
M A N N I N G

Sau Sheong Chang

Go Web Programming

ii

Go Web Programming

SAU SHEONG CHANG

M A N N I N G
SHELTER ISLAND

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editors: Glenn Burnside
PO Box 761 Michael Williams
Shelter Island, NY 11964 Review editor: Ozren Harlovic

Project editor: Kevin Sullivan
Copyeditor: Liz Welch

Proofreader: Elizabeth Martin
Technical proofreader: Jimmy Frasché

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617292569
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.manning.com

brief contents
PART 1 GO AND WEB APPLICATIONS ... 1

1 ■ Go and web applications 3
2 ■ Go ChitChat 22

PART 2 BASIC WEB APPLICATIONS .. 45

3 ■ Handling requests 47
4 ■ Processing requests 69
5 ■ Displaying content 96
6 ■ Storing data 125

PART 3 BEING REAL 153

7 ■ Go web services 155
8 ■ Testing your application 190
9 ■ Leveraging Go concurrency 223

10 ■ Deploying Go 256
v

BRIEF CONTENTSvi

contents
preface xiii
acknowledgments xv
about this book xvii
about the cover illustration xx

 PART 1 GO AND WEB APPLICATIONS 1

1 Go and web applications 3
1.1 Using Go for web applications 4

Scalable web applications and Go 4 ■ Modular web
applications and Go 5 ■ Maintainable web applications and
Go 5 ■ High performing web applications and Go 6

1.2 How web applications work 6

1.3 A quick introduction to HTTP 8

1.4 The coming of web applications 8

1.5 HTTP request 9
Request methods 10 ■ Safe request methods 11 ■ Idempotent
request methods 11 ■ Browser support for request methods 11
Request headers 11
vii

CONTENTSviii
1.6 HTTP response 12
Response status code 13 ■ Response headers 13

1.7 URI 14

1.8 Introducing HTTP/2 16

1.9 Parts of a web app 16
Handler 16 ■ Template engine 17

1.10 Hello Go 18

1.11 Summary 21

2 Go ChitChat 22
2.1 Let’s ChitChat 23

2.2 Application design 24

2.3 Data model 26

2.4 Receiving and processing requests 27
The multiplexer 27 ■ Serving static files 28 ■ Creating the
handler function 28 ■ Access control using cookies 30

2.5 Generating HTML responses with templates 32
Tidying up 36

2.6 Installing PostgreSQL 37
Linux/FreeBSD 37 ■ Mac OS X 38 ■ Windows 38

2.7 Interfacing with the database 38

2.8 Starting the server 43

2.9 Wrapping up 43

2.10 Summary 44

 PART 2 BASIC WEB APPLICATIONS 45

3 Handling requests 47
3.1 The Go net/http library 48

3.2 Serving Go 50
The Go web server 50 ■ Serving through HTTPS 51

3.3 Handlers and handler functions 55
Handling requests 55 ■ More handlers 56 ■ Handler
functions 57 ■ Chaining handlers and handler functions 59
ServeMux and DefaultServeMux 63 ■ Other multiplexers 64

CONTENTS ix
3.4 Using HTTP/2 66

3.5 Summary 68

4 Processing requests 69
4.1 Requests and responses 69

Request 70 ■ Request URL 70 ■ Request header 71
Request body 73

4.2 HTML forms and Go 74
Form 75 ■ PostForm 77 ■ MultipartForm 78 ■ Files 80
Processing POST requests with JSON body 81

4.3 ResponseWriter 82
Writing to the ResponseWriter 83

4.4 Cookies 87
Cookies with Go 87 ■ Sending cookies to the
browser 88 ■ Getting cookies from the browser 90 ■ Using
cookies for flash messages 92

4.5 Summary 95

5 Displaying content 96
5.1 Templates and template engines 97

5.2 The Go template engine 98
Parsing templates 100 ■ Executing templates 101

5.3 Actions 102
Conditional actions 102 ■ Iterator actions 104
Set actions 105 ■ Include actions 107

5.4 Arguments, variables, and pipelines 110

5.5 Functions 111

5.6 Context awareness 113
Defending against XSS attacks 116 ■ Unescaping
HTML 118

5.7 Nesting templates 119

5.8 Using the block action to define default templates 123

5.9 Summary 124

6 Storing data 125
6.1 In-memory storage 126

CONTENTSx
6.2 File storage 128
Reading and writing CSV files 130 ■ The gob package 132

6.3 Go and SQL 134
Setting up the database 134 ■ Connecting to the
database 137 ■ Creating a post 138 ■ Retrieving a
post 140 ■ Updating a post 141 ■ Deleting a post 141
Getting all posts 142

6.4 Go and SQL relationships 143
Setting up the databases 143 ■ One-to-many relationship 145

6.5 Go relational mappers 147
Sqlx 148 ■ Gorm 149

6.6 Summary 152

 PART 3 BEING REAL . .. 153

7 Go web services 155
7.1 Introducing web services 155 7.2

Introducing SOAP-based web services 157
7.3 Introducing REST-based web services 160

Convert action to a resource 162 ■ Make the action a property
of the resource 163

7.4 Parsing and creating XML with Go 163
Parsing XML 163 ■ Creating XML 171

7.5 Parsing and creating JSON with Go 174
Parsing JSON 175 ■ Creating JSON 178

7.6 Creating Go web services 181

7.7 Summary 188

8 Testing your application 190
8.1 Go and testing 191

8.2 Unit testing with Go 191
Skipping test cases 195 ■ Running tests in parallel 196
Benchmarking 197

8.3 HTTP testing with Go 200

8.4 Test doubles and dependency injection 204
Dependency injection with Go 205

CONTENTS xi
8.5 Third-party Go testing libraries 210
Introducing the gocheck testing package 211 ■ Introducing the
Ginkgo testing framework 216

8.6 Summary 221

9 Leveraging Go concurrency 223
9.1 Concurrency isn’t parallelism 223

9.2 Goroutines 225
Using goroutines 225 ■ Goroutines and performance 228
Waiting for goroutines 231

9.3 Channels 232
Synchronization with channels 233 ■ Message passing with
channels 234 ■ Buffered channels 235 ■ Selecting
channels 237

9.4 Concurrency for web applications 240
Creating the photo mosaic 240 ■ The photo mosaic web
application 243 ■ Concurrent photo mosaic web
application 247

9.5 Summary 254

10 Deploying Go 256
10.1 Deploying to servers 257

10.2 Deploying to Heroku 263

10.3 Deploying to Google App Engine 266

10.4 Deploying to Docker 271
What is Docker? 271 ■ Installing Docker 272 ■ Docker
concepts and components 273 ■ Dockerizing a Go web
application 274 ■ Pushing your Docker container to the
internet 276

10.5 Comparison of deployment methods 279

10.6 Summary 280

appendix Installing and setting up Go 281

index 285

CONTENTSxii

preface
Web applications have been around in one form or another since the beginning of
the World Wide Web in the mid-1990s. They started by only delivering static web pages
but soon escalated and evolved into a dizzying variety of dynamic systems delivering
data and functions. My own journey in developing applications for the web started
around the same time, in the mid-1990s, and I eventually spent the larger part of my
professional career designing, developing, and managing teams in developing large-
scale web applications. Over the same period of time, I have written web applications
in numerous programming languages and using various frameworks including Java,
Ruby, Node.js, PHP, Perl, Elixir, and even Smalltalk.

 I stumbled on Go a few years ago, and what worked very well for me is the simplicity
and refreshing directness of the language. I was even more impressed when I realized
that I could quickly write complete web applications (and services) that are fast and
scalable with only the Go standard libraries. The code is direct, easy to understand, and
can be quickly and easily compiled into a single deployable binary file. I no longer
need to throw in application servers to scale or to make my web application produc-
tion-capable. Needless to say, all of these elements made Go my new favorite language
for writing web applications.

 Writing web applications has changed dramatically over the years, from static con-
tent to dynamic data over HTTP, from HTML content delivered from the server to
client-side single-page applications consuming JSON data over HTTP. Almost as soon
as the first web applications were written, web application frameworks appeared, mak-
ing it easier for programmers to write them. Twenty years on, most programming lan-
guages have at least one web application framework—and many have dozens—and
most applications written today are web applications.
xiii

PREFACExiv
 While the popular web application frameworks made it easier to write web applica-
tions, they also concealed a lot of the underlying plumbing. It became increasingly
common to find programmers who don’t even understand how the World Wide Web
works writing web applications. With Go I found a great tool to teach the basics of web
application programming, properly. Writing web applications is direct and simple
again. Everything’s just there—no external libraries and dependencies. It’s all about
HTTP again and how to deliver content and data through it.

 So with that in mind, I approached Manning with an idea for a Go programming
language book that focuses on teaching someone how to write web applications from
the ground up, using nothing except the standard libraries. Manning quickly sup-
ported my idea and green-lighted the project. The book has taken a while to come
together, but the feedback from the early access program (MEAP) was encouraging. I
hope you will gain much and enjoy reading this book as much as I enjoyed writing it.

acknowledgments
This book started with an idea to teach the basics of web programming with Go, using
nothing more than the standard libraries. I wasn’t sure if that would work, but the
readers who paid hard-earned money to buy my MEAP along the way gave me encour-
agement and motivation to push the idea through. To my readers, thank you!

 Writing books is a team effort, and though my name appears on the front cover of
this one, it only exists because of the efforts of a large number of people:

■ Marina Michaels, my hardworking and efficient editor from the other side of
the world, worked tirelessly alongside me, ever ready to accommodate her
schedule to our dramatically different time zones

■ The Manning extended team: Liz Welch, copyeditor, and Elizabeth Martin,
proofreader, who with their eagle eyes helped spot my mistakes; Candace Gill-
hoolley and Ana Romac, who helped me market and promote this book; and
Kevin Sullivan and Janet Vail, who worked to take my raw manuscript and make
it into a real book

■ Jimmy Frasché, who gave the manuscript a full technical proofread, and my
reviewers, who gave valuable feedback at four stages of manuscript develop-
ment: Alex Jacinto, Alexander Schwartz, Benoit Benedetti, Brian Cooksey,
Doug Sparling, Ferdinando Santacroce, Gualtiero Testa, Harry Shaun Lippy,
James Tyo, Jeff Lim, Lee Brandt, Mike Bright, Quintin Smith, Rebecca Jones,
Ryan Pulling, Sam Zaydel, and Wes Shaddix

■ My friends from the Singapore Go community who helped me spread the word
on my new book as soon as the MEAP came out, especially Kai Hendry, who
made a long video from his comments on my book
xv

ACKNOWLEDGMENTSxvi
I’d also like to thank the creators of Go—Robert Griesemer, Rob Pike, and Ken
Thompson—as well as contributors to the net/http, html/template, and other web
standard libraries, especially Brad Fitzpatrick, without whom I probably wouldn’t have
anything to write about!

 Last but certainly not least, I’d like to thank my family—the love of my life, Wooi
Ying, and my taller-than-me-now son, Kai Wen. I hope that in writing this book, I will
be an inspiration to him and he will soon pick up my book proudly and learn from it.

about this book
This book introduces the basic concepts of writing a web application using the Go
programming language, from the ground up, using nothing other than the standard
libraries. While there are sections that discuss other libraries and other topics, includ-
ing testing and deploying web applications, the main goal of the book is to teach web
programming using Go standard libraries only.

 The reader is assumed to have basic Go programming skills and to know Go syn-
tax. If you don’t know Go programming at all, I would advise you to check out Go in
Action by William Kennedy with Brian Ketelsen and Erik St. Martin, also published by
Manning (www.manning.com/books/go-in-action). Another good book to read is The
Go Programming Language (Addison-Wesley 2015), by Alan Donovan and Brian Ker-
nighan. Alternatively, there are plenty of free tutorials on Go, including the A Tour of
Go from the Go website (tour.golang.org).

Roadmap

The book includes ten chapters and an appendix.
 Chapter 1 introduces using Go for web applications, and discusses why it is a good

choice for writing web applications. You’ll also learn about key concepts of what web
applications are, including a brief introduction to HTTP.

 Chapter 2 shows you how to build a typical web application with Go, taking you
step by step through the creation of a simple internet forum web.

 Chapter 3 gets into the details of handling HTTP requests using the net/http pack-
age. You’ll learn how to write a Go web server to listen to HTTP requests and how to
incorporate handlers and handler functions that process those requests.
xvii

https://www.manning.com/books/go-in-action
https://tour.golang.org

ABOUT THIS BOOKxviii
 Chapter 4 continues with the details of handling HTTP requests—specifically, how
Go allows you to process the requests and respond accordingly. You’ll also learn how
to get data from HTML forms and how to use cookies.

 Chapter 5 delves into the Go template engine provided in the text/template and
html/template packages. You’ll learn about the various mechanisms provided by Go
and about using layouts in Go.

 Chapter 6 discusses storage strategies using Go. You’ll learn about storing data in
memory using structs, in the filesystem using CSV and the gob binary format as well as
using SQL and SQL mappers to access relational databases.

 Chapter 7 shows you how to create web services using Go. You’ll learn how to cre-
ate and parse XML as well as JSON with Go, and how a simple web service can be writ-
ten using Go.

 Chapter 8 gives insight into the ways you can test your Go web application at vari-
ous levels, including unit testing, benchmark testing, and HTTP testing. This chapter
also briefly discusses third-party testing libraries.

 Chapter 9 talks about how you can leverage Go concurrency in your web applica-
tion. You’ll learn about Go concurrency and how you can improve the performance of
a photo-mosaic web application using Go concurrency.

 Chapter 10 wraps up the book by showing how you can deploy your web applica-
tion. You’ll learn how to deploy to standalone servers and to the cloud (Heroku and
Google App Engine), as well as in Docker containers.

 The appendix provides instructions for installing and setting up Go on different
platforms.

Code conventions and downloads

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is in bold to high-
light code that has changed from previous steps in the chapter or code that is
discussed in surrounding text.

 Also, colors are used to highlight code commands and code output:

curl -i 127.0.0.1:8080/write
HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 16:16:13 GMT
Content-Length: 95
Content-Type: text/html; charset=utf-8

<html>
<head><title>Go Web Programming</title></head>
<body><h1>Hello World</h1></body>
</html>

ABOUT THIS BOOK xix
Print book readers who want to see this color code highlighting (and all figures in
color) can go to www.manning.com/books/go-web-programming to register and get
their free eBook in PDF, ePub, and Kindle formats.

 Code samples used throughout the book are also available at www.manning.com/
books/go-web-programming and at github.com/sausheong/gwp.

About the author

SAU SHEONG CHANG is now the Managing Director of Digital
Technology at Singapore Power. Before that, he was a Director of
Consumer Engineering at PayPal. He is active in the Ruby and
Go developer communities, and has written books, contributed
to open source projects, and spoken at meetups and conferences.

Author Online

Purchase of Go Web Programming includes free access to a private web forum run by
Manning Publications; you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/go-web-
programming. This page provides information on how to get on the forum after you’re
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

https://www.manning.com/books/go-web-programming
https://www.manning.com/books/go-web-programming
https://www.manning.com/books/go-web-programming
https://www.manning.com/books/go-web-programming
https://www.manning.com/books/go-web-programming
https://github.com/sausheong/gwp

about the cover illustration
The figure on the cover of Go Web Programming is captioned “Man in Medieval Dress.”
The illustration by Paolo Mercuri (1804–1884) is taken from “Costumes Historiques,”
a multivolume compendium of historical costumes from the twelfth, thirteenth, four-
teenth, and fifteenth centuries assembled and edited by Camille Bonnard and pub-
lished in Paris in the 1850s or 1860s. The nineteenth century saw an increased interest
in exotic locales and in times gone by, and people were drawn to collections such as
this one to explore the world they lived in—as well as the world of the distant past.

 The colorful variety of Mercuri’s illustrations in this historical collection reminds
us vividly of how culturally apart the world’s towns and regions were a few hundred
years ago. In the streets or in the countryside people were easy to place—sometimes
with an error of no more than a dozen miles—just by their dress. Their station in life,
as well as their trade or profession, could be easily identified. Dress codes have
changed over the centuries, and the diversity by region, so rich at one time, has faded
away. Today, it is hard to tell apart the inhabitants of one continent from another, let
alone the towns or countries they come from, or their social status or profession. Per-
haps we have traded cultural diversity for a more varied personal life—certainly a
more varied and faster-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of many centuries ago, brought back to life
by Mercuri’s pictures.
xx

Part 1

Go and web applications

Web applications are probably the most widely used type of software appli-
cation today and if you’re connected to the internet, you would hardly pass a day
without using one. Even if you’re mostly on a mobile device, you still are using
web applications. Many mobile applications that look like native applications are
hybrids that have portions that built on web technologies.

 Knowing HTTP is the foundation to learning how to write web applications,
so these first two chapters will introduce HTTP. I will also explain why using Go
for writing web applications is a good idea. I will jump straight into showing you
how to write a simple internet forum using Go and show you a bird’s-eye view of
writing a web application.

2 CHAPTER

Go and web applications
Web applications are ubiquitous. Take any application you use on a daily basis, and
likely it’s a web application or has a web application variant (this includes mobile
apps). Any language that supports software development that interfaces with
human beings will inevitably support web application development. One of the first
things developers of a new language do is build libraries and frameworks to interact
with the internet and the World Wide Web. There are myriad web development
tools for the more established languages.

 Go is no different. Go is a relatively new programming language created to be
simple and efficient for writing back end systems. It has an advanced set of features
and focuses on programmer effectiveness and speed. Since its release, Go has
gained tremendous popularity as a programming language for writing web applica-
tions and *-as-a-Service systems.

 In this chapter, you’ll learn why you should use Go for writing web applications
and you’ll learn all about web applications.

This chapter covers
■ Defining web applications
■ Using Go to write web applications: the advantages
■ Understanding the basics of web application

programming
■ Writing the simplest possible web application in Go
3

4 CHAPTER 1 Go and web applications
1.1 Using Go for web applications
So why should you use Go for writing web applications? My guess is, having bought
this book, you have an inclination to find out the answer. Of course, as the author of a
book that teaches Go web programming, I believe there are strong and compelling
reasons to do so. As you continue reading this book, you’ll get a sense of Go’s
strengths in web application development and, I hope, agree with me about the use-
fulness of Go.

 Go is a relatively new programming language, with a thriving and growing commu-
nity. It is well suited for writing server-side programs that are fast. It’s simple and famil-
iar to most programmers who are used to procedural programming, but it also
provides features of functional programming. It supports concurrency by default, has
a modern packaging system, does garbage collection, and has an extensive and power-
ful set of built-in standard libraries.

 Plenty of good-quality open source libraries are available that can supplement what
the standard libraries don’t have, but the standard libraries that come with Go are
quite comprehensive and wide-ranging. This book sticks to the standard libraries as
much as possible but will occasionally use third-party, open source libraries to show
alternative and creative ways the open source community has come up with.

 Go is rapidly gaining popularity as a web development language. Many companies,
including infrastructure companies like Dropbox and SendGrid, technology-oriented
companies such as Square and Hailo, as well as more traditional companies such as
BBC and The New York Times, have already started using Go.

 Go provides a viable alternative to existing languages and platforms for developing
large-scale web applications. Large-scale web applications typically need to be

■ Scalable
■ Modular
■ Maintainable
■ High-performance

Let’s take a look at these attributes in detail.

1.1.1 Scalable web applications and Go

Large-scale web applications should be scalable. This means you should be able to
quickly and easily increase the capacity of the application to take on a bigger volume
of requests. The application should scale also linearly, meaning you should be able to
add more hardware and process a corresponding number of requests.

 We can look at scaling in two ways:

■ Vertical scaling, or increasing the amount of CPUs or capacity in a single machine
■ Horizontal scaling, or increasing the number of machines to expand capacity

Go scales well vertically with its excellent support for concurrent programming. A sin-
gle Go web application with a single OS thread can be scheduled to run hundreds of
thousands of goroutines with efficiency and performance.

5Using Go for web applications
 Just like any other web applications, Go can scale well horizontally as well as by lay-
ering a proxy above a number of instances of a Go web app. Go web applications are
compiled as static binaries, without any dynamic dependencies, and can be distributed
to systems that don’t have Go built in. This allows you to deploy Go web applications eas-
ily and consistently.

1.1.2 Modular web applications and Go

Large-scale web applications should be built with components that work interchange-
ably. This approach allows you to add, remove, or modify features easily and gives you
the flexibility to meet the changing needs of the application. It also allows you to
lower software development costs by reusing modular components.

 Although Go is statically typed, it has an interface mechanism that describes behav-
ior and allows dynamic typing. Functions can take interfaces, which means you can
introduce new code into the system and still be able to use existing functions by imple-
menting methods required by that interface. Also, with a function that takes an empty
interface, you can put any value as the parameter because all types implement the
empty interface. Go implements a number of features usually associated with func-
tional programming, including function types, functions as values, and closures.
These features allow you to build more modular code by providing the capability of
building functions out of other functions.

 Go is also often used to create microservices. In microservice architecture large-scale
applications can be created by composing smaller independent services. These services
are interchangeable and organized around capabilities (for example, a systems-level
service like logging or an application-level service such as billing or risk analysis). By
creating multiple small Go services and composing them into a single web application,
you enable these capabilities to be swappable and therefore more modular.

1.1.3 Maintainable web applications and Go

Like any large and complex applications, having an easily maintainable codebase is
important for large-scale web applications. It’s important because large-scale applica-
tions often need to grow and evolve and therefore you need to revisit and change the
code regularly. Complex, unwieldy code takes a long time to change and is fraught
with risk of something breaking, so it makes sense to keep the source code well orga-
nized and maintainable.

 Go was designed to encourage good software engineering practices. It has a clean
and simple syntax that’s very readable. Go’s package system is flexible and unambigu-
ous, and there’s a good set of tools to enhance the development experience and help
programmers to write more readable code. An example is the Go source code format-
ter (gofmt) which standardizes the formatting of Go code.

 Go expects documentation to evolve along with the code. The Go documentation
tool (godoc) parses Go source code, including comments, and creates documentation
in a variety of formats such as HTML and plain text. It’s very easy to use—just write the
documentation above the source code itself and godoc will extract it along with the
code to generate the documentation.

6 CHAPTER 1 Go and web applications
 Testing is built into Go. gotest discovers test cases built into the same package and
runs functional and performance testing. Go also provides web application testing
tools by emulating a web client and recording responses generated by the server.

1.1.4 High performing web applications and Go

High performance means being able to process a large volume of requests within a
short period of time. It also means being able to respond to the client quickly and
making operations faster for end users.

 One of Go’s design goals is to approach the performance of C, and although it
hasn’t reached this goal, the current results are quite competitive. Go compiles to
native code, which generally means it’s faster than other interpreted languages and
frameworks. As described earlier, Go also has great concurrency support with gorou-
tines, which allows multiple requests to be processed at the same time.

 I hope I’ve convinced you that Go is at least worth looking into as a useful lan-
guage and platform for developing web applications. But before we jump into any Go
code, let’s get in sync on what web applications are and how they work. This will be
important as you read through the next few chapters.

1.2 How web applications work
Ask a room full of programmers what a web application is and you’ll likely get a wide
range of answers (plus looks of scorn and amazement for asking such a basic question).
But as you get your answers from the assembled technologists, you might realize that
the common understanding of what a web application is might not be as straightfor-
ward. For example, is a web service also a web application? Many would consider them
different, primarily because web services are consumed by other software whereas web
applications are used by humans. But if a web application produces data that’s read-
able by humans but is only consumed by other software (as with an RSS feed), is it a web
service or still a web application?

 If an application returns only an HTML page without any processing, is it a web appli-
cation? Is a Adobe Flash program running on a web browser a web application? How
about an application only written in HTML5, running on your browser but that resides
on your laptop? If the application doesn’t use HTTP to send requests to a server, is it still
a web application? At a higher level, most programmers understand what a web appli-
cation is. Down at a lower, implementation level, though, things get fuzzy and gray.

 In a purist and narrow sense, a web application is a computer program that
responds to an HTTP request by a client and sends HTML back to the client in an HTTP
response. But isn’t this what a web server
is? From this definition, there is no dif-
ference between a web server and a web
application. The web server is the
web application (see figure 1.1).

 The only consideration is probably
that a web server like httpd or Apache

Client Server

Request

Response

Figure 1.1 The basic request response
structure of a web application

7How web applications work
looks at a particular directory (in Apache this is the docroot) and returns files in that
directory when requested. In comparison, a web application doesn’t simply return
files; it processes the request and performs operations that are programmed into the
application (see figure 1.2).

From this point of view, you can probably consider a web server to be a specialized type
of web application that returns only files that are being requested. In a broader sense,
many users would consider any application that uses a browser as the client to be a web
app. This includes Adobe Flash applications, single-page web applications, and even
applications that aren’t served over HTTP but that reside on your desktop or laptop.

 In the context of this book, we need to draw the line somewhere. Let’s consider
first what an application is.

 An application is a software program that interacts with a user and helps the user to
perform an activity. This includes accounting systems, human resource systems, desk-
top publication software, and so on. A web application is then an application that’s
deployed and used through the web.

 In other words, a program needs to fulfill only two criteria to be considered a
web app:

■ The program must return HTML to a calling client that renders HTML and dis-
plays to a user.

■ The data must be transported to the client through HTTP.

As an extension of this definition, if a program doesn’t render HTML to a user but
instead returns data in any other format to another program, it is a web service (that is,
it provides a service to other programs). We’ll get into web services in chapter 7.

 Although this is probably a narrower definition than what most programmers
would likely define as a web application, it’s a useful one for our discussion in this
book. It cuts through all the fuzziness and makes web applications much easier to
understand. As we progress, things will start to make a lot more sense. But first, let’s
understand how HTTP came to be the way it is today.

Client Server

Request

Response

File

Web app processes request, performs
programmed operations, returns files.

Figure 1.2 How a web application works

8 CHAPTER 1 Go and web applications
1.3 A quick introduction to HTTP
HTTP is the application-level communications protocol that powers the World Wide
Web. Everything that you see on a web page is transported through this seemingly sim-
ple text-based protocol. HTTP is simple but surprisingly powerful—since its definition
in 1990, it has gone through only three iterative changes. HTTP 1.1 is the latest ver-
sion, and HTTP 2.0 is in draft form.

 The first version of HTTP (HTTP 0.9), created by Tim Berners-Lee, was a simple
protocol created to help adoption of the World Wide Web. It allows a client to open a
connection to a server, issue an ASCII character string request, and terminate with a
carriage return (CRLF). The server then responds with only the HTML (no other
metadata).

 The explosion of features came with different implementations of HTTP. Eventu-
ally the multitude of features consolidated as HTTP 1.0 in 1996, followed by HTTP 1.1
in 1999, which is the most common version in use today. HTTP 2.0 (or HTTP/2) is in
draft, so in this book we’ll concentrate on HTTP 1.1 only.

 Let’s start defining what HTTP is first (this is my simplified definition):

HTTP HTTP is a stateless, text-based, request-response protocol that uses the
client-server computing model.

Request-response is a basic way two computers talk to each other. The first computer
sends a request to the second computer and the second computer responds to that
request. A client-server computing model is one where the requester (the client) always
initiates the conversation with the responder (the server). As the name suggests, the
server provides a service to the client. In HTTP, the client is also known as the user-agent
and is often a web browser. The server is often called the web server.

HTTP is a stateless protocol. Each request from the client to the server returns a
response from the server to the client, and that’s all the protocol remembers. Subse-
quent requests to the same server have absolutely no idea what happened before. In
comparison, connection-oriented protocols like FTP or Telnet (also request-response
and client-server) create a persistent channel between the client and the server. Hav-
ing said that, HTTP 1.1 does persist connections to improve performance.

HTTP sends and receives protocol-related data in plain text (as opposed to sending
and receiving in binary), like many other internet-related protocols. The rationale
behind this is to allow you to see what goes on with the communications without a spe-
cialized protocol analyzer, making troubleshooting a lot easier.

HTTP was originally designed to deliver HTML only and HTTP 0.9 had only one
method: GET. Later versions expanded it to be a generic protocol for distributed col-
laborative systems, including web applications, which we’ll get into next.

1.4 The coming of web applications
Not long after the World Wide Web was introduced to the world at large, people
started to realize that just serving files is great but it’d be even better if the content

9HTTP request
served was dynamically created. One of the early attempts to do this was the Common
Gateway Interface (CGI).

 In 1993, the National Center for Supercomputing Applications (NCSA) wrote a
specification for calling command-line executable programs called the CGI. The NCSA
included it in its popular NCSA httpd. Despite its name, it never became an internet
standard.

CGI is a simple interface that allows a web server to interface with a program that’s
running separately and externally to the web server process. This program, usually
called a CGI program, can be written in any language (hence, common), and in the ear-
lier years that was mostly Perl. Input to the CGI program is done through environment
variables, and anything the CGI program produces into standard output is returned to
the client through the server.

 Another technology from the same period is server-side includes (SSI), which are direc-
tives you can include in an HTML file. These directives are executed when the HTML file
is requested and the contents from the execution of these directives are included in the
spot where the directive was, before the final content is delivered to the client. One of
the most popular uses of SSI is to include a frequently used file in another, or to embed
header and footer snippets that are common throughout the site.

 As an example, the following code includes the contents of the navbar.shtml file in
the location you placed the directive:

<html>
 <head><title>Example SSI</title></head>
 <body>
 <!--#include file="navbar.shtml" -->
 </body>
</html>

The eventual evolution of SSI was to include more complex code in the HTML and use
more powerful interpreters. This pattern grew into highly successful engines for
building sophisticated web applications such as PHP, ASP, JSP, and ColdFusion. This
also became the basis for web template engines like Mustache, ERB, Velocity, and
many others.

 As you can see, web applications originated as delivery of customized, dynamic
content to the user through HTTP. To figure out how web applications operate, you
need to know how HTTP works and understand HTTP requests and responses.

1.5 HTTP request
HTTP is a request-response protocol, so everything starts with a request. The HTTP
request, like any HTTP message, consists of a few lines of text in the following order:

1 Request-line
2 Zero or more request headers
3 An empty line
4 The message body (optional)

10 CHAPTER 1 Go and web applications
This is how a typical HTTP request looks:

GET /Protocols/rfc2616/rfc2616.html HTTP/1.1
Host: www.w3.org
User-Agent: Mozilla/5.0
(empty line)

In this request, the first line is the request-line:

GET /Protocols/rfc2616/rfc2616.html HTTP/1.1

The first word in the request-line is the request method, followed by the Uniform Resource
Identifier (URI) and the version of HTTP to be used. The next two lines are the request
headers. Notice the last line is an empty line, which must exist even though there’s no
message body. Whether the message body exists depends on the request method.

1.5.1 Request methods

The request method is the first word on the request-line and indicates the action to be
done on the resource. HTTP 0.9 had only one method: GET. HTTP 1.0 added POST and
HEAD. HTTP 1.1 added another five—PUT, DELETE, OPTIONS, TRACE, and CON-
NECT—and opened the possibility for adding more methods (and many promptly did).

 Interestingly, HTTP 1.1 specifies that GET and HEAD must always be implemented
while all other methods are optional (this means even POST is optional).

■ GET—Tells the server to return the specified resource.
■ HEAD—The same as GET except that the server must not return a message

body. This method is often used to get the response headers without carrying
the weight of the rest of the message body over the network.

■ POST—Tells the server that the data in the message body should be passed to
the resource identified by the URI. What the server does with the message body
is up to the server.

■ PUT—Tells the server that the data in the message body should be the resource
at the given URI. If data already exists at the resource identified by the URI, that
data is replaced. Otherwise, a new resource is created at the place where the
URI is.

■ DELETE—Tells the server to remove the resource identified by the URI.
■ TRACE—Tells the server to return the request. This way, the client can see what

the intermediate servers did to the request.
■ OPTIONS—Tells the server to return a list of HTTP methods that the server sup-

ports.
■ CONNECT—Tells the server to set up a network connection with the client. This

method is used mostly for setting up SSL tunneling (to enable HTTPS).
■ PATCH—Tells the server that the data in the message body modifies the

resource identified by the URI.

11HTTP request
1.5.2 Safe request methods

A method is considered safe if it doesn’t change the state of the server—that is, the
server provides only information and nothing else. GET, HEAD, OPTIONS, and TRACE
are safe methods because they aren’t supposed to change anything on the server. In
comparison, POST, PUT, and DELETE methods do change the state of the server; for
example, after a POST request is sent, data at the server is supposed to be changed.

1.5.3 Idempotent request methods

A method is considered idempotent if the state of the server doesn’t change the second
time the method is called with the same data. Safe methods by definition are consid-
ered idempotent as well (though obviously not the other way around).

PUT and DELETE are idempotent but not safe. This is because PUT and DELETE
don’t change the state of the server the second time they’re called. PUT with the same
resource will result in the same actions being taken by the server, because after the
first request the resource at the URI is either already updated or created. DELETE with
the same resource might result in an error by the server, but the state doesn’t change.

POST is neither a safe nor an idempotent method because subsequent POST
requests to the server might (or might not) result in a state change, depending on the
server. Idempotency is an important idea that we’ll revisit when we talk about web ser-
vices in chapter 7.

1.5.4 Browser support for request methods

GET is the most fundamental HTTP method, and it’s supported with all browsers
because it’s how you actually get content from the server. POST support started with
HTML 2.0 with the addition of HTML forms. The HTML form tag has an attribute,
method, that accepts either the value get or post that indicates which HTTP method
you want to use.

HTML doesn’t support any other HTTP methods besides GET and POST. In early
drafts of HTML5, PUT and DELETE support were added as values in the HTML form
method attribute, but it was taken out again.

 Modern browsers do more than just HTML, though. To support PUT and DELETE,
you can use XMLHttpRequest (XHR). XHR is a set of browser APIs (actually, it’s mostly
just a browser object called XMLHttpRequest) with JavaScript code usually wrapped
around it. XHR allows programmers to send HTTP requests to the server and, despite
its name, isn’t limited to using XML only. Requests and responses can be sent in any
format, including JSON and text files.

1.5.5 Request headers

Although the HTTP request method defines the action requested by the calling client,
other information on the request or the client is often placed in HTTP request head-
ers. Request headers are colon-separated name-value pairs in plain text, terminated by
a carriage return (CR) and line feed (LF).

12 CHAPTER 1 Go and web applications
 A core set of HTTP request fields is standardized in RFC 7231 (which is a part of the
set of HTTP 1.1 RFCs). In the past, nonstandard HTTP request fields conventionally
started with X-, but this practice has been discontinued.

HTTP request headers are mostly optional. The only mandatory header in HTTP
1.1 is the Host header field. But if the message has a message body (which is optional,
depending on the method), you’ll need to have either the Content-Length or the
Transfer-Encoding header fields. Some common request headers you’ll see appear in
table 1.1.

1.6 HTTP response
An HTTP response message is sent every time there’s a request. Like the HTTP
request, the HTTP response consists of a few lines of plain text:

■ A status line
■ Zero or more response headers
■ An empty line
■ The message body (optional)

Table 1.1 Common HTTP request headers

Header field Description

Accept Content types that are acceptable by the client as part of the HTTP response.
For example, Accept: text/html signals to the server that the client wants
the response body’s content type to be in HTML.

Accept-Charset The character sets required from the server. For example, Accept-Charset:
utf-8 tells the server that the client wants the response body to be in UTF-8.

Authorization This is used to send Basic Authentication credentials to the server.

Cookie The client should send back cookies that were set by the calling server. If the
server had set three cookies at the browser previously, the Cookie header field
will contain all three cookies in a semicolon-delimited name-value pair string.
For example:
Cookie: my_first_cookie=hello; my_second_cookie=world

Content-Length The length of the request body in octets.

Content-Type The content type of the request body (when there’s a request body). When a
POST or a PUT is sent, the content type is by default x-www-form-urlen-
coded. But when uploading a file (using the HTML input tag with the type attri-
bute set to file, or otherwise) the content type should be multipart/
form-data.

Host The name of the server, along with the port number. If the port number is omit-
ted, it will be resolved as port 80.

Referrer The address of the previous page that linked to the requested page.

User-Agent Describes the calling client.

13HTTP response
You probably realized that an HTTP response is structured the same way as an HTTP
request. This is how a typical HTTP response looks like (shortened in the interest of
saving trees):

200 OK
Date: Sat, 22 Nov 2014 12:58:58 GMT
Server: Apache/2

Last-Modified: Thu, 28 Aug 2014 21:01:33 GMT
Content-Length: 33115
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns='http://www.w3.org/1999/
xhtml'> <head><title>Hypertext Transfer Protocol -- HTTP/1.1</title></
head><body>…</body></html>

The first line of the HTTP response is the status line, which consists of the status code
and a corresponding reason phrase, which is a short description of the code. In this
case, the HTTP response has a message body, which is in HTML.

1.6.1 Response status code

As mentioned earlier, the status code in an HTTP response indicates what type of
response it is. There are five classes of HTTP response status codes, depending on the
first digit of the code (see table 1.2).

1.6.2 Response headers

Response headers are similar to that of request headers. They are both colon-
separated name-value pairs in plain text, terminated by a CR and LF. Just as request

Table 1.2 HTTP response status codes

Status code class Description

1XX Informational. This tells the client that the server has already received the request
and is processing it.

2XX Success. This is what clients want; the server has received the request and has
processed it successfully. The standard response in this class is 200 OK.

3XX Redirection. This tells the client that the request is received and processed but
the client needs to do more to complete the action. Most of the status codes in
this class are for URL redirection.

4XX Client Error. This tells the client that there’s something wrong with the request.
The most widely known status in this class is 404 Not Found, where the server
tells the client that the resource it’s trying to get isn’t found at that URL.

5XX Server Error. This tells the client that there’s something wrong with the request
but it’s the server’s fault. The generic status code in this class is 500 Internal
Server Error.

14 CHAPTER 1 Go and web applications
headers tell the server more about the request and what the client wants, the response
headers are the means for the server to tell the client more about the response and
what the server wants (from the client). Some commonly used response headers are
shown in table 1.3.

1.7 URI
When Tim Berners-Lee introduced the World Wide Web to the world, he also intro-
duced the idea of a location string representing a resource on the internet. In June
1994, Berners-Lee published RFC 1630, which defined the URI. In it he described the
concepts of a string that represents the name of the resource (uniform resource name, or
URN) and a string that represents the location of the resource (uniform resource locator,
or URL). The URI is an umbrella term that includes both the URN and the URI, and
they have similar syntax and format. This book uses only URLs, so for all purposes,
both the URI and URL can be used interchangeably.

 This is the general form of a URI: <scheme name> : <hierarchical part> [? <query>]
[# <fragment>]

 The scheme name is the name of the URI scheme that defines the rest of the URI
structure. A large number of URI schemes are in use, because URI is a popular way of
identifying resources. But the one we’ll be using mostly in this book is the HTTP
scheme.

 The hierarchical part contains the identification information and should be hierar-
chical in structure. If the hierarchical part starts with a double slash (//), then it’ll

Table 1.3 Common response headers

Header field Description

Allow Tells the client which request methods are supported by the server.

Content-Length The length of the response body in octets (8-bit bytes).

Content-Type The content type of the response body (when there is a response body).

Date Tells the current time (formatted in GMT).

Location This header is used with redirection, to tell the client where to request the next
URL.

Server Domain name of the server that’s returning the response.

Set-Cookie Sets a cookie at the client. Multiple Set-Cookie headers can be added to the
same response.

WWW-Authenticate Tells header the client what type of authorization clients should supply in their
Authorization request header. The server usually sends this along with a 401
Unauthorized status line. This header also provides the challenge information
to the authentication schemes that are accepted by the server (for example, the
basic and digest access authentication schemes described in RFC 2617).

15URI
contain optional user information that ends with an @, followed by the hierarchical
path. Otherwise, it’s just the path. The path is a sequence of segments, separated by a
forward slash (/).

 Only the scheme name and the hierarchical parts are mandatory. The query, which
starts with a question mark (?), is optional and contains other information that’s not
hierarchical in nature. The query is often organized as a sequence of key-value pairs,
separated by an ampersand (&).

 Another optional part is the fragment, which is an identifier to a secondary resource
that’s part of the URI that’s defined. The fragment starts after the hash (#). If a URI
has a query, the fragment will follow the query. The fragment is meant to be processed
by the client, so web browsers normally strip the fragment out before sending the URI
to the server. But it doesn’t mean that as a programmer you won’t get the fragment;
you can always include it in a GET request through JavaScript or some HTTP client
libraries.

 Let’s look at an example of an HTTP scheme URI: http://sausheong:password
@www.example.com/docs/file?name=sausheong&location=singapore#summary

 The scheme is http, followed by the colon. The segment sausheong:password fol-
lowed by the at sign (@) is the user and password information. This is followed by the
rest of the hierarchical part, www.example.com/docs/file. The top level of the hierarchi-
cal part is the domain name of the server, www.example.com, followed on by docs and
then file, each separated by a forward slash. Next is the query, which begins after the
question mark (?). The query consists of two name-value pairs: name=sausheong and
location=singapore, joined by a single ampersand (&). Finally, the fragment follows
after the query, starting after the hash (#).

 The URL is a single string, so spaces within the URL aren’t permitted. Also, certain
characters like the question mark (?) and the hash (#) have special meaning within
the URL and so can’t be permitted for other purposes. To get over this limitation, we
use URL encoding (also called percent encoding) to convert those special characters
into something else.

 RFC 3986 defines a set of characters that are reserved or not reserved. Everything
in the reserved list needs to be URL encoded. URL encoding encodes a character by
converting the character to its corresponding byte value in ASCII, then representing
that as a pair of hexadecimal digits and prepending it with a percent sign (%).

 For example, a blank space’s byte value in ASCII is 32, which is 20 in hexadecimal.
Therefore, the URL encoding of a space is %20, and this is used in a URL instead of a
space. This example shows the URL if I’d used my name with the space between sau
and sheong: http://www.example.com/docs/file?name=sau%20sheong&location=
singapore.

http://sausheong:password@www.example.com/docs/file?name=sausheong&location=singapore#summary
http://sausheong:password@www.example.com/docs/file?name=sausheong&location=singapore#summary
http://www.example.com/docs/file?name=sau%20sheong&location=singapore
http://www.example.com/docs/file?name=sau%20sheong&location=singapore

16 CHAPTER 1 Go and web applications
1.8 Introducing HTTP/2
HTTP/2, the new version of HTTP, focuses on performance. HTTP/2 is based on
SPDY/2, an open networking protocol developed primarily at Google for transporting
web content, though over time there have been a number of changes.

HTTP/2 is a binary protocol, unlike HTTP/1.x, which is text-based. This makes
HTTP/2 more efficient to parse, and it is more compact and less prone for errors. But
that means you can no longer send HTTP/2 messages directly through the network,
through applications such as telnet, and so it is harder to debug if you’re used to
HTTP/1.x.

 Unlike HTTP/1.x, which only allows a single request on a connection at a time,
HTTP/2 is fully multiplexed. This means multiple requests and responses can be using
the same connection at the same time. HTTP/2 also compresses the header to reduce
overhead and allows the server to push responses to the client, generally improving
performance.

 As you can see, HTTP/2 generally improves the communications performance of
the protocol. What is not changed, are the HTTP semantics; for example, the HTTP
methods, status codes, and so on. This is because HTTP is so widely used, and any
change to the semantics would break the existing web.

 In Go 1.6, if you’re using HTTPS, you’ll be automatically using HTTP/2. For earlier
versions of Go, the golang.org/x/net/http2 package implements the HTTP/2 proto-
col. You will see how it can be used in chapter 3.

1.9 Parts of a web app
From the previous sections you’ve seen that a web application is a piece of program
that does the following:

1 Takes input through HTTP from the client in the form of an HTTP request
message

2 Processes the HTTP request message and performs necessary work
3 Generates HTML and returns it in an HTTP response message

As a result, there are two distinct parts of a web app: the handlers and the template
engine.

1.9.1 Handler

A handler receives and processes the HTTP request sent from the client. It also calls the
template engine to generate the HTML and finally bundles data into the HTTP
response to be sent back to the client.

 In the MVC pattern the handler is the controller, but also the model. In an ideal
MVC pattern implementation, the controller would be thin, with only routing and
HTTP message unpacking and packing logic. The models are fat, containing the appli-
cation logic and data.

17Parts of a web app
Sometimes service objects or functions are used to manipulate the models, freeing the
model from being too bloated and enabling reuse of code. In this case, service objects
can be reused on different models and the same logic can be placed in single service
object instead of being copied in different models. Service objects, though, are not
strictly speaking part of the MVC pattern.

 As you may realize by now, web applications don’t necessarily need to follow the
MVC pattern. It’s perfectly fine to have the handler perform all the processing and
simply return a response to the client. It’s not necessary to split the work into control-
lers and models.

1.9.2 Template engine

A template is code that can be converted into HTML that’s sent back to the client in an
HTTP response message. Templates can be partly in HTML or not at all. A template
engine generates the final HTML using templates and data. As you may recall, template
engines evolved from an earlier technology, SSI.

 There are two types of templates with different design philosophies:

■ Static templates or logic-less templates are HTML interspersed with placeholder
tokens. A static template engine will generate the HTML by replacing these
tokens with the correct data. There’s little to no logic in the template itself. As
you can see, this is similar to the concepts from SSI. Examples of static template
engines are CTemplate and Mustache.

Model-View-Controller pattern

The Model-View-Controller (MVC) pattern is a popular pattern for writing web applica-
tions—so popular that it’s sometimes mistaken as the web application development
model itself.

MVC was introduced in Smalltalk in the late 1970s (more than 10 years before the
World Wide Web and HTTP) at Xerox PARC. The MVC pattern divides a program into
three parts: model, view, and controller. The model is a representation of the under-
lying data, the view is a visualization of the model for the user, and the controller uses
input from the user to modify the model. When the model changes, the view updates
automatically to show the latest visualization.

Although originally developed for the desktop, it became popular for writing web ap-
plications, and many web application frameworks—including Ruby on Rails, CodeIg-
niter, Play, and Spring MVC—use it as their foundation pattern. The model is often
mapped to a database using structures or objects, the views are the returned HTML,
and the controllers route the requests and manage access to the models.

Many novice programmers who build their web applications with MVC-based web ap-
plication frameworks often mistake the MVC pattern as the only way to develop web
applications. In fact, web applications are simply applications that interact with users
over the HTTP protocol, and any pattern (or no pattern) that allows such applications
to be written can be used.

18 CHAPTER 1 Go and web applications
■ Active templates often contain HTML too, but in addition to placeholder tokens,
they contain other programming language constructs like conditionals, itera-
tors, and variables. Examples of active template engines are Java ServerPages
(JSP), Active Server Pages (ASP), and Embedded Ruby (ERB). PHP started off as
a kind of active template engine and has evolved into its own programming
language.

We’ve covered a lot of the fundamentals and the theories behind web applications so
far in this chapter. If it appears an excessive overload of technical minutiae to you,
please hang in there! As we get to the chapters ahead, you’ll start to realize why it’s
necessary to understand the fundamentals covered in this chapter. In the meantime,
let’s switch gears, hold our breath, and jump into the cold waters of Go program-
ming—it’s time to get some hands-on experience. In the next few sections, I’ll start
you on the road of developing web applications with Go.

1.10 Hello Go
Let’s write our first Go web app. If you haven’t installed Go, read appendix A and fol-
low the installation instructions. Don’t worry if you don’t know the net/http package
that is being used—you will learn it in the next few chapters. For now, just type out the
code (listing 1.1), compile it, and then see how it works. If you’re accustomed to a
case-insensitive programming language, remember, Go code is case sensitive.

 All source code in this book is in GitHub at https://github.com/sausheong/gwp.

package main

import (
 "fmt"
 "net/http"
)

func handler(writer http.ResponseWriter, request *http.Request) {
 fmt.Fprintf(writer, "Hello World, %s!", request.URL.Path[1:])
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

Create a subdirectory in your workspace src directory and name it first_webapp. Now
go to that subdirectory and create a file named server.go. This will be your source file.
Then from a console (or command-line interface or command prompt), execute this
command:

$ go install first_webapp

Listing 1.1 A Hello World Go web app

https://github.com/sausheong/gwp

19Hello Go
You can do this in any directory. If your GOPATH is set up properly, this will create a
binary executable file in your $GOPATH/bin directory named first_webapp. Run the
executable file from the console. Because you have the $GOPATH/bin directory in
your PATH you should be able to just run it from anywhere. This will start up your Go
web application at port 8080. That’s it!

 Now fire up your browser and go to http://localhost:8080. Figure 1.3 shows what
you should see.

Take a closer look at the code. The first line declares what kind of program you’re
writing. The package keyword is followed by the name of the package. An executable
program must always be in a package called main, and this is the same for a web app. If
you have any experience with web application programming in some other languages
(such as Ruby, Python, or Java) you might notice the difference right away. In those
languages you often need to deploy the web application to an application server that
provides an environment for your web applications to run. In Go, this environment is
provided by the net/http package and is compiled together with the rest of your code
to create a readily deployable standalone web app.

 The next line imports the necessary libraries. You import standard Go libraries
(packages) very much the same way you import other third-party libraries. Here
you’re importing two packages: fmt, which allows formatted I/O (allowing you to do
stuff like Fprintf) and http, which is the main package for interacting with HTTP:

import (
 "fmt"
 "net/http"
)

This is followed by a function definition. You define a function named handler. The
term handler is often used for callback functions triggered by an event, and that’s what

Figure 1.3 First web
application screenshot

20 CHAPTER 1 Go and web applications
it’s used for here (though technically, at least in Go, this isn’t a handler but a handler
function—we’ll explore this in chapter 3).

func handler(writer http.ResponseWriter, request *http.Request) {
 fmt.Fprintf(writer, "Hello World, %s!", request.URL.Path[1:])
}

The handler function has two input parameters—a ResponseWriter interface and a
pointer to a Request struct. It takes information from the Request to create an HTTP
response, which is sent out through the ResponseWriter. The Fprintf function is
called with the ResponseWriter, a format string with a single string format specifier
(%s), followed by the path information extracted from the Request. Because you went
to the address http://localhost:8080, there’s no path information and so nothing is
printed out. If you’d gone to the address http://localhost:8080/sausheong/was/here,
figure 1.4 shows how it would’ve looked in the browser.

Every program that compiles into a binary executable file must have one function
named main, where the execution of the program starts:

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

The main function in this program is straightforward. First, you set up the handler you
defined earlier to trigger when the root URL (/) is called. Then you start the server to
listen to port 8080. To stop the server, simply press Ctrl-C.

 And there you have it: a working hello world web app, written in Go!
 We started off with an explanation of concepts at the beginning of this chapter and

ended up in a code rush where we wrote a simple (and useless) web application in Go.

Figure 1.4 Web application
screenshot with path

21Summary
In the next chapter, we’ll jump into more code and show how a more realistic (though
still not production-ready) web application can be written with Go and its standard
libraries. Although chapter 2 might still be a bit of a code rush, you’ll see how a typical
Go web application can be structured.

1.11 Summary
■ Go is a programming language that is well suited for web programming because

it allows web applications that are scalable, modular, maintainable, and highly
performant to be written relatively easily.

■ Web applications are programs that return HTML to the calling client through
HTTP, so understanding HTTP well is very important when learning how to write
web applications.

■ HTTP is a simple, stateless, text-based client-server protocol used in exchanging
data between a client and a server.

■ HTTP requests and responses are structured with similar formats—they start
with a request (or response status) line, followed by one or more headers and
an option body.

■ Every HTTP request has a request line that contains an HTTP method that indi-
cates the action asked of the server, the two most popular being GET and POST.

■ Every HTTP response has a response status line that tells the calling client the
status of the request.

■ There are two major parts of any web application that correspond to requests
and responses—handlers and the template engine.

■ Handlers receive HTTP requests and process them.
■ The template engine generates HTML that is sent back as part of the HTTP

response.

Go ChitChat
Toward the end of chapter 1, we went through the simplest possible Go web appli-
cation. That simple web application, I admit, is pretty useless and is nothing more
than the equivalent of a Hello World application. In this chapter, we’ll explore
another basic but more useful web application. We’ll be building a simple internet
forum web application—one that allows users to log in and create conversations
and respond to conversation topics.

 By the end of the chapter, you might not have the skills to write a full-fledged
web application but you’ll be able to appreciate how one can be structured and
developed. Throughout this chapter you’ll see the bigger picture of how web appli-
cations can be written in Go.

 If you find this chapter a bit too intimidating—especially with the rush of Go
code—don’t be too alarmed. Work through the next few chapters and then revisit
this one and you’ll find that things become a lot clearer!

This chapter covers
■ Introducing Go web programming
■ Designing a typical Go web application
■ Writing a complete Go web application
■ Understanding the parts of a Go web application
22

23Let’s ChitChat
2.1 Let’s ChitChat
Internet forums are everywhere. They’re one of the most popular uses of the internet,
related to the older bulletin board systems (BBS), Usenet, and electronic mailing lists.
Yahoo! and Google Groups are very popular (see figure 2.1), with Yahoo! reporting 10
million groups (each group is a forum on its own) and 115 million group members.
One of the biggest internet forums around, Gaia Online, has 23 million registered
users and a million posts made every day, with close to 2 billion posts and counting.
Despite the introduction of social networks like Facebook, internet forums remain
one of the most widely used means of communications on the internet.

Essentially, internet forums are the equivalent of a giant bulletin board where anyone
(either registered or anonymous users) can hold conversations by posting messages
on the forum. These conversations, called threads, usually start off as a topic that a user
wants to talk about, and other users add to the conversation by posting their replies to
the original topic. More sophisticated forums are hierarchical, with forums having
subforums with specific categories of topics that are being discussed. Most forums are
moderated by one or more users, called moderators, who have special permissions.

 In this chapter, we’ll develop a simple internet forum called ChitChat. Because this
is a simple example, we’ll be implementing only the key features of an internet forum.
Users will only be able to sign up for an account and log in to create a thread or post a

Figure 2.1 Google Groups Go programming language forum, an example of an internet forum

24 CHAPTER 2 Go ChitChat
reply to an existing thread. A nonregistered user will be able to read the threads but not
add new threads or post to existing ones. Let’s start off with the application design.

2.2 Application design
ChitChat’s application design is typical of any web application. As mentioned in chap-
ter 1, web applications have the general flow of the client sending a request to a
server, and a server responding to that request (figure 2.2).

ChitChat’s application logic is coded in the server. While the client triggers the
requests and provides the data to the server, the format and the data requested are
suggested by the server, provided in hyperlinks on the HTML pages that the server
serves to the client (figure 2.3).

Code for this chapter

Unlike with the other chapters in this book, you won’t see all the code that’s written
for ChitChat here (that would be too much!). But you can check out the entire appli-
cation on GitHub at https://github.com/sausheong/gwp. If you’re planning to run
through the exercises while you read this chapter, you’ll have an easier time if you
get the code from the repository first.

Client Server

Request

1. Sends HTTP request

Response

3. Returns HTTP response

2. Processes HTTP request

Figure 2.2 How a web
application generally
works, with a client
sending a request to the
server and waiting to
receive a response

Client Server

Request

http://<servername>/<handlername>?<parameters>

Response

Format of request is suggested by the web app,
in hyperlinks on HTML pages provided to client by server.

Figure 2.3 The URL
format of an HTTP request

https://github.com/sausheong/gwp

25Application design
The format for the request is normally the prerogative of the application itself. For
ChitChat, we’ll be using the following format: http://<servername>/<handler-
name>?<parameters>

 The server name is the name of the ChitChat server; the handler name is the name of
the handler that’s being called. The handler name is hierarchical: the root of the han-
dler name is the module that’s being called, the second part the submodule, and so
on, until it hits the leaf, which is the handler of the request within that submodule. If
we have a module called thread and we need to have a handler to read the thread, the
handler name is /thread/read.

 The parameters of the application, which are URL queries, are whatever we need to
pass to the handler to process the request. In this example, we need to provide the
unique identifier (ID) of the thread to the handler, so the parameters will be id=123,
where 123 is the unique ID.

 Let’s recap the request; this is how the URL being sent into the ChitChat server will
look (assuming chitchat is the server name): http://chitchat/thread/read?id=123.

 When the request reaches the server, a multiplexer will inspect the URL being
requested and redirect the request to the correct handler. Once the request reaches
a handler, the handler will retrieve information from the request and process it
accordingly (figure 2.4). When the processing is complete, the handler passes the
data to the template engine, which will use templates to generate HTML to be
returned to the client.

Client Multiplexer Handler

Handler

Handler

Template engine

Templates

Server

Request

Response

Multiplexer inspects
URL request, redirects
to correct handler

Handler provides
data to template
engine

Figure 2.4 How the server works in a typical web application

http://chitchat/thread/read?id=123

26 CHAPTER 2 Go ChitChat
2.3 Data model
Most applications need to work on data, in one form or another. In ChitChat, we store
the data in a relational database (we use PostgreSQL in this book) and use SQL to
interact with the database.

 ChitChat’s data model is simple and consists of only four data structures, which in
turn map to a relational database. The four data structures are

■ User—Representing the forum user’s information
■ Session—Representing a user’s current login session
■ Thread—Representing a forum thread (a conversation among forum users)
■ Post—Representing a post (a message added by a forum user) within a thread

We’ll have users who can log into the system to create and post to threads. Anonymous
users can read but won’t be able to create threads or posts. To simplify the application,
we’ll have only one type of user—there are no moderators to approve new threads or
posts (figure 2.5).

With our application design firmly in mind, let’s move on to code. A bit of caution
before we begin: there will be code in this chapter that might seem puzzling. If you’re
a new Go programmer, it might be worth your while to refresh your memory going
through an introductory Go programming book like Go in Action by William Kennedy
with Brian Ketelsen and Erik St. Martin (Manning, 2015).

 Otherwise, please hang on; this chapter provides an overall picture of how a Go
web application will look but is thin on details. The details will come in the later chap-
ters. Where possible, I’ll mention which chapters explore those details as we move
along.

Handler

Model: User

Model: Session

Model: Thread
Database

Model: Post

Template engine

Templates

Server

Figure 2.5 How a web application can access the data store

27Receiving and processing requests
2.4 Receiving and processing requests
Receiving and processing requests is the heart of any web application. Let’s recap
what you’ve learned so far:

1 A client sends a request to a URL at the server.
2 The server has a multiplexer, which redirects the request to the correct handler

to process the request.
3 The handler processes the request and performs the necessary work.
4 The handler calls the template engine to generate the correct HTML to send

back to the client.

Let’s begin at the beginning, which is the root URL (/). When you type http://
localhost, this is where the application will take you. In the next few subsections, we’ll
discuss how to handle a request to this URL and respond with dynamically generated
HTML.

2.4.1 The multiplexer

We start all Go applications with a main source code file, which is the file that contains
the main function and is the starting point where the compiled binary executes. In
ChitChat we call this file main.go.

package main

import (
 "net/http"
)

func main() {

 mux := http.NewServeMux()
 files := http.FileServer(http.Dir("/public"))
 mux.Handle("/static/", http.StripPrefix("/static/", files))

 mux.HandleFunc("/", index)

 server := &http.Server{
 Addr: "0.0.0.0:8080",
 Handler: mux,
 }
 server.ListenAndServe()
}

In main.go, you first create a multiplexer, the piece of code that redirects a request to a
handler. The net/http standard library provides a default multiplexer that can be cre-
ated by calling the NewServeMux function:

mux := http.NewServeMux()

Listing 2.1 A simple main function in main.go

28 CHAPTER 2 Go ChitChat
To redirect the root URL to a handler function, you use the HandleFunc function:

mux.HandleFunc("/", index)

HandleFunc takes the URL as the first parameter, and the name of the handler func-
tion as the second parameter, so when a request comes for the root URL (/), it’s redi-
rected to a handler function named index. You don’t need to provide the parameters
to the handler function because all handler functions take ResponseWriter as the first
parameter and a pointer to Request as the second parameter.

 Notice that I’ve done some sleight-of-hand when talking about handlers. I started
off talking about handlers and then switched to talking about handler functions. This
is intentional; handlers and handler functions are not the same, though they provide
the same results in the end. We’ll talk more about them in chapter 3, but for now let’s
move on.

2.4.2 Serving static files

Besides redirecting to the appropriate handler, you can use the multiplexer to serve
static files. To do this, you use the FileServer function to create a handler that will
serve files from a given directory. Then you pass the handler to the Handle function of
the multiplexer. You use the StripPrefix function to remove the given prefix from
the request URL’s path.

files := http.FileServer(http.Dir("/public"))
mux.Handle("/static/", http.StripPrefix("/static/", files))

In this code, you’re telling the server that for all request URLs starting with /static/,
strip off the string /static/ from the URL, and then look for a file with the name
starting at the public directory. For example, if there’s a request for the file http://
localhost/static/css/bootstrap.min.css the server will look for the file

<application root>/css/bootstrap.min.css

When it’s found, the server will serve it as it is, without processing it first.

2.4.3 Creating the handler function

In a previous section you used HandleFunc to redirect the request to a handler func-
tion. Handler functions are nothing more than Go functions that take a Response-
Writer as the first parameter and a pointer to a Request as the second, shown next.

func index(w http.ResponseWriter, r *http.Request) {
 files := []string{"templates/layout.html",
 "templates/navbar.html",
 "templates/index.html",}
 templates := template.Must(template.ParseFiles(files...))
 threads, err := data.Threads(); if err == nil {

Listing 2.2 The index handler function in main.go

29Receiving and processing requests
 templates.ExecuteTemplate(w, "layout", threads)
 }
}

Notice that you’re using the Template struct from the html/template standard library
so you need to add that in the list of imported libraries. The index handler function
doesn’t do anything except generate the HTML and write it to the ResponseWriter.
We’ll cover generating HTML in the upcoming section.

 We’ve talked about handler functions that handle requests for the root URL (/),
but there are a number of other handler functions. Let’s look at the rest of them in
the following listing, also in the main.go file.

package main

import (
 "net/http"
)

func main() {

 mux := http.NewServeMux()
 files := http.FileServer(http.Dir(config.Static))
 mux.Handle("/static/", http.StripPrefix("/static/", files))

 mux.HandleFunc("/", index)
 mux.HandleFunc("/err", err)

 mux.HandleFunc("/login", login)
 mux.HandleFunc("/logout", logout)
 mux.HandleFunc("/signup", signup)
 mux.HandleFunc("/signup_account", signupAccount)
 mux.HandleFunc("/authenticate", authenticate)

 mux.HandleFunc("/thread/new", newThread)
 mux.HandleFunc("/thread/create", createThread)
 mux.HandleFunc("/thread/post", postThread)
 mux.HandleFunc("/thread/read", readThread)

 server := &http.Server{
 Addr: "0.0.0.0:8080",
 Handler: mux,
 }
 server.ListenAndServe()
}

You might notice that the various handler functions aren’t defined in the same
main.go file. Instead, I split the definition of the handler functions in other files
(please refer to the code in the GitHub repository). So how do you link these files? Do
you write code to include the other files like in PHP, Ruby, or Python? Or do you run a
special command to link them during compile time?

Listing 2.3 ChitChat main.go source file

30 CHAPTER 2 Go ChitChat
 In Go, you simply make every file in the same directory part of the main package and
they’ll be included. Alternatively, you can place them in a separate package and import
them. We’ll use this strategy when connecting with the database, as you’ll see later.

2.4.4 Access control using cookies

As in many web applications, ChitChat has public pages that are available to anyone
browsing to those pages, as well as private pages that require users to log into their
account first.

 Once the user logs in, you need to indicate in subsequent requests that the user
has already logged in. To do this, you write a cookie to the response header, which
goes back to the client and is saved at the browser. Let’s look at the authenticate han-
dler function, which authenticates the user and returns a cookie to the client. The
authenticate handler function is in the route_auth.go file, shown next.

func authenticate(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 user, _ := data.UserByEmail(r.PostFormValue("email"))
 if user.Password == data.Encrypt(r.PostFormValue("password")) {
 session := user.CreateSession()
 cookie := http.Cookie{
 Name: "_cookie",
 Value: session.Uuid,
 HttpOnly: true,
 }
 http.SetCookie(w, &cookie)
 http.Redirect(w, r, "/", 302)
 } else {
 http.Redirect(w, r, "/login", 302)
 }
}

Note that in the source code in the previous listing that we haven’t yet discussed
data.Encrypt and data.UserbyEmail. In order to keep with the flow, I won’t explain
these functions in detail; their names make them self-explanatory. For example,
data.UserByEmail retrieves a User struct given the email; data.Encrypt encrypts a
given string. We’ll get into the data package later in this chapter. For now let’s return
to the authentication handler flow.

 First, you need to authenticate the user. You must make sure the user exists and the
user’s encrypted password in the database is the same as the encrypted password
posted to the handler. Once the user is authenticated, you create a Session struct
using user.CreateSession, a method on the User struct. Session looks like this:

type Session struct {
 Id int
 Uuid string
 Email string

Listing 2.4 The authenticate handler function in route_auth.go

31Receiving and processing requests
 UserId int
 CreatedAt time.Time
}

The Email named field stores the email of the user who is logged in; the UserId
named field contains the ID of the user table row with the user information. The most
important information is the Uuid, which is a randomly generated unique ID. Uuid is
the value you want to store at the browser. The session record itself is stored in the
database.

 Once you have the session record created, you create the Cookie struct:

cookie := http.Cookie{
 Name: "_cookie",
 Value: session.Uuid,
 HttpOnly: true,
}

The name is arbitrary and the value is the unique data that’s stored at the browser. You
don’t set the expiry date so that the cookie becomes a session cookie and it’s automat-
ically removed when the browser shuts down. You set HttpOnly to only allow HTTP or
HTTPS to access the cookie (and not other non-HTTP APIs like JavaScript).

 To add the cookie to the response header, use this code:

http.SetCookie(writer, &cookie)

Now that we have the cookie in the browser, you want to be able to check in the han-
dler function whether or not the user is logged in. You create a utility function called
session that you’ll be able to reuse in other handler functions. The session func-
tion, shown in the next listing, and all other utility functions are written to the util.go
file. Note that even though you placed the function in a separate file, it’s still part of
the main package, so you can use it directly without mentioning the package name,
unlike in data.Encrypt.

func session(w http.ResponseWriter, r *http.Request)(sess data.Session, err
error){

 cookie, err := r.Cookie("_cookie")
 if err == nil {
 sess = data.Session{Uuid: cookie.Value}
 if ok, _ := sess.Check(); !ok {
 err = errors.New("Invalid session")
 }
 }
 return
}

The session function retrieves the cookie from the request:

cookie, err := r.Cookie("_cookie")

Listing 2.5 session utility function in util.go

32 CHAPTER 2 Go ChitChat
If the cookie doesn’t exist, then obviously the user hasn’t logged in yet. If it exists, the
session function performs a second check and checks the database to see if the ses-
sion’s unique ID exists. It does this by using the data.Session function (that you’ll cre-
ate in a bit) to retrieve the session and then calling the Check method on that session:

sess = data.Session{Uuid: cookie.Value}
if ok, _ := sess.Check(); !ok {
 err = errors.New("Invalid session")
}

Now that you’re able to check and differentiate between a user who has logged in and
a user who hasn’t, let’s revisit our index handler function, shown in the following list-
ing, and see how you can use this session function (code shown in bold).

func index(w http.ResponseWriter, r *http.Request) {
 threads, err := data.Threads(); if err == nil {
 _, err := session(w, r)
 public_tmpl_files := []string{"templates/layout.html",
 "templates/public.navbar.html",
 "templates/index.html"}
 private_tmpl_files := []string{"templates/layout.html",
 "templates/private.navbar.html",
 "templates/index.html"}
 var templates *template.Template
 if err != nil {
 templates = template.Must(template.Parse-

Files(private_tmpl_files...))
 } else {
 templates = template.Must(template.ParseFiles(public_tmpl_files...))
 }
 templates.ExecuteTemplate(w, "layout", threads)
 }
}

The session function returns a Session struct, which you can use to extract user
information, but we aren’t interested in that right now, so assign it to the blank identi-
fier (_). What we are interested in is err, which you can use to determine whether the
user is logged in and specify that the public navigation bar or the private navigation
bar should be shown.

 That’s all there is to it. We’re done with the quick overview of processing requests;
we’ll get on with generating HTML for the client next, and continue where we left off
earlier.

2.5 Generating HTML responses with templates
The logic in the index handler function was mainly about generating HTML for the
client. Let’s start by defining a list of template files that you’ll be using in a Go slice
(I’ll show private_tmpl_files here; public_tmpl_files is exactly the same).

Listing 2.6 The index handler function

33Generating HTML responses with templates
private_tmpl_files := []string{"templates/layout.html",
 "templates/private.navbar.html",
 "templates/index.html"}

The three files are HTML files with certain embedded commands, called actions, very
similar to other template engines like Mustache or CTemplate. Actions are annota-
tions added to the HTML between {{ and }}.

 You parse these template files and create a set of templates using the ParseFiles
function. After parsing, you wrap the Must function around the results. This is to catch
errors (the Must function panics when a ParseFiles returns an error).

templates := template.Must(template.ParseFiles(private_tmpl_files...))

We’ve talked a lot about these template files; let’s look at them now.
 Each template file defines a template (templates are described in detail in chapter

5). This is not mandatory—you don’t need to define templates for every file—but
doing so is useful, as you’ll see later. In the layout.html template file, you begin with
the define action, which indicates that the chunk of text starting with {{ define

"layout" }} and ending with {{ end }} is part of the layout template, as shown next.

{{ define "layout" }}

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=9">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>ChitChat</title>
 <link href="/static/css/bootstrap.min.css" rel="stylesheet">
 <link href="/static/css/font-awesome.min.css" rel="stylesheet">
 </head>
 <body>
 {{ template "navbar" . }}

 <div class="container">

 {{ template "content" . }}

 </div> <!-- /container -->

 <script src="/static/js/jquery-2.1.1.min.js"></script>
 <script src="/static/js/bootstrap.min.js"></script>
 </body>
</html>

{{ end }}

Within the layout template, we have two other actions, both of which indicate posi-
tions where another template can be included. The dot (.) that follows the name of

Listing 2.7 layout.html template file

34 CHAPTER 2 Go ChitChat
the template to be included is the data passed into the template. For example, listing
2.7 has {{ template "navbar" . }}, which indicates that the template named navbar
should be included at that position, and the data passed into the layout template
should be passed on to the navbar template too.

 The navbar template in the public.navbar.html template file is shown next. The
navbar template doesn’t have any actions other than defining the template itself
(actions aren’t strictly necessary in template files).

{{ define "navbar" }}

<div class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"

 ➥ data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>

 <i class="fa fa-comments-o"></i>
 ChitChat

 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 Home

 <ul class="nav navbar-nav navbar-right">
 Login

 </div>
 </div>
</div>

{{ end }}

Let’s look at the content template in last template file, index.html, in the following
listing. Notice that the name of the template doesn’t necessary need to match the
name of the template file, even though that has been the case for the past two files.

{{ define "content" }}

<p class="lead">
 Start a thread or join one below!
</p>

Listing 2.8 navbar.html template file

Listing 2.9 index.html template

35Generating HTML responses with templates
{{ range . }}
 <div class="panel panel-default">
 <div class="panel-heading">
 <i class="fa fa-comment-o"></i> {{ .Topic }}
 </div>
 <div class="panel-body">
 Started by {{ .User.Name }} - {{ .CreatedAtDate }} - {{ .NumReplies }}

posts.
 <div class="pull-right">
 Read more
 </div>
 </div>
 </div>
{{ end }}

{{ end }}

The code in index.html is interesting. You’ll notice a number of actions within the
content template that start with a dot (.), such as {{ .User.Name }} and {{
.CreatedAtDate }}. To understand where this comes from, we need to go back to the
index handler function.

 threads, err := data.Threads(); if err == nil {
 templates.ExecuteTemplate(writer, "layout", threads)
 }

Let’s start off with this:

templates.ExecuteTemplate(writer, "layout", threads)

We take the set of templates we parsed earlier, and execute the layout template using
ExecuteTemplate. Executing the template means we take the content from the tem-
plate files, combine it with data from another source, and generate the final HTML
content, shown in figure 2.6.

 Why the layout template and not the other two templates? This should be obvious:
the layout template includes the other two templates, so if we execute the layout tem-
plate, the other two templates will also be executed and the intended HTML will be

Template engine

Templates

Data
HMTL

Figure 2.6 The template engine combines the data and template to produce HTML.

36 CHAPTER 2 Go ChitChat
generated. If we executed either one of the other two templates, we would only get
part of the HTML we want.

 As you might realize by now, the dot (.) represents the data that’s passed into the
template (and a bit more, which is explained in the next section). Figure 2.7 shows
what we end up with.

2.5.1 Tidying up

HTML generation will be used over and over again, so let’s do some tidying up and
move those steps into a function called generateHTML, shown next.

func generateHTML(w http.ResponseWriter, data interface{}, fn ...string) {
 var files []string
 for _, file := range fn {
 files = append(files, fmt.Sprintf("templates/%s.html", file))
 }
 templates := template.Must(template.ParseFiles(files...))
 templates.ExecuteTemplate(writer, "layout", data)
}

generateHTML takes a ResponseWriter, some data, and a list of template files to be
parsed. The data parameter is the empty interface type, which means it can take in any
type. This might come as a surprise if you’re a new Go programmer; isn’t Go a statically
typed programming language? What’s this about accepting any types in as a parameter?

 As it turns out, Go has an interesting way of getting around being a statically typed
programming language and it provides the flexibility of accepting different types,
using interfaces. Interfaces in Go are constructs that are sets of methods and are also

Listing 2.10 The generateHTML function

Figure 2.7 The index page of the example ChitChat web application

37Installing PostgreSQL
types. An empty interface is then an empty set, meaning any type can be an empty
interface; you can pass any type into this function as the data.

 The last parameter in the function starts with … (three dots). This indicates that
the generateHTML function is a variadic function, meaning it can take zero or more
parameters in that last variadic parameter. This allows you to pass any number of tem-
plate files to the function. Variadic parameters need to be the last parameter for the
variadic function.

 Now that we have the generateHTML function, let’s go back and clean up the
index handler function. The new index handler function, shown here, now looks a
lot neater.

func index(writer http.ResponseWriter, request *http.Request) {
 threads, err := data.Threads(); if err == nil {
 _, err := session(writer, request)
 if err != nil {
 generateHTML(writer, threads, "layout", "public.navbar", "index")
 } else {
 generateHTML(writer, threads, "layout", "private.navbar", "index")
 }
 }
}

We sort of glossed over the data source and what we used to combine with the tem-
plates to get the final HTML. Let’s get to that now.

2.6 Installing PostgreSQL
In this chapter as well as for any remaining chapters in the book that require access to
a relational database, we’ll be using PostgreSQL. Before we start any code, I’ll run
through how to install and start up PostgreSQL, and also create the database that we
need for this chapter.

2.6.1 Linux/FreeBSD

Prebuilt binaries are available for many variants of Linux and FreeBSD from
www.postgresql.org/download. Download any one of them from the site and follow
the instructions. For example, you can install Postgres on Ubuntu by executing this
command on the console:

sudo apt-get install postgresql postgresql-contrib

This will install both the postgres package and an additional package of utilities, and
also start it up.

 By default Postgres creates a postgres user and that’s the only user who can con-
nect to the server. For convenience you can create another Postgres account with your
username. First, you need to log in to the Postgres account:

sudo su postgres

Listing 2.11 The final index handler function

www.postgresql.org/download

38 CHAPTER 2 Go ChitChat
Next, use createuser to create your postgreSQL account:

createuser –interactive

Finally, use createdb to create your database:

createdb <YOUR ACCOUNT NAME>

2.6.2 Mac OS X

One of the easiest ways to install PostgreSQL on Mac OS X is to use the Postgres appli-
cation. Download the zip file and unpack it. Then drag and drop the Postgres.app file
into your Applications folder and you’re done. You can start the application just like you
start any Mac OS X application. The first time you start the application, Postgres will ini-
tialize a new database cluster and create a database for you. The command-line tool psql
is part of the package, so you’ll be able to access the database using psql once you set
the correct path. Open up Terminal and add this line your ~/.profile or ~/.bashrc file:

export PATH=$PATH:/Applications/Postgres.app/Contents/Versions/9.4/bin

2.6.3 Windows

Installing PostgreSQL on Windows is fairly straightforward too. There are a number of
graphical installers on Windows that do all the heavy lifting for you; you simply need
to provide the settings accordingly. A popular installer is one from Enterprise DB at
www.enterprisedb.com/products-services-training/pgdownload.

 A number of tools, including pgAdmin III, are installed along with the package,
which allows you to set up the rest of the configuration.

2.7 Interfacing with the database
In the design section earlier in this chapter, we talked about the four data structures
used in ChitChat. Although you can place the data structures in the same main file,
it’s neater if you store all data-related code in another package, aptly named data.

 To create a package, create a subdirectory called data and create a file named
thread.go to store all thread-related code (you’ll create a user.go file to store all user-
related code). Then, whenever you need to use the data package (for example, in the
handlers that need to access the database), you import the package:

import (
 "github.com/sausheong/gwp/Chapter_2_Go_ChitChat/chitchat/data"
)

Within the thread.go file, define a Thread struct, shown in the following listing, to
contain the data.

package data

import(
 "time"
)

Listing 2.12 The Thread struct

www.enterprisedb.com/products-services-training/pgdownload

39Interfacing with the database
type Thread struct {
 Id int
 Uuid string
 Topic string
 UserId int
 CreatedAt time.Time
}

Notice that the package name is no longer main but data (in bold). When you use
anything in this package later (functions or structs or anything else), you need to pro-
vide the package name along with it. If you want to use the Thread struct you must use
data.Thread instead of just Thread alone. This is the data package you used earlier in
the chapter. Besides containing the structs and code that interact with the database,
the package contains other functions that are closely associated.

 The Thread struct should correspond to the DDL (Data Definition Language, the
subset of SQL) that’s used to create the relational database table called threads. You
don’t have these tables yet so let’s create them first. Of course, before you create the
database tables, you should create the database itself. Let’s create a database called
chitchat. Execute this command at the console:

createdb chitchat

Once you have the database, you can use setup.sql to create the database tables for
ChitChat, shown next.

create table users (
 id serial primary key,
 uuid varchar(64) not null unique,
 name varchar(255),
 email varchar(255) not null unique,
 password varchar(255) not null,
 created_at timestamp not null
);

create table sessions (
 id serial primary key,
 uuid varchar(64) not null unique,
 email varchar(255),
 user_id integer references users(id),
 created_at timestamp not null
);

create table threads (
 id serial primary key,
 uuid varchar(64) not null unique,
 topic text,
 user_id integer references users(id),
 created_at timestamp not null
);

create table posts (
 id serial primary key,

Listing 2.13 setup.sql used to create database tables in PostgreSQL

40 CHAPTER 2 Go ChitChat
 uuid varchar(64) not null unique,
 body text,
 user_id integer references users(id),
 thread_id integer references threads(id),
 created_at timestamp not null
);

To run the script, use the psql tool that’s usually installed as part of your PostgreSQL
installation (see the previous section). Go to the console and run this command:

psql –f setup.sql –d chitchat

This command should create the necessary database tables in your database. Once
you have your database tables, you must be able to connect to the database and do
stuff with the tables. So you’ll create a global variable, Db, which is a pointer to
sql.DB, a representation of a pool of database connections. You’ll define Db in the
data.go file, as shown in the following listing. Note that this listing also contains a
function named init that initializes Db upon startup of your web application. You’ll
use Db to execute your queries.

Var Db *sql.DB

func init() {
 var err error
 Db, err = sql.Open("postgres", "dbname=chitchat sslmode=disable")
 if err != nil {
 log.Fatal(err)
 }
 return
}

Now that you have the struct, the tables, and a database connection pool, how do you
connect the Thread struct with the threads table? There’s no particular magic to it. As
with everything else in ChitChat, you simply create a function every time you want inter-
action between the struct and the database. To extract all threads in the database for the
index handler function, create a Threads function in thread.go, as shown next.

func Threads() (threads []Thread, err error){
 rows, err := Db.Query("SELECT id, uuid, topic, user_id, created_at FROM

threads ORDER BY created_at DESC")
 if err != nil {
 return
 }
 for rows.Next() {
 th := Thread{}
 if err = rows.Scan(&th.Id, &th.Uuid, &th.Topic, &th.UserId,
 ➥ &th.CreatedAt); err != nil {

Listing 2.14 The Db global variable and the init function in data.go

Listing 2.15 The Threads function in thread.go

41Interfacing with the database
 return
 }
 threads = append(threads, th)
 }
 rows.Close()
 return
}

Without getting into the details (which will be covered in chapter 6), these are the
general steps:

1 Connect to the database using the database connection pool.
2 Send an SQL query to the database, which will return one or more rows.
3 Create a struct.
4 Iterate through the rows and scan them into the struct.

In the Threads function, you return a slice of the Thread struct, so you need to create
the slice and then continually append to it until you’re done with all the rows.

 Now that you can get the data from the database into the struct, how do you get
the data in the struct to the templates? Let’s return to the index.html template file
(listing 2.9), where you find this code:

{{ range . }}
 <div class="panel panel-default">
 <div class="panel-heading">
 <i class="fa fa-comment-o"></i> {{ .Topic }}
 </div>
 <div class="panel-body">
 Started by {{ .User.Name }} - {{ .CreatedAtDate }} - {{ .NumReplies }}

posts.
 <div class="pull-right">
 Read more
 </div>
 </div>
 </div>
{{ end }}

As you’ll recall, a dot (.) in an action represents the data that’s passed into the
template to be combined to generate the final output. The dot here, as part of
{{ range . }}, is the threads variable extracted earlier using the Threads function,
which is a slice of Thread structs.

 The range action assumes that the data passed in is either a slice or an array of
structs. The range action allows you to iterate through and access the structs using
their named fields. For example, {{ .Topic }} allows you to access the Topic field of
the Thread struct. Note that the field must start with a dot and the name of the field is
capitalized.

 What about {{ .User.Name }} and {{ .CreatedAtDate }} and {{ .NumReplies
}}? The Thread struct doesn’t have these as named fields, so where do they come
from? Let’s look at {{ .NumReplies }}. While using the name of a field after the dot
accesses the data in the struct, you can do the same with a special type of function
called methods.

42 CHAPTER 2 Go ChitChat
 Methods are functions that are attached to any named types (except a pointer or
an interface), including structs. By attaching a function to a pointer to a Thread
struct, you allow the function to access the thread. The Thread struct, also called the
receiver, is normally changed after calling the method.

 The NumReplies method is shown here.

func (thread *Thread) NumReplies() (count int) {
 rows, err := Db.Query("SELECT count(*) FROM posts where thread_id = $1",

thread.Id)
 if err != nil {
 return
 }
 for rows.Next() {
 if err = rows.Scan(&count); err != nil {
 return
 }
 }
 rows.Close()
 return
}

The NumReplies method opens a connection to the database, gets the count of
threads using an SQL query, and scans it into the count parameter passed into the
method. The NumReplies method returns this count, which is then used to replace
.NumReplies in the HTML, by the template engine, shown in figure 2.8.

 By providing a combination of functions and methods on the data structs (User,
Session, Thread, and Post), you create a data layer that shields you from directly
accessing the database in the handler functions. Although there are plenty of libraries
that provide this functionality, it’s good to understand that the underlying basis of
accessing the database is quite easy, with no magic involved. Just simple, straight-
forward code.

Listing 2.16 NumReplies method in thread.go

Handler Database

Model

Server

Method

Field

Method

Field
Figure 2.8 Connecting the struct
model with the database and the
handler

43Wrapping up
2.8 Starting the server
Let’s round out this chapter by showing code that starts up the server and attaches the
multiplexer to the server. This is part of the main function, so it will be in main.go.

server := &http.Server{
 Addr: "0.0.0.0:8080",
 Handler: mux,
}
server.ListenAndServe()

The code is simple; you create a Server struct and call the ListenAndServe function
on it and you get your server.

 Now let’s get it up and running. Compile this from the console:

go build

This command will create a binary executable file named chitchat in the same direc-
tory (and also in in your $GOPATH/bin directory). This is our ChitChat server. Let’s
start the server:

./chitchat

This command will start the server. Assuming that you’ve created the necessary data-
base tables, go to http://localhost:8080 and registered for an account; then log in and
start creating your own forum threads.

2.9 Wrapping up
We went through a 20,000-foot overview of the various building blocks of a Go web
application. Figure 2.9 shows a final recap of the entire flow. As illustrated,

1 The client sends a request to the server.
2 This is received by the multiplexer, which redirects it to the correct handler.

Client Multiplexer Handler

Handler

Handler

Template engine

Templates

Server

Request

Response

Model

Model

Model
Database

Model

Figure 2.9 The web application big picture

44 CHAPTER 2 Go ChitChat
3 The handler processes the request.
4 When data is needed, it will use one or more data structs that model the data in

the database.
5 The model connects with the database, triggered by functions or methods on

the data struct.
6 When processing is complete, the handler triggers the template engine, some-

times sending in data from the model.
7 The template engine parses template files to create templates, which in turn are

combined with data to produce HTML.
8 The generated HTML is sent back to the client as part of the response.

And we’re done! In the next few chapters, we will dive in deeper into this flow and get
into the details of each component.

2.10 Summary
■ Receiving and processing requests are the heart of any web application.
■ The multiplexer redirects HTTP requests to the correct handler for processing,

including static files.
■ Handler functions are nothing more than Go functions that take a Response-

Writer as the first parameter and a pointer to a Request as the second.
■ Cookies can be used as a mechanism for access control.
■ HTML responses can be generated by parsing template files together with data

to provide the final HTML data that is returned to the calling browser.
■ Persisting data to a relational database can be done through direct SQL using

the sql package.

Part 2

Basic web applications

Web applications follow a simple request-response model of program-
ming. Every request from the client gets a response from the server. Every web
application has a few basic components—the router that routes requests to dif-
ferent handlers, the handlers that process the requests, and the template engine
that translates combines static content with dynamic data to produce the data
that is sent back to the client.

 In chapters 3-6, you will learn how to use Go to accept HTTP requests using a
router, process them using handlers, and return responses with the template
engine. In addition, most web applications store data in one way or another, so
you will also learn how you can use Go to persist data.

46 CHAPTER

Handling requests
Chapter 2 showed the steps for creating a simple internet forum web application.
The chapter mapped out the various parts of a Go web application, and you saw the
big picture of how a Go web application is structured. But there’s little depth in
each of those parts. In the next few chapters, we’ll delve into the details of each of
these parts and explore in depth how they can be put together.

 In this and the next chapter, we’ll focus on the brains of the web application:
the handlers that receive and process requests from the client. In this chapter,
you’ll learn how to create a web server with Go, and then we’ll move on to handling
requests from the client.

This chapter covers
■ Using the Go net/http library
■ Serving out HTTP using the Go net/http

library
■ Understanding handlers and handler

functions
■ Working with multiplexers
47

48 CHAPTER 3 Handling requests
3.1 The Go net/http library
Although using a mature and sophisticated web application framework to write web
applications is usually easy and fast, the same frameworks often impose their own
conventions and patterns. Many assume that these conventions and patterns are best
practices, but best practices have a way of growing into cargo cult programming when
they aren’t understood properly. Programmers following these conventions without
understanding why they’re used often follow them blindly and reuse them when it’s
unnecessary or even harmful.

The reason data is persisted as cookies in the client and sessions in the server is
because HTTP is a connection-less protocol, and each call to the server has no stored
knowledge of the previous call. Without this understanding, using cookies and ses-
sions seems a convoluted way of persisting information between connections. Using a
framework to get around this complexity is smart because a framework normally hides
the complexity and presents a uniform interface for persistence between connections.
As a result, a new programmer would simply assume all it takes to persist data between
connections is to use this interface. This uniform interface is based on the conven-
tions of a specific framework, though, and such practices might or might not be con-
sistent across all frameworks. What’s worse, the same interface name might be used in
different frameworks, with different implementations and different names, adding to
the confusion. This means that the web application that’s developed is now tied to the

Cargo cult programming

During World War II, the Allied forces set up air bases on islands in the Pacific to help
with the war efforts. Large amounts of supplies and military equipment were air-
dropped to troops and islanders supporting the troops, drastically changing their lives.
For the first time, the islanders saw manufactured clothes, canned food, and other
goods. When the war ended, the bases were abandoned and the cargo stopped arriv-
ing. So the islanders did a very natural thing—they dressed themselves up as air traffic
controllers, soldiers, and sailors, waved landing signals using sticks on the airfields,
and performed parade ground drills in an attempt to get cargo to continue falling by
parachute from planes.

These cargo cultists gave their names to the practice of cargo cult programming. While
not exactly waving landing signals, cargo cult programmers copy and paste code they
either inherit or find on the internet (often, StackOverflow) without understanding why
it works, only that it works. As a result, they’re often unable to extend or make changes
to code. Similarly, cargo cult programmers often use web frameworks without under-
standing why the framework uses certain patterns or conventions, as well as the trade-
offs that are being made.

49The Go net/http library
framework; moving it to another framework or even extending the application or add-
ing new features requires deep knowledge of the framework (or customized versions
of the framework).

 This book isn’t about rejecting frameworks or conventions or patterns. A good web
application framework is often the best way to build scalable and robust web applica-
tions quickly. But it’s important to understand the underlying concepts infrastructure
that these frameworks are built on. In the case of the Go programming language,
using the standard libraries typically means using the net/http and html/template
libraries. With proper understanding, it becomes easier to see why certain conven-
tions and patterns are what they are. This helps us to avoid pitfalls, gives clarity, and
stops us from following patterns blindly.

 In this and the next chapter, we’ll be focusing on net/http; chapter 5 covers html/
template.

 The net/http library is divided into two parts, with various structs and functions
supporting either one or both (see figure 3.1):

■ Client—Client, Response, Header, Request, Cookie
■ Server—Server, ServeMux, Handler/HandleFunc, ResponseWriter, Header,

Request, Cookie

We’ll start by using the net/http library as the server, and in this chapter we’ll talk
about how Go handles requests from the client. In the next chapter, we’ll continue
with the net/http library but focus on using it to process the request.

 In this book, we’ll focus on using the net/http library’s server capabilities and not
its client capabilities.

Client

Client Server

Response

ResponseWriter

Handler/HandlerFunc

Server

ServeMux

Header

Cookie

Request

Figure 3.1 Chaining handlers

50 CHAPTER 3 Handling requests
3.2 Serving Go
The net/http library provides capabilities for starting up an HTTP server that handles
requests and sends responses to those requests (see figure 3.2). It also provides an
interface for a multiplexer and a default multiplexer.

3.2.1 The Go web server

Unlike most standard libraries in other programming languages, Go provides a set of
libraries to create a web server. Creating a server is trivial and can be done with a call to
ListenAndServe, with the network address as the first parameter and the handler that
takes care of the requests the second parameter, as shown in the following listing. If the
network address is an empty string, the default is all network interfaces at port 80. If
the handler parameter is nil, the default multiplexer, DefaultServeMux, is used.

package main

import (
 "net/http"
)

func main() {
 http.ListenAndServe("", nil)
}

Listing 3.1 The simplest web server

Client Multiplexer Handler

Handler

Handler

Template engine

Templates

Server

Request

Response

Model

Model

Model
Database

Model

Figure 3.2 Handling requests with the Go server

51Serving Go
This simple server doesn’t allow much configuration, but Go also provides a Server
struct that’s essentially a server configuration.

package main

import (
 "net/http"
)

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: nil,
 }
 server.ListenAndServe()
}

The following listing does almost the same thing as the previous code but now allows
more configurations. Configurations include setting the timeout for reading the
request and writing the response and setting an error logger for the Server struct.

type Server struct {
 Addr string
 Handler Handler
 ReadTimeout time.Duration
 WriteTimeout time.Duration
 MaxHeaderBytes int
 TLSConfig *tls.Config
 TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
 ConnState func(net.Conn, ConnState)
 ErrorLog *log.Logger
}

3.2.2 Serving through HTTPS

Most major websites use HTTPS to encrypt and protect the communications between
the client and the server when confidential information like passwords and credit
card information is shared. In some cases, this protection is mandated. If you accept
credit card payments, you need to be compliant with the Payment Card Industry (PCI)
Data Security Standard, and to be compliant you need to encrypt the communications
between the client and the server. Some sites like Gmail and Facebook use HTTPS
throughout their entire site. If you’re planning to run a site that requires the user to
log in, you’ll need to use HTTPS.

Listing 3.2 Web server with additional configuration

Listing 3.3 The Server struct configuration

52 CHAPTER 3 Handling requests
HTTPS is nothing more than layering HTTP on top of SSL (actually, Transport
Security Layer [TLS]). To serve our simple web application through HTTPS, we’ll use
the ListenAndServeTLS function, shown in listing 3.4.

package main

import (
 "net/http"
)

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: nil,
 }
 server.ListenAndServeTLS("cert.pem", "key.pem")
}

In the previous listing, the cert.pem file is the SSL certificate whereas key.pem is the pri-
vate key for the server. In a production scenario you’ll need to get the SSL certificate
from a CA like VeriSign, Thawte, or Comodo SSL. But if you need a certificate and pri-
vate key only to try things out, you can generate your own certificates. There are many
ways of generating them, including using Go standard libraries, mostly under the
crypto library group.

 Although you won’t use them (the certificate and private key created here) in a
production server, it’s useful to understand how an SSL certificate and private key

SSL, TLS, and HTTPS

SSL (Secure Socket Layer) is a protocol that provides data encryption and authenti-
cation between two parties, usually a client and a server, using Public Key Infrastruc-
ture (PKI). SSL was originally developed by Netscape and was later taken over by the
Internet Engineering Task Force (IETF), which renamed it TLS. HTTPS, or HTTP over
SSL, is essentially just that—HTTP layered over an SSL/TLS connection.

An SSL/TLS certificate (I’ll use the term SSL certificate as it’s more widely known) is
used to provide data encryption and authentication. An SSL certificate is an X.509-
formatted piece of data that contains some information, as well as a public key, stored
at a web server. SSL certificates are usually signed by a certificate authority (CA), which
assures the authenticity of the certificate. When the client makes a request to the
server, it returns with the certificate. If the client is satisfied that the certificate is
authentic, it will generate a random key and use the certificate (or more specifically
the public key in the certificate) to encrypt it. This symmetric key is the actual key
used to encrypt the data between the client and the server.

Listing 3.4 Serving through HTTPS

53Serving Go
can be generated for development and testing purposes. This listing shows how we
can do this.

package main

import (
 "crypto/rand"
 "crypto/rsa"
 "crypto/x509"
 "crypto/x509/pkix"
 "encoding/pem"
 "math/big"
 "net"
 "os"
 "time"
)

func main() {
 max := new(big.Int).Lsh(big.NewInt(1), 128)
 serialNumber, _ := rand.Int(rand.Reader, max)
 subject := pkix.Name{
 Organization: []string{"Manning Publications Co."},
 OrganizationalUnit: []string{"Books"},
 CommonName: "Go Web Programming",
 }

 template := x509.Certificate{
 SerialNumber: serialNumber,
 Subject: subject,
 NotBefore: time.Now(),
 NotAfter: time.Now().Add(365 * 24 * time.Hour),
 KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSig-

nature,
 ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
 IPAddresses: []net.IP{net.ParseIP("127.0.0.1")},
 }

 pk, _ := rsa.GenerateKey(rand.Reader, 2048)

 derBytes, _ := x509.CreateCertificate(rand.Reader, &template,
 ➥ &template, &pk.PublicKey, pk)
 certOut, _ := os.Create("cert.pem")
 pem.Encode(certOut, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
 certOut.Close()

 keyOut, _ := os.Create("key.pem")
 pem.Encode(keyOut, &pem.Block{Type: "RSA PRIVATE KEY", Bytes:
 ➥ x509.MarshalPKCS1PrivateKey(pk)})
 keyOut.Close()
}

Listing 3.5 Generating your own SSL certificate and server private key

54 CHAPTER 3 Handling requests
Generating the SSL certificate and private key is relatively easy. An SSL certificate is
essentially an X.509 certificate with the extended key usage set to server authentica-
tion, so we’ll be using the crypto/x509 library to create the certificate. The private key
is required to create the certificate, so we simply take the private key we created for
the certificate and save it into a file for the server private key file.

 Let’s go through the code. First, we need to have a Certificate struct, which
allows us to set the configuration for our certificate:

template := x509.Certificate{
 SerialNumber: serialNumber,
 Subject: subject,
 NotBefore: time.Now(),
 NotAfter: time.Now().Add(365*24*time.Hour),
 KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
 ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
 IPAddresses: []net.IP{net.ParseIP("127.0.0.1")},
}

We need a certificate serial number, which is a unique number issued by the CA. For
our purposes, it’s good enough to use a very large integer that’s randomly generated.
Next, we create the distinguished name and set it up as the subject for the certificate,
and we also set up the validity period to last for one year from the day the certificate is
created. The KeyUsage and ExtKeyUsage fields are used to indicate that this X.509
certificate is used for server authentication. Finally, we set up the certificate to run
from the IP 127.0.0.1 only.

SSL certificates

X.509 is an ITU-T (International Telecommunication Union Telecommunication Stan-
dardization Sector) standard for a Public Key Infrastructure (PKI). X.509 includes
standard formats for public key certificates.

An X.509 certificate (also colloquially called an SSL certificate) is a digital document
expressed in ASN.1 (Abstract Syntax Notation One) that has been encoded. ASN.1 is
a standard and notation that describes rules and structures for representing data in
telecommunications and computer networking.

X.509 certificates can be encoded in various formats, including BER (Basic Encoding
Rules). The BER format specifies a self-describing and self-delimiting format for
encoding ASN.1 data structures. DER is a subset of BER, providing for exactly one
way to encode an ASN.1 value, and is widely used in cryptography, especially X.509
certificates.

In SSL, the certificates can be saved in files of different formats. One of them is PEM
(Privacy Enhanced Email, which doesn’t have much relevance here except as the name
of the file format used), which is a Base64-encoded DER X.509 certificate enclosed
between “-----BEGIN CERTIFICATE-----” and “-----END CERTIFICATE-----”.

55Handlers and handler functions
Next, we need to generate a private key. We use the crypto/rsa library and call the
GenerateKey function to create an RSA private key:

pk, _ := rsa.GenerateKey(rand.Reader, 2048)

The RSA private key struct that’s created has a public key that we can access, useful
when we use the x509.CreateCertificate function to create our SSL certificate:

derBytes, _ := x509.CreateCertificate(rand.Reader, &template, &template,

➥ &pk.PublicKey, pk)

The CreateCertificate function takes a number of parameters, including the
Certificate struct and the public and private keys, to create a slice of DER-formatted
bytes. The rest is relatively straightforward: we use the encoding/pem library to
encode the certificate into the cert.pem file:

certOut, _ := os.Create("cert.pem")
pem.Encode(certOut, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
certOut.Close()

We also PEM encode and save the key we generated earlier into the key.pem file:

keyOut, _ := os.Create("key.pem")
pem.Encode(keyOut, &pem.Block{Type: "RSA PRIVATE KEY", Bytes:

➥ x509.MarshalPKCS1PrivateKey(pk)})
keyOut.Close()

Note that if the certificate is signed by a CA, the certificate file should be the concate-
nation of the server’s certificate followed by the CA’s certificate.

3.3 Handlers and handler functions
Starting up a server is easy, but it doesn’t do anything. If you access the server, you’ll
get only a 404 HTTP response code. The default multiplexer that will be used if the
handler parameter is nil can’t find any handlers (because we haven’t written any) and
will respond with the 404. To do any work, we need to have handlers.

3.3.1 Handling requests

So what exactly is a handler? We talked briefly about handlers and handler functions
in chapters 1 and 2, so let’s elaborate here. In Go, a handler is an interface that has a
method named ServeHTTP with two parameters: an HTTPResponseWriter interface
and a pointer to a Request struct. In other words, anything that has a method called
ServeHTTP with this method signature is a handler:

ServeHTTP(http.ResponseWriter, *http.Request)

Let me digress and answer a question that might have occurred to you as you’re read-
ing this chapter. If the second parameter for ListenAndServe is a handler, then why is
the default value a multiplexer, DefaultServeMux?

56 CHAPTER 3 Handling requests
 That’s because ServeMux (which is what DefaultServeMux is an instance of) has a
method named ServeHTTP with the same signature! In other words, a ServeMux is also
an instance of the Handler struct. DefaultServeMux is an instance of ServeMux, so it is
also an instance of the Handler struct. It’s a special type of handler, though, because
the only thing it does is redirect your requests to different handlers depending on the
URL that’s provided. If we use a handler instead of the default multiplexer, we’ll be
able to respond, as shown in this listing.

package main

import (
 "fmt"
 "net/http"
)

type MyHandler struct{}

func (h *MyHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello World!")
}

func main() {
 handler := MyHandler{}
 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: &handler,
 }
 server.ListenAndServe()
}

Now let’s start the server (if you’re a bit hazy on how to do this, please flip to section
2.7). If you go to http://localhost:8080 in your browser you’ll see Hello World!

 Here’s the tricky bit: if you go to http://localhost:8080/anything/at/all you’ll still
get the same response! Why this is so should be quite obvious. We just created a han-
dler and attached it to our server, so we’re no longer using any multiplexers. This
means there’s no longer any URL matching to route the request to a particular han-
dler, so all requests going into the server will go to this handler.

 In our handler, the ServeHTTP method does all the processing. It doesn’t do any-
thing except return Hello World!, so that’s what it does for all requests into the server.

 This is the reason why we’d normally use a multiplexer. Most of the time we want
the server to respond to more than one request, depending on the request URL. Natu-
rally if you’re writing a very specialized server for a very specialized purpose, simply
creating one handler will do the job marvelously.

3.3.2 More handlers

Most of the time, we don’t want to have a single handler to handle all the requests like
in listing 3.6; instead we want to use different handlers instead for different URLs. To

Listing 3.6 Handling requests

57Handlers and handler functions
do this, we don’t specify the Handler field in the Server struct (which means it will
use the DefaultServeMux as the handler); we use the http.Handle function to attach
a handler to DefaultServeMux. Notice that some of the functions like Handle are
functions for the http package and also methods for ServeMux. These functions are
actually convenience functions; calling them simply calls DefaultServeMux’s corre-
sponding functions. If you call http.Handle you’re actually calling DefaultServeMux’s
Handle method.

 In the following listing, we create two handlers and then attach the handler to the
respective URL. If you now go to http://localhost:8080/hello you’ll get Hello! whereas
if you go to http://localhost:8080/world, you’ll get World!.

package main

import (
 "fmt"
 "net/http"
)

type HelloHandler struct{}

func (h *HelloHandler) ServeHTTP (w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello!")
}

type WorldHandler struct{}

func (h *WorldHandler) ServeHTTP (w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "World!")
}

func main() {
 hello := HelloHandler{}
 world := WorldHandler{}

 server := http.Server{
 Addr: "127.0.0.1:8080",
 }

 http.Handle("/hello", &hello)
 http.Handle("/world", &world)

 server.ListenAndServe()
}

3.3.3 Handler functions

We talked about handlers, but what are handler functions? Handler functions are
functions that behave like handlers. Handler functions have the same signature as the
ServeHTTP method; that is, they accept a ResponseWriter and a pointer to a Request.
The following listing shows how this works with our server.

Listing 3.7 Handling requests with multiple handlers

58 CHAPTER 3 Handling requests
package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello!")
}

func world(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "World!")
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/hello", hello)
 http.HandleFunc("/world", world)

 server.ListenAndServe()
}

How does this work? Go has a function type named HandlerFunc, which will adapt a
function f with the appropriate signature into a Handler with a method f. For exam-
ple, take the hello function:

func hello(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello!")
}

If we do this:

helloHandler := HandlerFunc(hello)

then helloHandler becomes a Handler. Confused? Let’s go back to our earlier server,
which accepts handlers.

type MyHandler struct{}

func (h *MyHandler) ServeHTTP (w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello World!")
}

func main() {
 handler := MyHandler{}
 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: &handler,
 }
 server.ListenAndServe()
}

Listing 3.8 Handling requests with handler functions

59Handlers and handler functions
The line that registers the hello function to the URL /hello is

http.Handle("/hello", &hello)

This shows us how the Handle function registers a pointer to a Handler to a URL. To
simplify things, the HandleFunc function converts the hello function into a Handler
and registers it to DefaultServeMux. In other words, handler functions are merely
convenient ways of creating handlers. The following listing shows the code for the
http.HandleFunc function.

func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
 DefaultServeMux.HandleFunc(pattern, handler)
}

Here’s the source code for the HandleFunc function:

func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter,
*Request)) {

 mux.Handle(pattern, HandlerFunc(handler))
}

Notice that handler, a function, is converted into an actual handler by HandlerFunc.
 Because using handler functions is cleaner and it does the job just as well, why use

handlers at all? It all boils down to design. If you have an existing interface or if you
want a type that can also be used as a handler, simply add a ServeHTTP method to that
interface and you’ll get a handler that you can assign to a URL. It can also allow you to
build web applications that are more modular.

3.3.4 Chaining handlers and handler functions

Although Go isn’t considered a functional language, it has some features that are
common to functional languages, including function types, anonymous functions,
and closures. As you noticed earlier, we passed a function into another function and
we referred to a named function by its identifier. This means we can pass a function f1
into another function f2 for f2 to do its processing, and then call f1 (see figure 3.3).

Listing 3.9 http.HandleFunc source code

Do some work

Input
f2

Do some work

f1

Output

Figure 3.3 Chaining
handlers

60 CHAPTER 3 Handling requests
Let’s work through an example. Say every time we call a handler we want to log it
down somewhere that it was called. We can always add this code into the handler, or
we can refactor a utility function (as we did in chapter 2) that can be called by every
function. Doing this can be intrusive, though; we usually want our handler to contain
logic for processing the request only.

 Logging, along with a number of similar functions like security and error han-
dling, is what’s commonly known as a cross-cutting concern. These functions are com-
mon and we want to avoid adding them everywhere, which causes code duplication
and dependencies. A common way of cleanly separating cross-cutting concerns away
from your other logic is chaining. This listing shows how we can chain handlers.

package main

import (
 "fmt"
 "net/http"
 "reflect"
 "runtime"
)

func hello(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello!")
}

func log(h http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 name := runtime.FuncForPC(reflect.ValueOf(h).Pointer()).Name()
 fmt.Println("Handler function called - " + name)
 h(w, r)
 }
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/hello", log(hello))
 server.ListenAndServe()
}

We have our usual hello handler function. We also have a log function, which takes
in a HandlerFunc and returns a HandlerFunc. Remember that hello is a HandlerFunc,
so this sends the hello function into the log function; in other words it chains the log
and the hello functions.

log(hello)

The log function returns an anonymous function that takes a ResponseWriter and a
pointer to a Request, which means that the anonymous function is a HandlerFunc.
Inside the anonymous function, we print out the name of the HandlerFunc (in this

Listing 3.10 Chaining two handler functions

61Handlers and handler functions
case it’s main.hello), and then call it. As a result, we’ll get hello! in the browser and a
printed statement on the console that says this:

Handler function called – main.hello

Naturally if we can chain together two handler functions, we can chain more. The
same principle allows us to stack handlers to perform multiple actions, like Lego
bricks. This is sometimes called pipeline processing (see figure 3.4).

Say we have another function named protect, which checks for the user’s authoriza-
tion before executing the handler:

func protect(h http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 . . .
 h(w, r)
 }
}

Then to use protect, we simply chain them together:

http.HandleFunc("/hello", protect(log(hello)))

You might have noticed that while I mentioned earlier that we’re chaining handlers,
the code in listing 3.10 actually shows chaining handler functions. The mechanisms
for both chaining handlers and handler functions are very similar, as shown next.

package main

import (
 "fmt"

Listing 3.11 Chaining handlers

Do some work

Input
f3

Do some work

f2

Output

Do some work

f1

Figure 3.4 Chaining more handlers

Code, omitted for brevity,
to make sure the user is
authorized.

62 CHAPTER 3 Handling requests
 "net/http"
)

type HelloHandler struct{}

func (h HelloHandler) ServeHTTP (w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello!")
}

func log(h http.Handler) http.Handler {
 return http.HandlerFunc (func(w http.ResponseWriter, r *http.Request) {
 fmt.Printf("Handler called - %T\n", h)
 h.ServeHTTP (w, r)
 })
}

func protect(h http.Handler) http.Handler {
 return http.HandlerFunc (func(w http.ResponseWriter, r *http.Request) {
 . . .
 h.ServeHTTP (w, r)
 })
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 hello := HelloHandler{}
 http.Handle("/hello", protect(log(hello)))
 server.ListenAndServe()
}

Let’s see what’s different. We have our HelloHandler from earlier, which is the last
handler in the chain, as before. The log function, instead of taking in a HandlerFunc
and returning a HandlerFunc, takes in a Handler and returns a Handler:

func log(h http.Handler) http.Handler {
 return http.HandlerFunc (func(w http.ResponseWriter, r *http.Request) {
 fmt.Printf("Handler called - %T\n", h)
 h.ServeHTTP (w, r)
 })
}

Instead of returning an anonymous function, now we adapt that anonymous function
using HandlerFunc, which, if you remember from earlier, returns a Handler. Also,
instead of executing the handler function, we now take the handler and call its
ServeHTTP function. Everything else remains mostly the same, except that instead of
registering a handler function, we register the handler:

hello := HelloHandler{}
http.Handle("/hello", protect(log(hello)))

Chaining handlers or handler functions is a common idiom you’ll find in many web
application frameworks.

Code, omitted for brevity,
to make sure the user is
authorized.

63Handlers and handler functions
3.3.5 ServeMux and DefaultServeMux

We discussed ServeMux and DefaultServeMux earlier in this chapter and in the previ-
ous chapter. ServeMux is an HTTP request multiplexer. It accepts an HTTP request and
redirects it to the correct handler according to the URL in the request, illustrated in
figure 3.5.

ServeMux is a struct with a map of entries that map a URL to a handler. It’s also a han-
dler because it has a ServeHTTP method. ServeMux’s ServeHTTP method finds the URL
most closely matching the requested one and calls the corresponding handler’s
ServeHTTP (see figure 3.6).

 So what is DefaultServeMux? ServeMux isn’t an interface, so DefaultServeMux isn’t
an implementation of ServeMux. DefaultServeMux is an instance of ServeMux that’s

Client Multiplexer:
ServeMux

Handler

Handler

Handler

Server

Request /hello

/

/world

Figure 3.5 Multiplexing requests to handlers

indexHandler

helloHandler

worldHandler

indexHandler

helloHandler

worldHandler

Multiplexer: ServeMux

/hello

/

/world

Request

GET /hello HTTP/1.1

Struct that maps
URL to handlers

ServeHTTP method
calls corresponding
handler's ServeHTTP

Figure 3.6 Inside a multiplexer

64 CHAPTER 3 Handling requests
publicly available to the application that imports the net/http library. It’s also the
instance of ServeMux that’s used when no handler is provided to the Server struct.

 Stepping back a bit, you’ll also come to a realization that ServeMux is also another
take on chaining handlers, because ServeMux is a handler.

 In these examples the requested URL /hello matches nicely with the registered
URL in the multiplexer. What happens if we call the URL /random? Or if we call the
URL /hello/there?

 It all depends on how we register the URLs. If we register the root URL (/) as in fig-
ure 3.6, any URLs that don’t match will fall through the hierarchy and land on the
root URL. If we now call /random and don’t have the handler for this URL, the root
URL’s handler (in this case indexHandler) will be called.

 How about /hello/there then? The Principle of Least Surprise would dictate that
because we have the URL /hello registered we should default to that URL and hello-
Handler should be called. But in figure 3.6, indexHandler is called instead. Why is
that so?

The reason is because we registered the helloHandler to the URL /hello instead of /
hello/. For any registered URLs that don’t end with a slash (/), ServeMux will try to
match the exact URL pattern. If the URL ends with a slash (/), ServeMux will see if the
requested URL starts with any registered URL.

 If we’d registered the URL /hello/ instead, then when /hello/there is requested, if
ServeMux can’t find an exact match, it’ll start looking for URLs that start with /hello/.
There’s a match, so helloHandler will be called.

3.3.6 Other multiplexers

Because what it takes to be a handler or even a multiplexer is to implement the
ServeHTTP, it’s possible to create alternative multiplexers to net/http’s ServeMux. Sure
enough, a number of third-party multiplexers are available, including the excellent
Gorilla Toolkit (www.gorillatoolkit.org). The Gorilla Toolkit has two different multi-
plexers that work quite differently: mux and pat. In this section, we’ll go through a
lightweight but effective third-party multiplexer called HttpRouter.

The Principle of Least Surprise

The Principle of Least Surprise, also known as the Principle of Least Astonishment,
is a general principle in the design of all things (including software) that says that
when designing, we should do the least surprising thing. The results of doing some-
thing should be obvious, consistent, and predictable.

If we place a button next to a door, we’d expect the button to do something with the
door (ring the doorbell or open the door). If the button turns off the corridor lights
instead, that would be against the Principle of Least Surprise because it’s doing some-
thing that a user of that button wouldn’t be expecting.

www.gorillatoolkit.org

65Handlers and handler functions
 One of the main complaints about ServeMux is that it doesn’t support variables in
its pattern matching against the URL. ServeMux handles /threads pretty well to
retrieve and display all threads in the forum, but it’s difficult to handle /thread/123
for retrieving and displaying the thread with id 123. To process such URLs, your han-
dler will need to parse the request path and extract the relevant sections. Also,
because of the way ServeMux does pattern matching for the URLs, you can’t use some-
thing like /thread/123/post/456 if you want to retrieve the post with id 456 from the
thread with id 123 (at least not with a lot of unnecessary parsing complexity).

 The HttpRouter library overcomes some of these limitations. In this section, we’ll
explore some of the more important features of this library, but you can always look
up the rest of the documentation at https://github.com/julienschmidt/httprouter.
This listing shows an implementation using HttpRouter.

package main

import (
 "fmt"
 "github.com/julienschmidt/httprouter"
 "net/http"
)

func hello(w http.ResponseWriter, r *http.Request, p httprouter.Params) {
 fmt.Fprintf(w, "hello, %s!\n", p.ByName("name"))
}

func main() {
 mux := httprouter.New()
 mux.GET("/hello/:name", hello)

 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: mux,
 }
 server.ListenAndServe()
}

Most of the code should look familiar to you now. We create the multiplexer by calling
the New function.

mux := httprouter.New()

Instead of using HandleFunc to register the handler functions, we use the method
names:

mux.GET("/hello/:name", hello)

In this case we’re registering a URL for the GET method to the hello function. If we
send a GET request, the hello function will be called; if we send any other HTTP

Listing 3.12 Using HttpRouter

https://github.com/julienschmidt/httprouter

66 CHAPTER 3 Handling requests
requests it won’t. Notice that the URL now has something called a named parameter.
These named parameters can be replaced by any values and can be retrieved later by
the handler.

func hello(w http.ResponseWriter, r *http.Request, p httprouter.Params) {
 fmt.Fprintf(w, "hello, %s!\n", p.ByName("name"))
}

The handler function has changed too; instead of taking two parameters, we now take
a third, a Params type. Params contain the named parameters, which we can retrieve
using the ByName method.

 Finally, instead of using DefaultServeMux, we pass our multiplexer into the Server
struct and let Go use that instead:

 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: mux,
}
server.ListenAndServe()

But wait. How exactly do we include the third-party library? If we do what we did for
the other examples and run go build at the console, we’ll get something like this:

$ go build
server.go:5:5: cannot find package "github.com/julienschmidt/httprouter" in

any of:
 /usr/local/go/src/github.com/julienschmidt/httprouter (from $GOROOT)
 /Users/sausheong/gws/src/github.com/julienschmidt/httprouter (from $GOPATH)

A simple package management system is one of the strengths of Go. We simply need
to run

$ go get github.com/julienschmidt/httprouter

at the console and if we’re connected to the internet, it’ll download the code from the
HttpRouter repository (in GitHub) and store it in the $GOPATH/src directory. Then
when we run go build, it’ll import the code and compile our server.

3.4 Using HTTP/2
Before leaving this chapter, let me show you how you can use HTTP/2 in Go with what
you have learned in this chapter.

 In chapter 1, you learned about HTTP/2 and how Go 1.6 includes HTTP/2 by
default when you start up a server with HTTPS. For older versions of Go, you can
enable this manually through the golang.org/x/net/http2 package.

 If you’re using a Go version prior to 1.6, the http2 package is not installed by
default, so you need to get it using go get:

go get "golang.org/x/net/http2"

Modify the code from listing 3.6 by importing the http2 package and also adding a
line to set up the server to use HTTP/2.

67Using HTTP/2
 In the following listing you can see by calling the ConfigureServer method in the
http2 package, and passing it the server configuration, you have set up the server to
run in HTTP/2.

package main

import (
 "fmt"
 "golang.org/x/net/http2"
 "net/http"
)

type MyHandler struct{}

func (h *MyHandler) ServeHTTP (w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello World!")
}

func main() {
 handler := MyHandler{}
 server := http.Server{
 Addr: "127.0.0.1:8080",
 Handler: &handler,
 }
 http2.ConfigureServer(&server, &http2.Server{})
 server.ListenAndServeTLS("cert.pem", "key.pem")
}

Now, run the server:

go run server.go

To check whether the server is running in HTTP/2, you can use cURL. You will be
using cURL quite a bit in this book, because it’s widely available on most platforms, so
it’s a good time to get familiar with it.

Starting from version 7.43.0, cURL supports HTTP/2. You can perform a request using
the HTTP/2 protocol passing the --http2 flag. To use cURL with HTTP/2, you need to
link it to nghttp2, a C library that provides support for HTTP/2. As of this writing,

Listing 3.13 Using HTTP/2

cURL

cURL is a command-line tool that allows users to get or send files through a URL. It
supports a large number of common internet protocols, including HTTP and HTTPS.
cURL is installed by default in many variants of Unix, including OS X, but is also avail-
able in Windows. To download and install cURL manually, go to http://curl.haxx.se/
download.html.

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html

68 CHAPTER 3 Handling requests
many default cURL implementations don’t yet support HTTP/2 (including the one
shipped with OS X), so if you need to recompile cURL, link it with nghttp2 and replace
the previous cURL version with the one you just built.

 Once you have done that, you can use cURL to check your HTTP/2 web applica-
tion:

curl -I --http2 --insecure https://localhost:8080/

Remember, you need to run it against HTTPS. Because you created your own certifi-
cate and private key, by default cURL will not proceed as it will try to verify the certifi-
cate. To force cURL to accept your certificate, you need to set the insecure flag.

 You should get an output similar to this:

HTTP/2.0 200
content-type:text/plain; charset=utf-8
content-length:12
date:Mon, 15 Feb 2016 05:33:01 GMT

We’ve discussed how to handle requests, but we mostly glossed over how to process the
incoming request and send responses to the client. Handlers and handler functions
are the key to writing web applications in Go, but processing requests and sending
responses is the real reason why web applications exist. In the next chapter, we’ll turn
to the details on requests and responses and you’ll see how to extract information
from requests and pass on information through responses.

3.5 Summary
■ Go has full-fledged standard libraries for building web applications, with net/

http and html/template.
■ Although using good web frameworks is often easier and saves time, it is impor-

tant to learn the basics of web programming before using them.
■ Go’s net/http package allows HTTP to be layered on top of SSL to be more

secured, creating HTTPS.
■ Go handlers can be any struct that has a method named ServeHTTP with two

parameters: an HTTPResponseWriter interface and a pointer to a Request struct.
■ Handler functions are functions that behave like handlers. Handler functions

have the same signature as the ServeHTTP method and are used to process
requests.

■ Handlers and handler functions can be chained to allow modular processing of
requests through separation of concerns.

■ Multiplexers are also handlers. ServeMux is an HTTP request multiplexer. It
accepts an HTTP request and redirects it to the correct handler according to
the URL in the request. DefaultServeMux is a publicly available instance of
ServeMux that is used as the default multiplexer.

■ In Go 1.6 and later, net/http supports HTTP/2 by default. Before 1.6, HTTP/2
support can be added manually by using the http2 package.

Processing requests
In the previous chapter we explored serving web applications with the built-in net/
http library. You also learned about handlers, handler functions, and multiplexers.
Now that you know about receiving and handing off the request to the correct set
of functions, in this chapter we’ll investigate the tools that Go provides to program-
mers to process requests and send responses back to the client.

4.1 Requests and responses
In chapter 1 we went through quite a bit of information about HTTP messages. If
that chapter was a blur to you, now would be a great time to revisit it. HTTP mes-
sages are messages sent between the client and the server. There are two types of
HTTP messages: HTTP request and HTTP response.

This chapter covers
■ Using Go requests and responses
■ Processing HTML forms with Go
■ Sending responses back to the client with

ResponseWriter

■ Working with cookies
■ Implementing flash messages with cookies
69

70 CHAPTER 4 Processing requests
 Both requests and responses have basically the same structure:

1 Request or response line
2 Zero or more headers
3 An empty line, followed by …
4 … an optional message body

Here’s an example of a GET request:

GET /Protocols/rfc2616/rfc2616.html HTTP/1.1
Host: www.w3.org
User-Agent: Mozilla/5.0
(empty line)

The net/http library provides structures for HTTP messages, and you need to know
these structures to understand how to process requests and send responses. Let’s start
with the request.

4.1.1 Request

The Request struct represents an HTTP request message sent from the client. The rep-
resentation isn’t literal because HTTP requests are only lines of text. The struct con-
tains the parsed information that’s considered to be important, as well as a number of
useful methods. Some important parts of Request are

■ URL
■ Header
■ Body
■ Form, PostForm, and MultipartForm

You can also get access to the cookies in the request and the referring URL and the user
agent from methods in Request. Request can either be requests sent to the server, or
requests sent from the client, when the net/http library is used as an HTTP client.

4.1.2 Request URL

The URL field of a Request is a representation of the URL that’s sent as part of the
request line (the first line of the HTTP request). The URL field is a pointer to the
url.URL type, which is a struct with a number of fields, as shown here.

type URL struct {
 Scheme string
 Opaque string
 User *Userinfo
 Host string
 Path string
 RawQuery string
 Fragment string
}

Listing 4.1 The URL struct

71Requests and responses
The general form is

scheme://[userinfo@]host/path[?query][#fragment]

URLs that don’t start with a slash after the scheme are interpreted as

scheme:opaque[?query][#fragment]

When programming web applications, we often pass information from the client to the
server using the URL query. The RawQuery field provides the actual query string that’s
passed through. For example, if we send a request to the URL http://www.example
.com/post?id=123&thread_id=456 RawQuery will contain id=123&thread_id=456 and
we’ll need to parse it to get the key-value pairs. There’s a convenient way of getting
these key-value pairs: through the Form field in the Request. We’ll get to the Form,
PostForm, and MultipartForm fields in a bit.

 It’s interesting to note that you can’t extract the Fragment field out of a URL struct
if you’re getting a request from the browser. Recall from chapter 1 that fragments are
stripped by the browser before being sent to the server, so it’s not the Go libraries
being annoying—it’s because the fragment you see on the browser never gets sent to
the server. So why have it at all? It’s because not all requests come from browsers; you
can get requests from HTTP client libraries or other tools, or even client frameworks
like Angular. Also, Request isn’t used only at the server—it can also be used as part of
the client library.

4.1.3 Request header

Request and response headers are described in the Header type, which is a map repre-
senting the key-value pairs in an HTTP header. There are four basic methods on
Header, which allow you to add, delete, get, and set values, given a key. Both the key
and the value are strings.

 The difference between adding and setting a value is straightforward but tells us
quite a lot about the structure of the Header type. A header is a map with keys that are
strings and values that are slices of strings. Setting a key creates a blank slice of strings
as the value, with the first element in the slice being the new header value. To add a
new header value to a given key, you append the new element to the existing slice of
string (see figure 4.1).

GETAllow

Key Value

PUT

Appending an element to
the value slice adds a new
header value to the key.

Figure 4.1 A header is a map, with the key
a string and the value a slice of strings.

http://www.example.com/post?id=123&thread_id=456
http://www.example.com/post?id=123&thread_id=456

72 CHAPTER 4 Processing requests
This listing shows how you’d read headers from a request.

package main

import (
 "fmt"
 "net/http"
)

func headers(w http.ResponseWriter, r *http.Request) {
 h := r.Header
 fmt.Fprintln(w, h)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/headers", headers)
 server.ListenAndServe()
}

The previous listing shows the simple server from chapter 3, but this time the handler
prints out the header. Figure 4.2 shows what you’ll see in your browser (I used Safari
on my OS X machine).

To get just one particular header, instead of using

h := r.Header

you’d use

h := r.Header["Accept-Encoding"]

Listing 4.2 Reading headers from a request

Figure 4.2 Header output as viewed in the browser

73Requests and responses
and you’d get

[gzip, deflate]

You can also use

h := r.Header.Get("Accept-Encoding")

which will give you

gzip, deflate

Notice the difference. If you refer to the Header directly, you’ll get a map of strings; if
you use the Get method on the Header, then you’ll get the comma-delimited list of val-
ues (which is the actual string in the header).

4.1.4 Request body

Both request and response bodies are represented by the Body field, which is an
io.ReadCloser interface. In turn the Body field consists of a Reader interface and a
Closer interface. A Reader is an interface that has a Read method that takes in a slice
of bytes and returns the number of bytes read and an optional error. A Closer is an
interface that has a Close method, which takes in nothing and returns an optional
error. What this really means is that you can call on the Read and Close methods of
the Body field. To read the contents of a request body, you can call the Body field’s
Read method, as shown in this listing.

package main

import (
 "fmt"
 "net/http"
)

func body(w http.ResponseWriter, r *http.Request) {
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 fmt.Fprintln(w, string(body))
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/body", body)
 server.ListenAndServe()
}

Notice that you first need to determine how much to read; then you create a byte
array of the content length, and call the Read method to read into the byte array.

Listing 4.3 Reading data from a request body

74 CHAPTER 4 Processing requests
 If you want to test this, you’ll need to send a POST request to the server with the
appropriate message body, because GET requests don’t have message bodies. Remem-
ber that you can’t normally send POST requests through a browser—you need an
HTTP client. There are plenty of choices. You can use a desktop graphical HTTP cli-
ent, a browser plug-in or extension, or even cURL from the command line.

 Type this on your console:

$ curl -id "first_name=sausheong&last_name=chang" 127.0.0.1:8080/body

cURL will display the full, raw HTTP response, with the HTTP body after the blank line.
This is what you should be getting:

HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 16:11:58 GMT
Content-Length: 37
Content-Type: text/plain; charset=utf-8

first_name=sausheong&last_name=chang

Normally you wouldn’t need to read the raw form of the body, though, because Go pro-
vides methods such as FormValue and FormFile to extract the values from a POST form.

4.2 HTML forms and Go
Before we delve into getting form data from a POST request, let’s take a deeper look at
HTML forms. Most often, POST requests come in the form (pun intended) of an
HTML form and often look like this:

<form action="/process" method="post">
 <input type="text" name="first_name"/>
 <input type="text" name="last_name"/>
 <input type="submit"/>
</form>

Within the <form> tag, we place a number of HTML form elements including text
input, text area, radio buttons, checkboxes, and file uploads. These elements allow
users to enter data to be submitted to the server. Data is submitted to the server when
the user clicks a button or somehow triggers the form submission.

 We know the data is sent to the server through an HTTP POST request and is placed
in the body of the request. But how is the data formatted? The HTML form data is always
sent as name-value pairs, but how are these name-value pairs formatted in the POST
body? It’s important for us to know this because as we receive the POST request from the
browser, we need to be able to parse the data and extract the name-value pairs.

 The format of the name-value pairs sent through a POST request is specified by the
content type of the HTML form. This is defined using the enctype attribute like this:

<form action="/process" method="post" enctype="application/x-www-

➥ form-urlencoded">
 <input type="text" name="first_name"/>
 <input type="text" name="last_name"/>
 <input type="submit"/>
</form>

75HTML forms and Go
The default value for enctype is application/x-www-form-urlencoded. Browsers are
required to support at least application/x-www-form-urlencoded and multipart/
form-data (HTML5 also supports a text/plain value).

 If we set enctype to application/x-www-form-urlencoded, the browser will
encode in the HTML form data a long query string, with the name-value pairs sepa-
rated by an ampersand (&) and the name separated from the values by an equal sign
(=). That’s the same as URL encoding, hence the name (see chapter 1). In other
words, the HTTP body will look something like this:

first_name=sau%20sheong&last_name=chang

If you set enctype to multipart/form-data, each name-value pair will be converted
into a MIME message part, each with its own content type and content disposition.
Our form data will now look something like this:

------WebKitFormBoundaryMPNjKpeO9cLiocMw
 Content-Disposition: form-data; name="first_name"

sau sheong
 ------WebKitFormBoundaryMPNjKpeO9cLiocMw
 Content-Disposition: form-data; name="last_name"

 chang
 ------WebKitFormBoundaryMPNjKpeO9cLiocMw--

When would you use one or the other? If you’re sending simple text data, the URL
encoded form is better—it’s simpler and more efficient and less processing is needed.
If you’re sending large amounts of data, such as uploading files, the multipart-MIME
form is better. You can even specify that you want to do Base64 encoding to send
binary data as text.

 So far we’ve only talked about POST requests—what about GET requests in an
HTML form? HTML allows the method attribute to be either POST or GET, so this is
also a valid format:

<form action="/process" method="get">
 <input type="text" name="first_name"/>
 <input type="text" name="last_name"/>
 <input type="submit"/>
</form>

In this case, there’s no request body (GET requests have no request body), and all the
data is set in the URL as name-value pairs.

 Now that you know how data is sent from an HTML form to the server, let’s go back
to the server and see how you can use net/http to process the request.

4.2.1 Form

In the previous sections, we talked about extracting data from the URL and the body
in the raw form, which requires us to parse the data ourselves. In fact, we normally

76 CHAPTER 4 Processing requests
don’t need to, because the net/http library includes a rather comprehensive set of
functions that normally provides us with all we need. Let’s talk about each in turn.

 The functions in Request that allow us to extract data from the URL and/or the
body revolve around the Form, PostForm, and MultipartForm fields. The data is in the
form of key-value pairs (which is what we normally get from a POST request anyway).
The general algorithm is:

1 Call ParseForm or ParseMultipartForm to parse the request.
2 Access the Form, PostForm, or MultipartForm field accordingly.

This listing shows parsing forms.

package main

import (
 "fmt"
 "net/http"
)

func process(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 fmt.Fprintln(w, r.Form)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 server.ListenAndServe()
}

The focus of the server in listing 4.4 is on these two lines:

 r.ParseForm()
 fmt.Fprintln(w, r.Form)

As mentioned earlier, you need to first parse the request using ParseForm, and then
access the Form field.

 Let’s look at the client that’s going to call this server. You’ll create a simple, mini-
mal HTML form to send the request to the server. Place the code in a file named cli-
ent.html.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Go Web Programming</title>
 </head>
 <body>
 <form action=http://127.0.0.1:8080/process?hello=world&thread=123

 ➥ method="post" enctype="application/x-www-form-urlencoded">

Listing 4.4 Parsing forms

77HTML forms and Go
 <input type="text" name="hello" value="sau sheong"/>
 <input type="text" name="post" value="456"/>
 <input type="submit"/>
 </form>
 </body>
</html>

In this form, you are

■ Sending the URL http://localhost:8080/process?hello=world&thread=123 to
the server using the POST method

■ Specifying the content type (in the enctype field) to be application/x-www-
form-urlencoded

■ Sending two HTML form key-value pairs—hello=sau sheong and post=456—to
the server

Note that you have two values for the key hello. One of them is world in the URL and
the other is sau sheong in the HTML form.

 Open the client.html file directly in your browser (you don’t need to serve it out
from a web server—just running it locally on your browser is fine) and click the sub-
mit button. You’ll see the following in the browser:

map[thread:[123] hello:[sau sheong world] post:[456]]

This is the raw string version of the Form struct in the POST request, after the request
has been parsed. The Form struct is a map, whose keys are strings and values are a slice
of strings. Notice that the map isn’t sorted, so you might get a different sorting of the
returned values. Nonetheless, what we get is the combination of the query values
hello=world and thread=123 as well as the form values hello=sau sheong and
post=456. As you can see, the values are URL decoded (there’s a space between sau
and sheong).

4.2.2 PostForm

Of course, if you only want to get the value to the key post, you can use
r.Form["post"], which will give you a map with one element: [456]. If the form and
the URL have the same key, both of them will be placed in a slice, with the form value
always prioritized before the URL value.

 What if you need just the form key-value pairs and want to totally ignore the URL
key-value pairs? For that you can use the PostForm field, which provides key-value
pairs only for the form and not the URL. If you change from using r.Form to using
r.PostForm in the code, this is what you get:

map[post:[456] hello:[sau sheong]]

This example used application/x-www-form-urlencoded for the content type. What
happens if you use multipart/form-data? Make the change to the client HTML form,
switch back to using r.Form, and let’s find out:

map[hello:[world] thread:[123]]

78 CHAPTER 4 Processing requests
What happened here? You only get the URL query key-value pairs this time and not
the form key-value pairs, because the PostForm field only supports application/
x-www-form-urlencoded. To get multipart key-value pairs from the body, you must use
the MultipartForm field.

4.2.3 MultipartForm

Instead of using the ParseForm method on the Request struct and then using the
Form field on the request, you have to use the ParseMultipartForm method and then
use the MultipartForm field on the request. The ParseMultipartForm method also
calls the ParseForm method when necessary.

r.ParseMultipartForm(1024)
fmt.Fprintln(w, r.MultipartForm)

You need to tell the ParseMultipartForm method how much data you want to extract
from the multipart form, in bytes. Now let’s see what happens:

&{map[hello:[sau sheong] post:[456]] map[]}

This time you see the form key-value pairs but not the URL key-value pairs. This is
because the MultipartForm field contains only the form key-value pairs. Notice that
the returned value is no longer a map but a struct that contains two maps. The first
map has keys that are strings and values that are slices of string; the second map is
empty. It’s empty because it’s a map with keys that are strings but values that are files,
which we’re going to talk about in the next section.

 There’s one last set of methods on Request that allows you to access the key-value
pairs even more easily. The FormValue method lets you access the key-value pairs just
like in the Form field, except that it’s for a specific key and you don’t need to call the
ParseForm or ParseMultipartForm methods beforehand—the FormValue method
does that for you.

 Taking our previous example, this means if you do this in your handler function:

fmt.Fprintln(w, r.FormValue("hello"))

and set the client’s form enctype attribute to application/x-www-form-urlencoded,
you’ll get this:

sau sheong

That’s because the FormValue method retrieves only the first value, even though you
actually have both values in the Form struct. To prove this, let’s add another line below
the earlier line of code, like this:

fmt.Fprintln(w, r.FormValue("hello"))
fmt.Fprintln(w, r.Form)

This time you’ll see

sau sheong
map[post:[456] hello:[sau sheong world] thread:[123]]

79HTML forms and Go
The PostFormValue method does the same thing, except that it’s for the PostForm
field instead of the Form field. Let’s make some changes to the code to use the Post-
FormValue method:

fmt.Fprintln(w, r.PostFormValue("hello"))
fmt.Fprintln(w, r.PostForm)

This time you get this instead:

sau sheong
map[hello:[sau sheong] post:[456]]

As you can see, you get only the form key-value pairs.
 Both the FormValue and PostFormValue methods call the ParseMultipartForm

method for you so you don’t need to call it yourself, but there’s a slightly confusing
gotcha that you should be careful with (at least as of Go 1.4). If you set the client
form’s enctype to multipart/form-data and try to get the value using either the
FormValue or the PostFormValue method, you won’t be able to get it even though the
MultipartForm method has been called!

 To help clarify, let’s make changes to the server’s handler function again:

fmt.Fprintln(w, "(1)", r.FormValue("hello"))
fmt.Fprintln(w, "(2)", r.PostFormValue("hello"))
fmt.Fprintln(w, "(3)", r.PostForm)
fmt.Fprintln(w, "(4)", r.MultipartForm)

Here’s the result from using our form with enctype set to multipart/form-data:

(1) world
(2)
(3) map[]
(4) &{map[hello:[sau sheong] post:[456]] map[]}

The first line in the results gives you the value for hello that’s found in the URL and
not the form. The second and third lines tell you why, because if you just take the
form key-value pairs, you get nothing. That’s because the FormValue and PostForm-
Value methods correspond to the Form and PostForm fields, and not the Multipart-
Form field. The last line in the results proves that the ParseMultipartForm method
was actually called—that’s why if you try to access the MultipartForm field you’ll get
the data there.

 We covered quite a bit in these sections, so let’s recap, in table 4.1, how these func-
tions are different. The table shows the methods that should be called if you’re look-
ing for values in the corresponding fields. The table also shows where the data comes
from and what type of data you’ll get. For example, in the first row, if you’re looking
for data in the Form field, you should be calling the ParseForm method (either
directly or indirectly). You’ll then get both the URL data and the form data from the
request and the data will be URL-encoded. Undoubtedly the naming convention
leaves much to be desired!

80 CHAPTER 4 Processing requests
4.2.4 Files

Probably the most common use for multipart/form-data is for uploading files. This
mostly means the file HTML tag, so let’s make some changes, shown in bold in the fol-
lowing listing, to our client form.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Go Web Programming</title>
 </head>
 <body>
 <form action="http://localhost:8080/process?hello=world&thread=123"

method="post" enctype="multipart/form-data">
 <input type="text" name="hello" value="sau sheong"/>
 <input type="text" name="post" value="456"/>
 <input type="file" name="uploaded">
 <input type="submit">
 </form>
 </body>
</html>

To receive files, we’ll make changes, shown next, in our handler function.

package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
)

func process(w http.ResponseWriter, r *http.Request) {
 r.ParseMultipartForm(1024)

Table 4.1 Comparing Form, PostForm, and MultipartForm fields

Key-value pairs from Content type

Field Should call method URL Form URL encoded Multipart

Form ParseForm ✓ ✓ ✓ -

PostForm Form - ✓ ✓ -

MultipartForm ParseMultipartForm - ✓ - ✓

FormValue NA ✓ ✓ ✓ -

PostFormValue NA - ✓ ✓ -

Listing 4.5 Uploading files

Listing 4.6 Receiving uploaded files using the MultipartForm field

81HTML forms and Go
 fileHeader := r.MultipartForm.File["uploaded"][0]
 file, err := fileHeader.Open()
 if err == nil {
 data, err := ioutil.ReadAll(file)
 if err == nil {
 fmt.Fprintln(w, string(data))
 }
 }
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 server.ListenAndServe()
}

As mentioned earlier, you need to call the ParseMultipartForm method first. After that
you get a FileHeader from the File field of the MultipartForm field and call its Open
method to get the file. If you upload a text file and send it across to the server, the han-
dler will get the file, read it into a byte array, and then print it out to the browser.

 As with the FormValue and PostFormValue methods, there’s a shorter way of get-
ting an uploaded file using the FormFile method, shown in the following listing. The
FormFile method returns the first value given the key, so this approach is normally
faster if you have only one file to be uploaded.

func process(w http.ResponseWriter, r *http.Request) {
 file, _, err := r.FormFile("uploaded")
 if err == nil {
 data, err := ioutil.ReadAll(file)
 if err == nil {
 fmt.Fprintln(w, string(data))
 }
 }
}

As you can see, you no longer have to call the ParseMultipartForm method, and the
FormFile method returns both the file and the file header at the same time. You sim-
ply need to process the file that’s returned.

4.2.5 Processing POST requests with JSON body

So far in our discussion we’ve focused on name-value pairs in the request body. This is
because we’ve been focusing on HTML forms only. But not all POST requests will come
from HTML forms. Sending POST requests is increasingly common with client libraries
such as JQuery as well as client-side frameworks such as Angular or Ember, or even the
older Adobe Flash or Microsoft Silverlight technologies.

Listing 4.7 Retrieving uploaded files using FormFile

82 CHAPTER 4 Processing requests
 If you’re trying to get the JSON data from a POST request sent by an Angular client
and you’re calling the ParseForm method to get the data, you won’t be able to. At the
same time, other JavaScript libraries like JQuery allow you to do so. What gives?

 Client frameworks encode their POST requests differently. JQuery encodes POST
requests like an HTML form with application/x-www-form-urlencoded (that is, it
sets the request header Content-Type to application/x-www-form-urlencoded);
Angular encodes POST requests with application/json. Go’s ParseForm method only
parses forms and so doesn’t accept application/json. If you call the ParseForm
method, you won’t get any data at all!

 The problem doesn’t lie with the implementation of any of the libraries. It lies in
the lack of sufficient documentation (although there will arguably never be enough
documentation) and the programmer making certain assumptions based on their
dependency on frameworks.

 Frameworks help programmers by hiding the underlying complexities and imple-
mentation details. As a programmer you should be using frameworks. But it’s also
important to understand how things work and what the framework simplifies for you
because eventually there will be cases where the framework’s seams show at the joints.

 We’ve covered quite a lot on processing requests. Now let’s look at sending
responses to the user.

4.3 ResponseWriter
If you were thinking that sending a response to the client would involve creating a
Response struct, setting up the data in it, and sending it out, then you’d be wrong.
The correct interface to use when sending a response from the server to the client is
ResponseWriter.

ResponseWriter is an interface that a handler uses to create an HTTP response.
The actual struct backing up ResponseWriter is the nonexported struct
http.response. Because it’s nonexported, you can’t use it directly; you can only use it
through the ResponseWriter interface.

Why do we pass ResponseWriter into ServeHTTP by value?

Having read the earlier part of this chapter, you might wonder why the ServeHTTP func-
tion takes two parameters—the ResponseWriter interface and a pointer to a Request
struct. The reason why it’s a pointer to Request is simple: changes to Request by
the handler need to be visible to the server, so we’re only passing it by reference in-
stead of by value. But why are we passing in a ResponseWriter by value? The server
needs to know the changes to ResponseWriter too, doesn’t it?

If you dig into the net/http library code, you’ll find that ResponseWriter is an interface
to a nonexported struct response, and we’re passing the struct by reference (we’re
passing in a pointer to response) and not by value.

In other words, both the parameters are passed in by reference; it’s just that the meth-
od signature takes a ResponseWriter that’s an interface to a pointer to a struct, so
it looks as if it’s passed in by value.

83ResponseWriter
The ResponseWriter interface has three methods:
■ Write
■ WriteHeader
■ Header

4.3.1 Writing to the ResponseWriter

The Write method takes in an array of bytes, and this gets written into the body of the
HTTP response. If the header doesn’t have a content type by the time Write is called,
the first 512 bytes of the data are used to detect the content type. This listing shows
how to use the Write method.

package main

import (
 "net/http"
)

func writeExample(w http.ResponseWriter, r *http.Request) {
 str := `<html>
<head><title>Go Web Programming</title></head>
<body><h1>Hello World</h1></body>
</html>`
 w.Write([]byte(str))
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/write", writeExample)
 server.ListenAndServe()
}

In listing 4.8 you’re writing an HTML string to the HTTP response body using
ResponseWriter. You send this command through cURL:

curl -i 127.0.0.1:8080/write
HTTP/1.1 200 OK
Date: Tue, 13 Jan 2015 16:16:13 GMT
Content-Length: 95
Content-Type: text/html; charset=utf-8

<html>
<head><title>Go Web Programming</title></head>
<body><h1>Hello World</h1></body>
</html>

Notice that you didn’t set the content type, but it was detected and set correctly.

Listing 4.8 Write to send responses to the client

84 CHAPTER 4 Processing requests
 The WriteHeader method’s name is a bit misleading. It doesn’t allow you to write
any headers (you use Header for that), but it takes an integer that represents the status
code of the HTTP response and writes it as the return status code for the HTTP
response. After calling this method, you can still write to the ResponseWriter, though
you can no longer write to the header. If you don’t call this method, by default when
you call the Write method, 200 OK will be sent as the response code.

 The WriteHeader method is pretty useful if you want to return error codes. Let’s
say you’re writing an API and though you defined the interface, you haven’t fleshed it
out, so you want to return a 501 Not Implemented status code. Let’s see how this
works by adding a new handler function to our existing server, shown in the following
listing. Remember to register this to DefaultServeMux by calling the HandleFunc
function!

package main

import (
 "fmt"
 "net/http"
)

func writeExample(w http.ResponseWriter, r *http.Request) {
 str := `<html>
<head><title>Go Web Programming</title></head>
<body><h1>Hello World</h1></body>
</html>`
 w.Write([]byte(str))
}

func writeHeaderExample(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(501)
 fmt.Fprintln(w, "No such service, try next door")
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/write", writeExample)
 http.HandleFunc("/writeheader", writeHeaderExample)
 server.ListenAndServe()
}

Call the URL through cURL:

curl -i 127.0.0.1:8080/writeheader
HTTP/1.1 501 Not Implemented
Date: Tue, 13 Jan 2015 16:20:29 GMT
Content-Length: 31
Content-Type: text/plain; charset=utf-8

Listing 4.9 Writing headers to responses using WriteHeader

85ResponseWriter
No such service, try next door

Finally the Header method returns a map of headers that you can modify (refer to sec-
tion 4.1.3). The modified headers will be in the HTTP response that’s sent to the client.

package main

import (
 "fmt"
 "net/http"
)

func writeExample(w http.ResponseWriter, r *http.Request) {
 str := `<html>
<head><title>Go Web Programming</title></head>
<body><h1>Hello World</h1></body>
</html>`
 w.Write([]byte(str))
}

func writeHeaderExample(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(501)
 fmt.Fprintln(w, "No such service, try next door")
}

func headerExample(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Location", "http://google.com")
 w.WriteHeader(302)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/write", writeExample)
 http.HandleFunc("/writeheader", writeHeaderExample)
 http.HandleFunc("/redirect", headerExample)
 server.ListenAndServe()
}

The previous listing shows how a redirect works—it’s simple to set the status code to 302
and then add a header named Location with the value of the location you want the user
to be redirected to. Note that you must add the Location header before writing the sta-
tus code because WriteHeader prevents the header from being modified after it’s
called. When you call the URL from the browser, you’ll be redirected to Google.

 If you use cURL, you will see this:

curl -i 127.0.0.1:8080/redirect
HTTP/1.1 302 Found
Location: http://google.com

Listing 4.10 Writing headers to redirect the client

86 CHAPTER 4 Processing requests
Date: Tue, 13 Jan 2015 16:22:16 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8

Let’s look at one last example of how to use ResponseWriter directly. This time, you
want to return JSON to the client. Assuming that you have a struct named Post, the
following listing shows the handler function.

package main

import (
 "fmt"
 "encoding/json"
 "net/http"
)

type Post struct {
 User string
 Threads []string
}

func writeExample(w http.ResponseWriter, r *http.Request) {
 str := `<html>
<head><title>Go Web Programming</title></head>
<body><h1>Hello World</h1></body>
</html>`
 w.Write([]byte(str))
}

func writeHeaderExample(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(501)
 fmt.Fprintln(w, "No such service, try next door")
}

func headerExample(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Location", "http://google.com")
 w.WriteHeader(302)
}

func jsonExample(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "application/json")
 post := &Post{
 User: "Sau Sheong",
 Threads: []string{"first", "second", "third"},
 }
 json, _ := json.Marshal(post)
 w.Write(json)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/write", writeExample)
 http.HandleFunc("/writeheader", writeHeaderExample)

Listing 4.11 Writing JSON output

87Cookies
 http.HandleFunc("/redirect", headerExample)
 http.HandleFunc("/json", headerExample)
 server.ListenAndServe()
}

Focus only on the ResponseWriter. It’s okay if you don’t understand the JSON bits
yet—we’ll be covering JSON in chapter 7. Just know that the variable json is a JSON
string that’s marshaled from a Post struct.

 First you set the content type to application/json using Header; then you write
the JSON string to the ResponseWriter. If you call this using cURL, you will see:

curl -i 127.0.0.1:8080/json
HTTP/1.1 200 OK
Content-Type: application/json
Date: Tue, 13 Jan 2015 16:27:01 GMT
Content-Length: 58

{"User":"Sau Sheong","Threads":["first","second","third"]}

4.4 Cookies
In chapter 2, you saw how to use cookies to create sessions for authentication. In this
section, we’ll delve into the details of using cookies not just for sessions but for persis-
tence at the client in general.

 A cookie is a small piece of information that’s stored at the client, originally sent
from the server through an HTTP response message. Every time the client sends an
HTTP request to the server, the cookie is sent along with it. Cookies are designed to
overcome the stateless-ness of HTTP. Although it’s not the only mechanism that can be
used, it’s one of the most common and popular methods. Entire industries’ revenues
depend on it, especially in the internet advertising domain.

 There are a number of types of cookies, including interestingly named ones like
super cookies, third-party cookies, and zombie cookies. But generally there are only
two classes of cookies: session cookies and persistent cookies. Most other types of
cookies are variants of the persistent cookies.

4.4.1 Cookies with Go

The Cookie struct, shown in this listing, is the representation of a cookie in Go.

type Cookie struct {
 Name string
 Value string
 Path string
 Domain string
 Expires time.Time
 RawExpires string
 MaxAge int
 Secure bool

Listing 4.12 The Cookie struct

88 CHAPTER 4 Processing requests
 HttpOnly bool
 Raw string
 Unparsed []string
}

If the Expires field isn’t set, then the cookie is a session or temporary cookie. Session
cookies are removed from the browser when the browser is closed. Otherwise, the
cookie is a persistent cookie that’ll last as long as it isn’t expired or removed.

 There are two ways of specifying the expiry time: the Expires field and the MaxAge
field. Expires tells us exactly when the cookie will expire, and MaxAge tells us how
long the cookie should last (in seconds), starting from the time it’s created in the
browser. This isn’t a design issue with Go, but rather results from the inconsistent
implementation differences of cookies in various browsers. Expires was deprecated in
favor of MaxAge in HTTP 1.1, but almost all browsers still support it. MaxAge isn’t sup-
ported by Microsoft Internet Explorer 6, 7, and 8. The pragmatic solution is to use
only Expires or to use both in order to support all browsers.

4.4.2 Sending cookies to the browser

Cookie has a String method that returns a serialized version of the cookie for use in a
Set-Cookie response header. Let’s take a closer look.

package main

import (
 "net/http"
)

func setCookie(w http.ResponseWriter, r *http.Request) {
 c1 := http.Cookie{
 Name: "first_cookie",
 Value: "Go Web Programming",
 HttpOnly: true,
 }
 c2 := http.Cookie{
 Name: "second_cookie",
 Value: "Manning Publications Co",
 HttpOnly: true,
 }
 w.Header().Set("Set-Cookie", c1.String())
 w.Header().Add("Set-Cookie", c2.String())
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }

Listing 4.13 Sending cookies to the browser

89Cookies
 http.HandleFunc("/set_cookie", setCookie)
 server.ListenAndServe()
}

You use the Set method to add the first cookie and then the Add method to add a sec-
ond cookie. Go to http://127.0.0.1:8080/set_cookie in your browser, and then inspect
the list of cookies set on the browser. (In figure 4.3 I’m using Web Inspector in Safari,
but any corresponding tool on other browsers should show the same thing.)

 Go provides a simpler shortcut to setting the cookie: using the SetCookie function
in the net/http library. Taking the example from listing 4.13, let’s make a change
(shown in bold in the following listing) to the response header.

func setCookie(w http.ResponseWriter, r *http.Request) {
 c1 := http.Cookie{
 Name: "first_cookie",
 Value: "Go Web Programming",
 HttpOnly: true,
 }
 c2 := http.Cookie{
 Name: "second_cookie",
 Value: "Manning Publications Co",
 HttpOnly: true,
 }
 http.SetCookie(w, &c1)
 http.SetCookie(w, &c2)
}

Listing 4.14 Sending cookies to the browser using SetCookie

Figure 4.3 Viewing cookies on Web Inspector (Safari)

http://127.0.0.1:8080/set_cookie

90 CHAPTER 4 Processing requests
It doesn’t make too much of a difference, though you should take note that you need
to pass in the cookies by reference instead.

4.4.3 Getting cookies from the browser

Now that you can set a cookie, you want to also retrieve that cookie from the client.
This listing demonstrates how.

package main

import (
 "fmt"
 "net/http"
)

func setCookie(w http.ResponseWriter, r *http.Request) {
 c1 := http.Cookie{
 Name: "first_cookie",
 Value: "Go Web Programming",
 HttpOnly: true,
 }
 c2 := http.Cookie{
 Name: "second_cookie",
 Value: "Manning Publications Co",
 HttpOnly: true,
 }
 http.SetCookie(w, &c1)
 http.SetCookie(w, &c2)
}

func getCookie(w http.ResponseWriter, r *http.Request) {
 h := r.Header["Cookie"]
 fmt.Fprintln(w, h)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/set_cookie", setCookie)
 http.HandleFunc("/get_cookie", getCookie)
 server.ListenAndServe()
}

After you recompile and start the server, when you go to http://127.0.0.1:8080/
get_cookie you’ll see this in the browser:

[first_cookie=Go Web Programming; second_cookie=Manning Publications Co]

Listing 4.15 Getting cookies from the header

http://127.0.0.1:8080/get_cookie
http://127.0.0.1:8080/get_cookie

91Cookies

This is a slice, with a single string. If you want to get the individual name-value pairs
you’ll have to parse the string yourself. But as you can see in the following listing, Go
provides a couple of easy ways to get cookies.

package main

import (
 "fmt"
 "net/http"
)

func setCookie(w http.ResponseWriter, r *http.Request) {
 c1 := http.Cookie{
 Name: "first_cookie",
 Value: "Go Web Programming",
 HttpOnly: true,
 }
 c2 := http.Cookie{
 Name: "second_cookie",
 Value: "Manning Publications Co",
 HttpOnly: true,
 }
 http.SetCookie(w, &c1)
 http.SetCookie(w, &c2)
}

func getCookie(w http.ResponseWriter, r *http.Request) {
 c1, err := r.Cookie("first_cookie")
 if err != nil {
 fmt.Fprintln(w, "Cannot get the first cookie")
 }
 cs := r.Cookies()
 fmt.Fprintln(w, c1)
 fmt.Fprintln(w, cs)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/set_cookie", setCookie)
 http.HandleFunc("/get_cookie", getCookie)
 server.ListenAndServe()
}

Go provides a Cookie method on Request (shown in bold text in listing 4.16) that
allows you to retrieve a named cookie. If the cookie doesn’t exist, it’ll throw an error.
This is a single value, though, so if you want to get multiple cookies you can use the
Cookies method on Request. That way, you retrieve all cookies into a Go slice; in fact,
it’s the same as getting it through the Header yourself. If you recompile, restart the
server, and go to http://127.0.0.1:8080/get_cookie now, you’ll see this in your browser:

Listing 4.16 Using the Cookie and Cookies methods

http://127.0.0.1:8080/get_cookie

92 CHAPTER 4 Processing requests
first_cookie=Go Web Programming
[first_cookie=Go Web Programming second_cookie=Manning Publications Co]

We didn’t set the Expires or the MaxAge fields when we set the cookie, so what was
returned are session cookies. To prove the point, quit your browser (don’t just close
the tab or window; completely quit your browser). Then go to http://127.0.0.1:8080/
get_cookie again and you’ll see that the cookies are gone.

4.4.4 Using cookies for flash messages

In chapter 2 we looked at using cookies for managing sessions, so let’s try out our new-
found cookie skills on something else.

 Sometimes it’s necessary to show users a short informational message telling them
whether or not they’ve successfully completed an action. If the user submits a post to a
forum and his posting fails, you’ll want to show him a message that tells him that the
post didn’t go through. Following the Principle of Least Surprise from the previous
chapter, you want to show the message on the same page. But this page doesn’t nor-
mally show any messages, so you want the message to show on certain conditions and
it must be transient (which means it doesn’t show again when the page is refreshed).
These transient messages are commonly known as flash messages.

 There are many ways to implement flash messages, but one of the most common is
to store them in session cookies that are removed when the page is refreshed. This list-
ing shows how you can do this in Go.

package main

import (
 "encoding/base64"
 "fmt"
 "net/http"
 "time"
)

func setMessage(w http.ResponseWriter, r *http.Request) {
 msg := []byte("Hello World!")
 c := http.Cookie{
 Name: "flash",
 Value: base64.URLEncoding.EncodeToString(msg),
 }
 http.SetCookie(w, &c)
}

func showMessage(w http.ResponseWriter, r *http.Request) {
 c, err := r.Cookie("flash")
 if err != nil {
 if err == http.ErrNoCookie {
 fmt.Fprintln(w, "No message found")
 }

Listing 4.17 Implementing flash messaging using Go cookies

http://127.0.0.1:8080/get_cookie
http://127.0.0.1:8080/get_cookie

93Cookies
 } else {
 rc := http.Cookie{
 Name: "flash",
 MaxAge: -1,
 Expires: time.Unix(1, 0),
 }
 http.SetCookie(w, &rc)
 val, _ := base64.URLEncoding.DecodeString(c.Value)
 fmt.Fprintln(w, string(val))
 }
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/set_message", setMessage)
 http.HandleFunc("/show_message", showMessage)
 server.ListenAndServe()
}

You create two handler functions, setMessage and showMessage, and attach them to
/set_message and /show_message, respectively. Let’s start with setMessage, which is
straightforward.

func setMessage(w http.ResponseWriter, r *http.Request) {
 msg := []byte("Hello World!")
 c := http.Cookie{
 Name: "flash",
 Value: base64.URLEncoding.EncodeToString(msg),
 }
 http.SetCookie(w, &c)
}

This isn’t much different from the setCookie handler function from earlier, except
this time you do a Base64 URL encoding of the message. You do so because the cookie
values need to be URL encoded in the header. You managed to get away with it earlier
because you didn’t have any special characters like a space or the percentage sign, but
you can’t get away with here because messages will eventually need to have them.

 Now let’s look at the showMessage function:

func showMessage(w http.ResponseWriter, r *http.Request) {
 c, err := r.Cookie("flash")
 if err != nil {
 if err == http.ErrNoCookie {
 fmt.Fprintln(w, "No message found")
 }
 } else {
 rc := http.Cookie{
 Name: "flash",

Listing 4.18 Setting the message

94 CHAPTER 4 Processing requests
 MaxAge: -1,
 Expires: time.Unix(1, 0),
 }
 http.SetCookie(w, &rc)
 val, _ := base64.URLEncoding.DecodeString(c.Value)
 fmt.Fprintln(w, string(val))
 }
}

First, you get the cookie. If you can’t find the cookie (err will have a value of
http.ErrNoCookie), you’ll show the message “No message found.”

 If you find the message, you have to do two things:

1 Create a cookie with the same name, but with MaxAge set to a negative number
and an Expires value that’s in the past.

2 Send the cookie to the browser with SetCookie.

Here you’re replacing the existing cookie, essentially removing it altogether because
the MaxAge field is a negative number and the Expires field is in the past. Once you
do that, you can decode your string and show the value.

 Now let’s see that in action. Start up your browser and go to http://localhost:8080/
set_message. Figure 4.4 shows what you’ll see in Web Inspector.

Notice that the value is Base64 URL encoded. Now, using the same browser window, go
to http://localhost:8080/show_message. This is what you should see in the browser:

Hello World!

Figure 4.4 The flash message cookie in Web Inspector (Safari)

95Summary
Go back to the Web Inspector and look at the cookies. Your cookie is gone! Setting a
cookie with the same name to the browser will replace the old cookie with the new
cookie of the same name. Because the new cookie has a negative number for MaxAge
and expires in some time in the past, this tells the browser to remove the cookie,
which means the earlier cookie you set is removed.

 This is what you’ll see in the browser:

No message found

This chapter wraps up our two-part tour of what net/http offers for web application
development on the server. In the next chapter, we move on to the next big compo-
nent in a web application: templates. I will cover template engines and templates in
Go and show you how they can be used to generate responses to the client.

4.5 Summary
■ Go provides a representation of the HTTP requests through various structs,

which can be used to extract data from the requests.
■ The Go Request struct has three fields, Form, PostForm, and MultipartForm,

that allow easy extraction of different data from a request. To get data from
these fields, call ParseForm or ParseMultipartForm to parse the request and
then access the Form, PostForm, or MultipartForm field accordingly.

■ Form is used for URL-encoded data from the URL and HTML form, PostForm is
used for URL-encoded data from the HTML form only, and MultipartForm is
used for multi-part data from the URL and HTML form.

■ To send data back to the client, write header and body data to ResponseWriter.
■ To persist data at the client, send cookies in the ResponseWriter.
■ Cookies can be used for implementing flash messages.

Displaying content
A web template is a predesigned HTML page that’s used repeatedly by a software pro-
gram, called a template engine, to generate one or more HTML pages. Web tem-
plate engines are an important part of any web application framework, and most if
not all full-fledged frameworks have one. Although a number of frameworks have
embedded template engines, many frameworks use a mix-and-match strategy that
allows programmers to choose the template engine they prefer.

 Go is no exception. Although Go is a relatively new programming language,
there are already a few template engines built on it. However the Go’s standard
library provides strong template support through the text/template and html/tem-
plate libraries, and unsurprisingly, most Go frameworks support these libraries as
the default template engine.

 In this chapter we’ll focus on these two libraries and show how they can be used
to generate HTML responses.

This chapter covers
■ Templates and template engines
■ The Go template libraries text/template and

html/template
■ Actions, pipelines, and functions in templates
■ Nesting of templates and layouts
96

97Templates and template engines
5.1 Templates and template engines
Template engines often combine data with templates to produce the final HTML (see
figure 5.1). Handlers usually call template engines to combine data with the templates
and return the resultant HTML to the client.

Web template engines evolved from server-side includes (SSIs), which eventually
branched out into web programming languages like PHP, ColdFusion, and JSP. As a
result, no standards exist for template engines and the features of existing template
engines vary widely, depending on why they were created. But there are roughly two
ideal types of template engines, at opposite ends of the spectrum:

■ Logic-less template engines —Dynamic data is substituted into the templates at
specified placeholders. The template engine doesn’t do any logic processing; it
only does string substitutions. The idea behind having logic-less template
engines is to have a clean separation between presentation and logic, where the
processing is done by the handlers only.

■ Embedded logic template engines —Programming language code is embedded into
the template and executed during runtime by the template engine, including
substitutions. This makes these types of template engines very powerful.
Because the logic is embedded in the template itself, though, we often get the
logic distributed between the handlers, making the code harder to maintain.

Logic-less template engines are usually faster to render because less processing is
involved. Some template engines claim to be logic-less (such as Mustache), but the
ideal of substitution-only is impossible to achieve. Mustache claims to be logic-less but
has tags that behave like conditionals and loops.

 Embedded logic template engines that are completely at the other end of the spec-
trum are indistinguishable from a computer program itself. We can see this with PHP.

Template engine

Templates

Data
HMTL

Figure 5.1 Template engines combine data and templates to produce the final displayed HTML.

98 CHAPTER 5 Displaying content
PHP originated as a standalone web template engine, but today many PHP pages are
written without a single line of HTML. It’s difficult to even say that PHP is still a template
engine. In fact, plenty of template engines, like Smarty and Blade, are built for PHP.

 The biggest argument against embedded logic template engines is that presenta-
tion and logic are mixed up together and logic is distributed in multiple places, result-
ing in code that’s hard to maintain. The counter-argument against logic-less template
engines is that the ideal logic-less template engine would be impractical and that plac-
ing more logic into the handlers, especially for presentation, would add unnecessary
complexity to the handlers.

 In reality, most useful template engines would lie somewhere between these two
ideal types, with some closer to being logic-less and others closer to having embedded
logic. Go’s template engine, mostly in text/template and the HTML-specific bits in
html/template, is such a hybrid. It can be used as a logic-less template engine, but
there’s enough embedded features that make Go’s template engine an interesting
and powerful one.

5.2 The Go template engine
The Go template engine, like most template engines, lies somewhere along the spec-
trum between logic-less and embedded logic. In a web app, the handler normally trig-
gers the template engine. Figure 5.2 shows how Go’s template engine is called from a
handler. The handler calls the template engine, passing it the template(s) to be used,
usually as a list of template files and the dynamic data. The template engine then gen-
erates the HTML and writes it to the ResponseWriter, which adds it to the HTTP
response sent back to the client.

 Go templates are text documents (for web apps, these would normally be HTML
files), with certain commands embedded in them, called actions. In the Go template

Client Multiplexer Handler

Handler

Handler

Server

Request

Response

Model

Model

Model
Database

Model

Template engine

Templates

Figure 5.2 The Go template engine as part of a web application

99The Go template engine
engine, a template is text (usually in a template file) that has embedded actions. The
text is parsed and executed by the template engine to produce another piece of text.
Go has a text/template standard library that’s a generic template engine for any type
of text format, as well as an html/template library that’s a specific template engine for
HTML. Actions are added between two double braces, {{ and }} (although these delim-
iters can be changed programmatically). We’ll get into actions later in this chapter.
This listing shows an example of a very simple template.

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ . }}
 </body>
</html>

This template is placed in a template file named tmpl.html. Naturally we can have as
many template files as we like. Template files must be in a readable text format but
can have any extension. In this case because it generates HTML output, I used the
.html extension.

 Notice the dot (.) between the double braces. The dot is an action, and it’s a com-
mand for the template engine to replace it with a value when the template is executed.

 Using the Go web template engine requires two steps:

1 Parse the text-formatted template source, which can be a string or from a tem-
plate file, to create a parsed template struct.

2 Execute the parsed template, passing a ResponseWriter and some data to it.
This triggers the template engine to combine the parsed template with the data
to generate the final HTML that’s passed to the ResponseWriter.

This listing provides a concrete, simple example.

package main

import (
 "net/http"
 "html/template"
)

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 t.Execute(w, "Hello World!")
}

Listing 5.1 A simple template

Listing 5.2 Triggering a template engine from a handler function

100 CHAPTER 5 Displaying content
func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 server.ListenAndServe()
}

We’re back to our server again. This time we have a handler function named process,
which triggers the template engine. First, we parse the template file tmpl.html using
the ParseFiles function which returns a parsed template of type Template and an
error, which we conveniently ignore for brevity.

t, _ := template.ParseFiles("tmpl.html")

Then we call the Execute method to apply data (in this case, the string Hello World!)
to the template:

t.Execute(w, "Hello World!")

We pass in the ResponseWriter along with the data so that the generated HTML can
be passed into it. When you’re running this example, the template file should be in
the same directory as the binary (remember that we didn’t specify the absolute path to
the file).

 This is the simplest way to use the template engine, and as expected, there are vari-
ations, which I’ll describe later in the chapter.

5.2.1 Parsing templates

ParseFiles is a standalone function that parses template files and creates a parsed
template struct that you can execute later. The ParseFiles function is actually a con-
venience function to the ParseFiles method on the Template struct. When you call
the ParseFiles function, Go creates a new template, with the name of the file as the
name of the template:

t, _ := template.ParseFiles("tmpl.html")

Then it calls the ParseFiles method on that template:

t := template.New("tmpl.html")
t, _ := t.ParseFiles("tmpl.html")

ParseFiles (both the function and the method) can take in one or more filenames as
parameters (making it a variadic function—that is, a function that can take in a vari-
able number of parameters). But it still returns just one template, regardless of the
number of files it’s passed. What’s up with that?

 When we pass in more than one file, the returned parsed template has the name
and content of the first file. The rest of the files are parsed as a map of templates,
which can be referred to later on during the execution. You can think of this as
ParseFiles returning a template when you provide a single file and a template set

101The Go template engine
when you provide more than one file. This fact is important when we look at includ-
ing a template within a template, or nesting templates, later in this chapter.

 Another way to parse files is to use the ParseGlob function, which uses pattern
matching instead of specific files. Using the same example:

t, _ := template.ParseFiles("tmpl.html")

and

t, _ := template.ParseGlob("*.html")

would be the same, if tmpl.html were the only file in the same path.
 Parsing files is probably the most common use, but you can also parse templates

using strings. In fact, all other ways of parsing templates ultimately call the Parse
method to parse the template. Using the same example again:

t, _ := template.ParseFiles("tmpl.html")

and

tmpl := `<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ . }}
 </body>
</html>
`
t := template.New("tmpl.html")
t, _ = t.Parse(tmpl)
t.Execute(w, "Hello World!")

are the same, assuming tmpl.html contains the same HTML.
 So far we’ve been ignoring the error that’s returned along with the parsed tem-

plate. The usual Go practice is to handle the error, but Go provides another mecha-
nism to handle errors returned by parsing templates:

t := template.Must(template.ParseFiles("tmpl.html"))

The Must function wraps around a function that returns a pointer to a template and
an error, and panics if the error is not a nil. (In Go, panicking refers to a situation
where the normal flow of execution is stopped, and if it’s within a function, the func-
tion returns to its caller. The process continues up the stack until it reaches the main
program, which then crashes.)

5.2.2 Executing templates

The usual way to execute a template is to call the Execute function on a template,
passing it the ResponseWriter and the data. This works well when the parsed template
is a single template instead of a template set. If you call the Execute method on a

102 CHAPTER 5 Displaying content
template set, it’ll take the first template in the set. But if you want to execute a differ-
ent template in the template set and not the first one, you need to use the Execute-
Template method. For example:

t, _ := template.ParseFiles("t1.html", "t2.html")

The argument t is a template set containing two templates, the first named t1.html
and the second t2.html (the name of the template is the name of the file, extension
and all, unless you change it). If you call the Execute method on it:

t.Execute(w, "Hello World!")

it’ll result in t1.html being executed. If you want to execute t2.html, you need to do
this instead:

t.ExecuteTemplate(w, "t2.html", "Hello World!")

We’ve discussed how to trigger the template engine to parse and execute templates.
Let’s look at the templates next.

5.3 Actions
As mentioned earlier, actions are embedded commands in Go templates, placed
between a set of double braces, {{ and }}. Go has an extensive set of actions, which are
quite powerful and flexible. In this section, we’ll discuss some of the important ones:

■ Conditional actions
■ Iterator actions
■ Set actions
■ Include actions

We’ll discuss another important action, the define action, later in this chapter. You
can look up the other actions in the text/template library documentation.

 It might come as a surprise, but the dot (.) is an action, and it’s the most important
one. The dot is the evaluation of the data that’s passed to the template. The other
actions and functions mostly manipulate the dot for formatting and display.

5.3.1 Conditional actions

The conditional actions are ones that select one of many data evaluations depending
on value of the argument. The simplest action is one with this format:

{{ if arg }}
 some content
{{ end }}

The other variant is

{{ if arg }}
 some content
{{ else }}
 other content
{{ end }}

103Actions
The arg in both formats is the argument to the action. We’ll examine arguments in
detail later in this chapter. For now, consider arguments to be values like a string con-
stant, a variable, a function, or a method that returns a value. Let’s see how it can be
used in a template. First, you need to create a handler that generates a random inte-
ger between 0 and 10, shown in the next listing. Then you check if it’s larger than 5
and return it as a Boolean to the template.

package main

import (
 "net/http"
 "html/template"
 "math/rand"
 "time"
)

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 rand.Seed(time.Now().Unix())
 t.Execute(w, rand.Intn(10) > 5)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 server.ListenAndServe()
}

Next, in the template file tmpl.html, you test the argument (which happens to be the
dot, which is the value passed from the handler) and display either Number is greater
than 5! or Number is 5 or less!

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ if . }}
 Number is greater than 5!
 {{ else }}
 Number is 5 or less!
 {{ end }}
 </body>
</html>

Listing 5.3 Generating a random number in the handler

Listing 5.4 Template file tmpl.html for conditional action

104 CHAPTER 5 Displaying content
5.3.2 Iterator actions

Iterator actions are those that iterate through an array, slice, map, or channel. Within
the iteration loop, the dot (.) is set to the successive elements of the array, slice, map,
or channel. This is how it looks:

{{ range array }}
 Dot is set to the element {{ . }}
{{ end }}

The example in this listing shows the template file tmpl.html.

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>

 {{ range . }}
 {{ . }}
 {{ end}}

 </body>
</html>

Let’s look at the triggering handler:

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 daysOfWeek := []string{"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"}
 t.Execute(w, daysOfWeek)
}

You’re simply passing a slice of
strings with the short names of the
days in a week. This slice is then
passed on to the dot (.) in the {{
range . }}, which loops through
the elements of this slice.

 The {{ . }} within the iterator
loop is an element in the slice, so
figure 5.3 shows what you’ll see in
the browser.

Figure 5.3 Iterating with the iterator action

Listing 5.5 Iterator action

105Actions
The following listing shows a variant of the iterator action that allows you to display a
fallback in case the iterator is empty.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>

 {{ range . }}
 {{ . }}
 {{ else }}
 Nothing to show
 {{ end}}

 </body>
</html>

In the listing the content after {{ else }} and before {{ end }} will be displayed if
the dot (.) is nil. In this case, we’re displaying the text Nothing to show.

5.3.3 Set actions

The set actions allow us to set the value of dot (.) for use within the enclosed section.
This is how it looks:

{{ with arg }}
 Dot is set to arg
{{ end }}

The dot (.) between {{ with arg }} and {{ end }} is now pointing to arg. In the next
listing, let’s look at something more concrete and make changes to tmpl.html again.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>The dot is {{ . }}</div>
 <div>
 {{ with "world"}}
 Now the dot is set to {{ . }}
 {{ end }}
 </div>
 <div>The dot is {{ . }} again</div>
 </body>
</html>

Listing 5.6 Iterator action with fallback

Listing 5.7 Setting the dot

106 CHAPTER 5 Displaying content
For the handler, we’ll pass a string hello to the template:

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 t.Execute(w,"hello")
}

The dot before {{ with "world"}} is set to hello. The value is from the handler, but
between {{ with "world"}} and {{ end }} it’s set to world. After {{ end }} it’ll revert
to hello again, as shown in figure 5.4.

As with the iterator action, there’s a variant of the set action that allows a fallback:

{{ with arg }}
 Dot is set to arg
{{ else }}
 Fallback if arg is empty
{{ end }}

This listing takes another look at how this is used in tmpl.html.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>The dot is {{ . }}</div>
 <div>
 {{ with "" }}
 Now the dot is set to {{ . }}
 {{ else }}
 The dot is still {{ . }}
 {{ end }}

Listing 5.8 Setting the dot with fallback

Figure 5.4 Setting the dot
with the set action

107Actions
 </div>
 <div>The dot is {{ . }} again</div>
 </body>
</html>

The argument next to the with action is an empty string, which means the content
after {{ else }} will be displayed. The dot in the content is still hello because it’s not
affected. If you run the server again (you don’t need to make any changes to the han-
dler—in fact, you don’t even need to stop the server), you’ll see figure 5.5.

5.3.4 Include actions

Next, we have the include actions, which allow us to include a template in another
template. As you might realize, these actions let us nest templates. The format of the
include action is {{ template "name" }}, where name is the name of the template to
be included.

 In our example, we have two templates: t1.html and t2.html. The template t1.html
includes t2.html. Let’s look at t1.html first.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=9">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div> This is t1.html before</div>
 <div>This is the value of the dot in t1.html - [{{ . }}]</div>
 <hr/>
 {{ template "t2.html" }}
 <hr/>

Listing 5.9 t1.html

Figure 5.5 Setting the dot
with a fallback

108 CHAPTER 5 Displaying content
 <div> This is t1.html after</div>
 </body>
</html>

As you can see, the name of the file is used as the name of the template. Remember
that if we don’t set the name of the template when it’s created, Go will set the name of
the file, including its extension, as the name of the template.

 Let’s look at t2.html now.

<div style="background-color: yellow;">
 This is t2.html

 This is the value of the dot in t2.html - [{{ . }}]
</div>

The template t2.html is a snippet of HTML. The next listing shows the handler, which
is just as short.

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("t1.html", "t2.html")
 t.Execute(w, "Hello World!")
}

Unlike with the previous handlers, we need to parse both the template files that we’re
going to use. This is extremely important because if we forget to parse our template
files, we’ll get nothing.

 Because we didn’t set the name of the templates, the templates in the template set
use the name of the files. As mentioned earlier, the parameters for the ParseFiles
function are position-sensitive for the first parameter. The first template file that’s
parsed is the main template, and when we call the Execute method on the template
set, this is the template that’ll be called.

 Figure 5.6 shows what happens in the browser when you run the server.

Listing 5.10 t2.html

Listing 5.11 Handler that includes templates

Figure 5.6 Including a template
within a template

109Actions
You can see that in t1.html the dot is replaced correctly with Hello World! And the
contents of t2.html are inserted where {{ template "t2.html" }} appears. You can
also see that the dot in t2.html is empty because the string Hello World! isn’t passed
to included templates. But there’s a variant of the include action that allows this: {{
template "name" arg }}, where arg is the argument you want to pass on to the
included template. This listing shows how this works in our example.

<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=9">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div> This is t1.html before</div>
 <div>This is the value of the dot in t1.html - [{{ . }}]</div>
 <hr/>
 {{ template "t2.html" . }}
 <hr/>
 <div> This is t1.html after</div>
 </body>
</html>

The change isn’t obvious, but what we did here in t1.html is pass the dot to t2.html. If
we go back to the browser now, we’ll see figure 5.7.

Actions provide flexibility for programmers, but so far we’ve only seen the simpler and
more straightforward use of templates. We’ll get back into nested templates later in
this chapter, and also talk about another action that we didn’t cover in this section: the
define action. But first, we need to talk about arguments, variables, and pipelines.

Listing 5.12 t1.html with an argument passed to t2.html

Figure 5.7 Passing data
to included templates

110 CHAPTER 5 Displaying content
5.4 Arguments, variables, and pipelines
An argument is a value that’s used in a template. It can be a Boolean, integer, string,
and so on. It can also be a struct, or a field of a struct, or the key of an array. Argu-
ments can be a variable, a method (which must return either one value, or a value and
an error) or a function. An argument can also be a dot (.), which is the value passed
from the template engine.

 In the example

{{ if arg }}
 some content
{{ end }}

the argument is arg.
 We can also set variables in the action. Variables start with the dollar sign ($) and

look like this:

$variable := value

Variables don’t look too useful at first glance, but they can be quite invaluable in
actions. Here’s one way to use a variable as a variant of the iterator action:

{{ range $key, $value := . }}
 The key is {{ $key }} and the value is {{ $value }}
{{ end }}

In this snippet, the dot (.) is a map and range initializes the $key and $value variables
with the key and value of the successive elements in the map.

Pipelines are arguments, functions, and methods chained together in a sequence.
This works much like the Unix pipeline. In fact, the syntax looks very similar

{{ p1 | p2 | p3 }}

where p1, p2, and p3 are either arguments or functions. Pipelining allows us to send
the output of an argument into the next one, which is separated by the pipeline (|).
The next listing shows how this looks in a template.

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ 12.3456 | printf "%.2f" }}
 </body>
</html>

Listing 5.13 Pipelining in a template

111Functions
We often need to reformat data for display in our templates, and in the previous list-
ing we want to display a floating point number with two decimal points accuracy. To
do so, we can use the fmt.Sprintf function or the built-in printf function that wraps
around fmt.Sprintf.

 In listing 5.13, we pipe the number 12.3456 to the printf function, with the for-
mat specifier as the first parameter (we’ll talk about functions later in this chapter).
This will result in 12.35 being displayed in the browser.

 Pipelining doesn’t look terribly exciting, but when we talk about functions you’ll
understand why it can be a very powerful feature.

5.5 Functions
As mentioned earlier, an argument can be a Go function. The Go template engine has
a set of built-in functions that are pretty basic, including a number of aliases for vari-
ants of fmt.Sprint.(Refer to the fmt package documentation to see the list.) What’s
more useful is the capability for programmers to define their own functions.

 Go template engine functions are limited. Although a function can take any num-
ber of input parameters, it must only return either one value, or two values only if the
second value is an error.

 To define custom functions, you need to:

1 Create a FuncMap map, which has the name of the function as the key and the
actual function as the value.

2 Attach the FuncMap to the template.

Let’s look at how you can create your own custom function. When writing web applica-
tions, you may need to convert a time or date object to an ISO8601 formatted time or
date string, respectively. Unfortunately, this formatter isn’t a built-in function, which
gives you a nice excuse for creating it as a custom function, shown next.

package main

import (
 "net/http"
 "html/template"
 "time"
)

func formatDate(t time.Time) string {
 layout := "2006-01-02"
 return t.Format(layout)
}

func process(w http.ResponseWriter, r *http.Request) {
 funcMap := template.FuncMap { "fdate": formatDate }
 t := template.New("tmpl.html").Funcs(funcMap)
 t, _ = t.ParseFiles("tmpl.html")

Listing 5.14 Custom function for templates

112 CHAPTER 5 Displaying content
 t.Execute(w, time.Now())
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 server.ListenAndServe()
}

The previous listing defines a function named formatDate that takes in a Time struct
and returns an ISO8601 formatted string in the Year-Month-Day format. This is the
function that we’ll be using later.

 In the handler, you first create a FuncMap struct named funcMap, mapping the name
fdate to the formatDate function. Next, you create a template with the name
tmpl.html using the template.New function. This function returns a template, so you
can chain it with the Funcs function, passing it funcMap. This attaches funcMap to the
template, which you can then use to parse your template file tmpl.html. Finally, you call
Execute on the template, passing it the ResponseWriter as well as the current time.

 There are potentially a few minor gotchas here. First you need to attach the Func-
Map before you parse the template. This is because when you parse the template you
must already know the functions used within the template, which you won’t unless the
template has the FuncMap.

 Second, remember that when you call ParseFiles if no templates are defined in
the template files, it’ll take the name of the file as the template name. When you cre-
ate a new template using the New function, you’ll have to pass in the template name. If
this template name and the template name derived from the filename don’t match,
you’ll get an error.

 Now that you have the handler done, the following listing shows you how you can
use it in tmpl.html.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>The date/time is {{ . | fdate }}</div>
 </body>
</html>

Listing 5.15 Using a custom function by pipelining

113Context awareness
You can use your function in a couple of ways. You can use it in a pipeline, piping the
current time into the fdate function, which will produce figure 5.8.

An alternative is to use it as with a normal function, passing the dot as a parameter to
the fdate function, as illustrated in this listing.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>The date/time is {{ fdate . }}</div>
 </body>
</html>

Both produce the same results, but you can see that pipelining is more powerful and
flexible. If you define a number of custom functions, you can pipeline the output of
one function to the input of another, as well as mix and match them. Although you
can also do this with normal function calls, this approach is a lot more readable and
creates simpler code.

5.6 Context awareness
One of the most interesting features of the Go template engine is that the content it
displays can be changed according to its context. Yes, you read this correctly. The con-
tent that’s displayed changes depending on where you place it within the document;
that is, the display of the content is context-aware. Why would anyone want that and
how is it useful?

 One obvious use of this is to escape the displayed content properly. This means if
the content is HTML, it will be HTML escaped; if it is JavaScript, it will be JavaScript

Listing 5.16 Using a custom function by passing parameters

Figure 5.8 Using a custom function
to format the date/time

114 CHAPTER 5 Displaying content
escaped; and so on. The Go template engine also recognizes content that’s part of a
URL or is a CSS style. This listing demonstrates how this works.

package main

import (
 "net/http"
 "html/template"
)

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 content := `I asked: <i>"What's up?"</i>`
 t.Execute(w, content)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 server.ListenAndServe()
}

For the handler, we’re going to send a text string I asked: <i>"What's up?"</i>.
This string has a number of special characters that normally should be escaped
beforehand. This listing contains the template file tmpl.html.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>{{ . }}</div>
 <div>Path</div>
 <div>Query</div>
 <div>Onclick</div>
 </body>
</html>

As you can see, we’re placing it in various places within the HTML. The “control” text
is within a normal <div> tag. When we run cURL to get the raw HTML (please refer to
section 4.1.4), we get this:

curl –i 127.0.0.1:8080/process
HTTP/1.1 200 OK
Date: Sat, 07 Feb 2015 05:42:41 GMT

Listing 5.17 Handler for context awareness in templates

Listing 5.18 Context-aware template

115Context awareness
Content-Length: 505
Content-Type: text/html; charset=utf-8

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>I asked: <i>"What's up?"</i></div>
 <div>

 Path

 </div>
 <div>

 Query

 </div>
 <div>

 Onclick

 </div>
 </body>
</html>

which looks a bit messy. Let’s explore the differences in table 5.1.

This feature is pretty convenient, but its critical use is for automating defensive pro-
gramming. By changing the content according to the context, we eliminate certain
obvious and newbie programmer mistakes. Let’s see how this feature can be used to
defend against XSS (cross-site scripting) attacks.

Table 5.1 Context awareness in Go templates: different content is produced according
 to the location of the actions

Context Content

Original text I asked: <i>"What's up?"</i>

{{ . }} I asked: <i>"What's
up?"</i>

 I%20asked:%20%3ci%3e%22What%27s%20up?%22%
3c/i%3e

 I%20asked%3a%20%3ci%3e%22What%27s%20up%3f
%22%3c%2fi%3e

 I asked: \x3ci\x3e\x22What\x27s
up?\x22\x3c\/i\x3e

116 CHAPTER 5 Displaying content
5.6.1 Defending against XSS attacks

A common XSS attack is the persistent XSS vulnerability. This happens when data pro-
vided by an attacker is saved to the server and then displayed to other users as it is. Say
there’s a vulnerable forum site that allows its users to create posts or comments to be
saved and read by other users. An attacker can post a comment that includes mali-
cious JavaScript code within the <script> tag. Because the forum displays the com-
ment as is and whatever is within the <script> tag isn’t shown to the user, the
malicious code is executed with the user’s permissions but without the user’s knowl-
edge. The normal way to prevent this is to escape whatever is passed into the system
before displaying or storing it. But as with most exploits and bugs, the biggest culprit
is the human factor.

 Rather than hardcoding data at the handler, you can put your newly acquired
knowledge from chapter 4 to good use and create an HTML form, shown in the follow-
ing listing, that allows you to submit data to your web application and place it in a
form.html file.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <form action="/process" method="post">
 Comment: <input name="comment" type="text">
 <hr/>
 <button id="submit">Submit</button>
 </form>
 </body>
</html>

Next, change your handler accordingly to process the data from the form shown in
this listing.

package main

import (
 "net/http"
 "html/template"
)

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 t.Execute(w, r.FormValue("comment"))
}

Listing 5.19 Form for submitting XSS attack

Listing 5.20 Testing an XSS attack

117Context awareness
func form(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("form.html")
 t.Execute(w, nil)
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/process", process)
 http.HandleFunc("/form", form)
 server.ListenAndServe()
}

In your tmpl.html, clean up the output a bit to better see the results.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div>{{ . }}</div>
 </body>
</html>

Now compile the server and start it up, then go to http://127.0.0.1:8080/form. Enter
the following into the text field and click the submit button, shown in figure 5.9:

<script>alert('Pwnd!');</script>

A web app using a different template engine that doesn’t scrub the input, and displays
user input directly on a web page, will get an alert message, or potentially any other
malicious code that the attacker writes. As you probably realize, the Go template
engine protects you from such mistakes because even if you don’t scrub the input,

Listing 5.21 Cleaned-up tmpl.html

Figure 5.9 Form for creating
an XSS attack

118 CHAPTER 5 Displaying content
when the input is displayed on the screen it’ll be converted into escaped HTML,
shown in figure 5.10.

If you inspect the source code of the page you’ll see something like this:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 <div><script>alert('Pwnd!');</script></div>
 </body>
</html>

Context-awareness isn’t just for HTML, it also works on XSS attacks on JavaScript, CSS,
and even URLs. Does this mean we’re saved from ourselves if we use the Go template
engine? Well, no, nothing really saves us from ourselves, and there are ways of getting
around this. In fact, Go allows us to escape from being context-aware if we really want to.

5.6.2 Unescaping HTML

Say you really want this behavior, meaning you want the user to enter HTML or Java-
Script code that’s executable when displayed. Go provides a mechanism to “unescape”
HTML. Just cast your input string to template.HTML and use that instead, and our
code is happily unescaped. Let’s see how to do this. First, make a minor change to the
handler:

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("tmpl.html")
 t.Execute(w, template.HTML(r.FormValue("comment")))
}

Notice that you’ve just typecast the comment value to the template.HTML type.
 Now recompile and run the server, and then try the same attack. What happens

depends on which browser you use. If you use Internet Explorer (8 and above),

Figure 5.10 The input is escaped,
thanks to the Go template engine.

119Nesting templates
Chrome, or Safari, nothing will happen—you’ll get a blank page. If you use Firefox,
you’ll get something like figure 5.11.

What just happened? By default Internet Explorer, Chrome, and Safari have built-in
support for protection against certain types of XSS attacks. As a result, the simulated
XSS attack doesn’t work on these browsers. But you can turn off the protection by
sending a special HTTP response header: X-XSS-Protection (originally created by Micro-
soft for Internet Explorer) will disable it. (Note: Firefox doesn’t have default protec-
tion against these types of attacks.)

 If you really want to stop the browser from protecting you from XSS attacks, you
simply need to set a response header in our handler:

func process(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("X-XSS-Protection", "0")
 t, _ := template.ParseFiles("tmpl.html")
 t.Execute(w, template.HTML(r.FormValue("comment")))
}

Once you do this and try the same attack again, you’ll find that the attack works for
Internet Explorer, Chrome, and Safari.

5.7 Nesting templates
We went through quite a lot of features of the Go template engine in this chapter.
Before we move on, I’d like to show you how you can use layouts in your web app.

 So what exactly are layouts? Layouts are fixed patterns in web page design that can
be reused for multiple pages. Web apps often use layouts, because pages in a web app
need to look the same for a consistent UI. For example, many web application designs
have a header menu as well as a footer that provides additional information such as

Figure 5.11 You are pwnd!

120 CHAPTER 5 Displaying content
status or copyright or contact details. Other layouts include a left navigation bar or
multilevel navigation menus. You can easily make the leap that layouts can be imple-
mented with nested templates.

 In an earlier section, you learned that templates can be nested using the include
action. If you start writing a complicated web app, though, you’ll realize that you
might end up with a lot of hardcoding in your handler and a lot of template files.

 Why is this so?
 Remember that the syntax of the include action looks like this:

{{ template "name" . }}

where name is the name of the template and a string constant. This means that if you
use the name of the file as the template name, it’ll be impossible to have one or two
common layouts, because every page will have its own layout template file—which
defeats the purpose of having layouts in the first place. As an example, the file shown
in the next listing won’t work as a common layout template file.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ template "content.html" }}
 </body>
</html>

The answer to this dilemma is that the Go template engine doesn’t work this way.
Although we can have each template file define a single template, with the name of
the template as the name of the file, we can explicitly define a template in a template
file using the define action. This listing shows our layout.html now.

{{ define "layout" }}

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ template "content" }}
 </body>
</html>

{{ end }}

Listing 5.22 An unworkable layout file

Listing 5.23 Defining a template explicitly

121Nesting templates
Notice that we start the file with {{ define "layout" }} and end it with {{ end }}.
Anything within these two action tags is considered part of the layout template. This
means if we have another define action tag after the {{ end }} we can define another
template! In other words, we can define multiple templates in the same template file,
as you can see in this listing.

{{ define "layout" }}

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ template "content" }}
 </body>
</html>

{{ end }}

{{ define "content" }}

Hello World!

{{ end }}

The following listing shows how we use these templates in our handler.

func process(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("layout.html")
 t.ExecuteTemplate(w, "layout", "")
}

Parsing the template file is the same, but this time if we want to execute the template,
we have to be more explicit and use the ExecuteTemplate method, with the name of
the template we want to execute as the second parameter. The layout template nests
the content template, so if we execute the layout template, we’ll see Hello World! in
the browser. Let’s use cURL to get the actual HTML so that we can see it properly:

> curl -i http://127.0.0.1:8080/process
HTTP/1.1 200 OK
Date: Sun, 08 Feb 2015 14:09:15 GMT
Content-Length: 187
Content-Type: text/html; charset=utf-8

<html>
 <head>

Listing 5.24 Defining multiple templates in a single template file

Listing 5.25 Using explicitly defined templates

122 CHAPTER 5 Displaying content
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>

Hello World!

 </body>
</html>

We can also define the same template in the multiple template files. To see how this
works, let’s remove the definition of the content template in layout.html and place it
in red_hello.html, as shown in this listing. Listing 5.27 shows how to create a
blue_hello.html template file.

{{ define "content" }}

<h1 style="color: red;">Hello World!</h1>

{{ end }}

{{ define "content" }}

<h1 style="color: blue;">Hello World!</h1>

{{ end }}

Notice that we’ve just defined the content template in two places. How can we use
these two templates? This listing shows our modified handler.

func process(w http.ResponseWriter, r *http.Request) {
 rand.Seed(time.Now().Unix())
 var t *template.Template
 if rand.Intn(10) > 5 {
 t, _ = template.ParseFiles("layout.html", "red_hello.html")
 } else {
 t, _ = template.ParseFiles("layout.html", "blue_hello.html")
 }
 t.ExecuteTemplate(w, "layout", "")
}

Note that we’re actually parsing different template files (either red_hello.html or blue_
hello.html) according to the random number we create. We use the same layout tem-
plate as before, which includes a content template. Remember that the content
template is defined in two different files. Which template we use depends now on which

Listing 5.26 red_hello.html

Listing 5.27 blue_hello.html

Listing 5.28 A handler using the same template in different template files

123Using the block action to define default templates
template file we parse, because both of these template files define the same template.
In other words, we can switch content by parsing different template files, while main-
taining the same template to be nested in the layout.

 If we now recompile our server, start it, and access it through the browser,
we’ll randomly see either a blue or red Hello World! showing up in the browser (see
figure 5.12).

5.8 Using the block action to define default templates
Go 1.6 introduced a new block action that allows you to define a template and use it at
the same time. This is how it looks:

{{ block arg }}
 Dot is set to arg
{{ end }}

To see how this works, I’ll use the previous example and use the block action to repli-
cate the same results. What I’ll do is default to using the blue Hello World template if
no templates are specified. Instead of parsing the layout.html and blue_hello.html
files in the else block, as in listing 5.28, I will parse layout.html only as indicated in
bold in the following listing.

func process(w http.ResponseWriter, r *http.Request) {
 rand.Seed(time.Now().Unix())
 var t *template.Template
 if rand.Intn(10) > 5 {
 t, _ = template.ParseFiles("layout.html", "red_hello.html")
 } else {
 t, _ = template.ParseFiles("layout.html")
 }
 t.ExecuteTemplate(w, "layout", "")
}

Listing 5.29 Parsing layout.html only

Figure 5.12 Switching templates

124 CHAPTER 5 Displaying content
Without any further changes, this will result in a crash at random, because the tem-
plate in the else block doesn’t have a content template. Instead of passing it exter-
nally, I will use a block action and add it as a default content in layout.html itself, as in
the code in bold in this listing.

{{ define "layout" }}

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Web Programming</title>
 </head>
 <body>
 {{ block "content" . }}
 <h1 style="color: blue;">Hello World!</h1>
 {{ end }}
 </body>
</html>

{{ end }}

The block action effectively defines a template named content and also places it in the
layout. If no content template is available when the overall template is executed, the
content template defined by the block will be used instead.

 We’re done with handling requests, processing them, and generating content to
respond to the requests. In the next chapter, you’ll learn how you can store data in
memory, in files, and in databases using Go.

5.9 Summary
■ In a web app, template engines combine templates and data to produce the

HTML that is sent back to the client.
■ Go’s standard template engine is in the html/template package.
■ Go’s template engine works by parsing a template and then executing it, pass-

ing a ResponseWriter and some data to it. This triggers the template engine to
combine the parsed template with the data and send it to the ResponseWriter.

■ Actions are instructions about how data is to be combined with the template.
Go has an extensive and powerful set of actions.

■ Besides actions, templates can also contain arguments, variables, and pipelines.
Arguments represent the data value in a template; variables are constructs used
with actions in a template. Pipelines allow chaining of arguments and functions.

■ Go has a default but limited set of template functions. Customized functions
can also be created by making a function map and attaching it to the template.

■ Go’s template engine can change the content it displays according to where the
data is placed. This context-awareness is useful in defending against XSS attacks.

■ Web layouts are commonly used to design a web app that has a consistent look
and feel. This can be implemented in Go using nested templates.

Listing 5.30 Using the block action to add a default content template

Storing data
We introduced data persistence in chapter 2, briefly touching on how to persist
data into a relational database, PostgreSQL. In this chapter we’ll delve deeper into
data persistence and talk about how you can store data in memory, files, relational
databases, and NoSQL databases.

 Data persistence is technically not part of web application programming, but it’s
often considered the third pillar of any web application—the other two pillars are
templates and handlers. This is because most web applications need to store data in
one form or another.

 I’m generalizing but here are the places where you can store data:

■ In memory (while the program is running)
■ In files on the filesystem
■ In a database, fronted by a server program

This chapter covers
■ In-memory storage with structs
■ File storage with CSV and gob binary files
■ Relational database storage with SQL
■ Go and SQL mappers
125

126 CHAPTER 6 Storing data
In this chapter, we’ll go through how Go can be used to access data (create, retrieve,
update, and delete—better known as CRUD) in all these places.

6.1 In-memory storage
In-memory storage refers not to storing data in in-memory databases but in the run-
ning application itself, to be used while the application is running. In-memory data is
usually stored in data structures, and for Go, this primarily means with arrays, slices,
maps, and most importantly, structs.

 Storing data itself is no issue—it simply involves creating the structs, slices, and
maps. If we stop to think about it, what we’ll eventually manipulate is likely not to be
the individual structs themselves, but containers for the structs. This could be arrays,
slices, and maps but could also be any other types of data structures like stacks, trees,
and queues.

 What’s more interesting is how you can retrieve the data that you need back from
these containers. In the following listing, you’ll use maps as containers for your
structs.

package main

import (
 "fmt"
)

type Post struct {
 Id int
 Content string
 Author string
}

var PostById map[int]*Post
var PostsByAuthor map[string][]*Post

func store(post Post) {
 PostById[post.Id] = &post
 PostsByAuthor[post.Author] = append(PostsByAuthor[post.Author], &post)
}

func main() {

 PostById = make(map[int]*Post)
 PostsByAuthor = make(map[string][]*Post)

 post1 := Post{Id: 1, Content: "Hello World!", Author: "Sau Sheong"}
 post2 := Post{Id: 2, Content: "Bonjour Monde!", Author: "Pierre"}
 post3 := Post{Id: 3, Content: "Hola Mundo!", Author: "Pedro"}
post4 := Post{Id: 4, Content: "Greetings Earthlings!", Author:

➥ "Sau Sheong"}

Listing 6.1 Storing data in memory

127In-memory storage
 store(post1)
 store(post2)
 store(post3)
 store(post4)

 fmt.Println(PostById[1])
 fmt.Println(PostById[2])

 for _, post := range PostsByAuthor["Sau Sheong"] {
 fmt.Println(post)
 }
 for _, post := range PostsByAuthor["Pedro"] {
 fmt.Println(post)
 }
}

You’re going to use a Post struct that represents a post in a forum application. Here’s
the data that you’ll be saving in memory:

type Post struct {
 Id int
 Content string
 Author string
}

The main data for this Post struct is the content, and there are two ways of getting the
post: either by a unique ID or by the name of its author. Storing posts in a map means
that you’re going to map a key that represents the post with the actual Post struct.
Because you have two ways of accessing a post, you should have two maps, one each to
access the post:

var PostById map[int]*Post
var PostsByAuthor map[string][]*Post

You have two variables: PostById maps the unique ID to a pointer to a post; PostsBy-
Author maps the author’s name to a slice of pointers to posts. Notice that you map to
pointers of the posts and not to the post themselves. The reason for this is obvious:
whether you’re getting the post through its ID or through the author’s name, you
want the same post, not two different copies of it.

 To store the post, you create a store function:

func store(post Post) {
 PostById[post.Id] = &post
 PostsByAuthor[post.Author] = append(PostsByAuthor[post.Author], &post)
}

The store function stores a pointer to the post into PostById as well as PostsBy-
Author. Next, you create the posts themselves, a process that involves nothing more
than creating structs.

post1 := Post{Id: 1, Content: "Hello World!", Author: "Sau Sheong"}
post2 := Post{Id: 2, Content: "Bonjour Monde!", Author: "Pierre"}

128 CHAPTER 6 Storing data
post3 := Post{Id: 3, Content: "Hola Mundo!", Author: "Pedro"}
post4 := Post{Id: 4, Content: "Greetings Earthlings!", Author: "Sau Sheong"}
store(post1)
store(post2)
store(post3)
store(post4)

When you execute the program, you’ll see the following:

&{1 Hello World! Sau Sheong}
&{2 Bonjour Monde! Pierre}
&{1 Hello World! Sau Sheong}
&{4 Greetings Earthlings! Sau Sheong}
&{3 Hola Mundo! Pedro}

Note that you’re getting back the same post regardless of whether you access it
through the author or the post ID.

 This process seems simple and obvious enough—trivial even. Why would we want
to even talk about storing data in memory?

 Very often in our web applications we start off with using relational databases (as in
chapter 2) and then as we scale, we realize that we need to cache the data that we
retrieve from the database in order to improve performance. As you’ll see in the rest
of this chapter, most of the methods used to persist data involve structs in one way or
another. Instead of using an external in-memory database like Redis, we have the
option of refactoring our code and storing the cache data in memory.

 I’ll also introduce you to storing data in structs, which is going to be the recurrent
pattern for data storage for this chapter and much of the book.

6.2 File storage
Storing in memory is fast and immediate because there’s no retrieval from disk. But
there’s one very important drawback: in-memory data isn’t actually persistent. If you
never shut down your machine or program, or if it doesn’t matter if the data is lost (as
in a cache), then that’s probably fine. But you usually want data to be persisted when
the machine or program is shut down, even if it’s in cache. There are a number of
ways data can be persisted, but the most common method is to store it to some sort of
nonvolatile storage such as a hard disk or flash memory.

 You have a number of options for storing data to nonvolatile storage. The tech-
nique we’ll discuss in this section revolves around storing data to the filesystem. Spe-
cifically we’ll explore two ways of storing data to files in Go. The first is through a
commonly used text format, CSV (comma-separated values), and the second is specific
to Go—using the gob package.

CSV is a common file format that’s used for transferring data from the user to the
system. It can be quite useful when you need to ask your users to provide you with a
large amount of data and it’s not feasible to ask them to enter the data into your
forms. You can ask your users to use their favorite spreadsheet, enter all their data,
and then save it as CSV and upload it to your web application. Once you have the file,

129File storage
you can decode the data for your purposes. Similarly, you can allow your users to get
their data by creating a CSV file out of their data and sending it to them from your web
application.

 Gob is a binary format that can be saved in a file, providing a quick and effective
means of serializing in-memory data to one or more files. Binary data files can be
pretty useful too. You can use them to quickly store your structs for backup or for
orderly shutdown. Just as a caching mechanism is useful, being able to store and load
data temporarily in files is useful for things like sessions or shopping carts, or to serve
as a temporary workspace.

 Let’s start with the simple exercise of opening up a file and writing to it, shown in
the following listing. You’ll see this repeated as we discuss saving to CSV and gob
binary files.

package main

import (
 "fmt"
 "io/ioutil"
 "os"
)

func main() {
 data := []byte("Hello World!\n")
 err := ioutil.WriteFile("data1", data, 0644)
 if err != nil {
 panic(err)
 }
 read1, _ := ioutil.ReadFile("data1")
 fmt.Print(string(read1))

 file1, _ := os.Create("data2")
 defer file1.Close()

 bytes, _ := file1.Write(data)
 fmt.Printf("Wrote %d bytes to file\n", bytes)

 file2, _ := os.Open("data2")
 defer file2.Close()

 read2 := make([]byte, len(data))
 bytes, _ = file2.Read(read2)
 fmt.Printf("Read %d bytes from file\n", bytes)
 fmt.Println(string(read2))
}

To reduce the amount of code on the page, in the previous listing I’ve replaced the
errors returned by the function with a blank identifier.

 In the listing, you can see two ways of writing to and reading from a file. The first is
short and simple, and uses WriteFile and ReadFile from the ioutil package.

Listing 6.2 Reading and writing to a file

Writes to file and
reads from file using
WriteFile and ReadFile

Writes to file and
reads from file using
the File struct

130 CHAPTER 6 Storing data
Writing to a file uses WriteFile, passing in the name of the file, the data to be written,
and a number representing the permissions to set for the file. Reading from a file sim-
ply uses ReadFile with the filename. The data that’s passed to both WriteFile and
read from ReadFile is byte slices.

 Writing to and reading from a file using a File struct is more verbose but gives you
more flexibility. To write a file, you first create it using the Create function in the os
package, passing it the name of the file you want to create. It’s good practice to use
defer to close the file so that you won’t forget. A defer statement pushes a function
call on a stack. The list of saved calls is then executed after the surrounding func-
tion returns. In our example, this means at the end of the main function file2 will be
closed, followed by file1. Once you have the File struct, you can write to it using the
Write method. There are a number of other methods you can call on the File struct
to write data to a file.

 Reading a file with the File struct is similar. You need to use the Open function in
the os package, and then use the Read method on the File struct, or any of the other
methods to read the data. Reading data using the File struct is much more flexible
because File has several other methods you can use to locate the correct part of the
file you want to read from.

 When you execute the program, you should see two files being created: data1 and
data2, both containing the text “Hello World!”.

6.2.1 Reading and writing CSV files

The CSV format is a file format in which tabular data (numbers and text) can be easily
written and read in a text editor. CSV is widely supported, and most spreadsheet pro-
grams, such as Microsoft Excel and Apple Numbers, support CSV. Consequently, many
programming languages, including Go, come with libraries that produce and con-
sume the data in CSV files.

 In Go, CSV is manipulated by the encoding/csv package. The next listing shows
code for reading and writing CSV.

package main

import (
 "encoding/csv"
 "fmt"
 "os"
 "strconv"
)

type Post struct {
 Id int
 Content string
 Author string
}

Listing 6.3 Reading and writing CSV

131File storage
func main() {
 csvFile, err := os.Create("posts.csv")
 if err != nil {
 panic(err)
 }
 defer csvFile.Close()

 allPosts := []Post{
 Post{Id: 1, Content: "Hello World!", Author: "Sau Sheong"},
 Post{Id: 2, Content: "Bonjour Monde!", Author: "Pierre"},
 Post{Id: 3, Content: "Hola Mundo!", Author: "Pedro"},
 Post{Id: 4, Content: "Greetings Earthlings!", Author: "Sau Sheong"},
 }

 writer := csv.NewWriter(csvFile)
 for _, post := range allPosts {
 line := []string{strconv.Itoa(post.Id), post.Content, post.Author}
 err := writer.Write(line)
 if err != nil {
 panic(err)
 }
 }
 writer.Flush()

 file, err := os.Open("posts.csv")
 if err != nil {
 panic(err)
 }
 defer file.Close()

 reader := csv.NewReader(file)
 reader.FieldsPerRecord = -1
 record, err := reader.ReadAll()
 if err != nil {
 panic(err)
 }

 var posts []Post
 for _, item := range record {
 id, _ := strconv.ParseInt(item[0], 0, 0)
 post := Post{Id: int(id), Content: item[1], Author: item[2]}
 posts = append(posts, post)
 }
 fmt.Println(posts[0].Id)
 fmt.Println(posts[0].Content)
 fmt.Println(posts[0].Author)
}

First let’s look at writing to a CSV file. You create a file called posts.csv and a variable
named csvFile. Your objective is to write the posts in the allPosts variable into this
file. Step one is to create a writer using the NewWriter function, passing in the file.
Then for each post, you create a slice of strings. Finally, you call the Write method on
the writer to write the slice of strings into the CSV file and you’re done.

Creating a CSV file

Reading a CSV file

132 CHAPTER 6 Storing data
 If the program ends here and exits, all is well and the data is written to file.
Because you’ll need to read the same posts.csv file next, we need to make sure that any
buffered data is properly written to the file by calling the Flush method on the writer.

 Reading the CSV file works much the same way. First, you need to open the file.
Then call the NewReader function, passing in the file, to create a reader. Set the
FieldsPerRecord field in the reader to be a negative number, which indicates that
you aren’t that bothered if you don’t have all the fields in the record. If FieldsPer-
Record is a positive number, then that’s the number of fields you expect from each
record and Go will throw an error if you get less from the CSV file. If FieldsPerRecord
is 0, you’ll use the number of fields in the first record as the FieldsPerRecord value.

 You call the ReadAll method on the reader to read all the records in at once, but if
the file is large you can also retrieve one record at a time from the reader. This results
in a slice of slices, which you can then iterate through and create the Post structs. If
you run the program now, it’ll create a CSV file called posts.csv, which contains lines of
comma-delimited text:

1,Hello World!,Sau Sheong
2,Bonjour Monde!,Pierre
3,Hola Mundo!,Pedro
4,Greetings Earthlings!,Sau Sheong

It’ll also read from the same file and print out the data from the first line of the CSV file:

1
Hello World!
Sau Sheong

6.2.2 The gob package

The encoding/gob package manages streams of gobs, which are binary data,
exchanged between an encoder and a decoder. It’s designed for serialization and
transporting data but it can also be used for persisting data. Encoders and decoders
wrap around writers and readers, which conveniently allows you to use them to write
to and read from files. The following listing demonstrates how you can use the gob
package to create binary data files and read from them.

package main

import (
 "bytes"
 "encoding/gob"
 "fmt"
 "io/ioutil"
)

type Post struct {
 Id int
 Content string

Listing 6.4 Reading and writing binary data using the gob package

https://github.com/jmoiron/sqlx
https://github.com/jmoiron/sqlx
https://github.com/jmoiron/sqlx

133File storage
 Author string
}

func store(data interface{}, filename string) {
 buffer := new(bytes.Buffer)
 encoder := gob.NewEncoder(buffer)
 err := encoder.Encode(data)
 if err != nil {
 panic(err)
 }
 err = ioutil.WriteFile(filename, buffer.Bytes(), 0600)
 if err != nil {
 panic(err)
 }
}

func load(data interface{}, filename string) {
 raw, err := ioutil.ReadFile(filename)
 if err != nil {
 panic(err)
 }
 buffer := bytes.NewBuffer(raw)
 dec := gob.NewDecoder(buffer)
 err = dec.Decode(data)
 if err != nil {
 panic(err)
 }
}

func main() {
 post := Post{Id: 1, Content: "Hello World!", Author: "Sau Sheong"}
 store(post, "post1")
 var postRead Post
 load(&postRead, "post1")
 fmt.Println(postRead)
}

As before, you’re using the Post struct and you’ll be saving a post to binary, then
retrieving it, using the store and load functions, respectively. Let’s look at the store
function first.

 The store function takes an empty interface (meaning it can take anything, as well
as a filename for the binary file it’ll be saved to). In our example code, you’ll be pass-
ing a Post struct. First, you need to create a bytes.Buffer struct, which is essentially a
variable buffer of bytes that has both Read and Write methods. In other words, a
bytes.Buffer can be both a Reader and a Writer.

 Then you create a gob encoder by passing the buffer to the NewEncoder function.
You use the encoder to encode the data (the Post struct) into the buffer using the
Encode method. Finally, you write the buffer to a file.

 To use the store function, you pass a Post struct and a filename to it, creating a
binary data file named post1. Now let’s look at the load function. Loading data from
the binary data file post1 is the reverse of creating it. First, you need to read the raw
data out from the file.

Store data

Load data

134 CHAPTER 6 Storing data
 Next, you’ll create a buffer from the raw data. Doing so will essentially give the raw
data the Read and Write methods. You create a decoder from the buffer using the
NewDecoder function. The decoder is then used to decode the raw data into the Post
struct that you passed in earlier.

 You define a Post struct called postRead, and then pass a reference to it into the
load function, along with the name of the binary data file. The load function will load
the data from the binary file into the struct.

 When you run the program, a post1 file, which contains the binary data, will be
created. You can open it and it’ll look like gibberish. The post1 file is also read into
another Post struct, and you’ll see the struct being printed on the console:

{1 Hello World! Sau Sheong}

We’re done with files. For the rest of this chapter, we’ll be discussing data stored in
specialized server-side programs called database servers.

6.3 Go and SQL
Storing and accessing data in the memory and on the filesystem is useful, but if you
need robustness and scalability, you’ll need to turn to database servers. Database servers
are programs that allow other programs to access data through a client-server model.
The data is normally protected from other means of access, except through the server.
Typically, a client (either a library or another program) connects to the database
server to access the data through a Structured Query Language (SQL). Database man-
agement systems (DBMSs) often include a database server as part of the system.

 Perhaps the most well-known and popularly used database management system is
the relational database management system (RDBMS). RDBMSs use relational databases,
which are databases that are based on the relational model of data. Relational data-
bases are mostly accessed through relational database servers using SQL.

 Relational databases and SQL are also the most commonly used means of storing
data in a scalable and easy-to-use way. I discussed this topic briefly in chapter 2, and I
promised that we’ll go through it properly in this chapter, so here goes.

6.3.1 Setting up the database

Before you start, you need to set up your database. In chapter 2 you learned how to
install and set up Postgres, which is the database we’re using for this section. If you
haven’t done so, now is a great time to do it.

 Once you’ve created the database, you’ll follow these steps:

1 Create the database user.
2 Create the database for the user.
3 Run the setup script that’ll create the table that you need.

Let’s start with creating the user. Run this command at the console:

createuser -P -d gwp

135Go and SQL
This command creates a Postgres database user called gwp. The option -P tells the
createuser program to prompt you for a password for gwp, and the option -d tells
the program to allow gwp to create databases. You’ll be prompted to enter gwp’s pass-
word, which I assume you’ll set to gwp as well.

 Next, you’ll create the database for the gwp user. The database name has to be the
same as the user’s name. You can create databases with other names but that will
require setting up permissions and so on. For simplicity’s sake let’s use the default
database for our database user. To create a database named gwp, run this command at
the console:

createdb gwp

Now that you have a database, let’s create our one and only table. Create a file named
setup.sql with the script shown in this listing.

create table posts (
 id serial primary key,
 content text,
 author varchar(255)
);

To execute the script, run this command on the console

psql -U gwp -f setup.sql -d gwp

and you should now have your database. Take note that you’ll likely need to run this
command over and over again to clean and set up the database every time before run-
ning the code.

 Now that you have your database and it’s set up properly, let’s connect to it. The
next listing shows the example we’ll be going through, using a file named store.go.

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/lib/pq"
)

type Post struct {
 Id int
 Content string
 Author string
}

Listing 6.5 Script that creates our database

Listing 6.6 Go and CRUD with Postgres

136 CHAPTER 6 Storing data

Up

var Db *sql.DB
func init() {
 var err error
 Db, err = sql.Open("postgres", "user=gwp dbname=gwp password=gwp

 ➥ sslmode=disable")
 if err != nil {
 panic(err)
 }
}

func Posts(limit int) (posts []Post, err error) {
 rows, err := Db.Query("select id, content, author from posts limit $1",

 ➥ limit)
 if err != nil {
 return
 }
 for rows.Next() {
 post := Post{}
 err = rows.Scan(&post.Id, &post.Content, &post.Author)
 if err != nil {
 return
 }
 posts = append(posts, post)
 }
 rows.Close()
 return
}

func GetPost(id int) (post Post, err error) {
 post = Post{}
 err = Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

func (post *Post) Create() (err error) {
 statement := "insert into posts (content, author) values ($1, $2)
 ➥ returning id"
 stmt, err := Db.Prepare(statement)
 if err != nil {
 return
 }
 defer stmt.Close()
 err = stmt.QueryRow(post.Content, post.Author).Scan(&post.Id)
 return
}

func (post *Post) Update() (err error) {
 _, err = Db.Exec("update posts set content = $2, author = $3 where id =
 ➥ $1", post.Id, post.Content, post.Author)
 return
}

func (post *Post) Delete() (err error) {
 _, err = Db.Exec("delete from posts where id = $1", post.Id)

Connects to
the database

Gets a single post

Creates a new post

dates
a post

Deletes a post

137Go and SQL
 return
}

func main() {
 post := Post{Content: "Hello World!", Author: "Sau Sheong"}

 fmt.Println(post)
 post.Create()
 fmt.Println(post)

 readPost, _ := GetPost(post.Id)
 fmt.Println(readPost)

 readPost.Content = "Bonjour Monde!"
 readPost.Author = "Pierre"
 readPost.Update()

 posts, _ := Posts()
 fmt.Println(posts)

 readPost.Delete()
}

6.3.2 Connecting to the database

You need to connect to the database before doing anything else. Doing so is relatively
simple; in the following listing you first declare a variable Db as a pointer to an sql.DB
struct, and then use the init function (which is called automatically for every pack-
age) to initialize it.

var Db *sql.DB

func init() {
 var err error
 Db, err = sql.Open("postgres", "user=gwp dbname=gwp password=gwp

 sslmode=disable")
 if err != nil {
 panic(err)
 }
}

The sql.DB struct is a handle to the database and represents a pool of zero or data-
base connections that’s maintained by the sql package. Setting up the connection to
the database is a one-liner using the Open function, passing in the database driver
name (in our case, it’s postgres) and a data source name. The data source name is a
string that’s specific to the database driver and tells the driver how to connect to the
database. The Open function then returns a pointer to a sql.DB struct.

 Note that the Open function doesn’t connect to the database or even validate the
parameters yet—it simply sets up the necessary structs for connection to the database
later. The connection will be set up lazily when it’s needed.

Listing 6.7 Function that creates a database handle

{0 Hello World! Sau Sheong}

{1 Hello World! Sau Sheong}

{1 Hello World! Sau Sheong}

[{1 Bonjour Monde! Pierre}]

138 CHAPTER 6 Storing data
 Also, sql.DB doesn’t needed to be closed (you can do so if you like); it’s simply a
handle and not the actual connection. Remember that this abstraction contains a
pool of database connections and will maintain them. In our example, you’ll be using
the globally defined Db variable from our various CRUD methods and functions, but
an alternative is to pass the sql.DB struct around once you’ve created it.

 So far we’ve discussed the Open function, which returns a sql.DB struct given the
database driver name and a data source name. How do you get the database driver?
The normal way that you’d register a database driver involves using the Register
function, with the name of the database driver, and a struct that implements the
driver.Driver interface like this:

sql.Register("postgres", &drv{})

In this example, postgres is the name of the driver and drv is a struct that imple-
ments the Driver interface. You’ll notice that we didn’t do this earlier. Why not?

 The Postgres driver we used (a third-party driver) registered itself when we
imported the driver, that’s why.

import (
 "fmt"
 "database/sql"
 _ "github.com/lib/pq"
)

The github.com/lib/pq package you imported is the Postgres driver, and when it’s
imported, its init function will kick in and register itself. Go doesn’t provide any offi-
cial database drivers; all database drivers are third-party libraries that should conform
to the interfaces defined in the sql.driver package. Notice that when you import the
database driver, you set the name of the package to be an underscore (_). This is
because you shouldn’t use the database driver directly; you should use database/sql
only. This way, if you upgrade the version of the driver or change the implementation
of the driver, you don’t need to make changes to all your code.

 To install this driver, run this command on the console:

go get "github.com/lib/pq"

This command will fetch the code from the repository and place it in the package
repository, and then compile it along with your other code.

6.3.3 Creating a post

With the initial database setup done, let’s start creating our first record in the data-
base. In this example, you’ll the same Post struct you’ve used in the previous few sec-
tions. Instead of storing to memory or file, you’ll be storing and retrieving the same
information from a Postgres database.

 In our sample application, you’ll use various functions to perform create, retrieve,
update, and delete the data. In this section, you’ll learn how to create posts using the

139Go and SQL
Create function. Before we get into the Create function, though, we’ll discuss how
you want to create posts.

 You’ll begin by creating a Post struct, with the Content and Author fields filled in.
Note that you’re not filling in the Id field because it’ll be populated by the database
(as an auto-incremented primary key).

post := Post{Content: "Hello World!", Author: "Sau Sheong"}

If you pause here and insert a fmt.Println statement to debug, you’ll see that the Id
field is set to 0:

fmt.Println(post)

Now, let’s create this post as a database record:

post.Create()

The Create method should return an error if something goes wrong, but for brevity’s
sake, let’s ignore that. Let’s print out the value in the variable again:

fmt.Println(post)

This time you’ll see that the Id field should be set to 1. Now that you know what you
want the Create function to do, let’s dive into the code.

func (post *Post) Create() (err error) {
 statement := "insert into posts (content, author) values ($1, $2)
 ➥ returning id "
 stmt, err := db.Prepare(statement)
 if err != nil {
 return
 }
 defer stmt.Close()
 err = stmt.QueryRow(post.Content, post.Author).Scan(&post.Id)
 if err != nil {
 return
 }
 return
}

The Create function is a method to the Post struct. You can see that because when
you’re defining the Create function, you place a reference to a Post struct between
the func keyword and the name of the function, Create. The reference to a Post
struct, post, is also called the receiver of the method and can be referred to without
the ampersand (&) within the method.

 You start the method by getting defining an SQL prepared statement. A prepared
statement is an SQL statement template, where you can replace certain values during
execution. Prepared statements are often used to execute statements repeatedly.

statement := "insert into posts (content, author) values ($1, $2) returning id"

Listing 6.8 Creating a post

{0 Hello World! Sau Sheong}

{1 Hello World! Sau Sheong}

140 CHAPTER 6 Storing data
Replace $1 and $2 with the actual values you want when creating the record. Notice
that you’re stating that you want the database to return the id column. Why we need
to return the value of the id column will become clear soon.

 To create it as a prepared statement, let’s use the Prepare method from the sql.DB
struct:

stmt, err := db.Prepare(statement)

This code will create a reference to an sql.Stmt interface (defined in the sql.Driver
package and the struct implemented by the database driver), which is our statement.

 Next, execute the prepared statement using the QueryRow method on the state-
ment, passing it the data from the receiver:

err = stmt.QueryRow(post.Content, post.Author).Scan(&post.Id)

You use QueryRow here because you want to return only a single reference to an
sql.Row struct. If more than one sql.Row is returned by the SQL statement, only the
first is returned by QueryRow. The rest are discarded. QueryRow returns only the
sql.Row struct; no errors. This is because QueryRow is often used with the Scan
method on the Row struct, which copies the values in the row into its parameters. As
you can see, the post receiver will have its Id field filled by the returned id field from
the SQL query. This is why you need to specify the returning instruction in your SQL
statement. Obviously you only need the Id field, since that’s the auto-incremented
value generated by the database, while you already know the Content and Author
fields. As you’ve likely guessed by now, because the post’s Id field is populated, you’ll
now have a fully filled Post struct that corresponds to a database record.

6.3.4 Retrieving a post

You’ve created the post, so naturally you need to retrieve it. As before, you want to see
what you need before creating the function to do it. You don’t have an existing Post
struct, so you can’t define a method on it. You’ll have to define a GetPost function,
which takes in a single Id and returns a fully filled Post struct:

readPost, _ := GetPost(1)
fmt.Println(readPost)

Note that this code snippet is slightly different from the overall listing; I’m making it
clearer here that I’m retrieving a post by its id. This listing shows how the GetPost
function works.

func GetPost(id int) (post Post, err error) {
 post = Post{}
 err = Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

Listing 6.9 Retrieving a post

{1 Hello World! Sau Sheong}

141Go and SQL
You want to return a Post struct, so you start by creating an empty one:

post = Post{}

As you saw earlier, you can chain the QueryRow method and the Scan method to copy
the value of the returned results on the empty Post struct. Notice that you’re using
the QueryRow method on the sql.DB struct instead of sql.Stmt because obviously you
don’t have or need a prepared statement. It should also be obvious that you could
have done it either way in the Create and GetPost functions. The only reason I’m
showing you a different way is to illustrate the possibilities.

 Now that you have the empty Post struct populated with the data from the data-
base, it’ll be returned to the calling function.

6.3.5 Updating a post

After you retrieve a post, you may want to update the information in the record.
Assuming you’ve already retrieved readPost, let’s modify it and then have the new
data updated in the database as well:

readPost.Content = "Bonjour Monde!"
readPost.Author = "Pierre"
readPost.Update()

You’ll create an Update method on the Post struct for this purpose, as shown in this
listing.

func (post *Post) Update() (err error) {
 _, err = Db.Exec("update posts set content = $2, author = $3 where id =
 ➥ $1", post.Id, post.Content, post.Author)
 return
}

Unlike when creating a post, you won’t use a prepared statement. Instead, you’ll jump
right in with a call to the Exec method of the sql.DB struct. You no longer have to
update the receiver, so you don’t need to scan the returned results. Therefore, using
the Exec method on the global database variable Db, which returns sql.Result and
an error, is much faster:

_, err = Db.Exec(post.Id, post.Content, post.Author)

We aren’t interested in the result (which just gives the number of rows affected and
the last inserted id, if applicable) because there’s nothing we want to process from it,
so you can ignore it by assigning it to the underscore (_). And your post will be
updated (unless there’s an error).

6.3.6 Deleting a post

So far we’ve been able to create, retrieve, and update posts. Deleting them when
they’re not needed is a natural extension. Assuming that you already have the

Listing 6.10 Updating a post

142 CHAPTER 6 Storing data
readPost after retrieving it previously, you want to be able to delete it using a Delete
method:

readPost.Delete()

That’s simple enough. If you look at the Delete method in the Post struct in the fol-
lowing listing, there’s nothing new that we haven’t gone through before.

func (post *Post) Delete() (err error) {
 _, err = Db.Exec("delete from posts where id = $1", post.Id)
 return
}

As before, when you were updating the post, you’ll jump right into using the Exec
method on the sql.DB struct. This executes the SQL statement, and as before, you’re
not interested in the returned result and so assign it to the underscore (_).

 You probably noticed that the methods and functions I created are arbitrary. You
can certainly change them to however you’d like. Instead of populating a Post struct
with your changes, then calling the Update method on the struct, for example, you
can pass the changes as parameters to the Update method. Or more commonly, if you
want to retrieve posts using a particular column or filter, you can create different func-
tions to do that.

6.3.7 Getting all posts

One common function is to get all posts from the database, with a given limit. In other
words, you want to do the following:
posts, _ := Posts(10)

You want to get the first 10 posts from the database and put them in a slice. This listing
shows how you can do this.

func Posts(limit int) (posts []Post, err error) {
 rows, err := Db.Query("select id, content, author from posts limit $1",
 ➥ limit)
 if err != nil {
 return
 }
 for rows.Next() {
 post := Post{}
 err = rows.Scan(&post.Id, &post.Content, &post.Author)
 if err != nil {
 return
 }
 posts = append(posts, post)
 }
 rows.Close()

Listing 6.11 Deleting a post

Listing 6.12 Getting all posts

143Go and SQL relationships
 return
}

You use the Query method on the sql.DB struct, which returns a Rows interface. The
Rows interface is an iterator. You can call a Next method on it repeatedly and it’ll
return sql.Row until it runs out of rows, when it returns io.EOF.

 For each iteration, you create a Post struct and scan the row into the struct, and
then append it to the slice that you’ll be returning to the caller.

6.4 Go and SQL relationships
One of the reasons relational databases are so popular for storing data is because
tables can be related. This allows pieces of data to be related to each other in a consis-
tent and easy-to-understand way. There are essentially four ways of relating a record to
other records.

■ One to one (has one)—A user has one profile, for example.
■ One to many (has many)—A user has many forum posts, for example.
■ Many to one (belongs to)—Many forum posts belong to one user, for example.
■ Many to many—A user can participate in many forum threads, while a forum

thread can also have many users contributing to it, for example.

We’ve discussed the standard CRUD for a single database table, but now let’s look at
how we can do the same for two related tables. For this example, we’ll use a one-to-
many relationship where a forum post has many comments. As you may realize, many-
to-one is the inverse of one-to-many, so we’ll see how that works as well.

6.4.1 Setting up the databases

Before we start, let’s set up our database again, this time with two tables. You’ll use the
same commands on the console as before, but with a slightly different setup.sql script,
shown in this listing.

drop table posts cascade if exists;
drop table comments if exists;

create table posts (
 id serial primary key,
 content text,
 author varchar(255)
);

create table comments (
 id serial primary key,
 content text,
 author varchar(255),
 post_id integer references posts(id)
);

Listing 6.13 Setting up two related tables

144 CHAPTER 6 Storing data
First, you’ll see that because the tables are related, when you drop the posts table you
need to cascade it; otherwise you won’t be able to drop posts because the comments
table depends on it. We’ve added the table comments, which has the same columns as
posts but with an additional column, post_id, that references the column id in the
posts table. This will set up post_id as a foreign key that references the primary key id
in the posts table.

 With the tables set up, let’s look at the code in a single listing. The code in the fol-
lowing listing is found in a file named store.go.

package main

import (
 "database/sql"
 "errors"
 "fmt"
 _ "github.com/lib/pq"
)

type Post struct {
 Id int
 Content string
 Author string
 Comments []Comment
}

type Comment struct {
 Id int
 Content string
 Author string
 Post *Post
}

var Db *sql.DB

func init() {
 var err error
 Db, err = sql.Open("postgres", "user=gwp dbname=gwp password=gwp
 ➥ sslmode=disable")
 if err != nil {
 panic(err)
 }
}

func (comment *Comment) Create() (err error) {
 if comment.Post == nil {
 err = errors.New("Post not found")
 return
 }
 err = Db.QueryRow("insert into comments (content, author, post_id)
 ➥ values ($1, $2, $3) returning id", comment.Content, comment.Author,
 ➥ comment.Post.Id).Scan(&comment.Id)

Listing 6.14 One-to-many and many-to-one with Go

Creates a single
comment

145Go and SQL relationships

 [{1
po

0xc20802
 return
}

func GetPost(id int) (post Post, err error) {
 post = Post{}
 post.Comments = []Comment{}
 err = Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)

 rows, err := Db.Query("select id, content, author from comments")
 if err != nil {
 return
 }
 for rows.Next() {
 comment := Comment{Post: &post}
 err = rows.Scan(&comment.Id, &comment.Content, &comment.Author)
 if err != nil {
 return
 }
 post.Comments = append(post.Comments, comment)
 }
 rows.Close()
 return
}

func (post *Post) Create() (err error) {
 err = Db.QueryRow("insert into posts (content, author) values ($1, $2)
 ➥ returning id", post.Content, post.Author).Scan(&post.Id)
 return
}

func main() {
 post := Post{Content: "Hello World!", Author: "Sau Sheong"}
 post.Create()

 comment := Comment{Content: "Good post!", Author: "Joe", Post: &post}
 comment.Create()
 readPost, _ := GetPost(post.Id)

 fmt.Println(readPost)
 fmt.Println(readPost.Comments)
 fmt.Println(readPost.Comments[0].Post)
}

6.4.2 One-to-many relationship

As before, let’s decide how to establish the relationships. First, look at the Post and
Comment structs:

type Post struct {
 Id int
 Content string
 Author string
 Comments []Comment
}

{1 Hello World! Sau Sheong
[{1 Good post! Joe 0xc20802a1c0}]}

 Good
st! Joe
a1c0}]

&{1 Hello World! Sau Sheong
[{1 Good post! Joe 0xc20802a1c0}]}

146 CHAPTER 6 Storing data
type Comment struct {
 Id int
 Content string
 Author string
 Post *Post
}

Notice that Post has an additional field named Comments, which is a slice of Comment
structs. Comment has a field named Post that’s a pointer to a Post struct. An astute
reader might ask, why are we using a field that’s a pointer in Comment while we have a
field that’s an actual struct in Post? We don’t. The Comments field in the Post struct
is a slice, which is really a pointer to an array, so both are pointers. You can see why
you’d want to store the relationship in the struct as a pointer; you don’t really want
another copy of the same Post—you want to point to the same Post.

 Now that you’ve built the relationship, let’s determine how you can use it. As men-
tioned earlier, this is a one-to-many as well as a many-to-one relationship. When you
create a comment, you also want to create the relationship between the comment and
the post it’s meant for:

comment := Comment{Content: "Good post!", Author: "Joe", Post: &post}
comment.Create()

As before, you create a Comment struct, and then call the Create method on it. The
relationship should be built upon creation of the comment. This means if you retrieve
the post now, the relationship should be established.

readPost, _ := GetPost(post.Id)

The readPost variable should now have your newly minted comment in its Comments
field. Next let’s look at the Comment struct’s Create method, shown in this listing.

func (comment *Comment) Create() (err error) {
 if comment.Post == nil {
 err = errors.New("Post not found")
 return
 }
 err = Db.QueryRow("insert into comments (content, author, post_id)
 ➥ values ($1, $2, $3) returning id", comment.Content, comment.Author,
 ➥ comment.Post.Id).Scan(&comment.Id)
 return
}

Before you create the relationship between the comment and the post, you need to
make sure that the Post exists! If it doesn’t, you’ll return an error. The rest of the
code repeats what we discussed earlier, except that now you also have to include
post_id. Adding post_id will create the relationship.

Listing 6.15 Creating the relationship

147Go relational mappers
 With the relationship established, you want to be able to retrieve the post and be
able to see the comments associated with the post. To do this, you’ll modify the Get-
Post function as shown here.

func GetPost(id int) (post Post, err error) {
 post = Post{}
 post.Comments = []Comment{}
 err = Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)

 rows, err := Db.Query("select id, content, author from comments where
 ➥ post_id = $1", id)
 if err != nil {
 return
 }
 for rows.Next() {
 comment := Comment{Post: &post}
 err = rows.Scan(&comment.Id, &comment.Content, &comment.Author)
 if err != nil {
 return
 }
 post.Comments = append(post.Comments, comment)
 }
 rows.Close()
 return
}

First, we need to initialize the Comments field in the Post struct and retrieve the post.
We get all the comments related to this post and iterate through it, creating a Comment
struct for each comment and appending it to the Comments field, and then return
the post. As you can see, building up the relationships is not that difficult, though it
can be a bit tedious if the web application becomes larger. In the next section, you’ll
see how relational mappers can be used to simplify establishing relationships.

 Although we discussed the usual CRUD functions of any database application here,
we’ve only scratched the surface of accessing an SQL database using Go. I encourage
you to read the official Go documentation.

6.5 Go relational mappers
You’ve probably come to the conclusion that it’s a lot of work storing data into the
relational database. This is true in most programming languages; however, there’s
usually a number of third-party libraries that will come between the actual SQL and
the calling application. In object-oriented programming (OOP) languages, these are
often called object-relational mappers (ORMs). ORMs such as Hibernate (Java) and
ActiveRecord (Ruby) map relational database tables and the objects in the program-
ming language. But this isn’t unique to object-oriented languages. Such mappers are

Listing 6.16 Retrieving the relationship

148 CHAPTER 6 Storing data
found in many other programming languages, too; for example, Scala has the Activate
framework and Haskell has Groundhog.

 In Go, there are a number of such relational mappers (ORMs doesn’t sound as
accurate to me). In this section, we’ll discuss a couple of them.

6.5.1 Sqlx

Sqlx is a third-party library that provides a set of useful extensions to the database/
sql package. Sqlx plays well with the database/sql package because it uses the same
interfaces and provides additional capabilities such as:

■ Marshaling database records (rows) into structs, maps, and slices using struct
tags

■ Providing named parameter support for prepared statements

The following listing shows how Sqlx makes life easier using the StructScan method.
Remember to get the library before starting on the code by issuing the following com-
mand on the console:

go get "github.com/jmoiron/sqlx"

package main

import (
 "fmt"
 "github.com/jmoiron/sqlx"
 _ "github.com/lib/pq"
)

type Post struct {
 Id int
 Content string
 AuthorName string `db: author`
}

var Db *sqlx.DB

func init() {
 var err error
 Db, err = sqlx.Open("postgres", "user=gwp dbname=gwp password=gwp
 ➥ sslmode=disable")
 if err != nil {
 panic(err)
 }
}

func GetPost(id int) (post Post, err error) {
 post = Post{}
 err = Db.QueryRowx("select id, content, author from posts where id =
 ➥ $1", id).StructScan(&post)

Listing 6.17 Using Sqlx

149Go relational mappers
 if err != nil {
 return
 }
 return
}

func (post *Post) Create() (err error) {
 err = Db.QueryRow("insert into posts (content, author) values ($1, $2)
 ➥ returning id", post.Content, post.AuthorName).Scan(&post.Id)
 return
}

func main() {
 post := Post{Content: "Hello World!", AuthorName: "Sau Sheong"}
 post.Create()
 fmt.Println(post)
}

The code illustrating the difference between using Sqlx and database/sql is marked in
bold; the other code should be familiar to you. First, instead of importing database/
sql, you import github.com/jmoiron/sqlx. Normally, StructScan maps the struct
field names to the corresponding lowercase table columns. To show how you can tell
Sqlx to automatically map the correct table column to the struct field, listing 6.17
changed Author to AuthorName and used a struct tag (struct tags will be explained in
further detail in chapter 7) to instruct Sqlx to get data from the correct column.

 Instead of using sql.DB, you now use sqlx.DB. Both are similar, except sqlx.DB
has additional methods like Queryx and QueryRowx.

 In the GetPost function, instead of using QueryRow, you use QueryRowx, which
returns Rowx. Rowx is the struct that has the StructScan method, and as you can see, it
maps the table columns to the respective fields. In the Create method you’re still
using QueryRow, which isn’t modified.

 There are a few other features in Sqlx that are interesting but that I don’t cover
here. To learn more, visit the GitHub repository at https://github.com/jmoiron/sqlx.

 Sqlx is an interesting and useful extension to database/sql but it doesn’t add too
many features. Conversely, the next library we’ll explore hides the database/sql
package and uses an ORM mechanism instead.

6.5.2 Gorm

The developer for Gorm delightfully calls it “the fantastic ORM for Go(lang),” and it’s
certainly an apt description. Gorm (Go-ORM) is an ORM for Go that follows the path
of Ruby’s ActiveRecord or Java’s Hibernate. To be specific, Gorm follows the Data-
Mapper pattern in providing mappers to map data in the database with structs. (In the
relational database section earlier I used the ActiveRecord pattern.)

 Gorm’s capabilities are quite extensive. It allows programmers to define relation-
ships, perform data migration, chain queries, and many other advanced features. It
even has callbacks, which are functions that are triggered when a particular data event
occurs, such as when data is updated or deleted. Describing the features would take

{1 Hello World! Sau Sheong}}

https://github.com/jmoiron/sqlx

150 CHAPTER 6 Storing data

C

another chapter, so we’ll discuss only basic features. The following listing explores
code using Gorm. Our simple application is again in store.go.

package main

import (
 "fmt"
 "github.com/jinzhu/gorm"
 _ "github.com/lib/pq"
 "time"
)

type Post struct {
 Id int
 Content string
 Author string `sql:"not null"`
 Comments []Comment
 CreatedAt time.Time
}

type Comment struct {
 Id int
 Content string
 Author string `sql:"not null"`
 PostId int `sql:"index"`
 CreatedAt time.Time
}

var Db gorm.DB

func init() {
 var err error
 Db, err = gorm.Open("postgres", "user=gwp dbname=gwp password=gwp
 ➥ sslmode=disable")
 if err != nil {
 panic(err)
 }
 Db.AutoMigrate(&Post{}, &Comment{})
}

func main() {
 post := Post{Content: "Hello World!", Author: "Sau Sheong"}
 fmt.Println(post)

 Db.Create(&post)
 fmt.Println(post)

 comment := Comment{Content: "Good post!", Author: "Joe"}
 Db.Model(&post).Association("Comments").Append(comment)

 var readPost Post
 Db.Where("author = $1", "Sau Sheong").First(&readPost)
 var comments []Comment

Listing 6.18 Using Gorm

{0 Hello World! Sau Sheong []
0001-01-01 00:00:00 +0000 UTC}

reates
a post

{1 Hello World! Sau Sheong []
2015-04-12 11:38:50.91815604 +0800 SGT}

Adds a comment

Gets comments
from a post

151Go relational mappers
 Db.Model(&readPost).Related(&comments)
fmt.Println(comments[0])
}

Note that the way that you create the database handler is similar to what you’ve been
doing all along. Also note that we no longer need to set up the database tables sepa-
rately using a setup.sql file. This is because Gorm has an automatic migration capabil-
ity that creates the database tables and keeps them updated whenever you change the
corresponding struct. When you run the program, the database tables that are needed
will be created accordingly. To run this properly you should drop the database alto-
gether and re-create it:

func init() {
 var err error
 Db, err = gorm.Open("postgres", "user=gwp dbname=gwp password=gwp

 sslmode=disable")
 if err != nil {
 panic(err)
 }
 Db.AutoMigrate(&Post{}, &Comment{})
}

The AutoMigrate method is a variadic method. A variadic method or function is a
method or function that can take one or more parameters. Here it’s called with refer-
ences to the Post and Comment structs. If you change the structs to add in a new field,
a corresponding table column will be created.

 Let’s take a look at one of the structs, Comment:

type Comment struct {
 Id int
 Content string
 Author string `sql:"not null"`
 PostId int
 CreatedAt time.Time
}

There’s a field called CreatedAt, which is of type time.Time. If you place this field in
any struct, whenever a new record is created in the database it’ll be automatically pop-
ulated. In this case, this is when the record is created.

 You’ll also notice that some of the fields have struct tags which instruct Gorm to
create and map to the correct fields. In the case of the Author field, the struct tag
`sql: "not null"` tells Gorm to create a column that’s not null.

 Also notice that unlike our previous example, you didn’t add a Post field in the
Comments struct. Instead, you placed a PostId field. Gorm automatically assumes that a
field in this form will be a foreign key and creates the necessary relationships.

 So much for the setup. Now let’s take a look at creating, and retrieving, posts and
comments. First, create a post:

post := Post{Content: "Hello World!", Author: "Sau Sheong"}
Db.Create(&post)

{1 Good post! Joe 1 2015-04-13
11:38:50.920377 +0800 SGT}

152 CHAPTER 6 Storing data
Nothing surprising here. But as you can see you’re using another construct, in this
case the database handler gorm.DB, to create the Post struct, following the Data-
Mapper pattern. This is unlike our previous example, when you called a Create
method on the Post struct, following the ActiveRecord pattern.

 If you inspect the database, you’ll see that a timestamp column, created_at, will be
populated with the date and time it was created.

 Next, you want to add a comment to the post:

comment := Comment{Content: "Good post!", Author: "Joe"}
Db.Model(&post).Association("Comments").Append(comment)

You create a comment first, and then use a combination of the Model method,
together with the Association and Append methods, to add the comment to the post.
Notice that at no time are you manually accessing the PostId.

 Finally, let’s look at how you can retrieve the post and the comment you created:

var readPost Post
Db.Where("author = $1", "Sau Sheong").First(&readPost)
var comments []Comment
Db.Model(&readPost).Related(&comments)

Again, you use the Where method on gorm.DB to look for the first record that has the
author name "Sau Sheong" and push it into the readPost variable. This will give you
the post. To get the comments, you get the post model using the Model method, and
then get the related comments into your comments variable using the Related
method.

 As mentioned earlier, what we’ve covered briefly in this section on Gorm is only a
small portion of the rich features provided by this ORM library. If you’re interested,
learn more at https://github.com/jinzhu/gorm.

 Gorm is not the only ORM library in Go. A number of equally feature-rich libraries
are available, including Beego’s ORM library and GORP (which isn’t exactly an ORM
but close enough).

 In this chapter we’ve covered the basic building blocks of writing a web applica-
tion. In the next chapter, we switch gears and discuss how we can build web services.

6.6 Summary
■ Caching data in memory using structs, which allows you to cache data for

quicker response
■ Storing and retrieving data in files, in both CSV as well as gob binary format, which

allows you to process user-uploaded data or provide backup for cached data
■ Performing CRUD on relational databases using database/sql and establishing

relationships between data
■ Using third-party data-accessing libraries, including Sqlx and Gorm, which give

you more powerful tools to manipulate data in the database

https://github.com/jinzhu/gorm

Part 3

Being real

Writing code for basic server-side web applications, which you learned in
the previous part, is only one of the many pieces of the web application puzzle.
Most modern web applications have gone beyond a basic request-response
model and evolved in many ways. Single Page Applications (SPA) provide speedy
interactivity for users while getting data from web services. Mobile applications,
native or hybrid both, do the same.

 In this final part of the book, you will learn how to write web services using
Go, that will serve SPA, mobile applications, and other web applications. You will
also learn about using one of the most powerful features of Go—concurrency.
You will learn how to add concurrency to your web applications to enhance its
performance. You will also learn about testing web applications and all the ways
Go provides support for your testing needs.

 The book wraps up with showing you ways of deploying your web application,
from copying the executable binaries to the intended server, to pushing your
web applications to the cloud.

154 CHAPTER

Go web services
Web services, as you’ll recall from our brief discussion in chapter 1, provide a ser-
vice to other software programs. This chapter expands on this and shows how you
can use Go to write or consume web services. You’ll learn how to create and parse
XML and JSON first, because these are the most frequently used data formats with
web services. We’ll also discuss SOAP and RESTful services before going through the
steps for creating a simple web service in JSON.

7.1 Introducing web services
One of the more popular uses of Go is in writing web services that provide services
and data to other web services or applications. Web services, at a basic level, are
software programs that interact with other software programs. In other words,
instead of having a human being as the end user, a web service has a software

This chapter covers
■ Using RESTful web services
■ Creating and parsing XML with Go
■ Creating and parsing JSON with Go
■ Writing Go web services
155

156 CHAPTER 7 Go web services
program as the end user. Web services, as the name suggests, communicate over HTTP
(see figure 7.1).

 Interestingly, though web applications are generally not solidly defined, you can
find a definition of web services in a Web Services Architecture document by a W3C
working group:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable for-
mat (specifically WSDL). Other systems interact with the Web service in a manner pre-
scribed by its description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.

Web Service Architecture, February 11, 2004

From this description it appears as if all web services are SOAP-based. In reality, there
are different types of web services, including SOAP-based, REST-based, and XML-RPC-
based. The two most popular types are REST-based and SOAP-based. SOAP-based web
services are mostly being used in enterprise systems; REST-based web services are more
popular in publicly available web services. (We’ll discuss them later in this chapter.)

SOAP-based and REST-based web services perform the same function, but each has
its own strengths. SOAP-based web services have been around for a while, have been
standardized by a W3C working group, and are very well documented. They’re well
supported by the enterprise and have a large number of extensions (collectively
known as the WS-* because they mostly start with WS; for example, WS-Security and
WS-Addressing). SOAP-based services are robust, are explicitly described using WSDL
(Web Service Definition Language), and have built-in error handling. Together with

Web
applicationUser Browser

HTTP

Web
service

HTTP

Web
application

Figure 7.1 Comparing a web application
with a web service

157Introducing SOAP-based web services
UDDI (Universal Description, Discovery, and Integration—a directory service), SOAP-
based services can also be discovered.

SOAP is known to be cumbersome and unnecessarily complex. The SOAP XML
messages can grow to be verbose and difficult to troubleshoot, and you may often
need other tools to manage them. SOAP-based web services also can be heavy to pro-
cess because of the additional overhead. WSDL, while providing a solid contract
between the client and server, can become burdensome because every change in the
web service requires the WSDL and therefore the SOAP clients to be changed. This
often results in version lock-in as the developers of the web service are wary of making
even the smallest changes.

REST-based web services are a lot more flexible. REST isn’t an architecture in itself
but a design philosophy. It doesn’t require XML, and very often REST-based web ser-
vices use simpler data formats like JSON, resulting in speedier web services. REST-
based web services are often much simpler than SOAP-based ones.

 Another difference between the two is that SOAP-based web services are function-
driven; REST-based web services are data-driven. SOAP-based web services tend to be
RPC (Remote Procedure Call) styled; REST-based web services, as described earlier,
focus on resources, and HTTP methods are the verbs working on those resources.

 ProgrammableWeb is a popular site that tracks APIs that are available publicly over
the internet. As of this writing, its database contains 12,987 publicly available APIs, of
which 2061 (or 16%) are SOAP-based and 6967 (54%) are REST-based.1 Unfortunately,
enterprises rarely publish the number of internal web services, so that figure is diffi-
cult to confirm.

 Many developers and companies end up using both SOAP- and REST-based web ser-
vices at the same time but for different purposes. In these cases, SOAP is used in internal
applications for enterprise integration and REST is used for external, third-party devel-
opers. The advantage of this strategy is that both the strengths of REST (speed and sim-
plicity) and SOAP (security and robustness) can be used where they’re most effective.

7.2 Introducing SOAP-based web services
SOAP is a protocol for exchanging structured data that’s defined in XML. SOAP was
originally an acronym for Simple Object Access Protocol, terminology that is a misno-
mer today, as it’s no longer considered simple and it doesn’t deal with objects either.
In the latest version, the SOAP 1.2 specification, the protocol officially became simply
SOAP. SOAP is usable across different networking protocols and is independent of pro-
gramming models.

SOAP is highly structured and heavily defined, and the XML used for the transpor-
tation of the data can be complex. Every operation and input or output of the service
is clearly defined in the WSDL. The WSDL is the contract between the client and the
server, defining what the service provides and how it’s provided.

1 Refer to www.programmableweb.com/category/all/apis?data_format=21176 for SOAP-based APIs and
www.programmableweb.com/category/all/apis?data_format=21190 for REST-based APIs.

http://www.programmableweb.com/category/all/apis?data_format=21176
http://www.programmableweb.com/category/all/apis?data_format=21190

158 CHAPTER 7 Go web services
 In this chapter we’ll focus more on REST-based web services, but you should under-
stand how SOAP-based web services work for comparison purposes.

SOAP places its message content into an envelope, like a shipping container, and
it’s independent of the actual means of transporting the data from one place to
another. In this book, we’re only looking at SOAP web services, so we’re referring to
SOAP messages being moved around using HTTP.

 Here’s a simplified example of a SOAP request message:

POST /GetComment HTTP/1.1
Host: www.chitchat.com
Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body xmlns:m="http://www.chitchat.com/forum">
 <m:GetCommentRequest>
 <m:CommentId>123</m:CommentId>
 </m:GetCommentRequest >
</soap:Body>
</soap:Envelope>

The HTTP headers should be familiar by now. Note Content-Type is set to
application/soap+xml. The request body is the SOAP message. The SOAP body con-
tains the request message. In the example, this is a request for a comment with the ID 123.

<m:GetCommentRequest>
 <m:CommentId>123</m:CommentId>
</m:GetCommentRequest >

This example is simplified—the actual SOAP requests are often a lot more complex.
Here’s a simplified example of a SOAP response message:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetCommentResponse>
 <m:Text>Hello World!</m:Text>
 </m:GetCommentResponse>
</soap:Body>
</soap:Envelope>

As before, the response message is within the SOAP body and is a response with the
text “Hello World!”

<m:GetCommentResponse>
 <m:Text>Hello World!</m:Text>
</m:GetCommentResponse>

159Introducing SOAP-based web services
As you may realize by now, all the data about the message is contained in the enve-
lope. For SOAP-based web services, this means that the information sent through
HTTP is almost entirely in the SOAP envelope. Also, SOAP mostly uses the HTTP POST
method, although SOAP 1.2 allows HTTP GET as well.

 Here’s what a simple WSDL message looks like. You might notice that WSDL mes-
sages can be detailed and the message can get long even for a simple service. That’s
part of the reason why SOAP-based web services aren’t as popular as REST-based web
services —in more complex web services, the WSDL messages can be complicated.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="ChitChat"
 targetNamespace="http://www.chitchat.com/forum.wsdl"
 xmlns:tns="http://www.chitchat.com/forum.wsdl"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetCommentRequest">
 <part name="CommentId" type="xsd:string"/>
 </message>
 <message name="GetCommentResponse">
 <part name="Text" type="xsd:string"/>
 </message>
 <portType name="GetCommentPortType">
 <operation name="GetComment">
 <input message="tns:GetCommentRequest"/>
 <output message="tns:GetCommentResponse"/>
 </operation>
 </portType>
 <binding name="GetCommentBinding" type="tns:GetCommentPortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetComment">
 <soap:operation soapAction="getComment"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="GetCommentService" >
 <documentation>
 Returns a comment
 </documentation>
 <port name="GetCommentPortType" binding="tns:GetCommentBinding">
 <soap:address location="http://localhost:8080/GetComment"/>
 </port>
 </service>
</definitions>

The WSDL message defines a service named GetCommentService, with a port named
GetCommentPortType that’s bound to the binding GetCommentsBinding. The service is
defined at the location http://localhost:8080/GetComment.

160 CHAPTER 7 Go web services
 <service name="GetCommentService" >
 <documentation>
 Returns a comment
 </documentation>
 <port name="GetCommentPortType" binding="tns:GetCommentBinding">
 <soap:address location="http://localhost:8080/GetComment"/>
 </port>
 </service>

The rest of the message gets into the details of service. The port GetCommentPortType
is defined with a single operation called GetComment that has an input message,
GetCommentRequest, and an output message, GetCommentResponse.

 <portType name="GetCommentPortType">
 <operation name="GetComment">
 <input message="tns:GetCommentRequest"/>
 <output message="tns:GetCommentResponse"/>
 </operation>
 </portType>

This is followed by a definition of the messages themselves. The definition names the
message and the parts of the message and their types.

 <message name="GetCommentRequest">
 <part name="CommentId" type="xsd:string"/>
 </message>
 <message name="GetCommentResponse">
 <part name="Text" type="xsd:string"/>
 </message>

In practice, SOAP request messages are often generated by a SOAP client that’s gener-
ated from the WSDL. Similarly, SOAP response messages are often generated by a SOAP
server that’s also generated from the WSDL. What often happens is a language-specific
client (for example, a Go SOAP client) is generated from the WSDL, and this client is
used by the rest of the code to interact with the server. As a result, as long as the WSDL
is well defined, the SOAP client is usually robust. The drawback is that each time we
change the service, even for a small matter like changing the type of the return value,
the client needs to be regenerated. This can get tedious and explains why you won’t
see too many SOAP web service revisions (revisions can be a nightmare if it’s a large
web service).

 I won’t discuss SOAP-based web services in further detail in the rest of this chapter,
although I’ll show you how Go can be used to create or parse XML.

7.3 Introducing REST-based web services
REST (Representational State Transfer) is a design philosophy used in designing pro-
grams that talk to each other by manipulating resources using a standard few actions
(or verbs, as many REST people like to call them).

 In most programming paradigms, you often get work done by defining functions
that are subsequently triggered by a main program sequentially. In OOP, you do much

161Introducing REST-based web services
the same thing, except that you create models (called objects) to represent things and
you define functions (called methods) and attach them to those models, which you can
subsequently call. REST is an evolution of the same line of thought where instead of
exposing functions as services to be called, you expose the models, called resources, and
only allow a few actions (called verbs) on them.

 When used over HTTP, a URL is used to represent a resource. HTTP methods are
used as verbs to manipulate them, as listed in table 7.1.

The aha! moment that often comes to programmers who first read about REST is
when they see the mapping between the use of HTTP methods for REST with the data-
base CRUD operations. It’s important to understand that this mapping is not a 1-to-1
mapping, nor is it the only mapping. For example, you can use both POST and PUT to
create a new resource and either will be correctly RESTful.

 The main difference between POST and PUT is that for PUT, you need to know
exactly which resource it will replace, whereas a POST will create a new resource alto-
gether, with a new URL. In other words, to create a new resource without knowing the
URL, you’ll use POST but if you want to replace an existing resource, you’ll use PUT.

 As mentioned in chapter 1, PUT is idempotent and the state of the server doesn’t
change regardless of the number of times you repeat your call. If you’re using PUT to
create a resource or to modify an existing resource, only one resource is being created
at the provided URL. But POST isn’t idempotent; every time you call it, POST will cre-
ate a resource, with a new URL.

 The second aha! moment for programmers new to REST comes when they realize
that these four HTTP methods aren’t the only ones that can be used. A lesser-known
method called PATCH is often used to partially update a resource.

 This is an example of a REST request:

GET /comment/123 HTTP/1.1

Note that there’s no body associated in the GET, unlike in the corresponding SOAP
request shown here:

POST /GetComment HTTP/1.1
Host: www.chitchat.com
Content-Type: application/soap+xml; charset=utf-8

Table 7.1 HTTP methods and corresponding web services

HTTP method What to use it for Example

POST Creates a resource (where one doesn’t exist) POST /users

GET Retrieves a resource GET /users/1

PUT Updates a resource with the given URL PUT /users/1

DELETE Deletes a resource DELETE /users/1

162 CHAPTER 7 Go web services
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body xmlns:m="http://www.chitchat.com/forum">
 <m:GetCommentRequest>
 <m:CommentId>123</m:CommentId>
 </m:GetCommentRequest >
</soap:Body>
</soap:Envelope>

That’s because you’re using the GET HTTP method as the verb to get the resource (in
this case, a blog post comment). You can return the same SOAP response earlier and
it can still be considered a RESTful response because REST is concerned only about
the design of the API and not the message that’s sent. SOAP is all about the format of
the messages. It’s much more common to have REST APIs return JSON or at least a
much simpler XML than SOAP messages. SOAP messages are so much more onerous
to construct!

 Like WSDL for SOAP, REST-based web services have WADL (Web Application
Description Language) that describes REST-based web services, and even generate cli-
ents to access those services. But unlike WSDL, WADL isn’t widely used, nor is it stan-
dardized. Also, WADL has competition in other tools like Swagger, RAML (Restful API
Modeling Language), and JSON-home.

 If you’re looking at REST for the first time, you might be thinking that it’s all well
and good if we’re only talking about a simple CRUD application. What about more
complex services, or where you have to model some process or action?

 How do you activate a customer account? REST doesn’t allow you to have arbitrary
actions on the resources, and you’re more or less restricted to the list of available
HTTP methods, so you can’t have a request that looks like this:

ACTIVATE /user/456 HTTP/1.1

There are ways of getting around this problem; here are the two most common:

1 Reify the process or convert the action to a noun and make it a resource.
2 Make the action a property of the resource.

7.3.1 Convert action to a resource

Using the same example, you can convert the activate action to a resource activation.
Once you do that, you can apply your HTTP methods to this resource. For example, to
activate a user you can use this:

POST /user/456/activation HTTP/1.1

{ "date": "2015-05-15T13:05:05Z" }

This code will create an activation resource that represents the activation state of the
user. Doing this also gives the added advantage of giving the activation resource addi-
tional properties. In our example you’ve added a date to the activation resource.

163Parsing and creating XML with Go
7.3.2 Make the action a property of the resource

If activation is a simple state of the customer account, you can simply make the action
a property of the resource, and then use the PATCH HTTP method to do a partial
update to the resource. For example, you can do this:

PATCH /user/456 HTTP/1.1

{ "active" : "true" }

This code will change the active property of the user resource to true.

7.4 Parsing and creating XML with Go
Now that you’re armed with background knowledge of SOAP and RESTful web ser-
vices, let’s look at how Go can be used to create and consume them. We’ll start with
XML in this section and move on to JSON in the next.

XML is a popular markup language (HTML is another example of a markup lan-
guage) that’s used to represent data in a structured way. It’s probably the most widely
used format for representing structured data as well as for sending and receiving
structured data. XML is a formal recommendation from the W3C, and it’s defined by
W3C’s XML 1.0 specification.

 Regardless of whether you end up writing or consuming web services, knowing
how to create and parse XML is a critical part of your arsenal. One frequent use is to
consume web services from other providers or XML-based feeds like RSS. Even if you’d
never write an XML web service yourself, learning how to interact with XML using Go
will be useful to you. For example, you might need to get data from an RSS newsfeed
and use the data as part of your data source. In this case, you’d have to know how to
parse XML and extract the information you need from it.

 Parsing structured data in Go is quite similar, whether it’s XML or JSON or any
other format. To manipulate XML or JSON, you can use the corresponding XML or
JSON subpackages of the encoding library. For XML, it’s in the encoding/xml library.

7.4.1 Parsing XML

Let’s start with parsing XML, which is most likely what you’ll start doing first. In Go,
you parse the XML into structs, which you can subsequently extract the data from.
This is normally how you parse XML:

1 Create structs to contain the XML data.
2 Use xml.Unmarshal to unmarshal the XML data into the structs, illustrated in

figure 7.2.

Create structs
to store XML

Unmarshal XML
into structs Figure 7.2 Parse XML with Go by

unmarshaling XML into structs

164 CHAPTER 7 Go web services
Say you want to parse the post.xml file shown in this listing with Go.

<?xml version="1.0" encoding="utf-8"?>
<post id="1">
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
</post>

This listing shows the code to parse the simple XML file in the code file xml.go.

package main

import (
 "encoding/xml"
 "fmt"
 "io/ioutil"
 "os"
)

type Post struct { //#A
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
 Xml string `xml:",innerxml"`
}

type Author struct {
 Id string `xml:"id,attr"`
 Name string `xml:",chardata"`
}

func main() {
 xmlFile, err := os.Open("post.xml")
 if err != nil {
 fmt.Println("Error opening XML file:", err)
 return
 }
 defer xmlFile.Close()
 xmlData, err := ioutil.ReadAll(xmlFile)
 if err != nil {
 fmt.Println("Error reading XML data:", err)
 return
 }

 var post Post
 xml.Unmarshal(xmlData, &post)
 fmt.Println(post)
}

Listing 7.1 A simple XML file, post.xml

Listing 7.2 Processing XML

Defines structs to
represent the data

Unmarshals XML data
into the struct

165Parsing and creating XML with Go
You need to define two structs, Post and Author, to represent the data. Here you’ve
used an Author struct to represent an author but you didn’t use a separate Content
struct to represent the content because for Author you want to capture the id attri-
bute. If you didn’t have to capture the id attribute, you could define Post as shown
next, with a string representing an Author (in bold):

type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author string `xml:"author"`
 Xml string `xml:",innerxml"`
}

So what are those curious-looking things after the definition of each field in the Post
struct? They are called struct tags and Go determines the mapping between the struct
and the XML elements using them, shown in figure 7.3.

Struct tags are strings after each field that are a key-value pair. The key is a string and
must not have a space, a quote ("), or a colon (:). The value must be a string between
double quotes (""). For XML, the key must always be xml.

Note that because of the way Go does the mapping, the struct and all the fields in the
struct that you create must be public, which means the names need to be capitalized.
In the previous code, the struct Post can’t be just post and Content can’t be content.

Why use backticks (`) in struct tags?

If you’re wondering why backticks (`) are used to wrap around the struct tag, remember
that strings in Go are created using the double quotes (") and backticks (`). Single
quotes (') are used for runes (an int32 that represents a Unicode code point) only.
You’re already using double quotes inside the struct tag, so if you don’t want to escape
those quotes, you’ll have to use something else—hence the backticks.

type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
 Xml string `xml:",innerxml"`
}

Struct tag

ValueKey
Figure 7.3 Struct tags are used to define the mapping
between XML and a struct.

166 CHAPTER 7 Go web services
 Here are some rules for the XML struct tags:

1 To store the name of the XML element itself (normally the name of the struct is
the name of the element), add a field named XMLName with the type xml.Name.
The name of the element will be stored in that field.

2 To store the attribute of an XML element, define a field with the same name as
that attribute and use the struct tag `xml:"<name>,attr"`, where <name> is the
name of the XML attribute.

3 To store the character data value of the XML element, define a field with the
same name as the XML element tag, and use the struct tag `xml:",chardata"`.

4 To get the raw XML from the XML element, define a field (using any name) and
use the struct tag `xml:",innerxml"`.

5 If there are no mode flags (like ,attr or ,chardata or ,innerxml) the struct
field will be matched with an XML element that has the same name as the
struct’s name.

6 To get to an XML element directly without specifying the tree structure to get to
that element, use the struct tag `xml:"a>b>c"`, where a and b are the interme-
diate elements and c is the node that you want to get to.

Admittedly the rules can be a bit difficult to understand, especially the last couple. So
let’s look at some examples.

 First let’s look at the XML element post and the corresponding struct Post:

<post id="1">
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
</post>

Compare it with this:

type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
 Xml string `xml:",innerxml"`
}

Here you defined a struct Post with the same name XML element post. Although this
is fine, if you wanted to know the name of the XML element, you’d be lost. Fortu-
nately, the xml library provides a mechanism to get the XML element name by defin-
ing a struct field named XMLName with the type xml.Name. You’d also need to map this
struct field to the element itself, in this case `xml:"post"`. Doing so stores the name
of the element, post, into the field according to rule 1 in our list: to store the name of
the XML element itself, you add a field named XMLName with the type xml.Name.

Listing 7.3 Simple XML element representing a Post

167Parsing and creating XML with Go
 The post XML element also has an attribute named id, which is mapped to the
struct field Id by the struct tag`xml:"id,attr"`. This corresponds to our second rule:
to store the attribute of an XML element, you use the struct tag `xml:"<name>,attr"`.

 You have the XML subelement content, with no attributes, but character data Hello
World! You map this to the Content struct field in the Post struct using the struct tag
`xml:"content"`. This corresponds to rule 5: if there are no mode flags the struct field
will be matched with an XML element that has the same name as the struct’s name.

 If you want to have the raw XML within the XML element post, you can define a
struct field, Xml, and use the struct tag `xml:",innerxml"` to map it to the raw XML
within the post XML element:

<content>Hello World!</content>
<author id="2">Sau Sheong</author>

This corresponds to rule 4: to get the raw XML from the XML element, use the struct
tag `xml:",innerxml"`. You also have the XML subelement author, which has an
attribute id, and its subelement consists of character data Sau Sheong. To map this
properly, you need to have another struct, Author:

type Author struct {
 Id string `xml:"id,attr"`
 Name string `xml:",chardata"`
}

Map the subelement to this struct using the struct tag `xml:"author"`, as described
in rule 5. In the Author struct, map the attribute id to the struct field Id with
`xml:"id,attr"` and the character data Sau Sheong to the struct field Name with
`xml:",chardata"` using rule 3.

 We’ve discussed the program but nothing beats running it and seeing the results.
So let’s give it a spin and run the following command on the console:

go run xml.go

You should see the following result:

{{ post} 1 Hello World! {2 Sau Sheong}
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
}

Let’s break down these results. The results are wrapped with a pair of braces ({})
because post is a struct. The first field in the post struct is another struct of type
xml.Name, represented as { post }. Next, the number 1 is the Id, and "Hello
World!" is the content. After that is the Author, which is again another struct, {2 Sau
Sheong}. Finally, the rest of the output is simply the inner XML.

 We’ve covered rules 1–5. Now let’s look at how rule 6 works. Rule 6 states that to
get to an XML element directly without specifying the tree structure, use the struct tag
`xml:"a>b>c"`, where a and b are the intermediate elements and c is the node that
you want to get to.

168 CHAPTER 7 Go web services
 The next listing is another example XML file, with the same name post.xml, show-
ing how you can parse it.

<?xml version="1.0" encoding="utf-8"?>
<post id="1">
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
 <comments>
 <comment id="1">
 <content>Have a great day!</content>
 <author id="3">Adam</author>
 </comment>
 <comment id="2">
 <content>How are you today?</content>
 <author id="4">Betty</author>
 </comment>
 </comments>
</post>

Most of the XML file is similar to listing 7.3, except now you have an XML subelement,
comments (in bold), which is a container of multiple XML subelements comment. In
this case, you want to get the list of comments in the post, but creating a struct
Comments to contain the list of comments seems like overkill. To simplify, you’ll use
rule 6 to leap-frog over the comments XML subelement. Rule 6 states that to get to an
XML element directly without specifying the tree structure, you can use the struct tag
`xml:"a>b>c"`. The next listing shows the modified Post struct with the new struct
field and the corresponding mapping struct tag.

type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
 Xml string `xml:",innerxml"`
 Comments []Comment `xml:"comments>comment"`
}

To get a list of comments, you’ve specified the type of the Comments struct field to be a
slice of Comment structs (shown in bold). You also map this field to the comment XML
subelement using the struct tag `xml:"comments>comment"`. According to rule 6, this
will allow you to jump right into the comment subelement and bypass the comments
XML element.

 Here’s the code for the Comment struct, which is similar to the Post struct:

type Comment struct {
 Id string `xml:"id,attr"`

Listing 7.4 XML file with nested elements

Listing 7.5 Post struct with comments struct field

169Parsing and creating XML with Go
 Content string `xml:"content"`
 Author Author `xml:"author"`
}

Now that you’ve defined the structs and the mapping, you can unmarshal the XML file
into your structs. The input to the Unmarshal function is a slice of bytes (better known
as a string), so you need to convert the XML file to a string first. Remember that the
XML file should be in the same directory as your Go file.

xmlFile, err := os.Open("post.xml")
if err != nil {
 fmt.Println("Error opening XML file:", err)
 return
}
defer xmlFile.Close()
xmlData, err := ioutil.ReadAll(xmlFile)
if err != nil {
 fmt.Println("Error reading XML data:", err)
 return
}

Unmarshaling XML data can be a simple one-liner (two lines, if you consider defining
the variable a line of its own):

var post Post
xml.Unmarshal(xmlData, &post)

If you have experience in parsing XML in other programming languages, you know that
this works well for smaller XML files but that it’s not efficient for processing XML that’s
streaming in or even in large XML files. In this case, you don’t use the Unmarshal func-
tion and instead use the Decoder struct (see figure 7.4) to manually decode the XML
elements. Listing 7.6 is a look at the same example, but using Decoder.

package main

import (
 "encoding/xml"
 "fmt"
 "io"
 "os"
)

Listing 7.6 Parsing XML with Decoder

Create structs
to store XML

Create decoder
for decoding XML

Iterate through
XML and decode

into structs

Figure 7.4 Parsing XML with Go by decoding XML into structs

170 CHAPTER 7 Go web services

It
th

XM
in de
type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
 Xml string `xml:",innerxml"`
 Comments []Comment `xml:"comments>comment"`
}

type Author struct {
 Id string `xml:"id,attr"`
 Name string `xml:",chardata"`
}

type Comment struct {
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
}

func main() {
 xmlFile, err := os.Open("post.xml")
 if err != nil {
 fmt.Println("Error opening XML file:", err)
 return
 }
 defer xmlFile.Close()

 decoder := xml.NewDecoder(xmlFile)
 for {
 t, err := decoder.Token()
 if err == io.EOF {
 break
 }
 if err != nil {
 fmt.Println("Error decoding XML into tokens:", err)
 return
 }

 switch se := t.(type) {
 case xml.StartElement:
 if se.Name.Local == "comment" {
 var comment Comment
 decoder.DecodeElement(&comment, &se)
 }
 }
 }
}

The various structs and their respective mappings remain the same. The difference is
that you’ll be using the Decoder struct to decode the XML, element by element,
instead of unmarshaling the entire XML as a string.

 First, you need to create a Decoder, which you can do by using the NewDecoder
function and passing in an io.Reader. In this case use the xmlFile you got using
os.Open earlier on.

Creates decoder
from XML data

erates
rough
L data
coder

Gets token from decoder
at each iteration

Checks type
of token

Decodes XML data
into struct

171Parsing and creating XML with Go
 Once you have the decoder, use the Token method to get the next token in the
XML stream. A token in this context is an interface that represents an XML element.
What you want to do is to continually take tokens from the decoder until you run out.
So let’s wrap the action of taking tokens from the decoder in an infinite for loop that
breaks only when you run out of tokens. When that happens, err will not be nil.
Instead it will contain the io.EOF struct, signifying that it ran out of data from the file
(or data stream).

 As you’re taking the tokens from the decoder, you’ll inspect them and check
whether they’re StartElements. A StartElement represents the start tag of an XML ele-
ment. If the token is a StartElement, check if it’s a comment XML element. If it is, you
can decode the entire token into a Comment struct and get the same results as before.

 Decoding the XML file manually takes more effort and isn’t worth it if it’s a small
XML file. But if you get XML streamed to you, or if it’s a very large XML file, it’s the
only way of extracting data from the XML.

 A final note before we discuss creating XML: the rules described in this section are
only a portion of the list. For details on all the rules, refer to the xml library documen-
tation, or better yet, read the source xml library source code.

7.4.2 Creating XML

The previous section on parsing XML was a lengthy one. Fortunately, most of what you
learned there is directly applicable to this section. Creating XML is the reverse of pars-
ing XML. Where you unmarshal XML into Go structs, you now marshal Go structs into
XML. Similarly, where you decode XML into Go structs, you now encode Go structs
into XML, shown in figure 7.5.

 Let’s start with marshaling. The code in the file xml.go, shown in listing 7.7, will
generate an XML file named post.xml.

package main

import (
 "encoding/xml"
 "fmt"
 "io/ioutil"
)

type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`

Listing 7.7 Using the Marshal function to generate an XML file

Marshal structs
into XML data

Create structs
and populate

with data Figure 7.5 Create XML with Go by creating
structs and marshaling them into XML

172 CHAPTER 7 Go web services
 Content string `xml:"content"`
 Author Author `xml:"author"`
}

type Author struct {
 Id string `xml:"id,attr"`
 Name string `xml:",chardata"`
}

func main() {
 post := Post{
 Id: "1",
 Content: " Hello World!",
 Author: Author{
 Id: "2",
 Name: "Sau Sheong",
 },
 }
 output, err := xml.Marshal(&post)
 if err != nil {
 fmt.Println("Error marshalling to XML:", err)
 return
 }
 err = ioutil.WriteFile("post.xml", output, 0644)
 if err != nil {
 fmt.Println("Error writing XML to file:", err)
 return
 }

}

As you can see, the structs and the struct tags are the same as those you used when
unmarshaling the XML. Marshaling simply reverses the process and creates XML from
a struct. First, you populate the struct with data. Then, using the Marshal function
you create the XML from the Post struct. Here’s the content of the post.xml file
that’s created:

<post id="1"><content>Hello World!</content><author id="2">Sau Sheong
</author></post>

It’s not the prettiest, but it’s correctly formed XML. If you want to make it look pret-
tier, use the MarshalIndent function:

output, err := xml.MarshalIndent(&post, "", "\t")

The first parameter you pass to MarshalIndent is still the same, but you have two addi-
tional parameters. The second parameter is the prefix to every line and the third
parameter is the indent, and every level of indentation will be prefixed with this.
Using MarshalIndent, you can produce prettier output:

<post id="1">
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
</post>

Creates struct
with data

Marshals struct to a
byte slice of XML data

173Parsing and creating XML with Go
Still, it doesn’t look right. We don’t have the XML declaration. Although Go doesn’t
create the XML declaration for you automatically, it does provide a constant
xml.Header that you can use to attach to the marshaled output:

err = ioutil.WriteFile("post.xml", []byte(xml.Header + string(output)), 0644)

Prefix the output with xml.Header and then write it to post.xml, and you’ll have the
XML declaration:

<?xml version="1.0" encoding="UTF-8"?>
<post id="1">
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
</post>

Just as you manually decoded the XML into Go structs, you can also manually encode
Go structs into XML (see figure 7.6). Listing 7.8 shows a simple example.

package main

import (
 "encoding/xml"
 "fmt"
 "os"
)

type Post struct {
 XMLName xml.Name `xml:"post"`
 Id string `xml:"id,attr"`
 Content string `xml:"content"`
 Author Author `xml:"author"`
}

type Author struct {
 Id string `xml:"id,attr"`
 Name string `xml:",chardata"`
}

func main() {
 post := Post{
 Id: "1",
 Content: "Hello World!",

Listing 7.8 Manually encoding Go structs to XML

Create structs
and populate

with data

Encode structs
into the XML file
using encoder

Create encoder to
encode structs

Create XML file to
store XML data

Figure 7.6 Create XML with Go by creating structs and encoding them into XML using an encoder

Creates struct
with data

174 CHAPTER 7 Go web services
 Author: Author{
 Id: "2",
 Name: "Sau Sheong",
 },
 }

 xmlFile, err := os.Create("post.xml")
 if err != nil {
 fmt.Println("Error creating XML file:", err)
 return
 }
 encoder := xml.NewEncoder(xmlFile)
 encoder.Indent("", "\t")
 err = encoder.Encode(&post)
 if err != nil {
 fmt.Println("Error encoding XML to file:", err)
 return
 }
}

As before, you first create the post struct to be encoded. To write to a file, you need to
create the file using os.Create. The NewEncoder function creates a new encoder that
wraps around your file. After setting up the indentation you want, use the encoder’s
Encode method, passing a reference to the post struct. This will create the XML file
post.xml:

<post id="1">
 <content>Hello World!</content>
 <author id="2">Sau Sheong</author>
</post>

You’re done with parsing and creating XML, but note that this chapter discussed only
the basics of parsing and creating XML. For more detailed information, see the docu-
mentation or the source code. (It’s not as daunting as it sounds.)

7.5 Parsing and creating JSON with Go
JavaScript Serialized Object Notation (JSON) is a lightweight, text-based data format
based on JavaScript. The main idea behind JSON is that it’s easily read by both humans
and machines. JSON was originally defined by Douglas Crockford, but is currently
described by RFC 7159, as well as ECMA-404. JSON is popularly used in REST-based web
services, although they don’t necessarily need to accept or return JSON data.

 If you’re dealing with RESTful web services, you’ll likely encounter JSON in one
form or another, either creating or consuming JSON. Consuming JSON is common-
place in many web applications, from getting data from a web service, to authenticat-
ing your web application through a third-party authentication service, to controlling
other services.

 Creating JSON is equally common. Go is used in many cases to create web service
backends for frontend applications, including JavaScript-based frontend applications
running on JavaScript libraries such as React.js and Angular.js. Go is also used to

Creates XML file
to store data

Creates encoder
with XML file

Encodes struct into file

175Parsing and creating JSON with Go
create web services for Internet of Things (IoT) and wearables such as smart watches.
In many of these cases, these frontend applications are developed using JSON, and the
most natural way to interact with a backend application is through JSON.

 As with Go’s support for XML, Go’s support for JSON is from the encoding/json
library. As before we’ll look into parsing JSON first, and then we’ll see how to create
JSON data.

7.5.1 Parsing JSON

The steps for parsing JSON data are similar to those for parsing XML. You parse the
JSON into structs, from which you can subsequently extract the data. This is normally
how you parse JSON:

1 Create structs to contain the JSON data.
2 Use json.Unmarshal to unmarshal the JSON data into the structs (see

figure 7.7).

The rules for mapping the structs to JSON using struct tags are easier than with XML.
There is only one common rule for mapping. If you want to store the JSON value,
given the JSON key, you create a field in the struct (with any name) and map it with
the struct tag `json:"<name>"`, where <name> is the name of the JSON key. Let’s see
in action.

 The following listing shows the JSON file, post.json, that you’ll be parsing. The data
in this file should be familiar to you—it’s the same data you used for the XML parsing.

{
 "id" : 1,
 "content" : "Hello World!",
 "author" : {
 "id" : 2,
 "name" : "Sau Sheong"
 },
 "comments" : [
 {
 "id" : 3,
 "content" : "Have a great day!",
 "author" : "Adam"
 },
 {
 "id" : 4,

Listing 7.9 JSON file for parsing

Create structs to
store JSON

Unmarshal JSON
into structs

Figure 7.7 Parse JSON with Go by
creating structs and unmarshaling
JSON into the structs.

176 CHAPTER 7 Go web services
 "content" : "How are you today?",
 "author" : "Betty"
 }
]
}

The next listing contains the code that will parse the JSON into the respective structs,
in a json.go file. Notice that the structs themselves aren’t different.

package main

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
 "os"
)

type Post struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author Author `json:"author"`
 Comments []Comment `json:"comments"`
}

type Author struct {
 Id int `json:"id"`
 Name string `json:"name"`
}

type Comment struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author string `json:"author"`
}

func main() {
 jsonFile, err := os.Open("post.json")
 if err != nil {
 fmt.Println("Error opening JSON file:", err)
 return
 }
 defer jsonFile.Close()
 jsonData, err := ioutil.ReadAll(jsonFile)
 if err != nil {
 fmt.Println("Error reading JSON data:", err)
 return
 }

 var post Post
 json.Unmarshal(jsonData, &post)
 fmt.Println(post)
}

Listing 7.10 JSON file for parsing

Defines structs to
represent the data

Unmarshals JSON data
into the struct

177Parsing and creating JSON with Go

Dec
JSON

into s
You want to map the value of the key id to the Post struct’s Id field, so we append the
struct tag `json:"id"` after the field. This is pretty much what you need to do to map
the structs to the JSON data. Notice that you nest the structs (a post can have zero or
more comments) through slices. As before in XML parsing, unmarshaling is done with
a single line of code—simply a function call.

 Let’s run our JSON parsing code and see the results. Run this at the console:

go run json.go

You should see the following results:

{1 Hello World! {2 Sau Sheong} [{3 Have a great day! Adam} {4 How are you
today? Betty}]}

We looked at unmarshaling using the Unmarshal function. As in XML parsing, you can
also use Decoder to manually decode JSON into the structs for streaming JSON data.
This is shown in figure 7.8 and listing 7.11.

jsonFile, err := os.Open("post.json")
if err != nil {
 fmt.Println("Error opening JSON file:", err)
 return
}
defer jsonFile.Close()

decoder := json.NewDecoder(jsonFile)
for {
 var post Post
 err := decoder.Decode(&post)
 if err == io.EOF {
 break
 }
 if err != nil {
 fmt.Println("Error decoding JSON:", err)
 return
 }
 fmt.Println(post)
}

Here you use NewDecoder, passing in an io.Reader containing the JSON data, to cre-
ate a new decoder. When a reference to the post struct is passed into the Decode
method, the struct will be populated with the data and will be ready for use. Once the

Listing 7.11 Parsing JSON using Decoder

Iterate through
JSON and decode

into structs

Create decoder
for decoding

JSON

Create structs to
store JSON

Figure 7.8 Parse XML with Go by decoding JSON into structs

Creates decoder
from JSON data

Iterates until EOF
is detected

odes
 data
truct

178 CHAPTER 7 Go web services
data runs out, the Decode method returns an EOF, which you can check and then exit
the loop.

 Let’s run our JSON decoder and see the results. Run this at the console:

go run json.go

You should see the following results.

{1 Hello World! {2 Sau Sheong} [{1 Have a great day! Adam} {2 How are you

➥ today? Betty}]}

So when do we use Decoder versus Unmarshal? That depends on the input. If your
data is coming from an io.Reader stream, like the Body of an http.Request, use
Decoder. If you have the data in a string or somewhere in memory, use Unmarshal.

7.5.2 Creating JSON

We just went through parsing JSON, which as you can see, is very similar to parsing
XML. Creating JSON is also is similar to creating XML (see figure 7.9).

This listing contains the code for marshaling the Go structs to JSON.

package main

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
)

type Post struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author Author `json:"author"`
 Comments []Comment `json:"comments"`
}

type Author struct {
 Id int `json:"id"`
 Name string `json:"name"`
}

type Comment struct {
 Id int `json:"id"`

Listing 7.12 Marshaling structs to JSON

Create structs
and populate

with data

Marshall structs
into JSON data Figure 7.9 Create JSON with Go by creating structs

and marshaling them into JSON data.

Creates struct
with data

179Parsing and creating JSON with Go

 Content string `json:"content"`
 Author string `json:"author"`
}

func main() {
 post := Post{
 Id: 1,
 Content: "Hello World!",
 Author: Author{
 Id: 2,
 Name: "Sau Sheong",
 },
 Comments: []Comment{
 Comment{
 Id: 3,
 Content: "Have a great day!",
 Author: "Adam",
 },
 Comment{
 Id: 4,
 Content: "How are you today?",
 Author: "Betty",
 },
 },
 }

 output, err := json.MarshalIndent(&post, "", "\t\t")
 if err != nil {
 fmt.Println("Error marshalling to JSON:", err)
 return
 }
 err = ioutil.WriteFile("post.json", output, 0644)
 if err != nil {
 fmt.Println("Error writing JSON to file:", err)
 return
 }
}

As before, the structs are the same as when you’re parsing JSON. First, you create the
struct. Then you call the MarshalIndent function (which works the same way as the
one in the xml library) to create the JSON data in a slice of bytes. You can then save the
output to file if you want to.

 Finally, as in creating XML, you can create JSON manually from the Go structs
using an encoder, shown in figure 7.10.

Marshals struct to byte
slice of JSON data

Create structs
and populate

with data

Encode structs
into the XML file
using encoder

Create encoder
to encode

JSON

Create JSON
file to store
JSON data

Figure 7.10 Create JSON with Go by creating structs and encoding them into JSON using an
encoder.

180 CHAPTER 7 Go web services
The code in this listing, also in json.go, will generate JSON from the Go structs.

package main

import (
 "encoding/json"
 "fmt"
 "io"
 "os"
)

type Post struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author Author `json:"author"`
 Comments []Comment `json:"comments"`
}

type Author struct {
 Id int `json:"id"`
 Name string `json:"name"`
}

type Comment struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author string `json:"author"`
}

func main() {

 post := Post{
 Id: 1,
 Content: "Hello World!",
 Author: Author{
 Id: 2,
 Name: "Sau Sheong",
 },
 Comments: []Comment{
 Comment{
 Id: 3,
 Content: "Have a great day!",
 Author: "Adam",
 },
 Comment{
 Id: 4,
 Content: "How are you today?",
 Author: "Betty",
 },
 },
 }

Listing 7.13 Creating JSON from structs using Encoder

Creates struct
with data

181Creating Go web services

Enc
s

int
 jsonFile, err := os.Create("post.json")
 if err != nil {
 fmt.Println("Error creating JSON file:", err)
 return
 }
 encoder := json.NewEncoder(jsonFile)
 err = encoder.Encode(&post)
 if err != nil {
 fmt.Println("Error encoding JSON to file:", err)
 return
 }
}

As before, you create a JSON file to store the JSON that’s generated. You use this file to
create an encoder using the NewEncoder function. Then you call the Encode method
on the encoder and pass it a reference to the post struct. This will extract the data
from the struct and create JSON data, which is then written to the writer you passed in
earlier.

 This wraps up the sections on parsing and creating XML and JSON. Going through
these sections seems like plodding through similar patterns, but it provides you with
the grounding you need for the next section, where you’ll create a Go web service.

7.6 Creating Go web services
Creating a Go web service is relatively pain-free. If you’ve arrived here after going
through the earlier chapters and the earlier sections in this chapter, the rest should
just click and lightbulbs should start flickering on.

 You’re going to build a simple REST-based web service that allows you to create,
retrieve, update, and retrieve forum posts. Another way of looking at it is you’re wrap-
ping a web service interface over the CRUD functions you built in chapter 6. You’ll be
using JSON as the data transport format. This simple web service will be reused to
explain other concepts in the following chapters.

 First, let’s look at the database operations that you’ll need. Essentially you’re going
to reuse—but simplify—the code from section 6.4. The code you need is placed in a
file named data.go, shown in the following listing, with the package name main. The
code isolates what you need to do with the database.

package main

import (
 "database/sql"
 _ "github.com/lib/pq"
)

var Db *sql.DB

func init() {

Listing 7.14 Accessing the database with data.go

Creates JSON file
to store data

Creates encoder
with JSON fileodes

truct
o file

Connects to the Db

182 CHAPTER 7 Go web services

Up
a

 var err error
 Db, err = sql.Open("postgres", "user=gwp dbname=gwp password=gwp ssl-

mode=disable")
 if err != nil {
 panic(err)
 }
}

func retrieve(id int) (post Post, err error) {
 post = Post{}
 err = Db.QueryRow("select id, content, author from posts where id = $1",

id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

func (post *Post) create() (err error) {
 statement := "insert into posts (content, author) values ($1, $2) return-

ing id"
 stmt, err := Db.Prepare(statement)
 if err != nil {
 return
 }
 defer stmt.Close()
 err = stmt.QueryRow(post.Content, post.Author).Scan(&post.Id)
 return
}

func (post *Post) update() (err error) {
 _, err = Db.Exec("update posts set content = $2, author = $3 where id =

$1", post.Id, post.Content, post.Author)
 return
}

func (post *Post) delete() (err error) {
 _, err = Db.Exec("delete from posts where id = $1", post.Id)
 return
}

As you can see, the code is similar to that of listing 6.6, with slightly different function
and method names, so we won’t go through it again. If you need a refresher, please
flip back to section 6.4.

 Now that you can do CRUD on the database, let’s turn to the actual web service.
The next listing shows the entire web service in a server.go file.

package main

import (
 "encoding/json"
 "net/http"
 "path"
 "strconv"
)

Listing 7.15 Go web service in server.go

 Gets a single post

Creates a new post

dates
 post

Deletes a post

183Creating Go web services

 to
t to

tion

Retri

Cre
type Post struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author string `json:"author"`
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/post/", handleRequest)
 server.ListenAndServe()
}

func handleRequest(w http.ResponseWriter, r *http.Request) {
 var err error
 switch r.Method {
 case "GET":
 err = handleGet(w, r)
 case "POST":
 err = handlePost(w, r)
 case "PUT":
 err = handlePut(w, r)
 case "DELETE":
 err = handleDelete(w, r)
 }
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }
}

func handleGet(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 output, err := json.MarshalIndent(&post, "", "\t\t")
 if err != nil {
 return
 }
 w.Header().Set("Content-Type", "application/json")
 w.Write(output)
 return
}

func handlePost(w http.ResponseWriter, r *http.Request) (err error) {
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 var post Post

Handler function
multiplex reques
the correct func

eves
post

ates
post

184 CHAPTER 7 Go web services

s

Del
 json.Unmarshal(body, &post)
 err = post.create()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

func handlePut(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 json.Unmarshal(body, &post)
 err = post.update()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

func handleDelete(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 err = post.delete()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

The structure of the code is straightforward. You use a single handler function called
handleRequest that will multiplex to different CRUD functions according to the
method that was used. Each of the called functions takes in a ResponseWriter and a
Request while returning an error, if any. The handleRequest handler function will
also take care of any errors that are floated up from the request, and throw a 500 sta-
tus code (StatusInternalServerError) with the error description, if there’s an error.

Update
post

etes
post

185Creating Go web services

Cre

of b
 Let’s delve into the details and start by creating a post, shown in this listing.

func handlePost(w http.ResponseWriter, r *http.Request) (err error) {
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 var post Post
 json.Unmarshal(body, &post)
 err = post.create()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

First, you create a slice of bytes with the correct content length size, and read the con-
tents of the body (which is a JSON string) into it. Next, you declare a Post struct and
unmarshal the content into it. Now that you have a Post struct with the fields popu-
lated, you call the create method on it to save it to the database.

 To call the web service, you’ll be using cURL (see chapter 3). Run this command
on the console:

curl -i -X POST -H "Content-Type: application/json" -d '{"content":"My
[CA} first post","author":"Sau Sheong"}' http://127.0.0.1:8080/post/

You’re using the POST method and setting the Content-Type header to application/
json. A JSON string request body is sent to the URL http://127.0.0.1/post/. You
should see something like this:

HTTP/1.1 200 OK
Date: Sun, 12 Apr 2015 13:32:14 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8

This doesn’t tell us anything except that the handler function didn’t encounter any
errors. Let’s peek into the database by running this single line SQL query from the
console:

psql -U gwp -d gwp -c "select * from posts;"

You should see this:

 id | content | author
----+---------------+------------
 1 | My first post | Sau Sheong
(1 row)

In each of the handler functions (except for the create handler function, postPost),
you assume the URL will contain the id to the targeted post. For example, when

Listing 7.16 Function that creates a post

ates
slice
ytes

Reads request
body into slice

Unmarshals slice
into Post struct

Creates database
record

http://127.0.0.1/post/

186 CHAPTER 7 Go web services
you want to retrieve a post, you assume the web service will be called by a request to
a URL:

/post/<id>

where <id> is the id of the post. The next listing shows how this works in retrieving
the post.

func handleGet(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 output, err := json.MarshalIndent(&post, "", "\t\t")
 if err != nil {
 return
 }
 w.Header().Set("Content-Type", "application/json")
 w.Write(output)
 return
}

You extract the URL’s path, and then get the id using the path.Base function. The id
is a string, but you need an integer to retrieve the post, so you convert it into an inte-
ger using strconv.Atoi. Once you have the id, you can use the retrievePost func-
tion, which gives you a Post struct that’s filled with data.

 Next, you convert the Post struct into a JSON-formatted slice of bytes using
the json.MarshalIndent function. Then you set the Content-Type header to
application/json and write the bytes to the ResponseWriter to be returned to the
calling program.

 To see how this works, run this command on the console:

curl -i -X GET http://127.0.0.1:8080/post/1

This tells you to use the GET method on the URL, with the id 1. The results would be
something like this:

HTTP/1.1 200 OK
Content-Type: application/json
Date: Sun, 12 Apr 2015 13:32:18 GMT
Content-Length: 69

{
 "id": 1,
 "content": "My first post",
 "author": "Sau Sheong"
}

Listing 7.17 Function that retrieves a post

Gets data from database
into Post struct

Marshals the Post
struct into JSON string

Writes JSON to
ResponseWriter

187Creating Go web services
You need the results when updating the post too, shown in this listing.

func handlePut(w http.ResponseWriter, r *http.Request) (err error) {
id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 json.Unmarshal(body, &post)
 err = post.update()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

Updating the post involves retrieving the post and then updating its information with
the information sent through the PUT request. Once you’ve retrieved the post, you
read the body of the request, and then unmarshal the contents into the retrieved post
and call the update method on it.

 To see this in action, run this command through the console:

curl -i -X PUT -H "Content-Type: application/json" -d '{"content":"Updated

➥ post","author":"Sau Sheong"}' http://127.0.0.1:8080/post/1

Note that unlike when you’re creating the post using POST, you need to send in the id
of the post you want to update through the URL. You should see something like this:

HTTP/1.1 200 OK
Date: Sun, 12 Apr 2015 14:29:39 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8

Now check the database and see what you have. Run this single line SQL query from
the console again:

psql -U gwp -d gwp -c "select * from posts;"

You should see this:

 id | content | author
----+--------------+------------
 1 | Updated post | Sau Sheong
(1 row)

Listing 7.18 Function that updates a post

Gets data from the database
into Post struct

Reads JSON data
from request body Unmarshals JSON data

into Post struct

Updates the
database

188 CHAPTER 7 Go web services
Deleting the post through the web service, shown in the following listing, involves sim-
ply retrieving the post and calling the delete method on it.

func handleDelete(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 err = post.delete()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

Notice that in both updating and deleting the post, you write the 200 status code to
indicate all is well. If there was an error along the way, it would’ve been returned to
the calling function (the handler function handlePost) and a 500 status code
would’ve been sent back.

 Let’s make a final call to cURL to delete the post record:

curl -i -X DELETE http://127.0.0.1:8080/post/1

You should see something like this:

HTTP/1.1 200 OK
Date: Sun, 12 Apr 2015 14:38:59 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8

Don’t forget to run the single line SQL query again, and this time you should see noth-
ing in the table:

id | content | author
----+---------+--------
(0 rows)

7.7 Summary
■ A major use of Go today is to write web services, so being able to at least under-

stand how to build web services is a valuable skill.
■ There are mainly two types of web services: SOAP-based and REST-based web

services:
– SOAP is a protocol for exchanging structured data that’s defined in XML.

Because their WSDL messages can become quite complicated, SOAP-based
web services aren’t as popular as REST-based web services.

Listing 7.19 Function that deletes a post

Gets data from database
into Post struct

Deletes post data
in database

189Summary
– REST-based web services expose resources over HTTP and allow specific
actions on them.

■ Creating and parsing XML and JSON are similar and involve creating a struct
and either generating (unmarshaling) XML or JSON from it, or creating a struct
and extracting (marshaling) XML or JSON into it.

Testing your application
Testing is one of the main critical activities in programming, but often it’s
neglected or left as an afterthought. Go provides basic testing capabilities that look
surprisingly primitive, but as you’ll learn in this chapter, Go supplies the tools to
create the automated tests you need as a programmer. This chapter also covers the
check and Ginkgo packages, popular Go testing libraries that extend the built-in
testing package.

 As with the web application programming libraries we’ve explored in the previ-
ous few chapters, Go provides only the fundamental tools. As a programmer you’ll
need to build on them to deliver the kind of tests that you need.

This chapter covers
■ The Go testing libraries
■ Unit testing
■ HTTP testing
■ Testing with dependency injection
■ Using third-party testing libraries
190

191Unit testing with Go
8.1 Go and testing
Go offers a few testing-focused libraries in the standard library. The main test library is
the testing package, which contains most of the functions you’ll see in this chapter.
Another library that’s interesting for web application programming is the net/http/
httptest package. The httptest package, as the name suggests, is a library for testing
web applications; it is based on the testing package.

 Let’s look at the main testing package first. It’s important to start here because
this package provides basic automated testing capabilities in Go. Once you under-
stand the testing package, the httptest package will make a whole lot more sense.

 The testing package is used with the go test command which is used on any Go
source files that end with _test.go. Usually this corresponds with the name of the source
code file you’re testing, although that’s not strictly necessary.

 If you have a server.go file, you should also have a server_test.go file that contains
all the tests you want to run on the server.go file. The server_test.go file must be in the
same package as the server.go file.

 In the test file you create functions with the following form:

func TestXxx(*testing.T) { … }

where Xxx is any alphanumeric string in which the first letter is capitalized. When you
run the go test command in the console, this and other similar functions will be exe-
cuted. Within these functions you can use Error, Fail, and other methods to indicate
test failure. If there’s no failure, the test for the function is considered to have passed.
Let’s take a closer look.

8.2 Unit testing with Go
Unit testing, as the name indicates, is a kind of automated testing that provides confi-
dence that a unit (a modular part of a program) is correct. Although a unit often cor-
responds to a function or a method, it doesn’t necessarily need to. A good gauge of
whether a part of a program is a unit is if it can be tested independently. A unit typi-
cally takes in data and returns an output, and unit test cases correspondingly pass data
into the unit and check the resultant output to see if they meet the expectations. Unit
tests are usually run in suites, which are groups of unit test cases to validate a particu-
lar behavior.

 In Go, unit test cases are written in _test.go files, grouped according to their func-
tionality. Let’s take a look at a basic example in main.go, where you have a function
that needs to be tested, shown in the following listing. You’ll reuse the code from the
JSON decoding example in listings 7.8 and 7.9.

192 CHAPTER 8 Testing your application
package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Post struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author Author `json:"author"`
 Comments []Comment `json:"comments"`
}

type Author struct {
 Id int `json:"id"`
 Name string `json:"name"`
}

type Comment struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author string `json:"author"`
}

func decode(filename string) (post Post, err error) {
 jsonFile, err := os.Open(filename)
 if err != nil {
 fmt.Println("Error opening JSON file:", err)
 return
 }
 defer jsonFile.Close()

 decoder := json.NewDecoder(jsonFile)
 err = decoder.Decode(&post)
 if err != nil {
 fmt.Println("Error decoding JSON:", err)
 return
 }
 return
}

func main() {
 _, err := decode("post.json")
 if err != nil {
 fmt.Println("Error:", err)
 }
}

Here you refactored out a decode function and moved the logic of opening the file
and decoding it into a separate function. You then called decode from the main
function, rather than placing all of the logic inside the main function. This is an

Listing 8.1 Example JSON decoding

Refactored decoding
code into a separate
decode function

193Unit testing with Go
important point: although most of the time you focus on writing code that imple-
ments features and delivery functionality, it’s equally important that the code be test-
able. This often requires some form of design thinking before writing the program.
Keep in mind that testing is a critical part of writing software programs. I’ll come back
to this point later in this chapter.

 As a reminder, the following listing is the JSON file you parsed in chapter 7.

{
 "id" : 1,
 "content" : "Hello World!",
 "author" : {
 "id" : 2,
 "name" : "Sau Sheong"
 },
 "comments" : [
 {
 "id" : 3,
 "content" : "Have a great day!",
 "author" : "Adam"
 },
 {
 "id" : 4,
 "content" : "How are you today?",
 "author" : "Betty"
 }
]
}

Now let’s look at the main_test.go file.

package main

import (
 "testing"
)

func TestDecode(t *testing.T) {
 post, err := decode("post.json")
 if err != nil {
 t.Error(err)
 }
 if post.Id != 1 {
 t.Error("Wrong id, was expecting 1 but got", post.Id)
 }
 if post.Content != "Hello World!" {
 t.Error("Wrong content, was expecting 'Hello World!' but got",
 ➥ post.Content)
 }
}

Listing 8.2 The post.json file that you parsed

Listing 8.3 Test file for main.go

Tests files are in same
package as tested functions

Calls the function
that’s tested

Checks if results are
expected; if not, flag
error messages.

194 CHAPTER 8 Testing your application

func TestEncode(t *testing.T) {
 t.Skip("Skipping encoding for now")
}

Notice that the test file is in the same package as the program file. In this example
you’ll only use the testing package, so that’s the only package you’ll be importing.
The function TestDecode takes in a parameter, t, that’s a pointer to a testing.T
struct. This is a test case that represents the unit testing of the decode function. The
testing.T struct is one of the two main structs in the package, and it’s the main struct
that you’ll be using to call out any failures or errors.

 The testing.T struct has a number of useful functions:

■ Log—Similar to fmt.Println; records the text in the error log.
■ Logf—Similar to fmt.Printf. It formats its arguments according to the given

format and records the text in the error log.
■ Fail—Marks the test function as having failed but allows the execution to

continue.
■ FailNow—Marks the test function as having failed and stops its execution.

There are also a few convenience functions that combine these functions, as shown in
figure 8.1.

In figure 8.1, the Error function is a combination of calling the Log function, followed
by the Fail function. The Fatal function is a combination of calling the Log function
followed by the FailNow function.

 In the test function you call the decode function normally, and then test the
results. If the results aren’t what you expect, you can call any of the Fail, FailNow,
Error, Errorf, Fatal, or Fatalf functions accordingly. The Fail function, as
you’ve probably guessed, tells you that the test case has failed but allows you to con-
tinue the execution of the rest of the test case. The FailNow function is stricter and
exits the test case once it’s encountered. Fail and FailNow only affect the test case
they’re in—in this case, the TestDecode test case.

 Run the TestDecode test case now. In the console, run this command in the direc-
tory where the main_test.go file is:

go test

This will execute all _test.go files in the same directory, and you should see something
like this (assuming the files are in a directory named unit_testing):

PASS
ok unit_testing 0.004s

Skips the test
altogether

FailNow

Fail

Fatal

Error

Log

Fatalf

Errorf

Logf Figure 8.1 Convenience functions in testing.T, with
each cell representing a single function. The functions in
the white cells are combination functions. For example,
the Error function is a combination of calling the Fail
function, followed by the Log function.

195Unit testing with Go
It’s not very descriptive, so if you want more information, you can use the verbose (-v)
flag, and if you want to know the coverage of the test case against your code, you can
give it the coverage (-cover) flag.

go test –v -cover

which will give more information:

=== RUN TestDecode
--- PASS: TestDecode (0.00s)
=== RUN TestEncode
--- SKIP: TestEncode (0.00s)
 main_test.go:23: Skipping encoding for now
PASS
coverage: 46.7% of statements
ok unit_testing 0.004s

8.2.1 Skipping test cases

Notice that you have two test cases in the same file—the second test case is Test-
Encode. But this test case doesn’t do anything, because you don’t have an encode
function to test. If you’re doing test-driven development (TDD), you might want to let
the test case continue failing until you’ve written the function. If that is too irritating,
Go provides a Skip function in testing.T that allows you to skip test cases if you’re
not ready to write them. The Skip function is also useful if you have test cases that run
a very long time and you want to skip them if you only want to run a sanity check.

 In addition to skipping tests, you can pass in a short (-short) flag to the go test
command, and using some conditional logic in the test case, you can skip the running
of parts of a test. Note that this is different from selective running of a specific test,
which you can specify with an option in the go test command. The selective running
of specific tests runs certain tests and skips others whereas the -short flag skips parts
of a test (or the entire test case), depending on the way you write the test code.

 Let’s see how this works for the use case where you want to avoid executing a long-
running test case. First, create a new test case (in the same main_test.go file). Remem-
ber to import the time package first:

func TestLongRunningTest(t *testing.T) {
 if testing.Short() {
 t.Skip("Skipping long-running test in short mode")
 }
 time.Sleep(10 * time.Second)
}

You set the condition that if the -short flag is set, you’ll skip this test case. Otherwise
you’ll sleep for 10 seconds. Now let’s run this normally and see what happens:

=== RUN TestDecode
--- PASS: TestDecode (0.00s)
=== RUN TestEncode
--- SKIP: TestEncode (0.00s)
 main_test.go:24: Skipping encoding for now

196 CHAPTER 8 Testing your application

Work
1 se
=== RUN TestLongRunningTest
--- PASS: TestLongRunningTest (10.00s)
PASS
coverage: 46.7% of statements
ok unit_testing 10.004s

Notice that the TestLongRunningTest test case runs for 10 seconds, as expected. Now
run this in the console

go test –v –cover -short

and run the tests again:

=== RUN TestDecode
--- PASS: TestDecode (0.00s)
=== RUN TestEncode
--- SKIP: TestEncode (0.00s)
 main_test.go:24: Skipping encoding for now
=== RUN TestLongRunningTest
--- SKIP: TestLongRunningTest (0.00s)
 main_test.go:29: Skipping long-running test in short mode
PASS
coverage: 46.7% of statements
ok unit_testing 0.004s

As you can see, the long-running test case is now skipped.

8.2.2 Running tests in parallel

As mentioned earlier, unit test cases are meant to be tested independently. Sometimes
this isn’t possible because dependencies exist within a test suite. When it is possible,
you can run unit test cases in parallel in order to speed up the tests. Let’s see how to
do this in Go.

 Add a file named parallel_test.go, shown in this listing, in the same directory.

package main

import (
 "testing"
 "time"
)

func TestParallel_1(t *testing.T) {
 t.Parallel()
 time.Sleep(1 * time.Second)
}

func TestParallel_2(t *testing.T) {
 t.Parallel()
 time.Sleep(2 * time.Second)
}

Listing 8.4 Parallel testing

s for
cond

Calls Parallel function to
run test cases in parallel

Works for 2 seconds

197Unit testing with Go
func TestParallel_3(t *testing.T) {
 t.Parallel()
 time.Sleep(3 * time.Second)
}

You can use the time.Sleep function to simulate processing, with three different test
cases, working for 1, 2, and 3 seconds, respectively. To run the tests in parallel, you
need to call the Parallel function on testing.T as the first statement in the test case.

 Now run this in the console:

go test –v –short –parallel 3

The parallel (-parallel) flag indicates that you want to run a maximum of three test
cases in parallel. You’re still using the -short flag because you don’t want to run the
long-running test case. Let’s see what happens.

=== RUN TestDecode
--- PASS: TestDecode (0.00s)
=== RUN TestEncode
--- SKIP: TestEncode (0.00s)
 main_test.go:24: Skipping encoding for now
=== RUN TestLongRunningTest
--- SKIP: TestLongRunningTest (0.00s)
 main_test.go:30: Skipping long-running test in short mode
=== RUN TestParallel_1
=== RUN TestParallel_2
=== RUN TestParallel_3
--- PASS: TestParallel_1 (1.00s)
--- PASS: TestParallel_2 (2.00s)
--- PASS: TestParallel_3 (3.00s)
PASS
ok unit_testing 3.006s

You can see that all test cases in main_test.go and parallel_test.go are executed. Also,
notice that all three parallel test cases are executed together. Even though each paral-
lel case has a different execution time, because all three run at the same time and all
finish within the timing of the longest running test, the final execution timing shows
only 3.006 seconds (0.006 seconds for the first few test cases, and then 3 seconds for
the longest running test case, TestParallel_3).

8.2.3 Benchmarking

The Go testing package provides two types of testing. You went through functional
testing in the previous section, which tests the functionality of the program. The Go
testing package also provides benchmarking, which is run to determine the perfor-
mance of a unit of work.

 Similar to unit testing, benchmark test cases are functions of the format:

func BenchmarkXxx(*testing.B) { … }

inside the _test.go files. Let’s build some benchmark test cases in a new file named
bench_test.go, shown in this listing.

Works for 3 seconds

198 CHAPTER 8 Testing your application

package main

import (
 "testing"
)

// benchmarking the decode function
func BenchmarkDecode(b *testing.B) {
 for i := 0; i < b.N; i++ {
 decode("post.json")
 }
}

As you can see, benchmarking with Go is rather straightforward. You execute the code
that you want to benchmark (in this case, the decode function) b.N times in order to
reliably benchmark its response time. As the code is being executed, b.N will change
accordingly.

 To run benchmark test cases, use the bench (-bench) flag when executing the go
test command. You need to indicate which benchmark files you want to run using
regular expressions as the flag parameter for the -bench flag. To run all benchmarks
files, just use the dot (.):

go test -v -cover -short –bench .

Here are the results:

=== RUN TestDecode
--- PASS: TestDecode (0.00s)
=== RUN TestEncode
--- SKIP: TestEncode (0.00s)
main_test.go:38: Skipping encoding for now
=== RUN TestLongRunningTest
--- SKIP: TestLongRunningTest (0.00s)
main_test.go:44: Skipping long-running test in short mode
PASS
BenchmarkDecode 100000 19480 ns/op
coverage: 42.4% of statements
ok unit_testing2.243s

The 100000 indicates how many loops were run (b.N). In this example, 100,000 loops
were run and each loop took 19,480 nanoseconds, or 0.01948 milliseconds. The num-
ber of times a benchmark runs is dictated by Go. This number can’t be specified
directly by the user, although you can specify the amount of time it has to run
in, therefore limiting the number of loops run. Go will run as many iterations as
needed to get an accurate measurement. In Go 1.5, the test subcommand has a
–test.count flag that lets you specify how many times to run each test and bench-
mark (the default is one time).

 Notice that you’re still running the functional tests. If you want to keep it simple,
you can ignore the functional tests by using the run (-run) flag. The -run flag

Listing 8.5 Benchmark testing

Loops through function to
be benchmarked b.N times

199Unit testing with Go
indicates which functional tests to run; if you use any name that doesn’t match the
functional tests, the corresponding tests will be ignored.

go test -run x -bench .

There are no functional tests named x, so no functional tests are run. This will result
in the following:

PASS
BenchmarkDecode 100000 19714 ns/op
ok unit_testing 2.150s

Knowing how fast a function runs is pretty useful, but it’ll be more interesting if you
can compare it with another function. In chapter 7, you learned two ways of unmar-
shaling JSON data into a struct: using the Decode function or using the Unmarshal
function. You just benchmarked the Decode function; let’s see how fast the Unmarshal
function is. To do so, you need to refactor the unmarshaling code into an unmarshal
function in main.go, shown in the next listing.

func unmarshal(filename string) (post Post, err error) {
 jsonFile, err := os.Open(filename)
 if err != nil {
 fmt.Println("Error opening JSON file:", err)
 return
 }
 defer jsonFile.Close()

 jsonData, err := ioutil.ReadAll(jsonFile)
 if err != nil {
 fmt.Println("Error reading JSON data:", err)
 return
 }
 json.Unmarshal(jsonData, &post)
 return
}

Now that you have an unmarshal function, let’s benchmark it.

func BenchmarkUnmarshal(b *testing.B) {
 for i := 0; i < b.N; i++ {
 unmarshal("post.json")
 }
}

Now run the benchmark again to get the results:

PASS
BenchmarkDecode 100000 19577 ns/op
BenchmarkUnmarshal 50000 24532 ns/op
ok unit_testing 3.628s

Listing 8.6 Unmarshaling JSON data

Listing 8.7 Benchmarking the Unmarshal function

200 CHAPTER 8 Testing your application

Swi
to co

fun
You can see from the benchmarking results that Decode takes 0.019577 ms whereas
Unmarshal takes 0.024532 ms, making Unmarshal about 25 % slower than Decode.

8.3 HTTP testing with Go
This is a book on web programming, so naturally there’s a section on testing web
applications. Although there are many ways to test web applications, I’ll focus on unit
testing the handlers with Go.

 Unit testing web applications in Go is handled by the testing/httptest package.
The httptest package provides facilities to simulate a web server, allowing you to use
the client functions of the net/http package to send an HTTP request and capturing
the HTTP response that’s returned.

 You’ll reuse the simple web service you created in listing 7.14. As a recap, the sim-
ple web service has only one handler, named handleRequest, which in turn multi-
plexes the request to a set of functions depending on the HTTP method in the
request. If an HTTP GET request comes in, handleRequest will multiplex the request
to a handleGet function, shown in this listing.

func handleRequest(w http.ResponseWriter, r *http.Request) {
 var err error
 switch r.Method {
 case "GET":
 err = handleGet(w, r)
 case "POST":
 err = handlePost(w, r)
 case "PUT":
 err = handlePut(w, r)
 case "DELETE":
 err = handleDelete(w, r)
 }
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }
}

func handleGet(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 output, err := json.MarshalIndent(&post, "", "\t\t")

Listing 8.8 Multiplexing handler and GET handler function

handleRequest, which
multiplexes the request

according to HTTP method

tches
rrect
ction

201HTTP testing with Go

Atta
handle
want to

S
reque

t
ha
 if err != nil {
 return
 }
 w.Header().Set("Content-Type", "application/json")
 w.Write(output)
 return
}

Let’s look at the unit test case (figure 8.2) to test the case where an HTTP GET request,
shown in listing 8.9, comes in.

package main

import (
 "encoding/json"
 "net/http"
 "net/http/httptest"
 "testing"
)

func TestHandleGet(t *testing.T) {
 mux := http.NewServeMux()
 mux.HandleFunc("/post/", handleRequest)

 writer := httptest.NewRecorder()
 request, _ := http.NewRequest("GET", "/post/1", nil)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 t.Errorf("Response code is %v", writer.Code)
 }

Listing 8.9 Testing GET requests

Create multiplexer

Attach tested handler to multiplexer

Create recorder

Create request

Send request to tested handler and write to recorder

Check recorder for results Figure 8.2 Sequence for doing HTTP testing with
Go, using the httptest package

Creates a multiplexer
to run test on

ches
r you
 test

Captures returned
HTTP response

Creates request to
handler you want to testends

st to
ested
ndler

Checks ResponseRecorder
for results

202 CHAPTER 8 Testing your application
 var post Post
 json.Unmarshal(writer.Body.Bytes(), &post)
 if post.Id != 1 {
 t.Error("Cannot retrieve JSON post")
 }
}

Every test case runs independently and starts its own web server for testing, so you
need to create a multiplexer and attach the handleRequest handler function to it. To
capture the returned HTTP response, use the httptest.NewRecorder function to cre-
ate a ResponseRecorder struct. This struct will be used to store the response for
inspection.

 You also need to create an HTTP request (as opposed to parsing it, as discussed in
chapters 3 and 4) by calling the http.NewRequest function, passing it the method you
want, the URL to send the request to, and an optional HTTP request body.

 Once you have the response recorder and the request, send them to the multi-
plexer using ServeHTTP. When this happens, the request is sent to the handleRequest
handler function and then to the handleGet function, which will process it and return
an HTTP response. But instead of sending it to the browser, the multiplexer pushes it
into the response recorder and you can inspect the response. The next few lines are
quite self-explanatory; you can inspect the response to see if it has the results you
wanted. If it doesn’t, you can throw errors as per any unit test case, HTTP or otherwise.

 All of these look simple, so let’s try another one. This listing shows how to create a
test case for a PUT request.

func TestHandlePut(t *testing.T) {
 mux := http.NewServeMux()
 mux.HandleFunc("/post/", handleRequest)

 writer := httptest.NewRecorder()
 json := strings.NewReader(`{"content":"Updated post","author":"Sau

Sheong"}`)
 request, _ := http.NewRequest("PUT", "/post/1", json)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 t.Errorf("Response code is %v", writer.Code)
 }
}

As you can see, there’s not much difference between this test case and the previous
one, except you need to send in the JSON content. You might notice that some code in
both test case functions is repeated. Such common test code (and other test fixtures)
can be placed together in a setup function that prepares the test cases for execution.

Listing 8.10 Testing PUT requests

203HTTP testing with Go
 Go’s testing package provides a TestMain function that allows you to do whatever
setup or teardown is necessary. A typical TestMain function looks something like this:

func TestMain(m *testing.M) {
 setUp()
 code := m.Run()
 tearDown()
 os.Exit(code)
}

where setUp and tearDown are functions you can define to do setup and teardown for
all your test case functions. Note that setUp and tearDown are run only once for all test
cases. The individual test case functions are called by calling the Run function on m. Call-
ing the Run function returns an exit code, which you can pass to the os.Exit function.

 This listing shows how this changes our test cases now.

package main

import (
 "encoding/json"
 "net/http"
 "net/http/httptest"
 "os"
 "strings"
 "testing"
)

var mux *http.ServeMux
var writer *httptest.ResponseRecorder

func TestMain(m *testing.M) {
 setUp()
 code := m.Run()
 os.Exit(code)
}

func setUp() {
 mux = http.NewServeMux()
 mux.HandleFunc("/post/", handleRequest)
 writer = httptest.NewRecorder()
}

func TestHandleGet(t *testing.T) {
 request, _ := http.NewRequest("GET", "/post/1", nil)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 t.Errorf("Response code is %v", writer.Code)
 }
 var post Post
 json.Unmarshal(writer.Body.Bytes(), &post)

Listing 8.11 Using TestMain with httptest

204 CHAPTER 8 Testing your application
 if post.Id != 1 {
 t.Errorf("Cannot retrieve JSON post")
 }
}

func TestHandlePut(t *testing.T) {
 json := strings.NewReader(`{"content":"Updated post","author":"Sau

Sheong"}`)
 request, _ := http.NewRequest("PUT", "/post/1", json)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 t.Errorf("Response code is %v", writer.Code)
 }
}

Notice that the setUp function sets up the global variables that are used in each of the
test case functions. This makes the test case functions more concise, and any changes
to how the test cases are set up are concentrated in a single place. There isn’t a need
for cleaning up after the tests so you simply exit after the test cases are run.

 But you didn’t test an important part of the web service. As you’ll recall, in chapter
7 you abstracted the data layer away from the web service and placed all the data
manipulation code in the data.go file. The handleGet function calls a retrieve func-
tion, whereas the handlePut function calls the retrieve function and an update
method on the Post struct. When you run the unit test cases, you’re actually getting
and modifying data in the database. This is a dependency, and therefore the test cases
aren’t as independent as you’d like them to be.

 How do you get around this?

8.4 Test doubles and dependency injection
One popular way of making the unit test cases more independent is using test doubles.
Test doubles are simulations of objects, structures, or functions that are used during
testing when it’s inconvenient to use the actual object, structure, or function. It’s also
often used within the context of automated unit testing because it increases the inde-
pendency of the code being tested.

 An example is when the code being tested involves sending of emails. Naturally
you don’t want to send out emails during unit testing. One way of getting around that
is to create test doubles that simulate sending emails. You’d create test doubles to
remove the dependency of your unit test cases on an actual database.

 The concept seems straightforward enough. During automated testing, you create
test doubles and use them instead of using the actual functions or structs. However,
this approach requires design prior to coding the program. If you don’t have the idea
of using test doubles in mind during design, you might not be able to do it at all. For
example, in the previous section the design of the web service doesn’t allow you to cre-
ate test doubles for testing. This is because the dependency on the database is embed-
ded deep into the code.

205Test doubles and dependency injection
 One of the ways you can design for test doubles is to use the dependency injection
design pattern. Dependency injection is a software design pattern that allows you to
decouple the dependencies between two or more layers of software. This is done
through passing a dependency to the called object, structure, or function. This depen-
dency is used to perform the action instead of the object, structure, or function. In
Go, this dependency is often an interface type. Let’s look at an example with the sim-
ple web service in chapter 7.

8.4.1 Dependency injection with Go

In the web service, the handleRequest handler function multiplexes GET requests to
the handleGet function, which extracts the id from the URL and retrieves a Post struct
using the retrieve function in data.go. It uses a global sql.DB struct to open a data-
base connection to a PostgreSQL database and queries the posts table for the data.

 Figure 8.3 shows the function calling flow in the web service in chapter 7. Access to
the database is transparent to the rest of the functions except for the retrieve func-
tion, which will access the database through a global sql.Db instance.

 As you can see, handleRequest and handleGet are dependent on retrieve, which
in turn is dependent on sql.DB. The dependency on sql.DB is the root of the prob-
lem, so you need to remove it.

 There are a few ways to decouple the dependencies (as with everything). You can
start from the bottom and decouple the dependencies at the data abstraction layer,
where you can get the sql.DB struct directly. You can also go from the top and inject
the sql.DB into handleRequest itself. In this section, I’ll show you how you can do it
from a top-down approach.

Called by main

handleRequest

handleGet

retrieve sql.Db

sql.Db is a global variable.
Here, the retrieve function
calls it directly.

PostgreSQL
database

Figure 8.3 The function calling flow of the web service in chapter 7.
Access to the database is transparent to the rest of the functions except
for the retrieve function, which will access the database through a
global sql.Db instance.

206 CHAPTER 8 Testing your application
Figure 8.4 shows how the dependency on sql.Db can be removed and how it can be
injected into the process flow from the main program. Note that the whole point of
the exercise isn’t to reject the use of sql.Db but to avoid the direct dependency on it,
in order for you to use test doubles during testing.

 Earlier I mentioned that you can inject the sql.DB into handleRequest, but you
can’t pass an instance or a pointer to sql.DB as a parameter into handleRequest. If you
do, you’re only pushing the problem upstream in the control flow. Instead you want to
pass an interface (in our example, Text) into handleRequest. To retrieve a post from
the database, call a method on this Text interface and you can assume it’ll know what
to do and return the necessary data you want. The next listing shows this interface.

type Text interface {
 fetch(id int) (err error)
 create() (err error)
 update() (err error)
 delete() (err error)
}

Listing 8.12 Interface to pass into handlePost

Post

sql.Db

Called by main

handleRequest

Post

handleGet

retrieve

sql.Db

Post

sql.Db

Post

sql.Db

Here, sql.Db is injected from
main as part of Post and is
not visible to other functions.

No function calls
sql.Db directly.

PostgreSQL
database

Figure 8.4 Using the dependency injection pattern on the web service
in chapter 7 by passing a pointer to a Post struct, which contains
sql.Db, into the flow. The Post struct contains the sql.Db and so
none of the functions in the flow are dependent on sql.Db.

207Test doubles and dependency injection

Re
fun

with co
sign
Next, let the Post struct implement the Text interface and make one of the fields in
the Post struct a pointer to sql.DB. Post will implement the Text interface as long as
it implements all the methods that Text has (which is already does, since you’re sim-
ply reverse-engineering Text out of Post, shown in this listing).

type Post struct {
 Db *sql.DB
 Id int `json:"id"`
 Content string `json:"content"`
 Author string `json:"author"`
}

This solves the problem of passing the sql.DB directly into handleRequest. Instead of
passing sql.DB, you can pass an instance of the Post struct. The various Post methods
will use the sql.DB that’s a field in the struct instead. Because you’re passing a Post
struct into handleRequest, the function signature needs to be changed. The next list-
ing shows the changes in the handleRequest function.

func handleRequest(t Text) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 var err error
 switch r.Method {
 case "GET":
 err = handleGet(w, r, t)
 case "POST":
 err = handlePost(w, r, t)
 case "PUT":
 err = handlePut(w, r, t)
 case "DELETE":
 err = handleDelete(w, r, t)
 }
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }
 }
}

As you can see, handleRequest no longer follows the ServeHTTP method signature
and is no longer a handler function. This is a problem—you can no longer attach it to
a URL using the HandleFunc function.

 To get around this, you can use the same technique first discussed in the section
on handler chaining in chapter 3: get handleRequest to return a http.HandlerFunc
function.

Listing 8.13 The new Post struct

Listing 8.14 The new handleRequest function

Passes in Text
interface turns

ction
rrect
ature

Passes on Text interface
to actual handlers

208 CHAPTER 8 Testing your application

Acc

inter
 Then, in the main function instead of attaching a handler function to the URL, you
can call the handleRequest function. handleRequest returns an http.HandlerFunc
function, so it fits HandleFunc’s method signature and you end up registering a handler
function for the URL, as before. The next listing shows the modified main function.

func main() {

 var err error
 db, err := sql.Open("postgres", "user=gwp dbname=gwp password=gwp ssl-

mode=disable")
 if err != nil {
 panic(err)
 }

 server := http.Server{
 Addr: ":8080",
 }
 http.HandleFunc("/post/", handleRequest(&Post{Db: db}))
 server.ListenAndServe()
}

Notice that you passed the pointer to sql.DB into the handleRequest indirectly
through the Post struct. This is how a dependency can be injected into handle-
Request. This listing shows how it can be done for handleGet.

func handleGet(w http.ResponseWriter, r *http.Request, post Text) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 err = post.fetch(id)
 if err != nil {
 return
 }
 output, err := json.MarshalIndent(post, "", "\t\t")
 if err != nil {
 return
 }
 w.Header().Set("Content-Type", "application/json")
 w.Write(output)
 return
}

As you can see, there’s not a whole lot of difference, except that the Post struct is sent
into the function instead of being created within the function. Now rather than call-
ing the retrieve function, which requires a global sql.DB, you can call the fetch
method, shown in the following listing, on the Post struct to retrieve the data.

Listing 8.15 The modified main function

Listing 8.16 The new handleGet function

Registering
handleRequest,
passing in
Post struct

epts
Text
face

Retrieves data into
Post struct

209Test doubles and dependency injection

func (post *Post) fetch(id int) (err error) {
 err = post.Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

Instead of using a global sql.DB struct, you use the one passed to the method through
the Post struct as a field. If you compile and run this web service now, it’ll work exactly
like how it worked previously. What you have done is remove a dependency (the
global sql.DB struct) from being embedded into the code.

 Quite convoluted. So how is this helpful?
 The purpose is to make the unit test cases independent. If the dependency on the

database is embedded into the code, the code can’t be tested independently. But if
you’re injecting the dependency from an external source, you can test the rest of the
code using a test double. Let’s see how to do this.

 The handleRequest function takes in any struct that implements the Text inter-
face. This means you can create a test double that implements Text and pass it as a
parameter into the handleRequest function. Create a test double called FakePost and
that implements the few methods required to implement the Text interface, shown in
this listing.

package main

type FakePost struct {
 Id int
 Content string
 Author string
}

func (post *FakePost) fetch(id int) (err error) {
 post.Id = id
 return
}

func (post *FakePost) create() (err error) {
 return
}

func (post *FakePost) update() (err error) {
 return
}

func (post *FakePost) delete() (err error) {
 return
}

Note that in the case of the fetch method, the id is set to whatever was passed in for
testing purposes. The other methods can do nothing because they aren’t used. You’ll

Listing 8.17 The new fetch method

Listing 8.18 The FakePost test double

210 CHAPTER 8 Testing your application
still need to implement them, though; otherwise it won’t be considered an implemen-
tation of the Text interface. To keep the code clean, place the test double in a file
named doubles.go.

 Now create a test case for handleGet in server_test.go, shown in the following listing.

func TestHandleGet(t *testing.T) {
 mux := http.NewServeMux()
 mux.HandleFunc("/post/", handleRequest(&FakePost{}))

 writer := httptest.NewRecorder()
 request, _ := http.NewRequest("GET", "/post/1", nil)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 t.Errorf("Response code is %v", writer.Code)
 }
 var post Post
 json.Unmarshal(writer.Body.Bytes(), &post)
 if post.Id != 1 {
 t.Errorf("Cannot retrieve JSON post")
 }
}

Instead of passing a Post struct, this time you pass in your FakePost struct. That’s all
there is to it. The rest of the test case is no different from the earlier one.

 To verify that it works, shut down your database and try running the test case. Your
earlier test cases will fail because they need to interact with a database, but with test
doubles, an actual database is no longer needed. You can now test the handleGet
independently.

 If handleGet works properly the test case will pass; otherwise it’ll fail. Note that the
test case doesn’t actually test the fetch method in the Post struct, which requires the
setting up (and possibly tearing down) of at least the posts table. You don’t want to do
so repeatedly, which would take a long time. Also, you want to isolate the different
parts of the web service and test them independently to make sure they work and that
you understand what went wrong. This is critical because the code continually evolves
and changes. As code changes, you’ll want to ensure that whatever you add later won’t
break what has worked before.

8.5 Third-party Go testing libraries
The testing package is a simple but effective library for testing Go programs, one
that’s used by Go for verifying the standard library itself, but areas exist where more
capabilities would be welcome. A number of Go libraries are available that enhance
the testing package. In this section we’ll explore two popular ones, gocheck and
Ginkgo. Gocheck is simpler and more integrated with the testing package while
enhancing it. Ginkgo enables behavior-driven development in Go but is more com-
plex and has a steeper learning curve.

Listing 8.19 Test double dependency into handlePost

Passing a FakePost
instead of a Post

211Third-party Go testing libraries
8.5.1 Introducing the gocheck testing package

The gocheck project provides the check package, a test framework that builds on top
of the testing package and provides a set of features that fills the feature gaps of the
standard Go testing package. Some of these features are:

■ Suite-based grouping of tests
■ Test fixtures per test suite or test case
■ Assertions, with an extensible checker interface
■ More helpful error reporting
■ Tight integration with the testing package

Installing the package is extremely easy. Just run this command on the console to
download the package:

go get gopkg.in/check.v1

The following listing shows how you can apply the check package to the web service
from chapter 7.

package main

import (
 "encoding/json"
 "net/http"
 "net/http/httptest"
 "testing"
 . "gopkg.in/check.v1"
)

type PostTestSuite struct {}

func init() {
 Suite(&PostTestSuite{})
}

func Test(t *testing.T) { TestingT(t) }

func (s *PostTestSuite) TestHandleGet(c *C) {
 mux := http.NewServeMux()
 mux.HandleFunc("/post/", handleRequest(&FakePost{}))
 writer := httptest.NewRecorder()
 request, _ := http.NewRequest("GET", "/post/1", nil)
 mux.ServeHTTP(writer, request)

 c.Check(writer.Code, Equals, 200)
 var post Post
 json.Unmarshal(writer.Body.Bytes(), &post)
 c.Check(post.Id, Equals, 1)
}

Listing 8.20 server_test.go using the check package

Exported identifiers can be
accessed without qualifier.

Creates test suite

Registers test suite

Integrates with
testing package

Verifies values

212 CHAPTER 8 Testing your application
First, you need to import the package. Note that you’re importing the package as a
dot (.) so that all the exported identifiers in the package can be accessed without a
qualifier.

 Next, you need to create a test suite, which is simply a struct. It can be an empty
struct (as shown in the listing) or one with fields, which we’ll discuss later. You must
also call the Suite function and pass it an instance of the test suite. This will register
the test suite you just created. Any method within the test suite that follows the format
TestXxx will be considered a test case and will be executed as such.

 As a final step you need to integrate with the testing package. You do so by creat-
ing a normal testing package test case; that is, a function with the format TestXxx
that takes in a pointer to a testing.T. In this function you call the TestingT function,
passing it the pointer to testing.T.

 This will run all the test suites that have been registered using the Suite function
and the results will be passed back to the testing package. With the setup done, let’s
look at a simple test case. We have a test case named TestHandleGet that is a method
on the test suite and takes in a pointer to C, which has a number of interesting meth-
ods. Although we won’t cover all of them in this section, interesting methods include
Check and Assert, which allow you to verify the results of the values.

 For example, in listing 8.20 the code checks whether the HTTP code that’s returned
is 200. If it’s not, the test case will fail but will continue executing until the end of the
test case. If you use Assert instead of Check, the test case will fail and return.

 Let’s see how this works. You can use the same go test command, but you can also
use the check package-specific extra verbose flag (-check.vv) to provide more details:

go test -check.vv

This is what you get:

START: server_test.go:19: PostTestSuite.TestGetPost
PASS: server_test.go:19: PostTestSuite.TestGetPost 0.000s

OK: 1 passed
PASS
ok gocheck 0.007s

As you can see, the extra verbosity provided more information, especially on the start
of the test run. This isn’t helpful in this specific test case, but you’ll see later how it can
be useful.

 What happens if you hit an error? Let’s make a slight change to the handleGet
function and add the following statement right before you return:

http.NotFound(w, r)

This will throw an HTTP 404 status code. When you run the same go test command
again, you’ll get this:

START: server_test.go:19: PostTestSuite.TestGetPost
server_test.go:29:

213Third-party Go testing libraries
 c.Check(post.Id, Equals, 1)
... obtained int = 0
... expected int = 1

FAIL: server_test.go:19: PostTestSuite.TestGetPost

OOPS: 0 passed, 1 FAILED
--- FAIL: Test (0.00s)
FAIL
exit status 1

FAIL gocheck 0.007s

As you can see, this gives a lot more valuable information.
 Another very useful feature in the check package is the ability to create test fix-

tures. A test fixture is a fixed state of the program before it’s being tested. You can set
up test fixtures before a test is run, and then check for the expected state.

 The check package provides a set of set-up and tear-down functions for an entire
test suite or for every test case. The SetupSuite function is run once when the suite
starts running; the TearDownSuite function is run once after all tests have finished
running. The SetupTest function is run once before every test starts running; the
TearDownTest is run every time after each test has finished running.

 This is how it works. You can use the same test case as before; just add a new test
case for the PUT case. If you notice from the earlier code, between the two test cases a
few common statements exist:

mux := http.NewServeMux()
mux.HandleFunc("/post/", handlePost(&FakePost{}))
writer := httptest.NewRecorder()

Common to all the test cases is the multiplexer and a call to the HandleFunc method
on the multiplexer. HandleFunc takes in a common URL "/post/", and a call to
handlePost, passing it an empty FakePost, and returns a HandlerFunc function.
Finally, there’s a ResponseRecorder for recording the responses to the request. This
sets the stage for both test cases (and the rest of the test cases in the suite) and so can
be considered test fixtures for both test cases.

 The following listing shows the new server_test.go.

package main

import (
 "encoding/json"
 "net/http"
 "net/http/httptest"
 "testing"
 "strings"
 . "gopkg.in/check.v1"
)

Listing 8.21 Fixtures using the check package

214 CHAPTER 8 Testing your application
type PostTestSuite struct {
 mux *http.ServeMux
 post *FakePost
 writer *httptest.ResponseRecorder
}

func init() {
 Suite(&PostTestSuite{})
}

func Test(t *testing.T) { TestingT(t) }

func (s *PostTestSuite) SetUpTest(c *C) {
 s.post = &FakePost{}
 s.mux = http.NewServeMux()
 s.mux.HandleFunc("/post/", handleRequest(s.post))
 s.writer = httptest.NewRecorder()
}

func (s *PostTestSuite) TestGetPost(c *C) {
 request, _ := http.NewRequest("GET", "/post/1", nil)
 s.mux.ServeHTTP(s.writer, request)

 c.Check(s.writer.Code, Equals, 200)
 var post Post
 json.Unmarshal(s.writer.Body.Bytes(), &post)
 c.Check(post.Id, Equals, 1)
}

func (s *PostTestSuite) TestPutPost(c *C) {
 json := strings.NewReader(`{"content":"Updated post","author":"Sau

Sheong"}`)
 request, _ := http.NewRequest("PUT", "/post/1", json)
 s.mux.ServeHTTP(s.writer, request)

 c.Check(s.writer.Code, Equals, 200)
 c.Check(s.post.Id, Equals, 1)
 c.Check(s.post.Content, Equals, "Updated post")
}

To set up test fixtures, you must be able to store data somewhere and persist it across
function calls. To use text fixtures, add fields that you want to persist into the test
cases, into the test suite struct, PostTestSuite. As every test case in the suite is effec-
tively a method on this struct, the text fixtures can be accessed easily. To create the
text fixtures for every test case, use the SetUpTest function.

 Notice that you’re using the fields in the PostTestSuite, which has been defined
earlier. With your test fixtures set up, you can now change your test cases accordingly.
There’s nothing much to change, except to remove the extra statements and switch in
the structs that were set up as test fixtures. Now let’s run it using the go test command:

START: server_test.go:31: PostTestSuite.TestGetPost
START: server_test.go:24: PostTestSuite.SetUpTest
PASS: server_test.go:24: PostTestSuite.SetUpTest 0.000s

Test fixture data
stored in test suite

Creates test
fixtures

215Third-party Go testing libraries
PASS: server_test.go:31: PostTestSuite.TestGetPost 0.000s

START: server_test.go:41: PostTestSuite.TestPutPost
START: server_test.go:24: PostTestSuite.SetUpTest
PASS: server_test.go:24: PostTestSuite.SetUpTest 0.000s

PASS: server_test.go:41: PostTestSuite.TestPutPost 0.000s

OK: 2 passed
PASS
ok gocheck 0.007s

The extra verbose option allows you to see how the test suite ran. To see the sequence
of the entire test suite, let’s add in the other test fixture functions:

func (s *PostTestSuite) TearDownTest(c *C) {
 c.Log("Finished test - ", c.TestName())
}

func (s *PostTestSuite) SetUpSuite(c *C) {
 c.Log("Starting Post Test Suite")
}

func (s *PostTestSuite) TearDownSuite(c *C) {
 c.Log("Finishing Post Test Suite")
}

Now rerun the test suite:

START: server_test.go:35: PostTestSuite.SetUpSuite
Starting Post Test Suite
PASS: server_test.go:35: PostTestSuite.SetUpSuite 0.000s

START: server_test.go:44: PostTestSuite.TestGetPost
START: server_test.go:24: PostTestSuite.SetUpTest
PASS: server_test.go:24: PostTestSuite.SetUpTest 0.000s

START: server_test.go:31: PostTestSuite.TearDownTest
Finished test - PostTestSuite.TestGetPost
PASS: server_test.go:31: PostTestSuite.TearDownTest 0.000s

PASS: server_test.go:44: PostTestSuite.TestGetPost 0.000s

START: server_test.go:54: PostTestSuite.TestPutPost
START: server_test.go:24: PostTestSuite.SetUpTest
PASS: server_test.go:24: PostTestSuite.SetUpTest 0.000s

START: server_test.go:31: PostTestSuite.TearDownTest
Finished test - PostTestSuite.TestPutPost
PASS: server_test.go:31: PostTestSuite.TearDownTest 0.000s

PASS: server_test.go:54: PostTestSuite.TestPutPost 0.000s

START: server_test.go:39: PostTestSuite.TearDownSuite
Finishing Post Test Suite
PASS: server_test.go:39: PostTestSuite.TearDownSuite 0.000s

216 CHAPTER 8 Testing your application
OK: 2 passed
PASS
ok gocheck 0.007s

Notice that the SetUpSuite and TearDownSuite functions are run before and after all
the test cases, whereas the SetUpTest and TearDownTest functions are run within the
test cases as the first and the last statements within the test case functions.

 The check package is a simple but useful addition to your testing arsenal because it
enhances the basic testing package. If you want to do more, try the Ginkgo test
framework.

8.5.2 Introducing the Ginkgo testing framework

Ginkgo is behavior-driven development (BDD)-style testing framework in Go. It’ll take a
much larger space than only this section to discuss BDD, but briefly, BDD is an exten-
sion of test-driven development (TDD) and is a software development process (as opposed
to a testing process). In BDD, software is described by its desired behavior, usually set
by business requirements. User stories (which are requirement definitions in the lan-
guage and perspective of the end user) in BDD are written from a behavioral perspec-
tive. An example of this is in describing your web service is:

Story: Get a post
In order to display a post to the user
As a calling program
I want to get a post

Scenario 1: using an id
Given a post id 1
When I send a GET request with the id
Then I should get a post

Scenario 2: using a non-integer id
Given a post id "hello"
When I send a GET request with the id
Then I should get a HTTP 500 response

Once the user story is defined, it can be converted into a test case. Test cases in BDD,
as in TDD, are written before the code is written, and the aim is to develop a program
that can fulfill the behavior. Admittedly, the user story used as an illustration is con-
trived; in a more realistic environment, BDD user stories are written at a higher-level
first, and then broken down into more specific user stories after a few levels of details.
The higher-level user stories are then mapped into hierarchical test suites.

 Ginkgo is a feature-rich BDD-style framework. It has constructs that allow you to
map user stories to test cases and is well integrated into the Go testing package.
Ginkgo can be used to drive BDD in Go, but this section explores Ginkgo from the
perspective of it being a test framework in Go.

 To install Ginkgo run these two commands on the console:

go get github.com/onsi/ginkgo/ginkgo
go get github.com/onsi/gomega

217Third-party Go testing libraries
The first line downloads Ginkgo and installs the command-line interface program
ginkgo into $GOPATH/bin. The second line downloads Gomega, which is the default
matcher library for Ginkgo (matchers are code that allows two different constructs
like structs, maps, strings, and so on to be compared).

 Before jumping into writing Ginkgo test cases, let’s see how Ginkgo taps on your
existing test cases. Ginkgo can convert your previous test cases into Ginkgo test cases,
literally rewriting your test cases for you.

 For this exercise, you’ll start from the test cases from the section on dependency
injection. Make a copy of the test cases if you still want them intact, because they’ll be
modified. After you’ve done that, run this in the console:

ginkgo convert .

This adds in a file xxx_suite_test.go where xxx is the name of the directory, shown in
this listing.

package main_test

import (
 . "github.com/onsi/ginkgo"
 . "github.com/onsi/gomega"

 "testing"
)

func TestGinkgo(t *testing.T) {
 RegisterFailHandler(Fail)
 RunSpecs(t, "Ginkgo Suite")
}

It also changes your server_test.go file. The changed code is in bold in this listing.

package main

import (
 "encoding/json"
 "net/http"
 "net/http/httptest"
 "strings"
 . "github.com/onsi/ginkgo"
)

var _ = Describe("Testing with Ginkgo", func() {
 It("get post", func() {

 mux := http.NewServeMux()
 mux.HandleFunc("/post/", handleRequest(&FakePost{}))

Listing 8.22 Ginkgo test suite file

Listing 8.23 Modified test file

218 CHAPTER 8 Testing your application
 writer := httptest.NewRecorder()
 request, _ := http.NewRequest("GET", "/post/1", nil)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 GinkgoT().Errorf("Response code is %v", writer.Code)
 }
 var post Post
 json.Unmarshal(writer.Body.Bytes(), &post)
 if post.Id != 1 {
 GinkgoT().Errorf("Cannot retrieve JSON post")
 }
 })
 It("put post", func() {

 mux := http.NewServeMux()
 post := &FakePost{}
 mux.HandleFunc("/post/", handleRequest(post))

 writer := httptest.NewRecorder()
 json := strings.NewReader(`{"content":"Updated post","author":"Sau

Sheong"}`)
 request, _ := http.NewRequest("PUT", "/post/1", json)
 mux.ServeHTTP(writer, request)

 if writer.Code != 200 {
 GinkgoT().Error("Response code is %v", writer.Code)
 }

 if post.Content != "Updated post" {
 GinkgoT().Error("Content is not correct", post.Content)
 }
 })
})

Notice that you aren’t using Gomega here but instead an Error function that’s very
similar to the ones you’ve been using in the testing and check packages. When you
run the test using the ginkgo command:

ginkgo -v

you’ll get a nicely formatted output:

Running Suite: Ginkgo Suite
===========================
Random Seed: 1431743149
Will run 2 of 2 specs

Testing with Ginkgo
 get post
 server_test.go:29
•

219Third-party Go testing libraries
Testing with Ginkgo
 put post
 server_test.go:48
•
Ran 2 of 2 Specs in 0.000 seconds
SUCCESS! -- 2 Passed | 0 Failed | 0 Pending | 0 Skipped PASS

Ginkgo ran 1 suite in 577.104764ms
Test Suite Passed

That’s pretty impressive! But if you’re starting from no test cases at all, it seems silly to
try to create the testing package test cases and then convert them. Let’s see how to
write Ginkgo test cases from scratch.

 Ginkgo provides some utilities to get you started. First, clear off your previous test
files, including the Ginkgo test suite file. Then run these two commands on the con-
sole, in the directory of your program:

ginkgo bootstrap
ginkgo generate

The first line will create the Ginkgo test suite file; the second line generates the skele-
ton for the test case file that you want to generate, shown in the following listing.

package main_test

import (
 . "<path/to/your/go_files>/ginkgo"

 . "github.com/onsi/ginkgo"
 . "github.com/onsi/gomega"
)

var _ = Describe("Ginkgo", func() {

})

Note that you aren’t using the main package anymore because Ginkgo isolates test
cases from that package. Also, you’re importing a number of libraries into the top-
level namespace using the dot (.) import. This is optional, and Ginkgo documenta-
tion provides details on how to opt out of doing this. If you’re doing this, you should
remember to export any functions in the main package that need to be tested through
Ginkgo. The next example tests the HandleRequest function, so it must be exported;
that is, the function name’s first character must be in upper case.

 Also notice that Ginkgo uses the var _ = trick to call the Describe function.
This is a common trick to avoid requiring an init function (which you used earlier
on) and calling the Describe function in it.

Listing 8.24 Ginkgo test file

220 CHAPTER 8 Testing your application

U
s

Scena

Scena
 The next listing shows how to write the code. You’ll be mapping your earlier user
story to Ginkgo code.

package main_test

import (
 "encoding/json"
 "net/http"
 "net/http/httptest"
 . "github.com/onsi/ginkgo"
 . "github.com/onsi/gomega"
 . "gwp/Chapter_8_Testing_Web_Applications/test_ginkgo"
)

var _ = Describe("Get a post", func() {
 var mux *http.ServeMux
 var post *FakePost
 var writer *httptest.ResponseRecorder

 BeforeEach(func() {
 post = &FakePost{}
 mux = http.NewServeMux()
 mux.HandleFunc("/post/", HandleRequest(post))
 writer = httptest.NewRecorder()
 })

 Context("Get a post using an id", func() {
 It("should get a post", func() {
 request, _ := http.NewRequest("GET", "/post/1", nil)
 mux.ServeHTTP(writer, request)

 Expect(writer.Code).To(Equal(200))

 var post Post
 json.Unmarshal(writer.Body.Bytes(), &post)

 Expect(post.Id).To(Equal(1))
 })
 })

 Context("Get an error if post id is not an integer", func() {
 It("should get a HTTP 500 response", func() {
 request, _ := http.NewRequest("GET", "/post/hello", nil)
 mux.ServeHTTP(writer, request)

 Expect(writer.Code).To(Equal(500))
 })
 })

})

Listing 8.25 Ginkgo test case with Gomega matchers

ser
tory

rio 1

Using Gomega
matcher

Asserting correctness
with Gomega

rio 2

221Third-party Go testing libraries
Note that you’re using the Gomega matchers in this example. (Gomega is an assertion
library built by the same people who wrote Ginkgo, and matchers are test assertions.)
The test fixtures are set before calling the Context functions (and running the scenar-
ios) just as in the section on the check package:

var mux *http.ServeMux
var post *FakePost
var writer *httptest.ResponseRecorder

BeforeEach(func() {
 post = &FakePost{}
 mux = http.NewServeMux()
 mux.HandleFunc("/post/", HandleRequest(post))
 writer = httptest.NewRecorder()
})

Note that HandleRequest is now capitalized and exported from the main package. The
test scenarios are similar to the ones you had before, but now with Gomega assertion
and matchers. Making assertions with Gomega looks like this:

Expect(post.Id).To(Equal(1))

where post.Id is what you want to test, the Equal function is a matcher, and 1 is the
expected result. With your test scenarios written, let’s see how the results look like
when you run the ginkgo command:

Running Suite: Post CRUD Suite
==============================
Random Seed: 1431753578
Will run 2 of 2 specs

Get a post using an id
 should get a post
 test_ginkgo_test.go:35
•

Get a post using a non-integer id
 should get a HTTP 500 response
 test_ginkgo_test.go:44
•
Ran 2 of 2 Specs in 0.000 seconds
SUCCESS! -- 2 Passed | 0 Failed | 0 Pending | 0 Skipped PASS

Ginkgo ran 1 suite in 648.619232ms
Test Suite Passed

The next chapter discusses how you can use one of Go’s key strengths—concur-
rency—in a web application.

Exported from main
to be tested here

222 CHAPTER 8 Testing your application
8.6 Summary
■ Go provides a built-in test tool using go test, and the testing package for unit

testing.
■ The testing package provides basic testing and benchmarking capabilities.
■ Unit testing web applications in Go is handled by the testing/httptest

package.
■ You can use test doubles to make test cases more independent.
■ One of the ways you can design for test doubles is to use the dependency injec-

tion design pattern.
■ There are many third-party test libraries in Go, including the Gocheck package,

which extends the basic Go testing capabilities, and Ginkgo, which implements
behavior-driven style testing.

Leveraging
Go concurrency
One of the things that Go is well known for is its ability to make writing concurrent
programs easier and less susceptible to errors. This chapter introduces concur-
rency and discusses Go’s concurrency model and design. We’ll talk about the two
main features of Go that provide concurrency: goroutines and channels. You’ll see
an example of using Go concurrency in a web application to improve the app’s per-
formance.

9.1 Concurrency isn’t parallelism
Concurrency is when two or more tasks start, run, and end within the same period of
time and these tasks can potentially interact with each other. The tasks are consid-
ered to be concurrent to each other, as opposed to being sequential. Concurrency
is a large and complex topic, and this chapter gives only a simple introduction.

This chapter covers
■ Understanding concurrency and parallelism

principles
■ Introducing goroutines and channels
■ Using concurrency in web applications
223

224 CHAPTER 9 Leveraging Go concurrency
 A concept that’s similar but distinctly different is parallelism. It’s easy to get con-
fused because in both cases multiple tasks can be running at the same time. In concur-
rency, the tasks don’t necessarily need to start or end together—their execution
overlaps. These tasks are scheduled and often (though not necessarily) communicate
to share data as well as coordinate the execution times.

 In parallelism, tasks start and are executed at the same time. Usually a larger prob-
lem is split into smaller chunks and processed simultaneously to improve perfor-
mance. Parallelism usually requires independent resources (for example, CPUs);
concurrency uses and shares the same resources. Intuitively, parallelism is easier to
understand because we’re talking about starting and doing multiple tasks at the same
time. Parallelism is what the name indicates—parallel lines of processing that don’t
overlap.

Concurrency is about dealing with lots of things at once. Parallelism is about doing lots
of things at once.

—Rob Pike, co-creator of Go

Another way to think of concurrency is by visualizing two checkout lanes at the super-
market, lining up for just one checkout counter (figure 9.1). A person from each lane
takes a turn to pay for their purchases.

With parallelism, we have the same two lanes, but now the customers are queuing up
for two checkout counters, separately (figure 9.2).

 Although these concepts aren’t the same, it doesn’t mean that they’re mutually
exclusive. Go can be used to create concurrent and parallel programs. Parallel pro-
grams that have to run tasks at the same time will need the environment variable GOMAX-
PROCS to be set to more than 1. Prior to Go 1.5, GOMAXPROCS was set to 1 by default. Since
Go 1.5, GOMAXPROCS is set to the number of CPUs available in the system. Concurrent
programs can run within a single CPU and tasks scheduled to run independently. You’ll

Figure 9.1 Concurrency—two lines, one checkout counter

225Goroutines
see an example of this later in this chapter. What’s important to note now is that
although Go can be used to create parallel programs, it was created with concurrency
in mind and not parallelism.

 Go’s support for concurrency is supported by two main constructs—goroutines and
channels. In the following sections, I’ll describe how goroutines and channels, along
with some of the standard libraries, allow you to create concurrent programs.

9.2 Goroutines
Goroutines are functions that run independently with other goroutines. This might
seem similar to threads—and in fact, goroutines are multiplexed on threads—but
they aren’t threads. A lot more goroutines than threads can be running, because
goroutines are lightweight. A goroutine starts with a small stack (8 K as of Go 1.4) and
it can grow (or shrink) as needed. Whenever a goroutine is blocked, it blocks the OS
thread it’s multiplexed on, but the runtime moves other goroutines on the same
blocked thread to another unblocked thread.

9.2.1 Using goroutines

Using goroutines is pretty simple. Add the keyword go in front of any function (either
named or anonymous) and the function becomes a goroutine. Let’s see, in the follow-
ing listing, how this works in a file named goroutine.go.

package main

func printNumbers1() {
 for i := 0; i < 10; i++ {
 fmt.Printf("%d ", i)
 }
}

Listing 9.1 Demonstrating goroutines

Figure 9.2 Parallelism—two lines, two checkout counters

226 CHAPTER 9 Leveraging Go concurrency
func printLetters1() {
 for i := 'A'; i < 'A'+10; i++ {
 fmt.Printf("%c ", i)
 }
}

func print1() {
 printNumbers1()
 printLetters1()
}

func goPrint1() {
 go printNumbers1()
 go printLetters1()
}

func main() {
}

The previous listing has two functions, printNumbers1 and printLetters1. These do
nothing but loop and print numbers or letters. The function printNumbers1 prints
from 0 to 9; printLetters1 prints from A to J. A function named print1 calls
printNumbers1 and printLetters1 consecutively, and another function named
goPrint1 calls printNumbers1 and printLetters1 as goroutines.

 For this example, the main function doesn’t do anything because you’ll be running
the code using test cases. This way, you can take advantage of the timing that’s cap-
tured and printed; otherwise you’d need to write the necessary code to find out how
fast they run, and there’s no actual testing of the code.

 To run the test cases, shown in this listing, use a separate test file named
goroutine_test.go.

package main

import "testing"

func TestPrint1(t *testing.T) {
 print1()
}

func TestGoPrint1(t *testing.T) {
 goPrint1()
}

When you run the test using the command

go test –v

this is what you’ll get:

=== RUN TestPrint1
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J --- PASS: TestPrint1 (0.00s)

Listing 9.2 Test file for running goroutine examples

Normal run

Runs as
goroutines

227Goroutines
=== RUN TestGoPrint1
--- PASS: TestGoPrint1 (0.00s)
PASS

What happened to the second test case and why didn’t you get any output? The
answer is because the second test case ended before the goroutines could output any-
thing. To see it run properly, you need to add a delay to the end of the second test
case:

func TestGoPrint1(t *testing.T) {
 goPrint1()
 time.Sleep(1 * time.Millisecond)
}

This time the second test case produces its output before the test case ends:

=== RUN TestPrint1
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J --- PASS: TestPrint1 (0.00s)
=== RUN TestGoPrint1
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J --- PASS: TestGoPrint1 (0.00s)
PASS

Both run the same way with the same output, which doesn’t tell you much. The reason
you get the same results is that printNumbers1 and printLetters1 ran so quickly, it
made no difference whether or not the functions were running independently. To
simulate processing work, you’ll add a time delay using the Sleep function in the time
package, and re-create the two functions as printNumbers2 and printLetters2 in
goroutine.go, as shown next.

func printNumbers2() {
 for i := 0; i < 10; i++ {
 time.Sleep(1 * time.Microsecond
 fmt.Printf("%d ", i)
 }
}

func printLetters2() {
 for i := 'A'; i < 'A'+10; i++ {
 time.Sleep(1 * time.Microsecond)
 fmt.Printf("%c ", i)
 }
}

func goPrint2() {
 go printNumbers2()
 go printLetters2()
}

Notice that you simulated processing work being done by adding a time delay of 1
microsecond every iteration of the loop. Correspondingly in the goroutine_test.go

Listing 9.3 Goroutines doing some work

Adding delay of 1 ms
to simulate work

228 CHAPTER 9 Leveraging Go concurrency
file, you add another test. As before, you add in 1 millisecond of delay in order to see
the output properly:

func TestGoPrint2(t *testing.T) {
 goPrint2()
 time.Sleep(1 * time.Millisecond)
}

Run the test again and you’ll get these results:

=== RUN TestPrint1
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J --- PASS: TestPrint1 (0.00s)
=== RUN TestGoPrint1
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J --- PASS: TestGoPrint1 (0.00s)
=== RUN TestGoPrint2
A 0 B 1 C D 2 E 3 F 4 G H 5 I 6 J 7 8 9 --- PASS: TestGoPrint2 (0.00s)
PASS

Look at the last line of output. Notice that this time around, instead of running the
printNumbers2 function first and then running printLetters2, the printouts to the
screen are interlaced!

 If you run this code again, the last line produces a different result. In fact,
printNumbers2 and printLetters2 run independently and fight to print to the
screen. Running repeatedly will produce different results each time. If you’re using a
Go version prior to Go 1.5, you might get the same results each time. Why?

 This is because the default behavior in versions prior to Go 1.5 is to use just one
CPU (even though you might have more than one CPU in my computer), unless stated
otherwise. Since Go 1.5, the default behavior is the reverse—the Go runtime uses as
many CPUs as the computer has. To use just one CPU, use this command:

go test –v –cpu 1

If you do so, you’ll start to get the same results each time.

9.2.2 Goroutines and performance

Now that you know how goroutines behave, let’s consider goroutine performance.
You’ll use the same functions but won’t print to the screen (because doing so would
clutter the output) by commenting out the fmt.Println code. The following listing
shows the benchmark cases for the print1 and goPrint1 functions in the
goroutine_test.go file.

func BenchmarkPrint1(b *testing.B) {
 for i := 0; i < b.N; i++ {
 print1()
 }
}

Listing 9.4 Benchmarking functions with and without goroutines

Normal run

229Goroutines
func BenchmarkGoPrint1(b *testing.B) {
 for i := 0; i < b.N; i++ {
 goPrint1()
 }
}

When you run the benchmark (and skip the functional test cases):

go test -run x -bench . –cpu 1

this is what you see:

BenchmarkPrint1 100000000 13.9 ns/op
BenchmarkGoPrint1 1000000 1090 ns/op

(For this example, I’m running the code on a single CPU first. I’ll explain why later in
this chapter.) As you can see, the print1 function runs quickly and completes in 13.9
nanoseconds. What is surprising, though, is that if you run the same functions as
goroutines, it’s almost 10 times slower, with 1,090 nanoseconds! Why? Remember, there’s
no such thing as a free lunch. Starting up goroutines has a cost no matter how lightweight
it is. The functions printNumbers1 and printLetters1 are so trivial and it ran so
quickly that the costs of using goroutines outweigh those of running them sequentially.

 What if you do some work in every iteration of the loop as in printNumbers2 and
printLetters2? Let’s look at the benchmark cases in goroutine_test.go, in this listing.

func BenchmarkPrint2(b *testing.B) {
 for i := 0; i < b.N; i++ {
 print2()
 }
}

func BenchmarkGoPrint2(b *testing.B) {
 for i := 0; i < b.N; i++ {
 goPrint2()
 }
}

When you run the benchmark tests again, this is what you get:

BenchmarkPrint2 10000 121384 ns/op
BenchmarkGoPrint2 1000000 17206 ns/op

You can see the marked difference now. Running printNumbers2 and printLetters2
sequentially is about seven times slower than running them as goroutines. Let’s try
both benchmarks again, but this time loop 100 times instead of 10 times:

func printNumbers2() {
 for i := 0; i < 100; i++ {
 time.Sleep(1 * time.Microsecond)
 // fmt.Printf("%d ", i)

Listing 9.5 Benchmarking functions that are doing work with and without goroutines

Run as goroutines

Normal run

Runs as goroutines

Looping 100 times
instead of 10 times

230 CHAPTER 9 Leveraging Go concurrency
 }
}

func printLetters2() {
 for i := 'A'; i < 'A'+100; i++ {
 time.Sleep(1 * time.Microsecond)
 // fmt.Printf("%c ", i)
 }
}

Here’s the output:

BenchmarkPrint1 20000000 86.7 ns/op
BenchmarkGoPrint1 1000000 1177 ns/op
BenchmarkPrint2 2000 1184572 ns/op
BenchmarkGoPrint2 1000000 17564 ns/op

The benchmark for the print1 function is 13 times slower, but for goPrint1 the dif-
ference is trivial. Running with a load is even more drastic—the difference between
running sequentially is now 67 times! The benchmark for print2 is almost 10 times
slower than before (which makes sense since we’re running it 10 times more) whereas
for goPrint2, the difference between running it 10 times and 100 times is almost
imperceptible.

 Note that we’re still using just one CPU. What happens if you switch to using two
CPUs (but still loop 100 times)?

go test -run x -bench . -cpu 2

Here’s what you get:

BenchmarkPrint1-2 20000000 87.3 ns/op
BenchmarkGoPrint2-2 5000000 391 ns/op
BenchmarkPrint2-2 1000 1217151 ns/op
BenchmarkGoPrint2-2 200000 8607 ns/op

The benchmark for print1 is no different than running it with one or four CPUs
because the functions are called sequentially, and even if you give it four CPUs, it can
only ever use just one of them. The benchmark for goPrint1 is fantastic; the improve-
ment is almost three times, because the workload is shared now with two CPUs. As
expected, the benchmark for print2 is almost the same as before because it can’t use
more than one CPU. The benchmark for goPrint2 is twice as fast as earlier, which is as
expected since the workload is now shared between two CPUs.

 Time to get adventurous. What happens if you give it four CPUs instead of two?

BenchmarkPrint1-4 20000000 90.6 ns/op
BenchmarkGoPrint1-4 3000000 479 ns/op
BenchmarkPrint2-4 1000 1272672 ns/op
BenchmarkGoPrint2-4 300000 6193 ns/op

As you’d expect, the benchmarks for the print1 and print2 functions are about the
same. Surprisingly, though, the benchmark for goPrint1 is worse than with two CPUs

Looping 100 times
instead of 10 times

231Goroutines
(though it’s still better than with just one CPU) whereas the benchmark for goPrint2
is better than with two CPUs (though the improvement is just a disappointing 40 %).
The benchmarks are worse because of the same issue I mentioned earlier: scheduling
and running on multiple CPUs have a cost, and if the processing doesn’t warrant the
high cost, it can make the performance worse.

 The moral of the story? Increasing the number of CPUs doesn’t necessarily mean
better performance. It’s important to understand your code and do lots of bench-
marking.

9.2.3 Waiting for goroutines

You saw how goroutines are run independently, and in a previous example, you also
saw how the goroutines started in the program would end unceremoniously when the
program ended. You got away with it by adding a time delay using the Sleep function,
but that’s a very hacky way of handling it. Although the danger of a program ending
before the goroutines can complete is less probable in any serious code (because
you’ll know right away and change it), you may often encounter a need to ensure all
goroutines complete before moving on to the next thing.

 Go provides a simple mechanism called the WaitGroup, which is found in the sync
package. The mechanism is straightforward:

■ Declare a WaitGroup.
■ Set up the WaitGroup’s counter using the Add method.
■ Decrement the counter using the Done method whenever a goroutine com-

pletes its task.
■ Call the Wait method, which will block until the counter is 0.

The following listing shows an example. You’ll be using the same printNumbers2 and
printLetters2 functions that previously needed a one-microsecond delay.

package main

import "fmt"
import "time"
import "sync"

func printNumbers2(wg *sync.WaitGroup) {
 for i := 0; i < 10; i++ {
 time.Sleep(1 * time.Microsecond)
 fmt.Printf("%d ", i)
 }
 wg.Done()
}

func printLetters2(wg *sync.WaitGroup) {
 for i := 'A'; i < 'A'+10; i++ {

Listing 9.6 Using WaitGroups

Decrement counter

232 CHAPTER 9 Leveraging Go concurrency
 time.Sleep(1 * time.Microsecond)
 fmt.Printf("%c ", i)
 }
 wg.Done()
}

func main() {
 var wg sync.WaitGroup
 wg.Add(2)
 go printNumbers2(&wg)
 go printLetters2(&wg)
 wg.Wait()
}

When you run the program it’ll print out 0 A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J
nicely. How does it work? First, we define a WaitGroup variable called wg. Next, we call
the Add method on wg, passing it a value of 2, which increments the counter by 2. As
you call the printNumbers2 and printLetters2 goroutines, respectively, you decre-
ment the counter. The WaitGroup will block at the location where you call the Wait
method until the counter becomes 0. Once the Done method is called twice, the Wait-
Group will unblock and the program ends.

 What happens if you forget to decrement the counter in one of the goroutines?
The WaitGroup blocks until the runtime detects all goroutines are asleep, after which
it’ll panic.

0 A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J fatal error: all goroutines are
asleep - deadlock!

The WaitGroup feature is pretty nifty and it’s an important tool to have in your tool-
box when writing concurrent programs.

9.3 Channels
In the previous section, you saw how the go keyword can be used to convert normal
functions into goroutines and execute them independently. In the last subsection, you
also saw how to use WaitGroups to synchronize between independently running gor-
outines. In this section, you’ll learn how goroutines can communicate with each other
using channels.

 You can think of a channel as
a box. Goroutines can talk to
each other only through this box.
If a goroutine wants to pass some-
thing to another goroutine, it
must place something in this box
for the corresponding goroutine
to retrieve, shown in figure 9.3.

Figure 9.3 Unbuffered Go
channel as a box

Decrement counter

Declares WaitGroup
Sets up counter

Blocks until counter reaches 0

Unbuffered Go channel

Sender
goroutine

Receiver
goroutine

233Channels
Channels are typed values that allow goroutines to communicate with each other.
Channels are allocated using make, and the resulting value is a reference to an under-
lying data structure. This, for example, allocates a channel of integers:

ch := make(chan int)

Channels are, by default, unbuffered. If an optional integer parameter is provided, a
buffered channel of the given size is allocated instead. This creates a buffered channel of
integers with the size 10:

ch := make(chan int, 10)

Unbuffered channels are synchronous. You can think of unbuffered channels as a box
that can contain only one thing at a time. Once a goroutine puts something into this
box, no other goroutines can put anything in, unless another goroutine takes out
whatever is inside it first. This means if another goroutine wants to put in something
else when the box contains something already, it will block and go to sleep until the
box is empty.

 Similarly, if a goroutine tries to take out something from this box and it’s empty,
it’ll block and go to sleep until the box has something in it.

 The syntax for putting things into a channel is quickly recognizable, visually. This
puts an integer 1 into the channel ch:

ch <- 1

Taking out the value from a channel is equally recognizable. This removes the value
from the channel and assigns it to the variable i:

i := <- ch

Channels can be directional. By default, channels work both ways (bidirectional) and
values can be sent to or received from it. But channels can be restricted to send-only or
receive-only. This allocates a send-only channel of strings:

ch := make(chan <- string)

This allocates a receive-only channel of strings:

ch := make(<-chan string)

Although channels can be allocated to be directional, they can also be allocated as
bidirectional but returned as directional. You’ll see an example of this near the end of
this chapter.

9.3.1 Synchronization with channels

As you can imagine, channels are useful when you want to synchronize between two
goroutines—especially when you have one goroutine dependent on another. Let’s
jump into some code now and use the WaitGroup example to show how synchroniza-
tion can be done using channels instead, shown in this listing.

234 CHAPTER 9 Leveraging Go concurrency

package main

import "fmt"
import "time"

func printNumbers2(w chan bool) {
 for i := 0; i < 10; i++ {
 time.Sleep(1 * time.Microsecond)
 fmt.Printf("%d ", i)
 }
 w <- true
}

func printLetters2(w chan bool) {
 for i := 'A'; i < 'A'+10; i++ {
 time.Sleep(1 * time.Microsecond)
 fmt.Printf("%c ", i)
 }
 w <- true
}

func main() {
 w1, w2 := make(chan bool), make(chan bool)
 go printNumbers2(w1)
 go printLetters2(w2)
 <-w1
 <-w2
}

Let’s look at the main function first. You created two channels of type bool: w1 and w2.
Then, you ran both printNumbers2 and printLetters2 as goroutines, passing them
the channel. As soon the goroutines are launched, you try to remove something from
the channel w1. Because there’s nothing in this channel, the program will block here.
Before the function printNumbers2 completes, though, you place a true value into
the channel w1. This results in the program unblocking and continuing to the second
channel, w2. A similar thing happens and w2 gets a true value in printLetters2,
resulting in w2 being unblocked, and the program exits.

 Notice that you took out the value from w1 and w2 but they aren’t used, because
you’re only interested in unblocking the program once the goroutines complete.

 This is a simple example. You can see that the goroutines aren’t communicating
with each other—you only used the channels to synchronize them. Let’s look at
another example, this time with a message passing between goroutines.

9.3.2 Message passing with channels

The following listing has two functions running as independent goroutines: a thrower
and a catcher. The thrower throws a number in sequence by sending the number to a
channel that’s being passed into the goroutine. The catcher catches by receiving from
the same channel and printing it out.

Listing 9.7 Synchronizing goroutines using channels

Places Boolean value
into channel to unblock

Channel blocks until something’s in it

235Channels
package main

import (
 "fmt"
 "time"
)

func thrower(c chan int) {
 for i := 0; i < 5; i++ {
 c <- i
 fmt.Println("Threw >>", i)
 }
}

func catcher(c chan int) {
 for i := 0; i < 5; i++ {
 num := <-c
 fmt.Println("Caught <<", num)
 }
}

func main() {
 c := make(chan int)
 go thrower(c)
 go catcher(c)
 time.Sleep(100 * time.Millisecond)
}

When you run this program, here’s what you get:

Caught << 0
Threw >> 0
Threw >> 1
Caught << 1
Caught << 2
Threw >> 2
Threw >> 3
Caught << 3
Caught << 4
Threw >> 4

It might seem strange that sometimes the Caught statement is run before the Threw,
but that’s not important—it’s just the runtime scheduling between the print state-
ments after sending or receiving from the channel. What’s more important to notice
is that the numbers are in sequence, meaning once the number is “thrown” from the
thrower, the same number must be “caught” by the catcher before proceeding to the
next number.

9.3.3 Buffered channels

Unbuffered or synchronous channels seem simple enough. What about buffered
channels? Buffered channels are asynchronous, first-in, first-out (FIFO) message

Listing 9.8 Passing messages with channels

Places something
into channel

Takes something
out of channel

236 CHAPTER 9 Leveraging Go concurrency
queues. Think of buffered channels as a large box that can contain a number of simi-
lar things. A goroutine can continually add things into this box without blocking until
there’s no more space in the box. Similarly, another goroutine can continually remove
things from this box (in the same sequence it was put in) and will only block when it
runs out of things to remove, shown in figure 9.4.

Let’s see how this works with our thrower and catcher example. You convert the
unbuffered channel you allocated:

c := make(chan int)

into a buffered channel of size 3:

c := make(chan int, 3)

When you run the program again, this is what you see:

Threw >> 0
Threw >> 1
Threw >> 2
Caught << 0
Caught << 1
Caught << 2
Threw >> 3
Threw >> 4
Caught << 3
Caught << 4

You can see that the buffer fills up with three numbers before it blocks, as the catcher
receives the three numbers in sequence. Buffered channels are useful when limiting
throughput. If you have a limited number of processes to work on your problem and
you want to throttle the number of requests coming in to your processes, buffered
channels allow you to do exactly that.

Buffered Go channel

Sender
goroutine

Receiver
goroutine

Figure 9.4 Buffered channel as a box

237Channels
9.3.4 Selecting channels

Go has a special keyword, select, that allows you to select one of many channels to
receive from or send to. Think of the select statement like a switch statement but
for channels, shown in this listing.

package main

import (
 "fmt"
)

func callerA(c chan string) {
 c <- "Hello World!"
}

func callerB(c chan string) {
 c <- "Hola Mundo!"
}

func main() {
 a, b := make(chan string), make(chan string)
 go callerA(a)
 go callerB(b)
 for i := 0; i < 5; i++ {
 select {
 case msg := <-a:
 fmt.Printf("%s from A\n", msg)
 case msg := <-b:
 fmt.Printf("%s from B\n", msg)
 }
 }
}

There are two functions, callerA and callerB, each of which takes in a channel of
strings and sends a message into it. These two functions are called as goroutines. You
loop five times (the number of loops is arbitrary), and in each iteration the Go run-
time determines whether you receive from channel a or channel b, depending on the
channel that has a value at the time of selection. If both are available, the Go runtime
will randomly pick one.

 But when you run this program, you get a deadlock:

Hello World! from A
Hola Mundo! from B
fatal error: all goroutines are asleep - deadlock!

This is because once one goroutine has received from a channel, any other goroutine
receiving from it will be blocked and go to sleep. In the example, you receive from chan-
nel a first, and it blocks. In the next iteration of the loop, you receive from channel b

Listing 9.9 Selecting channels

238 CHAPTER 9 Leveraging Go concurrency
and it blocks. At this point you have received from both goroutines, so all goroutines are
blocked and asleep, and therefore deadlocked, and the runtime will panic.

 So how can you prevent a deadlock? select can have a default case that will be
called when all channels in the select are blocked (the code is shown in bold):

select {
case msg := <-a:
fmt.Printf("%s from A\n", msg)
case msg := <-b:
 fmt.Printf("%s from B\n", msg)
default:
 fmt.Println("Default")
}

If neither channel is available when the select is executed, Go will run the default
block. In the preceding code, both channels will be blocked once the messages are
received, so the default will be executed until the loop ends. If you run this now,
though, it’ll show only the defaults, because the select is called too quickly and the
loop ends before any channels can be received properly. You’ll have to add a one-
microsecond delay just before each time select is called (the code appears in bold):

for i := 0; i < 5; i++ {
 time.Sleep(1 * time.Microsecond)
 select {
 case msg := <-a:
 fmt.Printf("%s from A\n", msg)
 case msg := <-b:
 fmt.Printf("%s from B\n", msg)
 default:
 fmt.Println("Default")
 }
}

If you run this program now, the deadlock is now gone:

Hello World! from A
Hola Mundo! from B
Default
Default
Default

As you can see, after both channels are received, they’re blocked and the default
block is run.

 It might seem odd that I’m asking you to add in a time delay. This is because I want
to show you how select is used—in most cases you’ll want to loop indefinitely. In that
case, there’s a different problem. After both channels block, the program will call
default indefinitely. You could escape by breaking out of the for loop by counting
the number of times the default is called. But there’s a better way of doing this.

 Channels can be closed using the close built-in function. Closing a channel indi-
cates to the receiver that no more values will be sent to the channel. You can’t close a

239Channels
receive-only channel, and sending to or closing an already closed channel causes a
panic. A closed channel is never blocked and always returns the zero value for the
channel’s type.

 In the following listing let’s see how closing a channel and checking if a channel is
closed helps to break the infinite loop.

package main

import (
 "fmt"
)

func callerA(c chan string) {
 c <- "Hello World!"
 close(c)
}

func callerB(c chan string) {
 c <- "Hola Mundo!"
 close(c)
}

func main() {
 a, b := make(chan string), make(chan string)
 go callerA(a)
 go callerB(b)
 var msg string
 ok1, ok2 := true, true
 for ok1 || ok2 {
 select {
 case msg, ok1 = <-a:
 if ok1 {
 fmt.Printf("%s from A\n", msg)
 }
 case msg, ok2 = <-b:
 if ok2 {
 fmt.Printf("%s from B\n", msg)
 }
 }
 }
}

Now you’ll notice that you no longer loop just five times, and you’ve also done away
with the one-microsecond delay. To close the channel, use the close built-in function,
right after sending a string to the channel. Unlike closing files or sockets, remember
that this doesn’t disable the channel altogether—it simply tells any goroutines receiv-
ing from this channel that nothing else will come through.

 In the select statement, you use the multivalue form of receiving a value from a
channel:

case value, ok11 = <-a

Listing 9.10 Closing channels

Closes channel after
function is called

ok1 and ok2 become false
when channels close

240 CHAPTER 9 Leveraging Go concurrency
The variable value will be assigned the value from the channel a, whereas ok1 is a
Boolean that indicates whether the channel is still open. If the channel is closed, ok1
will be false.

 One final note on closing channels: it’s perfectly all right not to close them. As
mentioned earlier, closing channels just means telling the receiver that nothing else is
coming through. In the following code, you now know whether the channel is closed.
If it is, you no longer print anything. This is what you’ll get as the result:

Hello World! from A
Hola Mundo! from B

9.4 Concurrency for web applications
So far we’ve been discussing Go concurrency in a standalone program. Whatever
works as a standalone program will obviously work in a web application as well. In this
section you’ll switch over to a web application and learn how concurrency can be used
to improve Go web applications. You’ll encounter some of the basic techniques shown
in the previous sections, as well as other concurrency patterns in a more practical web
application.

 You’ll create a photo mosaic-generating web application. A photo mosaic is a picture
(usually a photograph) that has been divided into (usually equal-sized) rectangular
sections, each of which is replaced with another picture (called a tile picture). If you
view it from far away or if you squint at it, then the original picture can be seen. If you
look closer, you’ll see that the picture is made up of many hundreds or even thou-
sands of smaller tile pictures.

 The basic idea is simple: the web application allows a user to upload a target picture,
which will be used to create a photo mosaic. To make things simple, let’s assume that
tile pictures are already available and are correctly sized.

9.4.1 Creating the photo mosaic

Let’s start with the photo mosaic algorithm. The steps can be followed without the use
of any third-party libraries.

1 Build a tile database, a hash of tile pictures, by scanning a directory of pictures
and then using the filename as the key and the average color of the picture as
the value. The average color is a 3-tuple calculated from getting the red, green,
and blue (RGB) of every pixel and adding up all the reds, greens, and blues,
and then dividing by the total number of pixels.

2 Cut the target picture into smaller pictures of the correct tile size.
3 For every tile-sized piece of the target picture, assume the average color to be

the color of the top-left pixel of that piece.
4 Find the corresponding tile in the tile database that’s the nearest match to the

average color of the piece of the target picture, and place that tile in the corre-
sponding position in the photo mosaic. To find the nearest match, calculate the

241Concurrency for web applications
Euclidean distance between the two color 3-tuples by converting each color
3-tuple into a point in a 3-dimensional space.

5 Remove the tile from the tile database so that each tile in the photo mosaic is
unique.

The next listing shows the mosaic-creating code in a single source file named
mosaic.go. Let’s look at each function in this file.

func averageColor(img image.Image) [3]float64 {
 bounds := img.Bounds()
 r, g, b := 0.0, 0.0, 0.0
 for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
 for x := bounds.Min.X; x < bounds.Max.X; x++ {
 r1, g1, b1, _ := img.At(x, y).RGBA()
 r, g, b = r+float64(r1), g+float64(g1), b+float64(b1)
 }
 }
 totalPixels := float64(bounds.Max.X * bounds.Max.Y)
 return [3]float64{r / totalPixels, g / totalPixels, b / totalPixels}
}

First is the averageColor function, which takes the red, green, and blue of each pixel
in the image, adds them all up, and then divides each sum by the total number of pix-
els in the image. Then you create a 3-tuple (actually a 3-element array) consisting of
these numbers.

 Next, as in the following listing, you have the resize function. The resize func-
tion resizes an image to a new width.

func resize(in image.Image, newWidth int) image.NRGBA {
 bounds := in.Bounds()
 ratio := bounds.Dx()/ newWidth
 out := image.NewNRGBA(image.Rect(bounds.Min.X/ratio, bounds.Min.X/ratio,

 ➥ bounds.Max.X/ratio, bounds.Max.Y/ratio))
 for y, j := bounds.Min.Y, bounds.Min.Y; y < bounds.Max.Y; y, j = y+ratio,

j+1 {
 for x, i := bounds.Min.X, bounds.Min.X; x < bounds.Max.X; x, i =
 ➥ x+ratio, i+1 {
 r, g, b, a := in.At(x, y).RGBA()
 out.SetNRGBA(i, j, color.NRGBA{uint8(r>>8), uint8(g>>8), uint8(b>>8),
 ➥ uint8(a>>8)})
 }
 }
 return *out
}

Listing 9.11 The averageColor function

Listing 9.12 The resize function

Finds the average
color of the picture

Resizes an image
to its new width

242 CHAPTER 9 Leveraging Go concurrency
The tilesDB function creates a database of the tile picture by scanning the directory
where the tile pictures are located, shown in this listing.

func tilesDB() map[string][3]float64 {
 fmt.Println("Start populating tiles db ...")
 db := make(map[string][3]float64)
 files, _ := ioutil.ReadDir("tiles")
 for _, f := range files {
 name := "tiles/" + f.Name()
 file, err := os.Open(name)
 if err == nil {
 img, _, err := image.Decode(file)
 if err == nil {
 db[name] = averageColor(img)
 } else {
 fmt.Println("error in populating TILEDB:", err, name)
 }
 } else {
 fmt.Println("cannot open file", name, err)
 }
 file.Close()
 }
 fmt.Println("Finished populating tiles db.")
 return db
}

The tile database is a map with a string as the key a 3-tuple (in this case, a 3-element
array) as the value. You open each image file in the directory and then get the average
color of the image to create an entry in the map. The tile database is used to find the
correct tile picture in the tile picture director and it is passed into the nearest func-
tion, along with the target color 3-tuple.

func nearest(target [3]float64, db *map[string][3]float64) string {
 var filename string
 smallest := 1000000.0
 for k, v := range *db {
 dist := distance(target, v)
 if dist < smallest {
 filename, smallest = k, dist
 }
 }
 delete(*db, filename)
 return filename
}

Each entry in the tile database is compared with the target color and the entry with
the smallest distance is returned as the nearest tile, and also removed from the tile
database. The distance function, shown in the next listing, calculates the Euclidean
distance between two 3-tuples.

Listing 9.13 The tilesDB function

Populates a tiles
database in memory

Finds the nearest
matching image

243Concurrency for web applications
func distance(p1 [3]float64, p2 [3]float64) float64 {
 return math.Sqrt(sq(p2[0]-p1[0]) + sq(p2[1]-p1[1]) + sq(p2[2]-p1[2]))
}

func sq(n float64) float64 {
 return n * n
}

Scanning and loading the tile database every time a photo mosaic is created can be
pretty cumbersome. You want to do that only once, and clone the tile database every
time a photo mosaic is created. The source tile database, TILEDB, shown in the follow-
ing listing, is then created as a global variable and populated upon start of the web
application.

var TILESDB map[string][3]float64

func cloneTilesDB() map[string][3]float64 {
 db := make(map[string][3]float64)
 for k, v := range TILESDB {
 db[k] = v
 }
 return db
}

9.4.2 The photo mosaic web application

With the mosaic-generating functions in place, you can begin writing your web appli-
cation. Place the web application in a source code file named main.go, shown next.

package main

import (
 "bytes"
 "encoding/base64"
 "fmt"
 "html/template"
 "image"
 "image/draw"
 "image/jpeg"
 "net/http"
 "os"
 "strconv"
 "sync"
 "time"
)

Listing 9.14 The distance function

Listing 9.15 The cloneTilesDB function

Listing 9.16 The photo mosaic web application

Finds the Euclidean
distance between

two points
Finds the square

Clones the tile database
each time the photo
mosaic is generated.

244 CHAPTER 9 Leveraging Go concurrency

Clon
da

It
th

target
func main() {
 mux := http.NewServeMux()
 files := http.FileServer(http.Dir("public"))
 mux.Handle("/static/", http.StripPrefix("/static/", files))
 mux.HandleFunc("/", upload)
 mux.HandleFunc("/mosaic", mosaic)
 server := &http.Server{
 Addr: "127.0.0.1:8080",
 Handler: mux,
 }

 TILESDB = tilesDB()
 fmt.Println("Mosaic server started.")
 server.ListenAndServe()
}

func upload(w http.ResponseWriter, r *http.Request) {
 t, _ := template.ParseFiles("upload.html")
 t.Execute(w, nil)
}

func mosaic(w http.ResponseWriter, r *http.Request) {
 t0 := time.Now()

 r.ParseMultipartForm(10485760)
 file, _, _ := r.FormFile("image")
 defer file.Close()
 tileSize, _ := strconv.Atoi(r.FormValue("tile_size"))

 original, _, _ := image.Decode(file)
 bounds := original.Bounds()

 newimage := image.NewNRGBA(image.Rect(bounds.Min.X, bounds.Min.X,

bounds.Max.X, bounds.Max.Y))

 db := cloneTilesDB()

 sp := image.Point{0, 0}
 for y := bounds.Min.Y; y < bounds.Max.Y; y = y + tileSize {
 for x := bounds.Min.X; x < bounds.Max.X; x = x + tileSize {

 r, g, b, _ := original.At(x, y).RGBA()
 color := [3]float64{float64(r), float64(g), float64(b)}

 nearest := nearest(color, &db)
 file, err := os.Open(nearest)
 if err == nil {
 img, _, err := image.Decode(file)
 if err == nil {

 t := resize(img, tileSize)
 tile := t.SubImage(t.Bounds())
 tileBounds := image.Rect(x, y, x+tileSize, y+tileSize)

Gets uploaded
file and tile size

Decodes uploaded
target image

es tile
tabase Sets up source

point for each tile

erates
rough
image

245Concurrency for web applications
 draw.Draw(newimage, tileBounds, tile, sp, draw.Src)
 } else {
 fmt.Println("error:", err, nearest)
 }
 } else {
 fmt.Println("error:", nearest)
 }
 file.Close()
 }
 }

 buf1 := new(bytes.Buffer)
 jpeg.Encode(buf1, original, nil)
 originalStr := base64.StdEncoding.EncodeToString(buf1.Bytes())

 buf2 := new(bytes.Buffer)
 jpeg.Encode(buf2, newimage, nil)
 mosaic := base64.StdEncoding.EncodeToString(buf2.Bytes())
 t1 := time.Now()
 images := map[string]string{
 "original": originalStr,
 "mosaic": mosaic,
 "duration": fmt.Sprintf("%v ", t1.Sub(t0)),
 }
 t, _ := template.ParseFiles("results.html")
 t.Execute(w, images)
}

The main logic for creating the photo mosaic resides in the mosaic function, which is
a handler function. First, you get the uploaded file and the tile size from the form.
Next, you decode the uploaded target image and create a new photo mosaic image.
You clone the source tile database and set up the source point for each tile (the source
point is needed by the image/draw package later). You’re now ready to iterate
through each tile-sized piece of the target image.

 For every piece, you pick the top-left pixel and assume that’s the average color.
Then you find the nearest tile in the tile database that matches this color. The tile
database gives you a filename, so you open the tile picture and resize it to the tile size.
The resultant tile is drawn into the photo mosaic you created earlier.

 Once the photo mosaic is created, you encode it into JPEG format and then
encode it once again into a base64 string.

 The original target picture and the photo mosaic are then sent to the results.html
template to be displayed on the next page. As you can see, the image is displayed
using a data URL with the base64 content that’s embedded in the web page itself (the
code is shown in bold in the following listing). Data URLs are used as an alternative to
a normal URL that points to another resource. In a data URL, the data itself is embed-
ded into the URL.

Encodes in JPEG, deliver to
browser in base64 string

246 CHAPTER 9 Leveraging Go concurrency

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Mosaic</title>
 ...
 </head>
 <body>
 <div class='container'>
 <div class="col-md-6">

 <div class="lead">Original</div>
 </div>
 <div class="col-md-6">

 <div class="lead">Mosaic – {{ .duration }} </div>
 </div>
 <div class="col-md-12 center">
 Go Back
 </div>
 </div>

 </body>
</html>

Figure 9.5 shows the mosaic that’s created if you build it and then run it with only one
CPU, assuming your code is in a directory named mosaic:

GOMAXPROCS=1 ./mosaic

Listing 9.17 The results template

Figure 9.5 Basic photo mosaic web application

247Concurrency for web applications
Now that you have the basic mosaic-generating web application, let’s create the con-
current version of it.

9.4.3 Concurrent photo mosaic web application

One of the more frequent uses of concurrency is to improve performance. The web
application from the previous section created a mosaic from a 151 KB JPEG image in
about 2.25 seconds. The performance isn’t fantastic and can be improved using con-
currency. You’ll use the algorithm in this example to build concurrency into the
photo mosaic web application:

1 Split the original image into four quarters.
2 Process them at the same time.
3 Combine the results into a single mosaic.

For a diagrammatic point of view, see figure 9.6.

A word of caution: this is not the only way that performance can be improved or con-
currency can be achieved, but only one relatively straightforward way.

 The main change is in the mosaic handler function. The earlier program had a
single handler function that created the photo mosaic. In the concurrent version of
the web application, you need to break up that function into two separate ones, called

1. Cut to four
 quadrants

3. Combine the four
 mosaic quadrants

2. Convert
 to mosaic

Figure 9.6 Concurrency algorithm for generating mosaics faster

248 CHAPTER 9 Leveraging Go concurrency

,

t

Fanni
comb

im
cut and combine, respectively. Both functions are called from the mosaic handler
function, shown here.

func mosaic(w http.ResponseWriter, r *http.Request) {
 t0 := time.Now()
 r.ParseMultipartForm(10485760) // max body in memory is 10MB
 file, _, _ := r.FormFile("image")
 defer file.Close()
 tileSize, _ := strconv.Atoi(r.FormValue("tile_size"))
 original, _, _ := image.Decode(file)
 bounds := original.Bounds()
 db := cloneTilesDB()

 c1 := cut(original, &db, tileSize, bounds.Min.X, bounds.Min.Y,
 ➥ bounds.Max.X/2, bounds.Max.Y/2)
 c2 := cut(original, &db, tileSize, bounds.Max.X/2, bounds.Min.Y,
 ➥ bounds.Max.X, bounds.Max.Y/2)
 c3 := cut(original, &db, tileSize, bounds.Min.X, bounds.Max.Y/2,
 ➥ bounds.Max.X/2, bounds.Max.Y)
 c4 := cut(original, &db, tileSize, bounds.Max.X/2, bounds.Max.Y/2,
 ➥ bounds.Max.X, bounds.Max.Y)
 c := combine(bounds, c1, c2, c3, c4)

 buf1 := new(bytes.Buffer)
 jpeg.Encode(buf1, original, nil)
 originalStr := base64.StdEncoding.EncodeToString(buf1.Bytes())

 t1 := time.Now()
 images := map[string]string{
 "original": originalStr,
 "mosaic": <-c,
 "duration": fmt.Sprintf("%v ", t1.Sub(t0)),
 }

 t, _ := template.ParseFiles("results.html")
 t.Execute(w, images)
}

Cutting up the image is handled by the cut
function, in what is known as the fan-out pattern
(figure 9.7).

 The original image is cut up into four quad-
rants to be processed separately. As you may
notice, these are regular functions and not
goroutines, so how can they run concurrently?
The answer is because the cut function creates a
goroutine from an anonymous function and
returns a channel.

Figure 9.7 Splitting the target picture into four quadrants

Listing 9.18 The mosaic handler function

Fanning out
cutting up
image for
independen
processing

ng in,
ining
ages

249Concurrency for web applications
Here’s where you need to be careful. Remember that you’re converting an application
to a concurrent one, with multiple goroutines running at the same time. If you have
some resources that are shared, the changes can possibly cause a race condition.

In this case, you do have a shared resource: the original image that was uploaded to
the mosaic application. The nearest function finds the best-fitting tile image and
removes it from the tile database in order not to have duplicate tiles. This means if the
cut goroutines happen to find the same tile as the best fitting, at the same time, there
will be a race condition.

 To eliminate the race condition, you can use a common technique called mutual
exclusion, mutex for short. Mutex refers to the requirement that only one process (in our
case, a goroutine) can access a critical section at the same time. In the case of the con-
current mosaic application, you need to implement mutex on the nearest function.

 To do this, you can use Go’s Mutex struct in the sync package. First, define a DB
struct, where the struct encapsulates both the actual tile store as well as a mutex flag,
shown next.

type DB struct {
 mutex *sync.Mutex
 store map[string][3]float64
}

Next, change the nearest function into a method on the DB struct, shown here.

func (db *DB) nearest(target [3]float64) string {
 var filename string
 db.mutex.Lock()
 smallest := 1000000.0

Race condition

A race condition exists when the program depends on a specific sequence or timing
for it to happen and specific sequence or timing can’t be guaranteed. As a result, the
behavior of the program becomes erratic and unpredictable.

Race conditions commonly appear in concurrent programs that modify a shared re-
source. If two or more processes or threads try to modify the shared resource at the
same time, the one that gets to the resource first will behave as expected but the
other processes won’t. Because we can’t predict which process gets the resource
first, the system won’t behave consistently.

Race conditions are notoriously difficult to debug, although they aren’t difficult to fix
once the problem is identified.

Listing 9.19 The DB struct

Listing 9.20 The nearest method

Sets mutex flag
by locking it

250 CHAPTER 9 Leveraging Go concurrency

Re
ch

met
get be
 for k, v := range db.store {
 dist := distance(target, v)
 if dist < smallest {
 filename, smallest = k, dist
 }
 }
 delete(db.store, filename)
 db.mutex.Unlock()
 return filename
}

In the new nearest method, you can lock the section that searches for the best-fitting
tile. You shouldn’t just lock the delete function because doing so will still cause a race
condition—another goroutine can find the same tile just before it’s removed from the
database.

 Next is the cut function.

func cut(original image.Image, db *DB, tileSize, x1, y1, x2, y2 int) <-chan
image.Image {

 c := make(chan image.Image)
 sp := image.Point{0, 0}
 go func() {
 newimage := image.NewNRGBA(image.Rect(x1, y1, x2, y2))
 for y := y1; y < y2; y = y + tileSize {
 for x := x1; x < x2; x = x + tileSize {
 r, g, b, _ := original.At(x, y).RGBA()
 color := [3]float64{float64(r), float64(g), float64(b)}
 nearest := db.nearest(color)
 file, err := os.Open(nearest)
 if err == nil {
 img, _, err := image.Decode(file)
 if err == nil {
 t := resize(img, tileSize)
 tile := t.SubImage(t.Bounds())
 tileBounds := image.Rect(x, y, x+tileSize, y+tileSize)
 draw.Draw(newimage, tileBounds, tile, sp, draw.Src)
 } else {
 fmt.Println("error:", err)
 }
 } else {
 fmt.Println("error:", nearest)
 }
 file.Close()
 }
 }
 c <- newimage.SubImage(newimage.Rect)
 }()
 return c
}

Listing 9.21 The cut function

Unsets mutex
flag by unlocking it

Passes in reference to
DB struct instead of mapturns

annel
Creates anonymous
goroutine

Calls nearest
hod on DB to
st-fitting tile

251Concurrency for web applications

Cre
anon

go

D

c

first
The logic is the same as in the original photo mosaic web application. You created a
channel in the cut function and started an anonymous goroutine that sends the
results to this channel and then returns the channel. This way, the channel is immedi-
ately returned to the mosaic handler function, and the completed photo mosaic seg-
ment is sent to the channel when the processing is done. You may notice that
although you’ve created the return channel as bidirectional, you can typecast it to be
returned as a receive-only channel.

 You’ve cut the original image into four separate pieces and converted each piece
into a part of a photo mosaic. It’s time to put them together again, using what’s com-
monly known as the fan-in pattern, in the combine function, shown here.

func combine(r image.Rectangle, c1, c2, c3, c4 <-chan image.Image)
<-chan string {
 c := make(chan string)

 go func() {
 var wg sync.WaitGroup
 img:= image.NewNRGBA(r)
 copy := func(dst draw.Image, r image.Rectangle,
src image.Image, sp image.Point) {
 draw.Draw(dst, r, src, sp, draw.Src)
 wg.Done()
 }
 wg.Add(4)
 var s1, s2, s3, s4 image.Image
 var ok1, ok2, ok3, ok4 bool
 for {
 select {
 case s1, ok1 = <-c1:
 go copy(img, s1.Bounds(), s1,
 image.Point{r.Min.X, r.Min.Y})
 case s2, ok2 = <-c2:
 go copy(img, s2.Bounds(), s2,
image.Point{r.Max.X / 2, r.Min.Y})
 case s3, ok3 = <-c3:
 go copy(img, s3.Bounds(), s3,
image.Point{r.Min.X, r.Max.Y/2})
 case s4, ok4 = <-c4:
 go copy(img, s4.Bounds(), s4,
image.Point{r.Max.X / 2, r.Max.Y / 2})
 }
 if (ok1 && ok2 && ok3 && ok4) {
 break
 }
 }

 wg.Wait()
 buf2 := new(bytes.Buffer)
 jpeg.Encode(buf2, img, nil)

Listing 9.22 The combine function

Returns a channel

ates an
ymous

routine
Waits until all subimages
copied to final image

ecrements
counter as
subimages
opied over

Sets WaitGroup
counter to 4

Loops, waits
indefinitelySelects

 channel

Breaks out of loop
when all channels closed

Blocks until all
subimages copied

252 CHAPTER 9 Leveraging Go concurrency
 c <- base64.StdEncoding.EncodeToString(buf2.Bytes())
 }()
 return c
}

As in the cut function, the main logic in combining the images resides in an anony-
mous goroutine, and you create and return a receive-only channel. As a result, you
can encode the original image while combining the four photo mosaic segments.

 In the anonymous goroutine, you create another anonymous function and assign
it to a variable copy. This function copies a photo mosaic segment into the final photo
mosaic and will be run as a goroutine later. Because the copy function is called as a
goroutine, you won’t be able to control it when it completes. To synchronize the com-
pletion of the copying, you use a WaitGroup. You create a WaitGroup, wg, and then set
the counter to 4 using the Add method. Each time the copy function completes, it will
decrement the counter using the Done method. You call the Wait method just before
encoding the image to allow all the copy goroutines to complete and you have a com-
plete photo mosaic image.

 Remember that the input to the combine function includes the four channels com-
ing from the cut function containing the photo mosaic segments, and you don’t know
when the channels have segments. You could try to receive each one of those channels
in sequence, but that wouldn’t be very concurrent. What I like to do is to start process-
ing whichever segment that comes first, and the select statement fits the bill nicely.

 You loop indefinitely, and in each iteration, you select the channel that’s ready
with a value. (If more than one is available, Go randomly assigns you one.) You use the
image from this channel and start a goroutine with the copy function. You’re using
the multivalue format for receiving values from the channel, meaning the second vari-
able (ok1, ok2, ok3, or ok4) tells you if you’ve successfully received from the channel.
The for loop breaks once you’ve successfully received on all channels.

 Moving on, and referring to the WaitGroup wg you used earlier, remember that
even though you received all the photo mosaic segments successfully, you have in turn
started four separate goroutines, which might not have completed at that time. The
Wait method on the WaitGroup wg blocks the encoding of the assembled photo
mosaic until the photo mosaic is completed.

 Now that you have the concurrent mosaic application, let’s run it. For now, run go
build and then execute it with just one CPU, assuming that your code is in a directory
named mosaic_concurrent:

GOMAXPROCS=1 ./mosaic_concurrent

You can see the results in figure 9.8, which uses the same target picture and tile pic-
tures when you run it with a single CPU.

 If you’re sharp-eyed, you might see the slight differences in the photo mosaic that’s
generated (it works better on the e-book version where you can see the color

253Concurrency for web applications
differences). The final photo mosaic is assembled from four separate pieces and the
algorithm doesn’t smooth out the rough edges. But you can see the difference in per-
formance—where the basic photo mosaic web application took 2.25 seconds, the one
using concurrency takes only a quarter of that time, about 646 ms.

 You might be wondering now if what I’ve just shown you is a case of parallel pro-
gramming instead of concurrent programming. What’s done here seems to be just
breaking up a function into four goroutines that are run independently.

 Keep in mind that you didn’t just break up a long-running function into separate
cut functions running goroutines—you also assembled their output with the combine
function that wraps a goroutine. Whenever any one of the cut functions completes its
processing, it will send the results to the combine function to be copied into a single
image.

 Remember that I asked you to run both the original and the concurrent web appli-
cations with only one CPU. As mentioned earlier in this chapter, concurrency is not
parallelism—I’ve shown you how to take a simple algorithm and break it down into a
concurrent one, with no parallelism involved. None of the goroutines are running in
parallel (there’s only one CPU), even though they’re running independently.

 For our grand finale, now run it with multiple CPUs and, in the process, automati-
cally get parallelism for free. To do this, run the application normally:

./mosaic_concurrent

Figure 9.8 Photo mosaic web application with concurrency

254 CHAPTER 9 Leveraging Go concurrency
Figure 9.9 shows what you should get as a result.
 As you can see from the numbers, the performance has improved three times,

from 646 ms to 216 ms! And if we compare that with our original non-concurrent
photo mosaic web application with 2.25 seconds, that’s a 10 times performance
improvement!

 There’s no difference between the original and the concurrent web applications in
terms of the photo mosaic algorithm. In fact, between the two applications, the
mosaic.go source file was hardly modified. The main difference is concurrency, and
that’s a testament to how powerful it is.

 We’re done with programming our web applications. The next chapter discusses
how you can take your web applications and web services and deploy them.

9.5 Summary
■ The Go web server itself is concurrent and each request to the server runs on a

separate goroutine.
■ Concurrency is not parallelism—they are complementary concepts but not the

same. Concurrency is when two or more tasks start, run, and end within the
same period of time and these tasks can potentially interact with each other
while parallelism is simply multiple tasks running at the same time.

■ Go supports concurrency directly with two main features: goroutines and chan-
nels. Go doesn’t support parallelism directly.

■ Goroutines are used to write concurrent programs, whereas channels are used
to provide the communications between goroutines.

■ Unbuffered channels are synchronous and are blocked when they contain data
but not received while buffered channels can be asynchronous until buffer is full.

Figure 9.9 Photo mosaic web application with concurrency and eight CPUs

255Summary
■ A select statement can be used to choose one out of a number of channels—
the first channel that is ready to be received will be selected.

■ WaitGroups can also be used to synchronize between channels.
■ Concurrent web applications can be highly performant, depending on the

algorithm used, even on a single CPU, compared with non-concurrent web
applications.

■ Concurrent web applications can potentially get the benefits of parallelism
automatically.

Deploying Go
Now that you’ve learned how to develop a web application with Go, the next logical
step is to deploy it. Deploying web applications is quite different from deploying
other types of applications. Desktop and mobile applications are deployed on the
end users’ devices (smart phones tables, laptops, and so forth) but web applications
are deployed on servers that are accessed through a client (usually a browser) on
the end users’ device.

 Deploying Go web apps can be simple because the executable program is com-
piled into a single binary file. Also, because Go programs can be compiled into a
statically linked binary file that doesn’t need any other libraries, they can be a sin-
gle executable file. But web apps are usually not just a single executable binary;
most often they consist of template files as well as static files like JavaScript, images,
and style sheets. In this chapter we’ll explore a few ways of deploying Go web apps
to the internet, mostly through cloud providers. You’ll learn how to deploy to

This chapter covers
■ Deploying Go web apps to standalone servers
■ Deploying Go web apps to the cloud
■ Deploying Go web apps in Docker containers
256

257Deploying to servers
■ A server that’s either fully owned by you, physical, or virtual (on an Infrastruc-
ture-as-a-Service provider, Digital Ocean)

■ A cloud Platform-as-a-Service (PaaS) provider, Heroku
■ Another cloud PaaS provider, Google App Engine
■ A dockerized container, deployed to a local Docker server, and also to a virtual

machine on Digital Ocean

It’s important to remember that there are many different ways of deploying a web app
and in each of the methods you’ll be learning in this chapter, there are many varia-
tions. The methods described in this chapter are based on a single person deploying
the web app. The processes are usually a lot more involved in a production environ-
ment, which includes additiona tasks like running test suites, continual integration,
staging servers, and so on.

 This chapter also introduces many concepts and tools, each of them worthy of an
entire book. Therefore, it’s impossible to cover all of these technologies and services.
This chapter aims to cover only a small portion, and if you want to learn more, take
this as a starting point.

 In our examples, you’ll be using the simple web service in section 7.6. Wherever
possible, you’ll use PostgreSQL (except in Google App Engine, where you’ll use
Google Cloud SQL, which is MySQL based). The base assumption is that the setup of
the database is done beforehand, on a separate database server, so setting up the data-
base isn’t covered here. If you need some brief guidance, review section 2.6.

10.1 Deploying to servers
Let’s start with the simplest deployment: creating an executable binary and then run-
ning it off a server that’s on the internet. Whether this server is a physical server con-
nected to the internet or a virtual machine (VM) that’s been created on a provider
like Amazon Web Services (AWS) or Digital Ocean, it’s the same. In this section, you’ll
learn how to deploy to a server that’s running Ubuntu Server 14.04.

Cloud computing

Cloud computing, or “the cloud,” is a model of network and computer access that
provides a pool of shared resources (servers, storage, network, and others). This al-
lows the users of these resources to avoid up-front costs and the providers of the
resources to use the resources more effectively for a larger number of users. Cloud
computing has gained traction over the past years and is now a regular model used
by most large infrastructure and service providers, including Amazon, Google, and
Facebook.

258 CHAPTER 10 Deploying Go
Our simple web service from chapter 7 consists of two files: data.go (listing 10.1),
which contains all the connections to the database, as well as the functions that read
from and write to the database, and server.go (listing 10.2), which contains the main
function and all the processing logic for the web service.

package main

import (
 "database/sql"
 _ "github.com/lib/pq"
)

var Db *sql.DB

func init() {
 var err error
 Db, err = sql.Open("postgres", "user=gwp dbname=gwp password=gwp

 ➥ sslmode=disable")
 if err != nil {
 panic(err)
 }
}

func retrieve(id int) (post Post, err error) {
 post = Post{}

IaaS, PaaS, and SaaS

Cloud computing providers offer their services through different models. NIST (National
Institute of Standards and Technology, US Department of Commerce) defines three
service models that are widely used today: Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), and Software-as-a-Service (SaaS).

IaaS, the most basic of the three models, describes providers that offer their users
the basic computing capabilities, including compute, storage, and networking. Exam-
ples of IaaS services include the AWS Elastic Cloud Computing (EC2) service, Google’s
Compute Engine, and Digital Ocean’s Droplets.

PaaS is a model that describes providers that offer their users capabilities to deploy
applications to the infrastructure, using their tools. Examples include Heroku, AWS’s
Elastic Beanstalk, and Google’s App Engine.

SaaS is a model that describes providers that offer application services to the users.
Most services used by consumers today can be considered SaaS services, but in the
context of this book, SaaS services include Heroku’s Postgres database service (which
provides a cloud-based Postgres service), AWS’s Relational Database Service (RDS),
and Google’s Cloud SQL.

In this book, and in this chapter, you’ll learn how you can use IaaS and PaaS providers
to deploy Go web applications.

Listing 10.1 Accessing the database with data.go

259Deploying to servers
 err = Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

func (post *Post) create() (err error) {
 statement := "insert into posts (content, author) values ($1, $2)
 ➥ returning id"
 stmt, err := Db.Prepare(statement)
 if err != nil {
 return
 }
 defer stmt.Close()
 err = stmt.QueryRow(post.Content, post.Author).Scan(&post.Id)
 return
}

func (post *Post) update() (err error) {
 _, err = Db.Exec("update posts set content = $2, author = $3 where id =
 ➥ $1", post.Id, post.Content, post.Author)
 return
}

func (post *Post) delete() (err error) {
 _, err = Db.Exec("delete from posts where id = $1", post.Id)
 return
}

package main

import (
 "encoding/json"
 "net/http"
 "path"
 "strconv"
)

type Post struct {
 Id int `json:"id"`
 Content string `json:"content"`
 Author string `json:"author"`
}

func main() {
 server := http.Server{
 Addr: "127.0.0.1:8080",
 }
 http.HandleFunc("/post/", handleRequest)
 server.ListenAndServe()
}

func handleRequest(w http.ResponseWriter, r *http.Request) {
 var err error

Listing 10.2 Go web service in server.go

260 CHAPTER 10 Deploying Go
 switch r.Method {
 case "GET":
 err = handleGet(w, r)
 case "POST":
 err = handlePost(w, r)
 case "PUT":
 err = handlePut(w, r)
 case "DELETE":
 err = handleDelete(w, r)
 }
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }
}

func handleGet(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 output, err := json.MarshalIndent(&post, "", "\t\t")
 if err != nil {
 return
 }
 w.Header().Set("Content-Type", "application/json")
 w.Write(output)
 return
}

func handlePost(w http.ResponseWriter, r *http.Request) (err error) {
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 var post Post
 json.Unmarshal(body, &post)
 err = post.create()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

func handlePut(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return

261Deploying to servers
 }
 len := r.ContentLength
 body := make([]byte, len)
 r.Body.Read(body)
 json.Unmarshal(body, &post)
 err = post.update()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

func handleDelete(w http.ResponseWriter, r *http.Request) (err error) {
 id, err := strconv.Atoi(path.Base(r.URL.Path))
 if err != nil {
 return
 }
 post, err := retrieve(id)
 if err != nil {
 return
 }
 err = post.delete()
 if err != nil {
 return
 }
 w.WriteHeader(200)
 return
}

First, you compile the code:

go build

Assuming that you have the code in a directory called ws-s, this command will produce
the executable binary ws-s in the same directory. To deploy the web service ws-s, copy
the ws-s file into the server. Anywhere will do as long as it’s accessible.

 To run the web service, log into the server and run it from the console:

./ws-s

But wait! You’re running it in the foreground, which means you can’t do anything else
or it will shut down the service. You can’t even run it in the background using the & or
bg command because once you log out, the web service gets killed.

 One way of getting around this issue is to use the nohup command, which tells
the OS to ignore the HUP (hangup) signal that is sent to your web service once you
log out:

nohup ./ws-s &

This command will run the web service in the background, and there’s no fear of it
being killed. The web service is still connected to the console; it just ignores any sig-
nals to hang up or quit. If it crashes, you won’t be alerted, and you’ll need to log in to
restart it. If the server is restarted, you’ll have to restart the web service.

262 CHAPTER 10 Deploying Go
 An alternative to running nohup is to use an init daemon like Upstart or systemd.
In Unix-based OSes, init is the first process that’s run when the system is booted up
and continues running until the system is shut down. It’s the direct or indirect ances-
tor of all other processes and is automatically started by the kernel.

 In this section, you’ll be using Upstart, an event-based replacement for init, cre-
ated for Ubuntu. Although systemd is gaining adoption, Upstart is generally simpler
to use, and for our purposes, both perform the same things.

 To use Upstart, create an Upstart job configuration file, shown next, and place it in
the etc/init directory. For the simple web service, you’ll create ws.conf and place it in
the etc/init directory.

respawn
respawn limit 10 5

setuid sausheong
setgid sausheong

exec /go/src/github.com/sausheong/ws-s/ws-s

The Upstart job configuration file in the listing is straightforward. Each Upstart job
consists of one or more command blocks called stanzas. The first stanza, respawn, indi-
cates that if the job fails, it should be respawned, or restarted. The second stanza,
respawn limit 10 5, sets parameters for respawn, indicating that it will try to
respawn only 10 times, waiting 5 seconds in between. After 10 tries, Upstart will stop
trying to respawn the job and consider the job to have failed. The third and fourth
stanzas set the user and group that will be used to run the process. The last stanza is
the executable that’s run by Upstart when the job starts.

 To start the Upstart job, you start it from the console:

sudo start ws
ws start/running, process 2011

This command will trigger Upstart to read the /etc/init/ws.conf job configuration file
and start the job. Upstart job configuration files can have a number of other stanzas,
and Upstart jobs can be configured in a variety of ways, all of which are beyond the
scope of this book. This section provides only a flavor of how a simple Upstart job can
be used to run a Go web application.

 To test this point, let’s try a simple experiment. You’ll try to kill the Upstart job
after it’s started:

ps -ef | grep ws
sausheo+ 2011 1 0 17:23 ? 00:00:00 /go/src/github.com/sausheong/ws-s/ws-s

sudo kill -0 2011

ps -ef | grep ws
sausheo+ 2030 1 0 17:23 ? 00:00:00 /go/src/github.com/sausheong/ws-s/ws-s

Listing 10.3 Listing 10.3 Upstart job configuration file for the simple web service

263Deploying to Heroku
Notice that before we killed the process, the ID for the job was 2011, whereas after you
tried killing the process, the process PID became 2030. This is because Upstart detects
that the process went down, so Upstart will try to restart it.

 Finally, most web applications are deployed to the standard HTTP port (port 80).
When it is time to do the final deployment, you should be changing the port number
from 8080 to 80, or use some mechanism to proxy or redirect traffic to port 80 to
port 8080.

10.2 Deploying to Heroku
I’ve just shown you how easy it is to deploy a simple Go web service to a server and also
how the web service can be managed by the init daemon. In this section, you’ll see
that it’s just as easy to deploy to Heroku, a PaaS provider.

 Heroku allows you to deploy, run, and manage applications written in a few pro-
gramming languages, including Go. An application, as defined by Heroku, is a collec-
tion of source code written in one of Heroku’s supported languages, as well as its
dependencies.

 Heroku’s premise is simple and requires only a couple of things:

■ A configuration file or mechanism that defines the dependencies. For example,
in Ruby this would be a Gemfile file, in Node.js a package.json file, and in Java a
pom.xml file.

■ A Procfile that defines what to be run. More than one executable can be run at
the same time.

Heroku uses the command line extensively and provides a command-line “toolbelt” to
deploy, run, and manage applications. In addition, Heroku uses Git to push source
code to the server to be deployed. When the Heroku platform receives the code
through Git, it builds the application and retrieves the dependencies that are speci-
fied, and then assembles them into a slug. These slugs are then run on Heroku dynos,
Heroku’s terminology for isolated, lightweight virtualized Unix containers.

 Although some of the management and configuration activities can later be done
through a web interface, Heroku’s main interface is still through its command-line
toolbelt. So the first thing you need to do to use Heroku, after registering for an
account, is to download the toolbelt at https://toolbelt.heroku.com.

 There are many reasons why you’d want to use a PaaS (Heroku is an atypical PaaS)
to deploy your web application. As a web application programmer, you’ll find the most
direct reason is that your infrastructure and systems layers are now abstracted and man-
aged for you. Although in a large-scale production environment such as in corporate IT
infrastructure this is not usually an issue, PaaS has become a boon for smaller compa-
nies and startups where there’s less need for up-front capital cost commitments.

 Once you have downloaded the toolbelt, log into Heroku using the credentials you
received when registering for an account:

heroku login
Enter your Heroku credentials.

https://toolbelt.heroku.com/

264 CHAPTER 10 Deploying Go
Email: <your email>
Password (typing will be hidden):
Authentication successful.

Figure 10.1 shows how you can deploy the same simple web service to Heroku.

Figure 10.1 Steps to deploy a web application on Heroku. First, change the code to use the port from
the environment settings and use Godep to include dependencies. Then create the Heroku application
and push the code to Heroku.

To deploy the web service, you need to make a simple code change. Remember you
bound your web server to the address :8080 previously. When deploying on Heroku,
you have no control over the port to use; you must get the port by reading the envi-
ronment variable PORT. Therefore, instead of this main function in the server.go file:

func main() {
 server := http.Server{
 Addr: ":8080",
 }
 http.HandleFunc("/post/", handlePost)
 server.ListenAndServe()
}

you use this main function:

func main() {
 server := http.Server{
 Addr: ":" + os.Getenv("PORT"),//
 }
 http.HandleFunc("/post/", handlePost)
 server.ListenAndServe()
}

That’s all the code changes you need to make; everything else is the same. Next, you
need to tell Heroku about your web service’s dependencies. Heroku uses godep
(https://github.com/tools/godep) to manage Go dependencies. To install godep,
use the standard go get command:

go get github.com/tools/godep

Once godep is installed, you need to use it to bring in your dependencies. In the root
directory of your web service, run this command:

godep save

Change code:
get port from

environment variable

Use Godep for
dependencies

Create Heroku
application

Push code to
Heroku application

Gets port number from
environment variable

https://github.com/tools/godep

265Deploying to Heroku
This command will create a directory named Godeps, retrieve all the dependencies in
your code, and copy their source code into the directory Godeps/_workspace. It will
also create a file named Godeps.json that lists all your dependencies. This listing
shows an example of the Godeps.json file.

{
 "ImportPath": "github.com/sausheong/ws-h",
 "GoVersion": "go1.4.2",
 "Deps": [
 {
 "ImportPath": "github.com/lib/pq",
 "Comment": "go1.0-cutoff-31-ga33d605",
 "Rev": "a33d6053e025943d5dc89dfa1f35fe5500618df7"
 }
]
}

Because the web service depends only on the Postgres database driver, it lists only that
as a dependency.

 The last thing that you need to do is define a Procfile, shown in the next listing, which
is nothing more than a file that describes which executable or main function to run.

web: ws-h

That’s it! What the listing says is that the web process is associated with the ws-h
executable binary, so that’s what’s going to be executed when the Heroku build
completes.

 Now that you have all this in place, the next step is to push everything up to Her-
oku. Heroku allows you to use different mechanisms to push code, including GitHub
integration, Dropbox Sync, Heroku’s own APIs, and standard Git. In this example,
you’ll use standard Git to push your simple web service to Heroku.

 Before you push the code, you must create an application:

heroku create ws-h

This command will create a Heroku application called ws-h, which will finally be
shown as https://ws-h.herokuapp.com. Naturally since we’ve used this already, you
won’t be able to do so again. You can choose another name, or you can drop the name
altogether and let Heroku generate a random application name for you.

heroku create

Listing 10.4 Godeps.json file

Listing 10.5 Godeps.json file

https://ws-h.herokuapp.com/

266 CHAPTER 10 Deploying Go
Using heroku create will initialize a local Git repository for the web service and add
the remote Heroku repository. Once you’ve created the application, you can use Git
to push the code to the application:

git push heroku master

This will push your code to Heroku, triggering a build and deploy. And that’s all you
need to do! Heroku also provides a number of nifty application management tools for
scaling and managing releases, as well as configuration tools to add new services.

10.3 Deploying to Google App Engine
Another popular PaaS for Go web applications is the Google App Engine (GAE).
Google has a number of services in its Google Cloud Platform suite of products,
including the App Engine and the Compute Engine. The App Engine is a PaaS ser-
vice; a Compute Engine, like AWS’s EC2 and Digital Ocean’s Droplets, is an IaaS
service. Using EC2 or Droplets isn’t much different from having your own VM or run-
ning your own server, and we’ve covered that. This section explores Google’s powerful
PaaS service, GAE.

 There are a number of reasons why you’d use GAE as compared with any other
PaaS, including Heroku. The main reasons are performance and scalability. GAE allows
you to build applications that can automatically scale and load balance according to its
load. Google also provides a large number of tools and capabilities built into the GAE.
For example, it can allow your application to authenticate into Google Accounts and it
provides services to send emails, create logs, and serve and manipulate images. Inte-
gration into other Google APIs is also more straightforward using GAE.

 With any advantages there are also a number of disadvantages. For one, you have
read-only access to the filesystem, you can’t have a request lasting more than 60 sec-
onds (GAE will kill it if you do), and you can’t have direct network access or make
other kinds of system calls. This means you can’t (at least not easily) access many ser-
vices outside of Google’s sandboxed application environment.

 Figure 10.2 shows a high-level overview of the steps for deploying a web application
on the GAE.

Figure 10.2 Steps to deploy on the Google App Engine. First change the code to use Google libraries
and create the app.yml configuration file. Then create the application and push it to the GAE.

As with all other Google services, you’ll need a Google account to start with. Unlike Her-
oku, much of the management and servicing of the web application is done through
the web interface (figure 10.3), called the Google Developer Console (https://
console.developers.google.com).

Change code: use
Google libraries

Create
app.yml file

Create GAE
application

Push code to
GAE application

https://console.developers.google.com
https://console.developers.google.com

267Deploying to Google App Engine
Although a command-line interface is available that’s equivalent to the developer
console, Google’s command-line tools aren’t integrated, unlike in Heroku. To use
the GAE, you’ll need to download the appropriate GAE SDK for Go at https://
cloud.google.com/appengine/downloads.

Once you have the tools in place, you need to configure the datastore for the GAE. As
mentioned earlier, Google restricts direct network access so connecting to a Post-
greSQL server directly isn’t possible. As an alternative, Google provides the Google
Cloud SQL service, which is based on MySQL and is directly accessible through the
cloudsql package. This is what you’ll be using for this section.

 To use Google Cloud SQL, you’ll need to create a database instance using the
Developer Console (figure 10.4). From the console, you can click the project that you
created (mine is called ws-g-1234), and then from the left navigation panel, click Stor-
age, then Cloud SQL. Clicking the New Instance button will give you a number of
options for creating the database instance. Most of the default options are fine, but

Google App Engine and other Google services

GAE and other Google services like the Google Cloud SQL are not free. Google provides
a 60-day free trial and $300 worth of services during the trial period so you can go
through the exercises in this chapter without cost. After the trial period, you will have
to pay for the services themselves.

Figure 10.3 Use the Google Developer Console to create your GAE web application.

https://cloud.google.com/appengine/downloads
https://cloud.google.com/appengine/downloads

268 CHAPTER 10 Deploying Go
you need to set the preferred location option to Follow App Engine App and use the
default project application ID. If you don’t, your GAE application won’t be able to
access the database instance.

 You’ll also need to add an IPv4 address, unless your desktop or laptop (or server),
as well as the internet provider you’re using, has IPv6 network connectivity. This is
because Google provides an IPv6 to your database instance by default and for free
(although an IPv4 address will cost you some money and you won’t have one by default).

 Besides these settings, it’s okay to use the defaults. Just specify a name for your
instance and you’re all set.

 As you may have guessed, with all these modifications, code change is inevitable.
Here’s a high-level list of things you’ll need to do to make your code deployable to GAE:

■ Change the package name from main to another package name.
■ Remove the main function.

3. Choose Follow
 App Engine App.

1. Click Storage
 to show the
 storage menu.

2. Select
 Cloud SQL.

4. Set up an IPv4
 IP address.

Figure 10.4 Creating a Google Cloud SQL database instance using the Developer Console

269Deploying to Google App Engine
■ Move the handler registration statement(s) into an init function.
■ Use a MySQL database driver instead of PostgreSQL.
■ Change the SQL queries to MySQL format.

Because GAE will take over your entire application, you won’t have control over how
it’s started or which port it runs on. In fact, you’re not going to be writing a stand-
alone application at all—what you’ll be writing is simply a package to be deployed on
GAE. As a result, you’ll need to change the package name to something other than
main (main is only for standalone Go programs).

 Next, remove the main function and move your code into an init function. In other
words, the main function we had earlier

func main() {
 server := http.Server{
 Addr: ":8080",
 }
 http.HandleFunc("/post/", handlePost)
 server.ListenAndServe()
}

should be modified and its processing logic placed in an init function:

func init() {
 http.HandleFunc("/post/", handlePost)
}

Notice that the code that specifies the starting address and port, as well as the code
that starts up the web server, is no longer needed.

 Switch to a MySQL database driver instead of a PostgreSQL driver. In data.go you
need to import a MySQL database driver and use the correct data connection string:

import (
 "database/sql"
 _ "github.com/ziutek/mymysql/godrv"
)
func init() {
 var err error
 Db, err = sql.Open("mymysql", "cloudsql:<app ID>:<instance name>*<database

name>/<user name>/<password>")
 if err != nil {
 panic(err)
 }
}

In addition, you’ll need to switch to the correct MySQL SQL queries. Although the syn-
tax is similar, there’s enough difference between MySQL and PostgreSQL such that it
won’t work without any changes. For example, instead of using $1, $2, and so on to
represent the replaced variables, you have to use ?. So, instead of (code in bold)

func retrieve(id int) (post Post, err error) {
 post = Post{}

270 CHAPTER 10 Deploying Go
 err = Db.QueryRow("select id, content, author from posts where id =
 ➥ $1", id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

change the SQL query to (code in bold)

func retrieve(id int) (post Post, err error) {
 post = Post{}
 err = Db.QueryRow("select id, content, author from posts where id = ?",
 ➥ id).Scan(&post.Id, &post.Content, &post.Author)
 return
}

With all the code changes done, the next action is to create an app.yaml file, shown in
the following listing, to describe the application.

application: ws-g-1234
version: 1
runtime: go
api_version: go1

handlers:
- url: /.*
 script: _go_app

The file is quite self-descriptive, and the only thing you have to change in this file, nor-
mally, should be the name of the application. And that’s it! Now let’s test our brand-
new GAE web application.

 You may realize by now that with all these changes, there’s no chance at all that
you’ll be able to run this application on your development machine. Nothing to fear.
Google provides developers with a GAE SDK that allows developers to run the applica-
tion locally.

 Assuming that you’ve installed the SDK by following the instructions on the down-
load site, you can run your GAE web application by issuing this command on your con-
sole, in the application root directory:

goapp serve

The SDK provides the environment that’s needed to run your web application locally
so you can test the application. It also provides an admin site running locally to
inspect what you’ve just written. Just go to http://localhost:8000 to look at the admin
site. Unfortunately, as of this writing Cloud SQL isn’t supported in the development
environment, so you can’t test the web service locally. A good alternative is to switch to
a local MySQL server for testing, and then to the Cloud SQL database for production.

 When you’re happy with your work, you can deploy it to Google’s servers. Deploy-
ment is easy by issuing this command:

goapp deploy

Listing 10.6 app.yaml file for deploying to GAE

Changing $n to ? in
MySQL query format

271Deploying to Docker
The SDK will push your code to Google’s servers, compile it, and deploy it. And if
everything is fine, your application will be live on the internet! Assuming your applica-
tion is named ws-g-1234 (like mine), your application will be at http://ws-g-
1234.appspot.com.

 Let’s test our newly deployed simple web service. Use curl and send a POST request
to the server to create a record:

curl -i -X POST -H "Content-Type: application/json" -d '{"content":"My first
post","author":"Sau Sheong"}' http://ws-g-1234.appspot.com/post/

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Date: Sat, 01 Aug 2015 06:46:59 GMT
Server: Google Frontend
Content-Length: 0
Alternate-Protocol: 80:quic,p=0

Now, use curl again to get the same record:

curl -i -X GET http://ws-g-1234.appspot.com/post/1
HTTP/1.1 200 OK
Content-Type: application/json
Date: Sat, 01 Aug 2015 06:44:29 GMT
Server: Google Frontend
Content-Length: 69
Alternate-Protocol: 80:quic,p=0

{
 "id": 1,
 "content": "My first post",
 "author": "Sau Sheong"
}

The GAE is powerful and has a lot of capabilities to help developers create and deploy
scalable web applications to the internet. But it’s Google’s playground, and if you want
to play in it, you have to follow its rules.

10.4 Deploying to Docker
The previous section included a brief introduction to Docker and discussed how you
can dockerize your Go web application and push it out as a Docker container on the
many Docker hosting services available. This section will focus entirely on deploying a
simple Go web service to a local Docker host and then to a Docker host on the cloud.

10.4.1 What is Docker?

Docker is quite a phenomenon. Since its release as an open source project by PaaS
company dotCloud in 2013, its adoption by large and small companies has been amaz-
ing. Technology companies like Google, AWS, and Microsoft have embraced it. AWS
has the EC2 Container Service, Google provides the Google Container Engine, and
many other cloud providers like Digital Ocean, Rackspace, and even IBM have thrown

http://ws-g-1234.appspot.com
http://ws-g-1234.appspot.com

272 CHAPTER 10 Deploying Go
in support for Docker. Traditional companies like BBC and banks such as ING and
Goldman Sachs have started using Docker internally.

 Docker is an open platform for building, shipping, and running applications on
containers. Containers aren’t a new technology—they’ve been around since the early
days of Unix, and Linux containers, which Docker was originally based on, were intro-
duced in 2008. Heroku dynos are also containers.

 Containers are a different spin on the virtualization of infrastructure (figure 10.5).
VMs provide emulation of the complete computer system, including the entire OS, but
containers provide virtualization at the OS level, allowing computer resources to be
partitioned through multiple isolated user space instances. As a result, the resource
requirements of a container are much less than a VM and the container is much faster
to start up and deploy.

 Docker is essentially software for managing containers, making it easier for devel-
opers to use them. It’s not the only available software to do that—there are many oth-
ers, including chroot, Linux containers (LXC), Solaris Zones, CoreOS, and lmctfy—
but it’s probably the most well-known to-date.

10.4.2 Installing Docker

Docker only works on Linux-based OSes today, though there are workarounds
to make the Docker tool available on OS X and Windows. To install Docker, go to

App A App B

Libraries

Guest OS

App A App C

Libraries

Guest OS

Hypervisor

Machine

Host OS

VM: Emulates
complete computer
system, including OS

Container: Virtualization at
OS level; resources partitioned
for multiple user space instances

App A App A

LibrariesLibraries

App CApp B

Libraries

Container engine

Machine

Host OS

Figure 10.5 Containers are a different take on infrastructure virtualization, providing virtualization
at the OS level and allowing resources to be partitioned through multiple isolated user space instance

273Deploying to Docker
https://docs.docker.com/engine/installation, select where you want to install Docker,
and follow the instructions. For Ubuntu Server 14.04, the instruction is as simple as this:

wget -qO- https://get.docker.com/ | sh

To verify that Docker is installed properly, run this command on the console:

sudo docker run hello-world

This command will pull the hello-world image from a remote repository and run it as
a container locally.

10.4.3 Docker concepts and components

The Docker engine, or Docker (figure
10.6), consists of a number of compo-
nents. The first, which you used earlier
in testing the Docker installation, is
the Docker client. This is the command-
line interface that allows you to inter-
act with the Docker daemon.

 The Docker daemon is the process
that sits on the host OS that answers
requests for service and orchestrates
the management of containers. Docker
containers, containers for short, are
lightweight virtualization of all the pro-
grams that are needed to run a particu-
lar application, including the OS.
Containers are lightweight because
though the application and other bun-
dled programs believe they have the
OS (and in fact the whole hardware) to
themselves, they actually don’t.
Instead, the share the same host OS.

 Docker containers are built on
Docker images, which are read-only tem-
plates that help to launch containers.
You run containers from images.
Docker images can be built in different
ways. One way of doing it involves
using a set of instructions contained in
a single file called the Dockerfile.

 Docker images can be stored locally
in the same computer as the Docker
daemon (also called the Docker host),

Docker host

Docker daemon

Docker client

DockerfileDocker images

Docker containers

Docker
registry

Figure 10.6 The Docker engine consists of the
Docker client, the Docker daemon, and various
Docker containers, which are instantiated as Docker
images. Docker images can be created through
Dockerfiles and can be stored in the Docker registry.

https://docs.docker.com/engine/installation

274 CHAPTER 10 Deploying Go

ge

.

or they can be hosted in a Docker registry, a repository of Docker images. You can run
your own private Docker registry or use Docker Hub (https://hub.docker.com) as your
registry. Docker Hub hosts both public and private Docker images, though the latter
usually requires a subscription.

 If you install Docker on a Linux OS like Ubuntu, the Docker daemon and the
Docker client are installed in the same machine. With other types of OSes, Docker can
install the client on one type of OS (for example, OS X or Windows), and the daemon
will be installed somewhere else, usually in a VM sitting in that OS. An example of this
is when you install Docker on OS X, the Docker client is installed in OS X and the
Docker daemon will be installed in a VM inside VirtualBox (an x86-based hypervisor).

 Docker containers are run from Docker images and run on the Docker host.
 Now that you have an overall understanding of Docker, let’s see how you can

deploy a simple Go web service into a Docker container. We’ll be using the same sim-
ple web service we’ve used in the previous three sections.

10.4.4 Dockerizing a Go web application

Despite the plethora of technologies, dockerizing a Go web application is surprisingly
easy. There’s no need for messing with the code because the web service will have full
access to the whole container, so the only work is entirely in the configuration and use
of Docker. Figure 10.7 shows a high-level overview of the steps for dockerizing your
web application and deploying it both locally and to a cloud provider.

Figure 10.7 Steps to dockerize and deploy a Go web application locally and to a cloud provider. To dockerize an
application locally, use a Dockerfile to create the image and then start a container from the image. To move the
image to the cloud, create a Docker host in the cloud provider, and then connect to it, build the image in the remote
host, and start a container from it.

For this section, we’ll use the name ws-d as the name of the web service. First, shown in
the next listing, create a Dockerfile file in the root application directory.

FROM golang

ADD . /go/src/github.com/sausheong/ws-d
WORKDIR /go/src/github.com/sausheong/ws-d

Listing 10.7 Dockerfile for simple web service

Create Docker
container from
Docker image

Create
Dockerfile

Create Docker
host in cloud

provider

Connect to
remote

Docker host

Build Docker
image in

remote host

Start Docker
container in
remote host

Build Docker
image with
Dockerfile

Deploy to local Deploy to cloud provider

Starts from a Debian ima
with Go installed and a
GOPATH configured at /go

Copies the local package files
to the container’s workspace.

275Deploying to Docker

Builds
w

comm
inside
contain

RUN go get github.com/lib/pq
RUN go install github.com/sausheong/ws-d

ENTRYPOINT /go/bin/ws-d

EXPOSE 8080

The first line tells Docker to start from the golang image, which is a Debian image
with the latest Go installed, and a workspace configured at /go. The next two lines
copy the local code (in the current directory) to the container and set the working
directory accordingly. After that, you use the RUN command to tell Docker to get the
PostgreSQL driver and build the web service code, placing the executable binaries in
/go/bin. Once you have that, use the ENTRYPOINT command to tell Docker to run
/go/bin/ws-d by default whenever the container is started. Finally, use EXPOSE to
expose the port 8080 to other containers. Note that this doesn’t open up port 8080 to
the public; it simply opens up the port to other containers in the same machine.

 Now build the image from the Dockerfile:

docker build –t ws-d .

This command will execute the Dockerfile and build a local image based on the
instructions in it. Once this is done, you can issue the docker images command and
you should see this:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ws-d latest 65e8437fce6b 10 minutes ago 534.7 MB

Now that you have the image, you can now run the image to create and start the
container:

docker run --publish 80:8080 --name simple_web_service --rm ws-d

This code will create a container, using the name simple_web_service from the image
ws-d. The flag --publish 80:8080 opens up the HTTP port 80 and maps it to the
exposed port 8080 earlier, whereas the flag --rm tells Docker that once the container
exits, it should be removed. If this flag isn’t set, when the container exits it will still
remain and can be simply started up again. To see whether your container has been
created, issue

docker ps

You should see your container in the list of active containers:

CONTAINER ID IMAGE ... PORTS NAMES
eeb674e289a4 ws-d ... 0.0.0.0:80->8080/tcp simple_web_service

the
s-d
and
the
er.

Runs the ws-d command by default
when the container starts.

Documents that the
service listens on port 8080.

276 CHAPTER 10 Deploying Go
Some of the columns have been omitted to fit the page, but you can see that your con-
tainer is now running on the local Docker host. You can run a quick test to see if your
service works. Use curl and send a POST request to the server to create a record:

curl -i -X POST -H "Content-Type: application/json" -d '{"content":"My first
post","author":"Sau Sheong"}' http://127.0.0.1/post/

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Date: Sat, 01 Aug 2015 06:46:59 GMT
Server: Google Frontend
Content-Length: 0
Alternate-Protocol: 80:quic,p=0

Now, use curl again to get the same record:

curl -i -X GET http://127.0.0.1/post/1
HTTP/1.1 200 OK
Content-Type: application/json
Date: Sat, 01 Aug 2015 06:44:29 GMT
Server: Google Frontend
Content-Length: 69
Alternate-Protocol: 80:quic,p=0

{
 "id": 1,
 "content": "My first post",
 "author": "Sau Sheong"
}

10.4.5 Pushing your Docker container to the internet

Dockerizing the simple web service sounds great, but it’s still running locally. What
you want is to have it running on the internet. There are a number of ways of doing
this, but using the Docker machine is probably the most simple (at the moment,
because Docker is still evolving).

Docker machine is a command-line interface that allows you to create Docker hosts,
either locally or on cloud providers, both public and private. As of this writing, the list
of public cloud providers include AWS, Digital Ocean, Google Compute Engine, IBM
Softlayer, Microsoft Azure, Rackspace, Exoscale, and VMWare vCloud Air. It can also
create hosts on private clouds, including clouds running on OpenStack, VMWare, and
Microsoft Hyper-V (which covers most of the private cloud infrastructure to date).

 Docker Machine isn’t installed along with the main Docker installation; you need
to install it separately. You can install it by either cloning the repository from https://
github.com/docker/machine or downloading the binary for your platform from
https://docs.docker.com/machine/install-machine. For Linux you can use the follow-
ing command to get the binary:

curl -L https://github.com/docker/machine/releases/download/v0.3.0/docker-

➥ machine_linux-amd64 /usr/local/bin/docker-machine

Then make it executable:

chmod +x /usr/local/bin/docker-machine

https://github.com/docker/machine
https://github.com/docker/machine
https://docs.docker.com/machine/install-machine

277Deploying to Docker
Once you’ve downloaded Docker Machine and made it executable, you can use it to
create a Docker host in any of the cloud providers. One of the easiest is probably Digi-
tal Ocean, a virtual private server (VPS) provider known for its ease-of-use and low
cost. (A VPS is a VM sold as a service by a provider.) In May 2015, Digital Ocean
became the second-largest hosting company in the world, in terms of web-facing serv-
ers, after AWS.

 To create a Docker host on Digital Ocean, you’ll first need to sign up for a Digital
Ocean account. Once you have an account, go to the Applications & API page at
https://cloud.digitalocean.com/settings/applications.

 On this page there is a Generate New Token button (figure 10.8), which you can
click to generate a token. Enter any name you want, and remember to keep the Write
check box selected. Then click the Generate Token button to create a personal access
token, which is something like a username and password rolled into one, used for API
authentication. The token is only shown when you create it—it won’t be shown
again—so you should store it someplace safe.

Figure 10.8 Generating a personal access token on Digital Ocean is as easy as clicking
the Generate New Token button.

To create a Docker host on Digital Ocean through Docker Machine, execute this com-
mand on the console:

docker-machine create --driver digitalocean --digitalocean-access-token
<tokenwsd

Creating CA: /home/sausheong/.docker/machine/certs/ca.pem
Creating client certificate: /home/sausheong/.docker/machine/certs/cert.pem

https://cloud.digitalocean.com/settings/applications

278 CHAPTER 10 Deploying Go
Creating SSH key...
Creating Digital Ocean droplet...
To see how to connect Docker to this machine, run: docker-machine env wsd

Once the remote Docker host is created, the next step is to connect to it. Remember,
your Docker client is currently connected to the local Docker host. You need to con-
nect it to our Docker host on Digital Ocean, called wsd. The response from Docker
Machine gives you a hint how to do it. You should run:

docker-machine env wsd
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://104.236.0.57:2376"
export DOCKER_CERT_PATH="/home/sausheong/.docker/machine/machines/wsd"
export DOCKER_MACHINE_NAME="wsd"
Run this command to configure your shell:
eval "$(docker-machine env wsd)"

The command tells you the environment settings for our Docker host on the cloud.
To configure the client to point to this Docker host, you need to change your environ-
ment settings to match it. Here’s a quick way to do this:

eval "$(docker-machine env wsd)"

As simple as that, you’re connected to the Docker host on Digital Ocean! How do you
know that? Just run

docker images

You’ll see that there are no images listed. Remember that when you were creating the
container earlier in this section you created an image locally, so if you’re still con-
nected to the local Docker host, you should see at least one image. No image means
you’re no longer connected to the local Docker host.

 Because you have no image in this new Docker host, you have to create one again.
Issue the same docker build command from earlier:

docker build –t ws-d .

After the command completes, you should see at least two images when you run
docker images: the golang base image, and the new ws-d image. The final step is to
run the container as you’ve run it before:

docker run --publish 80:8080 --name simple_web_service --rm ws-d

This command will create and start up a container on the remote Docker host. To
prove that you’ve done it, use curl to get the post record. But wait—where’s the
server? It’s at the same IP address that was returned when you ran docker-machine
env wsd.

curl -i -X GET http://104.236.0.57/post/1
HTTP/1.1 200 OK
Content-Type: application/json

279Comparison of deployment methods
Date: Mon, 03 Aug 2015 11:35:46 GMT
Content-Length: 69

{
 "id": 2,
 "content": "My first post",
 "author": "Sau Sheong"
}

That’s it! You’ve deployed our simple Go web service to the internet through a Docker
container. Docker isn’t the simplest way of deploying Go web applications, but it’s
probably going to be one of the more popular ways. Also, after you’ve done it once
locally, you can duplicate the process almost effortlessly on multiple cloud providers,
both private and public. This is the power of Docker and now you know how to use it.

 I’ve left out a lot of details to keep the section and the chapter brief and focused. If
you’re interested in Docker (and it’s a very interesting new tool), spend more time
reading the online documentation (https://docs.docker.com) and various articles
that have been written about it.

10.5 Comparison of deployment methods
Before I end this chapter, let’s recap in a table the various types of deployment meth-
ods we discussed. There are many more other ways of deploying a web application,
and table 10.1 shows only some of them.

Table 10.1 Comparison of Go web application deployment methods

Standalone Heroku GAE Docker

Type Public/private Public Public Public/private

Code change None Low Medium None

Systems work High None None Medium

Maintenance High None None Medium

Ease of deployment Low High Medium Low

Platform support None Low High Low

Tie-in to platform None Low High Low

Scalability None Medium High High

Remarks In this bare-
bones deploy-
ment, you need
to do almost
everything on
your own.

Heroku is a lib-
eral public PaaS
where you’re
able to do
almost any-
thing, with a few
exceptions.

GAE is a restric-
tive public PaaS
where you’re
tied into the GAE
platform.

Docker is an up-
and-coming tech-
nology with a lot
of interest and
support in both
public and pri-
vate deploy-
ments.

https://docs.docker.com

280 CHAPTER 10 Deploying Go
10.6 Summary
■ The most simple way to deploy a Go web service is to place the binary execut-

able file(s) directly on a server, either a VM or an actual physical server, and
configure Upstart to start it and keep it running continually.

■ Deploying to Heroku, which is one of the simplest PaaSes around, is straightfor-
ward and involves only minor modifications, generating local dependencies
using Godep and creating a Procfile. Pushing these all to Heroku’s Git reposi-
tory will deploy the web application.

■ Deploying to GAE, Google’s powerful but sandboxed PaaS, is a bit more
involved, but this is compensated for by the fact that the web service deployed is
very scalable. There are a number of limitations with GAE, mostly involving
using services that are outside the GAE sandbox.

■ Docker is a new and powerful way of deploying web services and applications.
But compared to other solutions, it’s much more involved. You need to docker-
ize your Go web service into a container, deploy it to a local Docker host, and
then deploy it to a remote Docker host on the cloud.

appendix
Installing and setting up Go

Installing Go
Before you can write your first line of Go code, you’ll need to set up the environ-
ment. Let’s start off with installing Go. The latest version of Go as of this writing is
Go 1.6. To install Go, you can either download or use the official binary distribu-
tions, or you can install Go from source.

 Official binary distributions are available for FreeBSD (release 8 and above),
Linux (2.6.23 and above), Mac OS X (Snow Leopard and above), and Windows (XP
and above). Both 32-bt (386) and 64-bit (amd64) x86 processor architectures are
supported. For FreeBSD and Linux, ARM processor architecture is also supported.

 To install Go, download the distribution package from https://golang.org/dl/
 Choose the file appropriate for your platform. Once you have the distribution

package, install Go according to your platform of choice. Note that although Go
doesn’t have a dependency on any source code versioning system, some Go tools
like go get need it, so to make your life a bit easier you should download and install
them as you’re installing Go.

 You can get the following source code versioning systems here:

■ Mercurial—http://mercurial.selenic.com
■ Subversion—http://subversion.apache.org
■ Git—http://git-scm.com
■ Bazaar—http://bazaar.canonical.com

Linux/FreeBSD

To install on Linux or FreeBSD, you’d likely download go<VERSION>.<OS>-<ARCHI-
TECTURE>.tar.gz. The latest Go for Linux on a 64-bit architecture is go1.3.3.linux-
amd64.tar.gz.
281

http://mercurial.selenic.com
http://subversion.apache.org
http://git-scm.com
http://bazaar.canonical.com
https://golang.org/dl/

282 APPENDIX Installing and setting up Go
 Once you’ve downloaded the archive, extract it to /usr/local. Add /usr/local/go/
bin to the PATH environment variable. You can do this by adding this line to your /
etc/profile (for a systemwide installation) or $HOME/.profile:

export PATH=$PATH:/usr/local/go/bin

Windows

You can use either the MSI installer (download the MSI file) or the zip archive. Install-
ing from the MSI is easier—open the MSI installer and follow the instructions to install
Go. By default the installer will place Go in c:\Go and set up c:\Go\bin in your
PATH environment variable.

 Using the zip archive is easy as well. Extract the files into a directory (for example,
c:\Go) and add the bin subdirectory to your PATH variable.

Mac OS X

For Mac OS X you can download the appropriate PKG file (same format as earlier) and
run through the installation. The package will install the distribution to /usr/local/go
and place the /usr/local/go/bin directory in your PATH environment variable. You’ll
need to restart your Terminal, or run this in your Terminal:

$ source ~/.profile

Alternatively you can use Homebrew to install Go. This can be as simple as

$ brew install go

Setting up Go
Now that you’ve installed Go, you need to set it up properly. Go development tools are
designed to work with code maintained in public repositories, and the model is the
same regardless if you’re developing an open source program or something else.

Figure 1 Directory structure
of a Go workspace

283Setting up Go
 Go code is developed in a workspace. A workspace is a directory with three subdirec-
tories (see figure 1):

■ src contains Go source files, which are organized in packages, with one subdi-
rectory in the src directory representing one package.

■ pkg contains package objects.
■ bin contains executable binary files.

How this works is simple. When you compile Go code, it creates either packages
(libraries) or binary executable files. These packages or binaries are placed in the pkg
and bin directories, respectively. In figure A.1, we have the simple web application
first_webapp as a subdirectory in the src directory, with the source code file
webapp.go. Once you compile the source code, it generates a binary that’s stored in
the bin directory of the workspace.

 To set up your workspace, you need to set the GOPATH environment variable. You
can use any directory you like (except for your Go installation). Say we want to set up
the workspace at $HOME/go in Linux/FreeBSD or Mac OS X. Go to the console (or
Terminal in Mac OS X) and enter this:

$ mkdir $HOME/go
$ export GOPATH=$HOME/go

To set things up permanently, you can add the following lines in your ~/.profile or ~/
.bashrc file (if you’re using bash):

export GOPATH=$HOME/go

For convenience you should also add your workspace’s bin directory to your PATH.
Doing so will allow you to execute the binaries of your compiled Go code:

$ export PATH=$PATH:$GOPATH/bin

284 APPENDIX Installing and setting up Go

index
Symbols

` character 165
_ character 141
: character 165
? character 15
. character 33, 36, 99, 102, 104
{{ }} characters 99, 102
@ character 15
/ character 15
// character 14
& character 15, 75, 139
character 15
% character 15
= character 75
| character 110
$ character 110

Numerics

1XX status code class 13
2XX status code class 13
3XX status code class 13
4XX status code class 13
5XX status code class 13
500 status code 184, 188
501 Not Implemented status

code 84

A

Abstract Syntax Notation One.
See ASN.1

Accept header field 12
Accept-Charset header field 12
access control, using

cookies 30–32

action tags 121
actions 33, 98, 102–109

conditional actions 102–103
converting actions to

resources 162
converting to resources 162
include actions 107–109
iterator actions 104–105
making properties of

resources 163
set actions 105–107

Active Server Pages. See ASP
active templates 18
Add method 89, 231–232, 252
Allow response header 14
allPosts variable 131
Amazon Web Services. See AWS
ampersand character 15, 75,

139
Angular.js library 174
app.yaml file 270
application design, ChitChat

internet forum 24
application/json 82, 186
application/soap+xml 158
application/x-www-form-

urlencoded 75, 77–78, 82
applications, defined 7, 263
arguments 110–111
ASN.1 (Abstract Syntax Notation

One) 54
ASP (Active Server Pages) 18
Assert function 212
authenticate function 30
Author field 139
Author struct 165
Authorization header field 12

AutoMigrate method 151
averageColor function 241
AWS (Amazon Web

Services) 257

B

backticks 165
BBD (behavior-driven

development) 216
BBS (bulletin board systems) 23
behavior-driven development.

See BBD
bench flag 198
bench_test.go file 197
benchmarking 197–200
BER (Basic Encoding Rules) 54
bidirectional 233
bin subdirectory 283
blank identifier 32
block action, using to define

default templates 123–124
blue_hello.html file 122–123
Body field 73
browser support for request

methods 11
buffered channels 233, 235–236
bulletin board systems. See BBS
ByName method 66
bytes.Buffer struct 133

C

CA (certificate authority) 52
callerA function 237
callerB function 237
cargo cult programming 48
285

INDEX286
carriage return. See CR
Caught statement 235
certificate authority. See CA
Certificate struct 54
CGI (Common Gateway

Interface) 9
chaining handlers and handler

functions 59, 62
channels 232–240

buffered 235–236
message passing with 234–235
selecting 237–240
synchronization with 233–234

Check function 212
check package 190, 211–213,

216, 221
chitchat database 39
ChitChat internet forum 22–44

application design 24
data model 26
generating HTML responses

with templates 32–37
installing PostgreSQL 37–38

Linux/FreeBSD 37–38
Mac OS X 38
Windows 38

interfacing with database
38–42

overview 23–24
receiving and processing

requests 27–32
access control using

cookies 30–32
creating handler

function 28–30
multiplexer 27–28
serving static files 28

starting server 43
Client Error status code 13
client-server computing

model 8
cloneTilesDB function 243
close function 238–239
Closer interface 73
closing channels 239
Cloud SQL 258
cloudsql package 267
colon character 165
combine function 248, 251–253
Comments struct field 144,

146–147, 150, 168, 170–171
comments variable 152
Common Gateway Interface. See

CGI
Compute Engine 258

concurrency 223–255
channels 232–240

buffered 235–236
message passing with

234–235
selecting 237–240
synchronization with

233–234
difference from

parallelism 223–225
goroutines 225–232

performance and 228–231
using 225–228
waiting for 231–232

photo mosaic web application
example 240–255

conditional actions 102–103
ConfigureServer method 67
CONNECT method 10
containers 126
Content field 139
Content struct 165
content template 122
Content-Length header field 12
Content-Length response

header 14
Content-Type header 12, 14,

158, 185–186
content. See displaying content
context awareness 113–119

defending against XSS
attacks 116–118

unescaping HTML 118–119
Context function 221
Cookie header field 12
Cookie method 91
cookies 87–95

access control using 30–32
getting from browser 90–92
overview 87–88
sending to browser 88–89
using for flash messages

92–95
copy function 252
CR (carriage return) 11
Create method 130, 139, 141,

146, 149, 152
CreateCertificate function 55
CreatedAt field 151
createuser program 135
cross-cutting concern 60
cross-site scripting. See XSS
CRUD functions 181
CSV files, reading and

writing 130–132

csvFile variable 131
cURL command 185
cut function 248, 250–252

D

data model, ChitChat internet
forum 26

Data Security Standard 51
data.Encrypt 30–31
data.go file 181, 204, 258
data.Session function 32
data.UserbyEmail 30
database management systems.

See DBMSs
database servers 134
database, interfacing with 38–42
Date response header 14
DB struct 249
Db variable 40, 137, 141
DBMSs (database management

systems) 134
Debian image 274–275
decode function 192, 194,

198–199
Decoder struct 169–170
DefaultServeMux 50, 55–57, 59,

63–64, 66, 68, 84
defer statement 130
delete function 142, 250
DELETE method 10, 161
Delete method 142
dependency injection 205–210
deploying Go 256–280

methods of, comparing
279–280

to Docker 271–279
concepts and

components 273–274
dockerizing Go web

application 274–276
installing Docker 272–273
overview 271–272
pushing Docker container

to internet 276–279
to Google App Engine

266–271
to Heroku 263–266
to servers 257–263

Describe function 219
Digital Ocean 257, 278
displaying content 96–124

actions 102–109
conditional actions 102–103
include actions 107–109

INDEX 287
iterator actions 104–105
set actions 105–107

arguments 110–111
context awareness 113–119

defending against XSS
attacks 116–118

unescaping HTML 118–119
functions 111–113
pipelines 110–111
templates and template

engines 97–98
executing templates

101–102
nesting templates 119–123
parsing templates 100–101
using block action to define

default templates
123–124

variables 110–111
distance function 242–243
<div> tag 114
Docker 271–279

concepts and
components 273–274

dockerizing Go web
application 274–276

installing 272–273
overview 271–272
pushing Docker container to

internet 276–279
docker images command 275
Docker machine 276
Docker registry 273–274
Dockerfile 273
docroot 7
dollar sign character 110
Done method 231–232, 252
dot character 33, 36, 99, 102, 104
double braces 99, 102
double quotes 165
double slash character 14
doubles, test 204–210
Driver interface 138
driver.Driver interface 138
dynos 263

E

EC2 (Elastic Cloud
Computing) 258

Email named field 31
embedded logic template

engines 97
Encode method 174, 181
encoding/csv library 130

enctype attribute 74, 78
ENTRYPOINT command 275
Equal function 221
equal sign character 75
ERB (Embedded Ruby) 18
Error function 194, 218
etc/init directory 262
Exec method 141–142
Execute method 100–102, 108
ExecuteTemplate method 35,

102, 121
executing templates 101–102
Expires field 88, 94
EXPOSE command 275
eXtensible Markupl Language.

See XML
ExtKeyUsage field 54

F

Fail function 194
FailNow function 194
FakePost 209–210, 213
fan-in pattern 251
fan-out pattern 248
Fatal function 194
fdate function 113
fetch method 208–210
FieldsPerRecord field 132
FIFO (first-in, first-out) 235
file storage

gob package 132–134
reading and writing CSV

files 130–132
File struct 129–130
file2 function 130
files, uploading 80–81
FileServer function 28
first_webapp 18, 283
Flush method 132
fmt package 19
fmt.Println statement 139, 194,

228
fmt.Sprintf function 111
for loop 238, 252
Form field 71, 76, 78–79
form tag 11, 74
format specifier 20
formatDate function 112
FormFile method 81
FormValue method 78
forward slash character 15
Fprintf function 20
fragment 15

FreeBSD, installing PostgreSQL
on 37–38

func keyword 139
FuncMap map 111
Funcs function 112
functions 17, 111–113

G

GAE (Google App Engine),
deploying Go to 266–271

Generate New Token
button 277

generateHTML function 36–37
GET HTTP method 162
GET method 10, 65, 161
GET requests 74–75
GetComment operation 160
GetCommentPortType 159–160
GetCommentRequest 160
GetCommentResponse 160
GetCommentsBinding 159
GetCommentService 159
GetPost function 140–141, 147,

149
ginkgo command 218, 221
Ginkgo package 190
Ginkgo testing framework

216–222
github.com/jmoiron/sqlx 149
go keyword 225, 232
Go template engine 118
go test command 191, 195, 198,

212, 214
gob package 128, 132–134
gocheck testing package

211–216
godeps.json file 264–265
godoc (Go documentation

tool) 5
gofmt (Go source code

formatter) 5
golang image 275
GOMAXPROCS variable 224,

252
Gomega matchers 220–221
Google App Engine. See GAE
Google Cloud SQL 267–268
Google Developer Console 267
GOPATH variable 19, 283
$GOPATH/bin directory 19, 217
$GOPATH/src directory 66
goPrint1 function 226, 228, 230
goPrint2 function 230
Gorm (Go-ORM) 149–152

INDEX288
goroutine_test.go file 226,
228–229

goroutine.go file 225
goroutines 4, 6, 225–232

performance and 228–231
using 225–228
waiting for 231–232

gotest 6
gwp user 135

H

Handle function 28, 59
HandleFunc function 28, 84,

207, 213
handleGet function 200, 202,

204–205, 208, 212
handlePost function 188
handlePut function 204
handler function

creating 28–30
overview 19

handler name 25
Handler struct 56
HandleRequest function 184,

200, 202, 205–209, 219
HandlerFunc function 58–60,

62, 213
hangup signal. See HUP
hash character 15
HEAD method 10
Header method 49, 71, 85
hello function 58–60, 65
Hello World Go web app 18
HelloHandler 62, 64
heroku create command 266
Heroku, deploying Go to

263–266
hierarchical part 14
high performing web apps 6
$HOME/.profile 282
Homebrew 282
horizontal scaling 4
Host header field 12
HTML

generating responses with
templates 32–37

unescaping 118–119
HTML forms 74–82

MultipartForm field 78–79
overview 75–77
PostForm field 77–78
processing POST requests

with JSON body 81–82
uploading files 80–81

html/template library 49
HTTP

overview 8
testing 200–204

HTTP GET request 201
HTTP POST method 159
HTTP request 9–12

browser support for request
methods 11

idempotent request
methods 11

request headers 11–12
request methods 10
safe request methods 11

HTTP response 12–14
response headers 13–14
response status code 13

http.ErrNoCookie 94
http.Handle function 57
http.HandlerFunc

function 207–208
http.NewRequest function 202
http.response 82
HTTP/2

overview 16
request handling using 66–68

HTTPResponseWriter
interface 55, 68

HttpRouter library 65
HTTPS, serving Go through

51–55
httptest package 191, 200–201
httptest.NewRecorder

function 202
HUP (hangup) signal 261

I

IaaS (Infrastructure-as-a-
Service) 258

ID (unique identifier) 25
id attribute 165, 167
<id> tag 186
idempotent request methods 11
IETF (Internet Engineering

Task Force) 52
image/draw package 245
in-memory storage 126–128
include actions 107–109
index function 28–29, 32, 37
index.html template 34
indexHandler 64
Informational status code 13
Infrastructure-as-a-Service. See

IaaS

init function 137–138, 219
installing

Docker 272–273
Go 281–282
PostgreSQL 37–38

Linux/FreeBSD 37–38
Mac OS X 38
Windows 38

interfacing with database 38–42
International Telecommunica-

tion Union Telecommuni-
cation Standardization
Sector. See ITU-T

Internet Engineering Task
Force. See IETF

Internet of Things. See IoT
io.EOF struct 171
io.ReadCloser interface 73
io.Reader 170, 177
IoT (Internet of Things) 175
ioutil package 129
iterator actions 104–105
ITU-T (International Telecom-

munication Union
Telecommunication Stan-
dardization Sector) 54

J

job configuration file 262
JPEG format 245
JSON (JavaScript Serialized

Object Notation) 174–181
creating 178–181
parsing 175–178
processing POST requests

with 81–82
json.go file 176, 180
json.MarshalIndent

function 186
json.Unmarshal 175
JSP (Java ServerPages) 18

K

$key variable 110
KeyUsage field 54

L

layout template 33, 35
layout.html file 123
layout.html template file 33
layouts 119
LF (line feed) 11

INDEX 289
Linux
installing Go on 281–282
installing PostgreSQL on

37–38
Linux containers 272
ListenAndServe function 43, 50,

55
ListenAndServeTLS function 52
load function 133–134
Location header 14, 85
log function 60, 62, 194
Logf function 194
logic-less template engines 97
logic-less templates 17

M

Mac OS X
installing Go on 282
installing PostgreSQL on 38

main function 20, 27, 192, 208,
226, 234, 258, 264–265,
268–269

main package 19, 30, 181
main_test.go file 193–195, 197
main.go file 27, 29, 243
maintainable web apps 5–6
many to many relationship 143
many to one relationship 143
Marshal function 171–172
MarshalIndent function 172,

179, 186
MaxAge field 88, 94
message passing, with

channels 234–235
method attribute 11
methods 41, 161
microservices 5
Model method 152
Model-View-Controller pattern.

See MVC
moderators 23
modular web apps 5
mosaic function 245, 247–248,

251
mosaic_concurrent

directory 252
mosaic.go file 241
MSI file 282
multipart/form-data 75, 77, 80
MultipartForm field 78–79
multiplexer 25–28
Must function 33, 101
mutex flag 249
mutual exclusion 249

MVC (Model-View-Controller)
pattern 17

MySQL database driver 269

N

named parameter 66
navbar templat 34
navbar.html template file 34
navbar.shtml file 9
NCSA (National Center for

Supercomputing
Applications) 9

nearest method 249–250
nesting templates 119–123
net/http library 48–49, 69–70,

76, 82, 89
net/http package 18–19
net/http standard library 27
net/http/httptest package 191
NewDecoder function 134, 170,

177
NewEncoder function 174, 181
NewReader function 132
NewServeMux function 27
NewWriter function 131
Next method 143
NIST (National Institute of Stan-

dards and Technology) 258
nohup command 261
NumReplies method 42

O

objects 161
one to many relationship 143
one to one relationship 143
one-to-many relationship

145–147
OOP (object-oriented

programming) 147
Open function 81, 130, 137–138
OPTIONS method 10
ORMs (object-relational

mappers) 147
os package 130
os.Create 174
os.Exit function 203
os.Open 170

P

PaaS (Platform-as-a-Service) 258
package keyword 19
panicking 101

Parallel function 196–197
parallel_test.go file 196–197
parallelism, difference from

concurrency 223–225
parameters 25
Params type 66
Parse method 101
ParseFiles function 33, 100, 108
ParseForm method 76, 78–79,

82
ParseGlob function 101
ParseMultipartForm

method 76, 78–79, 81
parsing

JSON 175–178
templates 100–101
XML 163–171

parts of web apps 16–18
handler 16–17
template engine 17–18

PATCH HTTP method 163
PATCH method 10
PATH variable 282
path.Base function 186
PCI (Payment Card

Industry) 51
PEM (Privacy Enhanced

Email) 54
percent encoding 15
percent sign character 15
performance, goroutines

and 228–231
photo mosaic web application

example 240–255
pipelines 110–111
pkg subdirectory 283
PKI (Public Key

Infrastructure) 52, 54
Platform-as-a-Service. See PaaS
pom.xml file 263
PORT variable 264
Post data structure 26
POST method 10, 161
post receiver 140
POST requests, processing with

JSON body 81–82
post.json file 175, 193
post.xml file 171, 174
PostById variable 127
PostForm field 77–78
PostFormValue method 79
postgres package 37
PostgreSQL, installing 37–38
PostId field 151
postPost function 185

INDEX290
postRead struct 134
posts.csv file 131–132
PostsByAuthor variable 127
PostTestSuite 214
prepared statement 139
Principle of Least

Astonishment 64
Principle of Least Surprise 64
print1 function 226, 228–230
print2 function 230
printf function 111
printLetters1 function 226, 229
printLetters2 function 227–229,

231, 234
printNumbers1 function 226,

229
printNumbers2 function

227–229, 231, 234
Privacy Enhanced Email. See

PEM
private key 52–55, 68
private navigation bar 32
process function 100
ProgrammableWeb 157
psql tool 40
Public Key Infrastructure. See PKI
--publish flag 275
PUT method 10, 161

Q

query 15
Query method 143
QueryRow method 140–141
QueryRowx method 149
Queryx method 149
question mark character 15
quote character 165

R

r.Form 77
r.PostForm 77
race condition 249–250
RAML (Restful API Modeling

Language) 162
ran docker-machine env

wsd 278
range action 41
RawQuery field 71
RDBMS (relational database

management system) 134
RDS (Relational Database

Service) 258
React.js library 174

Read method 73, 130, 133
ReadAll method 132
Reader interface 73
ReadFile 129
reading CSV files 130–132
readPost variable 146, 152
receive-only channels 233
red_hello.html file 122
red, green, and blue. See RGB
Redirection status code 13
Referrer header field 12
Register function 138
Related method 152
relational databases 134
relational mappers 147–152

Gorm (Go-ORM) 149–152
Sqlx library 148–149

relationships, SQL 143–147
one-to-many

relationship 145–147
setting up databases 143–144

Remote Procedure Call. See RPC
request handling 47–68

net/http library 48–49
serving Go 50–55

Go web server 50–51
through HTTPS 51–55

using handlers 55–66
chaining handlers and han-

dler functions 59–62
handler functions 57–59
handling requests 55–56
other multiplexers 64–66
ServeMux and

DefaultServeMux 63–64
using HTTP/2 66–68

request headers 11–12
request methods 10
Request struct 20, 55, 68
request-response 8
requests

receiving and processing
27–32
access control using

cookies 30–32
creating handler

function 28–30
multiplexer 27–28
serving static files 28

request body 73–74
request header 71–73
Request struct 70
Request URL 70–71
ResponseWriter 82–87

resize function 241

resources
converting actions to 162
making actions properties

of 163
respawn 262
responds 8
response headers 13–14
response status code 13
ResponseRecorder struct 202
ResponseWriter 82–87, 98–99
REST (Representational State

Transfer), web services
based on 160–163

converting actions to
resources 162

making actions properties of
resources 163

Restful API Modeling Lan-
guage. See RAML

results template 246
retrieve function 204–205, 208
retrievePost function 186
RGB (red, green, and blue) 240
--rm flag 275
route_auth.go file 30
Row struct 140
RPC (Remote Procedure

Call) 157
RUN command 275
-run flag 198
Run function 203

S

SaaS (Software-as-a-Service) 258
safe request methods 11
scalable web apps 4–5
Scan method 140–141
scheme name 14
<script> tag 116
Secure Socket Laye. See SSL
select statement 237–239, 252
send-only channels 233
ServeHTTP method 55, 57, 207
ServeMux 49, 56–57, 63–65, 68
Server Error status code 13
Server response header 14
Server struct 43, 51, 57, 64, 66
server_test.go file 191, 210, 213,

217
server-side includes. See SSI
server.go file 18, 258
servers

deploying Go to 257–263
starting 43

INDEX 291
service objects 17
serving Go 50–55

Go web server 50–51
through HTTPS 51–55

Session data structure 26
session function 31–32
set actions 105–107
Set-Cookie response header 14,

88
SetCookie function 89
setMessage function 93
setting up Go 282–283
setUp function 203–204
SetUpSuite function 213, 216
SetUpTest function 213–214
short flag 195
showMessage function 93
Simple Object Access Protocol.

See SOAP
Single Page Applications. See SPA
Skip function 195
Sleep function 227, 231
SOAP (Simple Object Access

Protocol), web services
based on 157–160

Software-as-a-Service. See SaaS
SPA (Single Page

Applications) 153
SQL (Structured Query

Language) 134–143
connecting to database

137–138
creating post 138–140
deleting post 141–142
getting all posts 142–143
relationships 143–147

one-to-many
relationship 145–147

setting up databases
143–144

retrieving post 140–141
setting up database 134–135
updating post 141

sql package 137, 148–149
sql.DB struct 137–138, 140–143,

205, 209
sql.Driver package 140
sql.Row struct 140
sql.Stmt interface 140
Sqlx library 148–149
src directory 18
src subdirectory 283
SSI (server-side includes) 9, 97
SSL (Secure Socket Layer) 52
StackOverflow 48

stanzas 262
StartElements 171
stateless protocol 8
static files, serving 28
static templates 17
StatusInternalServerError 184
store function 127, 133
storing data 125–152

file storage 128–134
gob package 132–134
reading and writing CSV

files 130–132
in-memory storage 126–128
relational mappers 147–152

Gorm (Go-ORM) 149–152
Sqlx 148–149

SQL 134–143
connecting to

database 137–138
creating post 138–140
deleting post 141–142
getting all posts 142–143
relationships 143–147
retrieving post 140–141
setting up database 134–135
updating post 141

strconv.Atoi 186
String method 88
StripPrefix function 28
struct tags 165
StructScan method 148–149
Structured Query Language. See

SQL
Success status code 13
switch statement 237
sync package 231, 249
synchronization, with

channels 233–234

T

t1.html file 102
t2.html file 102, 108
TDD (test-driven

development) 195, 216
tearDown function 203
TearDownSuite function 213,

216
template engine 17–18
Template struct 29, 100
template.New function 112
templates and template

engines 97–98
executing templates 101–102
nesting templates 119–123

parsing templates 100–101
using block action to define

default templates 123–124
test fixture 213, 215
test-driven development. See TDD
_test.go files 191, 194, 197
TestDecode test case 194
TestHandleGet function 212
testing applications 190–222

dependency injection 205–210
HTTP testing 200–204
overview 191
test doubles 204–210
third-party Go testing

libraries 210–222
Ginkgo testing

framework 216–222
gocheck testing

package 211–216
unit testing 191–200

benchmarking 197–200
running tests in

parallel 196–197
skipping test cases 195–196

testing package 190–191, 194,
197, 203, 210, 212, 216, 219

testing.T function 212
testing.T struct 194
testing/httptest package 200
TestLongRunningTest test 196
TestMain function 203
Text interface 206–207, 209–210
third-party Go testing

libraries 210–222
Ginkgo testing

framework 216–222
gocheck testing package

211–216
Thread data structure 26
Thread struct 38–42
thread.go file 38
threads 23
Threads function 40–41
threads variable 41
Threw statement 235
tile picture 240
tilesDB function 242
time.Sleep function 197
TLS (Transport Security

Layer) 52
tmpl.html file 99, 103–104, 106,

117
TRACE method 10
transient 92
true value 234

INDEX292
U

UDDI (Universal Description,
Discovery, and
Integration) 157

unbuffered channels 233
underscore character 141
unescaping HTML 118–119
unique identifier. See ID
unit testing 191–200

benchmarking 197–200
running tests in parallel

196–197
skipping test cases 195–196

Universal Description, Discov-
ery, and Integration. See
UDDI

Unmarshal function 169, 177,
199

update method 141–142, 187
uploading files 80–81
Upstart job 262
URI (uniform resource

locater) 10, 14–15
url.URL type 70
URN (uniform resource

name) 14
User data structure 26
user stories 216
user-agent 8
User-Agent header field 12
user.CreateSession method 30
user.go file 38
UserId named field 31
util.go file 31
Uuid 31

V

-v flag 195
$value variable 110
value variable 240
variables 110–111
variadic function 37, 100, 151

verbose flag 195, 212
verbs 161
vertical scaling 4
VM (virtual machine) 257
VPS (virtual private server) 277

W

w1 channel 234
w2 channel 234
WADL (Web Application

Description Language) 162
Wait method 231–232, 252
WaitGroup 231, 252
web apps

high performing 6
how they work 6–7
maintainable 5–6
modular 5
parts of 16–18

handler 16–17
template engine 17–18

scalable 4–5
Web Service Definition Lan-

guage. See WSDL
web services 155–189

creating Go web services
181–189

JSON and 174–181
creating JSON 178–181
parsing JSON 175–178

overview 155–157
REST-based web services

160–163
converting actions to

resources 162
making actions properties

of resources 163
SOAP-based web

services 157–160
XML and 163–174

creating XML 171–174
parsing XML 163–171

web template 96

Windows
installing Go on 282
installing PostgreSQL on 38

with action 107
workspace 282
Write check box 277
Write method 130–131, 133
WriteFile 129
WriteHeader method 83–84
writing CSV files 130–132
WS-Addressing 156
ws-d image 278
ws-h executable binary 265
ws-s directory 261
WS-Security 156
ws.conf file 262
WSDL (Web Service Definition

Language) 156
WSDL message 159
WWW-Authenticate response

header 14

X

X-XSS-Protection 119
X.509 certificate 54
XHR (XMLHttpRequest) 11
XML (eXtensible Markupl

Language) 163–174
creating 171–174
parsing 163–171

xml library 171, 179
XML-RPC-based web

services 156
xml.go file 171
xml.Header 173
xml.Name file 166
xml.Unmarshal 163
XMLName file 166
XSS (cross-site scripting) 115
XSS attacks, defending

against 116–118

Sau Sheong Chang

T
he Go language handles the demands of scalable, high-
performance web applications by providing clean and fast
compiled code, garbage collection, a simple concurrency

model, and a fantastic standard library. It’s perfect for writing
microservices or building scalable, maintainable systems.

Go Web Programming teaches you how to build web applica-
tions in Go using modern design principles. You’ll learn how
to implement the dependency injection design pattern for
writing test doubles, use concurrency in web applications, and
create and consume JSON and XML in web services. Along
the way, you’ll discover how to minimize your dependence on
external frameworks, and you’ll pick up valuable productivity
techniques for testing and deploying your applications.

What’s Inside
● Basics
● Testing and benchmarking
● Using concurrency
● Deploying to standalone servers, PaaS, and Docker
● Dozens of tips, tricks, and techniques

This book assumes you’re familiar with Go language basics
and the general concepts of web development.

Sau Sheong Chang is Managing Director of Digital Technology
at Singapore Power and an active contributor to the Ruby and
Go communities.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/go-web-programming

$44.99 / Can $51.99 [INCLUDING eBOOK]

Go Web Programming

GO/PROGRAMMING

M A N N I N G

“As the importance of the
Go language grows, the need
for a great tutorial grows with
 it. This book fi lls this need.”

—Shaun Lippy
Oracle Corporation

“An excellent book, whether
you are an experienced
gopher, or you know
web development but

are new to Go.”
—Benoit Benedetti
University of Nice

“Everything you need to get
started writing and deploying

web apps in Go.”—Brian Cooksey, Zapier

“Defi nitive how-to guide for
web development in Go.”
—Gualtiero Testa, Factor-y S.r.l.

SEE INSERT

	Go Web Programming
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	About the author
	Author Online

	about the cover illustration
	Part 1 Go and web applications
	1 Go and web applications
	1.1 Using Go for web applications
	1.1.1 Scalable web applications and Go
	1.1.2 Modular web applications and Go
	1.1.3 Maintainable web applications and Go
	1.1.4 High performing web applications and Go

	1.2 How web applications work
	1.3 A quick introduction to HTTP
	1.4 The coming of web applications
	1.5 HTTP request
	1.5.1 Request methods
	1.5.2 Safe request methods
	1.5.3 Idempotent request methods
	1.5.4 Browser support for request methods
	1.5.5 Request headers

	1.6 HTTP response
	1.6.1 Response status code
	1.6.2 Response headers

	1.7 URI
	1.8 Introducing HTTP/2
	1.9 Parts of a web app
	1.9.1 Handler
	1.9.2 Template engine

	1.10 Hello Go
	1.11 Summary

	2 Go ChitChat
	2.1 Let’s ChitChat
	2.2 Application design
	2.3 Data model
	2.4 Receiving and processing requests
	2.4.1 The multiplexer
	2.4.2 Serving static files
	2.4.3 Creating the handler function
	2.4.4 Access control using cookies

	2.5 Generating HTML responses with templates
	2.5.1 Tidying up

	2.6 Installing PostgreSQL
	2.6.1 Linux/FreeBSD
	2.6.2 Mac OS X
	2.6.3 Windows

	2.7 Interfacing with the database
	2.8 Starting the server
	2.9 Wrapping up
	2.10 Summary

	Part 2 Basic web applications
	3 Handling requests
	3.1 The Go net/http library
	3.2 Serving Go
	3.2.1 The Go web server
	3.2.2 Serving through HTTPS

	3.3 Handlers and handler functions
	3.3.1 Handling requests
	3.3.2 More handlers
	3.3.3 Handler functions
	3.3.4 Chaining handlers and handler functions
	3.3.5 ServeMux and DefaultServeMux
	3.3.6 Other multiplexers

	3.4 Using HTTP/2
	3.5 Summary

	4 Processing requests
	4.1 Requests and responses
	4.1.1 Request
	4.1.2 Request URL
	4.1.3 Request header
	4.1.4 Request body

	4.2 HTML forms and Go
	4.2.1 Form
	4.2.2 PostForm
	4.2.3 MultipartForm
	4.2.4 Files
	4.2.5 Processing POST requests with JSON body

	4.3 ResponseWriter
	4.3.1 Writing to the ResponseWriter

	4.4 Cookies
	4.4.1 Cookies with Go
	4.4.2 Sending cookies to the browser
	4.4.3 Getting cookies from the browser
	4.4.4 Using cookies for flash messages

	4.5 Summary

	5 Displaying content
	5.1 Templates and template engines
	5.2 The Go template engine
	5.2.1 Parsing templates
	5.2.2 Executing templates

	5.3 Actions
	5.3.1 Conditional actions
	5.3.2 Iterator actions
	5.3.3 Set actions
	5.3.4 Include actions

	5.4 Arguments, variables, and pipelines
	5.5 Functions
	5.6 Context awareness
	5.6.1 Defending against XSS attacks
	5.6.2 Unescaping HTML

	5.7 Nesting templates
	5.8 Using the block action to define default templates
	5.9 Summary

	6 Storing data
	6.1 In-memory storage
	6.2 File storage
	6.2.1 Reading and writing CSV files
	6.2.2 The gob package

	6.3 Go and SQL
	6.3.1 Setting up the database
	6.3.2 Connecting to the database
	6.3.3 Creating a post
	6.3.4 Retrieving a post
	6.3.5 Updating a post
	6.3.6 Deleting a post
	6.3.7 Getting all posts

	6.4 Go and SQL relationships
	6.4.1 Setting up the databases
	6.4.2 One-to-many relationship

	6.5 Go relational mappers
	6.5.1 Sqlx
	6.5.2 Gorm

	6.6 Summary

	Part 3 Being real
	7 Go web services
	7.1 Introducing web services
	7.2 Introducing SOAP-based web services
	7.3 Introducing REST-based web services
	7.3.1 Convert action to a resource
	7.3.2 Make the action a property of the resource

	7.4 Parsing and creating XML with Go
	7.4.1 Parsing XML
	7.4.2 Creating XML

	7.5 Parsing and creating JSON with Go
	7.5.1 Parsing JSON
	7.5.2 Creating JSON

	7.6 Creating Go web services
	7.7 Summary

	8 Testing your application
	8.1 Go and testing
	8.2 Unit testing with Go
	8.2.1 Skipping test cases
	8.2.2 Running tests in parallel
	8.2.3 Benchmarking

	8.3 HTTP testing with Go
	8.4 Test doubles and dependency injection
	8.4.1 Dependency injection with Go

	8.5 Third-party Go testing libraries
	8.5.1 Introducing the gocheck testing package
	8.5.2 Introducing the Ginkgo testing framework

	8.6 Summary

	9 Leveraging Go concurrency
	9.1 Concurrency isn’t parallelism
	9.2 Goroutines
	9.2.1 Using goroutines
	9.2.2 Goroutines and performance
	9.2.3 Waiting for goroutines

	9.3 Channels
	9.3.1 Synchronization with channels
	9.3.2 Message passing with channels
	9.3.3 Buffered channels
	9.3.4 Selecting channels

	9.4 Concurrency for web applications
	9.4.1 Creating the photo mosaic
	9.4.2 The photo mosaic web application
	9.4.3 Concurrent photo mosaic web application

	9.5 Summary

	10 Deploying Go
	10.1 Deploying to servers
	10.2 Deploying to Heroku
	10.3 Deploying to Google App Engine
	10.4 Deploying to Docker
	10.4.1 What is Docker?
	10.4.2 Installing Docker
	10.4.3 Docker concepts and components
	10.4.4 Dockerizing a Go web application
	10.4.5 Pushing your Docker container to the internet

	10.5 Comparison of deployment methods
	10.6 Summary

	appendix Installing and setting up Go
	Installing Go
	Linux/FreeBSD
	Windows
	Mac OS X

	Setting up Go

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Go Web Programmnig-back

