

Go Programming
Language

by Wei-Meng Lee

Go Programming Language For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2021934091

ISBN 978-1-119-78619-1 (pbk); ISBN 978-1-119-78620-7 (ebk); ISBN 978-1-119-78621-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction. . 1

Part 1: Getting Started with Go . . 5
CHAPTER 1:	 Hello, Go! . . 7
CHAPTER 2:	 Working with Different Data Types. . 23
CHAPTER 3:	 Making Decisions . . 37
CHAPTER 4:	 Over and Over and Over: Using Loops. . 51
CHAPTER 5:	 Grouping Code into Functions. . 65

Part 2: Working with Data Structures. . 79
CHAPTER 6:	 Slicing and Dicing Using Arrays and Slices. . 81
CHAPTER 7:	 Defining the Blueprints of Your Data Using Structs. 101
CHAPTER 8:	 Establishing Relationships Using Maps. . 113
CHAPTER 9:	 Encoding and Decoding Data Using JSON . . 129
CHAPTER 10:	Defining Method Signatures Using Interfaces. . 151

Part 3: Multitasking in Go. . 163
CHAPTER 11:	Threading Using Goroutines. . 165
CHAPTER 12:	Communicating between Goroutines Using Channels 179

Part 4: Organizing Your Code. . 195
CHAPTER 13:	Using and Creating Packages in Go. . 197
CHAPTER 14:	Grouping Packages into Modules . . 211

Part 5: Seeing Go in Action. . 223
CHAPTER 15:	Consuming Web APIs Using Go. . 225
CHAPTER 16:	Getting Ready to Serve Using REST APIs. . 243
CHAPTER 17:	Working with Databases . . 271

Part 6: The Part of Tens. . 285
CHAPTER 18:	Ten Useful Go Packages to Create Applications 287
CHAPTER 19:	Ten Great Go Resources . . 299

Index. . 303

Go Programming Language

Table of Contents v

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 2
Icons Used in This Book. . 2
Beyond the Book. . 3
Where to Go from Here . . 3

PART 1: GETTING STARTED WITH GO. . 5

CHAPTER 1:	 Hello, Go!. . 7
Seeing What Learning Go Can Do for You. . 8
Installing Go on Your Machine . . 9

macOS. . 10
Windows. . 11

Using an Integrated Development Environment with Go. 12
Writing Your First Go Program . . 14

Compiling and running the program. . 15
Understanding how a Go program works. . 17
Making sense of the Go file structure . . 18
Compiling for multiple operating systems. . 19

Comparing Go with Other Languages . . 21
Syntax. . 21
Compilation . . 22
Concurrency. . 22
Library support . . 22

CHAPTER 2:	 Working with Different Data Types. 23
Declaring Always-Changing Variables. .24

Using the var keyword: Type-inferred variables. 24
Specifying the data type: Explicitly typed variables 25
Using the short variable declaration operator 26

Declaring Never-Changing Constants. . 27
Removing Unused Variables . . 27
Dealing with Strings . . 29
Performing Type Conversions. . 30

Discovering the type of a variable. . 31
Converting a variable’s type. . 32
Interpolating strings . . 34

vi Go Programming Language For Dummies

CHAPTER 3:	 Making Decisions. . 37
Using If/Else Statements to Make Decisions. . 37

Laying the foundation for the if/else statement:
Logical and comparison operators. . 38
Using the if/else statement . . 40
Short-circuiting: Evaluating conditions in Go.42

When You Have Too Many Conditions: Using the
Switch Statement. . 46

Switching with fall-throughs. .47
Matching multiple cases. . 48
Switching without condition. .48

CHAPTER 4:	 Over and Over and Over: Using Loops. 51
Performing Loops Using the for Statement. . 51
Iterating over a Range of Values. . 56

Iterating through arrays/slices . . 56
Iterating through a string. . 58

Using Labels with the for Loop . . 59

CHAPTER 5:	 Grouping Code into Functions. . 65
Defining a Function. . 65

Defining functions with parameters. . 66
Defining functions with multiple parameters. 68
Passing arguments by value and by pointer. 68
Returning values from functions. . 71
Naming return values. . 72
Working with variadic functions . . 72

Using Anonymous Functions. . 73
Declaring an anonymous function. . 73
Implementing closure using anonymous functions. 74
Implementing the filter() function using closure 76

PART 2: WORKING WITH DATA STRUCTURES. 79

CHAPTER 6:	 Slicing and Dicing Using Arrays and Slices 81
Arming Yourself to Use Arrays . . 81

Declaring an array. . 82
Initializing an array . . 83
Working with multidimensional arrays . . 83

Sleuthing Out the Secrets of Slices. . 86
Creating an empty slice . . 86
Creating and initializing a slice . . 88
Appending to a slice . . 88

Slicing and Ranging. . 92
Extracting part of an array or slice . . 92
Iterating through a slice. . 95

Table of Contents vii

Making copies of an array or slice. . 95
Inserting an item into a slice . . 97
Removing an item from a slice . . 99

CHAPTER 7:	 Defining the Blueprints of Your Data
Using Structs . . 101
Defining Structs for a Collection of Items . . 101
Creating a Go Struct . . 104
Making a Copy of a Struct . . 105
Defining Methods in Structs . . 107
Comparing Structs. . 110

CHAPTER 8:	 Establishing Relationships Using Maps. 113
Creating Maps in Go. . 113

Initializing a map with a map literal . . 115
Checking the existence of a key . . 115
Deleting a key. . 116
Getting the number of items in a map. . 116
Iterating over a map. . 117
Getting all the keys in a map. . 117
Setting the iteration order in a map. . 118
Sorting the items in a map by values. . 118

Using Structs and Maps in Go. . 121
Creating a map of structs. . 121
Sorting a map of structs. . 124

CHAPTER 9:	 Encoding and Decoding Data Using JSON 129
Getting Acquainted with JSON. . 129

Object . . 130
String. . 130
Boolean. . 131
Number. . 131
Object . . 132
Array . . 132
null. . 133

Decoding JSON. . 134
Decoding JSON to a struct . . 135
Decoding JSON to arrays . . 136
Decoding embedded objects. . 137
Mapping custom attribute names. .140
Mapping unstructured data. . 141

Encoding JSON. . 144
Encoding structs to JSON. . 144
Encoding interfaces to JSON . . 148

viii Go Programming Language For Dummies

CHAPTER 10:	Defining Method Signatures Using Interfaces. 151
Working with Interfaces in Go. . 152

Defining an interface. . 152
Implementing an interface. . 153

Looking at How You May Use Interfaces. . 154
Adding methods to a type that doesn’t satisfy an interface. 158
Using the Stringer interface. . 159
Implementing multiple interfaces. . 160
Using an empty interface. . 161
Determining whether a value implements a specific interface. . . 162

PART 3: MULTITASKING IN GO . . 163

CHAPTER 11:	Threading Using Goroutines. . 165
Understanding Goroutines . . 166
Using Goroutines with Shared Resources. . 168

Seeing how shared resources impact goroutines 168
Accessing shared resources using mutual exclusion. 171
Using atomic counters for modifying shared resources. 172

Synchronizing Goroutines . . 174

CHAPTER 12:	Communicating between Goroutines
Using Channels. . 179
Understanding Channels. . 179

How channels work. . 180
How channels are used . . 183

Iterating through Channels . . 186
Asynchronously Waiting on Channels . . 187
Using Buffered Channels. . 192

PART 4: ORGANIZING YOUR CODE. . 195

CHAPTER 13:	Using and Creating Packages in Go. 197
Working with Packages. . 197

Creating shareable packages. . 200
Organizing packages using directories. . 202

Using Third-Party Packages. . 204
Emojis for Go. . 204
Go Documentation . . 205

CHAPTER 14:	Grouping Packages into Modules. 211
Creating a Module. . 211
Testing and Building a Module . . 214
Publishing a Module on GitHub . . 216

Table of Contents ix

PART 5: SEEING GO IN ACTION. . 223

CHAPTER 15:	Consuming Web APIs Using Go. . 225
Understanding Web APIs. . 225
Fetching Data from Web Services in Go. . 226

Writing a Go program to connect to a web API. 227
Decoding JSON data . . 229
Refactoring the code for decoding JSON data. 233
Fetching from multiple web services at the same time. 238
Returning Goroutine’s results to the main() function 239

CHAPTER 16:	Getting Ready to Serve Using REST APIs. 243
Building Web Services Using REST APIs. . 243

HTTP messages . . 244
REST URLs. . 244
REST methods . . 246
REST response. . 248

Creating a REST API in Go. . 249
Getting your REST API up and running. . 249
Testing the REST API. . 251
Registering additional paths . . 251
Passing in query string. . 254
Specifying request methods . . 255
Storing the course information on the REST API 257
Testing the REST API again. . 267

CHAPTER 17:	Working with Databases. . 271
Setting Up a MySQL Database Server. . 272

Interfacing with the MySQL server. . 272
Creating a database and table. . 274
Creating a new account and granting permission 275

Connecting to the MySQL Database in Go. . 276
Retrieving a record . . 278
Adding a record. . 280
Modifying a record . . 281
Deleting a record. . 283

PART 6: THE PART OF TENS. . 285

CHAPTER 18:	Ten Useful Go Packages to Create Applications. . . 287
color. . 287

Installation . . 288
Code sample. . 288

now. . 288
Installation . . 288
Code sample. . 288

x Go Programming Language For Dummies

go-pushbullet. . 289
Installation . . 289
Code sample. . 289

goid . . 290
Installation . . 290
Code sample. . 290

json2go. . 291
Installation . . 291
Code sample. . 291

gojq . . 292
Installation . . 293
Code sample. . 293

turtle. . 294
Installation . . 294
Code sample. . 294

go-http-client. . 295
Installation . . 295
Code sample. . 295

notify. . 296
Installation . . 296
Code sample. . 296

gosx-notifier. . 297
Installation . . 297
Code sample. . 297

CHAPTER 19:	Ten Great Go Resources. . 299
The Official Go Website . . 299
Go by Example. . 300
A Tour of Go. . 300
The Go Frequently Asked Questions . . 300
The Go Playground. . 300
Go Bootcamp. . 301
Effective Go . . 301
Gophercises. . 301
Tutorialspoint. . 301
Stack Overflow. . 302

INDEX . . 303

Introduction 1

Introduction

Today, if you’re a programmer, you have lots of options when it comes to
choosing a programming language. Popular programming languages
include C++, C#, Go, Java, JavaScript, Python, R, Swift, and many more. Each

language is designed to solve a different set of problems and, depending on what
you’re going to create (mobile apps, web apps, desktop apps), you may end up
learning one or more of these languages.

So, why Go? Turns out that three engineers at Google were frustrated with the
various toolsets that they were working on and set out to design a new language
that would address the criticisms of other languages while at the same time keep-
ing their useful features.

Go was designed to

»» Use static typing and have the run-time efficiency of C

»» Have the readability and usability of languages like Python and JavaScript

»» Exhibit great performance in networking and multiprocessing

The problems with existing languages forced the team at Google to design a new
language from the ground up, creating a lean and mean language designed for
massive multithreading and concurrency.

This book covers the basics of Go (also known as Golang), one of the fastest-
growing programming languages specifically designed to build faster and more
scalable applications.

About This Book
In this code-intensive book, you’re encouraged to try out the various examples,
which are designed to be compact, easy to follow, and easy to understand. But you
don’t have to read the book from the first page to the last. Each chapter is designed
to be independent, so you can dive in wherever you want and find the topics that
you want to start learning.

2 Go Programming Language For Dummies

If you’re short on time, you can safely skip sidebars (text in gray boxes) or any-
thing marked with the Technical Stuff icon (more on that in “Icons Used in This
Book,” later in this Introduction). They’re interesting, but they aren’t essential to
understanding the subject at hand.

Within this book, you may note that some web addresses break across two lines of
text. If you’re reading this book in print and want to visit one of these web pages,
simply key in the web address exactly as it’s noted in the text, pretending as
though the line break doesn’t exist. If you’re reading this as an e-book, you’ve got
it easy — just click the web address to be taken directly to the web page.

Foolish Assumptions
This book is for people who are new (or relatively new) to Go. I don’t assume that
you’re familiar with Go programming, but I do assume the following:

»» You’re familiar with the basics of programming.

»» You’re familiar with the concept of data structures, such as dictionary, arrays,
and structs.

»» You have a computer that you can use to try out the examples in this book.

Icons Used in This Book
Like other books in the For Dummies series, this book uses icons, little pictures in
the margin to draw your attention to certain kinds of material. Here are the icons
that I use:

Whenever I tell you something useful or important enough that you’d do well to
store the information somewhere safe in your memory for later recall, I flag it
with the Remember icon.

The Technical Stuff icon marks text that contains some for-nerds-only technical
details or explanations that you’re free to skip.

Introduction 3

The Tip icon marks shortcuts or easier ways to do things, which I hope will make
your life easier.

The Warning icon marks text that contains a friendly but unusually insistent
reminder to avoid doing something. You’ve been warned.

Beyond the Book
In addition to what you’re reading right now, this product comes with a free
access-anywhere Cheat Sheet that tells you how to try Go online without install-
ing any additional software, how to use the online tools to convert JSON to Go
structs, and how to use Go in Docker. To get this Cheat Sheet, go to www.dummies.
com and type Go Programming Language For Dummies Cheat Sheet in the
Search box.

This book includes some downloadable content as well. Go to www.dummies.com/
go/goprogramminglanguagefd to download all the code in the book.

Where to Go from Here
If you’re totally new to Go, you may want to start from the first chapter and follow
through to the end. If you already have some basic knowledge of Go, you may want
to head to Part 5, where you see Go in action. Regardless of how much experience
you have, you can always turn to the index or table of contents to find the subjects
that interest you most.

Finally, my advice to all beginners is: Practice, practice, practice. Type in the code
in each chapter and make mistakes. The more mistakes you make, the better
you’ll understand and remember the topics discussed.

Good luck and enjoy your newfound knowledge!

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/go/goprogramminglanguagefd
http://www.dummies.com/go/goprogramminglanguagefd

1Getting Started
with Go

IN THIS PART . . .

Write your first Go program.

Discover the basic data types in Go and find out how to
declare variables and constants.

Explore the various logical and comparison operators
and use them to make decisions.

Understand how looping works and how you can
execute code repeatedly.

Use functions to create Go programs that are easy to
maintain and understand.

CHAPTER 1 Hello, Go! 7

Chapter 1
Hello, Go!

Go is an open-source programming language — one of the fastest-growing
programming languages around — released by Google in 2009. It’s a mul-
tipurpose programming language specifically designed to build fast, scal-

able applications.

Go comes from a pretty impressive team of people: Ken Thompson (designer and
creator of Unix and C), Rob Pike (cocreator of UTF-8 and Unix format), and Robert
Griesemer (a Google engineer). If you’re technically inclined, you may want to
check out an article called “Go at Google: Language Design in the Service of Soft-
ware Engineering” (https://talks.golang.org/2012/splash.article), which
discusses how Go was initially conceived to solve problems at Google.

In this chapter, I explain why learning Go is important for your career, where Go
can be used, and how to get started with Go programming.

Go is often referred to as Golang because of its web address: https://golang.org.
However, the official name of the language is Go, so that’s how I refer to it
throughout this book.

IN THIS CHAPTER

»» Understanding why Go is the wave of
the future

»» Installing Go on your computer

»» Working with an integrated
development environment

»» Writing a Go program and
understanding how it works

»» Seeing how Go compares to other
languages

https://talks.golang.org/2012/splash.article
https://golang.org/

8 PART 1 Getting Started with Go

Seeing What Learning Go Can Do for You
You can learn many programming languages today, but Go stands out from the
others for a few reasons:

»» Go is easy to learn. Go’s syntax makes it a readable language. It has no
support for object-oriented programming (OOP), which means you don’t have
to worry about classes and inheritance and the complexities that come
with that.

Object-oriented programming (OOP) is a programming paradigm that is
based on the concept of objects (data). Instead of focusing on the functions
and logics, OOP organizes software around data, or objects. A key concept in
OOP is classes (sort of like templates). Suppose you want to display buttons in
your application. Instead of writing the code to display each button individu-
ally, you can create a class to represent a generic button and use it to create
buttons to display in your application. Each button has its own properties
(characteristics). Using the concept of inheritance in OOP, you can create
multiple subclasses of the button class to create different types of buttons,
such as a rounded button, a rectangular button, and so on.

»» Go has fewer features than other programming languages. You don’t
have to worry about the best way to solve a problem — there is only one right
way to solve a problem in Go. This makes your codebase easy to maintain.

»» Go excels in concurrent programming. Go’s support for Goroutines makes it
extremely easy to run multiple functions concurrently.

Go has no support for generics (the ability to specify the actual data type until it’s
actually used), but this may change as the language evolves.

If you still aren’t convinced that you should learn Go, perhaps this next bit of
news will motivate you: In the Stack Overflow Developer Survey 2019 (https://
insights.stackoverflow.com/survey/2019), Go developers were the third
highest paid in the industry, behind Clojure and F# developers.

Although Go has been around for quite a while (since 2009), only recently did it
get wide adoption by developers, thanks to the proliferation of cloud computing
and microservices. Today, Go has been widely used by major companies such as
Dailymotion, Dropbox, Google, and Uber.

Here are some examples of where Go can be used:

»» Cloud services: You can build scalable apps using Go on the Google Cloud
Platform (GCP).

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

CHAPTER 1 Hello, Go! 9

»» Networking apps: With Go’s support for Goroutines, you can use Go to build
distributed servers and application programming interfaces (APIs).

»» Web services: You can use Go to build scalable and efficient web services.

»» Command-line apps: Because Go runs on multiple platforms, you can
compile the same codebase and target different platforms (such as those
running on macOS and Windows).

Installing Go on Your Machine
You’re probably very eager to get started with Go programming on your machine,
so let’s get to it!

The easiest way to install Go is to go to https://golang.org/doc/install. This
website automatically detects the operating system (OS) you’re using and shows
you the button to click to download the Go installer (see Figure 1-1).

FIGURE 1-1:
Downloading the

Go installer.

https://golang.org/doc/install

10 PART 1 Getting Started with Go

This book code has been written and tested using Go version 1.15. When you’re
reading this book, a new version of Go may have been released. In order to ensure
that you can follow the examples in this book, I strongly suggest that you install
the same version of Go that I’ve used. You can find it here:

»» macOS: https://golang.org/dl/go1.15.8.darwin-amd64.pkg

»» Windows: https://golang.org/dl/go1.15.8.windows-amd64.msi

If you want to be able to choose the Go installer for each of the supported operat-
ing systems (Linux, macOS, and Windows), and even see the source code for Go,
go to https://golang.org/dl/.

After you’ve downloaded the Go installer, double-click the installer to start the
straightforward installation process. I recommend that you just use the default
installation settings — you don’t need to change any of those settings.

In the following sections, I show you how to verify that your installation is per-
formed successfully on macOS and Windows.

macOS
On macOS, the Go installer installs the Go distribution in the /usr/local/go
directory. It also adds the /usr/local/go/bin directory to your PATH environment
variable. You can verify this by entering the following command in the Terminal
app (which you can find in the Applications/Utilities folder):

$ echo $PATH

You should see something like the following output (note the added path, high-
lighted in bold):

/Users/weimenglee/opt/anaconda3/bin:/Volumes/SSD/opt/anaco
nda3/condabin:/Users/weimenglee/flutter/bin:/Users/weimeng
lee/go/bin:/Users/weimenglee/.nvm/versions/node/v9.2.0/bin
:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/g
o/bin:/usr/local/share/dotnet:~/.dotnet/tools:/Library/App
le/usr/bin:/Library/Frameworks/Mono.framework/Versions/Cur
rent/Commands

Make sure to restart the Terminal app after you’ve installed Go in order for the
changes to take effect.

https://golang.org/dl/go1.15.8.darwin-amd64.pkg
https://golang.org/dl/go1.15.8.windows-amd64.msi
https://golang.org/dl/

CHAPTER 1 Hello, Go! 11

To verify that the installation is correct, type the following command in
Terminal:

$ go version

You should see the version of Go installed on your system:

go version go1.15.8 darwin/amd64

Windows
On Windows, the Go installer installs the Go distribution in the C:\Go directory. It
also adds the C:\Go\bin directory to your PATH environment variable. You can
verify this by entering the following command in Command Prompt (which you
can find by typing cmd in the Windows search box):

C:\Users\Wei-Meng Lee>path

You should see something like the following output (note the added path, high-
lighted in bold):

PATH=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\
Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0\;C:\WIND
OWS\System32\OpenSSH\;C:\Program Files\dotnet\;C:\Program
Files\Microsoft SQL Server\130\Tools\Binn\;C:\Go\bin;
C:\Program Files\Git\cmd;C:\Program Files\Graphviz
 2.44.1\bin;C:\Program Files\CMake\bin;C:\Program
Files\Docker\Docker\resources\bin;C:\ProgramData\DockerDes
ktop\version-bin;C:\Program Files\MySQL\MySQL Shell
8.0\bin\;C:\Users\Wei-Meng Lee\AppData\Local\
Microsoft\WindowsApps;;C:\Users\Wei-Meng Lee\
AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\Wei-
Meng Lee\.dotnet\tools;C:\Users\Wei-Meng Lee\go\bin

Make sure to restart the Command Prompt window after you’ve installed Go in
order for the changes to take effect.

To verify that the installation is correct, type the following command in Command
Prompt:

C:\Users\Wei-Meng Lee>go version

You should now see the version of Go installed on your computer:

go version go1.15.8 windows/amd64

12 PART 1 Getting Started with Go

Using an Integrated Development
Environment with Go

To develop applications using Go, you just need a text editor (such as Visual Studio
Code, TextEdit on macOS, or even the old trusty NotePad), and you’re good to go
(pun unintended). However, many developers prefer to use integrated develop-
ment environments (IDEs) that can help them organize their code, as well as pro-
vide debugging support. Here is a partial list of IDEs that work with Go:

»» Visual Studio Code (https://code.visualstudio.com): Visual Studio Code
from Microsoft is the mother of all code editors (and my personal favorite).
Visual Studio Code is a full-featured code editor that supports almost all
programming languages under the sun. Perhaps one of the most useful
features of Visual Studio Code is IntelliSense, which helps to complete your
statement as you type. It also comes with debugger support and an interac-
tive console, as well as Git integration. Best of all, Visual Studio Code is free
and has a very active community of Go developers, allowing you to extend its
functionalities through the various plug-ins.

»» GoLand (www.jetbrains.com/go/): GoLand is a cross-platform IDE by
JetBrains. It comes with coding assistance, a debugger, an integrated Terminal,
and more. GoLand is a commercial IDE, and it has a 30-day trial.

»» The Go Playground (https://play.golang.org): The Go Playground (which
isn’t really an IDE, but is worth a mention here) is a web service that runs on
Go’s servers. It receives a Go program, compiles, links, runs it inside a
sandbox, and then returns the output. The Go Playground is very useful when
you need to test out some Go code quickly using a web browser.

In this book, I use Visual Studio Code for Go development. To download Visual
Studio Code, go to https://code.visualstudio.com/download. After you’ve
downloaded and installed Visual Studio Code, launch it, and you should see the
screen shown in Figure 1-2.

In order for Visual Studio Code to recognize your Go language syntax, you also
need to install an extension for it. Follow these steps to install the Go extension:

1.	 In Visual Studio Code, click the Extensions icon on the Activity Bar (see
Figure 1-3).

https://code.visualstudio.com/
https://www.jetbrains.com/go/
https://play.golang.org
https://code.visualstudio.com/download

CHAPTER 1 Hello, Go! 13

2.	 In the Search box for the Extensions panel, type Go.

You see a list of the Go extensions available (see Figure 1-4).

3.	 Select the first extension and click the Install button on the right.

That’s it! You’re ready to write your first program!

FIGURE 1-2:
Launching Visual

Studio Code for
the first time.

FIGURE 1-3:
The Extensions

icon is located at
the bottom of the

Activity Bar.

14 PART 1 Getting Started with Go

Writing Your First Go Program
To write your first Go program, create a new file in Visual Studio Code by choosing
File ➪ New File. Then enter the following statements (see Figure 1-5):

package main

import "fmt"

func main() {
 fmt.Println("Hello, world!")
}

FIGURE 1-4:
Searching for

Go extensions
for Visual

Studio Code.

FIGURE 1-5:
Writing your first

Go program.

CHAPTER 1 Hello, Go! 15

When you’re done typing, press ⌘  +S (Ctrl+S) to save the file. Name the file main.
go. If this is the first time you’re writing a Go program using Visual Studio Code,
it may prompt you to download additional plugins for Go. I recommend that you
install the plugins.

For this book, save your files to a folder named with the chapter number you’re
reading. For example, save main.go in a folder named Chapter 1 in your home
directory. On a Mac, that looks like this:

~/Chapter 1
 |__main.go

In Windows, it looks like this:

C:\users\yourname\Chapter 1
 |__main.go

After the file is saved, notice that your Go statements will now be color-coded —
light blue for keywords such as package, import, and func; orange for strings like
Hello, world! and fmt; and yellow for functions like main() and Println().

Compiling and running the program
After you’ve saved a program, you need to compile it so that you can run it.

You can run the program directly in Visual Studio Code. To do that, launch the
Terminal by choosing Terminal ➪ New Terminal. The Terminal now opens in
Visual Studio Code (see Figure 1-6).

Next, change the directory to Chapter 1. In macOS, use the following command:

$ cd ~/”Chapter 1”

In Windows, use the following command:

$ cd “C:\users\username\Chapter 1”

To compile the main.go file, type the following command:

$ go build main.go

16 PART 1 Getting Started with Go

The preceding command compiles the main.go program into an executable file.
On macOS, after running the program, you see a file named main. To run it, use
the following command:

$./main
Hello, world!

If you see the Hello, world! string printed, congratulations! You’re now offi-
cially a Go programmer!

If you’re using Windows, the build command generates an executable named
main.exe. To run it, use the following command:

C:\users\username\Chapter 1>main
Hello, world!

Because you often want to run the program immediately after compiling it, you
can use the run option to compile and run the program straight away:

$ go run main.go

FIGURE 1-6:
You can directly

access the
Terminal in Visual

Studio Code.

CHAPTER 1 Hello, Go! 17

Understanding how a Go program works
Now that your Go program works, it’s time to understand how. I’ll walk you
through it line by line. The first line defines the package name for this program:

package main

Go programs are organized into packages. A package is a collection of source files
grouped in a single directory. In this example, main is the name of the package
stored in the Chapter 1 directory. If you have additional source files (.go files),
they’ll all belong to this main package (more on this in later chapters).

You aren’t constrained to using main as the package name. You can use any pack-
age name you want. But this main package name has a special meaning: Packages
with the name main will contain a function named main(), which serves as an
entry point for your program to get started. Also, your package name and the
name of the file containing it don’t need to be the same. I could’ve named the file
dog.go instead of main.go, and the program would still run (but now the execut-
able would be named dog instead of main).

The next line imports a package named fmt:

import "fmt"

This package contains various functions to allow you to format and print to the
console. It also contains functions to get a user’s inputs.

If you’re new to programming, a function is a block of code that’s used to perform
a single, related task. Turn to Chapter 5 for more about functions.

The next block of code is the main entry point of your program:

func main() {

}

Because the package name is main, this main() function will now serve as the
starting point for your program to execute.

Finally, the following line calls the Println() function from the fmt package to
print the string Hello, world! to the console:

fmt.Println("Hello, world!")

18 PART 1 Getting Started with Go

Making sense of the Go file structure
You should now have a good idea of how the Go program works. Let’s dive a little
deeper into how Go files are grouped together. As I mention in the previous sec-
tion, all files in the same directory belong to the same package. So, let’s now add
another file to the Chapter 1 directory and name it show_time.go. The Chapter 1
directory should now have one more file:

Chapter 1
 |__main.go
 |__show_time.go

Populate the show_time.go file with the following statements:

package main

import (
 "fmt"
 "time"
)

func displayTime() {
 fmt.Println(time.Now())
}

Notice that the file is part of the main package (the first line reflects that). Also,
you can import multiple packages by enclosing them within a pair of parentheses.
In this case, we imported the time package in addition to the fmt package. Finally,
we also added a function named displayTime(), which displays the current date
and time using the Now() function from the time package.

Because the displayTime() function belongs to the main package, it can also be
called from main.go:

package main

import "fmt"

func main() {
 fmt.Println("Hello, world!")
 displayTime()
}

CHAPTER 1 Hello, Go! 19

You can call functions defined in the same package without needing to import the
package.

Because there are now two files in the package (main), you don’t build the pro-
gram using a specific filename. Instead, you just need to use the build command
within the Chapter 1 directory:

$ go build

This time around, you’ll see that there is a new file named Chapter_1 (in Win-
dows, you’ll see a file named Chapter_1.exe) created in the Chapter 1 directory.

To run it in macOS, type the following in Terminal:

$./Chapter_1

To run it in Windows, type the following command:

C:\users\username\Chapter 1>Chapter_1

You should now be able to see the output:

Hello, world!
2020-10-01 12:01:13.412568 +0800 +08 m=+0.000365532

Compiling for multiple operating systems
When you install Go, the Go installer automatically sets up a number of Go envi-
ronment variables in order for your Go program to work correctly. Specifically, it
auto-detects values of the host architecture and OS and sets the GOHOSTARCH and
GOHOSTOS environment variables, respectively. The value of these two variables
will be used as the target platform for your program to compile to.

To examine the values of these Go environment variables, use the env command:

$ go env
GOARCH="amd64"
GOBIN=""
GOCACHE="/Users/weimenglee/Library/Caches/go-build"
GOEXE=""
GOFLAGS=""
GOHOSTARCH="amd64"

20 PART 1 Getting Started with Go

GOHOSTOS="darwin"
GOOS="darwin"
...
...
PKG_CONFIG="pkg-config"

To compile your program for another OS, you need to set another two environ-
ment variables: GOOS and GOARCH. These two variables configure the target OS
based on the values shown in Table 1-1.

To compile for macOS, use the following command and options:

$ GOOS=darwin GOARCH=amd64 go build -o Chapter_1-mac

In the near future, when Go has been ported natively to Apple Silicon, the value of
GOARCH would be arm64.

To compile for the Windows OS, use the following command and options:

$ cd ~/"Chapter 1"
$ GOOS=windows GOARCH=amd64 go build -o Chapter_1-windows.exe

The -o option (short for output) allows you to specify the name of the executable
file.

The preceding command compiles the package in the Chapter 1 folder to run on
Windows and save the executable as Chapter_1-windows.exe.

To compile for Linux, use the following command and options:

$ GOOS=linux GOARCH=amd64 go build -o Chapter_1-linux

If you use Go on the Raspberry Pi, then you should specify arm64 for GOARCH.

TABLE 1-1	 Environment Variables for the Various Operating Systems
Operating Systems GOOS GOARCH

macOS darwin amd64

Linux linux amd64

Windows windows amd64

CHAPTER 1 Hello, Go! 21

If you’re running macOS or Linux, you can use the file command to examine the
various executables created for each platform:

$ file Chapter_1-mac
Chapter_1-mac: Mach-O 64-bit executable x86_64

$ file Chapter_1-windows.exe
Chapter_1-windows.exe: PE32+ executable (console) x86-64

(stripped to external PDB), for MS Windows

$ file Chapter_1-linux
Chapter_1-linux: ELF 64-bit LSB executable, x86-64, version 1

(SYSV), statically linked, Go BuildID=bSETwZgNDR5vlulRHnzw/
KNpENRt9Hipd8Nu7HGDg/v38ZPzDs35yMw33hUxoz/Y_cNfU8fID2cCtz36hCq,
not stripped

Comparing Go with Other Languages
When learning a new programming language, it’s always helpful to try to com-
pare it with another language that you may already be familiar with. Doing so
allows you to try to map your current knowledge to the new language that you’re
trying to learn.

In this section, I compare Go with two of the most commonly used programming
languages used in the industry, Java and Python. Occasionally, I compare Go
with C, because Go is syntactically similar to C. Go is often touted as the language
with the speed of C and the productivity of Python.

If you aren’t familiar with any of the languages listed in this section, don’t worry!
In this book, I cover all the features mentioned here.

Syntax
In terms of syntax, Go is closer to C and Java, which use curly braces to enclose
blocks of code. This syntax differs from Python, which uses indentation as a form
of denoting blocks of code.

Like Python, Go functions are first-class citizens, whereas in Java everything
revolves around classes, and you need a class just to enclose a function.

22 PART 1 Getting Started with Go

Unlike Python and Java, Go doesn’t have OOP support, and it doesn’t support
inheritance. But it does have interfaces and structs that work just like classes.

Go is statically typed, like Java. It differs from Python, which is dynamically typed.

Compilation
Whereas Python and Java are compiled to byte code, which is then interpreted and
run on a virtual machine, Go compiles directly to machine code, which makes Go
take the lead in terms of performance.

Like Python and Java, Go is also garbage collected. In programming, garbage col-
lection (GC) is a form of automatic memory management. The garbage collector
tries to reclaim memory occupied by objects that are no longer in use by the
program.

Python is extremely memory intensive. Java is not much better because every-
thing is heap allocated. But Go affords more control of memory usage.

Concurrency
Go has parallelism and concurrency built in, which means writing multi-threaded
applications is very easy. Both Java and Python support concurrency through
threading, but they aren’t as efficient as Go. In fact, concurrency is one of Go’s
main selling points.

Library support
All three languages have huge library support — both standard and third-party
libraries. A language’s survival depends in large part on its support for
third-party libraries. That’s why Python has been so hot for the past couple of
years — its support for third-party libraries for doing data analytics brings
machine learning and deep learning readily to the masses. Although Go doesn’t
have the scale of third-party library support that Python does because it’s young,
the number of libraries for Go is growing.

CHAPTER 2 Working with Different Data Types 23

Chapter 2
Working with Different
Data Types

This chapter explores one of the foundational building blocks of program-
ming: how to declare variables and constants in Go. This chapter also tells
you how to manipulate strings in Go and how to convert data from one type

to another.

In Go, there are four types of data:

»» Basic: Examples include strings, numbers, and Booleans.

»» Aggregate: Examples include arrays and structs.

»» Reference: Examples include pointers, slices, functions, and channels.

»» Interface: An interface is a collection of method signatures.

In this chapter, I focus on the basic data types in Go. (I cover the other data types
throughout the rest of this book.)

IN THIS CHAPTER

»» Declaring variables

»» Declaring constants

»» Getting rid of unused variables

»» Manipulating strings

»» Converting the data type of one value
to another

24 PART 1 Getting Started with Go

Declaring Always-Changing Variables
In programming, variables are containers that store values. These values may
change over the lifetime of the program. In Go, you can declare and initialize vari-
ables in a variety of ways. I cover the possibilities in the following sections.

Using the var keyword: Type-inferred
variables
The first way to declare a variable is to prefix the variable name with the var key-
word and then assign it a value, as in the following example:

package main

import "fmt"

func main() {
 var num1 = 5 // type inferred
 fmt.Println(num1) // 5
}

In Go, anything that follows the double-slash (//) is a comment. The compiler
will ignore your comments, but adding comments to your code is usually a good
practice because it makes it more understandable.

In the preceding example, num1 is a variable whose type is an integer. Because it’s
assigned the value of 5 during declaration, its type is inferred to be that of int
(integer).

In Go, a compilation error occurs if you declare a variable but you don’t make use
of it (for example, by printing its value). So, in the previous example, one way to
resolve this issue is to print it out using the Println() function. If you don’t
resolve the issue, your program won’t compile.

A variable can be defined outside a function as well, as the following example
shows:

package main

import "fmt"

CHAPTER 2 Working with Different Data Types 25

var num1 = 5 // type inferred

func main() {
 fmt.Println(num1) // 5
}

Variables that are defined outside functions are accessible to all functions.

Specifying the data type: Explicitly
typed variables
You can specify the data type of the variable explicitly when declaring them, as the
following example demonstrates:

package main

import "fmt"

func main() {
 var num1 = 5 // type inferred
 var num2 int // explicitly typed

 fmt.Println(num1)
 fmt.Println(num2)
}

Here, num2 is explicitly declared to be an int variable. When you print out its
value, you see 0. Variables declared without initialization are given their zero value.
The zero values for the various types are shown below:

var num3 float32 // floating point variable
var name string // string variable
var raining bool // boolean variable

fmt.Println(num3) // 0
fmt.Println(name) // "" (empty string)
fmt.Println(raining) // false

You can also explicitly declare and initialize a value at the same time, like this:

var rates float32 = 4.5 // declared as float32 and
 // then initialized

26 PART 1 Getting Started with Go

Using the short variable declaration
operator
Another way to declare and initialize a variable is to use the short variable declara-
tion operator (:=), like this:

firstName := "Wei-Meng"

Here, I’m declaring firstName as a string variable by initializing it to the string
"Wei-Meng", all without needing to use the var prefix.

You can also declare and initialize multiple variables (of different types) in a sin-
gle statement, like this:

firstName, lastName, age := "Wei-Meng", "Lee", 25

This method also works with the var keyword:

var firstName, lastName string = "Wei-Meng", "Lee"

Note that if you’re declaring and initializing multiple variables using the var key-
word, all the variables must be of the same type. The following is not allowed:

var firstName, lastName string, age int = "Wei-Meng",
 "Lee", 25

The preceding statement can be fixed by removing the data type, like this:

var firstName, lastName, age = "Wei-Meng", "Lee", 25

Alternatively, you can declare them this way:

var (
 firstName string = "Wei-Meng"
 lastName string = "Lee"
 age int = 25
)

When you declare and initialize a variable using the := operator, you can’t use it
for variables declared outside function bodies, like the following:

import (
 "fmt"
)

CHAPTER 2 Working with Different Data Types 27

num1 := 5 // error; non-declaration statement
 // outside function body

func main() {

 fmt.Println("Hello, world!")
}

The := operator can only be used for declaring and initializing variables inside
functions.

Declaring Never-Changing Constants
Like variables, constants are containers. But unlike variables, the value of a con-
stant, after it’s initialized, will never change.

You define constants the way you define variables in Go, except that you fix the
statement using the const keyword instead of the var keyword, like this:

package main

import "fmt"

const publisher = "Wiley"

func main() {
 fmt.Println(publisher)
}

A const can appear anywhere a var statement can.

Removing Unused Variables
If you’ve ever programmed before, you’re all too familiar with this situation: You
declare some variables, but you don’t use them in your program. Consider the
following:

package main

import (

28 PART 1 Getting Started with Go

 "fmt"
)

func main() {
 var num1 = 5
 fmt.Println("Hello, world!")
}

Notice that num1 is declared and initialized a value. However, I didn’t use it
anywhere in the program. If you do this, the Go compiler will flag an error
(num1 declared and not used) when you try to run it. According to the Go FAQ:

The presence of an unused variable may indicate a bug, while unused imports just
slow down compilation. Accumulate enough unused imports in your code tree and
things can get very slow. For these reasons, Go allows neither.

Also, if you import a package and you don’t use it, the compiler similarly raises an
error. Interestingly, if a variable is declared outside a function and not used any-
where in the program, like the following, the compiler wouldn’t complain:

package main

import (
 "fmt"
)

var num1 = 5

func main() {
 fmt.Println("Hello, world!")
}

For variables declared inside function bodies, you need to use them, or else you’ll
get an error message.

If you insist on having unused variables in your program, Go offers a quick way
to address this issue. Simply assign the unused variable to a blank identifier (_),
like this:

var num1 = 5
_ = num1 // The compiler is now happy!

CHAPTER 2 Working with Different Data Types 29

Dealing with Strings
In Go, a string is a read-only slice of bytes. Think of string as a collection of bytes.
(I explain slices in more detail in Chapter 6.)

The earlier example shows one example of strings in Go:

firstName string = "Wei-Meng"

A string can contain special characters (such as \n or \t), as shown in the follow-
ing example:

address := "The White House\n1600 Pennsylvania Avenue
NW\nWashington, DC 20500"

When the address variable is printed with the Println() function, the output
looks like this:

The White House
1600 Pennsylvania Avenue NW
Washington, DC 20500

Go also supports raw strings. A raw string is enclosed by a pair of back ticks (``).
It can span multiple lines, and special characters have no meaning in it. Here’s an
example of a raw string:

quotation := `"Anyone who has never made
a mistake has never tried
anything new."
--Albert Einstein`

fmt.Println(quotation)

The output of the preceding block of code is:

"Anyone who has never made
a mistake has never tried
anything new."
--Albert Einstein

30 PART 1 Getting Started with Go

You can also represent Unicode characters in your strings, as the following exam-
ples illustrate:

str1 := "你好,世界" // Chinese
str2 := "こんにちは世界" // Japanese

Instead of Unicode characters, you can also use the Unicode encodings of each
character in your strings:

str3 := "\u4f60\u597d\uff0c\u4e16\u754c" // 你好,世界

You can try your hand at converting Chinese characters to their Unicode represen-
tations at www.chineseconverter.com/en/convert/unicode.

Each Chinese or Japanese character takes up 3 bytes, so if you use the len() func-
tion on the string variables, you get the following results:

fmt.Println(len(str1)) // 15 = 5 chars * 3 bytes
fmt.Println(len(str2)) // 21 = 7 chars * 3 bytes
fmt.Println(len(str3)) // 15 = 5 chars * 3 bytes

If you want to count the number of characters (runes) in a string, use the
RuneCountInString() function:

fmt.Println(utf8.RuneCountInString(str1)) // 5
fmt.Println(utf8.RuneCountInString(str2)) // 7
fmt.Println(utf8.RuneCountInString(str3)) // 5

A rune is any of the characters of certain ancient alphabets (for example, a script
used for writing the Germanic languages).

Performing Type Conversions
In programming, type conversion happens when you want to convert the data
type of one value into another. For example, you may have a string that contains
a numeric value "45". However, because this value is represented as a string, you
can’t perform any mathematical operations on it. You need to explicitly convert
this string type into an integer type before you can perform any mathematical
operations on it.

https://www.chineseconverter.com/en/convert/unicode

CHAPTER 2 Working with Different Data Types 31

Due to the strong type system in Go, you need to perform all type conversions
explicitly yourself. In other languages, type conversion is usually referred to as
type casting, but in Go, the official name for this is type conversion.

Before you can understand how to perform type conversion, you need to under-
stand how to discover the type of a variable.

Discovering the type of a variable
You can use type inferencing when creating your variables (see “Using the var
keyword: Type-inferred variables,” earlier in this chapter). And because of this,
you sometimes want (or need) to know the data type of a particular variable. Con-
sider the following statement:

firstName, lastName, age := "Wei-Meng", "Lee", 25

In the preceding statement, you can easily guess the data types of firstName
(string), lastName (string), and age (int). However, suppose you have the follow-
ing statement:

start := time.Now() // need to import the time package

What is the data type of start? It’s not so obvious. There are two methods for
finding out the data type of a variable:

»» Use the %T printing verb in the Printf() function. It looks like this:

fmt.Printf("%T\n", start) // time.Time

Go to https://golang.org/pkg/fmt/ for a list of printing verbs supported
by Go.

»» Use the reflect package. The reflect package allows you to find out the
data type of a variable (especially when using interfaces, which I cover in more
detail in Chapter 10).

Using the previous example, you can use the TypeOf() function to find out
the data type of a variable, and the ValueOf() and Kind() functions to find
out the data structure of a variable:

fmt.Println(reflect.TypeOf(start)) // time.Time

fmt.Println(reflect.ValueOf(start).Kind()) // struct

https://golang.org/pkg/fmt/

32 PART 1 Getting Started with Go

Converting a variable’s type
Very often, you need to convert the value of a variable from one type to another.
Consider the following example:

var age int
fmt.Print("Please enter your age: ")
fmt.Scanf("%d", &age)
fmt.Println("You entered:", age)

In the preceding code snippet, I declared an integer variable age, and then used
the Scanf() function to read the input (as an integer as indicated by the %d format
specifier) from the console. When you run the program and enter an integer, the
program works as expected:

$ go run main.go
Please enter your age: 45
You entered: 45

However, if you enter a string instead of an integer, this is what you get:

$ go run main.go
Please enter your age: forty five
You entered: 0
$ orty five
bash: orty: command not found

If you enter a combination of numeric and string values, you see the following:

$ go run main.go
Please enter your age: 40-five
You entered: 40
$ five
bash: five: command not found

The reason for this behavior is because the Scanf() function scans text read from
standard input (the console), storing successive space-separated values into suc-
cessive arguments as determined by the format specifier. So, in this case, it tries
to look for numeric values, and as soon as there is a match, it moves on to the next
statement. This is why in the first case, it returns the zero value of age (because
there is no numeric value in the input), and in the second case it returns only the
first two digits (40). Also, notice that all other unmatched values are brought for-
ward and treated as commands to the command prompt.

CHAPTER 2 Working with Different Data Types 33

To make the program more robust, you may want to change the input variable to
a string type and read input as a string from the user:

var input string
fmt.Print("Please enter your age: ")
fmt.Scanf("%s", &input)

The & character represents the memory address of the variable. In this case, it
means the Scanf() function reads the user’s input and assigns the value to the
memory location of the input variable.

After the input is read, you can use the strconv package’s Atoi() function to try
to convert the string into an integer value:

age, err := strconv.Atoi(input) // convert string to
 // int

Atoi stands for ASCII to integer. Itoa, on the other hand, stands for Integer to
ASCII.

The Atoi() function returns two values: the result of the conversion, and the
error (if any). To check if an error occurred during the conversion, check if the err
variable contains a nil value:

if err != nil { // an error occurred
 fmt.Println(err)
} else {
 fmt.Println("Your age is:", age)
}

To convert string values to specific types, such as Boolean, floating point num-
bers, or integers, you can use the various Parse functions:

b, err := strconv.ParseBool("t")
fmt.Println(b) // true
fmt.Println(err) // <nil>
fmt.Printf("%T\n", b) // bool

f, err := strconv.ParseFloat("3.1415", 64)
fmt.Println(f) // 3.1415
fmt.Println(err) // <nil>
fmt.Printf("%T\n", f) // float64

i, err :=

34 PART 1 Getting Started with Go

 strconv.ParseInt("-18.56", 10, 64) // base
 // 10, 64-bit
fmt.Println(i) // 0
fmt.Println(err) // strconv.ParseInt: parsing
 // "-18.56": invalid syntax
fmt.Printf("%T\n", i) // int64

u1, err := strconv.ParseUint("18", 10, 64)
fmt.Println(u1) // 18
fmt.Println(err) // <nil>
fmt.Printf("%T\n", u1) // uint64

u2, err := strconv.ParseUint("-18", 10, 64)
fmt.Println(u2) // 0
fmt.Println(err) // strconv.ParseUint: parsing
 // "-18": invalid syntax
fmt.Printf("%T\n", u2) // uint64

To convert between the various numeric data types like int and float, you can
simply use the int(), float32(), and float64() functions:

num1 := 5
num2 := float32(num1)
num3 := float64(num2)
num4 := float32(num3)
num5 := int(num4)

fmt.Printf("%T\n", num1) // int
fmt.Printf("%T\n", num2) // float32
fmt.Printf("%T\n", num3) // float64
fmt.Printf("%T\n", num4) // float32
fmt.Printf("%T\n", num5) // int

To find out the range of values representable by each type, go to https://golang.
org/ref/spec#Numeric_types.

Interpolating strings
Another common task in programming is printing the values of several variables
in a single string. Consider the following:

queue := 5
name := "John"

https://golang.org/ref/spec#Numeric_types
https://golang.org/ref/spec#Numeric_types

CHAPTER 2 Working with Different Data Types 35

Suppose you want to create a string that contains the result like this: John, your
queue number is 5. But you can’t do something like this:

s := name + ", your queue number is:" + queue

This is because queue is an integer, and you can’t simply directly concatenate
string and integer values. To fix this, you can convert the integer variable
value to string and then concatenate them:

s := name + ", your queue number is:" +
 strconv.Itoa(queue)

Although this works, it can turn out to be very unwieldy when you have numerous
variables of different types that you need to concatenate.

A better solution is to use the Sprintf() function from the fmt package:

s := fmt.Sprintf("%s, your queue number is %d",
 name, queue)

The Sprintf() function formats a string based on the formatting verbs (such as
%d and %s).

CHAPTER 3 Making Decisions 37

Chapter 3
Making Decisions

To make a program really useful, you need to be able to make decisions based
on the values of variables and constants. Go offers a few constructs for
making decisions:

»» If/else statements

»» Switch statements

»» Select statements

The third construct — the select statement — is for channel communication. I
cover that subject in Chapter 12, where I explain more about channels.

In this chapter, I explain how to make decisions in Go using the if/else and switch
statements.

Using If/Else Statements
to Make Decisions

The first method of making decisions in Go is the if/else statement. An if/else
statement basically says, “Do x if such-and-such is true; otherwise, do y.” In the
following sections, I walk you through how to use the if/else statement, starting
with the foundation of decision making: logical and comparison operators.

IN THIS CHAPTER

»» Making decisions with the if/else
statement

»» Evaluating multiple conditions with
the switch statement

38 PART 1 Getting Started with Go

Laying the foundation for the
if/else statement: Logical and
comparison operators
Before I get to the if/else statement, though, you need to know a little bit about
how programming works. In Go, a Boolean (bool) variable can take on a value of
true or false. This seemingly simple concept is the cornerstone of programming.
Boolean values are used in programming to make comparisons and control the
flow of programs. Without Boolean variables, there would be no programs!

To get a Boolean value, you usually use a comparison operator. Here’s a simple
example:

num := 6
condition := num % 2 == 0

In the preceding statements, I’m using the modulo (%) operator to check the
remainder of a value divided by 2. If the remainder is 0, num is an even number.
The following is a logical expression:

num % 2 == 0

The result is a Boolean value. It’s either true (if num contains an even number) or
false (if num contains an odd number).

Table 3-1 shows all the comparison operators supported in Go.

TABLE 3-1	 Comparison Operators in Go
Operator Description Example

== Equal to num == 0

!= Not equal to num != 0

< Less than num < 0

<= Less than or equal to num <= 0

> Greater than num > 0

>= Greater than or equal to num >= 0

CHAPTER 3 Making Decisions 39

In the following examples, the first line (num := 6) is using the short variable
declaration operator (:=), covered in Chapter 2, to basically say, “The variable num
is assigned a value of 6.” In the following example, I’m using the == operator,
which means “equal to.” Because 6 is not equal to 0, the result is false.

num := 6
fmt.Println(num == 0) // false

In the following example, I’m using the != operator, which means “not equal to.”
Because 6 is not equal to 0, the result is true.

num := 6
fmt.Println(num != 0) // true

In the following example, I’m using the < operator, which means “less than.”
Because 6 is not less than 0, the result is false.

num := 6
fmt.Println(num < 0) // false

In the following example, I’m using the <= operator, which means “less than or
equal to.” Because 6 is not less than or equal to 0, the result is false.

num := 6
fmt.Println(num <= 0) // false

In the following example, I’m using the > operator, which means “greater than.”
Because 6 is greater than 0, the result is true.

num := 6
fmt.Println(num > 0) // true

In the following example, I’m using the >= operator, which means “greater than
or equal to.” Because 6 is greater than or equal to 0, the result is true.

num := 6
fmt.Println(num >= 0) // true

You can combine logical expressions using a logical operator. Table 3-2 shows all
the logical operators supported in Go.

40 PART 1 Getting Started with Go

Here are some examples of logical operators in action. The following code snippet
checks if a number is more than 2 and less than 9:

num := 6
condition := num>2 && num <9
fmt.Println(condition) // true

The following code snippet checks if a number is more than 9 or less than 2:

num := 6
condition := num>9 || num <2
fmt.Println(condition) // false

The following code snippet checks if a number is between 2 and 9:

num := 6
condition := !(num>9 || num <2)
fmt.Println(condition) // true

Using the if/else statement
You use logical and comparison operators (see the preceding section) to generate
a Boolean value so you can make decisions. Like humans, a program makes deci-
sions all the time, and it’s precisely this ability that makes computers so powerful.
In Go, one way you make decisions is with the if/else statement.

The following code snippet prints the string Number is odd if the condition is true
(in other words, if the number is odd):

TABLE 3-2	 Logical Operators in Go
Operator Description Example

&& Logical AND operator. Both operands must be true in order for the condition to
evaluate to true.

x && y

|| Logical OR operator. Either operand must be true in order for the condition to
evaluate to true.

x || y

! Logical NOT operator. Reverses the Boolean value — true becomes false and
false becomes true.

!x

CHAPTER 3 Making Decisions 41

num := 5
condition := num % 2 == 1
if condition {
 fmt.Println("Number is odd")
}

You could check the value of the condition explicitly, but this isn’t necessary:

if condition == true {
 fmt.Println("Number is odd")
}

You can also put the logical expression directly in the conditional part of the if
statement:

if num % 2 == 1 {
 fmt.Println("Number is odd")
}

Note that parentheses around conditions are not required, but the braces around
the block of statements after the if or else statement are mandatory.

In the C programming language, a nonzero value is treated as true. So, you may
have the following expression in C:

if num % 2 {
 ...
}

But this doesn’t work in Go. If you were to do that in Go, you’d get the following
error:

non-bool num % 2 (type int) used as if condition

When you want to execute code when the condition in an if statement evaluates
to false, you use the else statement:

if num % 2 == 1 {
 fmt.Println("Number is odd")
} else {
 fmt.Println("Number is even")
}

42 PART 1 Getting Started with Go

In the preceding code snippet, if the remainder of the number that is divided by 2
is not equal to 1, you print out the sentence Number is even.

Short-circuiting: Evaluating conditions in Go
Go evaluates conditions using a method known as short-circuiting. The best way to
explain short-circuiting is to use an analogy. Suppose you want to decide whether
you have to stay indoors. As long as it’s raining or it’s snowing, you have to stay
indoors. To make a decision, you first check whether it’s raining. If it is raining,
you don’t have to check if it’s snowing anymore because your first condition is
already true.

Similarly, suppose you’ve never experienced this phenomenon of raining and
snowing at the same time. So, if it rains and snows at the same time, you want to
go outdoors and experience this rare event. In this case, if it is currently not rain-
ing, you don’t have to check if it’s snowing anymore, because your first condition
is already false. So, you don’t have to go out.

Here’s an example in Go. You have two functions (turn to Chapter 5 for more on
functions):

func raining() bool {
 fmt.Println("Check if it is raining now...")
 return true
}

func snowing() bool {
 fmt.Println("Check if it is snowing now...")
 return true
}

The following code snippets and outputs demonstrates short-circuiting in action:

if raining() || snowing() {
 fmt.Println("Stay indoors!")
}
/*
Check if it is raining now...
Stay indoors!
*/

CHAPTER 3 Making Decisions 43

In this example, because raining() returns true, you no longer have to call the
snowing() function.

if !raining() || snowing() {
 fmt.Println("Let's ski!")
}
/*
Check if it is raining now...
Check if it is snowing now...
Let's ski!
*/

In the preceding example, the first expression (!raining()) evaluates to false,
so you have to evaluate the snowing() function:

if !raining() && !snowing() {
 fmt.Println("Let's go outdoors!")
}
/*
Check if it is raining now...
*/

In the preceding example, because the first expression already evaluates to false,
there is no need to call the second function (note that I’m using the logical AND
operator, &&, here):

if raining() && snowing() {
 fmt.Println("It's going to be really cold!")
}
/*
Check if it is raining now...
Check if it is snowing now...
It's going to be really cold!
*/

In the preceding example, even though the first condition is true, you still
need to call the second function in order to ascertain if the entire set of conditions
is true.

44 PART 1 Getting Started with Go

USING IF WITH AN INITIALIZATION
STATEMENT TO KEEP THE SCOPE
OF YOUR VARIABLES TIGHT
When using the if statement, you can combine initialization together with the condi-
tion statement. Suppose you have a function like this:

func doSomething() (int, bool) {
 //...
 // just an example of some return values
 return 5, false
}

The function returns an integer value, together with a Boolean value, to indicate if there
is an error code. You usually call this function like this:

v, err := doSomething()
if err {
 // handle the error
} else {
 fmt.Println(v)
}

If the function has an error, you handle the error. Otherwise, you can go ahead and use
the value returned by the function.

Observe that v and err are used within the if/else statement and are usually not used
elsewhere. So, to keep the scope of the variables tight, there is a design pattern that’s
very popular that Go also supports:

if v, err := doSomething(); !err {
 fmt.Println(v)
} else {
 // handle the error
}

In this case, you put the initialization of v and err within the if statement, and then
within the same statement you evaluate the value of err:

if v, err := doSomething(); !err {

Just remember that the scope of v and err is now limited to within the if/else state-
ment. If you try to access them outside the if/else statement, you’ll get an error.

CHAPTER 3 Making Decisions 45

WHAT ABOUT THE TERNARY OPERATOR?
In some languages (like C and Java), you have the ternary operator (?), which takes in
three operands. The ternary operator has the following format:

res = expr ? x: y

So, for example, if you want to check the parity of a number and assign a string to
another variable, you can do something like this with the ternary operator:

num = 5
// not supported in Go
parity = num % 2 == 0 ? "even" : "odd"

However, unfortunately, Go doesn’t support the ternary operator. So, you have to resort
to doing it the old-fashioned way:

num := 5
parity := ""
if num % 2 == 0 {
 parity = "even"
} else {
 parity = "odd"
}

A much better solution would be to write a function to do the checks:

func checkParity(num int) string {
 if num % 2 == 0 {
 return "even"
 }
 return "odd"
}
...
 num := 5
 parity := checkParity(num)

According to the Go Programming Language FAQ (https://golang.org/doc/
faq#Does_Go_have_a_ternary_form):

The reason ?: is absent from Go is that the language’s designers had seen the operation
used too often to create impenetrably complex expressions. The if/else form, although
longer, is unquestionably clearer. A language needs only one conditional control flow
construct.

https://golang.org/doc/faq#Does_Go_have_a_ternary_form
https://golang.org/doc/faq#Does_Go_have_a_ternary_form

46 PART 1 Getting Started with Go

When You Have Too Many Conditions:
Using the Switch Statement

When you have multiple conditions to evaluate, you’ll find yourself writing a lot of
if/else statements. And a bunch of if/else statements makes understanding your
code much more difficult. A much shorter way is to use a switch statement. A switch
statement is passed a variable whose value is compared to each case value. When a
match is found, the corresponding block of statements is executed.

The following example demonstrates how to use a switch statement:

num := 5
dayOfWeek := ""
switch num {
case 1:
dayOfWeek = "Monday"
case 2:
 dayOfWeek = "Tuesday"
case 3:
 dayOfWeek = "Wednesday"
case 4:
 dayOfWeek = "Thursday"
case 5:
 dayOfWeek = "Friday"
case 6:
 dayOfWeek = "Saturday"
case 7:
 dayOfWeek = "Sunday"
default:
 dayOfWeek = "--error--"
}

fmt.Println(dayOfWeek) // Friday

In the preceding code snippet, the value of num is first compared to the first case,
the value of which is 1. If there is a match, the statement after the colon (:) is
executed. If there isn’t a match, it continues to the next case until a match is
found. If there still isn’t a match after the seventh case, the default case will
eventually be matched. When a block of statements is executed, control is imme-
diately transferred out of the switch statement.

CHAPTER 3 Making Decisions 47

If you’ve programmed in C, keep in mind that there is no need to use a break
statement at the end of each case.

You can also have multiple statements to execute for each case, as the following
code illustrates:

switch num {
 case 1:
 dayOfWeek = "Monday"
 fmt.Println("Monday blues...")

 case 2: dayOfWeek = "Tuesday"
 case 3: dayOfWeek = "Wednesday"
 case 4: dayOfWeek = "Thursday"
 case 5:
 dayOfWeek = "Friday"
 fmt.Println("TGIF!!!")

 case 6: dayOfWeek = "Saturday"
 case 7: dayOfWeek = "Sunday"
 default:
}

Switching with fall-throughs
When a case is matched in a switch statement, control is transferred out of the
switch when the associated block of code is executed. However, there are cases
where you don’t want this default behavior.

Consider the following scenario where you can print a sentence indicating if a
student passes his examination. If he scores A, B, C, or D, you print Passed. If he
scores F, you print Failed. Otherwise, you print Absent. This scenario can be rep-
resented using the switch statement with the fallthrough keyword, like this:

grade := "C"
switch grade {
 case "A":
 fallthrough
 case "B":
 fallthrough
 case "C":
 fallthrough
 case "D":

48 PART 1 Getting Started with Go

 fmt.Println("Passed")
 case "F":
 fmt.Println("Failed")
 default:
 fmt.Println("Absent")
}

When a fallthrough keyword is present in the switch statement, the next case is
evaluated instead of transferring control out of the switch statement. In the pre-
ceding example, Passed would be printed.

Matching multiple cases
Instead of using the fallthrough keyword in the example in the previous section,
you could also use the case statement to match multiple values, like this:

grade := "C"
switch grade {
 case "A", "B", "C", "D":
 fmt.Println("Passed")
 case "F":
 fmt.Println("Failed")
 default:
 fmt.Println("Undefined")
}

Switching without condition
You can also write a switch statement without any condition. Consider the follow-
ing scenario where you have a variable containing the score of an examination.
Based on the score, you want to assign a grade based on the following ranges:

»» Less than 50: F

»» 50 to 59: D

»» 60 to 69: C

»» 70 to 79: B

»» 80 or higher: A

CHAPTER 3 Making Decisions 49

Instead of writing a deck of if/else statements, you can do this using the switch
statement without the condition:

score := 79
grade := ""
switch {
 case score < 50: grade = "F"
 case score < 60: grade = "D"
 case score < 70: grade = "C"
 case score < 80: grade = "B"
 default: grade = "A"
}
fmt.Println(grade) // B

This construct makes it easy to perform conditional checks within the case
expressions.

Unlike in C and Java, the case expressions in Go don’t need to be constants.

CHAPTER 4 Over and Over and Over: Using Loops 51

Chapter 4
Over and Over and Over:
Using Loops

The greatest thing about computers is that, unlike you and me, they can
perform tasks repeatedly without getting tired. To support this feature,
programming languages use constructs known as loops to enable program-

mers to execute blocks of code repeatedly.

Although programming languages like C and Java have multiple types of
looping — while, do...while, and for — Go has only one looping construct: the
for loop. But don’t let the simplicity fool you: The for loop is powerful enough to
meet all your programming needs.

Performing Loops Using the for Statement
In Go, this is what a for statement looks like:

for (init; condition; post) {
}

IN THIS CHAPTER

»» Looping using the for statement

»» Repeating a group of instructions
through a range of values

52 PART 1 Getting Started with Go

This loop has the following three components:

»» An init statement: This statement is executed before the first iteration starts.
(Each time the for statement executes the statements contained within it is
called an iteration.)

»» A condition expression: This expression is evaluated before the iteration
starts to determine if the iteration should continue.

»» A post statement: This statement is evaluated at the end of each iteration.

The best way to understand a for loop is with an example:

package main

import "fmt"

func main() {
 for i:=0; i<5; i++ {
 fmt.Println(i)
 }
}

In the preceding for loop, the init statement consists of the initialization of a
variable named i. Before the start of each iteration, the value of i is checked to
ensure that it’s less than 5 (this is the condition expression). If the condition is
true, then the iteration — the block of statement(s) within the for loop — will
run. At the end of each iteration, the value of i is incremented by 1 (this is the post
statement), and the iteration continues. The iteration stops when the condition
statement evaluates to false — that is, when i is no longer less than 5. The pre-
ceding code snippet prints out the following output:

0
1
2
3
4

If you want to print the output in reverse, you can use the following for loop:

for i:=4; i>=0; i-- {
 fmt.Println(i)
}

CHAPTER 4 Over and Over and Over: Using Loops 53

And the output will now look like this:

4
3
2
1
0

A WORD ABOUT ++ AND --
If you’re coming from the C and Java camp, you’re probably very familiar with the pre-
and post-increment/decrement operators:

num++ // post-increment operator
++num // pre-increment operator
num-- // post-decrement operator
--num // pre-decrement operator

Go doesn’t have the concept of pre or post operators (which has been a major source of
confusion for some programmers). In Go, you can use the ++ or -- operators to incre-
ment or decrement a variable’s value by 1, respectively.

However, be aware that ++ and -- are statements, not expressions, so the following
statements are valid:

x := 5
x++ // x++ increments value of x by 1;
 // this is okay

And the following statements are not valid:

++x // this is NOT okay; not supported by Go
fmt.Println(x++) // x++ increments value of x by 1, but
 // it does not return a result;
 // hence, this is NOT okay

Remember: A statement does something, whereas an expression is a combination of vari-
ables, operations, and values that returns a result.

54 PART 1 Getting Started with Go

Unlike other languages like C, Java, or JavaScript, in Go you don’t need to surround
the three components of the for loop with parentheses. In fact, the following is
invalid:

for (i:=4; i>= 0; i--) {
 fmt.Println(i)
}

Although a for loop technically has three sections (init, condition, and post),
the init and post statements are actually optional. To see an example of this, I’ve
written some code to generate the sequence of Fibonacci numbers up to a certain
maximum value:

max := 100
a, b := 0, 1
for ;b <= max; {
 println(b)
 a, b = b, a+b
}

The Fibonacci sequence is a series of numbers where the next number is the sum
of the previous two numbers, starting with 0 and 1. Some sources define the
Fibonacci starting with two 1s (https://en.wikipedia.org/wiki/Fibonacci_
number). However, apart from the first starting number, the rest of the Fibonacci
sequence is the same: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

In the previous code snippet, you only have the conditional expression in the
for loop. You just need to check if b is less than or equal to max in order for the
iteration to continue. When b exceeds max, the loop stops.

In fact, there is no need for the two semicolons in the for loop if the init and
post statements are omitted, so the code could be rewritten like this:

for b <= max {
 println(b)
 a, b = b, a+b
}

On careful observation, you may realize that this is actually the while loop that so
many languages support! In Go, there is no while loop, but you can use the for
loop to improvise it.

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number

CHAPTER 4 Over and Over and Over: Using Loops 55

INFINITE LOOPS
In programming, an infinite loop is a sequence of statements that executes endlessly,
unless an external intervention occurs. A for loop without the three parts is an infinite
loop:

for {
}

The following code snippet repeatedly waits for the user to input a string, until the user
enters the string QUIT:

package main

import (
 "fmt"
 "strings"
)

func main() {
 for {
 fmt.Println("Enter QUIT to exit")
 var input string
 fmt.Print("Please enter a string:")
 fmt.Scanln(&input)
 if strings.ToUpper(input) == "QUIT" {
 break
 }
 }
}

Here’s an example of the program in action:

$ go run main.go
Enter QUIT to exit
Please enter a string: a
Enter QUIT to exit
Please enter a string: b
Enter QUIT to exit
Please enter a string: quit
$

(continued)

56 PART 1 Getting Started with Go

Interestingly, you can reduce the number of lines for the Fibonacci sequence
by putting the initialization of a and b into the init part and the assignments of
a and b into the post part of the for loop:

max := 100
for a, b := 0, 1; b <= max; a, b = b, a+b {
 println(b)
}

Iterating over a Range of Values
Besides using the for statement to perform a set of statements repeatedly, you
often use it to iterate through a collection of items, such as arrays/slices or strings.
In the following sections, I show you how to use the for statement to iterate through
arrays/slices and iterate through strings to extract their characters one by one.

Iterating through arrays/slices
An array/slice is basically a collection of items in Go (you learn more about arrays
and slices in Chapter 6).

Notice that you use the ToUpper() function from the strings package to convert the
user input to uppercase before you do the comparison. This way, the user can enter the
QUIT string in any cases and the comparison will still work correctly.

To exit a for loop, you use the break keyword. The break keyword allows you to termi-
nate the execution of the current loop.

Besides the break keyword, Go also supports the continue keyword. The continue
keyword skips the remainder portion of the for loop, returns to the top of the loop, and
continues a new iteration. Here’s an example where you can make use of the for loop
and the continue keyword to print all the odd numbers from 1 to 9:

for n := 1; n < 10; n++ {
 if n%2 == 0 {
 continue
 }
 fmt.Println(n)
}

(continued)

CHAPTER 4 Over and Over and Over: Using Loops 57

For example, OS is an array of three elements:

var OS [3]string
OS[0] = "iOS"
OS[1] = "Android"
OS[2] = "Windows"

To iterate through each of the elements in the array, you use the for-range loop:

for i, v := range OS {
 fmt.Println(i, v)
}

The range keyword returns the following values:

»» i: The index of the value you’re accessing — in this case, the value is
the OS array.

»» v: Each of the values in the OS array.

The previous code snippet prints out the following:

0 iOS
1 Android
2 Windows

If you don’t care about the index, you can use a blank identifier:

for _, v := range OS {
 fmt.Println(v)
}

And, of course, you can do likewise for the value:

for i, _ := range OS {
 fmt.Println(i)
}

In fact, you can simply omit the blank identifier entirely:

for i := range OS {
 fmt.Println(i)
}

58 PART 1 Getting Started with Go

Iterating through a string
One of the most common operations involving strings is going through each of the
characters in a string and finding the characters you want. In Go, a string is
essentially a read-only slice of bytes. So, you can use the for-range loop to extract
each of the characters in the string. Here’s an example:

for pos, char := range "Hello, world!" {
 fmt.Println(pos, char)
}

The preceding code snippet prints out the following output:

0 72
1 101
2 108
3 108
4 111
5 44
6 32
7 119
8 111
9 114
10 108
11 100
12 33

You may be a bit surprised by the output. What are all these values like 72, 101, and
108? These values are actually the Unicode code for each character in the string.
A Unicode code of 72 is the numerical representation of the H character.

Unicode, which uses numbers to represent characters, is a standard for the encod-
ing, representation, and handling of text. It’s a widely used standard for encoding
text documents on computers. To see how you get these numbers, go to www.
codetable.net.

When you iterate through a string using the for-range loop, the value you get for
each character is the Unicode value. If you want to get the actual character itself,
use the Printf() function (with the %c format specifier) from the fmt package:

for pos, char := range "Hello, world!" {
 fmt.Printf("%d %c\n", pos, char)
}

https://www.codetable.net/
https://www.codetable.net/

CHAPTER 4 Over and Over and Over: Using Loops 59

You should now get the following output:

0 H
1 e
2 l
3 l
4 o
5 ,
6
7 w
8 o
9 r
10 l
11 d
12 !

When your string contains characters that take up more than 1 byte to represent
(for example, Chinese and Japanese characters), the index returned by the range
keyword actually represents the byte location, as the following example
illustrates:

for pos, char := range "こんにちは世界" {
 fmt.Printf("%c at byte location %d\n", char, pos)
}

The preceding code snippet returns the following output:

こ at byte location 0
ん at byte location 3
に at byte location 6
ち at byte location 9
は at byte location 12
世 at byte location 15
界 at byte location 18

Using Labels with the for Loop
Earlier, I show how you can use the continue statement to skip an iteration and
the break statement to exit a for loop. However, the continue or the break state-
ment only affects the current for loop. What happens if you’re in a nested for
loop and you want to exit from these two loops altogether? I’ll illustrate this with
an example.

60 PART 1 Getting Started with Go

Consider the following code snippet where you have two nested for loops to print
out a simple multiplication table from 1 to 5:

for i := 1; i <= 5; i++ {
 for j := 1; j <= 5; j++ {
 fmt.Printf("%d * %d = %d\n", i, j, i*j)
 }
 fmt.Println("-----------")
}

The preceding code snippet prints out the following output:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10

3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12
3 * 5 = 15

4 * 1 = 4
4 * 2 = 8
4 * 3 = 12
4 * 4 = 16
4 * 5 = 20

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25

CHAPTER 4 Over and Over and Over: Using Loops 61

Suppose you only want to print the multiplication table for 1 and 2, so you insert
the block of code in bold:

for i := 1; i <= 5; i++ {
 for j := 1; j <= 5; j++ {
 if i == 3 {
 break
 }
 fmt.Printf("%d * %d = %d\n", i, j, i*j)
 }
 fmt.Println("-----------")
}

However, when you look at the output, you see that it only skips the multiplication
table for 3 and continues to print from 4 onward:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10

4 * 1 = 4
4 * 2 = 8
4 * 3 = 12
4 * 4 = 16
4 * 5 = 20

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25

62 PART 1 Getting Started with Go

What you actually intended was to exit the two for loops totally — both the inner
as well as the outer loops. But the break statement only breaks out from the
innermost loop that it’s in. To fix this, you need to use a label for your outer loop,
and then specify where the break statement breaks out to:

Outerloop:
 for i := 1; i <= 5; i++ {
 for j := 1; j <= 5; j++ {
 if i == 3 {
 break Outerloop
 }
 fmt.Printf("%d * %d = %d\n", i, j, i*j)
 }
 fmt.Println("-----------")
 }
}

The modified break statement now breaks out of the outer loop that is specified by
the Outerloop label. The output now looks like this:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10

You can also use the label with the continue statement:

Outerloop:
 for i := 1; i <= 5; i++ {
 for j := 1; j <= 5; j++ {
 if i == 3 {
 continue Outerloop
 }
 fmt.Printf("%d * %d = %d\n", i, j, i*j)
 }

CHAPTER 4 Over and Over and Over: Using Loops 63

 fmt.Println("-----------")
 }
}

In this example, the continue statement exits from the inner loop and continues
on the next iteration on the for loop specified by the Outerloop label. Now the
output skips the multiplication table for 3:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10

4 * 1 = 4
4 * 2 = 8
4 * 3 = 12
4 * 4 = 16
4 * 5 = 20

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25

CHAPTER 5 Grouping Code into Functions 65

Chapter 5
Grouping Code into
Functions

In programming, you often organize blocks of statements into logical groups
called functions. Functions allow you to break down a complex task into smaller,
more manageable units. They also make it easier for you to reuse your code.

In this chapter, I show you how to write functions in Go, starting from the basics,
right up to the more abstract concept known as anonymous functions. I also
explain how you can use anonymous functions to implement closures.

Defining a Function
To define a function, you use the func keyword, together with the function name,
like this:

package main

import (
 "fmt"

IN THIS CHAPTER

»» Understanding how to define a
function

»» Creating anonymous functions

66 PART 1 Getting Started with Go

 "time"
)

func displayDate() {
 fmt.Println(time.Now().Date())
}

In this example, displayDate() is a function that takes in no argument and
returns no value. It basically displays the current date. To call the function, simply
call its name followed by a pair of parentheses:

func main() {
 displayDate()
}

When you run the program, it prints out the current date:

2020 October 26

And now you know what day I wrote this text!

Defining functions with parameters
A function can accept arguments, which you pass to the function when you call it.
Here’s how you can add a parameter to the displayDate() function (from the
previous example):

func displayDate(format string) {
 fmt.Println(time.Now().Format(format))
}

The parameter, format, is used to format the date and time to be displayed.

You may sometimes see the word parameter and argument used interchangeably,
but they aren’t the same thing. A parameter is a variable defined in a function
declaration; an argument, on the other hand, is the actual value that gets passed
to the function.

To call the displayDate() function with an argument, you can pass in a string
like the following:

displayDate("Mon 2006-01-02 15:04:05")

CHAPTER 5 Grouping Code into Functions 67

This function call prints the following output (assuming today’s date is July 9,
2020, and the time is 6: 51 a.m.):

Thu 2020-07-09 06:51:48

While I’m on the topic of date/time formatting, I should explain how Go formats
dates and times. The format string Mon 2006-01-02 15:04:05 in Go serves a spe-
cial function. Go uses a reference date of Monday, January 2, 2006, at 15:04:05
MST, to represent the various components of a given date and time. Table 5-1
shows the use of each component of the format string and some examples of how
to use them.

Table 5-2 shows how the current date and time will look using the different for-
mat strings and using the date of July 9, 2020, at 06:51:48 (GMT+8) as an example.

TABLE 5-1	 The Reference Date Used by Go for Formatting
Dates and Times

Reference Value Description Example Usage

Mon Day of the week Mon, Monday

Jan Month Jan, January, 01

2 Day 2, 02

15 Hour 15, 3

04 Minute 04, 4

05 Second 05, 5

2006 Year 2006

MST Time zone MST

TABLE 5-2	 The Output of a Date Based on the Date Formatting
Example Output Description

displayDate("2006-01-02 15:04:05") 2020-07-09 06:51:48 The date and time are
displayed.

displayDate("15:04:05, 2006-Jan-
02 Mon")

06:51:48, 2020-Jul-09 Thu The day of the week
(Thu) and month (Jul) are
displayed.

(continued)

68 PART 1 Getting Started with Go

Defining functions with multiple
parameters
A function can have multiple parameters. Using the previous example, you can
add one more parameter to the displayDate() function:

func displayDate(format string, prefix string) {
 fmt.Println(prefix, time.Now().Format(format))
}

And when you now call the function, just pass it another argument:

displayDate("Mon 2006-01-02 15:04:05",
 "Current Date and Time:")

Unlike other languages, like Java and C#, Go does not support function overloading
(a feature of a programming language that allows you to have multiple functions
with the same name but with different signatures [parameters]). Because the
design philosophy behind Go is to keep the language simple, it doesn’t support
function overloading.

Passing arguments by value and by pointer
Consider the following function, swap(), where it has two parameters, both of
type int:

Example Output Description

displayDate("15:04:05, 2006-Jan-02
Monday")

06:51:48, 2020-Jul-09 Thursday The day of the week is
displayed in full.

displayDate("15:04:05, 2006-
January-02 MST Mon")

06:51:48, 2020-July-09 +08 Thu The month is displayed
in full; the time zone is
also displayed (+08).

displayDate("3:4:05, 2006-1-02
MST Mon")

6:51:48, 2020-7-09 +08 Thu The time zone (+8) is dis-
played; a single digit is
used for the hour.

displayDate("3:4:05 pm, 2006-1-02
MST Mon")

6:51:48 am, 2020-7-09 +08 Thu Morning is displayed
as am.

displayDate("3:4:05 PM, 2006-1-02
MST Mon")

6:51:48 AM, 2020-7-09 +08 Thu Morning is displayed
as AM.

TABLE 5-2 (continued)

CHAPTER 5 Grouping Code into Functions 69

func swap(a, b int) {
 a, b = b, a
}

Within the function, you swap the values of these two parameters. Now I’ll call
this function with two variables, x and y:

func main() {
 x := 5
 y := 6
 swap(x, y)
 fmt.Println(x, y) // 5 6
}

Notice that when the function returns, both the values of x and y are still the
same. Aren’t they supposed to swap? Why haven’t they? When you call the swap()
function, the values of x and y are copied into the variables a and b (see
Figure 5-1).

So, whatever happened in the swap() function won’t affect the value of x and y in
the main() function. This situation is called passing by value.

But what if you want the changes made in the swap() function to affect the vari-
ables in the main() function? You can modify the parameters in the swap() func-
tion to take in pointers to int instead, like this:

func swap(a, b *int) {
 *a, *b = *b, *a
}

FIGURE 5-1:
The values of x

and y are copied
into a and b when

the swap()
function is called.

70 PART 1 Getting Started with Go

In this modification, a and b now take in the address of memory locations
containing int values (as represented by *int). This is known as passing by pointer
(in some languages this is called passing by reference). The following statement
means, “Go to the memory location pointed by b and assign its value to the mem-
ory location pointed by a”:

*a, *b = *b, *a

Likewise, you also go to the memory location pointed by a and assign the value to
the memory location pointed by b.

When you now call the swap() function from main(), you have to pass in the
address of x and y using the & operator, which represents “the address of”:

x := 5
y := 6
swap(&x, &y)

Figure 5-2 shows that now a and b are essentially pointing to the original x and y
variables.

Any changes made in the swap() function will now be reflected in x and y when
the function exits:

x := 5
y := 6
swap(&x, &y)
fmt.Println(x, y) // 6 5

FIGURE 5-2:
The addresses
of x and y are

passed to a and b
when the swap()
function is called.

CHAPTER 5 Grouping Code into Functions 71

Returning values from functions
A function can return values. Consider the following function, addNum(), which
has two parameters and returns a value of type int:

func addNum(num1, num2 int) int { // returns int
 return num1 + num2
}

When you call this function, the returning result can be assigned to another
variable:

s := addNum(5, 6)
fmt.Println(s) // 11

In Go, a function can return multiple results. To indicate that the function returns
multiple values, wrap the types of all returning results with a pair of parentheses,
like this:

func countOddEven(s string) (int,int) {
 odds, evens := 0,0
 for _, c := range s {
 if int(c) % 2 == 0 {
 evens++
 } else {
 odds++
 }
 }
 return odds,evens
}

When you call a function that returns multiple values, you have to use the exact
number of variables to store the returning results:

o, e := countOddEven("12345")
fmt.Println(o,e) // 3 2

If there are parts of the result that you want to ignore, use the blank identifier (_):

_, e := countOddEven("12345")
fmt.Println(e) // 2

72 PART 1 Getting Started with Go

Naming return values
Instead of specifying the type(s) of returning result(s), Go also allows you to name
the returning values:

func addNum(num1 int, num2 int) (sum int) {
 sum = num1 + num2
 return // you can still use "return sum"
}

In this example, the returning variable is named sum. This variable is used within
the function and at the end of the function. The return statement without any
argument will return the value of this variable.

Using named return values makes your function declaration much more
descriptive.

Working with variadic functions
A variadic function takes in a variable number of arguments. The most common
variadic function is the fmt.Println() function:

fmt.Println("Hello")
fmt.Println("Hello", "World!")
fmt.Println("Hello", 123, true)

To define a function that accepts a variable number of arguments, you use ellipses
(...), like this:

func addNums(nums ... int) int {
 total := 0
 for _, n := range nums {
 total += n
 }
 return total
}

Essentially, nums is now a slice of int values. You can now call the addNums()
function with a variable number of arguments:

fmt.Println(addNums(1,2,3,4,5)) // 15
fmt.Println(addNums(1,2,3)) // 6

CHAPTER 5 Grouping Code into Functions 73

You can also have a fixed parameter together with a variadic parameter:

func addNums(total int, nums ...int) int {
 fmt.Printf("%T", nums)
 for _, n := range nums {
 total += n
 }
 return total
}

However, the variadic parameter must always be the last parameter in the func-
tion. The following function declaration is not valid:

func addNums(nums ...int, total int) int {
 ...
}

Using Anonymous Functions
Go supports a special type of function known as an anonymous function. As the
name implies, an anonymous function is a function without a name. I’ll explain
this with an example and show you how anonymous functions can be useful.

Declaring an anonymous function
Earlier, I show you how to declare variables with specific types. I also show you
how to declare variables to be of a function type. Consider the following example:

package main

import "fmt"

func main() {
 var i func() int
}

74 PART 1 Getting Started with Go

Here, you declare i to be a function that returns an int value. For i to be really
useful, you need to assign it a function. You can assign it a regular function, like
this:

func doSomething() int {
 return 5
}

func main() {
 var i func() int
 i = doSomething
}

Or you can assign it an anonymous function, like this:

var i func() int
i = func() int {
 return 5
}

In the preceding example, i is assigned an anonymous function. To invoke the
anonymous function, call i the way you call a regular function:

func main() {
 var i func() int
 i = func() int {
 return 5
 }
 fmt.Println(i()) // 5
}

Implementing closure using
anonymous functions
An anonymous function can form a closure (a function value that references vari-
ables from outside its body). As usual, an example is worth much more than a
page of explanation. Consider the following example:

func fib() func() int {
 f1 := 0
 f2 := 1
 return func() int {
 f1, f2 = f2, (f1 + f2)

CHAPTER 5 Grouping Code into Functions 75

 return f1
 }
}

The fib() function returns a function that returns an int. In this case, the fib()
function returns a closure (which is actually an anonymous function; see
Figure 5-3).

What makes this anonymous function a closure is that it can access the variables
f1 and f2 that are declared outside the function.

You can now assign the fib() function to a variable:

func main() {
 gen := fib()
}

Essentially, gen is referencing the function:

func() int {
 f1, f2 = f2, (f1 + f2)
 return f1
}

If you now call gen as a function, it returns the first number in the Fibonacci
sequence:

func main() {
 gen := fib()
 fmt.Println(gen()) // 1
}

FIGURE 5-3:
Implementing a

closure using an
anonymous

function.

76 PART 1 Getting Started with Go

If you call the gen() function one more time, it returns the second number in the
Fibonacci sequence:

func main() {
 gen := fib()
 fmt.Println(gen()) // 1
 fmt.Println(gen()) // 1
}

The interesting thing about closure is that statements inside the closure can
access variables that are outside it. In this example, f1 and f2 are used to hold the
last two numbers in the Fibonacci sequence.

If you want to access the first ten numbers in the Fibonacci sequence, you can use
a for loop:

func main() {
 gen := fib()
 for i := 0; i < 10; i++ {
 fmt.Println(gen())
 }
}

If you think about it, the beauty of the fib() function is that it generates Fibo-
nacci numbers on demand — it doesn’t have to store all the numbers generated.
It only stores the last two numbers of the Fibonacci numbers at any given time.

Implementing the filter() function
using closure
Most programming languages that support closures come with predefined
filter(), map(), and reduce() functions. These functions are paradigms of
functional programming. They allow developers to write simpler and shorter code
without needing to get into the details of how it’s done. Here’s what each of these
three functions do:

»» The filter() function takes in a collection of items and returns another
collection containing the items you want.

»» The map() function allows you to “map” items from one collection into
another collection.

»» The reduce() function returns a single value based on the collection you
pass in.

CHAPTER 5 Grouping Code into Functions 77

Unfortunately, Go doesn’t come with these predefined functions. But here’s how
to implement the filter() function using closure:

func filter(arr []int, cond func(int) bool) []int {
 result := []int{}
 for _, v := range arr {
 if cond(v) {
 result = append(result, v)
 }
 }
 return result
}

The filter() function takes in two arguments:

»» A slice of int

»» A function with a single int parameter and return value of type bool

The function returns a slice of int. Within the function, you iterate through each
of the numbers in the slice of int, and if the result of the anonymous function
(cond) evaluates to true, you append the number to another slice (result).

To use this filter() function, you can pass it an array as the first argument and
pass an anonymous function as the second argument (bolded for emphasis):

func main() {
 a := []int{1, 2, 3, 4, 5}
 evens := filter(a,
 func(val int) bool {
 return val%2 == 0
 })
 fmt.Println(evens)
}

The preceding code snippet prints out all the even numbers from the array a:

[2 4]

78 PART 1 Getting Started with Go

What about printing all the numbers greater than 3? Easy, just change the condi-
tion in the anonymous function:

func main() {
 a := []int{1, 2, 3, 4, 5}
 evens := filter(a,
 func(val int) bool {
 return val > 3
 })
 fmt.Println(evens)
}

The output will now contain all numbers greater than 3:

[4 5]

2Working with
Data Structures

IN THIS PART . . .

Create collections of items using arrays and slices.

Group related variables together with structs.

Use maps to create associative arrays of items.

Understand the JSON data format and how to encode
and decode it to Go structs.

Create method signatures using interfaces.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 81

Chapter 6
Slicing and Dicing Using
Arrays and Slices

In Chapter 2, I show you how to declare variables and constants to use the
various basic data types in Go — int, bool, float32, and so on. In real-life
applications, you usually need to deal with collections of data. For example, you

may need to store the temperature of a city for the past 30 days, so you need to
store a collection of 30 floating-point numbers. This is where array comes in.

In this chapter, I explain how to use arrays to store collections of items. I also
introduce you to another related data structure: slices. Together, arrays and slices
provide a very flexible way to manipulate collections of data.

Arming Yourself to Use Arrays
In Go, an array is a numbered sequence of items of a specific length. Think
of arrays as collections of items of the same type, such as the ones shown in
Figure 6-1.

IN THIS CHAPTER

»» Understanding arrays and slices

»» Working with arrays and slices

82 PART 2 Working with Data Structures

The values an array holds are known as its items or elements. In Go, all the ele-
ments in an array must be of the same type. After an array is created, the array
can’t change in size — it can’t grow or shrink.

In the following sections, I show you how to declare and initialize arrays in Go.
I also introduce you to multidimensional arrays.

Declaring an array
To declare an array, you use the following syntax:

var array_name [size_of_array]data_type

The following program declares an array called nums of type int with five
elements:

package main

import (
 "fmt"
)

func main() {
 var nums [5]int // an array of int (5 elements)
 fmt.Println(nums) // [0 0 0 0 0]

}

When you print out nums, you see its zero values:

[0 0 0 0 0]

The nums array will hold exactly five elements. The index (the position of the ele-
ments in the array) of elements in arrays in Go are zero-based, which means to
access the first element in an array, you use 0 as the index:

An array of int

An array of string

1 2 3 4 5

“Hello” “world”“,”

FIGURE 6-1:
An array is a
collection of
items of the
same type.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 83

fmt.Println(nums[0]) // first element
fmt.Println(nums[1]) // second element

Initializing an array
When declaring an array, you can also initialize it to some initial values. To do so,
you just supply the initial values with an array literal, as in the following example:

nums := [5]int{1, 2, 3, 4, 5}
fmt.Println(nums)

The preceding example declares an array named nums and initializes it with the
elements {1,2,3,4,5}. Figure 6-2 shows the array created, with the index for
each element in the array.

When initializing an array with an array literal, you can omit the length of the size
by using the ... notation:

nums := [...]int{1, 2, 3, 4, 5}

To get the length of an array, use the len() function (len is short for length):

fmt.Println(len(nums)) // 5

Working with multidimensional arrays
The arrays that I show you in the previous sections are one-dimensional. But
arrays can also be multidimensional — two-dimensional, three-dimensional, and
so on. The best way to visualize a two-dimensional array is to imagine it as a table
(see Figure 6-3).

Fixed in size

Array Item 1 2 3 4

10 2 3 4

5

Array Item
Index

array

FIGURE 6-2:
An array with five
integer elements

and its index.

84 PART 2 Working with Data Structures

In Figure 6-3, you have a two-dimensional array of five rows and six columns, for
a total of 30 elements. The following code snippet shows how to create this
two-dimensional array of type string, and then populate each element in the
array with the row and column numbers:

var table [5][6]string
for row := 0; row < 5; row++ {
 for column := 0; column < 6; column++ {
 table[row][column] =
 strconv.Itoa(row) + "," +
 strconv.Itoa(column)
 }
}
fmt.Println(table)

When you print out the two-dimensional array, you see the following output (for-
matted for clarity):

[[0,0 0,1 0,2 0,3 0,4 0,5]
[1,0 1,1 1,2 1,3 1,4 1,5]
[2,0 2,1 2,2 2,3 2,4 2,5]
[3,0 3,1 3,2 3,3 3,4 3,5]
[4,0 4,1 4,2 4,3 4,4 4,5]]

If you want to visualize a three-dimensional array, you can imagine it to be a
rectangular prism, as shown in Figure 6-4.

2D array

FIGURE 6-3:
Imagining a

two-dimensional
array in Go.

DepthColumns

Ro
w

s

FIGURE 6-4:
Imagining

a three-
dimensional
array in Go.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 85

The following code snippet shows how to create a three-dimensional array in Go:

var cube [4][3][3]string
for row := 0; row < 4; row++ {
 for column := 0; column < 3; column++ {
 for depth := 0; depth < 3; depth++ {
 cube[row][column][depth] =
 strconv.Itoa(row) +
 strconv.Itoa(column) +
 strconv.Itoa(depth)
 }
 }
}
fmt.Println(cube)

The output of the preceding code snippet looks like this (formatted for clarity):

[
 [
 [000 001 002]
 [010 011 012]
 [020 021 022]
]
 [
 [100 101 102]
 [110 111 112]
 [120 121 122]
]
 [
 [200 201 202]
 [210 211 212]
 [220 221 222]
]
 [
 [300 301 302]
 [310 311 312]
 [320 321 322]
]
]

Figure 6-5 shows how the output correlates with the cube.

86 PART 2 Working with Data Structures

Sleuthing Out the Secrets of Slices
Although you can use arrays to store collections of items, another related key data
structure that is more commonly used to store collections of items is a slice. A slice
is just like an array, but unlike an array, it has the ability to grow or shrink in size.
Simple enough?

In the following sections, I show you how to create an empty slice, create a slice
with initial values, and append items to a slice.

Creating an empty slice
To create a slice, you can use the make() function. The following statement cre-
ates a slice of five integer values:

s := make([]int, 5)

When you print it out:

fmt.Println(s)

Ro
w

s

DepthColumns

[
 [
30
0
30
1
30
2]

 [
31
0
31
1
31
2]

 [
32
0
32
1
32
2]

]

[
 [
20
0
20
1
20
2]

 [
21
0
21
1
21
2]

 [
22
0
22
1
22
2]

]

[
 [
10
0
10
1
10
2]

 [
11
0
11
1
11
2]

 [
12
0
12
1
12
2]

]

[
 [
00
0
00
1
00
2]

 [
01
0
01
1
01
2]

 [
02
0
02
1
02
2]

]

FIGURE 6-5:
Visualizing the

output of the
code snippet.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 87

The output is just like that of an array:

[0 0 0 0 0]

However, this is where the similarity with arrays ends. Whereas an array is fixed
in size, a slice is more flexible — the size of a slice can change as you append
items to or remove items from it.

Technically, a slice is a view into an underlying array (see Figure 6-6). A slice is
represented by a slice header, which contains three fields:

»» ptr: A pointer that points to the address of the underlying array

»» len: The length of the slice

»» cap: The capacity, or maximum number of allowed elements in the array

To find out the length and capacity of the slice s, you use the len() and cap()
functions, respectively:

fmt.Println(len(s)) // 5
fmt.Println(cap(s)) // 5

In the case of s, you can see that the capacity of s is five items, and at the moment
it has five values. If you want to create a slice with a specific length and capacity,
you can specify that in the make() function, like this:

r := make([]int, 2, 5)
fmt.Println(len(r)) // 2
fmt.Println(cap(r)) // 5

The preceding code snippet creates a slice, r, with two elements and a capacity of
five elements (see Figure 6-7).

ptr

0 0 0 0 0

s

array

slice header
len cap

FIGURE 6-6:
A slice is

represented by a
slice header,

which contains
three fields.

88 PART 2 Working with Data Structures

Creating and initializing a slice
As with arrays, you can create and initialize a slice with an array literal (a list of
zero or more elements):

t := []int{1, 2, 3, 4, 5}
fmt.Println(len(t)) // 5
fmt.Println(cap(t)) // 5

The preceding code snippet creates a slice, t, with the elements, length, and
capacity as shown in Figure 6-8.

Appending to a slice
To append an item to a slice, you use the append() function:

t = append(t, 6, 7, 8)

When you now print out the values of t, you get the following:

fmt.Println(t)
// [1 2 3 4 5 6 7 8]

ptr

0 0

r

array

slice header
len cap

FIGURE 6-7:
A slice with

two elements
and a capacity of

five elements.

ptr

1 2 3 4 5

t

array

slice header
len cap

FIGURE 6-8:
A slice created

with initial values.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 89

This result is expected because you’ve just added three more elements to the t
slice. If you now print out the length and capacity of the slice t, the output may
surprise you a little:

fmt.Println(len(t)) // 8
fmt.Println(cap(t)) // 10

Turns out that when a slice has reached its capacity, appending more items to it
causes the slice to point to a new underlying array. All the existing items in the
slice are copied onto the new array, together with the newly added items. At the
same time, the newly created underlying array will now have a bigger capacity
(see Figure 6-9).

For efficiency reasons, different versions of Go have different implementations of
how the new capacity of the underlying array is determined. However, most of the
time, this shouldn’t affect your usage of slices.

You can now append two more items to t without causing the underlying array to
change (see Figure 6-10):

t = append(t, 9, 10)
fmt.Println(len(t)) // 10
fmt.Println(cap(t)) // 10

Let’s now assign the slice t to another variable named u:

u := t
fmt.Println(u) // [1 2 3 4 5 6 7 8 9 10]
fmt.Println(t) // [1 2 3 4 5 6 7 8 9 10]

ptr len capt

slice header

array

array

1 2 3 4 5

1 2 3 4 5 6 7 8

FIGURE 6-9:
When a slice
has reached
its capacity,

appending items
to it will cause it

to point to a new
underlying array.

90 PART 2 Working with Data Structures

At this moment, both u and t are pointing to the same underlying array (see
Figure 6-11).

To prove this, let’s modify the last element of u and then print out the values of
both t and u:

u[9] = 100
fmt.Println(u) // [1 2 3 4 5 6 7 8 9 100]
fmt.Println(t) // [1 2 3 4 5 6 7 8 9 100]

As the output shows, both u and t have the same elements after the modification
(see Figure 6-12), proving that u and t are both pointing to the same underlying
array.

Now, let’s add a new item to the slice t and print out the values of both u and t:

t = append(t, 11)
fmt.Println(u) // [1 2 3 4 5 6 7 8 9 100]
fmt.Println(t) // [1 2 3 4 5 6 7 8 9 100 11]

ptr len capt

slice header

array

array

1 2 3 4 5 6 7 8 9 10

FIGURE 6-10:
You can add

two more items
to t without

exceeding its
capacity.

ptr len capt

slice header

array

1 2 3 4 5 6 7 8 9 10

ptr len capu

slice header

FIGURE 6-11:
Assigning a slice
to a variable will

create another
slice that points

to the same
underlying array.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 91

Notice that only t has the newly added item while u remains unchanged. This is
because when you added the new item to t, it exceeded its capacity, so a new
underlying array was created to accommodate it (see Figure 6-13).

More important, t and u are now pointing to two different underlying arrays. You
can verify this by printing the length and capacity of u and t:

fmt.Println(len(u)) // 10
fmt.Println(cap(u)) // 10

fmt.Println(len(t)) // 11
fmt.Println(cap(t)) // 20

ptr len capt

slice header

array

1 2 3 4 5 6 7 8 9 100

ptr len capu

slice header

FIGURE 6-12:
Modifying the

slice u will also
affect slice t.

ptr len capt

slice header

array

1 2 3 4 5 6 7 8 9 100 11 …

array

1 2 3 4 5 6 7 8 9 100

ptr len capu

slice header

FIGURE 6-13:
Appending an

item to t will
cause it to exceed

its capacity
and point to a

new array.

92 PART 2 Working with Data Structures

Slicing and Ranging
When you have a solid idea of how arrays and slices are implemented (see the
previous sections), you’re ready to work with them. You already know how to
extract individual elements from an array or slice, but you often need to extract a
range of values instead of individual elements. In the following sections, I show
you how to

»» Use slicing to extract a range of elements.

»» Iterate through arrays and slices.

»» Make copies of arrays and slices.

»» Insert items into slices.

»» Delete items from slices.

Extracting part of an array or slice
Earlier, in the “Declaring an array” section, I show you how to extract elements
from an array or slice by using the index of the element. In real life, you often need
to extract a group of elements, not just one. To do that, you can use a technique
known as slicing.

Consider the following example:

var c [3]string
c[0] = "iOS"
c[1] = "Android"
c[2] = "Windows"

This code snippet has an array named c with three elements. To extract the first
two elements, you can use slicing by specifying a half-open range, like this:

fmt.Println(c[0:2]) // [iOS Android]

A half-open range is one that includes the first element, but excludes the last one.
Mathematically, a half-open range is usually written as [n,m). For example, [1,5)
consists of the values 1, 2, 3, and 4. In Go, half-open values are represented as n:m.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 93

The first number indicates the starting index of the element to extract, while the
number after the colon (:) indicates the end index (not inclusive). So, 0:2 means
extract all the items from index 0 through 1. If the starting index is 0, you can
simply leave it out, like this:

fmt.Println(c[:2]) // [iOS Android]

If you want to extract from a particular index through the end, you can leave out
the second number in the half-open range:

fmt.Println(c[1:]) // [Android Windows]

If you want all the elements in the array, you just need to specify the colon:

fmt.Println(c[:]) // [iOS Android Windows]

The result of slicing an array is a slice — that is, the result is a new slice pointing
to the original array. The same theory applies to slicing a slice — the end result is
still a slice.

One thing you need to take note of when slicing is the length and capacity of the
resultant slice. Consider another example:

t := []int{1, 2, 3, 4, 5}
fmt.Println(len(t)) // 5
fmt.Println(cap(t)) // 5

If you try to perform slicing on the slice t and then assign the result back to t:

t = t[2:4]

You should note that t will now be updated to point to the third element of the
underlying array and its length and capacity updated (see Figure 6-14). This can
be verified with the following statements:

fmt.Println(t) // [3 4]
fmt.Println(len(t)) // 2
fmt.Println(cap(t)) // 3

94 PART 2 Working with Data Structures

In particular, the capacity of the resultant slice will depend on the start index of
the first element of the slice. If you slice from 1:3, then your capacity will change
(see Figure 6-15).

t = t[1:3]
fmt.Println(t) // [2 3]
fmt.Println(len(t)) // 2
fmt.Println(cap(t)) // 4

Whether you’re slicing an array or a slice, the result is always a slice.

ptr

1 2 3 4 5

t

array

slice header

len cap

t := []int{1, 2, 3, 4, 5}
t = t[1:3]

FIGURE 6-15:
The capacity of

the slice changes
after performing

the slicing.

ptr

1 2 3 4 5

t

array

slice header

len cap ptr

1 2 3 4 5

t

array

slice header

len cap

t := []int{1, 2, 3, 4, 5} t := []int{1, 2, 3, 4, 5}
t = t[2:4]

FIGURE 6-14:
Slicing a slice and

assigning back
the result to the

original slice.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 95

Iterating through a slice
To iterate through an array or slice, you can use the for-range loop (see
Chapter 4):

for i, v := range t {
 fmt.Println(i, v)
}

When you range over an array or slice, two values are returned: the index of the
element, and its corresponding value. The preceding code snippet prints out the
following output:

0 1
1 2
2 3
3 4
4 5

Making copies of an array or slice
Occasionally, you need to create copies of your arrays or slices so that you can
work on one copy and not affect the original copy.

For arrays, making a copy is very straightforward: Simply assign it to another
variable, and a copy is created for you. Consider the following example:

nums1 := [5]int{1, 2, 3, 4, 5}

If you assign nums1 to another variable, say nums2, nums2 is now a copy of nums1:

nums2 := nums1

To verify this, print out the values of both nums1 and nums2, and you should see
the same output:

fmt.Println(nums1) // 1 2 3 4 5]
fmt.Println(nums2) // 1 2 3 4 5]

96 PART 2 Working with Data Structures

If you now make some changes to nums2, the changes should only affect nums2
and not nums1. The following output proves this point:

nums2[0] = 0
fmt.Println(nums1) // 1 2 3 4 5]
fmt.Println(nums2) // 0 2 3 4 5]

Although you can simply assign an array to another variable to make a copy of the
array, the same technique does not work on slices.

Assigning a slice to a new variable will create another slice that points to the same
array pointed to by the original slice. To create copy of slices, use the copy() func-
tion. The copy() function has the following syntax:

copy(destination, source)

To see how this works, suppose you have the following slice t:

t := []int{1, 2, 3, 4, 5}

Before you can make a copy of this slice, you need to create a slice of the same size:

v := make([]int, len(t))

You can now use the copy() function to copy the content of the slice t into the
slice v:

copy(v, t)
fmt.Println(t) // [1 2 3 4 5]
fmt.Println(v) // [1 2 3 4 5]

Note that the copy() function examines the length of both the destination and
source slices and copies the minimum of these two numbers of elements. For
example, if v has a length of two and capacity of five, like this:

t := []int{1, 2, 3, 4, 5}
v := make([]int, 2, 5)

Copying t into v will get you the following:

copy(v, t)
fmt.Println(t) // [1 2 3 4 5]
fmt.Println(v) // [1 2]

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 97

On the other hand, if v now has a length of 10, like this:

v := make([]int, 10)

Then copying t into v will get you the following:

copy(v, t)
fmt.Println(t) // [1 2 3 4 5]
fmt.Println(v) // [1 2 3 4 5 0 0 0 0 0]

Inserting an item into a slice
Go doesn’t have built-in functions for inserting items into a slice. To do this, you
need to implement it yourself using the append() function. Let’s define a function
called insert(), with the following signature:

func insert(orig []int, index int, value int)
 ([]int, error) {
}

This function takes in three parameters: the slice to insert the item, the index in
the slice to insert the new item, and the value of the item to be inserted. This
function returns the modified slice, as well as an error (if there is one). There are
three scenarios for inserting an element:

»» The index specified is less than 0. In this case, return an error.

»» The index is greater than the length of the original slice. In this case, append
the item to the end of the slice and return the modified slice.

»» The index is within the range of the slice. In this case, insert the item in the
slice and return the modified slice.

Suppose you want to insert a new value into index, which is 2 in the example (see
Figure 6-16). Follow these steps:

1.	 Slice all the items from [:index+1], and all the items from [index:].

2.	 Append the items that you’ve sliced from [index:] to the items from
[:index+1].

3.	 Replace the value at index with the value that you want to insert (which
is 9 in the example).

98 PART 2 Working with Data Structures

You can now fill in the code for the insert() function:

func insert(orig []int, index int, value int)
 ([]int, error) {
 if index < 0 {
 return nil, errors.New(
 "Index cannot be less than 0")
 }

 if index >= len(orig) {
 return append(orig, value), nil
 }

 orig = append(orig[:index+1], orig[index:]...)
 orig[index] = value
 return orig, nil
}

Notice the ... at the end of the append() function. The append() function is a
variadic function — the second parameter takes in a variable number of arguments.
So, when calling the append() function, because you’re passing in a slice in the
second argument, you need to unpack it with the ... notation before passing it to
the append() function.

slice

Insert value 9 at index 2

1

1 2 3 3 4 5

2 3 4 5

0

orig[:index+1]

append(orig[:index+1], orig[index:]…)

orig[index:]

1 2 3 4Index of elements

Step 1

sliceStep 2

1 2 9 3 4 5slice

Replace with value to insert

Step 3
FIGURE 6-16:

Inserting an item
into a slice.

CHAPTER 6 Slicing and Dicing Using Arrays and Slices 99

You can now test the function, like this:

t := []int{1, 2, 3, 4, 5}
t, err := insert(t, 2, 9)
if err == nil {
 fmt.Println(t) // 1 2 9 3 4 5]
} else {
 fmt.Println(err)
}

Removing an item from a slice
Removing an item from a slice is similar to adding an item to a slice, except it’s
more straightforward. Suppose you want to delete the item at index, which is 2 in
the example (see Figure 6-17). Follow these steps:

1.	 Slice all the items from [:index] and all the items from [index+1:].

2.	 Append the items that you’ve sliced from [index+1:] to the items from
[:index].

Here is the delete() function to delete an item from a slice:

func delete(orig []int, index int) ([]int, error) {
 if index < 0 || index >= len(orig) {
 return nil, errors.New("Index out of range")
 }

slice

Delete value at index 2

1

1 2 4 5

2 3 4 5

0

orig[:index]

append(orig[:index], orig[index+1:]…)

orig[index+1:]

1 2 3 4Index of elements

Step 1

slice

Step 2

FIGURE 6-17:
Removing an item

from a slice.

100 PART 2 Working with Data Structures

 orig = append(orig[:index], orig[index+1:]...)
 return orig, nil
}

You can now test the delete() function:

t := []int{1, 2, 3, 4, 5}
t, err := delete(t, 2)
if err == nil {
 fmt.Println(t) // [1 2 4 5]
} else {
 fmt.Println(err)
}

CHAPTER 7 Defining the Blueprints of Your Data Using Structs 101

Chapter 7
Defining the Blueprints
of Your Data Using
Structs

In the previous chapter, I tell you all about arrays and slices and show you how
to group a collection of items together as a single unit. In this chapter, I fill you
in on another way to represent your data: a struct. A struct (short for structure)

is a used-defined type that allows you to group related data into a single logical
unit. Here, I show you how to define and initialize a struct, make copies of a
struct, define methods in a struct, and compare structs.

Defining Structs for a Collection of Items
Consider the following scenarios where you want to store the location of a point in
a two-dimensional (2D) coordinate space. The x- and y-coordinates of the point
can simply be stored using two variables:

pt1X := 3.1
pt1Y := 5.7

IN THIS CHAPTER

»» Defining structs for collections of
items

»» Making a struct in Go

»» Copying a struct

»» Defining methods in structs

102 PART 2 Working with Data Structures

If you have another point, you have another set of variables:

pt2X := 5.6
pt2Y := 3.8

You’re using two variables to store the coordinates of a point: x and y. Because
these two coordinates are related, being able to store them as a single variable,
rather than two variables, helps.

But what about when you want to store a point in the three-dimensional (3D)
coordinate space, like this:

pt1X := 3.1
pt1Y := 5.7
pt1Z := 4.2

Here, you use another variable to store the z-coordinate. A more logical approach
would be to group these coordinates into a single variable, and this is where
structs in Go comes in handy.

The following program defines a struct named point with three fields (variables in
a struct):

package main

import "fmt"

type point struct {
 x float32
 y float32
 z float32
}

func main() {
}

The fields in a struct don’t need to be of the same type.

To create a variable of point type, you can use the var keyword just as you would
create an int or string variable, like this:

var pt1 point

CHAPTER 7 Defining the Blueprints of Your Data Using Structs 103

Each field in the struct can then be initialized individually:

func main() {
 var pt1 point
 pt1.x = 3.1
 pt1.y = 5.7
 pt1.z = 4.2
}

You can also access the value of each field individually:

fmt.Println(pt1.x)
fmt.Println(pt1.y)
fmt.Println(pt1.z)

Another way to create and initialize a struct is using a struct literal (created by
specifying the values of its fields):

pt2 := point{x: 5.6, y: 3.8, z: 6.9}

The field names can be omitted. Values will be assigned to the fields in the order
specified. All field values must be specified, though:

pt2 := point{5.6, 3.8, 6.9}

If you want to split the struct literal over multiple lines, make sure there is a
comma after the last field:

pt2 := point{
 x: 5.6,
 y: 3.8,
 z: 6.9, // <-- comma here
}

You can also leave out a specific field when initializing the struct:

pt3 := point{x: 5.6, y: 3.8}

Fields that are omitted during initialization will be zero-based:

fmt.Println(pt2) // {5.6 3.8 6.9}
fmt.Println(pt3) // {5.6 3.8 0}

104 PART 2 Working with Data Structures

Creating a Go Struct
In the preceding section, I explain the basics of structs — how to create one and
initialize the various fields in the structs. For a struct, using constructor functions to
create a new struct is idiomatic.

Unlike other languages like C# and Java, Go has no default constructors (specialized
functions used to initialize objects). In Go, creating functions to create and initial-
ize structs is idiomatic (meaning it follows the style of writing Go code). These
types of functions are called constructor functions.

Using the same point struct that I use in the preceding section, let’s define a
function as follows:

func newPoint(x, y, z float32) *point {
 p := point{x: x, y: y, z: z}
 return &p
}

The newPoint() function accepts three arguments — x, y, and z — to assign to
each field in the point struct, and it returns a pointer to a point struct (as indi-
cated using the *). Within the function, it creates and initializes a point struct.
Finally, it returns the address of the point struct (using the & character).

To create a new point struct, you can now use the newPoint() function like this:

pt4 := newPoint(7.8, 9.1, 2.3)
fmt.Println(pt4) // &{7.8 9.1 2.3}

When you print it out, notice that there is an & in front of the output:

&{7.8 9.1 2.3}

This is because the newPoint() function returns a pointer to a point struct.
Essentially, pt4 is just pointing to the point struct created within the newPoint()
function (see Figure 7-1).

To print out the values of each field in the point struct, you can directly use the
field names and the pointer will be automatically dereferenced:

fmt.Println(pt4.x) // 7.8

CHAPTER 7 Defining the Blueprints of Your Data Using Structs 105

Making a Copy of a Struct
The result from the newPoint() function (pt4 in the preceding example) is a
pointer to a struct. If you try to assign pt4 to another variable — say, pt5 — then
pt5 will also point to the same struct pointed to by pt4:

pt5 := pt4

Figure 7-2 shows pt5 pointing to the same struct as pt4.

To verify this, let’s change a field in pt5 and then point out the values for both pt4
and pt5:

pt5.x = 0
fmt.Println(pt4) // &{0 9.1 2.3}
fmt.Println(pt5) // &{0 9.1 2.3}

The output shows that modifying pt5 affects the values for pt4 as well, because
they’re both pointing to the same struct.

point

x

y

z

func newPoint(x, y, z float32) *point
{
 p := point{x: x, y: y, z: z}
 return &p
}

pt4 := newPoint(7.8, 9.1, 2.3)

FIGURE 7-1:
The newPoint()

function returns a
pointer to the
point struct

created in the
function.

point

x

y

z

func newPoint(x, y, z float32) *point
{
 p := point{x: x, y: y, z: z}
 return &p
}

pt4 := newPoint(7.8, 9.1, 2.3)
pt5 := pt4

FIGURE 7-2:
Both pt4 and pt5

are pointing to
the same struct

instance.

106 PART 2 Working with Data Structures

If you want to create an independent copy of pt4, you need to use the * character,
like this:

pt6 := *pt4

Figure 7-3 shows that pt6 is now pointing to a copy of the point struct originally
pointed to by pt4.

The following code snippet proves that pt4 and pt6 are now pointing to different
copies of the point struct:

pt6.z = 0
fmt.Println(pt4) // &{7.8 9.1 2.3}
fmt.Println(pt6) // {7.8 9.1 0}

The key difference between pt4 and pt6 is that pt4 is a pointer to a point struct,
while pt6 is a variable of type point.

If you now assign pt6 to another variable — say, pt7 — then pt7 would contain a
copy of pt6:

pt7 := pt6

Struct is a value type, so when you assign one struct variable to another, a new
copy of the struct is created and assigned.

point

x

y

z

func newPoint(x, y, z float32) *point
{
 p := point{x: x, y: y, z: z}
 return &p
}

pt4 := newPoint(7.8, 9.1, 2.3)
pt5 := pt4
pt6 := *pt4

point

x

y

z

FIGURE 7-3:
pt6 is now

pointing to a new
instance of the
point struct.

CHAPTER 7 Defining the Blueprints of Your Data Using Structs 107

If you want to create a reference to a struct — say, pt7 — you use the & prefix:

pt8 := &pt7

Figure 7-4 shows pt7 having a copy of pt6, while pt8 is pointing to the copy held
by pt7.

Defining Methods in Structs
You can create methods defined on a struct type in Go. For example, in the earlier
example on the point type, you may want to calculate the distance of the point
from the origin. As such, it would be really useful if you could call a method
directly on a point variable, like this:

pt4.length() // length() calculates the distance of the
 // point from the origin

A method is basically a function (turn to Chapter 5 for more on functions) that has
a receiver. For example, say you have a function named length() and it calculates
the distance of a point struct from the origin. To use this function, you would call
it like this:

length(pt4)

point

x
y

z

func newPoint(x, y, z float32) *point
{
 p := point{x: x, y: y, z: z}
 return &p
}

pt4 := newPoint(7.8, 9.1, 2.3)
pt5 := pt4
pt6 := *pt4
pt7 := pt6
pt8 := &pt7

point

x
y

z

point

x
y

z

FIGURE 7-4:
pt7 contains

a copy of pt6
while pt8 is

pointing to the
copy held by pt7.

108 PART 2 Working with Data Structures

A method, on the other hand, is a function attached to a specific type. So if the
length() function is declared to be a method, it will be called like this:

pt4.length()

Other than this, functions and methods work the same way.

To implement a method on a struct, you can define a function named length
together with a receiver, as shown in the following code snippet:

package main

import (
 "fmt"
 "math"
)

type point struct {
 x float32
 y float32
 z float32
}

func (p point) length() float64 {
 return math.Sqrt(
 (math.Pow(float64(p.x), 2) +
 math.Pow(float64(p.y), 2) +
 math.Pow(float64(p.z), 2)))
}

func newPoint(x, y, z float32) *point {
 p := point{x: x, y: y, z: z}
 return &p
}

Notice that the length() method has a value receiver (it receives an argument of
value type) of type point:

func (p point) length() float64 {

This means that you can call the length() method from a point struct:

func main() {
 pt4 := newPoint(7.8, 9.1, 2.3)

CHAPTER 7 Defining the Blueprints of Your Data Using Structs 109

 fmt.Println(pt4.length()) // 12.2040980698644
}

In this example, when you call the length() method from the pt4 struct, a copy of
the pt4 struct is passed into the length() method.

Alternatively, you can also modify the method with a pointer receiver (it receives an
argument of pointer type), like this:

func (p *point) length() float64 {

In this case, when you call the length() method, a reference to the struct is passed
into it instead of a copy. For calculating the distance of a point from the origin, it
does not matter if you declare the method with a value or pointer receiver because
you’re never going to modify the value of the fields inside the struct.

Sometimes declaring a struct method with a pointer receiver is useful. Suppose
you want to create a method to move a point in the coordinate space. In this case,
you will modify the x-, y-, and z-coordinates, so it’s useful to have a pointer
receiver, like this:

func (p *point) move(deltax, deltay, deltaz float32) {
 p.x += deltax
 p.y += deltay
 p.z += deltaz
}

Because the method will receive a point struct by reference, you can directly
modify the x, y, and z fields without needing to return the struct from the method.

Here’s how to move a point by calling the move() function:

func main() {

 pt4 := newPoint(7.8, 9.1, 2.3)
 fmt.Println(pt4.length())

 pt4.move(0.1, 0.1, 0.1)
 fmt.Println(*pt4) // {7.9 9.200001 2.3999999}
}

Notice that you can explicitly deference pt4 by prefixing it with the *.

110 PART 2 Working with Data Structures

Comparing Structs
You can compare two structs to see if they’re equal, provided all the fields inside
the struct are comparable. For example, you can compare the following structs —
pt1, pt2, and pt3:

pt1 := point{x: 5.6, y: 3.8, z: 6.9}
pt2 := point{x: 5.6, y: 3.8, z: 6.9}
pt3 := point{x: 6.5, y: 3.8, z: 6.9}

fmt.Println(pt1 == pt2) // true
fmt.Println(pt2 == pt3) // false

However, suppose now the point struct contains a field (name), which is a slice of
string:

type point struct {
 x float32
 y float32
 z float32
 name []string
}

You can no longer compare these structs:

pt1 := point{x: 5.6, y: 3.8, z: 6.9,
 name: []string{"pt1"}}

pt2 := point{x: 5.6, y: 3.8, z: 6.9,
 name: []string{"pt2"}}

// invalid operation: pt1 == pt2 (struct containing
// []string cannot be compared)
fmt.Println(pt1 == pt2)

You can’t directly compare structs that contain fields that aren’t comparable, but
you can use the cmp package (https://pkg.go.dev/github.com/google/go-cmp/
cmp) to do that. In addition, the cmp package allows you to override the Equal
function so that you can implement your own custom comparer of structs.

https://pkg.go.dev/github.com/google/go-cmp/cmp
https://pkg.go.dev/github.com/google/go-cmp/cmp

CHAPTER 7 Defining the Blueprints of Your Data Using Structs 111

To install the cmp package, use the following command in Terminal or Command
Prompt:

$ go get -u github.com/google/go-cmp/cmp

One thing to take note of when using the cmp package is that your struct must be
exported, so you need to capitalize the struct name and all its fields:

type Point struct {
 X float32
 Y float32
 Z float32
 Name []string
}

You can now compare structs as shown in the following code snippet:

package main

import (
 "fmt"
 "github.com/google/go-cmp/cmp"
)

type Point struct {
 X float32
 Y float32
 Z float32
 Name []string
}

func main() {
 pt1 := Point{X: 5.6, Y: 3.8, Z: 6.9,
 Name: []string{"pt1"}}
 pt2 := Point{X: 5.6, Y: 3.8, Z: 6.9,
 Name: []string{"pt"}}
 pt3 := Point{X: 5.6, Y: 3.8, Z: 6.9,
 Name: []string{"pt"}}

 fmt.Println(cmp.Equal(pt1, pt2)) // false
 fmt.Println(cmp.Equal(pt2, pt3)) // true
}

112 PART 2 Working with Data Structures

Notice that pt2 and pt3 are deemed to be equal because their fields all have the
same values.

What if you want to implement your own custom comparer? Say you would deem
two structs to be equal as long as their x, y, and z fields are equal? In this case, you
can implement your own Equal() method, like this:

type Point struct {
 X float32
 Y float32
 Z float32
 Name []string
}

func (p1 Point) Equal(p2 Point) bool {
 if p1.X == p2.X &&
 p1.Y == p2.Y &&
 p1.Z == p2.Z {
 return true
 }
 return false
}

The following statement will now yield true for both comparisons:

fmt.Println(cmp.Equal(pt1, pt2)) // true
fmt.Println(cmp.Equal(pt2, pt3)) // true

CHAPTER 8 Establishing Relationships Using Maps 113

Chapter 8
Establishing
Relationships
Using Maps

In earlier chapters, I fill you in on arrays and slices, where the position of items
is important, and items are accessed by their locations. A map, on the other
hand, is a hash table that stores data in an associative manner. Items in a map

are not accessed according to their positions. Instead, you use keys (a set of unique
value that identifies the elements in a map). Maps make adding and removing
items extremely easy.

In this chapter, I show you how to work with maps in Go, create a map of structs,
and sort a map based on its content.

Creating Maps in Go
A Go map type has the following syntax:

map[keyType] valueType

IN THIS CHAPTER

»» Seeing how to create maps in Go

»» Creating and sorting a map of structs

114 PART 2 Working with Data Structures

Here is an example of a map variable that stores a collection of int values with the
key that is of the type string:

package main

var heights map[string]int

func main() {

}

Because the map type is a reference type, you need to first initialize it using the
make() function before you can use it:

heights = make(map[string]int)

By default, the map variable (heights) is pointing to nil before you initialize it
using the make() function.

After the map variable is initialized, you can use it. Let’s add the key "Peter" to
the map and assign it the value of 170 (his height in centimeters):

heights["Peter"] = 170

You can add the heights of a couple more people:

heights["Joan"] = 168
heights["Jan"] = 175

You can visualize the map as a collection of key/value pairs as shown in
Figure 8-1.

Peter

Map Variable

Joankeys

170

168

175

values

Jan
FIGURE 8-1:

The map with
three key/value

pairs.

CHAPTER 8 Establishing Relationships Using Maps 115

How the values in a map are stored internally is dependent on implementation —
it doesn’t affect the way you use the map.

To retrieve the value of each key, you simply specify the key in the map, like this:

fmt.Println(heights["Peter"]) // 170
fmt.Println(heights["Joan"]) // 168
fmt.Println(heights["Jan"]) // 175

In the following sections, I show you how to

»» Initialize a map with a map literal.

»» Check for the existence of a key in a map.

»» Delete a key in a map.

»» Iterate over a map.

»» Get all the keys in a map.

»» Set the order of iteration in a map.

Initializing a map with a map literal
Apart from using the make() function to initialize a map variable, you can also
initialize a map variable using a map literal (a set of key/value pairs):

heights := map[string]int{
 "Peter": 170,
 "Joan": 168,
 "Jan": 175, // <-- note the comma here
}

This statement creates and initialize a map with three items.

Checking the existence of a key
In the “Creating maps in Go” section, I explain how you can retrieve the value of
a key by specifying the key in the map. But what happens if the key doesn’t exist
in the map, as in the following example?

fmt.Println(heights["Jim"]) // 0

116 PART 2 Working with Data Structures

In this statement, because "Jim" is not an existing key in the map variable, the
result would be 0, the value’s zero-value. Although this information is helpful, it
doesn’t really tell you whether the specified key exists or whether the actual value
of this key is 0.

A better way to get the value of a key would be to use a two-value assignment test
to check for the key’s existence:

if v, ok := heights["Jim"]; ok {
 fmt.Println(v)
} else {
 fmt.Println("Key does not exist")
}

In this example, retrieving the value of "Jim" from the heights variable returns
two values: the value of the specified key, as well as a Boolean value (stored in ok)
indicating if the operation succeeded. If ok is true, the specified key exists, and
you can go ahead and use its value (stored in v). If ok is false, the key does not
exist.

Deleting a key
To delete a key from a map, you use the delete() function, with the following
syntax:

delete(map, key)

The delete() function does not return a value after deleting the specified key,
and it won’t inform you if the specified key doesn’t exist in the map variable. So,
it’s useful to check for the key’s existence before you delete it:

if _, ok := heights["Joan"]; ok {
 delete(heights, "Joan")
} else {
 fmt.Println("Key does not exist")
}

Getting the number of items in a map
To get the number of items in the map, use the len() function:

fmt.Println(len(heights))

CHAPTER 8 Establishing Relationships Using Maps 117

For an uninitialized map, the len() function will return zero:

var weights map[string]int
fmt.Println(len(weights)) // 0

Iterating over a map
To iterate over a map variable, you can use the for-range loop:

for k, v := range heights {
 fmt.Println(k, v)
}

In this code snippet, k represents the key and v represents the value of each item
in the map. The preceding statement produces the following output:

Peter 170
Joan 168
Jan 175

The order of the output isn’t guaranteed to be the same each time the code is run.
This is because items in the map variable are not ordered. If you need to print the
items is a particular order, you need to sort them yourself (more on this in the
“Setting the iteration order in a map” and “Sorting the items in a map by values”
sections).

Getting all the keys in a map
To get all the keys in the map, use a for-range loop and store the keys into a slice:

// get all the keys in map
var keys []string
for k := range heights {
 keys = append(keys, k)
}
fmt.Println(keys) // [Jan Peter Joan]

The preceding code snippet appends all the keys in the heights map variable into
the slice named keys.

The order of the keys retrieved is not guaranteed.

118 PART 2 Working with Data Structures

Setting the iteration order in a map
Earlier, I show you that when you print out the items in a map, all the items are
not guaranteed to be printed in a specific order. So, if you need to, say, print all the
keys in alphabetical order, you have to sort the keys first (using the sort package):

import (
 "fmt"
 "sort"
)
...

 sort.Strings(keys)
 fmt.Println(keys) // [Jan Joan Peter]

After the keys are sorted, you can then use the for-range loop to iterate over the
keys and print out the value of each key:

for _, k := range keys {
 fmt.Println(k, heights[k])
}

This way, the order of the key and its associated value is guaranteed.

Sorting the items in a map by values
If you want to sort the order of items in a map based on the values, things will get
a little involved. Using the existing example where you have three items in
the map:

heights := make(map[string]int)
heights["Peter"] = 170
heights["Joan"] = 168
heights["Jan"] = 175

Suppose you want to now print out the names of all the people in the map based
on their height — from the shortest to the tallest. To do that, you need to first
define a struct, followed by a slice:

package main

import (
 "fmt"
)

CHAPTER 8 Establishing Relationships Using Maps 119

type kv struct {
 key string
 value int
}

type kvPairs []kv

var heights map[string]int

Now create a slice called p and set it to the same length as that of heights. After
that, add each key/value pair in the heights map as a struct into the slice:

func main() {
 heights := make(map[string]int)
 heights["Peter"] = 170
 heights["Joan"] = 168
 heights["Jan"] = 175

 p := make(kvPairs, len(heights))
 i := 0
 for k, v := range heights {
 p[i] = kv{k, v}
 i++
 }

Figure 8-2 shows how p looks now.

When you now print out p, like this:

fmt.Println(p)

ptr

“Peter” “Joan” “Jan”
170 168 175

p

array

slice header
len

structs structs structs

cap

FIGURE 8-2:
All the items in
the map have

been added as
structs into the

slice p.

120 PART 2 Working with Data Structures

You should see the following:

[{Peter 170} {Joan 168} {Jan 175}]

The next step would be to sort the p slice, using the Sort() function from the sort
package. However, before you use the Sort() function, you need to implement the
Sort interface:

»» Len(): Returns the length of the collection.

»» Less(): Receives two integers that will serve as indices from the collection,
and you define how the items should be sorted.

»» Swap(): Implements the change needed after the Less method is called.

Chapter 10 covers interfaces in more detail.

Implementing these three functions would allow the Sort() function to sort the
kvPairs slice according to your sort criteria:

package main

import (
 "fmt"
 "sort"
)

type kv struct {
 key string
 value int
}

type kvPairs []kv

var heights map[string]int

func (p kvPairs) Len() int {
 // returns the length of the collection
 return len(p)
}

func (p kvPairs) Less(i, j int) bool {
 // indicates the first value (height) must be smaller
 // than the second value
 return p[i].value < p[j].value
}

CHAPTER 8 Establishing Relationships Using Maps 121

func (p kvPairs) Swap(i, j int) {
 // swaps the items in the collection
 p[i], p[j] = p[j], p[i]
}

In the preceding code snippets, the kvPairs slice implements the three methods
so that the items’ values within the slice can be sorted in ascending order.

You can now finally sort the p slice and print out the items based on the heights of
the three people (from shortest to tallest):

 sort.Sort(p)

 fmt.Println(p)
 // [{Joan 168} {Peter 170} {Jan 175}]

 for _, v := range p {
 fmt.Println(v)
 }
 /*
 {Joan 168}
 {Peter 170}
 {Jan 175}
 */

Using Structs and Maps in Go
In the previous sections, I show you how to create a map using Go’s basic data
types. In reality, when dealing with more complicated data, you often use maps
together with structs. In the following sections, I show you how to create a map of
structs, as well as how to convert a map into a slice so that you can perform your
own custom sorting.

Creating a map of structs
Suppose you have people and dob structs defined as follows:

type dob struct {
 day int
 month int
 year int
}

122 PART 2 Working with Data Structures

type people struct {
 name string
 email string
 dob dob
}

To store a collection of people struct, you can declare a map of int key and value
of type people:

var members map[int]people

The following code snippet shows how to initialize the members map:

package main

import "fmt"

type dob struct {
 day int
 month int
 year int
}

type people struct {
 name string
 email string
 dob dob
}

var members map[int]people

func main() {
 members = make(map[int]people)

 members[1] = people{
 name: "Mary Smith",
 email: "marysmith@example.com",
 dob: dob{
 day: 17,
 month: 3,
 year: 1990,
 },
 }

CHAPTER 8 Establishing Relationships Using Maps 123

 members[2] = people{
 name: "John Smith",
 email: "johnsmith@example.com",
 dob: dob{
 day: 9,
 month: 12,
 year: 1988,
 },
 }
 members[3] = people{
 name: "Janet Doe",
 email: "janetdoe@example.com",
 dob: dob{
 day: 1,
 month: 12,
 year: 1988,
 },
 }
 members[4] = people{
 name: "Adam Jones",
 email: "adamjones@example.com",
 dob: dob{
 day: 19,
 month: 8,
 year: 2001,
 },
 }
}

To print out all the members, you can use the for-range loop:

for k, v := range members {
 fmt.Println(k, v.name, v.email, v.dob)
}

You may get an output like this:

2 John Smith johnsmith@example.com {9 12 1988}
3 Janet Doe janetdoe@example.com {1 12 1988}
4 Adam Jones adamjones@example.com {19 8 2001}
1 Mary Smith marysmith@example.com {17 3 1990}

124 PART 2 Working with Data Structures

Sorting a map of structs
Because a map can store data of different types — primitive types (basic data types
available within the Go language), as well as structured types (types that are com-
posed of other data types) — there are no built-in functions to easily custom-sort
a map based on its content.

But what if you need to print out the content of a map based on a specific order?
You could first copy out all the items in the members map into a slice of people:

// get all the keys in members
var keys []int
for k := range members {
 keys = append(keys, k)
}

// sort the keys in ascending order
sort.Ints(keys)

// copy the value in members to the slice
var sliceMembers []people
for _, k := range keys {
 sliceMembers = append(sliceMembers, members[k])
}

In the preceding code snippet, you first extract the keys in the members map and
then sort them in ascending order before you copy the value of each key into the
slice. The sliceMembers is now a slice of the people struct. Let’s print it out to see
its content (formatted for clarity):

[
 {Mary Smith marysmith@example.com {17 3 1990}}
 {John Smith johnsmith@example.com {9 12 1988}}
 {Janet Doe janetdoe@example.com {1 12 1988}}
 {Adam Jones adamjones@example.com {19 8 2001}}
]

To sort a slice, you can use the SliceStable() function from the sort package.
The SliceStable() function has the following signature:

func SliceStable(slice interface{},
 less func(i, j int) bool)

CHAPTER 8 Establishing Relationships Using Maps 125

It takes in a slice as the first argument and an anonymous function as the second
argument. The anonymous function has two parameters and returns a bool value.
The parameters i and j represent the index of the items in the slice to compare.
The return value of this anonymous function indicates if the two items in the slice
are in the correct order (which is determined by you as to how the items are to be
sorted).

So, if you want to sort all the members in the sliceMembers based on their
date-of-birth (dob) from oldest to youngest, you can call the SliceStable()
function as follows:

sort.SliceStable(sliceMembers, func(i, j int) bool {
 // compare year
 if sliceMembers[i].dob.year !=
 sliceMembers[j].dob.year {
 return sliceMembers[i].dob.year <
 sliceMembers[j].dob.year
 }

 // compare month
 if sliceMembers[i].dob.month !=
 sliceMembers[j].dob.month {
 return sliceMembers[i].dob.month <
 sliceMembers[j].dob.month
 }

 // compare day
 return sliceMembers[i].dob.day <
 sliceMembers[j].dob.day
})

for _, v := range sliceMembers {
 fmt.Println(v.name, v.email, v.dob)
}

Here’s how you ensure that the age of the members is sorted in descending order:

1.	 Check the year of the two members.

If they are not the same, check if the year of member i is less than the year of
member j. If the year of member i is less than member j, this means the
order of the member is in correct order (a person is older than another if his
year of birth is smaller than the other one) and the function returns a true.
Otherwise, the SliceStable() function will automatically swap the two
members.

126 PART 2 Working with Data Structures

2.	 If the years of the two members are the same, check the months.

Again, if the months are not the same, you compare the months of the two
members. If the comparison returns a false, the SliceStable() function will
swap the two members.

3.	 If the year and month of the two members are the same, compare the
day of the two members.

Return a true if the day of member i is smaller than the day of member j.

At the end of the swapping, the sliceMembers will now have its items sorted
according to date of birth. You can verify this by printings its content:

for _, v := range sliceMembers {
 fmt.Println(v.name, v.email, v.dob)
}

You should see the following output:

Janet Doe janetdoe@example.com {1 12 1988}
John Smith johnsmith@example.com {9 12 1988}
Mary Smith marysmith@example.com {17 3 1990}
Adam Jones adamjones@example.com {19 8 2001}

What if you just want to sort the members based on their year? In this case, you
simply need to perform the comparison for the year in the SliceStable()
function:

sort.SliceStable(sliceMembers, func(i, j int) bool {
 return sliceMembers[i].dob.year <
 sliceMembers[j].dob.year
})

You should now see the following output:

John Smith johnsmith@example.com {9 12 1988}
Janet Doe janetdoe@example.com {1 12 1988}
Mary Smith marysmith@example.com {17 3 1990}
Adam Jones adamjones@example.com {19 8 2001}

The SliceStable() function has a cousin function that is very similar: Slice().
Both these two functions allow you to sort a slice, but the Slice() function
doesn’t guarantee the sort result to be stable. What does that mean? If you use the
Slice() function to sort based on the person’s year of birth, like this:

CHAPTER 8 Establishing Relationships Using Maps 127

sort.Slice(sliceMembers, func(i, j int) bool {
 return sliceMembers[i].dob.year <
 sliceMembers[j].dob.year
})

The result may look like this:

John Smith johnsmith@example.com {9 12 1988}
Janet Doe janetdoe@example.com {1 12 1988}
Mary Smith marysmith@example.com {17 3 1990}
Adam Jones adamjones@example.com {19 8 2001}

Or it may look like this:

Janet Doe janetdoe@example.com {1 12 1988}
John Smith johnsmith@example.com {9 12 1988}
Mary Smith marysmith@example.com {17 3 1990}
Adam Jones adamjones@example.com {19 8 2001}

See the difference? Because both John and Janet have the same year of birth, the
Slice() function doesn’t guarantee that the result after sorting follows the origi-
nal order, where John comes before Janet (check the output of the sliceMembers
to confirm this).

In programming, stable sorting algorithms preserve the relative order of equal
items, while unstable sorting algorithms do not. In other words, after the sorting,
a stable sorting algorithm will always preserve the original order of two equal
items. The SliceStable() function sorts your slices using a stable sorting algo-
rithm, while the Slice() function does not.

If the order of the original elements is important, you should always use the
SliceStable() function for sorting slices.

CHAPTER 9 Encoding and Decoding Data Using JSON 129

Chapter 9
Encoding and Decoding
Data Using JSON

JavaScript Object Notation (JSON) is a standard, text-based format for
representing data using the JavaScript object syntax. It’s a lightweight and
easy-to-parse data representation language, commonly used for communi-

cating between web servers and clients.

In this chapter, I explain the basics of JSON and how you can manipulate JSON
content in your Go applications.

Getting Acquainted with JSON
JSON is growing more and more popular these days. It’s commonly used in data
representation, as well as data exchange. JSON is less verbose than XML, but that’s
exactly what makes it so useful. JSON strings are shorter than their XML equiva-
lents, and parsing JSON strings is a walk in the park.

If you aren’t familiar with XML, check out the introduction to XML at
www.w3schools.com/xml/xml:whatis.asp.

IN THIS CHAPTER

»» Understanding JSON

»» Decoding JSON to the various data
types in Go

»» Encoding JSON strings

https://www.w3schools.com/xml/xml:whatis.asp

130 PART 2 Working with Data Structures

In this section, I give you a brief walk-through of JSON. If you’re already super-
familiar with JSON, you can skip directly to the “Decoding JSON” section. But even
if you already have some experience dealing with JSON, I recommend at least
glancing through this section.

JSON supports the following data types:

»» Object

»» String

»» Boolean

»» Number

»» Array

»» null

The following sections elaborate on each of these data types.

If you want even more information on JSON, check out Coding with JavaScript For
Dummies, by Chris Minnick and Eva Holland (Wiley).

Object
An Object is an unordered collection of key/value pairs enclosed in a pair of curly
braces ({}). The following is an example of an empty object:

{}

String
A String is a sequence of characters. The key in an object must be a String, while
the value can be a String, a Boolean, a Number, an Array, null, or another Object.

The following shows an Object with one key/value pair:

{
 "firstName": "John"
}

CHAPTER 9 Encoding and Decoding Data Using JSON 131

An object can have multiple key/value pairs, like this:

{
 "firstName": "John",
 "lastName": "Doe"
}

Note that there’s a comma (,) after John, essentially separating the first key/value
pair and the second.

Each key in the Object must be unique. For example, the following example is not
a valid JSON string because you have two key/value pairs having the same key
(firstName):

{
 "firstName": "John",
 "firstName": "Doe"
}

Boolean
A Boolean value can either be true or false:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true
}

Number
A Number value can either be an integer (whole number) or a floating-point number
(decimal-point number):

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "weight": 79.5,
 "height": 1.73,
 "children": 3
}

132 PART 2 Working with Data Structures

Object
The value of a key can also be another Object, as the following example shows:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "weight": 79.5,
 "height": 1.73,
 "children": 3,
 "address": {
 "line1": "123 Street",
 "line2": "San Francisco",
 "state": "CA",
 "postal": "12345"
 }
}

Array
An Array is an ordered sequence of Objects:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "weight": 79.5,
 "height": 1.73,
 "children": 3,
 "address": {
 "line1": "123 Street",
 "line2": "San Francisco",
 "state": "CA",
 "postal": "12345"
 },
 "phone": [
 {
 "type": "work",
 "number": "1234567"
 },

CHAPTER 9 Encoding and Decoding Data Using JSON 133

 {
 "type": "home",
 "number": "8765432"
 },
 {
 "type": "mobile",
 "number": "1234876"
 }
]
}

Note that Arrays are denoted with a pair of brackets ([]).

null
When a key has no value, you can assign a null to it:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "weight": 79.5,
 "height": 1.73,
 "children": 3,
 "address": {
 "line1": "123 Street",
 "line2": "San Francisco",
 "state": "CA",
 "postal": "12345"
 },
 "phone": [
 {
 "type": "work",
 "number": "1234567"
 },
 {
 "type": "home",
 "number": "8765432"
 },

134 PART 2 Working with Data Structures

 {
 "type": "mobile",
 "number": "1234876"
 }
],
 "oldMembershipNo": null
}

A good online tool that I often use to check if a string is a valid JSON string is
https://jsonlint.com/. Enter your JSON string into the website (see Figure 9-1),
click the Validate JSON button, and you’re immediately told whether your JSON
string is valid.

Decoding JSON
When you know how a JSON string looks (see the “Getting Acquainted with JSON”
section, earlier in this chapter), you need to know how to decode it to a form that
you can work with in Go. In the following sections, I show you how to decode JSON

FIGURE 9-1:
Using JSONLint

to validate a
JSON string.

https://jsonlint.com/

CHAPTER 9 Encoding and Decoding Data Using JSON 135

to a struct and to an array, how to decode embedded objects in JSON, how to map
custom attribute names in JSON to a struct, and how to decode an unstructured
JSON string.

Decoding JSON to a struct
Let’s start off with the most straightforward way to convert a JSON string to a Go
struct. Say you have the following JSON string:

{
 "firstname" : "Wei-Meng",
 "lastname" : "Lee"
}

And you want to decode this JSON string to a struct in Go. For this, you use the
encoding/json package in Go, like this:

package main

import (
 "encoding/json"
 "fmt"
)

Next, you define a struct in Go so that the JSON string can map onto it:

type People struct {
 Firstname string
 Lastname string
}

In the preceding code snippet, I created a struct named People with two fields:
Firstname and Lastname. You can name the struct anything you want, but the
fields in the struct must match that of the keys in the JSON string.

Finally, you create a variable of type People and then use the json.Unmarshal()
function to decode the JSON string:

func main() {
 var person People

 jsonString := `{"firstname":"Wei-Meng",
 "lastname":"Lee"}`

136 PART 2 Working with Data Structures

 err := json.Unmarshal([]byte(jsonString), &person)
 if err == nil {
 fmt.Println(person.Firstname)
 fmt.Println(person.Lastname)
 } else {
 fmt.Println(err)
 }
}

The json.Unmarshal() function parses the JSON-encoded data (you need to con-
vert the JSON string to a byte slice) and stores the result into person. (You need to
pass in the address of person using the & address operator.)

If the unmarshalling (decoding) works, the json.Unmarshal() function returns a
nil, and you can now find the value stored in the person variable.

Be sure to capitalize the first character of each field in the People struct. If the
field name starts with a lowercase letter, it won’t be exported beyond the current
package, and the fields won’t be visible to the json.Unmarshal() function.

The previous code snippet prints out the following output:

Wei-Meng
Lee

Decoding JSON to arrays
Often, your JSON string may contain arrays of objects, as shown in the following
example:

[
 {
 "firstname":"Wei-Meng",
 "lastname":"Lee"
 },
 {
 "firstname":"Mickey",
 "lastname":"Mouse"
 }
]

In this case, you can simply create an array of the People struct and pass it to the
json.Unmarshal() function, like this:

CHAPTER 9 Encoding and Decoding Data Using JSON 137

func main() {
 var persons []People
 jsonString :=
 `[
 {
 "firstname":"Wei-Meng",
 "lastname":"Lee"
 },
 {
 "firstname":"Mickey",
 "lastname":"Mouse"
 }
]`

 json.Unmarshal([]byte(jsonString), &persons)

 for _, person := range persons {
 fmt.Println(person.Firstname)
 fmt.Println(person.Lastname)
 }
}

You then use a for loop to iterate through the array of the People struct. The out-
put now looks like this:

Wei-Meng
Lee
Mickey
Mouse

Decoding embedded objects
Sometimes your JSON string may contain nested objects, as shown in the follow-
ing example:

[
 {
 "firstname":"Wei-Meng",
 "lastname":"Lee",
 "details": {
 "height":175,
 "weight":70.0
 }
 },

138 PART 2 Working with Data Structures

 {
 "firstname":"Mickey",
 "lastname":"Mouse",
 "details": {
 "height":105,
 "weight":85.5
 }
 }
]

The value of the details key is another JSON object. To decode it, you can add
another member called Details to the People struct, like this:

type People struct {
 Firstname string
 Lastname string
 Details struct {
 Height int
 Weight float32
 }
}

And you can now decode it as usual:

package main

import (
 "encoding/json"
 "fmt"
)

type People struct {
 Firstname string
 Lastname string
 Details struct {
 Height int
 Weight float32
 }
}

func main() {
 var persons []People
 jsonString :=
 `[

CHAPTER 9 Encoding and Decoding Data Using JSON 139

 {
 "firstname":"Wei-Meng",
 "lastname":"Lee",
 "details": {
 "height":175,
 "weight":70.0
 }
 },
 {
 "firstname":"Mickey",
 "lastname":"Mouse",
 "details": {
 "height":105,
 "weight":85.5
 }
 }
]`

 json.Unmarshal([]byte(jsonString), &persons)

 for _, person := range persons {
 fmt.Println(person.Firstname)
 fmt.Println(person.Lastname)
 fmt.Println(person.Details.Height)
 fmt.Println(person.Details.Weight)
 }
}

The output looks like this:

Wei-Meng
Lee
175
70
Mickey
Mouse
105
85.5

140 PART 2 Working with Data Structures

Mapping custom attribute names
Sometimes the keys in your JSON string can’t be mapped directly to members of
your struct in Go. Consider the following example:

{
 "base currency":"EUR",
 "destination currency":"USD"
}

Notice that the keys in this JSON string have spaces in them. If you try to map it
directly to a struct, you’ll run into problems because variable names in Go can’t
have spaces. To resolve this issue, you can make use of struct field tags (string liter-
als placed after each field in a struct), like this:

type Rates struct {
 Base string `json:"base currency"`
 Symbol string `json:"destination currency"`
}

Here, you’re explicitly specifying which JSON key to map to which member in the
struct:

»» "base currency" maps to Base

»» "destination currency" maps to Symbol

So, you can now decode the JSON string as follows:

package main

import (
 "encoding/json"
 "fmt"
)

type Rates struct {
 Base string `json:"base currency"`
 Symbol string `json:"destination currency"`
}

func main() {
 jsonString :=

CHAPTER 9 Encoding and Decoding Data Using JSON 141

 `{
 "base currency":"EUR",
 "destination currency":"USD"
 }`

 var rates Rates
 json.Unmarshal([]byte(jsonString), &rates)
 fmt.Println(rates.Base) // EUR
 fmt.Println(rates.Symbol) // USD
}

Mapping unstructured data
The previous few sections have shown relatively simple JSON strings. In the real
world, though, the JSON strings that you’ll manipulate are often large and
unstructured. Plus, you may only need to retrieve specific values from the JSON
string.

Consider the following JSON string:

{
 "success": true,
 "timestamp": 1588779306,
 "base": "EUR",
 "date": "2020-05-06",
 "rates": {
 "AUD": 1.683349,
 "CAD": 1.528643,
 "GBP": 0.874757,
 "SGD": 1.534513,
 "USD": 1.080054
 }
}

Suppose you only want to extract the value for SGD (Singapore dollars). In this
case, instead of defining an entire structure, you’ll define the following:

var result map[string]interface{}

The preceding statement creates a variable named result of type map, whose key
is of type string, and each corresponding value is of type interface{}. This
empty interface indicates that the value can be of any type.

142 PART 2 Working with Data Structures

To decode the JSON string, you pass in the address of result into the json.
Unmarshal() function, like this:

json.Unmarshal([]byte(jsonString), &result)

After the JSON string has been decoded, try to extract the value of the "success"
key. Pass "success" as the key to the result map variable:

fmt.Println(result["success"]) // true

To extract the value of the "rates" key, you pass "rates" as the key to the result
map variable:

rates := result["rates"]
fmt.Println(rates)

The type of rates is map[string] interface{} (see Figure 9-2), which means its
value could be of any type — a map, a string, or an int. When you print out the
value of rates, you get the following:

map[AUD:1.683349 CAD:1.528643 GBP:0.874757
 SGD:1.534513 USD:1.080054]

To get the value of SGD, you first need to assert rates to a map type with expected
key/value types (see Figure 9-3):

currencies := rates.(map[string]interface{})

Key (string)

Value (interface{})

rates

"rates":

{
"AUD": 1.683349,
"CAD": 1.528643,
"GBP": 0.874757,
"SGD": 1.534513,
"USD": 1.080054

}

map[string] interface{}

FIGURE 9-2:
Examining the

type of rates,
which is

map[string]
interface{}.

CHAPTER 9 Encoding and Decoding Data Using JSON 143

Finally, you can now extract the value of SGD:

SGD := currencies["SGD"]
fmt.Println(SGD) // 1.534513

The complete code for this section is as follows:

package main

import (
 "encoding/json"
 "fmt"
)

func main() {
 jsonString :=
 `{
 "success": true,
 "timestamp": 1588779306,
 "base": "EUR",
 "date": "2020-05-06",
 "rates": {
 "AUD": 1.683349,
 "CAD": 1.528643,
 "GBP": 0.874757,
 "SGD": 1.534513,
 "USD": 1.080054
 }
 }`

 var result map[string]interface{}

Key (string) Value (interface{})

currencies

{
"AUD": 1.683349,
"CAD": 1.528643,
"GBP": 0.874757,
"SGD": 1.534513,
"USD": 1.080054

}

map[string] interface{}

FIGURE 9-3:
Asserting the

value of rates to
the type

map[string]
interface{}.

144 PART 2 Working with Data Structures

 json.Unmarshal([]byte(jsonString), &result)
 fmt.Println(result["success"]) // true

 rates := result["rates"]
 fmt.Println(rates)
 // map[USD:1.080054 AUD:1.683349 CAD:1.528643
 // GBP:0.874757 SGD:1.534513]

 currencies := rates.(map[string]interface{})
 SGD := currencies["SGD"]
 fmt.Println(SGD)
 // 1.534513
}

The following statement indicates that result is a variable of type map, with key
of type string, and value of type interface (which can be of any type):

var result map[string] interface{}

The following statement asserts the rates variable as a map type with key of type
string and value of type interface:

rates.(map[string] interface{})

Encoding JSON
Decoding a JSON string is useful when you receive a result from web services calls.
But often the reverse is also true: You need to send your data to a web service as a
JSON string. In this section, I show you how to encode your data from a struct to
JSON.

Encoding structs to JSON
Let me define some structs:

type Name struct {
 FirstName string
 LastName string
}

CHAPTER 9 Encoding and Decoding Data Using JSON 145

type Address struct {
 Line1 string
 Line2 string
 Line3 string
}

type Customer struct {
 Name Name
 Email string
 Address Address
 DOB time.Time
}

Figure 9-4 shows how these structs are used together to store a customer’s
information.

Let’s now store a customer’s information using the Customer struct:

layoutISO := "2006-01-02"
dob, _ := time.Parse(layoutISO, "2010-01-18")

john := Customer{
 Name: Name{ FirstName: "John",
 LastName: "Smith" },
 Email: "johnsmith@example.com",
 Address: Address{
 Line1: "The White House",
 Line2: "1600 Pennsylvania Avenue NW",
 Line3: "Washington, DC 20500"
 },
 DOB: dob,
 }

type Customer struct {
Name Name
Email string
Address Address
DOB time.Time

}

type Name struct {
FirstName string
LastName string

}

type Address struct {
Line1 string
Line2 string
Line3 string

}

FIGURE 9-4:
The various

structs used
to store a

customer’s
information.

146 PART 2 Working with Data Structures

To encode the Customer struct into JSON, you use the json.Marshal() function
from the encoding/json package:

johnJSON, err := json.Marshal(john)
if err == nil {
 fmt.Println(string(johnJSON))
} else {
 fmt.Println(err)
}

The Marshal() function returns the encoded JSON (in a slice of bytes) and error (if
any). You can then print out the JSON string:

{"Name":{"FirstName":"John","LastName":"Smith"},"Email":
"johnsmith@example.com","Address":{"Line1":"The White
House","Line2":"1600 Pennsylvania Avenue NW","Line3":
"Washington, DC 20500"},"DOB":"2010-01-18T00:00:00Z"}

The complete program for this section is as follows:

package main

import (
 "encoding/json"
 "fmt"
 "time"
)

type Name struct {
 FirstName string
 LastName string
}

type Address struct {
 Line1 string
 Line2 string
 Line3 string
}

type Customer struct {
 Name Name
 Email string
 Address Address
 DOB time.Time
}

CHAPTER 9 Encoding and Decoding Data Using JSON 147

func main() {

 layoutISO := "2006-01-02"
 dob, _ := time.Parse(layoutISO, "2010-01-18")

 john := Customer{
 Name: Name{ FirstName: "John",
 LastName: "Smith",
 },
 Email: "johnsmith@example.com",
 Address: Address{
 Line1: "The White House",
 Line2: "1600 Pennsylvania Avenue NW",
 Line3: "Washington, DC 20500",
 },
 DOB: dob,
 }

 johnJSON, err := json.Marshal(john)
 if err == nil {
 fmt.Println(string(johnJSON))
 } else {
 fmt.Println(err)
 }
}

When you looked at the JSON output, you may have noticed that there is no inden-
tation. If you want to indent the output and format it nicely, you can use the json.
MarshalIndent() function:

johnJSON, err := json.MarshalIndent(john, "", " ")

The second argument specifies the string to prefix to the beginning of each line of
output, and the third argument specifies the string to indent for each line. The
preceding statement generates the following output:

{
 "Name": {
 "FirstName": "John",
 "LastName": "Smith"
 },
 "Email": "johnsmith@example.com",
 "Address": {
 "Line1": "The White House",

148 PART 2 Working with Data Structures

 "Line2": "1600 Pennsylvania Avenue NW",
 "Line3": "Washington, DC 20500"
 },
 "DOB": "2010-01-18T00:00:00Z"
}

Encoding interfaces to JSON
Sometimes you don’t really want to fix the number of fields in your structs.
Instead, you want to be able to add additional data as and when you need to. You
can do that using empty interfaces, as in the following example:

type Customer map[string]interface{}
type Name map[string]interface{}
type Address map[string]interface{}

Using the empty interfaces, you can now create your own Customer variable and
add the fields that you need, like this:

john := Customer{
 "Name": Name{
 "FirstName": "John",
 "LastName": "Smith",
 },
 "Email": "johnsmith@example.com",
 "Address": Address{
 "Line1": "The White House",
 "Line2": "1600 Pennsylvania Avenue NW",
 "Line3": "Washington, DC 20500",
 },
 "DOB": dob,
 }

You can now use the same json.MarshalIndent() function to encode the JSON
string.

The complete program for this example is as follows:

package main

import (
 "encoding/json"

CHAPTER 9 Encoding and Decoding Data Using JSON 149

 "fmt"
 "time"
)
type Customer map[string]interface{}
type Name map[string]interface{}
type Address map[string]interface{}

func main() {
 layoutISO := "2006-01-02"
 dob, _ := time.Parse(layoutISO, "2010-01-18")

 john := Customer{
 "Name": Name{
 "FirstName": "John",
 "LastName": "Smith",
 },
 "Email": "johnsmith@example.com",
 "Address": Address{
 "Line1": "The White House",
 "Line2": "1600 Pennsylvania Avenue NW",
 "Line3": "Washington, DC 20500",
 },
 "DOB": dob,
 }

 johnJSON, err := json.MarshalIndent(john, "", " ")
 if err == nil {
 fmt.Println(string(johnJSON))
 } else {
 fmt.Println(err)
 }
}

The output is similar to the previous example.

{
 "Address": {
 "Line1": "The White House",
 "Line2": "1600 Pennsylvania Avenue NW",
 "Line3": "Washington, DC 20500"
 },

150 PART 2 Working with Data Structures

 "DOB": "2010-01-18T00:00:00Z",
 "Email": "johnsmith@example.com",
 "Name": {
 "FirstName": "John",
 "LastName": "Smith"
 }
}

The order of the keys in the output JSON is sorted alphabetically.

CHAPTER 10 Defining Method Signatures Using Interfaces 151

Chapter 10
Defining Method
Signatures Using
Interfaces

Earlier in this book, I explain structs and how you can define methods in
them. Another important topic in Go that is often not easy to grasp is that of
interfaces. An interface defines the behavior of an object, specifying the

methods that it needs to implement.

Interfaces serve two important purposes in Go:

»» They make your code more versatile.

»» They force you to adopt code encapsulation (the practice of hiding the imple-
mentation of your methods).

In this chapter, I explain what an interface is in Go and show you how to use it in
your program. To make this topic less abstract, I illustrate interfaces with a few
concrete examples.

IN THIS CHAPTER

»» Defining and implementing an
interface in Go

»» Seeing how you may use an interface

152 PART 2 Working with Data Structures

Working with Interfaces in Go
An interface is an abstract type. It describes all the methods that a type can imple-
ment. But it only provides the method signatures, leaving the implementation
entirely to the implementing type. So, you can say that interface defines, and
doesn’t declare, the behavior of an object of a specific type.

You may still feel a bit fuzzy on interfaces, but stick with me, and I’ll show you
some concrete examples.

Defining an interface
Let’s first start by defining an interface type called DigitsCounter:

package main

import (
 "fmt"
)

type DigitsCounter interface {
}

func main() {

}

At this moment, the DigitsCounter interface is empty, so it isn’t of much use. So,
let’s now add in a method to this interface:

type DigitsCounter interface {
 CountOddEven() (int, int)
}

At this point, the DigitsCounter interface has one method signature named
CountOddEven(), which returns two results, both of type int. Notice that there is
no implementation for the method — only the method name; input parameters, if
any (there are none for this example); and the return types.

From now on, any type that implements the CountOddEven() method will also
implement the DigitsCounter interface.

CHAPTER 10 Defining Method Signatures Using Interfaces 153

An interface isn’t limited to one method signature; you can have as many method
signatures as required.

Implementing an interface
Let’s now define a custom type (using the type keyword) and call it DigitString.
Declare this type to be of type string:

package main

import (
 "fmt"
)

type DigitsCounter interface {
 CountOddEven() (int, int)
}

type DigitString string

func main() {
}

You now want the DigitString to implement the DigitsCounter interface, so
you do this:

type DigitString string

// DigitString implements DigitsCounter
func (ds DigitString) CountOddEven() (int, int) {

}

In Go, interfaces are implemented implicitly — you don’t need to specify any
“implements” keywords the way you do in some languages, such as Java.

The previous statements indicate that DigitString implements the Dig-
itsCounter interface, and you’re also providing the implementation for the Coun-
tOddEven() method (as defined in the DigitsCounter interface).

154 PART 2 Working with Data Structures

So, let’s now provide the actual implementation for the CountOddEven() method:

func (ds DigitString) CountOddEven() (int, int) {
 odds, evens := 0, 0
 for _, digit := range ds {
 if digit%2 == 0 {
 evens++
 } else {
 odds++
 }
 }
 return odds, evens
}

You basically go through each of the digits in the string, count the number of odd
and even digits in it, and then return the results.

Finally, you can now create a variable of type DigitString and call its CountOd-
dEven() method:

func main() {
 s := DigitString("123456789")
 fmt.Println(s.CountOddEven()) // 5 4
}

Because DigitsCounter is a type in itself, you can also create a variable of type
DigitsCounter and then assign the variable s to it:

var d DigitsCounter
d = s
fmt.Println(d.CountOddEven()) // 5 4

Looking at How You May Use Interfaces
The previous section shows how to declare an interface and how to create a type
that implements it. But it doesn’t really provide a compelling reason why inter-
faces are useful.

Suppose you’re working with two different kinds of shape objects — Circle and
Square. To represent these two types of objects, you have the following type
declarations:

CHAPTER 10 Defining Method Signatures Using Interfaces 155

type Circle struct {
 radius float64
 name string
}

type Square struct {
 length float64
 name string
}

You also need to calculate the areas of these types of shapes. These two shapes
have different formulas for calculating areas, so this is an excellent opportunity to
make use of an interface. Declare an interface called Shape with the Area()
method signature:

type Shape interface {
 Area() float64
}

To calculate the area for the Circle struct, you implement the Area() method,
thereby implementing the Shape interface:

// Circle implements Shape
func (c Circle) Area() float64 {
 return math.Pi * math.Pow(c.radius, 2)
}

Likewise, you do the same for the Square struct:

// Square implements Shape
func (s Square) Area() float64 {
 return math.Pow(s.length, 2)
}

In these code snippets, both the Square and Circle types provided their own
implementations for the Area() function.

Now imagine you have a number of shapes — circles and squares:

func main() {
 c1 := Circle{radius: 5, name: "c1"}
 s1 := Square{length: 6, name: "s1"}
}

156 PART 2 Working with Data Structures

To calculate the area of each shape, you could call the Area() method of each
shape:

fmt.Println(c1.Area())
fmt.Println(s1.Area())

But this is too tedious. Because each shape implements the Shape interface, they
all have the Area() method. So, instead of calling the Area() method of each
shape, you can write a function to take in a slice of Shape objects and then call the
Area() method of each object directly:

func calculateArea(listOfShapes []Shape) {
 for _, shape := range listOfShapes {
 fmt.Println("Area of shape is ", shape.Area())
 }
}

func main() {
 c1 := Circle{radius: 5, name: "c1"}
 s1 := Square{length: 6, name: "s1"}

 shapes := []Shape{c1, s1}
 calculateArea(shapes)
}

The preceding prints out the following:

Area of shape is 78.53981633974483
Area of shape is 36

Here’s the complete program:

package main

import "fmt"

type Shape interface {
 Area() float64
}

type Circle struct {
 radius float64
}

CHAPTER 10 Defining Method Signatures Using Interfaces 157

type Square struct {
 length float64
}

// Circle implements Shape
func (c Circle) Area() float64 {
 return 3.14 * c.radius * c.radius
}

// Square implements Shape
func (s Square) Area() float64 {
 return s.length * s.length
}

func calculateArea(listOfShapes []Shape) {
 for _, shape := range listOfShapes {
 fmt.Println("Area: ", shape.Area())
 }
}

func main() {
 c1 := Circle{radius: 5}
 s1 := Square{length: 6}

 shapes := []Shape{c1, s1}
 calculateArea(shapes)
}

Suppose you now have a new shape, Triangle, that you want to add to your pro-
gram. In this case, you just need to define the struct for the Triangle shape and
implement the Shape interface by providing the implementation for the Area()
function:

type Triangle struct {
 base float64
 height float64
}

func (t Triangle) Area() float64 {
 return 0.5 * t.base * t.height
}

158 PART 2 Working with Data Structures

You can then add it to the array of shapes and calculate its area:

func main() {
 c1 := Circle{radius: 5}
 s1 := Square{length: 6}
 t1 := Triangle{base: 6, height: 8}

 shapes := []Shape{c1, s1, t1}
 calculateArea(shapes)
}

The preceding code snippet prints out the following output:

Area of shape is 78.53981633974483
Area of shape is 36
Area of shape is 24

Adding methods to a type that doesn’t
satisfy an interface
Although the Shape interface only has a single method signature, Area(), types
that implement this interface are not restricted to only implementing the Area()
method. They can implement additional method(s) if they need to.

Let’s now also add an additional method named Circumference() to the Circle
struct:

// Circle implements Shape
func (c Circle) Area() float64 {
 return math.Pi * math.Pow(c.radius, 2)
}

func (c Circle) Circumference() float64 {
 return 2 * math.Pi * c.radius
}

Apart from implementing the Shape interface, the Circle type now also has an
additional method.

CHAPTER 10 Defining Method Signatures Using Interfaces 159

Using the Stringer interface
Interfaces may still seem abstract to you at this point, but you’ve actually been
inadvertently exposed to interfaces (without your knowing it) if you’ve ever used
the Println() function from the fmt package.

For example, suppose you have an array of two elements:

var s [2]string
s[0] = "Hello"
s[1] = "World"

When you print out the array using the Println() function:

fmt.Println(s)

You get the following output:

[Hello World]

And when you have a struct like this:

type Person struct {
 FirstName string
 LastName string
 Age int
}

Printing a variable of this type:

me := Person{"Wei-Meng", "Lee", 38}
fmt.Println(me)

yields the following output:

{Wei-Meng Lee 38}

So, how does the fmt.Println() function know how to format the output of the
object or variable that it’s trying to print? Turns out that the fmt package defines
an interface called Stringer.

160 PART 2 Working with Data Structures

The Stringer interface is a type that describes itself as a string:

type Stringer interface {
 String() string
}

When you try to print some objects using the fmt.Println() function, the func-
tion looks at this interface to see how to print the value of the specified object. So,
if you don’t like the way the Person struct is printed out:

{Wei-Meng Lee 38}

You can always implement your own Stringer interface’s String() function, like
this:

type Person struct {
 FirstName string
 LastName string
 Age int
}

func (p Person) String() string {
 return fmt.Sprintf("%v %v (%d years old)",
 p.FirstName, p.LastName, p.Age)
}

Here you’re overriding the default behavior for the struct’s String() function.

Now when you print out the value of me:

me := Person{"Wei-Meng", "Lee", 38}
fmt.Println(me)

You see the following:

Wei-Meng Lee (38 years old)

Implementing multiple interfaces
A type can implement multiple interfaces. For our Circle struct in the earlier
discussion, you can also implement the Stringer interface by implementing the
String() method:

CHAPTER 10 Defining Method Signatures Using Interfaces 161

func (c Circle) String() string {
 return fmt.Sprintf(
. "Area is %v Circumference is %v",
 c.Area(), c.Circumference())
}

Now when you print out a variable of type Circle using the fmt.Println()
function:

func main() {
 c1 := Circle{radius: 5, name: "c1"}
 fmt.Println(c1)
}

You see something like this:

Area is 78.53981633974483 Circumference is
31.41592653589793

Using an empty interface
In Go, an interface that has zero methods is called an empty interface. An empty
interface is represented as follows:

interface{}

An empty interface has no methods, so all types actually implement the empty
interface. An empty interface is useful when you want to handle data of unknown
type. For example, you can have a function that accepts a parameter of type
interface{}:

func doSomething(i interface{}) {
 fmt.Println(i)
}

When you call the function, you can pass in arguments of any type:

doSomething("Hi!") // string
doSomething(3.14) // float
doSomething([]int{3, 4}) // array

162 PART 2 Working with Data Structures

Determining whether a value implements
a specific interface
Sometimes you want to check if a type implements a particular interface. For
example, you want to check if a particular type implements the Shape interface. If
it does, you can then call its Area() function. Using the example of the Circle
type, assume that you have a variable of type Circle:

c1 := Circle{radius: 5, name: "c1"}

Next, assign c1 to an empty interface:

var v interface{} = c1

You can then use type assertion to gain access to an interface value’s underlying
concrete value. To check if c1 implements the Shape interface, assert it as Shape:

v, ok := v.(Shape)

Type assertion allows you to test if a value stored in an interface variable is of a
particular type. For example, the following statement asserts that x is not nil and
that the value stored in x is of type T:

x.(T)

The type assertion returns two values: the underlying value and a result indicating
whether the assertion succeeded. If the assertion returns a true, it means the c1
implements the Shape interface, so you can call its Area() function:

 if ok {
 fmt.Println(v.Area())
 }

If the assertion returns a false, it means that either v is nil or it does not imple-
ment the Shape interface.

3Multitasking
in Go

IN THIS PART . . .

Perform concurrent operations in Go using Goroutines.

See how Goroutines communicate using channels.

CHAPTER 11 Threading Using Goroutines 165

Chapter 11
Threading Using
Goroutines

In the previous chapters, all the Go statements that I show you are executed
sequentially: A statement will execute only after the previous statement has fin-
ished executing. However, in real life, we often do things concurrently — for

example, you can be driving and at the same time listening to a podcast, a reception-
ist can answer the phone while greeting visitors in a busy reception area, and so on.

In programming, concurrent programming is a technique that allows you to per-
form multiple tasks at the same time. Concurrent programming often requires the
use of constructs such as threads and locks to perform synchronization and pre-
vent deadlocks. It’s complex.

In Go, goroutines are functions that run concurrently with other functions. When
you use goroutines, your program will be more responsive. You might use gorou-
tines when performing tasks that deal with different input sources. For example,
your program may need to interact with the users and at the same time need to
communicate with backend servers through the network. Because network
accesses typically incur significant network latency, it’s common to run the func-
tion that accesses the network concurrently as a goroutine.

For readers who are already familiar with threading in other programming lan-
guages, think of goroutines as lightweight threads.

IN THIS CHAPTER

»» Getting acquainted with goroutines

»» Working with goroutines when you
have shared resources

»» Getting goroutines synchronized

166 PART 3 Multitasking in Go

In this chapter, I explain the basics of goroutines and how you can synchronize
them. You find out how goroutines work, how to safely share resources among
goroutines, as well as how to synchronize goroutines.

Understanding Goroutines
The best way to understand goroutines is to use an example. Consider the follow-
ing program:

package main

import (
 "fmt"
 "time"
)

func say(s string, times int) {
 for i := 0; i < times; i++ {
 // inject a 100 ms delay
 time.Sleep(100 * time.Millisecond)
 fmt.Println(i, s)
 }
}

func main() {
 say("Hello", 3)
 say("World", 2)
}

In this program, you have a function named say(), which takes in two arguments:
a string to print on the console and the number of times the string must be printed.
In the main() function, you call the say() function two times: first with the string
"Hello", and again with the string "World".

When you run the program, you see the following output:

0 Hello
1 Hello
2 Hello
0 World
1 World

CHAPTER 11 Threading Using Goroutines 167

This is what you expected because the first call to the say() function must end
before the second call can proceed. But what if you want to make the two calls run
concurrently? If you’re a seasoned developer, you’re familiar with a concept
known as threading, which allows you to implement concurrent operations —
multiple functions can all be running at the same time. To call the say() function
concurrently in Go, you use goroutines.

In Go, a goroutine is a lightweight thread managed by the Go runtime. To run a
function as a goroutine, simply call it using the go keyword:

func main() {
 go say("Hello", 3)
 go say("World", 2)
 fmt.Scanln()
}

The first statement calls the say() function as a goroutine. Essentially, it means
“Run the say() function independently and immediately return control back to
the calling statement.” The second statement does the same. Now you have two
separate instances of the say() function running concurrently. The result may
appear like this (you may get a different result):

0 World
0 Hello
1 World
1 Hello
2 Hello

Each time you run this program, you may get a slightly different sequence of the
words printed. This is because the Go runtime manages how this function runs,
and you have no control over which is printed first. Notice that the main() func-
tion has the following statement:

fmt.Scanln()

Without this statement, you’d most likely be unable to see any outputs. This is
because each time a goroutine is called, the control is immediately returned back
to the calling statement. Without the Scanln() function to wait for user input, the
program automatically terminates after the second goroutine is called. After the
program is terminated, all goroutines are also terminated and no output will ever
be printed.

If the main() function is terminated, all the goroutines currently running will also
be terminated.

168 PART 3 Multitasking in Go

Using Goroutines with Shared Resources
Although goroutines makes it really easy for you to perform concurrent opera-
tions, you have to use them with care when your goroutines access shared
resources (such as variables). For example, two Goroutines may concurrently
access a single variable — one crediting some amount to it and another one debit-
ing from it. It’s important to ensure that when one Goroutine is adding values to
the variable, another one is prevented from accessing it until the other Goroutine
is done with it.

In the following sections, I explain the problems posed by multiple Goroutines
trying to access the same shared resource, as well as the various techniques that
you can use to resolve them.

Seeing how shared resources
impact goroutines
Consider the following program where you have two functions:

»» The credit() function adds 100 to balance a total of five times.

»» The debit() function deducts 100 from balance a total of five times.

You called the credit() and debit() functions simultaneously as goroutines.

package main

import (
 "fmt"
 "math/rand"
 "time"
)

var balance int

func credit() {
 for i := 0; i < 5; i++ {
 balance += 100
 time.Sleep(time.Duration(rand.Intn(100)) *
 time.Millisecond)
 fmt.Println("After crediting, balance is",
 balance)
 }
}

CHAPTER 11 Threading Using Goroutines 169

func debit() {
 for i := 0; i < 5; i++ {
 balance -= 100
 time.Sleep(time.Duration(rand.Intn(100)) *
 time.Millisecond)
 fmt.Println("After debiting, balance is", balance)
 }
}

func main() {
 balance = 200
 fmt.Println("Initial balance is", balance)
 go credit()
 go debit()
 fmt.Scanln()
}

When you run the program, you may see something like the following:

Initial balance is 200
After crediting, balance is 200
After debiting, balance is 300
After crediting, balance is 200
After debiting, balance is 300
After debiting, balance is 200
After debiting, balance is 100
After crediting, balance is 0
After debiting, balance is 100
After crediting, balance is 100
After crediting, balance is 200

Notice anything wrong? The most obvious error is in the second line. If you look
at the first line, the initial balance is 200. On the second line, it says that, after
crediting, the balance is still 200? It should be 300. Why is it wrong?

After crediting the balance by 100 (where the balance should now be updated to
300), there was a delay of a random amount of time before the balance could be
printed on the console. In the midst of this delay, the debit() function had a
chance to deduct 100 from the balance (where the balance now would become 200).
When the turn comes for the credit() function to continue printing the balance,
it would now see 200 instead of 300. Figure 11-1 summarizes this flow of events.

170 PART 3 Multitasking in Go

Although the final balance is 200, which is expected, this program is still not safe
because the balance is not correctly printed during the process.

A more concerning situation might arise when the credit() function tries to
increment the value of balance (which is initially 200) by 100. Before the incre-
mented value (which should be 300) can be written to balance, the debit() func-
tion tries to decrement the balance (which it currently sees as 200) by 100. And
before this decremented value can be written to balance, the credit() function
now tries to write the value of 300 to balance. And finally, when the debit()
function gets to execute it will now write the value of 100 to balance. The end
result is that the balance variable is now in an inconsistent state (see
Figure 11-2).

Time

main()
 balance = 200

balance: 200

balance: 300

balance: 200

credit()
 balance += 100

credit()
 fmt.Println(“After debiting, balance is”, balance)

debit()
 balance –= 100

FIGURE 11-1:
The flow of the

various functions
running as

goroutines.

Time

main()
 balance = 200

balance: 200

200 + 100

200 – 100

credit()
 balance += 100

debit()
 balance –= 100

balance: 300

balance: 100

Writes the
incremented value of

300 to balance

Writes the
decremented value of

100 to balance

FIGURE 11-2:
The new value of
balance may not
have a chance to

be updated
before its new

value is used by
another

goroutine.

CHAPTER 11 Threading Using Goroutines 171

Accessing shared resources using
mutual exclusion
As you can see from the previous section, when you have goroutines that access
the same variable, it’s important to make sure that only one goroutine can access
the variable at any one time. To do so, you need to use the concept of mutual exclu-
sion (also commonly known as mutex).

To implement mutual exclusion, Go’s standard library provides the Mutex type (a
struct) in the sync package. A Mutex is a mutual exclusion lock. A mutual exclusion
lock is a technique to ensure exclusive access to shared data between threads of
execution. When one Goroutine gains the mutual exclusion lock, other Goroutines
need to wait until the lock is released.

The following program shows how you can use a Mutex object to enclose blocks of
code to ensure that when one block is being executed by a goroutine, another
block can’t execute it:

package main

import (

 "fmt"

 "math/rand"

 "sync"

 "time"

)

var balance int

var mutex = &sync.Mutex{}

func credit() {

 for i := 0; i < 5; i++ {
 mutex.Lock()

 balance += 100
 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 fmt.Println("After crediting, balance is", balance)

 mutex.Unlock()

 }

}

func debit() {

 for i := 0; i < 5; i++ {
 mutex.Lock()

 balance -= 100

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

172 PART 3 Multitasking in Go

 fmt.Println("After debiting, balance is", balance)

 mutex.Unlock()

 }

}

func main() {

 balance = 200

 fmt.Println("Initial balance is", balance)

 go credit()

 go debit()

 fmt.Scanln()

}

The Lock() and Unlock() functions of a Mutex object allows you to mark the start
and end of a critical section (where not more than one goroutine can execute at the
same time).

While one goroutine holds the lock, all other goroutines are prevented from exe-
cuting any lines of code protected by the same mutex, and are forced to wait until
the lock is unlocked before they can proceed.

The preceding program will now credit, debit, and print the balance variable
correctly:

Initial balance is 200
After crediting, balance is 300
After crediting, balance is 400
After debiting, balance is 300
After crediting, balance is 400
After crediting, balance is 500
After debiting, balance is 400
After debiting, balance is 300
After crediting, balance is 400
After debiting, balance is 300
After debiting, balance is 200

Using atomic counters for modifying
shared resources
In addition to using the Mutex object for marking critical sections, you can per-
form changes to shared variables in a thread-safe manner using atomic counters
(routines that allow you to perform mathematical operations on variables one
thread at a time). The atomic package provides low-level atomic memory primi-
tives useful for implementing synchronization algorithms. So, instead of using

CHAPTER 11 Threading Using Goroutines 173

the Mutex object to ensure that the balance variable is credited or debited cor-
rectly, use the AddInt64() function, like the following statements in bold:

package main

import (

 "fmt"

 "math/rand"

 "sync"

 "sync/atomic"

 "time"

)

var balance int64

func credit() {

 for i := 0; i < 10; i++ {
 // adds 100 to balance atomically

 atomic.AddInt64(&balance, 100)

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 }

}

func debit() {

 for i := 0; i < 5; i++ {
 // deducts -100 from balance atomically

 atomic.AddInt64(&balance, -100)

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 }

}

func main() {

 balance = 200

 fmt.Println("Initial balance is", balance)

 go credit()

 go debit()

 fmt.Scanln()

 fmt.Println(balance)

}

The AddInt64() function atomically adds a value to the specified variable (in
which you pass the address of the variable to be modified using the & operator)
and returns the new value. The AddInt64() function ensures that when one
Goroutine is adding a value to the specified variable, no other Goroutine is allowed

174 PART 3 Multitasking in Go

to modify the specified variable until the addition operation is done. It works just
like the mutual exclusion lock example discussed in the previous section, without
the need to call the Lock() and Unlock() functions of a Mutex object.

Note that the preceding code credits the balance variable ten times.

The preceding program prints out the following output:

Initial balance is 200
<Press enter after a while>
700

In this example, you only print out the balance after the two goroutines have fin-
ished crediting and debiting the values in the balance variable. If you want to
print the balance in the credit() and debit() functions (as in the previous sec-
tion), you have to use the Mutex object to ensure that immediately after crediting
or debiting, the correct balance is printed.

Synchronizing Goroutines
When you have multiple Goroutines all running at the same time, you need to be
able to synchronize them so that you have a way to coordinate the execution of
your code. For example, you may have two Goroutines fetching data from differ-
ent web services, and you need to ensure that these two Goroutines finish execu-
tion before you go ahead with the next block of code. In this scenario, there must
be a way for you to know when the Goroutines are done.

If you check out the code snippets in the previous section, you see that there is a
Scanln() function near the end of the main() function:

func main() {
 balance = 200
 fmt.Println("Initial balance is", balance)
 go credit()
 go debit()
 fmt.Scanln()
 fmt.Println(balance)
}

If you don’t have the Scanln() function, the main() function will immediately exit
after calling the two goroutines, and the balance printed will not be the correct
final result.

CHAPTER 11 Threading Using Goroutines 175

The solution to this problem? Wait groups.

When you have multiple goroutines running and you want to know when they’ve
completed, you can use a wait group. To use a wait group, you first create a variable
of type sync.WaitGroup, like this:

var wg sync.WaitGroup

Now when you call a goroutine, simply call the wg.Add() function to add 1 to the
WaitGroup counter:

wg.Add(1) // add 1 to the WaitGroup counter

When the goroutine that you’ve called has finished execution, call the wg.Done()
function to decrement the WaitGroup counter by 1:

wg.Done() // decrement 1 from the WaitGroup counter

When you want to wait for the completion of all goroutines, use the wg.Wait()
function:

wg.Wait() // blocks until WaitGroup counter is 0

The Wait() function blocks until the WaitGroup counter is 0. As soon as the Wait-
Group counter reaches 0, this means that all goroutines have been completed and
you can continue executing all ensuing statements.

Now that you understand how the WaitGroup works, let me show you how it can
be applied to the earlier example:

package main

import (

 "fmt"

 "math/rand"

 "sync"

 "sync/atomic"

 "time"

)

var balance int64

176 PART 3 Multitasking in Go

func credit(wg *sync.WaitGroup) {

 // notify the WaitGroup when we are done

 defer wg.Done()

 for i := 0; i < 10; i++ {
 // adds 100 to balance atomically

 atomic.AddInt64(&balance, 100)

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 }

}

func debit(wg *sync.WaitGroup) {

 // notify the WaitGroup when we are done

 defer wg.Done()

 for i := 0; i < 5; i++ {
 // deducts -100 from balance atomically

 atomic.AddInt64(&balance, -100)

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 }

}

func main() {

 var wg sync.WaitGroup

 balance = 200

 fmt.Println("Initial balance is", balance)

 wg.Add(1) // add 1 to the WaitGroup counter

 go credit(&wg)

 wg.Add(1) // add 1 to the WaitGroup counter

 go debit(&wg)

 wg.Wait() // blocks until WaitGroup counter is 0

 fmt.Println("Final balance is", balance)

}

In this example, I’m doing the following:

»» Creating a WaitGroup object

»» Calling the wg.Add() function to increment the WaitGroup counter prior to
calling the credit() goroutine

»» Calling the wg.Add() function to increment the WaitGroup counter prior to
calling the debit() goroutine

CHAPTER 11 Threading Using Goroutines 177

»» Calling the wg.Done() function in the credit() and debit() functions when
I’m done either crediting or debiting the balance variable

»» Calling the wg.Wait() function to wait for the completion of the two
goroutines

When the two goroutines are finally done, the WaitGroup counter becomes zero,
and all statements blocked on wg.Wait() are released. The program will now print
out the balance:

Initial balance is 200
Final balance is 700

If you want to print out the interim balance in the goroutines, you can use the
Mutex object to mark out the critical section as you did earlier:

package main

import (

 "fmt"

 "math/rand"

 "sync"

 "sync/atomic"

 "time"

)

var balance int64

var mutex = &sync.Mutex{}

func credit(wg *sync.WaitGroup) {

 // notify the WaitGroup when we are done

 defer wg.Done()

 for i := 0; i < 10; i++ {
 mutex.Lock()

 // adds 100 to balance atomically

 atomic.AddInt64(&balance, 100)

 fmt.Println("After crediting, balance is", balance)

 mutex.Unlock()

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 }

}

func debit(wg *sync.WaitGroup) {

 // notify the WaitGroup when we are done

 defer wg.Done()

178 PART 3 Multitasking in Go

 for i := 0; i < 5; i++ {
 mutex.Lock()

 // deducts -100 from balance atomically

 atomic.AddInt64(&balance, -100)

 fmt.Println("After debiting, balance is", balance)

 mutex.Unlock()

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)

 }

}

func main() {

 var wg sync.WaitGroup

 balance = 200

 fmt.Println("Initial balance is", balance)

 wg.Add(1)

 go credit(&wg)

 wg.Add(1)

 go debit(&wg)

 wg.Wait()

 fmt.Println("Final balance is", balance)

}

Now you see the following output:

Initial balance is 200
After debiting, balance is 100
After crediting, balance is 200
After debiting, balance is 100
After crediting, balance is 200
After debiting, balance is 100
After crediting, balance is 200
After crediting, balance is 300
After crediting, balance is 400
After debiting, balance is 300
After crediting, balance is 400
After crediting, balance is 500
After debiting, balance is 400
After crediting, balance is 500
After crediting, balance is 600
After crediting, balance is 700
Final balance is 700

CHAPTER 12 Communicating between Goroutines Using Channels 179

Chapter 12
Communicating
between Goroutines
Using Channels

In Chapter 11, I introduce you to goroutines, one of the key features of the Go
programming language. Goroutines are executed independently of one another
and are a great way to implement concurrent programming. However, very

often, goroutines need a way to communicate with each other in order to work
properly. In Go, you can get goroutines to communicate with one another through
pipes known as channels. In this chapter, I show you how channel works.

Understanding Channels
In Go, channels are the pipes that connect concurrent goroutines. You can send
values into channels from one goroutine and receive those values in another
goroutine. Think of channels as temporary storage for passing values between
goroutines.

IN THIS CHAPTER

»» Working with channels

»» Using for-range loops on channels

»» Using the select statement on
channels

»» Working with unbuffered channels

180 PART 3 Multitasking in Go

To create a channel, you use the make() function, together with the chan keyword
and the type of data that you want the channel to store for you, like this:

ch := make(chan int)

To send a value into the channel, you use the <- operator. The following example
writes the value 5 into the ch channel:

ch <- 5

To retrieve a value from the channel, simply put the channel variable to the right
of the <- operator. The following example retrieves a value from the ch channel
and assigns it to a variable named value:

value := <- ch

In the following sections, I give you an example of how channels work and show
you some uses for channels.

How channels work
To understand how channels work, let’s start off with a very simple example.
Consider the following program, where you have two functions — sendData()
and getData():

package main

import (
 "fmt"
 "time"
)

//---send data into a channel---
func sendData(ch chan string) {
 fmt.Println("Sending a string into channel...")
 time.Sleep(2 * time.Second)
 ch <- "Hello"
}

//---getting data from the channel---
func getData(ch chan string) {
 fmt.Println("String retrieved from channel:", <-ch)
}
func main() {
 ch := make(chan string)

CHAPTER 12 Communicating between Goroutines Using Channels 181

 go sendData(ch)
 go getData(ch)

 fmt.Scanln()
}

In the main() function, you first create a channel using the make() function, ch,
with the type of channel specified (string). This means that the channel can only
contain values of type string. You then call the sendData() and getData() func-
tions as goroutines. In the sendData() function, you first print out the sentence
Sending a string into channel. . . After a delay of two seconds, you insert a string into
the channel using the <- operator.

If the channel variable is to the left of the <- operator, you’re sending a value into
the channel. If the channel variable is to the right of the <- operator, you’re receiv-
ing a value from the channel.

At the same time, when you run the sendData() function, you’re also running the
getData() function. Here, with getData(), you’re trying to receive a value from
the channel. Because there is currently no value in the channel (it won’t have any
value in it until two seconds later), the getData() function will block. The moment
a value is available in the channel, the getData() function will unblock and
retrieve the value from the channel. Hence, the output of the program will look
like this:

Sending a string into channel...
[After a two-second delay]
String retrieved from channel: Hello

For this example, the type of channel you’re creating is known as an unbuffered
channel. In an unbuffered channel, the sender blocks until the value has been
received by a receiver.

When you try to retrieve a value from a channel and there is no value available,
your code will block.

Let’s now make the following changes to the program (shown in bold):

package main

import (
 "fmt"
 "time"
)

182 PART 3 Multitasking in Go

//---send data into a channel---
func sendData(ch chan string) {
 fmt.Println("Sending a string into channel...")
 // comment out the following line
 // time.Sleep(2 * time.Second)

 ch <- "Hello"
 fmt.Println("String has been retrieved from channel...")
}

//---getting data from the channel---
func getData(ch chan string) {
 time.Sleep(2 * time.Second)
 fmt.Println("String retrieved from channel:", <-ch)
}

func main() {
 ch := make(chan string)

 go sendData(ch)
 go getData(ch)

 fmt.Scanln()
}

Notice that in the sendData() function, you try to print a sentence immediately
after sending a value into the channel. In the getData() function, you insert a
two-second delay before you retrieve the value from the channel.

Let’s run the program and see the output:

Sending a string into channel...
[After a two-second delay...]
String retrieved from channel: Hello
String has been retrieved from channel...

Notice that immediately after sending a value into the channel, the sendData()
function is blocked. It will only resume after the value in the channel is retrieved
by the getData() function.

CHAPTER 12 Communicating between Goroutines Using Channels 183

When you send a value into an unbuffered channel, your code will block until the
value is retrieved from the channel.

How channels are used
When you know how a channel works, you probably want to see some of the prac-
tical uses of channels and why you would want to use them in the first place.

Suppose you have a function named sum() that sums up a slice of integer values:

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

The first argument to the sum() function is a slice of int values; the second argu-
ment is a channel of type int. When the numbers in the array have been summed
up, the sum is written to the channel.

To use the sum() function, let’s now generate ten random numbers and assign it
to a variable named s:

func main() {
 s := []int{}
 sliceSize := 10
 for i := 0; i < sliceSize; i++ {
 s = append(s, rand.Intn(100))
 }
}

If you try out this program, you’ll realize that the random numbers are always the
same. To get different random numbers every time you run the program, use the
rand.Seed() function, which uses the provided seed value to initialize the gen-
erator to a deterministic state:

rand.Seed(time.Now().UnixNano())

Although I only have ten items in this array, imagine if you had a million items. It
would take some time to sum up all the numbers in the slide. So, it would be a
good idea to split the numbers into smaller groups and use goroutines to sum
them up concurrently.

184 PART 3 Multitasking in Go

In this example, I’ll split this slice into five parts, take each part and pass it to the
sum() function together with the channel c, and call it as a goroutine:

func main() {
 s := []int{}
 sliceSize := 10
 for i := 0; i < sliceSize; i++ {
 s = append(s, rand.Intn(100))
 }

 c := make(chan int)
 partSize := 2
 parts := sliceSize / partSize
 i := 0
 for i < parts {
 go sum(s[i*partSize:(i+1)*partSize], c)
 i += 1
 }
}

Essentially, I’m breaking up the array into five parts and trying to sum each part
concurrently. As each goroutine finishes the summing process, it writes the par-
tial sum to the channel, as shown in Figure 12-1.

81,87,47,59,81,18,25,40,56,0
Order of

insertion into
channel

Value can only be inserted
into the channel when the
previous value is retrieved

65
…

…

…

…

168

106

56

99

c

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

func sum(s []int, c chan int) {
 sum := 0
 for _, v := range s {
 sum += v
 }
 c <- sum
}

FIGURE 12-1:
Each goroutine

tries to send
the partial sum to

the channel.

CHAPTER 12 Communicating between Goroutines Using Channels 185

Channels behave like queues: All items are retrieved in the same order that they
were written (first in, first out). As each goroutine writes to the channel, it’s
blocked until its values in the channels are received.

After the first goroutine has sent a value into the channel, it’s blocked until the
value is retrieved from the channel. Meanwhile, the other four goroutines trying
to also send in values to the channel will be blocked until the value is removed
from the channel. They get the chance to send a value into the channel on a first-
come, first-served basis.

Because you know that you have five separate goroutines (and, therefore, a total
of five values to be written to the channel), you can write a loop and try to extract
the values in the channel:

func main() {
 s := []int{}
 sliceSize := 10
 for i := 0; i < sliceSize; i++ {
 s = append(s, rand.Intn(100))
 }

 c := make(chan int)
 partSize := 2
 parts := sliceSize / partSize
 i := 0
 for i < parts {
 go sum(s[i*partSize:(i+1)*partSize], c)
 i += 1
 }

 i = 0
 total := 0
 for i < parts {
 partialSum := <-c // read from channel
 fmt.Println("Partial Sum: ", partialSum)
 total += partialSum
 i += 1
 }
 fmt.Println("Total: ", total)
 fmt.Scanln()
}

Each value in the channel represents the partial sum of the values in each array.
It’s important to remember that when you send a value into an unbuffered chan-
nel, the goroutine is blocked until the value is received by another function/

186 PART 3 Multitasking in Go

goroutine. Likewise, when you’re reading a value from a channel, your code is
blocked until the data is read from the channel. If the goroutines are taking a long
time to sum up, the preceding code snippet will block until all the partial sums are
retrieved.

Iterating through Channels
In the previous section, I knew that there were five goroutines trying to calculate
the sum of a series of numbers and that each result was going to be sent to the
channel. So, I tried to read from the channel five times and sum up the partial
totals. However, in some situations, you may not know in advance how many val-
ues there may be in the channel. This is where the range keyword comes in handy.

Consider the following example:

package main

import (

 "fmt"

 "time"

)

func fib(n int, c chan int) {

 a, b := 1, 1

 for i := 0; i < n; i++ {
 c <- a // blocked until value is received from channel

 a, b = b, a + b
 time.Sleep(1 * time.Second)

 }

 close(c) // close the channel

}

func main() {

 c := make(chan int)

 go fib(10, c)

 for i := range c { // read from channel until channel is closed

 fmt.Println(i)

 }

}

In this example, you have a function named fib() that takes in two arguments —
the number of elements to generate for the Fibonacci sequence, and the channel
to store the numbers in. Each number of the Fibonacci sequence is calculated and

CHAPTER 12 Communicating between Goroutines Using Channels 187

then sent into the channel. I’ve added a delay of one second for each number to
simulate some delay. As each Fibonacci number is being generated and inserted
into the channel, the fib() function blocks until the value is retrieved from the
channel. After generating all the required Fibonacci numbers, you close the chan-
nel (using the close() function) to indicate that the channel is no longer accept-
ing values.

For an unbuffered channel, after a value is sent to the channel, the sender blocks
until the value is retrieved from the channel.

In the main() function, you first create an instance of the channel using the
make() function, and then proceed to call the fib() function as a goroutine —
generating the first ten Fibonacci numbers.

You use the range keyword on the c channel to keep on reading values until the
channel is closed. You should now see the following output:

1
1
2
3
5
8
13
21
34
55

It’s important to note that the range keyword will continuously read values from
a channel repeatedly until the channel is closed. Failure to close the channel will
cause a fatal error: all goroutines are asleep - deadlock! error.

Asynchronously Waiting on Channels
In the real world, you may have a few goroutines running and simultaneously
sending values into different channels. Consider the following example:

package main

import (
 "fmt"
 "time"
)

188 PART 3 Multitasking in Go

func fib(n int, c chan int) {
 a, b := 1, 1
 for i := 0; i < n; i++ {
 c <- a
 a, b = b, a+b
 time.Sleep(2 * time.Second)
 }
 close(c)
}

func counter(n int, c chan int) {
 for i := 0; i < n; i++ {
 c <- i
 time.Sleep(1 * time.Second)
 }
 close(c)
}

func main() {
 c1 := make(chan int)
 c2 := make(chan int)

 go fib(10, c1) // generate 10 fibo nums
 go counter(10, c2) // generate 10 numbers

 for i := range c1 {
 fmt.Println("fib()", i)
 }

 for i := range c2 {
 fmt.Println("counter()", i)
 }
}

In this example, you call the fib() and counter() functions as goroutines. These
two goroutines independently write values into two different channels: c1 and c2.
As usual, I’ve inserted delay statements in both functions to simulate different
speeds in which the values are written into the channels. When the functions are
done, the channels are closed.

Next, you range the channels to print out the values in the two channels. You
should see the following:

CHAPTER 12 Communicating between Goroutines Using Channels 189

fib() 1
fib() 1
fib() 2
fib() 3
fib() 5
fib() 8
fib() 13
fib() 21
fib() 34
fib() 55
counter() 0
counter() 1
counter() 2
counter() 3
counter() 4
counter() 5
counter() 6
counter() 7
counter() 8
counter() 9

But there is one problem here. Notice that all the numbers generated by the fib()
function are printed before those generated by the counter() function are printed.
This is because the first for loop needs to complete before the second for loop can
commence.

Ideally, the numbers should be printed whenever they’re available. Moreover, the
numbers generated by the counter() function should be printed earlier because
the delay is shorter than it is with the fib() function.

To solve this problem, you can use a for loop, together with the select state-
ment, like the following statements in bold:

func main() {

 c1 := make(chan int)

 c2 := make(chan int)

 go fib(10, c1) // generate 10 Fibonacci numbers

 go counter(10, c2) // generate 10 numbers

 c1Closed := false

 c2Closed := false

 for {

 select {

190 PART 3 Multitasking in Go

 case n, ok := <-c1:

 if !ok {

 // channel closed and drained

 c1Closed = true

 if c1Closed && c2Closed {

 return

 }

 } else {

 fmt.Println("fib()", n)

 }

 case m, ok := <c2:

 if !ok {

 // channel closed and drained

 c2Closed = true

 if c1Closed && c2Closed {

 return

 }

 } else {

 fmt.Println("counter()", m)

 }

 }

 }

}

In each case block, you retrieve a value from the respective channel. Note that in
this example, you retrieve the value from the channel and assign it to a pair of
variables:

n, ok := <-c1

The first variable contains the value retrieved from the channel, while the second
variable contains a Boolean value to indicate if the retrieving is successful. If the
value is false, this indicates that the channel is already closed. The preceding
statements will retrieve the values from both channels until both channels are
closed. You should now see the following results:

fib() 1
counter() 0
counter() 1
fib() 1
counter() 2
counter() 3
fib() 2
counter() 4

CHAPTER 12 Communicating between Goroutines Using Channels 191

counter() 5
fib() 3
counter() 6
counter() 7
fib() 5
counter() 8
counter() 9
fib() 8
fib() 13
fib() 21
fib() 34
fib() 55

Note that when both channels are closed, the main function will exit, as indicated
by the return statement. If you want to perform some other functions in the
main() function while at the same time retrieving the values from the two chan-
nels, run the for loop as a goroutine:

func main() {

 c1 := make(chan int)

 c2 := make(chan int)

 go fib(10, c1)

 go counter(10, c2)

 c1Closed := false

 c2Closed := false

 go func() {

 for {

 select {

 case n, ok := <-c1:

 ...

 case m, ok := <-c2:

 ...

 }

 }

 }()

 fmt.Println("Continue to do something else...")

 fmt.Scanln() // needed here to prevent the program from existing before all

 // the channel values are read

}

192 PART 3 Multitasking in Go

Using Buffered Channels
So far, all my discussion on channels has centered on unbuffered channels. When
you send a value to an unbuffered channel, your code will block until the value is
received from the channel. Likewise, when you read from an unbuffered channel,
your code will block until a value is available and retrieved from the channel.

A buffered channel, on the other hand, allows multiple values to be stored in the
channel. Your code will only block when you try to send a value to a channel that
is full or when you try to read from an empty channel.

To create a buffered channel, provide the buffer length as the second argument to
the make() function when you initialize a channel:

c := make(chan int, 10)

This statement creates a buffered channel with buffer size 10. In other words, the
channel can contain up to ten values before the sending code will block. An unbuf-
fered channel is equivalent to a buffered channel of length 0:

c := make(chan int, 0) // unbuffered channel

So, when do you use a buffered channel? Buffered channels are useful if the send
rate is higher than the retrieval rate. Or when you want the sender to continue
execution after a value has been sent to the channel without waiting for the value
to be retrieved.

Using the example from earlier, where you compute the sum of a slice of numbers,
you can now create a buffered channel of length 5:

func sum(s []int, c chan int) {

 sum := 0

 for _, v := range s {

 sum += v
 }

 c <- sum

 fmt.Println("Done and can continue to do other work")

}

func main() {

 s := []int{}

 sliceSize := 10

CHAPTER 12 Communicating between Goroutines Using Channels 193

 for i := 0; i < sliceSize; i++ {
 s = append(s, rand.Intn(100))

 }

 c := make(chan int, 5) // buffered channel of length 5

 partSize := 2

 parts := sliceSize / partSize

 i := 0

 for i < parts {

 go sum(s[i*partSize:(i+1)*partSize], c)
 i += 1
 }

 i = 0

 total := 0

 time.Sleep(1 * time.Second) // simulate retrieving at a later time

 for i < parts {

 partialSum := <-c // read from channel

 fmt.Println("Partial Sum: ", partialSum)

 total += partialSum
 i += 1
 }

 fmt.Println("Total: ", total)

 fmt.Scanln()

}

When you run the program, you’ll now see that after summing up the partial slice
of numbers, the sum() function won’t be blocked and can continue to execute
other tasks:

Done and can continue to do other work
Done and can continue to do other work
Done and can continue to do other work
Done and can continue to do other work
Done and can continue to do other work
Partial Sum: 168
Partial Sum: 99
Partial Sum: 56
Partial Sum: 106
Partial Sum: 65
Total: 494

As an exercise, try to reduce the length of the channel and notice the output.

4Organizing
Your Code

IN THIS PART . . .

Bundle your code into packages.

Group your packages using modules.

CHAPTER 13 Using and Creating Packages in Go 197

Chapter 13
Using and Creating
Packages in Go

Go uses the concept of packages to better organize code for reusability and
readability. In earlier chapters, I show you how to use some of the built-in
packages like fmt, strconv, math, and time in your Go application. In this

chapter, I dig into the topic of packages in more detail. I show you how to create
your own packages for your own use, as well as create packages for sharing.
Finally, I explain how to install third-party packages on your system.

Working with Packages
If you’ve read the earlier chapters in this book, you know that Go applications
always have this first statement:

package main

Go organizes code into units call packages. A package is made up of a collection of
files. The main package is a special package that contains the main() function,
which makes the main package an executable program. The main() function
serves as the entry point to your application.

IN THIS CHAPTER

»» Knowing what a package is and how
it works

»» Using packages created by third
parties

198 PART 4 Organizing Your Code

All files in a package must be in the same directory, and all package names must
all be in lowercase.

Let’s take a look at an example. Suppose you have a directory named my_app in
your home directory, and in that directory is a file named main.go:

$HOME
 |__my_app
 |__main.go

The content of the main.go file looks like this:

package main

import (
 "fmt"
 "math"
)

type Point struct {
 X float64
 Y float64
}

func (p Point) length() float64 {
 return math.Sqrt(math.Pow(p.X, 2.0) + math.Pow(p.Y, 2.0))
}

func main() {
 pt1 := Point{X: 2, Y: 3}
 fmt.Println(pt1)
 fmt.Println(pt1.length())
}

The file that contains the main() function is usually named main.go, but this
naming convention isn’t mandatory — you can use any name you like.

Notice that the package is named main, so it has the main() function. You can
extract the definition of the Point struct, as well as its method length() to
another file (say, point.go), and put it in the same directory as main.go:

$HOME
 |__my_app
 |__main.go
 |__point.go

CHAPTER 13 Using and Creating Packages in Go 199

The point.go file now looks like this:

package main

import (
 "math"
)

type Point struct {
 X float64
 Y float64
}

func (p Point) length() float64 {
 return math.Sqrt(math.Pow(p.X, 2.0) + math.Pow(p.Y, 2.0))
}

It’s always useful to logically separate your code into as many files as needed. This
will make maintenance of your code easier.

Make sure that the first line still uses the same main package name. With the
Point struct and the length() method removed, main.go now looks like this:

package main

import (
 "fmt"
)

func main() {
 pt1 := Point{X: 2, Y: 3}
 fmt.Println(pt1)
 fmt.Println(pt1.length())
}

Because these two files — main.go and point.go — both reside in the same
directory and have the same package name (main), they belong to the same pack-
age. To run the preceding application, type the following commands in Terminal
or Command Prompt:

$ cd ~/my_app
$ go run *.go
{2 3}
3.605551275463989

200 PART 4 Organizing Your Code

Note that you use go run *.go instead of go run main.go. You’re now telling the
Go compiler to search all the Go files for the main package with the main() func-
tion (because you’ve now divided the package into multiple physical files). Note
that for Windows users, you need to use go run .

Figure 13-1 shows the main package with two physical files.

For the preceding example to work, you need to ensure:

»» Both files are in the same directory.

»» Both packages have the same package name (main).

»» One of the files has a main() function.

In the following sections, I show you how to create shareable packages and how to
organize them into folders.

Creating shareable packages
In the previous section, I explain that your main package can be split into two
physical files: main.go and point.go. The aim of putting the code for the Point
struct and the Length() functions into a separate file is to allow you to separate
and reuse the code. However, you can only reuse this code in the main package.

Imagine you’re writing another program, and you also need to use the functions
inside the point.go file. One way to do this would be to copy the point.go file
into the same folder as your new project. The problem is, this approach isn’t effi-
cient. Plus, eventually, you may want to upgrade or bug-fix the point.go file, and

main package

main.go point.go

FIGURE 13-1:
The main

package is made
up of two

physical files.

CHAPTER 13 Using and Creating Packages in Go 201

if each project has a separate copy of point.go, this will make updating a
nightmare.

A better idea would be to install point.go as a separate package that can be used
by other apps, just as the fmt package that you use for console operations (such as
printing) can be used by other apps.

To create a shareable package, first use the go env command to find out the loca-
tion of the GOPATH environment variable:

$ go env
GO111MODULE=""
GOARCH="amd64"
...
GONOSUMDB=""
GOOS="darwin"
GOPATH="/Users/weimenglee/go"
GOPRIVATE=""
...

In this example, the GOPATH is pointing to the go folder in my home directory (/
Users/weimenglee). Windows users should see their default GOPATH folder to be
C:\Users\<username>\go.

So, let’s now create a folder named src (if it doesn’t already exist). Within the src
folder, create another directory called geometry. Put the point.go file in the
geometry folder:

$GOPATH (which is /Users/weimenglee/go)
 |__src
 |__geometry
 |__point.go

Modify the package name in point.go to geometry:

package geometry

import (
 "math"
)

type Point struct {
 X float64
 Y float64
}

202 PART 4 Organizing Your Code

func (p Point) Length() float64 {
 return math.Sqrt(math.Pow(p.X, 2.0) + math.Pow(p.Y, 2.0))
}

Note that in this example, the first letter of the Length() function is capitalized.
In Go, any function name that starts with a capital letter can be accessed outside
the package, while any function name that does not start with a capital letter can
only be accessed internally, within the package. If the function is named length(),
it won’t be visible to other packages.

To install the package on the local computer, you need to change the directory to
the geometry directory and use the go install command, like this:

$ cd ~/go/src/geometry
$ go install

In the original main.go file, to use the Point struct you now need to import the
geometry package and, at the same time, prefix the Point struct with the geometry
package name, like this:

package main

import (
 "fmt"
 "geometry"
)

func main() {
 pt1 := geometry.Point{X: 2, Y: 3}
 fmt.Println(pt1)
 fmt.Println(pt1.Length())
}

To run the program, simply use the go run command:

$ go run main.go
{2 3}
3.605551275463989

Organizing packages using directories
In the preceding section, you created a package named geometry. But let’s assume
that you want to create different packages related to geometry. There are several
types of geometry (coordinate geometry, Euclidean geometry, analytic geometry,
and so on).

CHAPTER 13 Using and Creating Packages in Go 203

Let’s say the package you’ve created is related more to coordinate geometry, so it
would be a good idea to create a subdirectory under the geometry directory, and
then place the point.go under this new subdirectory, like this:

$GOPATH
 |__src
 |__geometry
 |__coordinate
 |__point.go

The point.go should now change its package name to coordinate:

// Package coordinate for coordinate geometry

package coordinate

import (

 "math"

)

// Point represents a point in the 2-D coordinate space

type Point struct {

 X float64

 Y float64

}

// Length calculates the length of point from the origin

func (p Point) Length() float64 {

 return math.Sqrt(math.Pow(p.X, 2.0) + math.Pow(p.Y, 2.0))
}

To install the package on the local computer, you need to change the directory to
the coordinate directory and use the go install command, like the following:

$ cd ~/go/src/geometry/coordinate
$ go install

The preceding ~/go directory refers to the folder pointed to by your GOPATH envi-
ronment variable.

204 PART 4 Organizing Your Code

In the original main.go file, in order to use the Point struct, you now need to
import the geometry/coordinate package. To use the Point struct, prefix it with
the last path of the package name, which is coordinate:

package main

import (
 "fmt"
 "geometry/coordinate"
)

func main() {
 pt1 := coordinate.Point{X: 2, Y: 3}
 fmt.Println(pt1)
 fmt.Println(pt1.Length())
}

Using Third-Party Packages
Go ships with a set of standard libraries for you to use in your program. These
libraries are adequate to address most of your basic programming needs. But
eventually, you’ll probably want to do more. Fortunately, Go has a very vibrant
developer community that creates and shares lots of useful third-party libraries.

Unlike languages like Python and JavaScript, where you can download third-party
packages from central repositories like PyPI (https://pypi.org) or npm (www.
npmjs.com), Go doesn’t have a centralized official package registry. Instead, you
fetch third-party packages through a hostname and path (think of GitHub).

To download and install packages, you use the go get command. The get com-
mand downloads the package named by the import paths, along with their depen-
dencies. In the following sections, you see two examples of installing third-party
packages: Emojis for Go and the Go Documentation package.

Emojis for Go
Want to add a little fun to your Go program? How about displaying some emojis?
For this, you can use a Go package located at https://github.com/hackebrot/
turtle that allows you to obtain emojis based on names. To install this package,
you simply use the go get command followed by the URL of the package (without
the https://), like this:

https://pypi.org/
https://www.npmjs.com/
https://www.npmjs.com/
https://github.com/hackebrot/turtle
https://github.com/hackebrot/turtle

CHAPTER 13 Using and Creating Packages in Go 205

$ go get github.com/hackebrot/turtle

When you do that, the github.com/hackebrot/turtle package will be installed
in the $GOPATH/src folder of your local computer, like this:

$GOPATH
 |__src
 | |__github.com
 | |__hackebrot
 | | |__turtle
 | | |__ ...
 | | |__ ...

To use this package, you simply import it into your package, like this:

package main

import (
 "fmt"
 "github.com/hackebrot/turtle"
)

func main() {
 emoji, ok := turtle.Emojis["smiley"]
 if !ok {
 fmt.Println("No emoji found.")
 } else {
 fmt.Println(emoji.Char)
 }
}

The output for the preceding program shows a smiley face (☺).

Go Documentation
Go Documentation (Godoc for short) is a documentation generator for Go pro-
grams. By default, Godoc looks at the packages installed on your computer by
examining the values in the $GOROOT and $GOPATH environment variables. It then
runs a web server and presents the documentation it generated as web pages.

The steps for installing godoc depend on the operating system you’re using:

206 PART 4 Organizing Your Code

Windows
On Windows, you can install godoc by using the go get command:

C:\Users\Wei-Meng Lee>go get golang.org/x/tools/cmd/godoc

After godoc is downloaded and installed, you can start the web server by specify-
ing the following command:

C:\Users\Wei-Meng Lee>godoc -http=:6060

This command starts the godoc as a web server listening at port 6060. You can
now use this URL (http://localhost:6060) to view the documentation of your
Go packages on your computer (see Figure 13-2).

macOS
On the Mac, download and install godoc:

$ go get golang.org/x/tools/cmd/godoc

Next, create a file named org.golang.godoc.plist and then save it in the ~/
Library/LaunchAgents/ directory. Populate the org.golang.godoc.plist file as
follows:

<plist version="1.0">
<dict>
 <key>Label</key>
 <string>org.golang.godoc</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/weimenglee/go/bin/godoc</string>
 <string>-http=localhost:6060</string>
 </array>
 <key>KeepAlive</key>
 <true/>
 <key>RunAtLoad</key>
 <true/>
 <key>WorkingDirectory</key>
 <string>/tmp</string>
</dict>
</plist>

CHAPTER 13 Using and Creating Packages in Go 207

The /Users/weimenglee/go/bin/godoc bit above represents the path to the
godoc package on my computer. Change it to your own path. In particular, change
/Users/weimenglee/go/ to your directory as specified in the GOPATH environment
variable.

To run the godoc as a web server, type the following command in Terminal:

$ launchctl load ~/Library/LaunchAgents/org.golang.godoc.plist

This command starts the godoc as a web server listening at port 6060. You can
now use this URL (http://localhost:6060) to view the documentation of your
Go packages on your computer (see Figure 13-2).

To stop the godoc web server, use the following command:

$ launchctl unload ~/Library/LaunchAgents/org.golang.godoc.plist

FIGURE 13-2:
The godoc web

pages.

208 PART 4 Organizing Your Code

FINDING THE DOCUMENTATION FOR
THE COORDINATE PACKAGE
Here’s something cool about the godoc package. Remember the point.go file in the
earlier example? Did you notice the comments within the file?

// Package coordinate for coordinate geometry
package coordinate

import (
 "math"
)

// Point represents a point in the 2-D coordinate space
type Point struct {
 X float64
 Y float64
}

// Length calculates the length of point from the origin
func (p Point) Length() float64 {
 return math.Sqrt(math.Pow(p.X, 2.0) +
 math.Pow(p.Y, 2.0))
}

If you now go to the godoc page, you’ll be able to find the geometry package (listed
under Third party; see the following figure).

Clicking the geometry name will show you the packages and their descriptions con-
tained within it (see the following figure).

CHAPTER 13 Using and Creating Packages in Go 209

Clicking the coordinate package name will show the content and documentation
of the package (see the following figure).

CHAPTER 14 Grouping Packages into Modules 211

Chapter 14
Grouping Packages
into Modules

In Go, a module is a directory of packages, with a file named go.mod at its root.
The go.mod file defines the module’s path, as well as the dependency require-
ments (that is, the packages and modules that are needed by this module in

order for it to work correctly).

The best way to understand what is a module is to actually create one. In this
chapter, I explain how to convert a group of packages into a module so that you
can publish it and make it available for use by other Go developers.

Creating a Module
When you create a module, you can publish it and make it available for use by
other Go developers. To create a module, follow these steps:

1.	 Create the following directories on your computer:

$HOME

 |__stringmod

 |__strings

 |__quotes

IN THIS CHAPTER

»» Producing your own modules

»» Making sure your module is working

»» Getting your module onto GitHub

212 PART 4 Organizing Your Code

This code creates a module named stringmod, with a subdirectory named
strings. The idea is to group related functionalities into directories so as to
logically group them together. The strings folder should contain functions
related to strings. In this example, stringmod is a module and strings and
quotes are packages.

Now you’re ready to add packages to the module.

2.	 Add a file named strings.go to the strings directory and a file named
quotes.go to the quotes directory.

It should look like this:

$HOME
 |__stringmod
 |__strings
 |__strings.go
 |__quotes
 |__quotes.go

3.	 Populate the strings.go file with the following statements:

package strings

func internalFunction() {

 // In Go, a name is exported (visible outside the package) if it

begins

 // with a capital letter

}

// Must begin with a capital letter in order to be exported

func CountOddEven(s string) (odds, evens int) {

 odds, evens = 0, 0

 for _, c := range s {

 if int(c)%2 == 0 {

 evens++
 } else {

 odds++
 }

 }

 return

}

CHAPTER 14 Grouping Packages into Modules 213

4.	 Populate the quotes.go file with the following statements:

package quotes

import (

 "github.com/hackebrot/turtle"

)

func GetEmoji(name string) string {

 emoji, ok := turtle.Emojis[name]

 if !ok {

 return ""

 }

 return emoji.Char

}

Notice that the quotes package has a dependency on an external package,
github.com/hackebrot/turtle.

Now you’re ready to create the go.mod file.

5.	 In Terminal or Command Prompt, type the following commands:

$ cd ~/stringmod

$ go mod init github.com/weimenglee/stringmod

go: creating new go.mod: module

github.com/weimenglee/stringmod

For this example, I’m making my module available for download on GitHub. I’ve
set the download URL as github.com/weimenglee/stringmod. For your own
example, you should change the URL to your own repository URL (if you’re using
GitHub).

The go mod init command creates a go.mod file in the stringmod directory:

$HOME

 |__stringmod

 |__go.mod

 |__strings

 |__strings.go

 |__quotes

 |__quotes.go

214 PART 4 Organizing Your Code

The content of go.mod is:

module github.com/weimenglee/stringmod

go 1.15

The role of the go.mod file is to define the module’s path so it can be imported
and used by other packages.

Testing and Building a Module
After you’ve created a module, you’re ready to test it. You can do that by trying to
import it into another package and using it. Follow these steps:

1.	 Add a new file named main.go in the stringmod folder:

$HOME

 |__stringmod

 |__go.mod

 |__main.go

 |__strings

 |__strings.go

 |__quotes

 |__quotes.go

2.	 Populate the main.go file as follows:

package main

import (

 "fmt"

 "github.com/weimenglee/stringmod/quotes"

 "github.com/weimenglee/stringmod/strings"

)

func main() {

 o, e := strings.CountOddEven("12345")

 fmt.Println(o, e) // 3 2

 fmt.Println(quotes.GetEmoji("turtle"))

}

CHAPTER 14 Grouping Packages into Modules 215

Notice that you’re importing the two packages inside the stringmod modules
using the github.com/weimenglee/stringmod import path:

"github.com/weimenglee/stringmod/strings"

"github.com/weimenglee/stringmod/quotes"

Also notice that the packages are referred to using their last names in the package
path github.com/weimenglee/stringmod/strings and github.com/weimenglee/
stringmod/quotes. If you don’t want to use the last name in the package path, you
can also provide aliases for the packages during import, like this:

package main

import (

 "fmt"

 str "github.com/weimenglee/stringmod/strings"

 qt "github.com/weimenglee/stringmod/quotes"

)

func main() {

 o, e := str.CountOddEven("12345")

 fmt.Println(o,e) // 3 2

 fmt.Println(qt.GetEmoji("turtle"))

}

You can now build the module. Type the following command in Terminal or Com-
mand Prompt to build the module:

$ cd ~/stringmod

$ go build

go: finding github.com/hackebrot/turtle v0.1.0

go: downloading github.com/hackebrot/turtle v0.1.0

During the build process, the package (github.com/hackebrot/turtle) required
by the quotes package is downloaded and installed on your local computer at
$GOPATH/pkg/mod/:

$GOPATH

 |__pkg

 |__mod

 |__github.com

 |__hackebrot

216 PART 4 Organizing Your Code

 |__turtle@v0.1.0

 |__ ...

 |__ ...

The default $GOPATH on my computer is /Users/weimenglee/go.

The content of the go.mod file now becomes the following:

module github.com/weimenglee/stringmod

go 1.15

require github.com/hackebrot/turtle v0.1.0

The go.mod file lists all the dependencies required by the packages inside the
module.

One additional file is created: go.sum. This file contains the expected crypto-
graphic checksums of the content of specific module versions. It looks like this:

github.com/hackebrot/turtle v0.1.0

 h1:cmS72nZuooIARtgix6IRPvmw8r4u8olEZW02Q3DB8YQ=

github.com/hackebrot/turtle v0.1.0/go.mod

 h1:vDjX4rgnTSlvROhwGbE2GiB43F/l/8V5TXoRJL2cYTs=

You can now test the program to see if it runs correctly:

$ cd ~/stringmod

$ go run main.go

You should now see the following output:

3 2

[Emoji of a turtle]

Publishing a Module on GitHub
So far, you’ve created and tested your module running locally on your computer.
To share it with the world, though, you need to publish it to an online repository,
such as GitHub. In this section, I’m going to publish the module to GitHub, acces-
sible through the following link: https://github.com/weimenglee/stringmod.

https://github.com/weimenglee/stringmod

CHAPTER 14 Grouping Packages into Modules 217

To publish to GitHub, the first thing you need is a GitHub account. Head over to
https://github.com/ and sign up for an account if you don’t already have one.

After you’ve created a GitHub account, follow these steps:

1.	 Sign in to your account.

2.	 In the Repositories section, click the New button (see Figure 14-1).

3.	 Name the repository stringmod and click the Create Repository button at
the bottom of the page (see Figure 14-2).

After the repository is created, you need to upload the source code of your
module.

4.	 Click the Uploading an Existing File link (see Figure 14-3).

You should now see the page shown in Figure 14-4.

5.	 Drag and drop the files and folders contained within the stringmod folder
onto the rectangle on the GitHub page (see Figure 14-5).

6.	 After all the files and folders are uploaded, click the Commit Changes
button at the bottom of the page (see Figure 14-6).

Your module is now published on GitHub (see Figure 14-7).

FIGURE 14-1:
Creating a new

repository on
GitHub.

https://github.com/

218 PART 4 Organizing Your Code

FIGURE 14-3:
Getting ready to
upload your files

to GitHub.

FIGURE 14-2:
Naming your new

repository on
GitHub.

CHAPTER 14 Grouping Packages into Modules 219

FIGURE 14-4:
You can drag and

drop the files to
GitHub.

FIGURE 14-5:
Dragging and
dropping files
and folders to

GitHub.

220 PART 4 Organizing Your Code

To install this newly published module on your local computer, use the following
command:

$ go get github.com/weimenglee/stringmod

Remember to change the path to reflect your own package.

FIGURE 14-6:
Click the Commit
Changes button

to upload the files
and folders to

GitHub.

FIGURE 14-7:
The module is

now published!

CHAPTER 14 Grouping Packages into Modules 221

The package will be downloaded and installed in the $GOPATH/src/ and $GOPATH/
bin/ folders:

$GOPATH

 |__src

 | |__github.com

 | |__hackebrot

 | | |__turtle

 | | |__ ...

 | | |__ ...

 | |__weimenglee

 | |__stringmod

 | |__main.go

 | |__quotes

 | |__quotes.go

 | |__strings

 | |__strings.go

 |__bin

 |__stringmod

The dependencies of the stringmod module (which is the github.com/
hackebrot/turtle module) will also be downloaded.

Because the stringmod module contains a main package (main.go) in the root
directory, an executable file named stringmod will also be created in the $GOPATH/
bin directory.

To use the module in your own package, you can import it into your application
just as you did earlier:

package main

import (

 "fmt"

 "github.com/weimenglee/stringmod/quotes"

 "github.com/weimenglee/stringmod/strings"

)

func main() {

 ...

}

222 PART 4 Organizing Your Code

Go uses a number of directories to store modules and packages. Table 14-1 shows
the various subdirectories in your $GOPATH directory and their uses. To find out
the value of your GOPATH, use the go env command.

TABLE 14-1	 Subdirectories within $GOPATH
Subdirectories
in $GOPATH Description

src Contains the source code of packages that you’ve created or installed on your
computer (modules that you’ve installed through the go get command).

bin Contains the binary executables of Go modules that have the main package (and
therefore contains the main() function) in the root directory. If you installed a
module that does not contain the main package, it will have no entry in this
directory.

pkg Contains the non-executable packages. These packages are typically imported by
other applications or modules.

5Seeing Go in
Action

IN THIS PART . . .

Consume web services in Go.

Build your own REST API using Go.

Store your data in MySQL databases.

CHAPTER 15 Consuming Web APIs Using Go 225

Chapter 15
Consuming Web APIs
Using Go

When you have a good foundation in the Go programming language, it’s
time to put things into action! And you do that with web application
programming interfaces (APIs).

An API is a set of specifications that allows programs to talk to one another. And a
web API uses the web technologies (specifically the Hypertext Transfer Protocol,
or HTTP) to allow clients to talk to servers to exchange information.

Web APIs are very useful building blocks that enable applications to get data from
multiple sources. Organizations big and small can create innovation applications
by leveraging the various web APIs available, all without needing to reinvent the
wheel. In this chapter, I show you how to use Go to communicate with web APIs.

Without further ado, let’s go!

Understanding Web APIs
Before I get to web APIs, let me get you thinking about web applications. You
probably use web applications every day. A good example of a web application
is Amazon.com. When you want to buy something at Amazon, you go to

IN THIS CHAPTER

»» Knowing what a web API is and what
it does

»» Getting data from web services

226 PART 5 Seeing Go in Action

www.amazon.com and start adding items to your shopping cart. When you’re done
shopping, you click the button to check out and — voilá! — after you confirm your
payment and shipping information, your items are sent to your doorstep.

Another good example of a web application is Google Finance (www.google.com/
finance). If you want to check the prices of the stocks that you own, you can go to
and enter the symbols of all the stocks that you’re interested in. However, you
may own a number of stocks — do you want to wade through pages of stocks
information to find what you need? As a developer, what you probably really want
is to aggregate all the stock information and display it in your own app so that you
can have information at a glance. This is where a web API comes in.

Instead of letting people check for stock prices on Google Finance’s website,
Google exposes the stock data through the Google Finance API, which is designed
to take in your query and return only the information you need, as shown in
Figure 15-1. Often, the returning result is formatted as a JavaScript Object Nota-
tion (JSON) string, instead of HTML meant for web browsers (turn to Chapter 9 for
more on JSON). Essentially, you can think of web APIs as web applications without
the cool-looking user interface (UI). A web API is essentially a web application
without all the bells and whistles.

The Google Finance API is no longer maintained by Google, but there are many
web APIs out there that work very much like the Google Finance API.

Fetching Data from Web Services in Go
To connect to a web API, you can use the Get() function from the net/http pack-
age in Go. The Get() function accepts a URL as its argument and returns two
results:

»» A Response struct

»» An error

FIGURE 15-1:
A client

communicating
with a web API.

http://www.amazon.com/
https://www.google.com/finance
https://www.google.com/finance

CHAPTER 15 Consuming Web APIs Using Go 227

If there is no error in connecting to the server, the error will be nil, and you can
use the ReadAll() function from the io/iotil package to read the response from
the server. The ReadAll() function returns two results:

»» A slice of bytes representing the response from the server

»» An error

Writing a Go program to connect
to a web API
Let’s write a simple Go program that connects to the Fixer web API. Fixer is a
foreign exchange rates and currency conversion JSON API. Using it, you can pro-
grammatically fetch the exchange rates of various currencies. You can sign up for
a free Fixer plan by going to https://fixer.io/ and clicking the Sign Up Free
button, as shown in Figure 15-2.

The free plan allows you to download the currency rates up to a thousand times
per month. However, the data that is returned is only updated hourly (compared
to the paid plan, in which the data may be updated as frequently as every minute).
Also, the free plan has all the rates pegged to a fixed currency, the euro (€). Despite

FIGURE 15-2:
You can sign up

for free access to
the Fixer API.

https://fixer.io/

228 PART 5 Seeing Go in Action

all these limitations, the Fixer API is a very good example to use when you need to
connect to a web API.

After you’ve signed up for the free Fixer plan, you’ll be given an access key
together with the URL to access the API:

http://data.fixer.io/api/latest?access_key=<access_key>

The <access_key> part of the URL above will be unique to you.

After you have your access key and URL, follow these steps:

1.	 Create a folder named ConsumeWS in your home directory:

<Home>

 |__ConsumeWS

2.	 Within the ConsumeWS folder, create a file named main.go.

3.	 Populate the main.go file with the following statements:

package main

import (
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
)

func main() {
 url :=
 "http://data.fixer.io/api/latest?access_key=<access_key>"

 if resp, err := http.Get(url); err == nil {
 defer resp.Body.Close()
 if body, err := ioutil.ReadAll(resp.Body);
 err == nil {
 fmt.Println(string(body))
 } else {
 log.Fatal(err)
 }

CHAPTER 15 Consuming Web APIs Using Go 229

 } else {
 log.Fatal(err)
 }
 fmt.Println("Done")

}

Be sure to replace <access_key> with your own access key given to you by the
Fixer API.

Decoding JSON data
If you’ve entered your Fixer API access key correctly, you should get a response
from the API when you run it in the Terminal app or in Command Prompt:

$ cd ~/ConsumeWS
$ go run main.go

Examine the result returned by the web service:

{"success":true,"timestamp":1603847345,"base":"EUR","date"
:"2020-10-28","rates":{"AED":4.327189,"AFN":90.532761,
"ALL":123.694308,"AMD":580.987567,
...
...
"ZMK":10603.807886,"ZMW":23.900394,"ZWL":379.329977}}

To examine the structure of the JSON result, go to http://jsonlint.com, paste in
the result, and click the Validate JSON button, shown in Figure 15-3.

The "success" key indicates whether the call to the web API succeeds. The
"rates" key contains a dictionary of currency symbols and their respective rates
against the base currency, the euro.

You also want to know how the JSON result will look if the call fails due to, say, an
invalid API access key. In this case, you can simply change the access key in the
URL to an invalid one and observe the response from the web API:

{"success":false,"error":{"code":101,"type":
"invalid_access_key","info":"You have not supplied a valid
API Access Key. [Technical Support:
support@apilayer.com]"}}

Figure 15-4 shows the structure of the JSON result when the web service
call fails.

http://jsonlint.com

230 PART 5 Seeing Go in Action

FIGURE 15-3:
Examining the

structure of the
JSON result

returned by the
Fixer API.

FIGURE 15-4:
Examining the

structure of the
JSON error result

returned by the
Fixer API.

CHAPTER 15 Consuming Web APIs Using Go 231

When the structure of the result of the API is established, you can now try to
unmarshall (decode) the JSON result to your own defined structure. You can define
two structs — Result and Error — and unmarshall the result to these two structs:

package main

import (

 "encoding/json"

 "fmt"

 "io/ioutil"

 "log"

 "net/http"

)

type Result struct {

 Success bool

 Timestamp int

 Base string

 Date string

 Rates map[string]float64

}

type Error struct {

 Success bool

 Error struct {

 Code int

 Type string

 Info string

 }

}

func main() {

 url :=

 "http://data.fixer.io/api/latest?access_key=" +
 "<access_key>"

 if resp, err := http.Get(url); err == nil {

 defer resp.Body.Close()

 if body, err := ioutil.ReadAll(resp.Body); err == nil {

 var result Result

 json.Unmarshal([]byte(body), &result)

 if result.Success {

 for i, v := range result.Rates {

 fmt.Println(i, v)

 }

232 PART 5 Seeing Go in Action

 } else {

 var err Error

 json.Unmarshal([]byte(body), &err)

 fmt.Println(err.Error.Info)

 }

 } else {

 log.Fatal(err)

 }

 } else {

 log.Fatal(err)

 }

 fmt.Println("Done")

}

If the call is successful, you’ll use the for-range loop to iterate through all the
various currencies and their exchange rates:

YER 294.857281
BIF 2287.503006
FJD 2.491707
...
PKR 189.862324
TZS 2731.272293
AOA 777.187569

If there is an error, you’ll see an error message:

You have not supplied a valid API Access Key. [Technical
 Support: support@apilayer.com]

Notice that when you print out the currencies, they aren’t listed in alphabetical
order. To print them in alphabetical order, you need to obtain all the keys (curren-
cies) and sort them in alphabetical order. After the currencies are sorted, you can
then use them to print out the rates:

if result.Success {
 // create an array to store all keys
 keys := make([]string, 0,
 len(result.Rates))

 // get all the keys---
 for k := range result.Rates {
 keys = append(keys, k)
 }

CHAPTER 15 Consuming Web APIs Using Go 233

 // sort the keys
 sort.Strings(keys)

 // print the keys and values in
 // alphabetical order
 for _, k := range keys {
 fmt.Println(k, result.Rates[k])
 }

 /*
 for i, v := range result.Rates {
 fmt.Println(i, v)
 }
 */
} else {
 var err Error
 json.Unmarshal([]byte(body), &err)
 fmt.Println(err.Error.Info)
}

You need to import the sort package to perform this sorting.

You should now see the currencies listed in alphabetical order:

AED 4.326224
AFN 90.731897
ALL 124.065772
...
ZMK 10601.434336
ZMW 23.992715
ZWL 379.245091

Refactoring the code for
decoding JSON data
The code for decoding JSON data in the preceding section is good for a specific
JSON structure. But if you’re going to consume different web services, it would
be better if you could make the decoding more generic and more flexible. Let’s
refactor the code into a function named fetchData():

func fetchData(API int) {
 url := apis[API]
 if resp, err := http.Get(url); err == nil {

234 PART 5 Seeing Go in Action

 defer resp.Body.Close()
 if body, err := ioutil.ReadAll(resp.Body);
 err == nil {

 var result map[string]interface{}

 json.Unmarshal([]byte(body), &result)
 switch API {
 case 1: // for the Fixer API
 if result["success"] == true {
 fmt.Println(result["rates"].(
 map[string]interface{})["USD"])
 } else {
 fmt.Println(result["error"].(
 map[string]interface{})["info"])
 }
 }
 } else {
 log.Fatal(err)
 }
 } else {
 log.Fatal(err)
 }
}

The content of this fetchData() function is largely similar to the code in the pre-
ceding section, but it doesn’t try to unmarshall the JSON data into a specific struc-
ture. Instead, you try to unmarshall the JSON into a map of string keys with values
of type empty interface:

var result map[string]interface{}

Then, as you try to explore the details of the JSON string, you do a type assertion
and extract the value based on a specific key, like the following:

result["rates"].(map[string]interface{})["USD"])

The preceding line means: Get the value for the "rates" key and then assert its
value to be of type map[string] interface{}. Finally, get the value for the "USD"
key. This method allows you to unmarshall JSON data of any structure without
needing to define separate structs.

CHAPTER 15 Consuming Web APIs Using Go 235

Also, this function takes in an integer value and uses it to reference the URL from
a separate map object, which you’ll define later in the main() function:

url := apis[API]

Based on the value of the API variable, you can then decide how you want to
decode the JSON. Just add a new case in the switch statement in the code.

To put this into action, you’ll consume one more web service, http://api.
openweathermap.org. This web service has the following URL:

http://api.openweathermap.org/data/2.5/weather?q=SINGAPORE
&appid=<app_id>

The preceding URL fetches the weather information for Singapore, using the app
ID that you can apply at OpenWeather (https://home.openweathermap.org/
users/sign_up).

If the web service call succeeds, you’ll get a response like this:

{"coord":{"lon":103.85,"lat":1.29},"weather":[{"id":501,
"main":"Rain","description":"moderate rain","icon":"10d"}]
,"base":"stations","main":{"temp":301.92,"feels_like":
306.02,"temp_min":301.15,"temp_max":302.15,"pressure":1008
,"humidity":79},"visibility":10000,"wind":{"speed":3.1,
"deg":170},"rain":{"1h":2.18},"clouds":{"all":75},"dt":
1603869175,"sys":{"type":1,"id":9470,"country":"SG",
"sunrise":1603838764,"sunset":1603882229},"timezone":
28800,"id":1880252,"name":"Singapore","cod":200}

Figure 15-5 shows the response as formatted by JSONLint (https://
jsonlint.com).

If the web service call fails, you’ll see the following response:

{"cod":401, "message": "Invalid API key. Please see
http://openweathermap.org/faq#error401 for more info."}

Figure 15-6 shows the formatted response.

http://api.openweathermap.org
http://api.openweathermap.org
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://jsonlint.com/
https://jsonlint.com/

236 PART 5 Seeing Go in Action

FIGURE 15-5:
Examining the

structure of the
JSON result

returned by the
OpenWeather

API.

FIGURE 15-6:
Examining the

structure of the
JSON error result

returned by the
OpenWeather

API.

CHAPTER 15 Consuming Web APIs Using Go 237

In the main.go file, you can now add in the following statements in bold:

package main

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
)

var apis map[int]string

func fetchData(API int) {
 url := apis[API]
 if resp, err := http.Get(url); err == nil {
 defer resp.Body.Close()
 if body, err := ioutil.ReadAll(resp.Body);
 err == nil {
 var result map[string]interface{}
 json.Unmarshal([]byte(body), &result)
 switch API {
 case 1:
 if result["success"] == true {
 fmt.Println(result["rates"].(
 map[string]interface{})["USD"])
 } else {
 fmt.Println(result["error"].(
 map[string]interface{})["info"])
 }
 case 2: // for the openweathermap.org API
 if result["main"] != nil {
 fmt.Println(result["main"].(
 map[string]interface{})["temp"])
 } else {
 fmt.Println(result["message"])
 }
 }
 } else {
 log.Fatal(err)
 }
 } else {
 log.Fatal(err)

238 PART 5 Seeing Go in Action

 }
}

func main() {
 apis = make(map[int]string)

 apis[1] =
 "http://data.fixer.io/api/latest?access_key=" +
 "<access_key>"
 apis[2] =
 "http://api.openweathermap.org/data/2.5/weather?" +
 "q=SINGAPORE&appid=<api_key>"

 fetchData(1)
 fetchData(2)
}

Run the main.go file and notice the results returned.

Fetching from multiple web services
at the same time
One of the strengths of Go is its support for concurrency. Instead of calling the two
web services sequentially (one after the other), why not call them concurrently (at
the same time)?

To do so, you just need to prefix each call to the fetchData() function with the go
keyword:

func main() {
 apis = make(map[int]string)
 apis[1] =
 "http://data.fixer.io/api/latest?access_key=" +
 "<access_key>"
 apis[2] =
 "http://api.openweathermap.org/data/2.5/weather?" +
 "q=SINGAPORE&appid=<api_key>"

 go fetchData(1)
 go fetchData(2)

 fmt.Scanln()
}

CHAPTER 15 Consuming Web APIs Using Go 239

Remember to call the Scanln() function before the end of the program. That way,
the program won’t exit before getting the results back from the two web service
calls. Press Enter to exit the program.

Returning Goroutine’s results to
the main() function
So far, the results obtained from the web service have been printed out to the con-
sole. But sometimes you need to return the result from a Goroutine back to the
calling function. A good way to do that is to use a channel (see Chapter 12). The
following statements in bold show how to send data into a channel from a Gorou-
tine, and then retrieve the data from the main() function:

package main

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
)

var apis map[int]string

// channel to store map[int]interface{}
var c chan map[int]interface{}

func fetchData(API int) {
 url := apis[API]
 if resp, err := http.Get(url); err == nil {
 defer resp.Body.Close()
 if body, err := ioutil.ReadAll(resp.Body);
 err == nil {

 var result map[string]interface{}
 json.Unmarshal([]byte(body), &result)

 var re = make(map[int]interface{})

 switch API {
 case 1:
 if result["success"] == true {

240 PART 5 Seeing Go in Action

 re[API] = result["rates"].(
 map[string]interface{})["USD"]
 } else {
 re[API] = result["error"].(
 map[string]interface{})["info"]
 }
 // store the result into the channel
 c <- re
 fmt.Println("Result for API 1 stored")

 case 2:
 if result["main"] != nil {
 re[API] = result["main"].(
 map[string]interface{})["temp"]
 } else {
 re[API] = result["message"]
 }
 // store the result into the channel
 c <- re
 fmt.Println("Result for API 2 stored")
 }
 } else {
 log.Fatal(err)
 }
 } else {
 log.Fatal(err)
 }
}

func main() {

 // creates a channel to store the results from the
 // API calls
 c = make(chan map[int]interface{})

 apis = make(map[int]string)
 apis[1] =
 "http://data.fixer.io/api/latest?access_key=" +
 "<access_key>"
 apis[2] =
 "http://api.openweathermap.org/data/2.5/" +
 "weather?q=SINGAPORE&appid=<app_id>"

CHAPTER 15 Consuming Web APIs Using Go 241

 go fetchData(1)
 go fetchData(2)

 // we expect two results in the channel
 for i := 0; i < 2; i++ {
 fmt.Println(<-c)
 }
 fmt.Println("Done!")

 fmt.Scanln()
}

Notice that you declare a channel to store map objects:

var c chan map[int]interface{}

The key for the map object is the number representing the web service you’re call-
ing (1 for the Fixer API and 2 for the OpenWeatherMap). The value for the key is
the result returned by the web services. Because the result may be a string (an
error message if an error occurred) or a value (if the web service succeeds), the
value of the key is set to be of any type (an empty interface).

When the web APIs succeed, you should see the following results:

Result for API 2 stored
map[2:302.44]
Result for API 1 stored
map[1:1.175779]
Done!

If there is an error with the Fixer API service, the error message will be returned:

Result for API 2 stored
map[2:302.44]
Result for API 1 stored
map[1:You have not supplied a valid API Access Key. [Technical

Support: support@apilayer.com]]
Done!

CHAPTER 16 Getting Ready to Serve Using REST APIs 243

Chapter 16
Getting Ready to Serve
Using REST APIs

In Chapter 15, I explain how to consume web services using Go. But one of the
strengths of Go is server-side implementation (back-end services such as web
applications, web services, and so on) due to its strong support for concurrency

programming. So, in this chapter, I show you how to use a third-party package to
easily develop a web service using an architecture known as REST API.

Building Web Services Using REST APIs
When it comes to building web services, you may have heard of the term REST. But
what exactly is REST and how does it really work? In this section, I explain what
REST is and how you can make your web service a RESTful one.

A web service that conforms to the REST architectural style is commonly known
as a RESTful API.

REST stands for representational state transfer. It’s a software architectural style
that defines how a web service should work and behave. REST is designed to take
advantage of existing protocols. It usually uses HTTP for communicating between
the client and the service.

IN THIS CHAPTER

»» Looking at the various components
of a REST API

»» Creating and testing a REST API in Go

244 PART 5 Seeing Go in Action

A REST API uses several HTTP verbs for the clients to communicate with the
service:

»» GET: To retrieve a resource from the service

»» PUT: To create a new resource or update an existing one on the service

»» POST: To create a new resource on the service

»» DELETE: To remove a resource from the service

A REST API can return any type of data, but most services today use JavaScript
Object Notation (JSON) as the data type (for more on JSON, turn to Chapter 9).
REST isn’t limited to JSON, though — a REST API can also return XML, YAML, or
any format that the client can understand.

In the following sections, I cover the basics of HTTP messages, what REST URLs
look like, and the various methods and responses that REST supports.

HTTP messages
When communicating with a REST API, you use HTTP messages, which are made
up of the following:

»» Header: Contains metadata, such as encoding information, HTTP methods,
and so on. The header can contain only plain text. So, you cannot include
non-ASCII characters in the header.

»» Body: Data to transmit over the network. The body can contain data in any
format. The format is specified in the Content-Type field, such as Content-
Type: application/json.

Figure 16-1 shows the HTTP message being sent to a web API and the response
returned by it.

REST URLs
In order to communicate with a REST API, you need a URL. A REST URL identifies
a resource.

CHAPTER 16 Getting Ready to Serve Using REST APIs 245

Suppose you have a REST API that provides information on various programming
courses. If you want to retrieve the information of a course using its course ID of
IOS101, the URL to identify that resource would look like this:

http://www.yourdomain.com/api/v1/courses/IOS101

You’re free to design your own URL, but you should stick to the conventions of a
REST URL, which I outline in this section.

Figure 16-2 shows the various components that make up a REST API URL.

In this example, the IOS101 in the URL represents a resource. Resources are best
thought of as nouns. Here are some examples of resources in a REST URL:

http://www.yourdomain.com/api/v1/customers/C12345
http://www.yourdomain.com/api/v1/titles/1119545633
http://www.yourdomain.com/api/v1/users/weimenglee

You should not use verbs in your REST API URL. For example, the following URLs
should not be used because they all describe an action:

http://www.yourdomain.com/api/v1/customers/add
http://www.yourdomain.com/api/v1/titles/delete
http://www.yourdomain.com/api/v1/titles/edit

FIGURE 16-1.
Sending an HTTP

message to the
web API and the

response
returned by it.

FIGURE 16-2:
The various

components that
make up a REST

API URL.

246 PART 5 Seeing Go in Action

Use versioning in your URL so that as your API evolves, you can release new ver-
sions using a new URL without breaking clients that use your older versions of the
API. For example, six months down the road, you may have a new version of your
API. You may want to use a new URL for your new API:

http://www.yourdomain.com/api/v2/courses/IOS101

Using a new URL for your new API allows you to maintain multiple versions of
your REST API.

REST methods
REST APIs use HTTP to communicate with the service. So, if you want to get infor-
mation about a particular resource (a course, for example), you would use the
following URL together with the HTTP GET method:

http://www.yourdomain.com/api/v1/courses/IOS101

If you want to get all the courses, you can use the following URL (without the
resource name) with the GET method, like this:

http://www.yourdomain.com/api/v1/courses/

If you wanted to modify the details of a course, you would use the URL with the
resource, but with the HTTP PUT method, and send the changes you need to make
to the REST API. Figure 16-3 shows the use of the various HTTP verbs for the dif-
ferent actions you want to perform on the REST API.

Notice that for the PUT and POST methods, you need to send the details to the REST
API. Typically, you use JSON (or other encoding formats such as XML).

Out of the four HTTP verbs, three of them are idempotent. Idempotent methods
achieve the same result, regardless of how many times the request is repeated.
GET, PUT, and DELETE are all idempotent — repeating these methods doesn’t
change the state of the server.

For example, suppose you send a GET method to the following URL:

http://www.yourdomain.com/api/v1/courses/IOS101

CHAPTER 16 Getting Ready to Serve Using REST APIs 247

No matter how many times you call the REST API with this URL and HTTP method,
it won’t alter the state of the API. Likewise, if you use the HTTP PUT verb with this
URL to modify the details of a course, sending the same request the second time
doesn’t change the state of the REST API. The same applies to the DELETE verb —
after a course is deleted, trying to delete the same course has no effect on the state
of the REST API.

The POST verb, on the other hand, is not idempotent. When you use the HTTP POST
verb, you have the option to leave out the resource. So, instead of the follow-
ing URL:

http://www.yourdomain.com/api/v1/courses/IOS101

You could leave out the IOS101 when using this URL with the POST method, like
this:

http://www.yourdomain.com/api/v1/courses/

The REST API will generate a new course ID whenever it receives a POST method
without a resource name (this is one of the recommended behaviors of REST APIs).
So, if you repeatedly use the same URL with the POST method, a new course would
be created each time you make the call.

Because there is no standardized way to build REST APIs, it’s really up to the indi-
vidual REST APIs to decide whether they want to implement this option. For the
example REST API that you build later in this chapter, you’ll need a resource to be
specified in the URL whenever a POST method is used.

FIGURE 16-3:
Using the various

HTTP verbs to
communicate

with the REST API.

248 PART 5 Seeing Go in Action

REST response
When the REST API has received your request, it needs to perform the action that
it’s asked to perform, such as returning information of a course, updating it,
deleting it, or adding a new course. After performing the task, the REST API needs
to return the following information:

»» An HTTP response code indicating whether the operation has succeeded,
failed, or otherwise

»» An optional result expected by the client, such as details on a course or a list
of courses

A REST API typically returns one of the following HTTP response codes:

»» 200 OK: The request was successful.

»» 201 Created: The request was successful and a resource was created. This
response code is used to confirm the success of a PUT or POST request.

»» 400 Bad Request: The request was malformed. This happens especially with
POST and PUT requests, when the data doesn’t pass validation or is in the
wrong format.

»» 404 Not Found: The required resource couldn’t be found. This response code
is generally returned to all requests that point to a URL with no corresponding
resource.

»» 401 Unauthorized: You need to perform authentication before accessing the
resource.

»» 405 Method Not Allowed: The HTTP method used is not supported for this
resource.

»» 409 Conflict: A conflict has occurred — for example, you’re using a POST
request to create the same resource twice.

»» 500 Internal Server Error: Generally, a 500 response is used when process-
ing fails due to unanticipated circumstances on the server side, causing the
server to error out.

Because there is no standardized way to implement REST APIs, the response code
returned by each REST API may vary.

CHAPTER 16 Getting Ready to Serve Using REST APIs 249

Creating a REST API in Go
It’s time to build a REST API yourself using Go! In this section, you create a REST
API to return information about programming courses. Clients can ask for a list of
courses, as well as details of a specific course. They can also add new courses, edit
existing courses, and delete courses.

One easy way to build REST APIs in Go is to use the gorilla/mux package. (The
name mux stands for HTTP request multiplexer.) The gorilla/mux package imple-
ments a request router and dispatcher for matching incoming requests to their
respective handlers. Figure 16-4 shows the use of the gorilla/mux package.

To install the gorilla/mux package, go to the Terminal application (Mac) or Com-
mand Prompt (PC), and type the following command:

$ go get -u github.com/gorilla/mux

That’s it! You’re ready to start coding!

Getting your REST API up and running
You’re now ready to start creating your REST API. Follow these steps:

1.	 Create a folder named REST in your home directory:

<Home>

 |__REST

FIGURE 16-4:
Using the

gorilla/mux
package to build
REST APIs in Go.

250 PART 5 Seeing Go in Action

2.	 Within the REST folder, create a file named main.go.

3.	 Populate the main.go file with the following statements:

package main

import (
 "fmt"
 "log"
 "net/http"
 "github.com/gorilla/mux"
)

func home(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to the REST API!")
}

func main() {
 router := mux.NewRouter()
 router.HandleFunc("/api/v1/", home)

 fmt.Println("Listening at port 5000")
 log.Fatal(http.ListenAndServe(":5000", router))

}

First, you create a new instance of mux.NewRouter:

router := mux.NewRouter()

The router instance registers routes to be matched and dispatches a handler. You
then create a route (path) named "/api/vi/" and map it to the home() function:

router.HandleFunc("/api/v1/", home)

The home() function is defined here:

func home(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to the REST API!")
}

The function has two parameters:

»» A ResponseWriter object (from the http package) so that you can use it to
construct an HTTP response to be sent back to the client

CHAPTER 16 Getting Ready to Serve Using REST APIs 251

»» A pointer to a Request object (also from the http package) that represents an
HTTP request sent by the client and received by the service

In this home() function, you use the Fprintf() function to send a string back to
the client.

Finally, you start the REST API by listening at port 5000:

log.Fatal(http.ListenAndServe(":5000", router))

To run the REST API, type the following command in Terminal or Command
Prompt:

$ cd ~/REST
$ go run main.go
Listening at port 5000

Testing the REST API
With the REST API up and running, you can now test and see if it works! You’ll use
the curl tool. (curl is a tool to transfer data to or from a server using one of the
supported protocols, such as HTTP.)

In another Terminal or Command Prompt window, type the following command
(in bold), and you should see the corresponding output:

$ curl http://localhost:5000/api/v1/
Welcome to the REST API!

If you see this, your REST API works!

Registering additional paths
Obviously, right now, this REST API isn’t very useful and doesn’t do much. So now
let’s add additional paths to the REST API so it can actually do something!

Add the following statements in bold to the main.go file:

package main

import (
 "fmt"

252 PART 5 Seeing Go in Action

 "log"
 "net/http"
 "github.com/gorilla/mux"
)

func home(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to the REST API!")
}

func allcourses(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "List of all courses")
}

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)
 fmt.Fprintf(w, "Detail for course "+params["courseid"])
}

func main() {
 router := mux.NewRouter()
 router.HandleFunc("/api/v1/", home)

 router.HandleFunc("/api/v1/courses", allcourses)
 router.HandleFunc("/api/v1/courses/{courseid}", course)

 fmt.Println("Listening at port 5000")
 log.Fatal(http.ListenAndServe(":5000", router))
}

Here, you’re adding two more paths:

»» "/api/v1/courses" mapped to the allcourses() function

»» "/api/v1/courses/{courseid}" mapped to the course() function

Of interest is the second path — "/api/v1/courses/{courseid}". This path con-
tains a variable enclosed within a pair of braces ({}), courseid.

In the function mapped to this path, you get hold of the value of this variable
through the mux.Vars() function. This function returns the path variable(s) for
the current request. It returns a value of type map[string]string. So, to get the
value of the courseid variable, you use the courseid as the key to the value
returned by the Vars() function:

CHAPTER 16 Getting Ready to Serve Using REST APIs 253

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)
 fmt.Fprintf(w, "Detail for course "
 + params["courseid"])
}

Figure 16-5 summarizes how the path variables are extracted in the function.

If it’s still running, stop the main.go by pressing Ctrl+C, and restart it.

Let’s start to query for all courses using the following command (in another Ter-
minal or Command Prompt window):

$ curl http://localhost:5000/api/v1/courses
List of all courses

To get the details for a particular course, use the following command:

$ curl http://localhost:5000/api/v1/courses/IOS101
Detail for course IOS101

Up to this point, you’ve set up the paths for obtaining details of specific courses,
as well as to obtain a list of courses.

In the next section, you learn how to pass information through a path’s query
string.

FIGURE 16-5:
Mapping path

variables.

254 PART 5 Seeing Go in Action

A query string is the part of a URL that assigns values to specified parameters. For
example, when you search for “Tokyo” on Google, the URL may look like this:
www.google.com/search?q=Tokyo. The query string in this case is q=Tokyo.

Passing in query string
In the previous section, you set up the basic paths of your REST API. The paths
allow you to obtain information of the course(s) that you want. Using the paths,
you can also pass in additional information to the REST API through a path’s
query string. A path can contain a query string. A query string is useful for passing
information to a service by simply embedding the information in the URL. Here’s
an example of a query string (it’s the part in bold):

/api/v1/courses?country=SG&state=CA

A query string consists of key/value pairs (as shown in Figure 16-6).

Add the following statements in bold to the allcourses() function:

func allcourses(w http.ResponseWriter, r *http.Request) {
 // fmt.Fprintf(w, "List of all courses")
 kv := r.URL.Query()

 for k, v := range kv {
 fmt.Println(k, v)
 }
}

The r.URL.Query() function returns the key/value pairs in the query string as a
map object. To see each of the keys and values in the key/value pairs, you use a
for-range loop.

Time to test the REST API again. If it’s still running, press Ctrl+C to stop the
main.go, and restart it.

FIGURE 16-6:
A query string

consists of key/
value pairs.

https://www.google.com/search?q=Tokyo

CHAPTER 16 Getting Ready to Serve Using REST APIs 255

In another Terminal or Command Prompt window, type the following:

$ curl "http://localhost:5000/api/v1/courses?
country=US&state=CA"

If you’re typing this command on a Mac, be sure to enclose the URL with a pair of
double quotes. If you don’t, the & character will direct the shell to run the com-
mand in the background.

The following will be printed in the REST API window:

Listening at port 5000
country [US]
state [CA]

If you’re looking for a specific key in the query string, you can use the following
code snippet:

// check for the "country" key
if val, ok := kv["country"]; ok {
 fmt.Println(val[0])
}

Specifying request methods
To allow clients to query the REST API for course details, add a new course, and
modify and delete existing courses, you need to configure the relevant path to
support the relevant HTTP methods.

In this case, you’ll use the Methods() function to specify the HTTP methods sup-
ported on a particular path:

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)
 fmt.Fprintf(w, "Detail for course " +
 params["courseid"])
 fmt.Fprintf(w, "\n")
 fmt.Fprintf(w, r.Method)
}

256 PART 5 Seeing Go in Action

func main() {
 router := mux.NewRouter()
 router.HandleFunc("/api/v1/", home)

 router.HandleFunc("/api/v1/courses", allcourses)
 router.HandleFunc("/api/v1/courses/{courseid}",
 course).Methods(
 "GET", "PUT", "POST", "DELETE")

 fmt.Println("Listening at port 5000")
 log.Fatal(http.ListenAndServe(":5000", router))
}

Notice that in the course() function, you can know what method the path was
called with using the Method field.

As usual, rerun the main.go file, and test the following using a separate Terminal
or Command Prompt window:

$ curl http://localhost:5000/api/v1/courses/IOT201
Detail for course IOT201
GET

$ curl -X POST http://localhost:5000/api/v1/courses/IOT201
Detail for course IOT201
POST

$ curl -X PUT http://localhost:5000/api/v1/courses/IOT201
Detail for course IOT201
PUT

$ curl -X DELETE http://localhost:5000/api/v1/courses/
IOT201
Detail for course IOT201
DELETE

The -X option for the curl command specifies the HTTP method to use.
Table 16-1 shows some of the common options available for curl.

CHAPTER 16 Getting Ready to Serve Using REST APIs 257

Storing the course information
on the REST API
With all the scaffolding for our REST API done, you’re now ready to write the code
to store course information on the REST API. To keep things simple, you’ll store
the courses on your REST API using a map object.

Of course, in real-life applications, you should use a database for storing the
course information. But I don’t want you to be bogged down with database access
codes and deviate from the more important aspects of creating the REST API.

The key of this map object is a string representing the course ID. Its value would
be a struct containing a field named Title:

type courseInfo struct {
 Title string `json:"Title"`
}

var courses map[string]courseInfo

When the client asks for a list of all courses using the "/api/v1/courses" path,
you’ll JSON-encode the courses map object and send it back to the client using
the NewEncoder() object’s Encode() function:

func allcourses(w http.ResponseWriter, r *http.Request) {
 // fmt.Fprintf(w, "List of all courses")
 kv := r.URL.Query()

TABLE 16-1	 The Various Options for curl
Option Purpose Example

-X To specify an HTTP request method POST

-H To specify request headers "Content-type:
application/json"

-d To specify request data '{"message":"Hello
Data"}'

--data-binary To specify binary request data @file.bin

-i To show the response headers

-u To specify username and password "admin:secret"

-v To enable verbose mode, which outputs information
such as request and response headers and errors

258 PART 5 Seeing Go in Action

 for k, v := range kv {
 fmt.Println(k, v)
 }
 // returns all the courses in JSON
 json.NewEncoder(w).Encode(courses)
}

In the following sections, I walk you through how to create new courses, as well
as update, retrieve, and delete courses.

Creating new courses
Things are more involved for adding new courses to the REST API. As discussed
earlier, when a client wants to add a new course, the client will send a JSON string
containing the details of the course. So, on the REST API, you need to check the
following:

»» Check whether the "Content-type" header sent by the client is "application/
json". This is to ensure that the client is sending the correct type of content to
the REST API.

»» Check the HTTP method used. If it’s a POST, it’s creating a new course.

»» Decode the JSON string that is sent to the REST API into the courseInfo
struct.

»» After the content of the course to be added has been decoded, you need to
check that the content is correct. If it isn’t correct, send a 422 response code
back to the client.

»» Check that the course ID doesn’t already exist in the REST API. If it does, send
back a 409 response code to the client.

»» Finally, add the new course to the courses map object and then send a 201
response code back to the client.

You can now add the following statements in bold to the course() and main()
functions:

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)

 /*
 fmt.Fprintf(w, "Detail for course " +
 params["courseid"])

CHAPTER 16 Getting Ready to Serve Using REST APIs 259

 fmt.Fprintf(w, "\n")
 fmt.Fprintf(w, r.Method)
 */

 if r.Header.Get("Content-type")=="application/json" {

 // POST is for creating new course
 if r.Method == "POST" {

 // read the string sent to the service
 var newCourse courseInfo
 reqBody, err := ioutil.ReadAll(r.Body)

 if err == nil {
 // convert JSON to object
 json.Unmarshal(reqBody, &newCourse)

 if newCourse.Title == "" {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte(
 "422 - Please supply course " +
 "information " + "in JSON format"))
 return
 }

 // check if course exists; add only if
 // course does not exist
 if _, ok := courses[params["courseid"]];
 !ok {
 courses[params["courseid"]] =
 newCourse
 w.WriteHeader(http.StatusCreated)
 w.Write([]byte("201 - Course added: "
 + params["courseid"]))
 } else {
 w.WriteHeader(http.StatusConflict)
 w.Write([]byte(
 "409 - Duplicate course ID"))
 }
 } else {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte("422 - Please supply course

information " + "in JSON format"))

260 PART 5 Seeing Go in Action

 }
 }
 }
}
func main() {
 // instantiate courses
 courses = make(map[string]courseInfo)

 router := mux.NewRouter()
 router.HandleFunc("/api/v1/", home)

 router.HandleFunc("/api/v1/courses", allcourses)
 router.HandleFunc("/api/v1/courses/{courseid}", course).

Methods("GET", "PUT", "POST", "DELETE")

 fmt.Println("Listening at port 5000")
 log.Fatal(http.ListenAndServe(":5000", router))
}

Updating courses
The next operation you need to implement is updating existing courses. The pro-
cess for updating existing courses is very similar to that of adding new courses.
The key difference is that for updating courses, the client will use the PUT method
instead of the POST method.

You need to perform the following checks:

»» Check if the client uses the PUT method.

»» Decode the JSON string that is sent to the REST API into the courseInfo
struct.

»» Check whether the course ID already exists. If it does not already exist, add
the new course to the courses map object. Otherwise, update the existing
course.

You can now add the following statements in bold to the course() function:

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)

 if r.Header.Get("Content-type")=="application/json" {

CHAPTER 16 Getting Ready to Serve Using REST APIs 261

 //---POST is for creating new course---
 if r.Method == "POST" {
 ...
 }

 //---PUT is for creating or updating
 // existing course---
 if r.Method == "PUT" {
 var newCourse courseInfo
 reqBody, err := ioutil.ReadAll(r.Body)

 if err == nil {
 json.Unmarshal(reqBody, &newCourse)

 if newCourse.Title == "" {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte(
 "422 - Please supply course " +
 " information " +
 "in JSON format"))
 return
 }

 // check if course exists; add only if
 // course does not exist
 if _, ok := courses[params["courseid"]];
 !ok {
 courses[params["courseid"]] =
 newCourse
 w.WriteHeader(http.StatusCreated)
 w.Write([]byte("201 - Course added: "
 + params["courseid"]))
 } else {
 // update course
 courses[params["courseid"]] =
 newCourse
 w.WriteHeader(http.StatusNoContent)
 }
 } else {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte("422 - Please supply " +
 "course information " +
 "in JSON format"))

262 PART 5 Seeing Go in Action

 }
 }
 }
}

Retrieving courses
The client can also fetch a specific course using the GET method with the following
path:

/api/v1/courses/<course_id>

To return the specified course, you just need to check whether the client uses the
GET method. You then return the course if it exists, or return a response of 404 if
the course does not exist:

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)

 if r.Method == "GET" {
 if _, ok := courses[params["courseid"]]; ok {
 json.NewEncoder(w).Encode(
 courses[params["courseid"]])
 } else {
 w.WriteHeader(http.StatusNotFound)
 w.Write([]byte("404 - No course found"))
 }
 }

 if r.Header.Get("Content-type")=="application/json" {

 //---POST is for creating new course---
 if r.Method == "POST" {
 ...
 }

 //---PUT is for creating or updating
 // existing course---
 if r.Method == "PUT" {
 ...
 }
 }
}

CHAPTER 16 Getting Ready to Serve Using REST APIs 263

Deleting courses
The last operation you need to implement is deleting a course. The first thing you
check is whether the client sends a DELETE method. Then you try to delete the
course if it already exists, or return a 404 error if there is no such course:

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)

 if r.Method == "GET" {
 ...
 }

 if r.Method == "DELETE" {
 if _, ok := courses[params["courseid"]]; ok {
 delete(courses, params["courseid"])
 w.WriteHeader(http.StatusNoContent)
 } else {
 w.WriteHeader(http.StatusNotFound)
 w.Write([]byte("404 - No course found"))
 }
 }

 if r.Header.Get("Content-type")=="application/json" {

 //---POST is for creating new course---
 if r.Method == "POST" {
 ...
 }

 //---PUT is for creating or updating
 // existing course---
 if r.Method == "PUT" {
 ...
 }
 }
}

With these additions, this is how the final main.go file looks:

package main

import (
 "encoding/json"
 "fmt"

264 PART 5 Seeing Go in Action

 "io/ioutil"
 "log"
 "net/http"
 "github.com/gorilla/mux"
)

type courseInfo struct {
 Title string `json:"Title"`
}

var courses map[string]courseInfo

func home(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to the REST API!")
}

func allcourses(w http.ResponseWriter, r *http.Request) {
 kv := r.URL.Query()

 for k, v := range kv {
 fmt.Println(k, v)
 }
 // returns all the courses in JSON
 json.NewEncoder(w).Encode(courses)
}

func course(w http.ResponseWriter, r *http.Request) {
 params := mux.Vars(r)

 if r.Method == "GET" {
 if _, ok := courses[params["courseid"]]; ok {
 json.NewEncoder(w).Encode(
 courses[params["courseid"]])
 } else {
 w.WriteHeader(http.StatusNotFound)
 w.Write([]byte("404 - No course found"))
 }
 }

 if r.Method == "DELETE" {
 if _, ok := courses[params["courseid"]]; ok {
 delete(courses, params["courseid"])
 w.WriteHeader(http.StatusNoContent)
 } else {

CHAPTER 16 Getting Ready to Serve Using REST APIs 265

 w.WriteHeader(http.StatusNotFound)
 w.Write([]byte("404 - No course found"))
 }
 }

 if r.Header.Get("Content-type")=="application/json" {

 // POST is for creating new course
 if r.Method == "POST" {
 // read the string sent to the service
 var newCourse courseInfo
 reqBody, err := ioutil.ReadAll(r.Body)

 if err == nil {
 // convert JSON to object
 json.Unmarshal(reqBody, &newCourse)

 if newCourse.Title == "" {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte(
 "422 - Please supply course " +
 "information in JSON format"))
 return
 }

 // check if course exists; add only if
 // course does not exist
 if _, ok := courses[params["courseid"]];
 !ok {
 courses[params["courseid"]] =
 newCourse
 w.WriteHeader(http.StatusCreated)
 w.Write([]byte("201 - Course added: "
 + params["courseid"]))
 } else {
 w.WriteHeader(http.StatusConflict)
 w.Write([]byte(
 "409 - Duplicate course ID"))
 }
 } else {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte("422 - Please supply " +
 "course information in JSON format"))

266 PART 5 Seeing Go in Action

 }
 }

 //---PUT is for creating or updating existing
 // course---
 if r.Method == "PUT" {
 var newCourse courseInfo
 reqBody, err := ioutil.ReadAll(r.Body)

 if err == nil {
 json.Unmarshal(reqBody, &newCourse)

 if newCourse.Title == "" {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte("422 - Please supply" +
 " course information in JSON format"))
 return
 }

 // check if course exists; add only if
 // course does not exist
 if _, ok := courses[params["courseid"]];
 !ok {
 courses[params["courseid"]] =
 newCourse
 w.WriteHeader(http.StatusCreated)
 w.Write([]byte("201 - Course added: "
 + params["courseid"]))
 } else {
 // update course
 courses[params["courseid"]] =
 newCourse
 w.WriteHeader(http.StatusNoContent)
 }
 } else {
 w.WriteHeader(
 http.StatusUnprocessableEntity)
 w.Write([]byte("422 - Please supply " +
 "course information in JSON format"))
 }
 }
 }
}

CHAPTER 16 Getting Ready to Serve Using REST APIs 267

func main() {
 // instantiate courses
 courses = make(map[string]courseInfo)

 router := mux.NewRouter()
 router.HandleFunc("/api/v1/", home)

 router.HandleFunc("/api/v1/courses", allcourses)
 router.HandleFunc("/api/v1/courses/{courseid}", course).

Methods("GET", "PUT", "POST", "DELETE")

 fmt.Println("Listening at port 5000")
 log.Fatal(http.ListenAndServe(":5000", router))
}

Testing the REST API again
Now you’re ready to test the REST API again. First, make sure you run the main.
go program:

$ go run main.go
Listening at port 5000

In Terminal or Command Prompt, check for all the courses in the REST API:

$ curl http://localhost:5000/api/v1/courses
{}

The preceding output shows that there are no courses at this moment. Next, let’s
add a new course with the course ID IOS101 and title “iOS Programming” using
the POST method:

$ curl -H "Content-Type:application/json" -X POST
http://localhost:5000/api/v1/courses/IOS101 -d
"{\"title\":\"iOS Programming\"}"
201 - Course added: IOS101

The output shows that the course has now been added. If you try to issue the pre-
ceding command again, you’ll see the output shown below:

$ curl -H "Content-Type:application/json" -X POST
http://localhost:5000/api/v1/courses/IOS101 -d

268 PART 5 Seeing Go in Action

"{\"title\":\"iOS Programming\"}"
409 - Duplicate course ID

Because the course already exists, you’ll get the 409 error.

Now try to get all the courses in the REST API:

$ curl http://localhost:5000/api/v1/courses
{"IOS101":{"Title":"iOS Programming"}}

So far so good. At this point, there is one course in the REST API. Let’s now add a
new course, IOS102, using the PUT method:

$ curl -H "Content-Type: application/json" -X PUT
http://localhost:5000/api/v1/courses/IOS102 -d
"{\"title\":\"Swift Programming\"}"
201 - Course added: IOS102

Next, let’s change the title of the course that we’ve just added by using the same
PUT method, but with the course title changed:

$ curl -H "Content-Type: application/json" -X PUT
http://localhost:5000/api/v1/courses/IOS102 -d
"{\"title\":\"SwiftUI Programming\"}"

HTTP response code 204 indicates that the server has successfully fulfilled the
request and that there is no content to send in the response payload body.

This time, there is no reply from the server. So, let’s verify that the course title
has, indeed, been changed:

$ curl http://localhost:5000/api/v1/courses
{"IOS101":{"Title":"iOS Programming"},
"IOS102":{"Title":"SwiftUI Programming"}}

The reply confirms that the title has been changed. You can also try fetching the
specific course:

$ curl http://localhost:5000/api/v1/courses/IOS102
{"Title":"SwiftUI Programming"}

CHAPTER 16 Getting Ready to Serve Using REST APIs 269

Now try deleting the IOS102 course:

$ curl -X DELETE
http://localhost:5000/api/v1/courses/IOS102

Again, the server actually responded with 204, so there is no output here. Let’s try
to query for IOS102:

$ curl http://localhost:5000/api/v1/courses/IOS102
404 - No course found

The output confirmed that the course was successfully deleted. Finally, let’s query
the API again to see the full list of courses:

$ curl http://localhost:5000/api/v1/courses
{"IOS101":{"Title":"iOS Programming"}}

You’ve now successfully built a functioning REST API! Congratulations!

CHAPTER 17 Working with Databases 271

Chapter 17
Working with Databases

Any application worth its salt needs to store its data persistently some-
where. Unless you’re writing a “Hello, World!” application, chances are,
your application will deal with data. You need a place to store that data

efficiently so you can retrieve it easily the next time you need to access it.

When it comes to database servers, you have lots of choices. Here are some of the
popular database servers currently available:

»» IBM Db2

»» Microsoft SQL Server

»» MongoDB

»» MySQL

»» Oracle Database

»» PostgreSQL

Although Go can access any of these database servers, I can’t cover all these prod-
ucts in this chapter, so I focus on MySQL because it’s one of the more popular
databases for web-based applications.

In this chapter, I show you how to use Go to store your data in databases. You dis-
cover how to set up a MySQL database server, create a database and table, and
configure it for use with Go.

IN THIS CHAPTER

»» Getting the MySQL server ready to go

»» Retrieving, adding, modifying, and
deleting a record in the MySQL
database

272 PART 5 Seeing Go in Action

Setting Up a MySQL Database Server
MySQL has several paid editions designed for commercial use, but you can use the
free version, MySQL Community Server, for both development and commercial
use. The free version has all the features that you would expect from a database
server, such as the ability to create tables, views, triggers, and stored procedures
(you just have to pay for technical support if you need it). MySQL Community
Server is the database of choice for organizations on a tight budget.

You can download it here:

»» macOS: https://dev.mysql.com/downloads/file/?id=499568

»» Windows: https://dev.mysql.com/downloads/file/?id=499590

After you’ve downloaded the MySQL Community Server installer, run it and follow
the various installation steps. Toward the end of the installation process, you’re
asked to provide a password for the root account (the user account that has all the
privileges in all the MySQL databases). Be sure to provide a secure password for
the root account.

In the following sections, I explain how to:

»» Interface with the MySQL server

»» Create a database and a table

»» Create a user account and grant it permission to access the database and
table

Interfacing with the MySQL server
There are a couple of ways to interface with the MySQL server. You can use the
command-line utility mysql, or you can use MySQL Workbench (see Figure 17-1),
which is a graphical user interface (GUI) application.

The MySQL installer for Windows automatically installs both the mysql utility and
the MySQL Workbench app. Mac users need to manually download MySQL Work-
bench from https://dev.mysql.com/downloads/file/?id=498743.

If you’re not a fan of typing commands in Terminal or Command Prompt, MySQL
Workbench makes interfacing with MySQL less intimidating. But for this chapter,
I show you how to interface with MySQL using the mysql utility.

https://dev.mysql.com/downloads/file/?id=499568
https://dev.mysql.com/downloads/file/?id=499590
https://dev.mysql.com/downloads/file/?id=498743

CHAPTER 17 Working with Databases 273

In Terminal/Command Prompt, type the following command:

$ mysql -u root -p
Enter password: <password>

Enter the password for the root account.

If you get an error that says the mysql utility is not found, the path to the utility
isn’t set correctly, but you can fix that problem. Here’s how:

»» If you’re on a Mac, type the following command:

export PATH=$PATH:/usr/local/mysql/bin

»» If you’re using Windows, type the following command (verify that the directory
below exists on your computer):

Set PATH=%PATH%;"C:\Program Files\MySQL\MySQL Server 8.0\
bin\"

If you’ve entered the correct root password, you should see the following MySQL
client prompt:

FIGURE 17-1:
MySQL

Workbench.

274 PART 5 Seeing Go in Action

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 69

Server version: 8.0.17 MySQL Community Server - GPL

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Creating a database and table
Now you’re ready to create a database in the MySQL server. At the MySQL client
prompt, type the following command:

mysql> CREATE DATABASE CoursesDB;
Query OK, 1 row affected (0.01 sec)

The preceding output indicates that the database CoursesDB has been created.

A number of databases are installed by default in the MySQL server, so you need
to tell MySQL server which database you want to use. To do that, use the following
command:

mysql> USE CoursesDB;
Database changed

Now create a table within the CoursesDB database:

mysql> CREATE TABLE Course (ID varchar(6) NOT NULL PRIMARY KEY,
Details VARCHAR(100));

Query OK, 0 rows affected (0.05 sec)

The preceding command creates a table named Course with two columns: ID and
Details. The ID column serves as the primary key for the table, and it can accept
string values up to six characters. The Details column can accept string values up
to 100 characters.

CHAPTER 17 Working with Databases 275

With the table created, you can now try to insert a record into the table using the
following command:

mysql> INSERT INTO Course (ID, Details) VALUES
("IOT210","Applied Go Programming");

Query OK, 1 row affected (0.01 sec)

Finally, you want to verify that the record was, indeed, inserted into the table by
retrieving it:

mysql> SELECT * FROM Course;
+--------+------------------------+
| ID | Details |
+--------+------------------------+
| IOT210 | Applied Go Programming |
+--------+------------------------+
1 row in set (0.00 sec)

If you see this output, the record has been inserted successfully.

Creating a new account and
granting permission
After your database and table have been created, you’re ready to create a user
account so you can use it to access the database from your Go program.

Technically, you can use the root account to access the database and table, but that
isn’t a good idea. Usually, you want to create separate user accounts to access
specific databases and tables. The root account has the power to do anything to
your databases (including deleting them), so it’s better to create separate accounts
with the privileges they need to do their work. That way, if a user account is com-
promised, the vulnerability is only limited to some specific databases and tables.

In the MySQL client utility, enter the following command:

mysql> CREATE USER 'gouser'@'localhost' IDENTIFIED BY
'password';

Query OK, 0 rows affected (0.06 sec)

The preceding statement creates a user account named gouser with the specified
password (which, for this example, is just password) and restricts its access to the
localhost (meaning this account can access MySQL server only from the same
machine as the server).

276 PART 5 Seeing Go in Action

Obviously, for real-world usage, you would never use such a simple password.

With the user account created, the next thing to do is to grant the account the
required permission to access a particular database and table. To grant the account
permission to access all databases and tables in the MySQL server, type the fol-
lowing command:

mysql> GRANT ALL ON *.* TO 'gouser'@'localhost';
Query OK, 0 rows affected (0.02 sec)

The preceding statement grants the gouser account access privileges to all the
databases and tables available on the server. To only grant the gouser account
access to the Course table in the CoursesDB database and tables, specify the data-
base and table names, like this:

mysql> GRANT ALL ON CoursesDB.Course TO 'gouser'@'localhost';

Connecting to the MySQL Database in Go
With the MySQL Server configured with the database and user account, you can
finally focus on getting your Go program to talk to the database server.

Go provides a SQL database application programming interface (API) in its stan-
dard library database/sql package. However, the specific driver for the database
server must be installed separately. This implementation allows developers to use
a uniform API while at the same time being able to use different database servers.

To work with the MySQL server in your Go application, you can install the mysql
driver by using this command in Terminal/Command Prompt:

$ go get "github.com/go-sql-driver/mysql"

To work with the standard SQL API, you just need to import the database/sql
package, as well as the package for the driver of the database server that you’re
using. For example, in this chapter, I’m using the MySQL server, so the import
looks like this:

import (
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)

CHAPTER 17 Working with Databases 277

The underscore character (_) prefixing the second import statement is known as
the blank identifier. Its use is to import the specified package solely for its side
effects. In this case, the mysql package registers itself with the database/sql
package during the import phase, so that by the time the code in main() is exe-
cuted, the database/sql package knows that it’s working with a MySQL database.

You can now try to connect to the MySQL server with the following program:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/go-sql-driver/mysql"
)

func main() {
 // Use mysql as driverName and a valid DSN
 db, err := sql.Open("mysql",
 "gouser:password@tcp(127.0.0.1:3306)/CoursesDB")

 // handle error
 if err != nil {
 panic(err.Error())
 } else {
 fmt.Println("Database object created")
 }

 // defer the close till after the main function has
 // finished executing
 defer db.Close()
}

The first argument to the sql.Open() function specifies the type of database
server you’re connecting to ("mysql" for MySQL). The second argument is a data
source name (DSN) indicating the following:

»» User account

»» Password

»» IP address of the database server

»» Port number of the database server

»» Database name

278 PART 5 Seeing Go in Action

The DSN has the following format:

<user>:<password>@tcp(<ip_address>:<port>)/<DB_name>

Be aware that the sql.Open() function only creates a DB object — it doesn’t yet
open any connection. So, even if your username or password is wrong, you won’t
get an error until you try to query the database. If an error occurred when trying
to create the DB object, the sql.Open() function returns the error through the
second return value of the function.

Finally, notice that you’ll close the database connection before the main() func-
tion exits.

In the following sections, I show you how to perform create–retrieve–update–
delete (CRUD) operations on the table.

Retrieving a record
Let’s now try to retrieve the record that is already in the Course table from the
CoursesDB database. The statements in bold do the following:

»» Create a type called Course with two fields: ID and Details.

»» Define a function named Records to fetch records from the database and
then print them out.

package main

import (
 "database/sql"
 "fmt"

 _ "github.com/go-sql-driver/mysql"
)

// map this type to the record in the table
type Course struct {
 ID string
 Details string
}

func GetRecords(db *sql.DB) {
 results, err := db.Query("Select * FROM Course")

CHAPTER 17 Working with Databases 279

 if err != nil {
 panic(err.Error())
 }

 for results.Next() {
 // map this type to the record in the table
 var course Course
 err = results.Scan(&course.ID,
 &course.Details)
 if err != nil {
 panic(err.Error())
 }

 fmt.Println(course.ID,
 "-", course.Details)
 }
}

func main() {
 // Use mysql as driverName and a valid DSN
 db, err := sql.Open("mysql",
 "gouser:password@tcp(127.0.0.1:3306)/CoursesDB")

 // handle error
 if err != nil {
 panic(err.Error())
 } else {
 fmt.Println("Database object created")
 GetRecords(db)
 }

 // defer the close till after the main function has
 // finished executing
 defer db.Close()
}

You use the Query() function to perform a query on the table. You usually use the
Query() function to execute queries that return rows. This function returns a Rows
struct containing the result of the query, as well as an error (if there is one). The
cursor starts before the first row of the result set. You have to use the Next()
method to move from one row to another. For each row, you use the Scan()
method from the Rows struct to read the records from the table and map it to the
fields in the Course struct that you’ve defined.

280 PART 5 Seeing Go in Action

Now when you run the earlier program, you see the following output:

$ go run main.go
Database object created
IOT210 - Applied Go Programming

If you see this output, congratulations! You’re now able to access the MySQL
server. If you don’t see this output, double-check that the database username and
password are correct and that you have a database named CoursesDB in your local
MySQL server.

Adding a record
When you’re able to retrieve rows from your table, you’re ready to write the code
to insert new records into the table. The following function, InsertRecord(),
does just that:

func InsertRecord(db *sql.DB, ID string, Details string) {
 // use parameterized SQL statement
 result, err := db.Exec(
 "INSERT INTO Course VALUES (?, ?)", ID, Details)
 if err != nil {
 fmt.Println(err.Error())
 } else {
 if count, err := result.RowsAffected(); err == nil {
 fmt.Println(count, "row(s) affected")
 }
 }
}

To insert a record into the table, you use the Exec() function, which executes a
query without returning any rows. The second argument of the Exec() function
contains the values to pass into the query’s placeholders (indicated with the ?
characters). This is known as a parameterized SQL statement. Although this function
doesn’t return any rows, it returns a Result struct. Using the result, you can
determine if the record is inserted successfully using the RowsAffected() method.

If you need to know the ID of the row inserted, you can use the LastInsertId()
method of the Result struct. This typically works for tables that have an auto-
increment column for new rows that are inserted.

CHAPTER 17 Working with Databases 281

Now I’ll insert a new course, IOS101, to the table by calling the InsertRecord()
function:

func main() {
 // Use mysql as driverName and a valid DSN
 db, err := sql.Open("mysql",
 "gouser:password@tcp(127.0.0.1:3306)/CoursesDB")

 // handle error
 if err != nil {
 panic(err.Error())
 } else {
 fmt.Println("Database object created")
 InsertRecord(db, "IOS101", "iOS Programming")
 GetRecords(db)
 }

 // defer the close till after the main function has
 // finished executing
 defer db.Close()
}

When you now run the program, you see the newly inserted record printed out:

$ go run main.go
Database object created
1 row(s) affected
IOS101 - iOS Programming
IOT210 - Applied Go Programming

Modifying a record
The next step would be to modify an existing record in the table. To do that, define
the EditRecord() function as follows:

func EditRecord(db *sql.DB, ID string, Details string) {
 result, err := db.Exec(
 "UPDATE Course SET Details=? WHERE ID=?",
 Details, ID)
 if err != nil {
 fmt.Println(err.Error())

282 PART 5 Seeing Go in Action

 } else {
 if count, err := result.RowsAffected();
 err == nil {
 fmt.Println(count, "row(s) affected")
 }
 }
}

Like the previous section, you used the Exec() function to execute the SQL query
to modify an existing record. To know if the record is modified successfully, use
the RowsAffected() method.

The following statements calls the EditRecord() function to edit the details of
the IOS101 course:

func main() {
 // Use mysql as driverName and a valid DSN
 db, err := sql.Open("mysql",
 "gouser:password@tcp(127.0.0.1:3306)/CoursesDB")

 // handle error
 if err != nil {
 panic(err.Error())
 } else {
 fmt.Println("Database object created")
 // InsertRecord(db, "IOS101", "iOS Programming")
 EditRecord(db, "IOS101", "SwiftUI Programming")
 GetRecords(db)
 }

 // defer the close till after the main function has finished

executing
 defer db.Close()
}

The following result shows that the course has been modified correctly:

$ go run main.go
Database object created
1 row(s) affected
IOS101 - SwiftUI Programming
IOT210 - Applied Go Programming

CHAPTER 17 Working with Databases 283

Deleting a record
Finally, let’s define the DeleteRecord() function as follows to delete a record
from the table:

func DeleteRecord(db *sql.DB, ID string) {
 result, err := db.Exec(
 "DELETE FROM Course WHERE ID=?", ID)
 if err != nil {
 fmt.Println(err.Error())
 } else {
 if count, err := result.RowsAffected();
 err == nil {
 fmt.Println(count, "row(s) affected")
 }
 }
}

Just like modifying an existing record and inserting a new record, you can use the
Exec() method to delete an existing record. To know if the record has been suc-
cessfully deleted, check the RowsAffected() method.

I’ll now delete the IOS101 course by adding the following statements in bold to the
main() function:

func main() {
 // Use mysql as driverName and a valid DSN
 db, err := sql.Open("mysql",
 "gouser:password@tcp(127.0.0.1:3306)/CoursesDB")

 // handle error
 if err != nil {
 panic(err.Error())
 } else {
 fmt.Println("Database object created")
 // InsertRecord(db, "IOS101", "iOS Programming")
 // EditRecord(db, "IOS101", "SwiftUI Programming")
 DeleteRecord(db, "IOS101")
 GetRecords(db)
 }

 // defer the close till after the main function has finished

executing
 defer db.Close()
}

284 PART 5 Seeing Go in Action

When you run the program, you see the following output:

$ go run main.go
Database object created
1 row(s) affected
IOT210 - Applied Go Programming

6The Part of Tens

IN THIS PART . . .

Discover ten Go packages to create compelling
applications.

Find ten Go resources to make you a better Go
developer.

CHAPTER 18 Ten Useful Go Packages to Create Applications 287

Chapter 18
Ten Useful Go Packages
to Create Applications

Go comes with various standard libraries that enable you to accomplish
most of the tasks you need to perform. However, sometimes you need
more than what the standard library offers. Fortunately, thanks to the

vibrant Go developer community, chances are, the functionalities you need are
already fulfilled by one or more of the third-party packages available. So, instead
of reinventing the wheel and writing the code yourself, you can simply download
the package and use it in your program. In this chapter, I introduce ten packages
that you may find useful in your application.

color
Tired of the boring black-and-white command-line applications? Inject some life
into your Go command-line app using the color package. With the color pack-
age, you can use different colors in your app to highlight important messages or
errors.

IN THIS CHAPTER

»» Exploring third-party Go packages

»» Becoming a better Go developer

288 PART 6 The Part of Tens

Installation
$ go get github.com/fatih/color

Code sample
package main

import "github.com/fatih/color"

func main() {
 color.Red("Error Message")
 color.Green("Retro...")
 color.Blue("Color is cool!")
 customBg :=
 color.New(color.FgBlue).Add(
 color.BgWhite).Add(color.Italic)
 customBg.Println("How does this look like?")
}

now
Anyone who has worked with date and time knows that it’s a pain in the you know
what. The now package is a time toolkit for Golang that wraps around the standard
time package and makes dealing with date and time a little more pleasant.

Installation
$ go get github.com/jinzhu/now

Code sample
package main

import (
 "fmt"
 "time"

 "github.com/jinzhu/now"
)

CHAPTER 18 Ten Useful Go Packages to Create Applications 289

func main() {
 fmt.Println(time.Now().Date())
 // 2020 December 8

 fmt.Println(now.Monday().Date())
 // 2020 December 7

 fmt.Println(now.BeginningOfWeek().Date())
 // 2020 December 6

 fmt.Println(now.EndOfWeek().Date())
 // 2020 December 12

 t, err := now.Parse("2020-12-13")
 if err == nil {
 fmt.Println(t)
 // 2020-12-13 00:00:00 +0800 +08
 }
}

go-pushbullet
If you want to send your own custom push notifications to your Android phone or
web browser, but you don’t want to write your own custom app to receive them,
the Pushbullet app (www.pushbullet.com) is your best friend. Pushbullet is an
application that runs on Android devices and Windows machines, as well as the
Chrome and Firefox web browsers. After you’ve installed it, you can send your
own custom push notifications to all these devices. Pushbullet is a great choice for
building Internet of Things (IoT) apps. To send push notifications to the Pushbul-
let apps, you can use the go-pushbullet package.

Installation
$ go get github.com/xconstruct/go-pushbullet

Code sample
package main

import (

https://www.pushbullet.com/

290 PART 6 The Part of Tens

 "fmt"
 "os"
 "github.com/xconstruct/go-pushbullet"
)

func main() {

 fmt.Println(os.Args)

 pb := pushbullet.New("<access_token>")
 devs, err := pb.Devices()
 if err != nil {
 panic(err)
 } else {
 err := pb.PushNote(devs[0].Iden, os.Args[1], os.Args[2])
 if err != nil {
 panic(err)
 }
 }
}

goid
You may need to generate universally unique identifiers (UUIDs). For example,
when you build a representation state transfer (REST) application programming
interface (API), you need to provide access keys to your users who are going to
access your APIs. Usually, you use a UUID as the access key. To programmatically
generate a UUID in Go, you can use the goid package, which generates V4 UUIDs.

Installation
$ go get github.com/jakehl/goid

Code sample
package main

import (
 "fmt"

CHAPTER 18 Ten Useful Go Packages to Create Applications 291

 "github.com/jakehl/goid"
)

func main() {
 fmt.Println(goid.NewV4UUID())
 // e64aedea-4aa6-4afe-8aea-d0ec068f1b3a
}

json2go
Converting JavaScript Object Notation (JSON) to Go structs is a straightforward
task — unless the JSON content is nested and complex. This is where json2go
comes in handy. The json2go package can be used directly in a command line or
from a Go application.

Installation
$ go get github.com/m-zajac/json2go/...

Code sample
package main

import (
 "fmt"

 "github.com/m-zajac/json2go"
)

func main() {
 inputs :=
 `[
 {
 "name": "water",
 "type": "liquid",
 "boiling_point": {
 "units": "C",
 "value": 100
 }
 },

292 PART 6 The Part of Tens

 {
 "name": "carbon monoxide",
 "type": "gas",
 "dangerous": true,
 "boiling_point": {
 "units": "C",
 "value": -191.5
 },
 "density": {
 "units": "kg/m3",
 "value": 789
 }
 }
]`
 parser := json2go.NewJSONParser("Document")
 parser.FeedBytes([]byte(inputs))
 res := parser.String()
 fmt.Println(res)
 /*
 type Document []struct {
 BoilingPoint struct {
 Units string `json:"units"`
 Value float64 `json:"value"`
 } `json:"boiling_point"`
 Dangerous *bool `json:"dangerous,omitempty"`
 Density *struct {
 Units string `json:"units"`
 Value int `json:"value"`
 } `json:"density,omitempty"`
 Name string `json:"name"`
 Type string `json:"type"`
 }
 */
}

gojq
In Go, you can decode JSON strings using the UnMarshal() function from the json
package. However, that requires you to unmarshal (decode) the JSON string into a
Go struct or onto an empty interface (for unstructured JSON). What if you just
want to very quickly parse some JSON configuration string, and you don’t want to

CHAPTER 18 Ten Useful Go Packages to Create Applications 293

get your hands dirty doing things like type assertion? The answer: Use the
gojq package. The gojq package allows you to quickly extract values from a JSON
string.

Installation
$ go get github.com/elgs/gojq

Code sample
package main

import (
 "fmt"

 "github.com/elgs/gojq"
)

func main() {
 inputs :=
 `[
 {
 "name": "water",
 "type": "liquid",
 "boiling_point": {
 "units": "C",
 "value": 100
 }
 },
 {
 "name": "carbon monoxide",
 "type": "gas",
 "dangerous": true,
 "features":[
 {
 "type":"boiling_point",
 "units":"C",
 "value":-191.5
 },
 {
 "type":"density",
 "units":"kg/m3",
 "value":789

294 PART 6 The Part of Tens

 }
]
 }
]`

 parser, err := gojq.NewStringQuery(inputs)
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println(parser.Query("[0].name"))
 // water

 fmt.Println(parser.Query("[1].features.[0].type"))
 // boiling_point

 fmt.Println(parser.Query("[1].features.[0].units"))
 // C

 fmt.Println(parser.Query("[1].features.[1].value"))
 // 789
}

turtle
Want to make your Go program resonate with kids? Well, talk to them using emo-
jis! The turtle package allows you to inject emojis into your Go application. You’ll
be able to get emojis by name or look them up by name.

Installation
$ go get github.com/hackebrot/turtle

Code sample
package main

import (
 "fmt"
 "os"

CHAPTER 18 Ten Useful Go Packages to Create Applications 295

 "github.com/hackebrot/turtle"
)

func main() {
 name := "happy"
 emojis := turtle.Keyword(name)
 if emojis == nil {
 fmt.Fprintf(os.Stderr, "no emoji found for name: %v\n",

name)
 os.Exit(1)
 }
 fmt.Printf("%s: %s\n", name, emojis)
}

go-http-client
Often, you want to connect to a web server and fetch some data quickly. You can
use the go-http-client package to do just that.

Installation
$ go get github.com/bozd4g/go-http-client/

Code sample
package main

import (
 "fmt"

 client "github.com/bozd4g/go-http-client"
)

func main() {
 httpClient := client.New(
 "https://jsonplaceholder.typicode.com/")
 if request, err := httpClient.Get("posts/10");
 err != nil {
 panic(err)
 } else {

296 PART 6 The Part of Tens

 if response, err := httpClient.Do(request);
 err != nil {
 panic(err)
 } else {
 fmt.Println(string(response.Get().Body))
 }
 }
}

notify
The notify package allows you to monitor changes to your file systems. For
example, you may want to be notified whenever a file or folder has been created,
deleted, or renamed in a particular folder. The notify package abstracts all the
lower-level filesystem watchers like inotify, kqueue, FSEvents, FEN, or
ReadDirectoryChangesW.

Installation
$ go get github.com/rjeczalik/notify

Code sample
package main

import (
 "log"

 "github.com/rjeczalik/notify"
)

func main() {
 for {
 c := make(chan notify.EventInfo, 1)

 // monitor the current directory for file/folder
 // creation, deletion, and renaming
 if err := notify.Watch(".", c, notify.Create,
 notify.Remove, notify.Rename); err != nil {
 log.Fatal(err)
 }

CHAPTER 18 Ten Useful Go Packages to Create Applications 297

 defer notify.Stop(c)
 ei := <-c
 log.Println("Got event:", ei)
 }
}

gosx-notifier
This last package is for Mac users. Ever wanted to create a notification on your
macOS Desktop? The gosx-notifier package allows you to send and display
notifications through the built-in notification center.

Installation
$ go get github.com/deckarep/gosx-notifier

Code sample
package main

import (
 "log"

 gosxnotifier "github.com/deckarep/gosx-notifier"
)

func main() {
 note := gosxnotifier.NewNotification("Meeting with the

team")
 note.Title = "Meeting"
 note.Subtitle = "Project discussion"
 note.Sound = gosxnotifier.Basso
 note.Group = "com.unique.yourapp.identifier"
 note.Sender = "com.apple.Safari"
 note.AppIcon = "gopher.png"
 note.ContentImage = "gopher.png"
 if err := note.Push(); err != nil {
 log.Println(err)
 }
}

CHAPTER 19 Ten Great Go Resources 299

Chapter 19
Ten Great Go Resources

I hope this book covers all the important concepts you need to know to succeed
in Go programming, but I know you need more than just one single resource to
stay ahead. In this chapter, I provide ten great Go resources that will be useful

to you when you’re ready to venture beyond the basics.

The Official Go Website
On the official website for the Go programming language (https://golang.org),
you can do the following:

»» Download and install Go on your machine.

»» Try the Go playground.

»» View the documentation and tutorials for Go.

»» View the documentation for the list of packages shipped with Go.

»» Read the Go blog.

IN THIS CHAPTER

»» Finding even more tips and tricks for
working with Go

»» Going down the Go rabbit hole

https://golang.org/

300 PART 6 The Part of Tens

Go by Example
Go by Example (https://gobyexample.com) is a hands-on introduction to Go
programming. Each example is a stand-alone program that illustrates a specific
topic. The various statements in the examples are heavily annotated, making this
site a very good resource for beginners.

When I was getting started with Go, I found Go by Example to be a helpful resource.

A Tour of Go
A Tour of Go (https://tour.golang.org/) is an interactive tutorial where you
can learn, read, and write Go code directly in your web browser. One very cool
feature of A Tour of Go is that it supports offline mode as well (https://
tour.golang.org/welcome/3). After you’ve installed Go and A Tour of Go locally
on your machine, you can view this tutorial even when you’re offline. Now you
have no more excuses for not learning Go, even when you’re hiking in the
mountains!

The Go Frequently Asked Questions
Need to know why certain features in Go were designed the way they were? Why
doesn’t Go support the ternary operator? How is Google using Go internally? The
Golang FAQ (https://golang.org/doc/faq) is maintained by the Go team and is
a good read when you have a burning question on Go and its design philosophy.

The Go Playground
Need to share Go code with your coworkers? Teaching a course in Go and need to
give your students a block of Go code? Why not use the Go Playground (https://
play.golang.org)? You can paste your Go code into the Go Playground and share
the link with whoever you want. Best of all, you can run and test your Go code
directly in the Go Playground!

https://gobyexample.com
https://tour.golang.org/
https://tour.golang.org/welcome/3
https://tour.golang.org/welcome/3
https://golang.org/doc/faq
https://play.golang.org
https://play.golang.org

CHAPTER 19 Ten Great Go Resources 301

Go Bootcamp
Go Bootcamp (http://www.golangbootcamp.com/book/) is a companion book to
the Go Bootcamp event organized for the first time in Santa Monica, California, in
March 2014. It’s an online Go book organized into 12 chapters. If you need to read
up on the syntax of Go in more detail, this is a good free resource.

Effective Go
Effective Go (https://golang.org/doc/effective_go.html) provides tips for
writing clear, idiomatic Go code. After you’re clear on the fundamentals of the Go
language, head over here to learn how to write good Go code and follow estab-
lished conventions for programming in Go.

Gophercises
Gophercises (https://gophercises.com) is a free course composed of mini-
exercises to help Go developers practice writing Go programs and, in the process,
gain experience with the language. In this course, you build about 20 applications,
making use of the various concepts covered in Go Programming Language For
Dummies — channels, mutexes, goroutines, functions, and so on.

Tutorialspoint
Tutorialspoint is a website dedicated to providing online education in a variety of
fields. It’s a popular site for learning programming languages such as JavaScript,
Python, and more. So, it’s no surprise that Tutorialspoint also has a section on Go
programming (www.tutorialspoint.com/go). The next time you need a quick
refresher on some Go concepts, head over to Tutorialspoint.

http://www.golangbootcamp.com/book/
https://golang.org/doc/effective_go.html
https://gophercises.com
https://www.tutorialspoint.com/go

302 PART 6 The Part of Tens

Stack Overflow
No resource list would be complete if it didn’t mention Stack Overflow, a
question-and-answer site for professional and enthusiast programmers. In fact,
if you don’t know Stack Overflow, you aren’t a programmer yet!

It’s a great place to get answers to your questions on Go (https://
stackoverflow.com/questions/tagged/go). In fact, if you search the web for the
answer to your question, chances are, Stack Overflow already has what you’re
looking for!

https://stackoverflow.com/questions/tagged/go
https://stackoverflow.com/questions/tagged/go

Index 303

Symbols
&& operator, 40
_ (blank identifier), 28, 71
`` (back ticks), 29
, (comma), 131
 (curly braces), 130
: (colon), 46, 93
// (double-slash), 24
-- operator, 53
. . . (ellipses), 72
! operator, 40
== (equal to) operator, 38
> (greater than) operator, 38, 39
>= (greater than or equal to) operator, 38, 39
< (less than) operator, 38, 39
<= (less than or equal to) operator, 38, 39
% (modulo) operator, 38
!= (not equal to) operator, 38, 39
++ operator, 53
|| operator, 40
:= (short variable declaration operator),

26–27, 39
? (ternary operator), 45
_ (underscore character), 277

A
adding

methods to types, 158
records, 280–281

AddInt64() function, 173–174
addNums() function, 71, 72
aggregate data type, 23
Amazon, 225–226
anonymous functions

declaring, 73–74
implementing closure using, 74–76
implementing filter() function using closure,

76–78

APIs, REST
about, 243
building web services using, 243–248
creating in Go, 249–269
getting up and running, 249–251
HTTP messages, 244
passing in query string, 254–255
registering additional paths, 251–254
REST methods, 246–247
REST response, 248
REST URLs, 244–246
specifying request methods, 255–257
storing course information on, 257–267
testing, 251, 267–269

APIs, web
about, 225–226
decoding JSON data, 229–233
fetching data from web services, 226–241
fetching from multiple web services, 238–239
refactoring code for decoding JSON data,

233–238
returning Goroutine’s results to main() function,

239–241
writing Go programs to connect to, 227–229

append() function, 88, 97–98
appending, to slices, 88–91
Area() function, 155–157, 158, 162
arguments. see parameters
array literal, 83, 88
Array value, 132–133
arrays

about, 81–82, 92
copying, 95–97
declaring, 82–83
decoding JSON to, 136–137
extracting parts of, 92–94
initializing, 83
iterating through, 56–57
multidimensional, 83–86

Index

304 Go Programming Language For Dummies

Atoi() function, 33
atomic counters, modifying shared resources

with, 172–174
atomic package, 172
attribute names, mapping custom, 140–141

B
back ticks (``), 29
basic data type, 23
bin directory, 222
blank identifier (_), 28, 71
Boolean value, 131
break statement, 59, 62
buffered channels, 192–193
build command, 16, 19
building

courses, 258–260
databases, 274–275
empty slices, 86–88
maps, 113–121
maps of structs, 121–123
modules, 211–214, 214–216
new accounts, 275–276
REST APIs in Go, 249–269
shareable packages, 200–202
slices, 88
structs, 104–105
tables, 274–275
web services using REST APIs, 243–248

C
C# language, 104
cap field, 87
cap() function, 87
channels

about, 179–180
asynchronously waiting on,

187–191
buffered, 192–193
how they work, 180–183
how they’re used, 183–186
iterating through, 186–187

Cheat Sheet (website), 3
Circle struct, 155, 158, 160–161, 162
Circumference() function, 158
close() function, 187
closure

implementing filter() function using, 76–78
implementing filter() using, 76–78
implementing using anonymous, 74–76
implementing using anonymous functions,

74–76
cloud services, 8
cmp package, 110–111
Coding with JavaScript For Dummies (Minnick

and Holland), 130
colon (:), 46, 93
color package, 287–288
comma (,), 131
Command Prompt window, 11
command-line apps, 9
communicating, between Goroutines using

channels. see channels
comparing structs, 110–112
comparison operators, 38–40
compiling

Go compared with other languages, 22
for multiple operating systems, 19–21
programs, 15–16

concurrent programming
defined, 165
Go compared with other languages, 22

condition expression, 52
connecting to MySQL databases, 276–284
const keyword, 27
constants, declaring, 27
constructor function, 104
continue statement, 59, 62–63
converting variable type, 32–34
coordinate package, finding documentation

for, 208–209
copy() function, 96
copying

arrays, 95–97
slices, 95–97
structs, 105–107

Index 305

counter() function, 188, 189
CountOddEven() method, 152–154
course() function, 256, 258–260, 260–262
creating

courses, 258–260
databases, 274–275
empty slices, 86–88
maps, 113–121
maps of structs, 121–123
modules, 211–214, 214–216
new accounts, 275–276
REST APIs in Go, 249–269
shareable packages, 200–202
slices, 88
structs, 104–105
tables, 274–275
web services using REST APIs, 243–248

credit() function, 168–170, 174
critical section, 172
curl command, 256–257
curly braces (), 130
Customer struct, 145–146

D
data

decoding (see JavaScript Object Notation (JSON))
encoding (see JavaScript Object Notation (JSON))
fetching from web services, 226–241

data types
about, 23
declaring constants, 27
declaring variables, 24–27
performing type conversions, 30–35
removing variables, 27–28
specifying, 25
strings, 29–30

databases
about, 271
adding records, 280–281
connecting to MySQL database, 276–284
creating, 274–275

creating new accounts, 275–276
creating tables and, 274–275
deleting records, 283–284
granting permission, 275–276
interfacing with MySQL server, 272–274
modifying records, 281–282
retrieving records, 278–280
setting up MySQL database server, 272–276

date formatting, 67
debit() function, 168–170, 174
decision-making

about, 37
if/else statement, 37–45
switch statement, 46–49

declaring
anonymous, 73–74
anonymous functions, 73–74
arrays, 82–83
constants, 27
variables, 24–27

decoding
data (see JavaScript Object Notation (JSON))
embedded objects, 137–139
JSON, 134–144
JSON data, 229–233
JSON to arrays, 136–137
JSON to structs, 135–136

defining
functions, 65–73
interfaces, 152–153
method signatures (see interfaces)
methods in structs, 107–109
structs for collections of items, 101–103

delete() function, 99–100, 116
DELETE method, 263–267
DeleteRecord() function, 283–284
deleting

courses, 263–267
keys, 116
records, 283–284

details key, 138
DigitsCounter interface, 152, 153–154

306 Go Programming Language For Dummies

DigitString interface, 153–154
directories, organizing packages using, 202–204
displayDate() function, 66, 67–68
displayTime() function, 18
double-slash (//), 24
downloading Visual Studio Code, 12

E
EditRecord() function, 281–282
Effective Go, 301
ellipses (. . .), 72
else statement, 41–42
embedded objects, decoding, 137–139
emojis, for Go, 204–205
empty interfaces, 161
Encode() function, 257–258
encoding

data (see JavaScript Object Notation (JSON))
interfaces to JSON, 148–150
JSON, 144–150
structs to JSON, 144–148

env command, 19–20
environment variables, for operating systems, 20
Equal() method, 112
equal to (==) operator, 38
evaluating conditions, 42–43
Exec() function, 280–281, 282, 283–284
extracting parts of arrays/slices, 92–94

F
fallthrough keyword, 47–48
fetchData() function, 233–234, 238
fetching

data from web services, 226–241
from multiple web services, 238–239

fib() function, 75–76, 186–187, 188, 189
Fibonacci sequence, 54, 75–76, 186–187
fields, 102
file command, 21
file structure (Go), 18–19
filter() function, 76–78

Fixer, 227
float32() function, 34
float64() function, 34
floating-point number, 131
for loop, 59–63, 189, 191
for statement, performing loops using, 51–56
for-range loop, 57, 58, 95, 117, 118, 123, 232
Fprintf() function, 251
func keyword, 65
functions

about, 65
AddInt64(), 173–174
addNums(), 71, 72
anonymous, 73–78
append(), 88, 97–98
Area(), 155–157, 158, 162
Atoi(), 33
cap(), 87
Circumference(), 158
close(), 187
constructor, 104
copy(), 96
counter(), 188, 189
course(), 256, 258–262
credit(), 168–170, 174
debit(), 168–170, 174
defining, 65–73
delete(), 99–100, 116
DeleteRecord(), 283–284
displayDate(), 66, 67–68
displayTime(), 18
EditRecord(), 281–282
Encode(), 257–258
Exec(), 280–281, 282, 283–284
fetchData(), 233–234, 238
fib(), 75–76, 186–187, 188, 189
filter(), 76–78
float32(), 34
float64(), 34
Fprintf(), 251
gen(), 76
Get(), 226–227

Index 307

getData(), 180–183
home(), 250
insert(), 97–98
InsertRecord(), 280–281
int(), 34
json.Marshal(), 146, 148–150
json.Unmarshal(), 135–136, 142
Kind(), 31
LastInsertId(), 280–281
len(), 30, 83, 87, 116–117, 120
length(), 107–109, 198–199, 200, 202
less(), 120
Lock(), 172, 174
main(), 17, 69, 70, 166–167, 174, 181, 187,

191, 197–198, 235, 239–241, 258–260, 277,
283–284

make(), 86, 87, 114, 115, 181, 187, 192
map(), 76
Marshal(), 146
MarshalIndent(), 147
Methods(), 255–256
move(), 109
mux.Vars(), 252
newPoint(), 104, 105
Next(), 279
Parse, 33–34
Printf(), 58–59
Println(), 17, 24, 29, 31, 72, 159–160
Query(), 279
raining(), 43
randSeed(), 183
ReadAll(), 227
reduce(), 76
returning values from, 71
RowsAffected(), 280–281, 282, 283–284
RuneCountInString(), 30
r.URL.Query(), 254–255
say(), 166–167
Scan(), 279
Scanf(), 32–33
Scanln(), 167, 174, 239
sendData(), 180–183
Slice(), 126–127

SliceStable(), 124–127
snowing(), 43
sort(), 120
Sprintf(), 35
sql.Open(), 277–278
String(), 160–161
sum(), 183–184, 193
swap(), 68–69, 70, 120
TypeOf(), 31
Unlock(), 172, 174
ValueOf(), 31
variadic, 72–73, 98
Vars(), 252
Wait(), 175
wg.-176Add(), 175
wg.Done(), 175–176
wg.Wait(), 175–176

G
garbage collection (GC), 22
GCP. see Google Cloud Platform (GCP)
gen() function, 76
generating

courses, 258–260
databases, 274–275
empty slices, 86–88
maps, 113–121
maps of structs, 121–123
modules, 211–214, 214–216
new accounts, 275–276
REST APIs in Go, 249–269
shareable packages, 200–202
slices, 88
structs, 104–105
tables, 274–275
web services using REST APIs,

243–248
generics, 8
Get() function, 226–227
GET method, 246–247, 262
getData() function, 180–183
GitHub, publishing modules on, 216–222

308 Go Programming Language For Dummies

Go. see also specific topics
about, 7
advantages of learning, 8–9
Bootcamp, 301
compared with other languages, 21–22
creating REST APIs in, 249–269
emojis for, 204–205
evaluating conditions in, 42–43
FAQ, 300
file structure, 18–19
how programs work, 17
installer, 10
installing, 9–11
Playground, 300
using integrated development environment (IDE)

with, 12–14
versions, 10
website, 7, 9, 299
writing your first program, 14–21

“Go at Google Language Design in the Service of
Software Engineering,” 7

Go by Example, 300
Go Documentation (Godoc), 205–207
go env command, 201
Go extension, installing for Visual Studio Code,

12–14
go install command, 203
go keyword, 167
go run command, 202
go-http-client package, 295–296
goid package, 290–291
gojq package, 292–294
GoLand, 12
Golang. see Go
Google Cloud Platform (GCP), 8
Google Finance, 226
$GOPATH, subdirectories within, 222
GOPATH environment variable, 201, 203
Gophercises, 301
go-pushbullet package, 289–290

gorilla/mux package, 249
Goroutines

about, 165–167
communicating between using channels

(see channels)
returning results to main(), 239–241
returning results to main() function, 239–241
synchronizing, 174–178
using with shared resources, 168–174

gosx-notifier package, 297
The Go Playground, 12
granting permission, 275–276
greater than (>) operator, 38, 39
greater than or equal to (>=) operator, 38, 39
Griesemer, Robert (engineer), 7
grouping packages. see modules

H
half-open range, 92–93
Holland, Eva (author)

Coding with JavaScript For Dummies, 130
home() function, 250
HTTP messages, 244

I
icons, explained, 2–3
IDE (integrated development environment), using

with Go, 12–14
idiomatic, 104
if statement, 41–42
if/else statements

about, 37
comparison operators, 38–40
logical operators, 38–40
using, 40–42

implementing
closure using anonymous, 74–76
closure using anonymous functions, 74–76
filter() function using closure, 76–78

Index 309

filter() using closure, 76–78
interfaces, 153–154
multiple interfaces, 160–161

infinite loops, 55–56
inheritance, 8
init statement, 52
initialization statement, 44
initializing

arrays, 83
maps with map literals, 115
slices, 88

insert() function, 97–98
inserting items to slices, 97–99
InsertRecord() function, 280–281
installing

Go, 9–11
Go extension for Visual Studio Code, 12–14

int() function, 34
int key, 122
integer, 131
integrated development environment (IDE), using

with Go, 12–14
interface data type, 23
interfaces

about, 151
defining, 152–153
empty, 161
encoding to JSON, 148–150
implementing, 153–154
implementing multiple, 160–161
with MySQL server, 272–274
using, 154–162
values and, 162
working with, 152–154

Internet resources
Amazon, 225–226
Cheat Sheet, 3
Effective Go, 301
Fixer, 227

Go, 7, 9, 299
“Go at Google Language Design in the

Service of Software Engineering,” 7
Go Bootcamp, 301
Go by Example, 300
Go FAQ, 300
Go Playground, 300
GoLand, 12
Google Finance, 226
Gophercises, 301
The Go Playground, 12
JSON strings, 134
JSONLint, 235
MySQL database server, 272
MySQL Workbench, 272
npm, 204
OpenWeather, 235
PyPI, 204
Stack Overflow, 302
Stack Overflow Developer

Survey, 8
A Tour of Go, 300
Tutorialspoint, 301
Visual Studio Code, 12
XML, 129

interpolating strings, 34–35
iterating

over maps, 117
over ranges of values, 56–59
setting order for, in maps, 118
through arrays/slices, 56–57
through channels, 186–187
through slices, 95
through strings, 58–59

J
Java, 21–22
Java language, 104

310 Go Programming Language For Dummies

JavaScript Object Notation (JSON)
about, 129–130
Array value, 132–133
Boolean value, 131
decoding, 134–144
decoding data, 229–233
decoding embedded objects, 137–139
decoding to arrays, 136–137
decoding to structs, 135–136
encoding, 144–150
encoding interfaces to, 148–150
encoding structs to, 144–148
mapping custom attribute names, 140–141
mapping unstructured data, 141–144
null value, 133–134
Number value, 131
Object value, 130, 132
String value, 130–131

json2go package, 291–292
JSONLint, 235
json.Marshal() function, 146, 148–150
json.Unmarshal() function, 135–136, 142

K
keys

checking existence of, 115–116
defined, 113
deleting, 116
getting in maps, 117

key-value pairs, 130–131
Kind() function, 31

L
labels, using with for loop, 59–63
LastInsertId() function, 280–281
len field, 87
len() function, 30, 83, 87, 116–117, 120
length() function, 107–109, 198–199,

200, 202
less() function, 120
less than (>) operator, 38, 39
less than or equal to (<=) operator, 38, 39

library support, Go compared with other
languages, 22

Lock() function, 172, 174
logical operators, 38–40
loops

-- operator, 53
++ operator, 53
about, 51
infinite, 55–56
iterating over ranges of values, 56–59
iterating through arrays/slices, 56–57
iterating through strings, 58–59
performing using for statement, 51–56
using labels with for loop, 59–63

M
macOS

downloading MySQL database server, 272
Go Documentation (Godoc), 206–207
installing Go, 10–11

main() function, 17, 69, 70, 166–167, 174, 181,
187, 191, 197–198, 235, 239–241, 258–260,
277, 283–284

make() function, 86, 87, 114, 115, 181, 187, 192
map() function, 76
map literals, initializing maps with, 115
mapping

custom attribute names, 140–141
unstructured data, 141–144

maps
about, 113
checking existence of keys, 115–116
creating, 113–121
creating of structs, 121–123
deleting keys, 116
getting keys in, 117
getting number of items in, 116–117
initializing with map literals, 115
iterating over, 117
setting iteration order in, 118
sorting items by values in, 118–121
sorting of structs, 124–127
structs and, 121–127

Index 311

Marshal() function, 146
MarshalIndent() function, 147
matching multiple cases, 48
method signatures, defining. see interfaces
methods

adding to types, 158
defining in structs, 107–109
REST, 246–247

Methods() function, 255–256
Minnick, Chris (author)

Coding with JavaScript For Dummies, 130
modifying

records, 281–282
shared resources with atomic counters, 172–174

modules
about, 211
building, 214–216
creating, 211–214
publishing on GitHub, 216–222
testing, 214–216

modulo (%) operator, 38
move() function, 109
multidimensional arrays, 83–86
Mutex object, 171, 172, 174
mutual exclusion, accessing shared resources

using, 171–172
mux.Vars() function, 252
MySQL database server

interfacing with, 272–274
setting up, 272–276

MySQL databases, connecting to, 276–284
MySQL Workbench, 272

N
naming return values, 72
networking apps, 9
newPoint() function, 104, 105
Next() function, 279
not equal to (!=) operator, 38, 39
notify package, 296–297
now package, 288–289
npm, 204
null value, 133–134

Number value, 131
nums array, 82

O
Object value, 130, 132
object-oriented programming (OOP), 8
OpenWeather, 235
operating systems

compiling for multiple, 19–21
environment variables for, 20

P
packages

about, 197
atomic, 172
cmp, 110–111
color, 287–288
coordinate, 208–209
creating shareable,

200–202
emojis for Go, 204–205
finding documentation for coordinate

package, 208–209
Go documentation, 205–209
go-http-client, 295–296
goid, 290–291
gojq, 292–294
go-pushbullet, 289–290
gorilla/mux, 249
gosx-notifier, 297
grouping (see modules)
json2go, 291–292
notify, 296–297
now, 288–289
organizing using directories,

202–204
recommended, 287–297
reflect, 31
sort, 118, 124, 233
sync, 171
third-party, 204–209
turtle, 294–295
working with, 197–204

312 Go Programming Language For Dummies

parameterized SQL statement, 280
parameters

defining functions with, 66–68
defining functions with multiple, 68
passing by value and pointer, 68–70

Parse function, 33–34
passing

parameters by value and pointer, 68–70
in query string, 254–255

passing by reference, 70
performing

loops using for statement, 51–56
type conversions, 30–35

permission, granting, 275–276
Pike, Rob (designer), 7
pkg directory, 222
point struct, 104–108, 110
pointer, passing parameters by, 68–70
pointer receiver, 109
POST method, 246–247, 260
post statement, 52
primitive types, 124
Printf() function, 58–59
Println() function, 17, 24, 29, 31, 72, 159–160
programs

compiling, 15–16
running, 15–16

properties, 8
ptr field, 87
publishing modules, on GitHub, 216–222
PUT method, 246–247, 260
PyPI, 204
Python, 21–22

Q
Query() function, 279
query strings, passing in, 254–255

R
raining() function, 43
randSeed() function, 183

range keyword, 57, 186–187
ReadAll() function, 227
receiver, 107
records

adding, 280–281
deleting, 283–284
modifying, 281–282
retrieving, 278–280

reduce() function, 76
refactoring code, for decoding JSON data, 233–238
reference, passing by, 70
reference data type, 23
reflect package, 31
registering additional paths, 251–254
Remember icon, 2
removing

items from slices, 99–100
variables, 27–28

representational state transfer (REST). see
REST APIs

request methods, specifying, 255–257
resources, Internet

Amazon, 225–226
Cheat Sheet, 3
Effective Go, 301
Fixer, 227
Go, 7, 9, 299
“Go at Google Language Design in the Service of

Software Engineering,” 7
Go Bootcamp, 301
Go by Example, 300
Go FAQ, 300
Go Playground, 300
GoLand, 12
Google Finance, 226
Gophercises, 301
The Go Playground, 12
JSON strings, 134
JSONLint, 235
MySQL database server, 272
MySQL Workbench, 272
npm, 204

Index 313

OpenWeather, 235
PyPI, 204
Stack Overflow, 302
Stack Overflow Developer Survey, 8
A Tour of Go, 300
Tutorialspoint, 301
Visual Studio Code, 12
XML, 129

resources, recommended, 299–302
resources, shared

accessing using mutual exclusion, 171–172
modifying with atomic counters, 172–174
using Goroutines with, 168–174

REST APIs
about, 243
building web services using, 243–248
creating in Go, 249–269
getting up and running, 249–251
HTTP messages, 244
passing in query string, 254–255
registering additional paths, 251–254
REST methods, 246–247
REST response, 248
REST URLs, 244–246
specifying request methods, 255–257
storing course information on, 257–267
testing, 251, 267–269

REST methods, 246–247
REST response, 248
REST URLs, 244–246
retrieving

courses, 262
records, 278–280

return statement, 72, 191
return values, naming, 72
returning

Goroutine’s results to main(), 239–241
Goroutine’s results to main() function, 239–241
values from functions, 71

RowsAffected() function, 280–281, 282, 283–284
RuneCountInString() function, 30
running programs, 15–16
r.URL.Query() function, 254–255

S
say() function, 166–167
Scan() function, 279
Scanf() function, 32–33
Scanln() function, 167, 174, 239
select statement, 189
sendData() function, 180–183
Shape interface, 155, 157, 158, 162
shared resources

accessing using mutual exclusion, 171–172
modifying with atomic counters, 172–174
using Goroutines with, 168–174

short variable declaration operator (:=), 26–27, 39
Slice() function, 126–127
slice header, 87
slices

about, 86, 92
appending to, 88–91
copying, 95–97
creating, 88
creating empty, 86–88
extracting parts of, 92–94
initializing, 88
inserting items to, 97–99
iterating through, 56–57, 95
removing items from, 99–100

SliceStable() function, 124–127
snowing() function, 43
sort() function, 120
sort package, 118, 124, 233
sorting

items by values in maps, 118–121
maps of structs, 124–127

specifying
data types, 25
request methods, 255–257

Sprintf() function, 35
sql.Open() function, 277–278
Square struct, 155
src directory, 222
Stack Overflow, 302
Stack Overflow Developer Survey, 8

314 Go Programming Language For Dummies

storing course information, on REST API, 257–267
String() function, 160–161
String value, 130–131
Stringer interface, 159–160, 160–161
strings

interpolating, 34–35
iterating through, 58–59
managing, 29–30

struct field tags, 140
structs

about, 101
Circle, 155, 158, 160–161, 162
comparing, 110–112
copying, 105–107
creating, 104–105
creating maps of, 121–123
Customer, 145–146
decoding JSON to, 135–136
defining for collections of items, 101–103
defining methods in, 107–109
encoding to JSON, 144–148
maps and, 121–127
point, 104–108, 110
sorting maps of, 124–127
Square, 155
Triangle, 157

structured types, 124
subdirectories, within $GOPATH, 222
sum() function, 183–184, 193
swap() function, 68–69, 70, 120
switch statement

about, 46–47
fallthrough keyword, 47–48
matching multiple cases, 48
without condition, 48–49

sync package, 171
synchronizing Goroutines, 174–178
syntax, Go compared with other languages, 21–22

T
%T, 31
tables, creating, 274–275

Technical Stuff icon, 2
Terminal app, 10–11
ternary operator (?), 45
testing

modules, 214–216
REST APIs, 251, 267–269

third-party packages
about, 204
emojis for Go, 204–205
finding documentation for coordinate package,

208–209
Go documentation, 205–209

Thompson, Ken (designer), 7
threading. see Goroutines
three-dimensional (3D) coordinate space, 102
time formatting, 67
Tip icon, 3
A Tour of Go, 300
Triangle struct, 157
turtle package, 294–295
Tutorialspoint, 301
two-dimensional (2D) coordinate space, 101–102
TypeOf() function, 31
types

adding methods to, 158
performing conversions, 30–35

U
underscore character (_), 277
Unicode characters, 30, 58
Unlock() function, 172, 174
unstructured data, mapping, 141–144
updating courses, 260–262

V
value receiver, 108
ValueOf() function, 31
values

interfaces and, 162
iterating over ranges of, 56–59
passing parameters by, 68–70
return, 72

Index 315

returning from functions, 71
sorting items by, in maps, 118–121

var keyword, 24–25, 102
variables

converting type, 32–34
declaring, 24–27
removing, 27–28
types of, 31

variadic functions, 72–73, 98
Vars() function, 252
versions (Go), 10
Visual Studio Code

about, 12
downloading, 12
installing Go extension for, 12–14

W
Wait() function, 175
wait group, 175
Warning icon, 3
web APIs

about, 225–226
decoding JSON data, 229–233
fetching data from web services, 226–241
fetching from multiple web services, 238–239
refactoring code for decoding JSON data,

233–238
returning Goroutine’s results to main() function,

239–241
writing Go programs to connect to, 227–229

web services
building using REST APIs, 243–248
using Go on, 9

websites
Amazon, 225–226
Cheat Sheet, 3
Effective Go, 301
Fixer, 227
Go, 7, 9, 299
“Go at Google Language Design in the Service of

Software Engineering,” 7

Go Bootcamp, 301
Go by Example, 300
Go FAQ, 300
Go Playground, 300
GoLand, 12
Google Finance, 226
Gophercises, 301
The Go Playground, 12
JSON strings, 134
JSONLint, 235
MySQL database server, 272
MySQL Workbench, 272
npm, 204
OpenWeather, 235
PyPI, 204
Stack Overflow, 302
Stack Overflow Developer Survey, 8
A Tour of Go, 300
Tutorialspoint, 301
Visual Studio Code, 12
XML, 129

wg.-176Add() function, 175
wg.Done() function, 175–176
wg.Wait() function, 175–176
Windows

downloading MySQL database server, 272
Go Documentation (Godoc), 206
installing Go, 11

writing
Go programs, 14–21
Go programs to connect to web APIs, 227–229

X
x coordinate, 101–102
XML, 129

Y
y coordinate, 101–102

About the Author
Wei-Meng Lee is a technologist and founder of Developer Learning Solutions
(http://calendar.learn2develop.net), a company specializing in hands-on
training on the latest technologies.

Wei-Meng has many years of training experience. His training courses place spe-
cial emphasis on the learning-by-doing approach. Wei-Meng’s hands-on
approach to learning programming makes understanding the subject much easier
than reading books, tutorials, and documentation. His name regularly appears in
online and print publications, such as DevX.com, MobiForge.com, and CODE Mag-
azine. He is also the author of Python Machine Learning (Wiley), Learning WatchKit
Programming (Addison-Wesley), Beginning Swift Programming (Wrox), and SwiftUI
For Dummies (Wiley).

When he’s not coding, Wei-Meng speaks at meetups and conferences, such as
NDC Oslo, NDC London, NDC Copenhagen, and RigaDevDays.

Dedication
I dedicate this book with love to my dearest wife, Sze Wa, and daughter, Chloe,
who have to endure my irregular work schedule and for their companionship
when I’m trying to meet writing deadlines!

http://calendar.learn2develop.net/

Author’s Acknowledgments
Writing a book is always exciting, but along with it come long hours of hard work,
straining to get things done accurately and correctly. To make a book possible,
many unsung heroes work tirelessly behind the scenes. I would like to take this
opportunity to thank a number of special people who have made this book
possible.

First, I want to thank Executive Editor Steven Hayes, for his trust in me to write
my second For Dummies book. It has been a great working experience dealing with
the Dummies team, and I’m proud to be a Dummies author! Thank you, Steve!

Next, a huge thanks to Elizabeth Kuball, my project editor, who is always a plea-
sure to work with. I was super excited when I heard that Elizabeth was going to be
my editor for my second For Dummies book! With Elizabeth onboard, I know the
project is in good hands! Give me a high-five, Elizabeth! (And thanks for the
patience when I occasionally missed the deadlines.)

Equally important is my technical editor, Chaim Krause. I’ve known Chaim for
close to a decade, and I’ve worked with him on several book projects. Chaim can
always be relied upon to spot my mistakes, and his technical-editing skills cer-
tainly made this book a better one. Thanks, Chaim!

I also want to specially thank Patrice Choong, Director of the School of InfoComm
Technology, Ngee Ann Polytechnic, for giving me the opportunity to get involved
with the curriculum development at The Go School and The Data School, and for
his trust in me. Thank you, Patrice!

Last, but not least, I want to thank my parents, my wife, and my lovely girl, for all
the support they’ve given me. They selflessly adjusted their schedules to accom-
modate my busy schedule when I was working on this book. I love you all!

Publisher’s Acknowledgments

Executive Editor: Steven Hayes

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Chaim Krause

Production Editor: Tamilmani Varadharaj

Cover Image: © JoffBarnes/E+/Getty Images

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://Dummies.com

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

http://Dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://Dummies.com

Available Everywhere Books Are Sold

Learning Made Easy

9781119293576
USA $19.99
CAN $23.99
UK £15.99

9781119293637
USA $19.99
CAN $23.99
UK £15.99

9781119293491
USA $19.99
CAN $23.99
UK £15.99

9781119293460
USA $19.99
CAN $23.99
UK £15.99

9781119293590
USA $19.99
CAN $23.99
UK £15.99

ACADEMIC

9781119215844
USA $26.99
CAN $31.99
UK £19.99

 9781119293378
USA $22.99
CAN $27.99
UK £16.99

9781119293521
USA $19.99
CAN $23.99
UK £15.99

9781119239178
USA $18.99
CAN $22.99
UK £14.99

9781119263883
USA $26.99
CAN $31.99
UK £19.99

dummies.com

http://Dummies.com

Unleash Their Creativity

Small books for big
imaginations

9781119177173
USA $9.99
CAN $9.99
UK £8.99

9781119177272
USA $9.99
CAN $9.99
UK £8.99

9781119177241
USA $9.99
CAN $9.99
UK £8.99

9781119177210
USA $9.99
CAN $9.99
UK £8.99

9781119262657
USA $9.99
CAN $9.99
UK £6.99

9781119291336
USA $9.99
CAN $9.99
UK £6.99

9781119233527
USA $9.99
CAN $9.99
UK £6.99

9781119291220
USA $9.99
CAN $9.99
UK £6.99

9781119177302
USA $9.99
CAN $9.99
UK £8.99

dummies.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Go
	Chapter 1 Hello, Go!
	Seeing What Learning Go Can Do for You
	Installing Go on Your Machine
	macOS
	Windows

	Using an Integrated Development Environment with Go
	Writing Your First Go Program
	Compiling and running the program
	Understanding how a Go program works
	Making sense of the Go file structure
	Compiling for multiple operating systems

	Comparing Go with Other Languages
	Syntax
	Compilation
	Concurrency
	Library support

	Chapter 2 Working with Different Data Types
	Declaring Always-Changing Variables
	Using the var keyword: Type-inferred variables
	Specifying the data type: Explicitly typed variables
	Using the short variable declaration operator

	Declaring Never-Changing Constants
	Removing Unused Variables
	Dealing with Strings
	Performing Type Conversions
	Discovering the type of a variable
	Converting a variable’s type
	Interpolating strings

	Chapter 3 Making Decisions
	Using If/Else Statements to Make Decisions
	Laying the foundation for the if/else statement: Logical and comparison operators
	Using the if/else statement
	Short-circuiting: Evaluating conditions in Go

	When You Have Too Many Conditions: Using the Switch Statement
	Switching with fall-throughs
	Matching multiple cases
	Switching without condition

	Chapter 4 Over and Over and Over: Using Loops
	Performing Loops Using the for Statement
	Iterating over a Range of Values
	Iterating through arrays/slices
	Iterating through a string

	Using Labels with the for Loop

	Chapter 5 Grouping Code into Functions
	Defining a Function
	Defining functions with parameters
	Defining functions with multiple parameters
	Passing arguments by value and by pointer
	Returning values from functions
	Naming return values
	Working with variadic functions

	Using Anonymous Functions
	Declaring an anonymous function
	Implementing closure using anonymous functions
	Implementing the filter() function using closure

	Part 2 Working with Data Structures
	Chapter 6 Slicing and Dicing Using Arrays and Slices
	Arming Yourself to Use Arrays
	Declaring an array
	Initializing an array
	Working with multidimensional arrays

	Sleuthing Out the Secrets of Slices
	Creating an empty slice
	Creating and initializing a slice
	Appending to a slice

	Slicing and Ranging
	Extracting part of an array or slice
	Iterating through a slice
	Making copies of an array or slice
	Inserting an item into a slice
	Removing an item from a slice

	Chapter 7 Defining the Blueprints of Your Data Using Structs
	Defining Structs for a Collection of Items
	Creating a Go Struct
	Making a Copy of a Struct
	Defining Methods in Structs
	Comparing Structs

	Chapter 8 Establishing Relationships Using Maps
	Creating Maps in Go
	Initializing a map with a map literal
	Checking the existence of a key
	Deleting a key
	Getting the number of items in a map
	Iterating over a map
	Getting all the keys in a map
	Setting the iteration order in a map
	Sorting the items in a map by values

	Using Structs and Maps in Go
	Creating a map of structs
	Sorting a map of structs

	Chapter 9 Encoding and Decoding Data Using JSON
	Getting Acquainted with JSON
	Object
	String
	Boolean
	Number
	Object
	Array
	null

	Decoding JSON
	Decoding JSON to a struct
	Decoding JSON to arrays
	Decoding embedded objects
	Mapping custom attribute names
	Mapping unstructured data

	Encoding JSON
	Encoding structs to JSON
	Encoding interfaces to JSON

	Chapter 10 Defining Method Signatures Using Interfaces
	Working with Interfaces in Go
	Defining an interface
	Implementing an interface

	Looking at How You May Use Interfaces
	Adding methods to a type that doesn’t satisfy an interface
	Using the Stringer interface
	Implementing multiple interfaces
	Using an empty interface
	Determining whether a value implements a specific interface

	Part 3 Multitasking in Go
	Chapter 11 Threading Using Goroutines
	Understanding Goroutines
	Using Goroutines with Shared Resources
	Seeing how shared resources impact goroutines
	Accessing shared resources using mutual exclusion
	Using atomic counters for modifying shared resources

	Synchronizing Goroutines

	Chapter 12 Communicating between Goroutines Using Channels
	Understanding Channels
	How channels work
	How channels are used

	Iterating through Channels
	Asynchronously Waiting on Channels
	Using Buffered Channels

	Part 4 Organizing Your Code
	Chapter 13 Using and Creating Packages in Go
	Working with Packages
	Creating shareable packages
	Organizing packages using directories

	Using Third-Party Packages
	Emojis for Go
	Go Documentation

	Chapter 14 Grouping Packages into Modules
	Creating a Module
	Testing and Building a Module
	Publishing a Module on GitHub

	Part 5 Seeing Go in Action
	Chapter 15 Consuming Web APIs Using Go
	Understanding Web APIs
	Fetching Data from Web Services in Go
	Writing a Go program to connect to a web API
	Decoding JSON data
	Refactoring the code for decoding JSON data
	Fetching from multiple web services at the same time
	Returning Goroutine’s results to the main() function

	Chapter 16 Getting Ready to Serve Using REST APIs
	Building Web Services Using REST APIs
	HTTP messages
	REST URLs
	REST methods
	REST response

	Creating a REST API in Go
	Getting your REST API up and running
	Testing the REST API
	Registering additional paths
	Passing in query string
	Specifying request methods
	Storing the course information on the REST API
	Testing the REST API again

	Chapter 17 Working with Databases
	Setting Up a MySQL Database Server
	Interfacing with the MySQL server
	Creating a database and table
	Creating a new account and granting permission

	Connecting to the MySQL Database in Go
	Retrieving a record
	Adding a record
	Modifying a record
	Deleting a record

	Part 6 The Part of Tens
	Chapter 18 Ten Useful Go Packages to Create Applications
	color
	Installation
	Code sample

	now
	Installation
	Code sample

	go-pushbullet
	Installation
	Code sample

	goid
	Installation
	Code sample

	json2go
	Installation
	Code sample

	gojq
	Installation
	Code sample

	turtle
	Installation
	Code sample

	go-http-client
	Installation
	Code sample

	notify
	Installation
	Code sample

	gosx-notifier
	Installation
	Code sample

	Chapter 19 Ten Great Go Resources
	The Official Go Website
	Go by Example
	A Tour of Go
	The Go Frequently Asked Questions
	The Go Playground
	Go Bootcamp
	Effective Go
	Gophercises
	Tutorialspoint
	Stack Overflow

	Index
	EULA

GoProgramming
Language

. N

