Mat Ryer

Go Programming

Blueprints

Build real-world, production-ready solutions in Go using
cutting-edge technology and techniques

L] Pack®

Go Programming Blueprints

Second Edition

Build real-world, production-ready solutions in Go using
cutting-edge technology and techniques

Mat Ryer

BIRMINGHAM - MUMBAI

Go Programming Blueprints

Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Second edition: October 2016

Production reference: 1211016

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-894-9

www.packtpub.com

https://www.packtpub.com/

Author

Mat Ryer

Reviewers

Michael Hamrah
David Hernandez

Commissioning Editor

Kunal Parikh

Acquisition Editor

Sonali Vernekar

Content Development Editor

Siddhi Chavan

Technical Editors

Bhavin Savalia
Dhiraj Chandanshive

Credits

Copy Editor

Stuti Srivastava

Project Coordinator

Suzanne Coutinho

Proofreader

SAFIS Editing

Indexer

Tejal Daruwale Soni

Graphics

Abhinash Sahu

Production Coordinator

Aparna Bhagat

About the Author

Mat Ryer has been programming computers since he was 6 years old; he and his father
would build games and programs, first in BASIC on a ZX Spectrum and then in
AmigaBASIC and AMOS on Commodore Amiga. Many hours were spent on manually
copying the code from Amiga Format magazine and tweaking variables or moving GOTO
statements around to see what might happen. The same spirit of exploration and obsession
with programming led Mat to start work with a local agency in Mansfield, England, when
he was 18, where he started to build websites and services.

In 2006, Mat left rural Nottinghamshire for London, where he took a job at BT. It was here
that he worked with a talented group of developers and managers on honing his agile
development skills and developing the light flavor that he still uses today.

After being contracted around London for a few years, coding everything from C# and
Objective-C to Ruby and JavaScript, Mat noticed a new systems language called Go that
Google was pioneering. Since it addressed very pertinent and relevant modern technical
challenges, Mat started using it to solve problems while the language was still in the beta
stage and he has used it ever since.

In 2012, Mat moved to Boulder, Colorado, where he worked on a variety of projects, from
big data web services and highly available systems to small side projects and charitable
endeavors. He returned home, to London, in 2015 after the company he was working in was
sold. Mat, to this day, continues to use Go to build a variety of products, services, and open-
source projects. He writes articles about Go on his blog at matryer.com and tweets about Go
with the handle @matryer.

Mat is a regular speaker at Go conferences around the world and encourages people to
come up and introduce themselves if their paths ever cross.

https://medium.com/@matryer

Acknowledgments

I wouldn't have been able to write this book, or the second edition, without the help of the
wonderful Laurie Edwards, who, while working on her own projects took the time to keep
me organized and focused. Without her continuous and undying support, I dare say this
book (along with every other project I have embarked on) would never have happened.
Development heroes of mine include David Hernandez (@dahernan on GitHub), who
delights in telling me that my ideas are "terrible" before later falling in love with them;
Ernesto Jiménez, who works extremely hard and extremely effectively on private and
public projects alike; Tyler Bunnell (¢tylerb on GitHub), who I learned Go with; and Ryan
Quinn (€mazondo on GitHub), who seems to build an app a day and is living proof of how
building something, however simple, is always better than building nothing. Thanks also
goes out to Tim Schreiner for engaging in debates with me over the good and bad bits of Go
as well as being my go-to guy on matters close to and beyond the fringes of computer
science. Thanks go to the core Go team for building such a fun language and to the entire
Go community, who have saved me months of development with their contributions. A
special shout out to the Women Who Go and Go Bridge (@golangbridge on Twitter)
groups, who are working increasingly hard to help us reach and maintain a rich and
diversely populated community. Special thanks also goes to everyone who has supported
me in my life and helped me in developing what I love into a career, including, but not
limited to, Nick and Maggie Ryer, Chris Ryer, Glenn and Tracey Wilson, Phil Jackson,
Aaron Edell, Sek Chai, David Hernandez, Ernesto Jiménez, Blaine Garst, Tim and Stacey
Stockhaus, Tom Szabo, Steve Davis, Mark Gray, John Motz, Rory Donnelly, Piotr Rojek,
Corey Prak, Peter Bourgon, Andrew Gerrand, Dave Cheney, William (Bill) Kennedy, Matt
Heath, Carlisia Campos, Tiffany Jernigan, Natalie Pistunovich, Simon Howard, Sean
Thompson, Jeff Cavins, Edd Grant, Alan Meade, Steve Cart, Andy Jackson, Aditya Pradana,
Andy Joslin, Kal Chottai, Tim Ryer, Emma Payne, Corey and Ashton Ryer, Clair Ryer,
Gareth and Dylan Evans, Holly Smitheman, Phil Edwards, Tracey Edwards, Kirsten, Megan
and Paul Krawczyk, Alex, Adriénne and Ethan Edwards, Chantelle and Greg Rosson, and
all my other great friends and family. In the loving memory of Maggie Ryer, 1961 - 2015.

About the Reviewer

Michael Hamrah is a software engineer from Brooklyn, New York, specializing in scalable
and distributed systems with more than a decade of development experience. He is
currently working as a Senior Software Engineer at Uber focusing on metrics and
monitoring systems, which handles billions of low-latency events per day across multiple
data centers. He works primarily with Go and has an extensive experience with all levels of
the software stack . He can be reached on LinkedIn at https://www.linkedin.com/in/ham

rah.

David Hernandez is an independent software engineer from London. He helps companies
improve their software. He has worked in different countries, such as Spain, UK, and
Australia. He has participated in projects such as the BBC London Olympics 2012.
Additionally, he has also helped to achieve Continuous Delivery at Atlassian, and he has
delivered services to citizens at UK Government Digital Services.

You can find David speaking and collaborating at the Go London User Group, as Go is his
favorite programming language.

https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah
https://www.linkedin.com/in/hamrah

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. For
support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Table of Contents

Preface 1
Chapter 1: Chat Application with Web Sockets 9
A simple web server 10
Separating views from logic using templates 12
Doing things once 14

Using your own handlers 14
Properly building and executing Go programs 15
Modeling a chat room and clients on the server 15
Modeling the client 16
Modeling a room 19
Concurrency programming using idiomatic Go 19
Turning a room into an HTTP handler 20
Using helper functions to remove complexity 22
Creating and using rooms 23
Building an HTML and JavaScript chat client 23
Getting more out of templates 25
Tracing code to get a look under the hood 28
Writing a package using TDD 28
Interfaces 29
Unit tests 30
Red-green testing 32
Implementing the interface 34
Unexported types being returned to users 35

Using our new trace package 36
Making tracing optional 38
Clean package APls 39
Summary 40
Chapter 2: Adding User Accounts 41
Handlers all the way down 42
Making a pretty social sign-in page 45
Endpoints with dynamic paths 47
Getting started with OAuth2 50
Open source OAuth2 packages 50
Tell the authorization providers about your app 51

Implementing external logging in 52
Logging in 53
Handling the response from the provider 56
Presenting the user data 58
Augmenting messages with additional data 59

Summary 64

Chapter 3: Three Ways to Implement Profile Pictures 65

Avatars from the OAuth2 server 66
Getting the avatar URL 66
Transmitting the avatar URL 67
Adding the avatar to the user interface 68
Logging out 69
Making things prettier 71

Implementing Gravatar 73
Abstracting the avatar URL process 73

The auth service and the avatar's implementation 74
Using an implementation 76
The Gravatar implementation 78

Uploading an avatar picture 81
User identification 82
An upload form 83
Handling the upload 84
Serving the images 86
The Avatar implementation for local files 87

Supporting different file types 89
Refactoring and optimizing our code 90
Replacing concrete types with interfaces 91
Changing interfaces in a test-driven way 92

Fixing the existing implementations 94

Global variables versus fields 95
Implementing our new design 96

Tidying up and testing 97
Combining all three implementations 98
Summary 100
Chapter 4: Command-Line Tools to Find Domain Names 101

Pipe design for command-line tools 102

Five simple programs 102
Sprinkle 103
Domainify 107
Coolify 109

[ii]

Synonyms
Using environment variables for configuration
Consuming a web API
Getting domain suggestions

Available

112
113
113
117

118

Composing all five programs 122

One program to rule them all 123

Summary 127

Chapter 5: Building Distributed Systems and Working with Flexible

Data 128

The system design 129

The database design 130

Installing the environment 131

Introducing NSQ 131

NSQ driver for Go 133

Introducing MongoDB 133

MongoDB driver for Go 134

Starting the environment 134

Reading votes from Twitter 135

Authorization with Twitter 135

Extracting the connection 137

Reading environment variables 138

Reading from MongoDB 140

Reading from Twitter 142

Signal channels 144

Publishing to NSQ 146

Gracefully starting and stopping programs 148

Testing 150

Counting votes 151

Connecting to the database 152

Consuming messages in NSQ 153

Keeping the database updated 155

Responding to Ctrl + C 157

Running our solution 158

Summary 159
Chapter 6: Exposing Data and Functionality through a RESTful Data

Web Service API 161

RESTful API design 162

Sharing data between handlers 163

Context keys 163

[iii]

Wrapping handler functions 165

API keys 165
Cross-origin resource sharing 166
Injecting dependencies 167
Responding 167
Understanding the request 169
Serving our API with one function 171
Using handler function wrappers 173
Handling endpoints 173
Using tags to add metadata to structs 174
Many operations with a single handler 174
Reading polls 175
Creating a poll 178

Deleting a poll 179

CORS support 180
Testing our API using curl 180

A web client that consumes the API 182
Index page showing a list of polls 183
Creating a new poll 185
Showing the details of a poll 186
Running the solution 189
Summary 191
Chapter 7: Random Recommendations Web Service 193
The project overview 194
Project design specifics 195
Representing data in code 197
Public views of Go structs 200
Generating random recommendations 201
The Google Places API key 203
Enumerators in Go 203
Test-driven enumerator 205
Querying the Google Places API 209
Building recommendations 210
Handlers that use query parameters 212
CORS 213
Testing our API 214
Web application 216
Summary 216

Chapter 8: Filesystem Backup 218

[iv]

Solution design 219
The project structure 219
The backup package 220
Considering obvious interfaces first 220
Testing interfaces by implementing them 221
Has the filesystem changed? 224
Checking for changes and initiating a backup 226
Hardcoding is OK for a short while 228

The user command-line tool 229
Persisting small data 230
Parsing arguments 231
Listing the paths 232

String representations for your own types 232

Adding paths 233
Removing paths 233

Using our new tool 234
The daemon backup tool 235
Duplicated structures 237
Caching data 237
Infinite loops 238
Updating filedb records 239
Testing our solution 240
Summary 242
Chapter 9: Building a Q&A Application for Google App Engine 243
The Google App Engine SDK for Go 244
Creating your application 245
App Engine applications are Go packages 246
The app.yaml file 246
Running simple applications locally 247
Deploying simple applications to Google App Engine 249
Modules in Google App Engine 250
Specifying modules 251

Routing to modules with dispatch.yaml 252
Google Cloud Datastore 252
Denormalizing data 253
Entities and data access 255
Keys in Google Cloud Datastore 256
Putting data into Google Cloud Datastore 257
Reading data from Google Cloud Datastore 259
Google App Engine users 259

[v]

Embedding denormalized data 261
Transactions in Google Cloud Datastore 262
Using transactions to maintain counters 263
Avoiding early abstraction 267
Querying in Google Cloud Datastore 267
Votes 269
Indexing 270
Embedding a different view of entities 271
Casting a vote 273
Accessing parents via datastore.Key 274
Line of sight in code 274
Exposing data operations over HTTP 277
Optional features with type assertions 277
Response helpers 278
Parsing path parameters 279
Exposing functionality via an HTTP API 281
HTTP routing in Go 281
Context in Google App Engine 282
Decoding key strings 283
Using query parameters 285
Anonymous structs for request data 286

Writing self-similar code 287
Validation methods that return an error 288
Mapping the router handlers 289
Running apps with multiple modules 290
Testing locally 290
Using the admin console 291
Automatically generated indexes 292
Deploying apps with multiple modules 292
Summary 293
Chapter 10: Micro-services in Go with the Go kit Framework 294
Introducing gRPC 296
Protocol buffers 297
Installing protocol buffers 298
Protocol buffers language 298
Generating Go code 300
Building the service 301
Starting with tests 302
Constructors in Go 303
Hashing and validating passwords with bcrypt 304

[vi]

Modeling method calls with requests and responses 305
Endpoints in Go kit 307
Making endpoints for service methods 308
Different levels of error 309
Wrapping endpoints into a Service implementation 309

An HTTP server in Go kit 311
A gRPC server in Go kit 312
Translating from protocol buffer types to our types 313
Creating a server command 315
Using Go kit endpoints 318
Running the HTTP server 318
Running the gRPC server 319
Preventing a main function from terminating immediately 320
Consuming the service over HTTP 320
Building a gRPC client 321
A command-line tool to consume the service 323
Parsing arguments in CLIs 324
Maintaining good line of sight by extracting case bodies 325
Installing tools from the Go source code 326
Rate limiting with service middleware 327
Middleware in Go kit 328
Manually testing the rate limiter 330
Graceful rate limiting 331
Summary 332
Chapter 11: Deploying Go Applications Using Docker 333
Using Docker locally 334
Installing Docker tools 334
Dockerfile 334
Building Go binaries for different architectures 335
Building a Docker image 336
Running a Docker image locally 337
Inspecting Docker processes 338
Stopping a Docker instance 339
Deploying Docker images 339
Deploying to Docker Hub 339
Deploying to Digital Ocean 341
Creating a droplet 341
Accessing the droplet's console 344
Pulling Docker images 346

[vii]

Running Docker images in the cloud 348
Accessing Docker images in the cloud 348
Summary 349
Appendix: Good Practices for a Stable Go Environment 350
Installing Go 350
Configuring Go 351
Getting GOPATH right 352
Go tools 353
Cleaning up, building, and running tests on save 355
Integrated developer environments 356
Sublime Text 3 356
Visual Studio Code 359
Summary 362

Index

363

[viii]

Preface

I have been blown away by the response Go Programming Blueprints has received, both from
newcomers to Go, as well as well-respected titans of the community. The positive feedback
has inspired me to do this second edition, where the code has been updated to the latest
thinking and three new chapters have been added. Thanks to the contributions and
questions from readers on the GitHub repository (https://github.com/matryer/gobluep
rints), I have been able to address some errors, fix some bugs, and clear some things up.
See the README file on GitHub for a complete list of their names.

I decided to write Go Programming Blueprints because I wanted to expel the myth that Go,
being a relatively young language and community, is a bad choice to write and iterate on
software quickly. I have a friend who knocks out complete Ruby on Rails apps in a
weekend by mashing up pre-existing gems and libraries; Rails as a platform has become
known for enabling rapid development. As I do the same with Go and the ever-growing
buffet of open source packages, I wanted to share some real-world examples of how we can
quickly build and release software that performs well from day one and is ready to scale
when our projects take off in a way that Rails cannot compete with. Of course, most
scalability happens outside the language, but features such as Go's built-in concurrency
mean you can get some very impressive results from even the most basic hardware, giving
you a head start when things start to get real.

This book explores some very different projects, any of which can form the basis of a
genuine startup. Whether it's a low-latency chat application, a domain name suggestion
tool, a social polling and election service built on Twitter, or a random night out generator
powered by Google Places, each chapter touches upon a variety of problems that most
products or services written in Go will need to address. The solutions I present in this book
are just one of many ways to tackle each project, and I will encourage you to make up your
own mind about how I approached them. The concepts are more important than the code
itself, but you'll hopefully pick up a few tips and tricks here and there that can go into your
Go toolbelt.

New to this second edition, we will explore some practical modern architectural thinking,
such as how to build for Google App Engine, what a microservice looks like, and how to
package up our code with Docker and deploy to anywhere.

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Preface

The process by which I wrote this book may be interesting because it represents something
about the philosophies adopted by many agile developers. I started by giving myself the
challenge of building a real deployable product (albeit a simple one; a minimum viable
product, if you will) before getting stuck into it and writing a version 1. Once I got it
working, I would rewrite it from scratch. It is said many times by novelists and journalists
that the art of writing is rewriting; I have found this to be true for software as well. The first
time we write a piece of code, all we are really doing is learning about the problem and how
it might be tackled, as well as getting some of our thinking out of our heads and onto paper,
or into a text editor. The second time we write it, we are applying our new knowledge to
actually solve the problem. If you've never tried this, give it a shot—you might find that the
quality of your code shoots up quite dramatically as I did. It doesn't mean the second time
will be the last time —software evolves and we should try to keep it as cheap and disposable
as possible so we don't mind throwing pieces away if they go stale or start to get in the way.

I write all of my code following Test-driven development (TDD) practices, some of which
we will do together throughout the book and some you'll just see the result of in the final
code. All of the test code can be found in the GitHub repositories for this book, even if it's
not included in print.

Once I had my test-driven second versions completed, I started writing the chapter
describing how and why I did what I did. In most cases, the iterative approach I took is left
out of the book because it would just add pages of tweaks and edits, which would probably
just become frustrating for the reader. However, on a couple of occasions, we will iterate
together to get a feel of how a process of gradual improvements and small iterations
(starting and keeping it simple and introducing complexity only when absolutely
necessary) can be applied when writing Go packages and programs.

I'moved to the United States from England in 2012, but that is not why the chapters are
authored in American English; it was a requirement from the publisher. I suppose this book
is aimed at an American audience, or perhaps it's because American English is the standard
language of computing (in British code, properties that deal with color are spelled without
the U). Either way, I apologize in advance for any trans-Atlantic slips; I know how pedantic
programmers can be.

Any questions, improvements, suggestions, or debates (I love how opinionated the Go
community —as well as the core team and the language itself —is) are more than welcome.
These should probably take place in the GitHub issues for the book setup, specifically at htt
ps://github.com/matryer/goblueprints, so that everybody can take part.

[2]

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Preface

Finally, I would be thrilled if somebody forms a start-up based on any of these projects, or
makes use of them in other places. I would love to hear about it; you can tweet me at
@matryer.

What this book covers

Chapter 1, Chat Application with Web Sockets, shows how to build a complete web
application that allows multiple people to have a real-time conversation right in their web
browser. We will see how the NET/HTTP package let us serve HTML pages as well as
connect to the client's browser with web sockets.

Chapter 2, Adding User Accounts, shows how to add OAuth to our chat application so that
we can keep track of who is saying what, but let them log in using Google, Facebook, or
GitHub.

Chapter 3, Three Ways to Implement Profile Pictures, explains how to add profile pictures to
the chat application taken from either the authentication service, the Gravitar.com web
service, or by allowing users to upload their own picture from their hard drive.

Chapter 4, Command-Line Tools to Find Domain Names, explores how easy building
command-line tools is in Go and puts those skills to use to tackle the problem of finding the
perfect domain name for our chat application. It also explores how easy Go makes it to
utilize the standard-in and standard-out pipes to produce some pretty powerful
composable tools.

Chapter 5, Building Distributed Systems and Working with Flexible Data, explains how to
prepare for the future of democracy by building a highly-scalable Twitter polling and vote
counting engine powered by NSQ and MongoDB.

Chapter 6, Exposing Data and Functionality through a RESTful Data Web Service API, looks at
how to expose the capabilities we built in chapter 5, Building Distributed Systems and
Working with Flexible Data, through a JSON web service, specifically how the wrapping
http.HandlerFunc functions give us a powerful pipeline pattern.

Chapter 7, Random Recommendations Web Service, shows how to consume the Google Places
API to generate a location-based random recommendations API that represents a fun way
to explore any area. It also explores why it's important to keep internal data structures
private, controlling the public view into the same data, as well as how to implement
enumerators in Go.

[3]

Preface

Chapter 8, Filesystem Backup, helps to build a simple but powerful filesystem backup tool
for our code projects and explore interacting with the filesystem using the OS package from
the Go standard library. It also looks at how Go's interfaces allow simple abstractions to
yield powerful results.

Chapter 9, Building a Q& A Application for Google App Engine, shows how to build
applications that can be deployed to Google's infrastructure and run at high scale with little
to no operational duties for us. The project we build utilizes some of the cloud services
available on Google App Engine, including the Google Cloud Datastore—a highly available
and extremely fast schema-less data storage option.

Chapter 10, Micro-services in Go with the Go Kit Framework, explores a modern software
architecture paradigm whereby large monolithic applications are broken down into discrete
services with a singular focus. The services run independently of each other, allowing them
to be individually scaled to meet demand. Go Kit is a software framework that addresses
some of the challenges of a microservice architecture while remaining agnostic to the
implementation details.

Chapter 11, Deploying Go Applications Using Docker, looks at how simple it is to build
Docker images to package and deploy the application we built in chapter 9, Building a
Q&A Application for Google App Engine. We will write a Dockerfile that describes the image,
and use the Docker tools to build the image, which we will then deploy to the Digital Ocean
cloud.

Appendix, Good Practices for a Stable Go Environment, shows how to install Go from scratch on
a new machine and discusses some of the environmental options we have and the impact
they might have in the future. We will look at a few code editor (or IDE —Integrated
Developer Environment) options and also consider how collaboration might influence some
of our decisions as well as the impact open sourcing our packages might have.

What you need for this book

To compile and run the code from this book, you will need a computer capable of running
an operating system that supports the Go toolset, a list of which can be found at https://g

olang.org/doc/install#requirements.

appendix, Good Practices for a Stable Go Environment, has some useful tips to install Go and
set up your development environment, including how to work with the GOPATH
environment variable.

[4]

https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements
https://golang.org/doc/install#requirements

Preface

Who this book is for

This book is for all Go programmers, ranging from beginners looking to explore the
language by building real projects to expert gophers with an interest in how the language
can be applied in interesting ways.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "You will
notice that the deployable artifact for your application is the webApp . war file."

A block of code is set as follows:

package meander
type Cost int8
const (

_ Cost = iota

Costl

Cost2

Cost3

Cost4

Costb
)

Any command-line input or output is written as follows:
go build -o project && ./project

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Once you install Xcode, you
open Preferences and navigate to the Downloads section"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

[5]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub. com. If you purchased this book elsewhere, you can visit http: //www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk D=

[6]

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Go-Programming-Blueprints. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information will
appear under the Errata section.

[7]

https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/Go-Programming-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[8]

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chat Application with Web
Sockets

Go is great for writing high-performance, concurrent server applications and tools, and the
Web is the perfect medium over which to deliver them. It would be difficult these days to
find a gadget that is not web-enabled and this allows us to build a single application that
targets almost all platforms and devices.

Our first project will be a web-based chat application that allows multiple users to have a
real-time conversation right in their web browser. Idiomatic Go applications are often
composed of many packages, which are organized by having code in different folders, and
this is also true of the Go standard library. We will start by building a simple web server
using the net /http package, which will serve the HTML files. We will then go on to add
support for web sockets through which our messages will flow.

In languages such as C#, Java, or Node.js, complex threading code and clever use of locks
need to be employed in order to keep all clients in sync. As we will see, Go helps us
enormously with its built-in channels and concurrency paradigms.

In this chapter, you will learn how to:

e Use the net /http package to serve HTTP requests
e Deliver template-driven content to users' browsers
e Satisfy a Go interface to build our own http.Handler types

¢ Use Go's goroutines to allow an application to perform multiple tasks
concurrently

¢ Use channels to share information between running goroutines
e Upgrade HTTP requests to use modern features such as web sockets
¢ Add tracing to the application to better understand its inner working

Chat Application with Web Sockets

e Write a complete Go package using test-driven development practices
¢ Return unexported types through exported interfaces

Complete source code for this project can be found at https://github.co
m/matryer/goblueprints/tree/master/chapterl/chat. The source
code was periodically committed so the history in GitHub actually follows
the flow of this chapter too.

A simple web server

The first thing our chat application needs is a web server that has two main responsibilities:

e Serving the HTML and JavaScript chat clients that run in the user's browser
¢ Accepting web socket connections to allow the clients to communicate

The GOPATH environment variable is covered in detail in Appendix, Good
Practices for a Stable Go environment. Be sure to read that first if you need
help getting set up.

Create amain.go file inside a new folder called chat in your GOPATH and add the
following code:

package main
import (
lllogll
"net/http"
)
func main () {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
w.Write ([]byte (©
<html>
<head>
<title>Chat</title>
</head>
<body>
Let's chat!
</body>
</html>
))
})
// start the web server
if err := http.ListenAndServe (":8080", nil); err !'= nil {

[10]

https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat

Chat Application with Web Sockets

log.Fatal ("ListenAndServe:", err)
t
t

This is a complete, albeit simple, Go program that will:

¢ Listen to the root path using the net /http package
e Write out the hardcoded HTML when a request is made
e Start a web server on port : 8080 using the ListenAndServe method

The http.HandleFunc function maps the path pattern / to the function we pass as the
second argument, so when the user hits http://localhost:8080/, the function will be
executed. The function signature of func (w http.Responselriter, r
*http.Request) is a common way of handling HTTP requests throughout the Go
standard library.

We are using package main because we want to build and run our
program from the command line. However, if we were building a reusable
chatting package, we might choose to use something different, such

as package chat.

In a terminal, run the program by navigating to the main. go file you just created and
execute the following command:

go run main.go

The go run command is a helpful shortcut for running simple Go
programs. It builds and executes a binary in one go. In the real world, you
usually use go build yourself to create and distribute binaries. We will
explore this later.

Open the browser and type http://localhost:8080 to see the Let's chat! message.

Having the HTML code embedded within our Go code like this works, but it is pretty ugly
and will only get worse as our projects grow. Next, we will see how templates can help us
clean this up.

[11]

Chat Application with Web Sockets

Separating views from logic using templates

Templates allow us to blend generic text with specific text, for instance, injecting a user's
name into a welcome message. For example, consider the following template:

Hello {{name}}, how are you?

We are able to replace the { {name}} text in the preceding template with the real name of a
person. So if Bruce signs in, he might see:

Hello Bruce, how are you?

The Go standard library has two main template packages: one called text/template for
text and one called html/template for HTML. The html/template package does the
same as the text version except that it understands the context in which data will be injected
into the template. This is useful because it avoids script injection attacks and resolves
common issues such as having to encode special characters for URLs.

Initially, we just want to move the HTML code from inside our Go code to its own file, but
won't blend any text just yet. The template packages make loading external files very easy,
so it's a good choice for us.

Create a new folder under our chat folder called templates and create a chat .html file
inside it. We will move the HTML from main. go to this file, but we will make a minor
change to ensure our changes have taken effect:

<html>
<head>
<title>Chat</title>
</head>
<body>
Let's chat (from template)
</body>
</html>

Now, we have our external HTML file ready to go, but we need a way to compile the
template and serve it to the user's browser.

Compiling a template is a process by which the source template is
interpreted and prepared for blending with various data, which must
happen before a template can be used but only needs to happen once.

[12]

Chat Application with Web Sockets

We are going to write our own struct type that is responsible for loading, compiling, and
delivering our template. We will define a new type that will take a £ilename string,
compile the template once (using the sync.0Once type), keep the reference to the compiled
template, and then respond to HTTP requests. You will need to import

the text/template, path/filepath, and sync packages in order to build your code.

In main.go, insert the following code above the func main () line:

// templ represents a single template
type templateHandler struct {

once sync.Once
filename string
templ *template.Template

}

// ServeHTTP handles the HTTP request.

func (t *templateHandler) ServeHTTP (w http.ResponseWriter, r
*http.Request) |

t.once.Do (func () {
t.templ = template.Must (template.ParseFiles(filepath.Join("templates",

t.filename)))

H)

t.templ.Execute(w, nil)

}

Did you know that you could automate the adding and removing of
imported packages? See Appendix, Good Practices for a Stable Go
Environment, on how to do this.

The templateHandler type has a single method called ServeHTTP whose signature looks
suspiciously like the method we passed to http.HandleFunc earlier. This method will
load the source file, compile the template and execute it, and write the output to the
specified http.Responselriter method. Because the serveHTTP method satisfies

the http.Handler interface, we can actually pass it directly to http.Handle.

A quick look at the Go standard library source code, which is located at
http://golang.org/pkg/net/http/#Handler, will reveal that the
interface definition for http.Handler specifies that only the ServeHTTP
method need be present in order for a type to be used to serve HTTP
requests by the net /http package.

[13]

http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/net/http/#Handler

Chat Application with Web Sockets

Doing things once

We only need to compile the template once, and there are a few different ways to approach
this in Go. The most obvious is to have a NewTemplateHandler function that creates the
type and calls some initialization code to compile the template. If we were sure the function
would be called by only one goroutine (probably the main one during the setup in the main
function), this would be a perfectly acceptable approach. An alternative, which we have
employed in the preceding section, is to compile the template once inside the ServeHTTP
method. The sync.Once type guarantees that the function we pass as an argument will
only be executed once, regardless of how many goroutines are calling ServeHTTP. This is
helpful because web servers in Go are automatically concurrent and once our chat
application takes the world by storm, we could very well expect to have many concurrent
calls to the serveHTTP method.

Compiling the template inside the ServeHTTP method also ensures that our code does not
waste time doing work before it is definitely needed. This lazy initialization approach
doesn't save us much in our present case, but in cases where the setup tasks are time- and
resource-intensive and where the functionality is used less frequently, it's easy to see how
this approach would come in handy.

Using your own handlers

To implement our templateHandler type, we need to update the main body function so
that it looks like this:

func main () {
// root
http.Handle ("/", &templateHandler{filename: "chat.html"})
// start the web server
if err := http.ListenAndServe(":8080", nil); err !'= nil {
log.Fatal ("ListenAndServe:", err)
}
}

The templateHandler structure is a valid http.Handler type so we can pass it directly to
the http.Handle function and ask it to handle requests that match the specified pattern. In
the preceding code, we created a new object of the type templateHandler, specifying the
filename as chat . html that we then take the address of (using the & address of the
operator) and pass it to the http.Handle function. We do not store a reference to our
newly created templateHandler type, but that's OK because we don't need to refer to it
again.

[14]

Chat Application with Web Sockets

In your terminal, exit the program by pressing Ctrl + C and re-run it, then refresh your
browser and notice the addition of the (from template) text. Now our code is much simpler
than an HTML code and free from its ugly blocks.

Properly building and executing Go programs

Running Go programs using a go run command is great when our code is made up of a
single main.go file. However, often we might quickly need to add other files. This requires
us to properly build the whole package into an executable binary before running it. This is
simple enough, and from now on, this is how you will build and run your programs in a
terminal:

go build -o {name}
./{name}

The go build command creates the output binary using all the . go files in the specified
folder, and the -o flag indicates the name of the generated binary. You can then just run the
program directly by calling it by name.

For example, in the case of our chat application, we could run:

go build -o chat
./chat

Since we are compiling templates the first time the page is served, we will need to restart
your web server program every time anything changes in order to see the changes take
effect.

Modeling a chat room and clients on the
server

All users (clients) of our chat application will automatically be placed in one big public
room where everyone can chat with everyone else. The room type will be responsible for
managing client connections and routing messages in and out, while the client type
represents the connection to a single client.

9 Go refers to classes as types and instances of those classes as objects.

[15]

Chat Application with Web Sockets

To manage our web sockets, we are going to use one of the most powerful aspects of the Go
community open source third-party packages. Every day, new packages solving real-world
problems are released, ready for you to use in your own projects, and they even allow you
to add features, report and fix bugs, and get support.

It is often unwise to reinvent the wheel unless you have a very good
reason. So before embarking on building a new package, it is worth
searching for any existing projects that might have already solved your
very problem. If you find one similar project that doesn't quite satisfy your
needs, consider contributing to the project and adding features. Go has a
particularly active open source community (remember that Go itself is
open source) that is always ready to welcome new faces or avatars.

We are going to use Gorilla Project's websocket package to handle our server-side sockets
rather than write our own. If you're curious about how it works, head over to the project
home page on GitHub, https://github.com/gorilla/websocket, and browse the open
source code.

Modeling the client

Create a new file called client.go alongside main.go in the chat folder and add the
following code:

package main

import (
"github.com/gorilla/websocket"

)

// client represents a single chatting user.

type client struct {
// socket is the web socket for this client.
socket *websocket.Conn
// send is a channel on which messages are sent.
send chan []byte
// room is the room this client is chatting in.
room *room

[16]

https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket

Chat Application with Web Sockets

In the preceding code, socket will hold a reference to the web socket that will allow us to
communicate with the client, and the send field is a buffered channel through which
received messages are queued ready to be forwarded to the user's browser (via the socket).
The room field will keep a reference to the room that the client is chatting in this is required
so that we can forward messages to everyone else in the room.

If you try to build this code, you will notice a few errors. You must ensure that you have
called go get to retrieve the websocket package, which is as easy as opening a terminal
and typing the following:

go get github.com/gorilla/websocket

Building the code again will yield another error:

./client.go:17 undefined: room

The problem is that we have referred to a room type without defining it anywhere. To make
the compiler happy, create a file called room. go and insert the following placeholder code:

package main

type room struct {
// forward is a channel that holds incoming messages
// that should be forwarded to the other clients.
forward chan []byte

}

We will improve this definition later once we know a little more about what our room
needs to do, but for now, this will allow us to proceed. Later, the forward channel is what
we will use to send the incoming messages to all other clients.

You can think of channels as an in-memory thread-safe message queue
where senders pass data and receivers read data in a non-blocking, thread-
safe way.

In order for a client to do any work, we must define some methods that will do the actual
reading and writing to and from the web socket. Adding the following code to client.go
outside (underneath) the client struct will add two methods called read and write to
the client type:

func (¢ *client) read() {
defer c.socket.Close()
for {
_, msg, err := c.socket.ReadMessage ()
if err !'= nil {

[17]

Chat Application with Web Sockets

return

}

c.room. forward <- msg
t
t
func (¢ *client) write() {
defer c.socket.Close()
for msg := range c.send {
err := c.socket.WriteMessage (websocket.TextMessage, msqg)
if err !'= nil {
return

}
}

The read method allows our client to read from the socket via the ReadMe ssage method,
continually sending any received messages to the forward channel on the room type. If it
encounters an error (such as 'the socket has died'), the loop will break and the socket
will be closed. Similarly, the write method continually accepts messages from the send
channel writing everything out of the socket via the WwriteMessage method. If writing to
the socket fails, the for loop is broken and the socket is closed. Build the package again to
ensure everything compiles.

In the preceding code, we introduced the de fer keyword, which is worth
exploring a little. We are asking Go to run c. socket .Close () when the
function exits. It's extremely useful for when you need to do some tidying
up in a function (such as closing a file or, as in our case, a socket) but aren't
sure where the function will exit. As our code grows, if this function has
multiple return statements, we won't need to add any more calls to close
the socket, because this single de fer statement will catch them all.

Some people complain about the performance of using the defer
keyword, since it doesn't perform as well as typing the close statement
before every exit point in the function. You must weigh up the runtime
performance cost against the code maintenance cost and potential bugs
that may get introduced if you decide not to use defer. As a general rule of
thumb, writing clean and clear code wins; after all, we can always come
back and optimize any bits of code we feel is slowing our product down if
we are lucky enough to have such success.

[18]

Chat Application with Web Sockets

Modeling a room

We need a way for clients to join and leave rooms in order to ensure that

the c.room. forward <- msg code in the preceding section actually forwards the message
to all the clients. To ensure that we are not trying to access the same data at the same time, a
sensible approach is to use two channels: one that will add a client to the room and another
that will remove it. Let's update our room. go code to look like this:

package main
type room struct {
// forward is a channel that holds incoming messages
// that should be forwarded to the other clients.
forward chan []byte
// Jjoin is a channel for clients wishing to join the room.
join chan *client
// leave is a channel for clients wishing to leave the room.
leave chan *client
// clients holds all current clients in this room.
clients map[*client]bool

}

We have added three fields: two channels and a map. The join and leave channels exist
simply to allow us to safely add and remove clients from the c1ients map. If we were to
access the map directly, it is possible that two goroutines running concurrently might try to
modify the map at the same time, resulting in corrupt memory or unpredictable state.

Concurrency programming using idiomatic Go

Now we get to use an extremely powerful feature of Go's concurrency offerings the select
statement. We can use select statements whenever we need to synchronize or modify
shared memory, or take different actions depending on the various activities within our
channels.

Beneath the room structure, add the following run method that contains three select
cases:

func (r *room) run() |
for {

select |

case client := <-r.join:
// Jjoining
r.clients[client] = true

case client := <-r.leave:
// leaving

[19]

Chat Application with Web Sockets

delete(r.clients, client)
close(client.send)

case msg := <-r.forward:
// forward message to all clients
for client := range r.clients {

client.send <- msg
t
t
t
t

Although this might seem like a lot of code to digest, once we break it down a little, we will
see that it is fairly simple, although extremely powerful. The top for loop indicates that this
method will run forever, until the program is terminated. This might seem like a mistake,
but remember, if we run this code as a goroutine, it will run in the background, which won't
block the rest of our application. The preceding code will keep watching the three channels
inside our room: join, leave, and forward. If a message is received on any of those
channels, the select statement will run the code for that particular case.

It is important to remember that it will only run one block of case code at a
time. This is how we are able to synchronize to ensure that our r.clients
map is only ever modified by one thing at a time.

If we receive a message on the join channel, we simply update the r.clients map to
keep a reference of the client that has joined the room. Notice that we are setting the value
to true. We are using the map more like a slice, but do not have to worry about shrinking
the slice as clients come and go through time setting the value to t rue is just a handy, low-
memory way of storing the reference.

If we receive a message on the 1eave channel, we simply delete the c1ient type from the
map, and close its send channel. If we receive a message on the forward channel, we
iterate over all the clients and add the message to each client's send channel. Then,

the write method of our client type will pick it up and send it down the socket to the
browser.

Turning a room into an HTTP handler

Now we are going to turn our room type into an http.Handler type like we did with the
template handler earlier. As you will recall, to do this, we must simply add a method
called serveHTTP with the appropriate signature.

[20]

Chat Application with Web Sockets

Add the following code to the bottom of the room. go file:

const (
socketBufferSize = 1024
messageBufferSize = 256
)
var upgrader = &websocket.Upgrader{ReadBufferSize: socketBufferSize,

WriteBufferSize: socketBufferSize}
func (r *room) ServeHTTP (w http.ResponseWriter, req *http.Request) {

socket, err := upgrader.Upgrade(w, req, nil)
if err !'= nil {
log.Fatal ("ServeHTTP:", err)
return
}
client := &client{
socket: socket,
send: make (chan []byte, messageBufferSize),
room: r,

}

r.join <- client

defer func() { r.leave <- client 1} ()
go client.write ()

client.read()

}

The ServeHTTP method means a room can now act as a handler. We will implement it
shortly, but first let's have a look at what is going on in this snippet of code.

If you accessed the chat endpoint in a web browser, you would likely
crash the program and see an error like Serve HTTPwebsocket: version !=
13. This is because it is intended to be accessed via a web socket rather
than a web browser.

In order to use web sockets, we must upgrade the HTTP connection using the
websocket . Upgrader type, which is reusable so we need only create one. Then, when a
request comes in via the ServeHTTP method, we get the socket by calling

the upgrader.Upgrade method. All being well, we then create our client and pass it into
the join channel for the current room. We also defer the leaving operation for when the
client is finished, which will ensure everything is tidied up after a user goes away.

The write method for the client is then called as a goroutine, as indicated by the three
characters at the beginning of the line go (the word go followed by a space character). This
tells Go to run the method in a different thread or goroutine.

[21]

Chat Application with Web Sockets

Compare the amount of code needed to achieve multithreading or
concurrency in other languages with the three key presses that achieve it
in Go, and you will see why it has become a favorite among system
developers.

Finally, we call the read method in the main thread, which will block operations (keeping
the connection alive) until it's time to close it. Adding constants at the top of the snippet is a
good practice for declaring values that would otherwise be hardcoded throughout the
project. As these grow in number, you might consider putting them in a file of their own, or
at least at the top of their respective files so they remain easy to read and modity.

Using helper functions to remove complexity

Our room is almost ready to go, although in order for it to be of any use, the channels and
map need to be created. As it is, this could be achieved by asking the developer to use the
following code to be sure to do this:

r := &room{
forward: make (chan []byte),
join: make (chan *client),
leave: make (chan *client),
(

clients: make (map[*client]bool),

}

Another, slightly more elegant, solution is to instead provide a newRoom function that does
this for us. This removes the need for others to know about exactly what needs to be done in
order for our room to be useful. Underneath the type room struct definition, add this

function:

// newRoom makes a new room.
func newRoom () *room {
return &room{
forward: make
join: make
leave: make
clients: make

chan []byte),
chan *client),
chan *client),
map[*client]bool),

}

Now the users of our code need only call the newRoom function instead of the more verbose
six lines of code.

[22]

Chat Application with Web Sockets

Creating and using rooms

Let's update our main function in main. go to first create and then run a room for
everybody to connect to:

func main () {
r := newRoom/()
http.Handle ("/", &templateHandler{filename: "chat.html"})
http.Handle ("/room", r)
// get the room going
go r.run()
// start the web server
if err := http.ListenAndServe (":8080", nil); err !'= nil {
log.Fatal ("ListenAndServe:", err)
}
}

We are running the room in a separate goroutine (notice the go keyword again) so that the
chatting operations occur in the background, allowing our main goroutine to run the web
server. Our server is now finished and successfully built, but remains useless without
clients to interact with.

Building an HTML and JavaScript chat client

In order for the users of our chat application to interact with the server and therefore other
users, we need to write some client-side code that makes use of the web sockets found in
modern browsers. We are already delivering HTML content via the template when users hit
the root of our application, so we can enhance that.

Update the chat .html file in the templates folder with the following markup:

<html>
<head>
<title>Chat</title>
<style>
input { display: block; }
ul { list-style: none; }
</style>
</head>
<body>
<ul id="messages">
<form id="chatbox">
<textarea></textarea>
<input type="submit" value="Send" />

[23]

Chat Application with Web Sockets

</form> </body>
</html>

The preceding HTML will render a simple web form on the page containing a text area and
a Send button this is how our users will submit messages to the server. The messages
element in the preceding code will contain the text of the chat messages so that all the users
can see what is being said. Next, we need to add some JavaScript to add some functionality
to our page. Underneath the form tag, above the closing </body> tag, insert the following
code:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">
</script>
<script>
S (function () {

var socket = null;
var msgBox = $("#chatbox textarea");
var messages = $("#messages");
S ("#chatbox") .submit (function () {
if (!msgBox.val()) return false;
if (!socket) {
alert ("Error: There is no socket connection.");

return false;
}
socket.send (msgBox.val());
msgBox.val ("");
return false;
)i

if (!window["WebSocket"]) {
alert ("Error: Your browser does not support web sockets.")
} else {
socket = new WebSocket ("ws://localhost:8080/room") ;
socket.onclose = function () {
alert ("Connection has been closed.");
}
socket.onmessage = function(e) {
messages.append ($("<1i>") .text (e.data));
}
}
)i
</script>

The socket = new WebSocket ("ws://localhost:8080/room") line is where we open
the socket and add event handlers for two key events: onclose and onmessage. When the
socket receives a message, we use jQuery to append the message to the list element and
thus present it to the user.

[24]

Chat Application with Web Sockets

Submitting the HTML form triggers a call to socket . send, which is how we send
messages to the server.

Build and run the program again to ensure the templates recompile so these changes are
represented.

Navigate to http://localhost:8080/ in two separate browsers (or two tabs of the same
browser) and play with the application. You will notice that messages sent from one client
appear instantly in the other clients:

Chat X
& C | localhost:8080 w A=
What do you think of the chat application?
It's great - very responsive.
That's because of the use of channels and Go routines :)
Yep
So what are you wearing? Chat
| + © localhost:8080 O »

% Chat +

Send
— What do you think of the chat application?

It's great - very responsive.

That's because of the use of channels and Go routines :)
Yep

So what are you wearing?

Send

Getting more out of templates

Currently, we are using templates to deliver static HTML, which is nice because it gives us
a clean and simple way to separate the client code from the server code. However,
templates are actually much more powerful, and we are going to tweak our application to
make some more realistic use of them.

[25]

Chat Application with Web Sockets

The host address of our application (: 8080) is hardcoded at two places at the moment. The
first instance is in main.go where we start the web server:

if err := http.ListenAndServe (":8080", nil); err !'= nil {
log.Fatal ("ListenAndServe:", err)

}

The second time it is hardcoded in the JavaScript when we open the socket:

socket = new WebSocket ("ws://localhost:8080/room") ;

Our chat application is pretty stubborn if it insists on only running locally on port 8080, so
we are going to use command-line flags to make it configurable and then use the injection
capabilities of templates to make sure our JavaScript knows the right host.

Update your main function in main. go:

func main () {
var addr = flag.String("addr", ":8080", "The addr of the application.")
flag.Parse() // parse the flags
r := newRoom/()
http.Handle ("/", &templateHandler{filename: "chat.html"})
http.Handle ("/room", r)
// get the room going
go r.run()
// start the web server
log.Println("Starting web server on", *addr)
if err := http.ListenAndServe (*addr, nil); err != nil {
log.Fatal ("ListenAndServe:", err)
}
}

You will need to import the £1ag package in order for this code to build. The definition for
the addr variable sets up our flag as a string that defaults to : 8080 (with a short description
of what the value is intended for). We must call f1ag.Parse () that parses the arguments
and extracts the appropriate information. Then, we can reference the value of the host flag
by using *addr.

The call to flag.String returns a type of *string, which is to say it
returns the address of a string variable where the value of the flag is
stored. To get the value itself (and not the address of the value), we must
use the pointer indirection operator, *.

[26]

Chat Application with Web Sockets

We also added a 1og.Println call to output the address in the terminal so we can be sure
that our changes have taken effect.

We are going to modify the templateHandler type we wrote so that it passes the details of
the request as data into the template's Execute method. In main.go, update

the ServeHTTP function to pass the request r as the data argument to the Execute
method:

func (t *templateHandler) ServeHTTP (w http.ResponseWriter, r
*http.Request) {
t.once.Do (func () {
t.templ = template.Must (template.ParseFiles(filepath.Join("templates",
t.filename)))

})

t.templ.Execute(w, r)

}

This tells the template to render itself using data that can be extracted from http.Request,
which happens to include the host address that we need.

To use the Host value of http.Request, we can then make use of the special template
syntax that allows us to inject data. Update the line where we create our socket in
the chat . html file:

socket = new WebSocket ("ws://{{.Host}}/room");

The double curly braces represent an annotation and the way we tell our template source to
inject data. The {{.Host}} is essentially equivalent of telling it to replace the annotation
with the value from request .Host (since we passed the request r object in as data).

We have only scratched the surface of the power of the templates built into
Go's standard library. The text /template package documentation is a
great place to learn more about what you can achieve. You can find more
about it at http://golang.org/pkg/text/template

Rebuild and run the chat program again, but this time notice that the chatting operations no
longer produce an error, whichever host we specify:

go build -o chat
./chat —addr=":3000"

View the source of the page in the browser and notice that {{ . Host } } has been replaced
with the actual host of the application. Valid hosts aren't just port numbers; you can also
specify the IP addresses or other hostnames provided they are allowed in your
environment, for example, ~addr="192.168.0.1:3000".

[27]

http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template
http://golang.org/pkg/text/template

Chat Application with Web Sockets

Tracing code to get a look under the hood

The only way we will know that our application is working is by opening two or more
browsers and using our UI to send messages. In other words, we are manually testing our
code. This is fine for experimental projects such as our chat application or small projects
that aren't expected to grow, but if our code is to have a longer life or be worked on by more
than one person, manual testing of this kind becomes a liability. We are not going to tackle
Test-driven Development (TDD) for our chat program, but we should explore another
useful debugging technique called tracing.

Tracing is a practice by which we log or print key steps in the flow of a program to make
what is going on under the covers visible. In the previous section, we added

a log.Println call to output the address that the chat program was binding to. In this
section, we are going to formalize this and write our own complete tracing package.

We are going to explore TDD practices when writing our tracing code because TDD is a
perfect example of a package that we are likely to reuse, add to, share, and hopefully, even
open source.

Writing a package using TDD

Packages in Go are organized into folders, with one package per folder. It is a build error to
have differing package declarations within the same folder because all sibling files are
expected to contribute to a single package. Go has no concept of subpackages, which means
nested packages (in nested folders) exist only for aesthetic or informational reasons but do
not inherit any functionality or visibility from super packages. In our chat application, all of
our files contributed to the main package because we wanted to build an executable tool.
Our tracing package will never be run directly, so it can and should use a different package
name. We will also need to think about the Application Programming Interface (API) of
our package, considering how to model a package so that it remains as extensible and
flexible as possible for users. This includes the fields, functions, methods, and types that
should be exported (visible to the user) and remain hidden for simplicity's sake.

that names that begin with a capital letter (for example, Tracer) are
visible to users of a package, and names that begin with a lowercase letter

0 Go uses capitalization of names to denote which items are exported such
(for example, templateHandler) are hidden or private.

[28]

Chat Application with Web Sockets

Create a new folder called trace, which will be the name of our tracing package, alongside
the chat folder so that the folder structure now looks like this:

/chat
client.go
main.go
room.go

/trace

Before we jump into code, let's agree on some design goals for our package by which we
can measure Success:

e The package should be easy to use
e Unit tests should cover the functionality

¢ Users should have the flexibility to replace the tracer with their own
implementation

Interfaces

Interfaces in Go are an extremely powerful language feature that allows us to define an API
without being strict or specific on the implementation details. Wherever possible,
describing the basic building blocks of your packages using interfaces usually ends up
paying dividends down the road, and this is where we will start for our tracing package.

Create a new file called tracer.go inside the t race folder and write the following code:

package trace
// Tracer is the interface that describes an object capable of
// tracing events throughout code.
type Tracer interface {
Trace(...interface{})

}
The first thing to notice is that we have defined our package as trace.

While it is a good practice to have the folder name match the package
name, Go tools do not enforce it, which means you are free to name them
differently if it makes sense. Remember, when people import your
package, they will type the name of the folder, and if suddenly a package
with a different name is imported, it could get confusing.

[29]

Chat Application with Web Sockets

Our Tracer type (the capital T means we intend this to be a publicly visible type) is an
interface that describes a single method called Trace. The .. .interface{} argument type
states that our Trace method will accept zero or more arguments of any type. You might
think that this is a redundant provision as the method should just take a single string (we
want to just trace out some string of characters, don't we?). However, consider functions
such as fmt . Sprint and log.Fatal, both of which follow a pattern littered throughout
Go's standard library that provides a helpful shortcut when trying to communicate multiple
things in one go. Wherever possible, we should follow such patterns and practices because
we want our own APIs to be familiar and clear to the Go community.

Unit tests

We promised ourselves that we would follow test-driven practices, but interfaces are
simply definitions that do not provide any implementation and so cannot be directly tested.
But we are about to write a real implementation of a Tracer method, and we will indeed
write the tests first.

Create a new file called tracer_test.go in the trace folder and insert the following
scaffold code:

package trace
import (
"testing"
)
func TestNew(t *testing.T) {
t.Error ("We haven't written our test yet")

}

Testing was built into the Go tool chain from the very beginning, making writing
automatable tests a first-class citizen. The test code lives alongside the production code in
files suffixed with _test.go. The Go tools will treat any function that starts with Test
(taking a single *testing.T argument) as a unit test, and it will be executed when we run
our tests. To run them for this package, navigate to the t race folder in a terminal and do
the following:

go test

[30]

Chat Application with Web Sockets

You will see that our tests fail because of our call to t . Error in the body of our TestNew
function:

——— FAIL: TestNew (0.00 seconds)

tracer_test.go:8: We haven't written our test yet
FAIL

exit status 1
FAIL trace 0.01lls

Clearing the terminal before each test run is a great way to make sure you
aren't confusing previous runs with the most recent one. On Windows,
you can use the c1s command; on Unix machines, the clear command
does the same thing.

Obviously, we haven't properly written our test and we don't expect it to pass yet, so let's
update the TestNew function:

func TestNew(t *testing.T) {
var buf bytes.Buffer

tracer := New (&buf)
if tracer == nil {
t.Error ("Return from New should not be nil")
} else {
tracer.Trace("Hello trace package.")
if buf.String() != "Hello trace package.\n" {
t.Errorf ("Trace should not write '$s'.", buf.String())

}

}

Most packages throughout the book are available from the Go standard library, so you can
add an import statement for the appropriate package in order to access the package. Others
are external, and that's when you need to use go get to download them before they can be
imported. For this case, you'll need to add import "bytes" to the top of the file.

We have started designing our API by becoming the first user of it. We want to be able to
capture the output of our tracer in a bytes.Buffer variable so that we can then ensure that
the string in the buffer matches the expected value. If it does not, a call to t . Errorf will fail
the test. Before that, we check to make sure the return from a made-up New function is

not nil; again, if it is, the test will fail because of the callto t .Error.

[31]

Chat Application with Web Sockets

Red-green testing

Running go test now actually produces an error; it complains that there is no New
function. We haven't made a mistake here; we are following a practice known as red-green
testing. Red-green testing proposes that we first write a unit test, see it fail (or produce an
error), write the minimum amount of code possible to make that test pass, and rinse and
repeat it again. The key point here being that we want to make sure the code we add is
actually doing something as well as ensuring that the test code we write is testing
something meaningful.

Consider a meaningless test for a minute:
if true == true {
t.Error ("True should be true")

}

It is logically impossible for t rue to not be true (if t rue ever equals false, it's time to get a
new computer), and so our test is pointless. If a test or claim cannot fail, there is no value
whatsoever to be found in it.

Replacing t rue with a variable that you expect to be set to t rue under certain conditions
would mean that such a test can indeed fail (like when the code being tested is
misbehaving) at this point, you have a meaningful test that is worth contributing to the
code base.

You can treat the output of go test like a to-do list, solving only one problem at a time.
Right now, the complaint about the missing New function is all we will address. In

the trace.qgo file, let's add the minimum amount of code possible to progress with things;
add the following snippet underneath the interface type definition:

func New () {}

Running go test now shows us that things have indeed progressed, albeit not very far.
We now have two errors:

./tracer_test.go:11: too many arguments in call to New
./tracer_test.go:11: New(&buf) used as value

[32]

Chat Application with Web Sockets

The first error tells us that we are passing arguments to our New function, but the New
function doesn't accept any. The second error says that we are using the return of the New
function as a value, but that the New function doesn't return anything. You might have seen
this coming, and indeed as you gain more experience writing test-driven code, you will
most likely jump over such trivial details. However, to properly illustrate the method, we
are going to be pedantic for a while. Let's address the first error by updating our New
function to take in the expected argument:

func New(w io.Writer) {}

We are taking an argument that satisfies the io.Writer interface, which means that the
specified object must have a suitable Wwrite method.

Using existing interfaces, especially ones found in the Go standard library,
is an extremely powerful and often necessary way to ensure that your
code is as flexible and elegant as possible.

Accepting io.Writer means that the user can decide where the tracing output will be
written. This output could be the standard output, a file, network socket, bytes.Buffer as
in our test case, or even some custom-made object, provided it can act like

an io.Writer interface.

Running go test again shows us that we have resolved the first error and we only need
add a return type in order to progress past our second error:

func New(w io.Writer) Tracer {}

We are stating that our New function will return a Tracer, but we do not return anything,
which go test happily complains about:

./tracer.go:13: missing return at end of function
Fixing this is easy; we can just return nil from the New function:

func New(w i1o.Writer) Tracer {
return nil

}

[33]

Chat Application with Web Sockets

Of course, our test code has asserted that the return should not be nil, so go test now
gives us a failure message:

tracer_test.go:14: Return from New should not be nil

You can see how this hyper-strict adherence to the red-green principle can get a little
tedious, but it is vital that we do not jump too far ahead. If we were to write a lot of
implementation code in one go, we will very likely have code that is not covered by a unit
test.

The ever-thoughtful core team has even solved this problem for us by providing code
coverage statistics. The following command provides code statistics:

go test -cover

Provided that all tests pass, adding the —cover flag will tell us how much of our code was
touched during the execution of the tests. Obviously, the closer we get to 100 percent the
better.

Implementing the interface

To satisfy this test, we need something that we can properly return from the New method
because Tracer is only an interface and we have to return something real. Let's add an
implementation of a tracer to our tracer.go file:

type tracer struct {
out io.Writer

}

func (t *tracer) Trace(a ...interface{}) {}

Our implementation is extremely simple: the t racer type has an io.Writer field
called out which is where we will write the trace output to. And the Trace method exactly
matches the method required by the Tracer interface, although it doesn't do anything yet.

Now we can finally fix the New method:

func New(w io.Writer) Tracer {
return &tracer{out: w}

}

Running go test again shows us that our expectation was not met because nothing was
written during our call to Trace:

tracer_test.go:18: Trace should not write ''.

[34]

Chat Application with Web Sockets

Let's update our Trace method to write the blended arguments to the specified io.Writer
field:

func (t *tracer) Trace(a ...interface{}) {
fmt.Fprint (t.out, a...)
fmt.Fprintln(t.out)

}

When the Trace method is called, we use fmt .Fprint (and fmt .Fprintln) to format and
write the trace details to the out writer.

Have we finally satisfied our test?

go test -cover

PASS

coverage: 100.0% of statements
ok trace 0.01l1s

Congratulations! We have successfully passed our test and have 100 percent test coverage.
Once we have finished our glass of champagne, we can take a minute to consider something
very interesting about our implementation.

Unexported types being returned to users

The tracer struct type we wrote is unexported because it begins with a lowercase t, so
how is it that we are able to return it from the exported New function? After all, doesn't the
user receive the returned object? This is perfectly acceptable and valid Go code; the user
will only ever see an object that satisfies the Tracer interface and will never even know
about our private tracer type. Since they only interact with the interface anyway, it
wouldn't matter if our t racer implementation exposed other methods or fields; they
would never be seen. This allows us to keep the public API of our package clean and
simple.

This hidden implementation technique is used throughout the Go standard library; for
example, the ioutil.NopCloser method is a function that turns a normal

io.Reader interface into io.ReadCloser where the Close method does nothing (used for
when io.Reader objects that don't need to be closed are passed into functions that

require io.ReadCloser types). The method returns io.ReadCloser as far as the user is
concerned, but under the hood, there is a secret nopCloser type hiding the implementation
details.

[35]

Chat Application with Web Sockets

To see this for yourself, browse the Go standard library source code at
http://golang.org/src/pkg/io/ioutil/ioutil.go and search for
the nopCloser struct.

Using our new trace package

Now that we have completed the first version of our trace package, we can use it in our
chat application in order to better understand what is going on when users send messages
through the user interface.

In room. go, let's import our new package and make some calls to the Trace method. The
path to the t race package we just wrote will depend on your GOPATH environment variable
because the import path is relative to the $GOPATH/src folder. So if you create your trace
package in $GOPATH/src/mycode/trace, then you would need to import mycode/trace.

Update the room type and the run () method like this:

type room struct {
// forward is a channel that holds incoming messages
// that should be forwarded to the other clients.
forward chan []byte
// join is a channel for clients wishing to join the room.
join chan *client
// leave is a channel for clients wishing to leave the room.
leave chan *client
// clients holds all current clients in this room.
clients map[*client]bool
// tracer will receive trace information of activity
// in the room.
tracer trace.Tracer
t
func (r *room) run() {
for {
select {
case client := <-r.join:
// joining
r.clients[client] = true
r.tracer.Trace ("New client joined")
case client := <-r.leave:
// leaving
delete(r.clients, client)
close(client.send)
r.tracer.Trace ("Client left")
case msg := <-r.forward:

[36]

http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go
http://golang.org/src/pkg/io/ioutil/ioutil.go

Chat Application with Web Sockets

r.tracer.Trace ("Message received: ", string(msg))
// forward message to all clients
for client := range r.clients {

client.send <- msg

r.tracer.Trace (" —-- sent to client")

}

We added a trace. Tracer field to our room type and then made periodic calls to

the Trace method peppered throughout the code. If we run our program and try to send
messages, you'll notice that the application panics because the tracer field is nil. We can
remedy this for now by making sure we create and assign an appropriate object when we
create our room type. Update the main. go file to do this:

r := newRoom{()
r.tracer = trace.New (os.Stdout)

We are using our New method to create an object that will send the output to the os. stdout

standard output pipe (this is a technical way of saying we want it to print the output to our
terminal).

Rebuild and run the program and use two browsers to play with the application, and notice
that the terminal now has some interesting trace information for us:

[] ® 1. chat
echo:chat matryer$./chat
2016/09/26 12:07:49 Starting web server on :8080
New client joined
New client joined
Message received: Good morning

-- sent to client

-- sent to client
Message received: Well, good morning to you. :)
-- sent to client
-- sent to client

Now we are able to use the debug information to get an insight into what the application is
doing, which will assist us when developing and supporting our project.

[37]

Chat Application with Web Sockets

Making tracing optional

Once the application is released, the sort of tracing information we are generating will be
pretty useless if it's just printed out to some terminal somewhere, or even worse, if it creates
a lot of noise for our system administrators. Also, remember that when we don't set a tracer
for our room type, our code panics, which isn't a very user-friendly situation. To resolve
these two issues, we are going to enhance our trace package with a trace.0ff () method
that will return an object that satisfies the Tracer interface but will not do anything when
the Trace method is called.

Let's add a test that calls the 0f £ function to get a silent tracer before making a call to Trace
to ensure the code doesn't panic. Since the tracing won't happen, that's all we can do in our
test code. Add the following test function to the tracer_test.go file:

func TestOff (t *testing.T) {
var silentTracer Tracer = Off ()
silentTracer.Trace ("something")

}

To make it pass, add the following code to the tracer. go file:

type nilTracer struct{}
func (t *nilTracer) Trace(a ...interface{}) {}

// Off creates a Tracer that will ignore calls to Trace.
func Off () Tracer {
return &nilTracer{}

}

Our nilTracer struct has defined a Trace method that does nothing, and a call to the
0ff () method will create a new nilTracer struct and return it. Notice that

our nilTracer struct differs from our tracer struct in that it doesn't take

an io.Writer interface; it doesn't need one because it isn't going to write anything.

[38]

Chat Application with Web Sockets

Now let's solve our second problem by updating our newRoom method in the room. go file:

func newRoom () *room {
return &room{
forward: make (chan []byte),
join: make (chan *client),
leave: make (chan *client),
clients: make (map[*client]bool),
tracer: trace.Off (),
}
}

By default, our room type will be created with a nilTracer struct and any calls to Trace
will just be ignored. You can try this out by removing the r.tracer =

trace.New (os.Stdout) line from the main. go file: notice that nothing gets written to the
terminal when you use the application and there is no panic.

Clean package APIs

A quick glance at the API (in this context, the exposed variables, methods, and types) for
our trace package highlights that a simple and obvious design has emerged:

e The New () — method-creates a new instance of a Tracer
e The 0ff () — method-gets a Tracer that does nothing
¢ The Tracer interface — describes the methods Tracer objects will implement

I'would be very confident to give this package to a Go programmer without any
documentation or guidelines, and I'm pretty sure they would know what do to with it.

In Go, adding documentation is as simple as adding comments to the line
before each item. The blog post on the subject is a worthwhile read (http:
//blog.golang.org/godoc—documenting—go—code)XVheHEyoucanseea
copy of the hosted source code for tracer.go that is an example of how
you might annotate the t race package. For more information, refer to htt
ps://github.com/matryer/goblueprints/blob/master/chapterl/trac
e/tracer.go.

[39]

http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
http://blog.golang.org/godoc-documenting-go-code
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
https://github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go

Chat Application with Web Sockets

Summary

In this chapter, we developed a complete concurrent chat application and our own simple
package to trace the flow of our programs to help us better understand what is going on
under the hood.

We used the net /http package to quickly build what turned out to be a very powerful
concurrent HTTP web server. In one particular case, we then upgraded the connection to
open a web socket between the client and server. This means that we can easily and quickly
communicate messages to the user's web browser without having to write messy polling
code. We explored how templates are useful to separate the code from the content as well as
to allow us to inject data into our template source, which let us make the host address
configurable. Command-line flags helped us give simple configuration control to the people
hosting our application while also letting us specify sensible defaults.

Our chat application made use of Go's powerful concurrency capabilities that allowed us to
write clear threaded code in just a few lines of idiomatic Go. By controlling the coming and
going of clients through channels, we were able to set synchronization points in our code
that prevented us from corrupting memory by attempting to modify the same objects at the
same time.

We learned how interfaces such as http.Handler and our own trace. Tracer interface
allow us to provide disparate implementations without having to touch the code that makes
use of them, and in some cases, without having to expose even the name of the
implementation to our users. We saw how just by adding a ServeHTTP method to our room
type, we turned our custom room concept into a valid HTTP handler object, which
managed our web socket connections.

We aren't actually very far away from being able to properly release our application, except
for one major oversight: you cannot see who sent each message. We have no concept of
users or even usernames, and for a real chat application, this is not acceptable.

In the next chapter, we will add the names of the people responding to their messages in
order to make them feel like they are having a real conversation with other humans.

[40]

Adding User Accounts

The chat application we built in the previous chapter focused on high performance
transmission of messages from the clients to the server and back again. However, the way
things stand, our users have no way of knowing who they would be talking to. One
solution to this problem is building some kind of sign-up and login functionality and letting
our users create accounts and authenticate themselves before they can open the chat page.

Whenever we are about to build something from scratch, we must ask ourselves how others
have solved this problem before (it is extremely rare to encounter genuinely original
problems) and whether any open solutions or standards already exist that we can make use
of. Authorization and authentication can hardly be considered new problems, especially in
the world of the Web, with many different protocols out there to choose from. So how do
we decide the best option to pursue? As always, we must look at this question from the
point of view of the user.

A lot of websites these days allow you to sign in using your accounts that exist elsewhere
on a variety of social media or community websites. This saves users the tedious job of
entering all of their account information over and over again as they decide to try out
different products and services. It also has a positive effect on the conversion rates for new
sites.

In this chapter, we will enhance our chat codebase to add authorization, which will allow
our users to sign in using Google, Facebook, or GitHub, and you'll see how easy it is to add
other sign-in portals too. In order to join the chat, users must first sign in. Following this, we
will use the authorized data to augment our user experience so everyone knows who is in
the room and who said what.

Adding User Accounts

In this chapter, you will learn to:

e Use the decorator pattern to wrap http.Handler types in order to add
additional functionality to handlers

¢ Serve HTTP endpoints with dynamic paths

¢ Use the gomniauth open source project to access authentication services
¢ Get and set cookies using the http package

¢ Encode objects as Base64 and back to normal again

¢ Send and receive JSON data over a web socket

e Give different types of data to templates

e Work with the channels of your own types

Handlers all the way down

For our chat application, we implemented our own http.Handler type (the room) in order
to easily compile, execute, and deliver HTML content to browsers. Since this is a very
simple but powerful interface, we are going to continue to use it wherever possible when
adding functionality to our HTTP processing.

In order to determine whether a user is allowed to proceed, we will create an authorization
wrapper handler that will perform the check and pass the execution on to the inner handler
only if the user is authorized.

Our wrapper handler will satisfy the same http.Handler interface as the object inside it,
allowing us to wrap any valid handler. In fact, even the authentication handler we are about
to write could be later encapsulated inside a similar wrapper if required.

[42]

Adding User Accounts

/N

Root handler

~
D N

Logging handler Admin handler
\hr/ o
/1\ N
Authentication
handler Template handler Template handler
S S S’
N
Template handler Wre]t;r:sslrgrlce
S S
Web socket
handler
S’

Chaining pattern when applied to HTTP handlers

The preceding diagram shows how this pattern could be applied in a more complicated
HTTP handler scenario. Each object implements the http.Handler interface. This means
that an object could be passed to the http.Handle method to directly handle a request, or
it can be given to another object, which could add some kind of extra functionality. The
Logging handler may write to a log file before and after the ServeHTTP method is called
on the inner handler. Because the inner handler is just another http.Handler, any other
handler can be wrapped in (or decorated with) the Logging handler.

It is also common for an object to contain logic that decides which inner handler should be
executed. For example, our authentication handler will either pass the execution to the
wrapped handler, or handle the request itself by issuing a redirect to the browser.

That's plenty of theory for now; let's write some code. Create a new file called auth.go in
the chat folder:

package main
import ("net/http")
type authHandler struct {
next http.Handler
}
func (h *authHandler) ServeHTTP (w http.ResponseWriter, r *http.Request) {
_, err := r.Cookie("auth")
if err == http.ErrNoCookie {
// not authenticated

[43]

Adding User Accounts

w.Header () .Set ("Location", "/login")
w.WriteHeader (http.StatusTemporaryRedirect)
return

t

if err !'= nil {

// some other error
http.Error (w, err.Error(), http.StatusInternalServerError)
return

}

// success - call the next handler
h.next.ServeHTTP (w, 1)

t
func MustAuth (handler http.Handler) http.Handler {
return &authHandler{next: handler}

}

The authHandler type not only implements the ServeHTTP method (which satisfies the
http.Handler interface), but also stores (wraps) http.Handler in the next field. Our
MustAuth helper function simply creates authHandler that wraps any other
http.Handler. This is the pattern that allows us to easily add authorization to our code in
main.go.

Let's tweak the following root mapping line:

http.Handle ("/", &templateHandler{filename: "chat.html"})

Let's change the first argument to make it explicit about the page meant for chatting. Next,
let's use the MustAuth function to wrap templateHandler for the second argument:

http.Handle ("/chat", MustAuth (&templateHandler{filename: "chat.html"}))

Wrapping templateHandler with the MustAuth function will cause the execution to run
through authHandler first; it will run only to templateHandler if the request is
authenticated.

The serveHTTP method in authHandler will look for a special cookie called auth, and it
will use the Header and WriteHeader methods on http.Responselriter to redirect the
user to a login page if the cookie is missing. Notice that we discard the cookie itself using
the underscore character and capture only the returning error; this is because we only care
about whether the cookie is present at this point.

Build and run the chat application and try to hit http://localhost:8080/chat:

go build -o chat
./chat -host=":8080"

[44]

Adding User Accounts

You need to delete your cookies to clear out previous authentication
tokens or any other cookies that might be left over from other
development projects served through the localhost.

If you look in the address bar of your browser, you will notice that you are immediately
redirected to the /login page. Since we cannot handle that path yet, you'll just get a 404
page not found error.

Making a pretty social sign-in page

So far, we haven't paid much attention to making our application look nice; after all, this
book is about Go and not user interface development. However, there is no excuse for
building ugly apps, and so we will build a social sign-in page that is as pretty as it is
functional.

Bootstrap is a frontend framework for developing responsive projects on the Web. It
provides CSS and JavaScript code that solve many user interface problems in a consistent
and good-looking way. While sites built using Bootstrap tend to look the same (although
there are a plenty of ways in which the UI can be customized), it is a great choice for early
versions of apps or for developers who don't have access to designers.

If you build your application using the semantic standards set forth by
Bootstrap, it will become easy for you to make a Bootstrap theme for your
site or application, and you know it will slot right into your code.

We will use the version of Bootstrap hosted on a CDN so we don't have to worry about
downloading and serving our own version through our chat application. This means that in
order to render our pages properly, we will need an active Internet connection even during
development.

If you prefer to download and host your own copy of Bootstrap, you can do so. Keep the
files in an assets folder and add the following call to your main function (it uses
http.Handle to serve the assets via your application):

http.Handle ("/assets/", http.StripPrefix("/assets",
http.FileServer (http.Dir("/path/to/assets/"))))

[45]

Adding User Accounts

Notice how the http.StripPrefix and http.FileServer functions
return objects that satisfy the http.Handler interface as per the decorator
pattern that we implement with our MustAuth helper function.

Inmain.go, let's add an endpoint for the login page:

http.Handle ("/chat", MustAuth (&templateHandler{filename: "chat.html"}))
http.Handle ("/login", &templateHandler{filename: "login.html"})
http.Handle ("/room", r)

Obviously, we do not want to use the Must Auth method for our login page because it will
cause an infinite redirection loop.

Create a new file called 1ogin.html inside our templates folder and insert the following
HTML code:

<html>
<head>
<title>Login</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com
/bootstrap/3.3.6/css/bootstrap.min.css">
</head>
<body>
<div class="container">
<div class="page-header">
<h1>Sign in</hi1>
</div>
<div class="panel panel-danger">
<div class="panel-heading">
<h3 class="panel-title">In order to chat, you must be signed
in</h3>
</div>
<div class="panel-body">
<p>Select the service you would like to sign in with:</p>

Facebook
</1li>

GitHub
</1li>

Google
</1li>

</div>

[46]

Adding User Accounts

</div>
</div>
</body>
</html>

Restart the web server and navigate to http://localhost:8080/1login. You will notice
that it now displays our Sign in page:

00 < | > localhost:8080/login @] o » +
Sign in

In order to chat, you must be signed in

Select the service you would like to sign in with:

o Facebook
o GitHub
s Google

Endpoints with dynamic paths

Pattern matching for the http package in the Go standard library isn't the most
comprehensive and fully featured implementation out there. For example, Ruby on Rails

makes it much easier to have dynamic segments inside the path. You could map the route
like this:

"auth/:action/:provider_name"

Rails then provides a data map (or dictionary) containing the values that it automatically
extracted from the matched path. So if you visit auth/login/google, then

params [:provider_name] would equal google and params[:action] would equal
login.

[471]

Adding User Accounts

The most the http package lets us specify by default is a path prefix, which we can make
use of by leaving a trailing slash at the end of the pattern:

"auth/"

We would then have to manually parse the remaining segments to extract the appropriate
data. This is acceptable for relatively simple cases. This suits our needs for the time being
since we only need to handle a few different paths, such as the following;:

e /auth/login/google

e /auth/login/facebook

e /auth/callback/google

e /auth/callback/facebook

If you need to handle more advanced routing situations, you may want to
consider using dedicated packages, such as goweb, pat, routes, or mux.
For extremely simple cases such as ours, built-in capabilities will do.

We are going to create a new handler that powers our login process. In auth. go, add the
following loginHandler code:

// loginHandler handles the third-party login process.

// format: /auth/{action}/{provider}
func loginHandler (w http.ResponseWriter, r *http.Request) {

segs := strings.Split (r.URL.Path, "/")
action := segs[2]
provider := segs[3]

switch action {
case "login":
log.Println ("TODO handle login for", provider)
default:
w.WriteHeader (http.StatusNotFound)
fmt.Fprintf (w, "Auth action %s not supported", action)

}

In the preceding code, we break the path into segments using strings.Split before
pulling out the values for action and provider. If the action value is known, we will run
the specific code; otherwise, we will write out an error message and return an
http.StatusNotFound status code (which in the language of HTTP status code is 404).

[48]

Adding User Accounts

We will not bulletproof our code right now. But it's worth noticing that if
someone hits 1oginHandler with few segments, our code will panic
because it would expect segs [2] and segs[3] to exist.

For extra credit, see whether you can protect your code against this and
return a nice error message instead of making it panic if someone hits
/auth/nonsense.

Our loginHandler is only a function and not an object that implements the
http.Handler interface. This is because, unlike other handlers, we don't need it to store
any state. The Go standard library supports this, so we can use the http.HandleFunc
function to map it in a way similar to how we used http.Handle earlier. Inmain.go,
update the handlers:

http.Handle ("/chat", MustAuth (&templateHandler{filename: "chat.html"}))
http.Handle ("/login", &templateHandler{filename: "login.html"})
http.HandleFunc ("/auth/", loginHandler)

http.Handle ("/room", r)

Rebuild and run the chat application:

go build -o chat
./chat -host=":8080"

Hit the following URLs and notice the output logged in the terminal:

e http://localhost:8080/auth/login/google outputs TODO handle login
for google

e http://localhost:8080/auth/login/facebook outputs TODO handle
login for facebook

We have successfully implemented a dynamic path-matching mechanism that just prints
out TODO messages so far; we need to integrate it with authorization services in order to
make our login process work.

[49]

Adding User Accounts

Getting started with OAuth2

OAuth?2 is an open authorization standard designed to allow resource owners to give clients
delegated access to private data (such as wall posts or tweets) via an access token exchange
handshake. Even if you do not wish to access the private data, OAuth?2 is a great option that
allows people to sign in using their existing credentials, without exposing those credentials
to a third-party site. In this case, we are the third party, and we want to allow our users to
sign in using services that support OAuth2.

From a user's point of view, the OAuth2 flow is as follows:

1. The user selects the provider with whom they wish to sign in to the client app.

2. The user is redirected to the provider's website (with a URL that includes the
client app ID) where they are asked to give permission to the client app.

3. The user signs in from the OAuth2 service provider and accepts the permissions
requested by the third-party application.

4. The user is redirected to the client app with a request code.

5. In the background, the client app sends the grant code to the provider, who sends
back an authentication token.

6. The client app uses the access token to make authorized requests to the provider,
such as to get user information or wall posts.

To avoid reinventing the wheel, we will look at a few open source projects that have
already solved this problem for us.

Open source OAuth2 packages

Andrew Gerrand has been working on the core Go team since February 2010, that is, two
years before Go 1.0 was officially released. His goauth2 package (see https://github.com
/golang/oauth2) is an elegant implementation of the OAuth2 protocol written entirely in
Go.

Andrew's project inspired gomniauth (see https://github.com/stretchr/gomniauth).
An open source Go alternative to Ruby's omniauth project, gomniauth provides a unified
solution to access different OAuth2 services. In the future, when OAuth3 (or whatever the
next-generation authorization protocol will be) comes out, in theory gomniauth could take
on the pain of implementing the details, leaving the user code untouched.

[50]

https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/golang/oauth2
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth

Adding User Accounts

For our application, we will use gomniauth to access OAuth services provided by Google,
Facebook, and GitHub, so make sure you have it installed by running the following
command:

go get github.com/stretchr/gomniauth
Some of the project dependencies of gomniauth are kept in Bazaar

repositories, so you'll need to head over to http://wiki.bazaar.canonic
al.comto download them.

Tell the authorization providers about your
app

Before we ask an authorization provider to help our users sign in, we must tell them about
our application. Most providers have some kind of web tool or console where you can
create applications to kick this process off. Here's one from Google:

New Project
Project name

Chat Application

Project ID

| blueprints-chat-app C |

Show advanced options...

In order to identify the client application, we need to create a client ID and secret. Despite
the fact that OAuth2 is an open standard, each provider has their own language and
mechanism to set things up. Therefore, you will most likely have to play around with the
user interface or the documentation to figure it out in each case.

[51]

http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com

Adding User Accounts

At the time of writing, in Google Cloud Console, you navigate to API Manager and click
on the Credentials section.

In most cases, for added security, you have to be explicit about the host URLs from where
requests will come. For now, since we're hosting our app locally on 1ocalhost:8080, you
should use it. You will also be asked for a redirect URI that is the endpoint in our chat
application and to which the user will be redirected after they successfully sign in. The
callback will be another action in 1loginHandler, so the redirect URL for the Google client
willbe http://localhost:8080/auth/callback/google.

Once you finish the authorization process for the providers you want to support, you will
be given a client ID and secret for each provider. Make a note of these details because we
will need them when we set up the providers in our chat application.

If we host our application on a real domain, we have to create new client
IDs and secrets or update the appropriate URL fields on our authorization
providers to ensure that they point to the right place. Either wayj, it is good
practice to have a different set of development and production keys for
security.

Implementing external logging in

In order to make use of the projects, clients, or accounts that we created on the
authorization provider sites, we have to tell gomniauth which providers we want to use
and how we will interact with them. We do this by calling the withProviders function on
the primary gomniauth package. Add the following code snippet to main. go (just
underneath the flag.Parse () line toward the top of the main function):

// setup gomniauth
gomniauth.SetSecurityKey ("PUT YOUR AUTH KEY HERE")
gomniauth.WithProviders (
facebook.New ("key", "secret",
"http://localhost:8080/auth/callback/facebook"),
github.New ("key", "secret",
"http://localhost:8080/auth/callback/github"),
google.New ("key", "secret",
"http://localhost:8080/auth/callback/google"),

[52]

Adding User Accounts

You should replace the key and secret placeholders with the actual values you noted
down earlier. The third argument represents the callback URL that should match the ones
you provided when creating your clients on the provider's website. Notice the second path
segment is callback; while we haven't implemented this yet, this is where we handle the
response from the authorization process.

As usual, you will need to ensure all the appropriate packages are imported:

import (
"github.com/stretchr/gomniauth/providers/facebook"
"github.com/stretchr/gomniauth/providers/github"
"github.com/stretchr/gomniauth/providers/google"

Gomniauth requires the Set SecurityKey call because it sends state data
between the client and server along with a signature checksum, which
ensures that the state values are not tempered with while being
transmitted. The security key is used when creating the hash in a way that
it is almost impossible to recreate the same hash without knowing the
exact security key. You should replace some long key with a security
hash or phrase of your choice.

Logging in
Now that we have configured Gomniauth, we need to redirect users to the provider's

authorization page when they land on our /auth/login/{provider} path. We just have
to update our loginHandler function in auth.go:

func loginHandler (w http.ResponseWriter, r *http.Request) {

segs := strings.Split (r.URL.Path, "/")
action := segs[2]
provider := segs[3]

switch action {
case "login":
provider, err := gomniauth.Provider (provider)
if err != nil {
http.Error (w, fmt.Sprintf ("Error when trying to get provider
%$s: %$s",provider, err), http.StatusBadRequest)

return
}
loginUrl, err := provider.GetBeginAuthURL (nil, nil)
if err != nil {

http.Error (w, fmt.Sprintf ("Error when trying to GetBeginAuthURL
for %$s:%s", provider, err), http. StatusInternalServerError)

[53]

Adding User Accounts

}

return
t
w.Header.Set ("Location", loginUrl)
w.WriteHeader (http.StatusTemporaryRedirect)
default:

w.WriteHeader (http.StatusNotFound)
fmt.Fprintf (w, "Auth action %s not supported", action)

We do two main things here. First, we use the gomniauth.Provider function to get the
provider object that matches the object specified in the URL (such as google or github).
Then, we use the Get BeginAut hURL method to get the location where we must send users
to in order to start the authorization process.

The GetBeginAuthURL (nil, nil) arguments are for the state and
options respectively, which we are not going to use for our chat
application.

The first argument is a state map of data that is encoded and signed and
sent to the authentication provider. The provider doesn't do anything with
the state; it just sends it back to our callback endpoint. This is useful if, for
example, we want to redirect the user back to the original page they were
trying to access before the authentication process intervened. For our
purpose, we have only the /chat endpoint, so we don't need to worry
about sending any state.

The second argument is a map of additional options that will be sent to the
authentication provider, which somehow modifies the behavior of the
authentication process. For example, you can specify your own scope
parameter, which allows you to make a request for permission to access
additional information from the provider. For more information about the
available options, search for OAuth2 on the Internet or read the
documentation for each provider, as these values differ from service to
service.

If our code gets no error from the GetBeginAuthURL call, we simply redirect the user's
browser to the returned URL.

If errors occur, we use the http.Error function to write the error message out with a
non-200 status code.

[54]

Adding User Accounts

Rebuild and run the chat application:

go build -o chat
./chat -host=":8080"

We will continue to stop, rebuild, and run our projects manually
throughout this book, but there are some tools that will take care of this
for you by watching for changes and restarting Go applications
automatically. If you're interested in such tools, check out https://githu
b.com/pilu/fresh and https://github.com/codegangsta/gin.

Open the main chat page by accessing http://localhost:8080/chat. As we aren't
logged in yet, we are redirected to our sign-in page. Click on the Google option to sign in
using your Google account and you will notice that you are presented with a Google-
specific sign-in page (if you are not already signed in to Google). Once you are signed in,
you will be presented with a page asking you to give permission for our chat application
before you can view basic information about your account:

A
6 O O gRequest for Permission X X
[

B)

& => C [https://accounts.google.com/o/oa... T¢ 2

GO 816 mat@stretchr.com «

Project Default Service Account ~

This app would like to:

g View your email address

g View basic information about your account

Project Default Service Account and Google will use this information in
accordance with their respective terms of service and privacy policies.

cance' m

This is the same flow that the users of our chat application will experience when signing in.

[55]

https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/pilu/fresh
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin
https://github.com/codegangsta/gin

Adding User Accounts

Click on Accept and you will notice that you are redirected to our application code but
presented with an Auth action callback not supported error. This is because we
haven't yet implemented the callback functionality in loginHandler.

Handling the response from the provider

Once the user clicks on Accept on the provider's website (or if they click on the equivalent
of Cancel), they will be redirected to the callback endpoint in our application.

A quick glance at the complete URL that comes back shows us the grant code that the
provider has given us:

http://localhost:8080/auth/callback/google?code=4/Q92xJ~
BOfoX6PHhzkjhgtyfLcO0Y1m.QqV4u9AbA9sYguyfbjFEsNoJKMOJOI

We don't have to worry about what to do with this code because Gomniauth does it for us;
we can simply jump to implementing our callback handler. However, it's worth knowing
that this code will be exchanged by the authentication provider for a token that allows us to
access private user data. For added security, this additional step happens behind the scenes,
from server to server rather than in the browser.

In auth.go, we are ready to add another switch case to our action path segment. Insert the
following code before the default case:

case "callback":
provider, err := gomniauth.Provider (provider)
if err !'= nil {
http.Error (w, fmt.Sprintf ("Error when trying to get provider %s: %s",
provider, err), http.StatusBadRequest)
return
}
creds, err :=
provider.CompleteAuth (objx.MustFromURLQuery (r.URL.RawQuery))

if err !'= nil {
http.Error (w, fmt.Sprintf ("Error when trying to complete auth for
%$s: %s", provider, err), http.StatusInternalServerError)
return

t

user, err := provider.GetUser (creds)

if err !'= nil {

http.Error (w, fmt.Sprintf ("Error when trying to get user from %s: %s",
provider, err), http.StatusInternalServerError)
return

}

authCookieValue := objx.New(map[string]interface{}{

[56]

Adding User Accounts

"name": user.Name (),
}) .MustBase64 ()
http.SetCookie (w, &http.Cookie{

Name: "auth",

Value: authCookieValue,

Path: "/"})
w.Header () .Set ("Location", "/chat")

w.WriteHeader (http.StatusTemporaryRedirect)

When the authentication provider redirects the users after they have granted permission,
the URL specifies that it is a callback action. We look up the authentication provider as we
did before and call its CompleteAuth method. We parse RawQuery from the request into
objx.Map (the multipurpose map type that Gomniauth uses), and the CompleteAuth
method uses the values to complete the OAuth2 provider handshake with the provider. All
being well, we will be given some authorized credentials with which we will be able to
access our user's basic data. We then use the GetUser method for the provider, and
Gomniauth will use the specified credentials to access some basic information about the
user.

Once we have the user data, we Base64-encode the Name field in a JSON object and store it
as a value for our auth cookie for later use.

Base64-encoding data ensures it won't contain any special or
unpredictable characters, which is useful for situations such as passing
data to a URL or storing it in a cookie. Remember that although Base64-
encoded data looks encrypted, it is not you can easily decode Baset4-
encoded data back to the original text with little effort. There are online
tools that do this for you.

After setting the cookie, we redirect the user to the chat page, which we can safely assume
was the original destination.

Once you build and run the code again and hit the /chat page, you will notice that the sign
up flow works and we are finally allowed back to the chat page. Most browsers have an
inspector or a console—a tool that allows you to view the cookies that the server has sent
you-that you can use to see whether the auth cookie has appeared:

go build -o chat
./chat -host=":8080"

[57]

Adding User Accounts

In our case, the cookie value is eyJuYW11IjoiTWFOIFJ52ZXIifQ==, which is a Base64-
encoded version of { "name":"Mat Ryer"}. Remember, we never typed in a name in our
chat application; instead, Gomniauth asked Google for a name when we opted to sign in
with Google. Storing non-signed cookies like this is fine for incidental information, such as
a user's name; however, you should avoid storing any sensitive information using non-
signed cookies as it's easy for people to access and change the data.

Presenting the user data

Having the user data inside a cookie is a good start, but non-technical people will never

even know it's there, so we must bring the data to the fore. We will do this by enhancing
templateHandler that first passes the user data to the template's Execute method; this
allows us to use template annotations in our HTML to display the user data to the users.

Update the ServeHTTP method of templateHandler inmain.go:

func (t *templateHandler) ServeHTTP (w http.ResponseWriter, r
*http.Request) {
t.once.Do (func () {
t.templ = template.Must (template.ParseFiles(filepath.Join("templates",
t.filename)))

})
data := map[string]interface{}{
"Host": r.Host,

}
if authCookie, err := r.Cookie("auth"); err == nil {
data["UserData"] = objx.MustFromBase64 (authCookie.Value)

}
t.templ.Execute (w, data)

}

Instead of just passing the entire http.Request object to our template as data, we are
creating a new map [string]interface{} definition for a data object that potentially has
two fields: Host and UserData (the latter will only appear if an auth cookie is present). By
specifying the map type followed by curly braces, we are able to add the Host entry at the
same time as making our map while avoiding the make keyword altogether. We then pass
this new data object as the second argument to the Execute method on our template.

[58]

Adding User Accounts

Now we add an HTML file to our template source to display the name. Update the
chatbox form in chat .html:

<form id="chatbox">
{{.UserData.name}}:

<textarea></textarea>
<input type="submit" value="Send" />
</form>

The {{.UserData.name}} annotation tells the template engine to insert our user's name
before the textarea control.

Since we're using the objx package, don't forget to run go get
http://github.com/stretchr/objx and import it. Additional
dependencies add complexity to projects, so you may decide to copy and
paste the appropriate functions from the package or even write your own
code that marshals between Base64-encoded cookies and back.
Alternatively, you can vendor the dependency by copying the whole
source code to your project (inside a root-level folder called vendor). Go
will, at build time, first check the vendor folder for any imported packages
before checking them in $GOPATH (which were put there by go get). This
allows you to fix the exact version of a dependency rather than rely on the
fact that the source package hasn't changed since you wrote your code.
For more information about using vendors in Go, check out Daniel
Theophanes' post on the subject at
https://blog.gopheracademy.com/advent-2015/vendor-folder/ Or
search for vendoring in Go.

Rebuild and run the chat application again and you will notice the addition of your name
before the chat box:

go build -o chat
./chat -host=":8080"

Augmenting messages with additional data

So far, our chat application has only transmitted messages as slices of bytes or []byte types
between the client and the server; therefore, the forward channel for our room has the chan
[1byte type. In order to send data (such as who sent it and when) in addition to the
message itself, we enhance our forward channel and also how we interact with the web
socket on both ends.

[59]

https://blog.gopheracademy.com/advent-2015/vendor-folder/

Adding User Accounts

Define a new type that will replace the [1byte slice by creating a new file called
message.go in the chat folder:

package main
import (
"time"
)
// message represents a single message
type message struct {

Name string
Message string
When time.Time

}

The message type will encapsulate the message string itself, but we have also added the
Name and When fields that respectively hold the user's name and a timestamp of when the
message was sent.

Since the client type is responsible for communicating with the browser, it needs to
transmit and receive more than just a single message string. As we are talking to a
JavaScript application (that is, the chat client running in the browser) and the Go standard
library has a great JSON implementation, this seems like the perfect choice to encode
additional information in the messages. We will change the read and write methods in
client.go to use the ReadJSON and WriteJSON methods on the socket, and we will

encode and decode our new message type:

func (¢ *client) read() {
defer c.socket.Close ()
for {
var msg *message
err := c.socket.ReadJSON (&msqg)
if err != nil {
return
}
msg.When = time.Now ()
msg.Name = c.userData["name"]. (string)
c.room. forward <- msg
}
}
func (c *client) write() {
defer c.socket.Close ()
for msg := range c.send {
err := c.socket.WriteJSON (msqg)
if err != nil {
break

[60]

Adding User Accounts

}

When we receive a message from the browser, we will expect to populate only the Message
field, which is why we set the When and Name fields ourselves in the preceding code.

You will notice that when you try to build the preceding code, it complains about a few
things. The main reason is that we are trying to send a *message object down our forward
and send chan []byte channels. This is not allowed until we change the type of the
channel. In room. go, change the forward field to be of the type chan *message, and do
the same for the send chan typein client.go.

We must update the code that initializes our channels since the types have now changed.
Alternatively, you can wait for the compiler to raise these issues and fix them as you go. In
room. go, you need to make the following changes:

. Changeforward: make (chan []byte) to forward: make (chan *message)

L Changer.tracer.Trace("Message received: ", string(msg)) to
r.tracer.Trace ("Message received: ", msg.Message)

e Change send: make (chan []byte, messageBufferSize) to send:
make (chan *message, messageBufferSize)

The compiler will also complain about the lack of user data on the client, which is a fair
point because the client type has no idea about the new user data we have added to the
cookie. Update the client struct to include a new general-purpose

map [stringlinterface{} called userData:

// client represents a single chatting user.

type client struct {
// socket is the web socket for this client.
socket *websocket.Conn
// send is a channel on which messages are sent.
send chan *message
// room is the room this client is chatting in.
room *room
// userData holds information about the user
userData map[string]interface{}

[61]

Adding User Accounts

The user data comes from the client cookie that we access through the http.Request
object's Cookie method. In room. go, update serveHTTP with the following changes:

func (r *room) ServeHTTP (w http.ResponseWriter, reqg *http.Request) {

socket, err := upgrader.Upgrade(w, req, nil)
if err !'= nil {
log.Fatal ("ServeHTTP:", err)
return
}
authCookie, err := reqg.Cookie("auth")
if err !'= nil {
log.Fatal ("Failed to get auth cookie:", err)
return
}
client := &client{
socket: socket,
send: make (chan *message, messageBufferSize),
room: r,

userData: objx.MustFromBase64 (authCookie.Value),

}

r.join <- client

defer func() { r.leave <- client } ()
go client.write()

client.read()

}

We use the Cookie method on the http.Request type to get our user data before passing
it to the client. We are using the objx.MustFromBase64 method to convert our encoded
cookie value back into a usable map object.

Now that we have changed the type being sent and received on the socket from []byte to
*message, we must tell our JavaScript client that we are sending JSON instead of just a
plain string. Also, we must ask that it send JSON back to the server when a user submits a
message. In chat . html, first update the socket . send call:

socket.send (JSON.stringify ({"Message": msgBox.val()}));

We are using JSON. stringify to serialize the specified JSON object (containing just the
Message field) into a string, which is then sent to the server. Our Go code will decode (or
unmarshal) the JSON string into a message object, matching the field names from the client
JSON object with those of our message type.

[62]

Adding User Accounts

Finally, update the socket . onmessage callback function to expect JSON, and also add the
name of the sender to the page:

socket.onmessage = function(e) {
var msg = JSON.parse(e.data);
messages.append (
S("<1li>") .append (
$("") .text (msg.Name + ": "),
S ("") .text (msg.Message)
)
)
}

In the preceding code snippet, we used JavaScript's JSON. parse function to turn the JSON
string into a JavaScript object and then access the fields to build up the elements needed to
properly display them.

Build and run the application, and if you can, log in with two different accounts in two
different browsers (or invite a friend to help you test it):

go build -o chat
./chat -host=":8080"

The following screenshot shows the chat application's browser chat screens:

Chat
< N 4+ € localhost:8080 (v O »
Chat +
Mat Ryer: Hey John, are you there?
John Smith: Sure am. How are you?

Mat Ryer: Good thanks - just testing the chat application.
John Smith: Much better now I can see who said what! :)

John Smith:

= Chat x

Send < c localhost:8080/chat rel P

]

Mat Ryer: Hey John, are you there?
John Smith: Sure am. How are you?
Mat Ryer: Good thanks - just testing the chat application.
John Smith: Much better now I can see who said what! :)

7 Mat Ryer:

Send

[63]

Adding User Accounts

Summary

In this chapter, we added a useful and necessary feature to our chat application by asking
users to authenticate themselves using OAuth2 service providers before we allow them to
join the conversation. We made use of several open source packages, such as Gomniauth,
which dramatically reduced the amount of multiserver complexity we would otherwise
have dealt with.

We implemented a pattern when we wrapped http.Handler types to allow us to easily
specify which paths require the user to be authenticated and which were available, even
without an auth cookie. Our MustAuth helper function allowed us to generate the wrapper
types in a fluent and simple way, without adding clutter and confusion to our code.

We saw how to use cookies and Base64-encoding to safely (although not securely) store the
state of particular users in their respective browsers and to make use of that data over
normal connections and through web sockets. We took more control of the data available to
our templates in order to provide the name of the user to the UI and saw how to only
provide certain data under specific conditions.

Since we needed to send and receive additional information over the web socket, we
learned how easy it was to change the channels of native types into channels that work with
types of our own, such as our message type. We also learned how to transmit JSON objects
over the socket, rather than just slices of bytes. Thanks to the type safety of Go and the
ability to specify types for channels, the compiler helps ensure that we do not send anything
other than message objects through chan *message. Attempting to do so would result in
a compiler error, alerting us to the fact right away.

From building a chat application to seeing the name of the person chatting is a great leap
forward in terms of usability. But it's very formal and might not attract modern users of the
Web, who are used to a much more visual experience. We are missing pictures of people
chatting, and in the next chapter, we will explore different ways in which this could be
done. We can allow users to better represent themselves in our application by pulling
profile pictures (avatars) from the OAuth2 provider, the Gravatar web service, or the local
disk after the users have uploaded them.

As an extra assignment, see whether you can make use of the time . Time field that we put
into the message type to tell users when the messages were sent.

[64]

Three Ways to Implement
Profile Pictures

So far, our chat application has made use of the OAuth2 protocol to allow users to sign in to
our application so that we know who is saying what. In this chapter, we are going to add
profile pictures to make the chatting experience more engaging.

We will look at the following ways to add pictures or avatars alongside the messages in our
application:

¢ Using the avatar picture provided by the auth service
e Using the https://en.gravatar.com/ web service to look up a picture by the
user's e-mail address

¢ Allowing the user to upload their own picture and host it themselves

The first two options allow us to delegate the hosting of pictures to a third party either an
authorization service or https://en.gravatar.com/ which is great because it reduces the
cost of hosting our application (in terms of storage costs and bandwidth, since the user's
browsers will actually download the pictures from the servers of the authenticating service,
not ours). The third option requires us to host pictures ourselves at a location that is
accessible on the Web.

These options aren't mutually exclusive; you will most likely use a combination of them in a
real-world production application. Toward the end of the chapter, you will see how the
flexible design that emerges allows us to try each implementation in turn until we find an
appropriate avatar.

https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/

Three Ways to Implement Profile Pictures

We are going to be agile with our design throughout this chapter, doing the minimum work
needed to accomplish each milestone. This means that at the end of each section, we will
have working implementations that are demonstrable in the browser. This also means that
we will refactor code as and when we need to and discuss the rationale behind the decisions
we make as we go.

Specifically, in this chapter, you will learn:

e What the good practices to get additional information from auth services are,
even when there are no standards in place

e When it is appropriate to build abstractions into our code

e How Go's zero-initialization pattern can save time and memory

e How reusing an interface allows us to work with collections and individual
objects in the same way as the existing interface did

e How to use the https://en.gravatar.com/ web service

e How to do MD5 hashing in Go

e How to upload files over HTTP and store them on a server

e How to serve static files through a Go web server

e How to use unit tests to guide the refactoring of code

e How and when to abstract functionality from struct types into interfaces

Avatars from the OAuth2 server

It turns out that most auth servers already have images for their users, and they make them
available through the protected user resource that we already used in order to get our user's
names. To use this avatar picture, we need to get the URL from the provider, store it in the
cookie for our user, and send it through a web socket so that every client can render the
picture alongside the corresponding message.

Getting the avatar URL

The schema for user or profile resources is not part of the OAuth2 spec, which means that
each provider is responsible for deciding how to represent that data. Indeed, providers do
things differently; for example, the avatar URL in a GitHub user resource is stored in a field
called avatar_url, whereas in Google, the same field is called picture. Facebook goes
even further by nesting the avatar URL value in a url field inside an object called picture.
Luckily, Gomniauth abstracts this for us; its GetUser call on a provider standardizes the
interface to get common fields.

[66]

https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/

Three Ways to Implement Profile Pictures

In order to make use of the avatar URL field, we need to go back and store that information
in our cookie. In auth. go, look inside the callback action switch case and update the code
that creates the authCookievalue object, as follows:

authCookieValue := objx.New(map[string]interface{}{
"name" : user .Name (),
"avatar_url": user.AvatarURL(),

}) .MustBase64 ()

The AvatarURL field called in the preceding code will return the appropriate URL value
and store it in our avatar_url field, which we then put into the cookie.

Gomniauth defines a User type of interface and each provider implements
their own version. The generic map [string]interface{} data returned
from the auth server is stored inside each object, and the method calls
access the appropriate value using the right field name for that provider.
This approach describing the way information is accessed without being
strict about implementation details—is a great use of interfaces in Go.

Transmitting the avatar URL

We need to update our message type so that it can also carry the avatar URL with it. In
message.go, add the AvatarURL string field:

type message struct {

Name string
Message string
When time.Time

AvatarURL string
}

So far, we have not actually assigned a value to AvatarURL like we do for the Name field;
so, we must update our read method in client.go:

func (¢ *client) read() {

defer c.socket.Close ()

for |
var msg *message
err := c.socket.ReadJSON (&msqg)
if err != nil {

return

}
msg.When time.Now ()
msg.Name = c.userData["name"]. (string)

[67]

Three Ways to Implement Profile Pictures

if avatarURL, ok := c.userData["avatar_url"]; ok {
msg.AvatarURL = avatarURL. (string)
t

c.room. forward <- msg
}
}

All we have done here is take the value from the userData field that represents what we
put into the cookie and assigned it to the appropriate field in message if the value was
present in the map. We now take the additional step of checking whether the value is
present because we cannot guarantee that the auth service would provide a value for this
field. And since it could be ni1, it might cause panic to assign it to a st ring type if it's
actually missing.

Adding the avatar to the user interface

Now that our JavaScript client gets an avatar URL value via the socket, we can use it to
display the image alongside the messages. We do this by updating the socket . onmessage
code in chat .html:

socket.onmessage = function(e) {
var msg = JSON.parse (e.data);
messages.append (
S ("<1li>") .append (
S ("") .css ({
width:50,
verticalAlign:"middle"
}).attr("src", msg.AvatarURL),
$ ("") .text (msg.Name + ": "),
$ ("") .text (msg.Message)
)
)
)3

When we receive a message, we will insert an img tag with the source set to the AvatarURL
field. We will use jQuery's css method to force a width of 50 pixels. This protects us from
massive pictures spoiling our interface and allows us to align the image to the middle of the
surrounding text.

[68]

Three Ways to Implement Profile Pictures

If we build and run our application having logged in with a previous version, you will find
that the auth cookie that doesn't contain the avatar URL is still there. We are not asked to
authenticate again (since we are already logged in), and the code that adds the avatar_url
field never gets a chance to run. We could delete our cookie and refresh the page, but we
would have to keep doing this whenever we make changes during development. Let's solve
this problem properly by adding a logout feature.

Logging out
The simplest way to log out a user is to get rid of the auth cookie and redirect the user to

the chat page, which will in turn cause a redirect to the login page (since we just removed
the cookie). We do this by adding a new HandleFunc call to main.go:

http.HandleFunc ("/logout", func(w http.ResponseWriter, r *http.Request) {
http.SetCookie(w, &http.Cookie{

Name: "auth",
Value: nr,
Path: w/m,

MaxAge: -1,
})
w.Header () .Set ("Location", "/chat")
w.WriteHeader (http.StatusTemporaryRedirect)

})

The preceding handler function uses http.SetCookie to update the cookie setting MaxAge
to -1, which indicates that it should be deleted immediately by the browser. Not all
browsers are forced to delete the cookie, which is why we also provide a new vValue setting
of an empty string, thus removing the user data that would previously have been stored.

As an additional assignment, you can bulletproof your app a little by
updating the first line in ServeHTTP for your authHandler method in
auth.go to make it cope with the empty value case as well as the missing
cookie case:

if cookie, err := r.Cookie("auth"); err ==
http.ErrNoCookie || cookie.Value == ""

Instead of ignoring the return of r.Cookie, we keep a reference to the
returned cookie (if there was actually one) and also add an additional
check to see whether the value string of the cookie is empty or not.

[69]

Three Ways to Implement Profile Pictures

Before we continue, let's add a Sign Out link to make it even easier to get rid of the cookie
and also allow our end users to log out. In chat . html, update the chatbox form to insert a
simple HTML link to the new /logout handler:

<form id="chatbox">
{{.UserData.name}}:

<textarea></textarea>
<input type="submit" value="Send" />
or sign out
</form>

Now build and run the application and open a browser to 1ocalhost:8080/chat:

go build -o chat
./chat -host=:8080

Log out if you need to and log back in. When you click on Send, you will see your avatar
picture appear next to your messages:

® 006 / Chat x - 2

€« (& localhost:8080/chat XA

at Ryer: Hello?

at Ryer: Oh I can see my avatar picture now.

Mat Ryer:

Send

or sign out

[70]

Three Ways to Implement Profile Pictures

Making things prettier

Our application is starting to look a little ugly, and its time to do something about it. In the
previous chapter, we implemented the Bootstrap library into our login page, and we are
going to extend its use to our chat page now. We will make three changes in chat . html:
include Bootstrap and tweak the CSS styles for our page, change the markup for our form,
and tweak how we render messages on the page:

1. First, let's update the style tag at the top of the page and insert a 1ink tag
above it in order to include Bootstrap:

<link rel="stylesheet"href="//netdna.bootstrapcdn.com/bootstrap
/3.3.6/css/bootstrap.min.css">

<style>
ul#messages { list-style: none; }
ul#messages 1i { margin-bottom: 2px; }
ul#messages 1li img { margin-right: 10px; }
</style>

2. Next, let's replace the markup at the top of the body tag (before the script tags)
with the following code:

<div class="container">
<div class="panel panel-default">
<div class="panel-body">
<ul id="messages">
</div>
</div>
<form id="chatbox" role="form">
<div class="form-group">
<label for="message">Send a message as {{.UserData.name}}
</label> or Sign out
<textarea id="message" class="form-control"></textarea>
</div>
<input type="submit" value="Send" class="btn btn-default" />
</form>
</div>

This markup follows Bootstrap standards of applying appropriate classes
to various items; for example, the form-control class neatly formats
elements within form (you can check out the Bootstrap documentation for
more information on what these classes do).

[71]

Three Ways to Implement Profile Pictures

3. Finally, let's update our socket . onmessage JavaScript code to put the sender's
name as the title attribute for our image. This makes it display the image when
you mouse over it rather than display it next to every message:

socket.onmessage = function(e) |
var msg = JSON.parse(e.data);
messages.append (
S("<1li>") .append (

S("") .attr("title", msg.Name) .css ({
width:50,
verticalAlign:"middle"

}).attr("src", msg.AvatarURL),

S ("") .text (msg.Message)

)
)
}

Build and run the application and refresh your browser to see whether a new design
appears:

go build -o chat
./chat -host=:8080

The preceding command shows the following output:

® 0o || Chat X 'y

»
]

[] C' | localhost:8080/chat Ky

Hi there

rg What do you think of the new design?

| think it's much neater :)

Send a message as Mat Ryer or Sign out

Send

With relatively few changes to the code, we have dramatically improved the look and feel
of our application.

[72]

Three Ways to Implement Profile Pictures

Implementing Gravatar

Gravatar is a web service that allows users to upload a single profile picture and associate it
with their e-mail address in order to make it available from any website. Developers, like
us, can access these images for our application just by performing a GET operation on a
specific API endpoint. In this section, we will look at how to implement Gravatar rather
than use the picture provided by the auth service.

Abstracting the avatar URL process

Since we have three different ways of obtaining the avatar URL in our application, we have
reached the point where it would be sensible to learn how to abstract the functionality in
order to cleanly implement the options. Abstraction refers to a process in which we separate
the idea of something from its specific implementation. The http.Handler method is a
great example of how a handler will be used along with its ins and outs, without being
specific about what action is taken by each handler.

In Go, we start to describe our idea of getting an avatar URL by defining an interface. Let's
create a new file called avatar.go and insert the following code:

package main
import (
"errors"
)
// ErrNoAvatar is the error that is returned when the
// Avatar instance is unable to provide an avatar URL.
var ErrNoAvatarURL = errors.New("chat: Unable to get an avatar URL.")
// Avatar represents types capable of representing
// user profile pictures.
type Avatar interface {
// GetAvatarURL gets the avatar URL for the specified client,
// or returns an error if something goes wrong.
// ErrNoAvatarURL is returned if the object is unable to get
// a URL for the specified client.
GetAvatarURL(c *client) (string, error)

}

The Avatar interface describes the GetAvatarURL method that a type must satisfy in order
to be able to get avatar URLs. We took the client as an argument so that we know the user
for which the URL to be returned. The method returns two arguments: a string (which will
be the URL if things go well) and an error in case something goes wrong.

[73]

Three Ways to Implement Profile Pictures

One of the things that could go wrong is simply that one of the specific implementations of
Avatar is unable to get the URL. In that case, Get AvatarURL will return the
ErrNoAvatarURL error as the second argument. The ErrNoAvatarURL error therefore
becomes a part of the interface; it's one of the possible returns from the method and
something that users of our code should probably explicitly handle. We mention this in the
comments part of the code for the method, which is the only way to communicate such
design decisions in Go.

Because the error is initialized immediately using errors.New and stored
in the ErrNoAvatarURL variable, only one of these objects will ever be
created; passing the pointer of the error as a return is inexpensive. This is
unlike Java's checked exceptions which serve a similar purpose where
expensive exception objects are created and used as part of the control
flow.

The auth service and the avatar's implementation

The first implementation of Avatar we write will replace the existing functionality where
we had hardcoded the avatar URL obtained from the auth service. Let's use a Test-driven
Development (TDD) approach so that we can be sure our code works without having to
manually test it. Let's create a new file called avatar_test.go in the chat folder:

package main

import "testing"

func TestAuthAvatar (t *testing.T) {
var authAvatar AuthAvatar

client := new(client)
url, err := authAvatar.GetAvatarURL (client)
if err != ErrNoAvatarURL {

t.Error ("AuthAvatar.GetAvatarURL should return ErrNoAvatarURL
when no value present")
}
// set a value
testUrl := "http://url-to-gravatar/"
client.userData = map[string]interface{}{"avatar_url": testUrl}
url, err = authAvatar.GetAvatarURL(client)
if err !'= nil {
t.Error ("AuthAvatar.GetAvatarURL should return no error
when value present")
}
if url != testUrl {
t.Error ("AuthAvatar.GetAvatarURL should return correct URL")

[74]

Three Ways to Implement Profile Pictures

This file contains a test for our as-of-yet, nonexistent AuthAvatar type's GetAvatarURL
method. First, it uses a client with no user data and ensures that the ErrNoAvatarURL error
is returned. After setting a suitable URL, our test calls the method again this time to assert
that it returns the correct value. However, building this code fails because the AuthAvatar
type doesn't exist, so we'll declare authAvatar next.

Before we write our implementation, it's worth noticing that we only declare the
authAvatar variable as the AuthAvatar type but never actually assign anything to it so its
value remains nil. This is not a mistake; we are actually making use of Go's zero-
initialization (or default initialization) capabilities. Since there is no state needed for our
object (we will pass client in as an argument), there is no need to waste time and memory
on initializing an instance of it. In Go, it is acceptable to call a method on a nil object,
provided that the method doesn't try to access a field. When we actually come to writing
our implementation, we will look at a way in which we can ensure this is the case.

Let's head back over to avatar.go and make our test pass. Add the following code at the
bottom of the file:

type AuthAvatar struct{}
var UseAuthAvatar AuthAvatar

func (AuthAvatar) GetAvatarURL(c *client) (string, error) {
if url, ok := c.userData["avatar_url"]; ok {
if urlStr, ok := url. (string); ok {

return urlStr, nil
}
}

return "", ErrNoAvatarURL

}

Here, we define our AuthAvatar type as an empty struct and define the implementation of
the GetAvatarURL method. We also create a handy variable called UseAuthAvatar that
has the AuthAvatar type but which remains of nil value. We can later assign the
UseAuthAvatar variable to any field looking for an Avatar interface type.

The GetAvatarURL method we wrote earlier doesn't have a very nice line
of sight; the happy return is buried within two if blocks. See if you can
refactor it so that the last line is return urlStr, nil and the method
exits early if the avatar_url field is missing. You can refactor with
confidence, since this code is covered by a unit test.

For a little more on the rationale behind this kind of refactor, refer to the
article at http://bit.ly/lineofsightgolang

[75]

http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang
http://bit.ly/lineofsightgolang

Three Ways to Implement Profile Pictures

Normally, the receiver of a method (the type defined in parentheses before the name) will
be assigned to a variable so that it can be accessed in the body of the method. Since, in our
case, we assume the object can have nil value, we can omit a variable name to tell Go to
throw away the reference. This serves as an added reminder to ourselves that we should
avoid using it.

The body of our implementation is relatively simple otherwise: we are safely looking for the
value of avatar_url and ensuring that it is a string before returning it. If anything fails, we
return the ErrNoAvatarURL error, as defined in the interface.

Let's run the tests by opening a terminal and then navigating to the chat folder and typing
the following:

go test

If all is well, our tests will pass and we will have successfully created our first Avatar
implementation.

Using an implementation

When we use an implementation, we could refer to either the helper variables directly or
create our own instance of the interface whenever we need the functionality. However, this
would defeat the object of the abstraction. Instead, we use the Avatar interface type to
indicate where we need the capability.

For our chat application, we will have a single way to obtain an avatar URL per chat room.
So, let's update the room type so it can hold an Avatar object. In room. go, add the
following field definition to the room struct type:

// avatar is how avatar information will be obtained.
avatar Avatar

Update the newRoom function so that we can pass in an Avatar implementation for use; we
will just assign this implementation to the new field when we create our room instance:

// newRoom makes a new room that is ready to go.
func newRoom (avatar Avatar) *room {
return &roomf{
forward: make (chan *message),
join: make (chan *client),
leave: make (chan *client),
clients: make (map[*client]bool),
tracer: trace.Off(),
avatar: avatar,

[76]

Three Ways to Implement Profile Pictures

}

Building the project now will highlight the fact that the call to newRoom in main.go is
broken because we have not provided an Avatar argument; let's update it by passing in
our handy UseAuthAvatar variable, as follows:

r := newRoom (UseAuthAvatar)

We didn't have to create an instance of AuthAvatar, so no memory was allocated. In our
case, this doesn't result in great saving (since we only have one room for our entire
application), but imagine the size of the potential savings if our application has thousands
of rooms. The way we named the UseAuthAvatar variable means that the preceding code
is very easy to read and it also makes our intention obvious.

Thinking about code readability is important when designing interfaces.

Consider a method that takes a Boolean input just passing in true or false
hides the real meaning if you don't know the argument names. Consider
defining a couple of helper constants, as shown in the following short

example:

func move (animated bool) { /* ... */ }
const Animate = true const

DontAnimate = false

Think about which of the following calls to move are easier to understand:
move (true)
(false)
move (Animate)
move (DontAnimate)

move

All that is left now is to change client to use our new Avatar interface. In client.go,
update the read method, as follows:

func (¢ *client) read() {
defer c.socket.Close ()
for {
var msg *message
if err := c.socket.ReadJSON (&msg); err != nil {
return

}

msg.When = time.Now ()

msg.Name = c.userData["name"]. (string)
msg.AvatarURL, _ = c.room.avatar.GetAvatarURL (c)
c.room. forward <- msg

}

[771

Three Ways to Implement Profile Pictures

Here, we are asking the avatar instance in room to get the avatar URL for us instead of
extracting it from userData ourselves.

When you build and run the application, you will notice that (although we have refactored
things a little) the behavior and user experience hasn't changed at all. This is because we
told our room to use the AuthAvatar implementation.

Now let's add another implementation to the room.

The Gravatar implementation

The Gravatar implementation in Avatar will do the same job as the AuthAvatar
implementation, except that it will generate a URL for a profile picture hosted on https://
en.gravatar.com/. Let's start by adding a test to our avatar_test.go file:

func TestGravatarAvatar (t *testing.T) {
var gravatarAvatar GravatarAvatar
client := new(client)
client.userData = map[string]interface{}{"email":
"MyEmailAddress@example.com"}
url, err := gravatarAvatar.GetAvatarURL (client)
if err !'= nil {
t.Error ("GravatarAvatar.GetAvatarURL should not return an error")
}
if url != "//www.gravatar.com/avatar/0bc83cb571cdlc50ba6fl3e8a78ef1346" {
t.Errorf ("GravatarAvatar.GetAvatarURL wrongly returned %s", url)
}
}

Gravatar uses a hash of the e-mail address to generate a unique ID for each profile picture,
so we set up a client and ensure userData contains an e-mail address. Next, we call the
same GetAvatarURL method, but this time on an object that has the GravatarAvatar
type. We then assert that a correct URL was returned. We already know this is the
appropriate URL for the specified e-mail address because it is listed as an example in the
Gravatar documentation a great strategy to ensure our code is doing what it should be
doing.

[781

https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/

Three Ways to Implement Profile Pictures

Remember that all the source code for this book is available for download
from the publishers and has also been published on GitHub. You can save
time on building the preceding core by copying and pasting bits and
pieces from https://github.com/matryer/goblueprints. Hardcoding
things such as the base URL is not usually a good idea; we have
hardcoded throughout the book to make the code snippets easier to read
and more obvious, but you are welcome to extract them as you go along if
you like.

Running these tests (with go test) obviously causes errors because we haven't defined our
types yet. Let's head back to avatar. go and add the following code while being sure to
import the io package:

type GravatarAvatar struct{}
var UseGravatar GravatarAvatar

func (GravatarAvatar) GetAvatarURL(c *client) (string, error) {
if email, ok := c.userData["email"]; ok {
if emailStr, ok := email. (string); ok {
m := mdb5.New ()

io.WriteString(m, strings.ToLower (emailStr))
return fmt.Sprintf ("//www.gravatar.com/avatar/%$x", m.Sum(nil)), nil
}
}
return "", ErrNoAvatarURL

}

We used the same pattern as we did for AuthAvatar: we have an empty struct, a helpful
UseGravatar variable, and the GetAvatarURL method implementation itself. In this
method, we follow Gravatar's guidelines to generate an MD5 hash from the e-mail address

(after we ensured it was lowercase) and append it to the hardcoded base URL using
fmt.Sprintf.

The preceding method also suffers from a bad line of sight in code. Can
you live with it, or would you want to improve the readability somehow?

[791

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Three Ways to Implement Profile Pictures

It is very easy to achieve hashing in Go thanks to the hard work put in by the writers of the
Go standard library. The crypto package has an impressive array of cryptography and
hashing capabilities all very easy to use. In our case, we create a new md5 hasher and
because the hasher implements the io.Writer interface, we can use io.WriteString to
write a string of bytes to it. Calling Sum returns the current hash for the bytes written.

You might have noticed that we end up hashing the e-mail address every
time we need the avatar URL. This is pretty inefficient, especially at scale,
but we should prioritize getting stuff done over optimization. If we need
to, we can always come back later and change the way this works.

Running the tests now shows us that our code is working, but we haven't yet included an e-
mail address in the auth cookie. We do this by locating the code where we assign to the
authCookieValue object in auth.go and updating it to grab the Email value from
Gomniauth:

authCookieValue := objx.New(map[string]interface{}{
"name" : user.Name (),
"avatar_url": user.AvatarURL(),
"email": user.Email (),

}) .MustBase64 ()

The final thing we must do is tell our room to use the Gravatar implementation instead of
the AuthAvatar implementation. We do this by calling newRoom in main.go and making
the following change:

r := newRoom (UseGravatar)

Build and run the chat program once again and head to the browser. Remember, since we
have changed the information stored in the cookie, we must sign out and sign back in again
in order to see our changes take effect.

Assuming you have a different image for your Gravatar account, you will notice that the
system is now pulling the image from Gravatar instead of the auth provider. Using your
browser's inspector or debug tool will show you that the src attribute of the img tag has
indeed changed:

[80]

Three Ways to Implement Profile Pictures

800 / [Chat x VR

€ - C | localhost:8080/chat

m Oh | don't have a Gravatar account yet...

Send a message as Mat Ryer or Sign out

Q, | Elements | Network Sources Timeline Profiles Resources Audits Console

v <html=
F <head=_</head=>
¥ <body=
v=div class="container"=
iibefore
v<div class="panel panel-default"=
vediv class="panel-hody"=>
tihefore
¥ =yl id="messages"=
¥<lix
=img title="Mat Ryer" src="//www.gravatar.com/avatar/b91b2fc2dd@2e7a4188263chbidccb2a"
style="width: S8px; vertical-align: middle;"=
=span=0h I don't have a Gravatar accounl yetl...</span=
=/ 1li=
<ful=

html body div.container div.panel.panel-default div.panel-body ul¥messages Iim

iF
b
[[]

= '* |E|‘x
Styles Computed »
¥ img
accesskey: ™"
align: ""
ale: "

» attributes: NamedN
baselURI: "http:/.
border: "
childElementCount..

b childNedes: Nodeli

» children: HTMLColl

p classlist: DOMToke
className: ""
clientHeight: 5@
clientleft: @
clientTon: 8

If you don't have a Gravatar account, you'll most likely see a default placeholder image in

place of your profile picture.

Uploading an avatar picture

In the third and final approach of uploading a picture, we will look at how to allow users to
upload an image from their local hard drive to use as their profile picture when chatting.
The file will then be served to the browsers via a URL. We will need a way to associate a file
with a particular user to ensure that we associate the right picture with the corresponding

messages.

[81]

Three Ways to Implement Profile Pictures

User identification

In order to uniquely identify our users, we are going to copy Gravatar's approach by
hashing their e-mail address and using the resulting string as an identifier. We will store the
user ID in the cookie along with the rest of the user-specific data. This will actually have the
added benefit of removing the inefficiency associated with continuous hashing from
GravatarAuth.

In auth.go, replace the code that creates the authCookieValue object with the following
code:

m := md5.New ()
io.WriteString(m, strings.ToLower (user.Email()))
userId := fmt.Sprintf ("%$x", m.Sum(nil))
authCookieValue := objx.New (map[string]interface{}{
"userid": userld,
"name" : user.Name (),
"avatar_url": user.AvatarURL(),
"email": user.Email (),

}) .MustBaseb64 ()

Here, we have hashed the e-mail address and stored the resulting value in the userid field
at the point at which the user logs in. From now on, we can use this value in our Gravatar
code instead of hashing the e-mail address for every message. To do this, first, we update
the test by removing the following line from avatar_test.go:

client.userData = map[string]interface{}{"email":
"MyEmailAddress@example.com"}

We then replace the preceding line with this line:

client.userData = map[string]interface{}{"userid":
"0bc83cb571cdlc50babf3e8a78ef1346"}

We no longer need to set the email field since it is not used; instead, we just have to set an
appropriate value to the new userid field. However, if you run go test in a terminal, you
will see this test fail.

To make the test pass, in avatar.go, update the GetAvatarURL method for the
GravatarAuth type:

func (GravatarAvatar) GetAvatarURL(c *client) (string, error) {
if userid, ok := c.userData["userid"]; ok {
if useridStr, ok := userid. (string); ok {

return "//www.gravatar.com/avatar/" + useridStr, nil

}

[82]

Three Ways to Implement Profile Pictures

}

return "", ErrNoAvatarURL

}

This won't change the behavior, but it allows us to make an unexpected optimization,
which is a great example of why you shouldn't optimize code too early the inefficiencies
that you spot early on may not last long enough to warrant the effort required to fix them.

An upload form

If our users are to upload a file as their avatar, they need a way to browse their local hard
drive and submit the file to the server. We facilitate this by adding a new template-driven
page. In the chat /templates folder, create a file called upload.html:

<html>
<head>
<title>Upload</title>
<link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.6.6/css/bootstrap.min.css">
</head>
<body>
<div class="container">
<div class="page-header">
<h1>Upload picture</h1>
</div>
<form role="form" action="/uploader" enctype="multipart/form-data"
method="post">
<input type="hidden" name="userid" value="{{.UserData.userid}}" />
<div class="form-group">
<label for="avatarFile">Select file</label>
<input type="file" name="avatarFile" />
</div>
<input type="submit" value="Upload" class="btn" />
</form>
</div>
</body>
</html>

[83]

Three Ways to Implement Profile Pictures

We used Bootstrap again to make our page look nice and also to make it fit in with the other
pages. However, the key point to note here is the HTML form that will provide the user
interface required to upload files. The action points to /uploader, the handler for which
we have yet to implement, and the enctype attribute must be multipart/form-data so
that the browser can transmit binary data over HTTP. Then, there is an input element of
the type f£ile, which will contain a reference to the file we want to upload. Also, note that
we have included the userid value from the Userbata map as a hidden input this will tell
us which user is uploading a file. It is important that the name attributes be correct, as this is
how we will refer to the data when we implement our handler on the server.

Let's now map the new template to the /upload path inmain.go:

http.Handle ("/upload", &templateHandler{filename: "upload.html"})

Handling the upload

When the user clicks on Upload after selecting a file, the browser will send the data for the
file as well as the user ID to /uploader, but right now, that data doesn't actually go
anywhere. We will implement a new HandlerFunc interface that is capable of receiving the
file, reading the bytes that are streamed through the connection, and saving it as a new file
on the server. In the chat folder, let's create a new folder called avatars this is where we
will save the avatar image files.

Next, create a new file called upload. go and insert the following code make sure that you
add the appropriate package name and imports (which are ioutils, net/http, io, and
path):

func uploaderHandler (w http.ResponseWriter, reqg *http.Request) {

userId := reqg.FormValue ("userid")
file, header, err := req.FormFile("avatarFile")
if err !'= nil {
http.Error (w, err.Error(), http.StatusInternalServerError)
return
t
data, err := ioutil.ReadAll(file)
if err !'= nil {
http.Error (w, err.Error(), http.StatusInternalServerError)
return
t
filename := path.Join("avatars", userId+path.Ext (header.Filename))
err = ioutil.WriteFile(filename, data, 0777)
if err !'= nil {
http.Error (w, err.Error(), http.StatusInternalServerError)

[84]

Three Ways to Implement Profile Pictures

return

}

io.WriteString(w, "Successful")

}

Here, first uploaderHandler uses the Formvalue method in http.Request to get the
user ID that we placed in the hidden input in our HTML form. Then, it gets an io.Reader
type capable of reading the uploaded bytes by calling req.FormFile, which returns three
arguments. The first argument represents the file itself with the multipart.File interface
type, which is also io.Reader. The second is amultipart.FileHeader object that
contains the metadata about the file, such as the filename. And finally, the third argument is
an error that we hope will have a nil value.

What do we mean when we say that the multipart.File interface type is also
io.Reader? Well, a quick glance at the documentation at http://golang.org/pkg/mime/m
ultipart/#File makes it clear that the type is actually just a wrapper interface for a few
other more general interfaces. This means thatamultipart.File type can be passed to
methods that require io.Reader, since any object that implements multipart.File must,
therefore, implement io.Reader.

Embedding standard library interfaces, such as the wrapper, to describe
new concepts is a great way to make sure your code works in as many
contexts as possible. Similarly, you should try to write code that uses the
simplest interface type you can find, ideally from the standard library. For
example, if you wrote a method that needed you to read the contents of a
file, you could ask the user to provide an argument of the type
multipart.File. However, if you ask for io.Reader instead, your code
will become significantly more flexible because any type that has the
appropriate Read method can be passed in, which includes user-defined
types as well.

The ioutil.ReadAll method will just keep reading from the specified io.Reader
interface until all of the bytes have been received, so this is where we actually receive the
stream of bytes from the client. We then use path.Join and path.Ext to build a new
filename using userid and copy the extension from the original filename that we can get
frommultipart.FileHeader.

We then use the ioutil.WriteFile method to create a new file in the avatars folder. We
use userid in the filename to associate the image with the correct user, much in the same
way as Gravatar does. The 0777 value specifies that the new file we create should have
complete file permissions, which is a good default setting if you're not sure what other
permissions should be set.

[85]

http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File

Three Ways to Implement Profile Pictures

If an error occurs at any stage, our code will write it out to the response along with a 500
status code (since we specify http.StatusInternalServerError), which will help us
debug it, or it will write Successful if everything went well.

In order to map this new handler function to /uploader, we need to head back to main.go
and add the following line to func main:

http.HandleFunc ("/uploader", uploaderHandler)

Now build and run the application and remember to log out and log back in again in order
to give our code a chance to upload the auth cookie:

go build -o chat
./chat -host=:8080

Open http://localhost:8080/upload and click on Choose File, and then select a file
from your hard drive and click on Upload. Navigate to your chat/avatars folder and you

will notice that the file was indeed uploaded and renamed to the value of your userid
field.

Serving the images

Now that we have a place to keep our user's avatar images on the server, we need a way to
make them accessible to the browser. We do this using the net /http package's built-in file
server. Inmain.go, add the following code:

http.Handle ("/avatars/",
http.StripPrefix ("/avatars/",
http.FileServer (http.Dir ("./avatars"))))

This is actually a single line of code that has been broken up to improve readability. The
http.Handle call should feel familiar, as we are specifying that we want to map the
/avatars/ path with the specified handler this is where things get interesting. Both
http.StripPrefix and http.FileServer return http.Handler, and they make use of
the wrapping pattern we learned about in the previous chapter. The st ripPrefix function
takes http.Handler in, modifies the path by removing the specified prefix, and passes the
functionality onto an inner handler. In our case, the inner handler is an http.FileServer
handler that will simply serve static files, provide index listings, and generate the 404 Not
Found error if it cannot find the file. The http.Dir function allows us to specify which
folder we want to expose publicly.

[86]

Three Ways to Implement Profile Pictures

If we didn't strip the /avatars/ prefix from the requests with
http.StripPrefix, the file server would look for another folder called
avatars inside the actual avatars folder, that is,
/avatars/avatars/filename instead of /avatars/filename.

Let's build the program and run it before opening http://localhost:8080/avatars/ in
a browser. You'll notice that the file server has generated a listing of the files inside our
avatars folder. Clicking on a file will either download the file, or in the case of an image,
simply display it. If you haven't done this already, go to
http://localhost:8080/upload and upload a picture, and then head back to the listing
page and click on it to see it in the browser.

The Avatar implementation for local files

The final step in making filesystem avatars work is writing an implementation of our
Avatar interface that generates URLs that point to the filesystem endpoint we created in
the previous section.

Let's add a test function to our avatar_test.go file:

func TestFileSystemAvatar (t *testing.T) {
filename := filepath.Join ("avatars", "abc.Jjpg")
ioutil.WriteFile (filename, [lbyte{}, 0777)
defer os.Remove (filename)
var fileSystemAvatar FileSystemAvatar

client := new(client)

client.userData = map[string]interface{}{"userid": "abc"}
url, err := fileSystemAvatar.GetAvatarURL(client)

if err != nil {

t.Error ("FileSystemAvatar.GetAvatarURL should not return an error")
}
if url != "/avatars/abc.Jjpg" {
t.Errorf ("FileSystemAvatar.GetAvatarURL wrongly returned %s", url)
}
}

This test is similar to, but slightly more involved than, the GravatarAvatar test because
we are also creating a test file in our avatars folder and deleting it afterwards.

Even if our test code panics, the deferred functions will still be called. So
regardless of what happens, our test code will clean up after itself.

[87]

Three Ways to Implement Profile Pictures

The rest of the test is simple: we set a userid field in client.userData and call
GetAvatarURL to ensure we get the right value back. Of course, running this test will fail,
so let's go and add the following code in order to make it pass in avatar.go:

type FileSystemAvatar struct{}
var UseFileSystemAvatar FileSystemAvatar

func (FileSystemAvatar) GetAvatarURL(c *client) (string, error) {
if userid, ok := c.userData["userid"]; ok {
if useridStr, ok := userid. (string); ok {
return "/avatars/" + useridStr + ".jpg", nil
}
}
return "", ErrNoAvatarURL

}

As you can see here, in order to generate the correct URL, we simply get the userid value
and build the final string by adding the appropriate segments together. You may have
noticed that we have hardcoded the file extension to . jpg, which means that the initial
version of our chat application will only support JPEGs.

Supporting only JPEGs might seem like a half-baked solution, but
following Agile methodologies, this is perfectly fine; after all, custom JPEG
profile pictures are better than no custom profile pictures at all.

Let's look at our new code in action by updating main.go to use our new Avatar
implementation:

r := newRoom(UseFileSystemAvatar)

Now build and run the application as usual and go to http://localhost:8080/upload
and use a web form to upload a JPEG image to use as your profile picture. To make sure it's
working correctly, choose a unique image that isn't your Gravatar picture or the image from
the auth service. Once you see the successful message after clicking on Upload, go to
http://localhost:8080/chat and post a message. You will notice that the application
has indeed used the profile picture that you uploaded.

To change your profile picture, go back to the /upload page and upload a different picture,
and then jump back to the /chat page and post more messages.

[88]

Three Ways to Implement Profile Pictures

® [upload x Mat
<« C' @ localhost:8080/upload x4
EO < =0 - # Pictures ¢] & Q
U I d Favorites = 1 ——_—__:—| ¢
pload ;... % T,
#3 Applications _— vy
Select file [Desktop Photos Library Wallpaper Photo Booth MatRyer2.jpg
Library
Choose file No file 8 Pictures
.
@ Dbownloads =
Upload
P 5 Google Drive n
>4
Dropb
pueaLOPCK iPhoto Library MatRyer.jpg
1 work
Format: All Files |~}
Options Cancel Open

Supporting different file types

To support different file types, we have to make our GetAvatarURL method for the
FileSystemAvatar type a little smarter.

Instead of just blindly building the string, we will use the very important ioutil.ReadDir
method to get a listing of the files. The listing also includes directories so we will use the
IsDir method to determine whether we should skip it or not.

We will then check whether each file matches the userid field (remember that we named
our files in this way) by a call to path.Match. If the filename matches the userid field,
then we have found the file for that user and we return the path. If anything goes wrong or
if we can't find the file, we return the ErrNoAvatarURL error as usual.

Update the appropriate method in avatar.go with the following code:

func (FileSystemAvatar) GetAvatarURL(c *client) (string, error) {
if userid, ok := c.userData["userid"]; ok {
if useridStr, ok := userid. (string); ok {
files, err := ioutil.ReadDir ("avatars")
if err !'= nil {
return "", ErrNoAvatarURL
}
for _, file := range files {

if file.IsDir() A

[89]

Three Ways to Implement Profile Pictures

continue

t

if match, _ := path.Match(useridStr+"*", file.Name());

match |
return "/avatars/" + file.Name (), nil

t

t
t
t

return "", ErrNoAvatarURL

}

Delete all the files in the avatar folder to prevent confusion and rebuild the program. This
time, upload an image of a different type and note that our application has no difficulty
handling it.

Refactoring and optimizing our code

When we look back at how our Avatar type is used, you will notice that every time
someone sends a message, the application makes a call to GetAvatarURL. In our latest
implementation, each time the method is called, we iterate over all the files in the avatars
folder. For a particularly chatty user, this could mean that we end up iterating over and
over again many times a minute. This is an obvious waste of resources and would, at some
point very soon, become a scaling problem.

Instead of getting the avatar URL for every message, we should get it only once when the
user first logs in and cache it in the auth cookie. Unfortunately, our Avatar interface type
requires that we pass in a client object to the GetAvatarURL method and we do not have
such an object at the point at which we are authenticating the user.

So did we make a mistake when we designed our Avatar interface? While
this is a natural conclusion to come to, in fact we did the right thing. We
designed the solution with the best information we had available at the
time and therefore had a working chat application much sooner than if
we'd tried to design for every possible future case. Software evolves and
almost always changes during the development process and will
definitely change throughout the lifetime of the code.

[90]

Three Ways to Implement Profile Pictures

Replacing concrete types with interfaces

We have concluded that our GetAvatarURL method depends on a type that is not available
to us at the point we need it, so what would be a good alternative? We could pass each
required field as a separate argument, but this would make our interface brittle, since as
soon as an Avatar implementation needs a new piece of information, we'd have to change
the method signature. Instead, we will create a new type that will encapsulate the
information our Avatar implementations need while conceptually remaining decoupled
from our specific case.

In auth.go, add the following code to the top of the page (underneath the package
keyword, of course):

import gomniauthcommon "github.com/stretchr/gomniauth/common"
type ChatUser interface {

UniquelID () string

AvatarURL () string

}

type chatUser struct {
gomniauthcommon.User
uniqueID string

}
func (u chatUser) UniqueID() string {
return u.uniquelD

}

Here, the import statement imported the common package from Gomniauth and, at the
same time, gave it a specific name through which it will be accessed: gomniauthcommon.
This isn't entirely necessary since we have no package name conflicts. However, it makes
the code easier to understand.

In the preceding code snippet, we also defined a new interface type called ChatUser, which
exposes the information needed in order for our Avatar implementations to generate the
correct URLs. Then, we defined an actual implementation called chatUser (notice the
lowercase starting letter) that implements the interface. It also makes use of a very
interesting feature in Go: type embedding. We actually embedded the
gomniauth/common.User interface type, which means that our st ruct interface
implements the interface automatically.

[91]

Three Ways to Implement Profile Pictures

You may have noticed that we only actually implemented one of the two required methods
to satisfy our ChatUser interface. We got away with this because the Gomniauth User
interface happens to define the same AvatarURL method. In practice, when we instantiate
our chatUser struct provided we set an appropriate value for the implied Gomniauth User
field our object implements both Gomniauth's User interface and our own ChatUser
interface at the same time.

Changing interfaces in a test-driven way

Before we can use our new type, we must update the Avatar interface and appropriate
implementations to make use of it. As we will follow TDD practices, we are going to first
make these changes in our test file, see the compiler errors when we try to build our code,
and see failing tests once we fix those errors before finally making the tests pass.

Open avatar_test.go and replace TestAuthAvatar with the following code:

func TestAuthAvatar (t *testing.T) {
var authAvatar AuthAvatar
testUser := &gomniauthtest.TestUser{}
testUser.On ("AvatarURL") .Return ("", ErrNoAvatarURL)
testChatUser := &chatUser{User: testUser}
url, err := authAvatar.GetAvatarURL (testChatUser)
if err != ErrNoAvatarURL {
t.Error ("AuthAvatar.GetAvatarURL should return ErrNoAvatarURL
when no value present")
t
testUrl := "http://url-to-gravatar/"
testUser = &gomniauthtest.TestUser{}
testChatUser.User = testUser
testUser.On ("AvatarURL") .Return (testUrl, nil)
url, err = authAvatar.GetAvatarURL (testChatUser)
if err !'= nil {
t.Error ("AuthAvatar.GetAvatarURL should return no error
when value present")
t
if url != testUrl {
t.Error ("AuthAvatar.GetAvatarURL should return correct URL")

You will also need to import the gomniauth/test package as
gomniauthtest, like we did in the last section.

[92]

Three Ways to Implement Profile Pictures

Using our new interface before we have defined it is a good way to check the sanity of our
thinking, which is another advantage of practicing TDD. In this new test, we create
TestUser provided by Gomniauth and embed it into a chatUser type. We then pass the
new chatUser type into our GetAvatarURL calls and make the same assertions about
output as we always have done.

Gomniauth's TestUser type is interesting as it makes use of the Testify
package's mocking capabilities. Refer to https://github.com/stretchr/
testify for more information.

The on and Return methods allow us to tell TestUser what to do when
specific methods are called. In the first case, we tell the AvatarURL
method to return the error, and in the second case, we ask it to return the
testUrl value, which simulates the two possible outcomes we are
covering in this test.

Updating the other two tests is much simpler because they rely only on the UniqueID
method, the value of which we can control directly.

Replace the other two tests in avatar_test . go with the following code:

func TestGravatarAvatar (t *testing.T) |
var gravatarAvatar GravatarAvatar

user := &chatUser{uniquelID: "abc"}
url, err := gravatarAvatar.GetAvatarURL (user)
if err != nil {

t.Error ("GravatarAvatar.GetAvatarURL should not return an error")
}
if url != "//www.gravatar.com/avatar/abc" {

t.Errorf ("GravatarAvatar.GetAvatarURL wrongly returned %s", url)

}
func TestFileSystemAvatar (t *testing.T) {
// make a test avatar file
filename := path.Join ("avatars", "abc.jpg")
ioutil.WriteFile (filename, []byte{}, 0777)
defer func() { os.Remove (filename) } ()
var fileSystemAvatar FileSystemAvatar
user := &chatUser{uniqueID: "abc"}
url, err := fileSystemAvatar.GetAvatarURL (user)
if err != nil {
t.Error ("FileSystemAvatar.GetAvatarURL should not return an error")
}
if url != "/avatars/abc.jpg" {
t.Errorf ("FileSystemAvatar.GetAvatarURL wrongly returned %s", url)

[93]

https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://github.com/stretchr/testify

Three Ways to Implement Profile Pictures

}

Of course, this test code won't even compile because we are yet to update our Avatar
interface. In avatar.go, update the GetAvatarURL signature in the Avatar interface type
to take a ChatUser type rather than a client type:

GetAvatarURL (ChatUser) (string, error)

Note that we are using the ChatUser interface (with the starting letter in
uppercase) rather than our internal chatUser implementation struct after
all, we want to be flexible about the types our GetAvatarURL methods
accept.

Trying to build this will reveal that we now have broken implementations because all the
GetAvatarURL methods are still asking for a client object.

Fixing the existing implementations

Changing an interface like the one we have is a good way to automatically find the parts of
our code that have been affected because they will cause compiler errors. Of course, if we
were writing a package that other people would use, we would have to be far stricter about
changing the interfaces like this, but we haven't released our v1 yet, so it's fine.

We are now going to update the three implementation signatures to satisfy the new
interface and change the method bodies to make use of the new type. Replace the
implementation for FileSystemAvatar with the following:

func (FileSystemAvatar) GetAvatarURL (u ChatUser) (string, error) {
if files, err := ioutil.ReadDir ("avatars"); err == nil {
for _, file := range files {
if file.IsDir() A
continue
}
if match, _ := path.Match(u.UniqueID()+"*", file.Name());
match {

return "/avatars/" + file.Name (), nil
}
}
}

return "", ErrNoAvatarURL

[94]

Three Ways to Implement Profile Pictures

The key change here is that we no longer access the userData field on the client, and just
call UniqueID directly on the ChatUser interface instead.

Next, we update the AuthAvatar implementation with the following code:

func (AuthAvatar) GetAvatarURL (u ChatUser) (string, error) {

url := u.AvatarURL()
if len(url) == 0 {
return "", ErrNoAvatarURL

}

return url, nil

}

Our new design proves to be much simpler, it's always a good thing if we can reduce the
amount of code required. The preceding code makes a call to get the AvatarURL value, and
provided it isn't empty, we return it; otherwise, we return the ErrNoAvatarURL error.

Note how the expected flow of the code is indented to one level, while
error cases are nested inside i f blocks. While you can't stick to this
practice 100% of the time, it's a worthwhile endeavor. Being able to
quickly scan the code (when reading it) to see the normal flow of
execution down a single column allows you to understand the code much
quicker. Compare this to code that has lots of 1 f. . .else nested blocks,
which takes a lot more unpicking to understand.

Finally, update the GravatarAvatar implementation:

func (GravatarAvatar) GetAvatarURL(u ChatUser) (string, error) {
return "//www.gravatar.com/avatar/" + u.UniqueID(), nil

}

Global variables versus fields

So far, we have assigned the Avatar implementation to the room type, which enables us to
use different avatars for different rooms. However, this has exposed an issue: when our
users sign in, there is no concept of which room they are headed to so we cannot know
which Avatar implementation to use. Because our application only supports a single room,
we are going to look at another approach to select implementations: the use of global
variables.

[95]

Three Ways to Implement Profile Pictures

A global variable is simply a variable that is defined outside any type definition and is
accessible from every part of the package (and from outside the package if it's exported).
For a simple configuration, such as which type of Avatar implementation to use, global
variables are an easy and simple solution. Underneath the import statements in main.go,
add the following line:

// set the active Avatar implementation
var avatars Avatar = UseFileSystemAvatar

This defines avatars as a global variable that we can use when we need to get the avatar
URL for a particular user.

Implementing our new design

We need to change the code that calls GetAvatarURL for every message to just access the
value that we put into the userData cache (via the auth cookie). Change the line where
msg.AvatarURL is assigned, as follows:

if avatarUrl, ok := c.userData["avatar_url"]; ok {
msg.AvatarURL = avatarUrl. (string)
t

Find the code inside 1oginHandler in auth.go where we call provider.GetUser and
replace it, down to where we set the authCookieValue object, with the following code:

user, err := provider.GetUser (creds)
if err != nil {
log.Fatalln("Error when trying to get user from", provider, "-", err)
}
chatUser := &chatUser{User: user}
m := mdb5.New ()
io.WriteString(m, strings.ToLower (user.Email()))
chatUser.uniqueID = fmt.Sprintf ("$x", m.Sum(nil))
avatarURL, err := avatars.GetAvatarURL (chatUser)
if err != nil {
log.Fatalln("Error when trying to GetAvatarURL", "-", err)

}

Here, we created a new chatUser variable while setting the User field (which represents
the embedded interface) to the User value returned from Gomniauth. We then saved the
userid MDD5 hash to the unique1D field.

[96]

Three Ways to Implement Profile Pictures

The call to avatars.GetAvatarURL is where all of our hard work has paid off, as we now
get the avatar URL for the user far earlier in the process. Update the authCookieValue line
in auth.go to cache the avatar URL in the cookie and remove the e-mail address since it is
no longer required:

authCookieValue := objx.New(map[string]interface{}{
"userid": chatUser.uniquelD,
"name" : user.Name (),
"avatar_url": avatarURL,

}) .MustBase64 ()

However expensive the work the Avatar implementation needs to do, such as iterating
over files on the filesystem, it is mitigated by the fact that the implementation only does so
when the user first logs in and not every time they send a message.

Tidying up and testing

Finally, we get to snip away at some of the fat that has accumulated during our refactoring
process.

Since we no longer store the Avatar implementation in room, let's remove the field and all
references to it from the type. In room. go, delete the avatar Avatar definition from the
room struct and update the newRoom method:

func newRoom () *room {
return &roomf{
forward: make (chan *message),
join: make (chan *client),
leave: make (chan *client),
clients: make (map[*client]bool),
tracer: trace.Off(),

Remember to use the compiler as your to-do list where possible, and
follow the errors to find where you have impacted other code.

[97]

Three Ways to Implement Profile Pictures

In main.go, remove the parameter passed into the newRoom function call since we are using
our global variable instead of this one.

After this exercise, the end user experience remains unchanged. Usually when refactoring
the code, it is the internals that are modified while the public-facing interface remains stable
and unchanged. As you go, remember to re-run the unit tests to make sure you don't break
anything as you evolve the code.

It's usually a good idea to run tools such as golint and go vet against
your code as well in order to make sure it follows good practices and
doesn't contain any Go faux pas, such as missing comments or badly
named functions. There are a few deliberately left in for you to fix
yourself.

Combining all three implementations

To close this chapter with a bang, we will implement a mechanism in which each Avatar
implementation takes a turn in trying to get a URL for a user. If the first implementation
returns the ErrNoAvatarURL error, we will try the next and so on until we find a useable
value.

In avatar.go, underneath the Avatar type, add the following type definition:
type TryAvatars []Avatar

The TryAvatars type is simply a slice of Avatar objects that we are free to add methods
to. Let's add the following GetAvatarURL method:

func (a TryAvatars) GetAvatarURL(u ChatUser) (string, error) {
for _, avatar := range a {
if url, err := avatar.GetAvatarURL(u); err == nil {

return url, nil
}
}

return "", ErrNoAvatarURL

[98]

Three Ways to Implement Profile Pictures

This means that TryAvatars is now a valid Avatar implementation and can be used in
place of any specific implementation. In the preceding method, we iterated over the slice of
Avatar objects in an order, calling GetAvatarURL for each one. If no error is returned, we
return the URL; otherwise, we carry on looking. Finally, if we are unable to find a value, we
just return ErrNoAvatarURL as per the interface design.

Update the avatars global variable in main. go to use our new implementation:

var avatars Avatar = TryAvatars{
UseFileSystemAvatar,
UseAuthAvatar,
UseGravatar}

Here, we created a new instance of our TryAvatars slice type while putting the other
Avatar implementations inside it. The order matters since it iterates over the objects in the
order in which they appear in the slice. So, first our code will check whether the user has
uploaded a picture; if they haven't, the code will check whether the auth service has a
picture for us to use. If the approaches fail, a Gravatar URL will be generated, which in the
worst case (for example, if the user hasn't added a Gravatar picture) will render a default
placeholder image.

To see our new functionality in action, perform the following steps:
1. Build and rerun the application:

go build -o chat
./chat -host=:8080

Log out by visiting http://localhost:8080/logout.

Delete all the pictures from the avatars folder.

Log back in by navigating to http://localhost:8080/chat.

Send some messages and take note of your profile picture.

Visit http://localhost:8080/upload and upload a new profile picture.
Log out again and log back in as you did earlier.

® NG »N

Send some more messages and note that your profile picture has been updated.

[99]

Three Ways to Implement Profile Pictures

Summary

In this chapter, we added three different implementations of profile pictures to our chat
application. First, we asked the auth service to provide a URL for us to use. We did this
using Gomniauth's abstraction of the user resource data, which we then included as part of
the user interface every time a user would send a message. Using Go's zero (or default)
initialization, we were able to refer to different implementations of our Avatar interface
without actually creating any instances.

We stored data in a cookie for when the user would log in. Given the fact that cookies
persist between builds of our code, we added a handy logout feature to help us validate our
changes, which we also exposed to our users so that they could log out too. Other small
changes to the code and the inclusion of Bootstrap on our chat page dramatically improved
the look and feel of our application.

We used MD5 hashing in Go to implement the https://en.gravatar.com/ API by hashing
the e-mail address that the auth service provided. If the e-mail address is not known to
Gravatar, they will deliver a nice default placeholder image for us, which means our user
interface will never be broken due to missing images.

We then built and completed an upload form and associated the server functionality that
saved uploaded pictures in the avatars folder. We saw how to expose the saved uploaded
pictures to users via the standard library's http.FileServer handler. As this introduced
inefficiencies in our design by causing too much filesystem access, we refactored our
solution with the help of our unit tests. By moving the GetAvatarURL call to the point at
which users log in rather than every time a message is sent, we made our code significantly
more scalable.

Our special ErrNoAvatarURL error type was used as part of our interface design in order to
allow us to inform the calling code when it was not possible to obtain an appropriate URL
this became particularly useful when we created our Avatars slice type. By implementing
the Avatar interface on a slice of Avatar types, we were able to create a new
implementation that took turns trying to get a valid URL from each of the different options
available, starting with the filesystem, then the auth service, and finally Gravatar. We
achieved this with zero impact on how the user would interact with the interface. If an
implementation returned ErrNoAvatarURL, we tried the next one.

Our chat application is ready to go live, so we can invite our friends and have a real
conversation. But first, we need to choose a domain name to host it at, something we will
look at in the next chapter.

[100]

https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/

Command-Line Tools to Find
Domain Names

The chat application we've built so far is ready to take the world by storm but not before we
give it a home on the Internet. Before we invite our friends to join the conversation, we need
to pick a valid, catchy, and available domain name, which we can point to the server
running our Go code. Instead of sitting in front of our favorite domain name provider for
hours on end trying different names, we are going to develop a few command-line tools
that will help us find the right one. As we do so, we will see how the Go standard library
allows us to interface with the terminal and other executing applications; we'll also explore
some patterns and practices to build command-line programs.

In this chapter, you will learn:

¢ How to build complete command-line applications with as little as a single code
file

e How to ensure that the tools we build can be composed with other tools using
standard streams

e How to interact with a simple third-party JSON RESTful API

¢ How to utilize the standard in and out pipes in Go code

e How to read from a streaming source, one line at a time

e How to build a WHOIS client to look up domain information

e How to store and use sensitive or deployment-specific information in
environment variables

Command-Line Tools to Find Domain Names

Pipe design for command-line tools

We are going to build a series of command-line tools that use the standard streams (stdin
and stdout) to communicate with the user and with other tools. Each tool will take an
input line by line via the standard input pipe, process it in some way, and then print the
output line by line to the standard out pipe for the next tool or user.

By default, the standard input is connected to the user's keyboard, and the standard output
is printed to the terminal from where the command was run; however, both can be
redirected using redirection metacharacters. It's possible to throw the output away by
redirecting it to NUL on Windows or /dev/null on Unix machines, or redirecting it to a file
that will cause the output to be saved to a disk. Alternatively, you can pipe (using the |

pipe character) the output of one program to the input of another; it is this feature that we
will make use of in order to connect our various tools together. For example, you could pipe
the output from one program to the input of another program in a terminal using this code:

echo -n "Hello" | md5

The output of the echo command will be the string Hello (without the quotes), which is
then piped to the md5 command; this command will in turn calculate the MD5 hash of
Hello:

8b1a9953c4611296a827ab£8c47804d7

Our tools will work with lines of strings where each line (separated by a linefeed character)
represents one string. When run without any pipe redirection, we will be able to interact
directly with the programs using the default in and out, which will be useful when testing
and debugging our code.

Five simple programs

In this chapter, we will build five small programs that we will combine at the end. The key
features of the programs are as follows:

e Sprinkle: This program will add some web-friendly sprinkle words to increase
the chances of finding the available domain names.

¢ Domainify: This program will ensure words are acceptable for a domain name
by removing unacceptable characters. Once this is done, it will replace spaces
with hyphens and add an appropriate top-level domain (such as . com and .net)
to the end.

[102]

Command-Line Tools to Find Domain Names

¢ Coolify: This program will change a boring old normal word to Web 2.0 by
fiddling around with vowels.

¢ Synonyms: This pro will use a third-party API to find synonymes.

¢ Available: This gram will use a third-party API to find synonyms. Available: This
program will check to see whether the domain is available or not using an
appropriate WHOIS server.

Five programs might seem like a lot for one chapter, but don't forget how small entire
programs can be in Go.

Sprinkle

Our first program augments the incoming words with some sugar terms in order to
improve the odds of finding names that are available. Many companies use this approach to
keep the core messaging consistent while being able to afford the . com domain. For
example, if we pass in the word chat, it might pass out chatapp; alternatively, if we pass
in talk, we may get back talk time.

Go's math/rand package allows us to break away from the predictability of computers. It
gives our program the appearance of intelligence by introducing elements of chance into its
decision making.

To make our Sprinkle program work, we will:

¢ Define an array of transformations, using a special constant to indicate where the
original word will appear

e Use the bufio package to scan the input from stdin and fmt .Print1ln in order
to write the output to stdout

e Use the math/rand package to randomly select a transformation to apply

All our programs will reside in the $GOPATH/src directory. For example,
if your GOPATH is ~/Work/projects/go, you would create your
program folders in the ~/Work/projects/go/src folder.

In the $GOPATH/src directory, create a new folder called sprinkle and add amain.go file
containing the following code:

package main
import (
"bufio"

[103]

Command-Line Tools to Find Domain Names

"fmt"
"math/rand"
llosll
"strings"
"time"
)
const otherWord = "*"
var transforms = []string{
otherWord,
otherWord + "app",
otherWord + "site",
otherWord + "time",
"get" + otherWord,
"go" + otherWord,
"lets " + otherWord,
otherWord + "hg",
t
func main () |
rand.Seed (time.Now () .UTC () .UnixNano())
s := bufio.NewScanner (os.Stdin)
for s.Scan () {
t := transforms[rand.Intn (len(transforms))]
fmt.Println(strings.Replace(t, otherWord, s.Text(), -1))
t
t

From now on, it is assumed that you will sort out the appropriate import statements
yourself. If you need assistance, refer to the tips provided in appendix, Good Practices for a
Stable Go Environment.

The preceding code represents our complete Sprinkle program. It defines three things: a
constant, a variable, and the obligatory main function, which serves as the entry point to
Sprinkle. The otherWord constant string is a helpful token that allows us to specify where
the original word should occur in each of our possible transformations. It lets us write code,
such as otherWord+"extra", which makes it clear that in this particular case, we want to
add the word “extra” to the end of the original word.

The possible transformations are stored in the t ransforms variable that we declare as a
slice of strings. In the preceding code, we defined a few different transformations, such as
adding app to the end of a word or lets before it. Feel free to add some more; the more
creative, the better.

[104]

Command-Line Tools to Find Domain Names

In the main function, the first thing we do is use the current time as a random seed.
Computers can't actually generate random numbers, but changing the seed number of
random algorithms gives the illusion that it can. We use the current time in nanoseconds
because it's different each time the program is run (provided the system clock isn't being
reset before each run). If we skip this step, the numbers generated by the math/rand
package would be deterministic; they'd be the same every time we run the program.

We then create a bufio.Scanner object (by calling bufio.NewScanner) and tell it to read
the input from os . stdin, which represents the standard input stream. This will be a
common pattern in our five programs since we are always going to read from the standard
in and write to the standard out.

The bufio.Scanner object actually takes io.Reader as its input source,
so there is a wide range of types that we could use here. If you were
writing unit tests for this code, you could specify your own io.Reader for
the scanner to read from, removing the need for you to worry about
simulating the standard input stream.

As the default case, the scanner allows us to read blocks of bytes separated by defined
delimiters, such as carriage return and linefeed characters. We can specify our own split
function for the scanner or use one of the options built in the standard library. For example,
there is bufio.ScanWords, which scans individual words by breaking on whitespace
rather than linefeeds. Since our design specifies that each line must contain a word (or a
short phrase), the default line-by-line setting is ideal.

A call to the Scan method tells the scanner to read the next block of bytes (the next line)
from the input, and then it returns a bool value indicating whether it found anything or
not. This is how we are able to use it as the condition for the for loop. While there is
content to work on, Scan returns t rue and the body of the for loop is executed; when
Scan reaches the end of the input, it returns false, and the loop is broken. The bytes that
are selected are stored in the Bytes method of the scanner, and the handy Text method
that we use converts the []byte slice into a string for us.

Inside the for loop (so for each line of input), we use rand. Intn to select a random item
from the transforms slice and use strings.Replace to insert the original word where
the otherWord string appears. Finally, we use fmt . Print1n to print the output to the
default standard output stream.

[105]

Command-Line Tools to Find Domain Names

The math/rand package provides insecure random numbers. If you want
to write code that utilizes random numbers for security purposes, you
must use the crypto/rand package instead.

Let's build our program and play with it:

go build -o sprinkle
./sprinkle

Once the program starts running, it will use the default behavior to read the user input
from the terminal. It uses the default behavior because we haven't piped in any content or
specified a source for it to read from. Type chat and hit return. The scanner in our code
notices the linefeed character at the end of the word and runs the code that transforms it,
outputting the result. For example, if you type chat a few times, you would see the
following output:

chat

go chat
chat

lets chat
chat

chat app

Sprinkle never exits (meaning the Scan method never returns false to break the loop)
because the terminal is still running; in normal execution, the in pipe will be closed by
whatever program is generating the input. To stop the program, hit Ctrl + C.

Before we move on, let's try to run Sprinkle, specifying a different input source. We are
going to use the echo command to generate some content and pipe it to our Sprinkle
program using the pipe character:

echo "chat" | ./sprinkle

The program will randomly transform the word, print it out, and exit since the echo
command generates only one line of input before terminating and closing the pipe.

We have successfully completed our first program, which has a very simple but useful
function, as we will see.

As an extra assignment, rather than hardcoding the transformations
array as we have done, see whether you can externalize it via flags or store
them in a text file or database.

[106]

Command-Line Tools to Find Domain Names

Domainify

Some of the words that output from Sprinkle contain spaces and perhaps other characters
that are not allowed in domains. So we are going to write a program called Domainify; it
converts a line of text into an acceptable domain segment and adds an appropriate Top-
level Domain (TLD) to the end. Alongside the sprinkle folder, create a new one called
domainify and add the main. go file with the following code:

package main

var tlds = []string{"com", "net"}
const allowedChars = "abcdefghijklmnopgrstuvwxyz0123456789_-"
func main () {
rand.Seed (time.Now () .UTC () .UnixNano ())
s := bufio.NewScanner (os.Stdin)
for s.Scan () {
text := strings.ToLower (s.Text ())
var newText []rune
for _, r := range text {

if unicode.IsSpace(r) |
r = "1

}

if !strings.ContainsRune (allowedChars, r) {

continue
}
newText = append(newText, r)
}
fmt.Println(string(newText) + "." +

tlds[rand.Intn(len(tlds))])

}

You will notice a few similarities between Domainify and the Sprinkle program: we set the
random seed using rand. Seed, generate a NewScanner method wrapping the os.sStdin
reader, and scan each line until there is no more input.

We then convert the text to lowercase and build up a new slice of rune types called
newText. The rune types consist of only characters that appear in the allowedChars
string, which strings.ContainsRune lets us know. If rune is a space that we determine
by calling unicode. IsSpace, we replace it with a hyphen, which is an acceptable practice
in domain names.

[107]

Command-Line Tools to Find Domain Names

Ranging over a string returns the index of each character and a rune type,
which is a numerical value (specifically, int 32) representing the character
itself. For more information about runes, characters, and strings, refer to h
ttp://blog.golang.org/strings.

Finally, we convert newText from a [] rune slice into a string and add either . comor .net
at the end, before printing it out using fmt .Println.

Let's build and run Domainify:

go build -o domainify
./domainify

Type in some of these options to see how domainify reacts:

e Monkey
¢ Hello Domainify
e “What's up?”

¢ One (two) three!
You can see that, for example, One (two) three! might yield one-two-three.com.

We are now going to compose Sprinkle and Domainify to see them work together. In your
terminal, navigate to the parent folder (probably $GOPATH/src) of sprinkle and
domainify and run the following command:

./sprinkle/sprinkle | ./domainify/domainify

Here, we ran the sprinkle program and piped the output to the domainify program. By
default, sprinkle uses the terminal as the input and domanify outputs to the terminal. Try
typing in chat a few times again and notice the output is similar to what Sprinkle was
outputting previously, except now they are acceptable for domain names. It is this piping
between programs that allows us to compose command-line tools together.

Only supporting . comand . net top-level domains is fairly limiting. As an
additional assignment, see whether you can accept a list of TLDs via a
command-line flag.

[108]

http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings
http://blog.golang.org/strings

Command-Line Tools to Find Domain Names

Coolify

Often, domain names for common words, such as chat, are already taken, and a common
solution is to play around with the vowels in the words. For example, we might remove a
and make it cht (which is actually less likely to be available) or add a to produce chaat.
While this clearly has no actual effect on coolness, it has become a popular, albeit slightly
dated, way to secure domain names that still sound like the original word.

Our third program, Coolify, will allow us to play with the vowels of words that come in via
the input and write modified versions to the output.

Create a new folder called coolify alongside sprinkle and domainify, and create the
main.go code file with the following code:

package main

const (
duplicateVowel bool = true
removeVowel bool = false
)
func randBool () bool {
return rand.Intn(2) == 0
)3
func main () {
rand.Seed (time.Now () .UTC () .UnixNano())
s := bufio.NewScanner (os.Stdin)
for s.Scan () {
word := []byte(s.Text())
if randBool () {
var vI int = -1
for i, char := range word {
switch char {
case 'a', 'e', 'i', 'o', 'u', 'A', 'e', '1', '0', 'U':
if randBool () {
vl = i
)3
)3
)3
if vI >= 0 {
switch randBool () {
case duplicateVowel:
word = append(word[:vI+1], word[vI:]...)
case removeVowel:
word = append(word[:vI], word[vI+l:]...)

[109]

Command-Line Tools to Find Domain Names

fmt.Println(string(word))
t
t

While the preceding Coolify code looks very similar to the code of Sprinkle and Domainify,
it is slightly more complicated. At the very top of the code, we declare two constants,
duplicateVowel and removeVowel, that help make the Coolify code more readable. The
switch statement decides whether we duplicate or remove a vowel. Also, using these
constants, we are able to express our intent very clearly, rather than use just t rue or false.

We then define the randBool helper function that just randomly returns either true or
false. This is done by asking the rand package to generate a random number and
confirming whether that number comes out as zero. It will be either 0 or 1, so there's a fifty-
fifty chance of it being t rue.

The main function of Coolify starts the same way as that of Sprinkle and Domainify setting
the rand. Seed method and creating a scanner of the standard input stream before
executing the loop body for each line of input. We call randBool first to decide whether we
are even going to mutate a word or not, so Coolify will only affect half the words passed
through it.

We then iterate over each rune in the string and look for a vowel. If our randBool method
returns t rue, we keep the index of the vowel character in the vI variable. If not, we keep
looking through the string for another vowel, which allows us to randomly select a vowel
from the words rather than always modify the same one.

Once we have selected a vowel, we use randBool again to randomly decide what action to
take.

This is where the helpful constants come in; consider the following
alternative switch statement:
switch randBool () {
case true:
word = append (word[:vI+1], word[vI:]...)
case false:
word = append(word[:vI], word[vI+1l:]...) }
In the preceding code snippet, it's difficult to tell what is going on because
true and false don't express any context. On the other hand, using
duplicateVowel and removeVowel tells anyone reading the code what
we mean by the result of randBool.

[110]

Command-Line Tools to Find Domain Names

The three dots following the slices cause each item to pass as a separate argument to the
append function. This is an idiomatic way of appending one slice to another. Inside the
switch case, we do some slice manipulation to either duplicate the vowel or remove it
altogether. We are slicing our []byte slice again and using the append function to build a
new one made up of sections of the original word. The following diagram shows which
sections of the string we access in our code:

vI=3
0 1 2 3 4 5 6 L - :
b1 4 e [p | i tys
word[:vl+1]
word[vl:]
word[:vl] word[vi+1:]

If we take the value blueprints as an example word and assume that our code has
selected the first e character as the vowel (so that vI is 3), the following table will illustrate
what each new slice of the word will represent:

Code

Value

Description

word[:vI+1]

blue

This describes the slice from the beginning of the word until the
selected vowel. The +1 is required because the value following the
colon does not include the specified index; rather, it slices up to that
value.

word([vI:]

eprints

This describes the slice starting from and including the selected vowel
to the end of the slice.

word[:vI] blu This describes the slice from the beginning of the word up to, but not
including, the selected vowel.
word[vI+1:] |prints |This describes the slice from the item following the selected vowel to

the end of the slice.

After we modify the word, we print it out using fmt .Println.

[111]

Command-Line Tools to Find Domain Names

Let's build Coolify and play with it to see what it can do:

go build -o coolify
./coolify

When Coolify is running, try typing blueprints to see what sort of modifications it comes
up with:

blueprnts
bleprints
bluepriints
blueprnts
blueprints
bluprints

Let's see how Coolify plays with Sprinkle and Domainify by adding their names to our pipe
chain. In the terminal, navigate back (using the cd command) to the parent folder and run
the following commands:

./coolify/coolify | ./sprinkle/sprinkle | ./domainify/domainify

We will first spice up a word with extra pieces and make it cooler by tweaking the vowels
before finally transforming it into a valid domain name. Play around by typing in a few
words and seeing what suggestions our code makes.

Coolify only works on vowels; as an additional exercise, see whether you
can make the code operate on every character it encounters just to see
what happens.

Synonyms

So far, our programs have only modified words, but to really bring our solution to life, we
need to be able to integrate a third-party API that provides word synonyms. This allows us
to suggest different domain names while retaining the original meaning. Unlike Sprinkle
and Domainify, Synonyms will write out more than one response for each word given to it.
Our architecture of piping programs together means this won't be much of a problem; in
fact, we do not even have to worry about it since each of the three programs is capable of
reading multiple lines from the input source.

Big Huge Thesaurus, http://bighugelabs.com/, has a very clean and simple API that
allows us to make a single HTTP GET request to look up synonymes.

[112]

http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/
http://bighugelabs.com/

Command-Line Tools to Find Domain Names

In future, if the API we are using changes or disappears (after all, we're
dealing with the Internet), you will find some options at https://github.

com/matryer/goblueprints.

Before you can use Big Huge Thesaurus, you'll need an API key, which you can get by
signing up to the service at http://words.bighugelabs.com/.

Using environment variables for configuration

Your API key is a sensitive piece of configuration information that you don't want to share
with others. We could store it as const in our code. However, this would mean we will not
be able to share our code without sharing our key (not good, especially if you love open
source projects). Additionally, perhaps more importantly, you will have to recompile your
entire project if the key expires or if you want to use a different one (you don't want to get
into such a situation).

A better solution is using an environment variable to store the key, as this will allow you to
easily change it if you need to. You could also have different keys for different
deployments; perhaps you could have one key for development or testing and another for
production. This way, you can set a specific key for a particular execution of code so you
can easily switch between keys without having to change your system-level settings. Also,
different operating systems deal with environment variables in similar ways, so they are a
perfect choice if you are writing cross-platform code.

Create a new environment variable called BHT_APIKEY and set your API key as its value.

For machines running a bash shell, you can modify your ~/ .bashrc file
or similar to include export commands, such as the following:

export BHT_APIKEY=abcl23def456ghi7897jkl

On Windows machines, you can navigate to the properties of your
computer and look for Environment Variables in the Advanced section.

Consuming a web API

Making a request for in a web browser shows us what the structure of JSON response data
looks like when finding synonyms for the word love:

{
"noun":{
"Syn" . [
"passion",

[113]

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/
http://words.bighugelabs.com/

Command-Line Tools to Find Domain Names

"beloved",
"dear"
]
}I
"verb" :{
llsynll: [
lllove"’
"roll in the hay",
"make out"
]I
"ant": [
"hate"
]

}

A real API will return a lot more actual words than what is printed here, but the structure is
the important thing. It represents an object, where the keys describe the types of word
(verbs, nouns, and so on). Also, values are objects that contain arrays of strings keyed on
syn or ant (for the synonym and antonym, respectively); it is the synonyms we are
interested in.

To turn this JSON string data into something we can use in our code, we must decode it into
structures of our own using the capabilities found in the encoding/json package. Because
we're writing something that could be useful outside the scope of our project, we will
consume the APl in a reusable package rather than directly in our program code. Create a
new folder called thesaurus alongside your other program folders (in $GOPATH/src) and
insert the following code into a new bighuge. go file:

package thesaurus
import (
"encoding/json"
"errors"
"net/http"
)
type BigHuge struct {
APIKey string
}
type synonyms struct {
Noun *words " Jjson:"noun"®
Verb *words " Jjson:"verb"®
}
type words struct {
Syn []lstring " Json:"syn"®
}

func (b *BigHuge) Synonyms (term string) ([]string, error) {

[114]

Command-Line Tools to Find Domain Names

var syns []string
response, err := http.Get ("http://words.bighugelabs.com/api/2/" +
b.APIKey + "/" + term + "/json")
if err !'= nil {
return syns, errors.New("bighuge: Failed when looking for synonyms
for "" 4+ term + """ 4+ err.Error())

t

var data synonyms

defer response.Body.Close ()

if err := json.NewDecoder (response.Body) .Decode (&data); err != nil {
return syns, err

}

if data.Noun != nil {

syns = append(syns, data.Noun.Syn...)
}
if data.Verb != nil {

syns = append(syns, data.Verb.Syn...)
}

return syns, nil

}

In the preceding code, the BigHuge type we define houses the necessary API key and
provides the Synonyms method that will be responsible for doing the work of accessing the
endpoint, parsing the response, and returning the results. The most interesting parts of this
code are the synonyms and words structures. They describe the JSON response format in
Go terms, namely an object containing noun and verb objects, which in turn contain a slice
of strings in a variable called Syn. The tags (strings in backticks following each field
definition) tell the encoding/json package which fields to map to which variables; this is
required since we have given them different names.

Typically in JSON, keys have lowercase names, but we have to use
capitalized names in our structures so that the encoding/json package
would also know that the fields exist. If we don't, the package would
simply ignore the fields. However, the types themselves (synonyms and
words) do not need to be exported.

The Synonyms method takes a term argument and uses http.Get to make a web request
to the API endpoint in which the URL contains not only the API key value, but also the
term value itself. If the web request fails for some reason, we will make a call to
log.Fatalln, which will write the error to the standard error stream and exit the program
with a non-zero exit code (actually an exit code of 1). This indicates that an error has
occurred.

[115]

Command-Line Tools to Find Domain Names

If the web request is successful, we pass the response body (another io.Reader) to the
json.NewDecoder method and ask it to decode the bytes into the data variable that is of
our synonyms type. We defer the closing of the response body in order to keep the memory
clean before using Go's built-in append function to concatenate both noun and verb
synonyms to the syns slice that we then return.

Although we have implemented the BigHuge thesaurus, it isn't the only option out there,
and we can express this by adding a Thesaurus interface to our package. In the thesaurus

folder, create a new file called thesaurus.go and add the following interface definition to
the file:

package thesaurus
type Thesaurus interface {
Synonyms (term string) ([]lstring, error)

}

This simple interface just describes a method that takes a term string and returns either a
slice of strings containing the synonyms or an error (if something goes wrong). Our
BigHuge structure already implements this interface, but now, other users could add
interchangeable implementations for other services, such as http://www.dictionary.com/
or the Merriam-Webster online service.

Next, we are going to use this new package in a program. Change the directory in the
terminal back up alevel to SGOPATH/ src, create a new folder called synonyms, and insert
the following code into a new main.go file you will place in this folder:

func main () {
apiKey := os.Getenv ("BHT_APIKEY")
thesaurus := &thesaurus.BigHuge{APIKey: apiKey}
s := bufio.NewScanner (os.Stdin)
for s.Scan() {
word := s.Text ()
syns, err := thesaurus.Synonyms (word)
if err != nil {
log.Fatalln("Failed when looking for synonyms for "+word+", err)
}
if len(syns) == 0 {

log.Fatalln("Couldn't find any synonyms for " + word + ")
}
for _, syn := range syns {

fmt.Println(syn)
}

[116]

http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/
http://www.dictionary.com/

Command-Line Tools to Find Domain Names

Now when you manage your imports again, you will have written a complete program that
is capable of looking up synonyms of words by integrating the Big Huge Thesaurus APL

In the preceding code, the first thing our main function does is that it gets the BHT_APIKEY
environment variable value via the os.Getenv call. To protect your code, you might
consider double-checking it to ensure the value is properly set; if not, report the error. For
now, we will assume that everything is configured properly.

Next, the preceding code starts to look a little familiar since it scans each line of input again
from os.Stdin and calls the Synonyms method to get a list of the replacement words.

Let's build a program and see what kind of synonyms the API comes back with when we
input the word chat:

go build -o synonyms
./synonyms

chat

confab
confabulation
schmooze

New World chat
0ld World chat
conversation
thrush

wood warbler
chew the fat
shoot the bree:ze
chitchat

chatter

The results you get will most likely differ from what we have listed here since we're hitting
a live API. However, the important thing is that when we provide a word or term as an
input to the program, it returns a list of synonyms as the output, one per line.

Getting domain suggestions

By composing the four programs we have built so far in this chapter, we already have a
useful tool for suggesting domain names. All we have to do now is to run the programs
while piping the output to the input in an appropriate way. In a terminal, navigate to the
parent folder and run the following single line:

./synonyms/synonyms | ./sprinkle/sprinkle | ./coolify/coolify |
./domainify/domainify

[117]

Command-Line Tools to Find Domain Names

Because the synonyms program is first in our list, it will receive the input from the terminal
(whatever the user decides to type in). Similarly, because domainify is last in the chain, it
will print its output to the terminal for the user to see. Along the way, the lines of words
will be piped through other programs, giving each of them a chance to do their magic.

Type in a few words to see some domain suggestions; for example, when you type chat
and hit return, you may see the following;:

getcnfab.com
confabulationtim.com
getschmoozee.net
schmosee.com
neew-world—-chatsite.net
oold-world—-chatsite.com
conversatin.net
new-world-warblersit.com
gothrush.net
lets—wood-wrbler.com
chw-the-fat.com

The number of suggestions you get will actually depend on the number of synonyms. This
is because it is the only program that generates more lines of output than what we input.

We still haven't solved our biggest problem: the fact that we have no idea whether the
suggested domain names are actually available or not. So we still have to sit and type each
one of them into a website. In the next section, we will address this issue.

Available

Our final program, Available, will connect to a WHOIS server to ask for details about the
domains passed to it of course, if no details are returned, we can safely assume that the
domain is available for purchase. Unfortunately, the WHOIS specification (see http://tool
s.ietf.org/html/rfc3912)is very small and contains no information about how a WHOIS
server should reply when you ask for details about a domain. This means programmatically
parsing the response becomes a messy endeavor. To address this issue for now, we will
integrate with only a single WHOIS server, which we can be sure will have No match
somewhere in the response when it has no records for the domain.

[118]

http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912

Command-Line Tools to Find Domain Names

A more robust solution is to have a WHOIS interface with a well-defined
structure for the details and perhaps an error message for cases when the
domain doesn't exist with different implementations for different WHOIS
servers. As you can imagine, it's quite a project; it is perfect for an open
source effort.

Create a new folder called available alongside others and add a main.go file to it
containing the following function code:

func exists(domain string) (bool, error) |
const whoisServer string = "com.whois-servers.net"
conn, err := net.Dial ("tcp", whoisServer+":43")
if err !'= nil {

return false, err
}
defer conn.Close()
conn.Write([]lbyte (domain + "rn"))
scanner := bufio.NewScanner (conn)
for scanner.Scan () A

if strings.Contains (strings.ToLower (scanner.Text ()), "no match") {

return false, nil

}
}
return true, nil

}

The exists function implements what little there is in the WHOIS specification by opening
a connection to port 43 on the specified whoisServer instance with a call to net .Dial. We
then defer the closing of the connection, which means that no matter how the function exits
(successful, with an error, or even a panic), Close () will still be called on the conn
connection. Once the connection is open, we simply write the domain followed by rn (the
carriage return and linefeed characters). This is all that the specification tells us, so we are
on our own from now on.

Essentially, we are looking for some mention of “no match” in the response, and this is how
we will decide whether a domain exists or not (exists in this case is actually just asking
the WHOIS server whether it has a record for the domain we specified). We use our favorite
bufio.Scanner method to help us iterate over the lines in the response. Passing the
connection to NewScanner works because net . Conn is actually an io.Reader too. We use
strings.ToLower so we don't have to worry about case sensitivity and
strings.Contains to check whether any one of the lines contains the no match text. If it
does, we return false (since the domain doesn't exist); otherwise, we return t rue.

[119]

Command-Line Tools to Find Domain Names

The com.whois-servers.net WHOIS service supports domain names for . comand .net,
which is why the Domainify program only adds these types of domains. If you had used a
server that had WHOIS information for a wider selection of domains, you could have
added support for additional TLDs.

Let's add a main function that uses our exists function to check whether the incoming
domains are available or not. The check mark and cross mark symbols in the following code
are optional if your terminal doesn't support them you are free to substitute them with
simple Yes and No strings.

Add the following code to main. go:

var marks = map|[bool]lstring{true: "J", false: "X"}
func main () {
s := bufio.NewScanner (os.Stdin)
for s.Scan () {
domain := s.Text ()
fmt.Print (domain, " ")
exist, err := exists(domain)
if err !'= nil {
log.Fatalln(err)
)3

fmt.Println (marks[!exist])
time.Sleep(l * time.Second)

We can use the check and cross characters in our code happily because all
Go code files are UTF-8 compliant the best way to actually get these
characters is to search the Web for them and use the copy and paste option
to bring them into our code. Otherwise, there are platform-dependent
ways to get such special characters.

In the preceding code for the main function, we simply iterate over each line coming in via
os.Stdin. This process helps us print out the domain with fmt .Print (but not

fmt .Println, as we do not want the linefeed yet), call our exists function to check
whether the domain exists or not, and print out the result with fmt .Print1n (because we
do want a linefeed at the end).

Finally, we use time. Sleep to tell the process to do nothing for a second in order to make
sure we take it easy on the WHOIS server.

[120]

Command-Line Tools to Find Domain Names

Most WHOIS servers will be limited in various ways in order to prevent
you from taking up too much in terms of resources. So, slowing things
down is a sensible way to make sure we don't make the remote servers
angry.

Consider what this also means for unit tests. If a unit test were actually
making real requests to a remote WHOIS server, every time your tests run,
you will be clocking up statistics against your IP address. A much better
approach would be to stub the WHOIS server to simulate responses.

The marks map at the top is a nice way to map the bool response from exists to human-
readable text, allowing us to just print the response in a single line using

fmt.Println (marks[!exist]). We are saying not exist because our program is checking
whether the domain is available or not (logically, the opposite of whether it exists in the
WHOIS server or not).

After fixing the import statements for the main.go file, we can try out Available to see
whether the domain names are available or not by typing the following command:

go build -o available
./available

Once Available is running, type in some domain names and see the result appear on the
next line:

packtpub.com

packtpub.com X

matryer.com

matryer.com X
made-up-domain-12345678.net
made-up-domain-12345678.net v

As you can see, for domains that are not available, we get a little cross mark next to them;
however, when we make up a domain name using random numbers, we see that it is
indeed available.

[121]

Command-Line Tools to Find Domain Names

Composing all five programs

Now that we have completed all five programs, it's time to put them all together so that we
can use our tool to find an available domain name for our chat application. The simplest
way to do this is to use the technique we have been using throughout this chapter: using
pipes in a terminal to connect the output and input.

In the terminal, navigate to the parent folder of the five programs and run the following
single line of code:

./synonyms/synonyms | ./sprinkle/sprinkle | ./coolify/coolify |
./domainify/domainify | ./available/available

Once the programs are running, type in a starting word and see how it generates
suggestions before checking their availability.

For example, typing in chat might cause the programs to take the following actions:

1. The word chat goes into synonyms, which results in a series of synonyms:

e confab
e confabulation
e schmooze

2. The synonyms flow into sprinkle; here they are augmented with web-friendly
prefixes and suffixes, such as the following;:

e confabapp
e goconfabulation
e schmooze time

3. These new words flow into coolify; here the vowels are potentially tweaked:

e confabaapp
e goconfabulatioon
e schmoooze time

[122]

Command-Line Tools to Find Domain Names

4. The modified words then flow into domainify; here they are turned into valid
domain names:

e confabaapp.com
¢ goconfabulatioon.net
¢ schmooze-time.com

5. Finally, the domain names flow into available; here they are checked against
the WHOIS server to see whether somebody has already taken the domain or not:

e confabaapp.com X
e goconfabulatioon.net v
e schmooze-time.com ¥

One program to rule them all

Running our solution by piping programs together is an elegant form of architecture, but it
doesn't have a very elegant interface. Specifically, whenever we want to run our solution,
we have to type the long, messy line where each program is listed and separated by pipe
characters. In this section, we are going to write a Go program that uses the os/exec
package to run each subprogram while piping the output from one to the input of the next,
as per our design.

Create a new folder called domainfinder alongside the other five programs and create
another new folder called 1ib inside this folder. The 1ib folder is where we will keep
builds of our subprograms, but we don't want to copy and paste them every time we make
a change. Instead, we will write a script that builds the subprograms and copies the binaries
to the 1ib folder for us.

Create a new file called build. sh on Unix machines or build.bat for Windows and insert
into it the following code:

#!/bin/bash

echo Building domainfinder...

go build -o domainfinder

echo Building synonyms...

cd ../synonyms

go build -o ../domainfinder/lib/synonyms
echo Building available...

cd ../available

go build -o ../domainfinder/lib/available

[123]

Command-Line Tools to Find Domain Names

cd ../build

echo Building sprinkle...

cd ../sprinkle

go build -o ../domainfinder/lib/sprinkle
cd ../build

echo Building coolify...

cd ../coolify

go build -o ../domainfinder/lib/coolify
cd ../build

echo Building domainify...

cd ../domainify

go build -o ../domainfinder/lib/domainify
cd ../build

echo Done.

The preceding script simply builds all our subprograms (including domainfinder, which
we are yet to write), telling go build to place them in our 1ib folder. Be sure to give
execution rights to the new script by doing chmod +x build.sh or something similar. Run
this script from a terminal and look inside the 1ib folder to ensure that it has indeed placed
the binaries for our subprograms.

Don't worry about the no buildable Go source files error for now;
it's just Go telling us that the domainfinder program doesn't have any
. go files to build.

Create a new file called main. go inside domainfinder and insert the following code into
the file:

package main

var cmdChain = []*exec.Cmd{
exec.Command ("1ib/synonyms"),
exec.Command ("1lib/sprinkle"),
exec.Command ("lib/coolify"),
exec.Command ("lib/domainify"),
exec.Command ("lib/available"),

}

func main () {
cmdChain[0] .Stdin = os.Stdin
cmdChain[len (cmdChain)-1].Stdout = os.Stdout

for i := 0; 1 < len(cmdChain)-1; i++ {
thisCmd := cmdChain[i]
nextCmd := cmdChain[i+1]
stdout, err := thisCmd.StdoutPipe ()
if err != nil {

log.Fatalln(err)

[124]

Command-Line Tools to Find Domain Names

nextCmd.Stdin = stdout
t

for _, cmd := range cmdChain {
if err := cmd.Start(); err != nil {
log.Fatalln(err)
} else {

defer cmd.Process.Kill ()
t
t
for _, cmd := range cmdChain {
if err := cmd.Wait(); err != nil {
log.Fatalln(err)
t

}

The os/exec package gives us everything we need to work with to run external programs
or commands from within Go programs. First, our cmdChain slice contains *exec.Cmd
commands in the order in which we want to join them together.

At the top of the main function, we tie the Stdin (standard in stream) of the first program
with the os . stdin stream of this program and the Stdout (standard out stream) of the last
program with the os. Stdout stream of this program. This means that, like before, we will
be taking input through the standard input stream and writing output to the standard
output stream.

Our next block of code is where we join the subprograms together by iterating over each
item and setting its Stdin to the Stdout stream of the program before it.

The following table shows each program with a description of where it gets its input from
and where its output goes:

Program |Input (Stdin) Output (Stdout)

synonyms | The same Stdin as domainfinder |sprinkle

sprinkle |synonyms coolify

coolify sprinkle domainify

domainify | coolify available

available |domainify The same Stdout as domainfinder

[125]

Command-Line Tools to Find Domain Names

We then iterate over each command calling the start method, which runs the program in
the background (as opposed to the Run method, which will block our code until the
subprogram exists which would be no good since we will have to run five programs at the
same time). If anything goes wrong, we bail with 1og.Fatalln; however, if the program
starts successfully, we defer a call to kill the process. This helps us ensure the subprograms
exit when our main function exits, which will be when the domainfinder program ends.

Once all the programs start running, we iterate over every command again and wait for it to
finish. This is to ensure that domainfinder doesn't exit early and kill off all the
subprograms too soon.

Run the build.sh or build.bat script again and notice that the domainfinder program
has the same behavior as we have seen before, with a much more elegant interface.

The following screenshot shows the output from our programs when we type clouds; we
have found quite a few available domain name options:

1. bash

clouds

swarm.net X
lets-animal-group.com v
atmospheric-phenmenon.net v
getgloom.net v
gloominss.net v
getglumneess.com /
irreality.com X
physical-phenomenon.net v
suspicion.net x
getunreeality.net v
overcast.net X
getobscure.net v
befgapp.com v

beclod.com v
obnubilatesite.net v
haze-over.com v

fog.com x

mist.com x

getdefil.net /
sullyapp.net v
corruptapp.com ¢

e

echo:domainfinder matryer$ I

[126]

Command-Line Tools to Find Domain Names

Summary

In this chapter, we learned how five small command-line programs can, when composed
together, produce powerful results while remaining modular. We avoided tightly coupling
our programs so they could still be useful in their own right. For example, we can use our
Available program just to check whether the domain names we manually enter are
available or not, or we can use our synonyms program just as a command-line thesaurus.

We learned how standard streams could be used to build different flows of these types of
programs and how the redirection of standard input and standard output lets us play
around with different flows very easily.

We learned how simple it is in Go to consume a JSON RESTful API web service when we
wanted to get the synonyms from Big Huge Thesaurus. We also consumed a non-HTTP API
when we opened a connection to the WHOIS server and wrote data over raw TCP.

We saw how the math/rand package can bring a little variety and unpredictability by
allowing us to use pseudo random numbers and decisions in our code, which means that
each time we run our program, we will get different results.

Finally, we built our domainfinder super program that composes all the subprograms
together, giving our solution a simple, clean, and elegant interface.

In the next chapter, we will take some ideas we have learned so far one step further by
exploring how to connect programs using messaging queue technologies allowing them to
distributed across many machines to achieve large scale.

[127]

Building Distributed Systems
and Working with Flexible Data

In this chapter, we will explore transferrable skills that allow us to use schemaless data and
distributed technologies to solve big data problems. The system we will build in this
chapter will prepare us for a future where all democratic elections happen online on
Twitter, of course. Our solution will collect and count votes by querying Twitter's streaming
API for mentions of specific hash tags, and each component will be capable of horizontally
scaling to meet demand. Our use case is a fun and interesting one, but the core concepts
we'll learn and the specific technology choices we'll make are the real focus of this chapter.
The ideas discussed here are directly applicable to any system that needs true-scale
capabilities.

Horizontal scaling refers to adding nodes, such as physical machines, to a
system in order to improve its availability, performance, and/or capacity.
Big data companies such as Google can scale by adding affordable and
easy-to-obtain hardware (commonly referred to as commodity hardware)
due to the way they write their software and architect their solutions.
Vertical scaling is synonymous to increasing the resource available to a
single node, such as adding additional RAM to a box or a processor with
more cores.

In this chapter, you will:

¢ Learn about distributed NoSQL datastores, specifically how to interact with
MongoDB

¢ Learn about distributed messaging queues, in our case, Bit.ly's NSQ and how to
use the go-nsq package to easily publish and subscribe to events

Building Distributed Systems and Working with Flexible Data

e Stream live tweet data through Twitter's streaming APIs and manage long
running net connections

e Learn how to properly stop programs with many internal goroutines

¢ Learn how to use low memory channels for signaling

The system design

Having a basic design sketched out is often useful, especially in distributed systems where
many components will be communicating with each other in different ways. We don't want
to spend too long on this stage because our design is likely to evolve as we get stuck into
the details, but we will look at a high-level outline so that we can discuss the constituents
and how they fit together:

5 @ @ 6

3
| "V || mongo DB @
—~ |twittervotes b

=>| counter

®

The preceding diagram shows the basic overview of the system we are going to build:

Streaming API

v ENSQ <<

e Twitter is the social media network we all know and love.

o Twitter's streaming API allows long-running connections where tweet data is
streamed as quickly as possible.

e twittervotes isa program we will write that pulls the relevant tweet data via
the Twitter APL, decides what is being voted for (rather, which options are
mentioned in the tweet body), and then pushes the vote into NSQ.

e NSQ is an open source, real-time distributed messaging platform designed to
operate at scale, built and maintained by Bit.ly. NSQ carries the message across
its instances, making it available to anyone who has expressed an interest in the
vote data.

[129]

Building Distributed Systems and Working with Flexible Data

e counter is a program we will write that listens out for votes on the messaging
queue and periodically saves the results in the MongoDB database. It receives the
vote messages from NSQ and keeps an in-memory tally of the results,
periodically pushing an update to persist the data.

* MongoDB is an open source document database designed to operate at scale.

¢ web is a web server program that will expose the live results that we will write in
the next chapter.

It could be argued that a single Go program could be written that reads the tweets, counts
the votes, and pushes them to a user interface, but such a solution, while being a great proof
of concept, would be very limited in scale. In our design, any one of the components can be
horizontally scaled as the demand for that particular capability increases. If we have
relatively few polls but lots of people viewing the data, we can keep the twittervotes and
counter instances down and add more web and MongoDB nodes or vice versa if the
situation is reversed.

Another key advantage to our design is redundancy; since we can have
many instances of our components working at the same time, if one of our
boxes disappears (due to a system crash or a power cut, for example), the
others can pick up the slack. Modern architectures often distribute such a
system over the geographical expanse in order to protect from local
natural disasters too. All of these options are available for use if we build
our solution in this way.

We chose specific technologies in this chapter because of their links to Go (NSQ, for
example, is written entirely in Go) and the availability of well-tested drivers and packages.
Conceptually, however, you can drop in a variety of alternatives as you see fit.

The database design

We will call our MongoDB database ballots. It will contain a single collection called
polls, which is where we will store the poll details, such as the title, the options, and the
results (in a single JSON document). The code for a poll will look something like this:

{

"_id".: "o22v,
"title": "Poll title",
"options": ["one", "two", "three"],
"results": {
"one": 100,
"two": 200,

"three": 300

[130]

Building Distributed Systems and Working with Flexible Data

}
}

The _id field is a unique string for each item that is automatically generated by MongoDB.
The options field contains an array of string options; these are the hash tags we will look
for on Twitter. The results field is a map where the key represents the option, and the
value represents the total number of votes for each item.

Installing the environment

The code we write in this chapter has real external dependencies that we need to set up
before we can start to build our system.

Be sure to check out the chapter notes at https://github.com/matryer/g
oblueprints if you get stuck on installing any of the dependencies.

In most cases, services such as mongod and nsqd will have to be started before we can run
our programs. Since we are writing components of a distributed system, we will have to
run each program at the same time, which is as simple as opening many terminal windows.

Introducing NSQ

NSQ is a messaging queue that allows one program to send messages or events to another
or to many other programs running either locally on the same machine or on different
nodes connected by a network. NSQ guarantees the delivery of each message at least once,
which means that it keeps undelivered messages cached until all interested parties have
received them. This means that even if we stop our counter program, we won't miss any
votes. You can contrast this capability with fire-and-forget message queues, where
information is deemed out of date, and is, therefore, forgotten if it isn't delivered in time
and when the sender of the messages doesn't care whether the consumer received them or
not.

A message queue abstraction allows you to have different components of a system running
in different places, provided that they have network connectivity to the queue. Your
programs are decoupled from others; instead, your designs start to care about the ins and
outs of specialized micro services rather than flow of data through a monolithic program.

[131]

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Building Distributed Systems and Working with Flexible Data

NSQ transfers raw bytes, which means that it is up to us how we encode data into these
bytes. For example, we could encode the data as JSON or in a binary format depending on
our needs. In our case, we are going to send the vote option as a string without any
additional encoding, since we are only sharing a single data field.

We first need to get NSQ installed and running:

1. Opennhttp://nsq.io/deployment/installing.html in a browser (or search
install nsq)and follow the instructions for your environment. You can either
download precompiled binaries or build your own from the source. If you have
homebrew installed, installing NSQ is as simple as typing the following:

brew install nsq

2. Once you have installed NSQ, you will need to add the bin folder to your PATH
environment variable so that the tools are available in a terminal.

3. To validate that NSQ is properly installed, open a terminal and run nsqlookupd;
if the program successfully starts, you should see output similar to the following:

nsqlookupd v0.2.27 (built w/gol.3)
TCP: listening on [::]:4160
HTTP: listening on [::]:4161

We are going to use the default ports to interact with NSQ, so take note of the
TCP and HTTP ports listed in the output, as we will be referring to them in
our code.

4. Press Ctrl + C to stop the process for now; we'll start them properly later.

The key tools from the NSQ installation that we are going to use are nsqlookupd and nsqd.
The nsqlookupd program is a daemon that manages topology information about the
distributed NSQ environment; it keeps track of all the nsqd producers for specific topics
and provides interfaces for clients to query such information. The nsqd program is a
daemon that does the heavy lifting for NSQ, such as receiving, queuing, and delivering
messages from and to interested parties.

For more information and background on NSQ, visit http://nsq.io/.

[132]

http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/deployment/installing.html
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/
http://nsq.io/

Building Distributed Systems and Working with Flexible Data

NSQ driver for Go

The NSQ tools themselves are written in Go, so it is logical that the Bit.ly team already has a
Go package that makes interacting with NSQ very easy. We will need to use it, so in a
terminal, you can get it using go get:

go get github.com/bitly/go-nsq

Introducing MongoDB

MongoDB is a document database, which allows you to store and query JSON documents
and the data within them. Each document goes into a collection that can be used to group
the documents together without enforcing any schema on the data inside them. Unlike rows
in a traditional RDBMS, such as Oracle, Microsoft SQL Server, or MySQL, it is perfectly
acceptable for documents to have a different shape. For example, a people collection can
contain the following three JSON documents at the same time:

{"name":"Mat","lang":"en", "points":57}
{"name":"Laurie", "position":"Scrum Master"}
{"position":"Traditional Manager","exists":false}

This flexibility allows data with varying structures to coexist without impacting
performance or wasting space. It is also extremely useful if you expect your software to
evolve over time, as we really always should.

MongoDB was designed to scale while also remaining very easy to work with on single-box
installations, such as our development machine. When we host our application for
production, we would most likely install a more complex multi-sharded, replicated system,
which is distributed across many nodes and locations, but for now, just running mongod
will do.

Head over to http://www.mongodb.org/downloads in order to grab the latest version of
MongoDB and install it, making sure to register the bin folder with your PATH environment
variable, as usual.

To validate that MongoDB is successfully installed, run the mongod command, and then hit
Ctrl + C to stop it for now.

[133]

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

Building Distributed Systems and Working with Flexible Data

MongoDB driver for Go

Gustavo Niemeyer has done a great job in simplifying interactions with MongoDB with his
mgo (pronounced mango) package hosted at http://labix.org/mgo, which is go gettable
with the following command:

go get gopkg.in/mgo.v2

Starting the environment

Now that we have all the pieces we need installed, we need to start our environment. In this
section, we are going to:

e Start nsglookupd so that our nsgd instances are discoverable
e Start nsqd and tell it which nsqlookupd to use
e Start mongod for data services

Each of these daemons should run in their own terminal window, which will make it easy
for us to stop them by just hitting Ctrl + C.

Remember the page number for this section as you are likely to revisit it a
few times as you work through this chapter.

In a terminal window, run the following;:

nsqlookupd

Take note of the TCP port, which is 4160 by default, and in another terminal window, run
the following:

nsqd —-lookupd-tcp-address=localhost:4160

Make sure the port number in the --1ookupd-tcp-address flag matches the TCP port of
the nsglookupd instance. Once you start nsqd, you will notice some output printed to the
terminal from both nsqlookupd and nsqd; this indicates that the two processes are talking
to each other.

In yet another window or tab, start MongoDB by running the following command:

mongod —-dbpath ./db

[134]

http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo
http://labix.org/mgo

Building Distributed Systems and Working with Flexible Data

The dbpath flag tells MongoDB where to store the data files for our database. You can pick
any location you like, but you'll have to make sure the folder exists before mongod will run.

By deleting the dbpath folder at any time, you can effectively erase all
data and start afresh. This is especially useful during development.

Now that our environment is running, we are ready to start building our components.

Reading votes from Twitter

In your $GOPATH/ src folder, alongside other projects, create a new folder called
socialpoll for this chapter. This folder won't be a Go package or a program by itself, but
it will contain our three component programs. Inside socialpoll, create a new folder
called twittervotes and add the obligatory main.go template (this is important as main
packages without a main function won't compile):

package main
func main () {}

Our twittervotes program is going to:

¢ Load all polls from the MongoDB database using mgo and collect all options from
the options array in each document

¢ Open and maintain a connection to Twitter's streaming APIs looking for any
mention of the options

e Figure out which option is mentioned and push that option through to NSQ for
each tweet that matches the filter

e If the connection to Twitter is dropped (which is common in long-running
connections that are actually part of Twitter's streaming API specification) after a
short delay (so that we do not bombard Twitter with connection requests),
reconnect and continue

e Periodically re-query MongoDB for the latest polls and refresh the connection to
Twitter to make sure we are always looking out for the right options

¢ Gracefully stop itself when the user terminates the program by hitting Ctrl + C

[135]

Building Distributed Systems and Working with Flexible Data

Authorization with Twitter

In order to use the streaming API, we will need authentication credentials from Twitter's
Application Management console, much in the same way we did for our Gomniauth service
providers in chapter 3, Three Ways to Implement Profile Pictures. Head over to https://apps
.twitter.comand create a new app called something like SocialPoll (the names have to
be unique, so you can have some fun here; the choice of name doesn't affect the code either
way). When your app has been created, visit the API Keys tab and locate the Your access
token section, where you need to create a new access token. After a short delay, refresh the
page and note that you, in fact, have two sets of keys and secrets: an API key and a secret
and an access token and the corresponding secret. Following good coding practices, we are
going to set these values as environment variables so that our program can have access to
them without us having to hardcode them in our source files. The keys we will use in this
chapter are as follows:

e SP_TWITTER_KEY

e SP_TWITTER_SECRET

e SP_TWITTER_ACCESSTOKEN
e SP_TWITTER_ACCESSSECRET

You may set the environment variables however you like, but since the app relies on them
in order to work, creating a new file called setup. sh (for bash shells) or setup.bat (on
Windows) is a good idea since you can check such files into your source code repository.
Insert the following code in setup. sh by copying the appropriate values from the Twitter

app page:

#!/bin/bash

export SP_TWITTER_KEY=yC2EDnaNrEhN5fd33g...
export SP_TWITTER_SECRET=6n0OrToIpskColob...
export SP_TWITTER_ACCESSTOKEN=2427-13677...
export SP_TWITTER_ACCESSSECRET=SpnZf336u...

On Windows, the code will look something like this:

SET SP_TWITTER_KEY=yC2EDnaNrEhN5fd33g...
SET SP_TWITTER_SECRET=6n0rToIpskColob...
SET SP_TWITTER_ACCESSTOKEN=2427-13677...
SET SP_TWITTER_ACCESSSECRET=SpnZf336u...

[136]

https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com
https://apps.twitter.com

Building Distributed Systems and Working with Flexible Data

Run the file with the source or call commands to have the values set appropriately, or add
them to your .bashrc or C:\cmdauto. cmd files to save you from running them every time
you open a new terminal window.

If you're not sure how to do this, just search for Setting environment variables on
Linux or something similar, and the Internet will help you.

Extracting the connection

The Twitter streaming API supports HTTP connections that stay open for a long time, and
given the design of our solution, we are going to need to access the net . Conn object in
order to close it from outside of the goroutine in which requests occur. We can achieve this
by providing our own dial method to an http.Transport object that we will create.

Create a new file called twitter.go inside twittervotes (which is where all things
Twitter-related will live), and insert the following code:

var conn net.Conn
func dial (netw, addr string) (net.Conn, error) {
if conn != nil {
conn.Close ()
conn = nil
}
netc, err := net.DialTimeout (netw, addr, 5*time.Second)
if err != nil {
return nil, err

}
conn = netc
return netc, nil

}

Our bespoke dial function first ensures that conn is closed and then opens a new
connection, keeping the conn variable updated with the current connection. If a connection
dies (Twitter's API will do this from time to time) or is closed by us, we can redial without
worrying about zombie connections.

We will periodically close the connection ourselves and initiate a new one because we want
to reload the options from the database at regular intervals. To do this, we need a function
that closes the connection and also closes io.ReadCloser, which we will use to read the
body of the responses. Add the following code to twitter.go:

var reader io.ReadCloser
func closeConn () {
if conn != nil {

[137]

Building Distributed Systems and Working with Flexible Data

conn.Close ()

t
if reader != nil {
reader.Close ()

}

Now, we can call closeConn at any time in order to break the ongoing connection with
Twitter and tidy things up. In most cases, our code will load the options from the database
again and open a new connection right away, but if we're shutting the program down (in

response to a Ctrl + C hit), then we can call c1oseConn just before we exit.

Reading environment variables

Next, we are going to write a function that will read the environment variables and set up
the 0OAuth objects we'll need in order to authenticate the requests. Add the following code

to the twitter.go file:

var (
authClient *oauth.Client
creds *oauth.Credentials
)
func setupTwitterAuth() {
var ts struct {
ConsumerKey string “env:"SP_TWITTER_KEY, required"’
ConsumerSecret string “env:"SP_TWITTER_SECRET, required""

AccessToken string “env:"SP_TWITTER_ACCESSTOKEN, required"’
AccessSecret string ‘env:"SP_TWITTER_ACCESSSECRET, required"’

}
if err := envdecode.Decode (&ts); err != nil {
log.Fatalln(err)
}
creds = &oauth.Credentials{
Token: ts.AccessToken,
Secret: ts.AccessSecret,
}
authClient = &oauth.Client{
Credentials: oauth.Credentials{
Token: ts.ConsumerKey,
Secret: ts.ConsumerSecret,
}I

[138]

Building Distributed Systems and Working with Flexible Data

Here, we define a st ruct type to store the environment variables that we need to
authenticate with Twitter. Since we don't need to use the type elsewhere, we define it inline
and create a variable called ts of this anonymous type (that's why we have the somewhat
unusual var ts struct... code). We then use Joe Shaw's envdecode package to pull in
these environment variables for us. You will need to run go get
github.com/joeshaw/envdecode and also import the 1og package. Our program will try
to load appropriate values for all the fields marked required and return an error if it fails
to do so, which reminds people that the program won't work without Twitter credentials.

The strings inside the back ticks alongside each field in st ruct are called tags and are
available through a reflection interface, which is how envdecode knows which variables to
look for. We added the required argument to this package, which indicates that it is an
error for any of the environment variables to be missing (or empty).

Once we have the keys, we use them to create cauth.Credentials and an cauth.Client
object from Gary Burd's go-oauth package, which will allow us to authorize requests with
Twitter.

Now that we have the ability to control the underlying connection and authorize requests,
we are ready to write the code that will actually build the authorized request and return the
response. In twitter.go, add the following code:

var (
authSetupOnce sync.Once
httpClient *http.Client
)
func makeRequest (req *http.Request, params url.Values) (*http.Response,
error) A
authSetupOnce.Do (func () A
setupTwitterAuth ()
httpClient = &http.Client{
Transport: &http.Transport{
Dial: dial,
s
t
H)

formEnc := params.Encode ()

reqg.Header.Set ("Content-Type", "application/x-www-form- urlencoded")
req.Header.Set ("Content-Length", strconv.Itoa(len(formEnc)))
req.Header.Set ("Authorization", authClient.AuthorizationHeader (creds,
"POST",

req.URL, params))
return httpClient.Do (req)

[139]

Building Distributed Systems and Working with Flexible Data

We use sync.Once to ensure our initialization code gets run only once despite the number
of times we call makeRequest. After calling the setupTwitterAuth method, we create a
new http.Client function using an http. Transport function that uses our custom dial
method. We then set the appropriate headers required for authorization with Twitter by
encoding the specified params object that will contain the options we are querying for.

Reading from MongoDB

In order to load the polls, and therefore the options to search Twitter for, we need to
connect to and query MongoDB. In main.go, add the two functions dialdb and closedb:

var db *mgo.Session
func dialdb () error {
var err error
log.Println("dialing mongodb: localhost")
db, err = mgo.Dial("localhost")
return err
}
func closedb () {
db.Close ()
log.Println("closed database connection")

}

These two functions will connect to and disconnect from the locally running MongoDB
instance using the mgo package and store mgo . Session (the database connection object) in
a global variable called db.

As an additional assignment, see whether you can find an elegant way to
make the location of the MongoDB instance configurable so that you don't
need to run it locally.

Assuming MongoDB is running and our code is able to connect, we need to load the poll
objects and extract all the options from the documents, which we will then use to search
Twitter. Add the following 1oadOptions function to main.go:

type poll struct {

Options []string
}
func loadOptions () ([]string, error) {
var options []string
iter := db.DB("ballots").C("polls").Find(nil) .Iter ()
var p poll

for iter.Next (&p) A

[140]

Building Distributed Systems and Working with Flexible Data

options = append(options, p.Options...)
t
iter.Close()
return options, iter.Err()

}

Our poll document contains more than just Options, but our program doesn't care about
anything else, so there's no need for us to bloat our po11 struct. We use the db variable to
access the polls collection from the ballots database and call the mgo package's fluent
Find method, passing nil (meaning no filtering).

A fluent interface (first coined by Eric Evans and Martin Fowler) refers to
an API design that aims to make the code more readable by allowing you
to chain method calls together. This is achieved by each method returning
the context object itself so that another method can be called directly
afterwards. For example, mgo allows you to write queries such as this:
query := col.Find(qg).Sort ("field").Limit (10).Skip(10)

We then get an iterator by calling the Iter method, which allows us to access each poll one
by one. This is a very memory-efficient way of reading the poll data because it only ever
uses a single pol1 object. If we were to use the A11 method instead, the amount of memory
we'd use would depend on the number of polls we had in our database, which could be out
of our control.

When we have a poll, we use the append method to build up the options slice. Of course,
with millions of polls in the database, this slice too would grow large and unwieldy. For
that kind of scale, we would probably run multiple twittervotes programs, each
dedicated to a portion of the poll data. A simple way to do this would be to break polls into
groups based on the letters the titles begin with, such as group A-N and O-Z. A somewhat
more sophisticated approach would be to add a field to the pol11 document, grouping it up
in a more controlled manner, perhaps based on the stats for the other groups so that we are
able to balance the load across many twittervotes instances.

The append built-in function is actually a variadic function, which
means you can pass multiple elements for it to append. If you have a slice
of the correct type, you can add . . . to the end, which simulates the
passing of each item of the slice as a different argument.

Finally, we close the iterator and clean up any used memory before returning the options
and any errors that occurred while iterating (by calling the Err method in the mgo. Iter
object).

[141]

Building Distributed Systems and Working with Flexible Data

Reading from Twitter

Now we are able to load the options and make authorized requests to the Twitter API. We
are ready to write the code that initiates the connection and continuously reads from the
stream until either we call our closeConn method or Twitter closes the connection for one
reason or another. The structure contained in the stream is a complex one, containing all
kinds of information about the tweet who made it and when and even what links or
mentions of users occur in the body (refer to Twitter's API documentation for more details).
However, we are only interested in the tweet text itself; so, don't worry about all the other
noise and add the following structure to twitter.go:

type tweet struct {
Text string

}

This may feel incomplete, but think about how clear it makes our
intentions to other programmers who might see our code: a tweet has
some text, and that is all we care about.

Using this new structure, in twitter.go, add the following readFromTwitter function
that takes a send only channel called votes; this is how this function will inform the rest of
our program that it has noticed a vote on Twitter:

func readFromTwitter (votes chan<- string) {

options, err := loadOptions/()
if err != nil {
log.Println("failed to load options:", err)
return
}
u, err := url.Parse("https://stream.twitter.com/1.1/statuses
/filter.json")
if err != nil {
log.Println("creating filter request failed:", err)
return
}
query := make (url.Values)
query.Set ("track", strings.Join(options, ","))
req, err := http.NewRequest ("POST",u.String(),strings.NewReader
(query.Encode()))
if err != nil {
log.Println("creating filter request failed:", err)
return
}
resp, err := makeRequest (req, query)
if err != nil {

[142]

Building Distributed Systems and Working with Flexible Data

log.Println("making request failed:", err)

return
t
reader := resp.Body
decoder := json.NewDecoder (reader)
for {
var t tweet
if err := decoder.Decode(&t); err != nil {
break
t
for _, option := range options {

if strings.Contains(
strings.ToLower (t.Text),
strings.ToLower (option),

) A
log.Println("vote:", option)
votes <- option

}

In the preceding code, after loading the options from all the polls data (by calling the
loadOptions function), we use url.Parse to create a url.URL object that describes the
appropriate endpoint on Twitter. We build a url.values object called query and set the
options as a comma-separated list. As per the API, we make a new POST request using the
encoded url.vValues object as the body and pass it to makeRequest along with the query
object itself. If all is well, we make a new json.Decoder from the body of the request and
keep reading inside an infinite for loop by calling the Decode method. If there is an error
(probably due to the connection being closed), we simply break the loop and exit the
function. If there is a tweet to read, it will be decoded into the t variable, which will give us
access to the Text property (the 140 characters of the tweet itself). We then iterate over all
the possible options, and if the tweet has mentioned it, we send it on the votes channel.
This technique also allows a tweet to contain many votes at the same time, something you
may or may not decide to change based on the rules of the election.

The votes channel is send-only (which means we cannot receive on it),
since it is of the chan<- string type. Think of the little arrow that tells us
which way messages will flow: either into the channel (chan<-) or out of
it (<-chan). This is a great way to express intent to other programmers or
our future selves-it's clear that we never intend to read votes using our
readFromTwitter function; rather, we will only send them on that
channel.

[143]

Building Distributed Systems and Working with Flexible Data

Terminating the program whenever Decode returns an error doesn't provide a very robust
solution. This is because the Twitter API documentation states that the connection will drop
from time to time, and clients should consider this when consuming the services. And
remember, we are going to terminate the connection periodically too, so we need to think
about a way to reconnect once the connection is dropped.

Signal channels

A great use of channels in Go is to signal events between code running in different
goroutines. We are going to see a real-world example of this when we write our next
function.

The purpose of the function is to start a goroutine that continually calls the
readFromTwitter function (with the specified votes channel to receive the votes on) until
we signal that we want it to stop. And once it has stopped, we want to be notified through
another signal channel. The return of the function will be a channel of struct{}: a signal
channel.

Signal channels have some interesting properties that are worth taking a closer look at.
Firstly, the type sent down the channels is an empty struct{}, instances of which actually
take up zero bytes, since it has no fields. So, struct{}{} is a great memory-efficient option
for signaling events. Some people use bool types, which are also fine, although true and
false both take up a byte of memory.

Head over to http://play.golang.org and try this out for yourself.
The size of bool is one:

fmt.Println(reflect.TypeOf (true).Size()) = 1 On the other
hand, the size of struct{}{} is zero:
fmt.Println(reflect.TypeOf (struct{}{}).Size()) = 0

The signal channels also have a buffer size of 1, which means that execution will not get
blocked until something reads the signal from the channel.

[144]

http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org
http://play.golang.org

Building Distributed Systems and Working with Flexible Data

We are going to employ two signal channels in our code: one that we pass into our function
that tells our goroutine that it should stop and another (provided by the function) that
signals once the stopping is complete.

In twitter.go, add the following function:

func startTwitterStream(stopchan <-chan struct{}, votes chan<- string) <-
chan struct{} {

stoppedchan := make (chan struct{}, 1)
go func () |
defer func() |

stoppedchan <- struct{}{}
Q)
for {
select {
case <-stopchan:
log.Println("stopping Twitter...")
return
default:
log.Println("Querying Twitter...")
readFromTwitter (votes)

log.Println (" (waiting) ")
time.Sleep (10 * time.Second) // wait before
reconnecting

}
HO

return stoppedchan

}

In the preceding code, the first argument, stopchan, is a channel of type <-chan
struct{}, a receive-only signal channel. It is this channel that, outside the code, will signal
on, which will tell our goroutine to stop. Remember that it's receive-only inside this
function; the actual channel itself will be capable of sending. The second argument is the
votes channel on which votes will be sent. The return type of our function is also a signal
channel of type <-chan struct{}: a receive-only channel that we will use to indicate that
we have stopped.

These channels are necessary because our function triggers its own goroutine and
immediately returns; so without this, calling code would have no idea whether the
spawned code was still running or not.

[145]

Building Distributed Systems and Working with Flexible Data

The first thing we do in the start TwitterStream function is make our stoppedchan
argument, and defer the sending of struct{}{} to indicate that we have finished when our
function exits. Note that stoppedchan is a normal channel, so even though it is returned as
receive-only, we will be able to send it from within this function.

We then start an infinite for loop in which we select from one of two channels. The first is
stopchan (the first argument), which would indicate that it was time to stop and return
(thus triggering the deferred signaling on st oppedchan). If that hasn't happened, we will
call readFromTwitter (passing in the votes channel), which will go and load the options
from the database and open the connection to Twitter.

When the Twitter connection dies, our code will return, where we sleep for 10 seconds
using the time . S1leep function. This is to give the Twitter API rest in case it closed the
connection due to overuse. Once we've rested, we re-enter the loop and check on stopchan
again to see whether calling code wants us to stop or not.

To make this flow clear, we are logging out key statements that will not only help us debug
our code, but also let us peek into the inner workings of this somewhat complicated
mechanism.

Signal channels are a great solution for simple cases where all code lives
inside a single package. If you need to cross API boundaries, the context
package is the recommended way to deal with deadlines, cancelation and,
stopping since it was promoted to the standard library in Go 1.7.

Publishing to NSQ

Once our code successfully notices votes on Twitter and sends them down the votes
channel, we need a way to publish them into an NSQ topic; after all, this is the point of the
twittervotes program.

We will write a function called publishvotes, which will take the votes channel, this
time of type <-chan string (a receive only channel), and publish each string that is
received from it.

In our previous functions, the votes channel was of type chan<-

string, but this time, it's of the type <-chan string. You might think
this is a mistake or even that it means that we cannot use the same channel
for both, but you would be wrong. The channel we create later will be
made with make (chan string), neither receive nor only send, and can
act in both cases. The reason for using the <- operator on a channel in

[146]

Building Distributed Systems and Working with Flexible Data

arguments is to make the intent of what the channel will be used for clear,
or in the case where it is the return type, to prevent users from
accidentally sending on channels intended for receiving or vice versa. The
compiler will actually produce an error if they use such a channel
incorrectly.

Once the votes channel is closed (this is how the external code will tell our function to stop
working), we will stop publishing and send a signal down the returned stop signal channel.

Add the publishVotes function to main.go:

func publishVotes (votes <-chan string) <-chan struct{} {

stopchan := make (chan struct{}, 1)
pub, _ := nsg.NewProducer ("localhost:4150",
nsqg.NewConfig())
go func () {
for vote := range votes {
pub.Publish ("votes", [lbyte(vote)) // publish vote

}
log.Println("Publisher: Stopping")
pub.Stop ()
log.Println ("Publisher: Stopped")
stopchan <- struct{}{}

PO

return stopchan

}

Again, the first thing we do is create st opchan, which we later return, this time not
deferring the signaling but doing it inline by sending st ruct{}{} down stopchan.

The difference in how we handle stopchan is to show alternative options.
Within one code base, you should pick a style you like and stick with it
until a standard emerges within the community; in which case, we should
all go with that. It is also possible to close st opchan rather than send
anything down it, which will also unblock the code waiting on that
channel. But once a channel is closed, it cannot be reopened.

We then create an NSQ producer by calling NewProducer and connecting to the default
NSQ port on localhost using a default configuration. We start a goroutine, which uses
another great built-in feature of the Go language that lets us continually pull values from a
channel (in our case, the votes channel) just by doing a normal for. . .range operation on
it. Whenever the channel has no values, execution will be blocked until one comes down the
line. If the votes channel is closed, the for loop will exit.

[147]

Building Distributed Systems and Working with Flexible Data

To learn more about the power of channels in Go, it is highly
recommended that you seek out blog posts and videos by John Graham-
Cumming, in particular, one entitled A Channel Compendium that he
presented at Gophercon 2014 and which contains a brief history of
channels, including their origin (interestingly, John was also the guy who
successfully petitioned the British government to officially apologize for
its treatment of the late, great Alan Turing).

When the loop exits (after the votes channel is closed), the publisher is stopped, following
which the stopchan signal is sent. Did anything stand-out as unusual in the
publishVotes function? We are breaking a cardinal rule of Go by ignoring an error
(assigning it to an underscore variables; therefore dismissing it). As an additional exercise,
catch the error and deal with it in a way that seems suitable.

Gracefully starting and stopping programs

When our program is terminated, we want to do a few things before actually exiting,
namely closing our connection to Twitter and stopping the NSQ publisher (which actually
deregisters its interest in the queue). To achieve this, we have to override the default Ctrl +
C behavior.

The upcoming code blocks all go inside the main function; they are broken
up so that we can discuss each section before continuing.

Add the following code inside the main function:

var stoplock sync.Mutex // protects stop
stop := false
stopChan := make (chan struct{}, 1)
signalChan := make (chan os.Signal, 1)
go func() |
<-signalChan
stoplock.Lock ()
stop = true
stoplock.Unlock ()
log.Println("Stopping...")
stopChan <- struct{}{}
closeConn ()
Q)
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)

[148]

Building Distributed Systems and Working with Flexible Data

Here, we create a stop bool with an associated sync.Mutex function so that we can access
it from many goroutines at the same time. We then create two more signal channels,
stopChan and signalChan, and use signal.Notify to ask Go to send the signal down
signalChan when someone tries to halt the program (either with the SIGINT interrupt or
the SIGTERM termination POSIX signals). The st opChan function is how we indicate that
we want our processes to terminate, and we pass it as an argument to
startTwitterStream later.

We then run a goroutine that blocks waiting for the signal by trying to read from
signalChan; this is what the <- operator does in this case (it's trying to read from the
channel). Since we don't care about the type of signal, we don't bother capturing the object
returned on the channel. Once a signal is received, we set stop to t rue and close the
connection. Only when one of the specified signals is sent will the rest of the goroutine code
run, which is how we are able to perform teardown code before exiting the program.

Add the following piece of code (inside the main function) to open and defer the closing of
the database connection:

if err := dialdb(); err != nil {
log.Fatalln("failed to dial MongoDB:", err)

}
defer closedb ()

Since the readFromTwitter method reloads the options from the database each time and
because we want to keep our program updated without having to restart it, we are going to
introduce one final goroutine. This goroutine will simply call closeConn every minute,
causing the connection to die and cause readFromTwitter to be called all over again.
Insert the following code at the bottom of the main function to start all of these processes
and then wait for them to gracefully stop:

// start things
votes := make(chan string) // chan for votes
publisherStoppedChan := publishVotes (votes)
twitterStoppedChan := startTwitterStream(stopChan, votes)
go func () {
for {
time.Sleep (1l * time.Minute)
closeConn ()
stoplock.Lock ()
if stop {
stoplock.Unlock ()
return
}
stoplock.Unlock ()

[149]

Building Distributed Systems and Working with Flexible Data

O
<-twitterStoppedChan
close (votes)
<-publisherStoppedChan

First, we make the votes channel that we have been talking about throughout this section,
which is a simple channel of strings. Note that it is neither a send (chan<-) nor a receive (<-
chan) channel; in fact, making such channels makes little sense. We then call
publishVotes, passing in the votes channel for it to receive from and capturing the
returned stop signal channel as publisherStoppedChan. Similarly, we call
startTwitterStream, passing in our stopChan function from the beginning of the main
function and the votes channel for it to send to while capturing the resulting stop signal
channel as twitterStoppedChan.

We then start our refresher goroutine, which immediately enters an infinite for loop before
sleeping for a minute and closing the connection via the call to c1loseConn. If the stop bool
has been set to true (in that previous goroutine), we will break the loop and exit; otherwise,
we will loop around and wait another minute before closing the connection again. The use
of stoplock is important because we have two goroutines that might try to access the stop
variable at the same time, but we want to avoid collisions.

Once the goroutine has started, we block twitterStoppedChan by attempting to read
from it. When successful (which means the signal was sent on st opChan), we close the
votes channel, which will cause the publisher's for. . . range loop to exit and the
publisher itself to stop, after which the signal will be sent on publisherStoppedChan,
which we wait for before exiting.

Testing

To make sure our program works, we need to do two things: first, we need to create a poll
in the database, and second, we need to peer inside the messaging queue to see whether the
messages are indeed being generated by twittervotes.

In a terminal, run the mongo command to open a database shell that allows us to interact
with MongoDB. Then, enter the following commands to add a test poll:

> use ballots
switched to db ballots

> db.polls.insert ({"title":"Test poll", "options":
["happy", "sad", "fail", "win"]})

[150]

Building Distributed Systems and Working with Flexible Data

The preceding commands add a new item to the polls collection in the ballots database.
We are using some common words for options that are likely to be mentioned by people on
Twitter so that we can observe real tweets being translated into messages. You might notice
that our poll object is missing the results field; this is fine since we are dealing with
unstructured data where documents do not have to adhere to a strict schema. The counter
program we are going to write in the next section will add and maintain the results data
for us later.

Press Ctrl + C to exit the MongoDB shell and type the following command:

nsq_tail —--topic="votes" —--lookupd-http-
address=localhost:4161

The nsq_tail tool connects to the specified messaging queue topic and outputs any
messages that it notices. This is where we will validate that our twittervotes program is
sending messages.

In a separate terminal window, let's build and run the twittervotes program:

go build -o twittervotes
./twittervotes

Now switch back to the window running nsq_tail and note that messages are indeed
being generated in response to live Twitter activity.

If you don't see much activity, try to look up trending hash tags on Twitter
and add another poll containing these options.

Counting votes

The second program we are going to implement is the counter tool, which will be
responsible for watching out for votes in NSQ, counting them, and keeping MongoDB up to
date with the latest numbers.

Create a new folder called counter alongside twittervotes, and add the following code
to anew main.go file:

package main
import (

n flag"

n fmt n

[151]

Building Distributed Systems and Working with Flexible Data

"OS"

)

var fatalErr error

func fatal (e error) {
fmt.Println (e)
flag.PrintDefaults ()
fatalErr = e

t
func main () |
defer func() A
if fatalErr != nil {
os.Exit (1)

O
}

Normally when we encounter an error in our code, we use a call such as 1og.Fatal or
os.Exit, which immediately terminates the program. Exiting the program with a nonzero
exit code is important because it is our way of telling the operating system that something
went wrong, and we didn't complete our task successfully. The problem with the normal
approach is that any deferred functions we have scheduled (and therefore any teardown
code we need to run) won't get a chance to execute.

The pattern employed in the preceding code snippet lets us call the fatal function to
record that an error has occurred. Note that only when our main function exits will the
deferred function run, which in turn calls os.Exit (1) to exit the program with an exit
code of 1. Because the deferred statements are run in LIFO (last in, first out) order, the first
function we defer will be the last function to be executed, which is why the first thing we do
in the main function is defer the exiting code. This allows us to be sure that other functions
we defer will be called before the program exits. We'll use this feature to ensure that our
database connection gets closed regardless of any errors.

Connecting to the database

The best time to think about cleaning up resources, such as database connections, is
immediately after you have successfully obtained the resource; Go's defer keyword makes
this easy. At the bottom of the main function, add the following code:

log.Println ("Connecting to database...")

db, err := mgo.Dial("localhost")
if err !'= nil {

fatal (err)

return

[152]

Building Distributed Systems and Working with Flexible Data

defer func() {
log.Println("Closing database connection...")
db.Close ()

O

pollData := db.DB("ballots").C("polls")

This code uses the familiar mgo.Dial method to open a session to the locally running
MongoDB instance and immediately defers a function that closes the session. We can be
sure that this code will run before our previously deferred statement containing the exit
code (because deferred functions are run in the reverse order in which they were called).
Therefore, whatever happens in our program, we know that the database session will
definitely and properly close.

The log statements are optional, but they will help us see what's going on
when we run and exit our program.

At the end of the snippet, we use the mgo fluent API to keep a reference of the
ballots.polls data collection in the pol1Data variable, which we will use later to make
queries.

Consuming messages in NSQ

In order to count the votes, we need to consume the messages in the votes topic in NSQ,
and we'll need a place to store them. Add the following variables to the main function:

var counts map[string]int
var countsLock sync.Mutex

A map and a lock (sync.Mutex) is a common combination in Go because we will have
multiple goroutines trying to access the same map, and we need to avoid corrupting it by
trying to modify or read it at the same time.

Add the following code to the main function:

log.Println ("Connecting to nsqg...")

g, err := nsqg.NewConsumer ("votes", "counter", nsqg.NewConfig())
if err !'= nil {

fatal (err)

return

[153]

Building Distributed Systems and Working with Flexible Data

The NewConsumer function allows us to set up an object that will listen on the votes NSQ
topic, so when twittervotes publishes a vote on that topic, we can handle it in this
program. If NewConsumer returns an error, we'll use our fatal function to record it and
return.

Next, we are going to add the code that handles messages (votes) from NSQ:

g.AddHandler (nsqg.HandlerFunc (func (m *nsqg.Message) error {
countsLock.Lock ()
defer countsLock.Unlock ()
if counts == nil {
counts = make (map[string]int)
t
vote := string(m.Body)
counts[vote] ++
return nil

1)

We call the AddHandler method on nsq.Consumer and pass it a function that will be
called for every message received on the votes topic.

When a vote comes in, the first thing we do is lock the count sLock mutex. Next, we defer
the unlocking of the mutex for when the function exits. This allows us to be sure that while
NewConsumer is running, we are the only ones allowed to modify the map; others will have
to wait until our function exits before they can use it. Calls to the Lock method block
execution while the lock is in place, and it only continues when the lock is released by a call
to Unlock. This is why it's vital that every Lock call has an Unlock counterpart; otherwise,
we will deadlock our program.

Every time we receive a vote, we check whether counts is nil and make a new map if it is
because once the database has been updated with the latest results, we want to reset
everything and start at zero. Finally, we increase the int value by one for the given key and
return nil, indicating no errors.

Although we have created our NSQ consumer and added our handler function, we still
need to connect to the NSQ service, which we will do by adding the following code:

if err := g.ConnectToNSQLookupd("localhost:4161");
err !=nil {

fatal (err)

return

[154]

Building Distributed Systems and Working with Flexible Data

It is important to note that we are actually connecting to the HTTP port of
the nsqlookupd instance rather than NSQ instances; this abstraction
means that our program doesn't need to know where the messages are
coming from in order to consume them. If we fail to connect to the server
(for instance, if we forget to start it), we'll get an error, which we report to
our fatal function before immediately returning.

Keeping the database updated

Our code will listen out for votes and keep a map of the results in the memory, but that
information is trapped inside our program so far. Next, we need to add the code that will
periodically push the results to the database. Add the following doCount function:

func doCount (countsLock *sync.Mutex, counts *map[string]int, pollData
*mgo.Collection) {

countsLock.Lock ()

defer countsLock.Unlock ()

if len(*counts) == 0 {
log.Println ("No new votes, skipping database update")
return

}
log.Println ("Updating database...")
log.Println (*counts)

ok := true
for option, count := range *counts {
sel := bson.M{"options": bson.M{"$in":
[Istring{option}}}
up := bson.M{"$inc": bson.M{"results." +
option:count}}
if _, err := pollData.UpdateAll(sel, up); err != nil {
log.Println("failed to update:", err)
ok = false
}
}
if ok {
log.Println ("Finished updating database...")
*counts = nil // reset counts

}

When our doCount function runs, the first thing we do is lock count sLock and defer its
unlocking. We then check to see whether there are any values in the count s map. If there
aren't, we just log that we're skipping the update and wait for next time.

[155]

Building Distributed Systems and Working with Flexible Data

We are taking all arguments in as pointers (note the * character before the type name)
because we want to be sure that we are interacting with the underlying data itself and not a
copy of it. For example, the *counts = nil line will actually reset the underlying map to
nil rather than just invalidate our local copy of it. If there are some votes, we iterate over
the counts map, pulling out the option and the number of votes (since the last update), and
use some MongoDB magic to update the results.

MongoDB stores BSON (short for Binary JSON) documents internally,
which are easier to traverse than normal JSON documents, and that is why
the mgo package comes with the mgo/bson encoding package. When using
mgo, we will often use bson types, such as the bson.M map, to describe
concepts for MongoDB.

We first create the selector for our update operation using the bson .M shortcut type, which
is similar to creating map [string]interface{} types. The selector we create here will
look something like this:

{
"options": {
"$in": ["happy"]
}
}

In MongoDB, the preceding BSON specifies that we want to select polls where "happy" is
one of the items in the options array.

Next, we use the same technique to generate the update operation, which looks something
like this:

{
"Sinc": {
"results.happy": 3
}
}

In MongoDB, the preceding BSON specifies that we want to increase the results.happy
field by three. If there is no results map in the poll, one will be created, and if there is no
happy key inside results, zero will be assumed.

We then call the UpdateAll method in our pollsData query to issue the command to the
database, which will in turn update every poll that matches the selector (contrast this to the
Update method, which will update only one). If something goes wrong, we report it and set
the ok Boolean to false. If all goes well, we set the count s map to nil, since we want to
reset the counter.

[156]

Building Distributed Systems and Working with Flexible Data

We are going to specify updateDuration as a constant at the top of the file, which will
make it easy for us to change when we are testing our program. Add the following code
above the main function:

const updateDuration = 1 * time.Second

Next, we will add time.Ticker and make sure our doCount function gets called in the
same select block that we use when responding to Ctrl + C.

Responding to Ctrl + C

The last thing to do before our program is ready is set up a select block that periodically
calls doCount and be sure that our main function waits for operations to complete before
exiting, like we did in our twittervotes program. Add the following code at the end of
the main function:

ticker := time.NewTicker (updateDuration)
termChan := make (chan os.Signal, 1)
signal.Notify (termChan, syscall.SIGINT, syscall.SIGTERM, syscall.SIGHUP)
for {
select {
case <-ticker.C:
doCount (&countsLock, &counts,pollData) case <- termChan:ticker.Stop()
g.Stop ()

case <—-qg.StopChan:
// finished
return

}

The time.Ticker function is a type that gives us a channel (via the C field) on which the
current time is sent at the specified interval (in our case, updateDuration). We use this in a
select block to call our doCount function while termChan and g. StopChan are quiet.

To handle termination, we have employed a slightly different tactic than before. We trap the
termination event, which will cause a signal to go down termChan when we hit Ctrl + C.
Next, we start an infinite loop, inside which we use the select structure to allow us to run
the code if we receive something on either termChan or StopChan of the consumer.

[157]

Building Distributed Systems and Working with Flexible Data

In fact, we will only ever get a termChan signal first in response to a Ctrl + C press, at which
point we stop time. Ticker and ask the consumer to stop listening for votes. Execution
then re-enters the loop and blocks until the consumer reports that it has indeed stopped by
signaling on its St opChan function. When that happens, we're done and we exit, at which
point our deferred statement runs, which, if you remember, tidies up the database session.

Running our solution

It's time to see our code in action. Ensure that you have nsglookupd, nsqd, and mongod
running in separate terminal windows with the following;:

nsqglookupd
nsqd —--lookupd-tcp—-address=127.0.0.1:4160
mongod ——-dbpath ./db

If you haven't already done so, make sure the twittervotes program is running too.
Then, in the counter folder, build and run our counting program:

go build -o counter
. /counter

You should see a periodic output describing what work counter is doing, such as the
following:

No new votes, skipping database update
Updating database...

map[win:2 happy:2 fail:1]

Finished updating database...

No new votes, skipping database update
Updating database...

map [win: 3]

Finished updating database...

The output will, of course, vary since we are actually responding to real,
live activity on Twitter.

[158]

Building Distributed Systems and Working with Flexible Data

We can see that our program is receiving vote data from NSQ and reports to update the
database with the results. We can confirm this by opening the MongoDB shell and querying
the poll data to see whether the results map is being updated. In another terminal
window, open the MongoDB shell:

mongo
Ask it to use the ballots database:

> use ballots
switched to db ballots

Use the find method with no arguments to get all polls (add the pretty method to the end
to get nicely formatted JSON):

> db.polls.find () .pretty ()

{
"_id" : ObjectId("53e2a3afffbff195c2e09a02"),
"options" : [
"happy", "sad", "fail", "win"
]I
"results" : {
"fail" : 159, "win" : 711,
"happy" : 233, "sad" : 166,
}I
title" : "Test poll"
}

The results map is indeed updated, and at any point in time, it contains the total number
of votes for each option.

Summary

In this chapter, we covered a lot of ground. We learned different techniques to gracefully
shut down programs using signaling channels, which is especially important when our
code has some work to do before it can exit. We saw that deferring the reporting of fatal
errors at the start of our program can give our other deferred functions a chance to execute
before the process ends.

We also discovered how easy it is to interact with MongoDB using the mgo package and
how to use BSON types when describing concepts for the database. The bson .M alternative
tomap [string]interface{} helps us keep our code more concise while still providing all
the flexibility we need when working with unstructured or schemaless data.

[159]

Building Distributed Systems and Working with Flexible Data

We learned about message queues and how they allow us to break apart the components of
a system into isolated and specialized micro-services. We started an instance of NSQ by first
running the nsqlookupd lookup daemon before running a single nsqd instance and
connecting them via a TCP interface. We were then able to publish votes to the queue in
twittervotes and connect to the lookup daemon to run a handler function for every vote
sent in our counter program.

While our solution is actually performing a pretty simple task, the architecture we have put
together in this chapter is capable of doing some pretty great things.

We eliminated the need for our twittervotes and counter programs to run on the same
machine-as long as they can both connect to the appropriate NSQ, they will function as
expected regardless of where they are running.

We can distribute our MongoDB and NSQ nodes across many physical machines, which
would mean our system is capable of gigantic scale-whenever resources start running low,
we can add new boxes to cope with the demand.

When we add other applications that need to query and read the results from polls, we can
be sure that our database services are highly available and capable of delivering.

We can spread our database across geographical expanses, replicating data for backup so
we don't lose anything when disaster strikes.

We can build a multinode, fault-tolerant NSQ environment, which means that when our
twittervotes program learns of interesting tweets, there will always be some place to
send the data.

We can write many more programs that generate votes from different sources; the only
requirement is that they know how to put messages into NSQ.

In the next chapter, we will build a RESTful data service of our own, through which we will
expose the functionality of our social polling application. We will also build a web interface
that lets users create their own polls and have the results visualized.

[160]

Exposing Data and
Functionality through a RESTful
Data Web Service API

In the previous chapter, we built a service that reads tweets from Twitter, counts the hash
tag votes, and stores the results in a MongoDB database. We also used the MongoDB shell
to add polls and see the poll results. This approach is fine if we are the only ones using our
solution, but it would be madness if we released our project and expected users to connect
directly to our MongoDB instance in order to use the service we built.

Therefore, in this chapter, we are going to build a RESTful data service through which the
data and functionality will be exposed. We will also put together a simple website that
consumes the new API. Users may then either use our website to create and monitor polls
or build their own application on top of the web services we release.

Code in this chapter depends on the code in Chapter 5, Building
Distributed Systems and Working with Flexible Data, so it is recommended
that you complete that chapter first, especially since it covers setting up
the environment that the code in this chapter runs on.

Specifically, you will learn:

e How wrapping http.HandlerFunc types can give us a simple but powerful
pipeline of execution for our HTTP requests

e How to safely share data between HTTP handlers using the context package

e Best practices for the writing of handlers responsible for exposing data

Exposing Data and Functionality through a RESTful Data Web Service API

e Where small abstractions can allow us to write the simplest possible
implementations now but leave room to improve them later without changing
the interface

¢ How adding simple helper functions and types to our project will prevent us
from (or at least defer) adding dependencies on external packages

RESTful API design

For an API to be considered RESTful, it must adhere to a few principles that stay true to the
original concepts behind the Web and are already known to most developers. Such an
approach allows us to make sure we aren't building anything strange or unusual into our
API while also giving our users a head start toward consuming it, since they are already
familiar with its concepts.

Some of the important RESTful design concepts are:

e HTTP methods describe the kind of action to take; for example, GET methods will
only ever read data, while POST requests will create something

Data is expressed as a collection of resources

Actions are expressed as changes to data

URLs are used to refer to specific data

HTTP headers are used to describe the kind of representation coming into and
going out of the server

The following table shows the HTTP methods and URLs that represent the actions that we
will support in our API, along with a brief description and an example use case of how we
intend the call to be used.

Request Description |Use case

GET /polls Read all polls | Show a list of polls to the users

GET /polls/{id} Read the poll | Show details or results of a specific poll
POST /polls Create a poll |Create a new poll

DELETE /polls/{id} |Delete apoll |Delete a specific poll

The {id} placeholder represents where in the path the unique ID for a poll will go.

[162]

Exposing Data and Functionality through a RESTful Data Web Service API

Sharing data between handlers

Occasionally, we need to share a state between our middleware and handlers. Go 1.7
brought the context package into the standard library, which gives us, among other
things, a way to share basic request-scoped data.

Every http.Request method comes with a context .Context object accessible via

the request.Context () method, from which we can create new context objects. We can
then call request .WithContext () to get a (cheap) shallow copied http.Request method
that uses our new Context object.

To add a value, we can create a new context (based on the existing one from the request) via
the context .Withvalue method:

ctx := context.WithValue (r.Context (), "key", "value")

While you can technically store any type of data using this approach, it is
only recommended that you store simple primitive types such as Strings
and Integers and do not use it to inject dependencies or pointers to other
objects that your handlers might need. Later in this chapter, we will
explore patterns to access dependencies, such as a database connection.

In middleware code, we can then use our new ctx object when we pass execution to the
wrapped handler:

Handler.ServeHTTP (w, r.WithContext (ctx))

It is worth exploring the documentation for the context package at https://golang.org/pk
g/context/ in order to find out what other features it provides.

We are going to use this technique to allow our handlers to have access to an API key that is
extracted and validated elsewhere.

Context keys

Setting a value in a context object requires us to use a key, and while it might seem obvious
that the value argument is of type interface{}, which means we can (but not necessarily
should) store anything we like, it might surprise you to learn the type of the key:

func WithValue (parent Context, key, wval interface{}) Context

[163]

https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/
https://golang.org/pkg/context/

Exposing Data and Functionality through a RESTful Data Web Service API

The key is also an interface{}. This means we are not restricted to using only strings as
the key, which is good news when you consider how disparate code might well attempt to
set values with the same name in the same context, which would create problems.

Instead, a pattern of a more stable way of keying values is emerging from the Go
community (and is already used in some places inside the standard library). We are going
to create a simple (private) st ruct for our keys and a helper method in order to get the
value out of the context.

Add the essential minimal main. go file inside a new api folder:

package main
func main () {}

Add a new type called contextKey:

type contextKey struct {
name string

}

This structure contains only the name of the key, but pointers to it will remain unique even
if the name field is the same in two keys. Next, we are going to add a key to store our API
key value in:

var contextKeyAPIKey = &contextKey{"api-key"}

It is good practice to group related variables together with a common prefix; in our case, we
can start the name all of our context key types with the contextKey prefix. Here, we have
created a key called contextKeyAPIKey, which is a pointer to a contextKey type, setting
the name as api-key.

Next, we are going to write a helper that will, given a context, extract the key:

func APIKey (ctx context.Context) (string, bool) {
key, ok := ctx.Value (contextKeyAPIKey) . (string)
return key, ok

}

The function takes context .Context and returns the API key string along with an ok bool
indicating whether the key was successfully obtained and cast to a string or not. If the key is
missing, or if it's the wrong type, the second return argument will be false, but our code will
not panic.

[164]

Exposing Data and Functionality through a RESTful Data Web Service API

Note that contextKey and contextKeyAPIKey are internal (they start with a lowercase
letter) but APIKey will be exported. In main packages, this doesn't really matter, but if you
were writing a package, it's nice to know that the complexity of how you are storing and
extracting data from a context is hidden from users.

Wrapping handler functions

We are going to utilize one of the most valuable patterns to learn when building services
and websites in Go, something we already explored a little in chapter 2, Adding User
Accounts: wrapping handlers. We have seen how we can wrap http.Handler types to run
code before and after our main handlers execute, and we are going to apply the same
technique to http.HandlerFunc function alternatives.

API keys

Most web APIs require clients to register an API key for their application, which they are
asked to send along with every request. Such keys have many purposes, ranging from
simply identifying which app the requests are coming from to addressing authorization
concerns in situations where some apps are only able to do limited things based on what a
user has allowed. While we don't actually need to implement API keys for our application,
we are going to ask clients to provide one, which will allow us to add an implementation
later, while keeping the interface constant.

We are going to add our first HandlerFunc wrapper function called withAPIKey to the
bottom of main.go:

func withAPIKey (fn http.HandlerFunc) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {

key := r.URL.Query () .Get ("key")

if !isValidAPIKey (key) {
respondErr (w, r, http.StatusUnauthorized, "invalid
API key")
return

}

ctx := context.WithValue (r.Context (),

contextKeyAPIKey, key)
fn(w, r.WithContext (ctx))
}

[165]

Exposing Data and Functionality through a RESTful Data Web Service API

As you can see, our withAPIKey function both takes an http.HandlerFunc type as an
argument and returns one; this is what we mean by wrapping in this context.

The withAPIKey function relies on a number of other functions that we are yet to write, but
you can clearly see what's going on. Our function immediately returns a

new http.HandlerFunc type that performs a check for the key query parameter by
calling i svalidAPIKey. If the key is deemed invalid (by the return of false), we respond
with an invalid API key error; otherwise, we put the key into the context and call the
next handler. To use this wrapper, we simply pass an http.HandlerFunc type into this
function in order to enable the key parameter check. Since it returns

an http.HandlerFunc type too, the result can then be passed on to other wrappers or
given directly to the http.HandleFunc function to actually register it as the handler for a
particular path pattern.

Let's add our isvalidaPIKey function next:

func isValidAPIKey (key string) bool {
return key == "abcl23"
}

For now, we are simply going to hardcode the API key as abc123; anything else will
return false and therefore be considered invalid. Later, we can modify this function to
consult a configuration file or database to check the authenticity of a key without affecting
how we use the isvValidAPIKey method or the withAPIKey wrapper.

Cross-origin resource sharing

The same-origin security policy mandates that AJAX requests in web browsers be allowed
only for services hosted on the same domain, which would make our API fairly limited
since we won't necessarily be hosting all of the websites that use our web service. The
CORS (Cross-origin resource sharing) technique circumnavigates the same-origin policy,
allowing us to build a service capable of serving websites hosted on other domains. To do
this, we simply have to set the Access-Control-Allow-Origin header in response to *.
While we're at it, since we're going to use the Location header in our create poll call — we'll
allow this header to be accessible by the client too, which can be done by listing it in

the Access—Control-Expose-Headers header. Add the following code to main.go:

func withCORS (fn http.HandlerFunc) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {

w.Header () .Set ("Access-Control-Allow-Origin", "*")

w.Header () .Set ("Access—-Control-Expose—Headers",
"Location")

fn(w, r)

[1661

Exposing Data and Functionality through a RESTful Data Web Service API

}
}

This is the simplest wrapper function yet; it just sets the appropriate header on the
Responselriter type and calls the specified http.HandlerFunc type.

In this chapter, we are handling CORS explicitly so we can understand
exactly what is going on; for real production code, you should consider
employing an open source solution, such as https://github.com/faster

ness/cors.

Injecting dependencies

Now that we can be sure that a request has a valid API key and is CORS-compliant, we
must consider how handlers will connect to the database. One option is to have each
handler dial its own connection, but this isn't very DRY (Don't Repeat Yourself) and leaves
room for potentially erroneous code, such as code that forgets to close a database session
once it is finished with it. It also means that if we wanted to change how we connected to
the database (perhaps we want to use a domain name instead of a hardcoded IP address),
we might have to modify our code in many places, rather than one.

Instead, we will create a new type that encapsulates all the dependencies for our handlers
and construct it with a database connection in main. go.

Create a new type called Server:

// Server is the API server.
type Server struct {
db *mgo.Session

}

Our handler functions will be methods of this server, which is how they will be able to
access the database session.

Responding

A big part of any API is responding to requests with a combination of status codes, data,
errors, and sometimes headers — the net /ht tp package makes all of this very easy to do.
One option we have, which remains the best option for tiny projects or even the early stages
of big projects, is to just build the response code directly inside the handler.

[167]

https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors
https://github.com/fasterness/cors

Exposing Data and Functionality through a RESTful Data Web Service API

As the number of handlers grows, however, we will end up duplicating a lot of code and
sprinkling representation decisions all over our project. A more scalable approach is to
abstract the response code into helper functions.

For the first version of our API, we are going to speak only JSON, but we want the
flexibility to add other representations later if we need to.

Create a new file called respond. go and add the following code:

func decodeBody (r *http.Request, v interface{}) error {
defer r.Body.Close ()
return json.NewDecoder (r.Body) .Decode (v)

}
func encodeBody (w http.ResponseWriter, r *http.Request, v interface{})
error A

return json.NewEncoder (w) .Encode (v)

}

These two functions abstract the decoding and encoding of data from and to the Request
and ResponseWriter objects, respectively. The decoder also closes the request body,
which is recommended. Although we haven't added much functionality here, it means that
we do not need to mention JSON anywhere else in our code, and if we decide to add
support for other representations or switch to a binary protocol instead, we only need to
touch these two functions.

Next, we are going to add a few more helpers that will make responding even easier. In
respond. go, add the following code:

func respond(w http.ResponseWriter, r *http.Request,
status int, data interface{}) {
w.WriteHeader (status)
if data !'= nil {
encodeBody (w, r, data)
}
}

This function makes it easy to write the status code and some data to the ResponsewWriter
object using our encodeBody helper.

Handling errors is another important aspect that is worth abstracting. Add the
following respondErr helper:

func respondErr (w http.ResponseWriter, r *http.Request,

status int, args ...interface{}) {
respond(w, r, status, mapl[stringlinterface{}{
"error": map([stringlinterface{}{

[168]

Exposing Data and Functionality through a RESTful Data Web Service API

"message": fmt.Sprint (args...),
o
H)
}

This method gives us an interface similar to the respond function, but the data written will
be enveloped in an error object in order to make it clear that something went wrong.
Finally, we can add an HTTP-error-specific helper that will generate the correct message for
us using the http.statusText function from the Go standard library:

func respondHTTPErr (w http.ResponseWriter, r *http.Request, status int) {
respondErr (w, r, status, http.StatusText (status))
}

Note that these functions are all dog food, which means that they use each other (as in,
eating your own dog food), which is important since we want actual responding to happen
in only one place for if (or more likely, when) we need to make changes.

Understanding the request

The http.Request object gives us access to every piece of information we might need
about the underlying HTTP request; therefore, it is worth glancing through the net /http
documentation to really get a feel for its power. Examples include, but are not limited to,
the following:

e The URL, path, and query string

e The HTTP method

e Cookies

e Files

e Form values

e The referrer and user agent of requester
e Basic authentication details

¢ The request body

¢ The header information

[169]

Exposing Data and Functionality through a RESTful Data Web Service API

There are a few things it doesn't address, which we need to either solve ourselves or look to
an external package to help us with. URL path parsing is one such example — while we can
access a path (such as /people/1/books/2) as a string via the http.Request

type's URL.Path field, there is no easy way to pull out the data encoded in the path, such as
the people ID of 1 or the book ID of 2.

A few projects do a good job of addressing this problem, such as Goweb or
Gorillz's mux package. They let you map path patterns that contain
placeholders for values that they then pull out of the original string and
make available to your code. For example, you can map a pattern

of /users/{userID}/comments/{commentID}, which will map paths
such as /users/1/comments/2. In your handler code, you can then get
the values by the names placed inside the curly braces rather than having
to parse the path yourself.

Since our needs are simple, we are going to knock together a simple path-parsing utility; we
can always use a different package later if we have to, but that would mean adding a
dependency to our project.

Create a new file called path. go and insert the following code:

package main
import (
"strings"
)
const PathSeparator = "/"
type Path struct {
Path string
D string
¥
func NewPath(p string) *Path {
var id string
p = strings.Trim(p, PathSeparator)

s := strings.Split (p, PathSeparator)
if len(s) > 1 {
id = s[len(s)-1]
p = strings.Join(s[:len(s)-1], PathSeparator)

}
return &Path{Path: p, ID: id}
}
func (p *Path) HasID() bool {
return len(p.ID) > O
}

[170]

Exposing Data and Functionality through a RESTful Data Web Service API

This simple parser provides a NewPath function that parses the specified path string and
returns a new instance of the Path type. Leading and trailing slashes are trimmed

(using strings.Trim) and the remaining path is split (using strings.sSplit) by

the PathSeparator constant, which is just a forward slash. If there is more than one
segment (len (s) > 1), the last one is considered to be the ID. We re-slice the slice of
strings to select the last item for the ID using s [1en (s) -1] and the rest of the items for the
remainder of the path using s [:1en (s) -1]. On the same lines, we also rejoin the path
segments with the PathSeparator constant to form a single string containing the path
without the ID.

This supports any collection/id pair, which is all we need for our API The following
table shows the state of the Path type for the given original path string:

Original path string | Path ID |HasID
/ / nil|false
/people/ people|nil|false
/people/1/ people|1 true

Serving our API with one function

A web service is nothing more than a simple Go program that binds to a specific HTTP
address and port and serves requests, so we get to use all our command-line tool writing
knowledge and techniques.

We also want to ensure that our main function is as simple and modest as
possible, which is always a goal of coding, especially in Go.

Before writing our main function, let's look at a few design goals of our API program:

e We should be able to specify the HTTP address and port to which our API listens
and the address of the MongoDB instances without having to recompile the
program (through command-line flags)

We want the program to gracefully shut down when we terminate it, allowing the
in-flight requests (requests that are still being processed when the termination
signal is sent to our program) to complete

[171]

Exposing Data and Functionality through a RESTful Data Web Service API

¢ We want the program to log out status updates and report errors properly

Atop the main.go file, replace the main function placeholder with the following code:

func main () {
var (
addr = flag.String("addr", ":8080", "endpoint
address")
mongo = flag.String("mongo", "localhost", "mongodb
address")
)
log.Println("Dialing mongo", *mongo)
db, err := mgo.Dial (*mongo)
if err !'= nil {
log.Fatalln("failed to connect to mongo:", err)

}
defer db.Close ()

s := &Server{
db: db,
}
mux := http.NewServeMux ()

mux .HandleFunc ("/polls/",
withCORS (withAPIKey (s.handlePolls)))
log.Println("Starting web server on", *addr)
http.ListenAndServe (":8080", mux)
log.Println("Stopping...")
}

This function is the entirety of our API main function. The first thing we do is specify two
command-line flags, addr and mongo, with some sensible defaults and ask the f1ag
package to parse them. We then attempt to dial the MongoDB database at the specified
address. If we are unsuccessful, we abort with a call to 1og.Fatalln. Assuming the
database is running and we are able to connect, we store the reference in the db variable
before deferring the closing of the connection. This ensures that our program properly
disconnects and tidies up after itself when it ends.

We create our server and specify the database dependency. We are calling
our server s, which some people think is a bad practice because it's
difficult to read code referring to a single letter variable and know what it
is. However, since the scope of this variable is so small, we can be sure that
its use will be very near to its definition, removing the potential for
confusion.

[172]

Exposing Data and Functionality through a RESTful Data Web Service API

We then create a new http. ServeMux object, which is a request multiplexer provided by
the Go standard library, and register a single handler for all requests that begin with
the /polls/ path. Note that the handlePolls handler is a method on our server, and this

is how it will be able to access the database.

Using handler function wrappers

It is when we call HandleFunc on the ServeMux handler that we are making use of our
handler function wrappers with this line:

withCORS (withAPIKey (handlePolls))

Since each function takes an http.HandlerFunc type as an argument and also returns one,
we are able to chain the execution just by nesting the function calls, as we have done
previously. So when a request comes in with a path prefix of /pol1ls/, the program will
take the following execution path:

1. The withCORS function is called, which sets the appropriate header.

2. The withAPIKey function is called next, which checks the request for an API key
and aborts if it's invalid or else calls the next handler function.

3. The handlePolls function is then called, which may use the helper functions
in respond. go to write a response to the client.

4. Execution goes back to withAPIKey, which exits.

5. Execution finally goes back to withCORS, which exits.

Handling endpoints

The final piece of the puzzle is the handlePolls function, which will use the helpers to
understand the incoming request and access the database and generate a meaningful
response that will be sent back to the client. We also need to model the poll data that we
were working with in the previous chapter.

Create a new file called polls.go and add the following code:
package main

import "gopkg.in/mgo.v2/bson"
type poll struct {

D bson.ObjectId “bson:"_id" Jjson:"id""
Title string “Json:"title"®
Options []string "json:"options"”

[173]

Exposing Data and Functionality through a RESTful Data Web Service API

Results map[string]int "~ Json:"results,omitempty""
APIKey string "Jjson:"apikey"®
}

Here, we define a structure called pol1, which has five fields that in turn describe the polls
being created and maintained by the code we wrote in the previous chapter. We have also
added the APIKey field, which you probably wouldn't do in the real world but which will
allow us to demonstrate how we extract the API key from the context. Each field also has a
tag (two in the 1D case), which allows us to provide some extra metadata.

Using tags to add metadata to structs

Tags are just a string that follows a field definition within a struct type on the same line.
We use the black tick character to denote literal strings, which means we are free to use
double quotes within the tag string itself. The reflect package allows us to pull out the
value associated with any key; in our case, both bson and json are examples of keys, and
they are each key/value pair separated by a space character. Both the encoding/json

and gopkg.in/mgo.v2/bson packages allow you to use tags to specify the field name that
will be used with encoding and decoding (along with some other properties) rather than
having it infer the values from the name of the fields themselves. We are using BSON to talk
with the MongoDB database and JSON to talk to the client, so we can actually specify
different views of the same st ruct type. For example, consider the ID field:

ID bson.ObjectId "bson:"_id" json:"id""

The name of the field in Go is 1D, the JSON field is id, and the BSON field is _id, which is
the special identifier field used in MongoDB.

Many operations with a single handler

Because our simple path-parsing solution cares only about the path, we have to do some
extra work when looking at the kind of RESTful operation the client is making. Specifically,
we need to consider the HTTP method so that we know how to handle the request. For
example, a GET call to our /polls/ path should read polls, where a POST call would create
a new one. Some frameworks solve this problem for you by allowing you to map handlers
based on more than the path, such as the HTTP method or the presence of specific headers
in the request. Since our case is ultra simple, we are going to use a simple switch case.
Inpolls.go, add the handlePolls function:

func (s *Server) handlePolls(w http.ResponseWriter,
r *http.Request) {

[174]

Exposing Data and Functionality through a RESTful Data Web Service API

switch r.Method {
case "GET":
s.handlePollsGet (w, r)
return
case "POST":
s.handlePollsPost (w, r)
return
case "DELETE":
s.handlePollsDelete (w, r)
return

}

// not found

respondHTTPErr (w, r, http.StatusNotFound)

}

We switch on the HTTP method and branch our code depending on whether it

is GET, POST, or DELETE. If the HTTP method is something else, we just respond with a 404
http.StatusNotFound error. To make this code compile, you can add the following
function stubs underneath the handlePolls handler:

func (s *Server) handlePollsGet (w http.ResponseWriter,
r *http.Request) {
respondErr (w, r, http.StatusInternalServerError,
errors.New ("not
implemented"))

}
func (s *Server) handlePollsPost (w http.ResponseWriter,

r *http.Request) {

respondErr (w, r, http.StatusInternalServerError,
errors.New ("not
implemented"))

}
func (s *Server) handlePollsDelete(w http.ResponseWriter,

r *http.Request) {

respondErr (w, r, http.StatusInternalServerError,
errors.New ("not
implemented"))

In this section, we learned how to manually parse elements of the requests
(the HTTP method) and make decisions in code. This is great for simple
cases, but it's worth looking at packages such as Gorilla's mux package for
some more powerful ways of solving these problems. Nevertheless,
keeping external dependencies to a minimum is a core philosophy of
writing good and contained Go code.

[175]

Exposing Data and Functionality through a RESTful Data Web Service API

Reading polls

Now it's time to implement the functionality of our web service. Add the following code:

func (s *Server) handlePollsGet (w http.ResponseWriter,
r *http.Request) {
session := s.db.Copy ()
defer session.Close()
c := session.DB("ballots").C("polls")
var g *mgo.Query
p := NewPath(r.URL.Path)
if p.HasID() A
// get specific poll
g = c.FindId(bson.ObjectIdHex (p.ID))
} else {
// get all polls
g = c.Find(nil)
}

var result []*poll

if err := g.All(&result); err != nil {
respondErr (w, r, http.StatusInternalServerError, err)
return

t
respond(w, r, http.StatusOK, é&result)
t

The very first thing we do in each of our sub handler functions is create a copy of the
database session that will allow us to interact with MongoDB. We then use mgo to create an
object referring to the polls collection in the database — if you remember, this is where our
polls live.

We then build up an mgo . Query object by parsing the path. If an ID is present, we use the
FindId method on the polls collection; otherwise, we pass nil to the Find method, which
indicates that we want to select all the polls. We are converting the ID from a string to
abson.ObjectId type with the Object IdHex method so that we can refer to the polls
with their numerical (hex) identifiers.

Since the 211 method expects to generate a collection of poll objects, we define the result
as []*poll or a slice of pointers to poll types. Calling the A11 method on the query will
cause mgo to use its connection to MongoDB to read all the polls and populate the result
object.

[176]

Exposing Data and Functionality through a RESTful Data Web Service API

For small scale, such as a small number of polls, this approach is fine, but
as the polls grow, we will need to consider a more sophisticated approach.
We can page the results by iterating over them using the Iter method on
the query and using the Limit and Skip methods, so we do not try to
load too much data into the memory or present too much information to
users in one go.

Now that we have added some functionality, let's try out our API for the first time. If you
are using the same MongoDB instance that we set up in the previous chapter, you should
already have some data in the pol1s collection; to see our API working properly, you
should ensure there are at least two polls in the database.

If you need to add other polls to the database, in a terminal, run the mongo command to
open a database shell that will allow you to interact with MongoDB. Then, enter the
following commands to add some test polls:

> use ballots

switched to db ballots

> db.polls.insert ({"title":"Test poll", "options":
["one" , "twoﬂ , "three"] })

> db.polls.insert ({"title":"Test poll two","options":
["four" , "five"’ "six"] })

In a terminal, navigate to your api folder and build and run the project:

go build -o api
./api

Now make a GET request to the /polls/ endpoint by navigating
tohttp://localhost:8080/polls/?key=abcl123 in your browser; remember to include
the trailing slash. The result will be an array of polls in the JSON format.

Copy and paste one of the IDs from the polls list and insert it before the ? character in the
browser to access the data for a specific poll, for

example, http://localhost:8080/polls/5415b060a02cd4adb487c3ae?key=abcl23.
Note that instead of returning all the polls, it only returns one.

Test the API key functionality by removing or changing the key parameter
to see what the error looks like.

[177]

Exposing Data and Functionality through a RESTful Data Web Service API

You might have also noticed that although we are only returning a single poll, this poll
value is still nested inside an array. This is a deliberate design decision made for two
reasons: the first and most important reason is that nesting makes it easier for users of the
API to write code to consume the data. If users are always expecting a JSON array, they can
write strong types that describe that expectation rather than having one type for single polls
and another for collections of polls. As an API designer, this is your decision to make. The
second reason we left the object nested in an array is that it makes the API code simpler,
allowing us to just change the mgo . Query object and leave the rest of the code the same.

Creating a poll

Clients should be able to make a POST request to /polls/ in order to create a poll. Let's
add the following code inside the POST case:

func (s *Server) handlePollsPost (w http.ResponseWriter,
r *http.Request) {

session := s.db.Copy ()

defer session.Close()

c := session.DB("ballots").C("polls")

var p poll

if err := decodeBody(r, &p); err != nil {

respondErr (w, r, http.StatusBadRequest, "failed to
read poll from request", err)
return
}
apikey, ok := APIKey (r.Context ())
if ok {
p.APIKey = apikey
}
p.ID = bson.NewObjectId()
if err := c.Insert(p); err != nil {
respondErr (w, r, http.StatusInternalServerError,
"failed to insert
poll", err)
return
}
w.Header () .Set ("Location", "polls/"+p.ID.Hex())
respond (w, r, http.StatusCreated, nil)

[178]

Exposing Data and Functionality through a RESTful Data Web Service API

After we get a copy of the database session like earlier, we attempt to decode the body of
the request that, according to RESTful principles, should contain a representation of the poll
object the client wants to create. If an error occurs, we use the respondErr helper to write
the error to the user and immediately exit from the function. We then generate a new
unique ID for the poll and use the mgo package's Insert method to send it into the
database. We then set the Locat ion header of the response and respond with a 201
http.StatusCreated message, pointing to the URL from which the newly created poll
may be accessed. Some APIs return the object instead of providing a link to it; there is no
concrete standard so it's up to you as the designer.

Deleting a poll

The final piece of functionality we are going to include in our API is the ability to delete
polls. By making a request with the DELETE HTTP method to the URL of a poll (such
as/polls/5415b060a02cd4adb487c3ae), we want to be able to remove the poll from the
database and return a 200 Success response:

func (s *Server) handlePollsDelete(w http.ResponseWriter,
r *http.Request) {
session := s.db.Copy ()
defer session.Close()
c := session.DB("ballots").C("polls")
p := NewPath (r.URL.Path)
if 'p.HasID() {
respondErr (w, r, http.StatusMethodNotAllowed,
"Cannot delete all polls.")
return
}
if err := c.Removeld(bson.ObjectIdHex (p.ID)); err != nil {
respondErr (w, r, http.StatusInternalServerError,
"failed to delete poll", err)
return
}
respond (w, r, http.StatusOK, nil) // ok

[179]

Exposing Data and Functionality through a RESTful Data Web Service API

Similar to the GET case, we parse the path, but this time, we respond with an error if the
path does not contain an ID. For now, we don't want people to be able to delete all polls
with one request, and so we use the suitable StatusMethodNotAllowed code. Then, using
the same collection we used in the previous cases, we call RemoveId, passing the ID in the
path after converting it into a bson.0ObjectId type. Assuming things go well, we respond
with an http. StatusOK message with no body.

CORS support

In order for our DELETE capability to work over CORS, we must do a little extra work to
support the way CORS browsers handle some HTTP methods such as DELETE. A CORS
browser will actually send a preflight request (with an HTTP method of 0OPTIONS), asking
for permission to make a DELETE request (listed in the Access-Control-Request-Method
request header), and the API must respond appropriately in order for the request to work.
Add another case in the switch statement for OPTIONS:

case "OPTIONS":

w.Header () .Add ("Access-Control-Allow-Methods", "DELETE")
respond(w, r, http.StatusOK, nil)
return

If the browser asks for permission to send a DELETE request, the API will respond by setting
the Access-Control-Allow-Methods header to DELETE, thus overriding the default *
value that we set in our withCORS wrapper handler. In the real world, the value for the
Access-Control-Allow-Methods header will change in response to the request made,
but since DELETE is the only case we are supporting, we can hardcode it for now.

The details of CORS are out of the scope of this book, but it is
recommended that you research the particulars online if you intend to
build truly accessible web services and APIs. Head over to http://enable
-cors.org/ to get started.

Testing our API using curl

Curl is a command-line tool that allows us to make HTTP requests to our service so that we
can access it as though we were a real app or client consuming the service.

[180]

http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/
http://enable-cors.org/

Exposing Data and Functionality through a RESTful Data Web Service API

Windows users do not have access to curl by default and will need to seek
an alternative. Check out http://curl.haxx.se/dlwiz/?type=bin Or
search the Web for Windows curl alternative.

In a terminal, let's read all the polls in the database through our API. Navigate to your api
folder and build and run the project and also ensure MongoDB is running:

go build -o api
./api

We then perform the following steps:

1. Enter the following curl command that uses the -x flag to denote we want to
make a GET request to the specified URL:

curl -X GET http://localhost:8080/polls/?
key=abcl23

2. The output is printed after you hit Enter:

[{"id":"541727b08ead48e5e5d5bb189", "title" : "Best

Beatle?",

"options": ["john", "paul", "george", "ringo"l]},
{"id":"541728728ea48e5e5d5bbl8a", "title" : "Favorite

language?",

"options": ["go", "java", "javascript", "ruby"]}]

3. While it isn't pretty, you can see that the API returns the polls from your
database. Issue the following command to create a new poll:

curl --data '{"title":"test","options":
["one" , "twoﬂ , "three"] }]
-X POST http://localhost:8080/polls/?key=abcl23
4. Get the list again to see the new poll included:

curl -X GET http://localhost:8080/polls/?
key=abcl23

5. Copy and paste one of the IDs and adjust the URL to refer specifically to that poll:

curl -X GET
http://localhost:8080/polls/541727b08ead8e5e5d5bb189?

key=abcl23
[{"id":"541727b08ead48e5e5d5bb189", ", "title":"Best Beatle?",
"options": ["john", "paul", "george", "ringo"]}]

[181]

http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin

Exposing Data and Functionality through a RESTful Data Web Service API

6. Now we see only the selected poll. Let's make a DELETE request to remove the
poll:

curl -X DELETE
http://localhost:8080/polls/541727b08ead8e5e5d5bb189?
key=abcl23

7. Now when we get all the polls again, we'll see that the Beatles poll has gone:

curl -X GET http://localhost:8080/polls/?key=abcl23
[{"id":"541728728ea48e5e5d5bbl8a", "title" : "Favorite
language?", "options":["go", "java", "javascript", "ruby"]}]

So now that we know that our API is working as expected, it's time to build something that
consumes the API properly.

A web client that consumes the API

We are going to put together an ultra simple web client that consumes the capabilities and
data exposed through our API, allowing users to interact with the polling system we built
in the previous chapter and earlier in this chapter. Our client will be made up of three web

pages:
¢ An index.html page that shows all the polls
e A view.html page that shows the results of a specific poll
* A new.html page that allows users to create new polls

Create a new folder called web alongside the api folder and add the following content to
the main.go file:

package main
import (
"flag"
lllogll
"net/http"
)
func main () |
var addr = flag.String("addr", ":8081", "website address")
flag.Parse()
mux := http.NewServeMux ()
mux.Handle("/", http.StripPrefix("/",
http.FileServer (http.Dir ("public"))))
log.Println("Serving website at:", *addr)

[182]

Exposing Data and Functionality through a RESTful Data Web Service API

http.ListenAndServe (*addr, mux)
t

These few lines of Go code really highlight the beauty of the language and the Go standard
library. They represent a complete, highly scalable, static website hosting program. The
program takes an addr flag and uses the familiar http. ServeMux type to serve static files
from a folder called public.

Building the next few pages —while we're building the UI —consists of
writing a lot of HTML and JavaScript code. Since this is not Go code, if
you'd rather not type it all out, feel free to head over to the GitHub
repository for this book and copy and paste it from https://github.com/
matryer/goblueprints. You are also free to include the latest versions of
the Bootstrap and jQuery libraries as you see fit, but there may be
implementation differences with subsequent versions.

Index page showing a list of polls

Create the public folder inside web and add the index.html file after writing the
following HTML code in it:

<!DOCTYPE html>

<html>

<head>
<title>Polls</title>
<link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/

bootstrap.min.css">

</head>

<body>

</body>

</html>

We will use Bootstrap again to make our simple Ul look nice, but we need to add two
additional sections to the body tag of the HTML page. First, add the DOM elements that
will display the list of polls:

<div class="container">
<div class="col-md-4"></div>
<div class="col-md-4">
<h1>Polls</h1>
<ul id="polls">
Create new poll
</div>

[183]

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Exposing Data and Functionality through a RESTful Data Web Service API

<div class="col-md-4"></div>
</div>

Here, we are using Bootstrap's grid system to center-align our content that is made up of a
list of polls and a link to new.html, where users can create new polls.

Next, add the following script tags and JavaScript underneath that:

<script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<script>
S (function () {
var update = function () {

$.get ("http://localhost:8080/polls/?key=abcl23", null, null, "json")
.done (function (polls) {
$ ("#polls") .empty () ;
for (var p in polls) {
var poll = polls|[p];
S ("#polls") .append (
$("<1li>") .append(
$("<a>")
.attr ("href", "view.html?poll=polls/" + poll.id)
.text (poll.title)

}
)i
window.setTimeout (update, 10000);

}
update () ;

)i
</script>

We are using jQuery's s . get function to make an AJAX request to our web service. We are
hardcoding the API URL -which, in practice, you might decide against —or at least use a
domain name to abstract it. Once the polls have loaded, we use jQuery to build up a list
containing hyperlinks to the view.html page, passing the ID of the poll as a query
parameter.

[184]

Exposing Data and Functionality through a RESTful Data Web Service API

Creating a new poll

To allow users to create a new poll, create a file called new.html inside the public folder,
and add the following HTML code to the file:

<!DOCTYPE html>
<html>
<head>
<title>Create Poll</title>
<link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/
bootstrap.min.css">
</head>
<body>
<script src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js">
</script>
</body>
</html>

We are going to add the elements for an HTML form that will capture the information we
need when creating a new poll, namely the title of the poll and the options. Add the
following code inside the body tags:

<div class="container">
<div class="col-md-4"></div>
<form id="poll" role="form" class="col-md-4">
<h2>Create Poll</h2>
<div class="form-group">
<label for="title">Title</label>
<input type="text" class="form-control" id="title"
placeholder="Title">
</div>
<div class="form-group">
<label for="options">Options</label>
<input type="text" class="form-control" id="options"
placeholder="Options">
<p class="help-block">Comma separated</p>
</div>
<button type="submit" class="btn btn-primary">
Create Poll</button> or cancel
</form>
<div class="col-md-4"></div>
</div>

[185]

Exposing Data and Functionality through a RESTful Data Web Service API

Since our API speaks JSON, we need to do a bit of work to turn the HTML form into a
JSON-encoded string and also break the comma-separated options string into an array of
options. Add the following script tag:

<script>
S (function () {
var form = $("form#poll");
form.submit (function (e) {
e.preventDefault () ;

var title = form.find("input[id='title']").vall();
var options = form.find("input[id='options']") .val();
options = options.split(",");
for (var opt in options) {
options[opt] = options[opt].trim();

}

$.post ("http://localhost:8080/polls/?key=abcl23",
JSON.stringify ({

title: title, options: options
})

) .done (function(d, s, r){
location.href = "view.html?poll=" +
r.getResponseHeader ("Location");

1)

1)
1)

</script>

Here, we add a listener to the submit event of our form and use jQuery's val method to
collect the input values. We split the options with a comma and trim the spaces away before
using the $.post method to make the POST request to the appropriate API endpoint.

JSON. stringify allows us to turn the data object into a JSON string, and we use that
string as the body of the request, as expected by the API. On success, we pull out the
Location header and redirect the user to the view.html page, passing a reference to the
newly created poll as the parameter.

Showing the details of a poll

The final page of our app we need to complete is the view.html page, where users can see
the details and live results of the poll. Create a new file called view.html inside the public
folder and add the following HTML code to it:

<!DOCTYPE html>
<html>
<head>

[186]

Exposing Data and Functionality through a RESTful Data Web Service API

<title>View Poll</title>
<link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">
</head>
<body>
<div class="container">
<div class="col-md-4"></div>
<div class="col-md-4">
<hl data-field="title">...</h1>
<ul id="options">
<div id="chart"></div>
<div>
<button class="btn btn-sm" id="delete">Delete this poll</button>
</div>
</div>
<div class="col-md-4"></div>
</div>
</body>
</html>

This page is mostly similar to the other pages; it contains elements to present the title of the
poll, the options, and a pie chart. We will be mashing up Google's Visualization API with
our API to present the results. Underneath the final div tag in view.html (and above the
closing body tag), add the following script tags:

<script src="//www.google.com/Jjsapi"></script>
<script src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js">
</script>
<script>
google.load('visualization', '1.0', {'packages':['corechart']});
google.setOnLoadCallback (function () {

S (function () {

var chart;

var poll = location.href.split ("poll=")[1];
var update = function () {
$.get ("http://localhost:8080/"+poll+"?key=abcl123", null, null,
LI mw
json")

.done (function (polls) {
var poll = polls([0];
$('[data-field="title"]") .text (poll.title);
S ("#options") .empty () ;
for (var o in poll.results) {
S ("#options") .append (
$("<1li>") .append(
S("<small>") .addClass ("label label
default") .text (poll.results[o]),
""", o0

[187]

Exposing Data and Functionality through a RESTful Data Web Service API

)
t
if (poll.results) {
var data = new google.visualization.DataTable();
data.addColumn ("string", "Option");
data.addColumn ("number", "Votes") ;
for (var o in poll.results) {
data.addRow([o, poll.results[o]])
t
if (!chart) {
chart = new google.visualization.PieChart
(document .getElementById('chart'));
t
chart.draw(data, {is3D: true});

t
)i
window.setTimeout (update, 1000);

bi

update () ;
S ("#delete") .click (function () {
if (confirm("Sure?")) {
S.ajax ({

url:"http://localhost:8080/"+poll+"?key=abcl23",
type:"DELETE"

})

.done (function () {
location.href = "/";

1)

</script>

We include the dependencies we will need in order to power our page, jQuery and
Bootstrap, and also the Google JavaScript APL. The code loads the appropriate visualization
libraries from Google and waits for the DOM elements to load before extracting the poll ID
from the URL by splitting it on po11=. We then create a variable called update that
represents a function responsible for generating the view of the page. This approach is
taken to make it easy for us to use window. set Timeout in order to issue regular calls to
update the view. Inside the update function, we use $.get to make a GET request to our
/polls/{id} endpoint, replacing {id} with the actual ID we extracted from the URL
earlier. Once the poll has loaded, we update the title on the page and iterate over the
options to add them to the list. If there are results (remember, in the previous chapter, the
results map was only added to the data as votes started being counted), we create a new

[188]

Exposing Data and Functionality through a RESTful Data Web Service API

google.visualization.PieChart object and build a
google.visualization.DataTable object containing the results. Calling draw on the
chart causes it to render the data and thus update the chart with the latest numbers. We
then use setTimeout to tell our code to call update again in another second.

Finally, we bind to the click event of the delete button we added to our page, and after
asking the user whether they are sure, make a DELETE request to the polls URL and then
redirect them back to the home page. It is this request that will actually cause the OPTIONS
request to be made first, asking for permission, which is why we added explicit support for
it in our handlePolls function earlier.

Running the solution

We built many components over the previous two chapters, and it is now time to see them
all working together. This section contains everything you need in order to get all the items
running, assuming you have the environment set up properly, as described at the beginning
of the previous chapter. This section assumes you have a single folder that contains the four
subfolders: api, counter, twittervotes, and web.

Assuming nothing is running, take the following steps (each step in its own terminal
window):

1. In the top-level folder, start the nsgqlookupd daemon:
nsqlookupd

2. In the same directory, start the nsqd daemon:
nsqd —--lookupd-tcp-address=localhost:4160

3. Start the MongoDB daemon:
mongod

4. Navigate to the counter folder and build and run it:
cd counter

go build -o counter
./counter

[189]

Exposing Data and Functionality through a RESTful Data Web Service API

5. Navigate to the twittervotes folder and build and run it. Ensure that you have

the appropriate environment variables set; otherwise, you will see errors when
you run the program:

cd ../twittervotes
go build -o twittervotes
./twittervotes

6. Navigate to the api folder and build and run it:

cd ../api
go build -o api
./api

7. Navigate to the web folder and build and run it:

cd ../web
go build -o web
./web

Now that everything is running, open a browser and head to http://localhost:8081/.
Using the user interface, create a poll called Moods and input the options as

happy, sad, fail, success. These are common enough words that we are likely to see
some relevant activity on Twitter.

Once you have created your poll, you will be taken to the view page where you will start to
see the results coming in. Wait for a few seconds and enjoy the fruits of your hard work as
the UI updates in real time, showing live, real-time results:

[190]

Exposing Data and Functionality through a RESTful Data Web Service API

® ® | | View Poll x

& C [localhost:8081/view.htmi?poll=... ¢¢ & =

Moods

E) fail
« [happy
- B sad

. success

M fail

I happy
sad

M success

Delete this poll

Summary

In this chapter, we exposed the data for our social polling solution through a highly scalable
RESTful API and built a simple website that consumes the API to provide an intuitive way
for users to interact with it. The website consists of static content only, with no server-side
processing (since the API does the heavy lifting for us). This allows us to host the website
very cheaply on static hosting sites, such as bitballoon.com, or distribute the files to
content delivery networks.

Within our API service, we learned how to share data between handlers without breaking
or obfuscating the handler pattern from the standard library. We also saw how writing
wrapped handler functions allows us to build a pipeline of functionality in a very simple
and intuitive way.

We wrote some basic encoding and decoding functions that —while only simply wrapping
their counterparts from the encoding/ json package for now —could be improved later to
support a range of different data representations without changing the internal interface to
our code. We wrote a few simple helper functions that make responding to data requests
easy while providing the same kind of abstraction that would allow us to evolve our API
later.

[191]

https://www.bitballoon.com/

Exposing Data and Functionality through a RESTful Data Web Service API

We saw how, for simple cases, switching to HTTP methods is an elegant way to support
many functions for a single endpoint. We also saw how, with a few extra lines of code, we
are able to build support for CORS in order to allow applications running on different
domains to interact with our services —without the need for hacks such as JSONP.

In the next chapter, we will evolve our API and web skills to build a brand new startup app
called Meander. We'll also explore an interesting way of representing enumerators in a
language that doesn't officially support them.

[192]

Random Recommendations
Web Service

The concept behind the project that we will build in this chapter is a simple one: we want
users to be able to generate random recommendations for things to do in specific
geographical locations based on a predefined set of journey types that we will expose
through the API. We will give our project the codename Meander.

Often on projects in the real world, you are not responsible for the full stack; somebody else
builds the website, a different person might write the iOS app, and maybe an outsourced
company builds the desktop version. On more successful API projects, you might not even
know who the consumers of your API are, especially if it's a public API.

In this chapter, we will simulate this reality by designing and agreeing a minimal API
design with a fictional partner up front before going on to implement the API. Once we
have finished our side of the project, we will download a user interface built by our
teammates to see the two work together to produce the final application.

In this chapter, you will:

¢ Learn to express the general goals of a project using short and simple Agile user
stories

¢ Discover that you can agree on a meeting point in a project by agreeing on the
design of an API, which allows many people to work in parallel

¢ See how early versions can have data fixtures written in code and compiled into
the program, allowing us to change the implementation later without touching
the interface

¢ Learn a strategy that allows structs (and other types) to represent a public version
of themselves for cases where we want to hide or transform internal
representations

Random Recommendations Web Service

The

e Learn to use embedded structs to represent nested data while keeping the

interface of our types simple

e Learn to use http.Get to make external API requests, specifically to the Google

Places API, with no code bloat

¢ Learn to effectively implement enumerators in Go even though they aren't really

a language feature

¢ Experience a real-world example of TDD
e Look at how the math/rand package makes it easy to select an item from a slice

at random

¢ Learn an easy way to grab data from the URL parameters of the http.Request

type

project overview

Following Agile methodologies, let's write two user stories that describe the functionality of
our project. User stories shouldn't be comprehensive documents describing the entire set of
features of an application; rather, small cards are perfect for not only describing what the
user is trying to do, but also why. Also, we should do this without trying to design the
whole system up front or delving too deep into implementation details.

First, we need a story about seeing the different journey types from which our users can

select:

Asa

traveler

I want

to see the different types of journeys I can get recommendations for

So that

I can decide what kind of evening to take my partner on

Secondly, we need a story about providing random recommendations for a selected journey

type:

Asa

traveler

I want

to see a random recommendation for my selected journey type

So that

I know where to go and what the evening will entail

[194]

Random Recommendations Web Service

These two stories represent the two core capabilities that our API needs to provide and
actually ends up representing two endpoints.

In order to discover places around specified locations, we are going to make use of the
Google Places API, which allows us to search for listings of businesses with given types,
such as bar, cafe, ormovie_theater. We will then use Go's math/rand package to pick
from these places at random, building up a complete journey for our users.

The Google Places API supports many business types; refer to https://de
velopers.google.com/places/documentation/supported_typesforthe
complete list.

Project design specifics

In order to turn our stories into an interactive application, we are going to provide two
JSON endpoints: one to deliver the kinds of journeys users will be able to select in the
application and another to actually generate the random recommendations for the selected

journey type.

GET /journeys

The preceding call should return a list similar to the following:

[

name: "Romantic",

journey: "park|bar|movie_theater|restaurant|florist"
}I
{

name: "Shopping",

journey: "department_store|clothing_store|jewelry_store"
}
]

The name field is a human-readable label for the type of recommendations the app
generates, and the journey field is a pipe-separated list of the supported journey types. It is
the journey value that we will pass, as a URL parameter, into our other endpoint, which
generates the actual recommendations:

GET /recommendations?
lat=1&lng=2&journey=bar|cafesradius=10&cost=5...$5$5$

[195]

https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types

Random Recommendations Web Service

This endpoint is responsible for querying the Google Places API and generating the
recommendations before returning an array of place objects. We will use the parameters in
the URL to control the kind of query to make. The 1at and 1ng parameters representing
latitude and longitude, respectively tell our API where in the world we want
recommendations from, and the radius parameter represents the distance in meters
around the point in which we are interested.

The cost value is a human-readable way of representing the price range for places that the
API returns. It is made up of two values: a lower and upper range separated by three dots.
The number of dollar characters represents the price level, with $ being the most affordable
and $$$s$ being the most expensive. Using this pattern, a value of $. . . $$ would represent
very low-cost recommendations, where $$5$. . .$$$$$ would represent a pretty expensive
experience.

Some programmers might insist that the cost range is represented by
numerical values, but since our APl is going to be consumed by people,
why not make things a little more interesting? It is up to you as the API
designer.

An example payload for this call might look something like this:

[
{

icon: "http://maps.gstatic.com/mapfiles/place_api/icons/cafe-

71.png",
lat: 51.519583, 1lng: -0.146251,
vicinity: "63 New Cavendish St, London",
name: "Asia House",
photos: [{

url: "https://maps.googleapis.com/maps/api/place/photo?
maxwidth=400&photoreference=CnRnAAAAYLRN"
}]
}I
]

The array returned contains a place object representing a random recommendation for each
segment in the journey in the appropriate order. The preceding example is a cafe in London.
The data fields are fairly self-explanatory; the 1at and 1ng fields represent the location of
the place, the name and vicinity fields tell us what and where the business is, and the
photos array gives us a list of relevant photographs from Google's servers. The vicinity
and icon fields will help us deliver a richer experience to our users.

[196]

Random Recommendations Web Service

Representing data in code

We are first going to expose the journeys that users can select from; so, create a new folder
called meander in GOPATH and add the following journeys.go code:

package meander
type j struct {
Name string
PlaceTypes []string
}

var Journeys = []interface{}{

j{Name: "Romantic", PlaceTypes: []string{"park", "bar",
"movie_theater", "restaurant", "florist", "taxi_stand"}},

j{Name: "Shopping", PlaceTypes: []string{"department_store", "cafe",
"clothing_store", "jewelry_store", "shoe_store"}},

j{Name: "Night Out", PlaceTypes: []string{"bar", "casino", "food",
"bar", "night_club", "bar", "bar", "hospital"}},

j{Name: "Culture", PlaceTypes: []string{"museum", "cafe", "cemetery",
"library", "art_gallery"}},

j{Name: "Pamper", PlaceTypes: []string{"hair_care", "beauty_salon",
"cafe", "spa"}},

}

Here, we define an internal type called j inside the meander package, which we then use to
describe the journeys by creating instances of them inside the Journeys slice. This

approach is an ultra-simple way of representing data in the code without building a
dependency on an external data store.

As an additional assignment, why not see if you can keep golint happy
throughout this process? Every time you add some code, run golint for
the packages and satisfy any suggestions that emerge. It cares a lot about
exported items that have no documentation; so adding simple comments
in the correct format will keep it happy. To learn more about golint, refer
tohttps://github.com/golang/lint

Of course, this is likely to evolve into just that later, maybe even with the ability for users to
create and share their own journeys. Since we are exposing our data via an API, we are free
to change the internal implementation without affecting the interface, so this approach is
great for a version 1.

We are using a slice of type []interface{} because we will later
implement a general way of exposing public data regardless of the actual
types.

[197]

https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint
https://github.com/golang/lint

Random Recommendations Web Service

A romantic journey consists of a visit first to a park, then a bar, a movie theater, then a
restaurant before a visit to a florist, and finally, a taxi ride home; you get the general idea.
Feel free to get creative and add others by consulting the supported types in the Google
Places API.

You might have noticed that since we are containing our code inside a package called
meander (rather than main), our code can never be run as a tool like the other APIs we have
written so far. Create two new folders inside meander so that you have a path that looks
like meander/cmd/meander; this will house the actual command-line tool that exposes the
meander package's capabilities via an HTTP endpoint.

Since we are primarily building a package for our meandering project (something that other
tools can import and make use of), the code in the root folder is the meander package, and
we nest our command (the main package) inside the cmd folder. We include the additional
final meander folder to follow good practices where the command name is the same as the
folder if we omitted it, our command would be called cmd instead of meander, which
would get confusing.

Inside the cmd/meander folder, add the following code to the main. go file:

package main
func main () {
//meander .APIKey = "TODO"
http.HandleFunc ("/Jjourneys", func(w http.ResponseWriter,
r *http.Request) {
respond (w, r, meander.Journeys)

)
http.ListenAndServe (":8080", http.DefaultServeMux)

}
func respond(w http.ResponseWriter, r *http.Request, data [linterface{})
error {

return json.NewEncoder (w) .Encode (data)

}

You will recognize this as a simple API endpoint program, mapping to the / journeys
endpoint.

You'll have to import the encoding/json, net/http, and runtime
packages, along with your own meander package you created earlier.

[198]

Random Recommendations Web Service

We set the value of APIKey in the meander package (which is commented out for now,
since we are yet to implement it) before calling the familiar HandleFunc function on the
net/http package to bind our endpoint, which then just responds with the

meander . Journeys variable. We borrow the abstract responding concept from the
previous chapter by providing a respond function that encodes the specified data to the
http.ResponselWriter type.

Let's run our API program by navigating to the cmd/meander folder in a terminal and
using go run. We don't need to build this into an executable file at this stage since it's just a
single file:

go run main.go

Hit the http://localhost:8080/journeys endpoint, and note that our Journeys data
payload is served, which looks like this:

[{
Name: "Romantic",
PlaceTypes: [
"park",
"bar",
"movie_theater",
"restaurant",
"florist",
"taxi_stand"
1
Yool

This is perfectly acceptable, but there is one major flaw: it exposes internals about our
implementation. If we changed the PlaceTypes field name to Types, promises made in our
API would break, and it's important that we avoid this.

Projects evolve and change over time, especially successful ones, and as developers, we
should do what we can to protect our customers from the impact of the evolution.
Abstracting interfaces is a great way to do this, as is taking ownership of the public-facing
view of our data objects.

[199]

Random Recommendations Web Service

Public views of Go structs

In order to control the public view of structs in Go, we need to invent a way to allow
individual journey types to tell us how they want to be exposed. In the root meander
folder, create a new file called public.go and add the following code:

package meander
type Facade interface {
Public () interface{}
}
func Public (o interface{}) interface{} {
if p, ok := o.(Facade); ok {
return p.Public()
}

return o

}

The Facade interface exposes a single Public method, which will return the public view of
a struct. The exported Public function takes any object and checks whether it implements
the Facade interface (does it have a Public () interface{} method?); if itis
implemented, it calls the method and returns the result otherwise, it just returns the original
object untouched. This allows us to pass anything through the Public function before
writing the result to the Responseliriter object, allowing individual structs to control
their public appearance.

Normally, single method interfaces such as our Facade are named after
the method they describe, such as Reader and Writer. However,
Publicer is just confusing, so I deliberately broke the rule.

Let's implement a Public method for our j type by adding the following code to
journeys.go:

func (j Jj) Public() interface{} {
return map[string]interface{}{
"name" : j.Name,
"journey": strings.Join(j.PlaceTypes, "I|"),
t
t

The public view of our j type joins the PlaceTypes field into a single string separated by
the pipe character as per our API design.

[200]

Random Recommendations Web Service

Head back to cmd/meander/main.go and replace the respond method with one that
makes use of our new Public function:

func respond(w http.ResponseWriter, r *http.Request, data []interface{})
error A
publicData := make([]interface{}, len(data))
for i, d := range data {
publicData[i] = meander.Public(d)
}
return json.NewEncoder (w) .Encode (publicData)

}

Here, we iterate over the data slice calling the meander.Public function for each item,
building the results into a new slice of the same size. In the case of our j type, its Public
method will be called to serve the public view of the data rather than the default view. In a
terminal, navigate to the cmd/meander folder again and run go run main.go before
hitting http://localhost:8080/journeys. Note that the same data has now changed to
a new structure:

[{
journey: "park|bar|movie_theater|restaurant|florist|taxi_stand",
name: "Romantic"

booool]

An alternative way of achieving the same result would be to use tags to
control the field names, as we have done in previous chapters, and
implement your own []string type that provides a MarshalJSON
method which tells the encoder how to marshal your type. Both are
perfectly acceptable, but the Facade interface and Public method are
probably more expressive (if someone reads the code, isn't it obvious
what's going on?) and give us more control.

Generating random recommendations

In order to obtain the places from which our code will randomly build up
recommendations, we need to query the Google Places APL. In the root meander folder, add
the following query . go file:

package meander

type Place struct {
*googleGeometry " json:"geometry"®
Name string "json:"name"’
Icon string "json:"icon"®

[201]

Random Recommendations Web Service

Photos []1*googlePhoto "~ json:"photos"®
Vicinity string “Json:"vicinity"®
}
type googleResponse struct {
Results []*Place " json:"results"®

}
type googleGeometry struct {
*googleLocation "~ json:"location"®

}
type googlelLocation struct {
Lat float64 “Json:"lat"®
Lng float64 "Json:"lng"®
}
type googlePhoto struct {
PhotoRef string " json:"photo_reference"’
URL string " Json:"url"®

}

This code defines the structures we will need in order to parse the JSON response from the
Google Places API into usable objects.

Head over to the Google Places API documentation for an example of the
response we are expecting. Refer to http://developers.google.com/pla

ces/documentation/search.

Most of the preceding code will be obvious, but it's worth noting that the Place type
embeds the googleGeometry type, which allows us to represent the nested data as per the
API while essentially flattening it in our code. We do this with googleLocation inside
googleGeomet ry, which means that we will be able to access the Lat and Lng values
directly on a Place object even though they're technically nested in other structures.

Because we want to control how a P1lace object appears publically, let's give this type the
following Public method:

func (p *Place) Public() interface{} {
return map[stringlinterface{}{

"name": p.Name,

"icon": p.Icon,

"photos": p.Photos,

"vicinity": p.Vicinity,

"lat": p.Lat,

"lng": p.Lng,

[202]

http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search

Random Recommendations Web Service

Remember to run golint on this code to see which comments need to be
added to the exported items.

The Google Places API key

Like with most APIs, we will need an API key in order to access the remote services. Head
over to the Google APIs Console, sign in with a Google account, and create a key for the
Google Places API. For more detailed instructions, refer to the documentation on the
Google's developer website.

Once you have your key, let's create a variable inside the meander package that can hold it.
At the top of query.go, add the following definition:

var APIKey string

Now nip back into main. go, remove the double slash // from the APIKey line, and replace
the TODO value with the actual key provided by the Google APIs Console. Remember that it
is bad practice to hardcode keys like this directly in your code; instead, it's worth breaking

them out into environment variables, which keeps them out of your source code repository.

Enumerators in Go

To handle the various cost ranges for our API, it makes sense to use an enumerator (or
enum) to denote the various values and handle conversions to and from string
representations. Go doesn't explicitly provide enumerators as a language feature, but there
is a neat way of implementing them, which we will explore in this section.

A simple flexible checklist to write enumerators in Go is as follows:

e Define a new type based on a primitive integer type

e Use that type whenever you need users to specify one of the appropriate values

e Use the iota keyword to set the values in a const block, disregarding the first
zero value

¢ Implement a map of sensible string representations to the values of your
enumerator

[203]

Random Recommendations Web Service

¢ Implement a St ring method on the type that returns the appropriate string
representation from the map

e Implement a ParseType function that converts from a string to your type using
the map

Now, we will write an enumerator to represent the cost levels in our APIL. Create a new file
called cost_level.go inside the root meander folder and add the following code:

package meander
type Cost int8
const (

_ Cost = iota

Costl

Cost2

Cost3

Cost4

Costb
)

Here, we define the type of our enumerator, which we have called Cost, and since we need
to represent a only few values, we have based it on an int 8 range. For enumerators where
we need larger values, you are free to use any of the integer types that work with iota. The
Cost type is now a real type in its own right, and we can use it wherever we need to
represent one of the supported values for example, we can specify a Cost type as an
argument in functions, or we can use it as the type for a field in a struct.

We then define a list of constants of that type and use the iota keyword to indicate that we
want incrementing values for the constants. By disregarding the first iota value (which is
always zero), we indicate that one of the specified constants must be explicitly used rather
than the zero value.

To provide a string representation of our enumerator, we only need to add a String
method to the Cost type. This is a useful exercise even if you don't need to use the strings
in your code, because whenever you use the print calls from the Go standard library (such
as fmt .Print1ln), the numerical values will be used by default. Often, these values are

meaningless and will require you to look them up and even count the lines to determine the
numerical value for each item.

For more information on the String () method in Go, refer to the
Stringer and GoStringer interfaces in the fmt package at http://gola
ng.org/pkg/fmt/#Stringer.

[204]

http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer
http://golang.org/pkg/fmt/#Stringer

Random Recommendations Web Service

Test-driven enumerator

To ensure that our enumerator code is working correctly, we are going to write unit tests
that make some assertions about expected behavior.

Alongside cost_level.go, add a new file called cost_level_test.go and add the
following unit test:

package meander_test

import (
"testing"
"github.com/cheekybits/is"
"path/to/meander"

)

func TestCostValues (t *testing.T) {
is := is.New(t)
is.Equal (int (meander.Costl), 1)
is.Equal (int (meander.Cost2), 2)
is.Equal (int (meander.Cost3), 3)
is.Equal (int (meander.Cost4), 4)
is.Equal (int (meander.Cost5), 5)

}

You will need to run go get in order to get the CheekyBits is package (from https://git
hub.com/cheekybits/is)

The is package is an alternative testing helper package, but this one is
ultra-simple and deliberately bare-bones. You get to pick your favorite
when you write your own projects or use none at all.

Normally, we wouldn't worry about the actual integer value of constants in our
enumerator, but since the Google Places API uses numerical values to represent the same
thing, we need to care about the values.

You might have noticed something strange about this test file that breaks
from convention. Although it is inside the root meander folder, it is not a
part of the meander package; rather, it's in meander_test.

In Go, this is an error in every case except for tests. Because we are putting
our test code into its own package, it means that we no longer have access
to the internals of the meander package. Note how we have to use the
package prefix. This may seem like a disadvantage, but in fact, it allows us
to be sure that we are testing the package as though we were a real user of
it. We may only call exported methods and only have visibility into
exported types; just like our users. And we cannot mess around with

[205]

https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is
https://github.com/cheekybits/is

Random Recommendations Web Service

internals to do things that our users cannot; it's a true user test. In testing,
sometimes you do need to fiddle with an internal state, in which case your
tests would need to be in the same package as the code instead.

Run the tests by running go test in a terminal and note that it passes.

Let's add another test to make assertions about the string representations for each Cost
constant. In cost_level_test.go, add the following unit test:

func TestCostString(t *testing.T) {
is := is.New(t)
is.Equal (meander.Costl.String (), "S$")
is.Equal (meander.Cost2.String (), "$$")
is.Equal (meander.Cost3.String (), "$$S$")
is.Equal (meander.Cost4.String (), "$$SS")
is.Equal (meander.Cost5.String (), "$$$S$sS")
}

This test asserts that calling the St ring method for each constant yields the expected value.
Running these tests will, of course, fail because we haven't implemented the String
method yet.

Underneath the Cost constants, add the following map and the st ring method:

var costStrings = map[string]Cost{

"S": Cost1,
"SSn: Cost2,
"SSSM: Cost3,

"$s$$s$": Cost4,
"$$S$S": Cost5,
t
func (1 Cost) String() string {
for s, v := range costStrings {
if == v {
return s
t
t
return "invalid"

}

The map [string] Cost variable maps the cost values to the string representation, and the
String method iterates over the map to return the appropriate value.

[2061

Random Recommendations Web Service

In our case, a simple strings.Repeat ("$", int (1)) return would
work just as well (and wins because it's simpler code); but it often won't;
therefore, this section explores the general approach.

Now if we were to print out the Cost3 value, we would actually see $$$, which is much
more useful than numerical values. As we want to use these strings in our API, we are also
going to add a ParseCost method.

In cost_value_test.go, add the following unit test:

func TestParseCost (t *testing.T) {
is := is.New(t)
is.Equal (meander.Costl, meander.ParseCost ("$"))
is.Equal (meander.Cost2, meander.ParseCost ("$$"))
is.Equal (meander.Cost3, meander.ParseCost ("$$s"))
is.Equal (meander.Cost4, meander.ParseCost ("SSS"))
is.Equal (meander.Cost5, meander.ParseCost ("$$S$$S"))

}

Here, we assert that calling ParseCost will, in fact, yield the appropriate value depending
on the input string.

In cost_value.go, add the following implementation code:

func ParseCost (s string) Cost {
return costStrings|[s]

}
Parsing a Cost string is very simple since this is how our map is laid out.

As we need to represent a range of cost values, let's imagine a CostRange type and write
the tests out for how we intend to use it. Add the following tests to cost_value_test.go:

func TestParseCostRange (t *testing.T) {
is := 1is.New(t)
var 1 meander.CostRange
var err error
1, err = meander.ParseCostRange ("$$...$58")
is.NoErr (err)
is.Equal (l1.From, meander.Cost2)
is.Equal (l1.To, meander.Cost3)
1, err = meander.ParseCostRange ("S$...$3$$35s")
is.NoErr (err)
is.Equal (l1.From, meander.Costl)
is.Equal (l1.To, meander.Costb)

[207]

Random Recommendations Web Service

func TestCostRangeString(t *testing.T) |
is := is.New(t)
r := meander.CostRange({
From: meander.Cost2,
To: meander.Cost4,
t
is.Equal("$$...$$$$", r.String())
t

We specify that passing in a string with two dollar characters first, followed by three dots
and then three dollar characters should create a new meander.CostRange type that has
From set to meander.Cost2 and To set to meander.Cost3. We also use is.NoErr in order
to assert that no error is returned when we parse our strings. The second test does the
reverse by testing that the CostRange . String method, which returns the appropriate
value.

To make our tests pass, add the following CostRange type and the associated string and
ParseString functions:

type CostRange struct {
From Cost

To Cost
}
func (r CostRange) String() string {
return r.From.String() + "..." + r.To.String/()

}
func ParseCostRange (s string) (CostRange, error) {
var r CostRange
segs := strings.Split(s, "...")
if len(segs) != 2 {
return r, errors.New("invalid cost range")
}
r.From = ParseCost (segs[0])
r.To = ParseCost (segs[1l])
return r, nil

}

This allows us to convert a string such as $...$$$$$ to a structure that contains two Cost
values: a From and To set and vice versa. If somebody passes in an invalid cost range (we
just perform a simple check on the number of segments after splitting on the dots), then we
return an error. You can do additional checking here if you want to, such as ensuring only
dots and dollar signs are mentioned in the strings.

[208]

Random Recommendations Web Service

Querying the Google Places API

Now that we are capable of representing the results of the API, we need a way to represent
and initiate the actual query. Add the following structure to query . go:

type Query struct {

Lat floato4
Lng float64
Journey [Istring
Radius int

CostRangeStr string
}

This structure contains all the information we will need in order to build up the query, all of
which will actually come from the URL parameters in the requests from the client. Next,
add the following find method, which will be responsible for making the actual request to
Google's servers:

func (g *Query) find(types string) (*googleResponse, error) {
u := "https://maps.googleapis.com/maps/api/place/nearbysearch/json"
vals := make (url.Values)
vals.Set ("location", fmt.Sprintf("%g,%g", g.Lat, g.Lng))
vals.Set ("radius", fmt.Sprintf ("%$d", g.Radius))
vals.Set ("types", types)
vals.Set ("key", APIKey)
if len(g.CostRangeStr) > 0 {
r, err := ParseCostRange (g.CostRangeStr)
if err !'= nil {

return nil, err
}
vals.Set ("minprice", fmt.Sprintf("%$d", int(r.From)-1))
vals.Set ("maxprice", fmt.Sprintf ("$d", int(r.To)-1))
}
res, err := http.Get(u + "?" + vals.Encode())
if err !'= nil {
return nil, err
}
defer res.Body.Close()
var response googleResponse
if err := json.NewDecoder (res.Body) .Decode (&response); err != nil {
return nil, err
}

return &response, nil

[209]

Random Recommendations Web Service

First, we build the request URL as per the Google Places API specification by appending the
url.Values encoded string of the data for 1at, 1ng, radius, and, of course, the APIKey
values.

The url.values typeis actually amap [string] []string type, which is
why we use make rather than new.

The types value we specify as an argument represents the kind of business to look for. If
there is CostRangeStr, we parse it and set the minprice and maxprice values before
finally calling http.Get to actually make the request. If the request is successful, we defer
the closing of the response body and use a json.Decoder method to decode the JSON that
comes back from the API into our googleResponse type.

Building recommendations

Next, we need to write a method that will allow us to make many calls to find for the
different steps in a journey. Underneath the £ind method, add the following Run method to
the Query struct:

// Run runs the query concurrently, and returns the results.
func (g *Query) Run() []linterface{} {

rand.Seed (time.Now () .UnixNano ())

var w sync.WaitGroup

var 1 sync.Mutex

places := make([]interface{}, len(g.Journey))
for i, r := range g.Journey {
w.Add (1)

go func(types string, i int) {
defer w.Done ()

response, err := g.find(types)

if err !'= nil {
log.Println("Failed to find places:", err)
return

}

if len(response.Results) == 0 {
log.Println("No places found for", types)
return

}

for _, result := range response.Results {
for _, photo := range result.Photos {

photo.URL =

"https://maps.googleapis.com/maps/api/place/photo?" +

[210]

Random Recommendations Web Service

"maxwidth=1000&photoreference=" + photo.PhotoRef + "&key="
+ APIKey
}
}

randI := rand.Intn(len(response.Results))
1.Lock ()
places[i] = response.Results[randI]
1.Unlock ()

P(r, 1)

t
w.Wait () // wait for everything to finish
return places

}

The first thing we do is set the random seed to the current time in nanoseconds since
January 1, 1970 UTC. This ensures that every time we call the Run method and use the rand
package, the results will be different. If we don't do this, our code would suggest the same
recommendations every time, which defeats the object.

Since we need to make many requests to Google and since we want to make sure this is as
quick as possible we are going to run all the queries at the same time by making concurrent
calls to our Query . find method. So next, we create sync.WaitGroup and a map to hold
the selected places along with a sync.Mutex method to allow many goroutines to safely
access the map concurrently.

We then iterate over each item in the Journey slice, which might be bar, cafe, or
movie_theater. For each item, we add 1 to the WaitGroup object and start a goroutine.
Inside the routine, we first defer the w.Done call, informing the WaitGroup object that this
request has completed before calling our £ind method to make the actual request.
Assuming no errors occurred and it was indeed able to find some places, we iterate over the
results and build up a usable URL for any photos that might be present. According to the
Google Places API, we are given a photoreference key, which we can use in another API
call to get the actual image. To save our clients from having to have knowledge of the
Google Places API at all, we build the complete URL for them.

We then lock the map locker and with a call to rand. Intn, pick one of the options at
random and insert it into the right position in the places slice before
unlocking sync.Mutex.

Finally, we wait for all goroutines to complete with a call to w.Wait before returning the
places.

[211]

Random Recommendations Web Service

Handlers that use query parameters

Now we need to wire up our /recommendations call, so head back to main.go in the
cmd/meander folder and add the following code inside the main function:

http.HandleFunc ("/recommendations", cors (func (w
http.ResponseWriter, r *http.Request) {
g := &meander.Query{
Journey: strings.Split (r.URL.Query () .Get ("journey"), "|"),
}
var err error
g.Lat, err = strconv.ParseFloat (r.URL.Query () .Get ("lat"), 64)

if err !'= nil {
http.Error (w, err.Error(), http.StatusBadRequest)
return

}
g.Lng, err = strconv.ParseFloat (r.URL.Query () .Get ("1lng"), 64)

if err !'= nil {
http.Error (w, err.Error(), http.StatusBadRequest)
return
}
g.Radius, err = strconv.Atoi (r.URL.Query () .Get ("radius"))
if err !'= nil {
http.Error (w, err.Error(), http.StatusBadRequest)
return

}

g.CostRangeStr = r.URL.Query () .Get ("cost")
places := g.Run()

respond(w, r, places)

1))

This handler is responsible for preparing the meander.Query object and calling its Run
method before responding with the results. The http.Request type's URL value exposes
the Query data that provides a Get method which, in turn, looks up a value for a given key.

The journey string is translated from the bar | cafe |movie_theater format to a slice of
strings by splitting on the pipe character. Then, a few calls to functions in the st rconv
package turn the string latitude, longitude, and radius values into numerical types. If the
values are in an incorrect format, we will get an error, which we will then write out to the
client using the http.Error helper with an http.StatusBadRequest status.

[212]

Random Recommendations Web Service

CORS

The final piece of the first version of our API will be to implement CORS, as we did in the
previous chapter. See if you can solve this problem yourself before reading on about the
solution in the next section.

If you are going to tackle this yourself, remember that your aim is to set
the Access—-Control-Allow-Origin response header to *. Also,
consider the http.HandlerFunc wrapping we did in the previous
chapter. The best place for this code is probably in the

cmd/meander program, since that is what exposes the functionality
through an HTTP endpoint.

Inmain.go, add the following cors function:

func cors (f http.HandlerFunc) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {
w.Header () .Set ("Access-Control-Allow-Origin", "*")
f(w, r)

}

This familiar pattern takes in an http.HandlerFunc type and returns a new one that sets
the appropriate header before calling the passed-in function. Now, we can modify our code
to make sure that the cors function gets called for both of our endpoints. Update the
appropriate lines in the main function:

func main () {
meander .APIKey = "YOUR_API_KEY"
http.HandleFunc ("/journeys", cors (func(w http.ResponseWriter,

r *http.Request)
{
respond(w, r, meander.Journeys)
)
http.HandleFunc ("/recommendations", cors (func(w http.ResponseWriter,
r *http.Request) {
g := &meander.Query{
Journey: strings.Split (r.URL.Query () .Get ("journey"), "|"),
}
var err error
g.Lat, err = strconv.ParseFloat (r.URL.Query () .Get ("lat"), 64)

if err !'= nil {
http.Error (w, err.Error (), http.StatusBadRequest)
return

}
g.Lng, err = strconv.ParseFloat (r.URL.Query () .Get ("1lng"), 64)

[213]

Random Recommendations Web Service

if err !'= nil {
http.Error (w, err.Error(), http.StatusBadRequest)
return
t
g.Radius, err = strconv.Atoi (r.URL.Query () .Get ("radius"))
if err !'= nil {
http.Error (w, err.Error(), http.StatusBadRequest)
return

t

g.CostRangeStr = r.URL.Query () .Get ("cost")
places := g.Run()

respond(w, r, places)

1))
log.Println("serving meander API on :8080")
http.ListenAndServe (":8080", http.DefaultServeMux)

}

Now, calls to our API will be allowed from any domain without a cross-origin error
occurring.

Can you see a way to smarten up the code by removing the multiple calls
to r.URL.Query () ? Perhaps do this once and cache the result in a local

variable. Then, you can avoid parsing the query many times.

Testing our API

Now that we are ready to test our AP, head to a console and navigate to the
cmd/meander folder. Because our program imports the meander package, building the
program will automatically build our meander package too.

Build and run the program:

go build -o meanderapi
. /meanderapi

To see meaningful results from our API, let's take a minute to find your actual latitude and
longitude. Head over to http://mygeoposition.com/ and use the web tools to get the %, y
values for a location you are familiar with.

Or, pick from these popular cities:

e London, England: 51.520707 x 0.153809
e New York, USA: 40.7127840 x -74.0059410

[214]

http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/
http://mygeoposition.com/

Random Recommendations Web Service

e Tokyo, Japan: 35.6894870 x 139.6917060
e San Francisco, USA: 37.7749290 x -122.4194160

Now, open a web browser and access the /recommendations endpoint with some
appropriate values for the fields:

http://localhost:8080/recommendations?
1at=51.520707&1ng=-0.153809&radius=5000&
journey=cafe|bar|casino|restauranté
cost=$...5$$

The following screenshot shows what a sample recommendation around London might
look like:

|| localhost:8080/recommer: X
& C' | [localhost:8080/recommendations?lat=51.520707&Ing=-0.153809&radius=5000&journey=cafe|bar|casino|restaurant&cost=$..... QY A =

[
-4

icon: "http://maps.gstatic.com/mapfiles/place api/icons/cafe-71.png",
lat: 51.518988,
1ng: -0.1559,
name: "Starbucks Coffee Baker Street",
photos: null,
vicinity: "58 Baker St, London"

icon: "http://maps.gstatic.com/mapfiles/place api/icons/bar-71.png",
lat: 51.513648,
1ng: -0.110593,
name: "Ye Olde Cock Tavern",
- photos: [
-4

photo_reference: "CnRQAAAA-i650e6JJELyP1PS1839dGi2gf5_-AulazF0lmwuFX38fe6yNP9HJaYoJjCvapmCW6iHLpwhD10Mxmvg C1lSztnoZeUTKnX4xWInJJThOEy.
FDJwXfzApxicjBG__b3aclz20geNUmJxbIHCmMO71RIQWTNUXP£rN9_iu3ypvgAcPhoUD5PQIQ99mEQYbMOWALNT4w_0x30",

url: "https://maps.googleapis.com/maps/api/place/photo?maxwidth=400&photoreference=CnRg -i1650e6JJELYP1PS1839dGi2gf5 -
AulazF0lmwuFX38fe6yNPIHIaYoJ jCvapmCW6iHLpwhD10Mxmvg C1SztnoZeUTKnX4xWInJJhOEyXk-

FDJwXfzApxicjBG b3aclz20geNUmJxbIHCmO71RIQWTNUXPfrN9 iu3ypvgAcPhoUD5PQIQ99ImEQYbMOWAINT4w 0x30&key=AIzaSyBw8jI Lg UjCyHgKaxtoyYcNVGIe]

}
1,
vicinity: "22 Fleet St, London"

icon: "http://maps.gstatic.com/mapfiles/place api/icons/restaurant-71.png",
lat: 51.514161,
-0.125593,
"Food For Thought",
- photos: [
-{

Pphoto_: : "CnRnAA 62kPaycw8jPuoigi9xAHAKbVEXFtZaHn23fbTRiDOP7vGNrBiFQfgKoEJ jpFbFC5TBdy 7pBalHbiugpkKJey49bf3QSOh8CKdZUILaHupl
8PneSqf5kLIO70KijETNUAlev1pmC7BexIQ3JbA6WjuHFEPElmAbQaZRBoUr 6HVbKGBMYS1e7ghsrL41NddIJo",

url: "https://maps.googleapis.com/maps/api/place/photo?

maxwidth=400&photoreference=CnRnAAAANz62kPaycw8 jPuoigidxAHAKbVEXFtZaHn23fbTRiDOP7VGNrBiFQfgKOEJ jpFbFC5TBdy7pBabiugpkkJey49bf30SOh8CH
8PneSqf5KLIO70KijETNUAlev1pmC7BexIQ3JbA6W uHFEPE1mAbQaZRBoUr 6HVDKGBMYSle7ghsrL41NddIJoskey=ATIzaSyBw8jI Lg UjCyHgKaxtoyYcNVGIeJG1fE"

}
1,

vicinity: "31 Neal St, Covent Garden, London"

[3].photos[0]

[215]

Random Recommendations Web Service

Feel free to play around with the values in the URL to see how powerful the simple API is
by trying various journey strings, tweaking the locations, and trying different cost range
value strings.

Web application

We are going to download a complete web application built to the same API specifications
and point it at our implementation to see it come to life before our eyes. Head over to https
://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb and
download the meanderweb project into your GOPATH folder (alongside your root meander
folder will do).

In a terminal, navigate to the meanderweb folder and build and run it:

go build -o meanderweb
. /meanderweb

This will start a website running on localhost:8081, which is hardcoded to look for the
API running at localhost :8080. Because we added the CORS support, this won't be a
problem despite them running on different domains.

Open a browser to http://localhost:8081/ and interact with the application; while
somebody else built the UI, it would be pretty useless without the API that we built in order
to power it.

Summary

In this chapter, we built an API that consumes and abstracts the Google Places API to
provide a fun and interesting way of letting users plan their days and evenings.

We started by writing some simple and short user stories that described what we wanted to
achieve at a really high level without trying to design the implementation up front. In order
to parallelize the project, we agreed upon the meeting point of the project as the API design,
and we built toward it (as would our partners).

We embedded data directly in the code, avoiding the need to investigate, design, and
implement a data store in the early stages of a project. By caring about how that data is
accessed (via the API endpoint) instead, we allowed our future selves to completely change
how and where the data is stored without breaking any apps that have been written with
our APL

[216]

https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb

Random Recommendations Web Service

We implemented the Facade interface, which allows our structs and other types to provide
public representations of them without revealing messy or sensitive details about our
implementation.

Our foray into enumerators gave us a useful starting point to build enumerated types, even
though there is no official support for them in the language. The iota keyword that we
used lets us specify constants of our own numerical type, with incrementing values. The
common String method that we implemented showed us how to make sure that our
enumerated types don't become obscure numbers in our logs. At the same time, we also
saw a real-world example of TDD and red/green programming, where we wrote unit tests
that first fail but which we then go on to make pass by writing the implementation code.

In the next chapter, we are going to take a break from web services in order to build a
backup tool for our code, where we'll explore how easy Go makes it for us to interact with
the local filesystem.

[217]

Filesystem Backup

There are many solutions that provide filesystem backup capabilities. These include
everything from apps such as Dropbox, Box, and Carbonite to hardware solutions such as
Apple's Time Machine, Seagate, or network-attached storage products, to name a few. Most
consumer tools provide some key automatic functionality, along with an app or website for
you to manage your policies and content. Often, especially for developers, these tools don't
quite do the things we need them to. However, thanks to Go's standard library (which
includes packages such as ioutil and os), we have everything we need to build a backup
solution that behaves exactly the way we need it to.

For our next project, we will build a simple filesystem backup for our source code projects
that archive specified folders and save a snapshot of them every time we make a change.
The change could be when we tweak a file and save it, when we add new files and folders,
or even when we delete a file. We want to be able to go back to any point in time to retrieve
old files.

Specifically, in this chapter, you will learn about the following topics:

e How to structure projects that consist of packages and command-line tools

¢ A pragmatic approach to persisting simple data across tool executions

e How the os package allows you to interact with a filesystem

e How to run code in an infinite timed loop while respecting Ctrl + C

e How touse filepath.Walk to iterate over files and folders

e How to quickly determine whether the contents of a directory have changed
e How to use the archive/zip package to zip files

e How to build tools that care about a combination of command-line flags and
normal arguments

Filesystem Backup

Solution design

We will start by listing some high-level acceptance criteria for our solution and the
approach we want to take:

¢ The solution should create a snapshot of our files at regular intervals as we make
changes to our source code projects

e We want to control the interval at which the directories are checked for changes

¢ Code projects are primarily text-based, so zipping the directories to generate
archives will save a lot of space

e We will build this project quickly, while keeping a close watch over where we
might want to make improvements later

e Any implementation decisions we make should be easily modified if we decide
to change our implementation in the future

o We will build two command-line tools: the backend daemon that does the work
and a user interaction utility that will let us list, add, and remove paths from the
backup service

The project structure

It is common in Go solutions to have, in a single project, both a package that allows other
Go programmers to use your capabilities and a command-line tool that allows end users to
use your programs.

As we saw in the last chapter, a convention to structure such projects is emerging whereby
we have the package in the main project project folder and the command-line tool inside a
subfolder called cmd or cmds if you have multiple commands. Because all packages are
equal in Go (regardless of the directory tree), you can import the package from the
command subpackages, knowing you'll never need to import the commands from the
project package (which is illegal as you can't have cyclical dependencies). This may seem
like an unnecessary abstraction, but it is actually quite a common pattern and can be seen in
the standard Go tool chain with examples such as gofmt and goimports.

For example, for our project, we are going to write a package called backup and two
command-line tools: the daemon and the user interaction tool. We will structure our project
in the following way:

/backup - package
/backup/cmds/backup - user interaction tool
/backup/cmds/backupd - worker daemon

[219]

Filesystem Backup

The reason we don't just put code directly inside the cmd folder (even if we
only had one command) is that when go install builds projects, it uses
the name of the folder as the command name, and it wouldn't be very
useful if all of our tools were called cmd.

The backup package

We are first going to write the backup package, of which we will become the first customer
when we write the associated tools. The package will be responsible for deciding whether
directories have changed and need backing up or not as well as actually performing the
backup procedure.

Considering obvious interfaces first

One of the early things to think about when embarking on a new Go program is whether
any interfaces stand out to you. We don't want to over-abstract or waste too much time
upfront designing something that we know will change as we start to code, but that doesn't
mean we shouldn't look for obvious concepts that are worth pulling out. If you're not sure,
that is perfectly acceptable; you should write your code using concrete types and revisit
potential abstractions after you have actually solved the problems.

However, since our code will archive files, the Archiver interface pops out as a candidate.

Create a new folder inside your GOPATH/ src folder called backup, and add the following
archiver.go code:

package backup
type Archiver interface {
Archive (src, dest string) error

}

An Archiver interface will specify a method called Archive, which takes source and
destination paths and returns an error. Implementations of this interface will be responsible
for archiving the source folder and storing it in the destination path.

Defining an interface up front is a nice way to get some concepts out of
our heads and into the code; it doesn't mean that this interface can't
change as we evolve our solution as long as we remember the power of
simple interfaces. Also, remember that most of the I/O interfaces in the io
package expose only a single method.

[220]

Filesystem Backup

From the very beginning, we have made the case that while we are going to implement ZIP
files as our archive format, we could easily swap this out later with another kind of
Archiver format.

Testing interfaces by implementing them

Now that we have the interface for our Archiver types, we are going to implement one
that uses the ZIP file format.

Add the following st ruct definition to archiver.go:
type zipper struct{}

We are not going to export this type, which might make you jump to the conclusion that
users outside of the package won't be able to make use of it. In fact, we are going to provide
them with an instance of the type for them to use in order to save them from having to
worry about creating and managing their own types.

Add the following exported implementation:

// Zip is an Archiver that zips and unzips files.
var ZIP Archiver = (*zipper) (nil)

This curious snippet of Go voodoo is actually a very interesting way of exposing the intent
to the compiler without using any memory (literally 0 bytes). We are defining a variable
called z1P of type Archiver, so from outside the package, it's pretty clear that we can use
that variable wherever Archiver is needed if you want to zip things. Then, we assign it
with nil cast to the type *zipper. We know that nil takes no memory, but since it's cast
to a zipper pointer, and given that our zipper struct has no state, it's an appropriate way
of solving a problem, which hides the complexity of code (and indeed the actual
implementation) from outside users. There is no reason anybody outside of the package
needs to know about our zipper type at all, which frees us up to change the internals
without touching the externals at any time: the true power of interfaces.

Another handy side benefit to this trick is that the compiler will now be checking whether
our zipper type properly implements the Archiver interface or not, so if you try to build
this code, you'll get a compiler error:

./archiver.go:10: cannot use (*zipper) (nil) (type *zipper) as type
Archiver in assignment:
*zipper does not implement Archiver (missing Archive method)

[221]

Filesystem Backup

We see that our zipper type does not implement the Archive method as mandated in the
interface.

You can also use the Archive method in test code to ensure that your
types implement the interfaces they should. If you don't need to use the
variable, you can always throw it away using an underscore and you'll
still get the compiler help:

var _ Interface = (*Implementation) (nil)

To make the compiler happy, we are going to add the implementation of the Archive
method for our zipper type.

Add the following code to archiver.go:

func (z *zipper) Archive(src, dest string) error {
if err := os.MkdirAll (filepath.Dir(dest), 0777); err != nil {
return err
}
out, err := os.Create(dest)
if err != nil {
return err
}
defer out.Close()
w := zip.NewWriter (out)
defer w.Close ()
return filepath.Walk(src, func(path string, info os.FilelInfo, err error)
error {
if info.IsDir () {
return nil // skip
}
if err != nil {
return err
}
in, err := os.Open(path)
if err != nil {
return err
}
defer in.Close ()
f, err := w.Create(path)
if err != nil {
return err
}
_, err = io.Copy(£f, in)
if err != nil {
return err

[222]

Filesystem Backup

}

return nil
})
t

You will also have to import the archive/zip package from the Go standard library. In
our Archive method, we take the following steps to prepare writing to a ZIP file:

e Use os.MkdirAll to ensure that the destination directory exists. The 0777 code
represents the file permissions with which you may need to create any missing
directories

e Use os.Create to create a new file as specified by the dest path

e If the file is created without an error, defer the closing of the file with defer
out.Close()

e Use zip.NewWriter to create anew zip.Writer type that will write to the file
we just created and defer the closing of the writer

Once we have a zip.Writer type ready to go, we use the filepath.Walk function to
iterate over the source directory, src.

The filepath.Walk function takes two arguments: the root path and a callback function to
be called for every item (files and folders) it encounters while iterating over the filesystem.

Functions are first class types in Go, which means you can use them as
argument types as well as global functions and methods. The
filepath.Walk function specifies the second argument type as
filepath.WalkFunc, which is a function with a specific signature. As
long as we adhere to the signature (correct input and return arguments)
we can write inline functions rather than worrying about the
filepath.WalkFunc type at all.

Taking a quick look at the Go source code tell us that the signature for
filepath.WalkFunc matches the function we are passing in func (path
string, info os.FilelInfo, err error) error

The filepath.Walk function is recursive, so it will travel deep into subfolders too. The
callback function itself takes three arguments: the full path of the file, the os.FileInfo
object that describes the file or folder itself, and an error (it also returns an error in case
something goes wrong). If any calls to the callback function result in an error (other than the
special SkipDir error value) being returned, the operation will be aborted and
filepath.Walk returns that error. We simply pass this up to the caller of Archive and let
them worry about it, since there's nothing more we can do.

[223]

Filesystem Backup

For each item in the tree, our code takes the following steps:

e If the info.IsDir method tells us that the item is a folder, we just return nil,
effectively skipping it. There is no reason to add folders to ZIP archives because
the path of the files will encode that information for us.

e If an error is passed in (via the third argument), it means something went wrong
when trying to access information about the file. This is uncommon, so we just
return the error, which will eventually be passed out to the caller of Archive. As
the implementor of filepath.Walk, you aren't forced to abort the operation
here; you are free to do whatever makes sense in your individual case.

e Use os.Open to open the source file for reading, and if successful, defer its
closing.

e Call create on the zipWriter object to indicate that we want to create a new
compressed file and give it the full path of the file, which includes the directories
it is nested inside.

e Use io.Copy to read all of the bytes from the source file and write them through
the zipWriter object to the ZIP file we opened earlier.

e Return nil to indicate no errors.

This chapter will not cover unit testing or Test-driven Development (TDD) practices, but
feel free to write a test to ensure that our implementation does what it is meant to do.

Since we are writing a package, spend some time commenting on the
exported pieces so far. You can use golint to help you find anything you
may have missed.

Has the filesystem changed?

One of the biggest problems our backup system has is deciding whether a folder has
changed or not in a cross-platform, predictable, and reliable way. After all, there's no point
in creating a backup if nothing is different from the previous backup. A few things spring to
mind when we think about this problem: should we just check the last modified date on the
top-level folder? Should we use system notifications to be informed whenever a file we care
about changes? There are problems with both of these approaches, and it turns out it's not a
simple problem to solve.

[224]

Filesystem Backup

Check out the fsnotify project at https://fsnotify.org (project source:
https://github.com/fsnotify). The authors are attempting to build a
cross-platform package for subscription to filesystem events. At the time
of writing this, the project is still in its infancy and it not a viable option for
this chapter, but in the future, it could well become the standard solution
for filesystem events.

We are, instead, going to generate an MD5 hash made up of all of the information that we
care about when considering whether something has changed or not.

Looking at the os.FileInfo type, we can see that we can find out a lot of information
about a file or folder:

type FileInfo interface {

Name () string // base name of the file

Size () int64 // length in bytes for regular files;
system—-dependent for others

Mode () FileMode // file mode bits

ModTime () time.Time // modification time

IsDir () bool // abbreviation for Mode () .IsDir ()

Sys () interface{} // underlying data source (can return nil)

}

To ensure we are aware of a variety of changes to any file in a folder, the hash will be made
up of the filename and path (so if they rename a file, the hash will be different), size (if a file
changes size, it's obviously different), the last modified date, whether the item is a file or
folder, and the file mode bits. Even though we won't be archiving the folders, we still care
about their names and the tree structure of the folder.

Create a new file called dirhash.go and add the following function:

package backup

import (
"crypto/md5"
"fmt"
llioll
llosll
"path/filepath"
)
func DirHash (path string) (string, error) {
hash := md5.New ()
err := filepath.Walk (path, func(path string, info os.FileInfo, err error)
error A
if err !'= nil {

return err

}

[225]

https://fsnotify.org
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify
https://github.com/fsnotify

Filesystem Backup

io.WriteString (hash, path)

fmt.Fprintf (hash, "%v", info.IsDir())
fmt.Fprintf (hash, "%v", info.ModTime ())
fmt.Fprintf (hash, "%v", info.Mode())
fmt.Fprintf (hash, "%v", info.Name())
fmt.Fprintf (hash, "%v", info.Size())
return nil

H)

if err !'= nil {
return "", err
t
return fmt.Sprintf ("%$x", hash.Sum(nil)), nil

}

We first create a new hash.Hash function that knows how to calculate MD5s before using
filepath.Walk again to iterate over all of the files and folders inside the specified path
directory. For each item, assuming there are no errors, we write the differential information
to the hash generator using io.WriteString, which lets us write a string to io.Writer
and fmt .Fprint £, which does the same but exposes formatting capabilities at the same
time, allowing us to generate the default value format for each item using the v format
verb.

Once each file has been processed, and assuming no errors occurred, we then use

fmt . Sprintf to generate the result string. The Sum method in hash.Hash calculates the
final hash value with the specified values appended. In our case, we do not want to append
anything since we've already added all of the information we care about, so we just pass
nil. The $x format verb indicates that we want the value to be represented in hex (base 16)
with lowercase letters. This is the usual way of representing an MD5 hash.

Checking for changes and initiating a backup

Now that we have the ability to hash a folder and perform a backup, we are going to put
the two together in a new type called Monitor. The Monitor type will have a map of paths
with their associated hashes, a reference to any Archiver type (of course, we'll use
backup.zIP for now), and a destination string representing where to put the archives.

Create a new file called monitor.go and add the following definition:

type Monitor struct {
Paths map [string]string
Archiver Archiver
Destination string

}

[226]

Filesystem Backup

In order to trigger a check for changes, we are going to add the following Now method:

func (m *Monitor) Now() (int, error) {
var counter int
for path, lastHash := range m.Paths {
newHash, err := DirHash (path)
if err !'= nil {

return counter, err

}

if newHash != lastHash {
err := m.act (path)
if err !'= nil {

return counter, err
}
m.Paths[path] = newHash // update the hash
counter++
}
}

return counter, nil

}

The Now method iterates over every path in the map and generates the latest hash of that
folder. If the hash does not match the hash from the map (generated the last time it
checked), then it is considered to have changed and needs backing up again. We do this
with a call to the as-yet-unwritten act method before then updating the hash in the map
with this new hash.

To give our users a high-level indication of what happened when they called Now, we are
also maintaining a counter, which we increment every time we back up a folder. We will
use this later to keep our end users up to date on what the system is doing without
bombarding them with information:

m.act undefined (type *Monitor has no field or method act)
The compiler is helping us again and reminding us that we have yet to add the act method:

func (m *Monitor) act(path string) error {

dirname := filepath.Base (path)

filename := fmt.Sprintf ("%d.zip", time.Now () .UnixNano ())

return m.Archiver.Archive (path, filepath.Join(m.Destination, dirname,
filename))

}

Because we have done the heavy lifting in our ZIP Archiver type, all we have to do here is
generate a filename, decide where the archive will go, and call the Archive method.

[227]

Filesystem Backup

If the Archive method returns an error, the act method and then the Now
method will each return it. This mechanism of passing errors up the chain
is very common in Go and allows you to either handle cases where you
can do something useful to recover or else defer the problem to somebody
else.

The act method in the preceding code uses t ime .Now () .UnixNano () to generate a
timestamp filename and hardcodes the . zip extension.

Hardcoding is OK for a short while

Hardcoding the file extension like we have is OK in the beginning, but if you think about it,
we have blended concerns a little here. If we change the Archiver implementation to use
RAR or a compression format of our making, the . zip extension would no longer be
appropriate.

Before reading on, think about what steps you might take to avoid this
hardcoding. Where does the filename extension decision live? What
changes would you need to make in order to avoid hardcoding?

The right place for the filename extensions decision is probably in the Archiver interface,
since it knows the kind of archiving it will be doing. So we could add an Ext () string
method and access that from our act method. But we can add a little extra power with not
much extra work by allowing Archiver authors to specify the entire filename format rather
than just the extension instead.

Back in archiver.go, update the Archiver interface definition:

type Archiver interface {
DestFmt () string
Archive (src, dest string) error

}
Our zipper type needs to now implement this:

func (z *zipper) DestFmt () string {
return "%d.zip"

}

Now that we can ask our act method to get the whole format string from the Archiver
interface, update the act method:

func (m *Monitor) act (path string) error {

[228]

Filesystem Backup

dirname := filepath.Base (path)

filename := fmt.Sprintf (m.Archiver.DestFmt (), time.Now () .UnixNano())
return m.Archiver.Archive (path, filepath.Join(m.Destination, dirname,
filename))

The user command-line tool

The first of two tools we will build allows the user to add, list, and remove paths for the
backup daemon tool (which we will write later). You can expose a web interface or even use
the binding packages for the desktop user interface integration, but we are going to keep
things simple and build ourselves a command-line tool.

Create a new folder called cmds inside the backup folder and create another backup folder
inside that so you have backup/cmds /backup.

Inside our new backup folder, add the following code to main. go:

func main () {
var fatalErr error
defer func() A
if fatalErr != nil {
flag.PrintDefaults ()
log.Fatalln(fatalErr)
t
O
var (
dbpath = flag.String("db", "./backupdata", "path to database
directory")
)
flag.Parse()
args := flag.Args()
if len(args) < 1 {
fatalErr = errors.New("invalid usage; must specify command")
return

}

We first define our fatalErr variable and defer the function that checks to ensure that
value is nil. If it is not, it will print the error along with flag defaults and exit with a
nonzero status code. We then define a flag called db that expects the path to the filedb
database directory before parsing the flags and getting the remaining arguments and
ensuring that there is at least one.

[229]

Filesystem Backup

Persisting small data

In order to keep track of the paths and the hashes that we generate, we will need some kind
of data storage mechanism that ideally works even when we stop and start our programs.
We have lots of choices here: everything from a text file to a full horizontally scalable
database solution. The Go ethos of simplicity tells us that building-in a database
dependency to our little backup program would not be a great idea; rather, we should ask
what the simplest way in which we can solve this problem is.

The github.com/matryer/filedb package is an experimental solution for just this kind
of problem. It lets you interact with the filesystem as though it were a very simple,
schemaless database. It takes its design lead from packages such as mgo and can be used in
cases where data querying needs are very simple. In filedb, a database is a folder, and a
collection is a file where each line represents a different record. Of course, this could all
change as the £iledb project evolves, but the interface, hopefully, won't.

Adding dependencies such as this to a Go project should be done very
carefully because over time, dependencies go stale, change beyond their
initial scope, or disappear altogether in some cases. While it sounds
counterintuitive, you should consider whether copying and pasting a few
files into your project is a better solution than relying on an external
dependency. Alternatively, consider vendoring the dependency by
copying the entire package into the vendor folder of your command. This
is akin to storing a snapshot of the dependency that you know works for
your tool.

Add the following code to the end of the main function:

db, err := filedb.Dial (*dbpath)
if err !'= nil {

fatalErr = err

return

t
defer db.Close ()

col, err := db.C("paths")
if err !'= nil {

fatalErr = err

return

}

Here, we use the filedb.Dial function to connect with the filedb database. In actuality,

nothing much happens here except specifying where the database is, since there are no real
database servers to connect to (although this might change in the future, which is why such
provisions exist in the interface). If that was successful, we defer the closing of the database.

[230]

Filesystem Backup

Closing the database does actually do something, since files may be open that need to be
cleaned up.

Following the mgo pattern, next we specify a collection using the ¢ method and keep a
reference to it in the col variable. If an error occurs at any point, we assign it to the
fatalErr variable and return.

To store data, we are going to define a type called path, which will store the full path and
the last hash value and use JSON encoding to store this in our £iledb database. Add the
following struct definition above the main function:

type path struct {
Path string
Hash string

}

Parsing arguments

When we call £1ag.Args (as opposed to os.Args), we receive a slice of arguments
excluding the flags. This allows us to mix flag arguments and non-flag arguments in the
same tool.

We want our tool to be able to be used in the following ways:
¢ To add a path:
backup -db=/path/to/db add {path} [paths...]
e To remove a path:
backup -db=/path/to/db remove {path} [paths...]
e To list all paths:
backup -db=/path/to/db list

To achieve this, since we have already dealt with flags, we must check the first (non-flag)
argument.

[231]

Filesystem Backup

Add the following code to the main function:

switch strings.ToLower (args[0]) {
case "list":

case "add":

case "remove":

}

Here, we simply switch on the first argument after setting it to lowercase (if the user types
backup LIST, we still want it to work).

Listing the paths

To list the paths in the database, we are going to use a ForEach method on the path's col
variable. Add the following code to the list case:

var path path
col.ForEach (func (i int, data []byte) bool {
err := json.Unmarshal (data, é&path)
if err !'= nil {
fatalErr = err
return true

t
fmt.Printf ("= %$s\n", path)
return false

H)

We pass in a callback function to ForEach, which will be called for every item in that
collection. We then unmarshal it from JSON into our path type, and just print it out using
fmt .Printf. We return false as per the filedb interface, which tells us that returning
true would stop iterating and that we want to make sure we list them all.

String representations for your own types

If you print structs in Go in this way, using the %s format verbs, you can get some messy
results that are difficult for users to read. If, however, the type implements a String ()
string method, it will be used instead, and we can use this to control what gets printed.
Below the path struct, add the following method:

func (p path) String() string {
return fmt.Sprintf ("%$s [%$s]", p.Path, p.Hash)
}

This tells the path type how it should represent itself as a string.

[232]

Filesystem Backup

Adding paths

To add a path, or many paths, we are going to iterate over the remaining arguments and
call the Insert JSON method for each one. Add the following code to the add case:

if len(args[l:]) == 0 {
fatalErr = errors.New ("must specify path to add")
return
}
for _, p := range args[l:] {
path := &path{Path: p, Hash: "Not yet archived"}
if err := col.InsertJSON(path); err != nil {
fatalErr = err
return

}
fmt.Printf ("+ %s\n", path)

}

If the user hasn't specified any additional arguments, for example if they just called backup
add without typing any paths, we will return a fatal error. Otherwise, we do the work and
print out the path string (prefixed with a + symbol) to indicate that it was successfully
added. By default, we'll set the hash to the Not yet archived string literal this is an
invalid hash but serves the dual purposes of letting the user know that it hasn't yet been
archived as well as indicating as such to our code (given that a hash of the folder will never
equal that string).

Removing paths

To remove a path, or many paths, we use the RemoveEach method for the path's collection.
Add the following code to the remove case:

var path path
col.RemoveEach (func (i int, data []byte) (bool, bool) {
err := json.Unmarshal (data, é&path)
if err !'= nil {
fatalErr = err
return false, true

}

for _, p := range args[l:] {
if path.Path == p {
fmt .Printf ("- %s\n", path)

return true, false
}
}

return false, false

[233]

Filesystem Backup

H)

The callback function we provide to RemoveEach expects us to return two bool types: the
first one indicates whether the item should be removed or not, and the second one indicates
whether we should stop iterating or not.

Using our new tool

We have completed our simple backup command-line tool. Let's look at it in action. Create
a folder called backupdata inside backup/cmds/backup; this will become the filedb
database.

Build the tool in a terminal by navigating to the main. go file and running this:

go build -o backup

If all is well, we can now add a path:

./backup -db=./backupdata add ./test ./test2

You should see the expected output:

+ ./test [Not yet archived]
+ ./test2 [Not yet archived]

Now let's add another path:

./backup -db=./backupdata add ./test3

You should now see the complete list:

./backup -db=./backupdata list

Our program should yield the following;:

./test [Not yet archived]
./test2 [Not yet archived]
./test3 [Not yet archived]

[234]

Filesystem Backup

Let's remove test3 in order to make sure the remove functionality is working:

./backup -db=./backupdata remove ./test3
./backup -db=./backupdata list

This will take us back to this:

+ ./test [Not yet archived]
+ ./test2 [Not yet archived]

We are now able to interact with the £iledb database in a way that makes sense for our use
case. Next, we build the daemon program that will actually use our backup package to do
the work.

The daemon backup tool

The backup tool, which we will call backupd, will be responsible for periodically checking
the paths listed in the £iledb database, hashing the folders to see whether anything has
changed, and using the backup package to actually perform the archiving of the folders
that need it.

Create a new folder called backupd alongside the backup/cmds/backup folder, and let's
jump right into handling the fatal errors and flags:

func main () {
var fatalErr error
defer func () |
if fatalErr != nil {

log.Fatalln(fatalErr)
}
Q)
var (
interval = flag.Duration("interval", 10 * time.Second, "interval
between
checks")
archive = flag.String("archive", "archive", "path to archive
location™)
dbpath = flag.String("db", "./db", "path to filedb database")
)
flag.Parse()
}

[235]

Filesystem Backup

You must be quite used to seeing this kind of code by now. We defer the handling of fatal
errors before specifying three flags: interval, archive, and db. The interval flag
represents the number of seconds between checks to see whether folders have changed, the
archive flag is the path to the archive location where ZIP files will go, and the db flag is
the path to the same filedb database that the backup command is interacting with. The
usual call to £lag.Parse sets the variables up and validates whether we're ready to move
on.

In order to check the hashes of the folders, we are going to need an instance of Monitor that
we wrote earlier. Append the following code to the main function:

m := &backup.Monitor({
Destination: *archive,
Archiver: backup.ZIP,
Paths: make (map[string]lstring),

}

Here, we create backup.Monitor using the archive value as the Destination type. We'll
use the backup. zIP archiver and create a map ready for it to store the paths and hashes
internally. At the start of the daemon, we want to load the paths from the database so that it
doesn't archive unnecessarily as we stop and start things.

Add the following code to the main function:

db, err := filedb.Dial (*dbpath)
if err !'= nil {

fatalErr = err

return

t
defer db.Close ()

col, err := db.C("paths")
if err !'= nil {

fatalErr = err

return

}

You have seen this code earlier too; it dials the database and creates an object that allows us
to interact with the paths collection. If anything fails, we set fatalErr and return.

[236]

Filesystem Backup

Duplicated structures

Since we're going to use the same path structure as we used in our user command-line tool
program, we need to include a definition of it for this program too. Insert the following
structure above the main function:

type path struct {
Path string
Hash string

}

The object-oriented programmers out there are no doubt screaming at the pages by now,
demanding for this shared snippet to exist in one place only and not be duplicated in both
programs. I urge you to resist this compulsion. These four lines of code hardly justify a new
package, and therefore dependency for our code, when they can just as easily exist in both
programs with very little overhead. Also, consider that we might want to add a
LastChecked field to our backupd program so that we can add rules where each folder
only gets archived once an hour at most. Our backup program doesn't care about this and
will chug along perfectly happy with its view into what fields constitute a path structure.

Caching data

We can now query all existing paths and update the Paths map, which is a useful
technique to increase the speed of a program, especially given slow or disconnected data
stores. By loading the data into a cache (in our case, the Paths map), we can access it at
lightning speed without having to consult the files each time we need information.

Add the following code to the body of the main function:

var path path
col.ForEach (func(_ int, data []byte) bool {
if err := json.Unmarshal (data, é&path); err != nil {
fatalErr = err
return true
}
m.Paths[path.Path] = path.Hash
return false // carry on
)
if fatalErr != nil {
return
}
if len(m.Paths) < 1 {
fatalErr = errors.New("no paths - use backup tool to add at least one")
return

[237]

Filesystem Backup

}

Using the ForEach method again allows us to iterate over all the paths in the database. We
unmarshal the JSON bytes into the same path structure as we used in our other program
and set the values in the Paths map. Assuming that nothing goes wrong, we do a final
check to make sure there is at least one path, and if not, we return with an error.

One limitation to our program is that it will not dynamically add paths
once it has started. The daemon would need to be restarted. If this bothers
you, you can always build in a mechanism that updates the Paths map
periodically or uses some other kind of configuration management.

Infinite loops

The next thing we need to do is perform a check on the hashes right away to see whether
anything needs archiving before entering into an infinite timed loop where we perform the
check again at regular, specified intervals.

An infinite loop sounds like a bad idea; in fact, to some, it sounds like a bug. However,
since we're talking about an infinite loop within this program, and since infinite loops can
be easily broken with a simple break command, they're not as dramatic as they might
sound. When we mix an infinite loop with a select statement that has no default case, we are
able to run the code in a manageable way without gobbling up CPU cycles as we wait for
something to happen. The execution will be blocked until one of the two channels receive
data.

In Go, to write an infinite loop is as simple as running this:

for {}

The instructions inside the braces get executed over and over again, as quickly as the
machine running the code can execute them. Again, this sounds like a bad plan unless
you're careful about what you're asking it to do. In our case, we are immediately initiating a
select case on the two channels that will block safely until one of the channels has
something interesting to say.

Add the following code:
check (m, col)
signalChan := make (chan os.Signal, 1)
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)
for {
select {

[238]

Filesystem Backup

case <-time.After (*interval) :
check (m, col)

case <-signalChan:
// stop
fmt.Println ()
log.Printf ("Stopping...")
return

}

Of course, as responsible programmers, we care about what happens when the user
terminates our programs. So after a call to the check method (which doesn't yet exist), we
make a signal channel and use signal.Notify to ask for the termination signal to be given
to the channel rather than it being handled automatically. In our infinite for loop, we select
two possibilities: either the t imer channel sends a message or the termination signal
channel sends a message. If it's the t imer channel message, we call check again; if it's
signalChan, we go about terminating the program; otherwise, we'll loop back and wait.

The time.After function returns a channel that will send a signal (actually, the current
time) after the specified time has elapsed. Since we are using flag.Duration, we can pass
this (deferenced via *) as the t ime . Duration argument directly into the function. Using
flag.Duration also means that users can specify time durations in a human readable way,
such as 10s for 10 seconds or 1m for a minute.

Finally, we return from the main function, causing the deferred statements to execute, such
as closing the database connection.

Updating filedb records

All that is left is for us is implement the check function that should call the Now method on
the Monitor type and update the database with new hashes if there are any.

Underneath the main function, add the following code:

func check (m *backup.Monitor, col *filedb.C) {
log.Println ("Checking...")

counter, err := m.Now()
if err !'= nil {
log.Fatalln("failed to backup:", err)

}

if counter > 0 {
log.Printf (" Archived %d directories\n", counter)
// update hashes
var path path

[239]

Filesystem Backup

col.SelectEach (func(_ int, data []byte) (bool, [lbyte, bool) {
if err := json.Unmarshal (data, é&path); err !'= nil {
log.Println("failed to unmarshal data (skipping):", err)

return true, data, false

}

path.Hash, _ = m.Paths[path.Path]
newdata, err := json.Marshal (&path)
if err !'= nil {

log.Println("failed to marshal data (skipping):", err)
return true, data, false

}

return true, newdata, false
})
} else {
log.Println(" No changes")
t
t

The check function first tells the user that a check is happening before immediately calling
Now. If the Monitor type did any work for us, which is to ask whether it archived any files,
we output them to the user and go on to update the database with the new values. The
SelectEach method allows us to change each record in the collection if we so wish by
returning the replacement bytes. So we unmarshal the bytes to get the path structure,
update the hash value, and return the marshaled bytes. This ensures that the next time we
start a backupd process, it will do so with the correct hash values.

Testing our solution

Let's see whether our two programs play nicely together. You may want to open two
terminal windows for this, since we'll be running two programs.

We have already added some paths to the database, so let's use backup to see them:
./backup -db="./backupdata" list

You should see the two test folders; if you don't, refer to the Adding paths section:

./test [Not yet archived]
./test2 [Not yet archived]

In another window, navigate to the backupd folder and create our two test folders, called
test and test?2.

[240]

Filesystem Backup

Build backupd using the usual method:

go build -o backupd

Assuming all is well, we can now start the backup process, being sure to point the db path
to the same path as we used for the backup program and specifying that we want to use a
new folder called archive to store the ZIP files. For testing purposes, let's specify an
interval of 5 seconds in order to save time:

./backupd -db="../backup/backupdata/" -archive="./archive" -
interval=5s

Immediately, backupd should check the folders, calculate the hashes, note that they are
different (to Not yet archived), and initiate the archive process for both folders. It will
print the output that tells us this:

Checking. ..
Archived 2 directories

Open the newly created archive folder inside backup/cmds/backupd and note that it has
created two subfolders: test and test2. Inside these are compressed archive versions of
the empty folders. Feel free to unzip one and see; nothing very exciting so far.

Meanwhile, back in the terminal window, backupd has been checking the folders for
changes again:

Checking. ..
No changes

Checking. ..
No changes

In your favorite text editor, create a new text file inside the test2 folder, containing the
word test, and save it as one. txt. After a few seconds, you will see that backupd has
noticed the new file and created another snapshot inside the archive/test2 folder.

Of course, it has a different filename because the time is different, but if you unzip it, you
will notice that it has indeed created a compressed archive version of the folder.

Play around with the solution by taking the following actions:

e Change the contents of the one. txt file
e Add afile to the test folder too
e Delete a file

[241]

Filesystem Backup

Summary

In this chapter, we successfully built a very simple backup system for your code projects.
You can see how simple it would be to extend or modify the behavior of these programs.
The scope for potential problems that you could go on to solve is limitless.

Rather than having a local archive destination folder like we did in the previous section,
imagine mounting a network storage device and using that instead. Suddenly, you have off-
site (or at least off-machine) backups of these vital files. You can easily set a Dropbox folder
as the archive destination, which would mean that not only do you get access to the
snapshots yourself, but a copy is also stored in the cloud and can even be shared with other
users.

Extending the Archiver interface to support Restore operations (which would just use
the encoding/zip package to unzip the files) allows you to build tools that can peer inside
the archives and access the changes of individual files, much like Time Machine on a Mac
allows you to do. Indexing the files gives you the complete search across the entire history
of your code, much like GitHub does.

Since the filenames are timestamps, you could have backupd retiring old archives to less
active storage mediums or summarized the changes into a daily dump.

Obviously, backup software exists, is well tested, and is used throughout the world, and it
may be a smart move to focus on solving problems that haven't been solved yet. But when it
requires such little effort to write small programs to get things done, it is often worth doing
because of the control it gives you. When you write the code, you can get exactly what you
want without compromise, and it's down to each individual to make that call.

Specifically, in this chapter, we explored how easy Go's standard library makes it to interact
with the filesystem: opening files for reading, creating new files, and making directories.
The os package mixed in with the powerful types from the io package, blended further
with capabilities such as encoding/zip and others, gives a clear example of how extremely
simple Go interfaces can be composed to deliver very powerful results.

[242]

Building a Q&A Application for
Google App Engine

Google App Engine gives developers a NoOps (short for No Operations, indicating that
developers and engineers have no work to do in order to have their code running and
available) way of deploying their applications, and Go has been officially supported as a
language option for some years now. Google's architecture runs some of the biggest
applications in the world, such as Google Search, Google Maps, and Gmail, among others,
so is a pretty safe bet when it comes to deploying our own code.

Google App Engine allows you to write a Go application, add a few special configuration
files, and deploy it to Google's servers, where it will be hosted and made available in a
highly available, scalable, and elastic environment. Instances will automatically spin up to
meet demand and tear down gracefully when they are no longer needed with a healthy free
quota and preapproved budgets.

Along with running application instances, Google App Engine makes available a myriad of
useful services, such as fast and high-scale data stores, search, memcache, and task queues.
Transparent load balancing means you don't need to build and maintain additional
software or hardware to ensure servers don't get overloaded and that requests are fulfilled
quickly.

In this chapter, we will build the API backend for a question and answer service similar to
Stack Overflow or Quora and deploy it to Google App Engine. In the process, we'll explore
techniques, patterns, and practices that can be applied to all such applications, as well as
dive deep into some of the more useful services available to our application.

Building a Q&A Application for Google App Engine

Specifically, in this chapter, you will learn:

e How to use the Google App Engine SDK for Go to build and test applications
locally before deploying to the cloud

e How to use app.yaml to configure your application

e How Modules in Google App Engine let you independently manage the different
components that make up your application

e How the Google Cloud Datastore lets you persist and query data at scale

¢ A sensible pattern for the modeling of data and working with keys in Google
Cloud Datastore

¢ How to use the Google App Engine Users API to authenticate people with
Google accounts

¢ A pattern to embed denormalized data into entities
e How to ensure data integrity and build counters using transactions
¢ Why maintaining a good line of sight in code helps improve maintainability

e How to achieve simple HTTP routing without adding a dependency to a third-
party package

The Google App Engine SDK for Go

In order to run and deploy Google App Engine applications, we must download and
configure the Go SDK. Head over to https://cloud.google.com/appengine/downloads
and download the latest Google App Engine SDK for Go for your computer. The ZIP file
contains a folder called go_appengine, which you should place in an appropriate folder
outside of your GOPATH, for example, in /Users/yourname/work/go_appengine.

happens, ensure that you consult the project home page for notes pointing

It is possible that the names of these SDKs will change in the future; if that
8 you in the right direction at https://github.com/matryer/goblueprint

S.

Next, you will need to add the go_appengine folder to your $PATH environment variable,
much like what you did with the go folder when you first configured Go.

To test your installation, open a terminal and type this:

goapp version

[244]

https://cloud.google.com/appengine/downloads
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Building a Q&A Application for Google App Engine

You should see something like the following;:

go version gol.6.1 (appengine-1.9.37) darwin/amdé4

The actual version of Go is likely to differ and is often a few months
behind actual Go releases. This is because the Cloud Platform team at
Google needs to do work on its end to support new releases of Go.

The goapp command is a drop-in replacement for the go command with a few additional
subcommands; so you can do things like goapp test and goapp vet, for example.

Creating your application

In order to deploy an application to Google's servers, we must use the Google Cloud
Platform Console to set it up. In a browser, go to https://console.cloud.google.com and
sign in with your Google account. Look for the Create Project menu item, which often gets
moved around as the console changes from time to time. If you already have some projects,
click on a project name to open a submenu, and you'll find it in there.

If you can't find what you're looking for, just search Creating App Engine
project and you'll find it.

When the New Project dialog box opens, you will be asked for a name for your application.
You are free to call it whatever you like (for example, Answers), but note the Project ID that
is generated for you; you will need to refer to this when you configure your app later. You
can also click on Edit and specify your own ID, but know that the value must be globally
unique, so you'll have to get creative when thinking one up. In this book, we will use
answersapp as the application ID, but you won't be able to use that one since it has already
been taken.

You may need to wait a minute or two for your project to get created; there's no need to
watch the page you can continue and check back later.

[245]

https://console.cloud.google.com/

Building a Q&A Application for Google App Engine

App Engine applications are Go packages

Now that the Google App Engine SDK for Go is configured and our application has been
created, we can start building it.

In Google App Engine, an application is just a normal Go package with an init function
that registers handlers via the http.Handle or http.HandleFunc functions. It does not
need to be the main package like normal tools.

Create a new folder (somewhere inside your GOPATH folder) called answersapp/api and
add the following main. go file:

package api
import (
llioll
"net/http"
)
func init () |
http.HandleFunc ("/", handleHello)
)3
func handleHello (w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "Hello from App Engine")
)3

You will be familiar with most of this by now, but note that there is no ListenAndServe
call, and the handlers are set inside the init function rather than main. We are going to
handle every request with our simple handleHello function, which will just write a
welcoming string.

The app.yaml file

In order to turn our simple Go package into a Google App Engine application, we must add
a special configuration file called app . yaml. The file will go at the root of the application or
module, so create it inside the answersapp/api folder with the following contents:

application: YOUR_APPLICATION_ID_HERE
version: 1

runtime: go

api_version: gol

handlers:

- url: /.*

script: _go_app

[246]

Building a Q&A Application for Google App Engine

The file is a simple human-(and machine) readable configuration file in YAML (Yet
Another Markup Language format refer to yaml.org for more details). The following table
describes each property:

Property Description

application |The application ID (copied and pasted from when you created your project).

version Your application version number you can deploy multiple versions and even
split traffic between them to test new features, among other things. We'll just
stick with version 1 for now.

runtime The name of the runtime that will execute your application. Since this is a Go

book and since we're building a Go application, we'll use go.

api_version

The go1l api version is the runtime version supported by Google; you can
imagine that this could be go2 in the future.

handlers

A selection of configured URL mappings. In our case, everything will be
mapped to the special _go_app script, but you can also specify static files and
folders here.

Running simple applications locally

Before we deploy our application, it makes sense to test it locally. We can do this using the
App Engine SDK we downloaded earlier.

Navigate to your answersapp/api folder and run the following command in a terminal:

goapp serve

[247]

Building a Q&A Application for Google App Engine

You should see the following output:

INFO
INFO
INFO
INFO

echo:api matryer$ goapp serve

1. bash

2016-10-07 13:56:09,418 devappserver2.py:769] Skipping SDK update check.

2016-10-07 13:56:09,449 api_server.py:205] Starting API server at: http://localhost:51545

2016-10-07 13:56:09,451 dispatcher.py:197] Starting module "default" running at: http://localhost:8080
2016-10-07 13:56:09,452 admin_server.py:116] Starting admin server at: http://localhost:8000

This indicates that an API server is running locally on port : 56443, an admin server is
running on :8000, and our application (the module default) is now serving at
localhost :8080, so let's hit that one in a browser.

® ' ® /[localhost:8080 % 2

< C | @ localhost:8

Hello from RApp Engine

[248]

Building a Q&A Application for Google App Engine

As you can see by the Hello from App Engine response, our application is running
locally. Navigate to the admin server by changing the port from :8080 to : 8000.

o

® © ® [instances X

<« C' | @ localhost:8000/instances r
Google App Engine

dev~theanswersapp

I Instances Instances
Datastore Viewer Latency (ms) QPs Total Requests Runtime
Datastore Indexes default g0
badb1ad78b3bea224c934d7374eealTaef1a 0.0 0.00 0
Datastore Stats dbdcbad42b38a‘ebele5ecT21 efca7628df1 0.0 000 4

Interactive Conscle
Memcache Viewer
Blobstore Viewer
Task Queues

Cron Jobs

XMPP

Inbound Mail

Full Text Search

The preceding screenshot shows the web portal that we can use to interrogate the internals
of our application, including viewing running instances, inspecting the data store,
managing task queues, and more.

Deploying simple applications to Google App
Engine

To truly understand the power of Google App Engine's NoOps promise, we are going to
deploy this simple application to the cloud. Back in the terminal, stop the server by hitting
Ctrl+C and run the following command:

goapp deploy

[249]

Building a Q&A Application for Google App Engine

Your application will be packaged and uploaded to Google's servers. Once it's finished, you
should see something like the following:

Completed update of app: theanswersapp, version: 1
It really is as simple as that.

You can prove this by navigating to the endpoint you get for free with every Google App
Engine application, remembering to replace the application ID with your
own: https://YOUR_APPLICATION_ID_HERE.appspot.com/.

You will see the same output as earlier (the font may render differently since Google's
servers will make assumptions about the content type that the local dev server doesn't).

The application is being served over HTTP/2 and is already capable of
pretty massive scale, and all we did was write a config file and a few
lines of code.

Modules in Google App Engine

A module is a Go package that can be versioned, updated, and managed independently. An
app might have a single module, or it can be made up of many modules, each distinct but
part of the same application with access to the same data and services. An application must
have a default module even if it doesn't do much.

Our application will be made up of the following modules:

Description The module name
The obligatory default module default
An API package delivering RESTful JSON api

A static website serving HTML, CSS, and JavaScript that makes AJAX calls | web
to the API module

Each module will be a Go package and will, therefore, live inside its own folder.

Let's reorganize our project into modules by creating a new folder alongside the api folder
called default.

[2501]

Building a Q&A Application for Google App Engine

We are not going to make our default module do anything other than use it for
configuration, as we want our other modules to do all the meaningful work. But if we leave
this folder empty, the Google App Engine SDK will complain that it has nothing to build.

Inside the default folder, add the following placeholder main. go file:

package defaultmodule
func init () {}

This file does nothing except allow our default module to exist

It would have been nice for our package names to match the folders, but
default is a reserved keyword in Go, so we have a good reason to break
that rule.

The other module in our application will be called web, so create another folder alongside
the api and default folders called web. In this chapter, we are only going to build the API
for our application and cheat by downloading the web module.

Head over to the project home page at https://github.com/matryer/goblueprints,
access the content for Second Edition, and look for the download link for the web
components for Chapter 9, Building a Q& A Application for Google App Engine in the
Downloads section of the README file. The ZIP file contains the source files for the web
component, which should be unzipped and placed inside the web folder.

Now, our application structure should look like this:

/answersapp/api
/answersapp/default
/answersapp/web

Specifying modules
To specify which module our api package will become, we must add a property to the
app.yaml inside our api folder. Update it to include the module property:

application: YOUR_APPLICATION_ID_HERE
version: 1
runtime: go
module: api
api_version: gol
handlers:
- url: /.*
script: _go_app

[251]

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Building a Q&A Application for Google App Engine

Since our default module will need to be deployed as well, we also need to add an
app.yaml configuration file to it. Duplicate the api/app.yaml file inside
default/app.yaml, changing the module to default:

application: YOUR_APPLICATION_ID_HERE
version: 1

runtime: go

module: default

api_version: gol

handlers:

- url: /.*

script: _go_app

Routing to modules with dispatch.yaml

In order to route traffic appropriately to our modules, we will create another configuration
file called dispatch.yaml, which will let us map URL patterns to the modules.

We want all traffic beginning with the /api/ path to be routed to the api module and
everything else to the web module. As mentioned earlier, we won't expect our default
module to handle any traffic, but it will have more utility later.

In the answersapp folder (alongside our module folders not inside any of the module
folders), create a new file called dispatch.yaml with the following contents:

application: YOUR_APPLICATION_ID_HERE
dispatch:
- url: "*/api/*"
module: api
— url: "*/*"
module: web

The same application property tells the Google App Engine SDK for Go which
application we are referring to, and the dispatch section routes URLs to modules.

Google Cloud Datastore

One of the services available to App Engine developers is Google Cloud Datastore, a
NoSQL document database built for automatic scaling and high performance. Its limited
featureset guarantees very high scale, but understanding the caveats and best practices is
vital to a successful project.

[252]

Building a Q&A Application for Google App Engine

Denormalizing data

Developers with experience of relational databases (RDBMS) will often aim to reduce data
redundancy (trying to have each piece of data appear only once in their database) by
normalizing data, spreading it across many tables, and adding references (foreign keys)
before joining it back via a query to build a complete picture. In schemaless and NoSQL
databases, we tend to do the opposite. We denormalize data so that each document
contains the complete picture it needs, making read times extremely fast since it only needs
to go and get a single thing.

For example, consider how we might model tweets in a relational database such as MySQL
or Postgres:

Users & Tweets 4 URLs
ID ID ID
Name UserlD TweetlD
AvatarURL TweetBody URL
Title
ImageURL

A tweet itself contains only its unique ID, a foreign key reference to the Users table
representing the author of the tweet, and perhaps many URLs that were mentioned in
TweetBody.

One nice feature of this design is that a user can change their Name or AvatarURL and it
will be reflected in all of their tweets, past and future, something you wouldn't get for free
in a denormalized world.

However, in order to present a tweet to the user, we must load the tweet itself, look up (via
a join) the user to get their name and avatar URL, and then load the associated data from
the URLs table in order to show a preview of any links. At scale, this becomes difficult
because all three tables of data might well be physically separated from each other, which
means lots of things need to happen in order to build up this complete picture.

[253]

Building a Q&A Application for Google App Engine

Consider what a denormalized design would look like instead:

Users Tweets URLs

ID ID ID

Name UserlD TweetlD

AvatarURL UserName URL
UserAvatarURL Title
TweetBody ImageURL
URL
URLTitle
URLImageURL

We still have the same three buckets of data, except that now our tweet contains everything
it needs in order to render to the user without having to look up data from anywhere else.
The hardcore relational database designers out there are realizing what this means by now,
and it is no doubt making them feel uneasy.

Following this approach means that:

e Data is repeated — AvatarURL in User is repeated as UserAvatarURL in the tweet
(waste of space, right?)

e If the user changes their AvatarURL, UserAvatarURL in the tweet will be out of
date

Database design, at the end of the day, comes down to physics. We are deciding that our
tweet is going to be read far more times than it is going to be written, so we'd rather take
the pain upfront and take a hit in storage. There's nothing wrong with repeated data as long
as there is an understanding about which set is the master set and which is duplicated for
speed.

Changing data is an interesting topic in itself, but let's think about a few reasons why we
might be OK with the trade-offs.

Firstly, the speed benefit to reading tweets is probably worth the unexpected behavior of
changes to master data not being reflected in historical documents; it would be perfectly
acceptable to decide to live with this emerged functionality for that reason.

Secondly, we might decide that it makes sense to keep a snapshot of data at a specific
moment in time. For example, imagine if someone tweets asking whether people like their
profile picture. If the picture changed, the tweet context would be lost. For a more serious
example, consider what might happen if you were pointing to a row in an Addresses table
for an order delivery and the address later changed. Suddenly, the order might look like it
was shipped to a different place.

[254]

Building a Q&A Application for Google App Engine

Finally, storage is becoming increasingly cheaper, so the need for normalizing data to save
space is lessened. Twitter even goes as far as copying the entire tweet document for each of
your followers. 100 followers on Twitter means that your tweet will be copied at least 100
times, maybe more for redundancy. This sounds like madness to relational database
enthusiasts, but Twitter is making smart trade-offs based on its user experience; they'll
happily spend a lot of time writing a tweet and storing it many times to ensure that when
you refresh your feed, you don't have to wait very long to get updates.

If you want to get a sense of the scale of this, check out the Twitter API
and look at what a tweet document consists of. It's a lot of data. Then, go
and look at how many followers Lady Gaga has. This has become known
in some circles as “the Lady Gaga problem” and is addressed by a variety
of different technologies and techniques that are out of the scope of this
chapter.

Now that we have an understanding of good NoSQL design practices, let's implement the
types, functions, and methods required to drive the data part of our APL

Entities and data access

To persist data in Google Cloud Datastore, we need a struct to represent each entity. These
entity structures will be serialized and deserialized when we save and load data through
the datastore APL We can add helper methods to perform the interactions with the data
store, which is a nice way to keep such functionality physically close to the entities
themselves. For example, we will model an answer with a struct called Answer and add a
Create method that in turn calls the appropriate function from the datastore package.
This prevents us from bloating our HTTP handlers with lots of data access code and allows
us to keep them clean and simple instead.

One of the foundation blocks of our application is the concept of a question. A question can
be asked by a user and answered by many. It will have a unique ID so that it is addressable
(referable in a URL), and we'll store a timestamp of when it was created.

Create a new file inside answersapp called questions.go and add the following struct
function:

type Question struct {
Key *datastore.Key " Jjson:"id" datastore:"-"°
CTime time.Time "~ json:"created"’
Question string " json:"question"®
User UserCard "~ json:"user"®
AnswersCount int "~ json:"answers_count"’®

[255]

Building a Q&A Application for Google App Engine

}

The structure describes a question in our application. Most of it will seem quite obvious, as
we've done similar things in the previous chapters. The UserCard struct represents a
denormalized User entity, both of which we'll add later.

You can import the datastore package in your Go project using this:
import "google.golang.org/appengine/datastore"

It's worth spending a little time understanding the datastore.Key type.

Keys in Google Cloud Datastore

Every entity in Datastore has a key, which uniquely identifies it. They can be made up of
either a string or an integer depending on what makes sense for your case. You are free to
decide the keys for yourself or let Datastore automatically assign them for you; again, your
use case will usually decide which is the best approach to take and we'll explore both in this
chapter.

Keys are created using the datastore.NewKey and datastore.NewIncompleteKey
functions and are used to put and get data into and out of Datastore via the
datastore.Get and datastore.Put functions.

In Datastore, keys and entity bodies are distinct, unlike in MongoDB or SQL technologies,
where it is just another field in the document or record. This is why we are excluding Key
from our Question struct with the datastore:"-" field tag. Like the json tags, this
indicates that we want Datastore to ignore the Key field altogether when it is getting and
putting data.

Keys may optionally have parents, which is a nice way of grouping associated data together
and Datastore makes certain assurances about such groups of entities, which you can read
more about in the Google Cloud Datastore documentation online.

[256]

Building a Q&A Application for Google App Engine

Putting data into Google Cloud Datastore

Before we save data into Datastore, we want to ensure that our question is valid. Add the
following method underneath the Question struct definition:

func (g Question) OK() error {
if len(g.Question) < 10 {
return errors.New("question is too short")
}
return nil

}

The oK function will return an error if something is wrong with the question, or else it will
return nil. In this case, we just check to make sure the question has at least 10 characters.

To persist this data in the data store, we are going to add a method to the Question struct
itself. At the bottom of questions.go, add the following code:

func (g *Question) Create(ctx context.Context) error {
log.Debugf (ctx, "Saving question: %s", g.Question)
if g.Key == nil {
g.Key = datastore.NewIncompleteKey (ctx, "Question", nil)
}
user, err := UserFromAEUser (ctx)
if err !'= nil {
return err
}
g.User = user.Card()
g.CTime = time.Now ()
g.Key, err = datastore.Put (ctx, g.Key, q)
if err !'= nil {
return err
}
return nil

}

The create method takes a pointer to Question as the receiver, which is important
because we want to make changes to the fields.

If the receiver was (g Question) without *, we would get a copy of the
question rather than a pointer to it, and any changes we made to it would
only affect our local copy and not the original Question struct itself.

[257]

Building a Q&A Application for Google App Engine

The first thing we do is use log (from the https://godoc.org/google.golang.org/appen
gine/log package) to write a debug statement saying we are saving the question. When

you run your code in a development environment, you will see this appear in the terminal;
in production, it goes into a dedicated logging service provided by Google Cloud Platform.

If the key is nil (that means this is a new question), we assign an incomplete key to the
field, which informs Datastore that we want it to generate a key for us. The three arguments
we pass are context .Context (which we must pass to all datastore functions and
methods), a string describing the kind of entity, and the parent key; in our case, this is nil.

Once we know there is a key in place, we call a method (which we will add later) to get or
create User from an App Engine user and set it to the question and then set the CTime field
(created time) to t ime . Now, timestamping the point at which the question was asked.

One we have our Question function in good shape, we call datastore.Put to actually
place it inside the data store. As usual, the first argument is context . Context, followed
by the question key and the question entity itself.

Since Google Cloud Datastore treats keys as separate and distinct from entities, we have to
do a little extra work if we want to keep them together in our own code. The
datastore.Put method returns two arguments: the complete key and error. The key
argument is actually useful because we're sending in an incomplete key and asking the data
store to create one for us, which it does during the put operation. If successful, it returns a
new datastore.Key object to us, representing the completed key, which we then store in
our Key field in the Question object.

If all is well, we return nil.

Add another helper to update an existing question:

func (g *Question) Update (ctx context.Context) error {
if g.Key == nil {
g.Key = datastore.NewlIncompleteKey (ctx, "Question", nil)
}
var err error
g.Key, err = datastore.Put (ctx, g.Key, q)
if err != nil {
return err
}
return nil

}

This method is very similar except that it doesn't set the CTime or User fields, as they will
already have been set.

[258]

https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log
https://godoc.org/google.golang.org/appengine/log

Building a Q&A Application for Google App Engine

Reading data from Google Cloud Datastore

Reading data is as simple as putting it with the datastore.Get method, but since we want
to maintain keys in our entities (and datastore methods don't work like that), it's common
to add a helper function like the one we are going to add to questions.go:

func GetQuestion (ctx context.Context, key *datastore.Key)
(*Question, error) {

var g Question

err := datastore.Get (ctx, key, &q)

if err != nil {

return nil, err

}

g.Key = key

return &g, nil

}

The GetQuestion function takes context .Context and the datastore.Key method of
the question to get. It then does the simple task of calling datastore.Get and assigning
the key to the entity before returning it. Of course, errors are handled in the usual way.

This is a nice pattern to follow so that users of your code know that they never have to
interact with datastore.Get and datastore.Put directly but rather use the helpers that
can ensure the entities are properly populated with the keys (along with any other tweaks
that they might want to do before saving or after loading).

Google App Engine users

Another service we are going to make use of is the Google App Engine Users API, which
provides the authentication of Google accounts (and Google Apps accounts).

Create a new file called users.go and add the following code:

type User struct {
Key *datastore.Key " Jjson:"id" datastore:"-"
UserID string "~ json:"-""
DisplayName string "~ Jjson:"display_name"’
AvatarURL string "~ json:"avatar_url"’
Score int " Jjson:"score"®

[259]

Building a Q&A Application for Google App Engine

Similar to the Question struct, we have Key and a few fields that make up the User entity.
This struct represents an object that belongs to our application that describes a user; we will
have one for every authenticated user in our system, but this isn't the same user object that

we'll get from the Users APIL

hnporﬁngthe https://qodoc.orq/google.golang.orq/appengine/userpackageand
calling the user.Current (context.Context) function will return either nil (if no user is
authenticated) or a user.User object. This object belongs to the Users API and isn't suitable
for our data store, so we need to write a helper function that will translate the App Engine
user into our User.

Watch out that goimports doesn't automatically import os/user instead;
sometimes it's best if you handle imports manually.

Add the following code to users. go:

func UserFromAEUser (ctx context.Context) (*User, error) {
aeuser := user.Current (ctx)
if aeuser == nil {

return nil, errors.New("not logged in")

}

var appUser User

appUser.Key = datastore.NewKey (ctx, "User", aeuser.ID, 0, nil)
err := datastore.Get (ctx, appUser.Key, &appUser)
if err != nil && err != datastore.ErrNoSuchEntity {

return nil, err
}
if err == nil {

return &appUser, nil
}
appUser.UserID = aeuser.ID
appUser.DisplayName = aeuser.String()
appUser.AvatarURL = gravatarURL (aeuser.Email)
log.Infof (ctx, "saving new user: %s", aeuser.String())
appUser.Key, err = datastore.Put (ctx, appUser.Key, &appUser)
if err != nil {

return nil, err
}

return &appUser, nil

[260]

https://godoc.org/google.golang.org/appengine/user

Building a Q&A Application for Google App Engine

We get the currently authenticated user by calling user.Current, and if itisnil, we
return with an error. This means that the user is not logged in and the operation cannot
complete. Our web package will be checking and ensuring that users are logged in for us, so
by the time they hit an API endpoint, we'll expect them to be authenticated.

We then create a new appUser variable (which is of our User type) and set
datastore.Key. This time, we aren't making an incomplete key; instead, we are using
datastore.NewKey and specifying a string ID, matching the User API ID. This key
predictability means that not only will there only be one User entity per authenticated user
in our application, but it also allows us to load a User entity without having to use a query.

If we had the App Engine User ID as a field instead, we would need to do
a query to find the record we are interested in. Querying is a more
expensive operation compared to a direct Get method, so this approach is
always preferred if you can do it.

We then call datastore.Get to attempt to load the User entity. If this is the first time the
user has logged in, there will be no entity and the returned error will be the special
datastore.ErrNoSuchEntity variable. If that's the case, we set the appropriate fields and
use datastore.Put to save it. Otherwise, we just return the loaded User.

Note that we are checking for early returns in this function. This is to
ensure that it is easy to read the execution flow of our code without having
to follow it in and out of indented blocks. I call this the line of sight of code
and have written about it on my blog at https://medium.com/@matryer.

For now, we'll use Gravatar again for avatar pictures, so add the following helper function
to the bottom of users. go:

func gravatarURL (email string) string {

m := mdb5.New ()
io.WriteString(m, strings.ToLower (email))
return fmt.Sprintf ("//www.gravatar.com/avatar/%$x", m.Sum(nil))

}

Embedding denormalized data

If you recall, our Question type doesn't take the author as User; rather, the type was
UserCard. When we embed denormalized data into other entities, sometimes we will want
them to look slightly different from the master entity. In our case, since we do not store the
key in the User entity (remember the Key fields have datastore:"-"), we need to have a
new type that stores the key.

[261]

https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer
https://medium.com/@matryer

Building a Q&A Application for Google App Engine

At the bottom of users.go, add the UserCard struct and the associated helper method for
User:

type UserCard struct {

Key *datastore.Key "~ Jjson:"id"®
DisplayName string "json:"display_name"®
AvatarURL string ‘json:"avatar_url"’

}
func (u User) Card() UserCard {
return UserCard{

Key: u.Key,
DisplayName: u.DisplayName,
AvatarURL: u.AvatarURL,

}

Note that UserCard doesn't specify a datastore tag, so the Key field will indeed be
persisted in the data store. Our Card () helper function just builds and returns UserCard
by copying the values of each field. This seems wasteful but offers great control, especially
if you want embedded data to look very different from its original entity.

Transactions in Google Cloud Datastore

Transactions allow you to specify a series of changes to the data store and commit them as
one. If any of the individual operations fails, the whole transaction will not be applied. This
is extremely useful if you want to maintain counters or have multiple entities that depend
on each other's state. During a transaction in Google Cloud Datastore, all entities that are
read are locked (other code is prevented from making changes) until the transaction is
complete, providing an additional sense of security and preventing data races.

If you were building a bank (it seems crazy, but the guys at Monzo in
London are indeed building a bank using Go), you might represent user
accounts as an entity called Account. To transfer money from one account
to another, you'd need to make sure the money was deducted from
account A and deposited into account B as a single transaction. If either
fails, people aren't going to be happy (to be fair, if the deduction operation
failed, the owner of account A would probably be happy because B would
get the money without it costing A anything).

[262]

Building a Q&A Application for Google App Engine

To see where we are going to use transactions, let's first add model answers to the
questions.

Create a new file called answers. go and add the following struct and validation method:

type Answer struct {

Key *datastore.Key "~ json:"id" datastore:"-""
Answer string "Jjson:"answer"’
CTime time.Time "json:"created"’
User UserCard “json:"user"’
Score int "json:"score"’
}
func (a Answer) OK() error {

if len(a.Answer) < 10 {
return errors.New("answer is too short")

}

return nil

}

Answer is similar to a question, has datastore.Key (which will not be persisted), has
CTime to capture the timestamp, and embeds UserCard (representing the person
answering the question). It also has a Score integer field, which will go up and down as
users vote on the answers.

Using transactions to maintain counters

Our Question struct has a field called AnswerCount, where we intend to store an integer
that represents the number of answers that a question has solicited.

First, let's look at what can happen if we don't use a transaction to keep track of the
AnswerCount field by tracking the concurrent activity of answers 4 and 5 of a question:

Step | Answer 4 Answer 5 Question.AnswerCount
1 Load question Load question 3
2 AnswerCount=3 AnswerCount=3 3
3 AnswerCount++ AnswerCount++ 3
4 AnswerCount=4 AnswerCount=4 3
5 Save the answer and question | Save the answer and question |4

[263]

Building a Q&A Application for Google App Engine

You can see from the table that without locking Question, AnswerCount would end up
being 4 instead of 5 if the answers came in at the same time. Locking with a transaction will
look more like this:

Step | Answer 4 Answer 5 Question.AnswerCount
1 Lock the question Lock the question 3
2 AnswerCount=3 Waiting for unlock 3
3 AnswerCount++ Waiting for unlock 3
4 Save the answer and question | Waiting for unlock 4
5 Release lock Waiting for unlock 4
6 Finished Lock the question 4
7 AnswerCount=4 4
8 AnswerCount++ 4
9 Save the answer and question |5

In this case, whichever answer obtains the lock first will perform its operation, and the
other operation will wait before continuing. This is likely to slow down the operation (since
it has to wait for the other one to finish), but that's a price worth paying in order to get the
numbers right.

It's best to keep the amount of work inside a transaction as small as
possible because you are essentially blocking other people while the
transaction is underway. Outside of transactions, Google Cloud Datastore
is extremely fast because it isn't making the same kinds of guarantees.

In code, we use the datastore.RunInTransaction function. Add the following to
answers.go:

func (a *Answer) Create(ctx context.Context, questionKey *datastore.Key)

error {
a.Key = datastore.NewlIncompleteKey (ctx, "Answer", questionKey)
user, err := UserFromAEUser (ctx)
if err != nil {

return err
}
a.User = user.Card()
a.CTime = time.Now ()

err = datastore.RunInTransaction(ctx, func(ctx context.Context) error {
g, err := GetQuestion(ctx, questionKey)
if err != nil {

[264]

Building a Q&A Application for Google App Engine

return err
}
err = a.Put (ctx)
if err !'= nil {
return err
}
g.AnswersCount++
err = g.Update (ctx)
if err !'= nil {
return err
}
return nil
}, &datastore.TransactionOptions{XG: true})
if err !'= nil {
return err

}

return nil

}

We first create a new incomplete key (using the Answer kind) and set the parent as the
question key. This will mean that the question will become the ancestor to all these answers.

Ancestor keys are special in Google Cloud Datastore, and it is
recommended that you read about the nuances behind them in the
documentation on the Google Cloud Platform website.

Using our UserFromAEUser function, we get the user who is answering the question and
set UserCard inside Answer before setting CTime to the current time, as done earlier.

Then, we start our transaction by calling the datastore.RunInTransaction function that
takes a context as well as a function where the transactional code will go. There is a third
argument, which is a set of datastore.TransactionOptions that we need to use in order
to set XG to t rue, which informs the data store that we'll be performing a transaction across
entity groups (both Answer and Question kinds).

When it comes to writing your own functions and designing your own
APIs, it is highly recommended that you place any function arguments at
the end; otherwise, inline function blocks such as the ones in the preceding
code obscure the fact that there is another argument afterwards. It's quite
difficult to realize that the TransactionOptions object is an argument
being passed into the RunInTransaction function, and I suspect
somebody on the Google team regrets this decision.

[265]

Building a Q&A Application for Google App Engine

Transactions work by providing a new context for us to use, which means that code inside
the transaction function looks the same, as if it weren't in a transaction. This is a nice piece
of API design (and it means that we can forgive the function for not being the final
argument).

Inside the transaction function, we use our GetQuestion helper to load the question.
Loading data inside the transaction function is what obtains a lock on it. We then put the
answer to save it, update the AnswerCount integer, and update the question. If all is well
(provided none of these steps returns an error), the answer will be saved and AnswerCount
will increase by one.

If we do return an error from our transaction function, the other operations are canceled
and the error is returned. If that happens, we'll just return that error from our
Answer.Create method and let the user try again.

Next, we are going to add our GetAnswer helper, which is similar to our GetQuestion
function:

func GetAnswer (ctx context.Context, answerKey *datastore.Key)
(*Answer, error)

var answer Answer

err := datastore.Get (ctx, answerKey, &answer)

if err !'= nil {

return nil, err

}

answer.Key = answerKey

return &answer, nil

}
Now we are going to add our Put helper method in answers.go:

func (a *Answer) Put (ctx context.Context) error {
var err error
a.Key, err = datastore.Put(ctx, a.Key, a)
if err != nil {
return err
}
return nil

}

These two functions are very similar to the GetQuestion and Question.Put methods, but
let's resist the temptation of abstracting it and drying up the code for now.

[2661

Building a Q&A Application for Google App Engine

Avoiding early abstraction

Copying and pasting is generally seen by programmers as a bad thing because it is usually
possible to abstract the general idea and DRY (Don't repeat yourself) up the code.
However, it is worth resisting the temptation to do this right away because it is very easy to
design a bad abstraction, which you are then stuck with since your code will start to depend
on it. It is better to duplicate the code in a few places first and later revisit them to see
whether a sensible abstraction is lurking there.

Querying in Google Cloud Datastore

So far, we have only been putting and getting single objects into and out of Google Cloud
Datastore. When we display a list of answers to a question, we want to load all of these
answers in a single operation, which we can do with datastore.Query.

The querying interface is a fluent API, where each method returns the same object or a
modified object, allowing you to chain calls together. You can use it to build up a query
consisting of ordering, limits, ancestors, filters, and so on. We will use it to write a function
that will load all the answers for a given question, showing the most popular (those with a
higher score value) first.

Add the following function to answers. go:

func GetAnswers (ctx context.Context, questionKey *datastore.Key)
([]*Answer, error)

var answers []*Answer
answerKeys, err := datastore.NewQuery ("Answer").
Ancestor (questionKey) .
Order ("-Score") .
Order ("-CTime") .
GetAll (ctx, &answers)
for i, answer := range answers {
answer.Key = answerKeys[i]
}
if err !'= nil {

return nil, err

}

return answers, nil

[267]

Building a Q&A Application for Google App Engine

We first create an empty slice of pointers to Answer and use datastore.NewQuery to start
building a query. The Ancestor method indicates that we're looking only for answers that
belong to the specific question, where the Order method calls specify that we want to first
order by descending Score and then by the newest first. The GetA11 method performs the
operation, which takes in a pointer to our slice (where the results will go) and returns a new
slice containing all the keys.

The order of the keys returned will match the order of the entities in the
slice. This is how we know which key corresponds to each item.

Since we are keeping keys and the entity fields together, we range over the answers and
assign answer .Key to the corresponding datastore.Key argument returned from
GetAll.

We are keeping our API simple for the first version by not implementing
paging, but ideally you would need to; otherwise, as the number of
questions and answers grows, you will end up trying to deliver
everything in a single request, which would overwhelm the user and
maybe the servers.

If we had a step in our application of authorizing the answer (to protect it from spam or
inappropriate content), we might want to add an additional filter for Authorized to be
true, in which case we could do this:

datastore.NewQuery ("Answer") .
Filter ("Authorized =", true)

For more information on querying and filtering, consult the Google Cloud
Datastore API documentation online.

Another place where we need to query data is when we show the top questions on the
home page of our app. Our first version of top questions will just show those questions that
have the most answers; we consider them to be the most interesting, but you could change
this functionality in the future without breaking the API to order by score or even question
views.

[268]

Building a Q&A Application for Google App Engine

We will build Query on the Question kind and use the 0Order method to first order by the
number of answers (with the highest first), followed by time (also, highest/latest first). We
will also use the Limit method to make sure we only select the top 25 questions for this
APIL. Later, if we implement paging, we can even make this dynamic.

In questions.go, add the TopQuestions function:

func TopQuestions (ctx context.Context) ([]*Question, error) {
var questions []*Question
questionKeys, err := datastore.NewQuery ("Question").
Order ("-AnswersCount") .
Order ("-CTime") .
Limit (25) .
GetAll (ctx, &questions)
if err !'= nil {
return nil, err
t
for i := range questions {
questions[i] .Key = questionKeys[i]
t
return questions, nil

}

This code is similar to loading the answers, and we end up returning a slice of Question
objects or an error.

Votes

Now that we have modeled questions and answers in our application, it's time to think
about how voting might work.

Let's design it a little:

e Users vote answers up and down based on their opinion of them
¢ Answers are ordered by their score so the best ones appear first

Each person is allowed one vote per answer

If a user votes again, they should replace their previous vote

[269]

Building a Q&A Application for Google App Engine

We will make use of a few things we have learned so far in this chapter; transactions will
help us ensure the correct score is calculated for answers, and we'll use predictable keys
again to ensure that each person gets only one vote per answer.

We will first build a structure to represent each vote and use field tags to be a little more
specific about how we want the data store to index our data.

Indexing

Reads from Google Cloud Datastore are extremely fast due to the extensive use of indexes.
By default, every field in our structure is indexed. Queries that attempt to filter on fields
that aren't indexed will fail (the method will return an error); the data store doesn't fall back
to scanning like some other technologies do because it's considered too slow. If one query
filters two or more fields, an additional index must be added that is composed of all fields.

A structure with 10 fields would perform multiple write operations when you put it: one for
the entity itself and one for each index that needs to be updated. So it is sensible to turn off
indexing for fields that are you not planning to query on.

In questions.go, add the datastore field tags to the Question structure:

type Question struct {
Key *datastore.Key " Jjson:"id" datastore:"-"
CTime time.Time ~json:"created" datastore:",noindex"’
Question string " json:"question" datastore:",noindex"’
User UserCard "~ json:"user"'
AnswersCount int "~ json:"answers_count"’

}

The addition of the datastore: ", noindex" field tags will tell the data store not to index
these fields.

The , noindex value beginning with a comma is a little confusing. The
value is essentially a list of comma-separated arguments, the first being
the name we want the data store to use when storing each field (just like it
does for the json tag). Since we don't want to say anything about the
name we want the data store to use the real field name we are omitting it;
so the first argument is empty, and the second argument is noindex.

[270]

Building a Q&A Application for Google App Engine

Do this for fields that we do not want indexed in the Answer structure:

type Answer struct {
Key *datastore.Key " Jjson:"id" datastore:"-"°
Answer string "~ json:"answer" datastore:",noindex"’
CTime time.Time " json:"created"®
User UserCard " json:"user" datastore:",noindex"’
Score int " json:"score"®

}
And for the vote structure, do this:

type Vote struct {
Key *datastore.Key " Jjson:"id" datastore:"-""
MTime time.Time "~ json:"last_modified" datastore:",noindex"’
Question QuestionCard "~ Json:"question" datastore:",noindex"’
Answer AnswerCard "~ json:"answer" datastore:",noindex"’
User UserCard "~ json:"user" datastore:",noindex"’
Score int "Json:"score" datastore:",noindex"’

}

You can also add a noindex declaration to all fields inside our card types: AnswerCard,
UserCard, and QuestionCard.

The fields we have left without noindex will be used in queries, and we
need to make sure Google Cloud Datastore does indeed maintain indexes
on these fields.

Embedding a different view of entities

Now it's time to create our Vote structure, which we'll do inside a new file called
votes.go:

type Vote struct {
Key *datastore.Key " json:"id" datastore:"-"
MTime time.Time "~ json:"last_modified" datastore:",noindex"’
Question QuestionCard "~ Jjson:"question" datastore:",noindex"’
Answer AnswerCard ~json:"answer" datastore:",noindex"’
User UserCard "~ json:"user" datastore:",noindex"’
Score int " json:"score" datastore:",noindex"’

[271]

Building a Q&A Application for Google App Engine

A vote structure contains many of our embeddable card types representing Question,
Answer and User casting the vote. It also contains a Score integer, which will be either 1 or
-1 (depending on whether they voted up or down). We will also keep track of when they
cast their vote (or last changed it) with the MTimetime. Time field.

You can use pointers to the *Card types in the Vote struct if you like. This
would save additional copies being made when if you pass the vote
object in and out of functions, but that would mean that any changes made
inside these functions would affect the original data rather than just their
local copy. In most situations, there isn't much of a performance benefit to
using pointers and it might be considered simpler to omit them. This book
deliberately mixes both approaches to show you how they work, but you
should understand the implications before making a decision.

Like our UserCard method, we are going to add appropriate versions for questions and
answers, but this time we are going to be more selective about which fields should be
included and which should be left out.

In questions.go, add the QuestionCard type and the associated helper method:

type QuestionCard struct {
Key *datastore.Key " Jjson:"id" datastore:",noindex"’
Question string "~ json:"question" datastore:",noindex"’
User UserCard "~ json:"user" datastore:",noindex"’

}

func (g Question) Card() QuestionCard {
return QuestionCard{

Key: g.Key,
Question: g.Question,
User: g.User,

}

The QuestionCard type captures the Question string and who asked it (our UserCard
method, again), but we are leaving out the CTime and AnswersCount fields.

Let's add AnswerCard to answers . go next:

type AnswerCard struct {

Key *datastore.Key "~ json:"id" datastore:",noindex"’
Answer string "json:"answer" datastore:",noindex"’
User UserCard "Jjson:"user" datastore:",noindex"’

}

func (a Answer) Card() AnswerCard {

[272]

Building a Q&A Application for Google App Engine

return AnswerCard{

Key: a.Key,
Answer: a.Answer,
User: a.User,

}

Similarly, we are only capturing the Answer string and User and excluding CTime and
Score.

Deciding which fields to capture and which to omit is entirely dependent on the user
experience you wish to provide. We might decide that when we show a vote, we want to
show the score of Answer at the time, or we might want to show the current score of
Answer regardless of what it was at the time the vote was cast. Perhaps we want to send a
push notification to the user who wrote the answer saying something like “Blanca has up-
voted your answer to Ernesto's question it now has a score of 157, in which case we would
need to grab the score field too.

Casting a vote

Before our API is a complete feature, we need to add the ability for users to cast votes. We'll
break this piece into two functions in order to increase the readability of our code.

Inside votes.go, add the following function:

func CastVote (ctx context.Context, answerKey *datastore.Key, score int)
(*Vote, error) {
question, err := GetQuestion(ctx, answerKey.Parent ())
if err !'= nil {
return nil, err
}
user, err := UserFromAEUser (ctx)
if err !'= nil {
return nil, err
}

var vote Vote

err = datastore.RunInTransaction(ctx, func(ctx context.Context) error {
var err error
vote, err = castVoteInTransaction(ctx, answerKey, question, user,
score)
if err !'= nil {

return err

}

return nil

[273]

Building a Q&A Application for Google App Engine

}, &datastore.TransactionOptions{XG: true})
if err !'= nil {
return nil, err

}

return &vote, nil

}

The castVvote function takes (along with the obligatory Context) datastore.Key for the
answer that is being voted for and a score integer. It loads the question and the current user,
starts a data store transaction, and passes execution off to the castVoteInTransaction
function.

Accessing parents via datastore.Key

Our castVote function could require that we know datastore.Key for Question so that
we can load it. But one nice feature about ancestor keys is that from the key alone, you can
access the parent key. This is because the hierarchy of keys is maintained in the key itself, a
bit like a path.

Three answers to question 1 might have these keys:

e Question,1/Answer,1
e Question,1/Answer,2
e Question,1/Answer,3

The actual details of how keys work under the hood are kept internal to the datastore
package and could change at any time. So it is smart to only rely on things that the API
guarantees such as being able to access the parent via the Parent method.

Line of sight in code

The cost of writing a function is relatively low compared to the cost of maintaining it,
especially in successful, long-running projects. So it is worth taking the time to ensure the
code is readable by our future selves and others.

[274]

Building a Q&A Application for Google App Engine

Code can be said to have a good line of sight if it is easy to glance at and if it understands
the usual, expected flow of the statements (the happy path). In Go, we can achieve this by
following a few simple rules when we write code:

¢ Align the happy path to the left edge so that you can scan down a single column
and see the expected flow of execution

Don't hide the happy path logic inside a nest of indented braces

Exit early from your function

Indent only to handle errors or edge cases
Extract functions and methods to keep bodies small and readable

There are a few more details to writing good line of sight code, which are
outlined and maintained at http://bit.ly/lineofsightincode.

In order to prevent our CastVote function from becoming too big and difficult to follow,
we have broken out the core functionality into its own function, which we will now add to
votes.go:

func castVoteInTransaction (ctx context.Context, answerKey *datastore.Key,
question *Question, user *User, score int) (Vote, error) {
var vote Vote
answer, err := GetAnswer (ctx, answerKey)
if err != nil {
return vote, err

}

voteKeyStr := fmt.Sprintf ("$s:%s", answerKey.Encode (), user.Key.Encode())
voteKey := datastore.NewKey (ctx, "Vote", voteKeyStr, 0, nil)

var delta int // delta describes the change to answer score

err = datastore.Get (ctx, voteKey, &vote)

if err != nil && err != datastore.ErrNoSuchEntity {

return vote, err

}

if err == datastore.ErrNoSuchEntity {
vote = Vote{
Key: voteKey,
User: user.Card(),
Answer: answer.Card(),
Question: question.Card(),
Score: score,
}
} else {

// they have already voted - so we will be changing
// this vote

[275]

http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode
http://bit.ly/lineofsightincode

Building a Q&A Application for Google App Engine

delta = vote.Score * -1
t
delta += score
answer.Score += delta
err = answer.Put (ctx)
if err !'= nil {

return vote, err
t
vote.Key = voteKey
vote.Score = score
vote.MTime = time.Now ()
err = vote.Put (ctx)
if err !'= nil {

return vote, err

}

return vote, nil

}

While this function is long, its line of sight isn't too bad. The happy path flows down the left
edge, and we only indent to return early in case of errors and the case where we create a
new Vote object. This means that we can easily track what it is doing.

We take in the answer key, the related question, the user casting the vote and the score, and
return a Vote object, or else an error if something goes wrong.

First, we get the answer which, since we're inside a transaction, will lock it until the
transaction is complete (or stops due to an error).

We then build the key for this vote, which is made up of the keys of both the answer and
the user encoded into a single string. This means that only one vVote entity will exist in the
data store for each user/answer pair; so a user may only have one vote per answer as per
our design.

We then use the vote key to attempt to load the Vote entity from the data store. Of course,
the first time a user votes on a question, no entity will exist, which we can check by seeing
whether the error returned from datastore.Get is the special
datastore.ErrNoSuchEntity value or not. If it is, we create the new Vote object, setting
the appropriate fields.

[276]

Building a Q&A Application for Google App Engine

We are maintaining a score delta integer, which will represent the number that needs to be
added to the answer score after the vote has happened. When it's the first time a user has
voted on a question, the delta will be either 1 or -1. If they are changing their vote from
down to up (-1 to 1), the delta will be 2, which cancels out the previous vote and adds the
new one. We multiply the delta by -1 to undo the previous vote if there was one (if err !=
datastore.ErrNoSuchEntity). This has the nice effect of also not making any difference
(delta will be 0) if they happen to cast the same vote twice in either direction.

Finally, we change the score on the answer and put it back into the data store before
updating the final fields in our Vote object and putting that in too. We then return and our
CastVote function exits the datastore.RunInTransaction function block, thus
releasing Answer and letting others cast their votes on it too.

Exposing data operations over HTTP

Now that we have built all of our entities and the data access methods that operate on them,
it's time to wire them up to an HTTP API. This will feel more familiar as we have already
done this kind of thing a few times in the book.

Optional features with type assertions

When you use interface types in Go, you can perform type assertions to see whether the
objects implement other interfaces, and since you can write interfaces inline, it is possible to
very easily find out whether an object implements a specific function.

If vis interface{}, we can see whether it has the 0K method using this pattern:

if obj, ok := v. (interface{ OK() error }); ok {
// v has OK() method
} else {

// v does not have OK() method
}

If the v object implements the method described in the interface, ok will be t rue and ob
will be an object on which the OK method can be called. Otherwise, ok will be false.

[277]

Building a Q&A Application for Google App Engine

One problem with this approach is that it hides the secret functionality
from users of the code, so you must either document the function very
well in order to make it clear or perhaps promote the method to its own
first-class interface and insist that all objects implement it. Remember that
we must always seek clear code over clever code. As a side exercise, see
whether you can add the interface and use it in the decode signature
instead.

We are going to add a function that will help us decode JSON request bodies and,
optionally, validate the input. Create a new file called http.go and add the following code:

func decode (r *http.Request, v interface{}) error {
err := json.NewDecoder (r.Body) .Decode (v)
if err !'= nil {
return err

}
if valid, ok := v. (interface {
OK () error
})i ok {
err = valid.OK ()
if err !'= nil {
return err
}
}

return nil

}

The decode function takes http.Request and a destination value called v, which is where
the data from the JSON will go. We check whether the OK method is implemented, and if it
is, we call it. We expect OK to return nil if the object looks good; otherwise, we expect it to
return an error that explains what is wrong. If we get an error, we'll return it and let the
calling code deal with it.

If all is well, we return nil at the bottom of the function.

Response helpers

We are going to add a pair of helper functions that will make responding to API requests
easy. Add the respond function to http. go:

func respond(ctx context.Context, w http.ResponseWriter,
r *http.Request, v interface{}, code int) {

var buf bytes.Buffer

err := json.NewEncoder (&buf) .Encode (v)

[278]

Building a Q&A Application for Google App Engine

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusInternalServerError)
return

t
w.Header () .Set ("Content-Type",
"application/json; charset=utf-8")
w.WriteHeader (code)
_, err = buf.WriteTo (w)
if err !'= nil {
log.Errorf (ctx, "respond: %s", err)
t
t

The respond method contains a context, ResponseWriter, Request, the object to
respond with, and a status code. It encodes v into an internal buffer before setting the
appropriate headers and writing the response.

We are using a buffer here because it's possible that the encoding might fail. If it does so but
has already started writing the response, the 200 OK header will be sent to the client, which
is misleading. Instead, encoding to a buffer lets us be sure that completes without issue
before deciding what status code to respond with.

Now add the respondErr function at the bottom of http.go:

func respondErr (ctx context.Context, w http.ResponseWriter,
r *http.Request, err error, code int) {

errObj := struct {
Error string "~ json:"error"®
}{ Error: err.Error() }
w.Header () .Set ("Content-Type", "application/Jjson; charset=utf-8")
w.WriteHeader (code)
err = json.NewEncoder (w) .Encode (errObj)
if err != nil {

log.Errorf (ctx, "respondErr: %s", err)

}
}

This function writes error wrapped in a struct that embeds the error string as a field called

error.

Parsing path parameters

Some of our API endpoints will need to pull IDs out of the path string, but we don't want to
add any dependencies to our project (such as an external router package); instead, we are
going to write a simple function that will parse path parameters for us.

[279]

Building a Q&A Application for Google App Engine

Let's first write a test that will explain how we want our path parsing to work. Create a file
called http_test.go and add the following unit test:

func TestPathParams (t *testing.T) {

r, err := http.NewRequest ("GET", "1/2/3/4/5", nil)
if err != nil {

t.Errorf ("NewRequest: %s", err)
}
params := pathParams(r, "one/two/three/four")
if len(params) != 4 {

t.Errorf ("expected 4 params but got %d: %v", len(params), params)
}
for k, v := range map[string]lstring{

"one": ",

"two": ",

"three": "3",

"four": "4",
PoA

if params[k] != v {

t.Errorf("%$s: %s != %s", k, paramslk], V)

}
}
params = pathParams (r, "one/two/three/four/five/six")
if len(params) != 5 {

t.Errorf ("expected 5 params but got %d: %v", len(params), params)
}
for k, v := range map[string]lstring{

"one": ",

"two": ",

"three": "3",

"four": "4",

"five": "5",
PoA

if params[k] != v {

t.Errorf("%$s: %s != %s", k, paramsl[k], V)

}

}

}

We expect to be able to pass in a pattern and have a map returned that discovers the values
from the path in http.Request.

Run the test (with go test -v) and note that it fails.

[280]

Building a Q&A Application for Google App Engine

At the bottom of http.go, add the following implementation to make the test pass:

func pathParams (r *http.Request,pattern string) map[string]string{

params := map[stringlstring{}
pathSegs := strings.Split(strings.Trim(r.URL.Path, "/"), "/")
for i, seg := range strings.Split (strings.Trim(pattern, "/"), "/") {

if i > len(pathSegs)-1 {
return params
}
params[seg] = pathSegs[i]
}

return params

}

The function breaks the path from the specific ht tp.Request and builds a map of the
values with keys taken from breaking the pattern path. So for a pattern of /questions/id
and a path of /questions/123, it would return the following map:

questions: questions
id: 123

Of course, we'd ignore the questions key, but id will be useful.

Exposing functionality via an HTTP API

Now we have all the tools we need in order to put together our API: helper functions to
encode and decode data payloads in JSON, path parsing functions, and all the entities and
data access functionality to persist and query data in Google Cloud Datastore.

HTTP routing in Go

The three endpoints we are going to add in order to handle questions are outlined in the
following table:

HTTP request Description

POST /questions Ask a new question

GET /questions/{id} |Get the question with the specific ID

GET /questions Get the top questions

[281]

Building a Q&A Application for Google App Engine

Since our API design is relatively simple, there is no need to bloat out our project with an
additional dependency to solve routing for us. Instead, we'll roll our own very simple
adhoc routing using normal Go code. We can use a simple switch statement to detect
which HTTP method was used and our pathParams helper function to see whether an ID
was specified before passing execution to the appropriate place.

Create a new file called handle_questions.go and add the following
http.HandlerFunc function:

func handleQuestions (w http.ResponseWriter, r *http.Request) {
switch r.Method {
case "POST":
handleQuestionCreate (w, 1)

case "GET":
params := pathParams(r, "/api/questions/:id")
questionID, ok := params[":id"]

if ok { // GET /api/questions/ID
handleQuestionGet (w, r, questionID)
return
}
handleTopQuestions(w, r) // GET /api/questions/
default:
http.NotFound(w, r)
}
}

If the HTTP method is POST, then we'll call handleQuestionCreate. If it's GET, then we'll
see whether we can extract the ID from the path and call handleQuestionGet if we can, or
handleTopQuestions if we cannot.

Context in Google App Engine

If you remember, all of our calls to App Engine functions took a context .Context object
as the first parameter, but what is that and how do we create one?

Context is actually an interface that provides cancelation signals, execution deadlines, and
request-scoped data throughout a stack of function calls across many components and API
boundaries. The Google App Engine SDK for Go uses it throughout its APIs, the details of
which are kept internal to the package, which means that we (as users of the SDK) don't
have to worry about it. This is a good goal for when you use Context in your own packages;
ideally, the complexity should be kept internal and hidden.

[282]

Building a Q&A Application for Google App Engine

You can, and should, learn more about Context through various online
resources, starting with the Go Concurrency Patterns: Context blog post at ht
tps://blog.golang.org/context.

To create a context suitable for App Engine calls, you use the appengine.NewContext
function, which takes http.Request as an argument to which the context will belong.

Underneath the routing code we just added, let's add the handler that will be responsible
for creating a question, and we can see how we will create a new context for each request:

func handleQuestionCreate (w http.ResponseWriter, r *http.Request) {

ctx := appengine.NewContext (r)

var g Question

err := decode(r, &q)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

}

err = g.Create (ctx)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusInternalServerError)
return

}
respond(ctx, w, r, g, http.StatusCreated)

}

We create Context and store it in the ct x variable, which has become somewhat an
accepted pattern throughout the Go community. We then decode our Question (which, due
to the 0K method, will also validate it for us) before calling the Create helper method that
we wrote earlier. Every step of the way, we pass our context along.

If anything goes wrong, we make a call out to our respondErr function, which will write
out the response to the client before returning and exiting early from the function.

If all is well, we respond with Question and ahttp.StatusCreated status code (201).

Decoding key strings

Since we are exposing the datastore.Key objects as the id field in our objects (via the
json field tags), we expect users of our API to pass back these same ID strings when
referring to specific objects. This means that we need to decode these strings and turn them
back into datastore.Key objects. Luckily, the datastore package provides the answer in
the form of the datastore.DecodeKey function.

[283]

https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context
https://blog.golang.org/context

Building a Q&A Application for Google App Engine

At the bottom of handle_guestions.go, add the following handle function to get a single
question:

func handleQuestionGet (w http.ResponseWriter, r *http.Request,
questionID string) {

ctx := appengine.NewContext (r)
questionKey, err := datastore.DecodeKey (questionID)
if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return
}
question, err := GetQuestion(ctx, questionKey)
if err !'= nil {
if err == datastore.ErrNoSuchEntity {

respondErr (ctx, w, r, datastore.ErrNoSuchEntity,
http.StatusNotFound)
return

}
respondErr (ctx, w, r, err, http.StatusInternalServerError)
return

}
respond (ctx, w, r, question, http.StatusOK)
}

After we create Context again, we decode the question ID argument to turn the string
back into a datastore.Key object. The question ID string is passed in from our routing
handler code, which we added at the top of the file.

Assuming question ID is a valid key and the SDK was successfully able to turn it into
datastore.Key, we call our GetQuestion helper function to load Question. If we get the
datastore.ErrNoSuchEntity error, then we respond with a 404 (not found) status;
otherwise, we'll report the error with a http.StatusInternalServerError code.

When writing APIs, check out the HTTP status codes and other HTTP
standards and see whether you can make use of them. Developers are
used to them and your API will feel more natural if it speaks the same
language.

If we are able to load the question, we call respond and send it back to the client as JSON.

[284]

Building a Q&A Application for Google App Engine

Next, we are going to expose the functionality related to answers via a similar API to the
one we used for questions:

HTTP request Description

POST /answers |Submit an answer

GET /answers [Get the answers with the specified question ID

Create a new file called handle_answers.go and add the routing http.HandlerFunc
function:

func handleAnswers (w http.ResponseWriter, r *http.Request) |
switch r.Method {
case "GET":
handleAnswersGet (w, 1)
case "POST":
handleAnswerCreate (w, 1)
default:
http.NotFound(w, r)

}

For GET requests, we call handleAnswersGet; for POST requests, we call
handleAnswerCreate. By default, we'll respond with a 404 Not Found response.

Using query parameters

As an alternative to parsing the path, you can just take query parameters from the URL in
the request, which we will do when we add the handler that reads answers:

func handleAnswersGet (w http.ResponseWriter, r *http.Request) {

ctx := appengine.NewContext (r)

g := r.URL.Query()

questionIDStr := g.Get ("question_id")

questionKey, err := datastore.DecodeKey (questionIDStr)

if err != nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

}

answers, err := GetAnswers (ctx, questionKey)

if err != nil {
respondErr (ctx, w, r, err, http.StatusInternalServerError)
return

}

respond(ctx, w, r, answers, http.StatusOK)

[285]

Building a Q&A Application for Google App Engine

Here, we use r . URL.Query () to get the http.Values that contains the query parameters
and use the Get method to pull out question_id. So, the API call will look like this:

/api/answers?question_id=abcl123

You should be consistent in your API in the real world. We have used a
mix of path parameters and query parameters to show off the differences,
but it is recommended that you pick one style and stick to it.

Anonymous structs for request data

The API for answering a question is to post to /api/answers with a body that contains the
answer details as well as the question ID string. This structure is not the same as our
internal representation of Answer because the question ID string would need to be decoded
into datastore.Key. We could leave the field in and indicate with field tags that it should
be omitted from both the JSON and the data store, but there is a cleaner approach.

We can specify an inline, anonymous structure to hold the new answer, and the best place
to do this is inside the handler function that deals with that data this means that we don't
need to add a new type to our API, but we can still represent the request data we are
expecting.

At the bottom of handle_answers.go, add the handleAnswerCreate function:

func handleAnswerCreate (w http.ResponseWriter, r *http.Request) {
ctx := appengine.NewContext (r)
var newAnswer struct {
Answer
QuestionID string " json:"question_id""

}

err := decode(r, &newAnswer)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

t

questionKey, err := datastore.DecodeKey (newAnswer.QuestionID)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

t

err = newAnswer.OK ()

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

[286]

Building a Q&A Application for Google App Engine

}

answer := newAnswer.Answer

user, err := UserFromAEUser (ctx)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

t

answer.User = user.Card()

err = answer.Create(ctx, questionKey)

if err !'= nil {

respondErr (ctx, w, r, err, http.StatusInternalServerError)
return

}

respond(ctx, w, r, answer, http.StatusCreated)

}

Look at the somewhat unusual var newAnswer struct line. We are declaring a new
variable called newAnswer, which has a type of an anonymous struct (it has no name) that
contains QuestionID string and embeds Answer. We can decode the request body into
this type, and we will capture any specific Answer fields as well as QuestionID. We then
decode the question ID into datastore.Key as we did earlier, validate the answer, and set
the User (UserCard) field by getting the currently authenticated user and calling the card
helper method.

If all is well, we call Create, which will do the work to save the answer to the question.

Finally, we need to expose the voting functionality in our APL

Writing self-similar code

Our voting API has only a single endpoint, a post to /votes. So, of course, there is no need
to do any routing on this method (we could just check the method in the handler itself), but
there is something to be said for writing code that is familiar and similar to other code in the
same package. In our case, omitting a router might jar a little if somebody else is looking at
our code and expects one after seeing the routers for questions and answers.

So let's add a simple router handler to a new file called handle_votes.go:

func handleVotes (w http.ResponseWriter, r *http.Request) {

if r.Method != "POST" {
http.NotFound(w, r)
return

t
handleVote (w, 1)

}

[287]

Building a Q&A Application for Google App Engine

Our router just checks the method and exits early if it's not POST, before calling the
handleVote function, which we will add next.

Validation methods that return an error

The ok method that we added to some of our objects is a nice way to add validation
methods to our code.

We want to ensure that the incoming score value is valid (in our case, either -1 or 1), so we
could write a function like this:

func validScore (score int) bool {
return score == -1 || score ==

}

If we used this function in a few places, we would have to keep repeating the code that
explained that the score was not valid. If, however, the function returns an error, you can
encapsulate that in one place.

To votes.go, add the following validScore function:

func validScore (score int) error {
if score != -1 && score != 1 {
return errors.New("invalid score")

}

return nil

}

In this version, we return nil if the score is valid; otherwise, we return an error that
explains what is wrong.

We will make use of this validation function when we add our handlevote function to
handle_votes.go:

func handleVote (w http.ResponseWriter, r *http.Request) {
ctx := appengine.NewContext (r)
var newVote struct {
AnswerID string "~ json:"answer_id"®

Score int "json:"score"’

}

err := decode(r, &newVote)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return

[288]

Building a Q&A Application for Google App Engine

err = validScore (newVote.Score)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusBadRequest)
return
t
answerKey, err := datastore.DecodeKey (newVote.AnswerID)
if err !'= nil {

respondErr (ctx, w, r, errors.New("invalid answer_id"),
http.StatusBadRequest)

return

t

vote, err := CastVote(ctx, answerKey, newVote.Score)

if err !'= nil {
respondErr (ctx, w, r, err, http.StatusInternalServerError)
return

t
respond(ctx, w, r, vote, http.StatusCreated)
t

This will look pretty familiar by now, which highlights why we put all the data access logic
in a different place to our handlers; the handlers can then focus on HTTP tasks, such as
decoding the request and writing the response, and leave the application specifics to the
other objects.

We have also broken down the logic into distinct files, with a pattern of prefixing HTTP
handler code with handle_, so we quickly know where to look when we want to work on a
specific piece of the project.

Mapping the router handlers

Let's update our main. go file by changing the init function to map the real handlers to
HTTP paths:

func init () {
http.HandleFunc ("/api/questions/", handleQuestions)
http.HandleFunc ("/api/answers/", handleAnswers)
http.HandleFunc ("/api/votes/", handleVotes)

}

You can also remove the now redundant handleHel1lo handler function.

[289]

Building a Q&A Application for Google App Engine

Running apps with multiple modules

For applications such as ours that have multiple modules, we need to list out all the YAML
files for the goapp command.

To serve our new application, in a terminal, execute this:

goapp serve dispatch.yaml default/app.yaml api/app.yaml
web/app.yaml

Starting with the dispatch file, we are listing all the associated configuration files. If you
miss any, you will see an error when you try to serve your application. Here, you will notice
that the output now lists that each module is being deployed on a different port:

1. Python

echo answersapp matryer$ goapp serve dispatch.yaml default/app.yaml api/app.yaml web/app.yaml

INFO 2016-10-07 14:09:25,977 devappserver2.py:769] Skipping SDK update check.

INFO 2016-10-07 14:09:26,005 api_server.py:205] Starting API server at: http://localhost:52500

INFO 2016-10-07 14:09:26,006 dispatcher.py:185] Starting dispatcher running at: http://localhost:8080

INFO 2016-10-07 14:09:26,008 dispatcher.py:197] Starting module "default" running at: http://localhost:8081
INFO 2016-10-07 14:09:26,009 dispatcher.py:197] Starting module "api" running at: http://localhost:8082
INFO 2016-10-07 14:09:26,012 dispatcher.py:197] Starting module "web" running at: http://localhost:8083
INFO 2016-10-07 14:09:26,013 admin_server.py:116] Starting admin server at: http://localhost:8000

We can access modules directly by visiting each port, but luckily we have our dispatcher
running on port : 8080, which will do that for us based on the rules we specified in our
dispatch.yaml configuration file.

Testing locally

Now that we have built our application, head over to 1localhost:8080 to see it in action.
Use the features of the application by performing the following steps:

Log in using your real e-mail address (that way, you'll see your Gravatar picture).
Ask a question.

Submit a couple of answers.

Vote the answers up and down and see the scores changing.

SIS

Open another browser and sign in as someone else to see what the application
looks like from their point of view.

[290]

Building a Q&A Application for Google App Engine

Using the admin console

The admin console is running alongside our application and is accessible at

localhost:8000:

e0e® < M d
Google App Engine

dev~theanswersapp

Instances Datastore Viewer

I Datastore Viewer

Entity Kind
Datastore Indexes

a

Question 7 List Entities
Datastore Stats

Memcache Viewer anFKZXZ-... 15

ahFkZXZ-... 2
Blobstore Viewer
Task Queues Flush Memcache
Cron Jobs
XMPP
Inbound Mail

Full Text Search

localhost:8000/datastore?kind=Question

Create New Entity Select a different namespace

Interactive Console Key Write Ops ID
5629499534213120
5838406743490560

] g [

Key Name AnswersCount CTime g
1 2016-08-27 14:29:02 W

1 2016-08-28 16:11:52 H

Datastore Viewer lets you inspect the data of your application. You can use it to see (and
even make changes to) the questions, answers, and votes data that are being generated as

you use the application.

[291]

Building a Q&A Application for Google App Engine

Automatically generated indexes

You can also see which indexes have been automatically created by the development server
in order to satisfy the queries your application makes. In fact, if you look in the default
folder, you will notice that a new file called index.yaml has magically appeared. This file
describes those same indexes that your application will need, and when you deploy your
application, this file goes up to the cloud with it to tell Google Cloud Datastore to maintain
these same indexes.

Deploying apps with multiple modules

Deploying the application is slightly more complicated with multiple modules, as the
dispatcher and index files each require a dedicated deployment command.

Deploy the modules with the following:
goapp deploy default/app.yaml api/app.yaml web/app.yaml

Once the operation has finished, we can update the dispatcher using the appcfg.py
command (which you must ensure is in your path you'll find it in the Google App Engine
SDK for the Go folder we downloaded at the start of the chapter):

appcfg.py update_dispatch .
Once the dispatch has been updated, we can push the indexes to the cloud:

appcfg.py update_indexes —A YOUR_APPLICATION_ID_HERE ./default

Now that the application is deployed, we can see it in the wild by navigating to our appspot
URL; https://YOUR_APPLICATION_ID_HERE.appspot.com/.

You might get an error that says The index for this query is not
ready to serve. This is because it takes Google Cloud Datastore a little
time to prepare things on the server; usually, it doesn't take more than a
few minutes, so go and have a cup of coffee and try again later.

An interesting aside is that if you hit the URL with HTTPS, Google's servers will serve it
using HTTP/2.

Once your application is functional, ask an interesting question and send the link to your
friends to solicit answers.

[292]

Building a Q&A Application for Google App Engine

Summary

In this chapter, we built a fully functional question and answer application for Google App
Engine.

We learned how to use the Google App Engine SDK for Go to build and test our application
locally before deploying it to the cloud, ready for our friends and family to use. The
application is ready to scale if it suddenly starts getting a lot of traffic, and we can rely on
the healthy quota to satisfy early traffic.

We explored how to model data in Go code, keep track of keys, and persist and query data
in Google Cloud Datastore. We also explored strategies to denormalize such data in order
to make it quicker to read back at scale. We saw how transactions can guarantee data
integrity by ensuring that only one operation occurs at a particular point in time, allowing
us to build reliable counters for the score of our answers. We used predictable data store
keys to ensure that our users can only have one vote per answer, and we used incomplete
keys when we wanted the data store to generate the keys for us.

A lot of the techniques explored in this chapter would apply to any kind of application that
persists data and interacts over a RESTful JSON API so the skills are highly transferrable.

In the next chapter, we are going to explore modern software architecture by building a real
micro-service using the Go Kit framework. There are a lot of benefits to building solutions
using micro-services, and so they have become a very popular choice for large, distributed
systems. Lots of companies are already running such architectures (mostly written in Go) in
production, and we will look at how they do it.

[293]

10

Micro-services in Go with the
Go kit Framework

Micro-services are discrete components working together to provide functionality and
business logic for a larger application, usually communicating over a network protocol
(such as HTTP/2 or some other binary transport) and distributed across many physical
machines. Each component is isolated from the others, and they take in well-defined inputs
and yield well-defined outputs. Multiple instances of the same service can run across many
servers and traffic can be load balanced between them. If designed correctly, it is possible
for an individual instance to fail without bringing down the whole system and for new
instances to be spun up during runtime to help handle load spikes.

Go kit (refer to https://gokit.io)is a distributed programming toolkit for the building of
applications with a micro-service architecture founded by Peter Bourgon (¢peterbourgon
on Twitter) and now maintained by a slice of Gophers in the open. It aims to solve many of
the foundational (and sometimes boring) aspects of building such systems as well as
encouraging good design patterns, allowing you to focus on the business logic that makes
up your product or service.

Go kit doesn't try to solve every problem from scratch; rather, it integrates with many
popular related services to solve SOA (service-oriented architecture) problems, such as
service discovery, metrics, monitoring, logging, load balancing, circuit breaking, and many
other important aspects of correctly running micro-services at scale. As we build our service
by hand using Go kit, you will notice that we will write a lot of boilerplate or scaffold code
in order to get things working.

https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io

Micro-services in Go with the Go kit Framework

For smaller products and services with a small team of developers, you may well decide it
is easier to just expose a simple JSON endpoint, but Go kit really shines for larger teams,
building substantial systems with many different services, each being run tens or hundreds
of times within the architecture. Having consistent logging, instrumentation, distributed
tracing, and each item being similar to the next means running and maintaining such a
system becomes significantly easier.

“Go kit is ultimately about encouraging good design practice within a service: SOLID
design, or domain-driven-design, or the hexagonal architecture, etc. It's not dogmatically
any of those, but tries to make good design/software engineering tractable.” —Peter
Bourgon

In this chapter, we are going to build some micro-services that address various security
challenges (in a project called vault)—upon which we would be able to build further
functionality. The business logic will be kept very simple, allowing us to focus on learning
the principles around building micro-service systems.

There are some alternatives to Go kit as a technology choice; most of them
have a similar approach but with different priorities, syntax, and patterns.
Ensure that you look around at other options before embarking on a
project, but the principles you learn in this chapter will apply across the
board.

Specifically, in this chapter, you will learn:

¢ How to hand code a micro-service using Go kit
e What gRPC is and how to use it to build servers and clients

e How to use Google's protocol buffers and associated tools to describe services
and communicate in a highly efficient binary format

¢ How endpoints in Go kit allow us to write a single service implementation and
have it exposed via multiple transport protocols

¢ How Go kits-included subpackages help us solve lots of common problems

e How Middleware lets us wrap endpoints to adapt their behavior without
touching the implementation itself

e How to describe method calls as requests and response messages
e How to rate limit our services to protect from surges in traffic
e A few other idiomatic Go tips and tricks

[295]

Micro-services in Go with the Go kit Framework

Some lines of code in this chapter stretch over many lines; they are written with the
overflowing content right-aligned on the next line, as shown in this example:

func veryLongFunctionWithLotsOfArguments (one string, two int, three
http.Handler, four string) (bool, error) {
log.Println("first line of the function")

}

The first three lines in the preceding snippet should be written as one line. Don't worry; the
Go compiler will be kind enough to point out if you get this wrong.

Introducing gRPC

There are many options when it comes to how our services will communicate with each
other and how clients will communicate with the services, and Go kit doesn't care (rather, it
doesn't mind-it cares enough to provide implementations of many popular mechanisms).
In fact, we are able to add multiple options for our users and let them decide which one
they want to use. We will add support the familiar JSON over HTTP, but we are also going
to introduce a new technology choice for APIs.

gRPC, short for Google's Remote Procedure Call, is an open source mechanism used to call
code that is running remotely over a network. It uses HTTP/2 for transport and protocol
buffers to represent the data that makes up services and messages.

An RPC service differs from RESTful web services because rather than making changes to
data using well-defined HTTP standards, as you do with REST (POST to create something,
PUT to update something, DELETE to delete something, and so on), you are triggering a
remote function or method instead, passing in expected arguments and getting back one or
more pieces of data in response.

To highlight the difference, imagine that we are creating a new user. In a RESTful world, we
could make a request like this:

POST /users

{
"name": "Mat",
"twitter": "@matryer"

[2961

Micro-services in Go with the Go kit Framework

And we might get a response like this:

201 Created

{
"id": 1,
"name": "Mat",
"twitter": "@matryer"

}

RESTful calls represent queries or changes to the state of resources. In an RPC world, we
would use generated code instead in order to make binary serialized procedure calls that
feel much more like normal methods or functions in Go.

The only other key difference between a RESTful service and a gPRC service is that rather
than JSON or XML, gPRC speaks a special format called protocol buffers.

Protocol buffers

Protocol buffers (called protobuf in code) are a binary serialization format that is very
small and extremely quick to encode and decode. You describe data structures in an
abstract way using a declarative mini language, and generate source code (in a variety of
languages) to make reading and writing the data easy for users.

You can think of protocol buffers as a modern alternative to XML, except that the definition
of the data structure is separated from the content, and the content is in a binary format
rather than text.

It's clear to see the benefits when you look at a real example. If we wanted to represent a
person with a name in XML, we could write this:

<person>
<name>MAT</name>
</person>

This takes up about 30 bytes (discounting whitespace). Let's see how it would look in JSON:

{"name":"MAT"}

Now we're down to 14 bytes, but the structure is still embedded in the content (the name
field is spelled out along with the value).

[297]

Micro-services in Go with the Go kit Framework

The equivalent content in protocol buffers would only take five bytes. The following table
shows each byte, along with the first five bytes of the XML and JSON representations for
comparison. The Description row explains the meaning of the bytes in the Content row,
which shows the protocol buffer bytes:

Byte 1 2 3 (4|5
Content Oa 03 4d (61|72

Description | Type (string) | Length (3) |[M [A |T
XML <) e |r |s
JSON { « n |a |m

The structure definition lives in a special .proto file, separate from the data.

There are still plenty of cases where XML or JSON would be a better choice than protocol
buffers, and file size isn't the only measure when deciding a data format to use, but for fixed
schema structures and remote procedure calls or for applications running at a truly massive
scale, it's a popular choice for good reasons.

Installing protocol buffers

There are some tools to compile and generate source code for protocol buffers, which you
can grab from the GitHub home page of the project at https://github.com/google/proto
buf/releases. Once you've downloaded the file, unpack it and place the protoc file from
the bin folder into an appropriate folder on your machine: one that is mentioned in your
$PATH environment variable.

Once the protoc command is ready, we'll need to add a plugin that will allow us to work
with Go code. In a terminal, execute this:

go get -u github.com/golang/protobuf/{proto, protoc—gen-go}

This will install two packages that we'll make use of later.

Protocol buffers language

To define our data structure, we are going to use the third version of the protocol buffers
language, known as proto3.

[298]

https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases

Micro-services in Go with the Go kit Framework

Create a new folder in your $GOPATH called vault, and a subfolder called pb inside that.
The pb package is where our protocol buffer definition and the generated source code will
live.

We are going to define a service called vault, which has two methods, Hash and
Validate:

Method |Description

Hash Generate a secure hash for a given password. The hash can be stored instead of
storing the password in plain text.

Validate |Given a password and a previously generated hash, the Validate method will
check to ensure that the password is correct.

Each service call has a request and response pair, which we will define as well. Inside pb,
insert the following code into a new file called vault.proto:

syntax = "proto3";
package pb;
service Vault {
rpc Hash (HashRequest) returns (HashResponse) {}
rpc Validate (ValidateRequest) returns (ValidateResponse) {}
}
message HashRequest {
string password = 1;
}
message HashResponse {
string hash = 1;
string err = 2;
}
message ValidateRequest {
string password = 1;
string hash = 2;
}
message ValidateResponse {
bool valid = 1;
}

Vertical whitespace has been removed to save paper, but you are free to
add spaces between each block if you think it improves readability.

[2991]

Micro-services in Go with the Go kit Framework

The first things we specify in our file are that we are using the prot o3 syntax and the name
of the package for the generated source code is pb.

The service block defines Vault and the two methods-with HashRequest,
HashResponse, ValidateRequest, and ValidateResponse messages defined
underneath. The lines beginning with rpc inside the service block indicate that our service
consists of two remote procedure calls: Hash and Validate.

The fields inside a message take the following format:

type name = position;

The type is a string that describes the scalar value type, such as string, bool, double,
float, int32, int 64, and so on. The name is a human-readable string that describes the
field, such as hash and password. The position is an integer that indicates where in the
data stream that field appears. This is important because the content is a stream of bytes,
and lining up the content to the definition is vital to being able to use the format.
Additionally, if we were to add (or even rename) fields later (one of the key design features
of protocol buffers), we could do so without breaking components that expect certain fields
in a specific order; they would continue to work untouched, ignoring new data and just
transparently passing it along.

For a complete list of the supported types as well as a deep dive into the
entire language, check out the documentation at https://developers.go
ogle.com/protocol-buffers/docs/proto3.

Note that each method call has an associated request and response pair. These are the
messages that will be sent over the network when the remote method is called.

Since the Hash method takes a single password string argument, the HashRequest object
contains a single password string field. Like normal Go functions, the responses may
contain an error, which is why both HashResponse and ValidateResponse have two
fields. There is no dedicated error interface in proto3 like there is in Go, so we are going to
turn the error into a string instead.

Generating Go code

Go doesn't understand proto3 code, but luckily the protocol buffer compiler and Go plugin
we installed earlier can translate it into something Go does understand: Go code.

[300]

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3

Micro-services in Go with the Go kit Framework

In a terminal, navigate to the pb folder and run the following;:
protoc vault.proto --go_out=plugins=grpc:.

This will generate a new file called vault .pb.go. Open the file and inspect its contents. It
has done a lot of work for us, including defining the messages and even creating
VaultClient and VaultServer types for us to use, which will allow us to consume and
expose the service, respectively.

You are free to decode the rest of the generated code (the file descriptor
looks especially interesting) if you are interested in the details. For now,
we're going to trust that it works and use the pb package to build our
service implementation.

Building the service

At the end of the day, whatever other dark magic is going on in our architecture, it will
come down to some Go method being called, doing some work, and returning a result. So
the next thing we are going to do is define and implement the Vault service itself.

Inside the vault folder, add the following code to a new service.go file:

// Service provides password hashing capabilities.
type Service interface {
Hash (ctx context.Context, password string) (string,
error)
Validate (ctx context.Context, password, hash string)
(bool, error)

}
This interface defines the service.

You might think that vaultService would be a better name than just
Service, but remember that since this is a Go package, it will been seen
externally as vault.Service, which reads nicely.

We define our two methods: Hash and validate. Each takes context.Context as the first
argument, followed by normal st ring arguments. The responses are normal Go types as
well: string, bool, and error.

[301]

Micro-services in Go with the Go kit Framework

Some libraries may still require the old context dependency,
golang.org/x/net/context, rather than the context package that was
made available first in Go 1.7. Watch out for errors complaining about
mixed use and make sure you're importing the right one.

Part of designing micro-services is being careful about where state is stored. Even though
you will implement the methods of a service in a single file, with access to global variables,
you should never use them to store the per-request or even per-service state. It's important
to remember that each service is likely to be running on many physical machines multiple
times, each with no access to the others' global variables.

In this spirit, we are going to implement our service using an empty struct, essentially a
neat idiomatic Go trick to group methods together in order to implement an interface
without storing any state in the object itself. To service.go, add the following struct:

type vaultService struct{}

If the implementation did require any dependencies (such as a database
connection or a configuration object), you could store them inside the
struct and use the method receivers in your function bodies.

Starting with tests

Where possible, starting by writing test code has many advantages that usually end up
increasing the quality and maintainability of your code. We are going to write a unit test
that will use our new service to hash and then validate a password.

Create a new file called service_test.go and add the following code:

package vault
import (
"testing"
"golang.org/x/net/context"
)

func TestHasherService(t *testing.T) {

srv := NewService ()
ctx := context.Background ()
h, err := srv.Hash(ctx, "password")
if err != nil {
t.Errorf ("Hash: %s", err)
}
ok, err := srv.Validate(ctx, "password", h)
if err != nil {

[302]

Micro-services in Go with the Go kit Framework

t.Errorf ("Valid: %s", err)
t
if lok {
t.Error ("expected true from Valid")
t
ok, err = srv.Validate(ctx, "wrong password", h)
if err !'= nil {
t.Errorf ("Valid: %s", err)
t
if ok {
t.Error ("expected false from Valid")
t
t

We will create a new service via the NewService method and then use it to call the Hash
and Validate methods. We even test an unhappy case, where we get the password wrong
and ensure that Validate returns false —otherwise, it wouldn't be very secure at all.

Constructors in Go

A constructor in other object-oriented languages is a special kind of function that creates
instances of classes. It performs any initialization and takes in required arguments such as
dependencies, among others. It is usually the only way to create an object in these
languages, but it often has weird syntax or relies on naming conventions (such as the
function name being the same as the class, for example).

Go doesn't have constructors; it's much simpler and just has functions, and since functions
can return arguments, a constructor would just be a global function that returns a usable
instance of a struct. The Go philosophy of simplicity drives these kinds of decisions for the
language designers; rather than forcing people to have to learn about a new concept of
constructing objects, developers only have to learn how functions work and they can build
constructors with them.

Even if we aren't doing any special work in the construction of an object (such as initializing
fields, validating dependencies, and so on), it is sometimes worth adding a construction
function anyway. In our case, we do not want to bloat the API by exposing the
vaultService type since we already have our service interface type exposed and are
hiding it inside a constructor is a nice way to achieve this.

Underneath the vaultService struct definition, add the NewService function:

// NewService makes a new Service.
func NewService () Service {
return vaultService{}

[303]

Micro-services in Go with the Go kit Framework

}

Not only does this prevent us from needing to expose our internals, but if in the future we
do need to do more work to prepare the vaultService for use, we can also do it without
changing the API and, therefore, without requiring the users of our package to change
anything on their end, which is a big win for API design.

Hashing and validating passwords with bcrypt

The first method we will implement in our service is Hash. It will take a password and
generate a hash. The resulting hash can then be passed (along with a password) to the
Validate method later, which will either confirm or deny that the password is correct.

To learn more about the correct way to store passwords in applications,
check out the Coda Hale blog post on the subject at https://codahale.co

m/how-to-safely-store—-a—-password/.

The point of our service is to ensure that passwords never need to be stored in a database,
since that's a security risk if anyone is ever able to get unauthorized access to the database.
Instead, you can generate a one-way hash (it cannot be decoded) that can safely be stored,
and when users attempt to authenticate, you can perform a check to see whether the
password generates the same hash or not. If the hashes match, the passwords are the same;
otherwise, they are not.

The berypt package provides methods that do this work for us in a secure and trustworthy
way.

To service.go, add the Hash method:

func (vaultService) Hash(ctx context.Context, password
string) (string, error) {
hash, err :=
bcrypt.GenerateFromPassword ([]byte (password),
becrypt .DefaultCost)
if err != nil {
return "", err
}

return string(hash), nil

[304]

https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/

Micro-services in Go with the Go kit Framework

Ensure that you import the appropriate bcrypt package (try
golang.org/x/crypto/berypt). We are essentially wrapping the
GenerateFromPassword function to generate the hash, which we then return provided no
errors occurred.

Note that the receiver in the Hash method is just (vaultService); we don't capture the
variable because there is no way we can store state on an empty struct.

Next up, let's add the validate method:

func (vaultService) Validate (ctx context.Context,
password, hash string) (bool, error) {

err := bcrypt.CompareHashAndPassword([]byte (hash),
[Jbyte (password))
if err !'= nil {

return false, nil

}

return true, nil

}

Similar to Hash, we are calling bcrypt . CompareHashAndPassword to determine (in a
secure way) whether the password is correct or not. If an error is returned, it means that
something is amiss and we return false indicating that. Otherwise, we return t rue when
the password is valid.

Modeling method calls with requests and
responses

Since our service will be exposed through various transport protocols, we will need a way
to model the requests and responses in and out of our service. We will do this by adding a
struct for each type of message our service will accept or return.

In order for somebody to call the Hash method and then receive the hashed password as a
response, we'll need to add the following two structures to service.go:

type hashRequest struct {

Password string "~ json:"password"®
}
type hashResponse struct {

Hash string "~ json:"hash"®

Err string " json:"err,omitempty"’

[305]

Micro-services in Go with the Go kit Framework

The hashRequest type contains a single field, the password, and the hashResponse has
the resulting hash and an Err string field in case something goes wrong.

To model remote method calls, you essentially create a st ruct for the
incoming arguments and a st ruct for the return arguments.

Before continuing, see whether you can model the same request/response pair for the
Validate method. Look at the signature in the Service interface, examine the arguments
it accepts, and think about what kind of responses it will need to make.

We are going to add a helper method (of type http.DecodeRequestFunc from Go kit) that
will be able to decode the JSON body of http.Request to service.go:

func decodeHashRequest (ctx context.Context, r

*http.Request) (interface{}, error) {

var req hashRequest

err := json.NewDecoder (r.Body) .Decode (&req)
if err != nil {

return nil, err
}
return req, nil

}

The signature for decodeHashRequest is dictated by Go kit because it will later use it to
decode HTTP requests on our behalf. In this function, we just use json.Decoder to
unmarshal the JSON into our hashRequest type.

Next, we will add the request and response structures as well as a decode helper function
for the validate method:

type validateRequest struct {
Password string " json:"password"®
Hash string " json:"hash"®
t
type validateResponse struct {
Valid bool “Json:"valid"®
Err string " Json:"err,omitempty"’
t

func decodeValidateRequest (ctx context.Context,

r *http.Request) (interface{}, error) {

var reqg validateRequest

err := json.NewDecoder (r.Body) .Decode (&req)
if err !'= nil {

return nil, err

[3061

Micro-services in Go with the Go kit Framework

}
return req, nil

}

Here, the validateRequest struct takes both Password and Hash strings, since the
signature has two input arguments and returns a response containing a bool datatype
called validor Err.

The final thing we need to do is encode the response. In this case, we can write a single
method to encode both the hashResponse and validateResponse objects.

Add the following code to service.go:

func encodeResponse (ctx context.Context,

w http.ResponseWriter, response interface{})
error A

return json.NewEncoder (w) .Encode (response)

}

Our encodeResponse method just asks json.Encoder to do the work for us. Note again
that the signature is general since the response typeis interface{}; this is because it's a
Go kit mechanism for decoding to http.Responseliriter.

Endpoints in Go kit

Endpoints are a special function type in Go kit that represent a single RPC method. The
definition is inside the endpoint package:

type Endpoint func(ctx context.Context, request
interface{})
(response interface{}, err error)

An endpoint function takes context .Context and request, and it returns response or
error. The request and response types are interface{}, which tells us that it is up to
the implementation code to deal with the actual types when building endpoints.

Endpoints are powerful because, like http.Handler (and http.HandlerFunc), you can
wrap them with generalized middleware to solve a myriad of common issues that arise
when building micro-services: logging, tracing, rate limiting, error handling, and more.

[3071]

Micro-services in Go with the Go kit Framework

Go kit solves transporting over various protocols and uses endpoints as a general way to
jump from their code to ours. For example, the gRPC server will listen on a port, and when
it receives the appropriate message, it will call the corresponding Endpoint function.
Thanks to Go kit, this will all be transparent to us, as we only need to deal in Go code with
our Service interface.

Making endpoints for service methods

In order to turn our service methods into endpoint . Endpoint functions, we're going to
write a function that handles the incoming hashRequest, calls the Hash service method,
and depending on the response, builds and returns an appropriate hashResponse object.

To service.go, add the MakeHashEndpoint function:

func MakeHashEndpoint (srv Service) endpoint.Endpoint {
return func(ctx context.Context, request interface{})
(interface{}, error) {

req := request. (hashRequest)
v, err := srv.Hash(ctx, reqg.Password)
if err !'= nil {

return hashResponse{v, err.Error ()}, nil

}

return hashResponse{v, ""}, nil

}

This function takes Service as an argument, which means that we can generate an
endpoint from any implementation of our service interface. We then use a type assertion
to specify that the request argument should, in fact, be of type hashRequest. We call the
Hash method, passing in the context and Password, which we get from hashRequest. If all
is well, we build hashResponse with the value we got back from the Hash method and
return it.

Let's do the same for the validate method:

func MakeValidateEndpoint (srv Service) endpoint.Endpoint {
return func(ctx context.Context, request interface{})
(interface{}, error) {

req := request. (validateRequest)
v, err := srv.Validate(ctx, reqg.Password, reqg.Hash)
if err !'= nil {

return validateResponse{false, err.Error()}, nil

}

return validateResponse{v, ""}, nil

[308]

Micro-services in Go with the Go kit Framework

}

Here, we are doing the same: taking the request and using it to call the method before
building a response. Note that we never return an error from the Endpoint function.

Different levels of error

There are two main types of errors in Go kit: transport errors (network failure, timeouts,
dropped connection, and so on) and business logic errors (where the infrastructure of
making the request and responding was successful, but something in the logic or data
wasn't correct).

If the Hash method returns an error, we are not going to return it as the second argument;
instead, we are going to build hashResponse, which contains the error string (accessible
via the Error method). This is because the error returned from an endpoint is intended to
indicate a transport error, and perhaps Go kit will be configured to retry the call a few times
by some middleware. If our service methods return an error, it is considered a business
logic error and will probably always return the same error for the same input, so it's not
worth retrying. This is why we wrap the error into the response and return it to the client so
that they can deal with it.

Wrapping endpoints into a Service implementation

Another very useful trick when dealing with endpoints in Go kit is to write an
implementation of our vault . Service interface, which just makes the necessary calls to
the underlying endpoints.

To service.go, add the following structure:

type Endpoints struct {
HashEndpoint endpoint.Endpoint
ValidateEndpoint endpoint.Endpoint
}

In order to implement the vault.Service interface, we are going to add the two methods
to our Endpoints structure, which will build a request object, make the request, and parse
the resulting response object into the normal arguments to be returned.

[3091

Micro-services in Go with the Go kit Framework

Add the following Hash method:

func (e Endpoints) Hash(ctx context.Context, password

string) (string, error) {
reqg := hashRequest{Password: password}
resp, err := e.HashEndpoint (ctx, req)
if err !'= nil {
return "", err
}
hashResp := resp. (hashResponse)
if hashResp.Err != "" {
return "", errors.New(hashResp.Err)

}
return hashResp.Hash, nil

}

We are calling HashEndpoint with hashRequest, which we create using the password
argument before caching the general response to hashResponse and returning the Hash
value from it or an error.

We will do this for the Validate method:

func (e Endpoints) Validate (ctx context.Context, password,
hash string) (bool, error) {

req := validateRequest{Password: password, Hash: hash}
resp, err := e.ValidateEndpoint (ctx, req)
if err !'= nil {

return false, err
t
validateResp := resp. (validateResponse)
if validateResp.Err != "" {
return false, errors.New(validateResp.Err)
t
return validateResp.Valid, nil

}

These two methods will allow us to treat the endpoints we have created as though they are

normal Go methods; very useful for when we actually consume our service later in this
chapter.

[310]

Micro-services in Go with the Go kit Framework

An HTTP server in Go kit

The true value of Go kit becomes apparent when we create an HTTP server for our
endpoints to hash and validate.

Create a new file called server_http.go and add the following code:

package vault
import (
"net/http"
httptransport "github.com/go-kit/kit/transport/http"
"golang.org/x/net/context"
)
func NewHTTPServer (ctx context.Context, endpoints
Endpoints) http.Handler {
m := http.NewServeMux ()
m.Handle ("/hash", httptransport.NewServer (
ctx,
endpoints.HashEndpoint,
decodeHashRequest,
encodeResponse,

m.Handle ("/validate", httptransport.NewServer (
ctx,
endpoints.ValidateEndpoint,
decodeValidateRequest,
encodeResponse,

))

return m

}

We are importing the github.com/go-kit/kit/transport/http package and (since
we're also importing the net /http package) telling Go that we're going to explicitly refer to
this package as httptransport.

We are using the NewServeMux function from the standard library to build http.Handler
interface with simple routing and mapping the /hash and /validate paths. We take the
Endpoints object since we want our HTTP server to serve these endpoints, including any
middleware that we will add later. Calling httptransport.NewServer is how we get Go
kit to give us an HTTP handler for each endpoint. Like most functions, we pass in
context.Context as the first argument, which will form the base context for each request.
We also pass in the endpoint as well as the decoding and encoding functions that we wrote
earlier so that the server knows how to unmarshal and marshal the JSON messages.

[311]

Micro-services in Go with the Go kit Framework

A gRPC server in Go kit

Adding a gPRC server using Go kit is almost as easy as adding a JSON/HTTP server, like
we did in the last section. In our generated code (in the pb folder), we were given the
following pb.VaultServer type:

type VaultServer interface {
Hash (context.Context, *HashRequest)
(*HashResponse, error)
Validate (context.Context, *ValidateRequest)
(*ValidateResponse, error)

}

This type is very similar to our own Service interface, except that it takes in generated
request and response classes rather than raw arguments.

We'll start by defining a type that will implement the preceding interface. Add the
following code to a new file called server_grpc.go:

package vault
import (
"golang.org/x/net/context"
grpctransport "github.com/go-kit/kit/transport/grpc"
)
type grpcServer struct {
hash grpctransport.Handler
validate grpctransport.Handler
}
func (s *grpcServer) Hash(ctx context.Context,
r *pb.HashRequest) (*pb.HashResponse, error) {
_, resp, err := s.hash.ServeGRPC(ctx, r)
if err != nil {
return nil, err
}
return resp. (*pb.HashResponse), nil
}
func (s *grpcServer) Validate (ctx context.Context,
r *pb.ValidateRequest) (*pb.ValidateResponse, error) {
_, resp, err := s.validate.ServeGRPC(ctx, r)
if err != nil {
return nil, err
}

return resp. (*pb.ValidateResponse), nil

[312]

Micro-services in Go with the Go kit Framework

Note that you'll need to import github.com/go-kit/kit/transport/grpc as
grpctransport, along with the generated pb package.

The grpcServer struct contains a field for each of the service endpoints, this time of type
grpctransport.Handler. Then, we implement the methods of the interface, calling the
ServeGRPC method on the appropriate handler. This method will actually serve requests by
first decoding them, calling the appropriate endpoint function, getting the response, and
encoding it and sending it back to the client who made the request.

Translating from protocol buffer types to our
types

You'll notice that we're using the request and response objects from the pb package, but
remember that our own endpoints use the structures we added to service.go earlier. We
are going to need a method for each type in order to translate to and from our own types.

There's a lot of repetitive typing coming up; feel free to copy and paste this
from the GitHub repository at https://github.com/matryer/gobluepri
nts to save your fingers. We're hand coding this manually because it's
important to understand all the pieces that make up the service.

To server_grpc.go, add the following function:

func EncodeGRPCHashRequest (ctx context.Context,
r interface{}) (interface{}, error) {
req := r. (hashRequest)
return &pb.HashRequest{Password: reqg.Password}, nil

}

This function is an EncodeRequestFunc function defined by Go kit, and it is used to
translate our own hashRequest type into a protocol buffer type that can be used to
communicate with the client. It uses interface{} types because it's general, but in our
case, we can be sure about the types so we cast the incoming request to hashRequest (our
own type) and then build a new pb . HashRequest object using the appropriate fields.

We are going to do this for both encoding and decoding requests and responses for both
hash and validate endpoints. Add the following code to server_grpc.go:

func DecodeGRPCHashRequest (ctx context.Context,
r interface{}) (interface{}, error) {
reqg := r. (*pb.HashRequest)
return hashRequest{Password: req.Password}, nil

[313]

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Micro-services in Go with the Go kit Framework

}
func EncodeGRPCHashResponse (ctx context.Context,
r interface{}) (interface{}, error) {
res := r. (hashResponse)
return &pb.HashResponse{Hash: res.Hash, Err: res.Err},
nil
}
func DecodeGRPCHashResponse (ctx context.Context,
r interface{}) (interface{}, error) {
res := r. (*pb.HashResponse)

return hashResponse{Hash: res.Hash, Err: res.Err}, nil
}
func EncodeGRPCValidateRequest (ctx context.Context,
r interface{}) (interface{}, error) {
req := r.(validateRequest)
return &pb.ValidateRequest{Password: reqg.Password,
Hash: reqg.Hash}, nil

}
func DecodeGRPCValidateRequest (ctx context.Context,
r interface{}) (interface{}, error) {
req := r. (*pb.ValidateRequest)
return validateRequest{Password: req.Password,
Hash: reg.Hash}, nil
}
func EncodeGRPCValidateResponse (ctx context.Context,
r interface{}) (interface{}, error) {
res := r.(validateResponse)
return &pb.ValidateResponse{Valid: res.Valid}, nil
}
func DecodeGRPCValidateResponse (ctx context.Context,
r interface{}) (interface{}, error) {
res := r.(*pb.ValidateResponse)
return validateResponse{Valid: res.Valid}, nil
}

As you can see, there is a lot of boilerplate coding to do in order to get things working.

Code generation (not covered here) would have great application here,
since the code is very predictable and self-similar.

[314]

Micro-services in Go with the Go kit Framework

The final thing to do in order to get our gRPC server working is to provide a helper function
to create an instance of our grpcServer structure. Underneath the grpcServer struct, add
the following code:

func NewGRPCServer (ctx context.Context, endpoints
Endpoints) pb.VaultServer {
return &grpcServer(
hash: grpctransport.NewServer (
ctx,
endpoints.HashEndpoint,
DecodeGRPCHashRequest,
EncodeGRPCHashResponse,
)I
validate: grpctransport.NewServer (
ctx,
endpoints.ValidateEndpoint,
DecodeGRPCValidateRequest,
EncodeGRPCValidateResponse,
)I

}

Like our HTTP server, we take in a base context and the actual Endpoints implementation
that we are exposing via the gRPC server. We create and return a new instance of our
grpcServer type, setting the handlers for both hash and validate by calling
grpctransport .NewServer. We use our endpoint .Endpoint functions for our service
and tell the service which of our encoding/decoding functions to use for each case.

Creating a server command

So far, all of our service code lives inside the vault package. We are now going to use this
package to create a new tool to expose the server functionality.

Create a new folder in vault called cmd, and inside it create another called vaultd. We are
going to put our command code inside the vaultd folder because even though the code
will be in the main package, the name of the tool will be vaultd by default. If we just put
the command in the cmd folder, the tool would be built into a binary called cmd-which is
pretty confusing.

In Go projects, if the primary use of the package is to be imported into
other programs (such as Go kit), then the root level files should make up
the package and will have an appropriate package name (not main). If the
primary purpose is a command-line tool, such as the Drop command (htt

[315]

https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop

Micro-services in Go with the Go kit Framework

ps://github.com/matryer/drop), then the root files will be in the main
package.

The rationale for this comes down to usability; when importing a package,
you want the string the user has to type to be the shortest it can be.
Similarly, when using go install, you want the path to be short and
sweet.

The tool we are going to build (suffixed with d, indicating that it is a daemon or a
background task) will spin up both our gRPC and JSON/HTTP servers. Each will run in
their own goroutine, and we will trap any termination signals or errors from the servers,
which will cause the termination of our program.

In Go kit, main functions end up being quite large, which is by design; there is a single
function that contains the entirety of your micro-service; from there, you can dig down into
the details, but it provides an at-a-glance view of each component.

We will build up the main function piece by piece inside a new main. go file in the vaultd
folder, starting with the fairly big list of imports:

import (
"flag"
"fmt"
lllogll
"net"
"net/http"
"OS"
"os/signal"
"syscall"
"your/path/to/vault"
"your/path/to/vault/pb"
"golang.org/x/net/context"
"google.golang.org/grpc"
)

The your/path/to prefixes should be replaced with the actual route from $GOPATH to
where your project is. Pay attention to the context import too; it's quite possible that you
just need to type context rather than the import listed here depending on when Go kit
transitions to Go 1.7. Finally, the grpc package from Google provides everything we need
in order to expose gRPC capabilities over the network.

[316]

https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop
https://github.com/matryer/drop

Micro-services in Go with the Go kit Framework

Now, we will put together our main function; remember that all the sections following this
one go inside the body of the main function:

func main () |
var (
httpAddr = flag.String("http", ":8080",
"http listen address")
gRPCAddr = flag.String("grpc", ":8081",

"gRPC listen address")

)
flag.Parse()

ctx := context.Background ()
srv := vault.NewService /()
errChan := make (chan error)

We use flags to allow the ops team to decide which endpoints we will listen on when
exposing the service on the network, but provide sensible defaults of : 8080 for the
JSON/HTTP server and :8081 for the gRPC server.

We then create a new context using the context .Background () function, which returns a
non-nil, empty context that has no cancelation or deadline specified and contains no values,
perfect for the base context of all of our services. Requests and middleware are free to create
new context objects from this one in order to add request-scoped data or deadlines.

Next, we use our NewService constructor to make a new Service type for us and make a
zero-buffer channel, which can take an error should one occur.

We will now add the code that traps termination signals (such as Ctrl + C) and sends an
error down errChan:

go func() A
c := make(chan os.Signal, 1)
signal.Notify(c, syscall.SIGINT, syscall.SIGTERM)
errChan <- fmt.Errorf ("%s", <-c)

O

Here, in a new goroutine, we ask signal.Notify to tell us when we receive the SIGINT or
SIGTERM signals. When that happens, the signal will be sent down the ¢ channel, at which
point we'll format it as a string (its St ring () method will be called), and we turn that into
an error, which we'll send down errChan, resulting in the termination of the program.

[317]

Micro-services in Go with the Go kit Framework

Using Go kit endpoints

It is time to create one of our endpoints instances that we can pass to our servers. Add the
following code to the main function body:

hashEndpoint := vault.MakeHashEndpoint (srv)
validateEndpoint := vault.MakeValidateEndpoint (srv)
endpoints := vault.Endpoints{

HashEndpoint: hashEndpoint,

ValidateEndpoint: validateEndpoint,
}

We are assigning the fields to the output of our endpoint helper functions for both the hash
and validate methods. We are passing in the same service for both, so the endpoints
variable essentially ends up being a wrapper around our srv service.

You may be tempted to neaten up this code by removing the assignment
to the variables altogether and just set the return of the helper functions to
the fields in the struct initialization, but when we come to add middleware
later, you'll be thankful for this approach.

We are now ready to start up our JSON/HTTP and gRPC servers using these endpoints.

Running the HTTP server

Now we will add the goroutine to make and run the JSON/HTTP server to the main
function body:

// HTTP transport

go func () {
log.Println ("http:", *httpAddr)
handler := vault.NewHTTPServer (ctx, endpoints)

errChan <- http.ListenAndServe (*httpAddr, handler)
Q)

All the heavy lifting has already been done for us in our package code by Go kit, so we are
left with simply calling the NewHTTPServer function, passing in the background context
and the service endpoints we wish for it to expose, before calling the standard library's
http.ListenAndServe, which exposes the handler functionality in the specified
httpAddr. If an error occurs, we send it down the error channel.

[318]

Micro-services in Go with the Go kit Framework

Running the gRPC server

There is a little more work to do in order to run the gRPC server, but it is still pretty simple.
We must create a low-level TCP network listener and serve the gRPC server over that. Add
the following code to the main function body:

go func () |
listener, err := net.Listen("tcp", *gRPCAddr)
if err !'= nil {
errChan <- err
return
t
log.Println("grpc:", *gRPCAddr)
handler := vault.NewGRPCServer (ctx, endpoints)
gRPCServer := grpc.NewServer ()

pb.RegisterVaultServer (gRPCServer, handler)
errChan <- gRPCServer.Serve (listener)

O

We make the TCP listener on the gRPCAddr endpoint specified, sending any errors down
the errChan error channel. We use vault .NewGRPCServer to create the handler, again
passing in the background context and the instance of Endpoints we are exposing.

Note how both the JSON/HTTP server and the gRPC server are actually
exposing the same service-literally the same instance.

We then create a new gRPC server from Google's grpc package and register it using our
own generated pb package via the RegisterVaultServer function.

The RegisterVaultService function just calls RegisterService on
our grpcServer but hides the internals of the service description that was
automatically generated. If you look in vault.pb.go and search for the
RegisterVaultServer function, you will see that it makes a reference to
something like &_Vault_serviceDesc, which is the description of the
service. Feel free to dig around the generated code; the metadata is
especially interesting, but out of scope for this book.

We then ask the server to serve itself, throwing any errors down the same error channel if
they occur.

[319]

Micro-services in Go with the Go kit Framework

It's out of scope for this chapter, but it is recommended that every service
be delivered with Transport Layer Security (TLS), especially the ones
dealing with passwords.

Preventing a main function from terminating
immediately

If we closed our main function here, it would immediately exit and terminate all of our
servers. This is because everything we're doing that would prevent this is inside its own
goroutine. To prevent this, we need a way to block the function at the end to wait until
something tells the program to terminate.

Since we are using the errChan error channel for errors, this is a perfect candidate. We can
just listen on this channel, which (while nothing has been sent down it) will block and allow
the other goroutines to do their work. If something goes wrong (or if a termination signal is
received), the <-errChan call will unblock and exit and all goroutines will be stopped.

At the bottom of the main function, add the final statement and closing block:

log.Fatalln (<-errChan)
}

When an error occurs, we'll just log it and exit with a nonzero code.

Consuming the service over HTTP

Now that we have wired everything up, we can test the HTTP server using the curl
command-or any tool that lets us make JSON/HTTP requests.

In a terminal, let's start by running our servers. Head over to the vault/cmd/vaultd folder
and start the program:

go run main.go

Once the server is running, you'll see something like this:

http: :8080
grpc: :8081

[320]

Micro-services in Go with the Go kit Framework

Now, open another terminal and issue the following HTTP request using curl:

curl -XPOST -d '{"password":"hernandez"}'
http://localhost:8080/hash

We are making a POST request to the hash endpoint with a JSON body that contains the
password we want for hashing. Then, we get something like this:

{"hash":"$2a$10$IXYT10DuK3Hu.
NzQsyNafFltyxe5QkYZKM5by/5Ren" }

The hash in this example won't match yours-there are many acceptable
hashes and there's no way to know which one you'll get. Ensure that you
copy and paste your actual hash (everything inside the double quotes).

The resulting hash is what we would store in our data store given the specified password.
Then, when the user tries to log in again, we will make a request with the password they
entered, along with this hash, to the validate endpoint:

curl -XPOST -d
'{"password" : "hernandez",
"hash" : "PASTE_YOUR_HASH HERE"}'
http://localhost:8080/validate

Make this request by copying and pasting the correct hash and entering the same
hernandez password, and you will see this result:

{"valid" :true}

Now, change the password (this is equivalent to the user getting it wrong) and you will see
this:

{"valid":false}

You can see that the JSON/HTTP micro-service exposure for our vault service is complete
and working.

Next, we will look at how we can consume the gRPC version.

Building a gRPC client

Unlike JSON/HTTP services, gRPC services aren't easy for humans to interact with. They're
really intended as machine-to-machine protocols, and so we must write a program if we
wish to use them.

[321]

Micro-services in Go with the Go kit Framework

To help us do this, we are first going to add a new package inside our vault service called
vault/client/grpc. It will, given a gRPC client connection object that we get from
Google's grpc package, provide an object that performs the appropriate calls, encoding and
decoding, for us, all hidden behind our own vault.Service interface. So, we will be able
to use the object as though it is just another implementation of our interface.

Create new folders inside vault so that you have the path of vault/client/grpc. You can
imagine adding other clients if you so wish, so this seems a good pattern to establish.

Add the following code to anew client.go file:

func New(conn *grpc.ClientConn) vault.Service {
var hashEndpoint = grpctransport.NewClient (
conn, "Vault", "Hash",
vault.EncodeGRPCHashRequest,
vault.DecodeGRPCHashResponse,
pb.HashResponse{},

) .Endpoint ()
var validateEndpoint = grpctransport.NewClient (
conn, "Vault", "validate",

vault.EncodeGRPCValidateRequest,
vault.DecodeGRPCValidateResponse,
pb.ValidateResponse{},

) .Endpoint ()
return vault.Endpoints{
HashEndpoint: hashEndpoint,

ValidateEndpoint: validateEndpoint,
}
}

The grpctransport package is referring to github.com/go-kit/kit/transport/grpc.
This might feel familiar by now; we are making two new endpoints based on the specified
connection, this time being explicit about the Vault service name and the endpoint names
Hash and Validate. We pass in appropriate encoders and decoders from our vault
package and empty response objects before wrapping them both in our vault.Endpoints
structure that we added-the one that implements the vault . Service interface that just
triggers the specified endpoints for us.

[322]

Micro-services in Go with the Go kit Framework

A command-line tool to consume the service

In this section, we are going to write a command-line tool (or CLI-command-line interface),
which will allow us to communicate with our service through the gRPC protocol. If we
were writing another service in Go, we would use the vault client package in the same way
as we will when we write our CLI tool.

Our tool will let you access the services in a fluent way on the command line by separating
commands and arguments with spaces such that we can hash a password like this:

vaultcli hash MyPassword

We will be able to validate a password with a hash like this:

vaultcli hash MyPassword HASH_GOES_HERE

In the cmd folder, create a new folder called vaultcli. Add a main.go file and insert the
following main function:

func main () {
var (
grpcAddr = flag.String("addr", ":8081",
"gRPC address")
)
flag.Parse ()
ctx := context.Background()
conn, err := grpc.Dial (*grpcAddr, grpc.WithInsecure(),
grpc.WithTimeout (1*time.Second))
if err !'= nil {
log.Fatalln ("gRPC dial:", err)
}
defer conn.Close()
vaultService := grpcclient.New (conn)
args := flag.Args()
var cmd string
cmd, args = pop (args)
switch cmd {
case "hash":
var password string
password, args = pop(args)
hash (ctx, vaultService, password)
case "validate":
var password, hash string
password, args = pop(args)
hash, args = pop(args)
validate (ctx, vaultService, password, hash)
default:

[323]

Micro-services in Go with the Go kit Framework

log.Fatalln ("unknown command", cmd)
t
t

Ensure that you import the vault/client/grpc package as grpcclient and
google.golang.org/grpc as grpc. You'll also need to import the vault package.

We parse the flags and get a background context as usual before dialing the gRPC endpoint
to establish a connection. If all is well, we defer the closing of the connection and create our
vault service client using that connection. Remember that this object implements our
vault.Service interface, so we can just call the methods as though they were normal Go
methods, without worrying about the fact that communication is taking place over a
network protocol.

Then, we start parsing the command-line arguments in order to decide which execution
flow to take.

Parsing arguments in CLIs

Parsing arguments in command-line tools is very common, and there is a neat idiomatic
way to do it in Go. The arguments are all available via the os.Args slice, or if you're using
flags, the flags.Args () method (which gets arguments with flags stripped). We want to
take each argument off the slice (from the beginning) and consume them in an order, which
will help us decide which execution flow to take through the program. We're going to add a
helper function called pop, which will return the first item, and the slice with the first item
trimmed.

We'll write a quick unit test to ensure that our pop function is working as expected. If you
would like to try and write the pop function yourself, then you should do that once the test
is in place. Remember that you can run tests by navigating to the appropriate folder in a
terminal and executing this:

go test

Create a new file inside vaultcli called main_test.go and add the following test
function:

func TestPop(t *testing.T) {
args := []string{"one", "two", "three"}
var s string
s, args = pop(args)
if s !'= "one" {
t.Errorf ("unexpected "%s"", s)

[324]

Micro-services in Go with the Go kit Framework

}
s, args = pop(args)
if s !'= "two" {
t.Errorf ("unexpected "%s"", s)
}
s, args = pop(args)
if s != "three" {
t.Errorf ("unexpected "%s"", s)
}
s, args = pop(args)
if s I="" {
t.Errorf ("unexpected "%s"", s)
}
}

We expect each call to pop to yield the next item in the slice and empty arguments once the
slice is empty.

At the bottom of main. go, add the pop function:

func pop(s []string) (string, []string) {
if len(s) == 0 {
return "", s

}

return s[0], s[l:]

}

Maintaining good line of sight by extracting case
bodies

The only thing that remains for us to do is implement the hash and validate methods
referred to in the switch statement shown earlier.

We could have embedded this code inside the switch statement itself, but that would make
the main function very difficult to read and also hide happy path execution at different
indentation levels, something we should try to avoid.

Instead, it is a good practice to have the cases inside the switch statement jump out to a
dedicated function, taking in any arguments it needs. Underneath the main function, add
the following hash and validate functions:

func hash (ctx context.Context, service vault.Service,
password string) {
h, err := service.Hash(ctx, password)
if err != nil {

[325]

Micro-services in Go with the Go kit Framework

log.Fatalln(err.Error())

t
fmt.Println (h)
t
func validate (ctx context.Context, service vault.Service,
password, hash string) {
valid, err := service.Validate(ctx, password, hash)
if err !'= nil {
log.Fatalln(err.Error())
t
if !valid {
fmt .Println ("invalid")
os.Exit (1)

t
fmt .Println ("valid")

}

These functions simply call the appropriate method on the service, and depending on the
result, log or print the results to the console. If the validate method returns false, the
program will exit with an exit code of 1, since nonzero means an error.

Installing tools from the Go source code

To install the tool, we just have to navigate to the vaultcli folder in a terminal and type
this:

go install

Provided there are no errors, the package will be built and deployed to the $GOPATH/bin
folder, which should already be listed in your $PATH environment variable. This means that
the tool is ready for use just like a normal command in your terminal.

The name of the binary that is deployed will match the folder name, and this is why we
have an additional folder inside the cmd folder even if we are only building a single
command.

Once you have installed the command, we can use it to test the gRPC server.

[326]

Micro-services in Go with the Go kit Framework

Head over to cmd/vaultd and start the server (if it isn't already running) by typing the
following;:

go run main.go

In another terminal, let's hash a password by typing this:

vaultcli hash blanca

Note that the hash is returned. Now let's validate this hash:

vaultcli validate blanca PASTE_HASH_ HERE

The hash may contain special characters that interfere with your terminal,
so you should escape the string with quotes if required.

On a Mac, format the argument with $'PASTE_HASH_HERE' to properly
escape it.

On Windows, try surrounding the argument with exclamation points:
'PASTE_HASH_HERE!.

If you get the password right, you'll notice that you see the word valid; otherwise, you'll
see invalid.

Rate limiting with service middleware

Now that we have built a complete service, we are going to see how easy it is to add
middleware to our endpoints in order to extend the service without touching the actual
implementations themselves.

In real-world services, it is sensible to limit the number of requests it will attempt to handle
so that the service doesn't get overwhelmed. This can happen if the process needs more
memory than is available, or we might notice performance degradation if it eats up too
much of the CPU. In a micro-service architecture, the strategy to solving these problems is
to add another node and spread the load, which means that we want each individual
instance to be rate limited.

Since we are providing the client, we should add rate limiting there, which would prevent
too many requests from getting on the network. But it is also sensible to add rate limiting to
the server in case many clients are trying to access the same services at the same time.
Luckily, endpoints in Go kit are used for both the client and server, so we can use the same
code to add middleware in both places.

[327]

Micro-services in Go with the Go kit Framework

We are going to add a Token Bucket-based rate limiter, which you can read more about at h
ttps://en.wikipedia.org/wiki/Token_bucket. The guys at Juju have written a Go
implementation that we can use by importing github.com/juju/ratelimit, and Go kit
has middleware built for this very implementation, which will save us a lot of time and
effort.

The general idea is that we have a bucket of tokens, and each request will need a token in
order to do its work. If there are no tokens in the bucket, we have reached our limit and the
request cannot be completed. Buckets refill over time at a specific interval.

Import github.com/juju/ratelimit and before we create our hashEndpoint, insert the
following code:

rlbucket := ratelimit.NewBucket (1*time.Second, 5)

The NewBucket function creates a new rate limiting bucket that will refill at a rate of one
token per second, up to a maximum of five tokens. These numbers are pretty silly for our
case, but we want to be able to reach our limits manually during the development.

Since the Go kit ratelimit package has the same name as the Juju one, we are going to
need to import it with a different name:

import ratelimitkit "github.com/go-kit/kit/ratelimit"

Middleware in Go kit

Endpoint middleware in Go kit is specified by the endpoint .Middleware function type:

type Middleware func (Endpoint) Endpoint

A piece of middleware is simply a function that takes Endpoint and returns Endpoint.
Remember that Endpoint is also a function:

type Endpoint func(ctx context.Context, request
interface{}) (response interface{}, err error)

This gets a little confusing, but they are the same as the wrappers we built for
http.HandlerFunc. A middleware function returns an Endpoint function that does
something before and/or after calling the Endpoint being wrapped. The arguments passed
into the function that returns the Middleware are closured in, which means that they are
available to the inner code (via closures) without the state having to be stored anywhere
else.

[328]

https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Token_bucket

Micro-services in Go with the Go kit Framework

We are going to use the NewTokenBucketLimiter middleware from Go kit's ratelimit
package, and if we take a look at the code, we'll see how it uses closures and returns
functions to inject a call to the token bucket's TakeAvailable method before passing
execution to the next endpoint:

func NewTokenBucketLimiter (tb *ratelimit.Bucket)
endpoint.Middleware {
return func(next endpoint.Endpoint) endpoint.Endpoint {
return func(ctx context.Context, request interface{})
(interface{}, error) {
if tb.TakeAvailable (1) == 0 {
return nil, ErrLimited

}

return next (ctx, request)

}

A pattern has emerged within Go kit where you obtain the endpoint and then put all
middleware adaptations inside their own block immediately afterwards. The returned
function is given the endpoint when it is called, and the same variable is overwritten with
the result.

For a simple example, consider this code:

e := getEndpoint (srv)
{

e = getSomeMiddleware () (e)
getLoggingMiddleware (logger) (e)
getAnotherMiddleware (something) (e)

® O
[Tl

}

We will now do this for our endpoints; update the code inside the main function to add the
rate limiting middleware:

hashEndpoint := vault.MakeHashEndpoint (srv)
{
hashEndpoint = ratelimitkit.NewTokenBucketLimiter
(rlbucket) (hashEndpoint)
t
validateEndpoint := vault.MakeValidateEndpoint (srv)
{
validateEndpoint = ratelimitkit.NewTokenBucketLimiter
(rlbucket) (validateEndpoint)
t
endpoints := vault.Endpoints{
HashEndpoint: hashEndpoint,

[329]

Micro-services in Go with the Go kit Framework

ValidateEndpoint: validateEndpoint,
}

There's nothing much to change here; we're just updating the hashEndpoint and
validateEndpoint variables before assigning them to the vault.Endpoints struct.

Manually testing the rate limiter

To see whether our rate limiter is working, and since we set such low thresholds, we can
test it just using our command-line tool.

First, restart the server (so the new code runs) by hitting Ctrl + C in the terminal window
running the server. This signal will be trapped by our code, and an error will be sent down
errChan, causing the program to quit. Once it has terminated, restart it:

go run main.go

Now, in another window, let's hash some passwords:

vaultcli hash bourgon

Repeat this command a few times—in most terminals, you can press the up arrow key and
return. You'll notice that the first few requests succeed because it's within the limits, but if
you get a little more aggressive and issue more than five requests in a second, you'll notice
that we get errors:

$ vaultcli hash bourgon

$2a$10$9g3NTk jGOYFZhTG6gBU2WpenFmNzdN740X0MDSTryiAqQRXJ7RVwIsy
$ vaultcli hash bourgon

$2a$10$CdEEtxSDUyJEIFaykbMM1 .EikxvV5921gs/./7I1£6VOdh2x0Q1oLW
$ vaultcli hash bourgon
$2a$10$1DSqQJIJIGCMVOptwIx6rrSOZwL1OhjHNC830PVE8SdQ9q73Li5x21e
$ vaultcli hash bourgon

Invoke: rpc error: code = 2 desc = rate limit exceeded

$ vaultcli hash bourgon

Invoke: rpc error: code = 2 desc = rate limit exceeded

$ vaultcli hash bourgon

Invoke: rpc error: code = 2 desc = rate limit exceeded

$ vaultcli hash bourgon
$2a$10$kriTDXdyT6J4IrqZLwgBde663nLhoG3innhCNuf8H2nHf 7kxnmSza

This shows that our rate limiter is working. We see errors until the token bucket fills back
up, where our requests are fulfilled again.

[330]

Micro-services in Go with the Go kit Framework

Graceful rate limiting

Rather than returning an error (which is a pretty harsh response), perhaps we would prefer
the server to just hold onto our request and fulfill it when it can-called throttling. For this
case, Go kit provides the NewTokenBucketThrottler middleware.

Update the middleware code to use this middleware function instead:

hashEndpoint := vault.MakeHashEndpoint (srv)

{
hashEndpoint = ratelimitkit.NewTokenBucketThrottler (rlbucket,
time.Sleep) (hashEndpoint)

}
validateEndpoint := vault.MakeValidateEndpoint (srv)

{
validateEndpoint = ratelimitkit.NewTokenBucketThrottler (rlbucket,
time.Sleep) (validateEndpoint)

}

endpoints := vault.Endpoints{
HashEndpoint: hashEndpoint,
ValidateEndpoint: validateEndpoint,

}

The first argument to NewTokenBucketThrottler is the same endpoint as earlier, but now
we have added a second argument of time.Sleep.

Go kit allows us to customize the behavior by specifying what should
happen when the delay needs to take place. In our case, we're passing
time.Sleep, which is a function that will ask execution to pause for the
specified amount of time. You could write your own function here if you
wanted to do something different, but this works for now.

Now repeat the test from earlier, but this time, note that we never get an error-instead, the
terminal will hang for a second until the request can be fulfilled.

[331]

Micro-services in Go with the Go kit Framework

Summary

We covered a lot through this chapter as we put together a real example of a micro-service.
There is a lot of work involved without code generation, but the benefits for large teams
and big micro-service architectures pay for the investment as you build self-similar, discrete
components that make up the system.

We learned how gRPC and protocol buffers give us highly efficient transport
communications between clients and servers. Using the proto3 language, we defined our
service, including messages, and used the tools to generate a Go package that provided the
client and server code for us.

We explored the fundamentals of Go kit and how we can use endpoints to describe the
methods of our services. We let Go kit do the heavy lifting for us when it came to building
HTTP and gRPC servers by making use of the packages included in the project. We saw
how middleware functions let us easily adapt our endpoints to, among other things, rate
limit the amount of traffic the server will have to handle.

We also learned about constructors in Go, a neat trick to parse incoming command-line
arguments, and how to hash and validate passwords using the bcrypt package, which is a
sensible approach that helps us avoid storing passwords at all.

There is a lot more to building micro-services, and it is recommended that you head over to
the Go kit website at https://gokit.io or join the conversation on the #go-kit slack
channel at gophers.slack.com to learn more.

Now that we have built our Vault service, we need to think about our options in order to
deploy it into the wild. In the next chapter, we'll package our micro-service into a Docker
container and deploy it to Digital Ocean's cloud.

[332]

https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io
https://gokit.io

11

Deploying Go Applications
Using Docker

Docker is an open source ecosystem (technology and range of associated services) that
allows you to package applications into containers that are simple, lightweight, and
portable; they will run in the same way regardless of which environment they run on. This
is useful when you consider that our development environment (perhaps a Mac) is different
from a production environment (such as a Linux server or even a cloud service) and that
there is a large number of different places that we might want to deploy the same
application.

Most cloud platforms already support Docker, which makes it a great option to deploy our
apps into the wild.

In chapter 9, Building a Q& A Application for Google App Engine, we built an application for
Google App Engine. We would need to make significant changes to our code if we decided
that we wanted to run our application on a different platform even if we forget about our
use of Google Cloud Datastore. Building applications with a mind to deploying them
within Docker containers gives us an additional level of flexibility.

Did you know that Docker itself was written in Go? See for yourself by
0 browsing the source code at https://github.com/docker/docker.

In this chapter, you will learn:

e How to write a simple Dockerfile to describe an application
e How to use the docker command to build the container
e How to run Docker containers locally and terminate them

https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker

Deploying Go Applications Using Docker

e How to deploy Docker containers to Digital Ocean

e How to use the features in Digital Ocean to spin up instances that already have
Docker preconfigured

We are going to put the Vault service we created in cChapter 10, Micro-services in Go with the
Go kit Framework, into a Docker image and deploy it to the cloud.

Using Docker locally

Before we can deploy our code to the cloud, we must use the Docker tools on our
development machine to build and push the image to Docker Hub.

Installing Docker tools

In order to build and run containers, you need to install Docker on your development
machine. Head over to https://www.docker.com/products/docker and download the
appropriate installer for your computer.

Docker and its ecosystem are evolving rapidly, so it is a good idea to make sure you're up to
date with the latest release. Similarly, it is possible that some details will change in this
chapter; if you get stuck, visit the project home page at https://github.com/matryer/gob
lueprints for some helpful tips.

Dockerfile

A Docker image is like a mini virtual machine. It contains everything that's needed to run
an application: the operating system the code will run on, any dependencies that our code
might have (such as Go kit in the case of our Vault service), and the binaries of our
application itself.

An image is described with Dockerfile; a text file containing a list of special commands
that instruct Docker how to build the image. They are usually based on another container,
which saves you from building up everything that might be needed in order to build and
run Go applications.

[334]

https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://www.docker.com/products/docker
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Deploying Go Applications Using Docker

Inside the vault folder from the code we wrote in Chapter 10, Micro-services in Go with the
Go kit Framework, add a file called Dockerfile (note that this filename has no extension),
containing the following code:

FROM scratch

MAINTAINER Your Name <your@email.address>
ADD vaultd vaultd

EXPOSE 8080 8081

ENTRYPOINT ["/vaultd"]

Each line in a Dockerfile file represents a different command that is run while the image
is being built. The following table describes each of the commands we have used:

Command | Description

FROM The name of the image that this image will be based on. Single words, such as
scratch, represent official Docker images hosted on Docker Hub. For more
information on the scratch image, refer to
https://hub.docker.com/_/scratch/.

ADD Copies files into the container. We are copying our vaultd binary and calling
it vaultd.

EXPOSE Exposes the list of ports; in our case, the Vault service binds to : 8080
and :8081.

ENTRYPOINT | The binary to run when the container is executed in our case, the vaultd
binary, which will be put there by the previous call to go install.

MAINTAINER | Name and email of the person responsible for maintaining the Docker image.

For a complete list of the supported commands, consult the online Docker
documentation at https://docs.docker.com/engine/reference/builde

r/#dockerfile-reference.

Building Go binaries for different architectures

Go supports cross-complication, a mechanism by which we can build a binary on one
machine (say, our Mac) targeted for a different operating system (such as Linux or
Windows) and architecture. Docker containers are Linux-based; so, in order to deliver a
binary that can run in that environment, we must first build one.

[335]

https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference
https://docs.docker.com/engine/reference/builder/#dockerfile-reference

Deploying Go Applications Using Docker

In a terminal, navigate to the vault folder and run the following command:

CGO_ENABLED=0 GOOS=linux go build -a ./cmd/vaultd/

We are essentially calling go build here but with a few extra bits and pieces to control the
build process. CGO_ENABLED and GOOS are environment variables that go build will pay
attention to, —a is a flag, and . /cmd/vaultd/ is the location of the command we want to
build (in our case, the vaultd command we built in the previous chapter).

e The cGO_ENABLED=0 indicates that we do not want cgo to be enabled. Since we
are not binding to any C dependencies, we can reduce the size of our build by
disabling this.

e GOOS is short for Go Operating System and lets us specify which OS we are
targeting, in our case, Linux. For a complete list of the available options, you can
look directly in the Go source code by visiting https://github.com/golang/go/
blob/master/src/go/build/syslist.go.

After a short while, you'll notice that a new binary has appeared, called vaultd. If you're
on a non-Linux machine, you won't be able to directly execute this but don't worry; it'll run
inside our Docker container just fine.

Building a Docker image

To build the image, in a terminal, navigate to Dockerfile and run the following command:

docker build -t wvaultd

We are using the docker command to build the image. The final dot indicates that we want
to build Dockerfile from the current directory. The -t flag specifies that we want to give our
image the name of vaultd. This will allow us to refer to it by name rather than a hash that
Docker will assign to it.

If this is the first time you've used Docker, and in particular the scratch base image, then it
will take some time to download the required dependencies from Docker Hub depending
on your Internet connection. Once that's finished, you will see output similar to the
following;:

Step 1 : FROM scratch

—_——>

Step 2 : MAINTAINER Your Name <your@email.address>
——-> Using cache

-——> a8667£8£0881

Step 3 : ADD vaultd vaultd

[336]

https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go
https://github.com/golang/go/blob/master/src/go/build/syslist.go

Deploying Go Applications Using Docker

———=> 0561c999cle3
Removing intermediate container 4b75fde507df
Step 4 : EXPOSE 8080 8081

———> Running in 8£169£f5b3b44

———> 1d7758c20b3a
Removing intermediate container 8£169f5b3b44
Step 5 : ENTRYPOINT /vaultd

——=> Running in b5d55d6429be

—-——> b7178985dddf
Removing intermediate container b5d55d6429be
Successfully built b7178985dddf

For each command, a new image is created (you can see the intermediate containers being
disposed of along the way) until we end up with the final image.

Since we are building our binary on our local machine and copying it into the container
(with the ADD command), our Docker image ends up being only about 7 MB: pretty small
when you consider that it contains everything it needs to run our services.

Running a Docker image locally

Now that our image is built, we can test it by running it with the following command:

docker run -p 6060:8080 —p 6061:8081 —-name localtest —--rm vaultd
The docker run command will spin up an instance of the vaultd image.

The —p flags specify a pair of ports to be exposed, the first value is the host port and the
second value (following the colon) is the port within the image. In our case, we are saying
that we want port 8080 to be exposed onto port 6060 and port 8081 exposed via port 6061.

We are giving the running instance a name of localtest with the -—name flag, which will
help us to identify it when inspecting and stopping it. The —-rm flag indicates that we want
the image to be removed once we have stopped it.

If this is successful, you will notice that the Vault service has indeed begun because it is
telling us the ports to which it is bound:

2016/09/20 15:56:17 grpc: :8081
2016/09/20 15:56:17 http: :8080

[3371]

Deploying Go Applications Using Docker

These are the internal ports; remember that we have mapped these to
different external ports instead. This seems confusing but ends up being
very powerful, since the person responsible for spinning up the instances
of the service gets to decide which ports are right for their environment,
and the Vault service itself doesn't have to worry about it.

To see this running, open another terminal and use the curl command to access the JSON
endpoint of our password hashing service:

curl -XPOST -d '{"password":"monkey"}' localhost:6060/hash
You will see something that resembles the output from the running service:

{"hash":"$2a$0$wk4qc74ougOkbkt/TWuRQHSg03ilataNupbDADBwpe" }

Inspecting Docker processes

To see what Docker instances are running, we can use the docker ps command. In the
terminal, type the following:

docker ps

You'll get a text table outlining the following properties:

CONTAINER ID | 0Ob5e35dca’cc

IMAGE vaultd

COMMAND /bin/sh -c /go/bin/vaultd

CREATED 3 seconds ago

STATUS Up 2 seconds

PORTS 0.0.0.0:6060->8080/tcp, 0.0.0.0:6061->8081/tcp
NAMES localtest

The details show you a high-level overview of the image we just started. Note that the
PORTS sections shows you the mapping from external to internal.

[338]

Deploying Go Applications Using Docker

Stopping a Docker instance

We are used to hitting Ctrl + C in the window running our code to stop it, but since it's
running inside a container, that won't work. Instead, we need to use the docker stop
command.

Since we gave our instance the name localtest, we can use this to stop it by typing this in
an available terminal window:

docker stop localtest

After a few moments, you'll notice that the terminal that was running the image has now
returned to the prompt.

Deploying Docker images

Now that we have contained our Vault service inside a Docker container, we are going to
do some useful things with it.

The first thing we are going to do is push this to the Docker Hub so that other people may
spin up their own instances or even build new images based on it.

Deploying to Docker Hub

Head over to Docker Hub at https://hub.docker.comand create an account by clicking on
the Log In link in the top-right-hand corner and then clicking on Create Account. Of course,
if you already have an account, just log in.

Now in a terminal, you are going to authenticate with this account by running
Docker's 1ogin command:

docker login —u USERNAME -p PASSWORD https://index.docker.io/v1l/

If you see an error such as WARNING: Error loading config,
permission denied, then try the command again with the sudo
command prefix. This goes for all of Docker commands from this point
onwards, since we're using a secured configuration.

[339]

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Deploying Go Applications Using Docker

Ensure that you replace USERNAME and PASSWORD with your actual username and password
of the account you just created.

If successful, you'll see, Login Succeeded.

Next, back in the web browser, click on Create Repository and create a new repository
called vault. The actual name for this image is going to be USERNAME/vault, so we're
going to need to rebuild the image locally to match this.

Note that for public consumption, we are calling the image vault rather
than vaultd. This is a deliberate difference so that we can make sure we
are dealing with the right image, but this is also a better name for users
anyway.

In a terminal, build the new repository with the correct name:

docker build -t USERNAME/vault

This will build the image again, this time with the appropriate name. To deploy the image
to the Docker Hub, we use Docker's push command:

docker push USERNAME/vault

After some time, the image and its dependencies will be pushed to Docker Hub:

£477b97e9e48: Pushed
384c907d1173: Pushed
80168d020£50: Pushed
Oceba54dae47: Pushed
4d7388e75674: Pushed
£042db76cl5c: Pushing
dl5a527c2eel: Pushing
751£5d9adédb: Pushing
17587239b3df: Pushing
9e63c5bce4d58: Pushing [>

21.08 MB/243.6 MB
15.77 MB/134 MB

16.49 MB/122.6 MB
17.01 MB/44.31 MB
65.58 MB/125.1 MB

>

—_— e

Now head over to the Docker Hub to see the details of your image, or look at an example at
https://hub.docker.com/r/matryer/vault/.

[340]

https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/
https://hub.docker.com/r/matryer/vault/

Deploying Go Applications Using Docker

Deploying to Digital Ocean

Digital Ocean is a cloud service provider that offers competitive prices to host virtual
machines. It makes deploying and serving Docker images very easy. In this section, we are
going to deploy a droplet (Digital Ocean's terminology for a single machine) that runs our
dockerized Vault service in the cloud.

Specifically, following are the steps to deploy Docker images to Digital Ocean:

Create a droplet.

Gain access to it via a web-based console.
Pull our USERNAME /vault container.
Run the container.

SN .

Access our hosted Vault service remotely via the curl command.

Digital Ocean is a Platform as a Service (PaaS) architecture, and as such, the user
experience is likely to change from time to time, so the exact flow described here might not
be entirely accurate by the time you come to perform these tasks. Usually, by looking
around at the options, you will be able to figure out how to proceed, but screenshots have
been included to help guide you.

This section also assumes that you have enabled any billing that might be required in order
to create droplets.

Creating a droplet

Sign up or log in to Digital Ocean by visiting https://www.digitalocean.comin the
browser. Ensure that you use a real e-mail address, as this is where they will send the root
password for the droplet you are going to create.

[341]

https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com

Deploying Go Applications Using Docker

If you have no other droplets, you will be presented with a blank screen. Click on Create
Droplet:

® ® < (] d & Digital Ocean, Inc. cloud.digitalocean.com/droplets (@] (4] r'T' (m]]

o
9 Droplets Images Networking APl Support Create Droplet =

Droplets

Droplets

&

Looks like you don’t have any Droplets.

Fortunately, it's very easy to create one.

Create Droplet

Inside the One-click apps tab, look for the latest Docker option; at the time of writing this, it
is Docker 1.12.1 on 16.04, which means Docker version 1.12.1 is running on Ubuntu 16.04.

Scroll down the page to select the remaining options, including picking a size (the smallest
size will do for now) and a location (pick the closest geographic location to you). We won't
bother adding additional services (such as volumes, networking, or backups) for now just
proceed with the simple droplet.

[342]

Deploying Go Applications Using Docker

It might be a nice idea to give your droplet a meaningful hostname so that it's easy to find
later, something like vault-service-1 or similar; it doesn't really matter for now:

o ® < m d & Digital Ocean, Inc. cloud.digitalocean.com/droplets/new?size= ¢ 4] h (]

Q s’
. Droplets Images Networking APl Support ry
! 9

Create Droplets

Choose an image

Distributions One-click apps

< Cassandra on 14.04 D Discourse on 14.04 d) Django on 14.04
™ Docker 1121 0n 16.04 @ Dokku 0.6.5 on 14.04 9 Drone 0.4 on 14.04

@ Drupal 813 on 14.04 “w Elixir on 14.04 4/ ELK Logging Stack on 14.04
= Ghost 0.8.0 on 14.04 U GitLab 8.9.4 CE on 14.04 @ Horizon w/ RethinkDB on 14.04
Fa Joomla! 3.6.2 on 14.04)1) LAMP on 14.04 /‘y) LAMP on 16.04
LEMP on 14.04 LEMP on 16.04 Magento 2.0.7 CE on 14.04
l":J MEAN on 14.04 [*] MediaWiki on 14.04 ’ MongoDB 3.27 on 14.04
@ Mumble Server (murmur) on 14.04 Node on 16.04 &8 ownCloud 9.0.3 on 14.04

You can optionally add SSH keys for additional security, but for
simplicity's sake, we are going to continue without it. For production, it is
recommended that you always do this.

[343]

Deploying Go Applications Using Docker

At the bottom of the page, click on Create:

< m d @ Digital Ocean, Inc. cloud.digitalocean.com/droplets/new?size=5 [¢]

ene
a, | (¢l | O ‘ (v} j B 68 08 | DigitalOcean - Create Droplets

=)

G

Select additional options -

Private networking Backups IPv6 User data

Add your SSH keys -

Finalize and create

How many Droplets? Choose a hostname
Deploy multiple Droplets with the Give your Droplets an identifying name you will remember them by. Your Droplet
same configuration . name can only contain alphanumeric characters, dashes, and periods.

1 Droplet + vault-service-01

Accessing the droplet's console

Once your droplet has been created, select it from the Droplets list and look for the Console

option (it may be written as Access console).

[344]

Deploying Go Applications Using Docker

After a few moments, you will be presented with a web-based terminal. This is how we will
control the droplet, but first, we must log in:

cloud.digitalocean.com/droplets/26393398/console?no_layout=true

Ubuntu 16.04.1 LTS docker-512mb-lonl-01 ttyl

docker-512mb-1on1-01 login:

PUBLIC IP ADDRESS GATEWAY: NETMASK:

[345]

Deploying Go Applications Using Docker

Enter the login username as root, and check your e-mail for the root password that Digital
Ocean has sent you. At the time of writing this, you cannot copy and paste this, so be ready
to carefully type out a long string as accurately as you can.

The password might well be a lowercase hexadecimal string, which will
help you know which characters are likely to appear. For example,
everything that looks like an O is probably zero, and 1 is unlikely to be an I
or L.

Once you've logged in for the first time, you'll be asked to change your password which
involves typing the long generated password again! Security can be so inconvenient at
times.

Pulling Docker images

Since we selected the Docker app as a starting point for our droplet, Digital Ocean has
kindly configured Docker to already be running inside our instance, so we can just use
the docker command to finish setting things up.

In the web-based terminal, pull your container with the following command, remembering
to replace USERNAME with your Docker Hub username:

docker pull USERNAME/vault

If, for whatever reason, this isn't working for you, you can try using the
Docker image placed there by the author by typing this: docker pull
matryer/vault

[346]

Deploying Go Applications Using Docker

Docker will go and pull down everything it needs in order to run the image we created
earlier:

cloud.digitalocean.com/droplets/26442583/console?no_layout=true
alled and confi per Doc ommendat i

ed. To enable

You can 1

ent permitted by

docker pull matr ult

PUBLIC IP ADDRESS GATEWAY: NETMASK:

[347]

Deploying Go Applications Using Docker

Running Docker images in the cloud

Once the image and its dependencies have successfully downloaded, we will be able to run
it using a the docker run command, this time with the -d flag to specify that we want it to
run as a background daemon. In the web-based terminal, type the following;:

docker run -d -p 6060:8080 —p 6061:8081 ——-name vault USERNAME/vault

This is similar to the command we ran earlier, except that this time, we are giving it the
name vault, and we have omitted the ——rm flag, since it is not compatible (and doesn't make
sense) with the background daemon mode.

The Docker image containing our Vault service will start running and is now ready to test.

Accessing Docker images in the cloud

Now that our Docker image is running in our droplet within Digital Ocean's platform, we
can start using it.

In the Digital Ocean web control panel, select Droplets and look for the one we just created.
We need to know the IP address so that we can access the services remotely. Once you have
located the IP address of the droplet, click on it to copy it.

Open a local terminal on your computer (do not use the web-based terminal) and use
the curl command (or equivalent) to make the following request:

curl -XPOST -d '{"password":'"Monkey"}' http://IPADDRESS:6060/hash

Remember to replace IPADDRESS with the actual IP address you copied from Digital
Ocean's web control panel.

You will notice that you have successfully managed to access the JSON/HTTP endpoint of
our Vault service when you get a response similar to the following:

{"hash":"$2a$10$eGFGRZ2zMfsXss . 6CgK6/N7TsmF . 6MAv6i7Km4AHC" }

See whether you can modify the curl command to validate the hash that was provided
using the /validate endpoint.

[348]

Deploying Go Applications Using Docker

Summary

In this chapter, we built and deployed our Vault Go application using Docker to Digital
Ocean's cloud.

After installing the Docker tools, we saw how easy it was to package up our Go application
into a Docker image and push it to Docker Hub. We created our Digital Ocean droplet using
the helpful Docker app that they provide and controlled it via a web-based console. Once
inside, we were able to pull our Docker image from the Docker Hub and run it inside our
droplet.

Using the public IP of the droplet, we were then able to remotely access the Vault service's
JSON/HTTP endpoint to hash and validate passwords.

[349]

Good Practices for a Stable Go
Environment

Writing Go code is a fun and enjoyable experience, where compile-time errors rather than
being a pain actually guide you to write robust, high-quality code. However, every now
and then, you will encounter environmental issues that start to get in the way and break
your flow. While you can usually resolve these issues after some searching and a little
tweaking, setting up your development environment correctly goes a long way in reducing
problems, allowing you to focus on building useful applications.

In this chapter, we are going to install Go from scratch on a new machine and discuss some
of the environmental options we have and the impact they might have in the future. We
will also consider how collaboration might influence some of our decisions as well as what
impact open sourcing our packages might have.

Specifically, we are going to:

e Install Go on your development machine

¢ Learn what the GOPATH environment variable is for and discuss a sensible
approach for its use

¢ Learn about the Go tools and how to use them to keep the quality of our code
high

e Learn how to use a tool to automatically manage our imports

¢ Think about on save operations for our . go files and how we can integrate the Go
tools as part of our daily development

e Look at some popular code editor options to write Go code

Good Practices for a Stable Go Environment

Installing Go

The best way to install Go is to use one of the many installers available online at https://g
olang.org/dl/. Go to the Go website and click on Download, and then look for the latest
1.x version for your computer. The Featured downloads section at the top of the page
contains links to the most popular versions, so yours will probably be in that list.

The code in this book has been tested with Go 1.7, but any 1.x release will work. For future
versions of Go (2.0 and higher), you may need to tweak the code as major version releases
may well contain breaking changes.

Configuring Go

Go is now installed, but in order to use the tools, we must ensure that it is properly
configured. To make calling the tools easier, we need to add our go/bin path to the PATH
environment variable.

On Unix systems, you should add export PATH=$PATH: /opt/go/bin
(make sure it is the path you chose when installing Go) to your .bashrc
file.

On Windows, open System Properties (try right-clicking on My
Computer), and under Advanced, click on the Environment Variables
button and use the Ul to ensure that the PATH variable contains the path to
your go/bin folder.

In a terminal (you may need to restart it for your changes to take effect), you can make sure
this worked by printing the value of the PATH variable:

echo $PATH

Ensure that the value printed contains the correct path to your go/bin folder; for example,
on my machine it prints as follows:

/usr/local/bin: /usr/bin: /bin:/opt/go/bin

The colons (semicolons on Windows) between the paths indicate that the
PATH variable is actually a list of folders rather than just one folder. This
indicates that each folder included will be searched when you enter
commands in your terminal.

[351]

https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/

Good Practices for a Stable Go Environment

Now we can make sure the Go build we just made runs successfully:

go version

Executing the go command (which can be found in your go/bin location) like this will
print out the current version for us. For example, for Go 1.77.1, you should see something
similar to the following;:

go version gol.77.1 darwin/amdé64

Getting GOPATH right

GOPATH is another environment variable to a folder (such as PATH in the previous section)
that is used to specify the location for the Go source code and the compiled binary
packages. Using the import command in your Go programs will cause the compiler to look
in the GOPATH location to find the packages you are referring to. When using go get and
other commands, projects are downloaded into the GOPATH folder.

While the GOPATH location can contain a list of colon-separated folders, such as PATH and
you can even have a different value for GOPATH depending on which project you are
working in it is strongly recommended that you use a single GOPATH location for
everything, and this is what we will assume you will do for the projects in this book.

Create a new folder called go, this time in your Users folder somewhere perhaps in a Work
subfolder. This will be our GOPATH target and is where all the third-party code and binaries
will end up as well as where we will write our Go programs and packages. Using the same
technique you used when setting the PATH environment variable in the previous section, set
the GOPATH variable to the new go folder. Let's open a terminal and use one of the newly
installed commands to get a third-party package for us to use:

go get github.com/matryer/silk

Getting the silk library will actually cause this folder structure to be created:
$GOPATH/src/github.com/matryer/silk. You can see that the path segments are
important in how Go organizes things, which helps namespace projects and keeps them
unique. For example, if you created your own package called silk, you wouldn't keep it in
the GitHub repository of matryer, so the path would be different.

When we create projects in this book, you should consider a sensible GOPATH root for them.
For example, I used github.com/matryer/goblueprints, and if you were to go get that,
you would actually get a complete copy of all the source code for this book in your GOPATH
folder!

[352]

Good Practices for a Stable Go Environment

Go tools

An early decision made by the Go core team was that all Go code should look familiar and
obvious to everybody who speaks Go rather than each code base requiring additional
learning in order for new programmers to understand it or work on it. This is an especially
sensible approach when you consider open source projects, some of which have hundreds
of contributors coming and going all the time.

There is a range of tools that can assist us in achieving the high standards set by the Go core
team, and we will look at some of the tools in action in this section.

In your GOPATH location, create a new folder called tooling and create a new main. go file
containing the following code verbatim:

package main

import (
"fmt"

)

func main () {
return
var name string
name = "Mat"

fmt.Println("Hello ", name)

}

The tight spaces and lack of indentation are deliberate as we are going to look at a very cool
utility that comes with Go.

In a terminal, navigate to your new folder and run this:
go fmt -w

At Gophercon 2014 in Denver, Colorado, most people learned that rather
than pronouncing this little triad as format or f, m, t, it is actually
pronounced as a word. Try saying it to yourself now: fhumt; it seems that
computer programmers aren't weird enough without speaking an alien
language to each other too!

You will notice that this little tool has actually tweaked our code file to ensure that the
layout (or format) of our program matches Go standards. The new version is much easier to
read:

package main
import (

n fmt n
)

[3531]

Good Practices for a Stable Go Environment

func main () {
return
var name string
name = "Mat"

fmt .Println ("Hello ", name)

}

The go fmt command cares about indentation, code blocks, unnecessary whitespace,
unnecessary extra line feeds, and more. Formatting your code in this way is a great practice
to ensure that your Go code looks like all other Go code.

Next, we are going to vet our program to make sure that we haven't made any mistakes or
decisions that might be confusing to our users; we can do this automatically with another
great tool that we get for free:

go vet

The output for our little program points out an obvious and glaring mistake:

main.go:10: unreachable code
exit status 1

We are calling return at the top of our function and then trying to do other things. The go
vet tool has noticed this and points out that we have unreachable code in our file.

It isn't just silly mistakes like this that go vet will catch; it will also look for subtler aspects
of your program that will guide you toward writing the best Go code you can. For an up-to-
date list of what the vet tool will report on, check out the documentation at https://golang
.org/cmd/vet/.

The final tool we will play with is called goimports, and it was written by Brad Fitzpatrick
to automatically fix (add or remove) import statements for Go files. It is an error in Go to
import a package and not use it, and obviously, trying to use a package without importing
it won't work either. The goimports tool will automatically rewrite our import statement
based on the contents of our code file. First, let's install goimports with this familiar
command:

go get golang.org/x/tools/cmd/goimports

Update your program to import some packages that we are not going to use and remove
the fmt package:

import (
"net/http"
n Syl’lC"

[354]

https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/
https://golang.org/cmd/vet/

Good Practices for a Stable Go Environment

When we try to run our program by calling go run main.go, we will see that we get some
errors:

./main.go:4: imported and not used: "net/http"
./main.go:5: imported and not used: "sync"
./main.go:13: undefined: fmt

These errors tell us that we have imported packages that we are not using and missing the
fmt package and that in order to continue, we need to make corrections. This is where
goimports comes in:

goimports -w *.go

We are calling the goimports command with the —w write flag, which will save us the task
of making corrections to all files ending with . go.

Have a look at your main.go file now, and note that the net /http and sync packages
have been removed and the fmt package has been put back in.

You could argue that switching to a terminal to run these commands takes more time than
just doing it manually, and you would probably be right in most cases, which is why it is
highly recommended that you integrate the Go tools with your text editor.

Cleaning up, building, and running tests on
save

Since the Go core team has provided us with such great tools as fmt, vet, test, and
goimports, we are going to look at a development practice that has proven to be extremely
useful. Whenever we save a . go file, we want to perform the following tasks automatically:

1. Use goimports and fmt to fix our imports and format the code.

2. Vet the code for any faux pas and tell us immediately.

3. Attempt to build the current package and output any build errors.

4. If the build is successful, run the tests for the package and output any failures.

[3551

Good Practices for a Stable Go Environment

Because Go code compiles so quickly (Rob Pike once actually said that it doesn't build
quickly, but it's just not slow like everything else), we can comfortably build entire
packages every time we save a file. This is also true for running tests to help us if we are
developing in a TDD style, and the experience is great. Every time we make changes to our
code, we can immediately see whether we have broken something or had an unexpected
impact on some other part of our project. We'll never see package import errors again
because our import statement will have been fixed for us, and our code will be correctly
formatted right in front of our eyes.

Some editors are likely to not support running code in response to specific events, such as
saving a file, which leaves you with two options: you can either switch to a better editor, or
you can write your own script file that runs in response to filesystem changes. The latter
solution is out of the scope of this book; instead, we will focus on how to implement this
functionality in a couple of popular editor codes.

Integrated developer environments

The Integrated Developer Environments (IDEs) are essentially text editors with additional
features that make writing code and building software easier. Text with special meaning,
such as string literals, types, function names, and so on are often colored differently by
syntax highlighting, or you may get autocomplete options as you're typing. Some editors
even point out errors in your code before you've executed it.

There are many options to choose from, and mostly, it comes down to personal preference,
but we will look at some of the more popular choices as well as how to set them up to build
Go projects.

The most popular editors include the following:

e Sublime Text 3

¢ Visual Studio Code
e Atom

e Vim (with vim-go)

You can see a complete curated list of options at https://github.com/golang/go/wiki/ID
EsAndTextEditorPlugins.

In this section, we are going to explore Sublime Text 3 and Visual Studio Code.

[3561

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins

Good Practices for a Stable Go Environment

Sublime Text 3

Sublime Text 3 is an excellent editor to write Go code that runs on OS X, Linux, and
Windows and has an extremely powerful expansion model, which makes it easy to
customize and extend. You can download Sublime Text from http://www.sublimetext.co
m/ and trial-use it for free before deciding whether you want to buy it or not.

Thanks to DisposaBoy (refer to https://github.com/DisposaBoy), there is already a
Sublime expansion package for Go, which actually gives us a wealth of features and power
that a lot of Go programmers actually miss out on. We are going to install this GoSublime
package and then build upon it to add our desired on-save functionality.

Before we can install GoSublime, we need to install Package Control into Sublime Text.
Head over to https://sublime.wbond.net/ and click on the Installation link for
instructions on how to install Package Control. At the time of writing this, it's simply a case
of copying the single, albeit long, line command and pasting it into the Sublime console,
which can be opened by navigating to View | Show Console from the menu.

Once this is complete, press shift + command + P and type Package Control: Install
Package and press return when you have selected the option. After a short delay (where
Package Control is updating its listings), a box will appear, allowing you to search for and
install GoSublime just by typing it in, selecting it, and pressing return. If all is well,
GoSublime will be installed and writing Go code will just become an order of magnitude
easier.

Now that you have GoSublime installed, you can open a short help file
containing the details of the package by pressing command + ., command + 2
(the command key and period at the same time, followed by the command
key and number 2).

For some additional help while saving, press command + ., command + 5 to open the
GoSublime settings and add the following entry to the object:

"on_save": [
{
"cmd": "gs9o_open",
"args": {
"run": ["sh", "go build . errors && go test -1 && go test &&
go vet && golint"],
"focus_view": false

}

[3571]

http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://github.com/DisposaBoy
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/
https://sublime.wbond.net/

Good Practices for a Stable Go Environment

Note that the settings file is actually a JSON object, so ensure that you add
the on_save property without corrupting the file. For example, if you
have properties before and after, ensure the appropriate commas are in
place.

The preceding setting will tell Sublime Text to build the code looking for errors, install test
dependencies, run tests, and vet the code whenever we save the file. Save the settings file
(don't close it just yet), and let's see this in action.

Navigate to Choose File | Open... from the menu and select a folder to open for now, let's
open our tooling folder. The simple user interface of Sublime Text makes it clear that we
only have one file in our project right now: main.go. Click on the file and add some extra
linefeeds, and add and remove some indenting. Then, navigate to File | Save from the
menu, or press command + S. Note that the code is immediately cleaned up, and provided
that you haven't removed the oddly placed return statement from main. go, you will notice
that the console has appeared and is reporting the issue thanks to go vet:

main.go:8: unreachable code

Holding down command + shift and double-clicking on the unreachable code line in the
console will open the file and jump the cursor to the right line in question. You can see how
helpful this feature is going to be as you continue to write Go code.

If you add an unwanted import to the file, you will notice that on using on_save, you are
told about the problem, but it wasn't automatically fixed. This is because we have another
tweak to make. In the same settings file as the one you added the on_save property to, add
the following property:

"fmt_cmd": ["goimports"]

This tells GoSublime to use the goimports command instead of go fmt. Save this file
again, and head back to main.go. Add net/http to the imports again, remove fmt import,
and save the file. Note that the unused package was removed, and fmt was put back again.

[3581

Good Practices for a Stable Go Environment

Visual Studio Code

A surprise entry in the running for best Go IDE is Microsoft's Visual Studio Code, available
for free at https://code.visualstudio.com.

Once you've downloaded it from the website, open a Go file (any file with a . go extension)
and note that Visual Studio Code asks whether you'd like to install the recommended
plugins to make working with Go files easier:

o @ & main.go - mog
EXPLORER Info It is recommended to install the 'lukehoban.Go' extension. Show Recommendations ~ Don't show again ~ Close
4 OPEN EDITORS 2 ge main
main.go
import
4 MOQ
» example
» generate
» package
-gitignore
iy “jo/ioutil"
nost

travis.yml
LICENSE
main.go "github.com/matryer/moq/package/moq"

mog-logo.png
mog-logo-small.png
README.md

c main() {

fmt.Fprintln(os.Stderr, err)
flag.Usage()
0s.Exit(1)

+

ar (
outFile = flag.String("out" "output file (default stdout)")
pkgName = flag.String("pkg", "package name (default will infer)")
)
flag.Usage = func() {
fmt.Println(*moq [flags] destination interface [interface2 [interface3 [...111%)
flag.PrintDefaults()
}
flag.Parse()
args := flag.Args()
if len(args) < 2 {
err = errors.New("not enough arguments")
return

destination := args[0]
args = args[1:]
ir buf bytes.Buffer

var out io.Writer

out = os.Stdout

if len(xoutFile) > @ {
out = &buf

}

Omaster © Q0AO Ln14,Col1 TabSize:4 UTF-8 LF Go @

[3591]

https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

Good Practices for a Stable Go Environment

Click on Show Recommendations and click on Install next to the suggested Go plugin:

& main.go - mog

[]
[]

EXTENSIONS e main.go x
age main

@recommended | N

import (
"bytes
“error:
"flag'
“fmt"
e
"io/ioutil"
nosh

Go o
Rich Go language support ...
luker Install

"github.com/matryer/moq/package/moq"
)

fmt.Fprintln(os.Stderr, err)
flag.Usage()
o0s.Exit(1)
+
0
var (
outFile = flag.String("out", "*, "output file (default stdout)")
pkgName = flag.String("pkg", "", "package name (default will infer)")
)
flag.Usage = func() {
fmt.Println('moq [flags] destination interface [interface2 [interface3 [...111%)
flag.PrintDefaults()
}
flag.Parse()
args := flag.Args()
if len(args) < 2 {
err = errors.New("not enough arguments")
return
}
destination
args = args[1
ar buf bytes.Buffer
ar out io.Writer
out = os.Stdout
if len(koutFile) > @ {
out = &buf

}
Ln14,Col1 TabSize:4 UTF-8 LF

| Omaster S Q0AO0

[360]

Good Practices for a Stable Go Environment

It may ask you to restart Visual Studio Code to enable the plugin, and it may also ask you to
install some additional commands:

® ® main.go - moq
EXPLORER Info The "gopkgs" command is not available. Use "go get -v github.com/tpng/gopkgs" to install. Install All Install Close
SRCEENEDTORCIRNS Info The "go-outline" command is not available. Use "go get -v github.com/lukehoban/go-outline" to install. Install All Install Close
® main.go

import (
4 MOQ

"bytes"
b example “errors"
b generate
> package
.gitignore
.travis.yml
LICENSE
main.go "github.com/matryer/moq/package/moq"
mog-logo.png
mog-logo-small.png ¢ main() {
README.md var err error
defer func() {
if err != nil {
fmt.Fprintln(os.Stderr, err)
flag.Usage()
o0s.Exit(1)

+
0
var (
outFile = flag.String("out" "output file (default stdout)")
pkgName = flag.String("pkg" "package name (default will infer)")
)
flag.Usage = func() {
fmt.Println('moq [flags] destination interface [interface2 [interface3 [...111%)
flag.PrintDefaults()
}
flag.Parse()
args := flag.Args()
if len(args) < 2 {
err = errors.New("not enough arguments")
return
}
destination := args[@]
args = args[1:]
ar buf bytes.Buffer
ar out io.Writer
out = os.Stdout
if len(xoutFile) > @ {
out = &buf

Omaster S Q0AO Ln22,Col13 TabSize:4 UTF-8 LF Go Analysis Tools Missing @

Click on Install All to install all the dependencies, being sure to wait for the previous
installation process to finish before initiating others. After a short while, you will notice that
a few tools were installed.

Write some messy code (or copy and paste some from
https://github.com/matryer/goblueprints/blob/master/appendixA/messycode/main.go

) into Visual Studio Code and hit save. You will notice that the imports were fixed and the
code was nicely formatted as per the Go standard.

There are many more features that you can make use of, but we won't dig into them further
here.

[361]

https://github.com/matryer/goblueprints/blob/master/appendixA/messycode/main.go)
https://github.com/matryer/goblueprints/blob/master/appendixA/messycode/main.go)

Good Practices for a Stable Go Environment

Summary

In this appendix, we installed Go and are now ready to start building real projects. We
learned about the GOPATH environment variable and discovered a common practice of
keeping one value for all projects. This approach dramatically simplifies working on Go
projects, where you are likely to continue to encounter tricky failures otherwise.

We discovered how the Go toolset can really help us produce high-quality, community-
standards-compliant code that any other programmer could pick up and work on with little
to no additional learning. And more importantly, we looked at how automating the use of
these tools means we can truly get down to the business of writing applications and solving
problems, which is all developers really want to do.

We looked at a couple of options for code editors or IDEs and saw how easy it was to add
plugins or extensions that help writing Go code easier.

[362]

A

API

serving, with one function 171
Application Programming Interface (API) 28
apps, running with multiple modules

about 290

testing, admin console used 291

testing, locally 290
apps

deploying, with multiple modules 292
arguments, parsing

about 231

paths, adding 233

paths, listing 232

paths, removing 233

string representations, for custom types 232
authorization providers

informing, about application 51, 52
authorization, with Twitter

about 136

connection, extracting 137

environment variables, reading 138, 139
Available program 118,119, 121
avatar implementation, for local files

about 87

different file types, supporting 89
avatar implementations

combining 98, 99
avatar picture

avatar implementation, for local files 87

code, optimizing 90

code, refactoring 90

images, serving 86

upload form 83, 84

upload, handling 84, 86

uploading 81

Index

user identification 82
avatar URL process, Gravatar
auth service 74
avatar implementation 74, 76
avatar implementation, using 76, 78
Gravatar implementation 78, 79
avatars, OAuth2 server
about 66
avatar URL, obtaining 66
avatar URL, transmitting 67
avatar, adding to user interface 68
enhancing 71, 72
logging out 69, 70

B

backup package
about 220
backup, initiating 227
changes, checking for 226
hardcoding 228
interfaces, considering 220
interfaces, testing 221, 223
issues 224,226
Base64-encode 57
berypt
passwords, hashing with 304
passwords, validating with 304
Big Huge Thesaurus
URL 112
BSON (Binary JSON) 156

C

chat application
simple web server 10
chat room
client, modeling 16, 17
concurrency programming, idiomatic Go used

19,22
creating 23

helper functions, used for removing complexity
22

modeling 15, 16, 19
turning, into HTTP handler 20
using 23
cloud
Docker images, accessing in 348
Docker images, running in 348
Coda Hale blog post
reference 304
code optimization, avatar
about 90
concrete types, replacing with interfaces 91
existing implementations, fixing 94, 95
global variables, versus fields 95, 96
interfaces, changing in test-driven way 92, 93
new design, implementing 96, 97
testing 97, 98
tidyingup 97
command server
gRPC server, running 319
commands, Dockerfile
ADD 335
ENTRYPOINT 335
EXPOSE 335
FROM 335
constructors, in Go 303
Coolify
about 109
domain suggestions 117, 118
environment variables, using for configuration
113
web API, consuming 113, 116,117
working 109, 111
CORS (Cross-origin resource sharing) technique
166, 213

D

daemon backup tool
about 235
data, caching 237
duplicated structures 237
filedb records, updating 239

[364]

infinite loops 238
data access 255
data operations, exposing over HTTP
about 277
context, in Google App Engine 282
HTTP routing in Go 281
key strings, decoding 283, 285
optional features, with type assertions 277, 278
path parameters, parsing 279, 280, 281
data sharing
between handlers 163
context keys 163, 164, 165
data
denormalizing 253, 254, 255
putting, into Google Cloud Datastore 257, 258
reading, from Google Cloud Datastore 259
representing, in code 197, 198, 199
database design 131
dependencies
injecting 167
Digital Ocean
about 341
Docker images, deploying to 341
reference 341
Docker documentation
reference 335
Docker Hub
Docker images, deploying to 339, 340
reference 339
Docker image
building 336
running, locally 337
Docker images
accessing, in cloud 348
deploying 339
deploying, to Digital Ocean 341
deploying, to Docker Hub 339, 340
pulling 346, 347
running, in cloud 348
Docker instance
stopping 339
Docker processes
inspecting 338
Docker tools
installing 334

Docker
about 333
Go binaries, building for different architectures
335, 336
reference, for project home page 334
reference, for source code 333
using, locally 334
Dockerfile
about 334
commands 335
Domainify
about 107
building 108
running 108
droplet's console
accessing 344, 345, 346
droplet
creating 341, 342, 343, 344
DRY (Don't Repeat Yourself) 167

E

editors
Sublime Text 3 357
Visual Studio Code 359
endpoints, in Go kit 307
endpoints
API, testing with curl 180
handling 173
making, for service methods 308
many operations, with single handler 174
tags, used for adding metadata to structs 174
with dynamic paths 47, 48, 49
wrapping, into Service implementation 309
entities 255
enumerator
testing 205, 208
environment
installing 131
NSQ 131, 132
starting 134
errors, in Go kit
levels 309
external logging in
implementing 52, 53, 55

messages, augmenting with additional data 59,

[365]

60, 62, 63
response from provider, handling 56, 58
user data, presenting 58, 59

F

filesystem backup
solution design 219

G

Go code
generating 300, 301
Go kit
about 295
reference 294
Go program
writing 123, 126
Go structs
public views 200, 201
Go
about 9
configuring 351
installation 351
installation link 351
reference 354
tools 353, 354
Google App Engine SDK, for Go
about 244
app.yaml file 246, 247
application, building 246
application, creating 245
modules 250, 251
simple applications, deploying to Google App
Engine 249, 250
simple applications, running locally 247, 248,
249
Google App Engine users
about 259, 260, 261
denormalized data, embedding 261, 262
Google Cloud Datastore
about 252
data, putting into 257, 258
data, reading from 259
keys 256
Google Places APl key 203
Google Places API

querying 209 reference 258

GoPATH 352
Gravatar M
avatar URL process, abstracting 73, 74 Meander project, random recommendations web
implementing 73 service
gRPC (Google's Remote Procedure Call) 296 building 194, 195
gRPC client project design specifics 195, 196
arguments, passing in CLI 324 method calls
building 321 modeling, with requests 305
CLI tool, for consuming service 323 modeling, with responses 305
good line of sight, maintaining 325 micro-services 294
tools, installing from Go source code 326 modules, in Google App Engine
gRPC server, in Go kit routing, with dispatch.yaml 252
about 312 specifying 251
protocol buffer types, translating to types 313 MongoDB driver, for Go 134
H MongoDB
about 133
handler function wrappers download link 133
using 173
handler functions N
cross-origin resource sharing 166 NoOps 243
wrapping 165 NSQ driver, for Go 133
handlers 42 NSQ
horizontal scaling 128 about 131
HTML and JavaScript chat client installing 132
building 23, 25 running 132

HTTP server, in Go kit 311

I O

OAuth2 server
Integrated Developer Environments (IDEs) avatars 66
about 356 OAuth2
options, reference 356 about 50
interfaces 29, 30 flow 50
K open source OAuth2 packages 50
operations, with single handler
key strings, decoding about 174
anonymous structs, for request data 286 CORS support 180
query parameters used 285 poll, creating 178
self-similar code, writing 287 poll, deleting 179
validation method, that return error 288 polls, reading 176, 178

keys, in Google Cloud Datastore 256

P

L Package Control
log package installation link 357

[3661

package
writing, TDD used 28
password
hashing, with bcrypt 304
validating, with becrypt 304
pipe design
for command-line tools 102
Platform as a Service (PaaS) 341
protocol buffers language
about 298, 299, 300
reference 300
protocol buffers
about 297, 298
installing 298

Q

querying, in Google Cloud Datastore 267, 268

R

random recommendations web service

Meander project, building 193
random recommendations

API, testing 214

building 210

CORS 213

enumerators, in Go 203, 204

generating 201

Google Places APl key 203

Google Places API, querying 209, 210

handlers, using query parameters 212
rate limiting, with service middleware

about 327

graceful rate limiting 331

middleware, in Go kit 328, 329

rate limiter, testing manually 330
redirection metacharacters 102
request

method calls, modeling with 305
responding 167
response helpers 278
responses

method calls, modeling with 305
RESTful APl design 162

S

server command

creating 315, 316

Go kit endpoints, using 318

HTTP server, running 318

main function, preventing from terminating 320
service, consuming over HTTP 320

Service implementation

endpoints, wrapping into 309

service methods

endpoints, making for 308

simple programs

Available 103
composing 122, 123
Coolify 103
Domainify 102

key features 102
Sprinkle 102
Synonyms 103

simple web server

about 10

Go programs, building 15

Go programs, executing 15

views, separating from logic with templates 12,
13

SOA (service-oriented architecture) 294
social sign-in page

building 45

solution design

about 219
project structure 219
testing 240

solution

running 158, 159

Sprinkle program

about 103
working 103, 105, 106

Sublime Text 3

about 357, 358
reference 357

Synonyms 112
system design

[367]

about 129, 130
database design 130

T

templates
using 25, 26,27
Test-driven Development (TDD) 28, 74
tests
building, on save 355
cleaning up, on save 355
running, on save 355
Token Bucket-based rate limiter
reference 328
Top-level Domain (TLD) 107
tracing 28
tracing code
clean package APIs 39
interface, implementing 34, 35
interfaces 29, 30
new trace package 36
package, writing with TDD 28, 29
tracing, making optional 38, 39
unexported types, returning to users 35
unit tests 30, 31
writing 28
transactions, in Google Cloud Datastore
about 262, 263
early abstraction, avoiding 267
used, for maintaining counters 263, 264, 266
Transport Layer Security (TLS) 320
twittervotes program 135

U

unit testing
red-green testing 34
unit tests
about 30, 31
red-green testing 32, 33
user account
handlers 42
user command-line tool
about 229
arguments, parsing 231
small data, persisting 230
using 234

[3681

\'

Vault service
building 301
implementing 302
tests, starting 302
vertical scaling 128
views separating, from logic
custom handlers, using 14
templates used 12, 13
templates, compiling 14
Visual Studio Code
about 359, 360, 361
reference 359, 361
Vote structure
about 269
indexing 270, 271, 273
vote, casting
about 273
line of sight, in code 274, 275, 277

parents, accessing via datastore.Key 274

votes, counting
about 151

database update, maintaining 155, 156

database, connecting 152

messages, consuming in NSQ 153, 154

responding, to Ctrl + C 157
votes, reading from Twitter
about 135
authorization, with Twitter 136, 137
MongoDB, reading from 140
NSQ, publishingto 146
programs, starting 148, 149
programs, stopping 148, 150
reading, from Twitter 142
signal channels 144, 145, 146
testing 150, 151

w

web application
testing 216
web client, consuming API
about 182
new poll, creating 185
poll details, displaying 186, 188

WHOIS server 103

	Cover
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Chat Application with Web Sockets
	A simple web server
	Separating views from logic using templates
	Doing things once
	Using your own handlers

	Properly building and executing Go programs

	Modeling a chat room and clients on the server
	Modeling the client
	Modeling a room
	Concurrency programming using idiomatic Go
	Turning a room into an HTTP handler
	Using helper functions to remove complexity
	Creating and using rooms

	Building an HTML and JavaScript chat client
	Getting more out of templates

	Tracing code to get a look under the hood
	Writing a package using TDD
	Interfaces
	Unit tests
	Red-green testing

	Implementing the interface
	Unexported types being returned to users

	Using our new trace package
	Making tracing optional
	Clean package APIs

	Summary

	Chapter 2: Adding User Accounts
	Handlers all the way down
	Making a pretty social sign-in page
	Endpoints with dynamic paths
	Getting started with OAuth2
	Open source OAuth2 packages

	Tell the authorization providers about your app
	Implementing external logging in
	Logging in
	Handling the response from the provider
	Presenting the user data
	Augmenting messages with additional data

	Summary

	Chapter 3: Three Ways to Implement Profile Pictures
	Avatars from the OAuth2 server
	Getting the avatar URL
	Transmitting the avatar URL
	Adding the avatar to the user interface
	Logging out
	Making things prettier

	Implementing Gravatar
	Abstracting the avatar URL process
	The auth service and the avatar's implementation
	Using an implementation
	The Gravatar implementation

	Uploading an avatar picture
	User identification
	An upload form
	Handling the upload
	Serving the images
	The Avatar implementation for local files
	Supporting different file types

	Refactoring and optimizing our code
	Replacing concrete types with interfaces
	Changing interfaces in a test-driven way
	Fixing the existing implementations
	Global variables versus fields
	Implementing our new design
	Tidying up and testing

	Combining all three implementations
	Summary

	Chapter 4: Command-Line Tools to Find Domain Names
	Pipe design for command-line tools
	Five simple programs
	Sprinkle
	Domainify
	Coolify
	Synonyms
	Using environment variables for configuration
	Consuming a web API
	Getting domain suggestions

	Available

	Composing all five programs
	One program to rule them all

	Summary

	Chapter 5: Building Distributed Systems and Working with Flexible Data
	The system design
	The database design

	Installing the environment
	Introducing NSQ
	NSQ driver for Go

	Introducing MongoDB
	MongoDB driver for Go

	Starting the environment

	Reading votes from Twitter
	Authorization with Twitter
	Extracting the connection
	Reading environment variables

	Reading from MongoDB
	Reading from Twitter
	Signal channels

	Publishing to NSQ
	Gracefully starting and stopping programs
	Testing

	Counting votes
	Connecting to the database
	Consuming messages in NSQ
	Keeping the database updated
	Responding to Ctrl + C

	Running our solution
	Summary

	Chapter 6: Exposing Data and Functionality through a RESTful Data Web Service API
	RESTful API design
	Sharing data between handlers
	Context keys

	Wrapping handler functions
	API keys
	Cross-origin resource sharing

	Injecting dependencies
	Responding
	Understanding the request
	Serving our API with one function
	Using handler function wrappers

	Handling endpoints
	Using tags to add metadata to structs
	Many operations with a single handler
	Reading polls
	Creating a poll
	Deleting a poll
	CORS support

	Testing our API using curl

	A web client that consumes the API
	Index page showing a list of polls
	Creating a new poll
	Showing the details of a poll

	Running the solution
	Summary

	Chapter 7: Random Recommendations Web Service
	The project overview
	Project design specifics

	Representing data in code
	Public views of Go structs

	Generating random recommendations
	The Google Places API key
	Enumerators in Go
	Test-driven enumerator

	Querying the Google Places API
	Building recommendations
	Handlers that use query parameters
	CORS
	Testing our API
	Web application

	Summary

	Chapter 8: Filesystem Backup
	Solution design
	The project structure

	The backup package
	Considering obvious interfaces first
	Testing interfaces by implementing them
	Has the filesystem changed?
	Checking for changes and initiating a backup
	Hardcoding is OK for a short while

	The user command-line tool
	Persisting small data
	Parsing arguments
	Listing the paths
	String representations for your own types

	Adding paths
	Removing paths

	Using our new tool

	The daemon backup tool
	Duplicated structures
	Caching data
	Infinite loops
	Updating filedb records

	Testing our solution
	Summary

	Chapter 9: Building a Q&A Application for Google App Engine
	The Google App Engine SDK for Go
	Creating your application
	App Engine applications are Go packages
	The app.yaml file
	Running simple applications locally
	Deploying simple applications to Google App Engine
	Modules in Google App Engine
	Specifying modules
	Routing to modules with dispatch.yaml

	Google Cloud Datastore
	Denormalizing data

	Entities and data access
	Keys in Google Cloud Datastore
	Putting data into Google Cloud Datastore
	Reading data from Google Cloud Datastore

	Google App Engine users
	Embedding denormalized data

	Transactions in Google Cloud Datastore
	Using transactions to maintain counters
	Avoiding early abstraction

	Querying in Google Cloud Datastore
	Votes
	Indexing
	Embedding a different view of entities

	Casting a vote
	Accessing parents via datastore.Key
	Line of sight in code

	Exposing data operations over HTTP
	Optional features with type assertions
	Response helpers
	Parsing path parameters
	Exposing functionality via an HTTP API
	HTTP routing in Go

	Context in Google App Engine
	Decoding key strings
	Using query parameters
	Anonymous structs for request data
	Writing self-similar code
	Validation methods that return an error

	Mapping the router handlers

	Running apps with multiple modules
	Testing locally
	Using the admin console
	Automatically generated indexes

	Deploying apps with multiple modules
	Summary

	Chapter 10: Micro-services in Go with the Go kit Framework
	Introducing gRPC
	Protocol buffers
	Installing protocol buffers
	Protocol buffers language
	Generating Go code

	Building the service
	Starting with tests
	Constructors in Go
	Hashing and validating passwords with bcrypt

	Modeling method calls with requests and responses
	Endpoints in Go kit
	Making endpoints for service methods
	Different levels of error
	Wrapping endpoints into a Service implementation

	An HTTP server in Go kit
	A gRPC server in Go kit
	Translating from protocol buffer types to our types

	Creating a server command
	Using Go kit endpoints
	Running the HTTP server
	Running the gRPC server
	Preventing a main function from terminating immediately
	Consuming the service over HTTP

	Building a gRPC client
	A command-line tool to consume the service
	Parsing arguments in CLIs
	Maintaining good line of sight by extracting case bodies
	Installing tools from the Go source code

	Rate limiting with service middleware
	Middleware in Go kit
	Manually testing the rate limiter
	Graceful rate limiting

	Summary

	Chapter 11: Deploying Go Applications Using Docker
	Using Docker locally
	Installing Docker tools
	Dockerfile
	Building Go binaries for different architectures
	Building a Docker image
	Running a Docker image locally
	Inspecting Docker processes
	Stopping a Docker instance

	Deploying Docker images
	Deploying to Docker Hub

	Deploying to Digital Ocean
	Creating a droplet
	Accessing the droplet's console
	Pulling Docker images
	Running Docker images in the cloud
	Accessing Docker images in the cloud

	Summary

	Appendix: Good Practices for a Stable Go Environment
	Installing Go
	Configuring Go
	Getting GOPATH right

	Go tools
	Cleaning up, building, and running tests on save
	Integrated developer environments
	Sublime Text 3
	Visual Studio Code

	Summary

	Index

