communication is one way.
Half duplex: The communication is two way, but the communication
happens only in one direction at a time.
Full duplex: Two way-communication, where both ends can
communicate at the same time.

Many well-known technologies, including Bluetooth and Ethernet, include a
definition of the physical layer they are using.

Layer 2 – Data link layer
The next layer is the data link, which defines how the data transfer should
happen between two nodes that are directly connected. It is responsible for
the following:

Detection of communication errors in the first layer
Correction of the physical errors
Control of the flow/transmission rate between nodes
Connection termination

Some real-world examples of data link layers definition are the ones for
Ethernet (802.3) and Wi-Fi (802.11).

Layer 3 – Network layer
The network layer is the next layer, and it focuses on sequences of data,
called packets, that can have a variable length. A packet is transmitted from
one node to another, and these two nodes could be located on the same
network or on different ones.

This layer defines the network as a series of nodes connected to the same
medium, identified by the previous two layers. The network is capable of
delivering a message, knowing only its destination address.

Layer 4 – Transport layer
The fourth layer is transport, which ensures that packets go from sender to
receiver. This is achieved with acknowledgement (ACK) and negative-
acknowledgement (NACK) messages from the destination, which can
trigger a repetition of the messages, until they are received correctly. There
are also other mechanisms in play, such as splitting a message into chunks for
transmission (segmentation), reassembling the parts in a single message
(desegmentation), and checking if the data was sent and received successfully
(error control).

The OSI model specifies five different transport protocols—TP0, TP1, TP2,
TP3, and TP4. TP0 is the simplest one, which executes only the segmentation
and reassembly of messages. The other classes add other functionalities on
top of it—for instance, retransmission or timeouts.

Layer 5 – Session layer
The fifth layer introduces the concept of sessions, which is the temporary
interactive exchange of information between two computers. It is responsible
for creating connections and terminating them (while keeping track of the
sessions) and allowing checkpointing and recovery.

Layer 6 – Presentation layer
The penultimate layer is the presentation layer, which takes care of syntax
and semantics between applications, through dealing with complex data
representation. It allows the last layer to be independent from the encoding
used to represent the data. The presentation of the OSI model used ASN.1
encoding, but there is a wide range of different presentation protocols that are
widely used, such as XML and JSON.

Layer 7 – Application layer
The last layer, the application layer, is the one that communicates with the
application directly. The application is not considered as a part of the OSI
model and the layer is responsible for defining the interfaces used by the
applications. It includes protocols such as FTP, DNS, and SMTP.

TCP/IP – Internet protocol suite
The Transmission Control Protocol/Internet Protocol (TCP/IP), or
internet protocol suite, is another model composed by fewer layers than the
OSI, and it is a model that has been widely adopted.

Layer 1 – Link layer
The first layer is the link layer, a combination of OSI's physical and data
links, and it defines how the local networking communications will happen
by specifying a protocol, such as MAC (which includes Ethernet and Wi-Fi).

Layer 2 – Internet layer
The internet layer is the second layer, and it can be compared to the OSI's
network. It defines a common interface that allows different networks to
communicate effectively without any awareness of the underlying topology
of each one of them. This layer is responsible for communications between
the nodes in a Local Area Network (LAN) and the global interconnected
networks that compose the internet.

Layer 3 – Transport layer
The third layer is similar to the fourth OSI layer. It handles the end-to-end
communication of two devices and it also takes care of the error check and
recovery, leaving the upper layer unaware of the complexity of the data. It
defines two main protocols—TCP, which allows the receiver to get the data
in the correct sequence by using an acknowledgement system, and a User
Data Protocol (UDP), which does not apply error control or
acknowledgement from the receiver.

Layer 4 – Application layer
The last layer, the application layer, sums up the last three levels of OSI—
session, presentation, and application. This layer defines the architecture used
by the applications, such as peer-to-peer or client and server, and the
protocols used by the applications, such as SSH, HTTP, or SMTP. Each
process is an address with a virtual endpoint of communication called port.

Understanding socket programming
The Go standard library allows us to easily interact with the transport layer,
using both TCP and UDP connections. In this section, we will look at how to
expose a service using a socket and how to look it up and use it from another
application.

Network package
The tools needed to create and handle a TCP connection are located inside
the net package. The main interface of the package is Conn, which represents a
connection.

It has four implementations:

IPConn: Raw connection that uses the IP protocol, the one that TCP and
UDP connection are built on
TCPConn: An IP connection that uses the TCP protocol
UDPConn: An IP connection that uses the UDP protocol
UnixConn: A Unix domain socket, where the connection is meant for
processes on the same machine

In the following sections, we are going to look at how to use both TCP and
UDP differently, and also how to use an IPConn to implement a custom
implementation of a communication protocol.

TCP connections
The TCP is the protocol that is most used on the internet, and it enables
delivery of data (bytes) that are ordered. The main focus of this protocol is
reliability, which is obtained by establishing a two-way communication,
where the receiver sends an acknowledgement signal each time it receives a
datagram successfully.

A new connection can be created using the net.Dial function. It is a generic
function that accepts different networks, such as the following:

tcp, tcp4 (IPv4-only), tcp6 (IPv6-only)
udp, udp4 (IPv4-only), udp6 (IPv6-only)
ip, ip4 (IPv4-only), ip6 (IPv6-only)
unix (socket stream), unixgram (socket datagram), and unixpacket (socket
packet)

A TCP connection can be created, specifying the tcp protocol, together with
the host and port:

conn, err := net.Dial("tcp", "localhost:8080")

A more direct way of creating a connection is net.DialTCP, which allows you to
specify both a local and remote address. It requires you to create a net.TCPAddr
in order to use it:

addr, err := net.ResolveTCPAddr("tcp", "localhost:8080")

if err != nil {

 // handle error

}

conn, err := net.DialTCP("tcp", nil, addr)

if err != nil {

 // handle error

}

In order to receive and handle connections, there is another interface,
net.Listener, which has four different implementations—one per connection
type. For connections, there is a generic net.Listen function and a

specific net.ListenTCP function.

We can try to build a simple application that creates a TCP listener and
connects to it, sending whatever comes from the standard input. The app
should create a listener to start a connection in the background, which will
send standard input to the connection, then accept it, and handle it. We will
use the newline character as the delimiter for messages. This is shown in the
following code:

func main() {

 if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

 }

 addr, err := net.ResolveTCPAddr("tcp", os.Args[1])

 if err != nil {

 log.Fatalln("Invalid address:", os.Args[1], err)

 }

 listener, err := net.ListenTCP("tcp", addr)

 if err != nil {

 log.Fatalln("Listener:", os.Args[1], err)

 }

 log.Println("<- Listening on", addr)

 go createConn(addr)

 conn, err := listener.AcceptTCP()

 if err != nil {

 log.Fatalln("<- Accept:", os.Args[1], err)

 }

 handleConn(conn)

}

The connection creation is pretty simple. It creates the connection and reads
messages from the standard input and forwards them to the connection by
writing them:

func createConn(addr *net.TCPAddr) {

 defer log.Println("-> Closing")

 conn, err := net.DialTCP("tcp", nil, addr)

 if err != nil {

 log.Fatalln("-> Connection:", err)

 }

 log.Println("-> Connection to", addr)

 r := bufio.NewReader(os.Stdin)

 for {

 fmt.Print("# ")

 msg, err := r.ReadBytes('\n')

 if err != nil {

 log.Println("-> Message error:", err)

 }

 if _, err := conn.Write(msg); err != nil {

 log.Println("-> Connection:", err)

 return

 }

 }

}

In our use case, the connection that sends data will be closed with a special
message, \q, which will be interpreted as a command. Accepting a connection
in the listener creates another connection that represents the ones obtained by
the dialing operation. The connection created by the listener will be receiving
the messages from the dialing one and acting accordingly. It will interpret a
special message, such as\q, with a specific action; otherwise, it will just print
the message on screen, as shown in the following code:

func handleConn(conn net.Conn) {

 r := bufio.NewReader(conn)

 time.Sleep(time.Second / 2)

 for {

 msg, err := r.ReadString('\n')

 if err != nil {

 log.Println("<- Message error:", err)

 continue

 }

 switch msg = strings.TrimSpace(msg); msg {

 case `\q`:

 log.Println("Exiting...")

 if err := conn.Close(); err != nil {

 log.Println("<- Close:", err)

 }

 time.Sleep(time.Second / 2)

 return

 case `\x`:

 log.Println("<- Special message `\\x` received!")

 default:

 log.Println("<- Message Received:", msg)

 }

 }

}

The following code example creates both a client and server in one
application, but it could be easily split into two apps—a server (capable of
handling more connections at once) and a client, creating a single connection
to the server. The server will have an Accept loop that handles the received
connection on a separate goroutine. The handleConn function is the same as we
defined earlier:

func main() {

 if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

 }

 addr, err := net.ResolveTCPAddr("tcp", os.Args[1])

 if err != nil {

 log.Fatalln("Invalid address:", os.Args[1], err)

 }

 listener, err := net.ListenTCP("tcp", addr)

 if err != nil {

 log.Fatalln("Listener:", os.Args[1], err)

 }

 for {

 time.Sleep(time.Millisecond * 100)

 conn, err := listener.AcceptTCP()

 if err != nil {

 log.Fatalln("<- Accept:", os.Args[1], err)

 }

 go handleConn(conn)

 }

}

The client will create the connection and send messages. createConn will be the
same as we defined earlier:

func main() {

 if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

 }

 addr, err := net.ResolveTCPAddr("tcp", os.Args[1])

 if err != nil {

 log.Fatalln("Invalid address:", os.Args[1], err)

 }

 createConn(addr)

}

In the separated client and server, it's possible to test what happens when the
client or server closes the connection.

UDP connections
UDP is another protocol that is widely used on the internet. It focuses on low
latency, which is why it is not as reliable as TCP. It has many applications,
from online gaming, to media streaming, and Voice over Internet Protocol
(VoIP). In UDP, if a packet is not received, it is lost and will not be sent back
again as it would be in TCP. Imagine a VoIP call, where if there's a
connection problem you will lose part of the conversation, but when you
resume, you keep communicating almost in real time. Using TCP for this
kind of application could result in latency accumulating for every packet loss
—making the conversation impossible.

In the following example, we'll create a client and a server application. The
server will be some sort of echo, sending back the message received from the
client, but it will also reverse the message content.

The client will be pretty similar to the TCP one, with some exceptions—it
will use the net.ResolveUDPAddr function to get the address and it will
use net.DialUDP to get the connection:

func main() {

 if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

 }

 addr, err := net.ResolveUDPAddr("udp", os.Args[1])

 if err != nil {

 log.Fatalln("Invalid address:", os.Args[1], err)

 }

 conn, err := net.DialUDP("udp", nil, addr)

 if err != nil {

 log.Fatalln("-> Connection:", err)

 }

 log.Println("-> Connection to", addr)

 r := bufio.NewReader(os.Stdin)

 b := make([]byte, 1024)

 for {

 fmt.Print("# ")

 msg, err := r.ReadBytes('\n')

 if err != nil {

 log.Println("-> Message error:", err)

 }

 if _, err := conn.Write(msg); err != nil {

 log.Println("-> Connection:", err)

 return

 }

 n, err := conn.Read(b)

 if err != nil {

 log.Println("<- Receive error:", err)

 }

 msg = bytes.TrimSpace(b[:n])

 log.Printf("<- %q", msg)

 }

}

The server will be pretty different from the TCP one. The main difference is
that with TCP, we have a listener that accepts different connections, which
are handled separately; meanwhile, the UDP listener is a connection. It can
receive data blindly or use the ReceiveFrom method that will also return the
recipient's address. This can be used in the WriteTo method to answer, as
shown in the following code:

func main() {

 if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

 }

 addr, err := net.ResolveUDPAddr("udp", os.Args[1])

 if err != nil {

 log.Fatalln("Invalid address:", os.Args[1], err)

 }

 conn, err := net.ListenUDP("udp", addr)

 if err != nil {

 log.Fatalln("Listener:", os.Args[1], err)

 }

 b := make([]byte, 1024)

 for {

 n, addr, err := conn.ReadFromUDP(b)

 if err != nil {

 log.Println("<-", addr, "Message error:", err)

 continue

 }

 msg := bytes.TrimSpace(b[:n])

 log.Printf("<- %q from %s", msg, addr)

 for i, l := 0, len(msg); i < l/2; i++ {

 msg[i], msg[l-1-i] = msg[l-1-i], msg[i]

 }

 msg = append(msg, '\n')

 if _, err := conn.WriteTo(b[:n], addr); err != nil {

 log.Println("->", addr, "Send error:", err)

 }

 }

}

Encoding and checksum
It's a good practice to set some form of encoding between the clients and the
server, and even better practice if the encoding includes a checksum to verify
data integrity. We could improve the example from the last section with a
custom protocol that does both encoding and checksum. Let's start by
defining the encoding function, where a given message will return the
following byte sequence:

Function Byte
sequence

The first four bytes will follow a sequence 2A 00 2A

00

Two bytes will be the message length stored using Little
Endian order (least significant byte first)

08 00

Four bytes for data checksum 00 00 00

00

Followed by the raw message 0F 1D 3A

FF ...

Closing with the same starting sequence 2A 00 2A

00

The Checksum function will be calculated by summing the message content,
using a group of five bytes in Little Endian (least significant byte first),
adding any spare byte left one by one, and then taking the first four bytes of
the sum as a Little Endian:

func Checksum(b []byte) []byte {

 var sum uint64

 for len(b) >= 5 {

 for i := range b[:5] {

 v := uint64(b[i])

 for j := 0; j < i; j++ {

 v = v * 256

 }

 sum += v

 }

 b = b[5:]

 }

 for _, v := range b {

 sum += uint64(v)

 }

 s := make([]byte, 8)

 binary.LittleEndian.PutUint64(s, sum)

 return s[:4]

}

Now, let's create a function that will encapsulate the message using the
protocol we defined:

var ErrLength = errors.New("message too long")

func CreateMessage(content []byte) ([]byte, error) {

 if len(content) > 65535 {

 return nil, ErrLength

 }

 data := make([]byte, 0, len(content)+14)

 data = append(data, Sequence...)

 data = append(data, byte(len(content)/256), byte(len(content)%256))

 data = append(data, Checksum(content)...)

 data = append(data, content...)

 data = append(data, Sequence...)

 return data, nil

}

We also need another function that does the opposite, checking whether a
message is valid and extracting its content:

func MessageContent(b []byte) ([]byte, error) {

 n := len(b)

 if n < 14 {

 return nil, fmt.Errorf("Too short")

 }

 if open := b[:4]; !bytes.Equal(open, Sequence) {

 return nil, fmt.Errorf("Wrong opening sequence %x", open)

 }

 if length := int(b[4])*256 + int(b[5]); n-14 != length {

 return nil, fmt.Errorf("Wrong length: %d (expected %d)", length, n-14)

 }

 if close := b[n-4 : n]; !bytes.Equal(close, Sequence) {

 return nil, fmt.Errorf("Wrong closing sequence %x", close)

 }

 content := b[10 : n-4]

 if !bytes.Equal(Checksum(content), b[6:10]) {

 return nil, fmt.Errorf("Wrong checksum")

 }

 return content, nil

}

We can now use them for encoding and decoding messages. For instance, we
could improve the UDP client and server from the previous section and we

could encode when sending:

// Send

data, err := common.CreateMessage(msg)

if err != nil {

 log.Println("->", addr, "Encode error:", err)

 continue

}

if _, err := conn.WriteTo(data, addr); err != nil {

 log.Println("->", addr, "Send error:", err)

}

And we can decode the bytes received for incoming messages in order to
extract the content:

//Receive

n, addr, err := conn.ReadFromUDP(b)

if err != nil {

 log.Println("<-", addr, "Message error:", err)

 continue

}

msg, err := common.MessageContent(b[:n])

if err != nil {

 log.Println("<-", addr, "Decode error:", err)

 continue

}

log.Printf("<- %q from %s", msg, addr)

In order to verify that the content we received is valid, we are using
the MessageContent utility function defined previously. This will check for
headers, length, and checksum. It will only extract the bytes that compose the
message.

Web servers in Go
One of Go's biggest and most successful applications is the creation of web
servers. In this section, we will see what a web server actually is, how the
HTTP protocol works, and how to implement a web server application using
both the standard library and third-party packages.

Web server
A web server application is software that can serve content using the HTTP
protocol (and some other related ones) over a TCP/IP network. There are
many well-known web server applications, such as Apache, NGINX, and
Microsoft IIS. Common server use case scenarios include the following:

Serving static files, such websites and related resources: HTML
pages, images, style sheets, and scripts.
Exposing a web application: An application that runs in the server with
an HTML-based interface, which requires a browser to access it.
Exposing a web API: Remote interfaces that are not used by the user
but from other applications. Refer to Chapter 1, An Introduction to System
Programming, for more details.

HTTP protocol
The HTTP protocol is the cornerstone of a web server. Its design started in
1989. The main usage of HTTP is the request and response paradigm, where
the client sends a request and the server returns back a response to the client.

Uniform Resource Locators (URLs) are unique identifiers for an HTTP
request, and they have the following structure:

Part Example

Protocol http

:// ://

Host www.website.com

Path /path/to/some-resource

? ?

Query (optional) query=string&with=values

From the preceding table, we can derive the following:

There are several different protocols beside HTTP and its encrypted
version (HTTPS), such as the File Transfer Protocol (FTP) and its
secure counterpart, the SSH File Transfer Protocol (SFTP).
The host could either be an actual IP or a hostname. When a hostname is
selected, there is another player, a Domain Name Server (DNS), that
acts as a phonebook between hostname and physical addresses. The
DNS translates hostnames to IPs.
The path is the resource desired in the server and it is always absolute.
The query string is something added to a path after a question mark. It is
a series of key value pairs in the form key=value and they are separated by
an & sign.

HTTP is a textual protocol and it contains some of the elements of the URL
and some other information—method, headers, and body.

The request body is the information sent to server, such as form values, or
uploaded files.

Headers are metadata relative to the request, one per line, in a Key: Value; extra
data form. There is a list of defined headers with specific functions, such
as Authorization, User-Agent, and Content-Type.

Some methods express the action to execute on a resource. These are the
most commonly used methods:

GET: A representation of the selected resource
HEAD: Similar to GET, but without any response body
POST: Submits a resource to the server, usually a new one
PUT: Submits a new version of a resource
DELETE: Removes a resource
PATCH: Requests specific change to a resource

This is what an HTTP request would look like:

POST /resource/ HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.website.com

Content-Length: 1024

Accept-Language: en-us

the actual request content

that is optional

From the preceding code, we can see the following:

The first line is a space separated triplet: method—path—protocol.
It's followed by one line per header.
One empty line as separator.
The optional request body.

For each request, there is a response that has a structure that is pretty similar
to an HTTP request. The only part that differs is the first line that contains a
different space-separated triplet: HTTP version—status code—reason.

The status code is an integer that represents the outcome of the request. There
are four main status categories:

100: Information/request was received and will have further processing
200: A successful request; for instance, OK 200 or Created 201
300: A redirection to another URL, temporary or permanent
400: A client-side error, such as Not Found 404 or Conflict 409
500: A server-side error, such as Internal Server Error 503

This is a what an HTTP response would look like:

HTTP/1.1 200 OK

Content-Length: 88

Content-Type: text/html

<html>

 <body>

 <h1>Sample Page</h1>

 </body>

</html>

HTTP/2 and Go
The most commonly used version of HTTP is HTTP/1.1 , dated 1997. In
2009, Google started a new project to create a faster successor to HTTP/1.1,
named SPDY. This protocol eventually became what is now a version 2.0 of
the Hypertext Transfer Protocol, HTTP/2.

It is built in a way that existing web applications work, but there are new
features for applications that are using the new protocol, including a faster
communication speed. Some of the differences include the following:

It is binary (HTTP/1.1 is textual).
It is fully multiplexed, and can request data in parallel, using one TCP
connection.
It uses header compression to reduce overhead.
Servers can push responses to the client, instead of being asked by
clients periodically.
It has a faster protocol negotiation—thanks to the Application Layer
Protocol Negotiation (ALPN) extension.

HTTP/2 is supported by all major modern browsers. Go version 1.6 included
transparent support for HTTP/2 and version 1.8 introduced the ability to push
responses from the server to the clients.

Using the standard package
We will now see how to create a web server in Go, using the standard
package. Everything is contained in the net/http package, which exposes a
series of functions for making HTTP requests and creating HTTP servers.

Making a HTTP request
The package exposes a http.Client type that can be used to make requests. If
the requests are simple GET or POST, then there are dedicated methods. The
package also offers a function with the same name, but it's just a shorthand to
the respective methods for the DefaultClient instance. Check the following
code:

resp, err := http.Get("http://example.com/")

resp, err := client.Get("http://example.com/")

...

resp, err := http.Post("http://example.com/upload", "image/jpeg", &buf)

resp, err := client.Post("http://example.com/upload", "image/jpeg", &buf)

...

values := url.Values{"key": {"Value"}, "id": {"123"}}

resp, err := http.PostForm("http://example.com/form", values)

resp, err := client.PostForm("http://example.com/form", values)

For any other kind of requirement, the Do method allows us to execute a
specific http.Request. The NewRequest function allows us to specify any io.Reader:

req, err := http.NewRequest("GET", "http://example.com", nil)

// ...

req.Header.Add("Content-Type", "text/html")

resp, err := client.Do(req)

// ...

http.Client has several fields and many of these are interfaces that allows us to
use the default implementation or a custom one. The first is CookieJar that
allows the client to store and reuse web cookies. A cookie is a piece of data
that the browser sends to the client and the client can send back to the server
to replace headers, such as authentication. The default client does not use a
cookie jar. The other interface is RoundTripper, which has only one
method, RoundTrip, which gets a request and returns a response. There is a
DeafultTransport value used if no value is specified that can also be used to
compose a custom implementation of RoundTripper. http.Response returned by the
client has also a body, which is io.ReadCloser, and its closure is the
responsibility of the application. That's why it's recommended to use a
deferred Close statement as soon as the response is obtained. In the following
example, we will implement a custom transport that logs the requested URL

and modifies one header before executing the standard round tripper:

type logTripper struct {

 http.RoundTripper

}

func (l logTripper) RoundTrip(r *http.Request) (*http.Response,

 error) {

 log.Println(r.URL)

 r.Header.Set("X-Log-Time", time.Now().String())

 return l.RoundTripper.RoundTrip(r)

}

We will use this transport in a client that we will use to make a simple
request:

func main() {

 client := http.Client{Transport: logTripper{http.DefaultTransport}}

 req, err := http.NewRequest("GET", "https://www.google.com/search?q=golang+net+http", nil)

 if err != nil {

 log.Fatal(err)

 }

 resp, err := client.Do(req)

 if err != nil {

 log.Fatal(err)

 }

 defer resp.Body.Close()

 log.Println("Status code:", resp.StatusCode)

}

Creating a simple server
The other functionality offered by the package is the server creation. The
main interface of the package is Handle, which has one method, ServeHTTP ,that
uses the request to write a response. Its simplest implementation is HandlerFunc,
which is a function with the same signature of ServeHTTP and implements
Handler by executing itself.

The ListenAndServe function starts a HTTP server using the given address and
handler. If no handler is specified, it uses the DefaultServeMux variable. ServeMux
is special type of Handler that manages the execution of different handlers,
depending on the URL path requested. It has two methods, Handle and
HandleFunc, that allow the user to specify the path and the respective handler.
The package also offers generic handler functions that are similar to what we
have seen for the Client, they will call the methods with same name from the
default ServerMux.

In the following example, we will create a customHandler and create a simple
server with some endpoints, including the custom one:

type customHandler int

func (c *customHandler) ServeHTTP(w http.ResponseWriter, r

 *http.Request) {

 fmt.Fprintf(w, "%d", *c)

 *c++

}

func main() {

 mux := http.NewServeMux()

 mux.HandleFunc("/hello", func(w http.ResponseWriter, r

 *http.Request) {

 fmt.Fprintf(w, "Hello!")

 })

 mux.HandleFunc("/bye", func(w http.ResponseWriter, r

 *http.Request) {

 fmt.Fprintf(w, "Goodbye!")

 })

 mux.HandleFunc("/error", func(w http.ResponseWriter, r

 *http.Request) {

 w.WriteHeader(http.StatusInternalServerError)

 fmt.Fprintf(w, "An error occurred!")

 })

 mux.Handle("/custom", new(customHandler))

 if err := http.ListenAndServe(":3000", mux); err != nil {

 log.Fatal(err)

 }

}

Serving filesystem
The Go standard package allows us to easily serve a certain directory in the
filesystem, using the net.FileServer function, which, when given the
net.FileSystem interface, returns a Handler that serves that directory. The default
implementation is net.Dir , which is a custom string that represents a directory
in the system. The FileServer function already has a protection mechanism that
prevents us to use a relative path, such as../../../dir, to access directories
outside the served one.

The following is a sample file server that uses the directory provided as an
argument, as the root of the file served:

func main() {

 if len(os.Args) != 2 {

 log.Fatalln("Please specify a directory")

 }

 s, err := os.Stat(os.Args[1])

 if err == nil && !s.IsDir() {

 err = errors.New("not a directory")

 }

 if err != nil {

 log.Fatalln("Invalid path:", err)

 }

 http.Handle("/", http.FileServer(http.Dir(os.Args[1])))

 if err := http.ListenAndServe(":3000", nil); err != nil {

 log.Fatal(err)

 }

}

Navigating through routes and
methods
The HTTP method used is stored in the Request.Method field. This field can be
used inside a handler to have different behaviors for each supported method:

switch r.Method {

case http.MethodGet:

 // GET implementation

case http.MethodPost:

 // POST implementation

default:

 http.NotFound(w, r)

}

The advantage of the http.Handler interface is that we can define our custom
types. This can make the code more readable and can generalize this method-
specific behavior:

type methodHandler map[string]http.Handler

func (m methodHandler) ServeHTTP(w http.ResponseWriter, r

 *http.Request) {

 h, ok := m[strings.ToUpper(r.Method)]

 if !ok {

 http.NotFound(w, r)

 return

 }

 h.ServeHTTP(w, r)

}

This will make the code much more readable, and it will be reusable for
different paths:

func main() {

 http.HandleFunc("/path1", methodHandler{

 http.MethodGet: http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 fmt.Fprint(w, "Showing record")

 }),

 http.MethodPost: http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 fmt.Fprint(w, "Updated record")

 }),

 })

 if err := http.ListenAndServe(":3000", nil); err != nil {

 log.Fatal(err)

 }

}

Multipart request and files
The request body is an io.ReadCloser. This means that it is the server's
responsibility to close it. For a file upload, the body is not content of the file
directly, but it is usually a multipart request, which is a request that specifies
a boundary in the header and uses it inside the body to separate the message
in parts.

This is a sample multipart message:

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=xxxx

This part before boundary is ignored

--xxxx

Content-Type: text/plain

First part of the message. The next part is binary data encoded in base64

--xxxx

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==

--xxxx--

We can see that the boundary has two dashes as a prefix and it's followed by
a newline, and the final boundary also has two dashes as a suffix. In the
following example, the server will handle a file upload, with a small form to
send the request from a browser.

Let's define some constants that we will use in the handler:

const (

 param = "file"

 endpoint = "/upload"

 content = `<html><body>` +

 `<form enctype="multipart/form-data" action="%s" method="POST">` +

 `<input type="file" name="%s"/><input type="submit"

 value="Upload"/>` +

 `</form></html></body>`

)

Now, we can define the handler function. The first part should show the

template if the method is GET, as it executes the upload on POST and returns a
not found status otherwise:

mux.HandleFunc(endpoint, func(w http.ResponseWriter, r

 *http.Request) {

 if r.Method == "GET" {

 fmt.Fprintf(w, content, endpoint, param)

 return

 } else if r.Method != "POST" {

 http.NotFound(w, r)

 return

 }

 path, err := upload(r)

 if err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

 }

 fmt.Fprintf(w, "Uploaded to %s", path)

})

The upload function will use the Request.FormFile method that returns the file and
its metadata:

func upload(r *http.Request) (string, error) {

 f, h, err := r.FormFile(param)

 if err != nil {

 return "", err

 }

 defer f.Close()

 p := filepath.Join(os.TempDir(), h.Filename)

 fw, err := os.OpenFile(p, os.O_WRONLY|os.O_CREATE, 0666)

 if err != nil {

 return "", err

 }

 defer fw.Close()

 if _, err = io.Copy(fw, f); err != nil {

 return "", err

 }

 return p, nil

}

HTTPS
If you want your web server to use HTTPS instead of relying on external
applications, such as NGINX, you can easily do so if you already have a
valid certificate. If you don't, you can use OpenSSL to create one:

> openssl genrsa -out server.key 2048

> openssl req -new -x509 -sha256 -key server.key -out server.crt -days 3650

The first command generates a private key, while the second one creates a
public certificate that you need for the server. The second command will also
require a lot of additional information in order to create the certificate, from
country name to email address.

Once everything is ready, in order to create an HTTPS server, the
http.ListenAndServe function needs to be replaced with its secure counterpart:
http.ListenAndServeTLS:

func main() {

 http.HandleFunc("/hello", func(w http.ResponseWriter, r

 *http.Request) {

 fmt.Fprint(w, "Hello!")

 })

 err := http.ListenAndServeTLS(":443", "server.crt", "server.key", nil)

 if err != nil {

 log.Fatal("ListenAndServe: ", err)

 }

}

Third-party packages
The Go open source community develops a lot of packages that integrate
with net/http, implementing the Handler interface, but offer a set of unique
capabilities that allow for an easier development of web servers.

gorilla/mux
The github.com/gorilla/mux package contains another implementation of
Handler that enhances the capabilities of the standard ServeMux:

Better URL matching to handlers using any element from the URL,
including schema, method, host, or query values.
URL elements, such as host, paths, and query keys can have
placeholders (which can also use regular expressions).
Routes can be defined hierarchically with the help of subroutes, nested
routes which test a part of the path.
Handlers can be also used as middleware, before the main handler, for
all paths or for a subset of paths.

Let's start with an example of matching using other path elements:

r := mux.NewRouter()

// only local requests

r.Host("localhost:3000")

// only when some header is present

r.Headers("X-Requested-With", "XMLHttpRequest")

only when a query parameter is specified

r.Queries("access_key", "0x20")

Variables are another really useful feature, that allow us to specify
placeholders, and get their values with the auxiliary function, mux.Vars, as
shown in the following example:

r := mux.NewRouter()

r.HandleFunc("/products/", ProductsHandler)

r.HandleFunc("/products/{key}/", ProductHandler)

r.HandleFunc("/products/{key}/details", ProductDetailsHandler)

...

// inside an handler

vars := mux.Vars(request)

key:= vars["key"]

Subrouter is another helpful function to group same prefixes routes. This
allows us to simplify the previous code to the following code snippet:

r := mux.NewRouter()

s := r.PathPrefix("/products").Subrouter()

s.HandleFunc("/", ProductsHandler)

s.HandleFunc("/{key}/", ProductHandler)

s.HandleFunc("/{key}/details", ProductDetailsHandler)

Middleware is also very useful when combined with subroutes, to execute
some common tasks as authentication and verification:

r := mux.NewRouter()

pub := r.PathPrefix("/public").Subrouter()

pub.HandleFunc("/login", LoginHandler)

priv := r.PathPrefix("/private").Subrouter()

priv.Use(AuthHandler)

priv.HandleFunc("/profile", ProfileHandler)

priv.HandleFunc("/logout", LogoutHandler)

gin-gonic/gin
The github.com/gin-gonic/gin package is another Go web framework that extends
the capabilities of a Go HTTP server with many shorthand and auxiliary
functions. Its features include the following:

Speed: Its routing is fast and has very little memory footprint.
Middleware: It allows to define and use intermediate handlers with a
full control of their flow.
Panic-free: It comes with middleware that recovers from panics.
Grouping: It can group routes with the same prefix together.
Errors: It manages and collects error that happen during the request.
Rendering: It comes out of the box with renderers for most web formats
(JSON, XML, HTML).

The core of the package is gin.Engine, which is also a http.Handler. The
gin.Default function returns an engine that uses two middlewares—Logger,
which prints the result of each HTTP request received, and Recovery, which
recovers from panics. The other option is to use the gin.New function, which
returns an engine with no middleware.

It allows us to bind a handler to a single HTTP method with a series of the
engine's methods named after their HTTP counterpart:

DELETE

GET

HEAD

OPTIONS

PATCH

POST

PUT

Any (catch all for any HTTP method)

There's also a group method that returns a route grouping for the selected path,
which exposes all of the preceding methods:

router := gin.Default()

router.GET("/resource", getResource)

router.POST("/resource", createResource)

router.PUT("/resource", updateResoure)

router.DELETE("/resource", deleteResource)

// with use grouping

g := router.Group("/resource")

g.GET("", getResource)

g.POST("", createResource)

g.PUT("", updateResoure)

g.DELETE("", deleteResource)

The handlers in this framework have a different signature. Instead of having a
response writer and a request as arguments, it uses gin.Context, a structure that
wraps both, and offers many shorthands and utilities. For instance, the
package offers the possibility of using placeholders in the URL and the
context enables these parameters to be read:

router := gin.Default()

router.GET("/hello/:name", func(c *gin.Context) {

 c.String(http.StatusOK, "Hello %s!", c.Param("name"))

})

We can also see in the example that the context offers a String method that
enables us to write an HTTP status and the content of the response with a
one-liner.

Other functionalities
There are additional features for web servers. Some of them are already
supported by the standard library (such as HTTP/2 Pusher) and others are
available with experimental packages or third-party libraries (such as
WebSockets).

HTTP/2 Pusher
We have already discussed that Golang supports the HTTP/2 server side push
functionality since version 1.8. Let's see how to use it in an application. Its
usage is pretty simple; if the request can be casted to the http.Pusher interface,
it can be used to push additional requests in the main interface. In this
example, we use it to sideload a SVG image, together with the page:

func main() {

 const imgPath = "/image.svg"

 http.HandleFunc("/", func(w http.ResponseWriter, r

 *http.Request) {

 pusher, ok := w.(http.Pusher)

 if ok {

 fmt.Println("Push /image")

 pusher.Push(imgPath, nil)

 }

 w.Header().Add("Content-Type", "text/html")

 fmt.Fprintf(w, `<html><body>`+

 `</body></html>`, imgPath)

 })

 http.HandleFunc(imgPath, func(w http.ResponseWriter, r

 *http.Request) {

 w.Header().Add("Content-Type", "image/svg+xml")

 fmt.Fprint(w, `<?xml version="1.0" standalone="no"?>

<svg xmlns="http://www.w3.org/2000/svg">

 <rect width="150" height="150" style="fill:blue"/>

</svg>`)

 })

 if err := http.ListenAndServe(":3000", nil); err != nil {

 fmt.Println(err)

 }

}

This will result in two separate requests for HTTP/1, and one single request
for HTTP/2, where the second request is obtained using the push capabilities
of the browser.

WebSockets protocol
The HTTP protocol achieves only one-way communication, while the
WebSocket protocol is a full duplex communication between client and
server. The Go experimental library offers support for WebSocket with
the golang.org/x/net/websocket package, and Gorilla has another implementation
with its own github.com/gorilla/websocket.

The second one is far more complete, and it's used in
the github.com/olahol/melody package, which implements a framework for an
easy WebSocket communication. Each package offers different working
examples on the WebSocket server and client pair.

Beginning with the template engine
Another very powerful tool is the Go templating engine, available in
text/template. Its functionalities are replicated and extended in the html/template
package, which constitutes another powerful tool for web development with
Go.

Syntax and basic usage
The template package enables us to separate presentation from data, using
text files and data structures. The template engine defines two delimiters—
left and right—for opening and closing actions that represent data evaluation.
The default delimiters are {{ and }}, and the template evaluates only what's
included within these delimiters, leaving the rest untouched.

Usually the data bound to the template is a structure or a map and it is
accessible anywhere in the template with the $ variable. Whether it's a map or
a struct, the fields are always accessed in the same way, using the .Field
syntax. If the dollar is omitted, the value is referred to the current context,
which is $ if it's not in special statements, such as loops. Outside of these
exceptions, the {{$.Field}} and {{.Field}} statements are equivalent.

The flow in a template is controlled with a condition statement, {{if}}, and a
loop statement, {{range}}, and both terminate with the {{end}} statement. The
condition statement also offers the possibility of a chain {{else if}} statement
to specify another condition, acting like a switch, and an {{else}} statement,
which can be considered the default of a switch. {{else}} can be used with the
range statement and it's executed when the argument of the range is nil or has
zero length.

Creating, parsing, and executing
templates
The template.Template type is a collector of one or more templates and can be
initialized in several ways. The template.New function creates a new empty
template with the given name, which can be used to call the Parse method that
uses a string to create a template. Consider the following code:

var data = struct {

 Question string

 Answer int

}{

 Question: "Answer to the Ultimate Question of Life, " +

 "the Universe, and Everything",

 Answer: 42,

}

tpl, err := template.New("question-answer").Parse(`

 <p>Question: {{.Question}}</p>

 <p>Answer: {{.Answer}}</p>

`)

if err != nil {

 log.Fatalln("Error:", err)

}

if err = tpl.Execute(os.Stdout, data); err != nil {

 log.Fatalln("Error:", err)

}

The full example is available here: https://play.golang.org/p/k-t0Ns1b2Mv.

Templates can also be loaded and parsed from a filesystem, using
template.ParseFiles, which takes a list of files, and template.ParseGlob, which uses
the glob Unix command syntax to select a list of files. Let's create a template
file with the following content:

<html>

 <body>

 <h1>{{.name}}</h1>

 First appearance: {{.appearance}}

 Style: {{.style}}

 </body>

</html>

https://play.golang.org/p/k-t0Ns1b2Mv

We can use one of these two functions to load it and execute it with some
sample data:

func main() {

 tpl, err := template.ParseGlob("ch9/template/parse/*.html")

 if err != nil {

 log.Fatal("Error:", err)

 }

 data := map[string]string{

 "name": "Jin Kazama",

 "style": "Karate",

 "appearance": "Tekken 3",

 }

 if err := tpl.Execute(os.Stdout, data); err != nil {

 log.Fatal("Error:", err)

 }

}

When multiple templates are loaded, the Execute method will use the last one.
If a specific template needs to be selected, there is another
method, ExecuteTemplate, which also receives the template name as an
argument, to specify which template to use.

Conditions and loops
The range statement can be used in different ways—the simplest way is just
calling range followed by the slice or map that you want to iterate.

Alternatively, you can specify the values, or the index and the value:

var a = []int{1, 2, 3, 4}

`{{ range . }} {{.}} {{ end }}` // simple

`{{ range $v := . }} {{$v}} {{ end }}` // value

`{{ range $i, $v := . }} {{$v}} {{ end }}` // index and value

When in a loop, the {{.}} variable assumes the value of the current element in
the iteration. The following example loops a slice of items:

var data = []struct {

 Question, Answer string

}{{

 Question: "Answer to the Ultimate Question of Life, " +

 "the Universe, and Everything",

 Answer: "42",

}, {

 Question: "Who you gonna call?",

 Answer: "Ghostbusters",

}}

tpl, err := template.New("question-answer").Parse(`{{range .}}

Question: {{.Question}}

Answer: {{.Answer}}

{{end}}`)

if err != nil {

 log.Fatalln("Error:", err)

}

if err = tpl.Execute(os.Stdout, data); err != nil {

 log.Fatalln("Error:", err)

}

The full example is available here: https://play.golang.org/p/MtU_d9CsFb-.

The next example is a use case of conditional statements that have also made
use of the lt function:

var data = []struct {

 Name string

 Score int

}{

 {"Michelangelo", 30},

 {"Donatello", 50},

https://play.golang.org/p/MtU_d9CsFb-

 {"Leonardo", 80},

 {"Raffaello", 100},

}

tpl, err := template.New("question-answer").Parse(`{{range .}}

{{.Name}} scored {{.Score}}. He did {{if lt .Score 50}}bad{{else if lt .Score 75}}okay{{else if lt .Score 90}}good{{else}}great{{end}}

{{end}}`)

if err != nil {

 log.Fatalln("Error:", err)

}

if err = tpl.Execute(os.Stdout, data); err != nil {

 log.Fatalln("Error:", err)

}

The full example is available here: https://play.golang.org/p/eBKDcJ47rPU.

We will explore functions in more detail in the next section.

https://play.golang.org/p/eBKDcJ47rPU

Template functions
Functions are an important part of the template engine and there are many
built-in functions, such as comparison (eq, lt, gt, le, ge) or logical (AND, OR, NOT).
Functions are called by their names, followed by arguments using space as
separator. The function used in the previous example, lt a b, means lt(a,b).
When the functions are more nested, it's required to wrap functions and
arguments in parentheses. For instance, the not lt a b statement means that the
X function has three arguments, not(lt, a, b). The correct version is not (lt a
b), which tells the template that the elements in the parentheses need to be
solved first.

When creating a template, custom functions can be assigned to it with
the Funcs method and can be used in the template. This is very useful, as we
can see in this example:

var data = struct {

 Name, Surname, Occupation, City string

}{

 "Bojack", "Horseman", "Actor", "Los Angeles",

}

tpl, err := template.New("question-answer").Funcs(template.FuncMap{

 "upper": func(s string) string { return strings.ToUpper(s) },

 "lower": func(s string) string { return strings.ToLower(s) },

}).Parse(`{{.Name}} {{.Surname}} - {{lower .Occupation}} from {{upper .City}}`)

if err != nil {

 log.Fatalln("Error:", err)

}

if err = tpl.Execute(os.Stdout, data); err != nil {

 log.Fatalln("Error:", err)

}

The full example is available here: https://play.golang.org/p/DdoKEOixDDB.

The | operator can be used to link the output of a statement to the input of
another statement, similar to how it happens in the Unix shell. For instance,
the {{"put" | printf "%s%s" "out" | printf "%q"}} statement will produce "output".

https://play.golang.org/p/DdoKEOixDDB

RPC servers
Remote Procedure Call (RPC) is a method of calling the execution of an
application functionality from another system, using the TCP protocol. Go
has native support for RPC servers.

Defining a service
The Go RPC server permits us to register any Go type, along with its
methods. This exposes the methods with the RPC protocol and enables us to
call them by name from a remote client. Let's create a helper for keeping
track of our progress in the book as we are reading:

// Book represents a book entry

type Book struct {

 ISBN string

 Title, Author string

 Year, Pages int

}

// ReadingList keeps tracks of books and pages read

type ReadingList struct {

 Books []Book

 Progress []int

}

First, let's define a small helper method called bookIndex that returns the index
of a book using its identifier—the ISBN:

func (r *ReadingList) bookIndex(isbn string) int {

 for i := range r.Books {

 if isbn == r.Books[i].ISBN {

 return i

 }

 }

 return -1

}

Now, we can define the operation that ReadingList will be capable of. It should
be able to add and remove books:

// AddBook checks if the book is not present and adds it

func (r *ReadingList) AddBook(b Book) error {

 if b.ISBN == "" {

 return ErrISBN

 }

 if r.bookIndex(b.ISBN) != -1 {

 return ErrDuplicate

 }

 r.Books = append(r.Books, b)

 r.Progress = append(r.Progress, 0)

 return nil

}

// RemoveBook removes the book from list and forgets its progress

func (r *ReadingList) RemoveBook(isbn string) error {

 if isbn == "" {

 return ErrISBN

 }

 i := r.bookIndex(isbn)

 if i == -1 {

 return ErrMissing

 }

 // replace the deleted book with the last of the list

 r.Books[i] = r.Books[len(r.Books)-1]

 r.Progress[i] = r.Progress[len(r.Progress)-1]

 // shrink the list of 1 element to remove the duplicate

 r.Books = r.Books[:len(r.Books)-1]

 r.Progress = r.Progress[:len(r.Progress)-1]

 return nil

}

It should also be able to read and alter a book's progress:

// GetProgress returns the progress of a book

func (r *ReadingList) GetProgress(isbn string) (int, error) {

 if isbn == "" {

 return -1, ErrISBN

 }

 i := r.bookIndex(isbn)

 if i == -1 {

 return -1, ErrMissing

 }

 return r.Progress[i], nil

}

Then, SetProgress changes the progress of a book, as follows:

func (r *ReadingList) SetProgress(isbn string, pages int) error {

 if isbn == "" {

 return ErrISBN

 }

 i := r.bookIndex(isbn)

 if i == -1 {

 return ErrMissing

 }

 if p := r.Books[i].Pages; pages > p {

 pages = p

 }

 r.Progress[i] = pages

 return nil

}

AdvanceProgress adds pages to the progress of a book:

func (r *ReadingList) AdvanceProgress(isbn string, pages int) error {

 if isbn == "" {

 return ErrISBN

 }

 i := r.bookIndex(isbn)

 if i == -1 {

 return ErrMissing

 }

 if p := r.Books[i].Pages - r.Progress[i]; p < pages {

 pages = p

 }

 r.Progress[i] += pages

 return nil

}

The error variables we are using in these functions are defined as follows:

// List of errors

var (

 ErrISBN = fmt.Errorf("missing ISBN")

 ErrDuplicate = fmt.Errorf("duplicate book")

 ErrMissing = fmt.Errorf("missing book")

)

Creating the server
Now we have the service that we can use to create an RPC server very easily.
However, the type used has to respect some rules for its methods to make
them available:

The method's type and method itself are both exported.
The method has two arguments, both exported.
The second argument is a pointer.
The method returns an error.

The method should look something like this: func (t *T) Method(in T1, out *T2)
error.

The next step is create a wrapper for the ReadingList that satisfies these rules:

// ReadingService adapts ReadingList for RPC

type ReadingService struct {

 ReadingList

}

// sets the success pointer value from error

func setSuccess(err error, b *bool) error {

 *b = err == nil

 return err

}

We can redefine the book, add and remove functions using Book, which is an
exported type, and built-in types:

func (r *ReadingService) AddBook(b Book, success *bool) error {

 return setSuccess(r.ReadingList.AddBook(b), success)

}

func (r *ReadingService) RemoveBook(isbn string, success *bool) error {

 return setSuccess(r.ReadingList.RemoveBook(isbn), success)

}

For the progress, we have two inputs (isbn and pages), so we have to define a
structure that contains both, since the input must be a single argument:

func (r *ReadingService) GetProgress(isbn string, pages *int) (err error) {

 *pages, err = r.ReadingList.GetProgress(isbn)

 return err

}

type Progress struct {

 ISBN string

 Pages int

}

func (r *ReadingService) SetProgress(p Progress, success *bool) error {

 return setSuccess(r.ReadingList.SetProgress(p.ISBN, p.Pages), success)

}

func (r *ReadingService) AdvanceProgress(p Progress, success *bool) error {

 return setSuccess(r.ReadingList.AdvanceProgress(p.ISBN, p.Pages), success)

}

The defined type can be registered and used in an RPC server, which will use
rpc.HandleHTTP to register the HTTP handler for the incoming RPC messages:

if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

}

if err := rpc.Register(&common.ReadingService{}); err != nil {

 log.Fatalln(err)

}

rpc.HandleHTTP()

l, err := net.Listen("tcp", os.Args[1])

if err != nil {

 log.Fatalln(err)

}

log.Println("Server Started")

if err := http.Serve(l, nil); err != nil {

 log.Fatal(err)

}

Creating the client
The client can be created using the RPC package's rpc.DialHTTP function, using
the same host-port to obtain a client:

if len(os.Args) != 2 {

 log.Fatalln("Please specify an address.")

}

client, err := rpc.DialHTTP("tcp", os.Args[1])

if err != nil {

 log.Fatalln(err)

}

defer client.Close()

Then, we define a list of books that we are going to use for our example:

const hp = "H.P. Lovecraft"

var books = []common.Book{

 {ISBN: "1540335534", Author: hp, Title: "The Call of Cthulhu", Pages: 36},

 {ISBN: "1980722803", Author: hp, Title: "The Dunwich Horror ", Pages: 53},

 {ISBN: "197620299X", Author: hp, Title: "The Shadow Over Innsmouth", Pages: 40},

 {ISBN: "1540335534", Author: hp, Title: "The Case of Charles Dexter Ward", Pages: 176},

}

Considering that the format package prints the address of pointers to built-in
types, we are going to define a helper function to show the pointer's content:

func callClient(client *rpc.Client, method string, in, out interface{}) {

 var r interface{}

 if err := client.Call(method, in, out); err != nil {

 out = err

 }

 switch v := out.(type) {

 case error:

 r = v

 case *int:

 r = *v

 case *bool:

 r = *v

 }

 log.Printf("%s: [%+v] -> %+v", method, in, r)

}

The client gets the operation to execute in the form of type.method, so we will
be using the function like this:

callClient(client, "ReadingService.GetProgress", books[0].ISBN, new(int))

callClient(client, "ReadingService.AddBook", books[0], new(bool))

callClient(client, "ReadingService.AddBook", books[0], new(bool))

callClient(client, "ReadingService.GetProgress", books[0].ISBN, new(int))

callClient(client, "ReadingService.AddBook", books[1], new(bool))

callClient(client, "ReadingService.AddBook", books[2], new(bool))

callClient(client, "ReadingService.AddBook", books[3], new(bool))

callClient(client, "ReadingService.SetProgress", common.Progress{

 ISBN: books[3].ISBN,

 Pages: 10,

}, new(bool))

callClient(client, "ReadingService.GetProgress", books[3].ISBN, new(int))

callClient(client, "ReadingService.AdvanceProgress", common.Progress{

 ISBN: books[3].ISBN,

 Pages: 40,

}, new(bool))

callClient(client, "ReadingService.GetProgress", books[3].ISBN, new(int))

This will output each operation with its result.

Summary
In this chapter, we examined how network connections are handled in Go.
We started with some network standards. First, we discussed the OSI model,
and then TCP/IP.

Then, we checked the network package and learned how to use it to create
and manage TCP connections. This included the handling of special
commands and how to terminate the connection from the server side. Next,
we saw how to do the same with UDP, and we have seen how to implement a
custom encoding with checksum control.

Then, we discussed the HTTP protocol, explained how the first version
works, and then talked about the differences and improvements of HTTP/2.
Then, we learned how to make an HTTP request using Go, followed by how
to set up a web server. We explored how to serve existing files, how to
associate different actions to different HTTP methods, and how to handle
multipart requests and file uploads. We set up an HTTPS server easily, and
then we learned what advantages are offered by some third-party libraries for
web servers. Finally, we demonstrated how the template engine works in Go,
and how to build an RPC client/server easily.

In the next chapter, we are going to cover how to use the main data
interchange format such as JSON and XML, which can also be used to create
web servers.

Questions
1. What's the advantage of using communication models?
2. What's the difference between a TCP and a UDP connection?
3. Who closes the request body when sending requests?
4. Who closes the body when receiving them in the server?

Data Encoding Using Go
This chapter will show you how to use the more common encoding for
exchanging data in an application. Encoding is the process of transforming
data, and it can be used when an application has to communicate with another
—using the same encoding will allow the two programs to understand each
other. This chapter will explain how to handle text-based protocols such as
JSON, first of all, and then how to use binary protocols such as gob.

The following topics will be covered in this chapter:

Using text-based encoding such as JSON and XML
Learning about binary encoding such as gob and protobuf

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, please refer to Chapter 3, An Overview of Go.

In order to use the protocol buffer, you will need to install the protobuf library.
Instructions are available at https://github.com/golang/protobuf.

https://github.com/golang/protobuf

Understanding text-based encoding
The most human-readable data serialization format is the text-based format.
In this section, we will analyze some of the most used text-based encoding—
CSV, JSON, XML, and YAML.

CSV
Comma-separated values (CSV) is a type of text encoding that stores data
in a tabular form. Each line is a table entry and values of a line are separated
by a special character, which is usually a comma—hence, the name
CSV. Each record of the CSV file must have the same value count and the
first record can be used as a header to describe each record field:

name,age,country

String values can be quoted in order to permit the use of the comma.

Decoding values
Go allows users to create a CSV reader from any io.Reader. It is possible to
read records one by one using the Read method:

func main() {

 r := csv.NewReader(strings.NewReader("a,b,c\ne,f,g\n1,2,3"))

 for {

 r, err := r.Read()

 if err != nil {

 log.Fatal(err)

 }

 log.Println(r)

 }

}

A full example of the preceding code is available at https://play.golang.org/p/wZ
gVzMqAN_K.

Note that each record is a string slice and the reader is expecting the length of
each row to be consistent. If a row has more or fewer entries than the first,
this will result in an error. It is also possible to read all records at once using
ReadAll. The same example from before using such a method will look like
this:

func main() {

 r := csv.NewReader(strings.NewReader("a,b,c\ne,f,g\n1,2,3"))

 records, err := r.ReadAll()

 if err != nil {

 log.Fatal(err)

 }

 for _, r := range records {

 log.Println(r)

 }

}

A full example of the preceding code is available at https://play.golang.org/p/RJ
-wxBB5fs6.

https://play.golang.org/p/wZgVzMqAN_K
https://play.golang.org/p/RJ-wxBB5fs6

Encoding values
A CSV writer can be created using any io.Writer. The resulting writer will be
buffered, so, in order to not lose data, it is necessary to call its method, Flush:
this will ensure that the buffer gets drained and all content goes to the writer.

The Write method receives a string slice and encodes it in CSV format. Let's
see how it works in the following example:

func main() {

 const million = 1000000

 type Country struct {

 Code, Name string

 Population int

 }

 records := []Country{

 {Code: "IT", Name: "Italy", Population: 60 * million},

 {Code: "ES", Name: "Spain", Population: 46 * million},

 {Code: "JP", Name: "Japan", Population: 126 * million},

 {Code: "US", Name: "United States of America", Population: 327 * million},

 }

 w := csv.NewWriter(os.Stdout)

 defer w.Flush()

 for _, r := range records {

 if err := w.Write([]string{r.Code, r.Name, strconv.Itoa(r.Population)}); err != nil {

 fmt.Println("error:", err)

 os.Exit(1)

 }

 }

}

A full example of the preceding code is available at https://play.golang.org/p/qw
az3xCJhQT.

As it happens, for the reader, there is a method for writing more than one
record at once. It is known as WriteAll, and we can see it in the next example:

func main() {

 const million = 1000000

 type Country struct {

 Code, Name string

 Population int

 }

 records := []Country{

 {Code: "IT", Name: "Italy", Population: 60 * million},

 {Code: "ES", Name: "Spain", Population: 46 * million},

 {Code: "JP", Name: "Japan", Population: 126 * million},

https://play.golang.org/p/qwaz3xCJhQT

 {Code: "US", Name: "United States of America", Population: 327 * million},

 }

 w := csv.NewWriter(os.Stdout)

 defer w.Flush()

 var ss = make([][]string, 0, len(records))

 for _, r := range records {

 ss = append(ss, []string{r.Code, r.Name, strconv.Itoa(r.Population)})

 }

 if err := w.WriteAll(ss); err != nil {

 fmt.Println("error:", err)

 os.Exit(1)

 }

}

A full example of the preceding code is available at https://play.golang.org/p/lt
_GBOLvUfk.

The main difference between Write and WriteAll is that the second operation
uses more resources and it requires us to convert the records into a slice of
string slices before calling it.

https://play.golang.org/p/lt_GBOLvUfk

Custom options
Both reader and writer have some options that can be changed after creation.
Both structures share the Comma field, which is the character used for separating
fields. Another important field that belongs to the writer only
is FieldsPerRecord, which is an integer that determines how many fields the
reader should expect for each record:

If greater than 0, it will be the number of field required.
If equal to 0 it will set to the number of field of the first record.
If negative, all checks on the field count will be skipped, allowing for
the reading of inconsistent sets of records.

Let's look at a practical example of a reader that is not checking for
consistency and uses a space as a separator:

func main() {

 r := csv.NewReader(strings.NewReader("a b\ne f g\n1"))

 r.Comma = ' '

 r.FieldsPerRecord = -1

 records, err := r.ReadAll()

 if err != nil {

 log.Fatal(err)

 }

 for _, r := range records {

 log.Println(r)

 }

}

A full example of the preceding code is available at https://play.golang.org/p/KP
HXRW5OxXT.

https://play.golang.org/p/KPHXRW5OxXT

JSON
JavaScript Object Notation (JSON) is a lightweight, text-based data
interchange format. Its nature enables humans to read and write it easily, and
its small overhead makes it very suitable for web-based applications.

There are two main types of entities that compose JSON:

Collections of name/value pairs: The name/value is represented as an
object, structure, or dictionary in various programming languages.
Ordered lists of values: These are lists of collections or values, which
are usually represented as arrays or lists.

The objects are enclosed in braces with each key separated by a colon, and
each value is comma separated from the next key/value. Lists are enclosed in
brackets and elements are comma separated. These two types can be
combined, so a list can also be a value, and objects can be elements in a list.
Spaces, newlines, and tabs that are outside names and values are ignored and
are used to indent the data and make it easier to read.

Take this sample JSON object:

{

 "name: "Randolph",

 "surname": "Carter",

 "job": "writer",

 "year_of_birth": 1873

}

It could be compressed into one line, removing the indentation, as this is a
good practice when the data length matters—such as in a web server or a
database:

{"name:"Randolph","surname":"Carter","job":"writer","year_of_birth":1873}

In Go, the default types associated to JSON dictionaries and lists are
map[string]interface{} and []interface{}. These two types (being so generic) are
capable of hosting any JSON data structure.

Field tags
A struct can also host a specific set of JSON data; all of the exported keys
will have names identical to the respective fields. In order to customize the
keys, Go enables us to follow field declarations in a struct with a string that
should contain metadata about the field.

These tags take the form of colon separated keys/values. The value is a
quoted string, which can contain additional information added using commas
(such as job,omitempty). If there is more than one tag, spaces are used to
separate them. Let's see a practical example that uses struct tags:

type Character struct {

 Name string `json:"name" tag:"foo"`

 Surname string `json:"surname"`

 Job string `json:"job,omitempty"`

 YearOfBirth int `json:"year_of_birth,omitempty"`

}

This example shows how two different tags can be used for the same field
(we have both json and foo), and it shows how to specify a particular JSON
key and introduce the omitempty tag that is used for output purposes to avoid
marshaling the field if it has a zero value.

Decoder
There two ways of decoding data in JSON—the first is the json.Unmarshal
function that uses a byte slice as input, and the second is the json.Decoder type
that uses a generic io.Reader to get the encoded content. We will use the latter
in our examples because it will enable us to work with structs such as
strings.Reader. Another advantage of the decoder is the customization that can
be done with the following methods:

DisallowUnknownFields: The decode will return an error if a field that is
unknown to the receiving data structure is found.
UseNumber: Numbers will be stored as json.Number instead of float64.

This is a practical example of data decoding using the json.Decoder type:

r := strings.NewReader(`{

 "name":"Lavinia",

 "surname":"Whateley",

 "year_of_birth":1878

}`)

d := json.NewDecoder(r)

var c Character

if err := d.Decode(&c); err != nil {

 log.Fatalln(err)

}

log.Printf("%+v", c)

The full example is available here: https://play.golang.org/p/a-qt5Mk9E_J.

https://play.golang.org/p/a-qt5Mk9E_J

Encoder
Data encoding works in a similar fashion, with a json.Marshal function that
takes a byte slice and the json.Encoder type that uses io.Writer instead. The latter
is better for the obvious reasons of flexibility and customization. It allows us
to change the output with the following methods:

SetEscapeHTML: If true, it specifies whether a problematic HTML
character should be escaped inside JSON quoted strings.
SetIndent: This allows us to specify a prefix at the beginning of each line,
and what string will be used to indent the output JSON.

The following example uses an encore to marshal a data structure to standard
output using tabs for indentation:

e := json.NewEncoder(os.Stdout)

e.SetIndent("", "\t")

c := Character{

 Name: "Charles Dexter",

 Surname: "Ward",

 YearOfBirth: 1902,

}

if err := e.Encode(c); err != nil {

 log.Fatalln(err)

}

This is where we can see the utility of the omitempty tag in the Job field. Since
the value is an empty string, its encoding is skipped. If the tag was absent,
there would have been the "job":"", line after the surname.

Marshaler and unmarshaler
Encoding and decoding are normally done using the reflection package,
which is pretty slow. Before resorting to it, the encoder and decoder will
check whether the data type implements the json.Marshaller and
json.Unmarshaller interfaces and use the respective methods instead:

type Marshaler interface {

 MarshalJSON() ([]byte, error)

}

type Unmarshaler interface {

 UnmarshalJSON([]byte) error

}

Implementing this interface allows for a generally faster encoding and
decoding, and it grants the ability to execute other kinds of actions that would
not be possible otherwise, such as reading from or writing to unexported
fields; it can also embed some operations such as running checks on the data.

If the goal is just to wrap the default behavior, it is necessary to define
another type with the same data structure, so that it loses all methods.
Otherwise, calling Marshal or Unmarshal inside the methods will result in a
recursive call and, finally, a stack overflow.

In this practical example, we are defining a custom Unmarshal method to set a
default value for the Job field when it's empty:

func (c *Character) UnmarshalJSON(b []byte) error {

 type C Character

 var v C

 if err := json.Unmarshal(b, &v); err != nil {

 return err

 }

 *c = Character(v)

 if c.Job == "" {

 c.Job = "unknown"

 }

 return nil

}

The full example is available here: https://play.golang.org/p/4BjFKiMiVHO.

https://play.golang.org/p/4BjFKiMiVHO

The UnmarshalJSON method needs a pointer receiver because it has to actually
modify the value of the data type, but for the MarshalJSON method, there's no
real need for it, and it is a good practice to have a value receiver—unless the
data type should do something different while nil:

func (c Character) MarshalJSON() ([]byte, error) {

 type C Character

 v := C(c)

 if v.Job == "" {

 v.Job = "unknown"

 }

 return json.Marshal(v)

}

The full example is available here: https://play.golang.org/p/Q-q-9y6v6u-.

https://play.golang.org/p/Q-q-9y6v6u-

Interfaces
When working with interface types, the encoding part is really
straightforward because the application knows which data structure is stored
within the interface and will proceed with the marshaling. Doing the opposite
operation is not quite as straightforward because the application received has
an interface rather than a data structure and does not know what to do and,
therefore, ends up doing nothing.

A strategy that works really well (even if it involves a little boilerplate) is
using a concrete type container, which will permit us to handle the interface
in the UnmarshalJSON method. Let's create a quick example by defining an
interface and some different implementations:

type Fooer interface {

 Foo()

}

type A struct{ Field string }

func (a *A) Foo() {}

type B struct{ Field float64 }

func (b *B) Foo() {}

Then, we define a type that wraps the interface and has a Type field:

type Wrapper struct {

 Type string

 Value Fooer

}

Then, let's populate the Type field before encoding:

func (w Wrapper) MarshalJSON() ([]byte, error) {

 switch w.Value.(type) {

 case *A:

 w.Type = "A"

 case *B:

 w.Type = "B"

 default:

 return nil, fmt.Errorf("invalid type: %T", w.Value)

 }

 type W Wrapper

 return json.Marshal(W(w))

}

The decoding method is the more important one: it uses json.RawMessage, which
is a special type of byte slice used for lazy decoding. We will first get the
type from the string field and leave the value in the raw format, in order to
use the correct data structure for its decoding:

func (w *Wrapper) UnmarshalJSON(b []byte) error {

 var W struct {

 Type string

 Value json.RawMessage

 }

 if err := json.Unmarshal(b, &W); err != nil {

 return err

 }

 var value interface{}

 switch W.Type {

 case "A":

 value = new(A)

 case "B":

 value = new(B)

 default:

 return fmt.Errorf("invalid type: %s", W.Type)

 }

 if err := json.Unmarshal(W.Value, &value); err != nil {

 return err

 }

 w.Type, w.Value = W.Type, value.(Fooer)

 return nil

}

The full example is available here: https://play.golang.org/p/GXMK_hC8Bpv.

https://play.golang.org/p/GXMK_hC8Bpv

Generating structs
There is a very useful application that, when given a JSON string, generates a
Go type automatically trying to infer field types. You can find one deployed
at this address: https://mholt.github.io/json-to-go/.

It saves some time and most of the time the data structure is already correct
after a simple conversion. Sometimes, it needs some changes such as number
types, for instance, if you want a field to be float, but your sample JSON has
an integer.

https://mholt.github.io/json-to-go/

JSON schemas
A JSON schema is a vocabulary that describes JSON data and enables the
verification of data validity. It can be used for testing and it can be used as
documentation. The schema specifies the type of an element and can add
additional checks on its value. If the type is an array, it can also specify the
type and details of each element. If the type is an object, it describes its fields.
Let's see a JSON schema for the Character struct that we used in the examples:

{

 "type": "object",

 "properties": {

 "name": { "type": "string" },

 "surname": { "type": "string" },

 "year_of_birth": { "type": "number"},

 "job": { "type": "string" }

 },

 "required": ["name", "surname"]

}

We can see that it specifies an object with all of its fields and indicates which
fields are mandatory. There are some third-party Go packages that permit us
to verify JSON against schema very easily such as github.com/xeipuuv/gojsonschem
a.

https://github.com/xeipuuv/gojsonschema

XML
Extensible Markup Language (XML) is another widely used data encoding
format. It's human and machine readable, like JSON, and it was defined by
World Wide Web Consortium (W3C) in 1996. It focuses on simplicity,
usability, and generality, and it is actually used as a base for many formats
including RSS or XHTML.

Structure
Each XML file starts with a declaration statement that specifies the version
and encoding used in the file and whether the file is standalone (schema used
is internal). This is a sample XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

The declaration is followed by a tree of XML elements, which are delimited
by tags that have the following form:

<tag>: Opening tag, defines the start of an element
</tag>: Closing tag, defines the end of an element
<tag/>: Self-closing tag, defines an element with no content

Usually, elements are nested so that there are tags inside other tags:

<outer>

 <middle>

 <inner1>content</inner1>

 <inner2/>

 </middle>

</outer>

Each element can have additional information in the form of attributes, which
are space-separated key/value pairs found inside an opening or self-closing
tag. The key and value are separated by an equals sign, and the value is
delimited by double quotes. The following are examples of elements with
attributes:

<tag attribute="value" another="something">content</tag>

<selfclosing a="1000" b="-1"/>

Document Type Definition
 Document Type Definition (DTD) is an XML document that defines the
structure and constraints of other XML documents. It can be used to verify
the validity of XML if its content is what is expected. An XML can and
should specify its own schema, to ease the validation process. The elements
of a DTD are as follows:

Schema: This represents the root of the document.
Complex type: It allows an element to have content.
Sequence: This specifies the child elements that must appear in the
described sequence.
Element: This represents an XML element.
Attribute: This represents an XML attribute for the parent tag.

This is a sample schema declaration for the Character struct we are using in
this chapter:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="character">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" use="required"/>

 <xs:element name="surname" type="xs:string" use="required"/>

 <xs:element name="year_of_birth" type="xs:integer"/>

 <xs:element name="job" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

We can see that it is a schema with an element (character) that is a complex
type composed by a sequence of other elements.

Decoding and encoding
As we already saw for JSON, data decoding and encoding can be achieved in
two different ways: by providing or returning a byte slice using
xml.Unmarshal and xml.Marshal or by using io.Reader or io.Writer with the xml.Decoder
and xml.Encoder types.

We can do it by replacing the json tag from the Character struct with xml or by
simply adding them:

type Character struct {

 Name string `xml:"name"`

 Surname string `xml:"surname"`

 Job string `xml:"job,omitempty"`

 YearOfBirth int `xml:"year_of_birth,omitempty"`

}

Then, we use xml.Decoder to unmarshal the data:

r := strings.NewReader(`<?xml version="1.0" encoding="UTF-8"?>

<character>

 <name>Herbert</name>

 <surname>West</surname>

 <job>Scientist</job>

</character>

}`)

d := xml.NewDecoder(r)

var c Character

if err := d.Decode(&c); err != nil {

 log.Fatalln(err)

}

log.Printf("%+v", c)

The full example is available here: https://play.golang.org/p/esopq0SMhG_T.

When encoding, the xml package will get the name of the root node from the
data type used. If the data structure has a field named XMLName, the relative
XML struct tag will be used for the root node. So, the data structure becomes
the following:

type Character struct {

 XMLName struct{} `xml:"character"`

 Name string `xml:"name"`

 Surname string `xml:"surname"`

https://play.golang.org/p/esopq0SMhG_T

 Job string `xml:"job,omitempty"`

 YearOfBirth int `xml:"year_of_birth,omitempty"`

}

The encoding operation is also pretty straightforward:

e := xml.NewEncoder(os.Stdout)

e.Indent("", "\t")

c := Character{

 Name: "Henry",

 Surname: "Wentworth Akeley",

 Job: "farmer",

 YearOfBirth: 1871,

}

if err := e.Encode(c); err != nil {

 log.Fatalln(err)

}

The full example is available here: https://play.golang.org/p/YgZzdPDoaLX.

https://play.golang.org/p/YgZzdPDoaLX

Field tags
The name of the root tag can be changed using the XMLName field in a data
structure. There are some other features of field tags that can be really useful:

Tags with - are omitted.
A tag with the attr option becomes an attribute of the parent element.
A tag with the innerxml option is written verbatim, useful for lazy
decoding.
The omitempty option works the same as it does for JSON; it will not
produce a tag for zero values.
The tag can contain a path in the XML using > as a separator, as a > b >
c.
Anonymous struct fields are treated as if the fields of its value were in
the outer struct.

Let's take a look at a practical example that uses some of these features:

type Character struct {

 XMLName struct{} `xml:"character"`

 Name string `xml:"name"`

 Surname string `xml:"surname"`

 Job string `xml:"details>job,omitempty"`

 YearOfBirth int `xml:"year_of_birth,attr,omitempty"`

 IgnoreMe string `xml:"-"`

}

This structure produces the following XML:

<character year_of_birth="1871">

 <name>Henry</name>

 <surname>Wentworth Akeley</surname>

 <details>

 <job>farmer</job>

 </details>

</character>

The full example is available here: https://play.golang.org/p/6zdl9__M0zF.

https://play.golang.org/p/6zdl9__M0zF

Marshaler and unmarshaler
As we have also seen for JSON, the xml package offers some interfaces to
customize the behavior of a type during encoding and decoding operations—
this can avoid the use of reflection or can be used to establish a different
behavior. The interfaces that are offered by the package to obtain this
behavior are the following:

type Marshaler interface {

 MarshalXML(e *Encoder, start StartElement) error

}

type MarshalerAttr interface {

 MarshalXMLAttr(name Name) (Attr, error)

}

type Unmarshaler interface {

 UnmarshalXML(d *Decoder, start StartElement) error

}

type UnmarshalerAttr interface {

 UnmarshalXMLAttr(attr Attr) error

}

There are two pairs of functions—one is used when decoding or encoding the
type as an element, while the others are used when it's an attribute. Let's see
that in action. First, we define a MarshalXMLAttr method for a custom type:

type Character struct {

 XMLName struct{} `xml:"character"`

 ID ID `xml:"id,attr"`

 Name string `xml:"name"`

 Surname string `xml:"surname"`

 Job string `xml:"job,omitempty"`

 YearOfBirth int `xml:"year_of_birth,omitempty"`

}

type ID string

func (i ID) MarshalXMLAttr(name xml.Name) (xml.Attr, error) {

 return xml.Attr{

 Name: xml.Name{Local: "codename"},

 Value: strings.ToUpper(string(i)),

 }, nil

}

Then, we marshal some data, and we will see that the attribute name is

replaced with codename, and its value is uppercase, as specified by the method:

e := xml.NewEncoder(os.Stdout)

e.Indent("", "\t")

c := Character{

 ID: "aa",

 Name: "Abdul",

 Surname: "Alhazred",

 Job: "poet",

 YearOfBirth: 700,

}

if err := e.Encode(c); err != nil {

 log.Fatalln(err)

}

The full example is available here: https://play.golang.org/p/XwJrMozQ6RY.

https://play.golang.org/p/XwJrMozQ6RY

Generating structs
As seen for JSON, there is a third-party package that can generate Go
structures from encoded files. For XML we have https://github.com/miku/zek.

It takes care of any type of XML data including elements with their attributes,
spacing between elements, or comments.

https://github.com/miku/zek

YAML
YAML is a recursive acronym that stands for YAML Ain't Markup
Language and it's the name of another widely used encoding format for data.
Part of its success is due to it being easier to write than JSON and XML, its
lightweight nature, and its flexibility.

Structure
YAML uses indentation for scope and newlines to separate entities. Elements
in a sequence start with a dash followed by a space. The key and value are
separated by a color, and a hash sign is used for comments. This is what a
sample YAML file can look like:

list of characters

characters:

 - name: "Henry"

 surname: "Armitage"

 year_of_birth: 1855

 job: "librarian"

 - name: "Francis"

 surname: "Wayland Thurston"

 job: "anthropologist"

One of the more important differences between JSON and YAML is that,
while the first can only use strings as keys, the latter can use any kind of
scalar value (strings, numbers, and Booleans).

Decoding and encoding
YAML is not included in the Go standard library but there are many third-
party libraries available. The package that is more commonly used to handle
this format is the go-yaml package (https://gopkg.in/yaml.v2).

It is built using the following standard encoding packages structure:

There are encoders and decoders.
There are Marshal/Unmarshal functions.
It allows struct tags.
The behavior of types can be customized by implementing the methods
of the interfaces defined.

The interface is slightly different—the Unmarshaler receives the default
marshaling function as arguments that can then be used with a data struct that
is different to the type:

type Marshaler interface {

 MarshalYAML() (interface{}, error)

}

type Unmarshaler interface {

 UnmarshalYAML(unmarshal func(interface{}) error) error

}

We can use the struct tags in the same way as JSON tags:

type Character struct {

 Name string `yaml:"name"`

 Surname string `yaml:"surname"`

 Job string `yaml:"job,omitempty"`

 YearOfBirth int `yaml:"year_of_birth,omitempty"`

}

And we can use them to encode a data structure or, in this case, a list of
structures:

var chars = []Character{{

 Name: "William",

 Surname: "Dyer",

 Job: "professor",

https://gopkg.in/yaml.v2

 YearOfBirth: 1875,

}, {

 Surname: "Danforth",

 Job: "student",

}}

e := yaml.NewEncoder(os.Stdout)

if err := e.Encode(chars); err != nil {

 log.Fatalln(err)

}

Decoding works in the same way, as follows:

r := strings.NewReader(`- name: John Raymond

 surname: Legrasse

 job: policeman

- name: "Francis"

 surname: Wayland Thurston

 job: anthropologist`)

// define a new decoder

d := yaml.NewDecoder(r)

var c []Character

// decode the reader

if err := d.Decode(&c); err != nil {

 log.Fatalln(err)

}

log.Printf("%+v", c)

We can see that all it takes to create Decoder is io.Reader and the receiving struct
to execute the decode.

Learning about binary encoding
Binary encoding protocols use bytes, so their string representation is not
human friendly. They are usually not readable as strings and they are difficult
to write, but they are of a smaller size, resulting in faster communication
between applications.

BSON
BSON is the binary version of JSON. It is used by MongoDB and has support
for some data types that are not available in JSON, such as date and binary.

There are a few packages that implement BSON encoding and decoding, and
two of them are very widespread. One is inside the official MongoDB Golang
driver, github.com/mongodb/mongo-go-driver. The other is not official, but has been
around since the beginning of Go and it's part of an unofficial MongoDB
driver, gopkg.in/mgo.v2.

The second one is very similar to the JSON package in both interfaces and
functions. The interfaces are called getter and setter:

GetBSON returns the actual data structure that would be encoded.
SetBSON receives bson.Raw, which is a wrapper for []byte that can be used
with bson.Unmarshal.

A use case for these getters and setters is as follows:

type Setter interface {

 SetBSON(raw Raw) error

}

type Getter interface {

 GetBSON() (interface{}, error)

}

Encoding
BSON is a format made for documents/entities; therefore, the data structure
used for encoding and decoding should be a structure or a map, but not a slice
or an array. The mgo version of bson does not offer the usual encoder but only
the marshal:

var char = Character{

 Name: "Robert",

 Surname: "Olmstead",

}

b, err := bson.Marshal(char)

if err != nil {

 log.Fatalln(err)

}

log.Printf("%q", b)

Decoding
The same thing applies to the Unmarshal function:

r := []byte(",\x00\x00\x00\x02name\x00\a\x00\x00" +

 "\x00Robert\x00\x02surname\x00\t\x00\x00\x00" +

 "Olmstead\x00\x00")

var c Character

if err := bson.Unmarshal(r, &c); err != nil {

 log.Fatalln(err)

}

log.Printf("%+v", c)

gob
gob encoding is another type of binary encoding that is built into the standard
library, and it's actually introduced by Go itself. It is a stream of data items,
each one preceded by a type declaration, and it does not allow pointers. It
uses their value, forbidding the use of nil pointers (since they have no value).
The package also has problems with types that have pointers that create a
recursive structure and this could lead to unwanted behaviors.

Numbers have arbitrary precision and they can be a float, signed, or
unsigned. Signed integers can be stored in any signed integer type, unsigned
integers into any unsigned integer type, and floating-point values may be
received into any floating-point variable. However, if the variable can't
represent the value (overflow, for instance), the decode will fail. Strings and
byte slices are stored with a very efficient representation that tries to reuse the
same underlying array. Structs will decode only the exported fields, so
functions and channels will be ignored.

Interfaces
The interface that gob uses to replace the default marshal and unmarshal
behaviors are found in the encoding package:

type BinaryMarshaler interface {

 MarshalBinary() (data []byte, err error)

}

type BinaryUnmarshaler interface {

 UnmarshalBinary(data []byte) error

}

During the decoding phase, any struct fields that are not present are ignored,
since the field name is also part of the serialization.

Encoding
Let's try to encode a structure using gob:

var char = Character{

 Name: "Albert",

 Surname: "Wilmarth",

 Job: "assistant professor",

}

s := strings.Builder{}

e := gob.NewEncoder(&s)

if err := e.Encode(char); err != nil {

 log.Fatalln(err)

}

log.Printf("%q", s.String())

Decoding
Decoding data is also very easy; it works in the same way as the other
encoding packages we have already seen:

r := strings.NewReader("D\xff\x81\x03\x01\x01\tCharacter" +

 "\x01\xff\x82\x00\x01\x04\x01\x04Name" +

 "\x01\f\x00\x01\aSurname\x01\f\x00\x01\x03" +

 "Job\x01\f\x00\x01\vYearOfBirth\x01\x04\x00" +

 "\x00\x00*\xff\x82\x01\x06Albert\x01\bWilmarth" +

 "\x01\x13assistant professor\x00")

d := gob.NewDecoder(r)

var c Character

if err := d.Decode(&c); err != nil {

 log.Fatalln(err)

}

log.Printf("%+v", c)

Now, let's try to decode the same data in different structures—the original
one and some with extra or missing fields. We will do this to see how the
package behaves. Let's define a general decode function and pass different
type of structs to the decoder:

func runDecode(data []byte, v interface{}) {

 if err := gob.NewDecoder(bytes.NewReader(data)).Decode(v); err != nil {

 log.Fatalln(err)

 }

 log.Printf("%+v", v)

}

Let's try to change the order of the fields in the struct to see whether the gob
decoder still works:

runDecode(data, new(struct {

 YearOfBirth int `gob:"year_of_birth,omitempty"`

 Surname string `gob:"surname"`

 Name string `gob:"name"`

 Job string `gob:"job,omitempty"`

}))

Let's remove some fields:

runDecode(data, new(struct {

 Name string `gob:"name"`

}))

Let's put a field in between:

runDecode(data, new(struct {

 Name string `gob:"name"`

 Surname string `gob:"surname"`

 Country string `gob:"country"`

 Job string `gob:"job,omitempty"`

 YearOfBirth int `gob:"year_of_birth,omitempty"`

}))

We can see that the package keeps working even if we scramble, add, or
remove the fields. But if we try to change the type of an existing field into
another, it fails:

runDecode(data, new(struct {

 Name []byte `gob:"name"`

}))

Interfaces
Another note about this package is that if you are working with interfaces,
their implementation should be registered first, using the functions:

func Register(value interface{})

func RegisterName(name string, value interface{})

This will make the package aware of the specified types and it will enable us
to call decode on the interface type. Let's start by defining an interface and its
implementation for our struct:

type Greeter interface {

 Greet(w io.Writer)

}

type Character struct {

 Name string `gob:"name"`

 Surname string `gob:"surname"`

 Job string `gob:"job,omitempty"`

 YearOfBirth int `gob:"year_of_birth,omitempty"`

}

func (c Character) Greet(w io.Writer) {

 fmt.Fprintf(w, "Hello, my name is %s %s", c.Name, c.Surname)

 if c.Job != "" {

 fmt.Fprintf(w, " and I am a %s", c.Job)

 }

}

If we try to run the following code without the gob.Register function, it returns
an error:

gob: name not registered for interface: "main.Character"

But if we register the type, it works like a charm. Note that the data has been
obtained by encoding a pointer to Greeter containing the Character structure:

func main() {

 gob.Register(Greeter(Character{}))

 r := strings.NewReader("U\x10\x00\x0emain.Character" +

 "\xff\x81\x03\x01\x01\tCharacter\x01\xff\x82\x00" +

 "\x01\x04\x01\x04Name\x01\f\x00\x01\aSurname" +

 "\x01\f\x00\x01\x03Job\x01\f\x00\x01\vYearOfBirth" +

 "\x01\x04\x00\x00\x00\x1f\xff\x82\x1c\x01\x05John" +

 " \x01\aKirowan\x01\tprofessor\x00")

 var char Greeter

 if err := gob.NewDecoder(r).Decode(&char); err != nil {

 log.Fatalln(err)

 }

 char.Greet(os.Stdout)

}

Proto
A protocol buffer is a serialization protocol made by Google. It is language-
and platform-neutral, with little overhead, and it is very efficient. The idea
behind it is to define how the data is structured once, then use some tools to
generate the source code for the target language of the application.

Structure
The main file that is needed in order to generate the code is the .proto file,
which uses a specific syntax. We will focus on the latest version of the
protocol syntax, proto3.

We specify which version of the syntax of the file is to be used in the first
line:

syntax = "proto3";

Definitions from other files can be used, with the import statement:

import "google/protobuf/any.proto";

The rest of the file contains definitions of messages (that are data types) and
services. A service is an interface used to define RPC services:

message SearchRequest {

 string query = 1;

 int32 page_number = 2;

 int32 result_per_page = 3;

}

service SearchService {

 rpc Search (SearchRequest) returns (SearchResponse);

}

Messages are made up by their fields, and services by their methods. Field
types are divided between scalars (which includes various integers, signed
integers, float, strings, and Booleans) and other messages. Each field has a
number associated to it that is its identifier, which should not be changed
once selected, so as to maintain compatibility with the older version of the
message.

Using the reserved keyword allows us to prevent some fields or IDs from
being reused, as this is very useful to avoid bugs or problems:

message Foo {

 // lock field IDs

 reserved 2, 15, 9 to 11;

 // lock field names

 reserved "foo", "bar";

}

Code generation
In order to generate the code from a .proto file, you need the protoc application
and the official proto generation package:

go get -u github.com/golang/protobuf/protoc-gen-go

The installed package comes with the protoc-gen-go command; this enables the
protoc command to use the --go_out flag to produce Go source files in the
desired folders. Version 1.4 of Go can specify special comments for
automatic generation of code with its go generate command, and these
comments start with //go:generate followed by the command, as in the
following example:

//go:generate protoc -I=$SRC_PATH --go_out=$DST_DIR source.proto

It enables us to specify a source path for import lookup, output directory, and
a source file. The paths are relative to the package directory where the
comment is found and it can be invoked with the go generate $pkg command.

Let's start with a simple .proto file:

syntax = "proto3";

message Character {

 string name = 1;

 string surname = 2;

 string job = 3;

 int32 year_of_birth = 4;

}

And let's create a Go source file in the same folder with the comment for
generating the code:

package gen

//go:generate protoc --go_out=. char.proto

Now, we can generate the go command that will produce a file with the same
name as the .proto file and the .pb.go extension. The file will contain Go

sources for the types and services defined in the .proto file:

// Code generated by protoc-gen-go. DO NOT EDIT.

// source: char.proto

...

type Character struct {

 Name string `protobuf:"bytes,1,opt,name=name"`

 Surname string `protobuf:"bytes,2,opt,name=surname"`

 Job string `protobuf:"bytes,3,opt,name=job" json:"job,omitempty"`

 YearOfBirth int32 `protobuf:"varint,4,opt,name=year_of_birth,json=yearOfBirth"`

}

Encoding
This package permits us to use the proto.Buffer type to encode pb.Message
values. The types created by protoc implement the interface defined so the
Character type can be used directly:

var char = gen.Character{

 Name: "George",

 Surname: "Gammell Angell",

 YearOfBirth: 1834,

 Job: "professor emeritus",

}

b := proto.NewBuffer(nil)

if err := b.EncodeMessage(&char); err != nil {

 log.Fatalln(err)

}

log.Printf("%q", b.Bytes())

The resulting encoded data has almost no overhead compared to other
encoding.

Decoding
The decode operation also needs to be executed using the proto.Buffer methods
and the generated type:

b := proto.NewBuffer([]byte(

 "/\n\x06George\x12\x0eGammell Angell" +

 "\x1a\x12professor emeritus \xaa\x0e",

))

var char gen.Character

if err := b.DecodeMessage(&char); err != nil {

 log.Fatalln(err)

}

log.Printf("%+v", char)

gRPC protocol
Google uses protocol buffer encoding to build a web protocol called gRPC. It
is a type of remote procedure call that uses HTTP/2 to establish connections
and protocol buffers to marshal and unmarshal data.

The first step is generating code related to the server in the target language.
This will produce a server interface and a client working implementation.
Next, a server implementation needs to be created manually, and finally, the
target language will enable the implementation to be used in a gRPC server
and then use the client to connect and interact with it.

There are different examples in the go-grpc package, including a client/server
pair. The client uses the generated code, which only needs a working gRPC
connection to the server, and then it can use the methods specified in the
service:

conn, err := grpc.Dial(address, grpc.WithInsecure())

if err != nil {

 log.Fatalf("did not connect: %v", err)

}

defer conn.Close()

c := pb.NewGreeterClient(conn)

// Contact the server and print out its response

r, err := c.SayHello(ctx, &pb.HelloRequest{Name: name})

The full code is available at grpc/grpc-go/blob/master/examples/helloworld/greeter_cl
ient/main.go.

The server is an implementation of the client interface:

// server is used to implement helloworld.GreeterServer.

type server struct{}

// SayHello implements helloworld.GreeterServer

func (s *server) SayHello(ctx context.Context, in *pb.HelloRequest) (*pb.HelloReply, error) {

 log.Printf("Received: %v", in.Name)

 return &pb.HelloReply{Message: "Hello " + in.Name}, nil

}

This interface implementation can be passed to the generated register

https://github.com/grpc/grpc-go/blob/master/examples/helloworld/greeter_client/main.go

function, RegisterGreeterServer, together with a valid gRPC server, and it can
serve incoming connections using a TCP listener:

func main() {

 lis, err := net.Listen("tcp", port)

 if err != nil {

 log.Fatalf("failed to listen: %v", err)

 }

 s := grpc.NewServer()

 pb.RegisterGreeterServer(s, &server{})

 if err := s.Serve(lis); err != nil {

 log.Fatalf("failed to serve: %v", err)

 }

}

The full code is available at grpc/grpc-go/blob/master/examples/helloworld/greeter_se
rver/main.go.

https://github.com/grpc/grpc-go/blob/master/examples/helloworld/greeter_server/main.go

Summary
In this chapter, we explored the encoding methods offered by the Go standard
package and third-party libraries. They can be divided into two main
categories. The first is the textual-based encoding methods, which are easy to
read and write for both human and machines. However, they have more
overhead and tend to be much slower than their counterpart, binary-based
encoding. Binary-based encoding methods have little overhead but are not
human readable.

In text-based encoding, we find JSON, XML, and YAML. The first two are
handled by the standard library, the last needs an external dependency. We
explored how Go allows us to specify structure tags to change the default
encoding and decoding behaviors, and how to use these tags in these
operations. Then, we checked and implemented the interfaces that define
custom behavior during the marshal and unmarshal operations. There are
some third-party tools that allow us to generate the data structures from a
JSON file or JSON schemas, which are JSON files used to define the
structure of other JSON documents.

XML is another widely used text format that HTML is based on. We checked
the XML syntax and composing elements and then we showed a specific type
of document called DTD, which is used for defining the content of other
XML files. We learned how encoding and decoding works in XML, and the
differences to JSON regarding struct tags that allow us to define nested XML
elements for a type or to store or load a field from an attribute. We concluded
with the text-based encoding with the third-party YAML package.

The first binary-based encoding we showed was BSON, a binary version of
JSON that is used by MongoDB (which is handled by third-party packages).
gob is another binary encoding method but it's part of the Go standard library.
We learned that both encoding and decoding, together with the involved
interfaces, work in the standard package fashion—similar to JSON and XML.

Finally, we looked at the protocol buffer encoding, how to write a .proto file
and its Go code generation usage and how to use it encode and decode data.
We also introduced a practical example of the gRPC encoding, which takes
advantage of this encoding to create client/server applications.

In the next chapter, we will start digging into Go's concurrency model,
starting with the built-in types—channels and goroutines.

Questions
1. What's the trade-off between text and binary encodings?
2. How does Go behave with data structure by default?
3. How can this behavior be changed?
4. How does a structure field get encoded in an XML attribute?
5. What operation is needed to decode a gob interface value?
6. What is the protocol buffer encoding?

Section 4: Deep Dive into
Concurrency
This section focuses on one of the Go's most modern features—concurrency.
It shows you the tools the language has, looks at sync and channels, and
explains how and when to use each tool.

This section consists of the following chapters:

Chapter 11, Dealing with Channels and Goroutines
Chapter 12, Sync and Atomic Package
Chapter 13, Coordination Using Context
Chapter 14, Implementing Concurrency Patterns

Dealing with Channels and
Goroutines
This chapter will cover concurrent programming with Go, using its basic
built-in functionalities, channels, and goroutines. Concurrency describes the
capability of executing different parts of an application during the same time
period.

Making software concurrent can be a powerful tool in building system
applications because some operations can be started even if others have not
yet ended.

The following topics will be covered in this chapter:

Understanding goroutines
Exploring channels
Advantage usage

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, refer to Chapter 3, An Overview of Go.

Understanding goroutines
Go is a language that centers around concurrency, to the point where two of
the main features—channels and goroutines—are part of the built-in package.
We will now see how they work and what their basic functionalities are,
starting with goroutines, which make it possible to execute parts of an
application concurrently.

Comparing threads and goroutines
Goroutines are one of the primitives used for concurrency, but how do they
differ from threads? Let's read about each of them here.

Threads
Current OSes are built for modern architectures that have processors with
more than one core per CPU, or use technologies, such as hyper-threading,
that allow a single core to support more than one thread. Threads are parts of
processes that can be managed by the OS scheduler, which can assign them
to a specific core/CPU. Like processes, threads carry information about the
application execution, but the size of such information is smaller than
processes. This includes the current instruction in the program, a stack of the
current execution, and the variables needed for it.

The OS is already responsible for the context switch between processes; it
saves the older process information and loads the new process information.
This is called a process context switch and it's a very costly operation, even
more than process execution.

In order to jump from one thread to another, the same operation can be done
between threads. This is called a thread context switch and it is also a heavy
operation—even if it is not as hefty as the process switch—because a thread
carries less information than a process.

Goroutines
Threads have a minimum size in memory; usually, it is in the order of MBs
(2 MB for Linux). The minimum size sets some limitations on the application
creation of a new thread—if each thread is at least some MBs, 1,000 threads
will occupy at least a few GBs of memory. The way that Go tackles these
issues is through the use of a construct similar to threads, but this is handled
by the language runtime instead of the OS. The size of a goroutine in memory
is three orders of magnitude (2 KB per goroutine), meaning that the minimum
memory usage of 1,000 goroutines is comparable to the memory usage of a
single thread.

This is obtained by defining what data the goroutines are retaining internally,
using a data structure called g that describes the goroutine information, such
as stack and status. This is an unexported data type in the runtime package and
it can be found in the Go source code. Go keeps a track of OSes using
another data structure from the same package called m. The logical processors
that are acquired in order to execute a goroutine are stored in p structures.
This can be verified in the Go runtime package documentation:

type g: golang.org/pkg/runtime/?m=all#m
type m: golang.org/pkg/runtime/?m=all#g
type p: golang.org/pkg/runtime/?m=all#p

These three entities interact as follows—for each goroutine, a new g gets
created, g is queued into p, and each p tries to acquire m to execute the code
from g. There are some operations that will block the execution, such as
these:

Built-in synchronization (channels and the sync package)
System calls that are blocking, such as file operations
Network operations

When these kinds of operations happen, the runtime detaches p from m and

https://golang.org/pkg/runtime/?m=all#g
https://golang.org/pkg/runtime/?m=all#m
https://golang.org/pkg/runtime/?m=all#p

uses (or creates, if it does not already exist) another dedicated m for the
blocking operation. The thread becomes idle after executing such operations.

New goroutine
Goroutines are one of the best examples of how Go hides complexity behind
a simple interface. When writing an application in order to launch a
goroutine, all that is needed is to execute a function preceded by the go
keyword:

func main() {

 go fmt.Println("Hello, playground")

}

The full example is available at https://play.golang.org/p/3gPGZkJtJYv.

If we run the application of the previous example, we will see that it does not
produce any output. Why? In Go, the application terminates when the main
goroutine does, and it looks like this is the case. What happens is that the Go
statements create the goroutine with the respective runtime.g, but this has to be
picked up by the Go scheduler, and this does not happen because the program
terminates right after the goroutine has been instantiated.

Using the time.Sleep function to let the main goroutine wait (even a
nanosecond!) is enough to let the scheduler pick up the goroutine and execute
its code. This is shown in the following code:

func main() {

 go fmt.Println("Hello, playground")

 time.Sleep(time.Nanosecond)

}

The full example is available at https://play.golang.org/p/2u125pTclv6.

We already saw that Go methods also count as functions, which is why they
can be executed concurrently the with go statement, as they were normal
functions:

type a struct{}

func (a) Method() { fmt.Println("Hello, playground") }

func main() {

https://play.golang.org/p/3gPGZkJtJYv
https://play.golang.org/p/2u125pTclv6

 go a{}.Method()

 time.Sleep(time.Nanosecond)

}

The full example is available at https://play.golang.org/p/RUhgfRAPa2b.

Closures are anonymous functions, so they can be used as well, which is
actually a very common practice:

func main() {

 go func() {

 fmt.Println("Hello, playground")

 }()

 time.Sleep(time.Nanosecond)

}

The full example is available at https://play.golang.org/p/a-JvOVwAwUV.

https://play.golang.org/p/RUhgfRAPa2b
https://play.golang.org/p/a-JvOVwAwUV

Multiple goroutines
Organizing code in multiple goroutines can be helpful to split the work
between processors and has many other advantages, as we will see in the next
chapters. Since they are so lightweight, we can create a number of goroutines
very easily using loops:

func main() {

 for i := 0; i < 10; i++ {

 go fmt.Println(i)

 }

 time.Sleep(time.Nanosecond)

}

The full example is available at https://play.golang.org/p/Jaljd1padeX.

This example prints a list of numbers from 0 to 9 in parallel, using concurrent
goroutines instead of doing the same thing sequentially in a single goroutine.

https://play.golang.org/p/Jaljd1padeX

Argument evaluation
If we change this example slightly by using a closure without arguments, we
will see a very different result:

func main() {

 for i := 0; i < 10; i++ {

 go func() { fmt.Println(i) }()

 }

 time.Sleep(time.Nanosecond)

}

The full example is available at https://play.golang.org/p/RV54AsYY-2y.

If we run this program, we can see that the Go compiler issues a warning in
the loop: loop variable i captured by func literal.

The variable in the loop gets referenced in the function we defined—the
creation loop of the goroutines is quicker than goroutines executing, and the
result is that the loop finishes before a single goroutine is started, resulting in
the print of the value of the loop variable after the last iteration.

In order to avoid the error of the captured loop variable, it's better to pass the
same variable as an argument to the closure. The arguments of the goroutine
function are evaluated upon creation, meaning that changes to that variable
will not be reflected inside the goroutine, unless you are passing a reference
to a value such as a pointer, map, slice, channel, or function. We can see this
difference by running the following example:

func main() {

 var a int

 // passing value

 go func(v int) { fmt.Println(v) }(a)

 // passing pointer

 go func(v *int) { fmt.Println(*v) }(&a)

 a = 42

 time.Sleep(time.Nanosecond)

}

The full example is available at https://play.golang.org/p/r1dtBiTUMaw.

https://play.golang.org/p/RV54AsYY-2y
https://play.golang.org/p/r1dtBiTUMaw

Passing the argument by value is not influenced by the last assignment of the
program, while passing a pointer type implies that changes done to the
pointer content will be seen by the goroutine.

Synchronization
Goroutines allow code to be executed concurrently, but the synchronization
between values is not ensured out of the box. We can check out what happens
when trying to use a variable concurrently with the following example:

func main() {

 var i int

 go func(i *int) {

 for j := 0; j < 20; j++ {

 time.Sleep(time.Millisecond)

 fmt.Println(*i, j)

 }

 }(&i)

 for i = 0; i < 20; i++ {

 time.Sleep(time.Millisecond)

 fmt.Println(i)

 }

}

We have an integer variable that changes in the main routine—doing
a millisecond pause between each operation—and after the change, the value
is printed.

In another goroutine, there is a similar loop (using another variable) and
another print statement that compares the two values. Considering that the
pauses are the same, we would expect to see the same values, but this is not
the case. We see that sometimes, the two goroutines are out of sync.

The changes are not reflected immediately because the memory is not
synchronized instantaneously. We will learn how to ensure data
synchronization in the next chapter.

Exploring channels
Channels are a concept that is unique to Go and a few other programming
languages. Channels are very powerful tools that allow a simple method
for synchronizing different goroutines, which is one of the ways we can solve
the issue raised by the previous example.

Properties and operations
A channel is a built-in type in Go that is typed as arrays, slices, and maps. It
is presented in the form of chan type and initialized by the make function.

Capacity and size
As well as the type that is traveling through the channel, there is another
property that the channel has: its capacity. This represents the number of items
a channel can hold before any new attempt to send an item is made, resulting
in a blocking operation. The capacity of the channel is decided at its creation
and its default value is 0:

// channel with implicit zero capacity

var a = make(chan int)

// channel with explicit zero capacity

var a = make(chan int, 0)

// channel with explicit capacity

var a = make(chan int, 10)

The capacity of the channel cannot be changed after its creation and can be
read at any time using the built-in cap function:

func main() {

 var (

 a = make(chan int, 0)

 b = make(chan int, 5)

)

 fmt.Println("a is", cap(a))

 fmt.Println("b is", cap(b))

}

The full example is available at https://play.golang.org/p/Yhz4bTxm5L8.

The len function, when used on a channel, tells us the number of elements
that are held by the channel:

func main() {

 var (

 a = make(chan int, 5)

)

 for i := 0; i < 5; i++ {

 a <- i

 fmt.Println("a is", len(a), "/", cap(a))

 }

}

https://play.golang.org/p/Yhz4bTxm5L8

The full example is available at https://play.golang.org/p/zJCL5VGmMsC.

From the previous example, we can see how the channel capacity remains as
5 and the length grows with each element.

https://play.golang.org/p/zJCL5VGmMsC

Blocking operations
If a channel is full or its capacity is 0, then the operation will block. If we take
the last example, which fills the channel and tries to execute another send
operation, our application gets stuck:

func main() {

 var (

 a = make(chan int, 5)

)

 for i := 0; i < 5; i++ {

 a <- i

 fmt.Println("a is", len(a), "/", cap(a))

 }

 a <- 0 // Blocking

}

The full example is available at https://play.golang.org/p/uSfm5zWN8-x.

When all goroutines are locked (in this specific case, we only have the main
goroutine), the Go runtime raises a deadlock—a fatal error that terminates the
execution of the application:

fatal error: all goroutines are asleep - deadlock!

This is can happen with both receive or send operations, and it's the symptom
of an error in the application design. Let's take the following example:

func main() {

 var a = make(chan int)

 a <- 10

 fmt.Println(<-a)

}

In the previous example, there is the a <- 10 send operation and the
matching <-a receive operation, but nevertheless, it results in a deadlock.
However, the channel we created has no capacity, so the first send operation
will block. We can intervene here in two ways:

By increasing the capacity: This is a pretty easy solution that involves
initializing the channel with make(chan int, 1). It works best only if the

https://play.golang.org/p/uSfm5zWN8-x

number of receivers is known a priori; if it is higher than the capacity,
then the problem appears again.
By making the operations concurrent: This is a far better approach
because it uses the channels for what they made for—concurrency.

Let's try to make the previous example work by using the second approach:

func main() {

 var a = make(chan int)

 go func() {

 a <- 10

 }()

 fmt.Println(<-a)

}

Now, we can see that there are no deadlocks here and the program prints the
values correctly. Using the capacity approach will also make it work, but it
will be tailored to the fact that we are sending a single message, while the
other method will allow us to send any number of messages through the
channel and receive them accordingly from the other side:

func main() {

 const max = 10

 var a = make(chan int)

 go func() {

 for i := 0; i < max; i++ {

 a <- i

 }

 }()

 for i := 0; i < max; i++ {

 fmt.Println(<-a)

 }

}

The full example is available at https://play.golang.org/p/RKcojupCruB.

We now have a constant to store the number of operations executed, but there
is a better and more idiomatic way to let a receiver know when there are no
more messages. We will cover this in the next chapter about synchronization.

https://play.golang.org/p/RKcojupCruB

Closing channels
The best way of handling the end of a synchronization between a sender and
a receiver is the close operation. This function is normally executed by the
sender because the receiver can verify whether the channel is still open each
time it gets a value using a second variable:

value, ok := <-ch

The second receiver is a Boolean that will be true if the channel is still open,
and false otherwise. When a receive operation is done on a close channel, the
second received variable will have the false value, and the first one will have
the 0 value of the channel type, such as these:

0 for numbers
false for Booleans
"" for strings
nil for slices, maps, or pointers

The example of sending multiple messages can be rewritten using
the close function, without having prior knowledge of how many messages
will be sent:

func main() {

 const max = 10

 var a = make(chan int)

 go func() {

 for i := 0; i < max; i++ {

 a <- i

 }

 close(a)

 }()

 for {

 v, ok := <-a

 if !ok {

 break

 }

 fmt.Println(v)

 }

}

The full example is available at https://play.golang.org/p/GUzgG4kf5ta.

There is a more synthetic and elegant way to receive a message from a
channel until it's closed: by using the same keyword that we used to iterate
maps, arrays, and slices. This is done through range:

for v := range a {

 fmt.Println(v)

}

https://play.golang.org/p/GUzgG4kf5ta

One-way channels
Another possibility when handling channel variables is specifying whether
they are only for sending or only for receiving data. This is indicated by the <-
arrow, which will precede chan if it's just for receiving, or follow it if it's just
for sending:

func main() {

 var a = make(chan int)

 s, r := (chan<- int)(a), (<-chan int)(a)

 fmt.Printf("%T - %T", s, r)

}

The full example is available at https://play.golang.org/p/ZgEPZ99PLJv.

Channels are already pointers, so casting one of them to its send-only or
receive-only version will return the same channel, but will reduce the number
of operations that can be performed on it. The types of channels are as
follows:

Send only channels, chan<-, which will allow you to send items, close the
channel, and prevent you from sending data with a compile error.
Receive only channel, <-chan, that will allow you to receive data, and any
send or close operations will be compiling errors.

When a function argument is a send/receive channel, the conversion is
implicit and it is a good practice to adopt because it prevents mistakes such as
closing the channel from the receiver. We can take the other example and
make use of the one-way channels with some refactoring.

We can also create a function for sending values that uses a send-only
channel:

func send(ch chan<- int, max int) {

 for i := 0; i < max; i++ {

 ch <- i

 }

 close(ch)

}

https://play.golang.org/p/ZgEPZ99PLJv

Do the same thing for receiving using a receive-only channel:

func receive(ch <-chan int) {

 for v := range ch{

 fmt.Println(v)

 }

}

And then, use them with the same channel that will be automatically
converted in the one-way version:

func main() {

 var a = make(chan int)

 go send(a, 10)

 receive(a)

}

The full example is available at https://play.golang.org/p/pPuqpfnq8jJ.

https://play.golang.org/p/pPuqpfnq8jJ

Waiting receiver
Most of the examples we saw in the previous section had the sending
operations done in a goroutine, and had the receiving operations done in the
main goroutine. It could be the case that all operations are handled by
goroutines, so do we synchronize the main one with the others?

A typical technique is the use of another channel used for the sole purpose of
signaling that a goroutine has finished its job. The receiving goroutine knows
that there are no more messages to get with the closure of the communication
channel and it closes another channel that is shared with the main goroutine
after finishing its operation. The main function can wait for the closure of the
channel before exiting.

The typical channel that is used for this scope does not carry any additional
information except for whether it is open or closed, so it is usually a chan
struct{} channel. This is because an empty data structure has no size in
memory. We can see this pattern in action by making some changes to the
previous example, starting with the receiver function:

func receive(ch <-chan int, done chan<- struct{}) {

 for v := range ch {

 fmt.Println(v)

 }

 close(done)

}

The receiver function gets an extra argument—the channel. This is used to
signal that the sender is done and the main function will use that channel to
wait for the receiver to end its task:

func main() {

 a := make(chan int)

 go send(a, 10)

 done := make(chan struct{})

 go receive(a, done)

 <-done

}

The full example is available at https://play.golang.org/p/thPflJsnKj4.

https://play.golang.org/p/thPflJsnKj4

Special values
There are a couple of situations in which channels behave differently. We
will now see what happens when a channel is set to its zero value—nil—or
when it is already closed.

nil channels
We have previously discussed how channels belong to the pointer types in
Go, so their default value is nil. But what happens when you send or receive
from a nil channel?

If we create a very simple app that tries to send to an empty channel, we get a
deadlock:

func main() {

 var a chan int

 a <- 1

}

The full example is available at https://play.golang.org/p/KHJ4rvxh7TM.

If we do the same for a receiving operation, we get the same result of a
deadlock:

func main() {

 var a chan int

 <-a

}

The full example is available at https://play.golang.org/p/gIjhy7aMxiR.

The last thing left to check is how the close function behaves with a nil
channel. It panics with the close of nil channel explicit value:

func main() {

 var a chan int

 close(a)

}

The full example is available at https://play.golang.org/p/5RjdcYUHLSL.

To recap, we have seen that a nil channel's send and receive are blocking
operations, and that close causes a panic.

https://play.golang.org/p/KHJ4rvxh7TM
https://play.golang.org/p/gIjhy7aMxiR
https://play.golang.org/p/5RjdcYUHLSL

Closed channels
We already know that receiving from a closed channel returns a zero value
for the channel type, and a second Boolean is false. But what happens if we
try to send something after closing the channel? Let's find out with the help
of the following code:

func main() {

 a := make(chan int)

 close(a)

 a <- 1

}

The full example is available at https://play.golang.org/p/_l_xZt1ZojT.

If we try to send data after closing, it will return a very specific panic: send on
closed channel. A similar thing will happen when we try to close a channel that
has already been closed:

func main() {

 a := make(chan int)

 close(a)

 close(a)

}

The full example is available at https://play.golang.org/p/GHK7ERt1XQf.

This example will cause a panic with a specific value—close of closed channel.

https://play.golang.org/p/_l_xZt1ZojT
https://play.golang.org/p/GHK7ERt1XQf

Managing multiple operations
There are many situations in which more than one goroutines are executing
their code and communicating through channels. A typical scenario is to wait
for one of the channels' send or receive operations to be executed.

When you operate with many channels, Go makes it possible to use a special
keyword that executes something similar to switch but for channel operations.
This is done with the select statement, followed by a series of case statements
and an optional default case.

We can see a quick example of where we are receiving a value from a
channel in a goroutine, and sending a value to another channel in a different
goroutine. In these, the main goroutine we are using is a select statement to
interact with the two channels, receive from the first, and send to the second:

func main() {

 ch1, ch2 := make(chan int), make(chan int)

 a, b := 2, 10

 go func() { <-ch1 }()

 go func() { ch2 <- a }()

 select {

 case ch1 <- b:

 fmt.Println("ch1 got a", b)

 case v := <-ch2:

 fmt.Println("ch2 got a", v)

 }

}

The full example is available at https://play.golang.org/p/_8P1Edxe3o4.

When running this program in the playground, we can see that the receive
operation from the second channel is always the first to finish. If we switch
the execution order of the goroutines, we get the opposite results. The
operation executed last is the one picked up first. This happens because the
playground is a web service that runs and executes Go code in a safe
environment and does some optimizations to make this operation
deterministic.

https://play.golang.org/p/_8P1Edxe3o4

Default clause
If we add a default case to the previous example, the result of the application
execution will be very different, particularly if we change select:

select {

case v := <-ch2:

 fmt.Println("ch2 got a", v)

case ch1 <- b:

 fmt.Println("ch1 got a", b)

default:

 fmt.Println("too slow")

}

The full example is available at https://play.golang.org/p/F1aE7ImBNFk.

The select statement will always choose the default statement. This happens
because the goroutines are not picked up by the scheduler yet, when
the select statement is executed. If we add a very small pause (using
time.Sleep) before the select switch, we will have the scheduler pick at least
one goroutine and we will then have one of the two operations executed:

func main() {

 ch1, ch2 := make(chan int), make(chan int)

 a, b := 2, 10

 for i := 0; i < 10; i++ {

 go func() { <-ch1 }()

 go func() { ch2 <- a }()

 time.Sleep(time.Nanosecond)

 select {

 case ch1 <- b:

 fmt.Println("ch1 got a", b)

 case v := <-ch2:

 fmt.Println("ch2 got a", v)

 default:

 fmt.Println("too slow")

 }

 }

}

The full example is available at https://play.golang.org/p/-aXc3FN6qDj.

In this case, we will have a mixed set of operations executed, depending on
which one gets picked up by the Go scheduler.

https://play.golang.org/p/F1aE7ImBNFk
https://play.golang.org/p/-aXc3FN6qDj

Timers and tickers
The time package offers a couple of tools that make it possible to orchestrate
goroutines and channels—timers and tickers.

Timers
The utility that can replace the default clause in a select statement is the
time.Timer type. This contains a receive-only channel that will return a time.Time
value after the duration specified during its construction, using time.NewTimer:

func main() {

 ch1, ch2 := make(chan int), make(chan int)

 a, b := 2, 10

 go func() { <-ch1 }()

 go func() { ch2 <- a }()

 t := time.NewTimer(time.Nanosecond)

 select {

 case ch1 <- b:

 fmt.Println("ch1 got a", b)

 case v := <-ch2:

 fmt.Println("ch2 got a", v)

 case <-t.C:

 fmt.Println("too slow")

 }

}

The full example is available at https://play.golang.org/p/vCAff1kI4yA.

A timer exposes a read-only channel, so it's not possible to close it. When
created with time.NewTimer, it waits for the specified duration before firing a
value in the channel.

The Timer.Stop method will try to avoid sending data through the channel and
return whether it succeeded or not. If false is returned after trying to stop the
timer, we still need to receive the value from the channel before being able to
use the channel again.

 Timer.Reset restarts the timer with the given duration, and returns a Boolean as
it happens with Stop. This value is either true or false:

true when the timer is active
false when the timer was fired or stopped

We will test these functionalities with a practical example:

https://play.golang.org/p/vCAff1kI4yA

t := time.NewTimer(time.Millisecond)

time.Sleep(time.Millisecond / 2)

if !t.Stop() {

 panic("it should not fire")

}

select {

case <-t.C:

 panic("not fired")

default:

 fmt.Println("not fired")

}

We are creating a new timer of 1ms. Here, we wait 0.5ms and then stop it
successfully:

if t.Reset(time.Millisecond) {

 panic("timer should not be active")

}

time.Sleep(time.Millisecond)

if t.Stop() {

 panic("it should fire")

}

select {

case <-t.C:

 fmt.Println("fired")

default:

 panic("not fired")

}

The full example is available at https://play.golang.org/p/ddL_fP1UBVv.

Then, we are resetting the timer back to 1ms and waiting for it to fire, to see
whether Stop returns false and the channel gets drained.

https://play.golang.org/p/ddL_fP1UBVv

AfterFunc
A very useful utility that uses time.Timer is the time.AfterFunc function, which
returns a timer that will execute the passed function in its own goroutine
when the timer fires:

func main() {

 time.AfterFunc(time.Millisecond, func() {

 fmt.Println("Hello 1!")

 })

 t := time.AfterFunc(time.Millisecond*5, func() {

 fmt.Println("Hello 2!")

 })

 if !t.Stop() {

 panic("should not fire")

 }

 time.Sleep(time.Millisecond * 10)

}

The full example is available at https://play.golang.org/p/77HIIdlRlZ1.

In the previous example, we define two timers for two different closures, and
we stop one of them and let the other trigger.

https://play.golang.org/p/77HIIdlRlZ1

Tickers
time.Ticker is similar to time.Timer, but its channel delivers more elements at
regular intervals equal to the duration. They are specified when creating it
with time.NewTicker. This makes it possible to stop the ticker from firing with
the Ticker.Stop method:

func main() {

 tick := time.NewTicker(time.Millisecond)

 stop := time.NewTimer(time.Millisecond * 10)

 for {

 select {

 case a := <-tick.C:

 fmt.Println(a)

 case <-stop.C:

 tick.Stop()

 case <-time.After(time.Millisecond):

 return

 }

 }

}

The full example is available at https://play.golang.org/p/8w8I7zIGe-_j.

In this example, we are also using time.After—a function that returns the
channel from an anonymous time.Timer. This can be used when there's no need
to stop the timer. There is another function, time.Tick, that returns the channel
of an anonymous time.Ticker. Both functions will return a channel that the
application has no control over and this channel will eventually be picked up
by the garbage collector.

This concludes the overview of channels, from their properties and basic
usage to some more advanced concurrency examples. We also checked some
special cases and how to synchronize multiple channels.

https://play.golang.org/p/8w8I7zIGe-_j

Combining channels and goroutines
Now that we know the fundamental tools and properties of Go concurrency,
we can use them to build better tools for our applications. We will see some
examples that make use of channels and goroutines to solve real-
world problems.

Rate limiter
A typical scenario is having a web API that has a certain limit to the number
of calls that can be done in a certain period of time. This type of API will just
prevent the usage for a while if this threshold is crossed, making it unusable
for the time being. When creating a client for the API, we need to be aware of
this and make sure our application does not overuse it.

That's a very good scenario where we can use time.Ticker to define an interval
between calls. In this example, we will create a client for Google Maps'
geocoding service that has a limit of 100,000 requests per 24 hours. Let's start
by defining the client:

type Client struct {

 client *http.Client

 tick *time.Ticker

}

The client is made by an HTTP client that will call maps, a ticker that will
help prevent passing the rate limit, and needs an API key for authentication
with the service. We can define a custom Transport struct for our use case that
will inject the key in the request as follows:

type apiTransport struct {

 http.RoundTripper

 key string

}

func (a apiTransport) RoundTrip(r *http.Request) (*http.Response, error) {

 q := r.URL.Query()

 q.Set("key", a.key)

 r.URL.RawQuery = q.Encode()

 return a.RoundTripper.RoundTrip(r)

}

This is a very good example of how Go interfaces allow the extension of their
own behavior. We are defining a type that implements the http.RoundTripper
interface, and also an attribute that is an instance of the same interface. The
implementation injects the API key to the request before executing the
underlying transport. This type allows us to define a helper function that

creates a new client, where we are using the new transport that we defined
together with the default one:

func NewClient(tick time.Duration, key string) *Client {

 return &Client{

 client: &http.Client{

 Transport: apiTransport{http.DefaultTransport, key},

 },

 tick: time.NewTicker(tick),

 }

}

The maps geocoding API returns a series of addresses that are composed of
various parts. This is available at https://developers.google.com/maps/documentation/
geocoding/intro#GeocodingResponses.

The result is encoded in JSON, so we need a data structure that can receive it:

type Result struct {

 AddressComponents []struct {

 LongName string `json:"long_name"`

 ShortName string `json:"short_name"`

 Types []string `json:"types"`

 } `json:"address_components"`

 FormattedAddress string `json:"formatted_address"`

 Geometry struct {

 Location struct {

 Lat float64 `json:"lat"`

 Lng float64 `json:"lng"`

 } `json:"location"`

 // more fields

 } `json:"geometry"`

 PlaceID string `json:"place_id"`

 // more fields

}

We can use the structure to execute a reverse geocoding operation—getting a
location from the coordinates by using the respective endpoint. We wait for
the ticket before executing the HTTP request, remembering to defer the
closure of the body:

 const url = "https://maps.googleapis.com/maps/api/geocode/json?latlng=%v,%v"

 <-c.tick.C

 resp, err := c.client.Get(fmt.Sprintf(url, lat, lng))

 if err != nil {

 return nil, err

 }

 defer resp.Body.Close()

Then, we can decode the result in a data structure that uses the Result type we

https://developers.google.com/maps/documentation/geocoding/intro#GeocodingResponses

already defined and checks for the status string:

 var v struct {

 Results []Result `json:"results"`

 Status string `json:"status"`

 }

 // get the result

 if err := json.NewDecoder(resp.Body).Decode(&v); err != nil {

 return nil, err

 }

 switch v.Status {

 case "OK":

 return v.Results, nil

 case "ZERO_RESULTS":

 return nil, nil

 default:

 return nil, fmt.Errorf("status: %q", v.Status)

 }

}

Finally, we can use the client to geocode a series of coordinates, expecting
the requests to be at least 860ms from each other:

c := NewClient(24*time.Hour/100000, os.Getenv("MAPS_APIKEY"))

start := time.Now()

for _, l := range [][2]float64{

 {40.4216448, -3.6904040},

 {40.4163111, -3.7047328},

 {40.4123388, -3.7096724},

 {40.4145150, -3.7064412},

} {

 locs, err := c.ReverseGeocode(l[0], l[1])

 e := time.Since(start)

 if err != nil {

 log.Println(e, l, err)

 continue

 }

 // just print the first location

 if len(locs) != 0 {

 locs = locs[:1]

 }

 log.Println(e, l, locs)

}

Workers
The previous example is a Google Maps client that uses a time.Ticker channel
to limit the rate of the requests. The rate limit makes sense for an API key.
Let's imagine that we have more API keys from different accounts, so we
could potentially execute more requests.

A very typical concurrent approach is the workers pool. Here, you have a
series of clients that can be picked up to process an input and different parts
of the application can ask to use such clients, returning the clients back when
they are done.

We can create more than one client that shares the same channels for both
requests and responses, with requests being the coordinates and the results
being the response from the service. Since the channel for responses is
unique, we can define a custom type that holds all the information needed for
that channel:

type result struct {

 Loc [2]float64

 Result []maps.Result

 Error error

}

The next step is creating the channels—we are going to read a comma-
separated list of values from an environment variable here. We will create a
channel for requests, and one for responses. Both channels have a capacity
equal to the number of workers, in this case, but this would work even if the
channels were unbuffered. Since we are just using channels, we will need
another channel, done, which signals whether a worker has finished working
on their last job:

keys := strings.Split(os.Getenv("MAPS_APIKEYS"), ",")

requests := make(chan [2]float64, len(keys))

results := make(chan result, len(keys))

done := make(chan struct{})

Now, we will create a goroutine for each of the keys, in which we define a

client that feeds on the requests channel, executes the request, and sends the
result to the dedicated channel. When the requests channel is closed, the
goroutine will exit the range and send a message to the done channel, which is
shown in the following code:

for i := range keys {

 go func(id int) {

 log.Printf("Starting worker %d with API key %q", id, keys[id])

 client := maps.NewClient(maps.DailyCap, keys[id])

 for j := range requests {

 var r = result{Loc: j}

 log.Printf("w[%d] working on %v", id, j)

 r.Result, r.Error = client.ReverseGeocode(j[0], j[1])

 results <- r

 }

 done <- struct{}{}

 }(i)

}

The locations can be sent to the request channel sequentially in another
goroutine:

go func() {

 for _, l := range [][2]float64{

 {40.4216448, -3.6904040},

 {40.4163111, -3.7047328},

 {40.4123388, -3.7096724},

 {40.4145150, -3.7064412},

 } {

 requests <- l

 }

 close(requests)

}()

We can keep count of the done signals we are receiving and close the results
channel when all the workers are done:

go func() {

 count := 0

 for range done {

 if count++; count == len(keys) {

 break

 }

 }

 close(results)

}()

The channel is used to count how many workers are done, and once every
one of them is done, it will close the result channel. This will allow us to just
loop over it to get the result:

for r := range results {

 log.Printf("received %v", r)

}

Using a channel is just one of the ways to wait for all the goroutines to finish,
and we will see more idiomatic ways of doing it in the next chapter with the
sync package.

Pool of workers
A channel can be used as a pool of resources that allows us to request them
on demand. In the following example, we will create a small application that
will look up which addresses are valid in a network, using a third-party client
from the github.com/tatsushid/go-fastping package.

The pool will have two methods, one for getting a new client and another to
return the client back to the pool. The Get method will try to get an existing
client from the channel or return a new one if this is not available. The Put
method will try to put the client back in the channel, or discard it otherwise:

const wait = time.Millisecond * 250

type pingPool chan *fastping.Pinger

func (p pingPool) Get() *fastping.Pinger {

 select {

 case v := <-p:

 return v

 case <-time.After(wait):

 return fastping.NewPinger()

 }

}

func (p pingPool) Put(v *fastping.Pinger) {

 select {

 case p <- v:

 case <-time.After(wait):

 }

 return

}

The client will need to specify which network needs to be scanned, so it
requires a list of available networks starting with the net.Interfaces function,
ranging through the interfaces and their addresses:

ifaces, err := net.Interfaces()

if err != nil {

 return nil, err

}

for _, iface := range ifaces {

 // ...

 addrs, err := iface.Addrs()

 // ...

 for _, addr := range addrs {

 var ip net.IP

 switch v := addr.(type) {

 case *net.IPNet:

 ip = v.IP

 case *net.IPAddr:

 ip = v.IP

 }

 // ...

 if ip = ip.To4(); ip != nil {

 result = append(result, ip)

 }

 }

}

We can accept a command-line argument to select between interfaces, and we
can show a list of interfaces to the user to select when the argument is either
not present or wrong:

if len(os.Args) != 2 {

 help(ifaces)

}

i, err := strconv.Atoi(os.Args[1])

if err != nil {

 log.Fatalln(err)

}

if i < 0 || i > len(ifaces) {

 help(ifaces)

}

The help function is just a print of the interfaces IP:

func help(ifaces []net.IP) {

 log.Println("please specify a valid network interface number")

 for i, f := range ifaces {

 mask, _ := f.DefaultMask().Size()

 fmt.Printf("%d - %s/%v\n", i, f, mask)

 }

 os.Exit(0)

}

The next step is obtain the range of IPs that need to be checked:

m := ifaces[i].DefaultMask()

ip := ifaces[i].Mask(m)

log.Printf("Lookup in %s", ip)

Now that we have the IP, we can create a function to obtain other IPs in the
same network. IPs in Go are a byte slice, so we will replace the least
significant bits in order to obtain the final address. Since the IP is a slice, its
value will be overwritten by each operation (slices are pointers). We are
going to update a copy of the original IP—because slices are pointers to the

same array—in order to avoid overwrites:

func makeIP(ip net.IP, i int) net.IP {

 addr := make(net.IP, len(ip))

 copy(addr, ip)

 b := new(big.Int)

 b.SetInt64(int64(i))

 v := b.Bytes()

 copy(addr[len(addr)-len(v):], v)

 return addr

}

Then, we will need one channel for results and another for keeping a track of
the goroutines; and for each IP, we need to check whether we can launch a
goroutine for each address. We will use a pool of 10 clients and inside each
goroutine—we will ask for each client, then return them to the pool. All valid
IPs will be sent through the result channel:

done := make(chan struct{})

address := make(chan net.IP)

ones, bits := m.Size()

pool := make(pingPool, 10)

for i := 0; i < 1<<(uint(bits-ones)); i++ {

 go func(i int) {

 p := pool.Get()

 defer func() {

 pool.Put(p)

 done <- struct{}{}

 }()

 p.AddIPAddr(&net.IPAddr{IP: makeIP(ip, i)})

 p.OnRecv = func(a *net.IPAddr, _ time.Duration) { address <- a.IP }

 p.Run()

 }(i)

}

Each time a routine finishes, we send a value in the done channel so we can
keep count of the done signals received before exiting the application. This
will be the result loop:

i = 0

for {

 select {

 case ip := <-address:

 log.Printf("Found %s", ip)

 case <-done:

 if i >= bits-ones {

 return

 }

 i++

 }

}

The loop will continue until the count from the channel reaches the number
of goroutines. This concludes the more convoluted examples of the usage of
channels and goroutines together.

Semaphores
Semaphores are tools used to solve concurrency issues. They have a certain
number of available quotas that is used to limit the access to resources; also,
various threads can request one or more quotas from it, and then release them
when they are done. If the number of quotas available is one, it means that
the semaphore supports only one access at time, with a behavior similar to
mutexes. If the quota is more than one, we are referring to the most common
type—the weighted semaphore.

In Go, a semaphore can be implemented using a channel with a capacity
equal to the quotas, where you send a message to the channel to acquire a
quota, and receive one from it to release:

type sem chan struct{}

func (s sem) Acquire() {

 s <- struct{}{}

}

func (s sem) Relase() {

 <-s

}

The preceding code shows us how to implement a semaphore using a channel
in a few lines. Here's an example of how to use it:

func main() {

 s := make(sem, 5)

 for i := 0; i < 10; i++ {

 go func(i int) {

 s.Acquire()

 fmt.Println(i, "start")

 time.Sleep(time.Second)

 fmt.Println(i, "end")

 s.Relase()

 }(i)

 }

 time.Sleep(time.Second * 3)

}

The full example is available at https://play.golang.org/p/BR5GN2QopjQ.

https://play.golang.org/p/BR5GN2QopjQ

We can see from the previous example how the program serves some
requests on the first round of acquisition, and the others on the second round,
not allowing more than five executions at the same time.

Summary
In this chapter, we talked about the two main actors in Go concurrency—
goroutines and channels. We started by explaining what a thread is, what the
differences are between threads and goroutines, and why they are so
convenient. Threads are heavy and require a CPU core, while goroutines are
lightweight and not bound to a core. We saw how easily a new goroutine can
be started by executing a function preceded by the go keyword, and how it is
possible to start a series of different goroutines at once. We saw how the
arguments of the concurrent functions are evaluated when the goroutine is
created and not when it actually starts. We also saw that it is very difficult to
keep different goroutines in sync without any additional tools.

Then, we introduced channels that are used to share information between
different goroutines and solve the synchronization problem that we
mentioned previously. We saw that goroutines have a maximum capacity and
a size—how many elements it is holding at present. Size cannot overcome
capacity, and when an extra element is sent to a full channel, the operation
blocks it until an element is removed from the channel. Receiving from a
channel that is empty is also a blocking operation.

We saw how to close channels with the close function, how this operation
should be done in the same goroutine that sends data, and how operations
behave in special cases such as nil or a closed channel. We introduced the
select statement to choose between concurrent channel operations and control
the application flow. Then, we introduced the tools related to concurrency
from the time package—tickers and timers.

Finally, we showed some real-world examples, including a rate-limited
Google Maps client and a tool to simultaneously ping all the addresses of a
network.

In the next chapter, we will look at some synchronization primitives that will
allow a better handling of goroutines and memory, using more clear and

simple code.

Questions
1. What is a thread and who is responsible for it?
2. Why are goroutines different from threads?
3. When are arguments evaluated when launching a goroutine?
4. What's the difference between buffered and unbuffered channels?
5. Why are one-way channels useful?
6. What happens when operations are done on nil or closed channels?
7. What are timers and tickers used for?

Synchronization with sync and
atomic
This chapter will continue the journey into Go concurrency, introducing the
sync and atomic packages, which are a couple of other tools designed for
orchestrating synchronization between goroutines. This will make it possible
to write elegant and simple code that allows concurrent usage of resources
and manages a goroutine's lifetime. sync contains high-level synchronization
primitives, while atomic contains low-level ones.

The following topics will be covered in this chapter:

Lockers
Wait groups
Other sync components
The atomic package

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information on this, refer to Chapter 3, An Overview of Go.

Synchronization primitives
We saw how channels are focused on communication between goroutines,
and now we will focus on the tools offered by the sync package, which
includes the basic primitives for synchronization between goroutines. The
first thing we will see is how to implement concurrent access to the same
resource with lockers.

Concurrent access and lockers
Go offers a generic interface for objects that can be locked and unlocked.
Locking an object means taking control over it while unlocking releases it for
others to use. This interface exposes a method for each operation. The
following is an example of this in code:

type Locker interface {

 Lock()

 Unlock()

}

Mutex
The most simple implementation of locker is sync.Mutex. Since its method has
a pointer receiver, it should not be copied or passed around by value. The
Lock() method takes control of the mutex if possible, or blocks the goroutine
until the mutex becomes available. The Unlock() method releases the mutex
and it returns a runtime error if called on a non-locked one.

Here is a simple example in which we launch a bunch of goroutines using the
lock to see which is executed first:

func main() {

 var m sync.Mutex

 done := make(chan struct{}, 10)

 for i := 0; i < cap(done); i++ {

 go func(i int, l sync.Locker) {

 l.Lock()

 defer l.Unlock()

 fmt.Println(i)

 time.Sleep(time.Millisecond * 10)

 done <- struct{}{}

 }(i, &m)

 }

 for i := 0; i < cap(done); i++ {

 <-done

 }

}

The full example is available at: https://play.golang.org/p/resVh7LImLf

We are using a channel to signal the main goroutine when a job is done, and
exit the application. Let's create an external counter and increment it
concurrently using goroutines.

Operations executed on different goroutines are not thread-safe, as we can see
from the following example:

done := make(chan struct{}, 10000)

var a = 0

for i := 0; i < cap(done); i++ {

 go func(i int) {

 if i%2 == 0 {

 a++

 } else {

https://play.golang.org/p/resVh7LImLf

 a--

 }

 done <- struct{}{}

 }(i)

}

for i := 0; i < cap(done); i++ {

 <-done

}

fmt.Println(a)

We would expect to have 5000 plus one, and 5000 minus one, with
a 0 printed in the final instruction. However, what we get are different values
each time we run the application. This happens because these kind of
operations are not thread-safe, so two or more of them could happen at the
same time, with the last one shadowing the others. This kind of phenomena is
known as a race condition; that is, when more than one operation is trying to
write the same result.

This means that without any synchronization, the result is not predictable; if
we check the previous example and use a lock to avoid the race condition, we
will have zero as the value for the integer—the result that we were expecting:

m := sync.Mutex{}

for i := 0; i < cap(done); i++ {

 go func(l sync.Locker, i int) {

 l.Lock()

 defer l.Unlock()

 if i%2 == 0 {

 a++

 } else {

 a--

 }

 done <- struct{}{}

 }(&m, i)

 fmt.Println(a)

}

A very common practice is embedding a mutex in a data structure to
symbolize that the container is the one you want to lock. The counter variable
from before can be represented as follows:

type counter struct {

 m sync.Mutex

 value int

}

The operations that the counter performs can be methods that already take
care of locking before the main operation, along with unlocking it afterward,

as shown in the following code block:

func (c *counter) Incr(){

 c.m.Lock()

 c.value++

 c.m.Unlock()

}

func (c *counter) Decr(){

 c.m.Lock()

 c.value--

 c.m.Unlock()

}

func (c *counter) Value() int {

 c.m.Lock()

 a := c.value

 c.m.Unlock()

 return a

}

This will simplify the goroutine loop, resulting in a much clearer code:

var a = counter{}

for i := 0; i < cap(done); i++ {

 go func(i int) {

 if i%2 == 0 {

 a.Incr()

 } else {

 a.Decr()

 }

 done <- struct{}{}

 }(i)

}

// ...

fmt.Println(a.Value())

RWMutex
The problem with race conditions is caused by concurred writing, not by
reading the operation. The other data structure that implements the locker
interface, sync.RWMutex, is made to support both these operations, having write
locks that are unique and mutually exclusive with read locks. This means that
the mutex can be locked either by a single write lock, or by one or more read
locks. When a reader locks the mutex, other readers trying to lock it will not
be blocked. They are often referred to as shared-exclusive locks. This allows
read operations to happen all at the same time, without there being a waiting
time.

The write lock operations are done using the Lock and Unlock methods of the
locker interface. The reading operations are executed using two other
methods: RLock and RUnlock. There is another method, RLocker, which returns a
locker for reading operations.

We can make a quick example of their usage by creating a concurrent list of
strings:

type list struct {

 m sync.RWMutex

 value []string

}

We can iterate the slice to find the selected value and use a read lock to delay
the writing while we are reading:

func (l *list) contains(v string) bool {

 for _, s := range l.value {

 if s == v {

 return true

 }

 }

 return false

}

func (l *list) Contains(v string) bool {

 l.m.RLock()

 found := l.contains(v)

 l.m.RUnlock()

 return found

}

We can use the write lock when adding new elements:

func (l *list) Add(v string) bool {

 l.m.Lock()

 defer l.m.Unlock()

 if l.contains(v) {

 return false

 }

 l.value = append(l.value, v)

 return true

}

Then we can try to use several goroutines to execute the same operation on
the list:

var src = []string{

 "Ryu", "Ken", "E. Honda", "Guile",

 "Chun-Li", "Blanka", "Zangief", "Dhalsim",

}

var l list

for i := 0; i < 10; i++ {

 go func(i int) {

 for _, s := range src {

 go func(s string) {

 if !l.Contains(s) {

 if l.Add(s) {

 fmt.Println(i, "add", s)

 } else {

 fmt.Println(i, "too slow", s)

 }

 }

 }(s)

 }

 }(i)

}

time.Sleep(500 * time.Millisecond)

We are checking whether the name is contained in the lock first, then we try
to add the element. This causes more than one routine to attempt to add a new
element, but since writing locks are exclusive, only one will succeed.

Write starvation
When designing an application, this kind of mutex is not always the obvious
choice, because in a scenario where there is a greater number of read locks
and a few write ones, the mutex will be accepting incoming more read locks
after the first, letting the write operation wait for a moment where there are
no read locks active. This is a phenomenon referred to as write starvation.

To check this out, we can define a type that has both a write and a read
operation, which take some time, as shown in the following code:

type counter struct {

 m sync.RWMutex

 value int

}

func (c *counter) Write(i int) {

 c.m.Lock()

 time.Sleep(time.Millisecond * 100)

 c.value = i

 c.m.Unlock()

}

func (c *counter) Value() int {

 c.m.RLock()

 time.Sleep(time.Millisecond * 100)

 a := c.value

 c.m.RUnlock()

 return a

}

We can try to execute both write and read operations with the same
cadence in separate goroutines, using a duration that is lower than the
execution time of the methods (50 ms versus 100 ms). We will also check out
how much time they spend in a locked state:

var c counter

t1 := time.NewTicker(time.Millisecond * 50)

time.AfterFunc(time.Second*2, t1.Stop)

for {

 select {

 case <-t1.C:

 go func() {

 t := time.Now()

 c.Value()

 fmt.Println("val", time.Since(t))

 }()

 go func() {

 t := time.Now()

 c.Write(0)

 fmt.Println("inc", time.Since(t))

 }()

 case <-time.After(time.Millisecond * 200):

 return

 }

}

If we execute the application, we see that for each write operation, more than
one read is executed, and each next call is spending more time than the
previous, waiting for the lock. This is not true for the read operation, which
can happen at the same time, so as soon as a reader manages to lock the
resource, all the other waiting readers will do the same. Replacing
RWMutex with Mutex will make both operations have the same priority, as in the
previous example.

Locking gotchas
Some care must be taken when locking and unlocking mutexes in order to
avoid unexpected behavior and deadlocks in the application. Take the
following snippet:

for condition {

 mu.Lock()

 defer mu.Unlock()

 action()

}

This code seems okay at first sight, but it will inevitably block the goroutine.
This is because the defer statement is not executed at the end of each loop
iteration, but when the function returns. So the first attempt will lock without
releasing and the second attempt will remain stuck.

A little refactor can help fix this, as shown in the following snippet:

for condition {

 func() {

 mu.Lock()

 defer mu.Unlock()

 action()

 }()

}

We can use a closure to be sure that the deferred Unlock gets executed, even
if action panics.

If the kind of operations that are executed on the mutex will not cause panic,
it can be a good idea to ditch the defer and just use it after executing the
action, as follows:

for condition {

 mu.Lock()

 action()

 mu.Unlock()

}

defer has a cost, so it is better to avoid it when it is not necessary, such as
when doing a simple variable read or assignment.

Synchronizing goroutines
Until now, in order to wait for goroutines to finish, we used a channel of
empty structures and sent a value through the channel as the last operation, as
follows:

ch := make(chan struct{})

for i := 0; i < n; n++ {

 go func() {

 // do something

 ch <- struct{}{}

 }()

}

for i := 0; i < n; n++ {

 <-ch

}

This strategy works, but it's not the preferred way to accomplish the task. It's
not correct semantically, because we are using a channel, which is a tool for
communication, to send empty data. This use case is about synchronization
rather than communication. That's why there is the sync.WaitGroup data
structure, which covers such cases. It has a main status, called counter, which
represents the number of elements waiting:

type WaitGroup struct {

 noCopy noCopy

 state1 [3]uint32

}

The noCopy field prevents the structure from being copied by value with panic.
The state is an array made by three int32, but only the first and last entries are
used; the remaining one is used for compiler optimizations.

The WaitGroup offers three methods to accomplish the same result:

Add: This changes the value of the counter using the given value, which
could also be negative. If the counter goes under zero, the application
panics.
Done: This is a shorthand for Add with -1 as the argument. It is usually
called when a goroutine finishes its job to decrement the counter by 1.

Wait: This operation blocks the current goroutine until the counter
reaches zero.

Using the wait group results in a much cleaner and more readable code, as we
can see in the following example:

func main() {

 wg := sync.WaitGroup{}

 wg.Add(10)

 for i := 1; i <= 10; i++ {

 go func(a int) {

 for i := 1; i <= 10; i++ {

 fmt.Printf("%dx%d=%d\n", a, i, a*i)

 }

 wg.Done()

 }(i)

 }

 wg.Wait()

}

To the wait group, we are adding a delta equal to goroutines, which we will
launch beforehand. In each single goroutine, we are using the Done method to
reduce the count. If the number of goroutines is not known, the Add operation
(with 1 as its argument) can be executed before starting each goroutine, as
shown in the following:

func main() {

 wg := sync.WaitGroup{}

 for i := 1; rand.Intn(10) != 0; i++ {

 wg.Add(1)

 go func(a int) {

 for i := 1; i <= 10; i++ {

 fmt.Printf("%dx%d=%d\n", a, i, a*i)

 }

 wg.Done()

 }(i)

 }

 wg.Wait()

}

In the preceding example, we have a 10% chance of finishing each iteration
of the for loop, so we are adding one to the group before starting the
goroutine.

A very common error is to add the value inside the goroutine, which usually
results in a premature exit without any goroutines executed. This happens
because the application creates the goroutines and executes the Wait function

before the routines start and add their own delta, as in the following example:

func main() {

 wg := sync.WaitGroup{}

 for i := 1; i < 10; i++ {

 go func(a int) {

 wg.Add(1)

 for i := 1; i <= 10; i++ {

 fmt.Printf("%dx%d=%d\n", a, i, a*i)

 }

 wg.Done()

 }(i)

 }

 wg.Wait()

}

This application will not print anything because it arrives at the Wait statement
before any goroutine is started and the Add method is called.

Singleton in Go
The singleton pattern is a commonly used strategy for software development.
This involves restricting the number of instances of a certain type to
one, using the same instance across the whole application. A very simple
implementation of the concept could be the following code:

type obj struct {}

var instance *obj

func Get() *obj{

 if instance == nil {

 instance = &obj{}

 }

 return instance

}

This is perfectly fine in a consecutive scenario but in a concurrent one, like in
many Go applications, this is not thread-safe and could generate race
conditions.

The previous example could be made thread-safe by adding a lock that would
avoid any race condition, as follows:

type obj struct {}

var (

 instance *obj

 lock sync.Mutex

)

func Get() *obj{

 lock.Lock()

 defer lock.Unlock()

 if instance == nil {

 instance = &obj{}

 }

 return instance

}

This is safe, but slower, because Mutex will be synchronizing each time the
instance is requested.

The best solution to implement this pattern, as shown in the following

example, is to use the sync.Once struct that takes care of executing a function
once using a combination of Mutex and atomic readings (which we will see in
the second part of the chapter):

type obj struct {}

var (

 instance *obj

 once sync.Once

)

func Get() *obj{

 once.Do(func(){

 instance = &obj{}

 })

 return instance

}

The resulting code is idiomatic and clear, and has better performance
compared to the mutex solution. Since the operation will be executed just the
once, we can also get rid of the nil check we were doing on the instance in
the previous examples.

Once and Reset
The sync.Once function is made for executing another function once and no
more. There is a very useful third-party library, which allows us to reset the
state of the singleton using the Reset method.

The package source code can be found at: github.com/matryer/resync.

Typical uses include some initialization that needs to be done again on a
particular error, such as obtaining an API key or dialing again if the
connection disrupts.

https://github.com/matryer/resync

Resource recycling
We have already seen how to implement resource recycling, with a buffered
channel with a pool of workers, in the previous chapter. There will be two
methods as follows:

A Get method that tries to receive a message from the channel or return a
new instance.
A Put method that tries to return an instance back to a channel or
discard it.

This is a simple implementation of a pool with channels:

type A struct{}

type Pool chan *A

func (p Pool) Get() *A {

 select {

 case a := <-p:

 return a

 default:

 return new(A)

 }

}

func (p Pool) Put(a *A) {

 select {

 case p <- a:

 default:

 }

}

We can improve this using the sync.Pool structure, which implements a thread-
safe set of objects that can be saved or retrieved. The only thing that needs to
be defined is the behavior of the pool when creating a new object:

type Pool struct {

 // New optionally specifies a function to generate

 // a value when Get would otherwise return nil.

 // It may not be changed concurrently with calls to Get.

 New func() interface{}

 // contains filtered or unexported fields

}

The pool offers two methods: Get and Put. These methods return an object
from the pool (or create a new one) and place the object back in the pool.
Since the Get method returns an interface{}, the value needs to be cast to the
specific type in order to be used correctly. We talked extensively about buffer
recycling and in the following example, we will try to implement one
using sync.Pool.

We will need to define the pool and functions to obtain and release new
buffers. Our buffers will have an initial capacity of 4 KB, and the Put function
will ensure that the buffer is reset before putting it back in the pool, as shown
in the following code example:

var pool = sync.Pool{

 New: func() interface{} {

 return bytes.NewBuffer(make([]byte, 0, 4096))

 },

}

func Get() *bytes.Buffer {

 return pool.Get().(*bytes.Buffer)

}

func Put(b *bytes.Buffer) {

 b.Reset()

 pool.Put(b)

}

Now we will create a series of goroutines, which will use the WaitGroup to
signal when they're done, and will do the following:

Wait a certain amount of time (1-5 seconds).
Acquire a buffer.
Write information on the buffer.
Copy the content to the standard output.
Release the buffer.

We will use a sleep time equal to 1 second, plus another second every 4
iterations of the loop, up to 5:

start := time.Now()

wg := sync.WaitGroup{}

wg.Add(20)

for i := 0; i < 20; i++ {

 go func(v int) {

 time.Sleep(time.Second * time.Duration(1+v/4))

 b := Get()

 defer func() {

 Put(b)

 wg.Done()

 }()

 fmt.Fprintf(b, "Goroutine %2d using %p, after %.0fs\n", v, b, time.Since(start).Seconds())

 fmt.Printf("%s", b.Bytes())

 }(i)

}

wg.Wait()

The information in print also contains the buffer memory address. This will
help us to confirm that the buffers are always the same and no new ones are
created.

Slices recycling issues
With data structure with an underlying byte slice, such as bytes.Buffer, we
should be careful when using them combined with sync.Pool or a similar
mechanism of recycling. Let's change the previous example and collect the
buffer's bytes instead of printing them to standard output. The following is an
example code for this:

var (

 list = make([][]byte, 20)

 m sync.Mutex

)

for i := 0; i < 20; i++ {

 go func(v int) {

 time.Sleep(time.Second * time.Duration(1+v/4))

 b := Get()

 defer func() {

 Put(b)

 wg.Done()

 }()

 fmt.Fprintf(b, "Goroutine %2d using %p, after %.0fs\n", v, b, time.Since(start).Seconds())

 m.Lock()

 list[v] = b.Bytes()

 m.Unlock()

 }(i)

}

wg.Wait()

So, what happens when we print the list of byte slices? We can see this in the
following example:

for i := range list {

 fmt.Printf("%d - %s", i, list[i])

}

We get an unexpected result as the buffers have been overwritten. That's
because the buffers are reusing the same underlying slice and overriding the
content with every new usage.

A solution to this problem is usually to execute a copy of the bytes, instead of
just assigning them:

m.Lock()

list[v] = make([]byte, b.Len())

copy(list[v], b.Bytes())

m.Unlock()

Conditions
In concurrent programming, a condition variable is a synchronization
mechanism that contains threads waiting for the same condition to verify. In
Go, this means that there are some goroutines waiting for something to occur.
We already did an implementation of this using channels with a single
goroutine waiting, as shown in the following example:

ch := make(chan struct{})

go func() {

 // do something

 ch <- struct{}{}

}()

go func() {

 // wait for condition

 <-ch

 // do something else

}

This approach is limited to a single goroutine, but it can be improved to
support more listeners switching from message-sending to closing down the
channel:

go func() {

 // do something

 close(ch)

}()

for i := 0; i < n; i++ {

 go func() {

 // wait for condition

 <-ch

 // do something else

 }()

}

Closing the channel works for more than one listener, but it does not allow
them to use the channel any further after it closes.

The sync.Cond type is a tool that makes it possible to handle all this behavior in
a better way. It uses a locker in its implementation and exposes three
methods:

Broadcast: This wakes all goroutines waiting for the condition.

Signal: This wakes a single goroutine waiting for the condition, if there is
at least one.
Wait: This unlocks the locker, suspends execution of the goroutine, and
later resumes the execution and locks it again, waiting for
a Broadcast or Signal.

It is not required, but the Broadcast and Signal operations can be done while
holding the locker, locking it before and releasing it after. The Wait method
requires holding the locker before calling and unlocking it after the condition
has been used.

Let's create a concurrent application which uses sync.Cond to orchestrate more
goroutines. We will have a prompt from the command line, and each record
will be written to a series of files. We will have a main structure that holds all
the data:

type record struct {

 sync.Mutex

 buf string

 cond *sync.Cond

 writers []io.Writer

}

The condition we will be monitoring is a change in the buf field. In the
Run method, the record structure will start several goroutines, one for each
writer. Each goroutine will be waiting for the condition to trigger and will
write in its file:

func (r *record) Run() {

 for i := range r.writers {

 go func(i int) {

 for {

 r.Lock()

 r.cond.Wait()

 fmt.Fprintf(r.writers[i], "%s\n", r.buf)

 r.Unlock()

 }

 }(i)

 }

}

We can see that we lock the condition before using Wait, and we unlock it
after using the value that our condition refers to. The main function will
create a record and a series of files, according to the command-line

arguments provided:

// let's make sure we have at least a file argument

if len(os.Args) < 2 {

 log.Fatal("Please specify at least a file")

}

r := record{

 writers: make([]io.Writer, len(os.Args)-1),

}

r.cond = sync.NewCond(&r)

for i, v := range os.Args[1:] {

 f, err := os.Create(v)

 if err != nil {

 log.Fatal(err)

 }

 defer f.Close()

 r.writers[i] = f

}

r.Run()

We will then use bufio.Scanner to read lines and broadcast the change of
the buf field. We will also accept a special value, \q, as a quit command:

scanner := bufio.NewScanner(os.Stdin)

for {

 fmt.Printf(":> ")

 if !scanner.Scan() {

 break

 }

 r.Lock()

 r.buf = scanner.Text()

 r.Unlock()

 switch {

 case r.buf == `\q`:

 return

 default:

 r.cond.Broadcast()

 }

}

We can see that the change of buf is done while holding the lock and this is
followed by the call to Broadcast, which wakes up all the goroutines waiting
for the condition.

Synchronized maps
Built-in maps in Go are not thread-safe, and, therefore, trying to write from
different goroutines can cause a runtime error: concurrent map writes. We can
verify this using a simple program that tries to make changes concurrently:

func main() {

 var m = map[int]int{}

 wg := sync.WaitGroup{}

 wg.Add(10)

 for i := 0; i < 10; i++ {

 go func(i int) {

 m[i%5]++

 fmt.Println(m)

 wg.Done()

 }(i)

 }

 wg.Wait()

}

Reading while writing is also a runtime error, concurrent map iteration and map
write, which we can see by running the following example:

func main() {

 var m = map[int]int{}

 var done = make(chan struct{})

 go func() {

 for i := 0; i < 100; i++ {

 time.Sleep(time.Nanosecond)

 m[i]++

 }

 close(done)

 }()

 for {

 time.Sleep(time.Nanosecond)

 fmt.Println(len(m), m)

 select {

 case <-done:

 return

 default:

 }

 }

}

Sometimes, trying to iterate a map (as the Print statement does) can cause
panic such as index out of range, because the internal slices may have been
allocated somewhere else.

A very easy strategy to make a map concurrent is to couple it
with sync.Mutex or sync.RWMutex. This makes it possible to lock the map when
executing the operations:

type m struct {

 sync.Mutex

 m map[int]int

}

We use the map for getting or setting the value, such as the following, for
instance:

func (m *m) Get(key int) int {

 m.Lock()

 a := m.m[key]

 m.Unlock()

 return a

}

func (m *m) Put(key, value int) {

 m.Lock()

 m.m[key] = value

 m.Unlock()

}

We can also pass a function that takes a key-value pair and executes it for
each tuple, while locking the map:

func (m *m) Range(f func(k, v int)) {

 m.Lock()

 for k, v := range m.m {

 f(k, v)

 }

 m.Unlock()

}

Go 1.9 introduced a structure called sync.Map that does exactly this. It is a very
generic map[interface{}]interface{}, which makes it possible to execute thread-
safe operations using the following methods:

Load: Gets a value from the map for the given key.
Store: Sets a value in the map for the given key.
Delete: Removes the entry for the given key from the map.
LoadOrStore: Returns the value for the key, if present, or the stored value.
Range: Calls a function that returns a Boolean for each key-value pair in
the map. The iteration stops if false is returned.

We can see how this works in the following snippet, in which we try to
attempt several writes at the same time:

func main() {

 var m = sync.Map{}

 var wg = sync.WaitGroup{}

 wg.Add(1000)

 for i := 0; i < 1000; i++ {

 go func(i int) {

 m.LoadOrStore(i, i)

 wg.Done()

 }(i)

 }

 wg.Wait()

 i := 0

 m.Range(func(k, v interface{}) bool {

 i++

 return true

 })

 fmt.Println(i)

}

This application, unlike the version with a regular Map, does not crash and
executes all the operations.

Semaphores
In the previous chapter, we saw how it is possible to use channels to create
weighted semaphores. There is a better implementation in the experimental
sync package. This can be found at: golang.org/x/sync/semaphore.

This implementation makes it possible to create a new semaphore, specifying
the weight with semaphore.NewWeighted.

Quotas can be acquired using the Acquire method, specifying how many
quotas you want to acquire. These can be released using the Release method,
as shown in the following example:

func main() {

 s := semaphore.NewWeighted(int64(10))

 ctx := context.Background()

 for i := 0; i < 20; i++ {

 if err := s.Acquire(ctx, 1); err != nil {

 log.Fatal(err)

 }

 go func(i int) {

 fmt.Println(i)

 s.Release(1)

 }(i)

 }

 time.Sleep(time.Second)

}

Acquiring quotas requires another argument besides the number, which is
context.Context. This is another concurrency tool available in Go and we are
going to see how to use this in the next chapter.

https://godoc.org/golang.org/x/sync/semaphore

Atomic operations
The sync package delivers synchronization primitives, and, under the hood, it
is using thread-safe operations on integers and pointers. We can find these
functionalities in another package called sync/atomic, which can be used to
create tools specific to the user use case, with better performance and less
memory usage.

Integer operations
There is a series of functions for pointers to the different types of integers:

int32

int64

uint32

uint64

uintptr

This includes a specific type of integer that represents a pointer, uintptr. The
operation available for these types are as follows:

Load: Retrieves the integer value from the pointer
Store: Stores the integer value in the pointer
Add: Adds the specified delta to the pointer value
Swap: Stores a new value in the pointer and returns the old one
CompareAndSwap: Swaps the new value for the old one only if this is the
same as the specified one

clicker
This function can be very helpful for defining thread-safe components really
easily. A very obvious example could be a simple integer counter that uses
Add to change the counter, Load to retrieve the current value, and Store to reset
it:

type clicker int32

func (c *clicker) Click() int32 {

 return atomic.AddInt32((*int32)(c), 1)

}

func (c *clicker) Reset() {

 atomic.StoreInt32((*int32)(c), 0)

}

func (c *clicker) Value() int32 {

 return atomic.LoadInt32((*int32)(c))

}

We can see it in action in a simple program, which tries to read, write, and
reset the counter concurrently.

We define the clicker and WaitGroup and add the correct number of elements to
the wait group as follows:

c := clicker(0)

wg := sync.WaitGroup{}

// 2*iteration + reset at 5

wg.Add(21)

We can launch a bunch of goroutines doing different actions, such as: 10
reads, 10 adds, and a reset:

for i := 0; i < 10; i++ {

 go func() {

 c.Click()

 fmt.Println("click")

 wg.Done()

 }()

 go func() {

 fmt.Println("load", c.Value())

 wg.Done()

 }()

 if i == 0 || i%5 != 0 {

 continue

 }

 go func() {

 c.Reset()

 fmt.Println("reset")

 wg.Done()

 }()

}

wg.Wait()

We will see the clicker acting as it is supposed to, executing concurrent sums
without race conditions.

Thread-safe floats
The atomic package offers only primitives for integers, but since float32 and
float64 are stored in the same data structure that int32 and int64 use, we use
them to create an atomic float value.

The trick is to use the math.Floatbits functions to get the representation of a
float as an unsigned integer and the math.Floatfrombits functions to transform
an unsigned integer to a float. Let's see how this works with a float64:

type f64 uint64

func uf(u uint64) (f float64) { return math.Float64frombits(u) }

func fu(f float64) (u uint64) { return math.Float64bits(f) }

func newF64(f float64) *f64 {

 v := f64(fu(f))

 return &v

}

func (f *f64) Load() float64 {

 return uf(atomic.LoadUint64((*uint64)(f)))

}

func (f *f64) Store(s float64) {

 atomic.StoreUint64((*uint64)(f), fu(s))

}

Creating the Add function is a little bit more complicated. We need to get the
value with Load, then compare and swap. Since this operation could fail
because the load is an atomic operation and compare and swap (CAS) is
another, we keep trying it until it succeeds in a loop:

func (f *f64) Add(s float64) float64 {

 for {

 old := f.Load()

 new := old + s

 if f.CompareAndSwap(old, new) {

 return new

 }

 }

}

func (f *f64) CompareAndSwap(old, new float64) bool {

 return atomic.CompareAndSwapUint64((*uint64)(f), fu(old), fu(new))

}

Thread-safe Boolean
We can also use int32 to represent a Boolean value. We can use the
integer 0 as false, and 1 as true, creating a thread-safe Boolean condition:

type cond int32

func (c *cond) Set(v bool) {

 a := int32(0)

 if v {

 a++

 }

 atomic.StoreInt32((*int32)(c), a)

}

func (c *cond) Value() bool {

 return atomic.LoadInt32((*int32)(c)) != 0

}

This will allow us to use the cond type as a thread-safe Boolean value.

Pointer operations
Pointer variables in Go are stored in intptr variables, integers large enough to
hold a memory address. The atomic package makes it possible to execute the
same operations for other integers types. There is a package that allows
unsafe pointer operations, which offers the unsafe.Pointer type that is used in
atomic operations.

In the following example, we define two integer variables and their relative
integer pointers. Then we execute a swap of the first pointer with the second:

v1, v2 := 10, 100

p1, p2 := &v1, &v2

log.Printf("P1: %v, P2: %v", *p1, *p2)

atomic.SwapPointer((*unsafe.Pointer)(unsafe.Pointer(&p1)), unsafe.Pointer(p2))

log.Printf("P1: %v, P2: %v", *p1, *p2)

v1 = -10

log.Printf("P1: %v, P2: %v", *p1, *p2)

v2 = 3

log.Printf("P1: %v, P2: %v", *p1, *p2)

After the swap, both pointers are now referring to the second variable; any
change to the first value does not influence the pointers. Changing the second
variable changes the value referred to by the pointers.

Value
The simplest tool we can use is atomic.Value. This holds interface{} and makes
it possible to read and write it with thread safety. It exposes two
methods, Store and Load, which make it possible to set or retrieve the value. As
it happens, for other thread-safe tools, sync.Value must not be copied after its
first use.

We can try to have many goroutines to set and read the same value. Each
load operation gets the latest stored value and there are no errors being raised
by concurrency:

func main() {

 var (

 v atomic.Value

 wg sync.WaitGroup

)

 wg.Add(20)

 for i := 0; i < 10; i++ {

 go func(i int) {

 fmt.Println("load", v.Load())

 wg.Done()

 }(i)

 go func(i int) {

 v.Store(i)

 fmt.Println("store", i)

 wg.Done()

 }(i)

 }

 wg.Wait()

}

This is a very generic container; it can be used for any type of variable and
the variable type should change from one to another. If the concrete type
changes, it will make the method panic; the same thing applies to a nil empty
interface.

Under the hood
The sync.Value type stores its data in a non-exported interface, as shown by the
source code:

type Value struct {

 v interface{}

}

It uses a type of unsafe package to convert that structure into another one,
which has the same data structure as an interface:

type ifaceWords struct {

 typ unsafe.Pointer

 data unsafe.Pointer

}

Two types with the same exact memory layout can be converted in this way,
skipping the Go's type safety. This makes it possible to use atomic operations
with the pointers and execute thread-safe Store and Load operations.

To get the lock for writing values, atomic.Value uses a compare and swap
operation with the unsafe.Pointer(^uintptr(0)) value (which is 0xffffffff) in the
type; it changes the value and replaces the type with the correct one.

In the same way, the load operation loops until the type is different
to 0xffffffff, before trying to read the value.

Using this expedient, atomic.Value is capable of storing and loading any value
using other atomic operations.

Summary
In this chapter, we saw the tools that are available in the Go standard package
for synchronization. They are located in two packages: sync, which provides
high-level tools such as mutexes, and sync/atomic, which executes low-level
operations.

First, we saw how to synchronize data using lockers. We saw how to use
sync.Mutex to lock a resource regardless of the operation type, and sync.RWMutex
to allow for concurrent readings and blocking writes. We should be careful
using the second one because writes could be delayed by consecutive
readings.

Next, we saw how to keep track of running operations in order to wait for the
end of a series of goroutines, using sync.WaitGroup. This acts as a thread-safe
counter for current goroutines and makes it possible to put the current
goroutine to sleep until it reaches zero, using the Wait method.

Furthermore, we checked the sync.Once structure used to execute a
functionality once, which allows the implementation of a thread-safe
singleton, for instance. Then we used sync.Pool to reuse instances instead of
creating new ones when possible. The only thing that a pool needs is the
function that returns the new instance.

The sync.Condition struct represents a specific condition and uses a locker to
change it, allowing a goroutine to wait for the change. This can be delivered
to a single goroutine using Signal, or to all goroutines using Broadcast. The
package also offers a thread-safe version of sync.Map.

Finally, we checked out the functionalities of atomic, which are mostly integer
thread-safe operations: loading, saving, adding, swapping, and CAS. We saw
also atomic.Value, which that makes it possible to change the value of an
interface concurrently and does not allow it to change type after the first
change.

The next chapter will be about the latest element introduced in Go
concurrency: Context, which is an interface that handles deadlines,
cancellations, and much more.

Questions
1. What's a race condition?
2. What happens when you try to execute read and write

operations concurrently with a map?
3. What's the difference between Mutex and RWMutex?
4. Why are wait groups useful?
5. What's the main use of Once?
6. How can you use a Pool?
7. What's the advantage of using atomic operations?

Coordination Using Context
This chapter is about the relatively new context package and its usage in
concurrent programming. It is a very powerful tool by defining a unique
interface that's used in many different places in the standard library, as well
as in many third-party packages.

The following topics will be covered in this chapter:

Understanding what context is
Studying its usage in the standard library
Creating a package that uses context

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, refer to Chapter 3, An Overview of Go.

Understanding context
Context is a relatively new component that entered the standard library in
version 1.7. It is an interface for synchronization between goroutines that was
used internally by the Go team and ended up being a core part of the
language.

The interface
The main entity in the package is Context itself, which is an interface. It has
only four methods:

type Context interface {

 Deadline() (deadline time.Time, ok bool)

 Done() <-chan struct{}

 Err() error

 Value(key interface{}) interface{}

}

Let's learn about these four methods here:

Deadline: Returns the time when the context should be cancelled, together
with a Boolean that is false when there is no deadline

Done: Returns a receive-only channel of empty structs, which signals
when the context should be cancelled

Err: Returns nil while the done channel is open; otherwise it returns the
cause of the context cancellation

Value: Returns a value associated with a key for the current context, or nil
if there's no value for the key

Context has many methods compared to the other interfaces of the standard
library, which usually have one or two methods. Three of them are closely
related:

Deadline is the time for cancelling
Done signals when the context is done
Err returns the cause of the cancellation

The last method, Value, returns the value associated with a certain key. The
rest of the package is a series of functions that allow you to create different
types of contexts. Let's go through the various functions that comprise the

package and look at various tools for creating and decorating contexts.

Default contexts
The TODO and Background functions return context.Context without the need for any
input argument. The value that's returned is an empty context, though, their
distinction is just semantic.

Background
Background is an empty context that doesn't get cancelled, hasn't got a deadline,
and doesn't hold any values. It is mostly used by the main function as the root
context or for testing purposes. The following is some example code for this
context:

func main() {

 ctx := context.Background()

 done := ctx.Done()

 for i :=0; ;i++{

 select {

 case <-done:

 return

 case <-time.After(time.Second):

 fmt.Println("tick", i)

 }

 }

}

The full example is available here: https://play.golang.org/p/y_3ip7sdPnx.

We can see that, in the context of the example, the loop goes on infinitely
because the context is never completed.

https://play.golang.org/p/y_3ip7sdPnx

TODO
TODO is another empty context that should be used when the scope of the
context isn't clear or if the type of context isn't available yet. It is used in the
exact same way as Background. As a matter of fact, under the hood, they are the
same thing; the distinction is only semantical. If we look at the source code,
they have the exact same definition:

var (

 background = new(emptyCtx)

 todo = new(emptyCtx)

)

The source for this code can be found at https://golang.org/pkg/context/?m=all#pkg
-variables.

These basic contexts can be extended using the other functions of the
package. They will act as decorators and add more capabilities to them.

https://golang.org/pkg/context/?m=all#pkg-variables

Cancellation, timeout, and deadline
The context we looked at is never cancelled, but the package offers different
options for adding this functionality.

Cancellation
The context.WithCancel decorator function gets a context and returns another
context and a function called cancel. The returned context will be a copy of
the context that has a different done channel (the channel that marks that the
current context is done) that gets closed when the parent context does or
when the cancel function is called – whatever happens first.

In the following example, we can see that we wait a few seconds before
calling the cancel function, and the program terminates correctly. The value of
Err is the context.Canceled variable:

func main() {

 ctx, cancel := context.WithCancel(context.Background())

 time.AfterFunc(time.Second*5, cancel)

 done := ctx.Done()

 for i := 0; ; i++ {

 select {

 case <-done:

 fmt.Println("exit", ctx.Err())

 return

 case <-time.After(time.Second):

 fmt.Println("tick", i)

 }

 }

}

The full example is available here: https://play.golang.org/p/fNHLIZL8e0L.

https://play.golang.org/p/fNHLIZL8e0L

Deadline
context.WithDeadline is another decorator, which specifies a time deadline as
time.Time, and applies it to another context. If there is already a deadline and it
is earlier than the one provided, the specified one gets ignored. If the done
channel is still open when the deadline is met, it gets closed automatically.

In the following example, we set the deadline to be 5 seconds from now and
call cancel 10 seconds after. The deadline arrives before the cancellation and
Err returns a context.DeadlineExceeded error:

func main() {

 ctx, cancel := context.WithDeadline(context.Background(),

 time.Now().Add(5*time.Second))

 time.AfterFunc(time.Second*10, cancel)

 done := ctx.Done()

 for i := 0; ; i++ {

 select {

 case <-done:

 fmt.Println("exit", ctx.Err())

 return

 case <-time.After(time.Second):

 fmt.Println("tick", i)

 }

 }

}

The full example is available here: https://play.golang.org/p/iyuOmd__CGH.

We can see that the preceding example behaves exactly as expected. It will
print the tick statement each second a few times until the the deadline is met
and the error is returned.

https://play.golang.org/p/iyuOmd__CGH

Timeout
The last cancel-related decorator is context.WithTimeout, which allows you to
specify a time.Duration together with the context and closes the done channel
automatically when the timeout is passed.

If there a deadline active, the new value applies only if it's earlier than the
parent. We can look at a pretty identical example, beside the context
definition, and get the same result that we got for the deadline example:

func main() {

 ctx, cancel := context.WithTimeout(context.Background(),5*time.Second)

 time.AfterFunc(time.Second*10, cancel)

 done := ctx.Done()

 for i := 0; ; i++ {

 select {

 case <-done:

 fmt.Println("exit", ctx.Err())

 return

 case <-time.After(time.Second):

 fmt.Println("tick", i)

 }

 }

}

The full example is available here: https://play.golang.org/p/-Zp63_e0zYD.

https://play.golang.org/p/-Zp63_e0zYD

Keys and values
The context.WithValue function creates a copy of the parent context that has the
given key associated with the specified value. Its scope holds values that are
relative to a single request while it gets processed and should not be used for
other scopes, such as optional function parameters.

The key should be something that can be compared, and it's a good idea to
avoid string values because two different packages using context could
overwrite each other's values. The suggestion is to use user-defined concrete
types such as struct{}.

Here, we can see an example where we take a base context and we add a
different value for each goroutine, using an empty struct as a key:

type key struct{}

type key struct{}

func main() {

 ctx, canc := context.WithCancel(context.Background())

 wg := sync.WaitGroup{}

 wg.Add(5)

 for i := 0; i < 5; i++ {

 go func(ctx context.Context) {

 v := ctx.Value(key{})

 fmt.Println("key", v)

 wg.Done()

 <-ctx.Done()

 fmt.Println(ctx.Err(), v)

 }(context.WithValue(ctx, key{}, i))

 }

 wg.Wait()

 canc()

 time.Sleep(time.Second)

}

The full example is available here: https://play.golang.org/p/lM61u_QKEW1.

We can also see that cancelling the parent cancels the other contexts. Another
valid key type could be exported pointer values, which won't be the same,
even if the underlying data is:

https://play.golang.org/p/lM61u_QKEW1

type key *int

func main() {

 k := new(key)

 ctx, canc := context.WithCancel(context.Background())

 wg := sync.WaitGroup{}

 wg.Add(5)

 for i := 0; i < 5; i++ {

 go func(ctx context.Context) {

 v := ctx.Value(k)

 fmt.Println("key", v, ctx.Value(new(key)))

 wg.Done()

 <-ctx.Done()

 fmt.Println(ctx.Err(), v)

 }(context.WithValue(ctx, k, i))

 }

 wg.Wait()

 canc()

 time.Sleep(time.Second)

}

The full example is available here: https://play.golang.org/p/05XJwWF0-0n.

We can see that defining a key pointer with the same underlying value doesn't
return the expected value.

https://play.golang.org/p/05XJwWF0-0n

Context in the standard library
Now that we've covered the contents of the package, we will look at how to
use them with the standard package or in an application. Context is used in a
few functions and methods of standard packages, mostly network packages.
Let's go over them now:

http.Server uses it with the Shutdown method so that it has full control over
timeout or to cancel an operation.
http.Request allows you to set a context using the WithContext method. It
also allows you to get the current context using Context.
In the net package, Listen, Dial, and Lookup have a version that
uses Context to control deadlines and timeouts.
In the database/sql package, context is used to stop or timeout many
different operations.

HTTP requests
Before the introduction of the official package, each HTTP-related
framework was using its own version of context to store data relative to
HTTP requests. This resulted in fragmentation, and the reuse of handlers and
middleware wasn't possible without rewriting the middleware or any specific
binding code.

Passing scoped values
The introduction of context.Context in http.Request tries to address this issue by
defining a single interface that can be assigned, recovered, and used in
various handlers.

The downside is that a context isn't assigned automatically to a request, and
context values cannot be recycled. There should be no really good reason to
do that since the context should store data that's specific to a certain package
or scope, and the packages themselves should be the only ones that are able
to interact with them.

A good pattern is the usage of a unique unexported key type combined with
auxiliary functions to get or set a certain value:

type keyType struct{}

var key = &keyType{}

func WithKey(ctx context.Context, value string) context.Context {

 return context.WithValue(ctx, key, value)

}

func GetKey(ctx context.Context) (string, bool) {

 v := ctx.Value(key)

 if v == nil {

 return "", false

 }

 return v.(string), true

}

A context request is the only case in the standard library where it is stored in
the data structure with the WithContext method and it's accessed using the
Context method. This has been done in order to not break the existing code,
and maintain the promise of compatibility of Go 1.

The full example is available here: https://play.golang.org/p/W6gGp_InoMp.

https://play.golang.org/p/W6gGp_InoMp

Request cancellation
A good usage of context is for cancellation and timeout when you're
executing an HTTP request using http.Client, which handles the interruption
automatically from the context. The following example does exactly that:

func main() {

 const addr = "localhost:8080"

 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

 time.Sleep(time.Second * 5)

 })

 go func() {

 if err := http.ListenAndServe(addr, nil); err != nil {

 log.Fatalln(err)

 }

 }()

 req, _ := http.NewRequest(http.MethodGet, "http://"+addr, nil)

 ctx, canc := context.WithTimeout(context.Background(), time.Second*2)

 defer canc()

 time.Sleep(time.Second)

 if _, err := http.DefaultClient.Do(req.WithContext(ctx)); err != nil {

 log.Fatalln(err)

 }

}

The context cancellation method can also be used to interrupt the current
HTTP request that's passed to a client. In a scenario where we are calling
different endpoints and returning the first result that's received, it would be a
good idea to cancel the other requests.

Let's create an application that runs a query on different search engines and
returns the results from the quickest one, cancelling the others. We can create
a web server that has a unique endpoint that answers back in 0 to 10 seconds:

const addr = "localhost:8080"

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

 d := time.Second * time.Duration(rand.Intn(10))

 log.Println("wait", d)

 time.Sleep(d)

})

go func() {

 if err := http.ListenAndServe(addr, nil); err != nil {

 log.Fatalln(err)

 }

}()

We can use a cancellable context for the requests, combined with a wait
group to synchronize it with the end of the request. Each goroutine will create
a request and try to send the result using a channel. Since we are only
interested in the first one, we will use sync.Once to limit it:

ctx, canc := context.WithCancel(context.Background())

ch, o, wg := make(chan int), sync.Once{}, sync.WaitGroup{}

wg.Add(10)

for i := 0; i < 10; i++ {

 go func(i int) {

 defer wg.Done()

 req, _ := http.NewRequest(http.MethodGet, "http://"+addr, nil)

 if _, err := http.DefaultClient.Do(req.WithContext(ctx)); err != nil {

 log.Println(i, err)

 return

 }

 o.Do(func() { ch <- i })

 }(i)

}

log.Println("received", <-ch)

canc()

log.Println("cancelling")

wg.Wait()

When this program runs, we will see that one of the requests is completed
successfully and gets sent to the channel, while the others are either cancelled
or ignored.

HTTP server
The net/http package has several uses of context, including stopping the
listener or being part of a request.

Shutdown
http.Server allows us to pass a context for the shutdown operation. This allows
to us to use some of the context capabilities, such as cancelling and timeout.
We can define a new server with its mux and a cancellable context:

mux := http.NewServeMux()

server := http.Server{

 Addr: ":3000",

 Handler: mux,

}

ctx, canc := context.WithCancel(context.Background())

defer canc()

mux.HandleFunc("/shutdown", func(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("OK"))

 canc()

})

We can launch the server in a separate goroutine:

go func() {

 if err := server.ListenAndServe(); err != nil {

 if err != http.ErrServerClosed {

 log.Fatal(err)

 }

 }

}()

The context will be complete when the shutdown endpoint is called and the
cancellation function is invoked. We can wait for that event and then use
another context with a timeout to call the shutdown method:

select {

case <-ctx.Done():

 ctx, canc := context.WithTimeout(context.Background(), time.Second*5)

 defer canc()

 if err := server.Shutdown(ctx); err != nil {

 log.Fatalln("Shutdown:", err)

 } else {

 log.Println("Shutdown:", "ok")

 }

}

This will allow us to terminate the server effectively within the timeout, after
which it will terminate with an error.

Passing values
Another usage of context in a server is as a propagation of values and
cancellation between different HTTP handlers. Let's look at an example
where each request has a unique key that is an integer. We will use a couple
of functions that are similar to the example where we had values using
integers. The generation of a new key will be done with atomic:

type keyType struct{}

var key = &keyType{}

var counter int32

func WithKey(ctx context.Context) context.Context {

 return context.WithValue(ctx, key, atomic.AddInt32(&counter, 1))

}

func GetKey(ctx context.Context) (int32, bool) {

 v := ctx.Value(key)

 if v == nil {

 return 0, false

 }

 return v.(int32), true

}

Now, we can define another function that takes any HTTP handler and
creates the context, if necessary, and adds the key to it:

func AssignKeyHandler(h http.Handler) http.HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request) {

 ctx := r.Context()

 if ctx == nil {

 ctx = context.Background()

 }

 if _, ok := GetKey(ctx); !ok {

 ctx = WithKey(ctx)

 }

 h.ServeHTTP(w, r.WithContext(ctx))

 }

}

By doing this, we can define a very simple handler that serves files under a
certain root directory. This function will use the key from the context to log
information correctly. It will also check that the file exists before trying to

serve it:

func ReadFileHandler(root string) http.HandlerFunc {

 root = filepath.Clean(root)

 return func(w http.ResponseWriter, r *http.Request) {

 k, _ := GetKey(r.Context())

 path := filepath.Join(root, r.URL.Path)

 log.Printf("[%d] requesting path %s", k, path)

 if !strings.HasPrefix(path, root) {

 http.Error(w, "not found", http.StatusNotFound)

 log.Printf("[%d] unauthorized %s", k, path)

 return

 }

 if stat, err := os.Stat(path); err != nil || stat.IsDir() {

 http.Error(w, "not found", http.StatusNotFound)

 log.Printf("[%d] not found %s", k, path)

 return

 }

 http.ServeFile(w, r, path)

 log.Printf("[%d] ok: %s", k, path)

 }

}

We can combine those handlers to serve content from different folders, such
as the home user or the temporary directory:

home, err := os.UserHomeDir()

if err != nil {

 log.Fatal(err)

}

tmp := os.TempDir()

mux := http.NewServeMux()

server := http.Server{

 Addr: ":3000",

 Handler: mux,

}

mux.Handle("/tmp/", http.StripPrefix("/tmp/", AssignKeyHandler(ReadFileHandler(tmp))))

mux.Handle("/home/", http.StripPrefix("/home/", AssignKeyHandler(ReadFileHandler(home))))

if err := server.ListenAndServe(); err != nil {

 if err != http.ErrServerClosed {

 log.Fatal(err)

 }

}

We are using http.StipPrefix to remove the first part of the path and obtain the
relative path, and pass it to the handler underneath. The resulting server will
use context to pass the key value between handlers – this allows us to create
another similar handler and use the AssignKeyHandler function to wrap the
handler and GetKey(r.Context()) to access the key inside our handler.

TCP dialing
The network package offers context-related functionalities, such as dialing
cancellation when we're dialing or listening to incoming connections. It
allows us to use the timeout and cancellation capabilities of context when
dialing a connection.

Cancelling a connection
In order to test out the usage of context in a TCP connection, we can create a
goroutine with a TCP server that will wait a period of time before starting the
listener:

addr := os.Args[1]

go func() {

 time.Sleep(time.Second)

 listener, err := net.Listen("tcp", addr)

 if err != nil {

 log.Fatalln("Listener:", addr, err)

 }

 c, err := listener.Accept()

 if err != nil {

 log.Fatalln("Listener:", addr, err)

 }

 defer c.Close()

}()

We can use a context with a timeout that's lower than the server waiting
time. We have to use net.Dialer in order to use the context in a dial operation:

ctx, canc := context.WithTimeout(context.Background(),

 time.Millisecond*100)

defer canc()

conn, err := (&net.Dialer{}).DialContext(ctx, "tcp", os.Args[1])

if err != nil {

 log.Fatalln("-> Connection:", err)

}

log.Println("-> Connection to", os.Args[1])

conn.Close()

The application will try to connect for a short time, but will eventually give
up when the context expires, returning an error.

In a situation where you want to establish a single connection from a series of
endpoints, context cancellation would be a perfect use case. All the
connection attempts would share the same context, and the first connection
that dials correctly would call the cancellation, stopping the other attempts.
We will create a single server that is listening to one of the addresses we will
try to call:

list := []string{

 "localhost:9090",

 "localhost:9091",

 "localhost:9092",

}

go func() {

 listener, err := net.Listen("tcp", list[0])

 if err != nil {

 log.Fatalln("Listener:", list[0], err)

 }

 time.Sleep(time.Second * 5)

 c, err := listener.Accept()

 if err != nil {

 log.Fatalln("Listener:", list[0], err)

 }

 defer c.Close()

}()

Then, we can try to dial all three addresses and cancel the context as soon as
one connects. We will use a WaitGroup to synchronize with the end of the
goroutines:

ctx, canc := context.WithTimeout(context.Background(), time.Second*10)

defer canc()

wg := sync.WaitGroup{}

wg.Add(len(list))

for _, addr := range list {

 go func(addr string) {

 defer wg.Done()

 conn, err := (&net.Dialer{}).DialContext(ctx, "tcp", addr)

 if err != nil {

 log.Println("-> Connection:", err)

 return

 }

 log.Println("-> Connection to", addr, "cancelling context")

 canc()

 conn.Close()

 }(addr)

}

wg.Wait()

What we will see in the output of this program is one connection succeeding,
followed by the cancellation error of the other attempt.

Database operations
We aren't looking at the sql/database package in this book, but for the sake of
completion, it is worth mentioning that it uses context too. Most of its
operations have a counterpart with context, for instance:

Beginning a new transaction
Executing a query
Pinging the database
Preparing a query

This concludes the packages in the standard library that use context. Next, we
are going to try to use context to build a package to allow the user of that
package to cancel requests.

Experimental packages
A notable example in the experimental package that uses context is one we've
already looked at – semaphore. Now that we have a better understanding of
what context is for, it should be pretty obvious why the acquire operation also
takes a context in as an argument.

When creating our application, we can provide a context with a timeout or
cancellation and act accordingly:

func main() {

 s := semaphore.NewWeighted(int64(5))

 ctx, canc := context.WithTimeout(context.Background(), time.Second)

 defer canc()

 wg := sync.WaitGroup{}

 wg.Add(20)

 for i := 0; i < 20; i++ {

 go func(i int) {

 defer wg.Done()

 if err := s.Acquire(ctx, 1); err != nil {

 fmt.Println(i, err)

 return

 }

 go func(i int) {

 fmt.Println(i)

 time.Sleep(time.Second / 2)

 s.Release(1)

 }(i)

 }(i)

 }

 wg.Wait()

}

Running this application will show that the semaphore is acquired for the first
second, but after that the context expires and all the remaining operations fail.

Context in your application
context.Context is the perfect tool to integrate into your package or application
if it has operations that could take a long time and a user can cancel them, or
if they should have time limitations such timeouts or deadlines.

Things to avoid
Even though the context scope has been made very clear by the Go team,
developers have been using it in various ways – some less orthodox than
others. Let's check out some of them and which alternatives there are, instead
of resorting to context.

Wrong types as keys
The first practice to avoid is the usage of built-in types as keys. This is
problematic because they can be overwritten because two interfaces with the
same built-in values are considered the same, as shown in the following
example:

func main() {

 var a interface{} = "request-id"

 var b interface{} = "request-id"

 fmt.Println(a == b)

 ctx := context.Background()

 ctx = context.WithValue(ctx, a, "a")

 ctx = context.WithValue(ctx, b, "b")

 fmt.Println(ctx.Value(a), ctx.Value(b))

}

The full example is available here: https://play.golang.org/p/2W3noYQP5eh.

The first print instruction outputs true, and since the keys are compared by
value, the second assignment shadows the first, resulting in the values for
both keys being the same. A potential solution to this is to use an empty
struct custom type, or an unexported pointer to a built-in value.

https://play.golang.org/p/2W3noYQP5eh

Passing parameters
It might so happen that you need to travel a long way through a stack of
function calls. A very tempting solution would be to use a context to store
that value and recall it only in the function that needs it. It is generally not a
good idea to hide a required parameter that should be passed explicitly. It
results in less readable code because it won't make it clear what influences
the execution of a certain function.

It is still much better to pass the function down the stack. If the parameters
list is getting too long, then it could be grouped into one or more structs in
order to be more readable.

Let's have a look at the following function:

func SomeFunc(ctx context.Context,

 name, surname string, age int,

 resourceID string, resourceName string) {}

The parameters could be grouped in the following way:

type User struct {

 Name string

 Surname string

 Age int

}

type Resource struct {

 ID string

 Name string

}

func SomeFunc(ctx context.Context, u User, r Resource) {}

Optional arguments
Context should be used to pass optional parameters around, and also used as
a sort of catch-all, like Python kwargs or JavaScript arguments. Using context as
a substitute for behaviors can be very problematic because it could cause the
shadowing of variables, like we saw in the example of context.WithValue.

Another big drawback of this approach is hiding what's happening and
making the code more obscure. A much better approach when it comes to
optional values is using a pointer to structure arguments – this allows you to
avoid passing the structure at all with nil.

Let's say you had the following code:

// This function has two mandatory args and 4 optional ones

func SomeFunc(ctx context.Context, arg1, arg2 int,

 opt1, opt2, opt3, opt4 string) {}

By using Optional, you would have something like this:

type Optional struct {

 Opt1 string

 Opt2 string

 Opt3 string

 Opt4 string

}

// This function has two mandatory args and 4 optional ones

func SomeFunc(ctx context.Context, arg1, arg2 int, o *Optional) {}

Globals
Some global variables can be stored in a context so that they can be passed
through a series of function calls. This is generally not good practice since
globals are available in every point of the application, so using context to
store and recall them is pointless and a waste of resources and
performance. If your package has some globals, you can use the Singleton
pattern we looked at in Chapter 12, Synchronization with sync and atomic, to
allow access to them from any point of your package or application.

Building a service with Context
We will now focus on how to create packages that support the usage of
context. This will help us put together what we've learned about concurrency
up until now. We will try to create a concurrent file search that makes uses of
channels, goroutines, synchronization, and context.

Main interface and usage
The signature of the package will include a context, the root folder, the search
term, and a couple of optional parameters:

Search in contents: Will look for the string in the file's contents instead
of the name
Exclude list: Will not search the files with the selected name/names

The function would look something like this:

type Options struct {

 Contents bool

 Exclude []string

}

func FileSearch(ctx context.Context, root, term string, o *Options)

Since it should be a concurrent function, the return type could be a channel of
result, which could be either an error or a series of matches in a file. Since we
can search for the names of content, the latter could have more than one
match:

type Result struct {

 Err error

 File string

 Matches []Match

}

type Match struct {

 Line int

 Text string

}

The previous function will return a receive-only channel of the Result type:

func FileSearch(ctx context.Context, root, term string, o *Options) <-chan Result

Here, this function would keep receiving values from the channel until it gets
closed:

for r := range FileSearch(ctx, directory, searchTerm, options) {

 if r.Err != nil {

 fmt.Printf("%s - error: %s\n", r.File, r.Err)

 continue

 }

 if !options.Contents {

 fmt.Printf("%s - match\n", r.File)

 continue

 }

 fmt.Printf("%s - matches:\n", r.File)

 for _, m := range r.Matches {

 fmt.Printf("\t%d:%s\n", m.Line, m.Text)

 }

}

Exit and entry points
The result channel should be closed by either the cancellation of the context,
or by the search being over. Since a channel cannot be closed twice, we can
use sync.Once to avoid closing the channel for the second time. To keep track
of the goroutines that are running, we can use sync.Waitgroup:

ch, wg, once := make(chan Result), sync.WaitGroup{}, sync.Once{}

go func() {

 wg.Wait()

 fmt.Println("* Search done *")

 once.Do(func() {

 close(ch)

 })

}()

go func() {

 <-ctx.Done()

 fmt.Println("* Context done *")

 once.Do(func() {

 close(ch)

 })

}()

We could launch a goroutine for each file so that we can define a private
function that we can use as an entry point and then use it recursively for
subdirectories:

func fileSearch(ctx context.Context, ch chan<- Result, wg *sync.WaitGroup, file, term string, o *Options)

The main exported function will start by adding a value to the wait group. It
will then launch the private function, starting it as an asynchronous process:

wg.Add(1)

go fileSearch(ctx, ch, &wg, root, term, o)

The last thing each fileSearch should do is call WaitGroup.Done to mark the end of
the current file.

Exclude list
The private function will decrease the wait group counter before it finishes
using the Done method.. Besides that, the first thing it should do is check the
filename so that it can skip it if it is in the exclusion list:

defer wg.Done()

_, name := filepath.Split(file)

if o != nil {

 for _, e := range o.Exclude {

 if e == name {

 return

 }

 }

}

If that is not the case, we can check the current file's information using
os.Stat and send an error to the channel if we don't succeed. Since we cannot
risk causing a panic by sending into a closed channel, we can check whether
the context is done, and if not, send the error:

info, err := os.Stat(file)

if err != nil {

 select {

 case <-ctx.Done():

 return

 default:

 ch <- Result{File: file, Err: err}

 }

 return

}

Handling directories
The information that's received will tell us whether the file is a directory or
not. If it is a directory, we can get a list of files and handle the error, as we
did earlier with os.Stat. Then, we can launch another series of searches, one
for each file, if the context isn't already done. The following code sums up
these operations:

if info.IsDir() {

 files, err := ioutil.ReadDir(file)

 if err != nil {

 select {

 case <-ctx.Done():

 return

 default:

 ch <- Result{File: file, Err: err}

 }

 return

 }

 select {

 case <-ctx.Done():

 default:

 wg.Add(len(files))

 for _, f := range files {

 go fileSearch(ctx, ch, wg, filepath.Join(file,

 f.Name()), term, o)

 }

 }

 return

}

Checking file names and contents
If the file is a regular file and not a directory, we can compare the file name
or its contents, depending on the options that are specified. Checking the file
name is pretty easy:

if o == nil || !o.Contents {

 if name == term {

 select {

 case <-ctx.Done():

 default:

 ch <- Result{File: file}

 }

 }

 return

}

If we are searching for the contents, we should open the file:

f, err := os.Open(file)

if err != nil {

 select {

 case <-ctx.Done():

 default:

 ch <- Result{File: file, Err: err}

 }

 return

}

defer f.Close()

Then, we can read the file line by line to search for the selected term. If the
context expires while we are reading the file, we will stop all operations:

scanner, matches, line := bufio.NewScanner(f), []Match{}, 1

for scanner.Scan() {

 select {

 case <-ctx.Done():

 break

 default:

 if text := scanner.Text(); strings.Contains(text, term) {

 matches = append(matches, Match{Line: line, Text: text})

 }

 line++

 }

}

Finally, we can check for errors from the scanner. If there's none and the
search has results, we can send all the matches to the output channel:

select {

case <-ctx.Done():

 break

default:

 if err := scanner.Err(); err != nil {

 ch <- Result{File: file, Err: err}

 return

 }

 if len(matches) != 0 {

 ch <- Result{File: file, Matches: matches}

 }

}

In less than 200 lines, we created a concurrent file search function that uses
one goroutine per file. It takes advantage of a channel to send results and
synchronization primitives in order to coordinate operations.

Summary
In this chapter, we looked at what one of the newer packages, context, is all
about. We saw that Context is a simple interface that has four methods, and
should be used as the first argument of a function. Its main scope is to handle
cancellation and deadlines to synchronize concurrent operations and provide
the user with functionality to cancel an operation.

We saw how the default contexts, Background and TODO, don't allow cancellation,
but they can be extended using various functions of the package to add
timeouts or cancellation. We also talked about the capabilities of context
when it comes to holding values and how this should be used carefully in
order to avoid shadowing and other problems.

Then, we dived into the standard package to see where context is already
used. This included the HTTP capabilities of requests, where it can be used
for values, cancellation, and timeout, and the server shutdown operation. We
also saw how the TCP package allows us to use it in a similar fashion with a
practical example, and we also listed the operations in the database package
that allow us to use context to cancel them.

Before building our own functionality using context, we went into some of
the uses that should be avoided, from using the wrong types of keys to using
context to pass values around that should be in a function or method signature
instead. Then, we proceeded to create a function that searches files and
contents, using what we have learned about concurrency from the last three
chapters.

The next chapter will conclude the concurrency section of this book by
showing off the most common Go concurrency patterns and their usage. This
will allow us to put together all that we have learned so far about concurrency
in some very common and effective configurations.

Questions
1. What is a context in Go?
2. What's the difference between cancellation, deadline, and timeout?
3. What are the best practices when passing values with a context?
4. Which standard packages already use context?

Implementing Concurrency
Patterns
This chapter will be about concurrency patterns and how to use them to build
robust system applications. We have already looked at all the tools that are
involved in concurrency (goroutines and channels, sync and atomic, and
context) so now we will look at some common ways of combining them in
patterns so that we can use them in our programs.

The following topics will be covered in this chapter:

Beginning with generators
Sequencing with pipelines
Muxing and demuxing
Other patterns
Resource leaking

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, please refer to Chapter 3, An Overview of Go.

Beginning with generators
A generator is a function that returns the next value of a sequence each time it
is called. The biggest advantage of using generators is the lazy creation of
new values of the sequence. In Go, this can either be expressed with an
interface or with a channel. One of the upsides of generators when they're
used with channels is that they produce values concurrently, in a separate
goroutine, leaving the main goroutine capable of executing other kinds of
operations on them.

It can be abstracted with a very simple interface:

type Generator interface {

 Next() interface{}

}

type GenInt64 interface {

 Next() int64

}

The return type of the interface will depend on the use case, which is int64 in
our case. The basic implementation of it could be something such as a simple
counter:

type genInt64 int64

func (g *genInt64) Next() int64 {

 *g++

 return int64(*g)

}

This implementation is not thread-safe, so if we try to use it with goroutines,
we could lose some elements on the way:

func main() {

 var g genInt64

 for i := 0; i < 1000; i++ {

 go func(i int) {

 fmt.Println(i, g.Next())

 }(i)

 }

 time.Sleep(time.Second)

}

A simple way to make a generator concurrent is to execute atomic operations
on the integer.

This will make the concurrent generator thread-safe, with very few changes
to the code needing to happen:

type genInt64 int64

func (g *genInt64) Next() int64 {

 return atomic.AddInt64((*int64)(g), 1)

}

This will avoid race conditions in the application. However, there is another
implementation that's possible, but this requires the use of channels. The idea
is to produce the value in a goroutine and then pass it in a shared channel to
the next method, as shown in the following example:

type genInt64 struct {

 ch chan int64

}

func (g genInt64) Next() int64 {

 return <-g.ch

}

func NewGenInt64() genInt64 {

 g := genInt64{ch: make(chan int64)}

 go func() {

 for i := int64(0); ; i++ {

 g.ch <- i

 }

 }()

 return g

}

The loop will go on forever, and will be blocking in the send operation when
the generator user stops requesting new values with the Next method.

The code was structured this way because we were trying to implement the
interface we defined at the beginning. We could also just return a channel and
use it for receiving:

func GenInt64() <-chan int64 {

 ch:= make(chan int64)

 go func() {

 for i := int64(0); ; i++ {

 ch <- i

 }

 }()

 return ch

}

The main advantage of using the channel directly is the possibility of
including it in select statements in order to choose between different channel
operations. The following shows a select between two different generators:

func main() {

 ch1, ch2 := GenInt64(), GenInt64()

 for i := 0; i < 20; i++ {

 select {

 case v := <-ch1:

 fmt.Println("ch 1", v)

 case v := <-ch2:

 fmt.Println("ch 2", v)

 }

 }

}

Avoiding leaks
It is a good idea to allow the loop to end in order to avoid goroutine and
resource leakage. Some of these issues are as follows:

When a goroutine hangs without returning, the space in memory remains
used, contributing to the application's size in memory. The goroutine
and the variables it defines in the stack will get collected by the GC only
when the goroutine returns or panics.
If a file remains open, this can prevent other processes from executing
operations on it. If the number of files that are open reaches the limit
imposed by the OS, the process will not be able to open other files (or
accept network connections).

An easy solution to this problem is to always use context.Context so that you
have a well-defined exit point for the goroutine:

func NewGenInt64(ctx context.Context) genInt64 {

 g := genInt64{ch: make(chan int64)}

 go func() {

 for i := int64(0); ; i++ {

 select {

 case g.ch <- i:

 // do nothing

 case <-ctx.Done():

 close(g.ch)

 return

 }

 }

 }()

 return g

}

This can be used to generate values until there is a need for them and cancel
the context when there's no need for new values. The same pattern can be
applied to a version that returns a channel. For instance, we could use the
cancel function directly or set a timeout on the context:

func main() {

 ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*100)

 defer cancel()

 g := NewGenInt64(ctx)

 for i := range g.ch {

 go func(i int64) {

 fmt.Println(i, g.Next())

 }(i)

 }

 time.Sleep(time.Second)

}

The generator will produce numbers until the context that's provided expires.
At this point, the generator will close the channel.

Sequencing with pipelines
A pipeline is a way of structuring the application flow, and is obtained by
splitting the main execution into stages that can talk with one another
using certain means of communication. This could be either of the following:

External, such as a network connection or a file
Internal to the application, like Go's channels

The first stage is often referred to as the producer, while the last one is often
called the consumer.

The set of concurrency tools that Go offers allows us to efficiently use
multiple CPUs and optimize their usage by blocking input or output
operations. Channels in particular are the perfect tools for internal pipeline
communication. They can be represented by functions that receive an
inbound channel and return an outbound one. The base structure would look
something like this:

func stage(in <-chan interface{}) <-chan interface{} {

 var out = make(chan interface{})

 go func() {

 for v := range in {

 v = v.(int)+1 // some operation

 out <- v

 }

 close(out)

 }()

 return out

}

We create a channel of the same type as the input channel and return it. In a
separate goroutine, we receive data from the input channel, perform an
operation on the data, and we send it to the output channel.

This pattern can be further improved by the use of context.Context so that we
have greater control of the application flow. It would look something like the
following code:

func stage(ctx context.Context, in <-chan interface{}) <-chan interface{} {

 var out = make(chan interface{})

 go func() {

 defer close(out)

 for v := range in {

 v = v.(int)+1 // some operation

 select {

 case out <- v:

 case <-ctx.Done():

 return

 }

 }

 }()

 return out

}

There are a couple of general rules that we should follow when designing
pipelines:

Intermediate stages will receive an inbound channel and return another
one.
The producer will not receive any channel, but return one.
The consumer will receive a channel without returning one.
Each stage will close the channel on creation when it's done sending
messages.
Each stage should keep receiving from the input channel until it's closed.

Let's create a simple pipeline that filters lines from a reader using a certain
string and prints the filtered lines, highlighting the search string. We can start
with the first stage – the source – which will not receive any channel in its
signature but will use a reader to scan lines. We take a context in for reacting
to an early exit request (context cancellation) and a bufio scanner to read line
by line. The following code shows this:

func SourceLine(ctx context.Context, r io.ReadCloser) <-chan string {

 ch := make(chan string)

 go func() {

 defer func() { r.Close(); close(ch) }()

 s := bufio.NewScanner(r)

 for s.Scan() {

 select {

 case <-ctx.Done():

 return

 case ch <- s.Text():

 }

 }

 }()

 return ch

}

We can split the remaining operations into two phases: a filtering phase and a
writing phase. The filtering phase will simply filter from a source channel to
an output channel. We are still passing context in order to avoid sending extra
data if the context is already complete. This is the text filter implementation:

func TextFilter(ctx context.Context, src <-chan string, filter string) <-chan string {

 ch := make(chan string)

 go func() {

 defer close(ch)

 for v := range src {

 if !strings.Contains(v, filter) {

 continue

 }

 select {

 case <-ctx.Done():

 return

 case ch <- v:

 }

 }

 }()

 return ch

}

Finally, we have the final stage, the consumer, which will print the output in
a writer and will also use a context for early exit:

func Printer(ctx context.Context, src <-chan string, color int, highlight string, w io.Writer) {

 const close = "\x1b[39m"

 open := fmt.Sprintf("\x1b[%dm", color)

 for {

 select {

 case <-ctx.Done():

 return

 case v, ok := <-src:

 if !ok {

 return

 }

 i := strings.Index(v, highlight)

 if i == -1 {

 panic(v)

 }

 fmt.Fprint(w, v[:i], open, highlight, close, v[i+len(highlight):], "\n")

 }

 }

}

The use of this function is as follows:

func main() {

 var search string

 ...

 ctx := context.Background()

 src := SourceLine(ctx, ioutil.NopCloser(strings.NewReader(sometext)))

 filter := TextFilter(ctx, src, search)

 Printer(ctx, filter, 31, search, os.Stdout)

}

With this approach, we learned how to split a complex operation into a
simple task that's executed by stages and connected using channels.

Muxing and demuxing
Now that we are familiar with pipelines and stages, we can introduce two
new concepts:

Muxing (multiplexing) or fan-out: Receiving from one channel and
sending to multiple channels
Demuxing (demultiplexing) or fan-in: Receiving from multiple
channels and sending through one channel

This pattern is very common and allows us to use the power of concurrency
in different ways. The most obvious way is to distribute data from a channel
that is quicker than its following step, and create more than one instance of
such steps to make up for the difference in speed.

Fan-out
The implementation of multiplexing is pretty straightforward. The same
channel needs to be passed to different stages so that each one will be reading
from it.

Each goroutine is competing for resources during the runtime schedule, so if
we want to reserve more of them, we can use more than one goroutine for a
certain stage of the pipeline, or for a certain operation in our application.

We can create a small application that counts the occurrence of words which
appear in a piece of text using such an approach. Let's create an initial
producer stage that reads from a writer and returns a slice of words for that
line:

func SourceLineWords(ctx context.Context, r io.ReadCloser) <-chan []string {

 ch := make(chan []string)

 go func() {

 defer func() { r.Close(); close(ch) }()

 b := bytes.Buffer{}

 s := bufio.NewScanner(r)

 for s.Scan() {

 b.Reset()

 b.Write(s.Bytes())

 words := []string{}

 w := bufio.NewScanner(&b)

 w.Split(bufio.ScanWords)

 for w.Scan() {

 words = append(words, w.Text())

 }

 select {

 case <-ctx.Done():

 return

 case ch <- words:

 }

 }

 }()

 return ch

}

We can now define another stage that will count the occurrence of these
words. We will use this stage for the fan-out:

func WordOccurrence(ctx context.Context, src <-chan []string) <-chan map[string]int {

 ch := make(chan map[string]int)

 go func() {

 defer close(ch)

 for v := range src {

 count := make(map[string]int)

 for _, s := range v {

 count[s]++

 }

 select {

 case <-ctx.Done():

 return

 case ch <- count:

 }

 }

 }()

 return ch

}

In order to use the first stage as a source for more than one instance of the
second stage, we just need to create more than one counting stage with the
same input channel:

ctx, canc := context.WithCancel(context.Background())

defer canc()

src := SourceLineWords(ctx,

 ioutil.NopCloser(strings.NewReader(cantoUno)))

count1, count2 := WordOccurrence(ctx, src), WordOccurrence(ctx, src)

Fan-in
Demuxing is a little bit more complicated because we don't need to receive
data blindly in one goroutine or another – we actually need to synchronize a
series of channels. A good approach to avoid race conditions is to create
another channel where all the data from the various input channels will be
received. We also need to make sure that this merge channel gets closed once
all the channels are done. We also have to keep in mind that the channel will
be closed if the context is cancelled. We are using sync.Waitgroup here to wait
for all the channels to finish:

wg := sync.WaitGroup{}

merge := make(chan map[string]int)

wg.Add(len(src))

go func() {

 wg.Wait()

 close(merge)

}()

The problem is that we have two possible triggers for closing the channel:
regular transmission ending and context cancelling.

We have to make sure that if the context ends, no message is sent to the
outbound channel. Here, we are collecting the values from the input channels
and sending them to the merge channel, but only if the context isn't complete.
We do this in order to avoid a send operation being sent to a closed channel,
which would make our application panic:

for _, ch := range src {

 go func(ch <-chan map[string]int) {

 defer wg.Done()

 for v := range ch {

 select {

 case <-ctx.Done():

 return

 case merge <- v:

 }

 }

 }(ch)

}

Finally, we can focus on the last operation, which uses the merge channel to

execute our final word count:

count := make(map[string]int)

for {

 select {

 case <-ctx.Done():

 return count

 case c, ok := <-merge:

 if !ok {

 return count

 }

 for k, v := range c {

 count[k] += v

 }

 }

}

The application's main function, with the addition of the fan-in, will look as
follows:

func main() {

 ctx, canc := context.WithCancel(context.Background())

 defer canc()

 src := SourceLineWords(ctx, ioutil.NopCloser(strings.NewReader(cantoUno)))

 count1, count2 := WordOccurrence(ctx, src), WordOccurrence(ctx, src)

 final := MergeCounts(ctx, count1, count2)

 fmt.Println(final)

}

We can see that the fan-in is the most complex and critical part of the
application. Let's recap the decisions that helped build a fan-in function that
is free from panic or deadlock:

Use a merge channel to collect values from the various input.
Have sync.WaitGroup with a counter equal to the number of input channels.
Use it in a separate goroutine and wait for it to close the channel.
For each input channel, create a goroutine that transfers the values to the
merge channel.
Ensure that you send the record only if the context is not complete.
Use the wait group's done function before exiting such a goroutine.

Following the preceding steps will allow us to use the merge channel with a
simple range. In our example, we are also checking whether the context is
complete before receiving from the channel in order to allow for an early exit
from the goroutine.

Producers and consumers
Channels allow us to easily handle a scenario in which multiple consumers
receive data from one producer and vice versa.

The case with a single producer and one consumer, as we have already seen,
is pretty straightforward:

func main() {

 // one producer

 var ch = make(chan int)

 go func() {

 for i := 0; i < 100; i++ {

 ch <- i

 }

 close(ch)

 }()

 // one consumer

 var done = make(chan struct{})

 go func() {

 for i := range ch {

 fmt.Println(i)

 }

 close(done)

 }()

 <-done

}

The full example is available here: https://play.golang.org/p/hNgehu62kjv.

https://play.golang.org/p/hNgehu62kjv

Multiple producers (N * 1)
Having multiple producers or consumers can be easily handled using wait
groups. In the case of multiple producers, all the goroutines will share the
same channel:

// three producer

var ch = make(chan string)

wg := sync.WaitGroup{}

wg.Add(3)

for i := 0; i < 3; i++ {

 go func(n int) {

 for i := 0; i < 100; i++ {

 ch <- fmt.Sprintln(n, i)

 }

 wg.Done()

 }(i)

}

go func() {

 wg.Wait()

 close(ch)

}()

The full example is available here: https://play.golang.org/p/4DqWKntl6sS.

They will use sync.WaitGroup to wait for each producer to finish before closing
the channel.

https://play.golang.org/p/4DqWKntl6sS

Multiple consumers (1 * M)
The same reasoning applies with multiple consumers – they all receive from
the same channel in different goroutines:

func main() {

 // three consumers

 wg := sync.WaitGroup{}

 wg.Add(3)

 var ch = make(chan string)

 for i := 0; i < 3; i++ {

 go func(n int) {

 for i := range ch {

 fmt.Println(n, i)

 }

 wg.Done()

 }(i)

 }

 // one producer

 go func() {

 for i := 0; i < 10; i++ {

 ch <- fmt.Sprintln("prod-", i)

 }

 close(ch)

 }()

 wg.Wait()

}

The full example is available here: https://play.golang.org/p/_SWtw54ITFn.

In this case, sync.WaitGroup is used to wait for the application to end.

https://play.golang.org/p/_SWtw54ITFn

Multiple consumers and producers
(N*M)
The last scenario is where we have an arbitrary number of producers (N) and
another arbitrary number of consumers (M).

In this case, we need two waiting groups: one for the producer and another
for the consumer:

const (

 N = 3

 M = 5

)

wg1 := sync.WaitGroup{}

wg1.Add(N)

wg2 := sync.WaitGroup{}

wg2.Add(M)

var ch = make(chan string)

This will be followed by a series of producers and consumers, each one in
their own goroutine:

for i := 0; i < N; i++ {

 go func(n int) {

 for i := 0; i < 10; i++ {

 ch <- fmt.Sprintf("src-%d[%d]", n, i)

 }

 wg1.Done()

 }(i)

}

for i := 0; i < M; i++ {

 go func(n int) {

 for i := range ch {

 fmt.Printf("cons-%d, msg %q\n", n, i)

 }

 wg2.Done()

 }(i)

}

The final step is to wait for the WaitGroup producer to finish its work in order to
close the channel.

Then, we can wait for the consumer channel to let all the messages be

processed by the consumers:

wg1.Wait()

close(ch)

wg2.Wait()

Other patterns
So far, we've looked at the most common concurrency patterns that can be
used. Now, we will focus on some that are less common but are worth
mentioning.

Error groups
The power of sync.WaitGroup is that it allows us to wait for simultaneous
goroutines to finish their jobs. We have already looked at how sharing
context can allow us to give the goroutines an early exit if it's used correctly.
The first concurrent operation, such as send or receive from a channel, is in
the select block, together with the context completion channel:

func main() {

 ctx, canc := context.WithTimeout(context.Background(), time.Second)

 defer canc()

 wg := sync.WaitGroup{}

 wg.Add(10)

 var ch = make(chan int)

 for i := 0; i < 10; i++ {

 go func(ctx context.Context, i int) {

 defer wg.Done()

 d := time.Duration(rand.Intn(2000)) * time.Millisecond

 time.Sleep(d)

 select {

 case <-ctx.Done():

 fmt.Println(i, "early exit after", d)

 return

 case ch <- i:

 fmt.Println(i, "normal exit after", d)

 }

 }(ctx, i)

 }

 go func() {

 wg.Wait()

 close(ch)

 }()

 for range ch {

 }

}

An improvement on this scenario is offered by the
experimental golang.org/x/sync/errgroup package.

The built-in goroutines are always of the func() type, but this package allows
us to execute func() error concurrently and return the first error that's received
from the various goroutines.

This is very useful in scenarios where you launch more goroutines together
and receive the first error. The errgroup.Group type can be used as a zero value,

and its Do method takes func() error as an argument and launches the function
concurrently.

The Wait method either waits for all the functions to finish successfully and
returns nil, or it returns the first error that comes from any of the functions.

Let's create an example that defines a URL visitor, that is, a function that gets
a URL string and returns func() error, which makes the call:

func visitor(url string) func() error {

 return func() (err error) {

 s := time.Now()

 defer func() {

 log.Println(url, time.Since(s), err)

 }()

 var resp *http.Response

 if resp, err = http.Get(url); err != nil {

 return

 }

 return resp.Body.Close()

 }

}

We can use it directly with the Go method and wait. This will return the error
that was caused by the invalid URL:

func main() {

 eg := errgroup.Group{}

 var urlList = []string{

 "http://www.golang.org/",

 "http://invalidwebsite.hey/",

 "http://www.google.com/",

 }

 for _, url := range urlList {

 eg.Go(visitor(url))

 }

 if err := eg.Wait(); err != nil {

 log.Fatalln("Error:", err)

 }

}

The error group also allows us to create a group, along with a context, with
the WithContext function. This context gets cancelled when the first error is
received. The context's cancellation enables the Wait method to return right
away, but it also allows an early exit in the goroutines in your functions.

We can create a similar func() error creator that will send values into a
channel until the context is closed. We will introduce a small chance (1%) of

raising an error:

func sender(ctx context.Context, ch chan<- string, n int) func() error {

 return func() (err error) {

 for i := 0; ; i++ {

 if rand.Intn(100) == 42 {

 return errors.New("the answer")

 }

 select {

 case ch <- fmt.Sprintf("[%d]%d", n, i):

 case <-ctx.Done():

 return nil

 }

 }

 }

}

We will generate an error group and a context with the dedicated function
and use it to launch several instances of the function. We will receive this in a
separate goroutine while we wait for the group. After the wait is over, we will
make sure that there are no more values being sent to the channel (this would
cause a panic) by waiting an extra second:

func main() {

 eg, ctx := errgroup.WithContext(context.Background())

 ch := make(chan string)

 for i := 0; i < 10; i++ {

 eg.Go(sender(ctx, ch, i))

 }

 go func() {

 for s := range ch {

 log.Println(s)

 }

 }()

 if err := eg.Wait(); err != nil {

 log.Println("Error:", err)

 }

 close(ch)

 log.Println("waiting...")

 time.Sleep(time.Second)

}

As expected, thanks to the select statement within the context, the application
runs seamlessly and does not panic.

Leaky bucket
We saw how to build a rate limiter using ticker in the previous chapters: by
using time.Ticker to force a client to await its turn in order to get served. There
is another take on rate limiting of services and libraries that's known as the
leaky bucket. The name evokes an image of a bucket with a few holes in it.
If you are filling it, you have to be careful to not put too much water into the
bucket, otherwise it's going to overflow. Before adding more water, you need
to wait for the level to drop – the speed at which this happens will depend on
the size of the bucket and the number of the holes it has. We can easily
understand what this concurrency pattern does by taking a look at the
following analogy:

 The water going through the holes represents requests that have been
completed.
The water that's overflowing from the bucket represents the requests that
have been discarded.

The bucket will be defined by two attributes:

Rate: The ideal amount of requests per time if the frequency of requests
is lower.
Capacity: The number of requests that can be done at the same time
before the resource turns unresponsive temporarily.

The bucket has a maximum capacity, so when requests are made with a
frequency higher than the rate specified, this capacity starts dropping, just
like when you're putting too much water in and the bucket starts to overflow.
If the frequency is zero or lower than the rate, the bucket will slowly gain its
capacity, and so the water will be slowly drained.

The data structure of the leaky bucket will have a capacity and a counter for
the requests that are available. This counter will be the same as the capacity
on creation, and will drop each time requests are executed. The rate specifies

how often the status needs to be reset to the capacity:

type bucket struct {

 capacity uint64

 status uint64

}

When creating a new bucket, we should also take care of the status reset. We
can use a goroutine for this and use a context to terminate it correctly. We can
create a ticker using the rate and then use these ticks to reset the status. We
need to use the atomic package to ensure it is thread-safe:

func newBucket(ctx context.Context, cap uint64, rate time.Duration) *bucket {

 b := bucket{capacity: cap, status: cap}

 go func() {

 t := time.NewTicker(rate)

 for {

 select {

 case <-t.C:

 atomic.StoreUint64(&b.status, b.capacity)

 case <-ctx.Done():

 t.Stop()

 return

 }

 }

 }()

 return &b

}

When we're adding to the bucket, we can check the status and act
accordingly:

If the status is 0, we cannot add anything.
If the amount to add is higher than the availability, we add what we can.
We add the full amount otherwise:

func (b *bucket) Add(n uint64) uint64 {

 for {

 r := atomic.LoadUint64(&b.status)

 if r == 0 {

 return 0

 }

 if n > r {

 n = r

 }

 if !atomic.CompareAndSwapUint64(&b.status, r, r-n) {

 continue

 }

 return n

 }

}

We are using a loop to try atomic swap operations until they succeed to
ensure that what we get with the Load operation doesn't change when we are
doing a compare and swap (CAS).

The bucket can be used in a client that will try to add a random amount to the
bucket and will log its result:

type client struct {

 name string

 max int

 b *bucket

 sleep time.Duration

}

func (c client) Run(ctx context.Context, start time.Time) {

 for {

 select {

 case <-ctx.Done():

 return

 default:

 n := 1 + rand.Intn(c.max-1)

 time.Sleep(c.sleep)

 e := time.Since(start).Seconds()

 a := c.b.Add(uint64(n))

 log.Printf("%s tries to take %d after %.02fs, takes

 %d", c.name, n, e, a)

 }

 }

}

We can use more clients concurrently so that having concurrent access to
resources will have the following result:

Some goroutines will be adding what they expect to the bucket.
One goroutine will finally fill the bucket by adding a quantity that is
equal to the remaining capacity, even if the amount that they are trying
to add is higher.
The other goroutines will not be able to add to the bucket until the
capacity is reset:

func main() {

 ctx, canc := context.WithTimeout(context.Background(), time.Second)

 defer canc()

 start := time.Now()

 b := newBucket(ctx, 10, time.Second/5)

 t := time.Second / 10

 for i := 0; i < 5; i++ {

 c := client{

 name: fmt.Sprint(i),

 b: b,

 sleep: t,

 max: 5,

 }

 go c.Run(ctx, start)

 }

 <-ctx.Done()

}

Sequencing
In concurrent scenarios with multiple goroutines, we may need to have a
synchronization between goroutines, such as in a scenario where each
goroutine needs to wait for its turn after sending.

A use case for this scenario could be a turn-based application wherein
different goroutines are sending messages to the same channel, and each one
of them has to wait until all the others have finished before they can send it
again.

A very simple implementation of this scenario can be obtained using private
channels between the main goroutine and the senders. We can define a very
simple structure that carries both messages and a Wait channel. It will have
two methods – one for marking the transaction as done and another one that
waits for such a signal – when it uses a channel underneath. The following
method shows this:

type msg struct {

 value string

 done chan struct{}

}

func (m *msg) Wait() {

 <-m.done

}

func (m *msg) Done() {

 m.done <- struct{}{}

}

We can create a source of messages with a generator. We can use a random
delay with the send operation. After each send, we wait for the signal that is
obtained by calling the Done method. We always use context to keep
everything free from leaks:

func send(ctx context.Context, v string) <-chan msg {

 ch := make(chan msg)

 go func() {

 done := make(chan struct{})

 for i := 0; ; i++ {

 time.Sleep(time.Duration(float64(time.Second/2) * rand.Float64()))

 m := msg{fmt.Sprintf("%s msg-%d", v, i), done}

 select {

 case <-ctx.Done():

 close(ch)

 return

 case ch <- m:

 m.Wait()

 }

 }

 }()

 return ch

}

We can use a fan-in to put all of the channels into one, singular channel:

func merge(ctx context.Context, sources ...<-chan msg) <-chan msg {

 ch := make(chan msg)

 go func() {

 <-ctx.Done()

 close(ch)

 }()

 for i := range sources {

 go func(i int) {

 for {

 select {

 case v := <-sources[i]:

 select {

 case <-ctx.Done():

 return

 case ch <- v:

 }

 }

 }

 }(i)

 }

 return ch

}

The main application will be receiving from the merged channel until it's
closed. When it receives one message from each channel, the channel will be
blocked, waiting for the Done method signal to be called by the main
goroutine.

This specific configuration will allow the main goroutine to receive just one
message from each channel. When the message count reaches the number of
goroutines, we can call Done from the main goroutine and reset the list so that
the other goroutines will be unlocked and be able to send messages again:

func main() {

 ctx, canc := context.WithTimeout(context.Background(), time.Second)

 defer canc()

 sources := make([]<-chan msg, 5)

 for i := range sources {

 sources[i] = send(ctx, fmt.Sprint("src-", i))

 }

 msgs := make([]msg, 0, len(sources))

 start := time.Now()

 for v := range merge(ctx, sources...) {

 msgs = append(msgs, v)

 log.Println(v.value, time.Since(start))

 if len(msgs) == len(sources) {

 log.Println("*** done ***")

 for _, m := range msgs {

 m.Done()

 }

 msgs = msgs[:0]

 start = time.Now()

 }

 }

}

Running the application will result in all the goroutines sending a message to
the main one once. Each of them will be waiting for everyone to send their
message. Then, they will start sending messages again. This results
in messages being sent in rounds, as expected.

Summary
In this chapter, we looked at some specific concurrency patterns for our
applications. We learned that generators are functions that return channels,
and also feed such channels with data and close them when there is no more
data. We also saw that we can use a context to allow the generator to exit
early.

Next, we focused on pipelines, which are stages of execution that use
channels for communication. They can either be source, which doesn't
require any input; destination, which doesn't return a channel; or
intermediate, which receives a channel as input and returns one as output.

Another pattern is the multiplexing and demultiplexing one, which consists of
spreading a channel to different goroutines and combining several channels
into one. It is often referred to as fan-out fan-in, and it allows us to execute
different operations concurrently on a set of data.

Finally, we learned how to implement a better version of the rate limiter
called leaky bucket, which limits the number of requests in a specific
amount of time. We also looked at the sequencing pattern, which uses a
private channel to signal to all of the sending goroutines when they are
allowed to send data again.

In this next chapter, we are going to introduce the first of two extra topics
that were presented in the Sequencing section. It is here that we will
demonstrate how to use reflection to build generic code that adapts to any
user-provided type.

Questions
1. What is a generator? What are its responsibilities?
2. How could you describe a pipeline?
3. What type of stage gets a channel and returns one?
4. What is the difference between fan-in and fan-out?

Section 5: A Guide to Using
Reflection and CGO
This section focuses on two tools that are very controversial—reflection,
which allows the creation of generic code but has a great cost in terms of
performance, and CGO, which allows the use of C code in a Go application
but makes it more complex to debug and control the application.

This section consists of the following chapters:

Chapter 15, Using Reflection
Chapter 16, Using CGO

Using Reflection
This chapter is about reflection, a tool that allows an application to inspect its
own code, overcoming some of the limitations imposed by Go static typing
and its lack of generics. This can be very helpful, for instance, for producing
packages that are capable of handling any type of input that they receive.

The following topics will be covered in this chapter:

Understanding interfaces and type assertions
Learning about interaction with basic types
Using reflection with complex types
Evaluating the cost of reflection
Learning the best practices of reflection usage

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, refer to Chapter 3, An Overview of Go.

What's reflection?
Reflection is a very powerful feature that allows meta-programming, the
capability of an application to examine its own structure. It's very useful to
analyze the types in an application at runtime, and it is used in many
encoding packages such as JSON and XML.

Type assertions
We briefly mentioned how type assertions work in Chapter 3, An Overview of
Go. A type assertion is an operation that allows us to go from interface to
concrete type and vice versa. It takes the following form:

unsafe assertion

v := SomeVar.(SomeType)

safe assertion

v, ok := SomeVar.(SomeType)

The first version is unsafe, and it assigns a value to a single variable.

Using assertion as an argument of a function also counts as unsafe. This type
of operation panics if the assertion is wrong:

func main() {

 var a interface{} = "hello"

 fmt.Println(a.(string)) // ok

 fmt.Println(a.(int)) // panics!

}

A full example is available here: https://play.golang.org/p/hNN87SuprGR.

The second version uses a Boolean a as second value, and it will show the
success of the operation. If the assertion is not possible, the first value will
always be a zero value for the asserted type:

func main() {

 var a interface{} = "hello"

 s, ok := a.(string) // true

 fmt.Println(s, ok)

 i, ok := a.(int) // false

 fmt.Println(i, ok)

}

A full example is available here: https://play.golang.org/p/BIba2ywkNF_j.

https://cdp.packtpub.com/hands_on_systems_programming_with_go/wp-admin/post.php?post=38&action=edit#post_26
https://play.golang.org/p/hNN87SuprGR
https://play.golang.org/p/BIba2ywkNF_j

Interface assertion
Assertion can also be done from one interface to another. Imagine having two
different interfaces:

type Fooer interface {

 Foo()

}

type Barer interface {

 Bar()

}

Let's define a type that implements one of them and another that implements
both:

type A int

func (A) Foo() {}

type B int

func (B) Bar() {}

func (B) Foo() {}

If we define a new variable for the first interface, the assertion to the second
is going to be successful only if the underlying value has a type that
implements both; otherwise, it's going to fail:

func main() {

 var a Fooer

 a = A(0)

 v, ok := a.(Barer)

 fmt.Println(v, ok)

 a = B(0)

 v, ok = a.(Barer)

 fmt.Println(v, ok)

}

A full example is available here: https://play.golang.org/p/bX2rnw5pRXJ.

A use case scenario could be having the io.Reader interface, checking out
whether it is also an io.Closer interface, and wrapping it in the ioutil.NopCloser

https://play.golang.org/p/bX2rnw5pRXJ

function (which returns an io.ReadCloser interface) if not:

func Closer(r io.Reader) io.ReadCloser {

 if rc, ok := r.(io.ReadCloser); ok {

 return rc

 }

 return ioutil.NopCloser(r)

}

func main() {

 log.Printf("%T", Closer(&bytes.Buffer{}))

 log.Printf("%T", Closer(&os.File{}))

}

A full example is available here: https://play.golang.org/p/hUEsDYHFE7i.

There is an important aspect to interfaces that we need to underline before
jumping onto reflection—its representation is always a tuple interface-value
where the value is a concrete type and cannot be another interface.

https://play.golang.org/p/hUEsDYHFE7i

Understanding basic mechanics
The reflection package allows you to extract the type and value from
any interface{} variable. This can be done using the following:

Using reflection.TypeOf returns the type of the interface in
a reflection.Type variable.
The reflection.ValueOf function returns the value of the interface using
the reflection.Value variable.

Value and Type methods
A reflect.Value type also carries information of the type that can be retrieved
with the Type method:

func main() {

 var a interface{} = int64(23)

 fmt.Println(reflect.TypeOf(a).String())

 // int64

 fmt.Println(reflect.ValueOf(a).String())

 // <int64 Value>

 fmt.Println(reflect.ValueOf(a).Type().String())

 // int64

}

A full example is available here: https://play.golang.org/p/tmYuMc4AF1T.

https://play.golang.org/p/tmYuMc4AF1T

Kind
Another important property of reflect.Type is Kind, which is an enumeration of
basic types and generic complex types. The main relationship
between reflect.Kind and reflect.Type is that the first represents the memory
representation of the second.

For built-in types, Kind and Type are the same, but for custom types they will
differ—the Type value will be what is expected, but the Kind value will be one
of the built-in ones on which the custom type is defined:

func main() {

 var a interface{}

 a = "" // built in string

 t := reflect.TypeOf(a)

 fmt.Println(t.String(), t.Kind())

 type A string // custom type

 a = A("")

 t = reflect.TypeOf(a)

 fmt.Println(t.String(), t.Kind())

}

A full example is available here: https://play.golang.org/p/qjiouk88INn.

For the composite type, it will reflect just the main type and not the
underlying ones. This means that a pointer to a structure or to an integer is
the same kind, reflect.Pointer:

func main() {

 var a interface{}

 a = new(int) // int pointer

 t := reflect.TypeOf(a)

 fmt.Println(t.String(), t.Kind())

 a = new(struct{}) // struct pointer

 t = reflect.TypeOf(a)

 fmt.Println(t.String(), t.Kind())

}

A full example is available here: https://play.golang.org/p/-uJjZvTuzVf.

https://play.golang.org/p/qjiouk88INn
https://play.golang.org/p/-uJjZvTuzVf

The same reasoning applies to all the other composite types, such as arrays,
slices, maps, and channels.

Value to interface
In the same way that we can get reflect.Value from any interface{} value, we
can execute the reverse operation and obtain interface{}from reflect.Value. This
is done using the Interface method of the reflected value, and be cast to a
concrete type if necessary. If the interested method or function accepts an
empty interface, such as json.Marshal or fmt.Println, the returned value can be
passed directly without any casting:

func main() {

 var a interface{} = int(12)

 v := reflect.ValueOf(a)

 fmt.Println(v.String())

 fmt.Printf("%v", v.Interface())

}

A full example is available here: https://play.golang.org/p/1942Dhm5sap.

https://play.golang.org/p/1942Dhm5sap

Manipulating values
Transforming values in their reflection and going back to the value is not
very useful if the values themselves cannot be changed. That's why our next
step is seeing how to change them using the reflection package.

Changing values
There is a series of methods of the reflect.Value type that allow you to change
the underlying value:

Set: Uses another reflect.Value
SetBool: Boolean
SetBytes: Byte slice
SetComplex: Any complex type
SetFloat: Any float type
SetInt: Any signed integer type
SetPointer: A pointer
SetString: A string
SetUint: Any unsigned integer

In order to set a value, it needs to editable, and this happens in specific
conditions. To verify this, there is a method, CanSet, which returns true if a
value can be changed. If the value cannot be changed and a Set method is
called anyway, the application will panic:

func main() {

 var a = int64(12)

 v := reflect.ValueOf(a)

 fmt.Println(v.String(), v.CanSet())

 v.SetInt(24)

}

A full example is available here: https://play.golang.org/p/hKn8qNtn0gN.

In order to be changed, a value needs to be addressable. A value is
addressable if it's possible to modify the actual storage where the object is
saved. When creating a new value using a basic built-in type, such
as string , what gets passed to the function is interface{} , which hosts a copy
of the string.

Changing this copy would result in a variation of the copy with no effect on
the original variable. This would be incredibly confusing, and it would make

https://play.golang.org/p/hKn8qNtn0gN

the usage of a sensible tool such as reflection, even harder. That's why,
instead of this useless behavior, the reflect package panics—it's a design
choice. This explains why the last example panicked.

We can create reflect.Value using the pointer to the value we want to change,
and access the value using the Elem method. This will give us a value that is
addressable because we copied the pointer instead of the value, so the
reflected value is still a pointer to the variable:

func main() {

 var a = int64(12)

 v := reflect.ValueOf(&a)

 fmt.Println(v.String(), v.CanSet())

 e := v.Elem()

 fmt.Println(e.String(), e.CanSet())

 e.SetInt(24)

 fmt.Println(a)

}

A full example is available here: https://play.golang.org/p/-X5JsBrlr4Q.

https://play.golang.org/p/-X5JsBrlr4Q

Creating new values
The reflect package allows us also to create new values using types. There are
several functions that allow us to create a value:

MakeChan creates a new channel value
MakeFunc creates a new function value
MakeMap and MakeMapWithSize creates a new map value
MakeSlice creates a new slice value
New creates a new pointer to the type
NewAt creates a new pointer to the type using the selected address
Zero creates a zero value of the selected type

The following code shows how to create new values in a couple of different
ways:

func main() {

 t := reflect.TypeOf(int64(100))

 // zero value

 fmt.Printf("%#v\n", reflect.Zero(t))

 // pointer to int

 fmt.Printf("%#v\n", reflect.New(t))

}

A full example is available here: https://play.golang.org/p/wCTILSK1F1C.

https://play.golang.org/p/wCTILSK1F1C

Handling complex types
After seeing how to handle the reflection basics, we will now see how
complex data types such as structures and maps can also be handled using
reflection.

Data structures
For changeability, structures work in exactly the same way as the basic types;
we need to obtain the reflection of the pointer, then access its element in
order to be able to change the value, because using the structure directly
would produce a copy of it and it would panic when changing values.

We can replace the value of the entire structure using the Set method, after
obtaining the new value's reflection:

func main() {

 type X struct {

 A, B int

 c string

 }

 var a = X{10, 100, "apple"}

 fmt.Println(a)

 e := reflect.ValueOf(&a).Elem()

 fmt.Println(e.String(), e.CanSet())

 e.Set(reflect.ValueOf(X{1, 2, "banana"}))

 fmt.Println(a)

}

A full example is available here: https://play.golang.org/p/mjb3gJw5CeA.

https://play.golang.org/p/mjb3gJw5CeA

Changing fields
Individual fields can also be modified using Field methods:

Field returns a field using its index
FieldByIndex returns a nested field using a series of indexes
FieldByName returns a field using its name
FieldByNameFunc returns a field using func(string) bool in the name

Let's define a structure to change the values of the fields, using both simple
and complex types, with at least one unexported field:

type A struct {

 B

 x int

 Y int

 Z int

}

type B struct {

 F string

 G string

}

Now that we have the structure, we can try to access the fields in different
ways:

func main() {

 var a A

 v := reflect.ValueOf(&a)

 func() {

 // trying to get fields from ptr panics

 defer func() {

 log.Println("panic:", recover())

 }()

 log.Printf("%s", v.Field(1).String())

 }()

 v = v.Elem()

 // changing fields by index

 for i := 0; i < 4; i++ {

 f := v.Field(i)

 if f.CanSet() && f.Type().Kind() == reflect.Int {

 f.SetInt(42)

 }

 }

 // changing nested fields by index

 v.FieldByIndex([]int{0, 1}).SetString("banana")

 // getting fields by name

 v.FieldByName("B").FieldByName("F").SetString("apple")

 log.Printf("%+v", a)

}

A full example is available here: https://play.golang.org/p/z5slFkIU5UE.

When working with reflect.Value and structure fields, what you get are other
values, indistinguishable from the struct. When handling reflect.Type instead,
you obtain a reflect.StructField structure, which is another type that carries all
the information of the field with it.

https://play.golang.org/p/z5slFkIU5UE

Using tags
A structure field carries plenty of information, from the field name and index
to its tag:

type StructField struct {

 Name string

 PkgPath string

 Type Type // field type

 Tag StructTag // field tag string

 Offset uintptr // offset within struct, in bytes

 Index []int // index sequence for Type.FieldByIndex

 Anonymous bool // is an embedded field

}

A reflect.StructField value can be obtained using the reflect.Type methods:

Field

FieldByName

FieldByIndex

They are the same methods used by reflect.Value, but they return different
types. The NumField method returns the total number of fields for the structure,
allowing us to execute an iteration:

type Person struct {

 Name string `json:"name,omitempty" xml:"-"`

 Surname string `json:"surname,omitempty" xml:"-"`

}

func main() {

 v := reflect.ValueOf(Person{"Micheal", "Scott"})

 t := v.Type()

 fmt.Println("Type:", t)

 for i := 0; i < t.NumField(); i++ {

 fmt.Printf("%v: %v\n", t.Field(i).Name, v.Field(i))

 }

}

A full example is available here: https://play.golang.org/p/nkEADg77zFC.

Tags are really central to reflection because they can store extra information
about a field and how other packages behave with it. To add a tag to a field, it

https://play.golang.org/p/nkEADg77zFC

needs to be inserted after the field name and type in a string, which should
have a key:"value" structure. One field can have multiple tuples in its tag, and
each pair is separated by a space. Let's look at a practical example:

type A struct {

 Name string `json:"name,omitempty" xml:"-"`

 Surname string `json:"surname,omitempty" xml:"-"`

}

This structure has two fields, both with tags, and each tag has two pairs.
The Get method returns the value for a specific key:

func main() {

 t := reflect.TypeOf(A{})

 fmt.Println(t)

 for i := 0; i < t.NumField(); i++ {

 f := t.Field(i)

 fmt.Printf("%s JSON=%s XML=%s\n", f.Name, f.Tag.Get("json"), f.Tag.Get("xml"))

 }

}

A full example is available here: https://play.golang.org/p/P-Te8O1Hyyn.

https://play.golang.org/p/P-Te8O1Hyyn

Maps and slices
You can easily use reflection to read and manipulate maps and slices. Since
they are such important tools for writing applications, let's see how to execute
an operation using reflection.

Maps
A map type allows you to get the type of both value and key, using the Key and
Elem methods:

func main() {

 maps := []interface{}{

 make(map[string]struct{}),

 make(map[int]rune),

 make(map[float64][]byte),

 make(map[int32]chan bool),

 make(map[[2]string]interface{}),

 }

 for _, m := range maps {

 t := reflect.TypeOf(m)

 fmt.Printf("%s k:%-10s v:%-10s\n", m, t.Key(), t.Elem())

 }

}

A full example is available here: https://play.golang.org/p/j__1jtgy-56.

The values can be accessed in all the ways that a map can be accessed
normally:

By getting a value using a key
By ranging over keys
By ranging over values

Let's see how it works in a practical example:

func main() {

 m := map[string]int64{

 "a": 10,

 "b": 20,

 "c": 100,

 "d": 42,

 }

 v := reflect.ValueOf(m)

 // access one field

 fmt.Println("a", v.MapIndex(reflect.ValueOf("a")))

 fmt.Println()

 // range keys

 for _, k := range v.MapKeys() {

 fmt.Println(k, v.MapIndex(k))

https://play.golang.org/p/j__1jtgy-56

 }

 fmt.Println()

 // range keys and values

 i := v.MapRange()

 for i.Next() {

 fmt.Println(i.Key(), i.Value())

 }

}

Note that we don't need to pass a pointer to the map to make it addressable,
because maps are already pointers.

Each method is pretty straightforward and depends on the type of access you
need to the map. Setting values is also possible, and should always be
possible because maps are passed by reference. The following snippet shows
a practical example:

func main() {

 m := map[string]int64{}

 v := reflect.ValueOf(m)

 // setting one field

 v.SetMapIndex(reflect.ValueOf("key"), reflect.ValueOf(int64(1000)))

 fmt.Println(m)

}

A full example is available here: https://play.golang.org/p/JxK_8VPoWU0.

It is also possible to use this method to unset a variable, like we do when
calling the delete function using the zero value of reflect.Value as a second
argument:

func main() {

 m := map[string]int64{"a": 10}

 fmt.Println(m, len(m))

 v := reflect.ValueOf(m)

 // deleting field

 v.SetMapIndex(reflect.ValueOf("a"), reflect.Value{})

 fmt.Println(m, len(m))

}

A full example is available here: https://play.golang.org/p/4bPqfmaKzTC.

The output will have one less field as it gets deleted because the length of the

https://play.golang.org/p/JxK_8VPoWU0
https://play.golang.org/p/4bPqfmaKzTC

map decreases after SetMapIndex.

Slices
A slice allows you to get its size with the Len method and to access its
elements using the Index method. Let's see that in action in the following code:

func main() {

 m := []int{10, 20, 100}

 v := reflect.ValueOf(m)

 for i := 0; i < v.Len(); i++ {

 fmt.Println(i, v.Index(i))

 }

}

A full example is available here: https://play.golang.org/p/ifq0O6bFIZc.

Since it is always possible to get the address of a slice element, it is also
possible to use reflect.Value to change the content of the respective element in
the slice:

func main() {

 m := []int64{10, 20, 100}

 v := reflect.ValueOf(m)

 for i := 0; i < v.Len(); i++ {

 v.Index(i).SetInt(v.Index(i).Interface().(int64) * 2)

 }

 fmt.Println(m)

}

A full example is available here: https://play.golang.org/p/onuIvWyQ7GY.

It is also possible to append to a slice using the reflect package. If the value is
obtained from the pointer to the slice, the result of this operation can also be
used to replace the original slice:

func main() {

 var s = []int{1, 2}

 fmt.Println(s)

 v := reflect.ValueOf(s)

 // same as append(s, 3)

 v2 := reflect.Append(v, reflect.ValueOf(3))

 // s can't and does not change

 fmt.Println(v.CanSet(), v, v2)

https://play.golang.org/p/ifq0O6bFIZc
https://play.golang.org/p/onuIvWyQ7GY

 // using the pointer allows change

 v = reflect.ValueOf(&s).Elem()

 v.Set(v2)

 fmt.Println(v.CanSet(), v, v2)

}

A full example is available here: https://play.golang.org/p/2hXRg7Ih9wk.

https://play.golang.org/p/2hXRg7Ih9wk

Functions
Method and function handling with reflection allow you to gather
information about the signature of a certain entry and also to invoke it.

Analyzing a function
There are a few methods of reflect.Type in the package that will return
information about a function. These methods are as follows:

NumIn: Returns the number of input arguments of the function
In: Returns the selected input argument
IsVariadic: Tells you if the last argument of the function is variadic
NumOut: Returns the number of output values returned by the function
Out: Returns the Type value of the select output

Note that all these methods will panic if the kind of reflect.Type is not Func. We
can test these methods by defining a series of functions:

func Foo() {}

func Bar(a int, b string) {}

func Baz(a int, b string) (int, error) { return 0, nil }

func Qux(a int, b ...string) (int, error) { return 0, nil }

Now we can use the method from reflect.Type to obtain information about
them:

func main() {

 for _, f := range []interface{}{Foo, Bar, Baz, Qux} {

 t := reflect.TypeOf(f)

 name := runtime.FuncForPC(reflect.ValueOf(f).Pointer()).Name()

 in := make([]reflect.Type, t.NumIn())

 for i := range in {

 in[i] = t.In(i)

 }

 out := make([]reflect.Type, t.NumOut())

 for i := range out {

 out[i] = t.Out(i)

 }

 fmt.Printf("%q %v %v %v\n", name, in, out, t.IsVariadic())

 }

}

A full example is available here: https://play.golang.org/p/LAjjhw8Et60.

In order to obtain the name of the functions, we use the runtime.FuncForPC

https://play.golang.org/p/LAjjhw8Et60

function, which returns runtime.Func containing methods that will expose
runtime information about the function—name, file, and line. The function
takes uintptr as an argument, which can be obtained with reflect.Value of the
function and its Pointer method.

Invoking a function
While the type of the function shows information about it, in order to call a
function, we need to use its value.

We will pass the function a list of argument values and get back the ones
returned by the function call:

func main() {

 for _, f := range []interface{}{Foo, Bar, Baz, Qux} {

 v, t := reflect.ValueOf(f), reflect.TypeOf(f)

 name := runtime.FuncForPC(v.Pointer()).Name()

 in := make([]reflect.Value, t.NumIn())

 for i := range in {

 switch a := t.In(i); a.Kind() {

 case reflect.Int:

 in[i] = reflect.ValueOf(42)

 case reflect.String:

 in[i] = reflect.ValueOf("42")

 case reflect.Slice:

 switch a.Elem().Kind() {

 case reflect.Int:

 in[i] = reflect.ValueOf(21)

 case reflect.String:

 in[i] = reflect.ValueOf("21")

 }

 }

 }

 out := v.Call(in)

 fmt.Printf("%q %v%v\n", name, in, out)

 }

}

A full example is available here: https://play.golang.org/p/jPxO_G7YP2I.

https://play.golang.org/p/jPxO_G7YP2I

Channels
Reflection allows us to create channels, send and receive data, and also to use
select statements.

Creating channels
A new channel can be created via the reflect.MakeChan function, which requires
a reflect.Type interface value and a size:

func main() {

 t := reflect.ChanOf(reflect.BothDir, reflect.TypeOf(""))

 v := reflect.MakeChan(t, 0)

 fmt.Printf("%T\n", v.Interface())

}

A full example is available here: https://play.golang.org/p/7_RLtzjuTcz.

https://play.golang.org/p/7_RLtzjuTcz

Sending, receiving, and closing
The reflect.Value type offers a few methods that have to be used exclusively
with channels, Send and Recv for sending and receiving, and Close for closing
channels. Let's take a look at a sample use case of these functions and
methods:

func main() {

 t := reflect.ChanOf(reflect.BothDir, reflect.TypeOf(""))

 v := reflect.MakeChan(t, 0)

 go func() {

 for i := 0; i < 10; i++ {

 v.Send(reflect.ValueOf(fmt.Sprintf("msg-%d", i)))

 }

 v.Close()

 }()

 for msg, ok := v.Recv(); ok; msg, ok = v.Recv() {

 fmt.Println(msg)

 }

}

A full example is available here: https://play.golang.org/p/Gp8JJmDbLIL.

https://play.golang.org/p/Gp8JJmDbLIL

Select statement
A select statement can be executed with the reflect.Select function. Each case
is represented by a data structure:

type SelectCase struct {

 Dir SelectDir // direction of case

 Chan Value // channel to use (for send or receive)

 Send Value // value to send (for send)

}

It contains the direction of the operation and both the channel and the value
(for send operations). The direction can be either send, receive, or none (for
default statements):

func main() {

 v := reflect.ValueOf(make(chan string, 1))

 fmt.Println("sending", v.TrySend(reflect.ValueOf("message"))) // true 1 1

 branches := []reflect.SelectCase{

 {Dir: reflect.SelectRecv, Chan: v, Send: reflect.Value{}},

 {Dir: reflect.SelectSend, Chan: v, Send: reflect.ValueOf("send")},

 {Dir: reflect.SelectDefault},

 }

 // send, receive and default

 i, recv, closed := reflect.Select(branches)

 fmt.Println("select", i, recv, closed)

 v.Close()

 // just default and receive

 i, _, closed = reflect.Select(branches[:2])

 fmt.Println("select", i, closed) // 1 false

}

A full example is available here: https://play.golang.org/p/_DgSYRIBkJA.

https://play.golang.org/p/_DgSYRIBkJA

Reflecting on reflection
After talking how about how reflection works in all its aspects, we will now
focus on its downside, when it is used in the standard library, and when to use
it in packages.

Performance cost
Reflection allows code to be flexible and handles unknown data types by
analyzing their memory representation. This is not cost-free and, besides
complexity, another aspect that reflection influences is performance.

We can create a couple of examples to demonstrate how some trivial
operations are much slower using reflection. We can create a timeout and
keep repeating these operations in goroutines. Both routines will terminate
when the timeout expires, and we will compare the results:

func baseTest(fn1, fn2 func(int)) {

 ctx, canc := context.WithTimeout(context.Background(), time.Second)

 defer canc()

 go func() {

 for i := 0; ; i++ {

 select {

 case <-ctx.Done():

 return

 default:

 fn1(i)

 }

 }

 }()

 go func() {

 for i := 0; ; i++ {

 select {

 case <-ctx.Done():

 return

 default:

 fn2(i)

 }

 }

 }()

 <-ctx.Done()

}

We can compare normal map writing with the same operation done with
reflection:

func testMap() {

 m1, m2 := make(map[int]int), make(map[int]int)

 m := reflect.ValueOf(m2)

 baseTest(func(i int) { m1[i] = i }, func(i int) {

 v := reflect.ValueOf(i)

 m.SetMapIndex(v, v)

 })

 fmt.Printf("normal %d\n", len(m1))

 fmt.Printf("reflect %d\n", len(m2))

}

We can also test out how fast the reading is and the settings of a structure
field, with and without reflection:

func testStruct() {

 type T struct {

 Field int

 }

 var m1, m2 T

 m := reflect.ValueOf(&m2).Elem()

 baseTest(func(i int) { m1.Field++ }, func(i int) {

 f := m.Field(0)

 f.SetInt(int64(f.Interface().(int) + 1))

 })

 fmt.Printf("normal %d\n", m1.Field)

 fmt.Printf("reflect %d\n", m2.Field)

}

There is at least a 50% performance drop when executing operation via
reflection, compared to the standard, static way of doing things. This drop
could be very critical when performance is a very important priority in an
application, but if that's not the case, then the use of reflection could be a
reasonable call.

Usage in the standard library
There are many different packages in the standard library that use the reflect
package:

archive/tar

context

database/sql

encoding/asn1

encoding/binary

encoding/gob

encoding/json

encoding/xml

fmt

html/template

net/http

net/rpc

sort/slice

text/template

We can reason about their approach to reflection, taking as an example the
encoding packages. Each of these packages offers interfaces for encoding and
decoding, for instance, the encoding/json package. We have the following
interfaces defined:

type Marshaler interface {

 MarshalJSON() ([]byte, error)

}

type Unmarshaler interface {

 UnmarshalJSON([]byte) error

}

The package first looks if the unknown type implements the interface while
decoding or encoding, and, if not, it uses reflection. We can think of
reflection as a last resource that the package uses. Even the sort package has a
generic slice method that takes any slice using reflection to set values and a

sorting interface that avoids using reflection.

There are other packages, such as text/template and html/template, that read
runtime text files with instructions on which method or field to access or to
use. In this case, there is no other way than reflection to accomplish it, and
there is no interface that can avoid it.

Using reflection in a package
After seeing how reflection works and the kind of complications that it adds
to code, we can think about using it in a package we are writing. One of the
Go proverbs, from its creator Rob Pike, comes to the rescue:

Clear is better than clever. Reflection is never clear.

The power of reflection is huge, but it also comes at the expense of making
code more complicated and implicit. It should be used only when it's
extremely necessary, as in the template scenario, and should be avoided in
any other case, or at least offer an interface to avoid it, as in the encoding
packages.

Property files
We can try to use reflection to create a package that reads property files.

We can use reflection to create a package that reads property files:

1. The first thing we should do is define an interface that avoids using
reflection:

type Unmarshaller interface {

 UnmarshalProp([]byte) error

}

2. Then, we can define a decoder structure that will feed on
an io.Reader instance, using a line scanner to read the individual
properties:

type Decoder struct {

 scanner *bufio.Scanner

}

func NewDecoder(r io.Reader) *Decoder {

 return &Decoder{scanner: bufio.NewScanner(r)}

}

3. The decoder will also be used by the Unmarshal method:

func Unmarshal(data []byte, v interface{}) error {

 return NewDecoder(bytes.NewReader(data)).Decode(v)

}

4. We can reduce the number of uses of reflection that we will do by
building a cache of field names and indices. This will be helpful because
the value of a field in reflection can only be accessed by an index, and
not by a name:

var cache = make(map[reflect.Type]map[string]int)

func findIndex(t reflect.Type, k string) (int, bool) {

 if v, ok := cache[t]; ok {

 n, ok := v[k]

 return n, ok

 }

 m := make(map[string]int)

 for i := 0; i < t.NumField(); i++ {

 f := t.Field(i)

 if s := f.Name[:1]; strings.ToLower(s) == s {

 continue

 }

 name := strings.ToLower(f.Name)

 if tag := f.Tag.Get("prop"); tag != "" {

 name = tag

 }

 m[name] = i

 }

 cache[t] = m

 return findIndex(t, k)

}

5. The next step is defining the Decode method. This will receive a pointer to
a structure and then proceed to process lines from the scanner and
populate the structure fields:

func (d *Decoder) Decode(v interface{}) error {

 val := reflect.ValueOf(v)

 t := val.Type()

 if t.Kind() != reflect.Ptr && t.Elem().Kind() != reflect.Struct {

 return fmt.Errorf("%v not a struct pointer", t)

 }

 val = val.Elem()

 t = t.Elem()

 line := 0

 for d.scanner.Scan() {

 line++

 b := d.scanner.Bytes()

 if len(b) == 0 || b[0] == '#' {

 continue

 }

 parts := bytes.SplitN(b, []byte{':'}, 2)

 if len(parts) != 2 {

 return decodeError{line: line, err: errNoSep}

 }

 index, ok := findIndex(t, string(parts[0]))

 if !ok {

 continue

 }

 value := bytes.TrimSpace(parts[1])

 if err := d.decodeValue(val.Field(index), value); err != nil {

 return decodeError{line: line, err: err}

 }

 }

 return d.scanner.Err()

}

The most important part of the work will be done by the
private decodeValue method. The first thing will be verifying that
the Unmarshaller interface is satisfied, and, if it is, using it. Otherwise, the
method is going to use reflection to decode the value received correctly. For

each type, it will use a different Set method from reflection.Value, and it will
return an error if it encounters an unknown type:

func (d *Decoder) decodeValue(v reflect.Value, value []byte) error {

 if v, ok := v.Addr().Interface().(Unmarshaller); ok {

 return v.UnmarshalProp(value)

 }

 switch valStr := string(value); v.Type().Kind() {

 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:

 i, err := strconv.ParseInt(valStr, 10, 64)

 if err != nil {

 return err

 }

 v.SetInt(i)

 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:

 i, err := strconv.ParseUint(valStr, 10, 64)

 if err != nil {

 return err

 }

 v.SetUint(i)

 case reflect.Float32, reflect.Float64:

 i, err := strconv.ParseFloat(valStr, 64)

 if err != nil {

 return err

 }

 v.SetFloat(i)

 case reflect.String:

 v.SetString(valStr)

 case reflect.Bool:

 switch value := valStr; value {

 case "true":

 v.SetBool(true)

 case "false":

 v.SetBool(false)

 default:

 return fmt.Errorf("invalid bool: %s", value)

 }

 default:

 return fmt.Errorf("invalid type: %s", v.Type())

 }

 return nil

}

Using the package
To test whether the package behaves as expected, we can create a custom
type that satisfies the Unmarshaller interface. The type implemented transforms
the string into uppercase when decoding:

type UpperString string

func (u *UpperString) UnmarshalProp(b []byte) error {

 *u = UpperString(strings.ToUpper(string(b)))

 return nil

}

Now we can use the type as a structure field and we can verify that it gets
transformed correctly in a decode operation:

func main() {

 r := strings.NewReader(

 "\n# comment, ignore\nkey1: 10.5\nkey2: some string" +

 "\nkey3: 42\nkey4: false\nspecial: another string\n")

 var v struct {

 Key1 float32

 Key2 string

 Key3 uint64

 Key4 bool

 Key5 UpperString `prop:"special"`

 key6 int

 }

 if err := prop.NewDecoder(r).Decode(&v); err != nil {

 log.Fatal(r)

 }

 log.Printf("%+v", v)

}

Summary
In this chapter, we reviewed the Go memory model for interfaces in detail,
highlighting that an interface always contains a concrete type. We used this
information to get a better look at type casting and understand what happens
when an interface gets cast to another.

Then, we introduced the basic mechanics of reflection, starting with type and
value, which are the two main types of the package. They represent,
respectively, the type and value of a variable. Value allows you to read a
variable content and also to write it if the variable is addressable. In order to
be addressable, a variable needs to be accessed from its address, using a
pointer, for instance.

We also saw how complex data types can be handled with reflection, seeing
how to access structure field value. Data types of structure can be used to get
metadata about fields, including name and tags, which are heavily used by
encoding packages and other third-party libraries.

We saw how to create and operate with maps, including adding, setting, and
deleting values. With slices, we saw how to edit their values and how to
execute append operations. We also showed how to use a channel to send and
receive data, and even how to use select statements in the same way we do
with static-typed programming.

Finally, we listed where reflection is used in the standard library, and did a
quick analysis of its computational cost. We concluded the chapter with some
tips on how and when to use reflection in a library or in any application you
are writing.

The next chapter is the last one of the book, and it explains how to leverage
the existing C library in Go using CGO.

Questions
1. What's the memory representation of an interface in Go?
2. What happens when an interface type is cast to another one?
3. What are Value, Type , and Kind in reflection?
4. What does it mean if a value is addressable?
5. Why are structure field tags important in Go?
6. What's the general trade-off of reflection?
7. Could you describe a good approach to using reflection?

Using CGO
This chapter will introduce you to CGO, a Go runtime for the C language. It
makes it possible to call C code from Go applications, and since C has a
plethora of libraries available, this means that they can be leveraged in Go.

The following topics will be covered in this chapter:

Using CGO from C and Go
Understanding type differences

Technical requirements
This chapter requires Go to be installed and your favorite editor to be set up.
For more information, refer to Chapter 3, An Overview of Go.

In addition, it requires the GCC compiler to be installed in your machine.
This can easily be done on your Unix machine using the package manager.
For Ubuntu, the command is as follows:

 sudo apt install gcc

Introduction to CGO
CGO is the tool that makes it possible to run C code in a Go application. This
feature has been around since Go reached version 1.0 in 2009 and allowed us
to use existing C libraries when there were fewer packages available outside
the standard library than today.

The C code is accessed through the C pseudo package, and it is accessed and
called using the package name followed by the identifier, for instance, C.print.

The import declaration is preceded by a series of special comments, which
specify what C source file the application should import:

package example

// #include <stdio.h>

import "C"

This statement can also be a multiline comment, which can contain more
include directives, like the one from the example earlier, and even actual C
code directly:

package example

/*

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

void someFunction(char* s) {

 printf("%s\n", s);

}

*/

import "C"

It is important to avoid blank lines between the C comment and the import
statement, otherwise the libraries and the code will be imported by CGO in
the application.

Calling C code from Go
To use existing C code, made by us or by someone else, we need to call C
from Go. Let's perform a quick, complete example, where we are printing a
string to the standard output using just C functionalities:

package main

/*

#include <stdio.h>

#include <stdlib.h>

void customPrint(char* s) {

 printf("%s\n", s);

}

*/

import "C"

import "unsafe"

func main() {

 s := C.CString(`Printing to stdout with CGO

 Using <stdio.h> and <stdlib.h>`)

 defer C.free(unsafe.Pointer(s))

 C.customPrint(s)

}

We are importing two C core libraries here, which are as follows:

stdio.h : This contains the input and output methods. We are using printf.
stdlib.h: This contains general functions, including memory
management.

Looking at the preceding code, we notice that the variable that we are
printing is not a normal Go string, but rather, it is obtained by the
C.CString function that takes a string and returns a slice of char, because that's
how strings are treated in C. The function is defined as follows:

func C.CString(string) *C.char

The second thing we can observe is that we are deferring a call to
C.free, passing the s variable that we defined, but converted to a different
type. This function call is essential since the language is not garbage

collected and, in order to free the memory used, the application needs
to specifically call the C free function. This function receives a generic
pointer, which is represented by the unsafe.Pointer type in Go. According to
the Go documentation, the following applies:

"A pointer value of any type can be converted into a Pointer."

This is exactly what we are doing, because the type of the string variable is
the *C.char pointer.

Calling Go code from C
We just saw how to call C code from a Go application using the C package
and the import statement. Now, we will see how to call Go code from C, which
requires the use of another special statement called export. This is a comment
that needs to be placed in the line above the function we want to export,
followed by the name of that function:

//export theAnswer

func theAnswer() C.int {

 return 42

}

The Go function needs to be declared as external in the C code. This
will allow the C code to use it:

extern int theAnswer();

We can test this functionality by creating a Go app that exports a function,
which is used by a C function. This gets called inside the Go main function:

package main

// extern int goAdd(int, int);

//

// static int cAdd(int a, int b) {

// return goAdd(a, b);

// }

import "C"

import "fmt"

//export goAdd

func goAdd(a, b C.int) C.int {

 return a + b

}

func main() {

 fmt.Println(C.cAdd(1, 3))

}

We can see in the preceding example that we have the goAdd function, which is
exported to C with the export statement . The export name matches the name
of the function, and there are no blank lines between the comment and the
function.

We can notice that the types used in the signature of the exported function are
not regular Go integers, but C.int variables. We will see how the C and Go
systems differ in the next section.

The C and Go type systems
In order to pass data around between C and Go, we need to pass the correct
types by executing the right conversion.

Strings and byte slices
The string type, which is a basic type in Go, does not exist in C. It has the char
type, which represents a character, similar to Go's rune type, and strings are
represented by an array of the char type, which is terminated with a \0.

The language makes it possible to declare character arrays directly as an array
or as a string. The second declaration does not end the 0 value in order to end
the string:

char lang[7] = {'G', 'o', 'l', 'a', 'n', 'g', '\0'};

char lang[] = "Golang";

We already saw how to convert a Go string to a C character array using the
following function:

func C.CString(string) *C.char

This function will allocate the string in the heap so that it will be the
application's responsibility to free such memory using the C.free function.

In order to convert a slice of bytes to a C character pointer named *char, we
can use the following function:

func C.CBytes([]byte) unsafe.Pointer

As it happens, for C.CString, the application allocates the data in the heap and
leaves the responsibilities of freeing it to the Go application.

The main difference between these two functions is that the first
produces char[] , while the other creates *char. These two types are the
equivalent of the Go string and []byte, since the bytes of the first type cannot
be changed, while the one from the second type can.

There are a series of functions that are used to convert the C types back to Go
ones. As far as strings are concerned, there are two functions: C.GoString

creates a string from the entire array, and C.GoStringN enables the creation of a
string using an explicit length:

func C.GoString(*C.char) string

func C.GoStringN(*C.char, C.int) string

To transform the C *char back to Go []byte, there is a single function:

func C.GoBytes(unsafe.Pointer, C.int) []byte

We can use the C.CBytes function to modify a slice of bytes using C and
convert it back to a Go slice:

package main

/*

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char* reverseString(char* s) {

 int l = strlen(s);

 for (int i=0; i < l/2; i++) {

 char a = s[i];

 s[i] = s[l-1-i];

 s[l-1-i] = a;

 }

 return s;

}

*/

import "C"

import (

 "fmt"

 "unsafe"

)

func main() {

 b1 := []byte("A byte slice")

 c1 := C.CBytes(b1)

 fmt.Printf("Go ptr: %p\n", b1)

 fmt.Printf("C ptr: %p\n", c1)

 defer C.free(c1)

 c2 := unsafe.Pointer(C.reverseString((*C.char)(c1)))

 b2 := C.GoBytes(c2, C.int(len(b1)))

 fmt.Printf("Go ptr: %p\n", b2)

 fmt.Printf("%q -> %q", b1, b2)

}

Executing this application will show that when converting the byte slice, b1,
to the C type as the c1 variable, it will change address. The C slice returned by
the C function, c2, will have the same address as c1 because it is the same

slice. When converted back to Go again and assigned to b2, it will have
another address that is different from the initial Go byte slice, b1.

We can achieve the same result using the C string function. Let's use the
same C code from the previous example and change the rest:

package main

/*

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char* reverseString(char* s) {

 int l = strlen(s);

 for (int i=0; i < l/2; i++) {

 char a = s[i];

 s[i] = s[l-1-i];

 s[l-1-i] = a;

 }

 return s;

}

*/

import "C"

import (

 "fmt"

 "unsafe"

)

func main() {

 s1 := "A byte slice"

 c1 := C.CString(s1)

 defer C.free(unsafe.Pointer(c1))

 c2 := C.reverseString(c1)

 s2 := C.GoString(c2)

 fmt.Printf("%q -> %q", s1, s2)

}

It is important to note that when transferring the Go string and bytes values to
C, the values are copied. As a consequence, the C code is not capable of
editing them directly, but will edit the copy, leaving the original Go value
intact.

Integers
In C, the types of integers available have a number of similarities with Go,
since there are signed and unsigned versions of each integer type in both
languages, but they differ in terms of name and byte size. The C sizeof
function makes it possible to check the size for each of these types.

Here is a list of integer types that are available in C:

Signed types

Type Size Range
char 1 byte [-128, +127]
int 2 or 4 bytes see short and long
short 2 bytes [-32 768, +32 767]
long 4 bytes [-2 147 483 648, +2 147 483 647]

long long 8 bytes [-9 223 372 036 854 775 808, +9 223
372 036 854 775 807]

Unsigned types

Type Size Range

unsigned char 1 byte [0, +255]

unsigned int 2 or 4 bytes see unsigned short or unsigned long

unsigned short 2 bytes [0, +65 535]

unsigned long 4 bytes [0, +4 294 967 295]

unsigned long long 8 bytes [0, +18 446 744 073 709 551 615]

The size of int in C depends on the architecture—it used to be 2 bytes with 16-
bit processors, but with modern processors (32- and 64-bit), it's 4 bytes.

When we move from the realm of Go to the realm of C, and vice versa, we
lose all variable overflow information. The compiler will not warn us when
we try to fit an integer variable into another one that does not have an
adequate size. We can see this with a brief example, as follows:

package main

import "C"

import "fmt"

func main() {

 a := int64(0x1122334455667788)

 // a fits in 64 bits

 fmt.Println(a)

 // short overflows, it's 16

 fmt.Println(C.short(a), int16(0x7788))

 // long also overflows, it's 32

 fmt.Println(C.long(a), int32(0x55667788))

 // longlong is okay, it's 64

 fmt.Println(C.longlong(a), int64(0x1122334455667788))

}

We can see that the value of a is a certain number, but the short and long
variables do not have sufficient bytes, so they will have different values. The
conversion shows that only the last bytes are taken from the variable when
converting, and the other bytes are discarded.

Here is a useful list of C types and comparable Go types, as well as how to
use them in Go code:

C type Go Type CGO type
char int8 C.char

short int16 C.short

long int32, rune C.long

long long int64 C.longlong

int int C.int

unsigned char uint8, byte C.uchar

unsigned short uint16 C.ushort

unsigned long uint32 C.ulong

unsigned long long uint64 C.ulonglong

unsigned int uint C.uint

You can use this table as a reference when performing conversions and avoid
errors derived from using the wrong type, since there are no overflow
warnings when using CGO.

Float types
In C, the float types are very similar to the Go ones:

C offers float, which is 32 bit, and double, which is 64 bit.
Go has float32 and float64.

This can cause rounding errors when converting from a 64-bit value to a 32-
bit one, as shown in the following code:

package main

import "C"

import (

 "fmt"

 "math"

)

func main() {

 a := float64(math.Pi)

 fmt.Println(a)

 fmt.Println(C.float(a))

 fmt.Println(C.double(a))

 fmt.Println(C.double(C.float(a)) - C.double(a))

}

The preceding example shows how the math.Pi value goes
from 3.141592653589793 to 3.1415927, causing an error of about 1/107.

Unsafe conversions
We will now see how it is possible to edit a Go variable from C using the
unsafe package.

Editing a byte slice directly
It also possible to edit a Go byte slice directly using a dirty trick. From Go's
perspective, a slice is a trio of values:

A pointer to the first element
The size of slice
The capacity of the slice

In C, a byte slice is just a series of bytes, and a string is a character slice that
ends with a \0.

If we use the unsafe package to pass the pointer to the first element of the
slice, we will be able to edit the existing byte slice directly without executing
copies and transformations. We can see how to execute this conversion in the
following application:

package main

/*

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void reverseString(char* s) {

 int l = strlen(s);

 for (int i=0; i < l/2; i++) {

 char a = s[i];

 s[i] = s[l-1-i];

 s[l-1-i] = a;

 }

}

*/

import "C"

import (

 "fmt"

 "unsafe"

)

func main() {

 b1 := []byte("A byte slice")

 fmt.Printf("Slice: %s\n", b1)

 C.reverseString((*C.char)(unsafe.Pointer(&b1[0])))

 fmt.Printf("Slice: %s\n", b1)

}

The conversion is executed using the expression (*C.char)
(unsafe.Pointer(&b1[0])), which does the following:

Takes the pointer to element zero for the slice
Converts it into an unsafe pointer
Converts the byte pointer into a C.char pointer, which shares the memory
representation

Numbers
Using the unsafe package, we can also convert a numeric variable pointer to its
C counterpart. This allows us to edit it directly in the C code:

package main

/*

void half(double* f) {

 *f = *f/2;

}

*/

import "C"

import (

 "fmt"

 "math"

 "unsafe"

)

func main() {

 a := float64(math.Pi)

 fmt.Println(a)

 C.half((*C.double)(unsafe.Pointer(&a)))

 fmt.Println(a)

}

The preceding example does exactly that; it halves the value of a in a C
function, without copying and assigning the new value in Go.

Working with slices
Go slices and C slices differ in one fundamental aspect—the Go version
embeds both length and capacity, while in C, all we have is a pointer to the
first element. This means that in C, length and capacity must be stored
somewhere else, such as in another variable.

Let's take the following Go function, which calculates the mean of a series of
float64 numbers:

func mean(l []float64) (m float64) {

 for _, a := range l {

 m += a

 }

 return m / float64(len(l))

}

If we want to have a similar function in C, we need to pass a pointer together
with its length. This will avoid errors such as segmentation fault, which
happens when an application tries to gain access to memory that has not been
assigned to it. If the memory is still assigned to the application, the result is
that it provides access to a memory area with an unknown value, causing
unpredictable results:

double mean(int len, double *a) {

 if (a == NULL || len == 0) {

 return 0;

 }

 double m = 0;

 for (int i = 0; i < len; i++) {

 m+=a[i];

 }

 return m / len;

}

We can try this function using a Go wrapper that takes a slice and also passes
the length to the C function:

func mean(a []float64) float64 {

 if len(a) == 0 {

 return 0

 }

 return float64(C.mean(C.int(len(a)), (*C.double)(&a[0])))

}

To verify what happens, we can also create a similar function that passes a
length that is not correct:

func mean2(a []float64) float64 {

 if len(a) == 0 {

 return 0

 }

 return float64(C.mean(C.int(len(a)*2), (*C.double)(&a[0])))

}

When using this function, we will see that the application should not raise
any segmentation fault error, but the result obtained will be different. This is
because the second one will add a series of extra values to the mean
calculation, as shown here:

var a = make([]float64, 10)

func init() {

 for i := range a {

 a[i] = float64(i + 1)

 }

}

func main() {

 cases := [][]float64{a, a[1:4], a[:0], nil}

 for _, slice := range cases {

 fmt.Println(slice, mean(slice))

 }

 for _, slice := range cases {

 fmt.Println(slice, mean2(slice))

 }

}

Working with structs
After seeing how slices work, we will know how to handle complex data in C
and Go using structures. For this, let's see the following sections.

Structures in Go
Go structures use a technique called alignment, which consists of adding one
or more bytes to data structures to make it fit into memory addresses
better. Consider the following data structure:

struct {

 a string

 b bool

 c []byte

}

With 64-bit architecture calling unsafe.Sizeof on this structure, this will give us
an unexpected result. What we are expecting is the following:

16 bytes from the string; 8 for the pointer to the first element, and 8 for
the length
1 byte for the Boolean
24 for the slice; 8 for the address, 8 for the length, and 8 for capacity

The total should be 41, but the function returns 48. This happens because the
compiler inserts extra bytes after the Boolean, to reach 8 bytes (64 bits) and
optimize the operation for the CPU. The structure could be represented in
memory as follows:

We can see that the Boolean variable takes 1 bit, and that there are 7 extra

bits added by the compiler. This is very helpful because it avoids the other
variables that are store, half in one memory slot and half in another. This
would require two reads and two writes per operation, with a significant drop
in performance.

If two or more fields are small enough to fit in one slot of 64 bits, they will be
stored sequentially. We can see this with the following example:

struct {

 a, b bool

 c rune

 d byte

 e string

}

This structure translates into the following memory representation on a 64-bit
architecture:

We can clearly see that both the Boolean variables, the rune and the byte, are
in the same memory address, and a byte of padding is added to align the last
field.

Manual padding
Go makes it possible to specify padding in structs manually using the blank
identifier for fields. Take the following data structure:

struct{

 a int32

 b int32

}

This will have the following representation:

We can use the blank identifier to specify padding manually and to optimize
the data structure for a 64-bit architecture:

struct{

 a int32

 _ int32

 b int32

 _ int32

}

This will allow the application to store each int32 in its own memory location
because the blank fields will be acting as padding:

Structures in C
Structures in C share the same concept of alignment that Go uses, but they
are always aligned using 4-byte padding. Unlike Go, it is possible to avoid
padding entirely, which helps to save space by reducing memory usage. Let's
find out more about this in the following sections.

Unpacked structures
Each struct we define will be unpacked unless otherwise specified. We can
define a structure in C as follows:

typedef struct{

 unsigned char a;

 char b;

 int c;

 unsigned int d;

 char e[10];

} myStruct;

We can use it and populate it with values directly from our Go code without
any issues arising:

func main() {

 v := C.myStruct{

 a: C.uchar('A'),

 b: C.char('Z'),

 c: C.int(100),

 d: C.uint(10),

 e: [10]C.char{'h', 'e', 'l', 'l', 'o'},

 }

 log.Printf("%#v", v)

}

This small test will give us the following output:

main._Ctype_struct___0{

 a:0x41,

 b:90,

 c:100,

 d:0xa,

 e:[10]main._Ctype_char{104, 101, 108, 108, 111, 0, 0, 0, 0, 0},

 _:[2]uint8{0x0, 0x0},

}

This tells us that there is an extra blank field that is used for padding because
the last field is 10 bytes, which is 2 bytes short of being a multiple of 4 (that
is, 12 bytes).

Packed structures
We can define a packed struct in C using the pragma pack directive. We can
pack the structure from before as follows:

#pragma pack(1)

typedef struct{

 unsigned char a;

 char b;

 int c;

 unsigned int d;

 char e[10];

} myStruct;

If we try to use the C structure in our Go code, we will obtain a compile
error, if using fields c and d:

pack := C.myStruct{

 a: C.uchar('A'),

 b: C.char('Z'),

 c: C.int(100),

 d: C.uint(10),

 e: [10]C.char{},

}

If we try to print the structure as we did for the unpacked version, we will see
the reason why:

main._Ctype_struct___0{

 a:0x41,

 b:90,

 _:[8]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},

 e:[10]main._Ctype_char{104, 101, 108, 108, 111, 0, 0, 0, 0, 0},

}

We can see from the output that the c and d fields, both of 4 bytes, are
replaced by one empty field of 8 bytes that Go cannot access. Consequently,
we cannot populate the structure from Go, but we can access this field in the
C part of the application:

myStruct makeStruct(){

 myStruct p;

 p.a = 'A';

 p.b = 'Z';

 p.c = 100;

 p.d = 10;

 p.e[0] = 'h';

 p.e[1] = 'e';

 p.e[2] = 'l';

 p.e[3] = 'l';

 p.e[4] = 'o';

 p.e[5] = '\0';

 p.e[6] = '\0';

 p.e[7] = '\0';

 p.e[8] = '\0';

 p.e[9] = '\0';

 return p;

}

This will allow us to return a structure with the correct values. We can print it
and see that the _ field contains both the values of c and d:

main._Ctype_struct___0{

 a:0x41,

 b:90,

 _:[8]uint8{0x64, 0x0, 0x0, 0x0, 0xa, 0x0, 0x0, 0x0},

 e:[10]main._Ctype_char{104, 101, 108, 108, 111, 0, 0, 0, 0, 0}

}

Now that we have the data, we need to create a Go structure that can host it:

type myStruct struct {

 a uint8

 b int8

 c int32

 d uint32

 e [10]uint8

}

Now, we need to read the raw bytes from the C structure and unpack it
manually:

func unpack(i *C.myStruct) (m myStruct) {

 b := bytes.NewBuffer(C.GoBytes(unsafe.Pointer(i), C.sizeof_myStruct))

 for _, v := range []interface{}{&m.a, &m.b, &m.c, &m.d, &m.e} {

 binary.Read(b, binary.LittleEndian, v)

 }

 return

}

We can use the C.GoBytes function, which works for any pointer (not just
bytes) and specifies the size of the struct we defined, which is stored in the
constant, C.sizeof_myStruct. We can then proceed to read each field in order
using the binary.Read function with Little-Endian (LE) encoding.

We can see that the resulting structure contains all the data in the correct

fields:

main.myStruct{

 a:0x41,

 b:90,

 c:100,

 d:0xa,

 e:[10]uint8{0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x0, 0x0, 0x0, 0x0, 0x0},

}

CGO recommendations
We have now seen how to use CGO with integers, floating pointers, slices,
and structures. This is a very powerful tool that facilitates the use of a lot of
the existing C code in our Go applications. As we did for reflection in the
previous chapter, we are now going to talk about the less obvious downsides
of CGO.

Compilation and speed
One of Go's trademarks is blazingly fast compilation times. When using
CGO, the amount of work involved in the compilation is much higher, and
involves more than just passing all the .go files to the Go compiler. The
compilation process goes more or less as follows:

CGO needs to create C to Go and Go to C stubs.
The make command needs to be called to compile all the C source files.
All the files are combined in a .o file.
The system's linker needs to verify that all the references between Go
and C are valid.

If this process goes smoothly, you can launch your application, but if you
encounter any issues, you will need to check the errors between C and Go,
which is not as easy as debugging a pure Go application.

Another drawback is that not every operating system comes with a make
command out of the box. The C part may require some extra flags to compile
correctly, and that cannot be handled by go install or go build. You will need
to create a compilation script for your application, such as a makefile script.

Performance
While discussing how to let C and Go talk to one another, we saw that for
each type, there is a conversion operation that needs to be executed. This can
be straightforward, as it happens, for numbers, but a little bit more complex
for strings, bytes, or slices, and even more when we talk about
structures. These operations are not cost-free, both in terms of memory usage
and performance. This will not be a problem for many applications, but if
you're trying to achieve high performance, it could be your bottleneck.

The C code is not aware of what's happening in its Go counterpart. When it
needs to be invoked, Go needs to pass the information about its stack to C in
a format that is suitable for it. When the C code finishes its execution, the
information about the stack state and the variables used needs to be
transferred back from C to Go.

Dependency from C
When using CGO, you face the same problem that other languages face when
creating bindings or wrappers to C code. You are completely dependent on
it.

The Go application has to handle the way C uses memory and other
resources, while the C application is not aware of what Go is doing and is not
using any kind of concurrency, neither goroutines nor threads.

In addition to that, C code is hard to debug, maintain, and replace if you're
not a C developer. This way, sometimes it is better to write a library from the
ground up, instead of relying on the existing C implementation.

A very good example of this is go-git (https://github.com/src-d/go-git), which
implements the Git protocol functionality in pure Go by imitating the existing
C library, libgit2.

https://github.com/src-d/go-git
https://libgit2.org/

Summary
In this chapter, we saw a very powerful tool in the Go arsenal: CGO. This
allows a Go application to run C code, which, in turn, can invoke Go
functions. We saw that it requires a special import statement, import "C", which
is a pseudo package that contains all the C code available to Go. To export
Go code and make it available to C, there is a special comment, //export,
which makes the Go function available in the C namespace.

We saw that the C and Go type systems are very similar for some things, but
very different for others. We saw that strings and byte arrays can be
converted to C types, and vice versa. Integers in C and Go are also pretty
similar, the main difference being the int type. In C, this is 4 bytes, while in
Go, it is 4 or 8 bytes, depending on the architecture. Floats are also pretty
similar, with a 4- and 8-bit version in both C and Go, which just have
different names.

It is also possible to edit a numeric Go variable or a byte slice
directly, without creating a copy. This is possible using
the unsafe.Pointer function to force a casting that wouldn't otherwise be
allowed. Slices in C are just pointers to the first element, and the length of the
slice needs to be stored in another variable. That's why we created Go
functions that take the slice and pass both parameters to their C counterparts.

Before talking about data structures, we must mention what alignment is,
how Go achieves it, and how C alignment differs from that of Go. Data
structures in CGO use alignment, and are pretty straightforward to use. If
they are not packed, we can pass them around and extract values very easily.
If the structure is packed instead, we cannot access some of its fields and we
need a workaround to manually execute a conversion to Go.

The final topic focused on the downsides of CGO, from its slower building
time to its drop in performance because of the conversion that is required,
and how the application is going to end up being more difficult to maintain

because of the C code.

I hope you enjoyed this Go journey so far, and that it will help you to write
modern, concurrent, and efficient applications.

Questions
1. What is CGO?
2. How can you call C code from Go?
3. How can you use Go code in C?
4. What difference in data types is there between Go and C?
5. How can you edit Go values inside C code?
6. What is the main problem with packed data structures?
7. What are the main downfalls of CGO?

Assessments

Chapter 1
1. What is the difference between application and system

programming?
Application programming focuses on solving a problem for the final
user, while system programming is about creating software used by
other software.

2. What is an API? Why are APIs so important?
An API is an interface that the software exposes to control the access to
the resources it controls. It is a description of how other applications
should communicate with the software.

3. Could you explain how protection rings work?
Protection rings are a system used to prevent failures and increase
security. They arrange security in hierarchical levels with growing
limitations and allow a mediate access to the features of the more
powerful levels by using specific gateways.

4. Can you provide some examples of what cannot be undertaken in
user space?
An application in user space cannot change its current space to kernel,
cannot access the hard drive ignoring the filesystem, and cannot change
the page tables.

5. What's a system call?
System calls are the API provided by the operating system to access the
machine's resources.

6. Which calls are used in Unix to manage a process?
The calls that Unix uses to manage a process are as follows: fork, exit,
and wait.

7. Why is POSIX useful?
The various POSIX standards define process controls, signals,
segmentation, illegal instructions, file and directory operations, pipes,
I/O control and the C library, shells and utilities, and real-time and
multithreaded extensions. It is extremely useful for a developer when
building applications, because it aids in building an application that
works with different operating systems sharing this standard.

8. Is Windows POSIX-compliant?

Windows is not POSIX-compliant, but an attempt is being made to offer
a POSIX framework, such as the Windows Linux subsystem.

Chapter 2
1. Which filesystem is used by modern operating systems?

Modern operating systems use different filesystems: Windows and
macOS use their respective proprietary formats, NTFS and APFS, while
Linux systems mainly use EXT4.

2. What is an inode? What is inode 0 in Unix?
An inode is a filesystem data structure representing a file. It stores
information about a file, excluding the name and data.
The inode 0 is reserved for the / folder.

3. What's the difference between PID and PPID?
PID is the unique identifier for an existing process, while PPID is the
identifier of the parent process. When an existing process creates
another, the new process has a PPID equal to the existing process's PID.

4. How do you terminate a process running in the background?
While a SIGINT signal can be sent to a foreground process by
pressing Ctrl + C, for a background process, the signal needs to be sent
with the kill command, in this case, kill -2 PID.

5. What is the difference between a user and a group?
A user identifies an account that can own files and processes, while a
group is a mechanism to share permissions on a file.

6. What's the scope of the Unix permission model?
The Unix permission model enables the restriction of access to a file
with three different levels of power: owner, group, and all other users.

7. Can you explain the difference between signals and exit codes?
Signals and exit codes are both methods of communication between
processes, but whereas a signal is from any process to another, exit
codes are used to communicate from a child to its parent.

8. What's a swap file?
A swap file is an extension of the physical memory that is used to store
pages that are not required in order to free up the main memory.

Chapter 3
1. What's the difference between an exported and an unexported

symbol?
Exported symbols can be used by other packages, whereas unexported
symbols cannot. The first group has an identifier that starts with a capital
letter, while the second group does not.

2. Why are custom types important?
Custom types allow methods to be defined and interfaces to be used
effectively, or the data structure of another type to be inherited, but
getting rid of its methods.

3. What is the main limit of a short declaration?
Short declarations do not allow the variable type inferred by the value to
be defined. A type casting of the value enables this limitation to be
overcome.

4. What is scope and how does it affect variable shadowing?
The scope of a variable represents its lifetime and visibility that can be
package, function, or blocked. Shadowing is when the same identifier
gets used in an inner scope, preventing access to the symbol that shares
that identifier by an outer scope.

5. How can you access a method?
Methods are special types of functions that have a namespace linked to
the type they belong to. They can be accessed as a property of an
instance of their type, or as a property of the type itself, passing the
instance as a first argument.

6. Explain the difference between a series of if/else statements and a
switch statement.
A series of if and else statements allow the execution of a short
declaration for each if statement and will execute only one of the cases,
skipping the following declarations. A switch statement allows only one
declaration, and can modify the flow using continue and break statements.

7. In a typical use case, who is generally responsible for closing a
channel?
Channels should always be closed by the sender, because that party is
responsible for communicating that there is no more information to

send. Also, sending to a closed channel throws a panic, while receiving
from it is a non-blocking operation.

8. What is escape analysis?
Escape analysis is an optimization process performed by the Go
compiler that attempts to reduce the variables allocated in the heap by
verifying whether they outlive the function where they are defined.

Chapter 4
1. What's the difference between absolute and relative paths?

An absolute path starts with the / (root) path, while a relative path does
not. To obtain an absolute path from a relative one, it must be joined to
the current working directory.

2. How do you obtain or change the current working directory?
To find out the current working directory, the os package offers
the Getwd function, which returns the current working directory. To
change the current working directory, the Chdir function must be used. It
accepts both relative and absolute paths.

3. What are the advantages and downfalls of using ioutil.ReadAll?
The ioutil.ReadAll function places the entire file contents in a byte slice,
so the size of file influences the amount of memory allocated, and then
released. Since there is no recycling of the memory allocated this way,
these slices get garbage-collected when they are no longer used.

4. Why are buffers important for reading operations?
Byte buffers limit the amount of memory allocated by the reading
operations, but they also require a certain number of read operations,
each one with a little overhead that impacts speed and performance.

5. When should you use ioutil.WriteFile?
The ioutil.WriteFile function can be used if the size of the content is not
too big, because the entire content needs to be in memory. It is also
preferable to use it in short-lived applications and avoid it for recurrent
writing operations.

6. Which operations are available when using a buffered reader that
allows peeking?
The peeking operation allows the content of the next bytes to be
checked without advancing the cursor of the current reader, and this
enables us to have contextual operations, such as read word, read line, or
any custom token-based operation.

7. When is it better to read content using a byte buffer?
Using a reading buffer is a way of lowering the memory usage of your
application. It can be used when there's no need to have all the content at
once.

8. How can buffers be used for writing? What's the advantage of using
them?
In writing operations, the application already handles the bytes that are
about to be written, so an underlying buffer is used to optimize the
number of system calls, only when the buffer is full, so as to avoid the
addition of system call overheads when the data passed to the writer is
not enough.

Chapter 5
1. What's a stream?

A stream is an abstraction that represents a generic flow of incoming or
outgoing data.

2. What interfaces abstract the incoming streams?
The io.Reader interface is an abstraction for incoming streams.

3. Which interface represents the outgoing streams?
The io.Writer interface is an abstraction for outgoing streams.

4. When should a byte reader be used? When should a string reader
be used instead?
A byte reader should be used when the raw data is a slice of bytes, while
a string reader should be used with strings. Converting from one type of
data to another causes a copy and is inconvenient.

5. What's the difference between a string builder and a byte buffer?
A byte buffer can be reused and overwritten. A string builder is used to
create a string without a copy, so it uses a byte slice and converts it to a
string without copying, using the unsafe package.

6. Why should reader and writer implementations accept an interface
as input?
Accepting an interface as an input means to be open to different types
with the same behavior. This enables existing readers and writers, such
as buffers and files, to be used.

7. How does a pipe differ from TeeReader?
A pipe connects a writer to a reader. Whatever gets written in the writer
gets read by the reader. A TeeReader does the opposite, connecting a
reader to a writer, so what gets read is also written somewhere else.

Chapter 6
1. What is a Terminal, and what is a pseudo-terminal?

A terminal is an application that behaves like a teletype, by displaying a
2 x 2 matrix of characters. Pseudo terminals are applications that run
under a terminal and emulate its behavior by being interactive.

2. What should a pseudo terminal be able to do?
A pseudo terminal application should be able to receive input from a
user, execute an action according to the instruction received, and display
the result back to the user.

3. What Go tools did we use in order to emulate a terminal?
To manage user input, we used a buffered scanner in standard input,
which will read user input line by line. Each command has been
implemented using the same interface. To understand the command
invoked, we used a comparison between the first argument and the
commands available. A writer is passed to command to print their
output.

4. How can my application get instructions from the standard input?
The application can use the standard input combined with a scanner that
will return a new token each time it encounters a new line.

5. What is the advantage of using interfaces for commands?
Using interfaces for commands allows us and the user of our package to
expand the behavior by implementing their own version of the interface.

6. What is the Levenshtein distance? Why can it be useful in pseudo-
terminals?
The Levenshtein distance is the number of changes required to
transform a string into another. It can useful for suggesting other
commands to the user when they specify a non-existing one.

Chapter 7
1. What applications are available for the current process inside a Go

application?
The applications available for a process are PID (process ID), PPID
(parent PID), UID and GID (user and group ID), and the working
directory.

2. How do you create a child process?
The exec.Cmd data structure can be used to define a child process. The
process gets created when one of the Run, Start, Output, and CombinedOutput
methods gets called.

3. How do you ensure that a child process survives its parent?
By default in Unix systems, a child survives if the parent terminates.
Additionally, you can change the process group and session ID of the
child in order to ensure that it survives the parent.

4. Can you access child properties? How can they be used?
One of the biggest advantages is to access the child PID to persist it
somewhere, such as on the disk. This will allow another instance of the
application, or any other application, to know which is the identifier of
the child and verify whether it's still running.

5. What's a daemon in Linux and how are they handled?
A daemon in Linux is a process that is running in the background. In
order to create a daemon, a process can create a fork of itself and
terminate, set the init process to be the parent of the fork, set the current
working directory to root for the fork, setting the input of the child to
null, and use log files for output and error.

Chapter 8
1. What's an exit code? Who makes use of it?

The exit code is an integer value passed from a process to is parent to
signal when the process ends. It represents the outcome of the process,
and it is 0 if there have been no errors. The parent process can use this
value to decide what to do next, such as running the process again if
there is an error.

2. What happens when an application panics? What exit code is
returned?
If panic is not recovered, the application will execute all the deferred
functions and will exit with a status of 2.

3. What's the default behavior of a Go application when receiving all
signals?
The default behavior of a Go application with signals is an early exit.

4. How do you intercept signals and decide how the application must
behave?
The signals received can be intercepted using the signal.Notify method on
a channel, specifying the type of signals that you want to handle. The
values received by the channel can be compared to signal values, and the
application can behave accordingly.

5. Can you send signals to other processes? If so, how?
It is possible to send signals to another process inside a Go application.
In order to do so, the application needs to acquire an instance of the
os.Process structure using a lookup function, and then it can use the Signal
method of the structure to send a signal.

6. What are pipes and why are they important?
Pipes are two streams, one of output and the other of input, connected
together. What's written in the output is available to the input, and this
facilitates the connection of one process output to another process input.

Chapter 9
1. What's the advantage of using communication models?

Communication models allow you to abstract the type of data handled
with your model, making the communications between different
endpoints easy.

2. What's the difference between a TCP and a UDP connection?
TCP is connection oriented—this makes it reliable because it verifies
that the destination receives data correctly before sending new data. A
UDP connection sends data continuously, without acknowledging that
the destination received the package. This can cause package loss, but it
makes the connection faster and does not accumulate latency.

3. Who closes the request body when sending requests?
Closing the request when making an HTTP call is the responsibility of
the application.

4. Who closes the body when receiving requests in the server?
The request body is closed automatically when the connection is closed,
but the server can close it even earlier if it so desires.

Chapter 10
1. What's the trade-off between text and binary encodings?

Text-based encodings are easier to read for a human, as well as easier to
debug and write, but they take more space because of it. Binary
encodings are difficult to write, read, and debug for a human, but
smaller in size.

2. How does Go behave with a data structure by default when
encoding?
The default behavior of Go is to use reflection in order to read the fields
and their values.

3. How can this behavior be changed?
This behavior can be changed by implementing the marshaller interface
of the encoding you are using, such as json.Marshaller for JSON.

4. How does a structure field get encoded in an XML attribute?
The struct field needs to specify the ,attr value in its tag.

5. What operation is required to decode a gob interface value?
The data types that implement the interface need to be registered in the
gob package using the gob.Register function.

6. What is the protocol buffer encoding?
The protocol buffer is an encoding protocol made by Google that uses a
definition file for data structures and services. The file is used to
generate data models, clients, and server stubs, leaving only the
implementation of the server to the developer.

Chapter 11
1. What is a thread and who is responsible for it?

A thread is a part of a process that can be assigned by a specific core or
CPU. It carries information about the state of the application, like a
process does, and is managed by the operating system scheduler.

2. How do goroutines differ from threads?
Goroutines are tiny in size compared to threads, with a 1 to 100 ratio,
and they are not managed by the operating system. The Go runtime
takes care of the scheduling of goroutines.

3. When are arguments evaluated when launching a goroutine?
All the arguments passed to the function that starts the goroutine are
evaluated when the goroutine is created. This means that if the value of
the argument changes before the goroutine actually gets picked up by
the scheduler and starts, the change is not going to be reflected in the
goroutine.

4. How do buffered and non-buffered channels differ?
A non-buffered channel is created by the make function if no capacity is
specified, or if it's 0. Each send operation to such a channel will block
the current goroutine, until a receive operation is performed by another
goroutine. A buffered channel can support a number of non-blocking
send operations equal to its capacity. This means that if a channel has a
capacity of n, the first n-1 send operations that are not matched by any
receive operation will not be blocking.

5. Why are one-way channels useful?
They allow just a subset of operations, making clear to the user what the
scope of the channel is. A receive-only channel does not allow data to be
sent, or to close it, and that makes perfect sense because it is not the
responsibility of the receiver. A send-only channel does not allow the
receipt of data, but allows it to be sent and to close the channel, with an
implicit statement that it is up to the sender to close the channel to signal
that there is no more data.

6. What happens when operations are executed on nil or closed
channels?

Sending to, or receiving from, a nil channel blocks forever, and closing
it creates panics. Receiving from a closed channel returns a zero value
immediately, and false, while sending to a closed channel raises a panic
and the same thing happens if we try to close it again.

7. What are timers and tickers used for?
Timers and tickers both create a receive-only channel. Timers can be
used in a loop with a select statement, instead of using default, in order to
reduce the frequency of the selection and lower the CPU usage of the
application when it is idle. Tickers are very useful for executing an
operation every fixed period of time, while one practical usage is a rate
limiter, which limits the number of executions over a set period of time
in a certain segment of an application.

Chapter 12
1. What's a race condition?

A race condition is a situation where an application tries to execute two
operations on the same resource at the same time, and the nature of the
resource only allows one operation at time.

2. What happens when you try to execute read and write operations
concurrently with a map?
When reading and writing operations on a map happen simultaneously,
this causes a runtime error: concurrent map writes.

3. What's the difference between Mutex and RWMutex?
A regular mutex allows a resource to be locked and unlocked, and each
operation has the same priority. A read/write mutex has two types of
locks, one for each operation (read/write). The read lock allows more
than one operation at time, while it is exclusive. Write locks could be
subject to a delay if there are many continuous read operations on the
resource. This is known as write starvation.

4. Why are wait groups useful?
Wait groups are the perfect tool to synchronize with the execution of
different goroutines. This enables a clean and elegant solution to the
classic setting, where there are several concurrent operations, and a main
goroutine has to wait for them to end before moving on.

5. What's the main use of sync.Once?
sync.Once can be used to execute a concurrent operation on one occasion.
It can be used to close a channel once and avoid panics, for instance.
Another use case is the lazy initialization of a variable to implement a
thread-safe version of the singleton design pattern.

6. How can you use a pool?
A pool allows short-lived items to be reused. A good use case for pools
is byte slices and byte buffers, because the pool will prevent this
resource from being recycled by the garbage collector, while preventing
the allocation of new pools.

7. What's the advantage of using atomic operations?
Using a mutex for numeric variables has a lot of overhead. Atomic

operations allow such overheads to be reduced and thread-safe
operations to be executed on numeric variables. Its main use is for
integer numbers, but, with some transformation, we can do the same for
other types, such as Booleans and floats.

Chapter 13
1. What is context in Go?

Context is a package that contains a generic interface and some auxiliary
functions to return context instances. It is used to synchronize operations
between various parts of the application and to carry values.

2. What's the difference between cancellation, deadline, and timeout?
There are three different types of expiration for a context—cancellation
is an explicit call to a cancellation function by the application, deadline
is when the context goes over a specified time, and timeout is when the
context survives a specific duration.

3. What are the best practices when passing values with a context?
Values passed around with context should be relative to the current
scope or request. They should not be used as a way of passing around
optional function parameters or variables that are essential to the
application. It is also a good idea to use custom private types as keys,
because built-in values can be overridden by other packages. Pointers to
values are also a solution to such a problem.

4. Which standard packages already use context?
There are different packages that use context. The most notable are
net/http , which uses context for requests and for server shutdown; net,
which uses context for functions such as Dial or Listen; and database/sql,
which uses the context as a way to cancel operations such as queries.

Chapter 14
1. What is a generator? What are its responsibilities?

A generator is a tool that returns a series of values—it returns the next
value in the series each time it is called. It's responsible for generating
values in the sequence on demand. In Go, this can be done by using a
channel to receive the values that are sent through by a goroutine that
creates them.

2. How would you describe a pipeline?
A pipeline is a type of application flow that splits the execution into
different stages. These stages communicate with one another by using a
certain means of communication, such as networks, or runtime internals,
such as channels.

3. What type of stage gets a channel and returns one?
An intermediate stage will receive from a receive-only channel and
return another receive-only channel.

4. What is the difference between fan-in and fan-out?
Fan-in is also known as demultiplexing, and entails gathering messages
from different sources into one. Fan-out, or multiplexing, is the opposite
—it entails splitting a single source of a message to more receivers.

Chapter 15
1. What's the memory representation of an interface in Go?

An interface in Go is represented by two values—the first one is the
interface concrete type, while the second is the value for such a type.

2. What happens when an interface type is casted to another one?
Since interface values need to be a concrete value, and cannot be another
interface, a new interface is created with a different type and the same
concrete value.

3. What are Value, Type, and Kind in reflection?
A Value, as the name suggests, represents the content of a variable; a Type
represents the Go type of a variable; and Kind is the memory
representation of a Type and refers only to built-in types.

4. What does it mean that a value is addressable?
An addressable value is a value that can be edited because it has been
obtained by a pointer.

5. Why are structure field tags important in Go?
Structure field tags are an easy way to add extra information about a
structure field that is easy to read, using the reflection Type interface.

6. What's the general trade-off of reflection?
Reflection allows your code to deal with unknown types of data and
make your package or application generic, but it comes with an
overhead that has a performance cost. It also makes code more obscure
and less maintainable.

7. Could you describe a good approach when using reflection?
The best approach to reflection is the one that we find in many different
parts of the standard library; for instance, in the encoding packages. They
use reflection as a last resort, and they do so by providing interfaces for
encoding and decoding operations. If these interfaces are satisfied by a
type, the package will use the respective methods instead of relying on
reflection.

Chapter 16
1. What is CGO?

CGO is a powerful Go tool that handles communication between C code
and Go code. This allows C code to be used in a Go application and to
leverage the huge amount of existing C libraries.

2. How can you call C code from Go?
Go offers a pseudo package called C that exposed C types, such as C.int,
and some functions that will convert Go strings and bytes into C
character arrays, and vice versa. The comment that comes before the
import C package will be interpreted as C code, and all the functions
defined in it (be it directly, or by importing files), will be available in
Go as functions of the C package.

3. How can you use Go code in C?
If a Go function is preceded by a special comment, //export, this function
will be available to the C code. It will also have to be defined as an
external function in C.

4. What are the differences in data types between Go and C?
Even if they have different data types, C and Go share most of their
built-in numeric types. Strings in Go are a built-in immutable type, but
in C, they are just a character array terminated by a \0 value.

5. How can you edit Go values inside C code?
Using the unsafe package, you can convert data types with the same
memory representation in both C and Go. You need to convert the
pointer to a value in its C counterpart, and this will allow you to edit the
pointer content from the C part of the application.

6. What is the main problem associated with packed data structures?
Packed data structures save space in memory, but their fields can be
unaligned, meaning that they are split between multiple memory zones.
This means that read and write operations take twice as long. There is
also another inconvenience—some of the packed fields are not directly
accessible from Go.

7. What are the main downfalls of CGO?
Even if it is a very powerful tool, CGO has many downsides—the

performance cost of passing from C to Go, and vice versa; the fact that
the compiling time increases because the C compiler gets involved in the
process; and that your Go code is reliant on your C code to work, which
could be harder to maintain and debug.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Hands-On Full Stack Development with Go
Mina Andrawos

ISBN: 978-1-78913-075-1

Understand Go programming by building a real-world application
Learn the React framework to develop a frontend for your application
Understand isomorphic web development utilizing the GopherJS
framework
Explore methods to write RESTful web APIs in Go using the Gin
framework
Learn practical topics such as ORM layers, secure communications, and
Stripe's API
Learn methods to benchmark and test web APIs in Go

https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/application-development/learn-data-structures-and-algorithms-golang

Learn Data Structures and Algorithms with Golang
Bhagvan Kommadi

ISBN: 978-1-78961-850-1

Improve application performance using the most suitable data structure
and algorithm
Explore the wide range of classic algorithms such as recursion and
hashing algorithms
Work with algorithms such as garbage collection for efficient memory
management
Analyze the cost and benefit trade-off to identify algorithms and data
structures for problem solving
Explore techniques for writing pseudocode algorithm and ace
whiteboard coding in interviews
Discover the pitfalls in selecting data structures and algorithms by
predicting their speed and efficiency

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital so
that other potential readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers think about our
products, and our authors can see your feedback on the title that they have
worked with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Hands-On System Programming with Go

	Dedication
	About Packt
	Why subscribe?

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Code in Action
	Playground examples

	Conventions used

	Get in touch
	Reviews

	Section 1: An Introduction to System Programming and Go
	An Introduction to System Programming
	Technical requirements
	Beginning with system programming
	Software for software
	Languages and system evolution
	System programming and software engineering

	Application programming interfaces
	Types of APIs
	Operating systems
	Libraries and frameworks
	Remote APIs
	Web APIs

	Understanding the protection ring
	Architectural differences
	Kernel space and user space

	Diving into system calls
	Services provided
	Process control
	File management
	Device management
	Information maintenance
	Communication

	The difference between operating systems

	Understanding the POSIX standard
	POSIX standards and features
	POSIX.1 – core services
	POSIX.1b and POSIX.1c – real-time and thread extensions
	POSIX.2 – shell and utilities

	OS adherence
	Linux and macOS
	Windows

	Summary
	Questions

	Unix OS Components
	Technical requirements
	Memory management
	Techniques of management
	Virtual memory

	Understanding files and filesystems
	Operating systems and filesystems
	Linux
	macOS
	Windows

	Files and hard and soft links

	Unix filesystem
	Root and inodes
	Directory structure
	Navigation and interaction
	Mounting and unmounting

	Processes
	Process properties
	Process life cycle
	Foreground and background
	Killing a job

	Users, groups, and permissions
	Users and groups
	Owner, group, and others
	Read, write, and execute
	Changing permission

	Process communications
	Exit codes
	Signals
	Pipes
	Sockets

	Summary
	Questions

	An Overview of Go
	Technical requirements
	Language features
	History of Go
	Strengths and weaknesses

	Namespace
	Imports and exporting symbols

	Type system
	Basic types
	Composite types
	Custom-defined types

	Variables and functions
	Handling variables
	Declaration
	Operations
	Casting
	Scope

	Constants
	Functions and methods
	Values and pointers

	Understanding flow control
	Condition
	Looping

	Exploring built-in functions
	Defer, panic, and recover

	Concurrency model
	Understanding channels and goroutines

	Understanding memory management
	Stack and heap
	The history of GC in Go

	Building and compiling programs
	Install
	Build
	Run

	Summary
	Questions

	Section 2: Advanced File I/O Operations
	Working with the Filesystem
	Technical requirements
	Handling paths
	Working directory
	Getting and setting the working directory

	Path manipulation

	Reading from files
	Reader interface
	The file structure

	Using buffers
	Peeking content

	Closer and seeker

	Writing to file
	Writer interface
	Buffers and format
	Efficient writing
	File modes

	Other operations
	Create
	Truncate
	Delete
	Move
	Copy
	Stats
	Changing properties

	Third-party packages
	Virtual filesystems
	Filesystem events

	Summary
	Questions

	Handling Streams
	Technical requirements
	Streams
	Input and readers
	The bytes reader
	The strings reader

	Defining a reader
	Output and writers
	The bytes writer
	The string writer

	Defining a writer

	Built-in utilities
	Copying from one stream to another
	Connected readers and writers
	Extending readers
	Writers and decorators

	Summary
	Questions

	Building Pseudo-Terminals
	Technical requirements
	Understanding pseudo-terminals
	Beginning with teletypes
	Pseudo teletypes

	Creating a basic PTY
	Input management
	Selector
	Command execution
	Some refactor

	Improving the PTY
	Multiline input
	Providing color support to the pseudo-terminal
	Suggesting commands
	Extensible commands

	Commands with status
	Volatile status
	Persistent status
	Upgrading the Stack command

	Summary
	Questions

	Section 3: Understanding Process Communication
	Handling Processes and Daemons
	Technical requirements
	Understanding processes
	Current process
	Standard input
	User and group ID
	Working directory

	Child processes
	Accessing child properties
	Standard input

	Beginning with daemons
	Operating system support
	Daemons in action
	Services

	Creating a service
	Third-party packages

	Summary
	Questions

	Exit Codes, Signals, and Pipes
	Technical requirements
	Using exit codes
	Sending exit codes
	Exit codes in bash
	The exit value bit size
	Exit and deferred functions
	Panics and exit codes
	Exit codes and goroutines

	Reading child process exit codes

	Handling signals
	Handling incoming signals
	The signal package
	Graceful shutdowns
	Exit cleanup and resource release
	Configuration reload

	Sending signals to other processes

	Connecting streams
	Pipes
	Anonymous pipes
	Standard input and output pipes

	Summary
	Questions

	Network Programming
	Technical requirements
	Communicating via networks
	OSI model
	Layer 1 – Physical layer
	Layer 2 – Data link layer
	Layer 3 – Network layer
	Layer 4 – Transport layer
	Layer 5 – Session layer
	Layer 6 – Presentation layer
	Layer 7 – Application layer

	TCP/IP – Internet protocol suite
	Layer 1 – Link layer
	Layer 2 – Internet layer
	Layer 3 – Transport layer
	Layer 4 – Application layer

	Understanding socket programming
	Network package
	TCP connections
	UDP connections
	Encoding and checksum

	Web servers in Go
	Web server
	HTTP protocol
	HTTP/2 and Go

	Using the standard package
	Making a HTTP request
	Creating a simple server
	Serving filesystem
	Navigating through routes and methods
	Multipart request and files
	HTTPS

	Third-party packages
	gorilla/mux
	gin-gonic/gin

	Other functionalities
	HTTP/2 Pusher
	WebSockets protocol

	Beginning with the template engine
	Syntax and basic usage
	Creating, parsing, and executing templates
	Conditions and loops
	Template functions

	RPC servers
	Defining a service
	Creating the server
	Creating the client

	Summary
	Questions

	Data Encoding Using Go
	Technical requirements
	Understanding text-based encoding
	CSV
	Decoding values
	Encoding values
	Custom options

	JSON
	Field tags
	Decoder
	Encoder
	Marshaler and unmarshaler
	Interfaces
	Generating structs
	JSON schemas

	XML
	Structure
	Document Type Definition
	Decoding and encoding
	Field tags
	Marshaler and unmarshaler
	Generating structs

	YAML
	Structure
	Decoding and encoding

	Learning about binary encoding
	BSON
	Encoding
	Decoding

	gob
	Interfaces
	Encoding
	Decoding
	Interfaces

	Proto
	Structure
	Code generation
	Encoding
	Decoding
	gRPC protocol

	Summary
	Questions

	Section 4: Deep Dive into Concurrency
	Dealing with Channels and Goroutines
	Technical requirements
	Understanding goroutines
	Comparing threads and goroutines
	Threads
	Goroutines

	New goroutine
	Multiple goroutines
	Argument evaluation
	Synchronization

	Exploring channels
	Properties and operations
	Capacity and size
	Blocking operations
	Closing channels
	One-way channels

	Waiting receiver
	Special values
	nil channels
	Closed channels

	Managing multiple operations
	Default clause

	Timers and tickers
	Timers
	AfterFunc
	Tickers

	Combining channels and goroutines
	Rate limiter
	Workers
	Pool of workers
	Semaphores

	Summary
	Questions

	Synchronization with sync and atomic
	Technical requirements
	Synchronization primitives
	Concurrent access and lockers
	Mutex
	RWMutex
	Write starvation
	Locking gotchas

	Synchronizing goroutines
	Singleton in Go
	Once and Reset

	Resource recycling
	Slices recycling issues

	Conditions
	Synchronized maps
	Semaphores

	Atomic operations
	Integer operations
	clicker
	Thread-safe floats
	Thread-safe Boolean
	Pointer operations

	Value
	Under the hood

	Summary
	Questions

	Coordination Using Context
	Technical requirements
	Understanding context
	The interface
	Default contexts
	Background
	TODO

	Cancellation, timeout, and deadline
	Cancellation
	Deadline
	Timeout

	Keys and values

	Context in the standard library
	HTTP requests
	Passing scoped values
	Request cancellation

	HTTP server
	Shutdown
	Passing values

	TCP dialing
	Cancelling a connection

	Database operations
	Experimental packages

	Context in your application
	Things to avoid
	Wrong types as keys
	Passing parameters
	Optional arguments
	Globals

	Building a service with Context
	Main interface and usage
	Exit and entry points
	Exclude list
	Handling directories
	Checking file names and contents

	Summary
	Questions

	Implementing Concurrency Patterns
	Technical requirements
	Beginning with generators
	Avoiding leaks

	Sequencing with pipelines
	Muxing and demuxing
	Fan-out
	Fan-in

	Producers and consumers
	Multiple producers (N * 1)
	Multiple consumers (1 * M)
	Multiple consumers and producers (N*M)

	Other patterns
	Error groups
	Leaky bucket
	Sequencing

	Summary
	Questions

	Section 5: A Guide to Using Reflection and CGO
	Using Reflection
	Technical requirements
	What's reflection?
	Type assertions
	Interface assertion

	Understanding basic mechanics
	Value and Type methods
	Kind

	Value to interface
	Manipulating values
	Changing values
	Creating new values

	Handling complex types
	Data structures
	Changing fields
	Using tags

	Maps and slices
	Maps
	Slices

	Functions
	Analyzing a function
	Invoking a function

	Channels
	Creating channels
	Sending, receiving, and closing
	Select statement

	Reflecting on reflection
	Performance cost
	Usage in the standard library
	Using reflection in a package
	Property files
	Using the package

	Summary
	Questions

	Using CGO
	Technical requirements
	Introduction to CGO
	Calling C code from Go
	Calling Go code from C

	The C and Go type systems
	Strings and byte slices
	Integers
	Float types
	Unsafe conversions
	Editing a byte slice directly

	Numbers

	Working with slices
	Working with structs
	Structures in Go
	Manual padding

	Structures in C
	Unpacked structures
	Packed structures

	CGO recommendations
	Compilation and speed
	Performance
	Dependency from C

	Summary
	Questions

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

