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Introduction

According to code.org, there are 500,000 open programming positions 

available in the United States alone – compared to an annual crop of just 

50,000 graduating computer science majors. The US Department of Labor 

predicted there will be 1.4 million computer science jobs by 2020, however, 

only enough people to fill roughly 30% of these jobs. To bridge the gap, 

many people not formally trained in computer science are employed in 

programming jobs. While they are able to start programming and coding 

quickly, it often takes them time to acquire the necessary understanding 

and gain the requisite skills to become an efficient computer engineer or 

advanced developer.

The goal of the book is to provide the essential computer science 

concepts and skills necessary to develop a sound understanding of the 

field. It focuses on the foundational and fundamental concepts upon 

which expertise in specific areas can be developed, including computer 

architecture, programming language, algorithm and data structure, 

operating systems, computer networks, distributed systems, security, and 

more.

This is a must-read for computer programmers lacking formal 

education in computer science. Secondarily, it is a refresher for all, 

including people having formal education in computer science as well as 

anyone looking to develop a general understanding of computer science 

fundamentals.

Overall, we authors have attempted to make it as lucid as possible, so 

people with limited or even no background in computer science can pick 

up the book and go through the journey to develop a good understanding 

of computer science. We’re excited to have you on board.
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CHAPTER 1

Fundamentals of a 
Computer System
There are many resources online to get you started programming, 

but if you don’t have training in computer science, there are certain 

fundamental concepts that you may not have learned yet that will help 

you avoid getting frustrated, such as choosing the wrong programming 

language for the task at hand or feeling overwhelmed. We wrote this book 

to help you understand computer science basics, whether you already 

started programming or you are just getting started. We will touch on the 

topics someone with a computer science degree learns above and beyond 

the semantics and syntax of a programming language. In this first chapter, 

we will cover a brief history and evolution of a computer system and the 

fundamentals of how it operates. We will cover some low-level computer 

architecture and programming concepts in this chapter, but subsequent 

chapters will cover higher-level programming concepts that make it much 

easier to program the computer.

 von Neumann Architecture
You’ve probably heard stories about computers the size of an entire 

room in the 1940s into the 1970s, built with thousands of vacuum tubes, 

relays, resistors, capacitors, and other components. Using these various 

https://doi.org/10.1007/978-1-4842-7107-0_1#DOI
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components, scientists invented the concept of gates, buffers, and  

flip- flops, the standard building blocks of electronic circuits today. In the 

1970s, Intel invented the first general-purpose microprocessor, called 

the 8088, that IBM used to make the first PC that was small enough for 

personal use. Despite the continuous advancements that have made it 

possible to shrink the microprocessor, as you’ll see, the core elements of 

today’s desktop or laptop computer are consistent with the first computers 

designed in the 1940s!

In 1945, John von Neumann documented the primary elements of a 

computer in the “First Draft of a Report on the EDVAC” based on the work 

he was doing for the government. EDVAC stands for Electronic Discrete 

Variable Automatic Computer, which was the successor to the Electronic 

Numerical Integrator and Computer (ENIAC), the first general-purpose 

computer developed during World War II to compute ballistic firing tables. 

EDVAC was designed to do more general calculations than calculating 

ballistic firing tables. As depicted in Figure 1-1, von Neumann described 

five subdivisions of the system: central arithmetic and central control (C), 

main memory (M), input (I), output (O), and recording medium (R). These 

five components and how they interact is still the standard architecture of 

most computers today.

Figure 1-1. Primary Architecture Elements of a Computer
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In his paper, von Neumann called the central arithmetic and control 

unit the central control organ and the combination of central control 

and main memory as corresponding to associative neurons. Even today, 

people refer to the central processing unit, or CPU, as the “brain” of the 

computer. Don’t be fooled, though, because a computer based on this 

architecture does exactly what it is programmed to do, nothing more and 

nothing less. Most often the difficulties we encounter when programming 

computers are due to the complex nature of how your code depends on 

code written by other people (e.g., the operating system), combined with 

your ability to understand the nuances of the programming language 

you’re using. Despite what a lot of people might think, there’s no magic to 

how a computer works, but it can be complicated!

 CPU: Fetch, Decode, Execute, and Store
The CPU’s job is to fetch, decode, execute, and store the results of 

instructions. There are many improvements that have been invented to 

do it as efficiently as possible, but in the end, the CPU repeats this cycle 

over and over until you tell it to stop or remove power. How this cycle 

works is important to understand as it will help you debug multi-threaded 

programs and code for multicore or multiprocessor systems.

Note threads are a mechanism used to simulate executing a set of 
instructions in parallel (at the same time), whereas multiple cores in 
the same system actually do execute instructions in parallel.

The basic blocks of a CPU are shown in Figure 1-2. The CPU needs a 

clock that sends an electric pulse at a regular interval, called a frequency. 

The frequency of the clock dictates how fast the CPU can execute its 

internal logic. The control unit drives the fetch, decode, execute, and store 

Chapter 1  Fundamentals oF a Computer system
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function of the processor. The arithmetic and logic unit, or ALU, performs 

math operations and digital logic operations like AND, OR, XOR, and so 

on. The CPU has an internal memory unit for registers and one or more 

high-speed memory caches to store data proactively pulled in from main 

memory.

 Fetch
The CPU fetches instructions from memory using addresses. Consider 

your home’s mailbox; it has an address and, if it’s anything like my 

mailbox, contains junk mail and a letter from my mom, if I’m lucky. Like 

the mail in your mailbox, instructions sit in memory at a specific address. 

Your mailbox is probably not much bigger than a shoebox, so it has a limit 

to how much mail the mail carrier can put into it. Computer memory 

is similar in that each address location has a specific size. This is an 

important concept to grasp because much of computer programming has 

Figure 1-2. Basic Blocks Inside a CPU
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to do with data and instructions stored at an address in memory, the size 

of the memory location, and so on.

When the CPU turns on, it starts executing instructions from a specific 

location as specified by the default value of its instruction pointer. The 

instruction pointer is a special memory location, called a register, that 

stores the memory address of the next instruction.

Here’s a simple example of instructions in memory that add two 

numbers together:

Address     Instruction     Human-Readable Instruction

200         B80A000000      MOV EAX,10

205         BB0A000000      MOV EBX,10

20A         01D8            ADD EAX,EBX

The first column is the address in memory where the instruction is 

stored, the second column is the instruction itself, and the third column 

is the human-readable version of the instruction. The address and 

instruction numbers are in hexadecimal format. Hexadecimal is a base 

16 number system, which means a digit can be 0—F, not just 0—9 as with 

the decimal system. The address of the first instruction is 200, and the 

instruction is “mov eax,10,” which means “move the number 10 into the 

EAX register.” B8 represents “move something into EAX,” and 0A000000 is the 

value. Hexadecimal digit A is a 10 in decimal, but you might wonder why 

it’s in that particular position.

It turns out that CPUs work with ones and zeros, which we call 

binary. The number 10 in binary is 1010. B8 is 10111000 in binary, so the 

instruction B80A000000 in binary would be 1011 1000 0000 1010 0000 

0000 0000 0000 0000 0000. Can you imagine having to read binary 

numbers? Yikes!

In this binary format, a single digit is called a “bit.” A group of 8 bits is 

called a “byte.” This means the maximum value of a byte would be 1111 

1111, which is 255 in decimal and FF in hexadecimal. A word is 2 bytes, 

which is 16 bits. In this example, the “MOV EAX” instruction uses a byte for 
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the instruction and then 4 words for the data. If you do the math, 4 words 

is 8 bytes, which is 32 bits. But if you are specifying the number 10 (or 0A 

in hexadecimal) to be moved into the EAX register, why is it 0A000000? 

Wouldn’t that be 167,772,160 in decimal? It would, but it turns out 

processors don’t expect numbers to be stored in memory that way.

bit          0 or 1

byte         8 bits

word         2 bytes = 16 bits

dword        2 words = 4 bytes = 32 bits

Most CPUs expect the lower byte of the word to be before the upper 

byte of the word in memory. A human would write the number 10 as a 

hexadecimal word like this: 000A. The first byte, 00, would be considered 

the most significant byte; and the second byte, 0A, would be the least 

significant. The first byte is more significant than the second byte because 

it’s the larger part of the number. For example, in the hexadecimal 

word 0102, the first byte 01 is the “most significant” byte. In this case, it 

represents the number 256 (0100 in hexadecimal is 256). The second  

02 byte represents the number 2, so the decimal value of the hexadecimal 

word 0102 is 258. Now, let’s look at the “MOV EAX,10” instruction as a 

stream of bytes in memory:

200:  B8    <- Instruction (MOV EAX)

201:  0A    <- Least significant byte of 1st word

202:  00    <- Most significant byte of 1st word

203:  00    <- Least significant byte of 2nd word

204:  00    <- Most significant byte of 2nd word

205:  ??    <- Start of next instruction

The instruction is a single byte, and then it expects 4 bytes for the data, 

or 2 words, also called a “double word” (programmers use DWORD for 

short). A double word, then, is 32 bits. If you are adding a hexadecimal 

number that requires 32 bits, like 0D0C0B0A, it will be in this order in 
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memory: 0A0B0C0D. This is called “little-endian.” If the most significant 

byte is first, it’s called “big-endian.” Most CPUs use “little-endian,” but 

in some cases data may be written in “big-endian” byte order when sent 

between devices, for instance, over a network, so it’s good to understand 

the byte order you’re dealing with.

For this example, the CPU’s instruction pointer starts at address 200. 

The CPU will fetch the instruction from address 200 and advance the 

instruction pointer to the location of the next instruction, which in this 

case is address 205.

The examples we’ve been studying so far have been using decimal, 

binary, and hexadecimal number conventions. Sometimes it is hard to 

tell what type of number is being used. For example, 10 in decimal is 2 in 

binary and 16 in hexadecimal. We need to use a mechanism so that it is 

easy to tell which number system is being used. The rest of this book will 

use the following notation:

Decimal: No modifier. Example: 10

Hexadecimal: Starts with 0x or ends in h. Example: 

0x10 or 10h

Binary: Ends in b. Example: 10b

 Instruction Set Architecture

Instructions are defined per a specification, called instruction set 

architecture, or ISA. There are two primary approaches to instruction set 

architecture that have evolved over time: complex instruction sets and 

reduced instruction sets. A system built with a complex instruction set is 

called a complex instruction set computer, abbreviated as CISC. Conversely, 

a system built with a reduced instruction set is referred to as a reduced 

instruction set computer, abbreviated as RISC. A reduced instruction set is 

an optimized set of instructions that the CPU can execute quickly, maybe in 

a single cycle, and typically involves fewer memory accesses.

Chapter 1  Fundamentals oF a Computer system



8

Complex instructions will do more work in a single instruction and 

take as much time to execute as needed. These are used as guiding 

principles when designing the instruction set, but they also have a 

profound impact on the microarchitecture of the CPU. Microarchitecture 

is how the instruction set is implemented. There are multiple 

microarchitectures that support the same ISA, for example, both Intel and 

AMD (Advanced Micro Devices) make processors that support the x86 ISA, 

but they have a different implementation, or microarchitecture. Because 

they implement the same ISA, the CPU can run the exact same programs 

as they were compiled and assembled into binary format. If the ISA isn’t 

the same, you have to recompile and assemble your program to use it on a 

different CPU.

Note a compiler and an assembler are special programs that take 
code written by humans and convert it into instructions for a Cpu that 
supports a specific instruction set architecture (Isa).

Whether it is complex or reduced, the instruction set will have 

instructions for doing arithmetic, moving data between memory locations 

(registers or main memory), controlling the flow of execution, and more. 

We will use examples based on the x86 ISA to understand how the CPU 

decodes and executes instructions in the following sections.

 Registers

CPUs have special memory locations called registers. Registers are used to 

store values in the CPU that help it execute instructions without having to 

refer back to main memory. The CPU will also store results of operations in 

registers. This enables you to instruct the CPU to do calculations between 

registers and avoid excess memory accesses. Table 1-1 is the original x86 

ISA base register set.
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It’s important to understand how the registers are used by the CPU 

for the given ISA. For example, the 32-bit counter, in this case ECX, will be 

automatically decremented by the loop instruction. Another example is the 

stack pointer where you can directly manipulate it, but it’s modified by many 

other instructions (we will explore the concept of a stack later in this chapter).

Table 1-1. x86 Base Register Set

64 bits
(x86_64)

32 bits
(x86)

16 bits(8086)
8 bits 8 bits

accumulator RAX EAX AX

AH AL

Base register RBX EBX BX

BH BL

Counter RCX ECX CX

CH CL

data RDX EDX DX

DH DL

Base pointer RBP EBP BP

BPL

source index RSI ESI SI

SIL

destination index RDI EDI DI

DIL

stack pointer RSP ESP SP

SPL

General purpose R8-R15 R8D-R15D R8W-R15W

R8B-R15B
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The x86 register set has evolved over time and is meant to be backward 

compatible with older versions of x86 CPUs. You can see the progression 

from the original 16-bit processor to 32-bit and the now more common 

64-bit memory address sizes. As the memory address size increased, so 

did the register size, and new names were given to allow using the different 

register sizes with the appropriate instructions. Even when in 64-bit mode, 

the 32-bit register names enable programs written for 32 bits to run on  

64- bit machines.

A typical ISA will have multiple register sets. For example, x86 has a 

floating-point register set and another register set for handling large data 

sets. The popular ARM architecture also has multiple register sets. The 

register set and the ISA go hand in hand!

 Decode, Execute, and Store
Decoding is when the CPU interprets the instruction and transfers the data 

needed to execute the instruction into the CPU to prepare to execute the 

instruction.

Instructions are formatted in a particular way to enable efficient 

decoding. The instruction format specifies the opcode (the operation to be 

performed), the operands (the registers or data needed for the operation), 

and the addressing mode. The number and order of the operands depends 

on the instruction addressing mode as follows:

Register Direct: Both operands are registers:

ADD EAX, EAX

Register Indirect: Both operands are registers, but one contains the 

address where the operand is stored in memory:

MOV ECX, [EBX]
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Immediate: The operand is included immediately after the instruction 

in memory:

ADD EAX, 10

Indexed: The address is calculated using a base address plus an index, 

which can be another register:

MOV AL,  [ESI+0x401000]

MOV EAX, [EBX+EDI]

The CPU control unit decodes the instruction and then, based on 

the addressing scheme, moves data from memory into the appropriate 

registers. At this point, the instruction is ready, and the control unit drives 

the ALU to do its work. For example, ADD EAX, 10 will add the number 

10 to the current value of the EAX register and store the result in the EAX 

register.

The ALU can support typical math instructions like add (ADD), multiply 

(MUL), and divide (DIV) for integer numbers. The original arithmetic unit 

doesn’t handle floating-point numbers directly. For example, when you 

divide a number using the DIV instruction, you put the dividend in EAX and 

the divisor in ECX and then issue the divide instruction:

MOV EDX, 0

MOV EAX, 13

MOV ECX, 2

DIV ECX

Since 13 is not an even number, there will be a remainder. The 

instruction deals with integers only, so the quotient, 6, is stored in EAX, 

and the remainder, 1, is stored in EDX. ECX will still be 2. You can use 

other registers for the divisor, but the quotient and remainder will be 

stored in EAX and EDX. In 16-bit mode, they are stored in AX and DX, and in 

8-bit mode, this pattern breaks and the quotient is stored in AL with the 

remainder in AH.
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Just like division has special handling for remainders, addition 

and subtraction have special handling for carrying and borrowing. For 

example, a binary number is either 0 or 1. The number 2 is represented as 

10b in binary. When you add two bits together (1b + 1b), a carry occurs. 

This is easily represented digitally by an XOR logic gate and an AND logic 

gate. A logic gate is a set of transistors that perform logical operations on 

binary inputs. Figure 1-3 shows how the XOR and the AND gates are wired 

together to form a half adder circuit. The output of an XOR gate is “one or 

the other but not both,” so it will be 0 if both inputs are 1. The output of an 

AND gate is 1 only if both inputs are 1. The output of the AND gate is used to 

set the carry bit for the add operation.

The ALU uses many different combinations of logic gates to implement 

the various instructions. In addition, the ALU also supports logic 

operations such as OR and AND, shifting bits, comparing, incrementing, 

decrementing, and more. We’re just scratching the surface here, so if 

you’re interested in more, we encourage you to study the ISA for your 

processor.

Figure 1-3. Half Adder Circuit
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 Controlling the Flow
A very important instruction is one that tells the CPU to start executing 

instructions from a different location, which is typically referred to as a 

“jump” instruction. You can program the CPU to perform calculations 

and then jump (change the instruction pointer) to a different location 

in memory based on the outcome of the calculations. This technique 

is used to perform a loop operation. In the following example, we will 

initialize the ECX counter register to 4 and the ESI index register to 0. 

Then we will increment the ESI register and call the LOOP instruction. The 

LOOP instruction has a special relationship with the ECX register. It will 

automatically decrement the register by one and, if it is greater than zero, 

jump to the specified location:

Address   Instruction       Human-Readable Instruction

0x0200    0xB904000000      MOV ECX,0x4

0x0205    0xBE00000000      MOV ESI,0x0

0x020A    0x46              INC ESI

0x020B    0xE2FD            LOOP 0x020A

Let’s look at a slightly more complex example. Suppose you have two 

lists of numbers and you want to add them together and store the result 

somewhere else in memory:

List 1 List 2 List 3 (results)

Address Data Address Data Address Data

0x401000 01 0x402000 04 0x403000 00

0x401001 02 0x402001 03 0x403001 00

0x401002 03 0x402002 02 0x403002 00

0x401004 04 0x402003 01 0x403003 00
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The following instructions add a number from List 1 to the 

corresponding number in List 2 and put the result in List 3. Again, we 

will use the ECX as a counter, so we initialize it to 4 since there are four 

elements in each list. Next, we initialize our source index register (ESI) 

and destination index register (EDI) to zero. Starting at address 0x0214, 

we move a byte from the first list into the AL register and a byte from the 

second list into the AH register. Next, starting at address 0x0220, we move 

one byte into our destination and then add the other byte to that same 

location. ESI is added to the address, and then the data located at that 

calculated address is moved into the AL register. Since we are adding 

ESI and EDI to the addresses, we increment both of them with the INC 

instruction before the LOOP instruction. The LOOP instruction automatically 

decrements ECX and jumps to address 0x214 as long as ECX is greater than 

zero. There are several other conditional loops and jump instructions that 

enable you to control program flow in a variety of ways:

Address   Instruction       Human-Readable Instruction

0x0205    0xB904000000      MOV ECX,0x4

0x020A    0xBE00000000      MOV ESI,0x0

0x020F    0xBF00000000      MOV EDI,0x0

0x0214    0x8A8600104000    MOV AL,[ESI+0x401000]

0x021A    0x8AA600204000    MOV AH,[ESI+0x402000]

0x0220    0x888700304000    MOV [EDI+0x403000],AL

0x0226    0x00A700304000    ADD [EDI +0x403000],AH

0x022C    0x46              INC ESI

0x022D    0x47              INC EDI

0x022E    0xE2E4            LOOP 0x0214

What if you needed to do this operation often? It would be of help 

if you could put this set of instructions in your program and jump to it 

from other parts of your program whenever you need to add two lists of 

numbers together, right? You would need to pass information to this code 
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for the location of the two lists in memory, how many numbers are in the 

lists, and another memory location to store the results. Also, when the code 

is done, you need to tell the processor to return to the location it came 

from so it can continue execution instructions. We call this a function or 

routine, and thankfully the processor has special instructions and registers 

to keep track of the input to the function and where to jump to when 

the function is done doing its work. These special instructions store the 

needed information on the stack.

 The Stack
The stack works on a Last In, First Out (LIFO) principle. Imagine a card 

game between two people sitting at a table. There are just a few simple 

rules. First, if there are no cards on the table, you can put a card on the 

table. If there’s a card on the table, you must put the next card on top of the 

existing card, or stack them. Second, if either of you wants to take a card 

from the table, you have to take the card from the top of the stack. Thus, 

the last card put on the top of the stack is always the first one to come off 

the stack of cards. Of course, we’re talking about computers, not people, 

so in a computer, the table is memory, the people are functions of your 

program, and the cards are data being passed back and forth. To make it 

more interesting, some CPUs require that the table is upside down!

For the x86 ISA, there are two instructions to work with the stack: 

PUSH and POP. There’s also a special register called the extended stack 

pointer (ESP). The x86 stack always starts at a high memory address. As 

data is pushed onto the stack, the ESP decrements to the next address. 

When the pop instruction is executed, the ESP increments to reveal the 
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previous item on the stack. Here is an empty 32-bit stack with ESP set to 

the address of the first available position:

Address Data (DWORD) ESP

0x01000000 0x00000000 0x01000000

0x00FFFFFC 0x00000000

0x00FFFFF8 0x00000000

0x00FFFFF4 0x00000000

Let’s push a value onto the stack and look at the result:

MOV  EAX, 10

PUSH EAX

This is what the stack will look like and the value of the ESP register:

Address Data (DWORD) ESP

0x01000000 0x00000000

0x00FFFFFC 0x0A000000 0x00FFFFFC

0x00FFFFF8 0x00000000

0x00FFFFF4 0x00000000

Notice anything? The value is actually stored in the next available 

spot, not the current location ESP was referring to! The push instruction 

decrements the address in the ESP register by 4, and then it stores the value 

at the location. The POP instruction does the opposite; it moves the value at 

the current address in the ESP register and then increments the ESP register 

by 4. If we do POP EAX, which means “take the value on the stack and put it 

in EAX,” the stack will look like this in 32-bit mode:
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Address Data (DWORD) ESP

0x01000000 0x00000000 0x01000000

0x00FFFFFC 0x0A000000

0x00FFFFF8 0x00000000

0x00FFFFF4 0x00000000

The ESP register is now back to 0x01000000; however, the 0A value is 

still sitting at location 0x00FFFFFC! The POP instruction doesn’t touch the 

data; it just copies it to the register you specify and changes the address 

value stored in ESP. However, you can’t count on that data staying there as 

the next push command will overwrite it.

Now that we know how the stack pointer works, let’s look at calling 

the routine we talked about earlier that adds the elements of two lists of 

numbers and stores the result in memory. Our routine needs the address 

of the two lists of numbers and the address where to store the results. It 

also needs to know the number of items in these lists, so let’s push these 

items onto the stack:

Address Instruction   Human-Readable Instruction

0x0200  0x6800104000  PUSH DWORD 0x401000

0x0205  0x6800204000  PUSH DWORD 0x402000

0x020A  0x6800304000  PUSH DWORD 0x403000

0x020F  0x6A04        PUSH BYTE +0x4

We use the DWORD and BYTE modifiers as hints to the compiler how 

to treat the numbers. We will cover compiling, linking, and loading in the 

next chapter. We also need to push an address on the stack so the routine 

knows where to tell the processor to return to when it is done and then 

Chapter 1  Fundamentals oF a Computer system



18

jump to our routine. It turns out that the CALL instruction does this for us, 

so now we just need to call our routine, which is at address 0x024C in this 

example:

0x0211   0xE836000000    CALL 0x024C

0x0216   ;address of next instruction

Now the stack looks like this:

Address Data (DWORD) ESP

0x01000000 0x0401000 +16

0x00FFFFFC 0x0402000 +12

0x00FFFFF8 0x0403000 +8

0x00FFFFF4 0x0000004 +4

0x00FFFFF0 0x0000216 0x00FFFFF0

We can reference the parameters on the stack in relation to the current 

stack pointer. The beginning of our routine will use this technique to put 

the number of bytes in the lists into ECX, the destination for the results into 

EDI, the address of the second list of numbers in EBX, and the address of 

the first list of numbers in EDX. Then, we will do add the numbers together 

from the two lists and store them at the location stored in EDI. The code 

has changed a bit because we’re using registers in a slightly different 

way, but it has the same outcome. Note that the ret instruction will use 

the address at ESP to jump to address 216 to continue executing the next 

instruction after the call to our routine:

0x024C  0x8B4C2404          MOV ECX,[ESP+4]

0x0250  0x8B7C2408          MOV EDI,[ESP+8]

0x0254  0x8B5C240C          MOV EBX,[ESP+12]

0x0258  0x8B542410          MOV EDX,[ESP+16]
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0x025C  0xB800000000        MOV EAX,0x0

0x0261  0xBE00000000        MOV ESI,0x0

0x0266  0x8A0432            MOV AL,[EDX+ESI]

0x0269  0x8A2433            MOV AH,[EBX+ESI]

0x026C  0x00E0              ADD AL,AH

0x026E  0x8807              MOV [EDI],AL

0x0270  0x46                INC ESI

0x0271  0x47                INC EDI

0x0272  0xE2F2              LOOP 0x266

0x0274  0xC3                RET

Our routine is simpler than the first list addition example; it doesn’t 

need to use any temporary variables to get its job done. But if we did need 

temporary variables, there’s a way to use the stack to store those variables 

so that you do not have to allocate them in memory and then have to 

remember to free that memory. If you use the stack, when your function 

returns, the stack pointer is adjusted appropriately. It’s like a free scratch 

space for storing information. The way you accomplish this is to simply 

add the amount of space you want to allocate to the stack pointer, like this:

ADD    ESP, 24

One problem, though, is as routines call other routines (so-called 

subroutines), the stack will grow. The stack pointer will continue to grow 

downward as you push items onto it and call other functions. Within your 

routine, you need some way to reference your local variables. We use the 

EBP register, also called the base pointer, to save the value of ESP before 

we change it. There’s a trick, though, because the routine that called our 

routine may also be using the base pointer to keep track of its local variable 

space. To avoid any issues, we push the current base pointer, set the base 

pointer to the current stack pointer, and then move the stack pointer, like 

this:
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PUSH  EBP          ;save current base pointer

MOV   EBP, ESP     ;set base pointer to ESP

ADD   ESP, 24      ;move ESP down the stack

The area on the stack we use for this purpose is called the “stack 

frame.” To reference this space, we can now subtract from the base pointer, 

EBP. For example, to initialize three locations on this space, you could do 

this:

MOV [EBP-4], 1

MOV [EBP-8], 2

MOV [EBP-12],4

Now we can reference those locations throughout our routine. When 

we exit our routine, we need to do some cleanup before calling the return 

function. Basically, we need to restore the stack pointer and then pop 

the EBP register off the stack to restore the stack frame to what our caller 

expected:

MOV ESP, EBP

POP EBP

RET

Remember how we pushed parameters on the stack before calling our 

function? We definitely want to clean those up. That can be done either 

by our routine using the RET (short for “return” to the caller) instruction, 

or we can expect the caller to clean up the stack. This is referred to as the 

“calling convention” for a routine. It’s important to understand the calling 

convention that the code you are calling uses, and you should pick a 

consistent calling convention when you write code. Luckily, higher-level 

programing languages do this for us, but as we write assembly code to 

work with those higher-level languages, we need to follow those language 

conventions.
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 Instruction Pipeline
CPUs are designed to fetch, decode, and execute instructions as efficiently 

as possible. The circuitry of the CPU is designed in stages that can run in 

parallel, called parallel execution units. For example, when the CPU is 

performing the second stage of an instruction, it can start executing the 

next instruction’s first phase. This allows the CPU to use all of its circuitry 

and execute instructions faster. The stages of executing an instruction are 

referred to as a pipeline.

A simple five-stage pipeline would have stages for fetching (F), 

decoding (D), executing (E), accessing memory (M), and writing to a 

register (R). Here are instructions executing without a pipeline:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

F1 d1 e1 m1 r1

F2 d2 e2 m2 r2

The first row is time (T1–T10), the second row is the first instruction, 

and the third row is the second instruction. In this example, we can’t fetch 

the second instruction until the first instruction completes all five stages:

Utilizing parallel stages in the pipeline, we can start fetching the 

second instruction after the first one moves to the second stage. This will 

enable the CPU to greatly decrease the amount of time it takes to execute 

the two instructions. Instead of ten steps, the instructions are done in only 

six steps, as follows:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

F1 d1 e1 m1 r1

F2 d2 e2 m2 r2

Chapter 1  Fundamentals oF a Computer system



22

There are instances where the pipeline will not work well, for 

example, when the next instruction is relying on the result from a previous 

instruction. This is called a data hazard. If you’re writing code in assembly 

language, you need to consider how you’re using registers to ensure that 

these hazards are avoided. For higher-level languages, the compiler and 

assembler will optimize the machine language to ensure the pipeline is 

executing efficiently to get the best performance out of the processor.

Modern processors have a deep pipeline consisting of over 30 stages! 

They also use very fast internal memory called a cache to prefetch 

instructions and data and even execute instructions proactively by 

predicting the control flow.

 Flynn’s Taxonomy
Let’s revisit the code we wrote to add the values of two lists of numbers. 

In that example, we were using the add instruction repeatedly on the data 

in memory. Each instruction was executed against a single piece of data. 

What if you could tell the processor to execute the add instruction on all 

of that data with a single instruction? Well, you can. It’s called a single 

instruction, multiple data (SIMD) operation. In 1966, Michael J. Flynn 

proposed a taxonomy for the different ways that instructions operate on 

data.

Flynn defined a taxonomy in 1966 to classify parallel computing 

scenarios. In a parallel computing environment, you have multiple 

independent processors that can execute concurrently. Today, CPUs 

have multiple cores that can execute tasks in parallel, so they can execute 

parallel instructions. Flynn defined four classes, or scenarios:

single instruction, single data (sIsd) single instruction, multiple data (sImd)

multiple instruction, single data (mIsd) multiple instruction, multiple data (mImd)

Chapter 1  Fundamentals oF a Computer system



23

We’ve been focusing on SISD, single instruction, single data, which is 

typical in a single-processor scenario. Let’s look at our example of adding 

two lists of numbers together. The two lists of numbers are multiple data 

inputs, and it turns out there are instructions in the x86 instruction set that 

support multiple data inputs, or SIMD instructions as defined by Flynn. 

It’s kind of interesting how it works. We will use the x86 PADDB instruction 

to add the values of both lists together in one shot. PADDB stands for “add 

packed integers.” To use the PADDB instruction, you need to “pack” the 

data into a register using the MOVDQU instruction. MOVDQU stands for “move 

aligned double quadword.” A double quadword is 128 bits (2 × 4 × 16) and 

is also referred to as an “OWORD.” If you remember, our previous example 

used lists that had 4 bytes. If we increase those to hold 16 bytes, then we 

have 128 bits. We can “pack” those 128 bits of contiguous data into a  

128- bit register using the MOVDQU instruction, use PADDB to do the addition 

in one instruction, and then move the result to the destination passed in 

on the stack as follows:

0x00000256  0x8B7C2404          MOV EDI,[RSP+4]

0x0000025A  0x8B5C2408          MOV EBX,[RSP+8]

0x0000025E  0x8B54240C          MOV EDX,[RSP+12]

0x00000262  0xF30F6F02          MOVDQU XMM0, OWORD [RDX]

0x00000266  0xF30F6F0B          MOVDQU XMM1, OWORD [RBX]

0x0000026A  0x660FFCC1          PADDB XMM0,XMM1

0x0000026E  0xF30F7F07          MOVDQU OWORD [RDI],XMM0

0x00000272  0xC3                RET

Using the PADDB instruction, we’ve removed the loop entirely! Packing 

your data into the XMM registers is the trick that makes it work. This 

implies that these instructions have limitations as to the amount of data 

you can pack and add at a time, so if the data set is large, you would still 

have to write a loop to complete the operation, but in the end it should be 

faster.
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Multiple instruction, multiple data, or MIMD, is the case where you 

have multiple CPUs or CPU cores operating on multiple data streams 

at once. This is a typical multiprocessor scenario that happens often 

in today’s seemingly single-processor systems. Most CPUs today have 

multiple cores built into them that can truly execute instructions in 

parallel. Most of the coordination of running programs on different cores 

in parallel is handled by the operating system. As a programmer, you 

write a program, and within that program if you want to execute multiple 

instructions concurrently on different CPUs, you create execution threads 

for those instructions with some help from the operating system.

Multiple instruction, single data (MISD) is a less common technique. 

A good example of MISD would be a fault-tolerant system where you may 

have processors run a known algorithm on the same data set. If the results 

don’t match, the system knows one of the processors is malfunctioning, at 

which point it can stop using it and let humans know to replace it!

 Main Memory and Secondary Storage
We’ve covered how the CPU fetches information from memory using 

addresses and how it decodes and executes instructions with help 

from special memory locations called registers. We also now know that 

information in memory is stored in byte-sized chunks (8 bits per byte) and 

that the CPU keeps track of the next instruction using an instruction pointer. 

To do its job effectively, the CPU must be able to access any location in 

memory quickly, which means the main memory must support random 

access. We call this type of memory “random access memory,” or RAM. The 

main memory must be very fast and is implemented using electronic circuits 

consisting of capacitors and transistors that work together to store bits. 

Electronic circuits can only save information while they have power, so that 

type of memory is called “volatile memory.” Therefore, a computer system 

also needs “non-volatile memory” that will save instructions when there’s no 

power. This type of memory is called secondary storage.
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Originally, instructions were encoded on punch cards that were fed 

by hand into memory. This was very cumbersome! Magnetic tape was 

originally invented to store audio in the late 1800s and further refined in the 

early 1900s. In 1950, the first tape recorder was created for storing digital 

information to be used by a computer. Information on a reel of magnetic 

tape could not be accessed randomly; instead, it had to be accessed 

from beginning to end, or sequentially. The tape drive is connected to 

the computer in a way that the computer can send the drive commands 

to start reading data from the tape and store it in a particular location in 

memory. After the instructions from the tape are loaded into memory, the 

CPU instruction pointer is set to start reading those instructions. This was 

better than punch cards, but still relatively slow, especially as the number of 

instructions and data used to run a program increased.

Researchers invented the “hard drive” to provide random access to 

instructions and data. Hard drives store data on magnetic disks housed in 

a special container. The disks spin at a high rate, and the mechanism to 

read the data is on an arm that moves left and right across the surface of 

the disk to read the data. This provided a cheaper and faster way to read 

programs from secondary storage into the much faster main memory.

Floppy disks are another type of magnetic media invented after tape. 

The advantage of a floppy disk was that it could be inserted into a drive 

that had a head that moved left and right while the disk was spinning to 

read blocks of data in a more random fashion (but still much, much slower 

than RAM). They were called floppy drives because they were somewhat 

flexible when not inserted into the drive.

Secondary storage technology has continued to evolve from high- 

density CD ROM, which is read and written to using a laser, to solid-state 

drives (SSDs) that have no moving parts at all. The evolution will continue 

with the advent of persistent memory that has the potential to be an 

alternative for main memory that does not lose its content when power 

is removed or lost. Imagine the implications of a system where the main 

memory is persistent and instructions no longer have to be moved from 

secondary storage to main memory before the CPU starts its fetch, decode, 

and execute cycle.
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 Input and Output (I/O)
We’ve talked about how the CPU needs to load the instructions from 

secondary storage into main memory. But how is that actually done? In 

modern computers, devices are connected to the same address bus as 

the CPU and main memory, as depicted in Figure 1-4. This enables CPU 

instructions to use memory addresses to perform input and output (I/O) 

operations with devices, which is called “memory-mapped I/O (MMIO).”

In early x86 processors, there were input and output instructions that 

read and wrote to I/O port addresses. Using other CPU instructions with 

the I/O port addresses would reference main memory, not the intended 

device. The only way to interact with the device was by using input and 

output instructions to load data into CPU registers and then execute 

instructions using those registers as operands. With memory-mapped I/O, 

you can simply use the address location for the device as the operand for 

any CPU instruction. The input and output instructions still exist in the 

x86 ISA, but aren’t used except by the operating system and some common 

device drivers.

Figure 1-4. Devices Connected to the Address Bus
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Through these memory accesses, the CPU can set values that the 

device interprets as commands. A common scenario is the CPU telling the 

device to transfer data into main memory, for example, having a hard drive 

transfer data from its disk to main memory, which is called direct memory 

access, or DMA. After telling a device to initiate direct memory access, the 

CPU is free to execute other instructions.

When a device completes its operation, it will let the CPU know it is 

done through an interrupt, which is a signal connected to the CPU that the 

device raises or lowers to get the CPU’s attention. When the CPU receives 

the signal, it can stop executing instructions and switch to a special routine 

that takes care of the interrupt.

 Summary
In this chapter, we learned about the fundamentals of a computer system:

• von Neumann Architecture: Central arithmetic and 

central control (C), main memory (M), input (I), 

output (O), and recording medium (R)

• Operation of a CPU: Fetch, decode, execute, and store

• Instruction set architecture and register sets

• Controlling the flow of execution and using the stack to 

implement routines

• Classifying parallel instruction and data using Flynn’s 

taxonomy

• Understanding the difference between main memory 

and secondary storage

• Input and Output: Memory-mapped I/O and interrupts
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Now that we have a basic understanding and hopefully appreciation of 

computer fundamentals, we can move on to Chapter 2.

 References and Further Reading
• The ENIAC Story: https://web.archive.org/

web/20110814181522/http://ftp.arl.mil/~mike/

comphist/eniac- story.html

• Intel 8088 Microprocessor Family: www.cpu- world.com/

CPUs/8088/

• “First Draft of a Report on the EDVAC”: https://web.

mit.edu/STS.035/www/PDFs/edvac.pdf

• History of Magnetic Tape: https://history- computer.

com/ModernComputer/Basis/tape.html

• Introduction to Dynamic Random Access Memory: 

www.allaboutcircuits.com/technical- articles/

introduction-to-dram-dynamic-random-access-memory/

• John L. Patterson, David A. Hennessy. Computer 

Organization and Design: The Hardware/Software 

Interface. Elsevier Science Ltd, 2007

• Intel 64 and IA-32 Architectures Software Developer 

Manuals: https://software.intel.com/content/

www/us/en/develop/articles/intel- sdm.html

• ARM Developer Documentation: https://developer.

arm.com/documentation

Chapter 1  Fundamentals oF a Computer system

https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html
https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html
https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html
http://www.cpu-world.com/CPUs/8088/
http://www.cpu-world.com/CPUs/8088/
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://history-computer.com/ModernComputer/Basis/tape.html
https://history-computer.com/ModernComputer/Basis/tape.html
http://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/
http://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://developer.arm.com/documentation
https://developer.arm.com/documentation


29© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021 
P. D. Crutcher et al., Essential Computer Science,  
https://doi.org/10.1007/978-1-4842-7107-0_2

CHAPTER 2

Programming
In Chapter 1, we learned how the CPU fetches, decodes, and executes 

instructions and that those instructions sit on a persistent storage device 

until the CPU is turned on and transfers them to main memory. Of 

course, someone has to write the instructions in the first place, which 

we call “programming.” So simply put, programming is the act of writing 

instructions for a computer to do some specific task. In this chapter, we 

will explore the different types of programming languages you can use, 

along with the advancements that have been developed over the years to 

make programming easier.

One of the most interesting aspects of computer science and software in 

general is how we are continuously inventing new programming languages. 

In the end, they are all converted to machine language appropriate for the 

ISA of a given CPU, but how this process is done varies. For example, in 

some cases the program is converted to machine language once. In other 

cases, the program may be converted every time it is about to be executed, 

in which case you need a program that does the conversion on the fly.

Deciding which programming language to use can be daunting  

when you look at the landscape of possibilities, and it’s not always a  

black-and- white decision; often it comes down to personal preference.

Let’s jump into the fundamentals of programming languages so you 

have a grounding in the basic concepts that are shared by almost all 

languages. There are entire books written about a single programming 

language, so we will touch on the basics and give you some good 

references for learning more.
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 Programming Language Fundamentals
It is possible to program a computer using the computer’s native machine 

language. However, machine language is essentially a stream of binary 

numbers, which are difficult to read and extremely difficult to write. 

Listing 2-1 shows the machine language in hexadecimal format for a 

simple program. Can you tell what it’s doing?

Listing 2-1. Machine Language for a Simple Program

Address     Instruction

00000098    B800000000

0000009D    B904000000

000000A2    BE00000000

000000A7    BF00000000

000000AC    6AF5

000000AE    E800000000

000000B3    6A00

000000B5    6800000000

000000BA    6A0C

000000BC    6800000000

000000C1    50

000000C2    E800000000

000000C7    6A00

000000C9    E800000000

No? That’s not surprising! Obviously, we need a better way to program 

the computer, and that’s where programming languages come into play. 

One of the first languages developed is called “assembly language.” 

Assembly language is very close to machine language in terms of the 

instructions and syntax, so it is referred to as a “low-level” language.
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 Hello, World!
When you are learning a new programming language, it’s common 

practice to write a program that prints “Hello, World” to the screen. This 

will enable you to understand the minimal amount of work you have to 

do to get the program to compile and output a message. Knowing how to 

output a message from your program is important because you may need 

to print messages from your program to help you debug it when it isn’t 

working as intended. Let’s look at printing “Hello, World” using assembly 

language in Listing 2-2.

Listing 2-2. “Hello, World” Using Assembly Language

STD_OUTPUT_HANDLE equ -11

NULL    equ 0

global  main

extern ExitProcess, GetStdHandle, WriteConsoleA

section .data

hello db "Hello, World", 0

hellol equ $ - hello

section .bss

dummy   resd 1

section .text

main:

        mov eax, 0

        mov ecx, 4

        mov esi, 0

        mov edi, 0

        push    STD_OUTPUT_HANDLE

        call    GetStdHandle
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        push    NULL

        push    dummy

        push    hellol

        push    hello

        push    eax

        call    WriteConsoleA

        push NULL

        call ExitProcess

There’s a lot going on in this example! You can see it uses a variable 

to represent a memory location (e.g., “hello”), specifies blocks of 

data (e.g., “section .data”) and code (e.g., “section .text”), uses 

a label to represent the memory address of the start of the program 

(e.g., “main:”), and also leverages Windows operating system routines 

(e.g., “GetStdHandle,” “WriteConsoleA,” “ExitProcess”). There’s also a 

section called “section .bss” where you declare variables that should 

be initialized to 0. This is obviously easier to read than raw machine 

language, as you can see, but it is structured in a particular way. Can you 

guess why that is?

Since the example isn’t in machine language, the CPU can’t execute 

the instructions directly. We need a special program called a compiler to 

convert the assembly language code into machine language.

 Compile, Link, and Load
Unlike the machine language example that was dumped from memory, the 

assembly language example is text that you must save to storage as a file. 

The instructions in the file need to be converted to machine language and 

put into memory so the CPU can execute them. As depicted in Figure 2-1, 

this process is typically broken down into three phases: compile, link, and 

load.
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A compiler is a program that handles the task of taking the assembly 

instructions and converting them to machine language. The compiler 

verifies the syntax of the code relative to the language it is written in and 

generates machine language instructions for the CPU it will execute on. 

Much of the syntax in the assembly language example is there for the 

sake of the compiler so it can generate the appropriate machine code, for 

example, having to distinguish between data and code using “section 

.data” and “section .text,” respectively. The compiler output will 

contain the values for global variables that are initialized to specific values 

(like “hello”), the code, a list of variables that should be initialized to 0, 

and references to functions that the compiler expects to come from some 

other source, like the output from another compiler or from the operating 

system. The binary files that the compiler generates are called object files. 

In Linux, object files have a “.o” extension, while Microsoft Windows 

object files have a “.obj” file extension.

Figure 2-1. Compile, Link, Load
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A program called a linker takes multiple compiled object files and 

puts them together to create an executable program that can be loaded 

by a particular operating system. The linker’s job is to make sure all the 

references in the object files are resolved before generating the executable 

program. It’s common to get errors when linking a program typically 

indicating an incorrect or missing reference to a function or variable that 

you expected to import from some other source.

The ability to link object files from different sources together is 

powerful because it enables us to share and reuse code modules. When 

you create code that you want to reuse in multiple programs, you can have 

the compiler generate the object file and then use that object file when 

linking to other programs. We call this type of code a “static library.” You 

can use different programming languages to generate them as long as the 

machine language they generate is compatible. For example, you could 

have two languages with a complier for each; the compilers need to use 

compatible mechanisms for passing parameters to functions on the stack 

so the code in their object files can call functions in other object files.

Static libraries are great for reusing code, but they have one drawback. 

If you update a static library because you’ve added functionality or fixed 

a problem in the code, you need to recreate the executable file for all the 

programs you’ve written that use that static library. Dynamic libraries were 

invented to fix this problem. You need to use special operating system calls 

to load dynamic libraries instead of linking the machine code directly into 

your program. This means you can update the dynamic library without 

having to recompile your original program – as long as the interfaces to 

the functions don’t change! For now, just know that there are two types 

of libraries and that using dynamic libraries is a powerful, yet tricky, 

mechanism for reusing code.

Operating systems, like programming languages, are designed to make 

it easier to write programs. In the assembly language example, there are 

routines you can call to do work for you, like writing information to the 

console using the Microsoft Windows WriteConsoleA function. Another 
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service the operating system provides is loading and executing your 

program. The operating system needs to know a few things about your 

program, like which part of it holds data (variables and default values), 

which part has instructions, and which instruction should be executed 

first. It will then put the data and instructions in memory and update the 

instructions to use appropriate memory locations. The operating system 

has a special program called a “loader” that handles this process. The 

loader expects the program to be stored as a file on a media device, like a 

hard drive, in a specific format, called the “executable file format.” There 

are several executable file formats that have been developed over time, 

such as the Executable and Linkable Format (ELF), which is used by Linux 

(and many other operating systems). Microsoft Windows uses the Portable 

Executable (PE) format.

Separating the process into compiling, linking, loading, and executing 

phases is very flexible. For example, you could write compilers for many 

different languages that target the same linker. The compiler focuses 

on converting the intermediate instruction format to different types of 

instruction set architectures. It can also optimize the instructions for 

those specific architectures and create specific executable file formats. 

Having a program that has a specific output format that another program 

can work with is a very important concept in programming. Imagine how 

much more work it would be if every time someone came up with a new 

programming language, they had to write the compiler and linker and the 

executable file format, as well as load it and execute it! By breaking this 

process up into steps, it saves a lot of time and enables sharing of code 

between programs.

 High-Level Languages
Let’s compare our “Hello, World” assembly language example to an 

example written in the relatively old but popular “C” language. C 

became popular in the 1980s after Brian Kernighan and Dennis Ritchie 
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published their edition of C in 1978. Their version included the standard 

input/output library, additional data types, and compound assignment 

operators. The following sample in Listing 2-3 is a simple “Hello, World” 

program in C, and as you can see, it is very different than assembly 

language!

Listing 2-3. “Hello, World” in the C Programming Language

#include <stdio.h>

int main() {

   printf("Hello, World!");

   return 0;

}

There are special keywords that you use so that the compiler can do 

its job. For example, the “#include” keyword tells the compiler to include 

another file, in this case “stdio.h,” which is the C standard input/output 

library header file. Header files are used separate from the code files 

(which typically end in .c for the C language). They allow the compiler 

to understand how to call functions in other libraries without having to 

look at the code itself. The header file lists the names and parameters for 

functions that are available for use from the code file (as well as variable 

names and macro definitions). The brackets “<” and “>” tell the compiler 

to look for that file outside of the current folder by using the “include 

path,” which is an operating system environment variable that we won’t 

cover here. Every executable program in C must have a function called 

“main.” Brackets (“{”, “}”) are used to group lines of code together. “printf” 

is a function that is defined in “stdio.h” that prints data to the screen. 

Parameters to the printf function are specified inside parentheses. A 

semicolon is used to specify the end of a string of commands.

The use of parentheses, brackets, and semicolons is all part of the C 

language syntax. The syntax is the rules for combining language-specific 

symbols in the correct order that the compiler will be able to understand. 
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Remember, the compiler is just another program, so strict rules are necessary 

to make it easier to convert the language into machine language code 

through procedural programming mechanisms as we’re describing here.

Let’s take a deeper look at the compilation process for a high-level 

language like C. Figure 2-2 shows how a compiler breaks down the 

compilation process in terms of preprocessing, lexical analysis, parsing, 

building a symbol table, and generating the code.

The preprocessor looks for specific identifiers in the source code 

and resolves those to create a file that can be scanned by the next step in 

the process. In the C language, preprocessor directives start with “#”, for 

example, “#include.” The preprocessor will load the file specified by the 

#include so it becomes part of the source file.

Once the preprocessing is done, the lexical analyzer scans the source 

file to identify tokens. As it is identifying tokens (e.g., “int” is a keyword, 

“main” is an identifier, etc.), it updates the symbol table. If there are 

characters that are not allowed based on the syntax of the program, the 

lexical analyzer will throw an error. An advanced analyzer may try to 

recover from the error so it can continue with the compilation process.

The parser does the syntax analysis. It receives the tokens from the 

lexical analyzer and determines if they are in the appropriate order based 

on the syntax of the language. Parsers may generate what’s called a “parse 

tree” or an “abstract syntax tree.” The parse tree (trees are discussed in 

Chapter 3) is a representation of the input that conforms to the grammar 

Figure 2-2. Compilation Process
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of the language, and you can generate a version of the original source by 

walking the tree in the right order. Having a tree-oriented representation 

of the source code allows the compiler to make multiple passes when 

generating the machine language without having to reparse the original 

source. You could also imagine a compiler that creates the parse tree 

and then uses that to generate multiple output files for different types of 

processors without having to retokenize and parse the original source 

code. The parser is also responsible for detecting and reporting syntactical 

errors (like missing a semicolon), semantic errors (like trying to assign the 

wrong type of value to a variable), and logical errors (like an infinite loop 

or unreachable code). Compiling high-level languages is a complex topic, 

so if you’re interested in more detail, we encourage you to read some of the 

references we’ve cited at the end of this chapter.

Hopefully you are starting to appreciate why C is considered a high- level 

language as compared to assembly and machine languages! Since the early 

1950s, many high-level programming languages have been created. Fortran, 

LISP (List Processing), Algol, COBOL (Common Business- Oriented Language), 

BASIC, Pascal, Smalltalk, SQL (Structured Query Language), Objective-C, 

C++, Perl, Java, Python, Visual Basic, R, Java, PHP, Ruby, JavaScript, Delphi, 

C#, Scala, Groovy, Go, PowerShell, and Swift are a few of the more popular 

languages. Once you understand several of the key programming paradigms, 

you’ll see how many of these languages have quite a bit in common.

 Programming Paradigms
So far, we’ve looked at machine language, assembly language, and C 

“Hello, World” examples (you may have guessed by now that the first 

machine language example was a version of “Hello, World”). We recognize 

that machine language and assembly language are low-level programming 

languages, and we know how programs are compiled, linked, and loaded. 

High-level programming languages abstract away the machine language 

entirely, and the compilation process is broken down into several phases.
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Within the classification of high-level programming languages, 

though, there are several different programming paradigms you should 

be aware of: imperative, declarative, object-oriented, interpreted, 

parallel, and machine learning (ML). Learning about these programming 

paradigms helps you recognize the common elements of many high-level 

programming languages. Let’s take a closer look at each one.

 Imperative Programming
Imperative programming is the oldest programming paradigm. Imperative 

program languages are constructed through a series of well-defined 

commands in a specific order, and the program flow is controlled by loops 

and branches. Imperative programs can be broken down into additional 

programming styles: structured, procedural, and modular.

Structured programming adds sequences, selection, and iteration 

operations to solve problems with nonstructured imperative programs. 

Procedural programming is when you divide the program into a small set 

of procedures, or functions, while modular programming is where you 

break down the program into a set of modules (files) that can be tested 

independently of each other.

Imperative programming is typically easier to read and relatively easier 

to learn because you can easily follow the execution flow, which is why 

most people learn an imperative programming language first. However, 

the programs are often much larger, relative to other paradigms, when 

trying to solve more complex problems. Some alternatives, like functional 

programming, which is considered a declarative programming paradigm, 

can do a lot more with less code but are typically harder to learn and read.

Most of the examples we’ve studied so far have been imperative, so we 

won’t revisit them here. The C programming language is considered an 

imperative programming language, as well as COBOL, Pascal, Fortran, and 

many others.
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 Declarative Programming
With declarative programming, instead of programming based on the 

steps you go through to arrive at the solution, the program is written by 

describing the end result. It’s also done at a higher level of abstraction. 

Functional programming is a common type of declarative programming.

In functional programming, the primary rule is that a function has 

no side effects. It cannot rely on data outside of the function; it can only 

operate on the data passed to it as parameters. Here’s an example of an 

imperative programming function that violates that rule:

int a = 0;

void increment() {

    a = a + 1;

}

In this simple example, the increment function takes no arguments, 

and it is incrementing a variable that is declared outside of the function. 

This is a valid function in an imperative language like C, but if you’re 

adhering to functional programming rules, you would implement the 

function this way:

int increment( int a ) {

    return a + 1;

}

This “increment” example is considered a “pure” function because it 

only operates on its parameters and thus there can be no side effects like 

setting the value of a variable outside of the function, and it doesn’t keep 

track of anything between calls. It simply operates on the parameters that 

are passed to it and nothing else.
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Another type of function is one that takes other functions as parameters 

or returns a function as a result. These are called “higher- order” functions. 

Consider the following Python code that prints the length of each string in a 

list. The map function takes a function name as the first parameter and a list 

of objects (we cover object-oriented programming in the next section) as the 

second parameter. It simply applies the function to each object in the list and 

returns the result as a special type of object called an iterator. You then pass 

the iterator object, which will walk through all of the elements in the data 

structure, from the map function to a list function to create a list of objects:

print( list( map( len, ["programming", "is", "fun"] ) ) )

The output looks like this:

[11, 2, 3]

Here we are able to accomplish the task in one line of code! However, 

it’s not as easy to understand what is going on, is it? The flow of the code 

isn’t obvious because it’s about the operations you are performing on the 

data (in this case, a list of words). To understand it, you read the code from 

the inside out, so to speak, and also have to understand what the function 

is going to do, which isn’t always obvious.

You have to think differently when writing declarative code, but it can 

be very powerful. For example, it is easier to execute the operations in 

parallel. In this case, it’s possible to execute the “len” command for each 

parameter on a different CPU at the same time, which would be very fast!

Writing this code in an imperative way is much different. Let’s look at 

the imperative version, again using Python:

word_lengths = [0,0,0]

word_list = ["programming", "is", "fun"]

for i in range(len(word_list)):

    word_lengths[i] = len(word_list[i])

print(list(word_lengths))
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There are several more lines of code in this example, but it is a little 

bit easier to follow the flow of execution. However, since the “for” loop 

operates each command sequentially, it’s not as easy for the system to 

execute the instructions in parallel.

 Object-Oriented Programming
Object-oriented programming is an evolution of procedural programming 

that introduces some very important concepts such as encapsulation, 

abstraction, inheritance, and polymorphism.

In object-oriented programming, encapsulation is achieved by defining 

classes of objects. A class defines the private variables that only the methods 

of that class can act upon, protected variables that only derived classes can 

access, and public variables the functions and methods outside of the class 

can access. All of the code that operates on those variables is encapsulated 

within the class definition. Code external to the class can only use the public 

mechanisms to interact with an instance of the class. An instance of a class is 

called an object. For example, in C++, you can define a Vehicle class that has 

a public method for getting the capacity of the vehicle, but have private and 

protected properties and methods that are not visible outside of the class:

     class Vehicle {

       private:

         int access_count = 0;

       protected:

         int capacity = 0;

       public:

         int get_capacity() {

           ++access_count;

           return capacity;

         }

     };
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In this example, the Vehicle has a private variable that increments 

every time “get_capacity” is executed. However, the capacity variable is 

set to 0 and is “protected,” not “private” like the “access_count” variable. 

This means classes that derive from the Vehicle class (like a car or bus) can 

manipulate the capacity variable but not “access_count.”

Inheritance is when you define a new “child” class based on the 

definition of an existing “parent” class. The child class can add additional 

methods and properties or override the parent implementation and/or 

add new functionality. We’ve defined a Vehicle class. Now let’s inherit from 

it to create two new classes, Car and Bus:

class Car: public Vehicle {

    public:

        Car() { capacity = 4; }

}

class Bus: public Vehicle {

    public:

        Bus() { capacity = 20; }

}

We’ve introduced a new C++ concept in this example called the 

“constructor.” The constructor has the same name as the class being 

created. The constructor is called automatically when the object is created. 

In this example, when you create a Car, it initializes the capacity variable to 

4, but when you create a Bus, it initializes the capacity variable to 20. Note 

that neither class defines the capacity variable because it was defined in 

the Vehicle parent class. Because the Vehicle class has already specified 

the function to get the capacity of the vehicle, the child class doesn’t have 

to do anything other than initialize the variable in its constructor. When 
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you create a Bus or Car, you can call those functions that are defined by the 

Vehicle class, like this:

Bus aBus;

int capacity = aBus.get_capacity();

We can use the same vehicle example to describe polymorphism, 

which means having many forms. When you write code that deals with 

instances of the Vehicle class, you can access the public get_capacity 

method. It doesn’t matter if the object is a bus or car because they both 

inherit from the Vehicle class. The implementation of get_capacity is 

different, though, depending on whether or not the object is a car or bus. 

In this case your code is dealing with vehicles, but they can have different 

forms. Here’s an example where we create a Bus but treat it as a Vehicle:

Bus aBus;

Vehicle* aVehicle = &aBus;

int capacity = aVehicle->get_capacity();

We declared a variable called “aVehicle” that is a “Vehicle*”. That’s 

special syntax in the C language to specify that the “aVehicle” variable 

is the memory address of another variable that inherits from the Vehicle 

class. I can “point” that variable at an instance of a Bus object, as in this 

example, using the “&” operator. The ampersand tells the compiler to use 

the address of aBus and then assign it to aVehicle. Later, we can change 

aVehicle to be the address of the Car object. This is how we enable 

polymorphism in C++. We write our code using the aVehicle variable, and 

depending on what address it is assigned to, it could be a Car or a Bus.

Now that we’ve covered the primary concepts common to object- 

oriented programming languages (encapsulation, inheritance, and 

polymorphism), we can move on to the interpreted programming 

paradigm.
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 Interpreted Programming
Instead of compiling your source code into an executable file, you can use 

a program called an interpreter and either type in the commands directly 

at a prompt or put them in a source file and have the interpreter execute 

it. Interpreters are able to execute the high-level code instructions as they 

read them instead of compiling and linking into an executable program. 

The interpreter itself is an executable program that reads the code and 

interacts with the operating system to do what the code says. Python is the 

interpreter for the, you guessed it, Python programming language! Let’s 

look at an example of a “hello world” program in Python:

print("hello world")

Whoa, it’s just a single line of code! However, you do have to run this 

example from the Python program from the command line, which will 

load and print a prompt (“>>>”) when it’s ready for input, like this:

C:\python

Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec  7 2020, 17:08:21) [MSC 

v.1927 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more 

information.

>>> _

Interpreted languages like Python are very powerful. You can easily 

evaluate code using the interpreter and do rapid testing because you don’t 

have to perform compile/link/load.

JavaScript is another interpreted language that is commonly executed 

by web browsers like Google Chrome and Microsoft Edge. Instead of 

running an interpreter from the Windows command line prompt or a 

Linux terminal, JavaScript is executed by an interpreter in the browser. 

The script sits on a web server waiting to get downloaded by the browser. 

In Figure 2-3, the browser requests a page from a web server, which is 
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an HTML document that contains the JavaScript code. JavaScript can be 

embedded in HTML, or there can be a reference to a JavaScript file in the 

HTML file. For this example, it’s embedded in the HTML file.

In Figure 2-4, the browser receives the HTML file containing the 

JavaScript code from the server. Now the browser has a copy of the script 

and can start interpreting it.

It’s very important to understand the context in which your program 

is executing. For this example, the JavaScript code is executing in the 

browser, despite its origin being on the server. The script can interact with 

the browser itself, or it can make calls over the Internet back to the server it 

was downloaded from to get data or have the server do work on its behalf. 

This is a very different environment compared to a program that is running 

entirely on the same machine.

It’s also important to realize that interpreted languages can also be 

imperative, declarative, and object-oriented. Python and JavaScript are 

both object-oriented and interpreted languages, as well as supporting 

declarative and imperative mechanisms!

Figure 2-4. Browser Receiving a Page from a Web Server

Figure 2-3. Browser Getting a Page from a Web Server
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 Parallel Programming
Parallel programming is when your program takes advantage of multiple 

CPU cores or Graphics Processing Units (GPUs) to run routines at the same 

time. A GPU is also a type of processor, but it is designed to run parallel 

tasks more efficiently. As we saw previously, declarative programming 

lends itself well to parallel execution. Imperative programming languages 

add additional mechanisms to help write code that executes in parallel.

First, we should understand how processes work and how they’re 

scheduled by the operating system to run on a CPU. When your program 

is loaded by the operating system, it’s launched as a new process. 

Your program uses CPU registers and accesses memory as it executes 

instructions, and there’s also the stack that it uses to keep track of function 

parameters, local variables, and return addresses. If there’s just one 

process running on the system, these resources are used exclusively by that 

one process, but rarely is that the case. In an operating system like Linux 

or Windows, there are almost always many more processes loaded into 

memory than the number of CPU cores that can execute them. Figure 2-5 

is a screenshot of the Windows Task Manager’s CPU performance screen. 

On this one machine, there are 225 processes loaded, but only eight cores!

Figure 2-5. Windows Task Manager CPU Performance 
Information
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The operating system is responsible for scheduling all of these 

processes on the different cores. In this case, it’s possible to run up to eight 

processes at the same time, one on each core, but we likely need to give 

CPU time to more than eight processes to keep all aspects of the system 

running smoothly. The operating system has to use a technique called 

time slicing to give additional processes CPU time. In short, the operating 

system initializes the CPU to run a specific process by saving and restoring 

register values so that the process doesn’t need to know it’s being time- 

sliced. The operating system sets a timer on the CPU that will execute 

the scheduling code when it goes off. Because the operating system is 

handling this in the background, you don’t really need to worry about what 

the operating system is doing to make this work.

The trick to hide the complexity of process switching from the process 

itself is memory mapping. With memory mapping, the process thinks it 

has access to all of physical memory, but in reality, the CPU translates the 

memory addresses that the process is referencing into physical addresses. 

Because the program is not using actual physical addresses, the memory 

that the program references is called “virtual memory.” By using virtual 

memory, the process can assume its stack grows down from the top of 

memory at the same address every time it executes, but in reality, it is 

in different pages of physical memory. When the OS switches between 

processes, it needs to adjust the memory mapping. This is an expensive 

operation because the CPU has internal buffers that keep track of the 

mapping so that it happens very quickly. These buffers need to be flushed 

and get reinitialized when the process switch happens. Thus, a process will 

suffer a brief performance hit after a process is scheduled to start running.

Threads, on the other hand, are associated with one process and 

are faster to switch between than processes because the virtual memory 

map doesn’t have to change. Figure 2-6 shows the relationship between a 

process and its threads.
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When using threads, you need to be very careful since they share 

resources, memory in particular, with other threads running in the same 

process. You can run into situations where two threads are trying to 

change the same memory location and overwrite values in unpredictable 

ways. To avoid these problems, you have to use techniques like locks and 

semaphores, discussed later in Chapter 4. You also have to be careful that 

your threads aren’t waiting on each other, in which case they will wait 

forever, which is called a “deadlock.” Writing multi-threaded programs 

is one of the most difficult programming techniques, but is extremely 

powerful if you get it right!

 Machine Learning
Machine learning is a totally different programing paradigm. Instead of 

focusing on the flow of the program or writing functions, the computer 

learns from experience so that it can make predictions in the future. 

Machine learning is so fundamentally different than other programming 

paradigms that we decided to devote Chapter 8 to cover it in detail.

Figure 2-6. A Process and Its Threads
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 Summary
In this chapter, we learned that assembly language was one of the first 

programming languages. Assembly language introduced some key 

concepts like using variable names to represent memory locations. 

A process called compiling and linking is used to create executable 

programs. The operating system loads executable programs, so they are 

created in a format that the operating system understands. Operating 

systems make writing programs much easier by providing services, such 

as writing to the screen and loading your program into memory. There are 

many different types of programming techniques you can use to program 

the computer. We briefly covered imperative, declarative, object-oriented, 

interpreted and parallel programming.
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CHAPTER 3

Algorithm and  
Data Structure
Now that we’ve discussed computer hardware and how to program it to 

achieve desired purpose, we will discuss how to make programs efficient 

by leveraging well-known algorithms and data structures for managing 

logic and data, respectively.

 What Is an Algorithm
The dictionary defines an algorithm as a step-by-step procedure for solving 

a problem or accomplishing some end. In other words, an algorithm 

is a technique that can be used and communicated to accomplish 

your goal. Algorithms are not unique to computers. You probably use 

algorithms every day. The mathematical technique of carrying the one or 

borrowing from the tens place for addition and subtraction is an algorithm 

that humans can learn. There is usually more than one algorithm to 

accomplish your goal. For instance, one algorithm for division is to count 

the number of times you subtract the divisor from the dividend; this 

count is the quotient. This is different than finding the largest number the 

divisor can be multiplied by to be less than the most significant bits of the 

dividend and then subtracting that value from the dividend to get a new 

dividend, which is the method most of us learned in school.

https://doi.org/10.1007/978-1-4842-7107-0_3#DOI
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Algorithms can be encoded in any programming language for 

computers. It should be noted that algorithms for humans are not 

necessarily optimal for computers to accomplish the same end. This 

is also true for different computing architectures; an algorithm for a 

general-purpose CPU will not be the best algorithm for a GPU (Graphics 

Processing Unit), or quantum computer. In the next section, we will 

examine how to evaluate algorithms and what trade-offs are made to find 

the right algorithm for what you need to accomplish.

 Good and Not So Good Algorithm
Knowing that there are likely multiple algorithms for accomplishing what 

you want to do, how do we judge what is a good algorithm? What are the 

factors that we look at? Can we use math to compare algorithms?

One thing that should not be overlooked, but is hard to compare 

critically, is the readability of a particular algorithm. Most of the software 

that you write professionally will be viewed and likely maintained by others. 

Choosing an algorithm that can be read, and more easily maintained, to 

learn what goal you originally set out to accomplish can be a better choice 

than the most efficient algorithm. Choosing well-known algorithms can 

help readability, because there can be plenty of documentation about those 

algorithms and they can be recognized. Of course, explicitly stating the goal 

you are seeking to accomplish in source code comments can help.

 Time/Space Complexity
One of the main areas where we make trade-offs when selecting or creating 

algorithms is between the amount of memory, or space, that the algorithm 

takes and the amount of time it takes to finish.
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 Asymptotic Notation
Asymptotic notation is a method of writing the complexity of an algorithm 

in time based on the number of inputs into the algorithm. We cannot simply 

say that because algorithm 1 will take 7 seconds and algorithm 2 will take 

5 seconds, algorithm 2 is better. Asymptotic notation helps by eliminating 

differences in individual computing machines and programming languages. 

Taking a closer look at those times, we need to specify the number “n” 

for the number of items that the algorithm will process to have a realistic 

measure of its performance to compare against other implementations. For 

simplicity, let us say n = 100. For algorithm 1, let us say the time it takes to 

run is 3 + .04n; similarly algorithm 2 takes 0.0005(n^2) seconds to run. As we 

can see in the graph (Figure 3-1), there is a crossover point in the number of 

items where algorithm 1 outperforms algorithm 2.

Figure 3-1. Runtime Comparison Example
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These numbers are on the same computer. If we do analysis on an 

older computer, we find that algorithm 1 takes 5 + 0.4n or 45 seconds and 

algorithm 2 takes .005(n^2) or 50 seconds. We will simplify our algorithm 

by removing constants from the time to allow for differences in computing 

machines and programming languages. This is called Big-Oh notation as 

the function for the time an algorithm runs asymptotically approaches 

the highest degree of the polynomial of n. We will write analysis O(n) for 

algorithm 1 and O(n^2) for algorithm 2.

With Big-Oh expressions, we generally want to consider “tightness” of 

the upper bound. While it is correct to say that an algorithm with a time 

function 3 + 0.4n is O(n), it is a stronger statement to simply say that this 

algorithm is O(n).

Big-Oh notation is a consistent method for comparing and discussing 

algorithms across multiple computing machines and programing languages. 

Table 3-1 is a table of Big-Oh expressions and their informal names.

Table 3-1. Big-Oh Common Names

Big-Oh Name

o(1) Constant

o(log n) logarithmic

o(n) linear

o(n log n) n log n

o(n2) Quadratic

o(n3) Cubic

o(2n) exponential
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 Fundamental Data Structures and Algorithms
Now that we have examined what an algorithm is and how we can 

compare them, we will look at common data structures that hold our data. 

We will also look at common algorithmic techniques using these data 

structures.

 Store (Data Structure)
There are several structures that can store data. Each of these structures 

has different advantages, and algorithms may be able to utilize different 

data structures more efficiently than others.

 Stack

A stack is a data structure that reflects the metaphor of a stack of plates. 

When using a stack, an algorithm operates only on the “top” item in the 

stack. When that item is operated on, it is removed or “popped” off the 

stack. A data item may also be “pushed” onto a stack. Because data is only 

operated on or removed from the “top” of the stack, a stack is sometimes 

referred to as a FILO (First In, Last Out) or LIFO (Last In, First Out). See 

Figure 3-2.
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 Queue

A queue is another data structure. As you can imagine, a queue also acts 

like a line to an event. Data items in a queue are added at the “back” of 

the queue and processed at the “front” of the queue. Queues can vary in 

length, allowing them to be used as a buffer. Queues are also referred to as 

FIFOs (First In, First Out). See Figure 3-3.

Figure 3-2. Stack Example
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 Tree

A tree is another data structure that allows for multiple branches. Data 

items or nodes are attached to the trunk, which has one or more items 

attached to it as branches. Each branch can have one or more branches 

attached to it. Nodes without branches attached to them are referred to as 

leaf nodes, or simply leaves. See Figure 3-4.

Figure 3-3. Queue Example

Figure 3-4. Tree Example
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 Graph

A graph is a data structure where nodes or data items are connected via 

edges to other nodes. The edges may contain data about the relationship 

to the nodes. A directed graph is a graph data structure where all the edges 

have a common direction. A tree can be thought of as a directed graph. See 

Figure 3-5.

 Linked List

A linked list is another data structure where each node or data item is 

linked to (connected with one or two) other data items in a chain. A doubly 

linked list is a list where each node contains a link to both the next node 

and the previous node. Data items can be inserted into a linked list by 

connecting to the new data item. Some of the other data structures such as 

the queue and the stack can be implemented as linked lists. See Figure 3-6.

Figure 3-5. Graph Example
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 Array

An array is a fixed-size set of data, where each data node is referred to by 

a coordinate system. In a single-dimensional array, this value is called the 

index and typically starts at zero for the first node. In a two-dimensional 

array, or grid, a node has two coordinates like x and y; and in a three-

dimensional array, like a cube, it has three, like x, y, and z. Arrays can have 

more dimensions than three if needed. Data in an array can be accessed 

from any position in the array at any time. A sparse array is an array that 

does not have meaningful data in every position. See Figure 3-7.

Figure 3-6. Doubly Linked List Example
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 Dictionary

One more data structure is a dictionary, sometimes referred to as a hash 

table. Similar to an array, in a dictionary, the data nodes are referred to by 

a key or index. Unlike an array, this index is not integer values. Instead, a 

hashing algorithm is run to find a unique value for each data node, and 

that is used as the key to look up the data node. Like an array, data can be 

accessed from any node in the hash table at any time. See Figure 3-8.

Figure 3-7. Array Example
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 Making Use of the Data: Searching, Sorting

Two of the most common things to do with the data in these data structures 

are to search through the data for a specific item and to sort the data in 

some fashion. There are different sorting and searching algorithms that can 

be used on the data. Sorting is often done as part of searching as it can be 

easier to find an item with the data structure sorted. Depending on the type 

of data structure, different algorithms will perform better or worse.

The first sorting algorithm that we will look at is the bubble sort 

(Listing 3-1). In this algorithm, the items are sorted into order with the 

priority items “bubbling” to the top of the data structure. If we have a 

linked list, call it I, we will start with the first item (i[0]) in the list and 

compare it to the next item (i[1]). We then compare i[0] and i[1]; if 

i[1] is before i[0], then we swap i[0] with i[1]. Then we proceed to 

compare the new i[1] with i[2]; if i[2] needs to swap with i[1], then 

we swap. If the items are in the right order, we do not swap but proceed to 

the next item to compare.

Figure 3-8. Dictionary Example
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Listing 3-1. Bubble Sort Algorithm in Python

 1 def bubble(NUMBER_LIST):

 2    print(NUMBER_LIST)#Display the unsorted list

 3    swap_counter = 0 #Set a counter for the number of swaps 4

 5    for idx in range(0, len(NUMBER_LIST)):#Loop through list

 6        pos = idx #Set the item to compare

 7        swap_pos = pos - 1 #Set the item to swap if needed

 8        #Loop through the items to compare

 9        while swap_pos >= 0: #Loop through the unsorted list

10            #Check to see if you need to swap

11            if NUMBER_LIST[swap_pos] > NUMBER_LIST[pos]:

12                #Swap positions

13                NUMBER_LIST[pos], NUMBER_LIST[swap_pos] =

                  NUMBER_LIST[swap_pos], NUMBER_LIST[pos]

14                #Increment the swap counter to show the work

15                swap_counter = swap_counter +1

16            print(NUMBER_LIST) # Display the current list

17            #Move to the next swap item

17            swap_pos = swap_pos -1

18            #Move to the next item to compare

19            pos = pos -1

20

21    #Display the number of swaps

22    print("SWAPS:", swap_counter)

Python console output

>>> bubble.bubble([90,87,82,43,3,5])

[90, 87, 82, 43, 3, 5]

[87, 90, 82, 43, 3, 5]

[87, 82, 90, 43, 3, 5]

[82, 87, 90, 43, 3, 5]
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[82, 87, 43, 90, 3, 5]

[82, 43, 87, 90, 3, 5]

[43, 82, 87, 90, 3, 5]

[43, 82, 87, 3, 90, 5]

[43, 82, 3, 87, 90, 5]

[43, 3, 82, 87, 90, 5]

[3, 43, 82, 87, 90, 5]

[3, 43, 82, 87, 5, 90]

[3, 43, 82, 5, 87, 90]

[3, 43, 5, 82, 87, 90]

[3, 5, 43, 82, 87, 90]

[3, 5, 43, 82, 87, 90]

SWAPS: 14

If we do a Big-Oh analysis of this, then we can see this is O(n2), with 

the worst case being having to compare every element with every other 

element.

Selection sort is the next sorting algorithm we will look at (Listing 3-2). 

In this algorithm, we will compare the first item to the rest of the items and 

select the smallest item and swap those items. We then proceed with the 

next item and select the next smallest item and swap them. We proceed until 

we have iterated through each item in the array. Selection sort is also O(n2).

Listing 3-2. Selection Sort Algorithm in Python

 1 def selection(number_list):

 2   print(number_list)#Display the unsorted list

 3   iter_count = 0 #set a counter for the iterations

 4 5   #Loop through the each item on the list

 6   for i in range(0, len(number_list)):

 7       min_index = i #Set the current min value in the list

 8       #Loop through the remaining unsorted list

 9       for j in range(i+1, len(number_list)):
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10            #Compare the current item with the current minimum

11            if number_list[j] < number_list[min_index]:

12                #If the current item is smaller

13                #make it the new minimum

14                min_index = j

15            #Swap the new minimum with the

16            #current value in the list

17             number_list[i], number_list[min_index] =  

number_list[min_index], number_list[i]

18            #Increment the count of swaps

19            iter_count = iter_count +1

20        print(number_list): #Display the current list

21    #Display the number of iterations

22    print("Iterations: ", iter_count)

Python console output

>>> selection.selection([90, 87, 82, 43, 3, 5])

[90, 87, 82, 43, 3, 5]

[5, 90, 87, 82, 43, 3]

[5, 3, 90, 87, 82, 43]

[5, 3, 43, 90, 87, 82]

[5, 3, 43, 82, 90, 87]

[5, 3, 43, 82, 87, 90]

[5, 3, 43, 82, 87, 90]

Iterations:  15

 Problem Solving Techniques
We have examined how we analyze and compare algorithms. And we have 

looked at how we can structure our data. Now we will look at common 

techniques for solving problems.
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 Recursion
A recursive algorithm is an algorithm where the function calls itself. 

Recursive functions, or methods, can be very efficient and easy to 

understand. The following is an example of a very simple recursive 

algorithm (Listing 3-3) to calculate the Fibonacci sequence. In the 

Fibonacci sequence, the current value is defined as the sum of the previous 

two values F(N) = F(N – 1) + F(N – 2). Also the first two values F(1) and F(0) 

are predefined to 1 and 0, respectively. For example, to calculate the value 

of F(3), we need to first calculate the F(2) and F(1). To calculate F(2), we 

need to calculate F(1) and F(0).

F(1) is 1 and F(0) is 0 so that makes F(2) = 1 + 0 or 1. To finish 

calculating F(3), we add F(2) + F(1) or 1 + 1. Therefore, F(3) is 2.

Listing 3-3. Recursive Fibonacci Algorithm

def fibonacci(value):

    if value == 0:#Set F(0) to 0

        retval = value

    elif value == 1:#Set F(1) to 1

        retval = value

    else: #Otherwise calculate the value of F(N)

        #Recursively call the fibonacci function on the

        #previous value. Then call fibonacci function on the

        #value before that.

        #Set the current value to the sum of those two values

        retval = fibonacci(value-1) + fibonacci(value-2)

    return retval

def fibonacci_list(max):

    for i in range(0, max):

       #Display the current Fibonacci value

       print(fibonacci(i))
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Python console output

>>> fibonacci.fibonacci_list(5)

0

1

1

2

3

 Divide and Conquer
Divide and conquer is a technique where the data is divided and each 

smaller portion is operated on.

The merge sort algorithm (Listing 3-4) is a good example of both 

recursion and divide and conquer algorithms. The basic part of the merge 

sort algorithm splits a list into two separate equal halves. Those halves are 

then sorted. Once you have two sorted halves, you simply compare the first 

items in each list and add the smaller to the next position in a new list. To 

get each half sorted, you can call the merge sort algorithm on each half.

Listing 3-4. Merge Sort Divide and Conquer Algorithm in Python

 1 def merge(number_list):

 2   #Check if the list is longer than one element

 3   if len(number_list) > 1:

 4         #Find the middle of the list

 5         half_idx = int(len(number_list)/2)

 6         #Create a list with front half of the list

 7         list_a = number_list[:half_idx]

 8         #Create a list with the back half of the list

 9         list_b = number_list[half_idx:]

10         #Recursively call this merge function

11         #to sort the first half
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12         sorted_a = merge(list_a)

13         #Recursively call this merge function

14         #to sort the second half

15         sorted_b = merge(list_b)

16         #Init an empty list to insert the sorted values

17         sorted_list = []

18         #Set a flag to indicate both lists are inserted

19         done = False

20         while not done: #Iterate on the lists until done

21             #Compare the first item of each list

22             if sorted_a[0] < sorted_b[0]:

23                 #When the first list item is smaller

24                 # insert into the sorted list

25                 sorted_list.append(sorted_a.pop(0))

26             else:

27                 #When the second list item is smaller

28                 # insert into the sorted list

29                 sorted_list.append(sorted_b.pop(0))

30             if len(sorted_a) == 0:

31                 #When the first list is empty add the

32                 # remainder of the second list to the

33                 # sorted list

34                 sorted_list = sorted_list + sorted_b

35                 #Set the done flag to end the loop

36                 done = True

37             elif len(sorted_b) == 0:

38                 #When the first list is empty add the

39                 # remainder of the second list to the

40                 # sorted list

41                 sorted_list = sorted_list + sorted_a

42                 #Set the done flag to end the loop
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43                 done = True

44         print(sorted_list)

45     else:# If the list is only one element it is sorted

46         sorted_list = number_list

47

48

49    return(sorted_list)

Python console output

>>> merge.merge([90, 87, 82,43,3,5])

[82, 87]

[82, 87, 90]

[3, 5]

[3, 5, 43]

[3, 5, 43, 82, 87, 90]

[3, 5, 43, 82, 87, 90]

 Brute Force
A brute force algorithm is just as it sounds, doing the most obvious thing 

with the data operating on each data item individually. In some situations, 

especially with smaller data sets, this can be the quickest way to solve the 

problems, but in general, this is a costly way O() ) to perform a function.

 Greedy Algorithms
A greedy algorithm is an algorithm that makes a locally optimal decision. 

This can, in some cases, lead to locally optimized implementations vs. the 

best globally optimized solution. Greedy algorithms include the Huffman 

coding algorithm for data compression and the Dijkstra algorithm for 

search in a tree.

Chapter 3  algorithm and data StruCture 



71

 Class of Problems
Many algorithms can be solved in polynomial time where the Big-Oh 

expression can be written as a polynomial. These are considered tractable 

problems. There is also the set of problems that cannot be solved in 

polynomial time. These are considered intractable. However, within the 

set of intractable problems are a set of problems that can verify possible 

answers in polynomial time. These are referred to as nondeterministic 

polynomial, or NP, problems. Finding a prime number is an example of 

this type of problem.

 NP-Complete and NP-Hard Problems
Within the set of NP problems are the set of problems no one knows how 

to solve in less than exponential time known as NP-complete.

One common example of an NP-complete problem is the traveling 

salesman problem, where we want to find the shortest path for a salesman 

to navigate a set of cities connected by routes of different lengths. Checking 

the length of a route and comparing it to other routes is polynomial, 

but finding the shortest route requires going through all possible 

combinations.

In addition to NP problems are another set of problems that are 

defined as NP-hard. These problems are as hard as or harder than any 

NP problems. This set of problems are called NP-hard problems. If these 

problems are found to be solvable in polynomial time, that would imply 

that all NP problems are actually solvable in polynomial time. This is not 

believed to be the case.
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 Databases
So far in this chapter, we have looked at data structures and algorithms that 

have been operating on data in system memory (e.g., RAM). Now we will 

look at database systems that can persistently store and recover the data. 

A database is simply an organized set of data that is stored apart from the 

program that will utilize that data.

 Persistence and Volume
We separate data out from the software into a database for various reasons. 

One reason is the persistence of data. If you have software that doesn’t, 

somehow, “save” its resulting data, that data would not be available after 

the software is run, as it was only in system memory, which will be reused 

by other programs once your program is done. This storage, or persistence, 

of data also provides some other advantages. It allows multiple different 

software applications to access the same data. Many database systems 

allow for multiple applications to access the data concurrently.

The other reason to store the data separate from the software is that it 

allows the software to operate on much larger volumes of data than can be 

contained in the RAM. A database system can provide parts of the data to 

the software at a time so that software can work on this smaller sets of data.

 Fundamental Requirements: ACID
As the volume of data gets larger, and there is more concurrent access 

(from multiple concurrently running applications) to the data, a database 

must make sure that it meets the requirements of ACID (Atomicity, 

Consistency, Isolation, and Durability).

Atomicity means that an update happens to the database as a single, 

atomic event, so there are no partial updates. Say, for instance, I have a 

simple database of a name, street address, and zip code. And I need to 
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update a record because someone moved to a new city. A nonatomic 

update might be to update the zip code without updating the street 

address, followed by an update of the street address. This would lead to 

a point in time where the data in the database is incorrect (only partially 

updated). In contrast, an atomic update, or commit, would update the 

record with both the new street address and zip code at the same time, so 

the database is never incorrect.

Consistency means that in the event of a failure, for instance, an 

update failure, the database stays consistent with a known good state; this 

is usually the previous state of the database. For example, in our previous 

example, we may want to update all the names to make sure they are 

capitalized. If there is a failure after the third record is updated, then the 

transaction will roll back to the previous state, where none of the names 

are capitalized.

Isolation means that if there are multiple concurrent updates to 

the database, each transaction must not be intermixed with any other 

transaction. The two previous examples for updating one record (a 

person moved) and updating all the records to make sure that names are 

capitalized must be isolated. In this case, all the names get updated first, 

and then the one record is updated with a new street address and zip code. 

This is important for data consistency and durability. If we needed to roll 

back a transaction and both sets of changes were intermixed, we would not 

be able to clearly go back to a known good state.

Durability is like consistency; it means that in the event of a failure of 

the underlying database system, when the database system restarts, it is 

able to pick up where it left off and complete the transaction. For example, 

in the previous example, say that after the third record gets updated, the 

operating system forces a reboot. When the operating system comes back 

up, the database system must complete the transaction starting at exactly 

the fourth record.

Chapter 3  algorithm and data StruCture 



74

 Brief History of Database System Evolution
In 1970 Edgar F. Codd wrote a paper describing relational database 

systems. Prior to the publication of Codd’s paper, companies had started 

to develop database systems based on other models, but by the late 1970s, 

the relational database model had become prevalent. IBM produced the 

first prototype relational database with SQL in 1976. The Oracle Database 

was the first commercial database that implemented the model and 

featured SQL, the Structured Query Language. Oracle was released in 1977, 

prior to IBM’s release of SQL/DS in 1981, despite IBM having a head start. 

Also, in 1981, dBase II, considered the first relational database for PCs, was 

released for personal computers. Oracle became the primary database 

used in the enterprise as well as the Internet until the release of the open 

source database MySQL in 1995. On the PC side, many solutions were 

released over the next decade with Microsoft Access becoming the de facto 

standard relational database on the PC in 1993.

 Most Prominent Current Database Systems
Today, Oracle remains one of the most prominent relational database 

systems. In addition, the open source community has brought several 

solutions to prominent usage. MySQL still is in use but is joined by 

PostgreSQL and SQLite as to the very common open source relational 

database solutions. On the commercial side, Microsoft SQL Server has also 

risen to prominence in its usages.

 Relational Data and SQL
Relational data is based on set theory and the relationships between sets. 

Sets can be combined in a union. This means a new set is formed that 

contains all the data elements that are in the sets combined. A new set, for 

instance, may be formed from the differences of sets; this would be a set 
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of all of the data elements that are unique between the sets. Furthermore, 

another set can be formed from the intersection of two sets. This is where a 

new set is formed from all the elements that are common between the two 

sets. See Figure 3-9.

SQL is a standard language to describe these relationships between 

sets of data to extract meaningful data from a relational database. For 

example (Figure 3-10), a SQL statement SELECT (id, name, zipcode) 

FROM people_table WHERE (zipcode IS '97124') forms a set containing 

the value 97124 and then intersects that data with the set of zip codes in 

the table. This new intersected set of records will have the same set of 

fields as the original table but only contain the values for those that match 

the zip code 97124.

Figure 3-9. Set Operations Example
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SQL syntax allows for a rich group of set relationships described in a 

machine-translatable language that approximates natural language.

 Structured Data/Unstructured Data

Relational databases mostly have structured data, data that is organized 

into rows and columns. This structured organization makes it easy to 

interact with the data using SQL and the set relations. The definition of 

this structure is called a schema. As you can imagine, however, much of 

the data that we have in the world is not so easily structured. Unstructured 

data is data that cannot easily be organized into rows and columns, such 

as natural language text. This rise in unstructured data has also led to an 

increase in databases that do not follow the same constraints of relational 

databases.

Figure 3-10. SQL Statement Actions
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 NoSQL
NoSQL or Not Only SQL is a collective name of a growing set of databases 

that apply different data structures besides tables of rows and columns 

used in relational databases.

With the rise of the Internet and service-oriented architectures, one 

of the key points of integrating the data from multiple applications shifted 

from the relational database and SQL to service access. This allowed 

developers to create a closer mapping of the data structures used in the 

application to the data stored in the database. Now developers could have 

a much more natural connection between the data that is being stored and 

the data that is being used.

 Examples of NoSQL Databases

We will look at some common examples of NoSQL databases.

 Graph DB: Neo4j

Neo4j is a native graph database where the data is stored and its 

relationship to other data is also stored. A record is stored as a node in a 

graph data structure, and additional relationship records are stored with 

information about how various nodes are related (connected) to each other.

Neo4j can be schema-less with nodes having different fields as needed. 

Neo4j also has its own query language called Cypher.

 Column Family DB: Bigtable and Cassandra

Bigtable is a proprietary wide-column family database from Google. 

Bigtable is designed to specifically handle exceptionally large sets of data.

Like Bigtable, Cassandra is an open source column family database 

from Apache. A column family database organizes the data into rows and 

columns. A column is the primary data entity. A column is made up of a 
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name and a value with the name acting as a key in a key-value pair. A row 

is an arbitrary group of columns with a row key. A column family is a group 

of rows with some column keys in common. Cassandra is a schema-free 

database in that rows do not have to have the same columns. Cassandra 

also has its own query language CQL.

 Document DB: CouchDB and MongoDB

CouchDB is a document database from an open source project that is part 

of the Apache group. Each piece of data is considered a document with its 

own set of fields.

MongoDB is another open source project that is a document database. 

It stores records as JSON (JavaScript Object Notation) documents. Each 

document can have its own set of attributes so it can be schema-free. Both 

CouchDB and MongoDB have their own mechanisms for querying the data.

 Summary
As we have seen throughout this chapter, there are many considerations 

when working with data. The selection algorithm, data structures, and 

database for persistent storage should be chosen thoughtfully so that the 

software can be developed in the most effective way.
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CHAPTER 4

Operating System
Now that we have discussed the basics of computer hardware and software 

fundamentals, we will go over how they work together in this chapter. The 

operating system abstracts interaction to the HW and makes it efficient 

and convenient for software to leverage those HW resources.

When a computer turns on, the processor will execute the instructions 

that are presented to it; generally, the first code that runs is for the boot 

flow. For a computer that is used for general purposes and after it has 

booted up, there may be a variety of applications that need to be run on 

it simultaneously. Additionally, there could be a wide range of devices 

that could be connected to the computer (not part of the main system, 

for instance). All these need to be abstracted and handled efficiently and 

seamlessly. The user expects the system to “just work.” The operating 

system facilitates all of this and more.

 What Is an Operating System
An operating system, commonly referred to as the OS, is a program that 

controls the execution of other programs running on the system. It acts 

as a facilitator and intermediate layer between the different software 

components and the computer hardware as shown in Figure 4-1.
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When any operating system is built, it focuses on three main 

objectives:

• Efficiency of the OS in terms of responsiveness, fluidity, 

and so on

• Ease of usability to the user in terms of making it 

convenient

• Ability to abstract and extend to new devices and 

software

Figure 4-1. High-Level Overview of an Operating System
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Let us take a quick look at how this is implemented. Most OSs typically 

have at least two main pieces:

• There is a core part that handles the complex, low-level 

functionalities and is typically referred to as the kernel.

• There are generally some libraries, applications, and 

tools that are shipped with the OS. For example, there 

could be browsers, custom features, frameworks, and 

OS-native applications that are bundled together.

Although the latter are generally referred to be a part of the OS, for the 

rest of our discussion, we will be focusing on the OS kernel.

Few common examples of operating systems that are prevalent are 

listed below. This list is not meant to be comprehensive but give the 

user a high-level idea of the list of operating systems that are commonly 

prevalent:

• Microsoft Windows

• GNU/Linux-based OS

• macOS (used for Apple’s computers and client models)

• iOS (used for Apple’s smartphone/tablet models)

• Android

All of these operating systems have different generations, versions, and 

upgrades. Some of the features supported across OS builds may also vary 

from time to time. However, in general, the core concepts discussed in this 

chapter are applicable to all of them.
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 OS Categories
The OSs can be categorized based on the different methods in use.  

The two most common methodologies are by the usage type and the 

design/supported features of the OS.

The first methodology is based on how the system is used. Based on 

this, there are five main categories:

 1. Batch: For usages where a sequence of steps needs 

to be executed repeatedly without any human 

intervention. These classes are called batch OSs.

 2. Time Sharing: For systems where many users access 

common hardware, there could be a need to time-

share the limited resources. The OSs in such cases 

are categorized as time-sharing OSs.

 3. Distributed: For hardware that is distributed 

physically and a single OS needs to coordinate their 

access, we call these systems distributed OSs.

 4. Network: Another usage model, similar to the 

distributed scenario, is when the systems are 

connected over an IP (Internet Protocol) network 

and therefore referred to as network OSs.

 5. Real Time: In some cases, we need fine-grained time 

precision in execution and responsiveness. We call 

these systems real-time OSs.

The second methodology is based on the design and supported features 

of the operating system. Based on this, there are three main categories:

 1. Monolithic: In this case, the entire OS is running 

in a high-privilege kernel space and acts as the 

supervisor for all other programs to run. Common 

monolithic OSs include many of the UNIX flavors.
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 2. Modular: In some OSs, a few parts of the OS are 

implemented as so- called plug-and-play modules 

that can be updated independent of the OS kernel. 

Many modern OSs follow this methodology, such as 

Microsoft Windows, Linux flavors, and macOS.

 3. Microservice based: More modern OSs are emerging 

and leverage the concept of microservices where 

many of the previously monolithic OS features 

may be broken down into smaller parts that run in 

either the kernel or user mode. The microservice 

approach helps in assigning the right responsibility 

of the components and easier error tracking and 

maintenance. Some versions of Red Hat OS support 

microservices natively.

 Why We Need an OS
As we discussed before, the OS needs to be able to facilitate different 

applications running on the system. For example, consider an application 

that wants to play music from the file system and another application 

that needs to create a file and write to the disk. In both these cases, these 

applications need to access storage, must be able to render/display some 

content on the screen, and may need to access additional devices on the 

system.

Let us consider two very different approaches to enabling the 

preceding example. One approach could be that each of the applications 

will run directly on the HW with no OS abstraction; in this case, they must 

each implement all of the required functionality including hardware access 

and resource management on their own. This approach has some obvious 

challenges. One problem is the size of the resultant programs; they must 

have code for their application logic as well as all of the lower-level code 
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for accessing hardware. This will increase the number of defects in the 

code and increase the time it takes to get the application working correctly. 

Another problem is that the application may not be able to handle all 

types of hardware and devices. For example, the application would need 

to encode specific functions to support a given storage device, but another 

storage device on a slightly different system may be different enough that 

the application will fail there. Also, with this approach, you would not be 

able to run the two applications at the same time; they would need to run 

sequentially, since there is no mechanism to allow two programs to run 

at the same time in this scenario. Another, more mainstream approach 

would be for a common program to facilitate all the interactions with the 

hardware, handle complexities that happen underneath, and provide an 

abstraction for the applications to interact to. This allows the applications 

to focus on their business logic, reducing the size and complexity of the 

resultant application, which also gets the application written and validated 

much faster.

Before we can decide which is a better approach, let us take a similar 

analogy with a building construction company that is developing a new 

gated community. As part of the community, there could be many houses 

that need to be built. For each of these houses, there could be several 

common requirements such as water piping, electricity lines, drainage 

system, and so on that may be needed. Each of the individual houses 

may handle these on its own and have its own separate blueprints for 

water, drainage, communication, and so on. But it doesn’t scale. With this 

example, we can see that this is inefficient and often messy in terms of 

provisioning the lines and piping as well as supporting and maintaining 

them, in the long term. The best practice here is for the engineering team 

to streamline these via a central pipeline and then branch off from the 

central line to the individual houses as per the requirements. This not only 

saves cost, it is easier to maintain and manage and is less error-prone. The 

same concept can be applied for the case of a computing device, where 
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the OS manages and streamlines usage of hardware resources and allows 

multiple applications to run in parallel with each other.

In practice, there are many common features that may be needed by 

your programs including, for example, security, which would have services 

like encryption, authentication, and authorization, to name a few. It 

makes sense for these kinds of capabilities to be provided by the operating 

system, so they can be leveraged consistently by all.

 Purpose of an OS
As a precursor to this section, consider a common home appliance such 

as a dishwasher. The appliance supports a set of functionalities that is 

usually predefined (more modern systems may additionally have some 

programmability) in manufacturing. Such modern appliances have 

microprocessors with their runtime code already loaded and configured 

so that they “know” exactly what to do. Here, the complete programming 

logic is embedded into a non-volatile memory that is later executed using 

a microcontroller. It still has complexities in terms of reliability, error 

handling, and timing. However, the environment and the variabilities are 

quite contained within the appliance.

In the case of a general-purpose computing device, as we discussed 

earlier, there are varying needs in terms of the underlying hardware, the 

applications that need to run on the system, and the support for different 

users. At a high level, many of these are not deterministic in nature and 

could vary from one system to another. The purpose of the operating 

system is to ensure that it abstracts the HW and facilitates the seamless 

execution of our applications using the system. Now, we will take a more 

detailed look at the different complexities on such systems and how the OS 

handles them.
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 Complex and Multiprocessor Systems
Many modern computing architectures support microprocessors 

with multiple CPU cores. On higher-end systems, there could even be 

multiple sockets each able to host a microprocessor (with several cores). 

Typically, when all cores provide the same or identical capabilities, they 

are called as homogeneous platforms. There could also be systems that 

provide different capabilities on different CPU cores. These are called 

heterogeneous platforms. There are also additional execution engines 

such as Graphics Processing Units (GPUs), which accelerate graphics and 

3D processing and display, for instance. An operating system supporting 

such a platform will need to ensure efficient scheduling of the different 

programs on the different execution engines (cores) available on the 

system. Similarly, there could be differences in the hardware devices 

on the platform and their capabilities such as the type of display used, 

peripherals connected, storage/memory used, sensors available, and 

so on. It may not be possible to release a new OS for every new system 

configuration. Hence, the OS would also be required to abstract the 

differences in the hardware configurations to the applications.

 Multitasking and Multifunction Software
There is also an increasing need to use computers for multiple tasks in 

parallel. Let’s build on the same example that we had before where a 

user may want to play music and also create a content and write a file at 

the same time. In general, there could be many such applications that 

may need to be running on the system at the same time. These could 

include applications that the user initiated, so-called “foreground” 

applications, and applications that the OS has initiated in the background 

for the effective functionality of the system. It is the OS that ensures the 

streamlined execution of these applications.
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 Multiuser Systems
Often, there could be more than one user of a system such as an 

administrator and multiple other users with different levels of access 

permission who may want to utilize the system. It is important to 

streamline execution for each of these users so that they do not find any 

perceived delay of their requests. At the same time, there need to be 

controls in place to manage privacy and security between users. The OS 

facilitates and manages these capabilities as well.

As we discussed earlier, in general, there are various dynamic 

scenarios on the platform, and it is the role of the operating system to 

handle these in a consistent, safe, and performant manner. Most general- 

purpose OSs in use today, such as Windows, Linux, macOS, and so on, 

provide and handle most of the preceding complexities. Figure 4-2 shows a 

slightly detailed view of an abstract operating system.

Figure 4-2. Operating System Components
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As we can see here, it supports multiple different hardware, supports 

co-existence of multiple applications, and abstracts the complexities. The 

OS exposes different levels of abstractions for applications and drivers 

to work together. Typically, there are APIs (application programming 

interfaces) that are exposed to access system resources. These APIs are 

then used by programs to request for communicating to the hardware. 

While the communication happens, there could be requests from multiple 

programs and users at the same time. The OS streamlines these requests 

using efficient scheduling algorithms and through management of I/Os 

and handling conflicts.

 Why Is It Important to Know About the OS?
Software developers must have a good understanding of the environment, 

the OS, that their code is running in, or they won’t be able to achieve the 

things they want with their program. As you, a software developer, go through 

the stages of development, it is important for you to keep in mind the OS 

interfaces and functionality as this will impact the software being developed.

For a given application, the choice of language and needed runtime 

features may be OS dependent. For example, the choice of inter-process 

communication (IPC) protocols used for messaging between applications 

will depend on the OS offerings.

During development and debug, there could be usages where the 

developer may need to understand and interact with the OS. For example, 

debugging a slowly performing or nonresponsive application may require 

some understanding of how the OS performs input/output operations. 

Here are some questions that may come up during the debug:

• Are you accessing the file system too often and writing 

repeatedly to the disk?

• Is there a garbage collector in place by the software 

framework/SDK?

Chapter 4  Operating SyStem



91

• Is the application holding physical memory 

information for too long?

• Is the application frequently creating and swapping 

pages in memory? What it the average commit size and 

page swap rate?

• Is there any other system event such as power event, 

upgrades, or virus scanning that could have affected 

performance?

• Is there an impact on the application based on the 

scheduling policy, application priority, and utilization 

levels?

If the application needs to interface with a custom device, it will 

most likely need to interface some low-level functionality provided by 

the OS. For example, if there was a custom device that is connected to 

the system, the application would need to use the OS-provided API for 

communication. As a software developer, it may be required to understand 

these APIs and leverage the OS capabilities. There could also be a need to 

follow certain standard protocols provided by the OS for authenticating a 

given user of your application to grant permissions and access.

The list can grow based the variety of applications and their intended 

usages. As we discussed before, the design considerations for the OS must 

leverage appropriate abstraction and separation of concerns between 

different hardware and users. Also, most OSs are tuned and optimized 

for some common use cases, based on expected use. From a software 

developer point of view, it is important to be aware of some of these and 

leverage the configuration knobs and built-in tools provided by the OS.
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 Responsibilities of an OS
As we have seen in the previous sections, the OS needs to be able to 

abstract the complexities of the underlying hardware, support multiple 

users, and facilitate execution of multiple applications at the same time. 

In Table 4-1, we articulate some of these requirements and discuss how an 

OS can achieve them.

Table 4-1. Requirements and Solutions

Requirement Solution

applications require time on the CPU to 

execute their instructions.

the OS shall implement and abstract this 

using suitable scheduling algorithms.

applications require access to system 

memory for variable storage and to 

perform calculations based on values 

in memory.

the OS shall implement memory 
management and provide apis for 

applications to utilize this memory.

each software may need to access 

different devices on the platform.

the OS may provide apis for device 
and I/O management and interfaces 

through which these devices can be 

communicated.

there may be a need for the user or 

applications to save and read back 

contents from the storage.

most OSs have a directory and file 
system that handles the storage and 

retrieval of contents on the disk.

it is important to perform all of the 

core operations listed in the preceding 

securely and efficiently.

most OSs have a security subsystem 

that meets specific security requirements, 

virtualizations, and controls and balances.

Ease of access and usability of the 

system.

the OS may also have an additional gUi 

(graphical user interface) in place to make 

it easy to use, access, and work with the 

system.
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To summarize, the OS performs different functions and handles 

multiple responsibilities for software to co-exist, streamlining access 

to resources, and enabling users to perform actions. They are broadly 

classified into the following functional areas:

• Scheduling

• Memory management

• I/O and resource management

• Access and protection

• File systems

• User interface/shell

The remainder of this part of this chapter will look at the preceding 

areas one by one.

 Scheduling
One of the primary functionalities of the OS would be to provide the 

ability to run multiple, concurrent applications on the system and 

efficiently manage their access to system resources. As many programs 

try to run in parallel, there may be competing and conflicting requests 

to access hardware resources such as CPU, memory, and other devices. 

The operating system streamlines these requests and orchestrates the 

execution at runtime by scheduling the execution and subsequent 

requests to avoid conflicts.

Before we go into the details of scheduling responsibilities and 

algorithms, it is important to know some background about the basic 

concepts of program execution, specifically processes and threads.
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 Program and Process Basics
When a software developer builds a solution, the set of capabilities it 

provides is usually static and embedded in the form of processed code 

that is built for the OS. This is typically referred to as the program. When 

the program gets triggered to run, the OS assigns a process ID and other 

metrics for tracking. At the highest level, an executing program is tracked 

as a process in the OS. Note that in the context of different operating 

systems, jobs and processes may be used interchangeably. However, they 

refer to a program in execution.

 Process States
When a program gets triggered for execution, typically say using a double 

click of the EXE (or using a CreateProcess() API in Windows), a new 

process is created. A process typically supports multiple states of readiness 

in its lifecycle. The following diagram captures some generic process 

execution states.

As we can see in Figure 4-3, the process begins “life” in the New 

state just after it is created. From there it may move to other states, with 

the next state typically being the Ready state, where it is waiting for the 

Figure 4-3. Process States and Transitions
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OS to assign a CPU to run on. The OS has a scheduler that takes care of 

selecting a process from a list of processes to be executed. Once selected, 

the dispatcher comes in that ensures the process selected gets time on the 

CPU. At this point, the process moves to the Running state. There could be 

a case when a process is running on the CPU, but may not have completed 

its job. The OS would also have to ensure other processes on the system get 

a fair share of time on the CPU. So the OS continues to execute the process 

on the CPU till a “timeout” is reached. After which, the process could be 

moved back to the Ready state waiting to be dispatched. This sequence of 

steps can continue to happen. At a later point, if the process is waiting on a 

device I/O, say a disk, it could be moved to the Blocked state if the device 

is busy. The same process continues till the process gets terminated and 

moves to the Exit state.

Note that there could be more than one CPU core on the system and 

hence the OS could schedule on any of the available cores. In order to 

avoid switching of context between CPU cores every time, the OS tries 

to limit such frequent transitions. The OS monitors and manages the 

transition of these states seamlessly and maintains the states of all such 

processes running on the system.

 Process Control Block (PCB)
The OS has a well-defined data structure through which it manages different 

processes and their states. It is called as the Process Control Block (PCB).  

As we can see in Figure 4-4, the PCB includes all information that is required 

to manage and monitor the process. It includes details such as the unique 

identifier of the process, current state, and other details pertaining to 

accounting and scheduling. It may also store the processor register details, 

program counter (which contains the address of the next instruction to be 

executed), and memory information. All these are required to execute the 

process and also save the context of the process when it is moved from one 

state to the other as we discussed previously.
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• The process ID is a unique identifier for the instance of 

the process that is to be created or currently running.

• The process state determines the current state of the 

process, described in the preceding section.

• The pointer could refer to the hierarchy of processes 

(e.g., if there was a parent process that triggered this 

process).

• The priority refers to the priority level (e.g., high, 

medium, low, critical, real time, etc.) that the OS may 

need to use to determine the scheduling.

• Affinity and CPU register details include if there is 

a need to run a process on a specific core. It may also 

hold other register and memory details that are needed 

to execute the process.

Figure 4-4. Process Control Block (PCB) Representation
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• The program counter usually refers to the next 

instruction that needs to be run.

• I/O and accounting information such as paging  

requirements, devices assigned, limits, and so on that is used  

to monitor each process is also included in the structure.

There could be some modifications to how the PCB looks on different OSs. 

However, most of the preceding are commonly represented in the PCB.

Now that we have looked at how a process is represented in the OS and 

how the OS maintains the context of different processes, we will look at 

how the OS supports multitasking and how these processes are scheduled.

 Context Switching
The operating system may need to swap the currently executing process 

with another process to allow other applications to run, if the current 

process is running for too long (preventing other processes/applications 

from running). It does so with the help of context switching.

When a process is executing on the CPU, the process context is 

determined by the program counter (instruction currently run), the 

processor status, register states, and various other metrics. When the OS 

needs to swap a currently executing process with another process, it must 

do the following steps:

 1. Pause the currently executing process and save the context.

 2. Switch to the new process.

 3. When starting a new process, the OS must set the 

context appropriately for that process.

This ensures that the process executes exactly from where it was 

swapped. With CPUs running at GHz frequencies, this is typically not 

perceivable to the user. There are other hardware interfaces and support 
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to optimize these. For example, the time taken to save and restore context 

could be automatically supported in certain hardware, which could 

improve the performance further.

 Scheduling
The most frequent process states are the Ready, Waiting, and Running 

states. The operating system will receive requests to run multiple processes 

at the same time and may need to streamline the execution. It uses process 

scheduling queues to perform this:

 1. Ready Queue: When a new process is created, 

it transitions from New to the Ready state. It 

enters this queue indicating that it is ready to be 

scheduled.

 2. Waiting Queue: When a process gets blocked by a 

dependent I/O or device or needs to be suspended 

temporarily, it moves to the Blocked state since it is 

waiting for a resource. At this point, the OS pushes 

such process to the Waiting queue.

 3. In addition, there could be a Job queue that 

maintains all the processes in the system at 

any point in time. This is usually needed for 

bookkeeping purposes.

Chapter 4  Operating SyStem



99

As we can see in Figure 4-5, all processes go through the Job queue 

and are waiting to be dispatched for execution. Once they are assigned 

CPU time, they get scheduled to run on the CPU for a specific time period. 

This is called as the quanta of time for which the process gets to run on the 

CPU. Once that time period is elapsed, the process is moved back to the 

Ready queue, where it waits to be scheduled again, until it has completed 

its task. If the process is running and gets blocked waiting on some I/O or 

an external event, the OS moves the process to the Waiting queue so that it 

is not wasting time on the CPU. This process of Ready -> Schedule -> Wait 

continues till the process completes its task, at which time it moves to the 

Exit state and gets released.

Typically, any process can be compute or I/O intensive depending 

on what kind of problem it is trying to solve. As a software developer, it is 

important for you to balance these requirements and optimize the code, 

perhaps utilizing threads, locks, and critical sections appropriately for best 

behaviors.

Figure 4-5. Scheduling Flow in a Typical OS with Different Process 
States
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 Scheduling Criteria
Most operating systems have predefined criteria that determine the 

scheduling priorities. Some of them have a criterion to provide maximum 

throughput and utilization of the CPU effectively, while others may have 

a higher preference to minimize the turnaround time for any request that 

comes to the scheduler. Often, most general-purpose operating systems 

provide a balance between the two and are usually tuned to the general 

workload needs. There may be additional power and performance settings 

that can be tuned to modify these behaviors.

Some of the typical metrics that the OS may use to determine 

scheduling priorities are listed in the following:

• CPU Utilization and Execution Runtime: The total 

amount of time the process is making use of the CPU 

excluding NOP (no-operation) idle cycles.

• Volume/Execution Throughput: Some OSs may need to 

support certain execution rates for a given duration.

• Responsiveness: The time taken for completion of a 

process and the average time spent in different queues.

• Resource Waiting Time: The average time taken on 

external I/Os on the system.

Based on these criteria and the strategic needs for the OS, the 

scheduling behavior of the system is defined.

Note most OSs try to ensure there is fairness and liveness in 
scheduling. there are various scheduling algorithms like First Come, 
First Serve (FCFS), Shortest Job First (SJF), Shortest remaining time 
First (SrtF), round-robin, Static/Dynamic priority, and so on that the 
OS uses for scheduling of processes.
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 Thread Concepts
Now that we have looked at how the process works and how the OS 

manages the scheduling of a process, we will look at an interesting concept 

called threads. A thread is nothing more than a lightweight process. When 

a process gets executed, it could create one or more threads internally that 

can be executed on the processor. These threads have their own program 

counter, context, and register information, similar to how the process is 

managed.

Threads help in performing parallelism within the same process. 

For example, if we have a simple form application that is executed, it 

typically starts with a main thread on which the user interface is running. 

Let’s assume we need to read some content that may take a while to 

load. This could cause the main thread to be blocked preventing the 

user from interacting with the application. However, if the call is made 

asynchronously, on another thread, the main thread can continue to run 

while the content read is happening. This not only improves performance, 

it also enhances the user experience. Note that all of this happens within 

the context of the same process.

Let us consider an example of a process that contains a single thread 

vs. the same process with multiple threads. As we can see in Figure 4-6, 

the parallel execution across threads happens within the context of the 

same process. Even if one thread in a process may be blocked, the other 

thread could continue its execution. Overall, this helps in completing the 

job faster. Since threads run within the context of a process, they relatively 

consume lesser system resources than processes as well.
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The OS may employ different types of threads, depending on  

whether they are run from an application. For instance, an application may 

leverage user-mode threads, and a kernel driver may leverage  

kernel- mode threads. The OS also handles switching from user-mode 

threads to kernel-mode threads as required by a process.

 Memory Management
In systems with multiple programs running in parallel, there could be 

many processes in memory at the same time, and each process may 

have specific memory needs. Processes may need memory for various 

reasons. First, the executable itself may need to be loaded into memory for 

execution. This is usually the instructions or the code that needs to be run. 

The second item would be the data part of the executable. These could be 

hardcoded strings, text, and variables that are referenced by the process. 

The third type of memory requirement could arise from runtime requests 

for memory. These could be needed from the stack/heap for the program 

to perform its execution.

Code Data Files

Registers Stack

Code Data Files

Registers

Stack Stack

Registers Registers

Stack

Single Threaded Process 
E.g. Form Application

Multi Threaded Process
E.g. Form application with separate thread for asynchronous I/O

Main UI thread UI thread File access 
Dispatcher thread

Process 
Information

Thread 
specific 

Information

Figure 4-6. Single- vs. Multi-threaded Process for a Simple Form 
Application
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Further, the operating system may also have its memory requirements. 

The OS and the kernel components may also need to be loaded in 

memory. Additionally, there may be a specific portion of memory needed 

for specific devices. For example, memory-mapped (discussed later) data 

for a specific device may need to be carved out and handled separately.

Like many other resources, the OS also needs to ensure efficient 

usage of memory. This is usually handled by the memory management 

subsystem. It manages various functions including allocation of new 

memory requests, translation of physical to virtual memories, swapping 

data pages, protection of specific memory pages, and so on. It may 

also need to manage and abstract the underlying hardware differences 

including memory controller intricacies and memory layout specifics. We 

will cover some of these topics in this section. Before we can get into the 

details, let’s cover some basic concepts.

 Address Binding
Consider a short line of pseudo-code (A = B + 2) that adds 2 to variable 

“B” and assigns this to variable “A”. When this line gets compiled, it gets 

translated into a few steps. The first step would be to read the value of B 

from memory. The next step would be a simple mathematical calculation 

to add value 2 to B and perhaps store this in the accumulator. The final 

step would be to copy back this value and write this back to the memory 

location referenced by A. As we can see here, there are multiple references 

to read from memory and write back to memory, also, not shown here, 

involving the CPU registers. If these A and B are fixed memory locations 

like in the case of a traditional embedded system, these locations may not 

change. However, in the case of a general-purpose operating system, it 

becomes difficult to assign a location in memory that is static from run to 

run or even for the duration of one run.
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To solve this problem, the common solution is to map the program’s 

compiled addresses to the actual address in physical memory. In the 

simplest case, each program would get its own physical memory. This 

ensures that multiple programs can co-exist at the same time. This address 

binding can be done in multiple ways:

 1. The address locations could be fixed at compile 

time. That is, the base address or the starting 

address of a program can be fixed while compiling, 

and the rest of the locations are referenced from 

that. This is not advisable since the fixed base 

address may not be available if another program 

is using it or may call for unexpected security 

violations.

 2. The relative address of the program could be 

calculated at the time the program is loaded. A 

typical usage model would be to calculate this at 

runtime using a translation layer, which maps the 

program address to the real physical address. This 

is typically handled by the memory controller and 

is usually the most flexible option. Most operating 

systems and compilers also default to this mode for 

security reasons to change the base address at every 

launch.
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The address that the program has access to is usually referred to as 

the virtual address, and the actual location in memory is the physical 

address on the system. This could refer to a physical location on the 

RAM. As we can see in Figure 4-7, the application sees its code, static 

data, the variables, the stack, and so on. However, internally, the memory 

controller and the OS translate these to a location in physical memory. Not 

everything that the application sees may be residing in physical memory 

all the time. Also, at times, certain parts of the data could also be retrieved 

from storage such as disks. In the next section, we will look at how a simple 

translation happens between virtual memory and physical memory.

 Logical vs. Physical Address
A program will have variables, instructions, and references that are 

included as part of the source code. The references to these are usually 

referred to as the symbolic addresses. When the same program gets 

compiled, the compiler translates these addresses into relative addresses. 

Figure 4-7. Virtual Memory to Physical Memory Overview
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This is important for the OS to then load the program in memory with a 

given base address and then use the relative address from that base to refer 

to different parts of the program. At this time, the OS can make use of the 

physical address mapping to refer to specific locations in memory. This is 

depicted in Figure 4-8 where the relative address is calculated using the 

base address and the offset.

In general, there is not enough physical memory to host all programs 

at the same time. This leads to the concept of virtual memory that 

can be mapped to physical memory. The memory management unit 

is responsible for translating virtual addresses to physical addresses. 

Typically, most OSs have a page table, which is like a lookup table, that is 

used to translate virtual addresses to a physical address at runtime. When 

the contents that need to be referred are outside the page, the memory 

content is then swapped to the new page at runtime. As shown in  

Figure 4- 9, an unwanted page is usually identified and moved out to 

the secondary disk. Then, the required page is moved into memory to 

continue with the execution.

Figure 4-8. Absolute, Base, and Relative Address Concepts
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 Inter-process Communication
It is often desirable to have processes communicate with each other to 

coordinate work, for instance. In such cases, the OS provides one or more 

mechanisms to enable such process-to-process communication. These 

mechanisms are broadly classified as inter-process communication (IPC). 

There are many ways IPCs can be implemented. The two common ways 

are explained in the following, which involve shared memory and message 

passing.

 Shared Memory Method

When two or more processes need to communicate with each other, they 

may create a shared memory area that is accessible by both processes. 

Then, one of the processes may act as the producer of data, while the other 

could act as the consumer of data. The memory acts as the communication 

buffer between these two processes. This is a very common mechanism to 

communicate between processes. This is depicted in Figure 4-10.

Figure 4-9. Page Swapping Example
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There are additional details on the timing, creation of memory itself, 

permissions, and so on. However, we will not cover the details in this book.

 Message Passing Method

The other method is called message passing where the two processes 

have a predefined communication link that could be a file system, socket, 

named pipe, and so on and a protocol-based messaging mechanism that 

they use to communicate.

Typically, the first step would be to establish the communication 

channel itself. For example, in the case of a TCP/IP communication, one 

of the processes could act as the server waiting on a specific port. The 

other process could register as a client and connect to that port. The next 

step could involve sharing of messages between the client and server 

using predefined protocols leveraging Send and Receive commands. The 

processes must agree on the communication parameters and flow for 

this to be successful. Given this, they can communicate until the IPC is 

terminated by either of the process. This is a common communication 

mechanism that is used by networking applications as well.

Figure 4-10. Simple Shared Memory–Based Inter-process 
Communication
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 Further Reading

The memory management unit forms a critical part of the operating 

system. Additionally, some OSs use Translation Lookaside Buffers (TLBs), 

which contain page entries that have been recently used, multilevel page 

tables, and page replacement algorithms to perform optimal memory 

management depending on the needs. The performance, thrashing of 

memory, and segmentation needs vary from one OS to another. Some of 

these concepts are covered by the references shared later in this chapter.

 I/O Management
As part of the system, there could be multiple devices that are connected 

and perform different input-output functions. These I/O devices could 

be used for human interaction such as display panel, touch panels, 

keyboard, mouse, and track pads, to name a few. Another form of I/O 

devices could be to connect the system to storage devices, sensors, and so 

on. There could also be I/O devices for networking needs that implement 

certain parts of the networking stack. These could be Wi-Fi, Ethernet, and 

Bluetooth devices and so on.

Figure 4-11. Example I/O Controllers on a System
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As we can see in Figure 4-11, there are varied sets of I/O devices, and 

each of them has a specific purpose and programming interface. They vary 

from one to another in the form of protocols they use to communicate 

such as the data format, speed at which they operate, error reporting 

mechanisms, and many more. However, from an abstraction point of view, 

the OS presents a unified I/O system that abstracts the complexity from 

applications. The OS handles this by establishing protocols and interfaces 

with each I/O controller. However, the I/O subsystem usually forms the 

complex part of the operating system due to the dynamics and the wide 

variety of I/Os involved.

 I/O Subsystem
Input/output devices that are connected to the computer are called 

peripheral devices. There could be additional lines that are used to 

connect to these devices for communication purposes. These are called 

buses that are a combination of “data lines” to transfer data, “control 

lines” to control a device, and “address lines” that may be used to specify 

address locations. There could be different buses or device protocols that 

an operating system may support. The most common protocols include 

Peripheral Component Interconnect Express (PCIe) protocol, Inter- 

Integrated Circuit (I2C), Advanced Configuration and Power Interface 

(ACPI), and so on. A device can be connected over one or more of these 

interfaces.

Consider the need to send a request to read the temperature of a 

specific device that is connected via ACPI. In this case, the operating 

system sends a request to the ACPI subsystem, targeting the device that 

handles the request and returns the data. This is then passed back to the 

application. In another example, we want to change the display brightness 

of the display device. In this case, a request is made from the application 

to the OS, which in turn detects the display device from the I/O subsystem 
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and requests the appropriate display brightness control setting. The 

display subsystem then makes the necessary action and returns the result, 

for example, success or failure, back to the OS. All of these happen in a 

seamless fashion so that the user is not aware of the intricacies involved. 

Typically, there is a software component in kernel mode called as the 

“device driver” that handles all interfaces with a device. It helps with 

communicating between the device and the OS and abstracts the device 

specifics. Similarly, there could be a driver at the bus level usually referred 

to as the bus driver. Most OSs include an inbox driver that implements 

the bus driver. As we saw in Figure 4-11, there is usually a driver for each 

controller and each device.

The I/O devices can be broadly divided into two categories called 

block and character devices. Usually, most devices would have a command 

and data location and a protocol that the device firmware and the driver 

understand. The driver would fill the required data and issue a command. 

The device firmware would respond back to the command and return 

an error code that is utilized by the driver. The protocol, size, and format 

could differ from one device to another.

 Block Devices

These are devices with which the I/O device controller communicates by 

sending blocks of data. A block is referred to as a group of bytes that are 

referred together for Read/Write purposes. For example, when a request 

is made to write a file to the storage disk or if we need to transfer a file to 

a connected USB drive or if we need to read an image from a connected 

camera, the transfers are made as block reads. These could be defined by 

the device, for example, in multiple blocks of 512 or 1024 bytes. The device 

driver would access by specifying the size of Read/Writes.
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 Character Devices

Another class of devices are character devices that typically have a protocol 

defined using which the driver can communicate with the device. The 

subtle difference is that the communication happens by sending and 

receiving single characters, which is usually a byte or an octet. Many serial 

port devices like keyboards, some sensor devices, and microcontrollers 

follow this mechanism.

The protocols used by the different devices (block devices or character 

devices) could vary from one to another. There are three main categories of 

I/O protocols that are used.

 Special Instruction I/O

There could be specific CPU instructions that are custom developed for 

communicating with and controlling the I/O devices. For example, there 

could be a CPU-specific protocol to communicate with the embedded 

controller. This may be needed for faster and efficient communication. 

However, such type of I/Os are special and smaller in number.

 Memory-Mapped I/O

The most common form of I/O protocol is memory-mapped I/O (MMIO). 

As we discussed in the “Memory Management” section, the device and OS 

agree on a common address range carved out by the OS, and the I/O device 

makes reads and writes from/to this space to communicate to the OS.

OS components such as drivers will communicate using this interface 

to talk to the device. MMIO is also an effective mechanism for data transfer 

that can be implemented without using up precious CPU cycles. Hence, 

it is used to enable high-speed communication for network and graphics 

devices that require high data transfer rates due to the volume of data 

being passed.
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Figure 4-12 depicts the case where the graphics driver acts as the I/O 

device and a memory-mapped location is used to share and communicate 

to the graphics device.

 Direct Memory Access (DMA)

As we discussed earlier, there could be devices that run at a slower speed 

than supported by the CPU or the bus it is connected on. In this case, 

the device can leverage DMA. Here, the OS grants authority to another 

controller, usually referred to as the direct memory access controller, to 

interrupt the CPU after a specific data transfer is complete. The devices 

running at a smaller rate can communicate back to the DMA controller 

after completing its operation.

most OSs also handle additional specific device classes, blocking 
and nonblocking i/Os, and other i/O controls. as a programmer, you 
could be interacting with devices that may perform caching (an 
intermediate layer that acts as a buffer to report data faster) and have 
different error reporting mechanisms, protocols, and so on.

Figure 4-12. Memory-Mapped I/O Flow in a Graphics Device 
Example
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Next, let’s consider the difference between a polled and an 

interrupt- driven I/O.

 Polled vs. Interrupt I/Os
Consider our temperature device discussed previously. If the device 

supports a polled I/O mechanism, the typical flow would involve requesting 

the device for temperature by issuing the command and filling the data 

field. At this point, the host system could wait for the operation to complete. 

In this case, it could be a blocked I/O call and a synchronous operation. 

However, it may not be efficient to block the execution. So, alternatively, 

the host system may issue a call and check the response at a later point in 

time if the operation has been completed. These could be implemented as a 

polled and an interrupt-driven I/O as shown in Figure 4- 13.

Figure 4-13. Example Polled vs. Interrupt-Driven I/O Flow
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One mechanism would be for the host to poll the device and check the 

status of the operation. There is usually a status register that determines 

if the device has completed the operation. This is a common I/O flow for 

some devices as shown in Figure 4-13 (A).

Another mechanism would be to use the interrupt-driven mechanism. 

In this case, the request for operation is issued to the device. A callback 

function is also defined that needs to get called when the operation is 

completed. The device would continue and complete the operation and 

raise an interrupt once done as shown in Figure 4-13 (B). The callback 

function would be called appropriately to handle the interrupt. The 

callback function is also called as the ISR (Interrupt Service Routine), 

and as the name suggests, it services the interrupt. As a programmer, it is 

important to keep in mind that these ISRs are short-lived and lightweight 

and need to service the interrupt raised as quickly as possible.

 I/O and Performance
The I/O subsystem plays a major factor in the overall performance of the 

system. As a software programmer, some of the operations done by your 

program could inadvertently impact the performance of the system. For 

example, a program could have multiple context switches arising due to 

the delays, responsiveness, and performance of the devices on the system. 

This may lead to an overall impact on the performance of your application. 

An application performing frequent writes to the disk or making many 

requests for continuous memory allocation can lead to excessive page 

swapping. A program could request for memory and may inadvertently 

not free up the memory requested after usage. These can cause memory 

leaks that may result in lower available memory and eventually impact the 

system performance. Also, requests for large blocks of contiguous memory 

may also have an impact since the memory subsystem may have to swap 

memory to accommodate the same.
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A programmer would need to be cognizant of the I/O subsystem and 

its limitations in terms of performance expectations, limits/boundaries, 

and potential impacts. This is required since it may not only affect their 

application but could also affect the overall platform eventually.

 Synchronization Concepts
Given there are devices and apps that must run together, access to 

hardware needs to be properly synchronized. There could be situations 

where more than one application may want to communicate to the same 

hardware device and the hardware device may not support concurrent 

access. It is important to know a few basics about how the OS uses 

synchronization to avoid potential conflicts. For this, let’s start with the 

concepts of atomicity, critical sections, and locks.

Consider a multi-threaded application where a function is 

incrementing a global static variable:

count++; // count is a location in RAM

The preceding statement can be decomposed into three operations, 

which include fetching the value of count, incrementing the value of count 

in a local register, and then storing the updated value back to memory. 

However, as we saw earlier in this chapter, the thread that was executing 

this instruction could have been swapped in the middle of this operation. 

At the same time, there could be another thread that could be swapped 

in and may try to increment count. This is depicted in Figure 4-14 where 

Thread A was in the middle of incrementing while another thread tried 

to read the value of count. Ideally, Thread B should be able to access the 

count variable only after the operation in Thread A was completed.
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If more than one thread tries to increment count at the same time, we 

may get unexpected results at any of the three steps we’ve described in the 

preceding. Such bugs are quite difficult to recreate and locate. This is an 

example where we need atomicity in instruction execution. Atomicity, as 

the name suggests, is a group of instructions that may need to be executed 

together as if they were a single instruction. The OS attempts to protect us 

from interrupting individual instructions while they are being executed.

 Critical Sections

In multi-threaded applications, if one thread tries to change the value of 

shared data at the same time as another thread tries to read the value, 

there could be a race condition across threads. In this case, the result can 

be unpredictable. The access to such shared variables via shared memory, 

files, ports, and other I/O resources needs to be synchronized to protect 

it from being corrupted. In order to support this, the operating system 

provides mutexes and semaphores to coordinate access to these shared 

resources.

Figure 4-14. Example of Increment Operation (count++) Across 
Threads
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 Mutex

A mutex is used for implementing mutual exclusion: either of the 

participating processes or threads can have the key (mutex) and proceed 

with their work. The other one would have to wait until the one holding 

the mutex finishes. As we can see in Figure 4-15, both Threads A and B 

would like to access a shared resource such as a file and write to it. Thread A 

initiates a request to acquire a lock before it can access the file. Once the lock 

is acquired, it finishes its operations on the file and then releases the lock. 

During this time, Thread B will not be able to access the file. Once completed, 

Thread B can follow the same procedure to access the shared resource.

A sample pseudo-code of the same implementation is shown in 

the following. As we can see, both threads try to acquire the lock before 

accessing the shared resource, that is, count in this case:

incrementCount()

{

    mutex_lock(&COUNT_MUTEX);

    count = count + 1;

    mutex_unlock(&COUNT_MUTEX);

}

Figure 4-15. Example Mutex
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 Semaphore

A semaphore is a generalized mutex. A binary semaphore can assume a 

value of 0/1 and can be used to perform locks to certain critical sections. It 

is usually helpful to batch lock resource requests for better performance. 

As we can see in Figure 4-16, each of the threads A, B, C, and D requires 

access to the critical shared resource. When each of the threads requests to 

acquire the lock, the semaphore increments a counter and also maintains 

a waiting list of threads on the shared resource. Typically semaphores 

also expose two functions wait() and signal() that may be used to send 

notifications to threads appropriately.

Now that we have seen how mutexes and semaphores work, we will 

go over another concept called deadlocks that may happen when the OS 

attempts to synchronize the operations on the system.

Figure 4-16. Example Semaphore
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 Deadlocks

In general, when we access a resource, we don’t always know all the ways 

other parts of the system may also access that resource. The OS manages 

this resource access, but there could be certain situations where a set of 

processes become blocked because each process is holding a resource and 

waiting for another resource acquired by some other process. This is called 

as a deadlock. As we can see in Figure 4-17, Process A holds Resource 1 and 

requires Resource 2. However, Process B already is holding Resource 2, but 

requires Resource 1. Unless either of them releases their resource, neither 

of the processes may be able to move forward with the execution.

Process A Process B

Resource 1

Resource 2

Requires

RequiresHeld by

Held by

Figure 4-17. Example of a Deadlock

Chapter 4  Operating SyStem



121

To elaborate from Figure 4-17, a deadlock can arise if the following four 

conditions hold:

• Mutual Exclusion: There is at least one resource on 

the system that is not shareable. This means that only 

one process can access this at any point in time. In the 

preceding example, Resources 1 and 2 can be accessed 

by only one process at any time.

• Hold and Wait: A process is holding at least one 

resource and is waiting for other resources to proceed 

with its action. In the preceding example, both 

Processes A and B are holding at least one resource.

• No Preemption: A resource cannot be forcefully taken 

from a process unless released automatically.

• Circular Wait: A set of processes are waiting for each 

other in circular form. As we can see in Figure 4-17, the 

arrows form a circular loop.

There are various mechanisms available to handle deadlocks using 

mutexes and semaphores that we discussed earlier along with additional 

algorithms to detect, avoid, and prevent deadlocks on the system. As a 

programmer, you would want to use these synchronization mechanisms.

To summarize, the I/O subsystem plays a critical role in the overall 

performance of the system. Memory management, interrupt responses, 

handling of I/O serializations, synchronizations, contentions, and so 

on play an important role in the overall performance of the system. 

Defining them, tuning and optimizing these are a major challenge for any 

operating system. There are various adaptive methodologies and runtime 

optimizations that various OS vendors invest in and try to adopt. These will 

continue to evolve for the better usage of our hardware.
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 File Systems
Applications often need to read and write files to achieve their goals. We 

leverage the OS to create, read, and write such files on the system. We 

depend on the OS to maintain and manage files on the system. OS file 

systems have two main components to facilitate file management:

 1. Directory Service: There is a need to uniquely 

manage files in a structured manner, manage 

access, and provide Read-Write-Edit controls on the 

file system. This is taken care by a layer called as the 

directory service.

 2. Storage Service: There is a need to communicate 

to the underlying hardware such as the disk. This 

is managed by a storage service that abstracts 

different types of storage devices on the system.

Directory 
Service

Storage Service

Disk Controller

Step 1: 
Create new file 

File Name

Step 4: 
Return File 

contents from disk

Step 2: 
Return 
File-ID

User space

Filing System

Step 3: 
Read 
File-ID

. . 

Disk 1 Disk N. . .

Figure 4-18. File System Overview with File Access Process

Chapter 4  Operating SyStem



123

As shown in Figure 4-18, when a new file is created, the file name 

and path are passed to the directory service, which creates a unique file 

ID. This reference is used later to read contents back from the file using the 

storage service.

We will start with file concepts and then proceed to the functionality 

details.

 File Concepts
From the perspective of the user, a file is a collection of related data that is 

stored together and can be accessed using a unique file ID usually referred 

as the file name. These files can be represented internally by different 

methods. For example, there could be .bin files in Windows, which only 

represent a sequence of bytes. There could be other structured contents 

with headers and specific sections in the file. For example, an EXE is also a 

file format in Windows with specific headers, a body, and controls in place. 

There are also many application-specific files, with their own formats. It is 

up to the programmer to define and identify if they require a custom file 

format for their application or if they can leverage a standard or common 

file format such as the JavaScript Object Notation (JSON) or the Extensible 

Markup Language (XML).

As a programmer, it may be important to know the attributes of the 

file before accessing it. The common attributes of any file include the 

location of the file, file extension, size, access controls, and some history 

of operations done on the file, to name a few. Some of these are part of the 

so-called file control block, which a user has access to via the OS. Most 

OSs expose APIs using which the programmer can access the details in 

the file control block. For the user, these are exposed on the graphical user 

interface via built-in tools shipped with the OS.
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 Directory Namespace
The operating system defines a logical ordering of different files on the 

system based on the usage and underlying storage services. One of the 

criteria most OSs adopt is to structure their directory service to locate files 

efficiently.

As shown in Figure 4-19, most OSs organize their files in a hierarchical 

form with files organized inside folders. Each folder in this case is a 

directory. This structure is called as the directory namespace. The 

directory service and namespace have additional capabilities such as 

searches by size, type, access levels, and so on. The directory namespaces 

can be multileveled and adaptive in modern OSs as we can see in the 

following folder structure with folders created inside another folder.

Figure 4-19. Sample Directory Structure
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As a programmer, you should be aware of a few additional basic 

concepts from the file system point of view. We will discuss them in this 

section.

 Access Control

There are different access levels that can be applied at file and directory 

levels. For example, we may not want a user-mode application running 

with a normal user credential to be able to make changes to some OS files/

services. The OS provides different access control IDs and permissions to 

different users on the system. Also, each file may also have different levels 

of permissions to Read, Write, Modify, and so on. For example, there may 

be specific files that we may want anyone to be able to access and Read but 

not Write and Modify. The file system provides and manages the controls 

to all files when accessed at runtime. These may also be helpful when 

more than one user is using the same system.

 Concurrency and Cleanup Control

There are many cases when the OS needs to ensure that a file is not moved 

or deleted when it is in use. For example, if a user is making changes to a 

file, the OS needs to ensure that the same file cannot be moved or deleted 

by another application or process. In this case, the OS would cause the 

attempt to move or delete the file to fail with an appropriate error code. 

As a programmer, it is appropriate to access a file with the required 

access level and mode (Read/Write). This also helps to be in line with the 

concurrency needs of the OS and guards against inconsistent updates.

The OS also needs to be able to periodically clear temporarily created 

files that may no longer be required for the functioning of the system. This 

is typically done using a garbage collector on the system. Many OSs mark 

unused files over a period of time and have additional settings that are 

exposed, which the user can set to clean up files from specified locations 

automatically.
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Overall, the file system provides access, access controls, and protection 

mechanisms to files in the directory namespace. The programmer needs to 

be aware of the protections and have the right access controls (privileges) 

to interact with the file system successfully.

 Access and Protection
If we have a system that is used by only one user without any access, 

networked or otherwise, to other systems, there may still not be assurance 

that the contents in the system are protected. There is still a need to protect 

the program resources from other applications. Also, there may be a need 

to protect critical devices on the system.

In practice, there is always a need to connect and share resources and 

data between systems. Hence, it is important to protect these resources 

accordingly. The OS provides APIs that help with access control and 

protection. Let’s start with some of the concepts.

 Rings: User Mode and Kernel Mode
We briefly covered user-mode and kernel-mode processes in the 

“Scheduling” section. One of the reasons the separation between user 

mode and kernel mode is implemented by most OSs is that it ensures 

different privilege levels are granted to programs, based on which mode 

they run in.

As shown in Figure 4-20, an abstract OS divides the program execution 

privileges into different rings. Internally, programs running in specific 

rings are associated with specific access levels and privileges. For example, 

applications and user-mode services running in Ring 3 would not be 

able to access the hardware directly. The drivers running on the Ring 0 

level would have the highest privileges and access to the hardware on the 

system. In practice, most OSs only leverage two rings, which are Ring 0 and 

Ring 3.
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 Virtualization
Consider the scenario where it may be required to have multiple closed 

environments that assume to have dedicated access to the resources on 

the platform. Operating systems and modern hardware provide a feature 

called virtualization that, you guessed it, virtualizes the hardware such that 

each calling environment believes it has the dedicated access it needs to 

function.

Virtualization is delivered via so-called virtual machines (VMs). A 

VM has its own guest OS, which may be the same as or different from the 

underlying host OS. A user can launch a VM, much like running any other 

program, and log into the guest OS. The host OS provides a hypervisor, 

which manages the access to the hardware. The guest OS is usually 

unaware of the internals and passes any resource/hardware requests to the 

host OS. The user can completely customize their VM and perform all their 

actions on this VM without affecting the host OS or any other VM on the 

system. At a high level, VMs help effectively utilize the hardware resources 

and are used heavily in server and cloud deployments.

Figure 4-20. Applications, Drivers, and Rings in an Operating 
System
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 Protection
There could be different security threats that may arise during the usage 

of a computer. These could attempt to access different critical resources 

on the platform such as data, compute, memory, and so on. The operating 

system needs to be able to detect any such attempts and potentially 

mitigate them. A threat could be any local or remote program that may be 

attempting to compromise the integrity of the resources in the system. To 

mitigate this, modern OSs usually implement checks to detect and protect 

against such incursions.

The most common protection would be to authorize the requester and 

apply authentication to any new request to the system. For example, when 

a request is made to a critical resource, the operating system would verify 

the user request (which is called as authentication) and their approved 

access levels (which is called authorization) and controls before providing 

access to a critical resource on the system. The OS may also have Access 

Control Lists (ACLs) that contain mapping of system resources to different 

permission levels. This is used internally before the OS grants permissions 

to any resource. Additionally, the OS may also provide services to encrypt 

and verify certificates that help with enhancing the security and protection 

of the system itself.

To summarize, the programmer needs to be aware of the various 

access controls and protection mechanisms in place and use the right 

protocols and OS services to successfully access resources on the system.

 User Interface and Shell
Although the user interface (UI) is not part of the OS kernel itself, this is 

typically considered to be an integral part of the OS. That said, many OSs 

support different UIs, many of which are provided by third parties, for 

instance.
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There can be multiple user interfaces for the OS all being implemented 

either as a text-based interface (e.g., MS-DOS) or a graphical-based 

interface (e.g., Microsoft Windows 10, macOS, etc.). The graphical user 

interface is the rich set of graphical front-end interfaces and functionalities 

provided by the OS for the user to interact with the computer. There could 

be an alternate simpler interface through a command line shell interface 

that most OSs also provide for communication. This is a text-based 

interface. It is common for programmers to use the shell interface instead 

of the GUI for quickly traversing through the file system and interacting 

with the OS. It requires the user to be aware of the commands and have 

the knowledge of the underlying OS implementations to be able to use it 

efficiently.

It is important for the software developer to be aware that the user 

interface and the shell interface may have an impact on their choice of 

programing language, handling of command line arguments, handling of 

the standard input-output pipes and interfacing with OS policies, and so on. 

Please note that the user interface and the features can be quite varied and 

different from each OS to another and are beyond the scope of this book.

 Some OS Specifics
All OSs have features that may be unique to them. For example, UNIX has 

its own level of file abstraction and a hierarchical namespace. It handles 

heavyweight processes uniquely and supports pipes and signals for IPCs. 

Some of the recent UNIX enhancements provide additional capabilities 

and fixes across many of the IPC mechanisms.

Similarly, Windows NT has a layered architecture with Win32 APIs and 

a contained Windows Driver Framework (WDF) for driver development. 

Windows also has its unique way of handling plug and play (PnP) of 

devices on the system, power management, and I/O subsystem. Some of 

these may vary from one Windows version to the other as well.
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From a programmer point of view, most of the basic concepts remain 

similar across these OSs. However, there could be few modifications and 

enhancements that you need to be aware of for your code to work across 

OSs. For example, the paths used to access files on the system or APIs 

referenced may be dependent on the OS/shell; and if you don’t code for 

these situations, your code may not work as expected across OSs. You may 

want to keep these in mind at development. Further details are beyond the 

scope of this book.

 Summary
In this chapter, we have described how the operating system forms an 

integral part of the system providing numerous capabilities including 

interaction with hardware and users and managing programs. OSs 

employ many design considerations and strategies based on which the OS 

abstracts and ensures seamless usage of the system.

As a software developer, you could be part of a larger ecosystem that 

could delve into device management, networking, web development, 

data management, and many other domains. The interfaces between 

the different domains and the way the operating system streamlines 

the operations between them are important for a software developer 

to comprehend and make meaningful decisions. Understanding these 

fundamentals helps in applying them at the various stages of software 

development ranging from architecture, design, deployment, and debug 

by taking the right choices.
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CHAPTER 5

Computer Networks 
and Distributed 
Systems
So far, we have discussed the computer systems in isolation. Computers 

need to talk to each other to enable communication with other systems 

to enable higher-value services. When we talk about a set of computers 

communicating over a network, we are describing a distributed system. In 

this chapter, we will discuss how this happens.

 History and Evolution of Networks 
and the Internet
Since the beginning of electronic computers, humans have had the desire 

to connect them. The US Department of Defense ARPANET was one of the 

earliest networks. By 1971, ARPANET was a 15-node network.

Roberts and Merrill proposed a common “messaging protocol” 

for heterogeneous computers to have a common language for sharing 

messages. Heterogeneous networks are defined as being made up of 

different computers, from different vendors. Wesley Clark, another 

researcher at ARPANET, proposed a two-layer approach, of an interface 
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layer and a communications layer. Hosts would provide the user 

interface, initiate the connection, and maintain the connection. And a 

communications layer of Interface Message Processors (IMPs) would 

move the data through the subnets to other hosts.

IMPs would break messages from the host into 8096-bit packets.  

A packet can be thought of as an envelope; it is a discrete set of bits that 

contain the message, or part of a message. A packet header contains the 

routing information and can be thought of as the address on the envelope. 

The IMP protocol added a common header that included source, 

destination, and control information. Routing is determining where to 

send a packet, so that it arrives at its proper destination. In IMPs, routing 

to the destination was not done by a central router; rather, each IMP 

kept a table of the routes with the amount of time it takes to send one of 

these packets. To ensure the arrival of the packets, an acknowledgement 

message was sent from the receiving IMP, and a checksum was used to 

verify the data was uncorrupted. If, after a certain period of time, the 

packet was not acknowledged, it would be sent again.

By 1971, a third layer had been added to the network stack, now 

application, host, and communications. Also, by 1971, the first application, 

a remote login program called telnet, was generally available. The File 

Transfer Protocol (FTP) and email were soon added and generally 

available by 1972. In the spring of 1972, ARPANET was demonstrated 

for the first time at the first International Conference on Computer and 

Communications (ICCC). The ARPANET that was demonstrated in 1972 

was not the Internet though. It was a single network of 15 computers with 

one killer app in the form of email. What was learned in the development 

of ARPANET, however, led to the creation of the Internet.

Robert Kahn extended the work from ARPANET to see if the 

techniques could be applied to radio for both terrestrial transmission and 

satellite transmission. The biggest impact of this research was applied to 

local area networks.
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ARPANET typically used leased phone lines to connect from computer 

to computer; however, in Hawaii, the phone lines were too noisy for clean 

data transmission. So ALOHAnet used radio to transmit the packets. 

ALOHAnet used two radio channels: one for machine data and one for 

user data. As you can imagine, without knowing when a transmission 

would be received, it was likely that two systems would transmit at the 

same time and collide with each other. It was impossible to know when 

to transmit to avoid a collision on the channel. ALOHAnet provided 

an elegant solution by not trying to avoid collisions. Recognizing that 

collisions would occur, the ALOHAnet researchers created an algorithm 

that would select a random time to wait and retransmit.

Robert Metcalfe improved on this algorithm with subsequent 

transmission collisions that would increase the random wait time 

exponentially to back off of a congested channel. Metcalfe applied 

this radio transmission technique to transmission on wires. Where 

transmitting data over radio at the time could carry thousands of bits per 

second, the transmissions over wires could transmit millions. Transmitting 

data on wires with this technique was named Ethernet.

Ethernet became the standard for data transmission for a local area 

network (LAN). By 1982, Ethernet products were commercially available 

for personal computers.

Robert Kahn and Vincent Cerf, both computer science researchers on 

ARPANET, created the Internet architecture. The Internet architecture was 

more flexible and more distributed than the architecture of ARPANET. The 

Internet architecture was adopted by not only the Internet itself but many 

other networks.

In 1973, Vincent Cerf organized a seminar to design the Internet host 

protocol, the Transmission Control Protocol (TCP). Cerf and Kahn asked 

the questions what would be the best protocol for unreliable networks and 

what would be the best way to connect different networks. Both Cerf and 

Metcalfe, as well as Gerard Le Lann, collaborated on TCP; as a result, TCP 

reflected the Ethernet protocol. TCP would be able to handle collisions 
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and out-of-order packet reception. The second question of how to connect 

different networks had two possible answers. The first possible answer was 

to continue doing what had been done, which is let each network have its 

own protocol and then translate between protocols at the network edge. 

Cerf and Khan realized this would not scale as the number of networks 

grew, so they pushed for the second possible answer, to have a common 

protocol, TCP. The advantages of a common protocol, such as a common 

address space and transparency of the network boundaries, were worth 

the cost of needing to upgrade legacy networks.

To connect to other LANs and potentially translate between different 

network protocols, Cerf proposed a special kind of computer called a 

gateway. A gateway would be connected to two or more networks, and 

those gateways would maintain routing tables between the networks. This 

allows the local networks to connect to other networks and eventually be 

part of the Internet without having total knowledge of the Internet.

TCP required that all packets were reliably delivered, but this was not 

needed in every case. In some cases, for instance, if you are broadcasting 

a message out to lots of subscribers and don’t care if they get it or not, an 

unreliable protocol makes more sense. As such, in 1978, Vincent Cerf, Jon 

Postel, and Dan Cohen proposed that TCP was split into two protocols, 

TCP and IP. TCP was still responsible for reliable delivery, and IP was for 

simply passing packets between machines. This reduced the complexity of 

gateways, because they now only needed to handle IP.

By the end of the 1970s, TCP/IP had been developed and by the 

early 1980s had become a de facto standard for computer-to-computer 

communication. At the time, it was not the only standard floating 

around. A group of public telephone companies and communication 

equipment manufacturers had developed a standard called X.25 that 

largely overlapped with TCP/IP. X.25 varied from TCP/IP in that it defined 

network switching nodes to make virtual circuits between computers 

during the communication sessions.
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Many in the community saw that X.25 was in direct competition with 

TCP/IP and a threat to open networks. Both network protocols were used 

during this period, with commercial networks using X.25, while the ARPA 

Internet used TCP/IP and private networks used a mix of X.25 and TCP/

IP. While the debate about how to connect these disparate networks 

continued, the International Organization for Standardization (ISO) was 

focusing on computer manufacturers. To help keep the emerging network 

standards open, ISO created the Open Systems Interconnection (OSI) 

project.

Because networking computers were still new, ISO did not want to 

specify specific protocols or standards. Instead, they provided a standard 

model for creating network models. ISO based their model on the layering 

scheme that had been created by ARPANET. The OSI model consists of 

seven layers: physical, link, network, transport, session, presentation, and 

application (Figure 5-1). The layering scheme allowed ISO standards for 

network protocols to be slotted into the appropriate layer. A side effect of 

this layered approach to the network model was that it shaped the thinking 

of network protocols.
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Throughout the 1980s, the Internet grew from a small set of networks 

mostly related to defense research to an enormous network of computers 

and users. The Internet was transferred from military to civilian control. 

At the same time, the personal computer revolution was happening. One 

growing capability of personal computers was the ability to connect to 

other users through dial-up modems and bulletin board systems (BBSs). 

BBSs were sometimes connected to FidoNet, a network of bulletin board 

systems.

In 1989, Tim Berners-Lee invented the HyperText Markup 

Language (HTML) and the Hypertext Transfer Protocol (HTTP). This 

was the beginning of the World Wide Web as we know it. In 1993, 

Marc Andreessen and Eric Bina created a graphical user interface web 

browser for the National Center of Supercomputing Applications (NCSA) 

called Mosaic. The Mosaic client used HTTP to connect to servers on 

the Internet to download and display HTML content. Web browsers 

have continued to evolve as one of the primary clients of the Internet 

Protocols.

Figure 5-1. OSI Layered Model Showing Layers Used for 
Connection
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The World Wide Web Consortium (W3C) was founded in 1994 by Tim 

Berners-Lee, with a mission to lead the World Wide Web to its full potential 

by defining protocols and guidelines to ensure long-term growth of the Web.

 Protocols: Stateful and Stateless
Protocols are the language used to communicate between computing 

systems on a network called nodes. The protocols carry the information 

about the connection as well as the content. Protocols define the rules 

of how to communicate between nodes. The protocol algorithm defines 

the rules such as who speaks next and what is expected. A protocol is 

implemented by a header containing the required data and an algorithm 

that utilizes that data.

Network protocols can be either stateful or stateless. Stateful protocols 

keep track of the connection between the two nodes as part of the protocol 

data itself. Stateless protocols do not track the state in the protocol, so, 

in general, there is no relation from one message to the next. There are 

advantages to both types of protocols, as we discuss in the following.

 Internet Protocol (IP): TCP and UDP
The Internet Protocol suite handles the connections between the host 

systems on the Internet, covering the transport and network levels in 

the OSI model. The Transmission Control Protocol (TCP) is used for 

connection-oriented data traffic. The User Datagram Protocol (UDP) is 

used for connectionless data traffic. Connectionless data traffic is data that 

is sent but not guaranteed to be received by another node. We will describe 

why this is done in the UDP section. The underlying Internet Protocol (IP) 

provides the methods to instruct and route the traffic on the network. The 

current version of IP is IPv6; however, IPv4 is still in heavy use. One of the 

key differences between IPv4 and IPv6 is the available addressable space 
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in the IP address. IPv4 has 32-bit IP addresses with both the source and 

destination host addresses and has a 20-byte header (Figure 5-2). IPv6 has 

128-bit IP addresses, again with both source and destination, and has a 40- 

byte header (Figure 5-3).

The Transmission Control Protocol, TCP, sits on top of IP  

(Figure 5- 4). TCP is the same regardless of whether it uses IPv4 or IPv6. 

TCP is a connection-oriented protocol in that it provides a byte stream 

for user processes that is both full duplex and reliable. TCP is reliable 

because it guarantees the data is sequenced and can be reassembled in the 

same order it was sent. Many of the most common application protocols 

such as FTP, HTTP, and ISMP sit on top of TCP. TCP provides features like 

acknowledgement and timeouts to increase reliability. TCP is also full 

duplex, which means that data can simultaneously be sent and received 

by both endpoints on a single connection. TCP keeps track of state 

information such as the sequence numbers of the message segments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

version priority flow label

payload length next header hop limit

128-bit source IPV6 Address

128-bit des�na�on IPv6 Address

Figure 5-3. IPv6 Header (32 Bits per Row)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
version header length type of service total length

Identification 0 DF MF fragment offset

time to live protocol header checksum

32-bit source IPv4 Address

32-bit destination IPv4 Address

Figure 5-2. IPv4 Header (32 Bits per Row)
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TCP defines a connection algorithm that is illustrated in Figure 5-5. 

First, a client will send a synchronization (SYN) message to the server 

with a sequence number (j). If and when that is received by the server, 

the server will send both its own synchronization (SYN) with a sequence 

number (k) and an acknowledgement (ACK) with the client’s sequence 

number increased (j+1). Finally, if and when the client receives this 

message, it will respond back with an acknowledgement (ACK) with the 

server’s sequence number increased (k+1). Once this handshake is done, 

then the client and server are connected and can communicate.

Figure 5-4. TCP Header (32 Bits per Row)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

source port destination port

length checksum
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When the client is done communicating with the server, it can 

terminate the connection by sending a finish (FIN) message and sequence 

number (m). The server responds with an acknowledgement (ACK) and 

sequence number (m+1) and then its own finish (FIN) message. Finally, 

the client responds with an acknowledgement (ACK) of the server’s finish 

message, after which the client and server are not connected.

UDP or the User Datagram Protocol is the other part of the Internet 

Protocol suite. Unlike TCP, UDP is a connectionless protocol; this means 

that UDP can send a message to multiple receivers without disconnecting 

Figure 5-5. TCP Connect and Disconnect
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from one receiver (Figure 5-6). This also means that there is no formal 

relationship between the senders and receivers, so receipt of the data is 

not guaranteed. UDP is typically used where performance and speed are 

more important than reliability. UDP messages are often referred to as 

datagrams. DHCP (Dynamic Host Configuration Protocol), RIP (Routing 

Information Protocol), and DNS (Domain Name System) are examples of 

protocols that are on top of UDP.

 Host, IP Address, MAC Address, Port, Socket
The computers that are the various endpoints in the network are 

generically referred to as hosts. Hosts may have one or more physical 

layer connections to the network such as Ethernet adapters, Wi-Fi cards, 

or wireless WAN adapters. The link layer is this direct node-to-node 

connection from a physical connection on one system to a single other 

system. The MAC (media access control) address is the link layer address 

of these physical connections. The MAC address is a unique 48-bit number 

assigned to each device. With 48 bits, there is an addressable space for over 

200 trillion devices on the network. The IEEE manages the assignment 

of MAC addresses to manufacturers of network equipment to prevent 

collisions of MAC addresses.

One or more IP addresses at the network layer can be assigned to 

the link layer MAC address. For IPv4, the IP address is a 32-bit number 

that is typically written as four dot-separated (between each byte) fields 

with values ranging from 0 to 255. With a 32-bit number, the addressable 

Figure 5-6. UDP Header (32 Bits per Row)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
source port destination port

sequence number

acknowledged number

header length unused urg ack psh rst syn fin receive window

checksum urgent data pointer

options
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space is about 4 billion possible IP addresses. With the explosion of the 

number of hosts on the Internet, especially Internet of Things (IoT) hosts, 

this 4 billion number is too small. An IPv6 address is a 128-bit number 

typically written as eight fields of four hexadecimal (16-bit/2-byte) digits 

separated by colons. 128 bits provides a sufficiently large address space 

for the future of the Internet. A loopback IP address represents the device 

to itself. The loopback addresses are 127.0.0.1 and 0:0:0:0:0:0:0:1 for IPv4 

and IPv6, respectively. Multiple services or processes can run on the same 

host concurrently by using either TCP or UDP. Each service listens on a 

port number, which is a 16-bit number. Each service must have a unique 

port number to be accessible on a given host. When a client or a peer 

needs to connect to a particular service or peer, it needs to specify not 

only the IP address but the port that the service process is listening on. 

Sockets are an API (application programming interface) for connecting to 

network services. A socket is bound to a port and allows a program to send 

and receive data with another program. The Internet Assigned Numbers 

Authority (IANA) assigns ports and port ranges to various applications 

(Table 5-1) to avoid conflicts.

Table 5-1. IANA Common Port 

Numbers and Ranges

Port Description

20 Ftp data

21 Ftp Control

22 ssh

23 telnet

25 simple mail transfer

80 http

(continued)
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Port Description

92 Network printing protocol

443 https

546 dhCp Client

547 dhCp server

631 internet printing protocol

8080 http alternate

1-1023 iaNa well-known ports

1024-49151 iaNa registered ports

49152-65535 iaNa dynamic or private ports

Table 5-1. (continued)

 DNS and DHCP
IP addresses are a great way of uniquely identifying hosts on the network, 

but it can be very difficult for humans to understand and remember the 

addresses of various hosts. The Domain Name Service (DNS) is a protocol 

to map human-understandable names to IP addresses. DNS sits on top 

of UDP. DNS servers maintain a mapping of domain names or human- 

understandable addresses to hosts on the Internet and the corresponding 

IP addresses. A DNS server will respond to a DNS resolution request with 

the IP address (Figure 5-7). If the DNS server does not have a matching 

name to IP address, it forwards the request up to a more authoritative DNS 

server, which may forward the request to other DNS servers. Once there 

is a name match, the IP address is returned to the original requestor. The 

remaining interactions between those hosts will be done with IP addresses.

DNS names follow a specific set of rules. The names must end in a 

top-level domain (TLD) such as .com or .org. Various countries each have 
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top-level domains. Preceding the top-level domain is a subdomain. This 

is usually the name of the organization that manages the host. Proceeding 

the subdomain and top-level domain is an arbitrary name for the specific 

host. Domain names are registered by a domain name registrar under the 

supervision of ICANN, the Internet Corporation for Assigned Names and 

Numbers.

Figure 5-7. Domain Name Lookup Sequence

The Dynamic Host Configuration Protocol or DHCP is a protocol to 

dynamically assign IP addresses to hosts on a LAN or IP segment. It is very 

common to use DHCP on local area networks so a person does not have to 

explicitly assign IP addresses to every host on the network.

With DHCP, the host sends out a DHCP service discovery message on 

the network. When a DHCP host receives a service discovery message, it 

responds with an IP address for the requesting system, the network mask, 

and the IP address lease time.

A network mask is a bit pattern that indicates which bits in the IP 

address cannot change. This indicates the range of possible IP addresses 

the host can reach. The network mask is sometimes called the subnet mask 

because it defines the subnet that the host is part of. A subnet is one or 

more hosts connected to a router. As an example (Figure 5-8), we have two 
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subnets 143.11.38.0/24 and 143.11.40.0/24, where the first 24 bits or three 

fields of the IP addresses in the subnets will be the same.

The DHCP lease time is how long the requesting client will have that 

IP address before needing to request a new one. Once the client selects 

the IP address, it will respond back to the DHCP server with a request for 

that IP address. Finally, the DHCP server will respond, acknowledging that 

the client is associated with that IP address. In addition to the IP address 

information, a DHCP server can also provide the address to a DNS server.

 Proxy, Firewall, Routing
Routers are computers that have the responsibility of moving network 

packets through the network. A router does this by forwarding packets 

from an inbound link to an outbound link. A router uses a forwarding table 

to determine which outbound link to send the packet, by inspecting the 

destination IP address in the packet.

The forwarding table is kept up to date with the current network 

topology with the Routing Information Protocol (RIP). RIP is a UDP 

Figure 5-8. Two Subnets Connected to a Router
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with datagrams from other routers and systems. Because RIP is a 

connectionless UDP, the packets sometimes get lost. This is ok because 

the routing table will just get updated with the next RIP datagram. RIP 

provides a distance measurement to a router, by counting how many hops 

(number of routers it passes through) between the source and destination.

Another routing protocol is OSPF (Open Shortest Path First), which 

provides information to routers to build a complete map of the network 

topology, allowing packet forwarding to be based on a shortest path to the 

destination. OSPF is used by upper-tier Internet Service Providers, ISPs, 

where RIP is used inside enterprise networks.

The next routing protocol is the Border Gateway Protocol (BGP). BGP 

is used by subnets to advertise that subnet is part of the Internet.

Network Address Translation (NAT) does a similar job to routers of 

taking incoming packages and sending them out to a specific destination. 

Private IP addresses are IP addresses that can be used in multiple local 

area networks without conflicting as they cannot be routed out to the 

broader Internet. This is typically the type of IP address a DHCP server will 

serve up. To send and receive packets to and from these private networks, 

a NAT table is used to associate a private network IP address and port 

to a public IP address and port. For instance (Figure 5-9), you may be 

running a web server on your private network at 10.0.0.11 on port 80 and 

an FTP server at 10.0.0.9 on port 22 with NAT to your ISP-assigned address 

143.11.38.34. The Internet only sees one device 143.11.38.34 and can 

send packets to that device. The NAT will inspect the packet it receives at 

143.11.38.34 to check the port destination and then forward that packet to 

one of the two machines on the private network.
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A firewall works similarly to a NAT in that it inspects the incoming 

packets. Depending on certain criteria, it will either forward that packet or 

drop it. The destination application and port number are common rules 

that are set up in firewalls. Other rules include destination IP addresses 

and hostnames.

A proxy server is another service similar to a firewall in that it usually 

is part of the edge of a network before packets are sent out to the broader 

Internet to help secure your traffic. Even with encryption of the data, with 

TCP/IP, the headers are not encrypted, so your source and destination IP 

addresses are exposed. If you want to hide your source address, a proxy 

service will replace your source address with a proxy address and send it 

onto the destination. The destination will then respond back to the proxy 

server, which will reassemble the received packet with the original source 

address as the destination of the response.

Figure 5-9. Typical Network with DHCP and Network Address 
Translation
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 Distributed Systems: Prominent 
Architectures
Now that we have looked at some of the fundamentals of what makes up a 

distributed system, let’s look at some of the application architectures that 

are built on these network configurations.

 Client Server
A client-server architecture is one of the oldest and most common 

architectures you will see on a network. In this architecture, you will see a 

centralized server that multiple clients connect to in order to accomplish 

a task. Many of the common Internet applications use a client-server 

architecture today, such as HTTP and email.

A client-server architecture has the advantage of centralizing access to 

data, so there won’t be multiple potentially out-of-sync copies of the data. 

Data synchronization is a common problem with distributed systems in 

general. Data can be processed across multiple nodes, and that processing 

takes time. If data is changed during the time of processing in one node, 

but remains the same on another node, then data can be out of sync. The 

client-server architecture with its central access to data maintains what 

data to use and manages any synchronization issues.

With well-known protocols, a client-server architecture (Figure 5-10) 

can have a diverse set of clients that do not need to be implemented in the 

same programming language or even in the same operating system.

A microservice architecture is a modern variation of the client- server 

architecture with a client connecting to one or more (micro-, or smaller) 

services that provide a single capability, or a small set of related capabilities. 

A microservice has a smaller API and usually less code. Both of these features 

make individual microservices easier to maintain and secure. However, as 

the number of microservices grows, coordinating the microservices can 

become overly complex.
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 Peer to Peer
A peer-to-peer architecture (Figure 5-11) has two or more homogenous 

nodes in the network that can act as both client and server. This 

architecture is commonly used for distributed computing where each 

node does a portion of the computation on a portion of the data. It is also 

used for file sharing where each node shares distributing part of the files, 

which is then reassembled at the requesting node.

A peer-to-peer architecture is advantageous when centralized access 

is not needed, and portions of the work can be done independently. One 

of the challenges of a peer-to-peer architecture is discovering the peers. 

Multicast DNS or mDNS is one solution to this challenge. Using mDNS, a 

peer will send DNS information as a multicast UDP datagram on a network 

to advertise its presence. Other peers will receive this message to discover 

a peer. This only works on a single subnet. An alternative approach to 

discovery is that each peer will register with a central node and ask the 

central node about the other peers.

Figure 5-10. Client-Server Architecture
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Figure 5-11. A Peer-to-Peer Architecture

 N-Tiered
An N-tiered architecture (Figure 5-12) is when multiple nodes in the 

network have specific roles as part of the total solution. One of the most 

common N-tiered architectures is the three-tiered Model-View-Controller 

(MVC). The Model service provides the data for a particular model that 

the View service presents to the user. The Controller service operates on 

the model and transforms the data as defined by the business logic. This 

separation of concerns in the architecture provides the advantage of a 

flexible architecture that holds even when the underlying implementation 

changes. Model-View-View-Model (MVVM) and Model-View-Presentation 

(MVP) are other N-tiered architectures you may encounter.
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 Distributed System Examples
File transfer (FTP) and the World Wide Web (HTTP) are two examples of 

distributed systems that we can look into at a detailed level.

 FTP
FTP is one of the oldest protocols on the Internet. FTP is implemented with 

a client-server architecture and is considered a stateful protocol in that the 

server maintains the state of the connection with the client.

Let’s examine what happens when a user wants to download a file 

from an FTP server (Figure 5-13). First, the user will start the FTP client on 

their host machine specifying the FTP server by hostname, for instance, 

ftp.example.com. The FTP client will first resolve the hostname to an IP 

address via DNS. Once the client has the IP address for ftp.example.com, 

for instance, 143.11.38.34, the FTP client can create a TCP/IP packet with 

143.11.38.34 as the destination and port 21 to designate FTP. This packet 

gets sent and is received by the first router, which then forwards to the 

next router and so on until it gets to 143.11.38.34. The FTP server will set 

up a session for that client and then send a response packet, which will be 

routed back to the client host. Once the packet is received by the client, it is 

decoded, and the user is presented with connection information. The user 

can then log into the FTP server by entering a username and password. 

Figure 5-12. An N-Tiered Architecture
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The username is sent to the FTP server as one packet, which the FTP 

server associates with the session, and the password is sent in clear text 

as a separate packet to the FTP server. Once the FTP server has both the 

username and password, the user is authenticated. Now the user can send 

one or more commands to the FTP server. For the List command, the FTP 

server will respond with a listing of the files available for download. From 

here the user can send a Get command to get a specific file. This will open 

a separate connection to the FTP server on port 22 to receive the requested 

file. Finally, the user will send the Logout command to terminate the 

connection. When this packet is received by the FTP server, it “forgets” 

all of the information for this connection session and sends a connection 

terminated response back to the FTP client.

Figure 5-13. FTP Login and File Transfer Sequence
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 The World Wide Web
The modern World Wide Web is a collection of technologies that deliver 

a variety of services from video and music to banking and retail. One key 

technology that makes the modern Web so successful is SSL, the Secure 

Sockets Layer. SSL provides a method using asynchronous keys to encrypt 

the HTTP payload of a TCP/IP packet. This includes the HTTP headers and 

body.

For the purpose of simplifying this discussion, we will focus on 

nonencrypted HTTP (Hypertext Transfer Protocol) in comparison to FTP.

Like FTP, HTTP is a client-server architecture primarily for transferring 

files. Unlike FTP, HTTP is a stateless protocol, meaning the server does 

not keep any state about the client. This means HTTP needs to provide all 

connection information in each packet.

The World Wide Web uses the Uniform Resource Locator (URL) 

scheme to describe resources on the Web. This scheme defines the 

protocol, domain hostname or IP address, port, and path to the file. This 

scheme looks like this with each item in brackets indicating a parameter to 

specify: <protocol>://<hostname>:<port>/path/to/file. The protocol 

we will use for our example will be HTTP. FTP and HTTPS are two other 

protocols that can be addressed with an URL. HTTPS for HTTP secure is 

used to address HTTP through the Secure Sockets Layer and FTP for File 

Transfer Protocol. For our example, we will use the URL http://example.

com:80/index.html. This example has HTTP as the protocol, example.com 

as the hostname, and port 80, which is the default port for HTTP, as the 

port number. Because we are using the default number for HTTP, we can 

exclude the port number from the URL.

The user opens a browser and enters the URL into the location field. 

The browser will decode the URL into its component parts. Just like the 

FTP client, the first thing the browser will do is resolve the hostname 

to an IP address. It will then create a TCP/IP packet with the IP address 

associated with example.com and port number equal to 80, the default 
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port for HTTP. Included in this packet is the HTTP command Get and the 

requested path. Like all TCP/IP packets, this will be forwarded from router 

to router until it reaches the server. Here is where HTTP is significantly 

different than FTP. When the HTTP server receives this packet, it will build 

a response packet including the contents of the file at the path, in our case 

index.html. The server will send this response packet back to the client 

and forget everything about that transaction (it won’t keep state). When 

the response packet is received by the browser, the data content is parsed 

and rendered in your browser window. Table 5-2 lists the HTTP response 

code sent back to the client.

Table 5-2. HTTP Response Codes

Class Code text Code Meaning

success ok 200 request successfully fulfilled.

success Created 201 used by the post method to indicate newly 

created document.

success accepted 202 request has been accepted for processing, 

but is not yet processed.

success partial 

information

203 Not the definitive document requested but 

metainformation.

success No response 204 server received the request but does not 

send any information back.

redirection moved 301 requested document has permanently 

moved to a new urL. header will contain a 

new urL.

redirection Found 302 requested document has a different urL, 

but this is a valid urL.

(continued)
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Class Code text Code Meaning

redirection method 303 requested document not available with 

this method.

redirection Not modified 304 requested document has not changed; the 

client should use the cache.

Client 

errors

bad request 400 request had bad syntax or is impossible to 

fulfill.

Client 

errors

unauthorized 401 request does not have a suitable 

authorization header.

Client 

errors

payment 

required

402 the request requires a Chargeto header 

information.

Client 

errors

Forbidden 403 request is forbidden; there is no suitable 

authorization header.

Client 

errors

Not Found 404 the server has not found anything 

matching the urL.

server 

error

internal error 500 the server encountered an error.

server 

error

Not implemented 501 the server has not implemented the facility 

to fulfill the request.

server 

error

service 

temporarily 

overloaded

502 the server cannot fulfill this request do to 

load.

server 

error

Gateway timeout 503 similar to 500 error, but indicates the 

server cannot access another server.

Table 5-2.  (continued)
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While HTTP was originally developed for transferring HTML 

documents, “web pages,” the versatility of a stateless protocol has allowed 

for a wider variety of applications to be implemented on top of the World 

Wide Web. ReST (Resource Stateless Transfer) is a method of creating 

general-purpose APIs using HTTP. ReST APIs will typically transfer 

documents that contain data. JavaScript Object Notation or JSON and the 

Extensible Markup Language (XML) are two common formats that are 

used for these data-rich documents. The data is sent to a client that may or 

may not be a browser.

 Case Study: Web Application
As a case study, we will build a simple web application. This application 

will provide a browser-based form to request a user-specified number of 

files to recommend to the user and then allow the user to select one of 

those files to download from the back end.

 System Architecture
This system will have three main components (Figure 5-14). On the front 

end will be a browser form that provides the user input. In the middle will 

be the HTTP ReST server that receives the requests from the front end. 

Finally, we have the data source that the server will use to choose files from.
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As part of the architecture for a ReST service, it will be important to 

define the resources that will be available before implementation. We 

will define the first resource as filelist with a URL of http://example.com/

filelist/<count>. Each file that is available will also have a URL that will be 

http://example.com/files/<filename>, and finally the HTML content for 

the front end will be served from http://example.com/app.html.

 HTML, CSS, and JavaScript
Before we dive into this solution, let’s do a brief intro on HTML and some 

related topics. HTML stands for HyperText Markup Language and was 

the original intended format to be sent by HTTP. HTML provides a way of 

marking up a document into different sections using tags such as <head>, 

<body>, <script>, <div> for division, the paragraph tag <p>, and many 

others, as shown in Listing 5-1. The sections are separated by a beginning 

tag <body> and an ending tag </body>. Tags can and do contain other tags.

Figure 5-14. Web Application Three-Tiered Architecture
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Listing 5-1. Simple HTML Example

<html>

    <header><title>Network Example Client</title></header>

    <body>

        <div>

            <p>Hello Today</p>

        </div>

    </body>

</html>

Cascading Style Sheets or CSS is a method of providing styling 

information to the sections or tags of the documents. The style can be 

applied directly in the HTML document using a <style> tag or defined in a 

separate document and linked to the HTML document.

JavaScript is a programming language that is embedded in most web 

browsers and provides a programmatic access to the contents of the HTML 

document and the ability to alter the contents of the HTML document in 

the browser’s memory. Similar to CSS, JavaScript code can be embedded 

in the HTML document using a <script> tag or defined in a separate 

document and linked to the HTML document. JSON is the native object 

definition syntax for JavaScript, allowing JavaScript code to easily read and 

manipulate JSON documents.

 Front End
For the front end (Listing 5-2), we could use an HTML form, but we would 

like to get a little more dynamic and be able to update the view of the 

form without making additional requests to the app.html. The app.html 

will include a form to ask the user how many files they would like to see 

as options. JavaScript will connect, get the user input, and then form an 

HTTP request packet with the URL to the filelist route that includes the 

number of files to be provided as options. An HTTP request will be sent via 
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the browser to the back-end server. The server will send back a response 

containing JSON- formatted data that includes the files that the back end 

selected for options and the URLs for each file in the back end. The front 

end will then interpret this JSON data and update the form in the browser 

to show the file options to the user. Then the user will select one of the 

options, after which the front-end client will build an HTTP request to get 

the selected file. The back end will then respond with the contents for the 

file to the front end.

Listing 5-2. HTML and JavaScript for a Client

<html>

    <header><title>Network Example Client</title>

        <script >

            function load(){

                var xhttp = new XMLHttpRequest();

                var count = document.getElementById("count").value

                xhttp.onreadystatechange = function() {

                    if (this.readyState == 4 && this.status == 200) {

                        suggestions(this)

                    }

                };

                xhttp.open("GET", "filelist/"+count, true);

                xhttp.send();

            }

            function suggestions(resp) {

                var item_list = JSON.parse(resp.responseText);

                var suggest_html = "<ul>"

                item_list.forEach(element => {

                    suggest_html = suggest_html+'<li><a href="'

+element[1]+'">'+element[0]+"</a></li>"

                });
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                suggest_html+="</ul>"

                document.getElementById("list").innerHTML =

                suggest_html;

            }

        </script>

    </header>

        <body>

        <H1>Network Demo</H1>

        <div>

            <input id="count" value=5>

            <button onclick=load()>Select</button>

        </div>

        <div id="list">

            <p>Select a Random list books</p>

        </div>

        </body>

</html>

 Back End
The back end (Listing 5-3) will be a ReST service running on a system 

with a set of files on a disk. The first request the back end expects to get is 

a request for the front-end application at the route app.html. This is not 

required to be the first request because the back-end server is stateless. 

When it gets the request for app.html, the back end will return the HTML 

file to the browser, which the browser will render. Then the back end is 

ready to receive the next request. The next request could be a request for 

a number of files, for instance, to the route “filelist/3.” With this request, 

the back end will parse the value 3 from the path and use that in a pseudo-

random selection of three of the files from the disk. The back end will 

then encode a JSON object containing the name and URL for each of the 

Chapter 5  Computer Networks aNd distributed systems



163

files and respond back to the front end. At this point, the back end will be 

ready to receive another request. The next request we might expect from 

the front end is a request for one of the files presented in the last response. 

Here the back end will read the file from the disk and create a response 

containing the contents of the file to send to the front end.

Listing 5-3. Python Flask Code for Serving the Back End

@routes.get('/filelist/{count}')

async def filelist(request):

    count = int(request.match_info.get("count",0))

    filelist = list(get_example(EXAMPLES, count))

    headers = {"Cache-Control": "no-cache"}

    return web.json_response(filelist, headers=headers)

@routes.get("/")

async def index(request):

     index = pathlib.Path(pathlib.Path(__file__).parent,  

"index.html")

    resp_text = index.read_text()

    return web.Response(text=resp_text, content_type="text/html")

 Summary
In this chapter, we have covered a wide range of topics related to 

distributed systems and networks. We started with the history and 

evolution of the networking protocols that have brought us to the modern 

Internet. Next, we looked into the IPs that enable networks to work, such as 

TCP and UDP. Building on this, we examined specific protocols on top of 

UDP such as DNS and DHCP that help define the networks. And then we 

looked at the capabilities provided by TCP, such as FTP. After that we saw 

some common architectures for distributed systems including  
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client- server and peer-to-peer. Finally, we pulled all this knowledge 

together to create a simple client-server application using HTTP and 

related technologies, HTML and JavaScript.
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CHAPTER 6

Computer Security
Computer security is an extremely broad field spanning across multiple 

domains, ranging from the security of user data to the physical safety of 

the user. On a commercial robot, for instance, computer security is used to 

protect sensors and actuators whose malicious use can have a devastating 

impact on human life. Some examples of critical computer systems 

that could be compromised, if they have security issues, are healthcare 

systems, missile defense systems, and aviation systems, to name a few. 

Security spans from hardware and software to the social behavior of 

the users of the computer. In computer security, most things are not 

unconditionally secure; in general, they are only computationally secure. 

In other words, most security primitives are secure only under a given 

set of assumptions about the adversary. As computers are evolving, the 

amount of computation resources available to an adversary is increasing 

exponentially, year over year. As a result, security mechanisms must be 

upgraded to ensure the same level of security over time. Colloquially, it 

is a cat-and-mouse game where the defender must stay one step ahead 

of the adversary. The complex topic of physical safety is out of scope for 

this book. In this chapter, we will focus on data security, including types 

of security, adversary models, and mechanisms to secure data at rest (in 

storage) and data in transit between computer systems.

Privacy is another field that is always strongly associated with security. 

The fundamental security mechanisms used to protect data are the same 

mechanisms used to protect privacy. Privacy is associated with one or 
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more users and pertains to the confidentiality of Personally Identifiable 

Information (PII). With the advent of targeted online advertisements, 

privacy of users comes under scrutiny as both users and governments 

are worried about the data collection companies knowing too much 

about users and being able to predict their next actions. Sometimes, users 

voluntarily share their personal data in exchange for a free service; and in 

other cases, hidden software collects data from cameras, computers, and 

other devices used by the consumer without the explicit approval of the 

user. This is an evolving field with new primitives like differential privacy 

being developed in order to balance economic and human needs.

 Access Control
Like any other advanced field, computer security has its own jargon. In 

this section, we demystify common terms that are used by media, industry, 

and security experts to express ideas around security. As security is all 

about protecting data, there are certain fundamental security properties of 

data that need exposition. Data can have the following security properties: 

Read, Write, and Execute. Data is readable for an actor if the actor can 

read the data without being blocked by any agent in the system. The data 

is writable if the actor can write the data in the system without being 

blocked by any other agent. Finally, the data is executable if an actor can 

point an agent to execute the commands. An astute reader will notice that 

the properties of data are from the perspective of an actor. In other words, 

same piece of data that is readable for one actor may be only writable for 

another or executable for yet another actor, or a combination of these 

properties for the same piece of data may be valid for another actor. In a 

computer system, these properties are specified by software and enforced 

by hardware. This is also called as access control of data and is enforced by 

a trusted agent in the system. The trusted agent will have all access to the 
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data and will grant selective access to other agents and actors. The agents 

and actors in a computer system span both hardware and software.

In many cases, it is not possible to use access control for enforcing 

the properties of data. In those scenarios, we need to use cryptography. 

Cryptography is the art and science of protection of data in the presence 

of adversaries. This is a vast field of study, and in this chapter, we will 

talk about the fundamental properties of data that can be enforced using 

cryptography. The cryptographic properties are similar to the access 

control properties that can be enforced, but the mechanisms of the 

enforcement are vastly different. In addition, in certain scenarios, access 

control can be enforced, while in other scenarios, like sending data 

over an untrusted channel, cryptographic mechanisms must be used. 

It is important to point out here that most of the modern cryptographic 

algorithms and protocols are only secure under assumptions of compute 

limitations of an adversary. An adversary with unlimited compute 

capability can bypass most of the cryptographic mechanisms being used 

today. We introduce common cryptographic and security properties in the 

rest of this section.

 Confidentiality
Confidentiality of data covers if the data is secret or not. It is clearly a 

corollary to the Read property explained in the preceding under access 

control. If an actor can read a data, it is not confidential to the actor. If 

the actor cannot read it, it is confidential to the actor. There is a long 

list of encryption algorithms that are used to encrypt data to ensure its 

confidentiality. Unencrypted data, called plaintext, is sent through an 

encryption algorithm to generate a ciphertext. A key is used for encryption. 

As shown in Figure 6-1, in a symmetric encryption algorithm, the same 

key is also used for decryption, the process of generating the plaintext 

from ciphertext. Any actor that has the key has the read access to this 

data since it can decrypt the ciphertext and read the plaintext. Since the 
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same key is used for encryption and decryption, this mechanism is called 

Symmetric Encryption. In the United States, there is a body called the 

National Institute of Standards and Technology (NIST) that standardizes 

encryption algorithms that are used by most of the industry. Currently, the 

strongest encryption algorithm standardized and recommended by NIST 

is Advanced Encryption Standard (AES).

AES succeeds DES (Data Encryption Standard) and 3DES and is 

considered much more secure than its predecessors. Most cryptographic 

libraries provide APIs (application programming interfaces) for AES 

encryption; and most general-purpose processors from Intel, Apple, AMD 

(Advanced Micro Devices), and ARM support instructions for acceleration 

of AES encryption and decryption.

Figure 6-1. Symmetric and Asymmetric Encryption
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 Integrity
Integrity of data implies whether the data has been modified or not. It is 

a corollary to the Write property explained in the preceding under access 

control. If an actor can write a data, the integrity of the data is controlled 

by the actor. To ensure the integrity of data, data may be encrypted using a 

symmetric algorithm, and the same ciphertext will give the same plaintext 

using the same key. The problem we have is what if the adversary changes 

the ciphertext; on subsequent decryption of the modified ciphertext, the 

plaintext will be different from the original plaintext, which is clearly not 

desirable. The concept of hashing was introduced to solve this problem. 

Hashing is the process of mapping an arbitrary-length data blob to a 

fixed-size data blob called hash. The hashing algorithms are one-way 

functions such that given a hash value, it is computationally infeasible (or 

extremely hard) to find another data blob that would compress to the same 

hash value. In addition, a given data blob will always hash to the same 

hash value as long as the same algorithm is used. In order to ensure the 

integrity of the data blob, the hash value is protected from the adversary 

by either storing it separately from the data blob or encrypting it. If the 

adversary modifies the data blob, the hash value will change, and the hash 

of the modified data blob will not match the original hash value. Also, as 

mentioned in the preceding, it is computationally infeasible to find two 

blobs that will map to the same hash.

SHA-3 and SHA-512 are common hash functions used in cryptography. 

SHA-512 and SHA-3 can support a maximum of 512 bits of hash. In other 

words, any large blob can be hashed to 512 bits of hash. An astute reader 

will note that multiple large blobs can be hashed to a set of 512 bits. As a 

result, the data-to-hash relationship is two way; however, it is considered 

extremely hard (computationally intensive) to find a new plaintext 

that will hash to the same hash. In other words, if H(x) =Y, it is highly 

computationally intensive to find x’ such that H(x’) =Y.
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 Availability
Availability of data points to the physical presence of the data. It implies 

if the data is available to the actor to read, write, or execute. In other 

words, if an actor has access to the data but the data is deleted from its 

location in storage or memory or an adversary prevents a legitimate actor 

from accessing the data to which the actor has permissions, the data is 

considered to be no longer available. Cryptography generally does not 

help with availability as the operating system controls deletion of data. 

Availability is ensured by restricting access of an adversary to the data.

 Symmetric Key Cryptography
The preceding cryptographic and access control mechanisms work very 

well within a single system. However, the security problems become much 

more complex when multiple systems on the network are involved and the 

network channel is untrusted. If we have multiple systems on the network, 

we need protocols to ensure that a network adversary cannot interfere 

with the integrity of the data being transferred on the network. If Alice’s 

computer wants to send a confidential letter to Bob’s computer, Mallory, 

who has access to the network channel, should not be able read or write 

the messages between Bob and Alice. In addition, we want to ensure that 

Mallory should not be able to replay the messages from Alice to Bob. For 

example, if Alice wants to ask Bob to withdraw 20 dollars from the bank, 

Mallory should not be able to capture the message and replay it to Bob 

and make Bob withdraw 20 dollars multiple times, something which Alice 

never intended to do. The same mechanisms for encryption and hashing 

work in this scenario, but we get into a problem of sharing the keys 

between Alice and Bob so that Bob could decrypt the message.
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Symmetric encryption algorithms become problematic in network 

communication because there needs to be a secure way for the two sides 

to have the same key. In the preceding example, if Alice needs to encrypt 

and Bob needs to decrypt, they both must have the same key. In the 

absence of fast and secure communication channels, there is no way to 

send the key such that Mallory cannot get it. This is where asymmetric key 

cryptography comes in.

 Asymmetric Key Cryptography
Asymmetric key cryptography, as shown in Figure 6-1, is a set of 

algorithms enabling cryptographic operation with one key and its reversal 

with another key. For example, a data blob can be encrypted with a public 

key PuKey1 and decrypted with another private key PrKey1. As a result, 

Alice and Bob can agree on a PuKey1 and a PrKey1 allowing Alice to send 

messages encrypted with PrKey1 and letting Bob decrypt the messages 

with PuKey1. Alice’s key is called the private key, and Bob’s key is called 

the public key. The mechanism used by Alice and Bob is called the key 

establishment protocol. There are multiple key establishment protocols 

being used in the industry including RSA based on its authors Rivest-

Shamir-Adelman, DHKP (Diffie-Hellman Key Establishment Protocol), 

and ECC (Elliptic Curve Cryptography). All the protocols are based on a 

mathematical algorithm like discrete logarithms, factorization of prime 

numbers, and so on with a common theme that it is easy to compute the 

results in one way and almost impossible (without the knowledge of the 

keys) to reverse this computation. These key establishment protocols are 

computationally expensive; hence, they are not used to encrypt a lot of 

data. Instead, they are used to establish a shared symmetric key between 

the two parties, and the symmetric key is then used to encrypt/decrypt the 

data on the channel. This provides the best security while minimizing the 

overhead that comes with such security solutions.
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 Digital Signatures
Cryptography provides us a way of doing digital signatures, exactly like 

we sign a checkbook from our bank. When we sign a checkbook, the bank 

can verify our signature, we cannot deny signing it, and we cannot reuse 

a check once the money has been withdrawn and cannot repudiate that 

we signed the check. Digital signatures provide all these properties for 

digital documents. A digital signature is done by hashing a document and 

then encrypting the hash with a private key. Any entity (like a bank) that 

has the public key can verify that the document is signed by the owner 

of the private key. The bank saves the signed copy with a check number 

such that the owner or some intermediary cannot reuse the signed 

document again. One important thing to note is that digital signatures do 

not provide confidentiality but only provide nonrepudiation and integrity. 

The protocols built on digital signatures provide protection against replay 

attacks. In many countries including the United States, European Union 

countries, and India, digital signatures are also legally admissible in court.

 Digital Certificates
Any entity with a computer can generate a public/private key pair. How 

do we know that this public/private key belongs to Alice or Bob? Well, we 

need someone to tell us that the public/private key belongs to Alice or 

Bob. This is where the certificate authority comes into play. A certificate 

authority is a well-known agency like the driver license office or the 

government that issues passports. Everybody knows the driver license 

office and trusts them. This concept is taken to the digital world where 

well-known companies sign up to become certificate authorities (CAs). 

They are trusted by the rest of us because these companies are in the 

business of issuing certificates and any wrong endorsement from them 

significantly hurts their credibility and their business. In this scenario, 

the CA issues a certificate that tells everybody the hash of the public key 
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of Alice or Bob. This way whenever Alice or Bob signs anything with their 

private key, any verifier can verify the signature and also check whether the 

key belonged to Alice or Bob.

The most common certificates used in the industry are X.509 

certificates. These certificates have the details of the subject and the issuer 

and the public key of the subject. They are signed with the private key of 

the issuer (CA).

 Certificate Chains
Since one CA cannot sign certificates for everyone, the certificate signing 

architectures are generally distributed, where one or more CAs form a 

central ring and they issue certificates to the large corporations in the 

outer ring. Large corporations issue certificates to their people, products, 

and devices, essentially forming a certificate chain rooted in the innermost 

circle, the CA itself. These certificate chains are also called chains of 

trust where the root certificate is the trusted certificate and all the child 

certificates derive trust from the root certificate.

 Salts and Nonces
Salts are random bits of data generated using a random number generator. 

Salts are commonly used as an input to a hashing or an encryption 

algorithm such that the output of the algorithm is randomized. They 

are commonly used in password systems where passwords are stored to 

protect them from pre-computation or dictionary attacks. For example, 

a password X= “password” can be hashed using a function F(X)=Y. If 

an adversary knows the length of the password and that it is made from 

the English alphabet, the adversary can pre-compute a dictionary of all 

permutations of eight English alphabet letters. As a result, when it sees the 

hash, all it needs is to look for the corresponding hash in its dictionary and 

it can find the password string. However, if we generate a 64-bit random 
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number R and concatenate it with the password such that F(X||R) = Y’, the 

adversary will have to generate 264 = 18,446,744,073,709,551,616 (20 digits) 

dictionaries in order to find the password.

Nonces are also random bits of data generated using a random number 

generator and used as an input to various cryptographic algorithms. Nonces 

are not a secret from an adversary and commonly not repeated. In network 

protocols, nonces are used for ensuring the order of the packets and 

protecting from an adversary that tries to benefit by reordering the packets.

 Random Numbers
Random numbers are a foundational element of cryptography and 

computer security. They are used for generating keys, nonces, and salts. 

A salt is a random bit. Sometimes, they are used to seed counters used in 

symmetric encryption algorithms. Intuitively simple, true random numbers 

are extremely hard to generate in a computer system because of lack of 

entropy (randomness) in computer hardware and software algorithms. 

As a result, special-purpose primitives are built in the computer systems 

to provide this entropy. There are really three kinds of random numbers. 

First, True Random Numbers (TRNs) are numbers generated from a 

physical phenomenon like a flip of a coin. They are exceedingly difficult to 

emulate with deterministic algorithms on computers. The second kind of 

random numbers are pseudorandom numbers. Here, a seed is created from 

randomness of the computer, using an entropy source like user inputs, 

heat of the system, speed of the fan, and so on; and this random value 

is used as a seed to generate pseudorandom numbers. Given the seed 

and the algorithm, the next number can be predicted, hence the name 

pseudorandom. Cryptographically secure random numbers are the third 

class of random numbers commonly used in cryptography. These provide 

forward secrecy (knowing a number from the series will not divulge any 

previous numbers in the series) and break- in recovery (knowing a number 

from the series will not divulge future numbers).

Chapter 6  Computer SeCurity



175

 Security in Client Computing Systems
In the previous section, we read about the fundamental primitives for 

security of any system. The two fundamental primitives we read about 

are cryptographic mechanisms and access control. In most security 

solutions, one of these two mechanisms is used for protecting any asset. 

In the next section, we look at some of the contemporary technologies 

that the industry has developed in order to provide secure experiences in 

client computing. We have talked about the fundamental principles and 

primitives used for security and cryptography in the previous section. 

In the next few sections, let us discuss how these primitives are used in 

modern-day compute clients, servers, and the network. Modern-day 

clients (including desktops, laptops, phones), networks (including the 

Internet), and servers (IT [information technology] servers, external 

servers on the Internet, cloud servers) all attempt to work together to 

provide seamless security to the user. Client systems not only depend 

on the local platform mechanisms for security, but they also depend on 

servers in the cloud to configure and manage security locally. The client 

security comprises primitives for protecting data at rest, data in motion, 

and data in use and intersects with network security wherever data in 

motion must be protected.

 Malware, the Bad Apples of Software
In an industry where millions of lines of code are written per day, there 

are thousands of hidden defects in said code. In the software parlance, 

these defects are called bugs. These bugs can be further classified into two 

main categories. The first category consists of nonsecurity bugs where 

the code is doing something other than what the programmer intended 

it to do. These bugs may impact the user experience, functionality, safety, 

and/or the performance of the system. The second kind of bugs are more 

interesting from a security perspective. These bugs, named vulnerabilities, 
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are opportunities for an adversary to exploit the system to steal and abuse 

user data and/or illegitimately change the behavior and/or characteristics 

of the system. Malicious software that exploits these vulnerabilities is 

called malware. The malware that exploits these vulnerabilities is further 

classified into virus, worm, trojan, and so on based on the mechanisms 

used by the malware, its goals, and the impact it has on the user’s system. 

Skoudis et al. supply a good overview of the classification of all kinds of 

malware found in the wild in their book. In this chapter, we will abstract 

out the types of malware and focus on malware in general.

Malware is written by a myriad of actors, from so-called script kiddies 

who cobble together scripts to exploit a vulnerability to organized crime 

houses, sometimes funded by state agencies to indulge in cyber warfare. 

There is also an open market for malware called Darknet. Most malware 

will use multiple vulnerabilities to attack the system and follows the BORE 

(Break Once, Run Everywhere) model. This provides the malware writer 

motivation to devote resources to write the malware and then be able to 

use it repeatedly on a large number of machines till the vulnerability is 

fixed. Even when the vulnerability patches (software updates) are released 

by the original software vendor, it can take a long time (sometimes years) 

for these patches to reach all the end systems. Although the delivery 

mechanisms have become more efficient in the vertically integrated 

ecosystems like some phones, they are far from perfect.

Malware is extremely hard to detect because it looks like benign 

software to the untrained eye. However, the anti-malware industry has 

figured out a way to detect known malware with the help of antivirus (AV) 

scanners. The anti-malware industry employs security researchers to 

characterize a malware and generate a fingerprint for it. This fingerprint, 

called the signature (not to be confused with a cryptographic signature), 

is then fed into the antivirus scanners running on the computers. The 

antivirus scanner then searches for the known signatures in the software 

stored and executing on the platform. If a signature matches, it alerts 

the user and/or deletes the malware from the system. This search-based 
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mechanism has served the industry well since 1988 when the Morris 

Worm was found in the field. However, these signatures are very fragile 

such that changing one bit in the malware code can change this signature 

and provide a way for the malware to bypass the scrutiny of the antivirus 

running on the system. As the number of viruses is increasing and the 

number of corresponding signatures is rising to the order of millions, the 

antivirus companies are struggling in this battle with malware writers. 

Malware authors can now write self-modifying malware, also called 

homomorphic malware. The enormous number of signatures does 

not only consume heavy compute resources, but they are also easy to 

circumvent due to the ability of the malware to self-modify. Fortunately, 

the advent of artificial intelligence (AI) and neural networks has given 

us a new set of tools against malware. In the AI-based approach, the 

antivirus (AV) companies extract attributes of the malware and create 

a deep learning model from those attributes. Some examples of these 

attributes include function names in the malware, IP (Internet Protocol) 

addresses used, variable names, source of malware used, and so on. Since 

malware writers tend to reuse code, even modified malware has remnants 

of its parents. A new malware when passed through the inference engine 

is likely to get detected as malware even if some bits have been modified 

from the parent.

 Security of Data at Rest

Most user data on clients is stored on either a flash-based SSD (solid-state 

drive) or a magnetic disk. This data is the easiest to steal for an adversary. 

The adversary can steal the device, pull out the hard disk or SSD, connect 

it to another system, and read all the data. The industry has been worried 

about this physical attack for a long time; as a result, full-disk encryption 

solutions have been developed to fend off such attacks. All user data stored 

on the disk is encrypted, and the key is bound to the user and the device 

such that the data can only be decrypted when the user logs into the same 
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device. This prevents an adversary from using another device or another 

user login to illegitimately access the data. Most modern operating systems 

have disk encryption built in them including Windows, Chrome OS 

(operating system), iOS, Android, and macOS. Disk encryption provides 

the user an assurance that their data is secured even if the device is lost or 

stolen.

 Security of Data in Use

Protecting data at runtime is harder due to the fast-evolving nature of 

malware that tries to steal data and/or alter execution paths at runtime. 

Most general-purpose compute devices provide hardware mechanisms for 

software isolation like

• Process isolation

• Separation of privileged code from nonprivileged code

• Execute-disable bits – make modifiable memory as 

non-executable

• Mechanisms to protect the stacks – protection against 

stack overflows

• Protections against Return-Oriented Programming 

attacks (ROP attacks)

Client systems even go further to provide trusted execution 

environments (TEEs) to run algorithms at higher-privilege levels. Some 

examples of these TEEs are the secure virtual machines running on top 

of VMMs (Virtual Machine Monitors) and security controllers in the 

platform. They all run code at high-privilege levels where most malware 

finds it hard to attack them. Although the industry has been churning out 

increasingly capable defense mechanisms, the bad guys have not stopped. 

As a result, we are likely to see increased progress in mechanisms for 

protecting runtime environments on client platforms in the coming years.
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In 2018, some researchers from the Google Zero project found a 

way to exploit branch prediction in CPUs (central processing units) to 

do a privilege escalation attack. The most prominent attacks on branch 

prediction have been Spectre and Meltdown. This led to a flurry of security 

fix patches from silicon and operating system vendors, impacting millions 

of systems. This was an attack that was thought to be too computationally 

intensive to run, but with improved CPU performance on modern systems, 

it is now extremely feasible. This was a stark reminder for the industry that 

nothing is really absolutely secure. Even if something has stood up to the 

test of time for decades, it does not mean it is completely secure.

 Application vs. Kernel vs. Drivers

Most general-purpose operating systems are structured in a similar way 

such that the operating system (or the kernel) manages the hardware 

and runs at a higher privilege than the applications. General-purpose 

computing processors provide hardware mechanisms for the operating 

systems to protect their own execution and I/O (input/output) from 

applications. Applications run at user privilege, a lower privilege level 

than the OS itself. In addition, we try to make sure that for any code that 

runs on the platform, its provenance or origin is known before it executes. 

As a result, most applications are signed by their owners and verified 

by the operating system on which they execute. These signatures are 

cryptographic signatures that have a certificate chain rooted in a well- 

known CA that is used to identify their owners. This provides multiple 

security benefits: (a) It makes sure that the owner of the application does 

not introduce a malware in the application, since it can be traced back 

to them. (b) It deters malware writers since they must get a certificate in 

order to sign the malicious application.

I/O hardware generally has an associated piece of code that is used 

to manage the hardware. This piece of code, called the driver, typically 

runs in a privileged mode under the OS. Drivers decouple the I/O from 
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the rest of the operating system, provide a granular way to manage the I/O 

including updates, and are isolated from the applications. However, since 

these drivers live in the privileged domain, they must be protected, and 

the kernel must be protected from them. To harden them, these drivers 

are signed and verified by the OS like other applications. Every general- 

purpose operating system provides a mechanism of signing and verifying 

drivers.

 User Authentication and Authorization

Another way of protecting user data is to provide strong authentication for 

the user and the actors trying to access the data. Identifying and verifying 

the identity of the user is named as user authentication. Once the user 

is authenticated, it is granted access to certain resources. This grant is 

called authorization. User authentication has significantly evolved in the 

industry, from user passwords that by themselves are inherently unsecure 

to biometric authentication that may use face and/or fingerprinting to 

other multifactor techniques, such as texting passcodes. Biometrics and 

multifactor techniques have significantly enhanced the security and 

experience of authentication. Multifactor authentication requires the user 

to prove who they are via two or more of the following criteria: something 

they have (e.g., a phone that can be texted a passcode), something they 

know (e.g., a password), and/or something they are (e.g., a fingerprint 

or their face). The fundamental problems with passwords are that as the 

length and complexity requirements of passwords increased, it became 

harder for the users to remember them. As a result, users started using 

the same passwords for different systems, like websites. To address such 

password reuse, these sites add “salt” and then hash these passwords 

and save the resulting hash to disk. With this scheme, if an adversary 

compromises a server, it would be able to see only the hashed passwords. 

It can still do an offline dictionary attack (copy the file to its local storage 

and try to crack it) on the salted password, but this is a much harder 
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problem than cracking unsalted passwords. If the hacker can discover the 

password, they can potentially compromise many of that user’s accounts 

over many websites where the user was using the same password. This was 

clearly an undesirable situation.

It used to be that industry used to shy away from biometric 

authentication because of the fundamental concerns around non- 

replaceability of biometric data for a given user. That has changed now, 

and the industry is rallying behind biometric authentication although 

sending biometric data over the network is still frowned upon. User 

authentication is done at multiple levels, from a user login into the OS to a 

user login into a website. The current state of the art in user authentication 

is FIDO (Fast Identity Online), which turns the user authentication around. 

A user generates a private-public key pair and sends the public key to the 

server. The private key is protected using a pin or biometric authentication 

on the client, and the public key is saved at the server. Every unique 

website has a different public-private key pair, so a compromise of the 

public key at the server does not compromise the user account, since the 

adversary cannot do much with the public key without possessing the 

private key.

 Trusted Execution Environments and Virtual 
Machines
Traditionally software running on mainstream computers has been 

classified into user applications (like browsers, file explorers, etc.) and 

operating system that hosts these applications. The operating system is 

the supervisor that manages all the hardware resources on the platform 

and selectively grants them to the applications. Most people are familiar 

with Windows, Chrome OS, and macOS. Since the operating system runs 

at a higher-privilege level, by the virtue of managing resources, it also 

enforces access control. The applications run at a lower privilege level 
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from the operating system, thereby insulating the operating system from 

the applications. As the threat landscape has evolved, it turns out that 

operating system–level access control is no longer sufficient. There is 

a trend to run applications in an environment that is more secure than 

the operating system itself. These are not traditional applications like 

Notepad but purpose-built applications for security, like a user login 

service. These specialized environments, isolated from the operating 

system, are called trusted execution environments (TEEs). These are 

highly secure environments running extra secure applications. Trusted 

execution environments may run on a separate controller as a peer to the 

host operating system, albeit with higher privileges than the host operating 

system. The alternative is to have TEEs run on the same controller as the 

host operating system in a time-sliced fashion and with higher privileges. 

Virtual Machine Monitors (VMMs) are used to achieve the latter, while 

security controllers are used to achieve the former. These TEEs are 

protected from the operating system and user applications and provide 

higher security than the operating system itself.

Traditionally one platform could run one operating system, but it 

turned out that one operating system was not able to consume all the 

resources of the platform. Virtualization was then invented to solve the 

problem of running multiple operating systems. Virtualized systems run 

virtual machines that are containers for operating systems. All the virtual 

machines on the OS are managed by another layer of software called a 

Virtual Machine Monitor (VMM). Since the VMM can isolate the VMs from 

each other, VMs have become one way of instantiating a TEE. VM-based 

TEEs are commonly used in commercial OSs in the market.

 Secure Boot

Secure boot is the process of loading and executing mutable code after 

verifying the first mutable code by hardware. Mutable code is code that can 

be modified (before execution) in non-volatile storage like a disk or a solid- 
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state drive. Subsequent mutable code is verified by the previously verified 

mutable code, thereby forming a chain. It is commonly used to protect 

from malware attacks that modify firmware/software in persistent storage 

and is a common industry practice now. The main goal of secure boot 

is to ensure that only the system firmware and OS from a trusted source 

execute on the client. As explained previously, the OS makes sure that the 

applications and drivers are signed and sources are verified.

Most commodity hardware provides mechanisms for secure boot. 

They might either have a non-mutable code embedded in the hardware 

(in a ROM) or have a security controller that is responsible for verifying 

the mutable code. Clearly the code for the security controller itself must go 

through secure boot, and for that non-mutable code is typically stored in 

the ROM. Figure 6-2 shows a typical scenario of secure boot.

The preceding diagram shows a typical secure boot session. In each 

node in the diagram, the topmost bubble shows where the code is stored, 

the middle bubble shows what the code is, and the lowermost bubble 

shows whether the code is mutable and signed. Most client platforms 

Figure 6-2. Secure Boot
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boot from a program stored in read-only memory (ROM). This program 

is considered unmutable since it is programmed in the memory at the 

factory and cannot be modified after that. Once this program executes, it 

loads the next program from persistent storage. The persistent storage can 

be limited (few megabytes) storage in the form of a SPI-NOR or be a big 

storage drive sized to the order of terabytes. The program in the persistent 

storage is considered mutable since the persistent storage can be modified 

by an adversary. As a result, the ROM program checks the cryptographic 

signature of the program in memory before executing it. This ensures all 

the programs that execute are cryptographically verified.

 Secure I/O

Human beings interact with the computer using I/O peripherals. The 

security of the I/O peripherals is of utmost importance. Let us take a 

common scenario of money transfer; Alice wants to send 100 dollars 

to Bob, and she fills out a bank form on her favorite browser. Mallory 

implants a malware in the path from her keyboard to the browser and 

in the path from the browser to the display. When Alice types Bob, the 

browser receives the name Mallory. Although the browser wants to display 

Mallory in the window, the malware makes it display Bob. When Alice 

clicks Submit, the money gets transferred from Alice’s account to Mallory’s 

account. Most operating systems own and manage the I/O channels like 

keyboard, mouse, display, and so on. However, this makes both the OS 

and the I/O devices vulnerable to malware in the OS or in the device itself. 

Connecting the device directly to a TEE (trusted execution environment) 

protects the TEE and the device from OS malware. This connection can be 

a logical connection where there is a security protocol between the device 

and the TEE or a physical connection where the TEE directly manages the 

physical port connected to the device. Secure storage is also another form 

of secure I/O where the TEE manages the storage.
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 Digital Rights Management

Digital Rights Management (DRM) came into prominence with the 

Digital Millennium Copyright Act (DMCA). It criminalizes copyright 

infringement or attempts to evade protections put in place to control 

access to copyright works. More commonly, it is used to protect videos 

and music from unlicensed consumption. Most client computing devices 

provide mechanisms for the user to be able to access licensed content 

while deterring the user from accessing unlicensed content. These security 

mechanisms commonly work with the help of a TEE. Typically, the client 

first enrolls with a content provider. Once the server has identified and 

authenticated with the client, it provides the encrypted content (movie 

or music) to the client along with the license. The TEE then decrypts the 

content and coordinates with the operating system to play the content on 

the selected media device. The hardware and the software on the client 

ensure that the licensed user can access the content but cannot copy the 

content for redistribution or for use on another device. An astute reader 

will notice this is one of the fields in computer security where the owner of 

the device itself is not completely trusted with the data present on the user 

platform, since the user is not the owner of the movie but only a consumer 

of it. From the perspective of the content industry, as they are pouring 

billions into new content, they need these DRM mechanisms to protect 

their investments.

 Communication Security: Security of Data 
in Motion
Most computers converse over an untrusted channel on the Internet. Even 

though corporate and home networks are considered more trustworthy 

due to the restricted physical access to the data cables and data signals on 

which the data travels, the trend is going toward open networks where the 
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clients are expected to reduce their trust in the network channels and take 

appropriate cryptographic and security measures to ensure that the data 

can travel securely over untrusted networks.

On the network, the security protocols used must ensure the 

confidentiality, integrity, and/or replay protection of data. There are really 

no protocols available today that can protect against denial of service 

in an adversarial network. In other words, if Alice sends a message to 

Bob and Mallory is sitting on the adversarial network, Mallory can drop 

the message, and there is nothing Alice or Bob can do about it except 

Bob informing Alice that he did not receive a certain message and Alice 

resending it. The following three protocols are commonly used to ensure 

the security properties of the data on the network.

 Transport Layer Security
TLS (Transport Layer Security) is the second generation of the Secure 

Sockets Layer (SSL) cryptographic protocol that is designed to protect 

data being sent over an untrusted network. It is commonly used between 

a web browser running on a client and the server providing the service. 

The use of TLS has expanded to email servers, chat servers, voice calls, 

and even media streaming in some cases. TLS provides confidentiality and 

integrity of the messages using cryptographic asymmetric and symmetric 

key mechanisms. In common scenarios, web browsers do a bidirectional 

authentication with the server, that is, the server authenticates the client 

device and the client authenticates the server.

TLS (Transport Layer Security) and encryption on the Internet in 

general are seen as a double-edge sword by the government and the 

regulatory bodies across the world. The same secure conduit that allows 

users to protect their data from adversaries on the network is also used 

by malware to send malicious data across the network while avoiding the 

prying eyes of the government and regulatory agencies. Governments want 
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to be able to monitor the data, and privacy advocates do not want any 

loopholes in privacy protocols – the debate is ongoing.

Figure 6-3 shows the Open Systems Interconnection (OSI) layers 

of a network stack. Although data protection applies to all these layers, 

most security solutions use TLS in the transport layer and IPSec (Internet 

Protocol Security) in the network layer while resorting to purpose-built 

protocols in the application layer. The cryptographic primitives used by 

these protocols remain the same, while the messaging formats and the 

number of messages in the protocols change. It is also common to see data 

being encrypted multiple times as it travels down the stack and getting 

decrypted as it goes up the stack on the receiving side.

Figure 6-3. Communication Security
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 Virtual Private Network
Virtual Private Networks (VPNs) provide a mechanism to extend corporate, 

school, and home networks to remote, untrusted networks such that a 

device connected from a remote network is functionally connected to the 

private network. The device encrypts all the network data, and the data 

travels through the untrusted Internet in an encrypted fashion. Once the 

data reaches the edge of the private network, the data is decrypted at the 

edge and sent to the nodes in the private network. More specifically, it 

allows enterprise users, corporate users, and users of big organizations 

to connect to their parent networks through untrusted networks, like the 

Internet. There are three big categories of VPNs that are commonly used:

 1. Connecting host to network as described in the 

preceding

 2. Connecting two networks together through an 

untrusted network

 3. Connecting two disparate networks following 

different network protocols or IP addressing 

schemes

Over the years, many protocols have been used to accomplish VPN, 

but today Internet Protocol Security (IPSec) and versions of TLS are 

used for setting up these secure channels. The use of TLS for VPN is 

managed by the operating system in contrast to the application managing 

a TLS session. In other words, with application ownership of TLS, every 

application will have one or more unique TLS sessions with one or more 

servers, and it is the application’s responsibility to set up and tear down 

the session and make sure that the data being sent is sent through the TLS 

session. In contrast, a TLS VPN covers the whole client. All applications on 

the node can send data naturally without worrying about the TLS, and the 
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OS ensures that the data is always sent through the TLS connection. These 

(application and VPN) are two separate ways of using TLS, which are not 

necessarily interchangeable for given usage.

 IP Security
IPSec, Internet Protocol Security, is a protocol that works at the IP layer 

and secures the data in the network channels. One of the foundations of 

the VPN is it works at the network layer to provide a secure communication 

channel from the source node to a network. Like TLS, the fundamental 

mechanisms in IPSec are the same, a key establishment/exchange 

protocol followed by data transmission that is encrypted and integrity 

protected with symmetric keys. Unlike TLS, IPSec works at the network 

layer, while TLS works at the transport layer. The difference is what part 

of the data header and data payload is encrypted and integrity protected. 

Like TLS, IPSec also has various modes for authenticating endpoints and 

protecting data.

 Writing Secure Programs: Where Do 
We Start?
A lot has been written about secure programing and secure software. In 

this section, we talk about the fundamentals and provide some pointers 

to find more information. First, no program or code runs in isolation. It 

always depends on its environment, a set of libraries, a set of APIs, and 

sometimes software running on a remote server that this program interacts 

with. Hence, the security of the environment has a direct bearing on the 

security of the program itself. Even in these scenarios, there are certain 

fundamental security tenets that most programmers can use:
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 1. Every program has inputs and outputs; it is 

important to make sure that all the inputs are 

checked for an allowed range and any input out of 

range is rejected.

 2. Establish boundaries of trust. This will ensure that a 

vulnerability in one part of the program will not be 

used to compromise other parts of the program.

 3. Programs that use cryptography should never 

implement their own cryptographic functions. 

It is strongly recommended to use existing 

cryptographic libraries for cryptographic primitives. 

It has been repeatedly shown that cryptographic 

functions are extremely hard to get right, so it is 

recommended to stick to proven libraries that have 

survived the test of time.

 4. Memory allocated in the heap or the stack should 

be carefully managed and range checked and 

eventually freed. Memory overflows are one of the 

topmost causes of vulnerabilities. Programming 

languages that provide automatic memory 

management and garbage collection, so-called 

manage environments (e.g., C#, Java, Python), 

are more resilient to these kinds of attacks than 

languages that expect the programmer to explicitly 

manage memory (e.g., C, C++).

 5. It is the responsibility of the programmer to ensure 

that any logs generated do not have any secrets, 

since logs are generally not access controlled.
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 6. Compiler warnings are our friends. Sometimes 

compiler warnings point us to hidden 

vulnerabilities; always try to fix the compiler 

warnings before shipping the code.

 7. Adhere to the principle of least privilege. If a 

function or subroutine does not need access to 

a certain variable, restrict it from the function 

to prevent any unintended modifications of the 

variable.

 8. When there are multiple people working on the 

same program, have a secure coding standard so 

things remain simple and do not get cloaked in 

multiple styles or standards of coding.

 9. Run static and dynamic analysis tools to remove any 

inadvertent errors that are not caught by compilers.

 10. It always helps to have a second pair of eyes review 

the code.

 11. Lastly, always have a recovery plan ready. Attackers 

will find vulnerabilities, and they will compromise 

your program. There must be a way to fix the 

vulnerability and update the new program in the 

field.
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 Summary
Computer security has become an integral part of computer science. It not 

only impacts our data; in some cases, it can impact our physical safety. As 

the threats in the ecosystem are evolving, the industry is developing new 

countermeasures to diffuse these threats. However, there is no silver bullet 

that can counter all threats, and we need a mixed set of tools in our arsenal 

to protect us from these emerging threats. The fundamental cornerstones 

of computer security, access control and cryptography, are likely to evolve 

in coming years. As outlined previously, passwords are on their way out, 

albeit slowly, and are increasingly likely to get replaced with biometrics- 

based techniques. We can expect use of more encrypted network channels, 

VPNs (Virtual Private Networks), or TLS (Transport Layer Security) as the 

network data increases. The need for DRM (Digital Rights Management) 

is going to increase as the media industry pours billions into new and 

exciting content. Privacy will be the key debate for the next decade due to 

multiple economic factors like advertisement revenue that enables service 

providers to provide free services to users in exchange for user information. 

Finally, state actors are likely to use cyber warfare to complement 

traditional warfare, and there will be an increased need for encryption 

mechanisms that can be managed by law enforcement authorities. One 

thing is clear: computer security as we know it today will transform in a 

positive manner in the coming years.
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CHAPTER 7

Cloud Computing
We discussed in the earlier chapters that in a distributed system, there are 

two parts: client and server. Traditionally, corporations have managed 

their back-end servers on their own at their physical premise. However, 

there is a trend to consolidate these resources and services elsewhere (the 

cloud) on a network. These services can be used by the client systems as 

needed, and the resources can be remotely shared and optimized. The 

services are provided and managed by “cloud service providers” (CSPs). 

In this chapter, we’ll discuss different cloud computing models, their 

implications, and trade-offs. We’ll follow that up with different deployment 

configurations and consideration for developing and deploying portable 

and interoperable cloud solutions.

Note Simply speaking, cloud computing is a mechanism that 
delivers computing services over the Internet (“the cloud”) to offer 
faster innovation and dynamic scaling. It can help lower the operating 
costs for many of the usage scenarios by means of more optimized 
resource utilization.

Figure 7-1 illustrates cloud computing. Essentially, the infrastructure, 

platform, and services are hosted in the cloud; and then customers can 

access these services over the Internet via various interfaces.
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 Cloud Computing Models
There are different models of providing cloud computing services. Broadly 

speaking, these cloud computing service offerings fall into four categories: 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), serverless 

(aka Function as a Service, or FaaS for short), and Software as a Service 

(SaaS). Serverless (aka FaaS), however, is usually considered the same 

as or an extension to PaaS and not treated as a separate model in some 

literature. These models are also referred to as a cloud computing pyramid 

or stack because they build on top of one another.

Figure 7-2 depicts how the various models stack on each other. In the 

following sections, we’ll briefly discuss these models one by one.

Figure 7-1. Illustration of Cloud Computing
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 IaaS
Infrastructure as a Service (IaaS) is the most basic and flexible model 

of cloud computing. Essentially, IaaS provides a virtualized computing 

infrastructure that is provisioned, managed, and accessed over the 

Internet. Virtualization is a mechanism of creating virtual computer 

hardware like CPU, storage, network, and so on. An IaaS provider manages 

the physical end of the infrastructure (compute, storage, memory, and 

network) in a shared data center and lets their customers customize and 

use those virtualized resources to suit their needs.

The other way to look at IaaS is that the cloud service customer (CSC)  

rents the hardware resources from a cloud service provider (CSP). 

The hardware is hosted and managed by the CSP. It is essentially like a 

customer getting a machine with the requested hardware – compute, 

storage, memory, and network – from the CSP accessible over the network. 

The customer is responsible for the rest of the infrastructure management 

(OS, software, security, etc.).

IaaS provides dynamic scaling up and down based on the demand that 

lets customers pay only for what they use. Because compute resources are 

subscribed, purchased, and used as a service, it helps customers avoid 

the upfront cost and complexity of procuring and managing their own 

physical servers and other related infrastructure. Each part of computing 

Figure 7-2. Cloud Computing Pyramid or Stack
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resources is offered as a separate service component, and then the 

customer can choose and assemble required compute resources. For 

instance, customers can choose the number of CPUs, memory, storage, 

and networks separately based on their need, and the CSP will assemble 

and make a virtual system with those chosen resources. The resources 

need to be subscribed and rented only for as long as needed. The cloud 

service provider manages the virtual hardware infrastructure, while 

customers purchase, install, configure, and manage their own software 

pieces like operating systems, middleware, and applications. Microsoft 

Azure, Amazon Web Services (AWS), and Google Compute Engine (GCE) 

are examples of IaaS.

IaaS services make it super quick and easy to get access to hardware 

resources; you don’t have to procure, provision, and secure the 

hardware. Given the control and flexibility of software deployment in 

this environment, IaaS is the most efficient (in terms of time, cost, and 

flexibility) for exploration work. Also, owing to the flexibility, IaaS is always 

available for scenarios where the other services like PaaS and SaaS are 

unavailable.

It is also to be noted that when customers use more value-added cloud 

services from a CSP, they are charged extra for those value additions. For 

instance, PaaS is more value-added service than IaaS because CSPs are 

responsible for more services as part of PaaS than IaaS. So a corollary of 

that is IaaS will be cheaper than PaaS for same level of usage.

 PaaS
Platform as a Service sits a little bit higher up the pyramid than IaaS. That 

means, as part of PaaS offering, the CSPs are responsible for, and maintain, 

more services than in an IaaS model. As part of PaaS, CSPs supply an on- 

demand environment for developing, testing, delivering, and managing 

software services. PaaS makes it easier for developers to quickly create 

solutions without worrying about setting up or managing the underlying 
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infrastructure of hardware and software needed for development and 

deployment. AWS Elastic Beanstalk, Apache Stratos, and Google App 

Engine are some examples of PaaS.

PaaS offers everything that IaaS provides – that is, the underlying 

infrastructure as the service. However, in addition to the hardware, 

PaaS consists of middleware, framework, and other development and 

deployment tools. As part of PaaS, the cloud service providers provide 

these platform ingredients (tools and software). So the customers can 

focus on their development rather than trying to manage the SW and HW 

infrastructure.

 Serverless
Serverless computing is an extension to PaaS. This is also known as 

“Function as a Service” (FaaS). FaaS allows customers to execute code 

when needed without having to allocate computing resources in advance. 

In other models like IaaS and PaaS, the user has to allocate the computing 

resources in advance. As with PaaS, the cloud provider manages the 

complete infrastructure. This allows the customer to focus on deploying 

application code in the form of “functions.” FaaS enables your functions 

to scale up or down automatically to meet demand, which makes FaaS an 

excellent fit for workloads that fluctuate in terms of resource requirement.

Essentially, serverless architectures are highly scalable and event 

driven, only using resources needed to fill the given demand. Customers 

only pay for the resources they consume; therefore, serverless (FaaS) is the 

truest form of “pay-as-you-use” cloud computing model. Some examples 

of serverless are AWS Lambda and Azure Functions.

The serverless usage model is best suited for burst, trigger-based usage 

scenarios and can support extremely high throughput. The customer does 

not have to care or preplan for the infrastructure. The CSP infrastructure 

will automagically provision the platform and deploy and run the code 

when there is a trigger. There are many organizations, for example, 
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Thomson Reuters, the Coca-Cola Company, Netflix, and so on, that are 

already leveraging serverless effectively.

 SaaS
Software as a service (SaaS) is the model where software applications are 

delivered for use as needed over the Internet. Applications are typically 

made available on a subscription basis. With SaaS, cloud providers host 

and manage the software application including the required infrastructure 

and maintenance, including software upgrades and security patching. 

Customers just use the software application, over the Internet, without 

worrying about any aspect of development, deployment, and maintenance 

of the software.

SaaS sits at the top of the pyramid, and for the majority, it is the 

most familiar form of cloud computing. Some examples of SaaS include 

Microsoft Office 365, Salesforce, and Gmail.

SaaS is where the customers are not bothered by or responsible for 

any other aspects of software except that it should be reliably available 

when needed in a secure fashion. The service provider is responsible 

for everything. This is the only practical model for individual end users. 

However, there are organizations that don’t want to develop, deploy, and 

maintain their own software application for a specific purpose and so buy 

a subscription and let their employees use it. This allows organizations to 

focus on their core business rather than be distracted by other needs.

 Comparison of Cloud Computing Models
Figure 7-3 shows you the split responsibilities between the cloud service 

provider and the cloud service customer across IaaS, PaaS, and SaaS. As 

it is evident, the management responsibility of the CSC goes up from IaaS 

to PaaS to SaaS. Roughly speaking, in the IaaS model, the user gets the 

hardware equivalent of compute resource and everything else is managed 
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by the user, while in the SaaS case, pretty much everything is managed by 

the service provider and the user just needs to use the software.

 Benefits of Cloud Computing
As we’ve discussed, there is a lot of traction and movement to cloud 

computing. Organizations either have adopted or are in the process of 

defining the cloud strategy for optimal benefits. Much of traction is for 

good reason. Cloud computing offers organizations many benefits, which 

we will discuss next.

 Cost
In the cloud computing world, the customers use computing resources 

provided by the cloud service provider. Cloud computing eliminates the 

capital expense of buying hardware and software, physical hosting of 

hardware, and setting up and running on-site data centers. The capital 

Figure 7-3. Service Management Responsibility Chart Across IaaS, 
PaaS, and SaaS
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cost is completely taken away and born by the cloud service providers. 

The same is true for operating and management costs of the computing 

resources and other accessories like the electricity for power and cooling.

The customer must be aware that nothing comes for free. CSPs charge 

customers for the services they offer. Practically, in most of cases, the 

amortized cost for the customer will turn out cheaper using the cloud 

than hosting their own infrastructure. There are some scenarios where it 

could be costlier to use cloud services as compared to hosting one’s own 

data center. However, even in those cases, there are other benefits of using 

cloud services vs. hosting one’s own data center, which we discuss in the 

following sections. Finally, as this ecosystem evolves, we see that it is 

more and more likely that large corporations will have a split of cloud and 

on-premises compute infrastructure that can be combined, in a so-called 

hybrid cloud, to get the best of both worlds.

 Scalability
Another key benefit of cloud computing service is the ability to scale 

dynamically. There are multiple use cases where the computing needs 

may be bursty in nature. For instance, during festival time, there could be 

a lot more load on the ecommerce websites than otherwise. Similarly, for 

a geography-specific service, there could be more load in daytime than at 

midnight. So dynamic scalability refers to the ability of cloud to deploy the 

right amount of resources like computing power, storage, and bandwidth 

as per demand.

The other very important side effect of dynamic scalability is that the 

customer need not plan for and buy worst-case workload. It just scales as 

needed. The CSPs do charge for enabling dynamic scaling; however, given 

the benefits, it is totally worth it.
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 Velocity
As the cloud computing resources are already pooled at the CSPs and 

services are provided on demand, practically all computing resources 

can be provisioned quickly, in minutes in fact. This facility is in complete 

contrast to the procuring hardware resource and deploying in the 

traditional data center world, which can take months, if not quarters, to 

complete. This capability enables great flexibility for customers and takes 

off the pressure of capacity planning.

 Reliability and Availability
Cloud service providers provide robust solutions for data backup, 

disaster recovery, and business continuity in an easier and less expensive 

manner. The cloud service providers add redundancy and apply modern 

management tools to make the cloud computing resources and overall 

environment reliable and available.

 Productivity
Cloud computing enables high productivity for customers. For instance, 

with a traditional data center, setting up and managing computing 

resource requires a lot of time-consuming chores: hardware setup, 

software patching, security updates, and so on. In the cloud computing 

world, these chores are performed by the CSPs, so customers’ IT teams 

can spend time on achieving more important business goals. And, because 

CSPs scale across thousands of customers, they develop and deploy 

automated modern tools for these management activities.

Another aspect of improved productivity for customers is a result 

of velocity; since the required computing resources can be provisioned 

and deployed almost instantly, the customer can begin prototyping 

immediately.

Chapter 7  Cloud ComputIng



204

In addition to velocity, cloud computing has various differing levels 

of services: from IaaS to SaaS. The customer may choose what they want 

to focus on and leverage rest as a service from the CSP. All in all, cloud 

computing brings productivity across the board.

 Performance
The most prominent cloud service providers are deployed worldwide. 

They apply secure and fast networks and apply the latest technologies to 

secure their data and upgrade the hardware resources (compute, storage, 

memory, etc.) regularly with the latest generation of fast and efficient 

computing hardware. These attributes make best-in-class performance 

available to cloud service customers all around the world, reducing latency 

for geo-dispersed customers by means of colocating the cloud resources 

and customer in the same geography.

 Ease of Use and Maintenance
Cloud service providers offer several tools, technologies, and controls to 

strengthen the security and protection of data and apps. Additionally, the 

cloud service providers keep the security patches, features, and tools up to 

date, which results in improved security.

Combined with other benefits, cloud computing makes software 

development, deployment, and maintenance easy, hassle-free, and secure 

while being economical.

 Cloud Deployment Configurations
So far, we’ve talked about what cloud computing is in general and the 

benefits it brings. When it comes to deploying to the cloud, there are 

many ways to implement that. There are many different decisions that 

Chapter 7  Cloud ComputIng



205

could impact the implementation and the deployment, which makes one 

instance of cloud deployment look very different from another. Some such 

decisions include whom the cloud is accessible to, where it is located and 

hosted, how the security is implemented, and so on.

Broadly, there are three different ways to deploy cloud services: private 

cloud, public cloud, and a mix of the two called hybrid cloud. In the 

following sections, we will talk about each of them and their related trade- 

offs.

 Private Cloud
A private cloud refers to a setup where the cloud computing resources are 

designed and used exclusively by a single organization. The private cloud 

usually resides behind a firewall and on a private network. A completely 

on-premises private cloud can be physically located on the on-site data 

center. The organization may host and manage the private cloud on their 

own. However, some organizations hire third-party service providers to 

host their private cloud.

Private cloud solutions offer both security and control. The benefits, 

however, come at a cost. The organizations that own the cloud are 

responsible for the creation, deployment, and management of all 

the infrastructure and software, which makes the private cloud a less 

economical model than the public cloud in most of the cases. The private 

cloud could still make sense for the businesses with very stringent 

regulatory requirements.

 Public Cloud
As the name suggests, public clouds are owned and operated by third- 

party service providers, known as cloud service providers (CSPs). These 

cloud service providers deliver computing resources over the Internet for 

their subscribers. Amazon, Microsoft, and Google are some examples of 
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public cloud service providers. These cloud service providers specialize 

in the business and own and manage all hardware, software, and other 

supporting infrastructure. The customers of cloud service providers 

subscribe to and access these services over the Internet. Because of the 

sharing of cloud resources across the customers, public cloud offerings 

may be more economical for the majority of customers and use cases. The 

public cloud model provides smaller organizations the benefits of scale 

and economy.

 Hybrid Cloud
A hybrid cloud, as one can guess, combines public and private clouds. 

The hybrid cloud is designed to allow two platforms to work together, 

seamlessly. The hybrid cloud model brings the best of both worlds (private 

cloud and public cloud) together: provide the scalable computing power of 

a public cloud with the security and control of a private cloud.

 Ideal Cloud Deployment Configuration
As we discussed in the preceding sections, there is a trade-off between 

the public and private cloud deployment configurations. For example, 

the private cloud configuration may give you control and may be better 

equipped to store sensitive information regarding the corporation. 

The public deployment may provide better flexibility and scale. The 

performance and uptime may be better for public cloud deployment 

because the public cloud service providers specialize in that.

The use case itself may define whether a public or private cloud 

deployment is more suitable. For instance, there may be scope for 

optimization in terms of data going into (ingress)/and going out of (egress) 

the private cloud setups on-premises, while with public setups, there could 

be potentially increased cost for such data movement.
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Because of these reasons, many larger organizations combine the 

benefits of the two and use a hybrid cloud deployment. There is no 

standard guidance on what mix (private vs. public cloud) is the ideal. 

Organizations need to carefully evaluate and come up with the ideal setup 

based on their usages and trade-offs. In some cases, it could even require a 

multi-cloud model.

 Multi-cloud Model

In cases where a single public cloud isn’t enough to meet an organization’s 

computing needs, they may have to use services from multiple public 

cloud service providers and deploy a little more complex hybrid cloud 

architecture that combines a private cloud with multiple public cloud 

services. This model of deployment is known as multi-cloud. While 

a hybrid cloud consists of a public and a private cloud, a multi-cloud 

environment is a lot more complex and engages multiple public cloud 

service providers.

 Cloud Configuration Interface/Mechanism
In the earlier sections, we talked in detail about cloud services, the 

complex deployment models, benefits, and so on. Although all of that 

might seem very fancy, at the most basic level, accessing cloud services 

is not very different from accessing a remote system over a network. On 

top of that, the CSPs may provide more user-friendly ways to access and 

manage the services.

However, before we can access anything, we need to subscribe to the 

cloud services offered by the CSP. Once you have the subscription, the 

CSP will provide a user interface to create a logical custom machine by 

assembling computing resources like CPU, memory, storage, and so on. 

Once the machine is ready and the network address is allocated, it’s pretty 

much like accessing any remote system over a network.
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Note to lure customers, CSps may provide free access for some 
limited usage and time period.

At a high level, cloud computing is made of two components: front 

end and back end. The front end enables the customers to subscribe to, 

manage, and access the cloud services provided by the cloud service 

provider. The back end is the actual cloud, and it is made of the resources 

(compute, memory, storage, network, etc.) that are required to enable and 

support cloud computing services.

Figure 7-4 provides a logical view for interfacing with cloud services 

and resources.

Note logically, using cloud services is similar to accessing a 
remote machine over a network.

Figure 7-4. Logical View of Interfacing with Cloud
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 Cloud Service Providers
The following are several cloud service providers (CSPs) in the market 

today. This list is not meant to be comprehensive and by no means in any 

specific priority order:

• Google Cloud

• Microsoft Azure

• Amazon AWS

• Alibaba Cloud

• IBM

• Oracle

• And many more, like Linode, VMware, and so on

 Considerations in Choosing a CSP
As we saw in the preceding section, there are a variety of cloud service 

providers. Although most of them provide similar capabilities and services, 

most CSPs offer proprietary and nonstandard (e.g., open source) services, 

supported by proprietary architectures and technologies. Choosing to 

use these proprietary services and technologies and developing solutions 

using them might lead to customers getting locked in with the CSP. The 

lock-in could happen due to various reasons including

• Using custom CSP solutions, services, and mechanisms

• Defining architectural decisions based on specific 

services by the CSP

• Designing and developing with the specific CSP in 

consideration
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The resulting lock-in could lead to several negative side effects, for instance:

• Significant cost, time, and effort during migration

• Potential downtime during migration

• Difficulty migrating to a different, lower-cost CSP in the 

future

With various cloud computing models, lock-in risk levels are different 

across IaaS, SaaS, and PaaS. For example, let’s talk about PaaS. A specific 

PaaS platform from a CSP may support only limited and proprietary 

technologies, for example, specific web frameworks, languages, databases, 

and so on. This can lead to development of application architecture that 

is tied to the technologies offered by that specific CSP resulting in the 

application getting locked in the CSP. Again, across IaaS, PaaS, and SaaS, 

the lock-in risk is lowest in the IaaS model because IaaS functionality is 

broadly similar and there are several standards covering them.

However, one may ask why lock-in is a bad thing. Why would one need 

to migrate from one CSP to another? The argument could be that while 

choosing a CSP for the very first time, we perform due diligence to choose 

the best CSP for the specific need and use case. Once we do that, what is 

the need of ever considering migrating? In the following section, we will 

discuss what causes customers to move from one CSP to other.

 Motivation for Switching CSPs
It is evident that cloud service customers (CSCs) evaluate CSPs at the 

time of choosing and make the best choice based on their particular use 

case and data available. However, requirements can change quickly, 

and that can be motivation for moving from one CSP to another. Some 

of the reasons that could cause the need for migration are covered in the 

following sections. These reasons are not meant to be comprehensive, but 

simply some of the most common ones.
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 Usage and Pricing Change

One of the primary reasons for a customer moving from one CSP to other 

relates to a usage and/or pricing change.

The CSPs have a pricing model, and when a customer evaluates the 

CSPs for pricing, they use a model for usage levels and patterns. However, 

actual usage could turn out to be very different than the original model, 

and that could make the original evaluation very far from reality. It may 

turn out that for the actual usage model, a different CSP may be more 

economical.

Also, usage could evolve and change because of the services deployed 

on the cloud becoming more or less popular than originally anticipated.

The other potential reason is that the CSPs revise their fees from time 

to time, and based on these revisions, the current CSP might become less 

attractive than some other.

 CSP Ecosystem Change

The other category of changes that could lead to a customer moving from 

one CSP to another relates to changes in the CSP ecosystem itself. Some of 

those include

• CSPs Moving In and Out of Business: Although rare for 

some of the big players in the CSP business, some of 

the smaller ones may move out of business or change 

hands. Also, like the CSPs moving out of business, there 

could be a scenario where a new CSP emerges and may 

have better offerings in terms of pricing, scalability, and 

support.

• CSP Abandoning a Specific Service: The overall cloud 

computing services and offerings are evolving as 

we speak, and as a side effect of that, the CSPs may 

abandon or change specific proprietary offerings.
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 Regulatory, Privacy, and Business Dynamics Change

Another category that could motivate changing CSPs is related to 

regulatory, privacy, and business dynamics changes:

• Rules, Regulations, and Policy: There could be a 

government regulation or other policy changes that 

could dictate hosting of certain services in certain 

geographies or a specific way that in turn results in 

need for moving from one CSP to another.

• Discovery of a New Vulnerability/Loophole or 

Limitation at a CSP: While in deployment, the customer 

could realize/discover a new vulnerability, loophole, or 

limitation that would require the customer to move to 

another CSP.

• Business Dynamics Change: The business environment 

is fluid, and things change quickly. So, for instance, the 

CSP and CSC could move into the same business, and 

then there could be some conflict of interest in hosting/

supporting the data from competition.

 Considerations for Developing Portable 
and Interoperable Cloud Solutions
As we’ve discussed in earlier sections, it’s evident that cloud service 

customers (CSCs) may need to move from one CSP to another. That 

directly implies that one must develop solutions in a way that they are 

portable and interoperable across CSPs. In the following sections, we will 

talk about what we mean by portability and interoperability, as well as 

mechanisms we can apply to achieve this.
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 Interoperability vs. Portability
Generally speaking, interoperability can be thought as the measurement 

of the degree to which diverse systems or components can work together 

successfully.

In cloud computing context, there are two parties: cloud service 

customer and cloud service provider. They both interact over a network 

connection using a prescribed interface or API. There are different aspects 

of the cloud service, and there are typically separate interfaces for dealing 

with these different aspects of the cloud service.

For instance, there could be functional interfaces of the cloud service 

itself, interfaces for authentication and authorization, interfaces for 

administration of the cloud services, and even more interfaces relating 

to such business aspects as billing and invoicing. The objective of 

interoperability is that these interfaces are standardized in a way that they 

are interoperable so that there is minimal impact to the CSC’s component 

while moving from one CSP to other.

Similarly, portability refers to the ability of a customer to move 

and adapt their applications (application portability) and data (data 

portability)

• Between a customer system and CSP

• From one CSP to another CSP

Portability is important because the lack of it leads to considerable cost 

and effort when you do have to change systems. There are two aspects of 

portability that need consideration:

• Cloud data portability is the ability to easily transfer 

data: from one CSP to another and between a CSP and 

customer’s system.
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• Cloud application portability is the ability to easily 

transfer an application or application component: 

from one CSP to another and between a CSP and 

customer’s system. This typically only applies to IaaS 

and PaaS services, since in the case of a SaaS service, 

the application belongs to the cloud service provider 

and there is no use case of that being ported elsewhere 

by the customer.

As per the Cloud Standards Customer Council’s Interoperability 

and Portability for Cloud Computing: A Guide Version 2.0 (2017), the 

interoperability and portability aspects of the cloud solution could 

pictorially be depicted as in Figure 7-5.

In Figure 7-5, the first three interfaces relate to the interoperability 

aspect, while the rest relate to the portability aspect of the cloud services.

Figure 7-5. Elements of Interoperability and Portability in Cloud 
Services
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 Interoperability Challenges

There are several reasons why interoperability challenges exist across 

CSPs. The key reason is interfaces and services offered by CSPs are not 

standardized. Different cloud service providers use different APIs even 

for comparable cloud services. The greatest level of interoperability 

is made available by IaaS, while the PaaS cloud services have lower 

levels of interoperability because there are few interface standards for 

PaaS. Recently, open source platforms such as Cloud Foundry are gaining 

momentum and provide common open source–based solutions that can 

run on any CSP platform. Similarly, SaaS applications present the greatest 

interoperability challenge. That is because there are very few standards for 

SaaS applications. Therefore, moving from one SaaS application to another 

SaaS application usually requires interface changes.

To mitigate these challenges, the cloud service customer usually has 

an isolation or mapping layer between their own applications and the 

cloud service interface. For instance, technologies such as enterprise 

service buses (ESBs) can be used to build these isolation layers. The other 

potential mitigation option is to use the services offered by an inter-cloud 

provider (aka cloud service broker), who maps a “standard” interface 

offered to the customer to a varying set of interfaces offered by several 

different CSPs.

 Portability Challenges

As discussed earlier, the portability challenges are different across IaaS, 

PaaS, and SaaS. The biggest challenges are for applications built for PaaS 

platforms, because

• Platforms can vary widely between different CSPs.

• The app environment can differ substantially across 

CSPs.
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For example, to be scalable and elastic, a PaaS platform may enforce 

a specific way to manage data that may not be supported by other PaaS 

platforms. Although there are some standards relating to PaaS that are 

picking up momentum, for IaaS cloud services, there are several standards 

that are already in practice. Using these standards results in improved 

portability of applications.

To minimize the portability challenges, there are a couple of best- 

known strategies in place: one is increasing adoption of common open 

source PaaS platforms such as Cloud Foundry, and another is leveraging 

containerization that allows independent deployment of applications. In 

the following sections, we discuss containerization and orchestration and 

how they help enable portability.

 Containers, Docker, and Kubernetes
In order to make software and applications portable, the first consideration 

is how we can isolate the application so that it has limited dependency 

on and expectation from the underlying environment it is going to be 

deployed on. That is where the idea of containers originated and was 

first implemented by Docker. Essentially, a container is a standard unit of 

software that packages up an application and all its dependencies so that 

the application runs the same, regardless of the computing environment 

(assuming similar compute resources are available).

Containers allow a developer to package up an application with all the 

parts it needs, such as libraries and other dependencies, and deploy it as 

one package: a container image. Container images become containers at 

runtime.

So, in a way, containers are like virtual machines (VMs) in terms 

of isolation benefits; however, they work at a slightly different level: 

containers virtualize the operating system, while virtual machines 

virtualize the hardware. As a by-product of this difference, containers are 

lighter weight and efficient as compared to virtual machines.
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Note a container is a packaging of an application and its 
dependencies as a self-contained package, and docker is one 
implementation of this concept. there is an initiative to standardize 
the container format for wider portability called the Open Container 
Initiative.

Figure 7-6 shows the similarity and the difference between virtual 

machine– and container (Docker)-based deployments.

As is evident from Figure 7-6, containers are an abstraction above 

the OS layer that packages an application and its dependencies together. 

Multiple containers can run on the same machine (virtual or physical) and 

share the host OS kernel with each other. Each container runs as isolated 

processes in user space. Containers are lighter weight in terms of space 

and computing overhead than VMs and therefore more efficient than VMs.

Virtual machines have been around for some time now and are well 

known. They provide abstraction of physical hardware each running its 

Figure 7-6. Containers vs. Virtual Machines
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own copy of an operating system and the applications, necessary binaries, 

and libraries. One or more VMs can run on the supplied hardware, but 

each VM has a full OS.

As such, VMs are much heavier than containers. However, they are not 

mutually exclusive. In fact, in today’s world, both virtual machines and 

containers are combined to leverage the best of both. So, in practice, there 

could be one capable machine running multiple virtual machines, each of 

which in turn running more than one container as needed.

The use of containers requires three additional capabilities or tools:

• Builder: We need the tools and technology to build a 

container image.

• Engine: We need the tools and technology to run an 

image. A running image is a container.

• Orchestration: We need the tools and technology to 

effectively manage container instances.

The first two pieces – Builder and Engine – are very clear. We need 

Builder to create the image and Engine to run that image. Docker serves 

that purpose. Essentially, Docker is a set of command line tools and 

runtime to create and run the container images.

Figure 7-7 demonstrates a high-level architecture of Docker. The 

command line tools like “Docker build” and “Docker run” are the client. 

These commands are used by the end users to create and run Docker 

images. The Docker images created are registered to a global registry 

that allows an image to be built once and then used multiple times. The 

“Docker daemon” creates and runs the images in contained environments 

(containers).
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Containers are a portable way to bundle and run applications. 

However, in a production environment, we need to manage the containers 

that run and ensure that there is no downtime. Additionally, we need to be 

able to scale the number of containers based on demand. Kubernetes (K8s) 

does exactly that. It standardizes the process of deploying and managing 

the sets of containers that are required for a given application.

Note Kubernetes is a container orchestration framework that 
manages deployment of containers to provide resiliency to the 
system.

Figure 7-8 shows the high-level Kubernetes architecture. At the top 

layer, there is the command line interface (CLI), “kubectl,” that works 

with the control plane to orchestrate the deployment. Kubernetes nodes 

manage and run pods. The nodes could either be virtual or physical 

machines. A node can host and manage one or more pods. Each of 

these pods can run one or more containers. From the Kubernetes 

perspective, pods are the unit of deployment. There could be pods with 

Figure 7-7. Docker Architecture
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just one container; however, for more complex deployments, there is 

likely to be more than one container to a pod. “kubelet” monitors and 

manages containers within a pod. All these pieces put together is called a 

Kubernetes “cluster.”

 Benefits of Containers and Container Orchestration

Although we talked about containers, Docker, and Kubernetes in the 

context of portability, which clearly is one of the most important benefits of 

using containers, there are other benefits. The key ones are described next.

Security

First and foremost, it adds extra security through isolation. While the 

isolation and the security can be architected by the virtual machines 

as well, however, since containers include only the necessary code 

and libraries needed by the application, they have less code to be 

compromised, compared to VMs.

Figure 7-8. Kubernetes architecture
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Scalability

Applying microservices, containers, and container orchestration together, 

we can automatically scale up and down the application resources based 

on the demand. For illustration, during the festive season when the 

demand and load on the ecommerce portal, say Amazon, grows, more 

instances of microservice-based containers can be automatically created 

by Kubernetes to bear the load.

 The Way Forward
The cloud movement is still relatively young by technology standards and 

is still rapidly evolving. How this evolution will impact the ecosystem is 

anyone’s guess. That said, with faster and faster networks and throughput, 

we are headed to a world where everything goes into/through the cloud. 

All the applications and services reside in the cloud (public, private, and/

or hybrid). For example, one has moved to the cloud-based “Office 365.” 

This model enables use of SaaS and pay-per-use.

There are several other factors in play while defining the future 

of clients and clouds. First and foremost, even though there is wider 

availability of the Internet across the globe, there still is a large portion of 

the population that is not yet well connected with the Internet. Even for 

the population where there is reasonable Internet access, bandwidth and 

throughput are not always great enough to make it a seamless experience.

Additionally, there are new uses that require real-time responses. For a 

real-time response, going back and forth between the cloud and client over 

a network may not be performant, so clients still need reasonable compute 

power. For instance, in gaming and other interactive applications, the 

experience would be compromised if we fully relied on the cloud for all the 

processing.
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Finally, data protection and privacy concerns could prevent users from 

doing everything in the cloud.

So, in summary, the smart clients are not going away anytime soon. In 

fact, they are going to co-exist and continue their symbiotic relationship 

with the cloud.

Leading organizations have already realized they need both robust 

client and cloud solutions working together and have started creating 

architectures to provide the best experience for users. Specifically, the 

idea is to look at the ways we can leverage the capabilities of both client 

and cloud in developing a solution and offload the services at the client or 

cloud, respectively, whichever is more efficient for the job.

 Recommendations
Based on the discussion on portability and interoperability, we would like to 

consolidate the key recommendations for cloud service customers, as follows:

• Portability and interoperability should be key 

considerations when choosing the CSP. Also, the 

portability and interoperability requirements should be 

part of the agreement with the CSP.

• Use open and standard technologies, protocols, 

and mechanisms, and avoid using CSP proprietary 

solutions, where practical. Choose a CSP that supports 

these open and standard technologies.

• Ensure applications follow service-orientated 

architecture (SOA) and employ standard APIs for 

interoperability. Additionally, use protocol adapters 

like enterprise service buses for handling protocol 

mismatches.

• Leverage containers for virtualizing applications and 

artifacts to ensure portability.

Chapter 7  Cloud ComputIng



223

 Summary
In this chapter, we presented the fundamentals of cloud computing, 

its benefits, and the various potential deployment configurations and 

why choose one over another. We introduced a few of the cloud service 

providers (CSPs) in business today, as well as the key considerations in 

choosing a cloud service provider for a specific use case or organization. 

We emphasized the need for portability and interoperability as first- order 

criteria to avoid lock-in to a specific CSP. We also covered how to develop 

portable and interoperable solutions before closing with a brief conversation 

on how the client and cloud will potentially evolve in the future.
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CHAPTER 8

Machine Learning
In earlier chapters, we discussed aspects of computer architecture and 

how to efficiently program and deploy software. Thus far, we’ve been 

successful getting computers to carry out what they have been programmed 

to accomplish. Beyond traditional programming, questions arise about 

whether or not computers can mimic humans in terms of intelligence and 

learning. In science fiction literature, there are many stories of machines 

taking over the world. Is this possible? Until relatively recently, these fictions 

have been given little credence because there are fundamental differences 

between how human intelligence and computing machines work. Machines 

act as obedient servants – working as they are explicitly programmed to 

accomplish a well-defined task. They did not learn and improve or develop 

intelligence. And that’s where machine learning comes to play. Some of 

the most succinct descriptions of machine learning are from Stanford 

and McKinsey & Co. As per Stanford, “Machine learning is the science of 

getting computers to act without being explicitly programmed.”1 And, as per 

McKinsey & Co, “Machine learning is based on algorithms that can learn 

from data without relying on rules-based programming.”2

1 Andrew Ng, http://mlclass.stanford.edu/#:~:text=Machine%20learning%20
is%20the%20science,understanding%20of%20the%20human%20genome.

2 Jacques Bughin et al., “Artificial Intelligence the Next Digital Frontier?” 
McKinsey Global Institute, June 2017, www.mckinsey.com/~/media/McKinsey/
Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20
intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-
Artificial- Intelligence-Discussion-paper.pdf.
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Note Fundamentally, machine learning is the science of getting 
computers to learn as well as, or better than, humans.

The key difference between machine learning and conventional 
machine intelligence is the way machines acquire intelligence. With 
machine learning, machines gather intelligence based on examples 
(data, aka experience). In the conventional machine intelligence 
case, machines are explicitly programmed (instructed) to behave in a 
certain intelligent way. So machines may still behave like intelligent 
agents without applying machine learning, but they do not get better 
with experience.

By the way, machine learning is not a completely new thing; it has 

evolved and started to see more usage, proliferation, and success owing to 

advancement in compute resource and availability of data. In the following 

section, we talk about evolution of machine learning.

 Brief History of Machine Learning
From the very beginning of computing devices, when we thought about 

learning and machines, we tried to draw parallels from the understanding 

of how human brains work and how computing machines/algorithms 

work. Neurons and their associated networks (neural networks) play the 

foundational role in human learning process, so researchers have tried to 

emulate these processes in machines. This field of study is broadly known 

as machine learning and artificial intelligence.
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The first theory on neural networks was a paper published in 

1943 where neurophysiologist Warren McCulloch and mathematician 

Walter Pitts talked about neurons and how they work. They decided to 

model these neurons using an electrical circuit, creating the underlying 

framework for future machine learning progress.

In 1950, Alan Turing created the “Turing Test,” which is a method 

for determining whether a computer is capable of thinking like a 

human being. Turing proposed that a computer can be said to possess 

artificial intelligence if it can mimic human responses under specific 

conditions. This test is simple: for a computer to qualify as having artificial 

intelligence, it must be able to convince a human that it is a human and 

not a computer. The test was originally named “The Imitation Game.”

Arthur Samuel in 1952 created the first computer program that could 

learn as it ran. It was a game that played checkers. Later in 1958, Frank 

Rosenblatt designed the first artificial neural network to recognize patterns 

and shapes. Then in 1959, Bernard Widrow and Marcian Hoff created 

two neural network models at Stanford University. The first was called 

ADALINE, and it could detect binary patterns. The other one (which was 

the next generation) was called MADALINE. MADALINE was used to 

eliminate echo on phone lines – so the first useful real-world application 

of machine learning, MADALINE, came into use and continues to be used 

today.

Despite the success of MADALINE, there was not much progress 

until the late 1970s for many reasons. Recently, both the amount of data 

available and exponential growth in processing capabilities, neural 

networks, and other ML technologies have become viable.
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 Artificial Intelligence, Machine Learning, 
and Deep Learning
We use the terms artificial intelligence, machine learning, and deep 

learning a lot. Is there a difference between them? At times, we seem to use 

these terms interchangeably, but it is important to understand that they 

are related and not interchangeable. We define each one in the following.

Artificial intelligence (AI) refers to intelligence demonstrated by 

machines. In other words, artificial intelligence refers to the simulation of 

intelligent behavior in computers or the capability of a machine to imitate 

intelligent human behavior. It is used broadly to refer to any algorithms, 

methods, or technologies that make a system act and behave like a 

human. It employs machine learning, computer vision, natural language 

processing, cognitive robotics, and other related technologies.

Machine learning is a subfield of artificial intelligence that uses 

algorithms that improve with experience or learn the rules without 

explicitly being programmed.

Deep learning is a technique of machine learning that uses multilevel 

(deep) neural networks for learning. Figure 8-1 represents the relationship 

between the three. It illustrates that deep learning is a subfield of machine 

learning that is a subfield of artificial intelligence.
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 Fundamental Tenets of Machine Learning
Having discussed machine learning and its evolution earlier, we now 

discuss the key tenets of machine learning. In machine learning, machines 

learn with data to detect patterns and rules to

• Categorize like objects.

• Predict likely outcomes based on identified (learned) 

rules.

• Identify patterns and relationships.

• Detect anomalous behaviors.

Essentially there are three parts of a machine learning system: model, 

training, and inference. Figure 8-2 illustrates the high-level flow. At first, a 

machine learning model is created, and then it is trained with the training 

data. After training, the model would have “learned,” based on the data, 

and is ready to be used for making useful prediction for new data, which 

Figure 8-1. Relationship Between Artificial Intelligence, Machine 
Learning, and Deep Learning
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is known as inference. It is worth mentioning that a large volume of data 

is required for the model to pick good rules and become reasonably 

accurate. In practice, the training of the model is a continuous process, 

bringing in new training data as we see more kinds of data from the real 

world, making the model predictions more accurate over time. Because of 

the iterations and amount of data that need to be processed, the training 

process is computationally intensive. The degree of computational 

requirement depends on the model (algorithm) being used and the size of 

the training database. The good news here is that once a model is trained, 

making an inference based on new data is fairly low cost.

 Models
A machine learning (ML) model is fundamentally a recipe (i.e., statistical 

representation of the system) learned using examples (i.e., training data) 

with an ability to predict behavior given new data. In other words, a 

machine learning model is fundamentally the representation of a learning 

system that can be used to predict (i.e., infer) results for new data.

The processes machines use to learn are known as algorithms. 

Different algorithms learn in different ways. With the right model, as new 

Figure 8-2. Representation of a Machine Learning System
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data is provided to the “machine,” the algorithm’s performance improves, 

thereby resulting in increasing “intelligence” over time.

 Training
Training refers to the model being fed with the data such that it learns the 

rules or improves the model. The structure of the data will be different 

depending upon the type of machine learning and the chosen model. 

Data points are generally represented as a feature vector, or feature. Each 

feature represents one attribute of the data. A vector is just like an array 

data structure, discussed previously.

So, taking an example, let’s say we are designing a machine learning 

system to predict the price of a car in resale. The actual prices of cars sold 

previously, along with the descriptions of cars, will be fed to the learning 

model. The car description will have multiple attributes (features) like 

maker of the car, age of the car, the distance the car has been driven, and 

so on. Each of these features can be represented using one of the following 

types of data:

 1. Categorical Data: Data that takes one of the few 

values in a set, for example, color of a car

 2. Binary Data: Data that has two values, for example, 

whether a car has valid insurance or not

 3. Numerical Data: Data that is a number, for example, 

price of a car

 4. Graphical Data: Data that is in graphical form, for 

example, picture of a car

As part of the training process, we usually divide the available data for 

training into parts: one part used for training and learning and the other 

part used for validation/checking accuracy of the model. Given a trained 

model, we’re ready for inference. As mentioned in the preceding, we’re 
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never really done training, as we need to constantly update our training 

data set to accurately reflect the real-world data we encounter using the 

model.

 Prediction (Inference)
Now, once the model is ready and trained, the “trained model” is used for 

“prediction” or more formally “inference” with new data. The model is 

fed the new data and predicts the “result/output” for the same. From the 

computation resource perspective, inference is much faster than training 

because it can be done in real time or near real time in many cases.

 Categories of Machine learning
In the context of machine learning, there are some well-known categories 

of learning problems. The key ones are (1) supervised, (2) unsupervised, 

(3) semi-supervised, and (4) reinforcement learning.

 Supervised Learning
We know that in machine learning, we feed data to a model and the 

model learns using the data. In the case of supervised learning, the data 

is labeled with the right answer (we know what is good and what is bad, 

if you will). So, essentially, the model is being supervised while training. 

Another way to look at it is a person curating the data and creating the 

(good/bad) labels, essentially supervising the model. Supervised learning 

models the relationship between the output and the input data such that it 

can predict the output values for new data based on the derived (learned) 

relationships from the previous data sets. In other words, supervised 

learning can be considered a form of function approximation. Supervised 

learning is the most common machine learning technique applied in real- 

life use cases.
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One example is when we are creating a spam detector engine. The 

model is fed with the description of the message along with the label 

(spam or “not a spam”). The learning is anchored around the label 

that is the correct answer (as per the supervisor). There are two major 

subcategories of supervised learning:

 1. Regression: The simplest form of regression is linear 

regression where we attempt to fit a straight line 

to a given set of data. In more complex regression 

systems, the predicted value (output) will fall within 

a continuous spectrum (it won’t be a binary value 

like true or false). An example of a regression system 

is a car/house price predictor that will be used to 

predict the price of a given car/house based on the 

description of the same.

 2. Classification: In a classification system, the 

prediction falls in one of a few classes (also referred 

to as groupings or clusters). An example of a 

classification system would be a spam detector that 

will classify whether or not a given message is spam.

In supervised learning, there are many algorithms that can be used, 

some of the most common ones being

• Linear regression

• Logistic regression

• Nearest neighbor

• Naïve Bayes

• Decision trees

• Support vector machines
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 Unsupervised Learning
In contrast to supervised learning, with unsupervised learning, the 

model studies data to identify clusters, segmentation, and patterns. In 

this case, the data fed to the learning model is unlabeled. Essentially, that 

means there is no right or wrong answer key to the data set. The machine 

determines correlations and relationships by learning from the available 

data. This is pretty easy to do visually in two or even three dimensions, 

but as you can imagine, it is not intuitive with more dimensions, where 

each feature is a new dimension. A couple of applications of unsupervised 

learning are anomaly detection and categorizing similar objects. Again, 

there are many algorithms that can be used for unsupervised learning; 

however, the most common ones are

• K-means clustering

• Association rules

 Semi-supervised Learning
Semi-supervised learning is used to address similar problems as 

supervised learning. It combines the techniques from both supervised 

and unsupervised learning. In semi-supervised learning, the machine 

is provided some labeled data, along with additional data that is not 

labeled. Typical use cases will be image and speech analysis, web content 

classification, protein sequence classification, and so on.

 Reinforcement Learning
A reinforcement learning algorithm continuously learns from the 

environment in an iterative fashion. In the process, the model learns from 

the experiences of the environment. In other words, in reinforcement 

learning, the model is provided a set of allowed actions, rules, and 
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potential outcomes (rewards). Essentially, the rules of the game are 

defined. The model then applies the rules and takes one of many possible 

actions and earns a reward. Based on the reward (outcome), the model 

determines what series of actions will lead to an optimal or optimized 

result. Reinforcement learning is how we learn to play a game and get 

better. The rules and objectives are clearly defined. However, the outcome 

depends on the judgment of the player who must adjust the approach in 

response to the environment, skill, and actions of the other player.

 Machine Learning in Practice
Machine learning is prevalent in all aspects of life today. For example, 

social media platforms use machine learning for face detection, image 

recognition, automatic friend suggestion, and so on. Ecommerce and 

other product/service providers use machine learning for personalized 

recommendations. Virtual personal assistants use machine learning for 

speech recognition, natural language processing, and conversations. 

Self-driving cars use machine learning for navigation and controls. In 

the financial world, banks, for example, use machine learning to predict 

loan defaults and accordingly approve/reject/limit loan applications. 

Also, financial institutions use machine learning to detect fraudulent 

transactions. These are just a few examples to illustrate the wide and 

growing usage in day-to-day life; there are many more.

 Leading Machine Learning Frameworks
The rapid advancements in the machine learning world have led to 

proliferation of frameworks. One of the most common frameworks today is 

TensorFlow. TensorFlow is an open source platform for machine learning. 

Because of its comprehensive toolset, it enables the creation, training, and 

use of machine learning models easily. There are many other frameworks 
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like Microsoft Cognitive Toolkit (CNTK), Theano, Scikit Learn, Caffe, H2O, 

Amazon Machine Learning, Torch, Google Cloud ML Engine, Azure ML 

Studio, Spark MLlib, and MXNet, for instance. Some of these frameworks 

are better suited to specific areas or applications of machine learning than 

others. Interested readers can find more about any of these frameworks, 

but any further discussion of them is beyond the scope of this book.

To make it easy to use the machine learning frameworks, higher-level 

APIs are created, which support multiple frameworks and also abstract 

the framework differences. For example, Keras, developed by Google, is an 

open source software library that provides a Python interface for artificial 

neural networks. It works on Linux and OS X and supports multiple back 

ends including TensorFlow. Another parallel high-level API is PyTorch. 

PyTorch was developed by Facebook and works across Windows, Linux, 

and OS X.

 Machine Learning and Cloud Computing
We often hear machine learning and “cloud” discussed together. A 

casual observer might think they are connected somehow. Theoretically 

speaking, they are not. Cloud computing is about computing resources 

being available at will, and machine learning is about making computers 

learn and make use of that learning. The reason we often talk about them 

together is because machine learning training usually requires a lot of 

computing resources. Therefore, it makes good sense to leverage cloud 

computing for procuring and using these resources. As machine learning 

assumes increase in importance in business applications, there is a strong 

possibility of this technology being offered as a cloud-based service known 

as Machine Learning as a Service (MLaaS).
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 The Way Forward
Artificial intelligence/machine learning (AI/ML) has the potential to touch 

literally all aspects of our lives. By the time we read or reread this section, 

any specific estimates on deployments and proliferation of AI and ML 

across solutions will be out of date. As per Gartner, “Artificial Intelligence 

and Machine Learning have reached a critical tipping point and will 

increasingly augment and extend virtually every technology enabled 

service, thing, or application.”3 One thing for sure, AI/ML is making 

inroads and making real impact. As it progresses and more businesses look 

to leverage the capabilities and benefits, ML will become an integral part of 

intelligent systems.

We have reached or maybe exceeded human-level performance at 

narrowly defined tasks such as strategy games, visual image detection, and 

parsing natural language.

There is a lot of debate around how things will shape up around 

machine learning. As we can imagine, with the continuous improvement in 

computation capability, data storage, processing, and learning, machines 

will continue to become more and more intelligent and powerful.

Extrapolating the advancements, some imagine that in the foreseeable 

future, machines could be capable of having “artificial general intelligence,” 

a more recent term. Artificial general intelligence is the intelligence of a 

machine that has the capacity to understand/learn any intellectual task 

that a human can. Today, it is a primary goal of some focused AI research 

to gain the artificial general intelligence level where complete problems are 

modeled and solutions are hypothesized. Applications include computer 

vision, natural language understanding, and dealing with unexpected 

circumstances for solving real-world problems.

3 Kasey Panetta, “Gartner’s Top 10 Strategic Technology Trends for 2017,”  
October 18, 2016, www.gartner.com/smarterwithgartner/gartners-top-10- 
technology-trends-2017/.
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Whether or not machines reach the “artificial general intelligence” 

level, machine learning is going to help solve problems that are intractable 

today. For instance, machine learning can help discover what genes are 

involved in specific disease pathways. Based on this, machine learning 

can be used to determine the most effective personalized treatment based 

on patient DNA and other related characteristics. Additionally, machine 

learning is enabling autonomous driving and will continue to improve 

safety. There are plenty of studies extrapolating the benefits of autonomous 

driving saving lives resulting from accident avoidance and so on.

Like any technology, there are potentially negative side effects of 

advancements in machine learning. Some worry about machines taking 

over humans. While that may sound futuristic, there are more immediate 

challenges or concerns. For instance, machine learning models may sound 

like black boxes. While a lot of time can be spent in validating the model, one 

can never be sure about the output of the machine learning model (especially 

deep learning). Incorrect results could be incredibly costly or even fatal.

There are potentially dire consequences of machine learning, some of 

which Elon Musk and Stephen Hawking present. For example, Musk has 

repeatedly warned that AI will soon become just as smart as humans and 

said that when it does, we should all be scared because humanity’s very 

existence is at stake. Hawking said the emergence of artificial intelligence 

could be the “worst event in the history of our civilization.”4 And he 

followed up saying, "The development of full artificial intelligence could 

spell the end of the human race.” And then there are others like James 

Barat who have termed machine learning as “our final invention” with his 

4 www.usatoday.com/story/tech/talkingtech/2017/11/07/hawking-ai- 
could-worst-event-history-our-civilization/839298001/.
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book Our Final Invention: Artificial Intelligence and the End of the Human 

Era.5 The book discusses the potential benefits and possible risks of 

human-level or superhuman artificial intelligence

A fundamental misunderstanding or maybe myth is that AI/ML is 

the solution for all the problems. Some of us feel like the AI/ML systems 

train themselves and become the solution for everything. The reality is 

that in order for a system to do something as simple as distinguish a cat 

from a dog, it must undergo supervised (deep) learning with volumes of 

data where its neural networks are trained to distinguish one from the 

other. So, while machine learning may sound like a potential replacement 

for an existing technology, we must be mindful of the time, effort, and 

resources it takes to model, train, and use a machine learning model. 

For example, machine learning may sound like the technology to replace 

traditional statistical analysis algorithms; however, knowing the time and 

resource penalty to build accurate models, we would be better off using 

the conventional statistical algorithms in most cases. As we’ve learned in 

previous chapters, we should be using “the” most appropriate tool for that 

specific use case.

 Summary
In this chapter, we started with the fundamentals of machine learning, 

their benefits, and the evolution of machine learning. Then we talked 

about the various types of machine learning and the connection of 

machine learning with cloud computing. We followed that up with how 

machine learning is looking to shape up in the future.

5 Thomas Dunne Books, 2013.
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 APPENDIX A

Software Development 
Lifecycle
Whether you are working on a one-person project or as part of a complex 

multitiered project with multiple teams, you should understand the 

software development lifecycle. Each phase of the lifecycle has a purpose 

that will help you write better software. The following phases can be 

applied to both agile and waterfall project management practices 

(Figure A-1). The waterfall method is the method where each phase is 

completed before the work on the next phase begins, like a pool of water 

that fills up and then spills over falling into the next pool. The agile or 

iterative method is where software is developed partially, evaluated, 

and then incrementally adjusted until it is sufficient. This is considered 

agile because at each iteration the project can change direction to better 

serve the users; in the waterfall method, the project would have to start 

over from the beginning. The formality of the artifacts and collateral 

that are produced by each phase will vary by industry and requirements 

of the projects you may find yourself working on. It is also important to 

remember that these phases are not strictly linear. You may find that you 

do some planning, some analysis, and some design before completing any 

one of those phases. Equally important is to remember that every software 

project is different and these lifecycle stages are guidelines.

https://doi.org/10.1007/978-1-4842-7107-0#DOI
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 Planning
The planning phase is used to determine what software you will create. 

In planning, you think about what you want the software to do and begin 

thinking about how you want to do the implementation. Once you have 

some coherent thoughts on this, start writing those thoughts down. 

Planning is important for all software development projects, even those 

using agile methodologies. The detail and length of planning should be 

determined by the amount of formality needed by the software and/or the 

industry the software is being targeted to. For instance, planning on an agile 

project may occur briefly to define what a minimal viable product (MVP) 

should be for a given iteration. Likewise, on a project for a medical imaging 

device, much more detailed and rigorous planning may be required.

Figure A-1. Software Development Lifecycle Phases
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One important point about planning is that the original plan is rarely 

what the result will be. It is impossible to predict the future, and plan for 

every possible change that will affect the plan. There is certainly a point of 

diminishing returns on planning. Planning will not reveal every possible 

thing that could occur for your project, nor will everything in the plan 

materialize. The key to planning is understanding the project and then 

adjusting to the things that happen in later stages of the lifecycle, without 

breaking.

 Analysis
In the analysis phase, you will define use cases and decompose the 

problem into logical blocks to help you understand the system, to the best 

of your ability. Use cases help you focus on how the software will be used; 

this helps define what the software does and what the users need and 

prevents creating software that will not be useful. In this phase, you would 

compare possible algorithms for use in you project, leveraging Big-Oh 

analysis. This is where you should also develop an understanding of the 

type and amount of data that your program will be processing. During 

the analysis phase, you should consider any constraints such as security 

requirements, usability, cost, feature trade-offs, and long-term support. 

For instance, if your software will be used over a network, the analysis 

phase is when you should analyze the network throughput, latency, and 

frequency requirements for your solution.

The analysis phase may include creating prototypes to better 

understand the problem. It is important to remember that this is not the 

implantation phase. Prototypes should be used to understand the problem 

better and how to approach it. The code that is written as prototypes may 

not (and probably should not) be included in the implementations.
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 Architecture and Design
The design of the software is how all the various parts fit together into a 

consistent whole solution to the problem. Typically we build a solution 

architecture that lays out the components of a software and how/where 

they interact. There are at least two interaction areas to cover during the 

architecture and design phase. First is defining how people will interact 

with the solution. Second is defining the application programming 

interfaces (APIs) that define how the components interact with each other. 

Some software may not have a significant human interaction component, 

but all software will need to define interfaces (APIs) for access and control.

It’s a good idea to do user interface mockups during this phase, to 

show how a user will interact with the system. If the software is sufficiently 

complex, various diagrams should be created to help fully understand the 

design of the software so it can be implemented. A block or object diagram 

can show how the various components in the software are related to 

each other. A sequence diagram can show the order that the components 

communicate with each other and how they interact with each other. A 

“paper” prototype, mockups, or wireframe diagrams can show what a user 

might see as they interact with the software. Finally, an API spec should be 

defined during the design phase to clearly communicate how to interact 

with the software. The API spec is a key output of the design phase, and it 

can act as a contract between the components.

 Implementation
The implementation phase is where you actually write the software that 

will address the problems you are trying to solve. You should already 

have a plan for the implementation and have analyzed the problem 

to understand the data and algorithms you need. Don’t jump into 

implementation, even on an agile project, without at least some thought 
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and discussion on the architecture and design. It is, of course, possible 

to jump straight into implementation, and for the simplest of solutions, 

that might be ok. But even simple projects will benefit from a lightweight 

application of planning, analysis, and design.

The technologies and programing languages for your implementation 

may already be determined for you as constraints of the environment or 

business. If not, use what you learned in the analysis phase to choose your 

technology stack.

 Test
Testing your software is important to demonstrate that you have indeed 

solved the problem (verification) and that you have not introduced any 

new problems or so-called “bugs” (validation).

With the practice of test-driven development (TDD), the test phase 

and the implementation phase are combined. In TDD, a test is written that 

will fail until the software is implemented to pass the test. Then the next 

test and the next part of the implementation are created and so on. More 

commonly tests are created after the implementation is complete.

Most tests should be written so that they can be run automatically. 

There is likely some level of testing that cannot be easily automated. These 

tests should still be documented like a checklist so that the procedure to 

run these tests can be repeated.

The goals of testing are to discover errors in the software that can have 

adverse effects on users and data, for instance. Testing can also prove 

that the software does what is expected. Coverage is a concept in testing 

that measures how much of the software is covered during testing. Only 

the simplest of software can have every possible input tested, so coverage 

helps us discuss how much of the software is tested, which can help build 

confidence that the software is valid. There are different types of coverage 

metrics we can measure to indicate how much of the software is covered. 
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The most common coverage measurement is line coverage. Line coverage 

measures how many lines or statements of the software are executed 

during testing. Another common coverage measurement is branch 

coverage, which measures how many paths through the code are covered.

Test results and coverage measurements provide us with a sense of 

assurance that the software we develop will work for the users of the software.

 Deploy
The deployment phase is when the software is made available for use. 

There are many types of software deployment. For boxed software 

deployment, it is preparing the final (compiled) software for inclusion 

with installer software on a disk. With the growth of the Internet, 

this mechanism for deployment is not very common anymore. More 

commonly new deployments are available for download from the Internet, 

either through an application store or as OS- and language-specific 

packages. It should also be noted that a lot of software that is written today 

is never distributed publicly; it’s used inside of companies to automate 

and/or solve specific business problems.

Not only are there many methods to deploy software; software gets 

deployed in a variety of cadences. Some software is deployed multiple 

times a day, some once a year, and some only once. Despite the variety 

of deployment mechanisms and cadences, there are common things you 

should be aware of when deploying software, such as software licensing, 

virus scans, and security checks.

The first key to deployment is to understand what audience or 

audiences you are targeting. This will determine the type of packaging 

or installer you need to prepare. Once you know your packaging format, 

consider automating the mechanism of delivering the package of software 

to your audience. The second key to deployment to consider is a checklist 

of actions that need to be completed before deployment. These actions 
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should include items such as making sure whatever license you release 

your software under matches the license of the ingredient software used 

in the making of your solution. Of course, you should verify that your tests 

have run and are successful. The checklist you define will depend on what 

your audience needs or desires.

Much like testing and test-driven development, continuous integration 

and continuous deployment (CI/CD) brings deployment into the 

implementation phase.

 Maintenance
Last but certainly not least is the maintenance phase. This is when you 

change the software to maintain over time. Maintaining software is a much 

more common activity than creating new software. While maintaining 

software, you need to be able to identify what parts of the source code need 

to change (analyze), make changes (design and implementation), test 

those changes (test), and deploy the new version of the software (deploy). 

At times, especially when dealing with software that you did not write, this 

can be difficult. There are some simple actions you can take in other phases 

to simplify the maintenance phase. In the design phase, you can design the 

blocks to have very clear, singular purposes. You can also make sure that 

certain behaviors are only in one block of software. In the implementation 

phase, you can follow the design as best as possible. Also, during the 

implementation, comment your code with information about what you 

are doing and why you are doing it. Consider these comments as a letter to 

a future maintainer. Having automated tests from the test phase can help 

prove that any changes during maintenance have not created new issues.

The software development lifecycle for your project will be unique, 

whether it is closer to the waterfall model, highly iterative, or something in 

between. This framework of phases should help you manage a broader set 

of activities, beyond just writing the code.
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 APPENDIX B

Software Engineering 
Practices
There are many practices for the various phases and types of software 

development beyond writing the code. Here we will cover some common 

software engineering practices, including tools and techniques that you 

can apply to your software project.

 Planning and Management Practices: Agile
Agile practices, practices that attempt to follow the guidance of the Agile 

Manifesto (https://agilemanifesto.org/), have become a dominant 

approach to software development. Agile practices start with the concept 

of a minimal viable product or MVP. The MVP is a version of software that 

provides the minimum capabilities for users to use and developers to learn 

from.

 Scrum
Scrum is one of the most common agile practices for organizing work. In 

a nutshell, the scrum practice is focused on the short daily scrum meeting 

like a rugby scrum, or American football huddle. In the scrum or huddle, 

https://doi.org/10.1007/978-1-4842-7107-0#DOI
https://agilemanifesto.org/
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the team coordinates on the work for the day and then breaks out and does 

the work.

The work that the team needs to do is divided into small completable 

segments, called stories. Those stories are organized into an ordered list 

called a backlog. The ordered list of stories is then divided into groups that 

a scrum team can complete in a fixed time segment. This time segment 

can be any length, but at the end of each time segment, there should 

be a viable/usable software. The time segments are called sprints or 

iterations. They are called sprints to remind the team that they are short 

and will finish. They are called iterations because after one is complete, 

small adjustments can be made and then you start again. These iterations 

commonly range from one week to one month, with two weeks being the 

most common.

Scum recommends three ceremonies in addition to the scrum or 

huddle. First, before the beginning of each iteration, the team confirms 

what stories the team will be completing in that iteration. The team will 

use the ordered backlog and, if available, feedback from previous iterations 

to determine what should be done to have a viable/usable software 

product at the end of the sprint. This is called the planning ceremony. 

The second ceremony scrum recommends is the review. This happens at 

the end of the sprint and is where the team reviews the software that they 

created with their stakeholders and users of the software, if that is possible. 

Any feedback from the review should be added to the backlog and taken 

into consideration for future iterations. A retrospective, also conducted 

at the end of a sprint, is the third ceremony. In the retrospective, the 

team examines how they are working and looks for areas to improve. Any 

feedback the team has will again be used to plan future iterations.

Scrum also recommends three roles to coordinate the work. The most 

important role is the team. The team is all the developers in the scrum. 

Next is the product owner or PO. The product owner’s main responsibility 

is to represent the stakeholders for the team and manage the backlog of 

work. Finally, there is the coach; this person’s responsibility is to enable 
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the team to work effectively. The coach will organize the ceremonies and 

help the team implement any of the feedback from the retrospectives. The 

coach was previously referred to as the scrum master, but that term has 

fallen out of favor.

While scrum can be effective and is often a developer’s first 

introduction to agile practices, there are some constraints to the practice. 

First, scrum does not specifically outline how the work is broken into 

stories. It does not cover requirements, analysis, or design; in some ways, 

it assumes that those are already complete. Second, scrum does not cover 

how the work will be implemented, validated, or deployed. There are other 

agile practices that cover these areas such as test-driven development, 

paired programming, and continuous integration and deployment (CI/CD).  

Third, scrum works a specific team size of from five to nine people. Fewer 

people than that, and all of the ceremonies are not really required; more 

people than that, and the ceremonies are not sufficient.

 Kanban
Kanban is another agile practice for organizing work. The Kanban 

process was originally developed by Toyota in Japan for automotive 

manufacturing. Kanban means a signboard in Japanese. The original 

Kanban practice used a card or sign that traveled with the work until the 

work was completed; then the card was returned to the board. If no cards 

were available on the board, then work was stalled somewhere in the 

process, and the team could focus on that area until work was completed 

and a card returned. Cards were intentionally limited to reduce the 

amount of uncompleted work in progress. For agile software, this principle 

of WIP (work in progress) limits can be applied to the development of 

software. An individual or team can have a WIP limit and start work up to 

that point and then focus on completing that work.
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Kanban is like scrum in that work is organized into small compliable 

segments and then organized into a backlog. Also, like scrum, Kanban 

does not cover how work will be implemented, validated, or deployed.

Kanban differs from scrum in that instead of fixed time segments like 

iterations, it has a fixed amount of work in progress. Kanban works well 

when the work items are of similar scale. Kanban can also scale down to a 

smaller team size or even an individual. It can scale down because Kanban 

does not have the concepts of the various scrum ceremonies or dedicated 

roles.

 Analysis and Design
As noted in the preceding, neither scrum nor Kanban specifically covers 

the analysis and design phases of a project. This has led to the incorrect 

belief that analysis, architecture, and design are not needed for agile 

projects. Instead, those practices assume that analysis, architecture, and 

design have happened to create the backlog. If that is not the case, then 

you might consider inserting this work as work items or stories into the 

backlog and have that work as part of the regular work the team does. 

Another approach is having dedicated time periods such as every third 

sprint to analyze and design the upcoming work to load into the backlog. 

Another approach that could work with a larger team is to have one team 

responsible for doing the analysis and design and feeding the backlog 

through their own agile processes.

 Scaling Agile Practices
Both the practices of scrum and Kanban work well for small teams; 

however, those practices become problematic as the number of people 

on the team and the number of teams working on the project scale up. 

There are a few recommendations about how to approach scaling up agile 
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practices such as Scrum of Scrums or the Scaled Agile Framework (SAFe). 

The key to scaling agile practices up is to constantly keep agility in mind – 

being able to quickly change direction and get back up to speed.

 Documentation
Documenting your software project is an important way to communicate 

to the future. In the future, there may be different developers or 

maintainers of the software. Ideally there will be future users of the 

software. Questions such as why does it work this way or how do I do this 

should be found in the documentation, without direct contact to you or the 

development team.

 Requirements, Design, and Architecture
Documenting the requirements, the design, and the architecture is a 

way to record and communicate what you learned during the design and 

analysis phases. This is to inform the developer(s) on what to develop.

The formality of writing requirements and design will vary by the type 

and scope of projects. This formality could be as informal as writing a user 

story in the form “A user desires some outcome, because of some reason.” 

A fully specified safety-centric software system where every known 

possibility is documented will require more formality in its requirements.

We find that for most projects, using the Cockburn use case template is 

a highly effective way of capturing and communicating the requirements. 

The template helps to guide the requirement creation, and it helps avoid 

specifying design and implementation details into the requirement.

Implementation details, like how to interface with a system and what 

components make up a system, can be documented in the design and 

architecture. Design and architecture will typically have illustrations in 
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addition to text. These documents should inform the developers of the 

project how the software should work within itself and with the world.

Over time the requirements will change, the design will grow, and the 

architecture will morph. It is important to remember that these documents 

should also be able to change via controlled practices.

 Comments and Code
The code itself is a document about what is implemented. Comments in 

the code should be limited to adding context and not a retelling of what is 

in the code. This context will be helpful to maintainers of the code.

Well-written code is code that acts as its own documentation. 

Meaningful variable and function names can help code be its own 

documentation. However, source code is limited in expressiveness 

compared to natural languages. When this additional expressiveness is 

needed, it is a good time to write additional comments around that code.

 User
User documentation can take multiple forms: web pages, online help, or 

even console output. This documentation should provide a road map to 

your software and guide the users to accomplish what they desire.

 Testing
Testing your software is done to both validate and verify your software. 

Verification is proving that your software behaves as expected, and 

validation is proving that your software does not behave in unexpected 

ways.
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 Phases and Categories of Testing and Goals
Testing your software can be done with various goals and at different 

phases of the software lifecycle.

 Algorithm Testing, Unit Testing, Integration Testing, 
and the Like

Algorithm testing is typically done early in the lifecycle. Algorithm testing 

is used to test a selected algorithm with a sample data set that your 

software will be using. This is used to profile and understand whether the 

algorithm will be the best match for the data.

Unit testing is done throughout the development of the software. It is 

often tied into the continuous integration system. Continuous integration 

is the practice of building and testing your software on every commit to 

an SCM (source control management) system, which we discuss in more 

detail in this chapter. Unit testing is when you test the software at the 

smallest unit possible. This could be a single function, or class in object- 

oriented programming. The goal of unit testing is to validate the units of 

software work with a variety of inputs. Having unit tests with sufficient 

coverage is helpful during the maintenance phase, because it allows a 

unit of software to be improved while demonstrating that the inputs and 

outputs are not negatively changed.

If unit testing is focused on individual software units, then integration 

testing is focused on testing how those units work together. Integration 

testing has a primary goal of verifying that the software does what it is 

expected to do when all of the pieces come together. It also has a validation 

role in that it will help identify any adverse interactions between various 

units of the software.

There are other types of testing to be aware of, such as exploratory 

testing, performance testing, and user acceptance testing. Exploratory 

testing is where a user specifically “explores” to find issues that have not 
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been found through the other types of testing that are done regularly. 

Performance testing is looking to record the performance in time or 

memory of your software. User acceptance testing is testing whether a user 

will accept the software deliverable.

 Test-Driven Development
Test-driven development (TDD) is the discipline of developing your 

tests first, before you write any of the production code, and then writing 

the production code to make the tests pass. This is a particularly useful 

practice, especially for unit tests. It can keep the test coverage high for 

your software. It can also help enforce a good modular design, by making 

it difficult to have cross-dependencies given the goal of always having to 

pass tests. Despite all these benefits, it is not practiced as much as it could 

be. TDD requires a fairly complete knowledge of what the software should 

do, which is not always possible. It also is sometimes difficult to get over 

the hurdle of writing the tests first when the value to the users comes from 

the production software, trading the immediate satisfaction of writing the 

production code first to the delayed satisfaction of writing tests first.

 Developing for Debug
Debugging is typically the exploration of the software to find the root cause 

of a defect or bug in the software. A debugger is software that will allow 

a developer to step through the code, one line at a time. This brings the 

computer speed down to the speed of the developer, so they can observe 

the effects of each line being executed. For source line debugging, it is best 

to have the source code available when you are debugging the software. If 

you do not have the source code, debug symbols are the next best thing. 

Debug symbols provide source-level information to a debugger without 

providing the full source code. There are situations where developers will 
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need to debug without the benefit of source code or symbols. When you 

are developing software, there are activities you can do to support debug 

for the future engineers needing to debug your software.

 Asserts and Exceptions
Asserts and exceptions are program language constructs that can be 

used to support debugging. An assertion will act as a checkpoint on 

some fact in the source code, like the value of a variable. An assertion is 

typically implemented with an assert keyword, which will typically stop 

the execution of the software, if the assertion is false. Adding assertions to 

your code will help prove that the data you expect is available. Assertions 

are typically automatically removed when the code is compiled in an 

optimization. And assertions that evaluate false actually halt the program, 

so assertions should be used with caution.

Exceptions are like assertions. Exceptions will check for an event that 

is not expected to occur. When an exception occurs, an exception handler 

in your code can catch the exception. Once an exception is caught, it can 

be raised up the stack for another exception handler to deal with, or it can 

be handled immediately. A raised exception will provide data about where 

a defect originates from. For debugging, unhandled exceptions are defects 

that need to be addressed. Adding code to raise exceptions is a good 

technique for making your code more debugger-friendly.

 Logging and Tracing
Two other practices that help make your code more debugger-friendly are 

logging and tracing. Logging is recording events that occur in the software 

to an external file, for instance, so a human or machine can go back and 

follow the events of software execution. Tracing is using logs or live data to 

observe the behavior of the software while it is running.
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Most modern languages have built-in support for logging. It is a good 

practice to use these logging frameworks whenever possible. Using a 

logging framework will help distinguish between messages intended for 

the logs and messages intended for active users. When adding logging 

to your software, you need to strike a balance between how precise or 

frequent you want your log messages to be and the number of messages in 

the log. Remember that logging takes compute time and that if there is too 

much information in the log, it may hide meaningful events.

 Source Control Management
Source control management (SCM) is the practice of managing the source 

code of your software. This practice includes managing the directory 

structure of the source code, maintaining a history of revisions of the code, 

and versioning the code.

 Purpose and Mechanism
Source code management gives the developer or development team 

confidence to proceed with development knowing that they can go 

back to a previous revision of the source code, should they need too. A 

fundamental purpose of SCM is to preserve the progression of the source 

code development.

SCM systems allow for branches of the software to exist 

simultaneously, so different revisions of source code can be compared or 

merged. This allows a team of developers to operate safely, in their own 

environment, without impacting each other with moment-to-moment 

changes. When your code branch is ready, you use SCM to integrate the 

branch to a trunk or mainline of the source code.

SCM systems typically have the same common concepts (Table B-1), 

although different tools may call these concepts by different terms.
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Imagine using SCM for a small team. For example, a developer will 

check out a workspace. The workspace will define the directory structure 

of the source code on the developer's system. As the developer makes 

changes to the source code, they will commit this code to the SCM system 

creating a revision. The developer may be creating multiple revisions on 

a branch. They will then want to share their revisions with the rest of the 

team by merging their revisions into the mainline. On the mainline, the 

development team will define the next version by linearly selecting the 

head revision on the mainline.

For another example, a bug is discovered in the recent version and 

needs to be fixed. In this case, a developer will check out a workspace 

based on that previous version. Then they will create a branch to fix 

the code. As they fix the code, the developer will create revisions by 

progressively committing their code to the SCM system. They can compare 

their revisions to the revisions on another branch to identify changes or 

even to help discover the root cause of the bug. Once they have fixed the 

bug, they can again merge into the mainline and create another version.

Both examples are somewhat simplified and mix concepts from 

multiple SCM tools. Each SCM tool will have its own process and 

Table B-1. Common SCM Terms

Term Definition

workspace the directory structure on a development machine for the source 

code of software.

revision A single incremental change of the source code.

Branch A line of revisions that are derived from a single point in the past.

Mainline the branch of the code that is where the integration of various 

branches occurs.  Sometimes called trunk.

Version A specific revision that has meaning or value.
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workflow. SCM tools can generally be split into two categories: centralized 

and distributed. A centralized SCM system maintains in a single location 

a definitive list of revisions and versions. This has an advantage of 

maintaining linearity of the software and explicit control of a version. A 

distributed SCM system does not require a central system to maintain the 

distributions but allows multiple systems to maintain individual history 

and then add history of revisions from another node in the SCM system. 

This has the advantage of allowing the full capabilities of an SCM system 

while being disconnected from the team, but the linearity of the revisions 

is not guaranteed.

 Tools
There are many source code management tools. Each tool has its own 

unique differences. In the following, we will review two of the most 

common tools that demonstrate the centralized and distributed SCM 

systems.

 Perforce Helix

Perforce Helix is a good example of a centralized version control system 

for SCM. It allows developers to define their workspace from the various 

branches in the overall source code tree. By being a centralized system, 

it can enforce that revisions are committed in a linear order and can 

maintain that order. One area where Perforce Helix stands out is how it 

handles source assets that are not text, such as large binary files like game 

assets.
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 Git

Git has become the industry de facto SCM. It is an example of a distributed 

revision control system. Git maintains a repository history of revisions 

locally within the workspace. To interact with another instance of the Git 

repository, a developer can push changes to the other instance or pull 

and merge changes from that other instance. Because Git does not have a 

centralized location, other solutions like GitHub have been put in place to 

act as a central instance of the repository. Other processes have emerged 

around Git to help define definitive versions such as having merge or pull 

request as a gate to a mainline branch and using tags to capture the linear 

progression for versions.

 Build Optimizations and Tools
Build tools coordinate the compilation and linking of the source code into 

usable software.

 Purpose and Mechanism
Originally source code had to be first compiled into object files one at 

a time, and then all those object files had to be linked together into an 

executable or library. As software got larger and larger, a tool to coordinate 

the effort of compiling and linking many files together became necessary. 

This is the basis of what a build tool does.

Adding to the complexity of compiling source code into object files, 

some of those object files depended on other object files to exist before 

they could be linked together. And in this case, some of those upstream 

object files were needed for more than one downstream object file. 

Managing this collection of object file dependencies is another piece of 

what the build tool does. Build tools will typically enable a declaration 

Appendix B  SoftwAre engineering prActiceS



262

of dependencies and will make sure that the dependencies are satisfied 

before attempting to compile and link a file. Most build tools will optimize 

the satisfaction of dependencies by first checking if they exist and then 

creating them only once, if it does not exist.

Scripted or interpreted languages like Python, Ruby, and JavaScript 

don’t need to compile the source code into object files. Scripted languages 

can still benefit from build tools that manage the dependencies and create 

packages and other collateral.

Another thing a build tool does is manage configuration parameters for 

multiple configurations to inform the compiler and linker how to behave. 

This allows the object files and software to have multiple configurations, 

such as debug instances or even support for multiple operating system 

instances.

This ability to coordinate multiple tools like a compiler and a linker 

led build tools to be used to coordinate additional tools that are expected 

in a modern software project like unit test runners, security checkers, and 

document generators.

Build tools will typically have their own source file to define the 

configurations and parameters. The configuration file will usually list 

targets that will be the output of some action and the dependencies that 

need to be satisfied before the output can be created. Typically build tools 

also allow a developer to define the tools and parameters to call to create 

the output. Make and most modern build tools also have default rules for 

doing the basics of compiling and linking object files.

 Tools
There are a lot of build tools available. Some are specific to a language, and 

many modern languages such as Go and Rust have a build tool distributed 

with the language. Some build tools are fully declarative, meaning that all 

the possible options and dependencies are defined in the configuration 
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files. Most build tools are primarily declarative with limited scripting 

ability for loops and conditional statements. Another category of build 

tools are generators, like Cmake and GNU Autotools, which use data to 

configure and generate a build script. Then this build script can be called 

by another build tool.

 Make

Make is one of the older build tools. There are multiple implementations 

of make that have mostly the same feature set; the most common make 

is GNU make. The make configuration file is called the Makefile. Make 

provides a declarative syntax for defining targets and dependencies. 

Each target line starts with the target followed by a space-separated list 

of dependencies on a single line. The commands to create the target are 

the subsequent lines, tab indented, under the target line. Typically, these 

lines are shell commands that make use of the underlying command shell. 

By default, the targets are expected to be files that are created on the file 

system; however, a target can have a .phony decorator added to it so that 

make knows the target can be satisfied even if no output file is created. 

This allows for an easy name like ALL or drivers to be applied to a list of 

dependencies instead of the direct output, such as my_cool_program.exe.

 Gradle

Gradle is a more modern build tool that is built on top of the Groovy 

language and its Java Virtual Machine (JVM). Gradle configurations are 

written in a domain-specific language designed for builds. Like make, 

Gradle can define targets and dependencies. Unlike make, these targets 

do not have to be files that are created. Gradle remembers what targets 

have been satisfied in a build cache. Gradle can even share this build cache 

between multiple systems on a network making it easier to split the build 

work to improve build time. The commands to satisfy the targets do not 

have to be shell commands; they can be methods in Groovy.
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 Cmake and Ninja

Cmake takes a different approach than Gradle or make. Instead of 

defining the build targets and commands directly in the CMakefile, Cmake 

defines a script for generating the targets and commands for another 

build tool. This provides the ability to consistently model the targets and 

dependencies for your software project and then generate equivalent 

logic for multiple systems, such as different integrated development 

environments or different implementations of make.

Ninja is a modern build tool like make. It is intended to be highly 

performant and minimal compared to build systems like Gradle. Cmake 

generates Ninja build files, a common practice, with the rich syntax being 

handled by Cmake and the performant build done by Ninja.

 Continuous Integration and Continuous 
Delivery
Continuous integration (CI) is the practice of building and testing your 

software on every commit to an SCM system. Continuous delivery builds 

on the concept of continuous integration to deliver the software to users 

automatically, typically when the software is merged to the mainline in 

the SCM system. The term continuous integration was coined by Martin 

Fowler in 2000.

 Purpose and Mechanism
Prior to the practice of continuous integration, when a new version of 

the software needed to be built and tested, all the various branches and 

different developers' work would come together for integration in a so- 

called “big-bang.” A build would be attempted, and if not successful, 
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engineers would have to find the reasons. This could be caused by code 

conflict or even incompatible code between engineers. Once the initial 

work to resolve the conflicts and any side effects would be resolved and the 

build be complete, then testing could begin. All of this is very painful and 

time consuming, hence the moniker “big-bang.” If this integration testing 

found issues, then the code needed to be changed and any side effects 

again resolved, and the process would start again. Historically this process 

could take days or even weeks. So we want to avoid big-bangs.

Continuous integration addresses this “big-bang” integration problem 

by shrinking integrations into a continuous stream of micro-integration 

events. In the practice of continuous integration, developers push their 

changes regularly, ideally daily, to be integrated to a mainline in the SCM 

system, using build tools that automatically build and validate (through 

unit testing, for instance) the new integrated version. If this build does 

not work, the developer can see that within hours and make corrections 

in the small amount of code that they worked on, instead of digging 

through everybody’s code in the “big-bang” integration style. If the build 

is successful, then automated unit tests and integration tests can be run. 

Again, if the tests fail, there is only a small amount of code that could have 

introduced the failure, so the developer can easily find and fix their code.

Continuous integration systems wait for source code to be pushed 

to the SCM system and activate when there is a change. The CI system 

will either monitor the SCM system or be triggered by an event on the 

SCM system. At that point, the CI system will check out the code and 

invoke the build tool automatically, and then the CI system will run the 

tests. Typically, the CI system will report on the status of the build so the 

developer and the team can review the results.

Continuous deployment utilizes the same CI systems for deployment 

or delivery activities. After the source code is integrated, built, and tested, 

the CI system can be triggered to automatically deploy the software. The 

deployment may require additional steps or stages such as more testing, 
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checking security scans, packaging the software for install, and copying it 

to a location to either run online or download to install on a local system.

 Tools
Like build tools and SCM systems, there are a lot of options for CI/CD 

systems. They define the stages and steps to integrate and deploy the 

software. CI/CD systems also define how the tools will interact with the 

SCM systems.

 Jenkins

Jenkins is one of the oldest CI/CD systems. It is still the most popular CI/

CD system. Jenkins provides a lot of flexibility in how it can be configured 

and deployed. Originally Jenkins enabled a wide variety of plugins to 

expand the configuration interface for defining the rules for your software’s 

CI and CD. Jenkins also provides a scripted, domain-specific language 

and a declarative syntax, both based on Groovy, to define the CI/CD 

pipeline. Jenkins is typically installed on-premises, but there are online 

and commercial offerings. When Jenkins is installed on your premises, you 

need to provide your own compute capacity for build and testing.

 CircleCI

CircleCI is a popular Software as a Service (SaaS) CI/CD system. It provides 

an online tool to create a CI/CD pipeline and the compute resources for 

compilation and testing. CircleCI provides a simple UI for defining the 

connection to the SCM system and a YAML-based declarative syntax for 

defining the pipeline.

Appendix B  SoftwAre engineering prActiceS



267

 GitLab CI/CD

GitLab CI/CD is an example of a CI/CD system that is built into the SCM 

system. The GitLab CI/CD system is available wherever the GitLab SCM 

system is installed. Because GitLab CI/CD is integrated with the SCM 

system, it requires minimal configuration to connect to the source code. 

For configuring the CI/CD pipeline, GitLab uses a YAML-based declarative 

syntax. Using the GitLab SaaS solution provides both the CI/CD system 

interface and the compute capacity for build and test. Using GitLab 

with your own environment requires you to provide your own compute 

capacity. Despite GitLab CI/CD being associated with the GitLab SCM 

solution, GitLab CI/CD can work with a variety of Git solutions including 

GitHub.
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 APPENDIX C

ACPI System States
Power optimization of computer systems has become very important. 

There are many governing bodies (like the California Energy Commission) 

that mandate a certain level of power efficiency in computing devices. In a 

computer system, there are multiple pieces of hardware and software that 

all need to be in sync. Therefore, a mechanism is needed for these pieces 

to pass information around. The Advanced Configuration and Power 

Interface Special Interest Group (ACPI SIG) developed such a standard, 

named after the group, ACPI.

ACPI provides an open standard that system firmware (BIOS) and 

operating systems use to discover, configure, and carry out system-specific 

operations. ACPI replaces the multiple earlier standards like Advanced 

Power Management (APM), MultiProcessor Specification, and the Plug 

and Play (PnP) BIOS Specification. ACPI defines a hardware abstraction 

interface across system firmware, computer hardware components, and 

operating systems. ACPI is the key element in operating system–directed 

configuration and power management (OSPM). In 2013, the ACPI SIG 

agreed to transfer the specification to the UEFI Forum, which now owns 

the specification.

ACPI defines standard operating states for systems, devices, and 

processors, among other things. Figure C-1 shows the various states 

defined by ACPI and transitions between them. In the following sections, 

we talk about these states and explain what they all mean.
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 Global and System States
ACPI defines four global states and six system states. The global states are 

marked G0–G3, while the system states are marked as S0–S5. It must be 

noted, however, that some motherboard documents reference S6, which is 

not an ACPI-defined state. If you come across this, you can safely map this 

to G3.

ACPI defines a mechanism to transition the system between the 

working state (G0) and the sleeping state (G1) or the soft-off state (G2). 

During transitions between the working and sleeping states, the operating 

system will maintain your context, so you don’t lose information on such 

transitions. ACPI defines the level of the G1 sleeping state by defining the 

system attributes of four types of ACPI sleeping states (S1, S2, S3, and S4). 

Each sleeping state is defined to allow implementations to trade-off cost, 

power, and wake latencies:

Figure C-1. Global and System Power States and Transitions
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• G0/S0: In the G0 state, work is being performed by the 

OS/application software and the hardware. The CPU or 

any particular hardware device could be in any one of 

the defined power states (more on the device and CPU 

power states in a later section); however, some work 

will be taking place in the system.

 a. S0: System is in a fully working state.

• G1: In the G1 state, the system is assumed to be doing 

no work. Prior to entering the G1 state, OSPM will 

place devices in a device power state compatible with 

the system sleeping state to be entered; if a device is 

enabled to wake the system, then OSPM will place 

these devices into the lowest Dx state from which the 

device supports wake.

 a. S1: The S1 state is defined as a low wake latency 

sleeping state. In this state, the entire system 

context is preserved with the exception of CPU 

caches. Before entering S1, OSPM will flush the 

system caches.

 b. S2: The S2 state is defined as a low wake 

latency sleep state. This state is similar to the 

S1 sleeping state where any context except for 

system memory may be lost.

 c. S3: Commonly referred to as Standby, Sleep, or 

Suspend to RAM (STR). The S3 state is defined 

as a low wake latency sleep state. From the 

software viewpoint, this state is functionally the 

same as the S2 state. The operational difference 

is that some power resources that may have 

been left ON in the S2 state may not be available 
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to the S3 state. As such, some devices may be in 

a lower-power state when the system is in the 

S3 state than when the system is in the S2 state. 

Similarly, some device wake events can function 

in S2 but not S3.

 d. S4: Also known as Hibernation or Suspend to 

Disk. The S4 sleeping state is the lowest-power, 

longest wake latency sleeping state supported by 

ACPI. In order to reduce power to a minimum, 

it is assumed that the hardware platform has 

powered off all devices. Because this is a sleeping 

state, the platform context is maintained. 

Depending on how the transition into the S4 

sleeping state occurs, the responsibility for 

maintaining system context changes between 

OSPM and BIOS. To preserve context, in this 

state all content of the main memory is saved 

to non-volatile memory such as a hard drive 

and is powered down. The contents of RAM are 

restored on resume. All hardware is in the off 

state and maintains no context.

• G2/S5: Also referred to as Soft Off. In G2/S5, all 

hardware is in the off state and maintains no context. 

OSPM places the platform in the S5, soft-off, state to 

achieve a logical off. The S5 state is not a sleeping state 

(it is a G2 state), and no context is saved by OSPM or 

hardware, but power may still be applied to parts of the 

platform in this state, and as such, it is not safe to take 

the system apart. Also, from a hardware perspective, the 

S4 and S5 states are nearly identical. When initiated, 

the hardware will sequence the system to a state similar 
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to the off state. The hardware has no responsibility 

for maintaining any system context (memory or I/O); 

however, it does allow a transition to the S0 state due to 

a power button press or a remote start.

• G3: Mechanical Off. Same as S5. Additionally, the 

power supply is isolated. The computer's power has 

been totally removed via a mechanical switch, and 

no electrical current is running through. This is the 

only state that the system can be worked on without 

damaging the hardware.

 Device States
In addition to global and system states, ACPI defines various device states 

ranging from D0 to D3. The exact definition or meaning of specific device 

states depends on the device class. A device class describes a type of 

device – for example, audio, storage, network, and so on:

• D0: This state is assumed to be the highest level of 

functionality and power consumption. The device is 

completely active and responsive and is expected to 

remember all relevant contexts.

• D1: Many device classes may not support D1. In 

general, D1 is expected to save less power and preserve 

more device context than D2. D1 may cause the device 

to lose some context.

• D2: Many device classes may not support D2. In 

general, D2 is expected to save more power and 

preserve less device context than D1 or D0. D2 may 

cause the device to lose some context.
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• D3 Hot: Devices in the D3 Hot state are required to be 

software enumerable. In general, D3 Hot is expected 

to save more power and optionally preserve device 

context. If device context is lost when this state is 

entered, the OS software will reinitialize the device 

when transitioning back to D0.

• D3 Cold: Power has been fully removed from the 

device. The device context is lost when this state is 

entered, so the OS software will have to fully reinitialize 

the device when powering it back on. Devices in this 

state have the longest restore times.

 Processor States
ACPI defines the power state of system processors while in the G0 working 

state as being either active (executing) or sleeping (not executing). 

Processor power states are designated as C0, C1, C2, C3, … Cn. The C0 

power state is an active power state where the CPU executes instructions. 

The C1–Cn power states are processor sleeping states where the processor 

consumes less power and dissipates less heat than leaving the processor in 

the C0 state. While in a sleeping state, the processor does not execute any 

instructions. Each processor sleeping state has a latency associated with 

entering and exiting that corresponds to the power savings. In general, 

the longer the entry/exit latency, the greater the power savings is for 

the state. To conserve power, OSPM places the processor into one of its 

supported sleeping states when idle. While in the C0 state, ACPI allows the 

performance of the processor to be altered through a defined “throttling” 

process and through transitions into multiple performance states (P 

states). A diagram of processor power states (not to be confused with 

performance states) is provided in Figure C-2.
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In summary, one of the main goals of OSPM is to save power/energy 

when the workload allows it, and detecting inactivity and putting the 

devices and the system (if possible) in their low-power states forms the 

heart of power management software.

Figure C-2. Processor Power States
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 APPENDIX D 

System Boot Flow
When we press the power button on our computing device, we are well 

aware that the system goes through a bootup process. The boot process 

culminates with the system being ready for use. But what happens during 

the boot process is not very well understood widely. In this chapter, we will 

strive to resolve that.

As shown in Figure D-1, there are four main boot phases on IA 

devices. The first phase is system hardware bring-up/power-on, which is 

primarily hardwired to bring up the foundation for software components 

to get started and take over. Then the BIOS (aka system firmware) phase 

is responsible for basic initialization and bring-up of system hardware 

enabling things to pass to the next stage, where the boot loader loads the 

OS into memory and then begins OS initialization. This last phase takes 

care of initialization of critical parts of the HW and SW system before 

making itself available to the user.

Figure D-1. High-Level System Boot Flow
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On receiving a “Power Good” signal, CPUs are hardwired to start 

fetching and executing at a predefined location (address), which is called 

the “Reset Vector.” The Reset Vector points to BIOS code. So, when the CPU 

is out of reset and starts fetching code from the “Reset Vector,” it happens 

to be BIOS code, which is how BIOS code gets the control and starts 

executing. Keep in mind that before control comes to CPU and BIOS code, 

there are a few system hardware- and firmware-related initializations and 

configurations that happen.

BIOS discovers, enumerates, and initializes the HW devices present. 

After that it runs power-on self-test (POST). The POST is responsible for 

validating the sanity of fundamental hardware components. One of the 

fundamental hardware components in the system happens to be memory. 

BIOS has a component specialized for memory initialization called the 

Memory Reference Code (MRC). Another of BIOS’s responsibility is to 

prepare the hardware configuration and memory map and pass those to 

the OS, in the form of tables. The format and mechanism of information 

exchange is defined by a standard body, Unified Extensible Firmware 

Interface (UEFI). Today, most BIOS is UEFI spec compliant. BIOS 

also adheres to the ACPI specification in passing platform resource(s) 

information to the OS.

If all goes well, BIOS now identifies a bootable disk and reads the 

master boot record (MBR) of that disk. The MBR is located in the first 

sector of the bootable media (could be hard drive, flash, solid-state device, 

etc.).

The MBR is 512 bytes in size. It has three components: primary boot 

loader information in the first 446 bytes, partition table in the next 64 bytes, 

and MBR validation check in the last 2 bytes.

The primary boot loader in the MBR will attempt to locate an active 

(bootable) partition in the media’s partition table. If such a partition is 

found, the boot sector of that partition is loaded in memory, and then 

the control jumps to that. Each operating system has its own boot sector 
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format. The boot sector has a small program that locates the OS loader, 

reads that into memory, and launches that.

The OS loader loads essential system drivers that are required to read 

data from the disk and initializes the system to the point where the kernel 

can begin execution.

After OS loading, the OS initialization phase starts. In the OS 

initialization phase, first, the kernel initialization and plug-and-play 

activity happen. After that, relevant services are started, and the user 

interface (could be a command line shell or a full-blown graphical user 

interface) is presented and the system is now ready for use.
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