
Essential
Computer Science

A Programmer’s Guide to
Foundational Concepts
—
Paul D. Crutcher
Neeraj Kumar Singh
Peter Tiegs

Essential Computer
Science

A Programmer’s Guide to
Foundational Concepts

Paul D. Crutcher
Neeraj Kumar Singh
Peter Tiegs

Essential Computer Science: A Programmer’s Guide to Foundational

Concepts

ISBN-13 (pbk): 978-1-4842-7106-3 ISBN-13 (electronic): 978-1-4842-7107-0
https://doi.org/10.1007/978-1-4842-7107-0

Copyright © 2021 by Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer- sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484271063. For
more detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Paul D. Crutcher
Welches, OR, USA

Neeraj Kumar Singh
Bangalore, Karnataka, India

Peter Tiegs
Hillsboro, OR, USA

https://doi.org/10.1007/978-1-4842-7107-0

To my wife, Lisa, for her unending support and
encouragement; to my sons currently studying

computer science, Kyle and Cameron, may this be
a bit of inspiration for their journey in life; and to the

memory of my father, Edwin Lee Crutcher, who passed
away while I worked on this book. I love you, Dad!

—Paul

To my wife, Shilpi, for her unwavering support.

—Neeraj

To Karen, Jane, Josephine, Henri, and
Jeanette, my family, for all of their support,

patience, and encouragement.

—Peter

v

Table of Contents

Chapter 1: Fundamentals of a Computer System ���������������������������������1

von Neumann Architecture��1

CPU: Fetch, Decode, Execute, and Store��3

Fetch ��4

Decode, Execute, and Store ���10

Controlling the Flow ��13

The Stack ���15

Instruction Pipeline ��21

Flynn’s Taxonomy ��22

Main Memory and Secondary Storage ��24

Input and Output (I/O) ��26

Summary���27

References and Further Reading ��28

About the Authors ���xv

About the Contributors ���xvii

About the Technical Reviewer ���xix

Acknowledgments ���xxi

Introduction ���xxiii

vi

Chapter 2: Programming ��29

Programming Language Fundamentals ��30

Hello, World! ��31

Compile, Link, and Load ���32

High-Level Languages ���35

Programming Paradigms ��38

Imperative Programming ���39

Declarative Programming ��40

Object-Oriented Programming ���42

Interpreted Programming ��45

Parallel Programming ��47

Machine Learning ��49

Summary���50

References and Further Reading ��50

Chapter 3: Algorithm and Data Structure ���53

What Is an Algorithm ���53

Good and Not So Good Algorithm ��54

Time/Space Complexity ���54

Asymptotic Notation ��55

Fundamental Data Structures and Algorithms ��57

Store (Data Structure) ��57

Problem Solving Techniques ���66

Recursion ��67

Divide and Conquer ���68

Brute Force ��70

Greedy Algorithms ���70

Class of Problems ���71

NP-Complete and NP-Hard Problems ��71

Table of ConTenTs

vii

Databases ���72

Persistence and Volume ��72

Fundamental Requirements: ACID ���72

Brief History of Database System Evolution ��74

Most Prominent Current Database Systems ��74

Relational Data and SQL ��74

NoSQL ��77

Summary���78

References and Further Reading ��78

Chapter 4: Operating System ��81

What Is an Operating System ��81

OS Categories ��84

Why We Need an OS ��85

Purpose of an OS ���87

Complex and Multiprocessor Systems ��88

Multitasking and Multifunction Software ��88

Multiuser Systems ���89

Why Is It Important to Know About the OS? ���90

Responsibilities of an OS ��92

Scheduling ��93

Program and Process Basics ���94

Process States ���94

Process Control Block (PCB) ��95

Context Switching ���97

Scheduling ���98

Scheduling Criteria ��100

Thread Concepts ��101

Table of ConTenTs

viii

Memory Management ���102

Address Binding ��103

Logical vs� Physical Address ���105

Inter-process Communication ���107

I/O Management ���109

I/O Subsystem ���110

Polled vs� Interrupt I/Os ���114

I/O and Performance ���115

Synchronization Concepts ���116

File Systems ��122

File Concepts ���123

Directory Namespace ��124

Access and Protection ��126

Rings: User Mode and Kernel Mode ��126

Virtualization ��127

Protection ��128

User Interface and Shell ��128

Some OS Specifics ��129

Summary���130

References and Further Reading ��131

Chapter 5: Computer Networks and Distributed Systems ����������������133

History and Evolution of Networks and the Internet ���133

Protocols: Stateful and Stateless ��139

Internet Protocol (IP): TCP and UDP ���139

Host, IP Address, MAC Address, Port, Socket ���143

DNS and DHCP ���145

Proxy, Firewall, Routing ���147

Table of ConTenTs

ix

Distributed Systems: Prominent Architectures ���150

Client Server ��150

Peer to Peer ���151

N-Tiered ���152

Distributed System Examples ���153

FTP���153

The World Wide Web ��155

Case Study: Web Application ���158

System Architecture ��158

HTML, CSS, and JavaScript��159

Front End ���160

Back End��162

Summary���163

References and Further Reading ��164

Chapter 6: Computer Security ��165

Access Control ��166

Confidentiality��167

Integrity ���169

Availability ���170

Symmetric Key Cryptography ��170

Asymmetric Key Cryptography ��171

Digital Signatures ��172

Digital Certificates ���172

Certificate Chains ��173

Salts and Nonces ���173

Random Numbers ��174

Security in Client Computing Systems ��175

Table of ConTenTs

x

Malware, the Bad Apples of Software ��175

Trusted Execution Environments and Virtual Machines �������������������������������181

Communication Security: Security of Data in Motion ��185

Transport Layer Security��186

Virtual Private Network ��188

IP Security ���189

Writing Secure Programs: Where Do We Start? ��189

Summary���192

References and Further Reading ��192

Chapter 7: Cloud Computing ���195

Cloud Computing Models ��196

IaaS��197

PaaS ��198

Serverless ��199

SaaS ��200

Comparison of Cloud Computing Models ��200

Benefits of Cloud Computing ��201

Cost ���201

Scalability ��202

Velocity ��203

Reliability and Availability ��203

Productivity ��203

Performance ��204

Ease of Use and Maintenance ���204

Cloud Deployment Configurations ���204

Private Cloud ���205

Public Cloud ���205

Table of ConTenTs

xi

Hybrid Cloud ��206

Ideal Cloud Deployment Configuration ��206

Cloud Configuration Interface/Mechanism ��207

Cloud Service Providers ��209

Considerations in Choosing a CSP ���209

Motivation for Switching CSPs ��210

Considerations for Developing Portable and Interoperable Cloud Solutions �����212

Interoperability vs� Portability ��213

Containers, Docker, and Kubernetes ��216

The Way Forward ��221

Recommendations ���222

Summary���223

References and Further Reading ��223

Chapter 8: Machine Learning ���225

Brief History of Machine Learning ��226

Artificial Intelligence, Machine Learning, and Deep Learning ���������������������������228

Fundamental Tenets of Machine Learning ��229

Models ���230

Training ��231

Prediction (Inference) ��232

Categories of Machine learning ��232

Supervised Learning ��232

Unsupervised Learning ��234

Semi-supervised Learning ��234

Reinforcement Learning ��234

Machine Learning in Practice ���235

Leading Machine Learning Frameworks ���235

Table of ConTenTs

xii

Machine Learning and Cloud Computing ��236

The Way Forward ��237

Summary���239

References ��240

 Appendix A: Software Development Lifecycle ����������������������������������241

 Planning ��242

 Analysis ���243

 Architecture and Design��244

 Implementation ���244

 Test ���245

 Deploy ���246

 Maintenance ���247

 Appendix B: Software Engineering Practices �����������������������������������249

 Planning and Management Practices: Agile ��249

 Scrum ��249

 Kanban ��251

 Analysis and Design ��252

 Scaling Agile Practices ��252

 Documentation ��253

 Requirements, Design, and Architecture ���253

 Comments and Code ���254

 User ���254

 Testing���254

 Phases and Categories of Testing and Goals ���255

 Test-Driven Development ��256

Table of ConTenTs

xiii

 Developing for Debug ��256

 Asserts and Exceptions ���257

 Logging and Tracing ��257

 Source Control Management ��258

 Purpose and Mechanism ���258

 Tools ��260

 Build Optimizations and Tools ���261

 Purpose and Mechanism ���261

 Tools ��262

 Continuous Integration and Continuous Delivery ��264

 Purpose and Mechanism ���264

 Tools ��266

 Appendix C: ACPI System States ��269

 Global and System States ���270

 Device States ��273

 Processor States ���274

 Appendix D: System Boot Flow ���277

Index ���281

Table of ConTenTs

xv

About the Authors

Paul D. Crutcher is a senior principal

engineer at Intel Corporation, managing

the Platform Software Architecture team in

the Client Computing Group (CCG). Paul

has worked at Intel for more than 25 years

and has also worked at two smaller software

companies. Paul has a degree in computer

science, with expertise spanning software

development, architecture, integration, and

validation based on systems engineering

best practices in multiple areas. He holds

several patents and has multiple papers and

presentations to his credit.

Neeraj Kumar Singh is a principal engineer

at Intel with more than 15 years of system

software and platform design experience.

His areas of expertise are hardware/software

(HW/SW) codesign, system/platform

architecture, and system software design and

development. Neeraj is the lead author of

two other books, System on Chip Interfaces

for Low Power Design and Industrial System

Engineering for Drones: A Guide with Best

Practices for Designing, in addition to many

other papers and presentations.

xvi

Peter Tiegs is a principal engineer at Intel

with around 20 years of software experience.

Inside Intel, he often consults on DevOps

topics such as build automation and source

code branching. Over the last decade, Peter

evangelized continuous integration and

delivery as well as agile practices at Intel.

Peter has written software at all levels of the

stack from embedded C code to Vue.js. His

programming language of choice is Python.

abouT The auThors

xvii

About the Contributors

Chockalingam Arumugam is a system

software architect with expertise in design,

development, and delivery of software

solutions that work across OSs. He holds a

master’s degree in software systems from

Birla Institute of Technology and a bachelor’s

degree in electronics and communications

from Anna University. He is a hands-on

technologist on OS-agnostic software

development and has over 12 years of

experience in the industry. In recent years, he has been specializing in

cloud-based telemetry solutions.

Through his career, he has worked on a broad set of domains,

including device drivers, firmware/platform services, desktop/universal

applications, web applications, and services. He specializes in the areas of

Platform Health Analytics, Windows crash decode, and thermal and power

management debug and has led multiple engagements in these areas.

These solutions are used extensively in the industry for client platform

validation and debug. He is currently based out of Bangalore, India, and

works at Intel Corporation.

xviii

Prashant Dewan is a principal engineer at

Intel and is very passionate about computer

security. At Intel, he has worked on multiple

security technologies and has filed 100+

patents in the area of computer security. He

has a master’s and doctorate in computer

science from Arizona State University.

abouT The ConTribuTors

xix

Kenneth Knowlson is a senior principal

engineer in the Client Computing Group

(CCG) division at Intel. He leads a group

of principal engineers in the Analytics and

DevOps subgroup, within CCG, leading the

organization’s strategic and technical direction

in these dynamic areas. Prior to joining CCG,

Ken invented the processes and procedures

for “pre-silicon” (Pre-Si) software and system

development at Intel. The Pre-Si initiative is

focused on accelerating time to market by

shifting SW and FW development “left,” before

Si is available, enabling products to come to market much faster than they

would otherwise. Pre-Si uses technologies like Virtual Platform, FPGA, and

System-Level Emulation to approximate the final Si-based product. Ken

also has a long history at Intel creating and delivering consumer-connected

media products streaming media space.

Ken holds bachelor’s degrees in mathematics and physics from the

University of California Santa Cruz. Ken enjoys swimming and running

and also holds black belts in taekwondo and hapkido, although he no

longer practices.

About the Technical Reviewer

xxi

Acknowledgments

We would like to express gratitude to the people who helped us through

this book, some of them directly and many others indirectly. It’s impossible

to not risk missing someone, but we will attempt anyway.

First and foremost, we would like to sincerely thank our technical

reviewer, Ken Knowlson, for meticulous reviews; it helped the book

significantly. Thank you, Ken!

We would like to acknowledge Prashant Dewan for writing Chapter 6

and Chockalingam A. for his help on Chapter 4 of the book.

Thank you so much Rita Fernando, Susan McDermott, and all of the

Apress publishing team for the outstanding work, help, guidance, and

support; you have gone the extra mile to make the book what it is.

Above all, we thank our family and friends for their understanding and

support and for being continuous sources of encouragement.

xxiii

Introduction

According to code.org, there are 500,000 open programming positions

available in the United States alone – compared to an annual crop of just

50,000 graduating computer science majors. The US Department of Labor

predicted there will be 1.4 million computer science jobs by 2020, however,

only enough people to fill roughly 30% of these jobs. To bridge the gap,

many people not formally trained in computer science are employed in

programming jobs. While they are able to start programming and coding

quickly, it often takes them time to acquire the necessary understanding

and gain the requisite skills to become an efficient computer engineer or

advanced developer.

The goal of the book is to provide the essential computer science

concepts and skills necessary to develop a sound understanding of the

field. It focuses on the foundational and fundamental concepts upon

which expertise in specific areas can be developed, including computer

architecture, programming language, algorithm and data structure,

operating systems, computer networks, distributed systems, security, and

more.

This is a must-read for computer programmers lacking formal

education in computer science. Secondarily, it is a refresher for all,

including people having formal education in computer science as well as

anyone looking to develop a general understanding of computer science

fundamentals.

Overall, we authors have attempted to make it as lucid as possible, so

people with limited or even no background in computer science can pick

up the book and go through the journey to develop a good understanding

of computer science. We’re excited to have you on board.

1© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_1

CHAPTER 1

Fundamentals of a
Computer System
There are many resources online to get you started programming,

but if you don’t have training in computer science, there are certain

fundamental concepts that you may not have learned yet that will help

you avoid getting frustrated, such as choosing the wrong programming

language for the task at hand or feeling overwhelmed. We wrote this book

to help you understand computer science basics, whether you already

started programming or you are just getting started. We will touch on the

topics someone with a computer science degree learns above and beyond

the semantics and syntax of a programming language. In this first chapter,

we will cover a brief history and evolution of a computer system and the

fundamentals of how it operates. We will cover some low-level computer

architecture and programming concepts in this chapter, but subsequent

chapters will cover higher-level programming concepts that make it much

easier to program the computer.

 von Neumann Architecture
You’ve probably heard stories about computers the size of an entire

room in the 1940s into the 1970s, built with thousands of vacuum tubes,

relays, resistors, capacitors, and other components. Using these various

https://doi.org/10.1007/978-1-4842-7107-0_1#DOI

2

components, scientists invented the concept of gates, buffers, and

flip- flops, the standard building blocks of electronic circuits today. In the

1970s, Intel invented the first general-purpose microprocessor, called

the 8088, that IBM used to make the first PC that was small enough for

personal use. Despite the continuous advancements that have made it

possible to shrink the microprocessor, as you’ll see, the core elements of

today’s desktop or laptop computer are consistent with the first computers

designed in the 1940s!

In 1945, John von Neumann documented the primary elements of a

computer in the “First Draft of a Report on the EDVAC” based on the work

he was doing for the government. EDVAC stands for Electronic Discrete

Variable Automatic Computer, which was the successor to the Electronic

Numerical Integrator and Computer (ENIAC), the first general-purpose

computer developed during World War II to compute ballistic firing tables.

EDVAC was designed to do more general calculations than calculating

ballistic firing tables. As depicted in Figure 1-1, von Neumann described

five subdivisions of the system: central arithmetic and central control (C),

main memory (M), input (I), output (O), and recording medium (R). These

five components and how they interact is still the standard architecture of

most computers today.

Figure 1-1. Primary Architecture Elements of a Computer

Chapter 1 Fundamentals oF a Computer system

3

In his paper, von Neumann called the central arithmetic and control

unit the central control organ and the combination of central control

and main memory as corresponding to associative neurons. Even today,

people refer to the central processing unit, or CPU, as the “brain” of the

computer. Don’t be fooled, though, because a computer based on this

architecture does exactly what it is programmed to do, nothing more and

nothing less. Most often the difficulties we encounter when programming

computers are due to the complex nature of how your code depends on

code written by other people (e.g., the operating system), combined with

your ability to understand the nuances of the programming language

you’re using. Despite what a lot of people might think, there’s no magic to

how a computer works, but it can be complicated!

 CPU: Fetch, Decode, Execute, and Store
The CPU’s job is to fetch, decode, execute, and store the results of

instructions. There are many improvements that have been invented to

do it as efficiently as possible, but in the end, the CPU repeats this cycle

over and over until you tell it to stop or remove power. How this cycle

works is important to understand as it will help you debug multi-threaded

programs and code for multicore or multiprocessor systems.

Note threads are a mechanism used to simulate executing a set of
instructions in parallel (at the same time), whereas multiple cores in
the same system actually do execute instructions in parallel.

The basic blocks of a CPU are shown in Figure 1-2. The CPU needs a

clock that sends an electric pulse at a regular interval, called a frequency.

The frequency of the clock dictates how fast the CPU can execute its

internal logic. The control unit drives the fetch, decode, execute, and store

Chapter 1 Fundamentals oF a Computer system

4

function of the processor. The arithmetic and logic unit, or ALU, performs

math operations and digital logic operations like AND, OR, XOR, and so

on. The CPU has an internal memory unit for registers and one or more

high-speed memory caches to store data proactively pulled in from main

memory.

 Fetch
The CPU fetches instructions from memory using addresses. Consider

your home’s mailbox; it has an address and, if it’s anything like my

mailbox, contains junk mail and a letter from my mom, if I’m lucky. Like

the mail in your mailbox, instructions sit in memory at a specific address.

Your mailbox is probably not much bigger than a shoebox, so it has a limit

to how much mail the mail carrier can put into it. Computer memory

is similar in that each address location has a specific size. This is an

important concept to grasp because much of computer programming has

Figure 1-2. Basic Blocks Inside a CPU

Chapter 1 Fundamentals oF a Computer system

5

to do with data and instructions stored at an address in memory, the size

of the memory location, and so on.

When the CPU turns on, it starts executing instructions from a specific

location as specified by the default value of its instruction pointer. The

instruction pointer is a special memory location, called a register, that

stores the memory address of the next instruction.

Here’s a simple example of instructions in memory that add two

numbers together:

Address Instruction Human-Readable Instruction

200 B80A000000 MOV EAX,10

205 BB0A000000 MOV EBX,10

20A 01D8 ADD EAX,EBX

The first column is the address in memory where the instruction is

stored, the second column is the instruction itself, and the third column

is the human-readable version of the instruction. The address and

instruction numbers are in hexadecimal format. Hexadecimal is a base

16 number system, which means a digit can be 0—F, not just 0—9 as with

the decimal system. The address of the first instruction is 200, and the

instruction is “mov eax,10,” which means “move the number 10 into the

EAX register.” B8 represents “move something into EAX,” and 0A000000 is the

value. Hexadecimal digit A is a 10 in decimal, but you might wonder why

it’s in that particular position.

It turns out that CPUs work with ones and zeros, which we call

binary. The number 10 in binary is 1010. B8 is 10111000 in binary, so the

instruction B80A000000 in binary would be 1011 1000 0000 1010 0000

0000 0000 0000 0000 0000. Can you imagine having to read binary

numbers? Yikes!

In this binary format, a single digit is called a “bit.” A group of 8 bits is

called a “byte.” This means the maximum value of a byte would be 1111

1111, which is 255 in decimal and FF in hexadecimal. A word is 2 bytes,

which is 16 bits. In this example, the “MOV EAX” instruction uses a byte for

Chapter 1 Fundamentals oF a Computer system

6

the instruction and then 4 words for the data. If you do the math, 4 words

is 8 bytes, which is 32 bits. But if you are specifying the number 10 (or 0A

in hexadecimal) to be moved into the EAX register, why is it 0A000000?

Wouldn’t that be 167,772,160 in decimal? It would, but it turns out

processors don’t expect numbers to be stored in memory that way.

bit 0 or 1

byte 8 bits

word 2 bytes = 16 bits

dword 2 words = 4 bytes = 32 bits

Most CPUs expect the lower byte of the word to be before the upper

byte of the word in memory. A human would write the number 10 as a

hexadecimal word like this: 000A. The first byte, 00, would be considered

the most significant byte; and the second byte, 0A, would be the least

significant. The first byte is more significant than the second byte because

it’s the larger part of the number. For example, in the hexadecimal

word 0102, the first byte 01 is the “most significant” byte. In this case, it

represents the number 256 (0100 in hexadecimal is 256). The second

02 byte represents the number 2, so the decimal value of the hexadecimal

word 0102 is 258. Now, let’s look at the “MOV EAX,10” instruction as a

stream of bytes in memory:

200: B8 <- Instruction (MOV EAX)

201: 0A <- Least significant byte of 1st word

202: 00 <- Most significant byte of 1st word

203: 00 <- Least significant byte of 2nd word

204: 00 <- Most significant byte of 2nd word

205: ?? <- Start of next instruction

The instruction is a single byte, and then it expects 4 bytes for the data,

or 2 words, also called a “double word” (programmers use DWORD for

short). A double word, then, is 32 bits. If you are adding a hexadecimal

number that requires 32 bits, like 0D0C0B0A, it will be in this order in

Chapter 1 Fundamentals oF a Computer system

7

memory: 0A0B0C0D. This is called “little-endian.” If the most significant

byte is first, it’s called “big-endian.” Most CPUs use “little-endian,” but

in some cases data may be written in “big-endian” byte order when sent

between devices, for instance, over a network, so it’s good to understand

the byte order you’re dealing with.

For this example, the CPU’s instruction pointer starts at address 200.

The CPU will fetch the instruction from address 200 and advance the

instruction pointer to the location of the next instruction, which in this

case is address 205.

The examples we’ve been studying so far have been using decimal,

binary, and hexadecimal number conventions. Sometimes it is hard to

tell what type of number is being used. For example, 10 in decimal is 2 in

binary and 16 in hexadecimal. We need to use a mechanism so that it is

easy to tell which number system is being used. The rest of this book will

use the following notation:

Decimal: No modifier. Example: 10

Hexadecimal: Starts with 0x or ends in h. Example:

0x10 or 10h

Binary: Ends in b. Example: 10b

 Instruction Set Architecture

Instructions are defined per a specification, called instruction set

architecture, or ISA. There are two primary approaches to instruction set

architecture that have evolved over time: complex instruction sets and

reduced instruction sets. A system built with a complex instruction set is

called a complex instruction set computer, abbreviated as CISC. Conversely,

a system built with a reduced instruction set is referred to as a reduced

instruction set computer, abbreviated as RISC. A reduced instruction set is

an optimized set of instructions that the CPU can execute quickly, maybe in

a single cycle, and typically involves fewer memory accesses.

Chapter 1 Fundamentals oF a Computer system

8

Complex instructions will do more work in a single instruction and

take as much time to execute as needed. These are used as guiding

principles when designing the instruction set, but they also have a

profound impact on the microarchitecture of the CPU. Microarchitecture

is how the instruction set is implemented. There are multiple

microarchitectures that support the same ISA, for example, both Intel and

AMD (Advanced Micro Devices) make processors that support the x86 ISA,

but they have a different implementation, or microarchitecture. Because

they implement the same ISA, the CPU can run the exact same programs

as they were compiled and assembled into binary format. If the ISA isn’t

the same, you have to recompile and assemble your program to use it on a

different CPU.

Note a compiler and an assembler are special programs that take
code written by humans and convert it into instructions for a Cpu that
supports a specific instruction set architecture (Isa).

Whether it is complex or reduced, the instruction set will have

instructions for doing arithmetic, moving data between memory locations

(registers or main memory), controlling the flow of execution, and more.

We will use examples based on the x86 ISA to understand how the CPU

decodes and executes instructions in the following sections.

 Registers

CPUs have special memory locations called registers. Registers are used to

store values in the CPU that help it execute instructions without having to

refer back to main memory. The CPU will also store results of operations in

registers. This enables you to instruct the CPU to do calculations between

registers and avoid excess memory accesses. Table 1-1 is the original x86

ISA base register set.

Chapter 1 Fundamentals oF a Computer system

9

It’s important to understand how the registers are used by the CPU

for the given ISA. For example, the 32-bit counter, in this case ECX, will be

automatically decremented by the loop instruction. Another example is the

stack pointer where you can directly manipulate it, but it’s modified by many

other instructions (we will explore the concept of a stack later in this chapter).

Table 1-1. x86 Base Register Set

64 bits
(x86_64)

32 bits
(x86)

16 bits(8086)
8 bits 8 bits

accumulator RAX EAX AX

AH AL

Base register RBX EBX BX

BH BL

Counter RCX ECX CX

CH CL

data RDX EDX DX

DH DL

Base pointer RBP EBP BP

BPL

source index RSI ESI SI

SIL

destination index RDI EDI DI

DIL

stack pointer RSP ESP SP

SPL

General purpose R8-R15 R8D-R15D R8W-R15W

R8B-R15B

Chapter 1 Fundamentals oF a Computer system

10

The x86 register set has evolved over time and is meant to be backward

compatible with older versions of x86 CPUs. You can see the progression

from the original 16-bit processor to 32-bit and the now more common

64-bit memory address sizes. As the memory address size increased, so

did the register size, and new names were given to allow using the different

register sizes with the appropriate instructions. Even when in 64-bit mode,

the 32-bit register names enable programs written for 32 bits to run on

64- bit machines.

A typical ISA will have multiple register sets. For example, x86 has a

floating-point register set and another register set for handling large data

sets. The popular ARM architecture also has multiple register sets. The

register set and the ISA go hand in hand!

 Decode, Execute, and Store
Decoding is when the CPU interprets the instruction and transfers the data

needed to execute the instruction into the CPU to prepare to execute the

instruction.

Instructions are formatted in a particular way to enable efficient

decoding. The instruction format specifies the opcode (the operation to be

performed), the operands (the registers or data needed for the operation),

and the addressing mode. The number and order of the operands depends

on the instruction addressing mode as follows:

Register Direct: Both operands are registers:

ADD EAX, EAX

Register Indirect: Both operands are registers, but one contains the

address where the operand is stored in memory:

MOV ECX, [EBX]

Chapter 1 Fundamentals oF a Computer system

11

Immediate: The operand is included immediately after the instruction

in memory:

ADD EAX, 10

Indexed: The address is calculated using a base address plus an index,

which can be another register:

MOV AL, [ESI+0x401000]

MOV EAX, [EBX+EDI]

The CPU control unit decodes the instruction and then, based on

the addressing scheme, moves data from memory into the appropriate

registers. At this point, the instruction is ready, and the control unit drives

the ALU to do its work. For example, ADD EAX, 10 will add the number

10 to the current value of the EAX register and store the result in the EAX

register.

The ALU can support typical math instructions like add (ADD), multiply

(MUL), and divide (DIV) for integer numbers. The original arithmetic unit

doesn’t handle floating-point numbers directly. For example, when you

divide a number using the DIV instruction, you put the dividend in EAX and

the divisor in ECX and then issue the divide instruction:

MOV EDX, 0

MOV EAX, 13

MOV ECX, 2

DIV ECX

Since 13 is not an even number, there will be a remainder. The

instruction deals with integers only, so the quotient, 6, is stored in EAX,

and the remainder, 1, is stored in EDX. ECX will still be 2. You can use

other registers for the divisor, but the quotient and remainder will be

stored in EAX and EDX. In 16-bit mode, they are stored in AX and DX, and in

8-bit mode, this pattern breaks and the quotient is stored in AL with the

remainder in AH.

Chapter 1 Fundamentals oF a Computer system

12

Just like division has special handling for remainders, addition

and subtraction have special handling for carrying and borrowing. For

example, a binary number is either 0 or 1. The number 2 is represented as

10b in binary. When you add two bits together (1b + 1b), a carry occurs.

This is easily represented digitally by an XOR logic gate and an AND logic

gate. A logic gate is a set of transistors that perform logical operations on

binary inputs. Figure 1-3 shows how the XOR and the AND gates are wired

together to form a half adder circuit. The output of an XOR gate is “one or

the other but not both,” so it will be 0 if both inputs are 1. The output of an

AND gate is 1 only if both inputs are 1. The output of the AND gate is used to

set the carry bit for the add operation.

The ALU uses many different combinations of logic gates to implement

the various instructions. In addition, the ALU also supports logic

operations such as OR and AND, shifting bits, comparing, incrementing,

decrementing, and more. We’re just scratching the surface here, so if

you’re interested in more, we encourage you to study the ISA for your

processor.

Figure 1-3. Half Adder Circuit

Chapter 1 Fundamentals oF a Computer system

13

 Controlling the Flow
A very important instruction is one that tells the CPU to start executing

instructions from a different location, which is typically referred to as a

“jump” instruction. You can program the CPU to perform calculations

and then jump (change the instruction pointer) to a different location

in memory based on the outcome of the calculations. This technique

is used to perform a loop operation. In the following example, we will

initialize the ECX counter register to 4 and the ESI index register to 0.

Then we will increment the ESI register and call the LOOP instruction. The

LOOP instruction has a special relationship with the ECX register. It will

automatically decrement the register by one and, if it is greater than zero,

jump to the specified location:

Address Instruction Human-Readable Instruction

0x0200 0xB904000000 MOV ECX,0x4

0x0205 0xBE00000000 MOV ESI,0x0

0x020A 0x46 INC ESI

0x020B 0xE2FD LOOP 0x020A

Let’s look at a slightly more complex example. Suppose you have two

lists of numbers and you want to add them together and store the result

somewhere else in memory:

List 1 List 2 List 3 (results)

Address Data Address Data Address Data

0x401000 01 0x402000 04 0x403000 00

0x401001 02 0x402001 03 0x403001 00

0x401002 03 0x402002 02 0x403002 00

0x401004 04 0x402003 01 0x403003 00

Chapter 1 Fundamentals oF a Computer system

14

The following instructions add a number from List 1 to the

corresponding number in List 2 and put the result in List 3. Again, we

will use the ECX as a counter, so we initialize it to 4 since there are four

elements in each list. Next, we initialize our source index register (ESI)

and destination index register (EDI) to zero. Starting at address 0x0214,

we move a byte from the first list into the AL register and a byte from the

second list into the AH register. Next, starting at address 0x0220, we move

one byte into our destination and then add the other byte to that same

location. ESI is added to the address, and then the data located at that

calculated address is moved into the AL register. Since we are adding

ESI and EDI to the addresses, we increment both of them with the INC

instruction before the LOOP instruction. The LOOP instruction automatically

decrements ECX and jumps to address 0x214 as long as ECX is greater than

zero. There are several other conditional loops and jump instructions that

enable you to control program flow in a variety of ways:

Address Instruction Human-Readable Instruction

0x0205 0xB904000000 MOV ECX,0x4

0x020A 0xBE00000000 MOV ESI,0x0

0x020F 0xBF00000000 MOV EDI,0x0

0x0214 0x8A8600104000 MOV AL,[ESI+0x401000]

0x021A 0x8AA600204000 MOV AH,[ESI+0x402000]

0x0220 0x888700304000 MOV [EDI+0x403000],AL

0x0226 0x00A700304000 ADD [EDI +0x403000],AH

0x022C 0x46 INC ESI

0x022D 0x47 INC EDI

0x022E 0xE2E4 LOOP 0x0214

What if you needed to do this operation often? It would be of help

if you could put this set of instructions in your program and jump to it

from other parts of your program whenever you need to add two lists of

numbers together, right? You would need to pass information to this code

Chapter 1 Fundamentals oF a Computer system

15

for the location of the two lists in memory, how many numbers are in the

lists, and another memory location to store the results. Also, when the code

is done, you need to tell the processor to return to the location it came

from so it can continue execution instructions. We call this a function or

routine, and thankfully the processor has special instructions and registers

to keep track of the input to the function and where to jump to when

the function is done doing its work. These special instructions store the

needed information on the stack.

 The Stack
The stack works on a Last In, First Out (LIFO) principle. Imagine a card

game between two people sitting at a table. There are just a few simple

rules. First, if there are no cards on the table, you can put a card on the

table. If there’s a card on the table, you must put the next card on top of the

existing card, or stack them. Second, if either of you wants to take a card

from the table, you have to take the card from the top of the stack. Thus,

the last card put on the top of the stack is always the first one to come off

the stack of cards. Of course, we’re talking about computers, not people,

so in a computer, the table is memory, the people are functions of your

program, and the cards are data being passed back and forth. To make it

more interesting, some CPUs require that the table is upside down!

For the x86 ISA, there are two instructions to work with the stack:

PUSH and POP. There’s also a special register called the extended stack

pointer (ESP). The x86 stack always starts at a high memory address. As

data is pushed onto the stack, the ESP decrements to the next address.

When the pop instruction is executed, the ESP increments to reveal the

Chapter 1 Fundamentals oF a Computer system

16

previous item on the stack. Here is an empty 32-bit stack with ESP set to

the address of the first available position:

Address Data (DWORD) ESP

0x01000000 0x00000000 0x01000000

0x00FFFFFC 0x00000000

0x00FFFFF8 0x00000000

0x00FFFFF4 0x00000000

Let’s push a value onto the stack and look at the result:

MOV EAX, 10

PUSH EAX

This is what the stack will look like and the value of the ESP register:

Address Data (DWORD) ESP

0x01000000 0x00000000

0x00FFFFFC 0x0A000000 0x00FFFFFC

0x00FFFFF8 0x00000000

0x00FFFFF4 0x00000000

Notice anything? The value is actually stored in the next available

spot, not the current location ESP was referring to! The push instruction

decrements the address in the ESP register by 4, and then it stores the value

at the location. The POP instruction does the opposite; it moves the value at

the current address in the ESP register and then increments the ESP register

by 4. If we do POP EAX, which means “take the value on the stack and put it

in EAX,” the stack will look like this in 32-bit mode:

Chapter 1 Fundamentals oF a Computer system

17

Address Data (DWORD) ESP

0x01000000 0x00000000 0x01000000

0x00FFFFFC 0x0A000000

0x00FFFFF8 0x00000000

0x00FFFFF4 0x00000000

The ESP register is now back to 0x01000000; however, the 0A value is

still sitting at location 0x00FFFFFC! The POP instruction doesn’t touch the

data; it just copies it to the register you specify and changes the address

value stored in ESP. However, you can’t count on that data staying there as

the next push command will overwrite it.

Now that we know how the stack pointer works, let’s look at calling

the routine we talked about earlier that adds the elements of two lists of

numbers and stores the result in memory. Our routine needs the address

of the two lists of numbers and the address where to store the results. It

also needs to know the number of items in these lists, so let’s push these

items onto the stack:

Address Instruction Human-Readable Instruction

0x0200 0x6800104000 PUSH DWORD 0x401000

0x0205 0x6800204000 PUSH DWORD 0x402000

0x020A 0x6800304000 PUSH DWORD 0x403000

0x020F 0x6A04 PUSH BYTE +0x4

We use the DWORD and BYTE modifiers as hints to the compiler how

to treat the numbers. We will cover compiling, linking, and loading in the

next chapter. We also need to push an address on the stack so the routine

knows where to tell the processor to return to when it is done and then

Chapter 1 Fundamentals oF a Computer system

18

jump to our routine. It turns out that the CALL instruction does this for us,

so now we just need to call our routine, which is at address 0x024C in this

example:

0x0211 0xE836000000 CALL 0x024C

0x0216 ;address of next instruction

Now the stack looks like this:

Address Data (DWORD) ESP

0x01000000 0x0401000 +16

0x00FFFFFC 0x0402000 +12

0x00FFFFF8 0x0403000 +8

0x00FFFFF4 0x0000004 +4

0x00FFFFF0 0x0000216 0x00FFFFF0

We can reference the parameters on the stack in relation to the current

stack pointer. The beginning of our routine will use this technique to put

the number of bytes in the lists into ECX, the destination for the results into

EDI, the address of the second list of numbers in EBX, and the address of

the first list of numbers in EDX. Then, we will do add the numbers together

from the two lists and store them at the location stored in EDI. The code

has changed a bit because we’re using registers in a slightly different

way, but it has the same outcome. Note that the ret instruction will use

the address at ESP to jump to address 216 to continue executing the next

instruction after the call to our routine:

0x024C 0x8B4C2404 MOV ECX,[ESP+4]

0x0250 0x8B7C2408 MOV EDI,[ESP+8]

0x0254 0x8B5C240C MOV EBX,[ESP+12]

0x0258 0x8B542410 MOV EDX,[ESP+16]

Chapter 1 Fundamentals oF a Computer system

19

0x025C 0xB800000000 MOV EAX,0x0

0x0261 0xBE00000000 MOV ESI,0x0

0x0266 0x8A0432 MOV AL,[EDX+ESI]

0x0269 0x8A2433 MOV AH,[EBX+ESI]

0x026C 0x00E0 ADD AL,AH

0x026E 0x8807 MOV [EDI],AL

0x0270 0x46 INC ESI

0x0271 0x47 INC EDI

0x0272 0xE2F2 LOOP 0x266

0x0274 0xC3 RET

Our routine is simpler than the first list addition example; it doesn’t

need to use any temporary variables to get its job done. But if we did need

temporary variables, there’s a way to use the stack to store those variables

so that you do not have to allocate them in memory and then have to

remember to free that memory. If you use the stack, when your function

returns, the stack pointer is adjusted appropriately. It’s like a free scratch

space for storing information. The way you accomplish this is to simply

add the amount of space you want to allocate to the stack pointer, like this:

ADD ESP, 24

One problem, though, is as routines call other routines (so-called

subroutines), the stack will grow. The stack pointer will continue to grow

downward as you push items onto it and call other functions. Within your

routine, you need some way to reference your local variables. We use the

EBP register, also called the base pointer, to save the value of ESP before

we change it. There’s a trick, though, because the routine that called our

routine may also be using the base pointer to keep track of its local variable

space. To avoid any issues, we push the current base pointer, set the base

pointer to the current stack pointer, and then move the stack pointer, like

this:

Chapter 1 Fundamentals oF a Computer system

20

PUSH EBP ;save current base pointer

MOV EBP, ESP ;set base pointer to ESP

ADD ESP, 24 ;move ESP down the stack

The area on the stack we use for this purpose is called the “stack

frame.” To reference this space, we can now subtract from the base pointer,

EBP. For example, to initialize three locations on this space, you could do

this:

MOV [EBP-4], 1

MOV [EBP-8], 2

MOV [EBP-12],4

Now we can reference those locations throughout our routine. When

we exit our routine, we need to do some cleanup before calling the return

function. Basically, we need to restore the stack pointer and then pop

the EBP register off the stack to restore the stack frame to what our caller

expected:

MOV ESP, EBP

POP EBP

RET

Remember how we pushed parameters on the stack before calling our

function? We definitely want to clean those up. That can be done either

by our routine using the RET (short for “return” to the caller) instruction,

or we can expect the caller to clean up the stack. This is referred to as the

“calling convention” for a routine. It’s important to understand the calling

convention that the code you are calling uses, and you should pick a

consistent calling convention when you write code. Luckily, higher-level

programing languages do this for us, but as we write assembly code to

work with those higher-level languages, we need to follow those language

conventions.

Chapter 1 Fundamentals oF a Computer system

21

 Instruction Pipeline
CPUs are designed to fetch, decode, and execute instructions as efficiently

as possible. The circuitry of the CPU is designed in stages that can run in

parallel, called parallel execution units. For example, when the CPU is

performing the second stage of an instruction, it can start executing the

next instruction’s first phase. This allows the CPU to use all of its circuitry

and execute instructions faster. The stages of executing an instruction are

referred to as a pipeline.

A simple five-stage pipeline would have stages for fetching (F),

decoding (D), executing (E), accessing memory (M), and writing to a

register (R). Here are instructions executing without a pipeline:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

F1 d1 e1 m1 r1

F2 d2 e2 m2 r2

The first row is time (T1–T10), the second row is the first instruction,

and the third row is the second instruction. In this example, we can’t fetch

the second instruction until the first instruction completes all five stages:

Utilizing parallel stages in the pipeline, we can start fetching the

second instruction after the first one moves to the second stage. This will

enable the CPU to greatly decrease the amount of time it takes to execute

the two instructions. Instead of ten steps, the instructions are done in only

six steps, as follows:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

F1 d1 e1 m1 r1

F2 d2 e2 m2 r2

Chapter 1 Fundamentals oF a Computer system

22

There are instances where the pipeline will not work well, for

example, when the next instruction is relying on the result from a previous

instruction. This is called a data hazard. If you’re writing code in assembly

language, you need to consider how you’re using registers to ensure that

these hazards are avoided. For higher-level languages, the compiler and

assembler will optimize the machine language to ensure the pipeline is

executing efficiently to get the best performance out of the processor.

Modern processors have a deep pipeline consisting of over 30 stages!

They also use very fast internal memory called a cache to prefetch

instructions and data and even execute instructions proactively by

predicting the control flow.

 Flynn’s Taxonomy
Let’s revisit the code we wrote to add the values of two lists of numbers.

In that example, we were using the add instruction repeatedly on the data

in memory. Each instruction was executed against a single piece of data.

What if you could tell the processor to execute the add instruction on all

of that data with a single instruction? Well, you can. It’s called a single

instruction, multiple data (SIMD) operation. In 1966, Michael J. Flynn

proposed a taxonomy for the different ways that instructions operate on

data.

Flynn defined a taxonomy in 1966 to classify parallel computing

scenarios. In a parallel computing environment, you have multiple

independent processors that can execute concurrently. Today, CPUs

have multiple cores that can execute tasks in parallel, so they can execute

parallel instructions. Flynn defined four classes, or scenarios:

single instruction, single data (sIsd) single instruction, multiple data (sImd)

multiple instruction, single data (mIsd) multiple instruction, multiple data (mImd)

Chapter 1 Fundamentals oF a Computer system

23

We’ve been focusing on SISD, single instruction, single data, which is

typical in a single-processor scenario. Let’s look at our example of adding

two lists of numbers together. The two lists of numbers are multiple data

inputs, and it turns out there are instructions in the x86 instruction set that

support multiple data inputs, or SIMD instructions as defined by Flynn.

It’s kind of interesting how it works. We will use the x86 PADDB instruction

to add the values of both lists together in one shot. PADDB stands for “add

packed integers.” To use the PADDB instruction, you need to “pack” the

data into a register using the MOVDQU instruction. MOVDQU stands for “move

aligned double quadword.” A double quadword is 128 bits (2 × 4 × 16) and

is also referred to as an “OWORD.” If you remember, our previous example

used lists that had 4 bytes. If we increase those to hold 16 bytes, then we

have 128 bits. We can “pack” those 128 bits of contiguous data into a

128- bit register using the MOVDQU instruction, use PADDB to do the addition

in one instruction, and then move the result to the destination passed in

on the stack as follows:

0x00000256 0x8B7C2404 MOV EDI,[RSP+4]

0x0000025A 0x8B5C2408 MOV EBX,[RSP+8]

0x0000025E 0x8B54240C MOV EDX,[RSP+12]

0x00000262 0xF30F6F02 MOVDQU XMM0, OWORD [RDX]

0x00000266 0xF30F6F0B MOVDQU XMM1, OWORD [RBX]

0x0000026A 0x660FFCC1 PADDB XMM0,XMM1

0x0000026E 0xF30F7F07 MOVDQU OWORD [RDI],XMM0

0x00000272 0xC3 RET

Using the PADDB instruction, we’ve removed the loop entirely! Packing

your data into the XMM registers is the trick that makes it work. This

implies that these instructions have limitations as to the amount of data

you can pack and add at a time, so if the data set is large, you would still

have to write a loop to complete the operation, but in the end it should be

faster.

Chapter 1 Fundamentals oF a Computer system

24

Multiple instruction, multiple data, or MIMD, is the case where you

have multiple CPUs or CPU cores operating on multiple data streams

at once. This is a typical multiprocessor scenario that happens often

in today’s seemingly single-processor systems. Most CPUs today have

multiple cores built into them that can truly execute instructions in

parallel. Most of the coordination of running programs on different cores

in parallel is handled by the operating system. As a programmer, you

write a program, and within that program if you want to execute multiple

instructions concurrently on different CPUs, you create execution threads

for those instructions with some help from the operating system.

Multiple instruction, single data (MISD) is a less common technique.

A good example of MISD would be a fault-tolerant system where you may

have processors run a known algorithm on the same data set. If the results

don’t match, the system knows one of the processors is malfunctioning, at

which point it can stop using it and let humans know to replace it!

 Main Memory and Secondary Storage
We’ve covered how the CPU fetches information from memory using

addresses and how it decodes and executes instructions with help

from special memory locations called registers. We also now know that

information in memory is stored in byte-sized chunks (8 bits per byte) and

that the CPU keeps track of the next instruction using an instruction pointer.

To do its job effectively, the CPU must be able to access any location in

memory quickly, which means the main memory must support random

access. We call this type of memory “random access memory,” or RAM. The

main memory must be very fast and is implemented using electronic circuits

consisting of capacitors and transistors that work together to store bits.

Electronic circuits can only save information while they have power, so that

type of memory is called “volatile memory.” Therefore, a computer system

also needs “non-volatile memory” that will save instructions when there’s no

power. This type of memory is called secondary storage.

Chapter 1 Fundamentals oF a Computer system

25

Originally, instructions were encoded on punch cards that were fed

by hand into memory. This was very cumbersome! Magnetic tape was

originally invented to store audio in the late 1800s and further refined in the

early 1900s. In 1950, the first tape recorder was created for storing digital

information to be used by a computer. Information on a reel of magnetic

tape could not be accessed randomly; instead, it had to be accessed

from beginning to end, or sequentially. The tape drive is connected to

the computer in a way that the computer can send the drive commands

to start reading data from the tape and store it in a particular location in

memory. After the instructions from the tape are loaded into memory, the

CPU instruction pointer is set to start reading those instructions. This was

better than punch cards, but still relatively slow, especially as the number of

instructions and data used to run a program increased.

Researchers invented the “hard drive” to provide random access to

instructions and data. Hard drives store data on magnetic disks housed in

a special container. The disks spin at a high rate, and the mechanism to

read the data is on an arm that moves left and right across the surface of

the disk to read the data. This provided a cheaper and faster way to read

programs from secondary storage into the much faster main memory.

Floppy disks are another type of magnetic media invented after tape.

The advantage of a floppy disk was that it could be inserted into a drive

that had a head that moved left and right while the disk was spinning to

read blocks of data in a more random fashion (but still much, much slower

than RAM). They were called floppy drives because they were somewhat

flexible when not inserted into the drive.

Secondary storage technology has continued to evolve from high-

density CD ROM, which is read and written to using a laser, to solid-state

drives (SSDs) that have no moving parts at all. The evolution will continue

with the advent of persistent memory that has the potential to be an

alternative for main memory that does not lose its content when power

is removed or lost. Imagine the implications of a system where the main

memory is persistent and instructions no longer have to be moved from

secondary storage to main memory before the CPU starts its fetch, decode,

and execute cycle.

Chapter 1 Fundamentals oF a Computer system

26

 Input and Output (I/O)
We’ve talked about how the CPU needs to load the instructions from

secondary storage into main memory. But how is that actually done? In

modern computers, devices are connected to the same address bus as

the CPU and main memory, as depicted in Figure 1-4. This enables CPU

instructions to use memory addresses to perform input and output (I/O)

operations with devices, which is called “memory-mapped I/O (MMIO).”

In early x86 processors, there were input and output instructions that

read and wrote to I/O port addresses. Using other CPU instructions with

the I/O port addresses would reference main memory, not the intended

device. The only way to interact with the device was by using input and

output instructions to load data into CPU registers and then execute

instructions using those registers as operands. With memory-mapped I/O,

you can simply use the address location for the device as the operand for

any CPU instruction. The input and output instructions still exist in the

x86 ISA, but aren’t used except by the operating system and some common

device drivers.

Figure 1-4. Devices Connected to the Address Bus

Chapter 1 Fundamentals oF a Computer system

27

Through these memory accesses, the CPU can set values that the

device interprets as commands. A common scenario is the CPU telling the

device to transfer data into main memory, for example, having a hard drive

transfer data from its disk to main memory, which is called direct memory

access, or DMA. After telling a device to initiate direct memory access, the

CPU is free to execute other instructions.

When a device completes its operation, it will let the CPU know it is

done through an interrupt, which is a signal connected to the CPU that the

device raises or lowers to get the CPU’s attention. When the CPU receives

the signal, it can stop executing instructions and switch to a special routine

that takes care of the interrupt.

 Summary
In this chapter, we learned about the fundamentals of a computer system:

• von Neumann Architecture: Central arithmetic and

central control (C), main memory (M), input (I),

output (O), and recording medium (R)

• Operation of a CPU: Fetch, decode, execute, and store

• Instruction set architecture and register sets

• Controlling the flow of execution and using the stack to

implement routines

• Classifying parallel instruction and data using Flynn’s

taxonomy

• Understanding the difference between main memory

and secondary storage

• Input and Output: Memory-mapped I/O and interrupts

Chapter 1 Fundamentals oF a Computer system

28

Now that we have a basic understanding and hopefully appreciation of

computer fundamentals, we can move on to Chapter 2.

 References and Further Reading
• The ENIAC Story: https://web.archive.org/

web/20110814181522/http://ftp.arl.mil/~mike/

comphist/eniac- story.html

• Intel 8088 Microprocessor Family: www.cpu- world.com/

CPUs/8088/

• “First Draft of a Report on the EDVAC”: https://web.

mit.edu/STS.035/www/PDFs/edvac.pdf

• History of Magnetic Tape: https://history- computer.

com/ModernComputer/Basis/tape.html

• Introduction to Dynamic Random Access Memory:

www.allaboutcircuits.com/technical- articles/

introduction-to-dram-dynamic-random-access-memory/

• John L. Patterson, David A. Hennessy. Computer

Organization and Design: The Hardware/Software

Interface. Elsevier Science Ltd, 2007

• Intel 64 and IA-32 Architectures Software Developer

Manuals: https://software.intel.com/content/

www/us/en/develop/articles/intel- sdm.html

• ARM Developer Documentation: https://developer.

arm.com/documentation

Chapter 1 Fundamentals oF a Computer system

https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html
https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html
https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html
http://www.cpu-world.com/CPUs/8088/
http://www.cpu-world.com/CPUs/8088/
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://history-computer.com/ModernComputer/Basis/tape.html
https://history-computer.com/ModernComputer/Basis/tape.html
http://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/
http://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://developer.arm.com/documentation
https://developer.arm.com/documentation

29© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_2

CHAPTER 2

Programming
In Chapter 1, we learned how the CPU fetches, decodes, and executes

instructions and that those instructions sit on a persistent storage device

until the CPU is turned on and transfers them to main memory. Of

course, someone has to write the instructions in the first place, which

we call “programming.” So simply put, programming is the act of writing

instructions for a computer to do some specific task. In this chapter, we

will explore the different types of programming languages you can use,

along with the advancements that have been developed over the years to

make programming easier.

One of the most interesting aspects of computer science and software in

general is how we are continuously inventing new programming languages.

In the end, they are all converted to machine language appropriate for the

ISA of a given CPU, but how this process is done varies. For example, in

some cases the program is converted to machine language once. In other

cases, the program may be converted every time it is about to be executed,

in which case you need a program that does the conversion on the fly.

Deciding which programming language to use can be daunting

when you look at the landscape of possibilities, and it’s not always a

black-and- white decision; often it comes down to personal preference.

Let’s jump into the fundamentals of programming languages so you

have a grounding in the basic concepts that are shared by almost all

languages. There are entire books written about a single programming

language, so we will touch on the basics and give you some good

references for learning more.

https://doi.org/10.1007/978-1-4842-7107-0_2#DOI

30

 Programming Language Fundamentals
It is possible to program a computer using the computer’s native machine

language. However, machine language is essentially a stream of binary

numbers, which are difficult to read and extremely difficult to write.

Listing 2-1 shows the machine language in hexadecimal format for a

simple program. Can you tell what it’s doing?

Listing 2-1. Machine Language for a Simple Program

Address Instruction

00000098 B800000000

0000009D B904000000

000000A2 BE00000000

000000A7 BF00000000

000000AC 6AF5

000000AE E800000000

000000B3 6A00

000000B5 6800000000

000000BA 6A0C

000000BC 6800000000

000000C1 50

000000C2 E800000000

000000C7 6A00

000000C9 E800000000

No? That’s not surprising! Obviously, we need a better way to program

the computer, and that’s where programming languages come into play.

One of the first languages developed is called “assembly language.”

Assembly language is very close to machine language in terms of the

instructions and syntax, so it is referred to as a “low-level” language.

Chapter 2 programming

31

 Hello, World!
When you are learning a new programming language, it’s common

practice to write a program that prints “Hello, World” to the screen. This

will enable you to understand the minimal amount of work you have to

do to get the program to compile and output a message. Knowing how to

output a message from your program is important because you may need

to print messages from your program to help you debug it when it isn’t

working as intended. Let’s look at printing “Hello, World” using assembly

language in Listing 2-2.

Listing 2-2. “Hello, World” Using Assembly Language

STD_OUTPUT_HANDLE equ -11

NULL equ 0

global main

extern ExitProcess, GetStdHandle, WriteConsoleA

section .data

hello db "Hello, World", 0

hellol equ $ - hello

section .bss

dummy resd 1

section .text

main:

 mov eax, 0

 mov ecx, 4

 mov esi, 0

 mov edi, 0

 push STD_OUTPUT_HANDLE

 call GetStdHandle

Chapter 2 programming

32

 push NULL

 push dummy

 push hellol

 push hello

 push eax

 call WriteConsoleA

 push NULL

 call ExitProcess

There’s a lot going on in this example! You can see it uses a variable

to represent a memory location (e.g., “hello”), specifies blocks of

data (e.g., “section .data”) and code (e.g., “section .text”), uses

a label to represent the memory address of the start of the program

(e.g., “main:”), and also leverages Windows operating system routines

(e.g., “GetStdHandle,” “WriteConsoleA,” “ExitProcess”). There’s also a

section called “section .bss” where you declare variables that should

be initialized to 0. This is obviously easier to read than raw machine

language, as you can see, but it is structured in a particular way. Can you

guess why that is?

Since the example isn’t in machine language, the CPU can’t execute

the instructions directly. We need a special program called a compiler to

convert the assembly language code into machine language.

 Compile, Link, and Load
Unlike the machine language example that was dumped from memory, the

assembly language example is text that you must save to storage as a file.

The instructions in the file need to be converted to machine language and

put into memory so the CPU can execute them. As depicted in Figure 2-1,

this process is typically broken down into three phases: compile, link, and

load.

Chapter 2 programming

33

A compiler is a program that handles the task of taking the assembly

instructions and converting them to machine language. The compiler

verifies the syntax of the code relative to the language it is written in and

generates machine language instructions for the CPU it will execute on.

Much of the syntax in the assembly language example is there for the

sake of the compiler so it can generate the appropriate machine code, for

example, having to distinguish between data and code using “section

.data” and “section .text,” respectively. The compiler output will

contain the values for global variables that are initialized to specific values

(like “hello”), the code, a list of variables that should be initialized to 0,

and references to functions that the compiler expects to come from some

other source, like the output from another compiler or from the operating

system. The binary files that the compiler generates are called object files.

In Linux, object files have a “.o” extension, while Microsoft Windows

object files have a “.obj” file extension.

Figure 2-1. Compile, Link, Load

Chapter 2 programming

34

A program called a linker takes multiple compiled object files and

puts them together to create an executable program that can be loaded

by a particular operating system. The linker’s job is to make sure all the

references in the object files are resolved before generating the executable

program. It’s common to get errors when linking a program typically

indicating an incorrect or missing reference to a function or variable that

you expected to import from some other source.

The ability to link object files from different sources together is

powerful because it enables us to share and reuse code modules. When

you create code that you want to reuse in multiple programs, you can have

the compiler generate the object file and then use that object file when

linking to other programs. We call this type of code a “static library.” You

can use different programming languages to generate them as long as the

machine language they generate is compatible. For example, you could

have two languages with a complier for each; the compilers need to use

compatible mechanisms for passing parameters to functions on the stack

so the code in their object files can call functions in other object files.

Static libraries are great for reusing code, but they have one drawback.

If you update a static library because you’ve added functionality or fixed

a problem in the code, you need to recreate the executable file for all the

programs you’ve written that use that static library. Dynamic libraries were

invented to fix this problem. You need to use special operating system calls

to load dynamic libraries instead of linking the machine code directly into

your program. This means you can update the dynamic library without

having to recompile your original program – as long as the interfaces to

the functions don’t change! For now, just know that there are two types

of libraries and that using dynamic libraries is a powerful, yet tricky,

mechanism for reusing code.

Operating systems, like programming languages, are designed to make

it easier to write programs. In the assembly language example, there are

routines you can call to do work for you, like writing information to the

console using the Microsoft Windows WriteConsoleA function. Another

Chapter 2 programming

35

service the operating system provides is loading and executing your

program. The operating system needs to know a few things about your

program, like which part of it holds data (variables and default values),

which part has instructions, and which instruction should be executed

first. It will then put the data and instructions in memory and update the

instructions to use appropriate memory locations. The operating system

has a special program called a “loader” that handles this process. The

loader expects the program to be stored as a file on a media device, like a

hard drive, in a specific format, called the “executable file format.” There

are several executable file formats that have been developed over time,

such as the Executable and Linkable Format (ELF), which is used by Linux

(and many other operating systems). Microsoft Windows uses the Portable

Executable (PE) format.

Separating the process into compiling, linking, loading, and executing

phases is very flexible. For example, you could write compilers for many

different languages that target the same linker. The compiler focuses

on converting the intermediate instruction format to different types of

instruction set architectures. It can also optimize the instructions for

those specific architectures and create specific executable file formats.

Having a program that has a specific output format that another program

can work with is a very important concept in programming. Imagine how

much more work it would be if every time someone came up with a new

programming language, they had to write the compiler and linker and the

executable file format, as well as load it and execute it! By breaking this

process up into steps, it saves a lot of time and enables sharing of code

between programs.

 High-Level Languages
Let’s compare our “Hello, World” assembly language example to an

example written in the relatively old but popular “C” language. C

became popular in the 1980s after Brian Kernighan and Dennis Ritchie

Chapter 2 programming

36

published their edition of C in 1978. Their version included the standard

input/output library, additional data types, and compound assignment

operators. The following sample in Listing 2-3 is a simple “Hello, World”

program in C, and as you can see, it is very different than assembly

language!

Listing 2-3. “Hello, World” in the C Programming Language

#include <stdio.h>

int main() {

 printf("Hello, World!");

 return 0;

}

There are special keywords that you use so that the compiler can do

its job. For example, the “#include” keyword tells the compiler to include

another file, in this case “stdio.h,” which is the C standard input/output

library header file. Header files are used separate from the code files

(which typically end in .c for the C language). They allow the compiler

to understand how to call functions in other libraries without having to

look at the code itself. The header file lists the names and parameters for

functions that are available for use from the code file (as well as variable

names and macro definitions). The brackets “<” and “>” tell the compiler

to look for that file outside of the current folder by using the “include

path,” which is an operating system environment variable that we won’t

cover here. Every executable program in C must have a function called

“main.” Brackets (“{”, “}”) are used to group lines of code together. “printf”

is a function that is defined in “stdio.h” that prints data to the screen.

Parameters to the printf function are specified inside parentheses. A

semicolon is used to specify the end of a string of commands.

The use of parentheses, brackets, and semicolons is all part of the C

language syntax. The syntax is the rules for combining language-specific

symbols in the correct order that the compiler will be able to understand.

Chapter 2 programming

37

Remember, the compiler is just another program, so strict rules are necessary

to make it easier to convert the language into machine language code

through procedural programming mechanisms as we’re describing here.

Let’s take a deeper look at the compilation process for a high-level

language like C. Figure 2-2 shows how a compiler breaks down the

compilation process in terms of preprocessing, lexical analysis, parsing,

building a symbol table, and generating the code.

The preprocessor looks for specific identifiers in the source code

and resolves those to create a file that can be scanned by the next step in

the process. In the C language, preprocessor directives start with “#”, for

example, “#include.” The preprocessor will load the file specified by the

#include so it becomes part of the source file.

Once the preprocessing is done, the lexical analyzer scans the source

file to identify tokens. As it is identifying tokens (e.g., “int” is a keyword,

“main” is an identifier, etc.), it updates the symbol table. If there are

characters that are not allowed based on the syntax of the program, the

lexical analyzer will throw an error. An advanced analyzer may try to

recover from the error so it can continue with the compilation process.

The parser does the syntax analysis. It receives the tokens from the

lexical analyzer and determines if they are in the appropriate order based

on the syntax of the language. Parsers may generate what’s called a “parse

tree” or an “abstract syntax tree.” The parse tree (trees are discussed in

Chapter 3) is a representation of the input that conforms to the grammar

Figure 2-2. Compilation Process

Chapter 2 programming

38

of the language, and you can generate a version of the original source by

walking the tree in the right order. Having a tree-oriented representation

of the source code allows the compiler to make multiple passes when

generating the machine language without having to reparse the original

source. You could also imagine a compiler that creates the parse tree

and then uses that to generate multiple output files for different types of

processors without having to retokenize and parse the original source

code. The parser is also responsible for detecting and reporting syntactical

errors (like missing a semicolon), semantic errors (like trying to assign the

wrong type of value to a variable), and logical errors (like an infinite loop

or unreachable code). Compiling high-level languages is a complex topic,

so if you’re interested in more detail, we encourage you to read some of the

references we’ve cited at the end of this chapter.

Hopefully you are starting to appreciate why C is considered a high- level

language as compared to assembly and machine languages! Since the early

1950s, many high-level programming languages have been created. Fortran,

LISP (List Processing), Algol, COBOL (Common Business- Oriented Language),

BASIC, Pascal, Smalltalk, SQL (Structured Query Language), Objective-C,

C++, Perl, Java, Python, Visual Basic, R, Java, PHP, Ruby, JavaScript, Delphi,

C#, Scala, Groovy, Go, PowerShell, and Swift are a few of the more popular

languages. Once you understand several of the key programming paradigms,

you’ll see how many of these languages have quite a bit in common.

 Programming Paradigms
So far, we’ve looked at machine language, assembly language, and C

“Hello, World” examples (you may have guessed by now that the first

machine language example was a version of “Hello, World”). We recognize

that machine language and assembly language are low-level programming

languages, and we know how programs are compiled, linked, and loaded.

High-level programming languages abstract away the machine language

entirely, and the compilation process is broken down into several phases.

Chapter 2 programming

39

Within the classification of high-level programming languages,

though, there are several different programming paradigms you should

be aware of: imperative, declarative, object-oriented, interpreted,

parallel, and machine learning (ML). Learning about these programming

paradigms helps you recognize the common elements of many high-level

programming languages. Let’s take a closer look at each one.

 Imperative Programming
Imperative programming is the oldest programming paradigm. Imperative

program languages are constructed through a series of well-defined

commands in a specific order, and the program flow is controlled by loops

and branches. Imperative programs can be broken down into additional

programming styles: structured, procedural, and modular.

Structured programming adds sequences, selection, and iteration

operations to solve problems with nonstructured imperative programs.

Procedural programming is when you divide the program into a small set

of procedures, or functions, while modular programming is where you

break down the program into a set of modules (files) that can be tested

independently of each other.

Imperative programming is typically easier to read and relatively easier

to learn because you can easily follow the execution flow, which is why

most people learn an imperative programming language first. However,

the programs are often much larger, relative to other paradigms, when

trying to solve more complex problems. Some alternatives, like functional

programming, which is considered a declarative programming paradigm,

can do a lot more with less code but are typically harder to learn and read.

Most of the examples we’ve studied so far have been imperative, so we

won’t revisit them here. The C programming language is considered an

imperative programming language, as well as COBOL, Pascal, Fortran, and

many others.

Chapter 2 programming

40

 Declarative Programming
With declarative programming, instead of programming based on the

steps you go through to arrive at the solution, the program is written by

describing the end result. It’s also done at a higher level of abstraction.

Functional programming is a common type of declarative programming.

In functional programming, the primary rule is that a function has

no side effects. It cannot rely on data outside of the function; it can only

operate on the data passed to it as parameters. Here’s an example of an

imperative programming function that violates that rule:

int a = 0;

void increment() {

 a = a + 1;

}

In this simple example, the increment function takes no arguments,

and it is incrementing a variable that is declared outside of the function.

This is a valid function in an imperative language like C, but if you’re

adhering to functional programming rules, you would implement the

function this way:

int increment(int a) {

 return a + 1;

}

This “increment” example is considered a “pure” function because it

only operates on its parameters and thus there can be no side effects like

setting the value of a variable outside of the function, and it doesn’t keep

track of anything between calls. It simply operates on the parameters that

are passed to it and nothing else.

Chapter 2 programming

41

Another type of function is one that takes other functions as parameters

or returns a function as a result. These are called “higher- order” functions.

Consider the following Python code that prints the length of each string in a

list. The map function takes a function name as the first parameter and a list

of objects (we cover object-oriented programming in the next section) as the

second parameter. It simply applies the function to each object in the list and

returns the result as a special type of object called an iterator. You then pass

the iterator object, which will walk through all of the elements in the data

structure, from the map function to a list function to create a list of objects:

print(list(map(len, ["programming", "is", "fun"])))

The output looks like this:

[11, 2, 3]

Here we are able to accomplish the task in one line of code! However,

it’s not as easy to understand what is going on, is it? The flow of the code

isn’t obvious because it’s about the operations you are performing on the

data (in this case, a list of words). To understand it, you read the code from

the inside out, so to speak, and also have to understand what the function

is going to do, which isn’t always obvious.

You have to think differently when writing declarative code, but it can

be very powerful. For example, it is easier to execute the operations in

parallel. In this case, it’s possible to execute the “len” command for each

parameter on a different CPU at the same time, which would be very fast!

Writing this code in an imperative way is much different. Let’s look at

the imperative version, again using Python:

word_lengths = [0,0,0]

word_list = ["programming", "is", "fun"]

for i in range(len(word_list)):

 word_lengths[i] = len(word_list[i])

print(list(word_lengths))

Chapter 2 programming

42

There are several more lines of code in this example, but it is a little

bit easier to follow the flow of execution. However, since the “for” loop

operates each command sequentially, it’s not as easy for the system to

execute the instructions in parallel.

 Object-Oriented Programming
Object-oriented programming is an evolution of procedural programming

that introduces some very important concepts such as encapsulation,

abstraction, inheritance, and polymorphism.

In object-oriented programming, encapsulation is achieved by defining

classes of objects. A class defines the private variables that only the methods

of that class can act upon, protected variables that only derived classes can

access, and public variables the functions and methods outside of the class

can access. All of the code that operates on those variables is encapsulated

within the class definition. Code external to the class can only use the public

mechanisms to interact with an instance of the class. An instance of a class is

called an object. For example, in C++, you can define a Vehicle class that has

a public method for getting the capacity of the vehicle, but have private and

protected properties and methods that are not visible outside of the class:

 class Vehicle {

 private:

 int access_count = 0;

 protected:

 int capacity = 0;

 public:

 int get_capacity() {

 ++access_count;

 return capacity;

 }

 };

Chapter 2 programming

43

In this example, the Vehicle has a private variable that increments

every time “get_capacity” is executed. However, the capacity variable is

set to 0 and is “protected,” not “private” like the “access_count” variable.

This means classes that derive from the Vehicle class (like a car or bus) can

manipulate the capacity variable but not “access_count.”

Inheritance is when you define a new “child” class based on the

definition of an existing “parent” class. The child class can add additional

methods and properties or override the parent implementation and/or

add new functionality. We’ve defined a Vehicle class. Now let’s inherit from

it to create two new classes, Car and Bus:

class Car: public Vehicle {

 public:

 Car() { capacity = 4; }

}

class Bus: public Vehicle {

 public:

 Bus() { capacity = 20; }

}

We’ve introduced a new C++ concept in this example called the

“constructor.” The constructor has the same name as the class being

created. The constructor is called automatically when the object is created.

In this example, when you create a Car, it initializes the capacity variable to

4, but when you create a Bus, it initializes the capacity variable to 20. Note

that neither class defines the capacity variable because it was defined in

the Vehicle parent class. Because the Vehicle class has already specified

the function to get the capacity of the vehicle, the child class doesn’t have

to do anything other than initialize the variable in its constructor. When

Chapter 2 programming

44

you create a Bus or Car, you can call those functions that are defined by the

Vehicle class, like this:

Bus aBus;

int capacity = aBus.get_capacity();

We can use the same vehicle example to describe polymorphism,

which means having many forms. When you write code that deals with

instances of the Vehicle class, you can access the public get_capacity

method. It doesn’t matter if the object is a bus or car because they both

inherit from the Vehicle class. The implementation of get_capacity is

different, though, depending on whether or not the object is a car or bus.

In this case your code is dealing with vehicles, but they can have different

forms. Here’s an example where we create a Bus but treat it as a Vehicle:

Bus aBus;

Vehicle* aVehicle = &aBus;

int capacity = aVehicle->get_capacity();

We declared a variable called “aVehicle” that is a “Vehicle*”. That’s

special syntax in the C language to specify that the “aVehicle” variable

is the memory address of another variable that inherits from the Vehicle

class. I can “point” that variable at an instance of a Bus object, as in this

example, using the “&” operator. The ampersand tells the compiler to use

the address of aBus and then assign it to aVehicle. Later, we can change

aVehicle to be the address of the Car object. This is how we enable

polymorphism in C++. We write our code using the aVehicle variable, and

depending on what address it is assigned to, it could be a Car or a Bus.

Now that we’ve covered the primary concepts common to object-

oriented programming languages (encapsulation, inheritance, and

polymorphism), we can move on to the interpreted programming

paradigm.

Chapter 2 programming

45

 Interpreted Programming
Instead of compiling your source code into an executable file, you can use

a program called an interpreter and either type in the commands directly

at a prompt or put them in a source file and have the interpreter execute

it. Interpreters are able to execute the high-level code instructions as they

read them instead of compiling and linking into an executable program.

The interpreter itself is an executable program that reads the code and

interacts with the operating system to do what the code says. Python is the

interpreter for the, you guessed it, Python programming language! Let’s

look at an example of a “hello world” program in Python:

print("hello world")

Whoa, it’s just a single line of code! However, you do have to run this

example from the Python program from the command line, which will

load and print a prompt (“>>>”) when it’s ready for input, like this:

C:\python

Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020, 17:08:21) [MSC

v.1927 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more

information.

>>> _

Interpreted languages like Python are very powerful. You can easily

evaluate code using the interpreter and do rapid testing because you don’t

have to perform compile/link/load.

JavaScript is another interpreted language that is commonly executed

by web browsers like Google Chrome and Microsoft Edge. Instead of

running an interpreter from the Windows command line prompt or a

Linux terminal, JavaScript is executed by an interpreter in the browser.

The script sits on a web server waiting to get downloaded by the browser.

In Figure 2-3, the browser requests a page from a web server, which is

Chapter 2 programming

46

an HTML document that contains the JavaScript code. JavaScript can be

embedded in HTML, or there can be a reference to a JavaScript file in the

HTML file. For this example, it’s embedded in the HTML file.

In Figure 2-4, the browser receives the HTML file containing the

JavaScript code from the server. Now the browser has a copy of the script

and can start interpreting it.

It’s very important to understand the context in which your program

is executing. For this example, the JavaScript code is executing in the

browser, despite its origin being on the server. The script can interact with

the browser itself, or it can make calls over the Internet back to the server it

was downloaded from to get data or have the server do work on its behalf.

This is a very different environment compared to a program that is running

entirely on the same machine.

It’s also important to realize that interpreted languages can also be

imperative, declarative, and object-oriented. Python and JavaScript are

both object-oriented and interpreted languages, as well as supporting

declarative and imperative mechanisms!

Figure 2-4. Browser Receiving a Page from a Web Server

Figure 2-3. Browser Getting a Page from a Web Server

Chapter 2 programming

47

 Parallel Programming
Parallel programming is when your program takes advantage of multiple

CPU cores or Graphics Processing Units (GPUs) to run routines at the same

time. A GPU is also a type of processor, but it is designed to run parallel

tasks more efficiently. As we saw previously, declarative programming

lends itself well to parallel execution. Imperative programming languages

add additional mechanisms to help write code that executes in parallel.

First, we should understand how processes work and how they’re

scheduled by the operating system to run on a CPU. When your program

is loaded by the operating system, it’s launched as a new process.

Your program uses CPU registers and accesses memory as it executes

instructions, and there’s also the stack that it uses to keep track of function

parameters, local variables, and return addresses. If there’s just one

process running on the system, these resources are used exclusively by that

one process, but rarely is that the case. In an operating system like Linux

or Windows, there are almost always many more processes loaded into

memory than the number of CPU cores that can execute them. Figure 2-5

is a screenshot of the Windows Task Manager’s CPU performance screen.

On this one machine, there are 225 processes loaded, but only eight cores!

Figure 2-5. Windows Task Manager CPU Performance
Information

Chapter 2 programming

48

The operating system is responsible for scheduling all of these

processes on the different cores. In this case, it’s possible to run up to eight

processes at the same time, one on each core, but we likely need to give

CPU time to more than eight processes to keep all aspects of the system

running smoothly. The operating system has to use a technique called

time slicing to give additional processes CPU time. In short, the operating

system initializes the CPU to run a specific process by saving and restoring

register values so that the process doesn’t need to know it’s being time-

sliced. The operating system sets a timer on the CPU that will execute

the scheduling code when it goes off. Because the operating system is

handling this in the background, you don’t really need to worry about what

the operating system is doing to make this work.

The trick to hide the complexity of process switching from the process

itself is memory mapping. With memory mapping, the process thinks it

has access to all of physical memory, but in reality, the CPU translates the

memory addresses that the process is referencing into physical addresses.

Because the program is not using actual physical addresses, the memory

that the program references is called “virtual memory.” By using virtual

memory, the process can assume its stack grows down from the top of

memory at the same address every time it executes, but in reality, it is

in different pages of physical memory. When the OS switches between

processes, it needs to adjust the memory mapping. This is an expensive

operation because the CPU has internal buffers that keep track of the

mapping so that it happens very quickly. These buffers need to be flushed

and get reinitialized when the process switch happens. Thus, a process will

suffer a brief performance hit after a process is scheduled to start running.

Threads, on the other hand, are associated with one process and

are faster to switch between than processes because the virtual memory

map doesn’t have to change. Figure 2-6 shows the relationship between a

process and its threads.

Chapter 2 programming

49

When using threads, you need to be very careful since they share

resources, memory in particular, with other threads running in the same

process. You can run into situations where two threads are trying to

change the same memory location and overwrite values in unpredictable

ways. To avoid these problems, you have to use techniques like locks and

semaphores, discussed later in Chapter 4. You also have to be careful that

your threads aren’t waiting on each other, in which case they will wait

forever, which is called a “deadlock.” Writing multi-threaded programs

is one of the most difficult programming techniques, but is extremely

powerful if you get it right!

 Machine Learning
Machine learning is a totally different programing paradigm. Instead of

focusing on the flow of the program or writing functions, the computer

learns from experience so that it can make predictions in the future.

Machine learning is so fundamentally different than other programming

paradigms that we decided to devote Chapter 8 to cover it in detail.

Figure 2-6. A Process and Its Threads

Chapter 2 programming

50

 Summary
In this chapter, we learned that assembly language was one of the first

programming languages. Assembly language introduced some key

concepts like using variable names to represent memory locations.

A process called compiling and linking is used to create executable

programs. The operating system loads executable programs, so they are

created in a format that the operating system understands. Operating

systems make writing programs much easier by providing services, such

as writing to the screen and loading your program into memory. There are

many different types of programming techniques you can use to program

the computer. We briefly covered imperative, declarative, object-oriented,

interpreted and parallel programming.

 References and Further Reading
• Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey

D. Ullman. Compilers: Principles, Techniques, and

Tools. Pearson Education, Inc. 1986, 2006

• Keith D. Cooper, Linda Torczon. Engineering a

Compiler (Second Edition). Morgan Kaufmann, 2011

• John R Levine. Linkers and Loaders (First Edition).

Morgan Kaufmann, 1999

• Donald Knuth. The Art of Computer Programming,

Volume 1. Addison-Wesley, 1968

Chapter 2 programming

51

• Mary Rose Cook. “A practical introduction to functional

programming.” Publish date not known, retrieved

March 2021 <https://maryrosecook.com/blog/

post/a- practical- introduction- to- functional-

programming>

• Brian Kernighan, Dennis Ritchie. The C Programming

Language (Second Edition). Pearson, 1988

• Mark Lutz. Programming Python (Third Edition).

O’Reilly Media, 2006

Chapter 2 programming

https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming

53© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_3

CHAPTER 3

Algorithm and
Data Structure
Now that we’ve discussed computer hardware and how to program it to

achieve desired purpose, we will discuss how to make programs efficient

by leveraging well-known algorithms and data structures for managing

logic and data, respectively.

 What Is an Algorithm
The dictionary defines an algorithm as a step-by-step procedure for solving

a problem or accomplishing some end. In other words, an algorithm

is a technique that can be used and communicated to accomplish

your goal. Algorithms are not unique to computers. You probably use

algorithms every day. The mathematical technique of carrying the one or

borrowing from the tens place for addition and subtraction is an algorithm

that humans can learn. There is usually more than one algorithm to

accomplish your goal. For instance, one algorithm for division is to count

the number of times you subtract the divisor from the dividend; this

count is the quotient. This is different than finding the largest number the

divisor can be multiplied by to be less than the most significant bits of the

dividend and then subtracting that value from the dividend to get a new

dividend, which is the method most of us learned in school.

https://doi.org/10.1007/978-1-4842-7107-0_3#DOI

54

Algorithms can be encoded in any programming language for

computers. It should be noted that algorithms for humans are not

necessarily optimal for computers to accomplish the same end. This

is also true for different computing architectures; an algorithm for a

general-purpose CPU will not be the best algorithm for a GPU (Graphics

Processing Unit), or quantum computer. In the next section, we will

examine how to evaluate algorithms and what trade-offs are made to find

the right algorithm for what you need to accomplish.

 Good and Not So Good Algorithm
Knowing that there are likely multiple algorithms for accomplishing what

you want to do, how do we judge what is a good algorithm? What are the

factors that we look at? Can we use math to compare algorithms?

One thing that should not be overlooked, but is hard to compare

critically, is the readability of a particular algorithm. Most of the software

that you write professionally will be viewed and likely maintained by others.

Choosing an algorithm that can be read, and more easily maintained, to

learn what goal you originally set out to accomplish can be a better choice

than the most efficient algorithm. Choosing well-known algorithms can

help readability, because there can be plenty of documentation about those

algorithms and they can be recognized. Of course, explicitly stating the goal

you are seeking to accomplish in source code comments can help.

 Time/Space Complexity
One of the main areas where we make trade-offs when selecting or creating

algorithms is between the amount of memory, or space, that the algorithm

takes and the amount of time it takes to finish.

Chapter 3 algorithm and data StruCture

55

 Asymptotic Notation
Asymptotic notation is a method of writing the complexity of an algorithm

in time based on the number of inputs into the algorithm. We cannot simply

say that because algorithm 1 will take 7 seconds and algorithm 2 will take

5 seconds, algorithm 2 is better. Asymptotic notation helps by eliminating

differences in individual computing machines and programming languages.

Taking a closer look at those times, we need to specify the number “n”

for the number of items that the algorithm will process to have a realistic

measure of its performance to compare against other implementations. For

simplicity, let us say n = 100. For algorithm 1, let us say the time it takes to

run is 3 + .04n; similarly algorithm 2 takes 0.0005(n^2) seconds to run. As we

can see in the graph (Figure 3-1), there is a crossover point in the number of

items where algorithm 1 outperforms algorithm 2.

Figure 3-1. Runtime Comparison Example

Chapter 3 algorithm and data StruCture

56

These numbers are on the same computer. If we do analysis on an

older computer, we find that algorithm 1 takes 5 + 0.4n or 45 seconds and

algorithm 2 takes .005(n^2) or 50 seconds. We will simplify our algorithm

by removing constants from the time to allow for differences in computing

machines and programming languages. This is called Big-Oh notation as

the function for the time an algorithm runs asymptotically approaches

the highest degree of the polynomial of n. We will write analysis O(n) for

algorithm 1 and O(n^2) for algorithm 2.

With Big-Oh expressions, we generally want to consider “tightness” of

the upper bound. While it is correct to say that an algorithm with a time

function 3 + 0.4n is O(n), it is a stronger statement to simply say that this

algorithm is O(n).

Big-Oh notation is a consistent method for comparing and discussing

algorithms across multiple computing machines and programing languages.

Table 3-1 is a table of Big-Oh expressions and their informal names.

Table 3-1. Big-Oh Common Names

Big-Oh Name

o(1) Constant

o(log n) logarithmic

o(n) linear

o(n log n) n log n

o(n2) Quadratic

o(n3) Cubic

o(2n) exponential

Chapter 3 algorithm and data StruCture

57

 Fundamental Data Structures and Algorithms
Now that we have examined what an algorithm is and how we can

compare them, we will look at common data structures that hold our data.

We will also look at common algorithmic techniques using these data

structures.

 Store (Data Structure)
There are several structures that can store data. Each of these structures

has different advantages, and algorithms may be able to utilize different

data structures more efficiently than others.

 Stack

A stack is a data structure that reflects the metaphor of a stack of plates.

When using a stack, an algorithm operates only on the “top” item in the

stack. When that item is operated on, it is removed or “popped” off the

stack. A data item may also be “pushed” onto a stack. Because data is only

operated on or removed from the “top” of the stack, a stack is sometimes

referred to as a FILO (First In, Last Out) or LIFO (Last In, First Out). See

Figure 3-2.

Chapter 3 algorithm and data StruCture

58

 Queue

A queue is another data structure. As you can imagine, a queue also acts

like a line to an event. Data items in a queue are added at the “back” of

the queue and processed at the “front” of the queue. Queues can vary in

length, allowing them to be used as a buffer. Queues are also referred to as

FIFOs (First In, First Out). See Figure 3-3.

Figure 3-2. Stack Example

Chapter 3 algorithm and data StruCture

59

 Tree

A tree is another data structure that allows for multiple branches. Data

items or nodes are attached to the trunk, which has one or more items

attached to it as branches. Each branch can have one or more branches

attached to it. Nodes without branches attached to them are referred to as

leaf nodes, or simply leaves. See Figure 3-4.

Figure 3-3. Queue Example

Figure 3-4. Tree Example

Chapter 3 algorithm and data StruCture

60

 Graph

A graph is a data structure where nodes or data items are connected via

edges to other nodes. The edges may contain data about the relationship

to the nodes. A directed graph is a graph data structure where all the edges

have a common direction. A tree can be thought of as a directed graph. See

Figure 3-5.

 Linked List

A linked list is another data structure where each node or data item is

linked to (connected with one or two) other data items in a chain. A doubly

linked list is a list where each node contains a link to both the next node

and the previous node. Data items can be inserted into a linked list by

connecting to the new data item. Some of the other data structures such as

the queue and the stack can be implemented as linked lists. See Figure 3-6.

Figure 3-5. Graph Example

Chapter 3 algorithm and data StruCture

61

 Array

An array is a fixed-size set of data, where each data node is referred to by

a coordinate system. In a single-dimensional array, this value is called the

index and typically starts at zero for the first node. In a two-dimensional

array, or grid, a node has two coordinates like x and y; and in a three-

dimensional array, like a cube, it has three, like x, y, and z. Arrays can have

more dimensions than three if needed. Data in an array can be accessed

from any position in the array at any time. A sparse array is an array that

does not have meaningful data in every position. See Figure 3-7.

Figure 3-6. Doubly Linked List Example

Chapter 3 algorithm and data StruCture

62

 Dictionary

One more data structure is a dictionary, sometimes referred to as a hash

table. Similar to an array, in a dictionary, the data nodes are referred to by

a key or index. Unlike an array, this index is not integer values. Instead, a

hashing algorithm is run to find a unique value for each data node, and

that is used as the key to look up the data node. Like an array, data can be

accessed from any node in the hash table at any time. See Figure 3-8.

Figure 3-7. Array Example

Chapter 3 algorithm and data StruCture

63

 Making Use of the Data: Searching, Sorting

Two of the most common things to do with the data in these data structures

are to search through the data for a specific item and to sort the data in

some fashion. There are different sorting and searching algorithms that can

be used on the data. Sorting is often done as part of searching as it can be

easier to find an item with the data structure sorted. Depending on the type

of data structure, different algorithms will perform better or worse.

The first sorting algorithm that we will look at is the bubble sort

(Listing 3-1). In this algorithm, the items are sorted into order with the

priority items “bubbling” to the top of the data structure. If we have a

linked list, call it I, we will start with the first item (i[0]) in the list and

compare it to the next item (i[1]). We then compare i[0] and i[1]; if

i[1] is before i[0], then we swap i[0] with i[1]. Then we proceed to

compare the new i[1] with i[2]; if i[2] needs to swap with i[1], then

we swap. If the items are in the right order, we do not swap but proceed to

the next item to compare.

Figure 3-8. Dictionary Example

Chapter 3 algorithm and data StruCture

64

Listing 3-1. Bubble Sort Algorithm in Python

 1 def bubble(NUMBER_LIST):

 2 print(NUMBER_LIST)#Display the unsorted list

 3 swap_counter = 0 #Set a counter for the number of swaps 4

 5 for idx in range(0, len(NUMBER_LIST)):#Loop through list

 6 pos = idx #Set the item to compare

 7 swap_pos = pos - 1 #Set the item to swap if needed

 8 #Loop through the items to compare

 9 while swap_pos >= 0: #Loop through the unsorted list

10 #Check to see if you need to swap

11 if NUMBER_LIST[swap_pos] > NUMBER_LIST[pos]:

12 #Swap positions

13 NUMBER_LIST[pos], NUMBER_LIST[swap_pos] =

 NUMBER_LIST[swap_pos], NUMBER_LIST[pos]

14 #Increment the swap counter to show the work

15 swap_counter = swap_counter +1

16 print(NUMBER_LIST) # Display the current list

17 #Move to the next swap item

17 swap_pos = swap_pos -1

18 #Move to the next item to compare

19 pos = pos -1

20

21 #Display the number of swaps

22 print("SWAPS:", swap_counter)

Python console output

>>> bubble.bubble([90,87,82,43,3,5])

[90, 87, 82, 43, 3, 5]

[87, 90, 82, 43, 3, 5]

[87, 82, 90, 43, 3, 5]

[82, 87, 90, 43, 3, 5]

Chapter 3 algorithm and data StruCture

65

[82, 87, 43, 90, 3, 5]

[82, 43, 87, 90, 3, 5]

[43, 82, 87, 90, 3, 5]

[43, 82, 87, 3, 90, 5]

[43, 82, 3, 87, 90, 5]

[43, 3, 82, 87, 90, 5]

[3, 43, 82, 87, 90, 5]

[3, 43, 82, 87, 5, 90]

[3, 43, 82, 5, 87, 90]

[3, 43, 5, 82, 87, 90]

[3, 5, 43, 82, 87, 90]

[3, 5, 43, 82, 87, 90]

SWAPS: 14

If we do a Big-Oh analysis of this, then we can see this is O(n2), with

the worst case being having to compare every element with every other

element.

Selection sort is the next sorting algorithm we will look at (Listing 3-2).

In this algorithm, we will compare the first item to the rest of the items and

select the smallest item and swap those items. We then proceed with the

next item and select the next smallest item and swap them. We proceed until

we have iterated through each item in the array. Selection sort is also O(n2).

Listing 3-2. Selection Sort Algorithm in Python

 1 def selection(number_list):

 2 print(number_list)#Display the unsorted list

 3 iter_count = 0 #set a counter for the iterations

 4 5 #Loop through the each item on the list

 6 for i in range(0, len(number_list)):

 7 min_index = i #Set the current min value in the list

 8 #Loop through the remaining unsorted list

 9 for j in range(i+1, len(number_list)):

Chapter 3 algorithm and data StruCture

66

10 #Compare the current item with the current minimum

11 if number_list[j] < number_list[min_index]:

12 #If the current item is smaller

13 #make it the new minimum

14 min_index = j

15 #Swap the new minimum with the

16 #current value in the list

17 number_list[i], number_list[min_index] =

number_list[min_index], number_list[i]

18 #Increment the count of swaps

19 iter_count = iter_count +1

20 print(number_list): #Display the current list

21 #Display the number of iterations

22 print("Iterations: ", iter_count)

Python console output

>>> selection.selection([90, 87, 82, 43, 3, 5])

[90, 87, 82, 43, 3, 5]

[5, 90, 87, 82, 43, 3]

[5, 3, 90, 87, 82, 43]

[5, 3, 43, 90, 87, 82]

[5, 3, 43, 82, 90, 87]

[5, 3, 43, 82, 87, 90]

[5, 3, 43, 82, 87, 90]

Iterations: 15

 Problem Solving Techniques
We have examined how we analyze and compare algorithms. And we have

looked at how we can structure our data. Now we will look at common

techniques for solving problems.

Chapter 3 algorithm and data StruCture

67

 Recursion
A recursive algorithm is an algorithm where the function calls itself.

Recursive functions, or methods, can be very efficient and easy to

understand. The following is an example of a very simple recursive

algorithm (Listing 3-3) to calculate the Fibonacci sequence. In the

Fibonacci sequence, the current value is defined as the sum of the previous

two values F(N) = F(N – 1) + F(N – 2). Also the first two values F(1) and F(0)

are predefined to 1 and 0, respectively. For example, to calculate the value

of F(3), we need to first calculate the F(2) and F(1). To calculate F(2), we

need to calculate F(1) and F(0).

F(1) is 1 and F(0) is 0 so that makes F(2) = 1 + 0 or 1. To finish

calculating F(3), we add F(2) + F(1) or 1 + 1. Therefore, F(3) is 2.

Listing 3-3. Recursive Fibonacci Algorithm

def fibonacci(value):

 if value == 0:#Set F(0) to 0

 retval = value

 elif value == 1:#Set F(1) to 1

 retval = value

 else: #Otherwise calculate the value of F(N)

 #Recursively call the fibonacci function on the

 #previous value. Then call fibonacci function on the

 #value before that.

 #Set the current value to the sum of those two values

 retval = fibonacci(value-1) + fibonacci(value-2)

 return retval

def fibonacci_list(max):

 for i in range(0, max):

 #Display the current Fibonacci value

 print(fibonacci(i))

Chapter 3 algorithm and data StruCture

68

Python console output

>>> fibonacci.fibonacci_list(5)

0

1

1

2

3

 Divide and Conquer
Divide and conquer is a technique where the data is divided and each

smaller portion is operated on.

The merge sort algorithm (Listing 3-4) is a good example of both

recursion and divide and conquer algorithms. The basic part of the merge

sort algorithm splits a list into two separate equal halves. Those halves are

then sorted. Once you have two sorted halves, you simply compare the first

items in each list and add the smaller to the next position in a new list. To

get each half sorted, you can call the merge sort algorithm on each half.

Listing 3-4. Merge Sort Divide and Conquer Algorithm in Python

 1 def merge(number_list):

 2 #Check if the list is longer than one element

 3 if len(number_list) > 1:

 4 #Find the middle of the list

 5 half_idx = int(len(number_list)/2)

 6 #Create a list with front half of the list

 7 list_a = number_list[:half_idx]

 8 #Create a list with the back half of the list

 9 list_b = number_list[half_idx:]

10 #Recursively call this merge function

11 #to sort the first half

Chapter 3 algorithm and data StruCture

69

12 sorted_a = merge(list_a)

13 #Recursively call this merge function

14 #to sort the second half

15 sorted_b = merge(list_b)

16 #Init an empty list to insert the sorted values

17 sorted_list = []

18 #Set a flag to indicate both lists are inserted

19 done = False

20 while not done: #Iterate on the lists until done

21 #Compare the first item of each list

22 if sorted_a[0] < sorted_b[0]:

23 #When the first list item is smaller

24 # insert into the sorted list

25 sorted_list.append(sorted_a.pop(0))

26 else:

27 #When the second list item is smaller

28 # insert into the sorted list

29 sorted_list.append(sorted_b.pop(0))

30 if len(sorted_a) == 0:

31 #When the first list is empty add the

32 # remainder of the second list to the

33 # sorted list

34 sorted_list = sorted_list + sorted_b

35 #Set the done flag to end the loop

36 done = True

37 elif len(sorted_b) == 0:

38 #When the first list is empty add the

39 # remainder of the second list to the

40 # sorted list

41 sorted_list = sorted_list + sorted_a

42 #Set the done flag to end the loop

Chapter 3 algorithm and data StruCture

70

43 done = True

44 print(sorted_list)

45 else:# If the list is only one element it is sorted

46 sorted_list = number_list

47

48

49 return(sorted_list)

Python console output

>>> merge.merge([90, 87, 82,43,3,5])

[82, 87]

[82, 87, 90]

[3, 5]

[3, 5, 43]

[3, 5, 43, 82, 87, 90]

[3, 5, 43, 82, 87, 90]

 Brute Force
A brute force algorithm is just as it sounds, doing the most obvious thing

with the data operating on each data item individually. In some situations,

especially with smaller data sets, this can be the quickest way to solve the

problems, but in general, this is a costly way O()) to perform a function.

 Greedy Algorithms
A greedy algorithm is an algorithm that makes a locally optimal decision.

This can, in some cases, lead to locally optimized implementations vs. the

best globally optimized solution. Greedy algorithms include the Huffman

coding algorithm for data compression and the Dijkstra algorithm for

search in a tree.

Chapter 3 algorithm and data StruCture

71

 Class of Problems
Many algorithms can be solved in polynomial time where the Big-Oh

expression can be written as a polynomial. These are considered tractable

problems. There is also the set of problems that cannot be solved in

polynomial time. These are considered intractable. However, within the

set of intractable problems are a set of problems that can verify possible

answers in polynomial time. These are referred to as nondeterministic

polynomial, or NP, problems. Finding a prime number is an example of

this type of problem.

 NP-Complete and NP-Hard Problems
Within the set of NP problems are the set of problems no one knows how

to solve in less than exponential time known as NP-complete.

One common example of an NP-complete problem is the traveling

salesman problem, where we want to find the shortest path for a salesman

to navigate a set of cities connected by routes of different lengths. Checking

the length of a route and comparing it to other routes is polynomial,

but finding the shortest route requires going through all possible

combinations.

In addition to NP problems are another set of problems that are

defined as NP-hard. These problems are as hard as or harder than any

NP problems. This set of problems are called NP-hard problems. If these

problems are found to be solvable in polynomial time, that would imply

that all NP problems are actually solvable in polynomial time. This is not

believed to be the case.

Chapter 3 algorithm and data StruCture

72

 Databases
So far in this chapter, we have looked at data structures and algorithms that

have been operating on data in system memory (e.g., RAM). Now we will

look at database systems that can persistently store and recover the data.

A database is simply an organized set of data that is stored apart from the

program that will utilize that data.

 Persistence and Volume
We separate data out from the software into a database for various reasons.

One reason is the persistence of data. If you have software that doesn’t,

somehow, “save” its resulting data, that data would not be available after

the software is run, as it was only in system memory, which will be reused

by other programs once your program is done. This storage, or persistence,

of data also provides some other advantages. It allows multiple different

software applications to access the same data. Many database systems

allow for multiple applications to access the data concurrently.

The other reason to store the data separate from the software is that it

allows the software to operate on much larger volumes of data than can be

contained in the RAM. A database system can provide parts of the data to

the software at a time so that software can work on this smaller sets of data.

 Fundamental Requirements: ACID
As the volume of data gets larger, and there is more concurrent access

(from multiple concurrently running applications) to the data, a database

must make sure that it meets the requirements of ACID (Atomicity,

Consistency, Isolation, and Durability).

Atomicity means that an update happens to the database as a single,

atomic event, so there are no partial updates. Say, for instance, I have a

simple database of a name, street address, and zip code. And I need to

Chapter 3 algorithm and data StruCture

73

update a record because someone moved to a new city. A nonatomic

update might be to update the zip code without updating the street

address, followed by an update of the street address. This would lead to

a point in time where the data in the database is incorrect (only partially

updated). In contrast, an atomic update, or commit, would update the

record with both the new street address and zip code at the same time, so

the database is never incorrect.

Consistency means that in the event of a failure, for instance, an

update failure, the database stays consistent with a known good state; this

is usually the previous state of the database. For example, in our previous

example, we may want to update all the names to make sure they are

capitalized. If there is a failure after the third record is updated, then the

transaction will roll back to the previous state, where none of the names

are capitalized.

Isolation means that if there are multiple concurrent updates to

the database, each transaction must not be intermixed with any other

transaction. The two previous examples for updating one record (a

person moved) and updating all the records to make sure that names are

capitalized must be isolated. In this case, all the names get updated first,

and then the one record is updated with a new street address and zip code.

This is important for data consistency and durability. If we needed to roll

back a transaction and both sets of changes were intermixed, we would not

be able to clearly go back to a known good state.

Durability is like consistency; it means that in the event of a failure of

the underlying database system, when the database system restarts, it is

able to pick up where it left off and complete the transaction. For example,

in the previous example, say that after the third record gets updated, the

operating system forces a reboot. When the operating system comes back

up, the database system must complete the transaction starting at exactly

the fourth record.

Chapter 3 algorithm and data StruCture

74

 Brief History of Database System Evolution
In 1970 Edgar F. Codd wrote a paper describing relational database

systems. Prior to the publication of Codd’s paper, companies had started

to develop database systems based on other models, but by the late 1970s,

the relational database model had become prevalent. IBM produced the

first prototype relational database with SQL in 1976. The Oracle Database

was the first commercial database that implemented the model and

featured SQL, the Structured Query Language. Oracle was released in 1977,

prior to IBM’s release of SQL/DS in 1981, despite IBM having a head start.

Also, in 1981, dBase II, considered the first relational database for PCs, was

released for personal computers. Oracle became the primary database

used in the enterprise as well as the Internet until the release of the open

source database MySQL in 1995. On the PC side, many solutions were

released over the next decade with Microsoft Access becoming the de facto

standard relational database on the PC in 1993.

 Most Prominent Current Database Systems
Today, Oracle remains one of the most prominent relational database

systems. In addition, the open source community has brought several

solutions to prominent usage. MySQL still is in use but is joined by

PostgreSQL and SQLite as to the very common open source relational

database solutions. On the commercial side, Microsoft SQL Server has also

risen to prominence in its usages.

 Relational Data and SQL
Relational data is based on set theory and the relationships between sets.

Sets can be combined in a union. This means a new set is formed that

contains all the data elements that are in the sets combined. A new set, for

instance, may be formed from the differences of sets; this would be a set

Chapter 3 algorithm and data StruCture

75

of all of the data elements that are unique between the sets. Furthermore,

another set can be formed from the intersection of two sets. This is where a

new set is formed from all the elements that are common between the two

sets. See Figure 3-9.

SQL is a standard language to describe these relationships between

sets of data to extract meaningful data from a relational database. For

example (Figure 3-10), a SQL statement SELECT (id, name, zipcode)

FROM people_table WHERE (zipcode IS '97124') forms a set containing

the value 97124 and then intersects that data with the set of zip codes in

the table. This new intersected set of records will have the same set of

fields as the original table but only contain the values for those that match

the zip code 97124.

Figure 3-9. Set Operations Example

Chapter 3 algorithm and data StruCture

76

SQL syntax allows for a rich group of set relationships described in a

machine-translatable language that approximates natural language.

 Structured Data/Unstructured Data

Relational databases mostly have structured data, data that is organized

into rows and columns. This structured organization makes it easy to

interact with the data using SQL and the set relations. The definition of

this structure is called a schema. As you can imagine, however, much of

the data that we have in the world is not so easily structured. Unstructured

data is data that cannot easily be organized into rows and columns, such

as natural language text. This rise in unstructured data has also led to an

increase in databases that do not follow the same constraints of relational

databases.

Figure 3-10. SQL Statement Actions

Chapter 3 algorithm and data StruCture

77

 NoSQL
NoSQL or Not Only SQL is a collective name of a growing set of databases

that apply different data structures besides tables of rows and columns

used in relational databases.

With the rise of the Internet and service-oriented architectures, one

of the key points of integrating the data from multiple applications shifted

from the relational database and SQL to service access. This allowed

developers to create a closer mapping of the data structures used in the

application to the data stored in the database. Now developers could have

a much more natural connection between the data that is being stored and

the data that is being used.

 Examples of NoSQL Databases

We will look at some common examples of NoSQL databases.

 Graph DB: Neo4j

Neo4j is a native graph database where the data is stored and its

relationship to other data is also stored. A record is stored as a node in a

graph data structure, and additional relationship records are stored with

information about how various nodes are related (connected) to each other.

Neo4j can be schema-less with nodes having different fields as needed.

Neo4j also has its own query language called Cypher.

 Column Family DB: Bigtable and Cassandra

Bigtable is a proprietary wide-column family database from Google.

Bigtable is designed to specifically handle exceptionally large sets of data.

Like Bigtable, Cassandra is an open source column family database

from Apache. A column family database organizes the data into rows and

columns. A column is the primary data entity. A column is made up of a

Chapter 3 algorithm and data StruCture

78

name and a value with the name acting as a key in a key-value pair. A row

is an arbitrary group of columns with a row key. A column family is a group

of rows with some column keys in common. Cassandra is a schema-free

database in that rows do not have to have the same columns. Cassandra

also has its own query language CQL.

 Document DB: CouchDB and MongoDB

CouchDB is a document database from an open source project that is part

of the Apache group. Each piece of data is considered a document with its

own set of fields.

MongoDB is another open source project that is a document database.

It stores records as JSON (JavaScript Object Notation) documents. Each

document can have its own set of attributes so it can be schema-free. Both

CouchDB and MongoDB have their own mechanisms for querying the data.

 Summary
As we have seen throughout this chapter, there are many considerations

when working with data. The selection algorithm, data structures, and

database for persistent storage should be chosen thoughtfully so that the

software can be developed in the most effective way.

 References and Further Reading
• Thomas Cormen. Introduction to Algorithms, Third

Edition. MIT Press, 2009

• Avi Silberschatz. Database System Concepts. McGraw-Hill

Education, 2010

Chapter 3 algorithm and data StruCture

79

• Alfred V. Aho and Jeffery D. Ullman. Foundations of

Computer Science. Computer Science Press, 1992

• Mukesh Negi. Fundamentals of Database Management

System. BPB Publications, 2019

• Pramod Sadalage and Martin Fowler. NoSQL Distilled:

A Brief Guide to the Emerging World of Polyglot

Persistence. Addison-Wesley Professional, 2013

Chapter 3 algorithm and data StruCture

81© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_4

CHAPTER 4

Operating System
Now that we have discussed the basics of computer hardware and software

fundamentals, we will go over how they work together in this chapter. The

operating system abstracts interaction to the HW and makes it efficient

and convenient for software to leverage those HW resources.

When a computer turns on, the processor will execute the instructions

that are presented to it; generally, the first code that runs is for the boot

flow. For a computer that is used for general purposes and after it has

booted up, there may be a variety of applications that need to be run on

it simultaneously. Additionally, there could be a wide range of devices

that could be connected to the computer (not part of the main system,

for instance). All these need to be abstracted and handled efficiently and

seamlessly. The user expects the system to “just work.” The operating

system facilitates all of this and more.

 What Is an Operating System
An operating system, commonly referred to as the OS, is a program that

controls the execution of other programs running on the system. It acts

as a facilitator and intermediate layer between the different software

components and the computer hardware as shown in Figure 4-1.

https://doi.org/10.1007/978-1-4842-7107-0_4#DOI

82

When any operating system is built, it focuses on three main

objectives:

• Efficiency of the OS in terms of responsiveness, fluidity,

and so on

• Ease of usability to the user in terms of making it

convenient

• Ability to abstract and extend to new devices and

software

Figure 4-1. High-Level Overview of an Operating System

Chapter 4 Operating SyStem

83

Let us take a quick look at how this is implemented. Most OSs typically

have at least two main pieces:

• There is a core part that handles the complex, low-level

functionalities and is typically referred to as the kernel.

• There are generally some libraries, applications, and

tools that are shipped with the OS. For example, there

could be browsers, custom features, frameworks, and

OS-native applications that are bundled together.

Although the latter are generally referred to be a part of the OS, for the

rest of our discussion, we will be focusing on the OS kernel.

Few common examples of operating systems that are prevalent are

listed below. This list is not meant to be comprehensive but give the

user a high-level idea of the list of operating systems that are commonly

prevalent:

• Microsoft Windows

• GNU/Linux-based OS

• macOS (used for Apple’s computers and client models)

• iOS (used for Apple’s smartphone/tablet models)

• Android

All of these operating systems have different generations, versions, and

upgrades. Some of the features supported across OS builds may also vary

from time to time. However, in general, the core concepts discussed in this

chapter are applicable to all of them.

Chapter 4 Operating SyStem

84

 OS Categories
The OSs can be categorized based on the different methods in use.

The two most common methodologies are by the usage type and the

design/supported features of the OS.

The first methodology is based on how the system is used. Based on

this, there are five main categories:

 1. Batch: For usages where a sequence of steps needs

to be executed repeatedly without any human

intervention. These classes are called batch OSs.

 2. Time Sharing: For systems where many users access

common hardware, there could be a need to time-

share the limited resources. The OSs in such cases

are categorized as time-sharing OSs.

 3. Distributed: For hardware that is distributed

physically and a single OS needs to coordinate their

access, we call these systems distributed OSs.

 4. Network: Another usage model, similar to the

distributed scenario, is when the systems are

connected over an IP (Internet Protocol) network

and therefore referred to as network OSs.

 5. Real Time: In some cases, we need fine-grained time

precision in execution and responsiveness. We call

these systems real-time OSs.

The second methodology is based on the design and supported features

of the operating system. Based on this, there are three main categories:

 1. Monolithic: In this case, the entire OS is running

in a high-privilege kernel space and acts as the

supervisor for all other programs to run. Common

monolithic OSs include many of the UNIX flavors.

Chapter 4 Operating SyStem

85

 2. Modular: In some OSs, a few parts of the OS are

implemented as so- called plug-and-play modules

that can be updated independent of the OS kernel.

Many modern OSs follow this methodology, such as

Microsoft Windows, Linux flavors, and macOS.

 3. Microservice based: More modern OSs are emerging

and leverage the concept of microservices where

many of the previously monolithic OS features

may be broken down into smaller parts that run in

either the kernel or user mode. The microservice

approach helps in assigning the right responsibility

of the components and easier error tracking and

maintenance. Some versions of Red Hat OS support

microservices natively.

 Why We Need an OS
As we discussed before, the OS needs to be able to facilitate different

applications running on the system. For example, consider an application

that wants to play music from the file system and another application

that needs to create a file and write to the disk. In both these cases, these

applications need to access storage, must be able to render/display some

content on the screen, and may need to access additional devices on the

system.

Let us consider two very different approaches to enabling the

preceding example. One approach could be that each of the applications

will run directly on the HW with no OS abstraction; in this case, they must

each implement all of the required functionality including hardware access

and resource management on their own. This approach has some obvious

challenges. One problem is the size of the resultant programs; they must

have code for their application logic as well as all of the lower-level code

Chapter 4 Operating SyStem

86

for accessing hardware. This will increase the number of defects in the

code and increase the time it takes to get the application working correctly.

Another problem is that the application may not be able to handle all

types of hardware and devices. For example, the application would need

to encode specific functions to support a given storage device, but another

storage device on a slightly different system may be different enough that

the application will fail there. Also, with this approach, you would not be

able to run the two applications at the same time; they would need to run

sequentially, since there is no mechanism to allow two programs to run

at the same time in this scenario. Another, more mainstream approach

would be for a common program to facilitate all the interactions with the

hardware, handle complexities that happen underneath, and provide an

abstraction for the applications to interact to. This allows the applications

to focus on their business logic, reducing the size and complexity of the

resultant application, which also gets the application written and validated

much faster.

Before we can decide which is a better approach, let us take a similar

analogy with a building construction company that is developing a new

gated community. As part of the community, there could be many houses

that need to be built. For each of these houses, there could be several

common requirements such as water piping, electricity lines, drainage

system, and so on that may be needed. Each of the individual houses

may handle these on its own and have its own separate blueprints for

water, drainage, communication, and so on. But it doesn’t scale. With this

example, we can see that this is inefficient and often messy in terms of

provisioning the lines and piping as well as supporting and maintaining

them, in the long term. The best practice here is for the engineering team

to streamline these via a central pipeline and then branch off from the

central line to the individual houses as per the requirements. This not only

saves cost, it is easier to maintain and manage and is less error-prone. The

same concept can be applied for the case of a computing device, where

Chapter 4 Operating SyStem

87

the OS manages and streamlines usage of hardware resources and allows

multiple applications to run in parallel with each other.

In practice, there are many common features that may be needed by

your programs including, for example, security, which would have services

like encryption, authentication, and authorization, to name a few. It

makes sense for these kinds of capabilities to be provided by the operating

system, so they can be leveraged consistently by all.

 Purpose of an OS
As a precursor to this section, consider a common home appliance such

as a dishwasher. The appliance supports a set of functionalities that is

usually predefined (more modern systems may additionally have some

programmability) in manufacturing. Such modern appliances have

microprocessors with their runtime code already loaded and configured

so that they “know” exactly what to do. Here, the complete programming

logic is embedded into a non-volatile memory that is later executed using

a microcontroller. It still has complexities in terms of reliability, error

handling, and timing. However, the environment and the variabilities are

quite contained within the appliance.

In the case of a general-purpose computing device, as we discussed

earlier, there are varying needs in terms of the underlying hardware, the

applications that need to run on the system, and the support for different

users. At a high level, many of these are not deterministic in nature and

could vary from one system to another. The purpose of the operating

system is to ensure that it abstracts the HW and facilitates the seamless

execution of our applications using the system. Now, we will take a more

detailed look at the different complexities on such systems and how the OS

handles them.

Chapter 4 Operating SyStem

88

 Complex and Multiprocessor Systems
Many modern computing architectures support microprocessors

with multiple CPU cores. On higher-end systems, there could even be

multiple sockets each able to host a microprocessor (with several cores).

Typically, when all cores provide the same or identical capabilities, they

are called as homogeneous platforms. There could also be systems that

provide different capabilities on different CPU cores. These are called

heterogeneous platforms. There are also additional execution engines

such as Graphics Processing Units (GPUs), which accelerate graphics and

3D processing and display, for instance. An operating system supporting

such a platform will need to ensure efficient scheduling of the different

programs on the different execution engines (cores) available on the

system. Similarly, there could be differences in the hardware devices

on the platform and their capabilities such as the type of display used,

peripherals connected, storage/memory used, sensors available, and

so on. It may not be possible to release a new OS for every new system

configuration. Hence, the OS would also be required to abstract the

differences in the hardware configurations to the applications.

 Multitasking and Multifunction Software
There is also an increasing need to use computers for multiple tasks in

parallel. Let’s build on the same example that we had before where a

user may want to play music and also create a content and write a file at

the same time. In general, there could be many such applications that

may need to be running on the system at the same time. These could

include applications that the user initiated, so-called “foreground”

applications, and applications that the OS has initiated in the background

for the effective functionality of the system. It is the OS that ensures the

streamlined execution of these applications.

Chapter 4 Operating SyStem

89

 Multiuser Systems
Often, there could be more than one user of a system such as an

administrator and multiple other users with different levels of access

permission who may want to utilize the system. It is important to

streamline execution for each of these users so that they do not find any

perceived delay of their requests. At the same time, there need to be

controls in place to manage privacy and security between users. The OS

facilitates and manages these capabilities as well.

As we discussed earlier, in general, there are various dynamic

scenarios on the platform, and it is the role of the operating system to

handle these in a consistent, safe, and performant manner. Most general-

purpose OSs in use today, such as Windows, Linux, macOS, and so on,

provide and handle most of the preceding complexities. Figure 4-2 shows a

slightly detailed view of an abstract operating system.

Figure 4-2. Operating System Components

Chapter 4 Operating SyStem

90

As we can see here, it supports multiple different hardware, supports

co-existence of multiple applications, and abstracts the complexities. The

OS exposes different levels of abstractions for applications and drivers

to work together. Typically, there are APIs (application programming

interfaces) that are exposed to access system resources. These APIs are

then used by programs to request for communicating to the hardware.

While the communication happens, there could be requests from multiple

programs and users at the same time. The OS streamlines these requests

using efficient scheduling algorithms and through management of I/Os

and handling conflicts.

 Why Is It Important to Know About the OS?
Software developers must have a good understanding of the environment,

the OS, that their code is running in, or they won’t be able to achieve the

things they want with their program. As you, a software developer, go through

the stages of development, it is important for you to keep in mind the OS

interfaces and functionality as this will impact the software being developed.

For a given application, the choice of language and needed runtime

features may be OS dependent. For example, the choice of inter-process

communication (IPC) protocols used for messaging between applications

will depend on the OS offerings.

During development and debug, there could be usages where the

developer may need to understand and interact with the OS. For example,

debugging a slowly performing or nonresponsive application may require

some understanding of how the OS performs input/output operations.

Here are some questions that may come up during the debug:

• Are you accessing the file system too often and writing

repeatedly to the disk?

• Is there a garbage collector in place by the software

framework/SDK?

Chapter 4 Operating SyStem

91

• Is the application holding physical memory

information for too long?

• Is the application frequently creating and swapping

pages in memory? What it the average commit size and

page swap rate?

• Is there any other system event such as power event,

upgrades, or virus scanning that could have affected

performance?

• Is there an impact on the application based on the

scheduling policy, application priority, and utilization

levels?

If the application needs to interface with a custom device, it will

most likely need to interface some low-level functionality provided by

the OS. For example, if there was a custom device that is connected to

the system, the application would need to use the OS-provided API for

communication. As a software developer, it may be required to understand

these APIs and leverage the OS capabilities. There could also be a need to

follow certain standard protocols provided by the OS for authenticating a

given user of your application to grant permissions and access.

The list can grow based the variety of applications and their intended

usages. As we discussed before, the design considerations for the OS must

leverage appropriate abstraction and separation of concerns between

different hardware and users. Also, most OSs are tuned and optimized

for some common use cases, based on expected use. From a software

developer point of view, it is important to be aware of some of these and

leverage the configuration knobs and built-in tools provided by the OS.

Chapter 4 Operating SyStem

92

 Responsibilities of an OS
As we have seen in the previous sections, the OS needs to be able to

abstract the complexities of the underlying hardware, support multiple

users, and facilitate execution of multiple applications at the same time.

In Table 4-1, we articulate some of these requirements and discuss how an

OS can achieve them.

Table 4-1. Requirements and Solutions

Requirement Solution

applications require time on the CPU to

execute their instructions.

the OS shall implement and abstract this

using suitable scheduling algorithms.

applications require access to system

memory for variable storage and to

perform calculations based on values

in memory.

the OS shall implement memory
management and provide apis for

applications to utilize this memory.

each software may need to access

different devices on the platform.

the OS may provide apis for device
and I/O management and interfaces

through which these devices can be

communicated.

there may be a need for the user or

applications to save and read back

contents from the storage.

most OSs have a directory and file
system that handles the storage and

retrieval of contents on the disk.

it is important to perform all of the

core operations listed in the preceding

securely and efficiently.

most OSs have a security subsystem

that meets specific security requirements,

virtualizations, and controls and balances.

Ease of access and usability of the

system.

the OS may also have an additional gUi

(graphical user interface) in place to make

it easy to use, access, and work with the

system.

Chapter 4 Operating SyStem

93

To summarize, the OS performs different functions and handles

multiple responsibilities for software to co-exist, streamlining access

to resources, and enabling users to perform actions. They are broadly

classified into the following functional areas:

• Scheduling

• Memory management

• I/O and resource management

• Access and protection

• File systems

• User interface/shell

The remainder of this part of this chapter will look at the preceding

areas one by one.

 Scheduling
One of the primary functionalities of the OS would be to provide the

ability to run multiple, concurrent applications on the system and

efficiently manage their access to system resources. As many programs

try to run in parallel, there may be competing and conflicting requests

to access hardware resources such as CPU, memory, and other devices.

The operating system streamlines these requests and orchestrates the

execution at runtime by scheduling the execution and subsequent

requests to avoid conflicts.

Before we go into the details of scheduling responsibilities and

algorithms, it is important to know some background about the basic

concepts of program execution, specifically processes and threads.

Chapter 4 Operating SyStem

94

 Program and Process Basics
When a software developer builds a solution, the set of capabilities it

provides is usually static and embedded in the form of processed code

that is built for the OS. This is typically referred to as the program. When

the program gets triggered to run, the OS assigns a process ID and other

metrics for tracking. At the highest level, an executing program is tracked

as a process in the OS. Note that in the context of different operating

systems, jobs and processes may be used interchangeably. However, they

refer to a program in execution.

 Process States
When a program gets triggered for execution, typically say using a double

click of the EXE (or using a CreateProcess() API in Windows), a new

process is created. A process typically supports multiple states of readiness

in its lifecycle. The following diagram captures some generic process

execution states.

As we can see in Figure 4-3, the process begins “life” in the New

state just after it is created. From there it may move to other states, with

the next state typically being the Ready state, where it is waiting for the

Figure 4-3. Process States and Transitions

Chapter 4 Operating SyStem

95

OS to assign a CPU to run on. The OS has a scheduler that takes care of

selecting a process from a list of processes to be executed. Once selected,

the dispatcher comes in that ensures the process selected gets time on the

CPU. At this point, the process moves to the Running state. There could be

a case when a process is running on the CPU, but may not have completed

its job. The OS would also have to ensure other processes on the system get

a fair share of time on the CPU. So the OS continues to execute the process

on the CPU till a “timeout” is reached. After which, the process could be

moved back to the Ready state waiting to be dispatched. This sequence of

steps can continue to happen. At a later point, if the process is waiting on a

device I/O, say a disk, it could be moved to the Blocked state if the device

is busy. The same process continues till the process gets terminated and

moves to the Exit state.

Note that there could be more than one CPU core on the system and

hence the OS could schedule on any of the available cores. In order to

avoid switching of context between CPU cores every time, the OS tries

to limit such frequent transitions. The OS monitors and manages the

transition of these states seamlessly and maintains the states of all such

processes running on the system.

 Process Control Block (PCB)
The OS has a well-defined data structure through which it manages different

processes and their states. It is called as the Process Control Block (PCB).

As we can see in Figure 4-4, the PCB includes all information that is required

to manage and monitor the process. It includes details such as the unique

identifier of the process, current state, and other details pertaining to

accounting and scheduling. It may also store the processor register details,

program counter (which contains the address of the next instruction to be

executed), and memory information. All these are required to execute the

process and also save the context of the process when it is moved from one

state to the other as we discussed previously.

Chapter 4 Operating SyStem

96

• The process ID is a unique identifier for the instance of

the process that is to be created or currently running.

• The process state determines the current state of the

process, described in the preceding section.

• The pointer could refer to the hierarchy of processes

(e.g., if there was a parent process that triggered this

process).

• The priority refers to the priority level (e.g., high,

medium, low, critical, real time, etc.) that the OS may

need to use to determine the scheduling.

• Affinity and CPU register details include if there is

a need to run a process on a specific core. It may also

hold other register and memory details that are needed

to execute the process.

Figure 4-4. Process Control Block (PCB) Representation

Chapter 4 Operating SyStem

97

• The program counter usually refers to the next

instruction that needs to be run.

• I/O and accounting information such as paging

requirements, devices assigned, limits, and so on that is used

to monitor each process is also included in the structure.

There could be some modifications to how the PCB looks on different OSs.

However, most of the preceding are commonly represented in the PCB.

Now that we have looked at how a process is represented in the OS and

how the OS maintains the context of different processes, we will look at

how the OS supports multitasking and how these processes are scheduled.

 Context Switching
The operating system may need to swap the currently executing process

with another process to allow other applications to run, if the current

process is running for too long (preventing other processes/applications

from running). It does so with the help of context switching.

When a process is executing on the CPU, the process context is

determined by the program counter (instruction currently run), the

processor status, register states, and various other metrics. When the OS

needs to swap a currently executing process with another process, it must

do the following steps:

 1. Pause the currently executing process and save the context.

 2. Switch to the new process.

 3. When starting a new process, the OS must set the

context appropriately for that process.

This ensures that the process executes exactly from where it was

swapped. With CPUs running at GHz frequencies, this is typically not

perceivable to the user. There are other hardware interfaces and support

Chapter 4 Operating SyStem

98

to optimize these. For example, the time taken to save and restore context

could be automatically supported in certain hardware, which could

improve the performance further.

 Scheduling
The most frequent process states are the Ready, Waiting, and Running

states. The operating system will receive requests to run multiple processes

at the same time and may need to streamline the execution. It uses process

scheduling queues to perform this:

 1. Ready Queue: When a new process is created,

it transitions from New to the Ready state. It

enters this queue indicating that it is ready to be

scheduled.

 2. Waiting Queue: When a process gets blocked by a

dependent I/O or device or needs to be suspended

temporarily, it moves to the Blocked state since it is

waiting for a resource. At this point, the OS pushes

such process to the Waiting queue.

 3. In addition, there could be a Job queue that

maintains all the processes in the system at

any point in time. This is usually needed for

bookkeeping purposes.

Chapter 4 Operating SyStem

99

As we can see in Figure 4-5, all processes go through the Job queue

and are waiting to be dispatched for execution. Once they are assigned

CPU time, they get scheduled to run on the CPU for a specific time period.

This is called as the quanta of time for which the process gets to run on the

CPU. Once that time period is elapsed, the process is moved back to the

Ready queue, where it waits to be scheduled again, until it has completed

its task. If the process is running and gets blocked waiting on some I/O or

an external event, the OS moves the process to the Waiting queue so that it

is not wasting time on the CPU. This process of Ready -> Schedule -> Wait

continues till the process completes its task, at which time it moves to the

Exit state and gets released.

Typically, any process can be compute or I/O intensive depending

on what kind of problem it is trying to solve. As a software developer, it is

important for you to balance these requirements and optimize the code,

perhaps utilizing threads, locks, and critical sections appropriately for best

behaviors.

Figure 4-5. Scheduling Flow in a Typical OS with Different Process
States

Chapter 4 Operating SyStem

100

 Scheduling Criteria
Most operating systems have predefined criteria that determine the

scheduling priorities. Some of them have a criterion to provide maximum

throughput and utilization of the CPU effectively, while others may have

a higher preference to minimize the turnaround time for any request that

comes to the scheduler. Often, most general-purpose operating systems

provide a balance between the two and are usually tuned to the general

workload needs. There may be additional power and performance settings

that can be tuned to modify these behaviors.

Some of the typical metrics that the OS may use to determine

scheduling priorities are listed in the following:

• CPU Utilization and Execution Runtime: The total

amount of time the process is making use of the CPU

excluding NOP (no-operation) idle cycles.

• Volume/Execution Throughput: Some OSs may need to

support certain execution rates for a given duration.

• Responsiveness: The time taken for completion of a

process and the average time spent in different queues.

• Resource Waiting Time: The average time taken on

external I/Os on the system.

Based on these criteria and the strategic needs for the OS, the

scheduling behavior of the system is defined.

Note most OSs try to ensure there is fairness and liveness in
scheduling. there are various scheduling algorithms like First Come,
First Serve (FCFS), Shortest Job First (SJF), Shortest remaining time
First (SrtF), round-robin, Static/Dynamic priority, and so on that the
OS uses for scheduling of processes.

Chapter 4 Operating SyStem

101

 Thread Concepts
Now that we have looked at how the process works and how the OS

manages the scheduling of a process, we will look at an interesting concept

called threads. A thread is nothing more than a lightweight process. When

a process gets executed, it could create one or more threads internally that

can be executed on the processor. These threads have their own program

counter, context, and register information, similar to how the process is

managed.

Threads help in performing parallelism within the same process.

For example, if we have a simple form application that is executed, it

typically starts with a main thread on which the user interface is running.

Let’s assume we need to read some content that may take a while to

load. This could cause the main thread to be blocked preventing the

user from interacting with the application. However, if the call is made

asynchronously, on another thread, the main thread can continue to run

while the content read is happening. This not only improves performance,

it also enhances the user experience. Note that all of this happens within

the context of the same process.

Let us consider an example of a process that contains a single thread

vs. the same process with multiple threads. As we can see in Figure 4-6,

the parallel execution across threads happens within the context of the

same process. Even if one thread in a process may be blocked, the other

thread could continue its execution. Overall, this helps in completing the

job faster. Since threads run within the context of a process, they relatively

consume lesser system resources than processes as well.

Chapter 4 Operating SyStem

102

The OS may employ different types of threads, depending on

whether they are run from an application. For instance, an application may

leverage user-mode threads, and a kernel driver may leverage

kernel- mode threads. The OS also handles switching from user-mode

threads to kernel-mode threads as required by a process.

 Memory Management
In systems with multiple programs running in parallel, there could be

many processes in memory at the same time, and each process may

have specific memory needs. Processes may need memory for various

reasons. First, the executable itself may need to be loaded into memory for

execution. This is usually the instructions or the code that needs to be run.

The second item would be the data part of the executable. These could be

hardcoded strings, text, and variables that are referenced by the process.

The third type of memory requirement could arise from runtime requests

for memory. These could be needed from the stack/heap for the program

to perform its execution.

Code Data Files

Registers Stack

Code Data Files

Registers

Stack Stack

Registers Registers

Stack

Single Threaded Process
E.g. Form Application

Multi Threaded Process
E.g. Form application with separate thread for asynchronous I/O

Main UI thread UI thread File access
Dispatcher thread

Process
Information

Thread
specific

Information

Figure 4-6. Single- vs. Multi-threaded Process for a Simple Form
Application

Chapter 4 Operating SyStem

103

Further, the operating system may also have its memory requirements.

The OS and the kernel components may also need to be loaded in

memory. Additionally, there may be a specific portion of memory needed

for specific devices. For example, memory-mapped (discussed later) data

for a specific device may need to be carved out and handled separately.

Like many other resources, the OS also needs to ensure efficient

usage of memory. This is usually handled by the memory management

subsystem. It manages various functions including allocation of new

memory requests, translation of physical to virtual memories, swapping

data pages, protection of specific memory pages, and so on. It may

also need to manage and abstract the underlying hardware differences

including memory controller intricacies and memory layout specifics. We

will cover some of these topics in this section. Before we can get into the

details, let’s cover some basic concepts.

 Address Binding
Consider a short line of pseudo-code (A = B + 2) that adds 2 to variable

“B” and assigns this to variable “A”. When this line gets compiled, it gets

translated into a few steps. The first step would be to read the value of B

from memory. The next step would be a simple mathematical calculation

to add value 2 to B and perhaps store this in the accumulator. The final

step would be to copy back this value and write this back to the memory

location referenced by A. As we can see here, there are multiple references

to read from memory and write back to memory, also, not shown here,

involving the CPU registers. If these A and B are fixed memory locations

like in the case of a traditional embedded system, these locations may not

change. However, in the case of a general-purpose operating system, it

becomes difficult to assign a location in memory that is static from run to

run or even for the duration of one run.

Chapter 4 Operating SyStem

104

To solve this problem, the common solution is to map the program’s

compiled addresses to the actual address in physical memory. In the

simplest case, each program would get its own physical memory. This

ensures that multiple programs can co-exist at the same time. This address

binding can be done in multiple ways:

 1. The address locations could be fixed at compile

time. That is, the base address or the starting

address of a program can be fixed while compiling,

and the rest of the locations are referenced from

that. This is not advisable since the fixed base

address may not be available if another program

is using it or may call for unexpected security

violations.

 2. The relative address of the program could be

calculated at the time the program is loaded. A

typical usage model would be to calculate this at

runtime using a translation layer, which maps the

program address to the real physical address. This

is typically handled by the memory controller and

is usually the most flexible option. Most operating

systems and compilers also default to this mode for

security reasons to change the base address at every

launch.

Chapter 4 Operating SyStem

105

The address that the program has access to is usually referred to as

the virtual address, and the actual location in memory is the physical

address on the system. This could refer to a physical location on the

RAM. As we can see in Figure 4-7, the application sees its code, static

data, the variables, the stack, and so on. However, internally, the memory

controller and the OS translate these to a location in physical memory. Not

everything that the application sees may be residing in physical memory

all the time. Also, at times, certain parts of the data could also be retrieved

from storage such as disks. In the next section, we will look at how a simple

translation happens between virtual memory and physical memory.

 Logical vs. Physical Address
A program will have variables, instructions, and references that are

included as part of the source code. The references to these are usually

referred to as the symbolic addresses. When the same program gets

compiled, the compiler translates these addresses into relative addresses.

Figure 4-7. Virtual Memory to Physical Memory Overview

Chapter 4 Operating SyStem

106

This is important for the OS to then load the program in memory with a

given base address and then use the relative address from that base to refer

to different parts of the program. At this time, the OS can make use of the

physical address mapping to refer to specific locations in memory. This is

depicted in Figure 4-8 where the relative address is calculated using the

base address and the offset.

In general, there is not enough physical memory to host all programs

at the same time. This leads to the concept of virtual memory that

can be mapped to physical memory. The memory management unit

is responsible for translating virtual addresses to physical addresses.

Typically, most OSs have a page table, which is like a lookup table, that is

used to translate virtual addresses to a physical address at runtime. When

the contents that need to be referred are outside the page, the memory

content is then swapped to the new page at runtime. As shown in

Figure 4- 9, an unwanted page is usually identified and moved out to

the secondary disk. Then, the required page is moved into memory to

continue with the execution.

Figure 4-8. Absolute, Base, and Relative Address Concepts

Chapter 4 Operating SyStem

107

 Inter-process Communication
It is often desirable to have processes communicate with each other to

coordinate work, for instance. In such cases, the OS provides one or more

mechanisms to enable such process-to-process communication. These

mechanisms are broadly classified as inter-process communication (IPC).

There are many ways IPCs can be implemented. The two common ways

are explained in the following, which involve shared memory and message

passing.

 Shared Memory Method

When two or more processes need to communicate with each other, they

may create a shared memory area that is accessible by both processes.

Then, one of the processes may act as the producer of data, while the other

could act as the consumer of data. The memory acts as the communication

buffer between these two processes. This is a very common mechanism to

communicate between processes. This is depicted in Figure 4-10.

Figure 4-9. Page Swapping Example

Chapter 4 Operating SyStem

108

There are additional details on the timing, creation of memory itself,

permissions, and so on. However, we will not cover the details in this book.

 Message Passing Method

The other method is called message passing where the two processes

have a predefined communication link that could be a file system, socket,

named pipe, and so on and a protocol-based messaging mechanism that

they use to communicate.

Typically, the first step would be to establish the communication

channel itself. For example, in the case of a TCP/IP communication, one

of the processes could act as the server waiting on a specific port. The

other process could register as a client and connect to that port. The next

step could involve sharing of messages between the client and server

using predefined protocols leveraging Send and Receive commands. The

processes must agree on the communication parameters and flow for

this to be successful. Given this, they can communicate until the IPC is

terminated by either of the process. This is a common communication

mechanism that is used by networking applications as well.

Figure 4-10. Simple Shared Memory–Based Inter-process
Communication

Chapter 4 Operating SyStem

109

 Further Reading

The memory management unit forms a critical part of the operating

system. Additionally, some OSs use Translation Lookaside Buffers (TLBs),

which contain page entries that have been recently used, multilevel page

tables, and page replacement algorithms to perform optimal memory

management depending on the needs. The performance, thrashing of

memory, and segmentation needs vary from one OS to another. Some of

these concepts are covered by the references shared later in this chapter.

 I/O Management
As part of the system, there could be multiple devices that are connected

and perform different input-output functions. These I/O devices could

be used for human interaction such as display panel, touch panels,

keyboard, mouse, and track pads, to name a few. Another form of I/O

devices could be to connect the system to storage devices, sensors, and so

on. There could also be I/O devices for networking needs that implement

certain parts of the networking stack. These could be Wi-Fi, Ethernet, and

Bluetooth devices and so on.

Figure 4-11. Example I/O Controllers on a System

Chapter 4 Operating SyStem

110

As we can see in Figure 4-11, there are varied sets of I/O devices, and

each of them has a specific purpose and programming interface. They vary

from one to another in the form of protocols they use to communicate

such as the data format, speed at which they operate, error reporting

mechanisms, and many more. However, from an abstraction point of view,

the OS presents a unified I/O system that abstracts the complexity from

applications. The OS handles this by establishing protocols and interfaces

with each I/O controller. However, the I/O subsystem usually forms the

complex part of the operating system due to the dynamics and the wide

variety of I/Os involved.

 I/O Subsystem
Input/output devices that are connected to the computer are called

peripheral devices. There could be additional lines that are used to

connect to these devices for communication purposes. These are called

buses that are a combination of “data lines” to transfer data, “control

lines” to control a device, and “address lines” that may be used to specify

address locations. There could be different buses or device protocols that

an operating system may support. The most common protocols include

Peripheral Component Interconnect Express (PCIe) protocol, Inter-

Integrated Circuit (I2C), Advanced Configuration and Power Interface

(ACPI), and so on. A device can be connected over one or more of these

interfaces.

Consider the need to send a request to read the temperature of a

specific device that is connected via ACPI. In this case, the operating

system sends a request to the ACPI subsystem, targeting the device that

handles the request and returns the data. This is then passed back to the

application. In another example, we want to change the display brightness

of the display device. In this case, a request is made from the application

to the OS, which in turn detects the display device from the I/O subsystem

Chapter 4 Operating SyStem

111

and requests the appropriate display brightness control setting. The

display subsystem then makes the necessary action and returns the result,

for example, success or failure, back to the OS. All of these happen in a

seamless fashion so that the user is not aware of the intricacies involved.

Typically, there is a software component in kernel mode called as the

“device driver” that handles all interfaces with a device. It helps with

communicating between the device and the OS and abstracts the device

specifics. Similarly, there could be a driver at the bus level usually referred

to as the bus driver. Most OSs include an inbox driver that implements

the bus driver. As we saw in Figure 4-11, there is usually a driver for each

controller and each device.

The I/O devices can be broadly divided into two categories called

block and character devices. Usually, most devices would have a command

and data location and a protocol that the device firmware and the driver

understand. The driver would fill the required data and issue a command.

The device firmware would respond back to the command and return

an error code that is utilized by the driver. The protocol, size, and format

could differ from one device to another.

 Block Devices

These are devices with which the I/O device controller communicates by

sending blocks of data. A block is referred to as a group of bytes that are

referred together for Read/Write purposes. For example, when a request

is made to write a file to the storage disk or if we need to transfer a file to

a connected USB drive or if we need to read an image from a connected

camera, the transfers are made as block reads. These could be defined by

the device, for example, in multiple blocks of 512 or 1024 bytes. The device

driver would access by specifying the size of Read/Writes.

Chapter 4 Operating SyStem

112

 Character Devices

Another class of devices are character devices that typically have a protocol

defined using which the driver can communicate with the device. The

subtle difference is that the communication happens by sending and

receiving single characters, which is usually a byte or an octet. Many serial

port devices like keyboards, some sensor devices, and microcontrollers

follow this mechanism.

The protocols used by the different devices (block devices or character

devices) could vary from one to another. There are three main categories of

I/O protocols that are used.

 Special Instruction I/O

There could be specific CPU instructions that are custom developed for

communicating with and controlling the I/O devices. For example, there

could be a CPU-specific protocol to communicate with the embedded

controller. This may be needed for faster and efficient communication.

However, such type of I/Os are special and smaller in number.

 Memory-Mapped I/O

The most common form of I/O protocol is memory-mapped I/O (MMIO).

As we discussed in the “Memory Management” section, the device and OS

agree on a common address range carved out by the OS, and the I/O device

makes reads and writes from/to this space to communicate to the OS.

OS components such as drivers will communicate using this interface

to talk to the device. MMIO is also an effective mechanism for data transfer

that can be implemented without using up precious CPU cycles. Hence,

it is used to enable high-speed communication for network and graphics

devices that require high data transfer rates due to the volume of data

being passed.

Chapter 4 Operating SyStem

113

Figure 4-12 depicts the case where the graphics driver acts as the I/O

device and a memory-mapped location is used to share and communicate

to the graphics device.

 Direct Memory Access (DMA)

As we discussed earlier, there could be devices that run at a slower speed

than supported by the CPU or the bus it is connected on. In this case,

the device can leverage DMA. Here, the OS grants authority to another

controller, usually referred to as the direct memory access controller, to

interrupt the CPU after a specific data transfer is complete. The devices

running at a smaller rate can communicate back to the DMA controller

after completing its operation.

most OSs also handle additional specific device classes, blocking
and nonblocking i/Os, and other i/O controls. as a programmer, you
could be interacting with devices that may perform caching (an
intermediate layer that acts as a buffer to report data faster) and have
different error reporting mechanisms, protocols, and so on.

Figure 4-12. Memory-Mapped I/O Flow in a Graphics Device
Example

Chapter 4 Operating SyStem

114

Next, let’s consider the difference between a polled and an

interrupt- driven I/O.

 Polled vs. Interrupt I/Os
Consider our temperature device discussed previously. If the device

supports a polled I/O mechanism, the typical flow would involve requesting

the device for temperature by issuing the command and filling the data

field. At this point, the host system could wait for the operation to complete.

In this case, it could be a blocked I/O call and a synchronous operation.

However, it may not be efficient to block the execution. So, alternatively,

the host system may issue a call and check the response at a later point in

time if the operation has been completed. These could be implemented as a

polled and an interrupt-driven I/O as shown in Figure 4- 13.

Figure 4-13. Example Polled vs. Interrupt-Driven I/O Flow

Chapter 4 Operating SyStem

115

One mechanism would be for the host to poll the device and check the

status of the operation. There is usually a status register that determines

if the device has completed the operation. This is a common I/O flow for

some devices as shown in Figure 4-13 (A).

Another mechanism would be to use the interrupt-driven mechanism.

In this case, the request for operation is issued to the device. A callback

function is also defined that needs to get called when the operation is

completed. The device would continue and complete the operation and

raise an interrupt once done as shown in Figure 4-13 (B). The callback

function would be called appropriately to handle the interrupt. The

callback function is also called as the ISR (Interrupt Service Routine),

and as the name suggests, it services the interrupt. As a programmer, it is

important to keep in mind that these ISRs are short-lived and lightweight

and need to service the interrupt raised as quickly as possible.

 I/O and Performance
The I/O subsystem plays a major factor in the overall performance of the

system. As a software programmer, some of the operations done by your

program could inadvertently impact the performance of the system. For

example, a program could have multiple context switches arising due to

the delays, responsiveness, and performance of the devices on the system.

This may lead to an overall impact on the performance of your application.

An application performing frequent writes to the disk or making many

requests for continuous memory allocation can lead to excessive page

swapping. A program could request for memory and may inadvertently

not free up the memory requested after usage. These can cause memory

leaks that may result in lower available memory and eventually impact the

system performance. Also, requests for large blocks of contiguous memory

may also have an impact since the memory subsystem may have to swap

memory to accommodate the same.

Chapter 4 Operating SyStem

116

A programmer would need to be cognizant of the I/O subsystem and

its limitations in terms of performance expectations, limits/boundaries,

and potential impacts. This is required since it may not only affect their

application but could also affect the overall platform eventually.

 Synchronization Concepts
Given there are devices and apps that must run together, access to

hardware needs to be properly synchronized. There could be situations

where more than one application may want to communicate to the same

hardware device and the hardware device may not support concurrent

access. It is important to know a few basics about how the OS uses

synchronization to avoid potential conflicts. For this, let’s start with the

concepts of atomicity, critical sections, and locks.

Consider a multi-threaded application where a function is

incrementing a global static variable:

count++; // count is a location in RAM

The preceding statement can be decomposed into three operations,

which include fetching the value of count, incrementing the value of count

in a local register, and then storing the updated value back to memory.

However, as we saw earlier in this chapter, the thread that was executing

this instruction could have been swapped in the middle of this operation.

At the same time, there could be another thread that could be swapped

in and may try to increment count. This is depicted in Figure 4-14 where

Thread A was in the middle of incrementing while another thread tried

to read the value of count. Ideally, Thread B should be able to access the

count variable only after the operation in Thread A was completed.

Chapter 4 Operating SyStem

117

If more than one thread tries to increment count at the same time, we

may get unexpected results at any of the three steps we’ve described in the

preceding. Such bugs are quite difficult to recreate and locate. This is an

example where we need atomicity in instruction execution. Atomicity, as

the name suggests, is a group of instructions that may need to be executed

together as if they were a single instruction. The OS attempts to protect us

from interrupting individual instructions while they are being executed.

 Critical Sections

In multi-threaded applications, if one thread tries to change the value of

shared data at the same time as another thread tries to read the value,

there could be a race condition across threads. In this case, the result can

be unpredictable. The access to such shared variables via shared memory,

files, ports, and other I/O resources needs to be synchronized to protect

it from being corrupted. In order to support this, the operating system

provides mutexes and semaphores to coordinate access to these shared

resources.

Figure 4-14. Example of Increment Operation (count++) Across
Threads

Chapter 4 Operating SyStem

118

 Mutex

A mutex is used for implementing mutual exclusion: either of the

participating processes or threads can have the key (mutex) and proceed

with their work. The other one would have to wait until the one holding

the mutex finishes. As we can see in Figure 4-15, both Threads A and B

would like to access a shared resource such as a file and write to it. Thread A

initiates a request to acquire a lock before it can access the file. Once the lock

is acquired, it finishes its operations on the file and then releases the lock.

During this time, Thread B will not be able to access the file. Once completed,

Thread B can follow the same procedure to access the shared resource.

A sample pseudo-code of the same implementation is shown in

the following. As we can see, both threads try to acquire the lock before

accessing the shared resource, that is, count in this case:

incrementCount()

{

 mutex_lock(&COUNT_MUTEX);

 count = count + 1;

 mutex_unlock(&COUNT_MUTEX);

}

Figure 4-15. Example Mutex

Chapter 4 Operating SyStem

119

 Semaphore

A semaphore is a generalized mutex. A binary semaphore can assume a

value of 0/1 and can be used to perform locks to certain critical sections. It

is usually helpful to batch lock resource requests for better performance.

As we can see in Figure 4-16, each of the threads A, B, C, and D requires

access to the critical shared resource. When each of the threads requests to

acquire the lock, the semaphore increments a counter and also maintains

a waiting list of threads on the shared resource. Typically semaphores

also expose two functions wait() and signal() that may be used to send

notifications to threads appropriately.

Now that we have seen how mutexes and semaphores work, we will

go over another concept called deadlocks that may happen when the OS

attempts to synchronize the operations on the system.

Figure 4-16. Example Semaphore

Chapter 4 Operating SyStem

120

 Deadlocks

In general, when we access a resource, we don’t always know all the ways

other parts of the system may also access that resource. The OS manages

this resource access, but there could be certain situations where a set of

processes become blocked because each process is holding a resource and

waiting for another resource acquired by some other process. This is called

as a deadlock. As we can see in Figure 4-17, Process A holds Resource 1 and

requires Resource 2. However, Process B already is holding Resource 2, but

requires Resource 1. Unless either of them releases their resource, neither

of the processes may be able to move forward with the execution.

Process A Process B

Resource 1

Resource 2

Requires

RequiresHeld by

Held by

Figure 4-17. Example of a Deadlock

Chapter 4 Operating SyStem

121

To elaborate from Figure 4-17, a deadlock can arise if the following four

conditions hold:

• Mutual Exclusion: There is at least one resource on

the system that is not shareable. This means that only

one process can access this at any point in time. In the

preceding example, Resources 1 and 2 can be accessed

by only one process at any time.

• Hold and Wait: A process is holding at least one

resource and is waiting for other resources to proceed

with its action. In the preceding example, both

Processes A and B are holding at least one resource.

• No Preemption: A resource cannot be forcefully taken

from a process unless released automatically.

• Circular Wait: A set of processes are waiting for each

other in circular form. As we can see in Figure 4-17, the

arrows form a circular loop.

There are various mechanisms available to handle deadlocks using

mutexes and semaphores that we discussed earlier along with additional

algorithms to detect, avoid, and prevent deadlocks on the system. As a

programmer, you would want to use these synchronization mechanisms.

To summarize, the I/O subsystem plays a critical role in the overall

performance of the system. Memory management, interrupt responses,

handling of I/O serializations, synchronizations, contentions, and so

on play an important role in the overall performance of the system.

Defining them, tuning and optimizing these are a major challenge for any

operating system. There are various adaptive methodologies and runtime

optimizations that various OS vendors invest in and try to adopt. These will

continue to evolve for the better usage of our hardware.

Chapter 4 Operating SyStem

122

 File Systems
Applications often need to read and write files to achieve their goals. We

leverage the OS to create, read, and write such files on the system. We

depend on the OS to maintain and manage files on the system. OS file

systems have two main components to facilitate file management:

 1. Directory Service: There is a need to uniquely

manage files in a structured manner, manage

access, and provide Read-Write-Edit controls on the

file system. This is taken care by a layer called as the

directory service.

 2. Storage Service: There is a need to communicate

to the underlying hardware such as the disk. This

is managed by a storage service that abstracts

different types of storage devices on the system.

Directory
Service

Storage Service

Disk Controller

Step 1:
Create new file

File Name

Step 4:
Return File

contents from disk

Step 2:
Return
File-ID

User space

Filing System

Step 3:
Read
File-ID

. .

Disk 1 Disk N. . .

Figure 4-18. File System Overview with File Access Process

Chapter 4 Operating SyStem

123

As shown in Figure 4-18, when a new file is created, the file name

and path are passed to the directory service, which creates a unique file

ID. This reference is used later to read contents back from the file using the

storage service.

We will start with file concepts and then proceed to the functionality

details.

 File Concepts
From the perspective of the user, a file is a collection of related data that is

stored together and can be accessed using a unique file ID usually referred

as the file name. These files can be represented internally by different

methods. For example, there could be .bin files in Windows, which only

represent a sequence of bytes. There could be other structured contents

with headers and specific sections in the file. For example, an EXE is also a

file format in Windows with specific headers, a body, and controls in place.

There are also many application-specific files, with their own formats. It is

up to the programmer to define and identify if they require a custom file

format for their application or if they can leverage a standard or common

file format such as the JavaScript Object Notation (JSON) or the Extensible

Markup Language (XML).

As a programmer, it may be important to know the attributes of the

file before accessing it. The common attributes of any file include the

location of the file, file extension, size, access controls, and some history

of operations done on the file, to name a few. Some of these are part of the

so-called file control block, which a user has access to via the OS. Most

OSs expose APIs using which the programmer can access the details in

the file control block. For the user, these are exposed on the graphical user

interface via built-in tools shipped with the OS.

Chapter 4 Operating SyStem

124

 Directory Namespace
The operating system defines a logical ordering of different files on the

system based on the usage and underlying storage services. One of the

criteria most OSs adopt is to structure their directory service to locate files

efficiently.

As shown in Figure 4-19, most OSs organize their files in a hierarchical

form with files organized inside folders. Each folder in this case is a

directory. This structure is called as the directory namespace. The

directory service and namespace have additional capabilities such as

searches by size, type, access levels, and so on. The directory namespaces

can be multileveled and adaptive in modern OSs as we can see in the

following folder structure with folders created inside another folder.

Figure 4-19. Sample Directory Structure

Chapter 4 Operating SyStem

125

As a programmer, you should be aware of a few additional basic

concepts from the file system point of view. We will discuss them in this

section.

 Access Control

There are different access levels that can be applied at file and directory

levels. For example, we may not want a user-mode application running

with a normal user credential to be able to make changes to some OS files/

services. The OS provides different access control IDs and permissions to

different users on the system. Also, each file may also have different levels

of permissions to Read, Write, Modify, and so on. For example, there may

be specific files that we may want anyone to be able to access and Read but

not Write and Modify. The file system provides and manages the controls

to all files when accessed at runtime. These may also be helpful when

more than one user is using the same system.

 Concurrency and Cleanup Control

There are many cases when the OS needs to ensure that a file is not moved

or deleted when it is in use. For example, if a user is making changes to a

file, the OS needs to ensure that the same file cannot be moved or deleted

by another application or process. In this case, the OS would cause the

attempt to move or delete the file to fail with an appropriate error code.

As a programmer, it is appropriate to access a file with the required

access level and mode (Read/Write). This also helps to be in line with the

concurrency needs of the OS and guards against inconsistent updates.

The OS also needs to be able to periodically clear temporarily created

files that may no longer be required for the functioning of the system. This

is typically done using a garbage collector on the system. Many OSs mark

unused files over a period of time and have additional settings that are

exposed, which the user can set to clean up files from specified locations

automatically.

Chapter 4 Operating SyStem

126

Overall, the file system provides access, access controls, and protection

mechanisms to files in the directory namespace. The programmer needs to

be aware of the protections and have the right access controls (privileges)

to interact with the file system successfully.

 Access and Protection
If we have a system that is used by only one user without any access,

networked or otherwise, to other systems, there may still not be assurance

that the contents in the system are protected. There is still a need to protect

the program resources from other applications. Also, there may be a need

to protect critical devices on the system.

In practice, there is always a need to connect and share resources and

data between systems. Hence, it is important to protect these resources

accordingly. The OS provides APIs that help with access control and

protection. Let’s start with some of the concepts.

 Rings: User Mode and Kernel Mode
We briefly covered user-mode and kernel-mode processes in the

“Scheduling” section. One of the reasons the separation between user

mode and kernel mode is implemented by most OSs is that it ensures

different privilege levels are granted to programs, based on which mode

they run in.

As shown in Figure 4-20, an abstract OS divides the program execution

privileges into different rings. Internally, programs running in specific

rings are associated with specific access levels and privileges. For example,

applications and user-mode services running in Ring 3 would not be

able to access the hardware directly. The drivers running on the Ring 0

level would have the highest privileges and access to the hardware on the

system. In practice, most OSs only leverage two rings, which are Ring 0 and

Ring 3.

Chapter 4 Operating SyStem

127

 Virtualization
Consider the scenario where it may be required to have multiple closed

environments that assume to have dedicated access to the resources on

the platform. Operating systems and modern hardware provide a feature

called virtualization that, you guessed it, virtualizes the hardware such that

each calling environment believes it has the dedicated access it needs to

function.

Virtualization is delivered via so-called virtual machines (VMs). A

VM has its own guest OS, which may be the same as or different from the

underlying host OS. A user can launch a VM, much like running any other

program, and log into the guest OS. The host OS provides a hypervisor,

which manages the access to the hardware. The guest OS is usually

unaware of the internals and passes any resource/hardware requests to the

host OS. The user can completely customize their VM and perform all their

actions on this VM without affecting the host OS or any other VM on the

system. At a high level, VMs help effectively utilize the hardware resources

and are used heavily in server and cloud deployments.

Figure 4-20. Applications, Drivers, and Rings in an Operating
System

Chapter 4 Operating SyStem

128

 Protection
There could be different security threats that may arise during the usage

of a computer. These could attempt to access different critical resources

on the platform such as data, compute, memory, and so on. The operating

system needs to be able to detect any such attempts and potentially

mitigate them. A threat could be any local or remote program that may be

attempting to compromise the integrity of the resources in the system. To

mitigate this, modern OSs usually implement checks to detect and protect

against such incursions.

The most common protection would be to authorize the requester and

apply authentication to any new request to the system. For example, when

a request is made to a critical resource, the operating system would verify

the user request (which is called as authentication) and their approved

access levels (which is called authorization) and controls before providing

access to a critical resource on the system. The OS may also have Access

Control Lists (ACLs) that contain mapping of system resources to different

permission levels. This is used internally before the OS grants permissions

to any resource. Additionally, the OS may also provide services to encrypt

and verify certificates that help with enhancing the security and protection

of the system itself.

To summarize, the programmer needs to be aware of the various

access controls and protection mechanisms in place and use the right

protocols and OS services to successfully access resources on the system.

 User Interface and Shell
Although the user interface (UI) is not part of the OS kernel itself, this is

typically considered to be an integral part of the OS. That said, many OSs

support different UIs, many of which are provided by third parties, for

instance.

Chapter 4 Operating SyStem

129

There can be multiple user interfaces for the OS all being implemented

either as a text-based interface (e.g., MS-DOS) or a graphical-based

interface (e.g., Microsoft Windows 10, macOS, etc.). The graphical user

interface is the rich set of graphical front-end interfaces and functionalities

provided by the OS for the user to interact with the computer. There could

be an alternate simpler interface through a command line shell interface

that most OSs also provide for communication. This is a text-based

interface. It is common for programmers to use the shell interface instead

of the GUI for quickly traversing through the file system and interacting

with the OS. It requires the user to be aware of the commands and have

the knowledge of the underlying OS implementations to be able to use it

efficiently.

It is important for the software developer to be aware that the user

interface and the shell interface may have an impact on their choice of

programing language, handling of command line arguments, handling of

the standard input-output pipes and interfacing with OS policies, and so on.

Please note that the user interface and the features can be quite varied and

different from each OS to another and are beyond the scope of this book.

 Some OS Specifics
All OSs have features that may be unique to them. For example, UNIX has

its own level of file abstraction and a hierarchical namespace. It handles

heavyweight processes uniquely and supports pipes and signals for IPCs.

Some of the recent UNIX enhancements provide additional capabilities

and fixes across many of the IPC mechanisms.

Similarly, Windows NT has a layered architecture with Win32 APIs and

a contained Windows Driver Framework (WDF) for driver development.

Windows also has its unique way of handling plug and play (PnP) of

devices on the system, power management, and I/O subsystem. Some of

these may vary from one Windows version to the other as well.

Chapter 4 Operating SyStem

130

From a programmer point of view, most of the basic concepts remain

similar across these OSs. However, there could be few modifications and

enhancements that you need to be aware of for your code to work across

OSs. For example, the paths used to access files on the system or APIs

referenced may be dependent on the OS/shell; and if you don’t code for

these situations, your code may not work as expected across OSs. You may

want to keep these in mind at development. Further details are beyond the

scope of this book.

 Summary
In this chapter, we have described how the operating system forms an

integral part of the system providing numerous capabilities including

interaction with hardware and users and managing programs. OSs

employ many design considerations and strategies based on which the OS

abstracts and ensures seamless usage of the system.

As a software developer, you could be part of a larger ecosystem that

could delve into device management, networking, web development,

data management, and many other domains. The interfaces between

the different domains and the way the operating system streamlines

the operations between them are important for a software developer

to comprehend and make meaningful decisions. Understanding these

fundamentals helps in applying them at the various stages of software

development ranging from architecture, design, deployment, and debug

by taking the right choices.

Chapter 4 Operating SyStem

131

 References and Further Reading
• Arpaci-Dusseau, R. H.-D (2018). Three Easy Pieces.

Arpaci-Dusseau Books. CITATION Rem18\l 1033.

Arpaci-Dusseau, 2018

• Avi Silberschatz, P. B. (2012). Operating System

Concepts (Ninth Edition). John Wiley & Sons, Inc.

CITATION Avi12\l 1033. Avi Silberschatz, 2012

Chapter 4 Operating SyStem

133© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_5

CHAPTER 5

Computer Networks
and Distributed
Systems
So far, we have discussed the computer systems in isolation. Computers

need to talk to each other to enable communication with other systems

to enable higher-value services. When we talk about a set of computers

communicating over a network, we are describing a distributed system. In

this chapter, we will discuss how this happens.

 History and Evolution of Networks
and the Internet
Since the beginning of electronic computers, humans have had the desire

to connect them. The US Department of Defense ARPANET was one of the

earliest networks. By 1971, ARPANET was a 15-node network.

Roberts and Merrill proposed a common “messaging protocol”

for heterogeneous computers to have a common language for sharing

messages. Heterogeneous networks are defined as being made up of

different computers, from different vendors. Wesley Clark, another

researcher at ARPANET, proposed a two-layer approach, of an interface

https://doi.org/10.1007/978-1-4842-7107-0_5#DOI

134

layer and a communications layer. Hosts would provide the user

interface, initiate the connection, and maintain the connection. And a

communications layer of Interface Message Processors (IMPs) would

move the data through the subnets to other hosts.

IMPs would break messages from the host into 8096-bit packets.

A packet can be thought of as an envelope; it is a discrete set of bits that

contain the message, or part of a message. A packet header contains the

routing information and can be thought of as the address on the envelope.

The IMP protocol added a common header that included source,

destination, and control information. Routing is determining where to

send a packet, so that it arrives at its proper destination. In IMPs, routing

to the destination was not done by a central router; rather, each IMP

kept a table of the routes with the amount of time it takes to send one of

these packets. To ensure the arrival of the packets, an acknowledgement

message was sent from the receiving IMP, and a checksum was used to

verify the data was uncorrupted. If, after a certain period of time, the

packet was not acknowledged, it would be sent again.

By 1971, a third layer had been added to the network stack, now

application, host, and communications. Also, by 1971, the first application,

a remote login program called telnet, was generally available. The File

Transfer Protocol (FTP) and email were soon added and generally

available by 1972. In the spring of 1972, ARPANET was demonstrated

for the first time at the first International Conference on Computer and

Communications (ICCC). The ARPANET that was demonstrated in 1972

was not the Internet though. It was a single network of 15 computers with

one killer app in the form of email. What was learned in the development

of ARPANET, however, led to the creation of the Internet.

Robert Kahn extended the work from ARPANET to see if the

techniques could be applied to radio for both terrestrial transmission and

satellite transmission. The biggest impact of this research was applied to

local area networks.

Chapter 5 Computer Networks aNd distributed systems

135

ARPANET typically used leased phone lines to connect from computer

to computer; however, in Hawaii, the phone lines were too noisy for clean

data transmission. So ALOHAnet used radio to transmit the packets.

ALOHAnet used two radio channels: one for machine data and one for

user data. As you can imagine, without knowing when a transmission

would be received, it was likely that two systems would transmit at the

same time and collide with each other. It was impossible to know when

to transmit to avoid a collision on the channel. ALOHAnet provided

an elegant solution by not trying to avoid collisions. Recognizing that

collisions would occur, the ALOHAnet researchers created an algorithm

that would select a random time to wait and retransmit.

Robert Metcalfe improved on this algorithm with subsequent

transmission collisions that would increase the random wait time

exponentially to back off of a congested channel. Metcalfe applied

this radio transmission technique to transmission on wires. Where

transmitting data over radio at the time could carry thousands of bits per

second, the transmissions over wires could transmit millions. Transmitting

data on wires with this technique was named Ethernet.

Ethernet became the standard for data transmission for a local area

network (LAN). By 1982, Ethernet products were commercially available

for personal computers.

Robert Kahn and Vincent Cerf, both computer science researchers on

ARPANET, created the Internet architecture. The Internet architecture was

more flexible and more distributed than the architecture of ARPANET. The

Internet architecture was adopted by not only the Internet itself but many

other networks.

In 1973, Vincent Cerf organized a seminar to design the Internet host

protocol, the Transmission Control Protocol (TCP). Cerf and Kahn asked

the questions what would be the best protocol for unreliable networks and

what would be the best way to connect different networks. Both Cerf and

Metcalfe, as well as Gerard Le Lann, collaborated on TCP; as a result, TCP

reflected the Ethernet protocol. TCP would be able to handle collisions

Chapter 5 Computer Networks aNd distributed systems

136

and out-of-order packet reception. The second question of how to connect

different networks had two possible answers. The first possible answer was

to continue doing what had been done, which is let each network have its

own protocol and then translate between protocols at the network edge.

Cerf and Khan realized this would not scale as the number of networks

grew, so they pushed for the second possible answer, to have a common

protocol, TCP. The advantages of a common protocol, such as a common

address space and transparency of the network boundaries, were worth

the cost of needing to upgrade legacy networks.

To connect to other LANs and potentially translate between different

network protocols, Cerf proposed a special kind of computer called a

gateway. A gateway would be connected to two or more networks, and

those gateways would maintain routing tables between the networks. This

allows the local networks to connect to other networks and eventually be

part of the Internet without having total knowledge of the Internet.

TCP required that all packets were reliably delivered, but this was not

needed in every case. In some cases, for instance, if you are broadcasting

a message out to lots of subscribers and don’t care if they get it or not, an

unreliable protocol makes more sense. As such, in 1978, Vincent Cerf, Jon

Postel, and Dan Cohen proposed that TCP was split into two protocols,

TCP and IP. TCP was still responsible for reliable delivery, and IP was for

simply passing packets between machines. This reduced the complexity of

gateways, because they now only needed to handle IP.

By the end of the 1970s, TCP/IP had been developed and by the

early 1980s had become a de facto standard for computer-to-computer

communication. At the time, it was not the only standard floating

around. A group of public telephone companies and communication

equipment manufacturers had developed a standard called X.25 that

largely overlapped with TCP/IP. X.25 varied from TCP/IP in that it defined

network switching nodes to make virtual circuits between computers

during the communication sessions.

Chapter 5 Computer Networks aNd distributed systems

137

Many in the community saw that X.25 was in direct competition with

TCP/IP and a threat to open networks. Both network protocols were used

during this period, with commercial networks using X.25, while the ARPA

Internet used TCP/IP and private networks used a mix of X.25 and TCP/

IP. While the debate about how to connect these disparate networks

continued, the International Organization for Standardization (ISO) was

focusing on computer manufacturers. To help keep the emerging network

standards open, ISO created the Open Systems Interconnection (OSI)

project.

Because networking computers were still new, ISO did not want to

specify specific protocols or standards. Instead, they provided a standard

model for creating network models. ISO based their model on the layering

scheme that had been created by ARPANET. The OSI model consists of

seven layers: physical, link, network, transport, session, presentation, and

application (Figure 5-1). The layering scheme allowed ISO standards for

network protocols to be slotted into the appropriate layer. A side effect of

this layered approach to the network model was that it shaped the thinking

of network protocols.

Chapter 5 Computer Networks aNd distributed systems

138

Throughout the 1980s, the Internet grew from a small set of networks

mostly related to defense research to an enormous network of computers

and users. The Internet was transferred from military to civilian control.

At the same time, the personal computer revolution was happening. One

growing capability of personal computers was the ability to connect to

other users through dial-up modems and bulletin board systems (BBSs).

BBSs were sometimes connected to FidoNet, a network of bulletin board

systems.

In 1989, Tim Berners-Lee invented the HyperText Markup

Language (HTML) and the Hypertext Transfer Protocol (HTTP). This

was the beginning of the World Wide Web as we know it. In 1993,

Marc Andreessen and Eric Bina created a graphical user interface web

browser for the National Center of Supercomputing Applications (NCSA)

called Mosaic. The Mosaic client used HTTP to connect to servers on

the Internet to download and display HTML content. Web browsers

have continued to evolve as one of the primary clients of the Internet

Protocols.

Figure 5-1. OSI Layered Model Showing Layers Used for
Connection

Chapter 5 Computer Networks aNd distributed systems

139

The World Wide Web Consortium (W3C) was founded in 1994 by Tim

Berners-Lee, with a mission to lead the World Wide Web to its full potential

by defining protocols and guidelines to ensure long-term growth of the Web.

 Protocols: Stateful and Stateless
Protocols are the language used to communicate between computing

systems on a network called nodes. The protocols carry the information

about the connection as well as the content. Protocols define the rules

of how to communicate between nodes. The protocol algorithm defines

the rules such as who speaks next and what is expected. A protocol is

implemented by a header containing the required data and an algorithm

that utilizes that data.

Network protocols can be either stateful or stateless. Stateful protocols

keep track of the connection between the two nodes as part of the protocol

data itself. Stateless protocols do not track the state in the protocol, so,

in general, there is no relation from one message to the next. There are

advantages to both types of protocols, as we discuss in the following.

 Internet Protocol (IP): TCP and UDP
The Internet Protocol suite handles the connections between the host

systems on the Internet, covering the transport and network levels in

the OSI model. The Transmission Control Protocol (TCP) is used for

connection-oriented data traffic. The User Datagram Protocol (UDP) is

used for connectionless data traffic. Connectionless data traffic is data that

is sent but not guaranteed to be received by another node. We will describe

why this is done in the UDP section. The underlying Internet Protocol (IP)

provides the methods to instruct and route the traffic on the network. The

current version of IP is IPv6; however, IPv4 is still in heavy use. One of the

key differences between IPv4 and IPv6 is the available addressable space

Chapter 5 Computer Networks aNd distributed systems

140

in the IP address. IPv4 has 32-bit IP addresses with both the source and

destination host addresses and has a 20-byte header (Figure 5-2). IPv6 has

128-bit IP addresses, again with both source and destination, and has a 40-

byte header (Figure 5-3).

The Transmission Control Protocol, TCP, sits on top of IP

(Figure 5- 4). TCP is the same regardless of whether it uses IPv4 or IPv6.

TCP is a connection-oriented protocol in that it provides a byte stream

for user processes that is both full duplex and reliable. TCP is reliable

because it guarantees the data is sequenced and can be reassembled in the

same order it was sent. Many of the most common application protocols

such as FTP, HTTP, and ISMP sit on top of TCP. TCP provides features like

acknowledgement and timeouts to increase reliability. TCP is also full

duplex, which means that data can simultaneously be sent and received

by both endpoints on a single connection. TCP keeps track of state

information such as the sequence numbers of the message segments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

version priority flow label

payload length next header hop limit

128-bit source IPV6 Address

128-bit des�na�on IPv6 Address

Figure 5-3. IPv6 Header (32 Bits per Row)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
version header length type of service total length

Identification 0 DF MF fragment offset

time to live protocol header checksum

32-bit source IPv4 Address

32-bit destination IPv4 Address

Figure 5-2. IPv4 Header (32 Bits per Row)

Chapter 5 Computer Networks aNd distributed systems

141

TCP defines a connection algorithm that is illustrated in Figure 5-5.

First, a client will send a synchronization (SYN) message to the server

with a sequence number (j). If and when that is received by the server,

the server will send both its own synchronization (SYN) with a sequence

number (k) and an acknowledgement (ACK) with the client’s sequence

number increased (j+1). Finally, if and when the client receives this

message, it will respond back with an acknowledgement (ACK) with the

server’s sequence number increased (k+1). Once this handshake is done,

then the client and server are connected and can communicate.

Figure 5-4. TCP Header (32 Bits per Row)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

source port destination port

length checksum

Chapter 5 Computer Networks aNd distributed systems

142

When the client is done communicating with the server, it can

terminate the connection by sending a finish (FIN) message and sequence

number (m). The server responds with an acknowledgement (ACK) and

sequence number (m+1) and then its own finish (FIN) message. Finally,

the client responds with an acknowledgement (ACK) of the server’s finish

message, after which the client and server are not connected.

UDP or the User Datagram Protocol is the other part of the Internet

Protocol suite. Unlike TCP, UDP is a connectionless protocol; this means

that UDP can send a message to multiple receivers without disconnecting

Figure 5-5. TCP Connect and Disconnect

Chapter 5 Computer Networks aNd distributed systems

143

from one receiver (Figure 5-6). This also means that there is no formal

relationship between the senders and receivers, so receipt of the data is

not guaranteed. UDP is typically used where performance and speed are

more important than reliability. UDP messages are often referred to as

datagrams. DHCP (Dynamic Host Configuration Protocol), RIP (Routing

Information Protocol), and DNS (Domain Name System) are examples of

protocols that are on top of UDP.

 Host, IP Address, MAC Address, Port, Socket
The computers that are the various endpoints in the network are

generically referred to as hosts. Hosts may have one or more physical

layer connections to the network such as Ethernet adapters, Wi-Fi cards,

or wireless WAN adapters. The link layer is this direct node-to-node

connection from a physical connection on one system to a single other

system. The MAC (media access control) address is the link layer address

of these physical connections. The MAC address is a unique 48-bit number

assigned to each device. With 48 bits, there is an addressable space for over

200 trillion devices on the network. The IEEE manages the assignment

of MAC addresses to manufacturers of network equipment to prevent

collisions of MAC addresses.

One or more IP addresses at the network layer can be assigned to

the link layer MAC address. For IPv4, the IP address is a 32-bit number

that is typically written as four dot-separated (between each byte) fields

with values ranging from 0 to 255. With a 32-bit number, the addressable

Figure 5-6. UDP Header (32 Bits per Row)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
source port destination port

sequence number

acknowledged number

header length unused urg ack psh rst syn fin receive window

checksum urgent data pointer

options

Chapter 5 Computer Networks aNd distributed systems

144

space is about 4 billion possible IP addresses. With the explosion of the

number of hosts on the Internet, especially Internet of Things (IoT) hosts,

this 4 billion number is too small. An IPv6 address is a 128-bit number

typically written as eight fields of four hexadecimal (16-bit/2-byte) digits

separated by colons. 128 bits provides a sufficiently large address space

for the future of the Internet. A loopback IP address represents the device

to itself. The loopback addresses are 127.0.0.1 and 0:0:0:0:0:0:0:1 for IPv4

and IPv6, respectively. Multiple services or processes can run on the same

host concurrently by using either TCP or UDP. Each service listens on a

port number, which is a 16-bit number. Each service must have a unique

port number to be accessible on a given host. When a client or a peer

needs to connect to a particular service or peer, it needs to specify not

only the IP address but the port that the service process is listening on.

Sockets are an API (application programming interface) for connecting to

network services. A socket is bound to a port and allows a program to send

and receive data with another program. The Internet Assigned Numbers

Authority (IANA) assigns ports and port ranges to various applications

(Table 5-1) to avoid conflicts.

Table 5-1. IANA Common Port

Numbers and Ranges

Port Description

20 Ftp data

21 Ftp Control

22 ssh

23 telnet

25 simple mail transfer

80 http

(continued)

Chapter 5 Computer Networks aNd distributed systems

145

Port Description

92 Network printing protocol

443 https

546 dhCp Client

547 dhCp server

631 internet printing protocol

8080 http alternate

1-1023 iaNa well-known ports

1024-49151 iaNa registered ports

49152-65535 iaNa dynamic or private ports

Table 5-1. (continued)

 DNS and DHCP
IP addresses are a great way of uniquely identifying hosts on the network,

but it can be very difficult for humans to understand and remember the

addresses of various hosts. The Domain Name Service (DNS) is a protocol

to map human-understandable names to IP addresses. DNS sits on top

of UDP. DNS servers maintain a mapping of domain names or human-

understandable addresses to hosts on the Internet and the corresponding

IP addresses. A DNS server will respond to a DNS resolution request with

the IP address (Figure 5-7). If the DNS server does not have a matching

name to IP address, it forwards the request up to a more authoritative DNS

server, which may forward the request to other DNS servers. Once there

is a name match, the IP address is returned to the original requestor. The

remaining interactions between those hosts will be done with IP addresses.

DNS names follow a specific set of rules. The names must end in a

top-level domain (TLD) such as .com or .org. Various countries each have

Chapter 5 Computer Networks aNd distributed systems

146

top-level domains. Preceding the top-level domain is a subdomain. This

is usually the name of the organization that manages the host. Proceeding

the subdomain and top-level domain is an arbitrary name for the specific

host. Domain names are registered by a domain name registrar under the

supervision of ICANN, the Internet Corporation for Assigned Names and

Numbers.

Figure 5-7. Domain Name Lookup Sequence

The Dynamic Host Configuration Protocol or DHCP is a protocol to

dynamically assign IP addresses to hosts on a LAN or IP segment. It is very

common to use DHCP on local area networks so a person does not have to

explicitly assign IP addresses to every host on the network.

With DHCP, the host sends out a DHCP service discovery message on

the network. When a DHCP host receives a service discovery message, it

responds with an IP address for the requesting system, the network mask,

and the IP address lease time.

A network mask is a bit pattern that indicates which bits in the IP

address cannot change. This indicates the range of possible IP addresses

the host can reach. The network mask is sometimes called the subnet mask

because it defines the subnet that the host is part of. A subnet is one or

more hosts connected to a router. As an example (Figure 5-8), we have two

Chapter 5 Computer Networks aNd distributed systems

147

subnets 143.11.38.0/24 and 143.11.40.0/24, where the first 24 bits or three

fields of the IP addresses in the subnets will be the same.

The DHCP lease time is how long the requesting client will have that

IP address before needing to request a new one. Once the client selects

the IP address, it will respond back to the DHCP server with a request for

that IP address. Finally, the DHCP server will respond, acknowledging that

the client is associated with that IP address. In addition to the IP address

information, a DHCP server can also provide the address to a DNS server.

 Proxy, Firewall, Routing
Routers are computers that have the responsibility of moving network

packets through the network. A router does this by forwarding packets

from an inbound link to an outbound link. A router uses a forwarding table

to determine which outbound link to send the packet, by inspecting the

destination IP address in the packet.

The forwarding table is kept up to date with the current network

topology with the Routing Information Protocol (RIP). RIP is a UDP

Figure 5-8. Two Subnets Connected to a Router

Chapter 5 Computer Networks aNd distributed systems

148

with datagrams from other routers and systems. Because RIP is a

connectionless UDP, the packets sometimes get lost. This is ok because

the routing table will just get updated with the next RIP datagram. RIP

provides a distance measurement to a router, by counting how many hops

(number of routers it passes through) between the source and destination.

Another routing protocol is OSPF (Open Shortest Path First), which

provides information to routers to build a complete map of the network

topology, allowing packet forwarding to be based on a shortest path to the

destination. OSPF is used by upper-tier Internet Service Providers, ISPs,

where RIP is used inside enterprise networks.

The next routing protocol is the Border Gateway Protocol (BGP). BGP

is used by subnets to advertise that subnet is part of the Internet.

Network Address Translation (NAT) does a similar job to routers of

taking incoming packages and sending them out to a specific destination.

Private IP addresses are IP addresses that can be used in multiple local

area networks without conflicting as they cannot be routed out to the

broader Internet. This is typically the type of IP address a DHCP server will

serve up. To send and receive packets to and from these private networks,

a NAT table is used to associate a private network IP address and port

to a public IP address and port. For instance (Figure 5-9), you may be

running a web server on your private network at 10.0.0.11 on port 80 and

an FTP server at 10.0.0.9 on port 22 with NAT to your ISP-assigned address

143.11.38.34. The Internet only sees one device 143.11.38.34 and can

send packets to that device. The NAT will inspect the packet it receives at

143.11.38.34 to check the port destination and then forward that packet to

one of the two machines on the private network.

Chapter 5 Computer Networks aNd distributed systems

149

A firewall works similarly to a NAT in that it inspects the incoming

packets. Depending on certain criteria, it will either forward that packet or

drop it. The destination application and port number are common rules

that are set up in firewalls. Other rules include destination IP addresses

and hostnames.

A proxy server is another service similar to a firewall in that it usually

is part of the edge of a network before packets are sent out to the broader

Internet to help secure your traffic. Even with encryption of the data, with

TCP/IP, the headers are not encrypted, so your source and destination IP

addresses are exposed. If you want to hide your source address, a proxy

service will replace your source address with a proxy address and send it

onto the destination. The destination will then respond back to the proxy

server, which will reassemble the received packet with the original source

address as the destination of the response.

Figure 5-9. Typical Network with DHCP and Network Address
Translation

Chapter 5 Computer Networks aNd distributed systems

150

 Distributed Systems: Prominent
Architectures
Now that we have looked at some of the fundamentals of what makes up a

distributed system, let’s look at some of the application architectures that

are built on these network configurations.

 Client Server
A client-server architecture is one of the oldest and most common

architectures you will see on a network. In this architecture, you will see a

centralized server that multiple clients connect to in order to accomplish

a task. Many of the common Internet applications use a client-server

architecture today, such as HTTP and email.

A client-server architecture has the advantage of centralizing access to

data, so there won’t be multiple potentially out-of-sync copies of the data.

Data synchronization is a common problem with distributed systems in

general. Data can be processed across multiple nodes, and that processing

takes time. If data is changed during the time of processing in one node,

but remains the same on another node, then data can be out of sync. The

client-server architecture with its central access to data maintains what

data to use and manages any synchronization issues.

With well-known protocols, a client-server architecture (Figure 5-10)

can have a diverse set of clients that do not need to be implemented in the

same programming language or even in the same operating system.

A microservice architecture is a modern variation of the client- server

architecture with a client connecting to one or more (micro-, or smaller)

services that provide a single capability, or a small set of related capabilities.

A microservice has a smaller API and usually less code. Both of these features

make individual microservices easier to maintain and secure. However, as

the number of microservices grows, coordinating the microservices can

become overly complex.

Chapter 5 Computer Networks aNd distributed systems

151

 Peer to Peer
A peer-to-peer architecture (Figure 5-11) has two or more homogenous

nodes in the network that can act as both client and server. This

architecture is commonly used for distributed computing where each

node does a portion of the computation on a portion of the data. It is also

used for file sharing where each node shares distributing part of the files,

which is then reassembled at the requesting node.

A peer-to-peer architecture is advantageous when centralized access

is not needed, and portions of the work can be done independently. One

of the challenges of a peer-to-peer architecture is discovering the peers.

Multicast DNS or mDNS is one solution to this challenge. Using mDNS, a

peer will send DNS information as a multicast UDP datagram on a network

to advertise its presence. Other peers will receive this message to discover

a peer. This only works on a single subnet. An alternative approach to

discovery is that each peer will register with a central node and ask the

central node about the other peers.

Figure 5-10. Client-Server Architecture

Chapter 5 Computer Networks aNd distributed systems

152

Figure 5-11. A Peer-to-Peer Architecture

 N-Tiered
An N-tiered architecture (Figure 5-12) is when multiple nodes in the

network have specific roles as part of the total solution. One of the most

common N-tiered architectures is the three-tiered Model-View-Controller

(MVC). The Model service provides the data for a particular model that

the View service presents to the user. The Controller service operates on

the model and transforms the data as defined by the business logic. This

separation of concerns in the architecture provides the advantage of a

flexible architecture that holds even when the underlying implementation

changes. Model-View-View-Model (MVVM) and Model-View-Presentation

(MVP) are other N-tiered architectures you may encounter.

Chapter 5 Computer Networks aNd distributed systems

153

 Distributed System Examples
File transfer (FTP) and the World Wide Web (HTTP) are two examples of

distributed systems that we can look into at a detailed level.

 FTP
FTP is one of the oldest protocols on the Internet. FTP is implemented with

a client-server architecture and is considered a stateful protocol in that the

server maintains the state of the connection with the client.

Let’s examine what happens when a user wants to download a file

from an FTP server (Figure 5-13). First, the user will start the FTP client on

their host machine specifying the FTP server by hostname, for instance,

ftp.example.com. The FTP client will first resolve the hostname to an IP

address via DNS. Once the client has the IP address for ftp.example.com,

for instance, 143.11.38.34, the FTP client can create a TCP/IP packet with

143.11.38.34 as the destination and port 21 to designate FTP. This packet

gets sent and is received by the first router, which then forwards to the

next router and so on until it gets to 143.11.38.34. The FTP server will set

up a session for that client and then send a response packet, which will be

routed back to the client host. Once the packet is received by the client, it is

decoded, and the user is presented with connection information. The user

can then log into the FTP server by entering a username and password.

Figure 5-12. An N-Tiered Architecture

Chapter 5 Computer Networks aNd distributed systems

ftp://ftp.example.com
ftp://ftp.example.com

154

The username is sent to the FTP server as one packet, which the FTP

server associates with the session, and the password is sent in clear text

as a separate packet to the FTP server. Once the FTP server has both the

username and password, the user is authenticated. Now the user can send

one or more commands to the FTP server. For the List command, the FTP

server will respond with a listing of the files available for download. From

here the user can send a Get command to get a specific file. This will open

a separate connection to the FTP server on port 22 to receive the requested

file. Finally, the user will send the Logout command to terminate the

connection. When this packet is received by the FTP server, it “forgets”

all of the information for this connection session and sends a connection

terminated response back to the FTP client.

Figure 5-13. FTP Login and File Transfer Sequence

Chapter 5 Computer Networks aNd distributed systems

155

 The World Wide Web
The modern World Wide Web is a collection of technologies that deliver

a variety of services from video and music to banking and retail. One key

technology that makes the modern Web so successful is SSL, the Secure

Sockets Layer. SSL provides a method using asynchronous keys to encrypt

the HTTP payload of a TCP/IP packet. This includes the HTTP headers and

body.

For the purpose of simplifying this discussion, we will focus on

nonencrypted HTTP (Hypertext Transfer Protocol) in comparison to FTP.

Like FTP, HTTP is a client-server architecture primarily for transferring

files. Unlike FTP, HTTP is a stateless protocol, meaning the server does

not keep any state about the client. This means HTTP needs to provide all

connection information in each packet.

The World Wide Web uses the Uniform Resource Locator (URL)

scheme to describe resources on the Web. This scheme defines the

protocol, domain hostname or IP address, port, and path to the file. This

scheme looks like this with each item in brackets indicating a parameter to

specify: <protocol>://<hostname>:<port>/path/to/file. The protocol

we will use for our example will be HTTP. FTP and HTTPS are two other

protocols that can be addressed with an URL. HTTPS for HTTP secure is

used to address HTTP through the Secure Sockets Layer and FTP for File

Transfer Protocol. For our example, we will use the URL http://example.

com:80/index.html. This example has HTTP as the protocol, example.com

as the hostname, and port 80, which is the default port for HTTP, as the

port number. Because we are using the default number for HTTP, we can

exclude the port number from the URL.

The user opens a browser and enters the URL into the location field.

The browser will decode the URL into its component parts. Just like the

FTP client, the first thing the browser will do is resolve the hostname

to an IP address. It will then create a TCP/IP packet with the IP address

associated with example.com and port number equal to 80, the default

Chapter 5 Computer Networks aNd distributed systems

156

port for HTTP. Included in this packet is the HTTP command Get and the

requested path. Like all TCP/IP packets, this will be forwarded from router

to router until it reaches the server. Here is where HTTP is significantly

different than FTP. When the HTTP server receives this packet, it will build

a response packet including the contents of the file at the path, in our case

index.html. The server will send this response packet back to the client

and forget everything about that transaction (it won’t keep state). When

the response packet is received by the browser, the data content is parsed

and rendered in your browser window. Table 5-2 lists the HTTP response

code sent back to the client.

Table 5-2. HTTP Response Codes

Class Code text Code Meaning

success ok 200 request successfully fulfilled.

success Created 201 used by the post method to indicate newly

created document.

success accepted 202 request has been accepted for processing,

but is not yet processed.

success partial

information

203 Not the definitive document requested but

metainformation.

success No response 204 server received the request but does not

send any information back.

redirection moved 301 requested document has permanently

moved to a new urL. header will contain a

new urL.

redirection Found 302 requested document has a different urL,

but this is a valid urL.

(continued)

Chapter 5 Computer Networks aNd distributed systems

157

Class Code text Code Meaning

redirection method 303 requested document not available with

this method.

redirection Not modified 304 requested document has not changed; the

client should use the cache.

Client

errors

bad request 400 request had bad syntax or is impossible to

fulfill.

Client

errors

unauthorized 401 request does not have a suitable

authorization header.

Client

errors

payment

required

402 the request requires a Chargeto header

information.

Client

errors

Forbidden 403 request is forbidden; there is no suitable

authorization header.

Client

errors

Not Found 404 the server has not found anything

matching the urL.

server

error

internal error 500 the server encountered an error.

server

error

Not implemented 501 the server has not implemented the facility

to fulfill the request.

server

error

service

temporarily

overloaded

502 the server cannot fulfill this request do to

load.

server

error

Gateway timeout 503 similar to 500 error, but indicates the

server cannot access another server.

Table 5-2. (continued)

Chapter 5 Computer Networks aNd distributed systems

158

While HTTP was originally developed for transferring HTML

documents, “web pages,” the versatility of a stateless protocol has allowed

for a wider variety of applications to be implemented on top of the World

Wide Web. ReST (Resource Stateless Transfer) is a method of creating

general-purpose APIs using HTTP. ReST APIs will typically transfer

documents that contain data. JavaScript Object Notation or JSON and the

Extensible Markup Language (XML) are two common formats that are

used for these data-rich documents. The data is sent to a client that may or

may not be a browser.

 Case Study: Web Application
As a case study, we will build a simple web application. This application

will provide a browser-based form to request a user-specified number of

files to recommend to the user and then allow the user to select one of

those files to download from the back end.

 System Architecture
This system will have three main components (Figure 5-14). On the front

end will be a browser form that provides the user input. In the middle will

be the HTTP ReST server that receives the requests from the front end.

Finally, we have the data source that the server will use to choose files from.

Chapter 5 Computer Networks aNd distributed systems

159

As part of the architecture for a ReST service, it will be important to

define the resources that will be available before implementation. We

will define the first resource as filelist with a URL of http://example.com/

filelist/<count>. Each file that is available will also have a URL that will be

http://example.com/files/<filename>, and finally the HTML content for

the front end will be served from http://example.com/app.html.

 HTML, CSS, and JavaScript
Before we dive into this solution, let’s do a brief intro on HTML and some

related topics. HTML stands for HyperText Markup Language and was

the original intended format to be sent by HTTP. HTML provides a way of

marking up a document into different sections using tags such as <head>,

<body>, <script>, <div> for division, the paragraph tag <p>, and many

others, as shown in Listing 5-1. The sections are separated by a beginning

tag <body> and an ending tag </body>. Tags can and do contain other tags.

Figure 5-14. Web Application Three-Tiered Architecture

Chapter 5 Computer Networks aNd distributed systems

160

Listing 5-1. Simple HTML Example

<html>

 <header><title>Network Example Client</title></header>

 <body>

 <div>

 <p>Hello Today</p>

 </div>

 </body>

</html>

Cascading Style Sheets or CSS is a method of providing styling

information to the sections or tags of the documents. The style can be

applied directly in the HTML document using a <style> tag or defined in a

separate document and linked to the HTML document.

JavaScript is a programming language that is embedded in most web

browsers and provides a programmatic access to the contents of the HTML

document and the ability to alter the contents of the HTML document in

the browser’s memory. Similar to CSS, JavaScript code can be embedded

in the HTML document using a <script> tag or defined in a separate

document and linked to the HTML document. JSON is the native object

definition syntax for JavaScript, allowing JavaScript code to easily read and

manipulate JSON documents.

 Front End
For the front end (Listing 5-2), we could use an HTML form, but we would

like to get a little more dynamic and be able to update the view of the

form without making additional requests to the app.html. The app.html

will include a form to ask the user how many files they would like to see

as options. JavaScript will connect, get the user input, and then form an

HTTP request packet with the URL to the filelist route that includes the

number of files to be provided as options. An HTTP request will be sent via

Chapter 5 Computer Networks aNd distributed systems

161

the browser to the back-end server. The server will send back a response

containing JSON- formatted data that includes the files that the back end

selected for options and the URLs for each file in the back end. The front

end will then interpret this JSON data and update the form in the browser

to show the file options to the user. Then the user will select one of the

options, after which the front-end client will build an HTTP request to get

the selected file. The back end will then respond with the contents for the

file to the front end.

Listing 5-2. HTML and JavaScript for a Client

<html>

 <header><title>Network Example Client</title>

 <script >

 function load(){

 var xhttp = new XMLHttpRequest();

 var count = document.getElementById("count").value

 xhttp.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 suggestions(this)

 }

 };

 xhttp.open("GET", "filelist/"+count, true);

 xhttp.send();

 }

 function suggestions(resp) {

 var item_list = JSON.parse(resp.responseText);

 var suggest_html = ""

 item_list.forEach(element => {

 suggest_html = suggest_html+'<a href="'

+element[1]+'">'+element[0]+""

 });

Chapter 5 Computer Networks aNd distributed systems

162

 suggest_html+=""

 document.getElementById("list").innerHTML =

 suggest_html;

 }

 </script>

 </header>

 <body>

 <H1>Network Demo</H1>

 <div>

 <input id="count" value=5>

 <button onclick=load()>Select</button>

 </div>

 <div id="list">

 <p>Select a Random list books</p>

 </div>

 </body>

</html>

 Back End
The back end (Listing 5-3) will be a ReST service running on a system

with a set of files on a disk. The first request the back end expects to get is

a request for the front-end application at the route app.html. This is not

required to be the first request because the back-end server is stateless.

When it gets the request for app.html, the back end will return the HTML

file to the browser, which the browser will render. Then the back end is

ready to receive the next request. The next request could be a request for

a number of files, for instance, to the route “filelist/3.” With this request,

the back end will parse the value 3 from the path and use that in a pseudo-

random selection of three of the files from the disk. The back end will

then encode a JSON object containing the name and URL for each of the

Chapter 5 Computer Networks aNd distributed systems

163

files and respond back to the front end. At this point, the back end will be

ready to receive another request. The next request we might expect from

the front end is a request for one of the files presented in the last response.

Here the back end will read the file from the disk and create a response

containing the contents of the file to send to the front end.

Listing 5-3. Python Flask Code for Serving the Back End

@routes.get('/filelist/{count}')

async def filelist(request):

 count = int(request.match_info.get("count",0))

 filelist = list(get_example(EXAMPLES, count))

 headers = {"Cache-Control": "no-cache"}

 return web.json_response(filelist, headers=headers)

@routes.get("/")

async def index(request):

 index = pathlib.Path(pathlib.Path(__file__).parent,

"index.html")

 resp_text = index.read_text()

 return web.Response(text=resp_text, content_type="text/html")

 Summary
In this chapter, we have covered a wide range of topics related to

distributed systems and networks. We started with the history and

evolution of the networking protocols that have brought us to the modern

Internet. Next, we looked into the IPs that enable networks to work, such as

TCP and UDP. Building on this, we examined specific protocols on top of

UDP such as DNS and DHCP that help define the networks. And then we

looked at the capabilities provided by TCP, such as FTP. After that we saw

some common architectures for distributed systems including

Chapter 5 Computer Networks aNd distributed systems

164

client- server and peer-to-peer. Finally, we pulled all this knowledge

together to create a simple client-server application using HTTP and

related technologies, HTML and JavaScript.

 References and Further Reading
• James Kurose and Keith Ross. Computer Networking:

A Top-Down Approach, Seventh Edition. Pearson, 2016

• W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff.

Unix Network Programming, Volume 1: The Sockets

Networking API, Third Edition. Addison-Wesley

Professional, 2004

• Janet Abbate. Inventing the Internet. MIT Press, 1999

Chapter 5 Computer Networks aNd distributed systems

165© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_6

CHAPTER 6

Computer Security
Computer security is an extremely broad field spanning across multiple

domains, ranging from the security of user data to the physical safety of

the user. On a commercial robot, for instance, computer security is used to

protect sensors and actuators whose malicious use can have a devastating

impact on human life. Some examples of critical computer systems

that could be compromised, if they have security issues, are healthcare

systems, missile defense systems, and aviation systems, to name a few.

Security spans from hardware and software to the social behavior of

the users of the computer. In computer security, most things are not

unconditionally secure; in general, they are only computationally secure.

In other words, most security primitives are secure only under a given

set of assumptions about the adversary. As computers are evolving, the

amount of computation resources available to an adversary is increasing

exponentially, year over year. As a result, security mechanisms must be

upgraded to ensure the same level of security over time. Colloquially, it

is a cat-and-mouse game where the defender must stay one step ahead

of the adversary. The complex topic of physical safety is out of scope for

this book. In this chapter, we will focus on data security, including types

of security, adversary models, and mechanisms to secure data at rest (in

storage) and data in transit between computer systems.

Privacy is another field that is always strongly associated with security.

The fundamental security mechanisms used to protect data are the same

mechanisms used to protect privacy. Privacy is associated with one or

https://doi.org/10.1007/978-1-4842-7107-0_6#DOI

166

more users and pertains to the confidentiality of Personally Identifiable

Information (PII). With the advent of targeted online advertisements,

privacy of users comes under scrutiny as both users and governments

are worried about the data collection companies knowing too much

about users and being able to predict their next actions. Sometimes, users

voluntarily share their personal data in exchange for a free service; and in

other cases, hidden software collects data from cameras, computers, and

other devices used by the consumer without the explicit approval of the

user. This is an evolving field with new primitives like differential privacy

being developed in order to balance economic and human needs.

 Access Control
Like any other advanced field, computer security has its own jargon. In

this section, we demystify common terms that are used by media, industry,

and security experts to express ideas around security. As security is all

about protecting data, there are certain fundamental security properties of

data that need exposition. Data can have the following security properties:

Read, Write, and Execute. Data is readable for an actor if the actor can

read the data without being blocked by any agent in the system. The data

is writable if the actor can write the data in the system without being

blocked by any other agent. Finally, the data is executable if an actor can

point an agent to execute the commands. An astute reader will notice that

the properties of data are from the perspective of an actor. In other words,

same piece of data that is readable for one actor may be only writable for

another or executable for yet another actor, or a combination of these

properties for the same piece of data may be valid for another actor. In a

computer system, these properties are specified by software and enforced

by hardware. This is also called as access control of data and is enforced by

a trusted agent in the system. The trusted agent will have all access to the

Chapter 6 Computer SeCurity

167

data and will grant selective access to other agents and actors. The agents

and actors in a computer system span both hardware and software.

In many cases, it is not possible to use access control for enforcing

the properties of data. In those scenarios, we need to use cryptography.

Cryptography is the art and science of protection of data in the presence

of adversaries. This is a vast field of study, and in this chapter, we will

talk about the fundamental properties of data that can be enforced using

cryptography. The cryptographic properties are similar to the access

control properties that can be enforced, but the mechanisms of the

enforcement are vastly different. In addition, in certain scenarios, access

control can be enforced, while in other scenarios, like sending data

over an untrusted channel, cryptographic mechanisms must be used.

It is important to point out here that most of the modern cryptographic

algorithms and protocols are only secure under assumptions of compute

limitations of an adversary. An adversary with unlimited compute

capability can bypass most of the cryptographic mechanisms being used

today. We introduce common cryptographic and security properties in the

rest of this section.

 Confidentiality
Confidentiality of data covers if the data is secret or not. It is clearly a

corollary to the Read property explained in the preceding under access

control. If an actor can read a data, it is not confidential to the actor. If

the actor cannot read it, it is confidential to the actor. There is a long

list of encryption algorithms that are used to encrypt data to ensure its

confidentiality. Unencrypted data, called plaintext, is sent through an

encryption algorithm to generate a ciphertext. A key is used for encryption.

As shown in Figure 6-1, in a symmetric encryption algorithm, the same

key is also used for decryption, the process of generating the plaintext

from ciphertext. Any actor that has the key has the read access to this

data since it can decrypt the ciphertext and read the plaintext. Since the

Chapter 6 Computer SeCurity

168

same key is used for encryption and decryption, this mechanism is called

Symmetric Encryption. In the United States, there is a body called the

National Institute of Standards and Technology (NIST) that standardizes

encryption algorithms that are used by most of the industry. Currently, the

strongest encryption algorithm standardized and recommended by NIST

is Advanced Encryption Standard (AES).

AES succeeds DES (Data Encryption Standard) and 3DES and is

considered much more secure than its predecessors. Most cryptographic

libraries provide APIs (application programming interfaces) for AES

encryption; and most general-purpose processors from Intel, Apple, AMD

(Advanced Micro Devices), and ARM support instructions for acceleration

of AES encryption and decryption.

Figure 6-1. Symmetric and Asymmetric Encryption

Chapter 6 Computer SeCurity

169

 Integrity
Integrity of data implies whether the data has been modified or not. It is

a corollary to the Write property explained in the preceding under access

control. If an actor can write a data, the integrity of the data is controlled

by the actor. To ensure the integrity of data, data may be encrypted using a

symmetric algorithm, and the same ciphertext will give the same plaintext

using the same key. The problem we have is what if the adversary changes

the ciphertext; on subsequent decryption of the modified ciphertext, the

plaintext will be different from the original plaintext, which is clearly not

desirable. The concept of hashing was introduced to solve this problem.

Hashing is the process of mapping an arbitrary-length data blob to a

fixed-size data blob called hash. The hashing algorithms are one-way

functions such that given a hash value, it is computationally infeasible (or

extremely hard) to find another data blob that would compress to the same

hash value. In addition, a given data blob will always hash to the same

hash value as long as the same algorithm is used. In order to ensure the

integrity of the data blob, the hash value is protected from the adversary

by either storing it separately from the data blob or encrypting it. If the

adversary modifies the data blob, the hash value will change, and the hash

of the modified data blob will not match the original hash value. Also, as

mentioned in the preceding, it is computationally infeasible to find two

blobs that will map to the same hash.

SHA-3 and SHA-512 are common hash functions used in cryptography.

SHA-512 and SHA-3 can support a maximum of 512 bits of hash. In other

words, any large blob can be hashed to 512 bits of hash. An astute reader

will note that multiple large blobs can be hashed to a set of 512 bits. As a

result, the data-to-hash relationship is two way; however, it is considered

extremely hard (computationally intensive) to find a new plaintext

that will hash to the same hash. In other words, if H(x) =Y, it is highly

computationally intensive to find x’ such that H(x’) =Y.

Chapter 6 Computer SeCurity

170

 Availability
Availability of data points to the physical presence of the data. It implies

if the data is available to the actor to read, write, or execute. In other

words, if an actor has access to the data but the data is deleted from its

location in storage or memory or an adversary prevents a legitimate actor

from accessing the data to which the actor has permissions, the data is

considered to be no longer available. Cryptography generally does not

help with availability as the operating system controls deletion of data.

Availability is ensured by restricting access of an adversary to the data.

 Symmetric Key Cryptography
The preceding cryptographic and access control mechanisms work very

well within a single system. However, the security problems become much

more complex when multiple systems on the network are involved and the

network channel is untrusted. If we have multiple systems on the network,

we need protocols to ensure that a network adversary cannot interfere

with the integrity of the data being transferred on the network. If Alice’s

computer wants to send a confidential letter to Bob’s computer, Mallory,

who has access to the network channel, should not be able read or write

the messages between Bob and Alice. In addition, we want to ensure that

Mallory should not be able to replay the messages from Alice to Bob. For

example, if Alice wants to ask Bob to withdraw 20 dollars from the bank,

Mallory should not be able to capture the message and replay it to Bob

and make Bob withdraw 20 dollars multiple times, something which Alice

never intended to do. The same mechanisms for encryption and hashing

work in this scenario, but we get into a problem of sharing the keys

between Alice and Bob so that Bob could decrypt the message.

Chapter 6 Computer SeCurity

171

Symmetric encryption algorithms become problematic in network

communication because there needs to be a secure way for the two sides

to have the same key. In the preceding example, if Alice needs to encrypt

and Bob needs to decrypt, they both must have the same key. In the

absence of fast and secure communication channels, there is no way to

send the key such that Mallory cannot get it. This is where asymmetric key

cryptography comes in.

 Asymmetric Key Cryptography
Asymmetric key cryptography, as shown in Figure 6-1, is a set of

algorithms enabling cryptographic operation with one key and its reversal

with another key. For example, a data blob can be encrypted with a public

key PuKey1 and decrypted with another private key PrKey1. As a result,

Alice and Bob can agree on a PuKey1 and a PrKey1 allowing Alice to send

messages encrypted with PrKey1 and letting Bob decrypt the messages

with PuKey1. Alice’s key is called the private key, and Bob’s key is called

the public key. The mechanism used by Alice and Bob is called the key

establishment protocol. There are multiple key establishment protocols

being used in the industry including RSA based on its authors Rivest-

Shamir-Adelman, DHKP (Diffie-Hellman Key Establishment Protocol),

and ECC (Elliptic Curve Cryptography). All the protocols are based on a

mathematical algorithm like discrete logarithms, factorization of prime

numbers, and so on with a common theme that it is easy to compute the

results in one way and almost impossible (without the knowledge of the

keys) to reverse this computation. These key establishment protocols are

computationally expensive; hence, they are not used to encrypt a lot of

data. Instead, they are used to establish a shared symmetric key between

the two parties, and the symmetric key is then used to encrypt/decrypt the

data on the channel. This provides the best security while minimizing the

overhead that comes with such security solutions.

Chapter 6 Computer SeCurity

172

 Digital Signatures
Cryptography provides us a way of doing digital signatures, exactly like

we sign a checkbook from our bank. When we sign a checkbook, the bank

can verify our signature, we cannot deny signing it, and we cannot reuse

a check once the money has been withdrawn and cannot repudiate that

we signed the check. Digital signatures provide all these properties for

digital documents. A digital signature is done by hashing a document and

then encrypting the hash with a private key. Any entity (like a bank) that

has the public key can verify that the document is signed by the owner

of the private key. The bank saves the signed copy with a check number

such that the owner or some intermediary cannot reuse the signed

document again. One important thing to note is that digital signatures do

not provide confidentiality but only provide nonrepudiation and integrity.

The protocols built on digital signatures provide protection against replay

attacks. In many countries including the United States, European Union

countries, and India, digital signatures are also legally admissible in court.

 Digital Certificates
Any entity with a computer can generate a public/private key pair. How

do we know that this public/private key belongs to Alice or Bob? Well, we

need someone to tell us that the public/private key belongs to Alice or

Bob. This is where the certificate authority comes into play. A certificate

authority is a well-known agency like the driver license office or the

government that issues passports. Everybody knows the driver license

office and trusts them. This concept is taken to the digital world where

well-known companies sign up to become certificate authorities (CAs).

They are trusted by the rest of us because these companies are in the

business of issuing certificates and any wrong endorsement from them

significantly hurts their credibility and their business. In this scenario,

the CA issues a certificate that tells everybody the hash of the public key

Chapter 6 Computer SeCurity

173

of Alice or Bob. This way whenever Alice or Bob signs anything with their

private key, any verifier can verify the signature and also check whether the

key belonged to Alice or Bob.

The most common certificates used in the industry are X.509

certificates. These certificates have the details of the subject and the issuer

and the public key of the subject. They are signed with the private key of

the issuer (CA).

 Certificate Chains
Since one CA cannot sign certificates for everyone, the certificate signing

architectures are generally distributed, where one or more CAs form a

central ring and they issue certificates to the large corporations in the

outer ring. Large corporations issue certificates to their people, products,

and devices, essentially forming a certificate chain rooted in the innermost

circle, the CA itself. These certificate chains are also called chains of

trust where the root certificate is the trusted certificate and all the child

certificates derive trust from the root certificate.

 Salts and Nonces
Salts are random bits of data generated using a random number generator.

Salts are commonly used as an input to a hashing or an encryption

algorithm such that the output of the algorithm is randomized. They

are commonly used in password systems where passwords are stored to

protect them from pre-computation or dictionary attacks. For example,

a password X= “password” can be hashed using a function F(X)=Y. If

an adversary knows the length of the password and that it is made from

the English alphabet, the adversary can pre-compute a dictionary of all

permutations of eight English alphabet letters. As a result, when it sees the

hash, all it needs is to look for the corresponding hash in its dictionary and

it can find the password string. However, if we generate a 64-bit random

Chapter 6 Computer SeCurity

174

number R and concatenate it with the password such that F(X||R) = Y’, the

adversary will have to generate 264 = 18,446,744,073,709,551,616 (20 digits)

dictionaries in order to find the password.

Nonces are also random bits of data generated using a random number

generator and used as an input to various cryptographic algorithms. Nonces

are not a secret from an adversary and commonly not repeated. In network

protocols, nonces are used for ensuring the order of the packets and

protecting from an adversary that tries to benefit by reordering the packets.

 Random Numbers
Random numbers are a foundational element of cryptography and

computer security. They are used for generating keys, nonces, and salts.

A salt is a random bit. Sometimes, they are used to seed counters used in

symmetric encryption algorithms. Intuitively simple, true random numbers

are extremely hard to generate in a computer system because of lack of

entropy (randomness) in computer hardware and software algorithms.

As a result, special-purpose primitives are built in the computer systems

to provide this entropy. There are really three kinds of random numbers.

First, True Random Numbers (TRNs) are numbers generated from a

physical phenomenon like a flip of a coin. They are exceedingly difficult to

emulate with deterministic algorithms on computers. The second kind of

random numbers are pseudorandom numbers. Here, a seed is created from

randomness of the computer, using an entropy source like user inputs,

heat of the system, speed of the fan, and so on; and this random value

is used as a seed to generate pseudorandom numbers. Given the seed

and the algorithm, the next number can be predicted, hence the name

pseudorandom. Cryptographically secure random numbers are the third

class of random numbers commonly used in cryptography. These provide

forward secrecy (knowing a number from the series will not divulge any

previous numbers in the series) and break- in recovery (knowing a number

from the series will not divulge future numbers).

Chapter 6 Computer SeCurity

175

 Security in Client Computing Systems
In the previous section, we read about the fundamental primitives for

security of any system. The two fundamental primitives we read about

are cryptographic mechanisms and access control. In most security

solutions, one of these two mechanisms is used for protecting any asset.

In the next section, we look at some of the contemporary technologies

that the industry has developed in order to provide secure experiences in

client computing. We have talked about the fundamental principles and

primitives used for security and cryptography in the previous section.

In the next few sections, let us discuss how these primitives are used in

modern-day compute clients, servers, and the network. Modern-day

clients (including desktops, laptops, phones), networks (including the

Internet), and servers (IT [information technology] servers, external

servers on the Internet, cloud servers) all attempt to work together to

provide seamless security to the user. Client systems not only depend

on the local platform mechanisms for security, but they also depend on

servers in the cloud to configure and manage security locally. The client

security comprises primitives for protecting data at rest, data in motion,

and data in use and intersects with network security wherever data in

motion must be protected.

 Malware, the Bad Apples of Software
In an industry where millions of lines of code are written per day, there

are thousands of hidden defects in said code. In the software parlance,

these defects are called bugs. These bugs can be further classified into two

main categories. The first category consists of nonsecurity bugs where

the code is doing something other than what the programmer intended

it to do. These bugs may impact the user experience, functionality, safety,

and/or the performance of the system. The second kind of bugs are more

interesting from a security perspective. These bugs, named vulnerabilities,

Chapter 6 Computer SeCurity

176

are opportunities for an adversary to exploit the system to steal and abuse

user data and/or illegitimately change the behavior and/or characteristics

of the system. Malicious software that exploits these vulnerabilities is

called malware. The malware that exploits these vulnerabilities is further

classified into virus, worm, trojan, and so on based on the mechanisms

used by the malware, its goals, and the impact it has on the user’s system.

Skoudis et al. supply a good overview of the classification of all kinds of

malware found in the wild in their book. In this chapter, we will abstract

out the types of malware and focus on malware in general.

Malware is written by a myriad of actors, from so-called script kiddies

who cobble together scripts to exploit a vulnerability to organized crime

houses, sometimes funded by state agencies to indulge in cyber warfare.

There is also an open market for malware called Darknet. Most malware

will use multiple vulnerabilities to attack the system and follows the BORE

(Break Once, Run Everywhere) model. This provides the malware writer

motivation to devote resources to write the malware and then be able to

use it repeatedly on a large number of machines till the vulnerability is

fixed. Even when the vulnerability patches (software updates) are released

by the original software vendor, it can take a long time (sometimes years)

for these patches to reach all the end systems. Although the delivery

mechanisms have become more efficient in the vertically integrated

ecosystems like some phones, they are far from perfect.

Malware is extremely hard to detect because it looks like benign

software to the untrained eye. However, the anti-malware industry has

figured out a way to detect known malware with the help of antivirus (AV)

scanners. The anti-malware industry employs security researchers to

characterize a malware and generate a fingerprint for it. This fingerprint,

called the signature (not to be confused with a cryptographic signature),

is then fed into the antivirus scanners running on the computers. The

antivirus scanner then searches for the known signatures in the software

stored and executing on the platform. If a signature matches, it alerts

the user and/or deletes the malware from the system. This search-based

Chapter 6 Computer SeCurity

177

mechanism has served the industry well since 1988 when the Morris

Worm was found in the field. However, these signatures are very fragile

such that changing one bit in the malware code can change this signature

and provide a way for the malware to bypass the scrutiny of the antivirus

running on the system. As the number of viruses is increasing and the

number of corresponding signatures is rising to the order of millions, the

antivirus companies are struggling in this battle with malware writers.

Malware authors can now write self-modifying malware, also called

homomorphic malware. The enormous number of signatures does

not only consume heavy compute resources, but they are also easy to

circumvent due to the ability of the malware to self-modify. Fortunately,

the advent of artificial intelligence (AI) and neural networks has given

us a new set of tools against malware. In the AI-based approach, the

antivirus (AV) companies extract attributes of the malware and create

a deep learning model from those attributes. Some examples of these

attributes include function names in the malware, IP (Internet Protocol)

addresses used, variable names, source of malware used, and so on. Since

malware writers tend to reuse code, even modified malware has remnants

of its parents. A new malware when passed through the inference engine

is likely to get detected as malware even if some bits have been modified

from the parent.

 Security of Data at Rest

Most user data on clients is stored on either a flash-based SSD (solid-state

drive) or a magnetic disk. This data is the easiest to steal for an adversary.

The adversary can steal the device, pull out the hard disk or SSD, connect

it to another system, and read all the data. The industry has been worried

about this physical attack for a long time; as a result, full-disk encryption

solutions have been developed to fend off such attacks. All user data stored

on the disk is encrypted, and the key is bound to the user and the device

such that the data can only be decrypted when the user logs into the same

Chapter 6 Computer SeCurity

178

device. This prevents an adversary from using another device or another

user login to illegitimately access the data. Most modern operating systems

have disk encryption built in them including Windows, Chrome OS

(operating system), iOS, Android, and macOS. Disk encryption provides

the user an assurance that their data is secured even if the device is lost or

stolen.

 Security of Data in Use

Protecting data at runtime is harder due to the fast-evolving nature of

malware that tries to steal data and/or alter execution paths at runtime.

Most general-purpose compute devices provide hardware mechanisms for

software isolation like

• Process isolation

• Separation of privileged code from nonprivileged code

• Execute-disable bits – make modifiable memory as

non-executable

• Mechanisms to protect the stacks – protection against

stack overflows

• Protections against Return-Oriented Programming

attacks (ROP attacks)

Client systems even go further to provide trusted execution

environments (TEEs) to run algorithms at higher-privilege levels. Some

examples of these TEEs are the secure virtual machines running on top

of VMMs (Virtual Machine Monitors) and security controllers in the

platform. They all run code at high-privilege levels where most malware

finds it hard to attack them. Although the industry has been churning out

increasingly capable defense mechanisms, the bad guys have not stopped.

As a result, we are likely to see increased progress in mechanisms for

protecting runtime environments on client platforms in the coming years.

Chapter 6 Computer SeCurity

179

In 2018, some researchers from the Google Zero project found a

way to exploit branch prediction in CPUs (central processing units) to

do a privilege escalation attack. The most prominent attacks on branch

prediction have been Spectre and Meltdown. This led to a flurry of security

fix patches from silicon and operating system vendors, impacting millions

of systems. This was an attack that was thought to be too computationally

intensive to run, but with improved CPU performance on modern systems,

it is now extremely feasible. This was a stark reminder for the industry that

nothing is really absolutely secure. Even if something has stood up to the

test of time for decades, it does not mean it is completely secure.

 Application vs. Kernel vs. Drivers

Most general-purpose operating systems are structured in a similar way

such that the operating system (or the kernel) manages the hardware

and runs at a higher privilege than the applications. General-purpose

computing processors provide hardware mechanisms for the operating

systems to protect their own execution and I/O (input/output) from

applications. Applications run at user privilege, a lower privilege level

than the OS itself. In addition, we try to make sure that for any code that

runs on the platform, its provenance or origin is known before it executes.

As a result, most applications are signed by their owners and verified

by the operating system on which they execute. These signatures are

cryptographic signatures that have a certificate chain rooted in a well-

known CA that is used to identify their owners. This provides multiple

security benefits: (a) It makes sure that the owner of the application does

not introduce a malware in the application, since it can be traced back

to them. (b) It deters malware writers since they must get a certificate in

order to sign the malicious application.

I/O hardware generally has an associated piece of code that is used

to manage the hardware. This piece of code, called the driver, typically

runs in a privileged mode under the OS. Drivers decouple the I/O from

Chapter 6 Computer SeCurity

180

the rest of the operating system, provide a granular way to manage the I/O

including updates, and are isolated from the applications. However, since

these drivers live in the privileged domain, they must be protected, and

the kernel must be protected from them. To harden them, these drivers

are signed and verified by the OS like other applications. Every general-

purpose operating system provides a mechanism of signing and verifying

drivers.

 User Authentication and Authorization

Another way of protecting user data is to provide strong authentication for

the user and the actors trying to access the data. Identifying and verifying

the identity of the user is named as user authentication. Once the user

is authenticated, it is granted access to certain resources. This grant is

called authorization. User authentication has significantly evolved in the

industry, from user passwords that by themselves are inherently unsecure

to biometric authentication that may use face and/or fingerprinting to

other multifactor techniques, such as texting passcodes. Biometrics and

multifactor techniques have significantly enhanced the security and

experience of authentication. Multifactor authentication requires the user

to prove who they are via two or more of the following criteria: something

they have (e.g., a phone that can be texted a passcode), something they

know (e.g., a password), and/or something they are (e.g., a fingerprint

or their face). The fundamental problems with passwords are that as the

length and complexity requirements of passwords increased, it became

harder for the users to remember them. As a result, users started using

the same passwords for different systems, like websites. To address such

password reuse, these sites add “salt” and then hash these passwords

and save the resulting hash to disk. With this scheme, if an adversary

compromises a server, it would be able to see only the hashed passwords.

It can still do an offline dictionary attack (copy the file to its local storage

and try to crack it) on the salted password, but this is a much harder

Chapter 6 Computer SeCurity

181

problem than cracking unsalted passwords. If the hacker can discover the

password, they can potentially compromise many of that user’s accounts

over many websites where the user was using the same password. This was

clearly an undesirable situation.

It used to be that industry used to shy away from biometric

authentication because of the fundamental concerns around non-

replaceability of biometric data for a given user. That has changed now,

and the industry is rallying behind biometric authentication although

sending biometric data over the network is still frowned upon. User

authentication is done at multiple levels, from a user login into the OS to a

user login into a website. The current state of the art in user authentication

is FIDO (Fast Identity Online), which turns the user authentication around.

A user generates a private-public key pair and sends the public key to the

server. The private key is protected using a pin or biometric authentication

on the client, and the public key is saved at the server. Every unique

website has a different public-private key pair, so a compromise of the

public key at the server does not compromise the user account, since the

adversary cannot do much with the public key without possessing the

private key.

 Trusted Execution Environments and Virtual
Machines
Traditionally software running on mainstream computers has been

classified into user applications (like browsers, file explorers, etc.) and

operating system that hosts these applications. The operating system is

the supervisor that manages all the hardware resources on the platform

and selectively grants them to the applications. Most people are familiar

with Windows, Chrome OS, and macOS. Since the operating system runs

at a higher-privilege level, by the virtue of managing resources, it also

enforces access control. The applications run at a lower privilege level

Chapter 6 Computer SeCurity

182

from the operating system, thereby insulating the operating system from

the applications. As the threat landscape has evolved, it turns out that

operating system–level access control is no longer sufficient. There is

a trend to run applications in an environment that is more secure than

the operating system itself. These are not traditional applications like

Notepad but purpose-built applications for security, like a user login

service. These specialized environments, isolated from the operating

system, are called trusted execution environments (TEEs). These are

highly secure environments running extra secure applications. Trusted

execution environments may run on a separate controller as a peer to the

host operating system, albeit with higher privileges than the host operating

system. The alternative is to have TEEs run on the same controller as the

host operating system in a time-sliced fashion and with higher privileges.

Virtual Machine Monitors (VMMs) are used to achieve the latter, while

security controllers are used to achieve the former. These TEEs are

protected from the operating system and user applications and provide

higher security than the operating system itself.

Traditionally one platform could run one operating system, but it

turned out that one operating system was not able to consume all the

resources of the platform. Virtualization was then invented to solve the

problem of running multiple operating systems. Virtualized systems run

virtual machines that are containers for operating systems. All the virtual

machines on the OS are managed by another layer of software called a

Virtual Machine Monitor (VMM). Since the VMM can isolate the VMs from

each other, VMs have become one way of instantiating a TEE. VM-based

TEEs are commonly used in commercial OSs in the market.

 Secure Boot

Secure boot is the process of loading and executing mutable code after

verifying the first mutable code by hardware. Mutable code is code that can

be modified (before execution) in non-volatile storage like a disk or a solid-

Chapter 6 Computer SeCurity

183

state drive. Subsequent mutable code is verified by the previously verified

mutable code, thereby forming a chain. It is commonly used to protect

from malware attacks that modify firmware/software in persistent storage

and is a common industry practice now. The main goal of secure boot

is to ensure that only the system firmware and OS from a trusted source

execute on the client. As explained previously, the OS makes sure that the

applications and drivers are signed and sources are verified.

Most commodity hardware provides mechanisms for secure boot.

They might either have a non-mutable code embedded in the hardware

(in a ROM) or have a security controller that is responsible for verifying

the mutable code. Clearly the code for the security controller itself must go

through secure boot, and for that non-mutable code is typically stored in

the ROM. Figure 6-2 shows a typical scenario of secure boot.

The preceding diagram shows a typical secure boot session. In each

node in the diagram, the topmost bubble shows where the code is stored,

the middle bubble shows what the code is, and the lowermost bubble

shows whether the code is mutable and signed. Most client platforms

Figure 6-2. Secure Boot

Chapter 6 Computer SeCurity

184

boot from a program stored in read-only memory (ROM). This program

is considered unmutable since it is programmed in the memory at the

factory and cannot be modified after that. Once this program executes, it

loads the next program from persistent storage. The persistent storage can

be limited (few megabytes) storage in the form of a SPI-NOR or be a big

storage drive sized to the order of terabytes. The program in the persistent

storage is considered mutable since the persistent storage can be modified

by an adversary. As a result, the ROM program checks the cryptographic

signature of the program in memory before executing it. This ensures all

the programs that execute are cryptographically verified.

 Secure I/O

Human beings interact with the computer using I/O peripherals. The

security of the I/O peripherals is of utmost importance. Let us take a

common scenario of money transfer; Alice wants to send 100 dollars

to Bob, and she fills out a bank form on her favorite browser. Mallory

implants a malware in the path from her keyboard to the browser and

in the path from the browser to the display. When Alice types Bob, the

browser receives the name Mallory. Although the browser wants to display

Mallory in the window, the malware makes it display Bob. When Alice

clicks Submit, the money gets transferred from Alice’s account to Mallory’s

account. Most operating systems own and manage the I/O channels like

keyboard, mouse, display, and so on. However, this makes both the OS

and the I/O devices vulnerable to malware in the OS or in the device itself.

Connecting the device directly to a TEE (trusted execution environment)

protects the TEE and the device from OS malware. This connection can be

a logical connection where there is a security protocol between the device

and the TEE or a physical connection where the TEE directly manages the

physical port connected to the device. Secure storage is also another form

of secure I/O where the TEE manages the storage.

Chapter 6 Computer SeCurity

185

 Digital Rights Management

Digital Rights Management (DRM) came into prominence with the

Digital Millennium Copyright Act (DMCA). It criminalizes copyright

infringement or attempts to evade protections put in place to control

access to copyright works. More commonly, it is used to protect videos

and music from unlicensed consumption. Most client computing devices

provide mechanisms for the user to be able to access licensed content

while deterring the user from accessing unlicensed content. These security

mechanisms commonly work with the help of a TEE. Typically, the client

first enrolls with a content provider. Once the server has identified and

authenticated with the client, it provides the encrypted content (movie

or music) to the client along with the license. The TEE then decrypts the

content and coordinates with the operating system to play the content on

the selected media device. The hardware and the software on the client

ensure that the licensed user can access the content but cannot copy the

content for redistribution or for use on another device. An astute reader

will notice this is one of the fields in computer security where the owner of

the device itself is not completely trusted with the data present on the user

platform, since the user is not the owner of the movie but only a consumer

of it. From the perspective of the content industry, as they are pouring

billions into new content, they need these DRM mechanisms to protect

their investments.

 Communication Security: Security of Data
in Motion
Most computers converse over an untrusted channel on the Internet. Even

though corporate and home networks are considered more trustworthy

due to the restricted physical access to the data cables and data signals on

which the data travels, the trend is going toward open networks where the

Chapter 6 Computer SeCurity

186

clients are expected to reduce their trust in the network channels and take

appropriate cryptographic and security measures to ensure that the data

can travel securely over untrusted networks.

On the network, the security protocols used must ensure the

confidentiality, integrity, and/or replay protection of data. There are really

no protocols available today that can protect against denial of service

in an adversarial network. In other words, if Alice sends a message to

Bob and Mallory is sitting on the adversarial network, Mallory can drop

the message, and there is nothing Alice or Bob can do about it except

Bob informing Alice that he did not receive a certain message and Alice

resending it. The following three protocols are commonly used to ensure

the security properties of the data on the network.

 Transport Layer Security
TLS (Transport Layer Security) is the second generation of the Secure

Sockets Layer (SSL) cryptographic protocol that is designed to protect

data being sent over an untrusted network. It is commonly used between

a web browser running on a client and the server providing the service.

The use of TLS has expanded to email servers, chat servers, voice calls,

and even media streaming in some cases. TLS provides confidentiality and

integrity of the messages using cryptographic asymmetric and symmetric

key mechanisms. In common scenarios, web browsers do a bidirectional

authentication with the server, that is, the server authenticates the client

device and the client authenticates the server.

TLS (Transport Layer Security) and encryption on the Internet in

general are seen as a double-edge sword by the government and the

regulatory bodies across the world. The same secure conduit that allows

users to protect their data from adversaries on the network is also used

by malware to send malicious data across the network while avoiding the

prying eyes of the government and regulatory agencies. Governments want

Chapter 6 Computer SeCurity

187

to be able to monitor the data, and privacy advocates do not want any

loopholes in privacy protocols – the debate is ongoing.

Figure 6-3 shows the Open Systems Interconnection (OSI) layers

of a network stack. Although data protection applies to all these layers,

most security solutions use TLS in the transport layer and IPSec (Internet

Protocol Security) in the network layer while resorting to purpose-built

protocols in the application layer. The cryptographic primitives used by

these protocols remain the same, while the messaging formats and the

number of messages in the protocols change. It is also common to see data

being encrypted multiple times as it travels down the stack and getting

decrypted as it goes up the stack on the receiving side.

Figure 6-3. Communication Security

Chapter 6 Computer SeCurity

188

 Virtual Private Network
Virtual Private Networks (VPNs) provide a mechanism to extend corporate,

school, and home networks to remote, untrusted networks such that a

device connected from a remote network is functionally connected to the

private network. The device encrypts all the network data, and the data

travels through the untrusted Internet in an encrypted fashion. Once the

data reaches the edge of the private network, the data is decrypted at the

edge and sent to the nodes in the private network. More specifically, it

allows enterprise users, corporate users, and users of big organizations

to connect to their parent networks through untrusted networks, like the

Internet. There are three big categories of VPNs that are commonly used:

 1. Connecting host to network as described in the

preceding

 2. Connecting two networks together through an

untrusted network

 3. Connecting two disparate networks following

different network protocols or IP addressing

schemes

Over the years, many protocols have been used to accomplish VPN,

but today Internet Protocol Security (IPSec) and versions of TLS are

used for setting up these secure channels. The use of TLS for VPN is

managed by the operating system in contrast to the application managing

a TLS session. In other words, with application ownership of TLS, every

application will have one or more unique TLS sessions with one or more

servers, and it is the application’s responsibility to set up and tear down

the session and make sure that the data being sent is sent through the TLS

session. In contrast, a TLS VPN covers the whole client. All applications on

the node can send data naturally without worrying about the TLS, and the

Chapter 6 Computer SeCurity

189

OS ensures that the data is always sent through the TLS connection. These

(application and VPN) are two separate ways of using TLS, which are not

necessarily interchangeable for given usage.

 IP Security
IPSec, Internet Protocol Security, is a protocol that works at the IP layer

and secures the data in the network channels. One of the foundations of

the VPN is it works at the network layer to provide a secure communication

channel from the source node to a network. Like TLS, the fundamental

mechanisms in IPSec are the same, a key establishment/exchange

protocol followed by data transmission that is encrypted and integrity

protected with symmetric keys. Unlike TLS, IPSec works at the network

layer, while TLS works at the transport layer. The difference is what part

of the data header and data payload is encrypted and integrity protected.

Like TLS, IPSec also has various modes for authenticating endpoints and

protecting data.

 Writing Secure Programs: Where Do
We Start?
A lot has been written about secure programing and secure software. In

this section, we talk about the fundamentals and provide some pointers

to find more information. First, no program or code runs in isolation. It

always depends on its environment, a set of libraries, a set of APIs, and

sometimes software running on a remote server that this program interacts

with. Hence, the security of the environment has a direct bearing on the

security of the program itself. Even in these scenarios, there are certain

fundamental security tenets that most programmers can use:

Chapter 6 Computer SeCurity

190

 1. Every program has inputs and outputs; it is

important to make sure that all the inputs are

checked for an allowed range and any input out of

range is rejected.

 2. Establish boundaries of trust. This will ensure that a

vulnerability in one part of the program will not be

used to compromise other parts of the program.

 3. Programs that use cryptography should never

implement their own cryptographic functions.

It is strongly recommended to use existing

cryptographic libraries for cryptographic primitives.

It has been repeatedly shown that cryptographic

functions are extremely hard to get right, so it is

recommended to stick to proven libraries that have

survived the test of time.

 4. Memory allocated in the heap or the stack should

be carefully managed and range checked and

eventually freed. Memory overflows are one of the

topmost causes of vulnerabilities. Programming

languages that provide automatic memory

management and garbage collection, so-called

manage environments (e.g., C#, Java, Python),

are more resilient to these kinds of attacks than

languages that expect the programmer to explicitly

manage memory (e.g., C, C++).

 5. It is the responsibility of the programmer to ensure

that any logs generated do not have any secrets,

since logs are generally not access controlled.

Chapter 6 Computer SeCurity

191

 6. Compiler warnings are our friends. Sometimes

compiler warnings point us to hidden

vulnerabilities; always try to fix the compiler

warnings before shipping the code.

 7. Adhere to the principle of least privilege. If a

function or subroutine does not need access to

a certain variable, restrict it from the function

to prevent any unintended modifications of the

variable.

 8. When there are multiple people working on the

same program, have a secure coding standard so

things remain simple and do not get cloaked in

multiple styles or standards of coding.

 9. Run static and dynamic analysis tools to remove any

inadvertent errors that are not caught by compilers.

 10. It always helps to have a second pair of eyes review

the code.

 11. Lastly, always have a recovery plan ready. Attackers

will find vulnerabilities, and they will compromise

your program. There must be a way to fix the

vulnerability and update the new program in the

field.

Chapter 6 Computer SeCurity

192

 Summary
Computer security has become an integral part of computer science. It not

only impacts our data; in some cases, it can impact our physical safety. As

the threats in the ecosystem are evolving, the industry is developing new

countermeasures to diffuse these threats. However, there is no silver bullet

that can counter all threats, and we need a mixed set of tools in our arsenal

to protect us from these emerging threats. The fundamental cornerstones

of computer security, access control and cryptography, are likely to evolve

in coming years. As outlined previously, passwords are on their way out,

albeit slowly, and are increasingly likely to get replaced with biometrics-

based techniques. We can expect use of more encrypted network channels,

VPNs (Virtual Private Networks), or TLS (Transport Layer Security) as the

network data increases. The need for DRM (Digital Rights Management)

is going to increase as the media industry pours billions into new and

exciting content. Privacy will be the key debate for the next decade due to

multiple economic factors like advertisement revenue that enables service

providers to provide free services to users in exchange for user information.

Finally, state actors are likely to use cyber warfare to complement

traditional warfare, and there will be an increased need for encryption

mechanisms that can be managed by law enforcement authorities. One

thing is clear: computer security as we know it today will transform in a

positive manner in the coming years.

 References and Further Reading
• A. Acquisti, C. Taylor, and L. Wagman. “The economics

of privacy.” Journal of Economic Literature. 2016, doi:

10.1257/jel.54.2.442

Chapter 6 Computer SeCurity

193

• C. Dwork and A. Roth. “The algorithmic foundations of

differential privacy.” Found. Trends Theor. Comput. Sci.,

2013, doi: 10.1561/0400000042

• C. Paar and J. Pelzl. Understanding Cryptography. 2010

• J. Daemen and V. Rijmen. “The Design of Rijndael.”

New York, 2002

• M. E. Smid and D. K. Branstad. “The Data Encryption

Standard: Past and Future.” Proc. IEEE, 1988, doi:

10.1109/5.4441

• NIST. “SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions.” 2015

• N. H. Function et al. “Description of SHA-256, SHA-384

and SHA-512.” ACM Trans. Program. Lang. Syst., 2016

• R. L. Rivest, A. Shamir, and L. Adleman. “A Method

for Obtaining Digital Signatures and Public-Key

Cryptosystems.” Commun. ACM, vol. 21, no. 2, 1978,

doi: 10.1145/359340.359342

• W. Diffie, W. Diffie, and M. E. Hellman. “New

Directions in Cryptography.” IEEE Trans. Inf. Theory,

vol. 22, no. 6, 1976, doi: 10.1109/TIT.1976.1055638

• D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic

Curve Digital Signature Algorithm (ECDSA).” Int. J. Inf.

Secur., 2001, doi: 10.1007/s102070100002

• G. M. Lentner and P. Parycek. “Electronic identity

(eID) and electronic signature (eSig) for eGovernment

services – a comparative legal study.” Transform. Gov.

People, Process Policy, 2016, doi: 10.1108/TG-11-

2013- 0047

Chapter 6 Computer SeCurity

194

• D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile.” 2008

• E. Skoudis and L. Zeltser. Malware: Fighting Malicious
Code. Pearson, 2003

• C. Fachkha and M. Debbabi. “Darknet as a Source
of Cyber Intelligence: Survey, Taxonomy, and
Characterization.” IEEE Commun. Surv. Tutorials, 2016,
doi: 10.1109/COMST.2015.2497690

• H. Orman. “The Morris Worm.” Secur. Privacy, IEEE,
2011

• P. Kocher et al. “Spectre attacks: Exploiting speculative
execution.” 2019, doi: 10.1109/SP.2019.00002

• J. Corbet, A. Rubini, and G. Kroah-Hartman. “Linux
Device Drivers, Third Edition.” Linux Device Drivers,
Third Edition, 2005

• A. Kadav and M. M. Swift. “Understanding modern
device drivers.” 2012, doi: 10.1145/2150976.2150987

• S. Ghorbani Lyastani, M. Schilling, M. Neumayr,
M. Backes, and S. Bugiel. “Is FIDO2 the kingslayer of
user authentication? a comparative usability study
of FIDO2 passwordless authentication.” 2020, doi:
10.1109/SP40000.2020.00047

• J. Gerhardt-Powals and M. H. Powals. “The digital
millennium copyright act.” ACM SIGCSE Bull., 1999,
doi: 10.1145/384267.305937

• S. Rose, O. Borchert, S. Mitchell, and S. Connelly. “Zero
Trust Architecture.” Nist, 2019.

Chapter 6 Computer SeCurity

195© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_7

CHAPTER 7

Cloud Computing
We discussed in the earlier chapters that in a distributed system, there are

two parts: client and server. Traditionally, corporations have managed

their back-end servers on their own at their physical premise. However,

there is a trend to consolidate these resources and services elsewhere (the

cloud) on a network. These services can be used by the client systems as

needed, and the resources can be remotely shared and optimized. The

services are provided and managed by “cloud service providers” (CSPs).

In this chapter, we’ll discuss different cloud computing models, their

implications, and trade-offs. We’ll follow that up with different deployment

configurations and consideration for developing and deploying portable

and interoperable cloud solutions.

Note Simply speaking, cloud computing is a mechanism that
delivers computing services over the Internet (“the cloud”) to offer
faster innovation and dynamic scaling. It can help lower the operating
costs for many of the usage scenarios by means of more optimized
resource utilization.

Figure 7-1 illustrates cloud computing. Essentially, the infrastructure,

platform, and services are hosted in the cloud; and then customers can

access these services over the Internet via various interfaces.

https://doi.org/10.1007/978-1-4842-7107-0_7#DOI

196

 Cloud Computing Models
There are different models of providing cloud computing services. Broadly

speaking, these cloud computing service offerings fall into four categories:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), serverless

(aka Function as a Service, or FaaS for short), and Software as a Service

(SaaS). Serverless (aka FaaS), however, is usually considered the same

as or an extension to PaaS and not treated as a separate model in some

literature. These models are also referred to as a cloud computing pyramid

or stack because they build on top of one another.

Figure 7-2 depicts how the various models stack on each other. In the

following sections, we’ll briefly discuss these models one by one.

Figure 7-1. Illustration of Cloud Computing

Chapter 7 Cloud ComputIng

197

 IaaS
Infrastructure as a Service (IaaS) is the most basic and flexible model

of cloud computing. Essentially, IaaS provides a virtualized computing

infrastructure that is provisioned, managed, and accessed over the

Internet. Virtualization is a mechanism of creating virtual computer

hardware like CPU, storage, network, and so on. An IaaS provider manages

the physical end of the infrastructure (compute, storage, memory, and

network) in a shared data center and lets their customers customize and

use those virtualized resources to suit their needs.

The other way to look at IaaS is that the cloud service customer (CSC)

rents the hardware resources from a cloud service provider (CSP).

The hardware is hosted and managed by the CSP. It is essentially like a

customer getting a machine with the requested hardware – compute,

storage, memory, and network – from the CSP accessible over the network.

The customer is responsible for the rest of the infrastructure management

(OS, software, security, etc.).

IaaS provides dynamic scaling up and down based on the demand that

lets customers pay only for what they use. Because compute resources are

subscribed, purchased, and used as a service, it helps customers avoid

the upfront cost and complexity of procuring and managing their own

physical servers and other related infrastructure. Each part of computing

Figure 7-2. Cloud Computing Pyramid or Stack

Chapter 7 Cloud ComputIng

https://azure.microsoft.com/en-us/overview/what-is-iaas/
https://azure.microsoft.com/en-us/overview/what-is-iaas/
https://www.vxchnge.com/blog/server-racks-and-cabinets

198

resources is offered as a separate service component, and then the

customer can choose and assemble required compute resources. For

instance, customers can choose the number of CPUs, memory, storage,

and networks separately based on their need, and the CSP will assemble

and make a virtual system with those chosen resources. The resources

need to be subscribed and rented only for as long as needed. The cloud

service provider manages the virtual hardware infrastructure, while

customers purchase, install, configure, and manage their own software

pieces like operating systems, middleware, and applications. Microsoft

Azure, Amazon Web Services (AWS), and Google Compute Engine (GCE)

are examples of IaaS.

IaaS services make it super quick and easy to get access to hardware

resources; you don’t have to procure, provision, and secure the

hardware. Given the control and flexibility of software deployment in

this environment, IaaS is the most efficient (in terms of time, cost, and

flexibility) for exploration work. Also, owing to the flexibility, IaaS is always

available for scenarios where the other services like PaaS and SaaS are

unavailable.

It is also to be noted that when customers use more value-added cloud

services from a CSP, they are charged extra for those value additions. For

instance, PaaS is more value-added service than IaaS because CSPs are

responsible for more services as part of PaaS than IaaS. So a corollary of

that is IaaS will be cheaper than PaaS for same level of usage.

 PaaS
Platform as a Service sits a little bit higher up the pyramid than IaaS. That

means, as part of PaaS offering, the CSPs are responsible for, and maintain,

more services than in an IaaS model. As part of PaaS, CSPs supply an on-

demand environment for developing, testing, delivering, and managing

software services. PaaS makes it easier for developers to quickly create

solutions without worrying about setting up or managing the underlying

Chapter 7 Cloud ComputIng

199

infrastructure of hardware and software needed for development and

deployment. AWS Elastic Beanstalk, Apache Stratos, and Google App

Engine are some examples of PaaS.

PaaS offers everything that IaaS provides – that is, the underlying

infrastructure as the service. However, in addition to the hardware,

PaaS consists of middleware, framework, and other development and

deployment tools. As part of PaaS, the cloud service providers provide

these platform ingredients (tools and software). So the customers can

focus on their development rather than trying to manage the SW and HW

infrastructure.

 Serverless
Serverless computing is an extension to PaaS. This is also known as

“Function as a Service” (FaaS). FaaS allows customers to execute code

when needed without having to allocate computing resources in advance.

In other models like IaaS and PaaS, the user has to allocate the computing

resources in advance. As with PaaS, the cloud provider manages the

complete infrastructure. This allows the customer to focus on deploying

application code in the form of “functions.” FaaS enables your functions

to scale up or down automatically to meet demand, which makes FaaS an

excellent fit for workloads that fluctuate in terms of resource requirement.

Essentially, serverless architectures are highly scalable and event

driven, only using resources needed to fill the given demand. Customers

only pay for the resources they consume; therefore, serverless (FaaS) is the

truest form of “pay-as-you-use” cloud computing model. Some examples

of serverless are AWS Lambda and Azure Functions.

The serverless usage model is best suited for burst, trigger-based usage

scenarios and can support extremely high throughput. The customer does

not have to care or preplan for the infrastructure. The CSP infrastructure

will automagically provision the platform and deploy and run the code

when there is a trigger. There are many organizations, for example,

Chapter 7 Cloud ComputIng

200

Thomson Reuters, the Coca-Cola Company, Netflix, and so on, that are

already leveraging serverless effectively.

 SaaS
Software as a service (SaaS) is the model where software applications are

delivered for use as needed over the Internet. Applications are typically

made available on a subscription basis. With SaaS, cloud providers host

and manage the software application including the required infrastructure

and maintenance, including software upgrades and security patching.

Customers just use the software application, over the Internet, without

worrying about any aspect of development, deployment, and maintenance

of the software.

SaaS sits at the top of the pyramid, and for the majority, it is the

most familiar form of cloud computing. Some examples of SaaS include

Microsoft Office 365, Salesforce, and Gmail.

SaaS is where the customers are not bothered by or responsible for

any other aspects of software except that it should be reliably available

when needed in a secure fashion. The service provider is responsible

for everything. This is the only practical model for individual end users.

However, there are organizations that don’t want to develop, deploy, and

maintain their own software application for a specific purpose and so buy

a subscription and let their employees use it. This allows organizations to

focus on their core business rather than be distracted by other needs.

 Comparison of Cloud Computing Models
Figure 7-3 shows you the split responsibilities between the cloud service

provider and the cloud service customer across IaaS, PaaS, and SaaS. As

it is evident, the management responsibility of the CSC goes up from IaaS

to PaaS to SaaS. Roughly speaking, in the IaaS model, the user gets the

hardware equivalent of compute resource and everything else is managed

Chapter 7 Cloud ComputIng

201

by the user, while in the SaaS case, pretty much everything is managed by

the service provider and the user just needs to use the software.

 Benefits of Cloud Computing
As we’ve discussed, there is a lot of traction and movement to cloud

computing. Organizations either have adopted or are in the process of

defining the cloud strategy for optimal benefits. Much of traction is for

good reason. Cloud computing offers organizations many benefits, which

we will discuss next.

 Cost
In the cloud computing world, the customers use computing resources

provided by the cloud service provider. Cloud computing eliminates the

capital expense of buying hardware and software, physical hosting of

hardware, and setting up and running on-site data centers. The capital

Figure 7-3. Service Management Responsibility Chart Across IaaS,
PaaS, and SaaS

Chapter 7 Cloud ComputIng

202

cost is completely taken away and born by the cloud service providers.

The same is true for operating and management costs of the computing

resources and other accessories like the electricity for power and cooling.

The customer must be aware that nothing comes for free. CSPs charge

customers for the services they offer. Practically, in most of cases, the

amortized cost for the customer will turn out cheaper using the cloud

than hosting their own infrastructure. There are some scenarios where it

could be costlier to use cloud services as compared to hosting one’s own

data center. However, even in those cases, there are other benefits of using

cloud services vs. hosting one’s own data center, which we discuss in the

following sections. Finally, as this ecosystem evolves, we see that it is

more and more likely that large corporations will have a split of cloud and

on-premises compute infrastructure that can be combined, in a so-called

hybrid cloud, to get the best of both worlds.

 Scalability
Another key benefit of cloud computing service is the ability to scale

dynamically. There are multiple use cases where the computing needs

may be bursty in nature. For instance, during festival time, there could be

a lot more load on the ecommerce websites than otherwise. Similarly, for

a geography-specific service, there could be more load in daytime than at

midnight. So dynamic scalability refers to the ability of cloud to deploy the

right amount of resources like computing power, storage, and bandwidth

as per demand.

The other very important side effect of dynamic scalability is that the

customer need not plan for and buy worst-case workload. It just scales as

needed. The CSPs do charge for enabling dynamic scaling; however, given

the benefits, it is totally worth it.

Chapter 7 Cloud ComputIng

203

 Velocity
As the cloud computing resources are already pooled at the CSPs and

services are provided on demand, practically all computing resources

can be provisioned quickly, in minutes in fact. This facility is in complete

contrast to the procuring hardware resource and deploying in the

traditional data center world, which can take months, if not quarters, to

complete. This capability enables great flexibility for customers and takes

off the pressure of capacity planning.

 Reliability and Availability
Cloud service providers provide robust solutions for data backup,

disaster recovery, and business continuity in an easier and less expensive

manner. The cloud service providers add redundancy and apply modern

management tools to make the cloud computing resources and overall

environment reliable and available.

 Productivity
Cloud computing enables high productivity for customers. For instance,

with a traditional data center, setting up and managing computing

resource requires a lot of time-consuming chores: hardware setup,

software patching, security updates, and so on. In the cloud computing

world, these chores are performed by the CSPs, so customers’ IT teams

can spend time on achieving more important business goals. And, because

CSPs scale across thousands of customers, they develop and deploy

automated modern tools for these management activities.

Another aspect of improved productivity for customers is a result

of velocity; since the required computing resources can be provisioned

and deployed almost instantly, the customer can begin prototyping

immediately.

Chapter 7 Cloud ComputIng

204

In addition to velocity, cloud computing has various differing levels

of services: from IaaS to SaaS. The customer may choose what they want

to focus on and leverage rest as a service from the CSP. All in all, cloud

computing brings productivity across the board.

 Performance
The most prominent cloud service providers are deployed worldwide.

They apply secure and fast networks and apply the latest technologies to

secure their data and upgrade the hardware resources (compute, storage,

memory, etc.) regularly with the latest generation of fast and efficient

computing hardware. These attributes make best-in-class performance

available to cloud service customers all around the world, reducing latency

for geo-dispersed customers by means of colocating the cloud resources

and customer in the same geography.

 Ease of Use and Maintenance
Cloud service providers offer several tools, technologies, and controls to

strengthen the security and protection of data and apps. Additionally, the

cloud service providers keep the security patches, features, and tools up to

date, which results in improved security.

Combined with other benefits, cloud computing makes software

development, deployment, and maintenance easy, hassle-free, and secure

while being economical.

 Cloud Deployment Configurations
So far, we’ve talked about what cloud computing is in general and the

benefits it brings. When it comes to deploying to the cloud, there are

many ways to implement that. There are many different decisions that

Chapter 7 Cloud ComputIng

205

could impact the implementation and the deployment, which makes one

instance of cloud deployment look very different from another. Some such

decisions include whom the cloud is accessible to, where it is located and

hosted, how the security is implemented, and so on.

Broadly, there are three different ways to deploy cloud services: private

cloud, public cloud, and a mix of the two called hybrid cloud. In the

following sections, we will talk about each of them and their related trade-

offs.

 Private Cloud
A private cloud refers to a setup where the cloud computing resources are

designed and used exclusively by a single organization. The private cloud

usually resides behind a firewall and on a private network. A completely

on-premises private cloud can be physically located on the on-site data

center. The organization may host and manage the private cloud on their

own. However, some organizations hire third-party service providers to

host their private cloud.

Private cloud solutions offer both security and control. The benefits,

however, come at a cost. The organizations that own the cloud are

responsible for the creation, deployment, and management of all

the infrastructure and software, which makes the private cloud a less

economical model than the public cloud in most of the cases. The private

cloud could still make sense for the businesses with very stringent

regulatory requirements.

 Public Cloud
As the name suggests, public clouds are owned and operated by third-

party service providers, known as cloud service providers (CSPs). These

cloud service providers deliver computing resources over the Internet for

their subscribers. Amazon, Microsoft, and Google are some examples of

Chapter 7 Cloud ComputIng

https://azure.microsoft.com/en-in/overview/choosing-a-cloud-service-provider/

206

public cloud service providers. These cloud service providers specialize

in the business and own and manage all hardware, software, and other

supporting infrastructure. The customers of cloud service providers

subscribe to and access these services over the Internet. Because of the

sharing of cloud resources across the customers, public cloud offerings

may be more economical for the majority of customers and use cases. The

public cloud model provides smaller organizations the benefits of scale

and economy.

 Hybrid Cloud
A hybrid cloud, as one can guess, combines public and private clouds.

The hybrid cloud is designed to allow two platforms to work together,

seamlessly. The hybrid cloud model brings the best of both worlds (private

cloud and public cloud) together: provide the scalable computing power of

a public cloud with the security and control of a private cloud.

 Ideal Cloud Deployment Configuration
As we discussed in the preceding sections, there is a trade-off between

the public and private cloud deployment configurations. For example,

the private cloud configuration may give you control and may be better

equipped to store sensitive information regarding the corporation.

The public deployment may provide better flexibility and scale. The

performance and uptime may be better for public cloud deployment

because the public cloud service providers specialize in that.

The use case itself may define whether a public or private cloud

deployment is more suitable. For instance, there may be scope for

optimization in terms of data going into (ingress)/and going out of (egress)

the private cloud setups on-premises, while with public setups, there could

be potentially increased cost for such data movement.

Chapter 7 Cloud ComputIng

207

Because of these reasons, many larger organizations combine the

benefits of the two and use a hybrid cloud deployment. There is no

standard guidance on what mix (private vs. public cloud) is the ideal.

Organizations need to carefully evaluate and come up with the ideal setup

based on their usages and trade-offs. In some cases, it could even require a

multi-cloud model.

 Multi-cloud Model

In cases where a single public cloud isn’t enough to meet an organization’s

computing needs, they may have to use services from multiple public

cloud service providers and deploy a little more complex hybrid cloud

architecture that combines a private cloud with multiple public cloud

services. This model of deployment is known as multi-cloud. While

a hybrid cloud consists of a public and a private cloud, a multi-cloud

environment is a lot more complex and engages multiple public cloud

service providers.

 Cloud Configuration Interface/Mechanism
In the earlier sections, we talked in detail about cloud services, the

complex deployment models, benefits, and so on. Although all of that

might seem very fancy, at the most basic level, accessing cloud services

is not very different from accessing a remote system over a network. On

top of that, the CSPs may provide more user-friendly ways to access and

manage the services.

However, before we can access anything, we need to subscribe to the

cloud services offered by the CSP. Once you have the subscription, the

CSP will provide a user interface to create a logical custom machine by

assembling computing resources like CPU, memory, storage, and so on.

Once the machine is ready and the network address is allocated, it’s pretty

much like accessing any remote system over a network.

Chapter 7 Cloud ComputIng

208

Note to lure customers, CSps may provide free access for some
limited usage and time period.

At a high level, cloud computing is made of two components: front

end and back end. The front end enables the customers to subscribe to,

manage, and access the cloud services provided by the cloud service

provider. The back end is the actual cloud, and it is made of the resources

(compute, memory, storage, network, etc.) that are required to enable and

support cloud computing services.

Figure 7-4 provides a logical view for interfacing with cloud services

and resources.

Note logically, using cloud services is similar to accessing a
remote machine over a network.

Figure 7-4. Logical View of Interfacing with Cloud

Chapter 7 Cloud ComputIng

209

 Cloud Service Providers
The following are several cloud service providers (CSPs) in the market

today. This list is not meant to be comprehensive and by no means in any

specific priority order:

• Google Cloud

• Microsoft Azure

• Amazon AWS

• Alibaba Cloud

• IBM

• Oracle

• And many more, like Linode, VMware, and so on

 Considerations in Choosing a CSP
As we saw in the preceding section, there are a variety of cloud service

providers. Although most of them provide similar capabilities and services,

most CSPs offer proprietary and nonstandard (e.g., open source) services,

supported by proprietary architectures and technologies. Choosing to

use these proprietary services and technologies and developing solutions

using them might lead to customers getting locked in with the CSP. The

lock-in could happen due to various reasons including

• Using custom CSP solutions, services, and mechanisms

• Defining architectural decisions based on specific

services by the CSP

• Designing and developing with the specific CSP in

consideration

Chapter 7 Cloud ComputIng

210

The resulting lock-in could lead to several negative side effects, for instance:

• Significant cost, time, and effort during migration

• Potential downtime during migration

• Difficulty migrating to a different, lower-cost CSP in the

future

With various cloud computing models, lock-in risk levels are different

across IaaS, SaaS, and PaaS. For example, let’s talk about PaaS. A specific

PaaS platform from a CSP may support only limited and proprietary

technologies, for example, specific web frameworks, languages, databases,

and so on. This can lead to development of application architecture that

is tied to the technologies offered by that specific CSP resulting in the

application getting locked in the CSP. Again, across IaaS, PaaS, and SaaS,

the lock-in risk is lowest in the IaaS model because IaaS functionality is

broadly similar and there are several standards covering them.

However, one may ask why lock-in is a bad thing. Why would one need

to migrate from one CSP to another? The argument could be that while

choosing a CSP for the very first time, we perform due diligence to choose

the best CSP for the specific need and use case. Once we do that, what is

the need of ever considering migrating? In the following section, we will

discuss what causes customers to move from one CSP to other.

 Motivation for Switching CSPs
It is evident that cloud service customers (CSCs) evaluate CSPs at the

time of choosing and make the best choice based on their particular use

case and data available. However, requirements can change quickly,

and that can be motivation for moving from one CSP to another. Some

of the reasons that could cause the need for migration are covered in the

following sections. These reasons are not meant to be comprehensive, but

simply some of the most common ones.

Chapter 7 Cloud ComputIng

211

 Usage and Pricing Change

One of the primary reasons for a customer moving from one CSP to other

relates to a usage and/or pricing change.

The CSPs have a pricing model, and when a customer evaluates the

CSPs for pricing, they use a model for usage levels and patterns. However,

actual usage could turn out to be very different than the original model,

and that could make the original evaluation very far from reality. It may

turn out that for the actual usage model, a different CSP may be more

economical.

Also, usage could evolve and change because of the services deployed

on the cloud becoming more or less popular than originally anticipated.

The other potential reason is that the CSPs revise their fees from time

to time, and based on these revisions, the current CSP might become less

attractive than some other.

 CSP Ecosystem Change

The other category of changes that could lead to a customer moving from

one CSP to another relates to changes in the CSP ecosystem itself. Some of

those include

• CSPs Moving In and Out of Business: Although rare for

some of the big players in the CSP business, some of

the smaller ones may move out of business or change

hands. Also, like the CSPs moving out of business, there

could be a scenario where a new CSP emerges and may

have better offerings in terms of pricing, scalability, and

support.

• CSP Abandoning a Specific Service: The overall cloud

computing services and offerings are evolving as

we speak, and as a side effect of that, the CSPs may

abandon or change specific proprietary offerings.

Chapter 7 Cloud ComputIng

212

 Regulatory, Privacy, and Business Dynamics Change

Another category that could motivate changing CSPs is related to

regulatory, privacy, and business dynamics changes:

• Rules, Regulations, and Policy: There could be a

government regulation or other policy changes that

could dictate hosting of certain services in certain

geographies or a specific way that in turn results in

need for moving from one CSP to another.

• Discovery of a New Vulnerability/Loophole or

Limitation at a CSP: While in deployment, the customer

could realize/discover a new vulnerability, loophole, or

limitation that would require the customer to move to

another CSP.

• Business Dynamics Change: The business environment

is fluid, and things change quickly. So, for instance, the

CSP and CSC could move into the same business, and

then there could be some conflict of interest in hosting/

supporting the data from competition.

 Considerations for Developing Portable
and Interoperable Cloud Solutions
As we’ve discussed in earlier sections, it’s evident that cloud service

customers (CSCs) may need to move from one CSP to another. That

directly implies that one must develop solutions in a way that they are

portable and interoperable across CSPs. In the following sections, we will

talk about what we mean by portability and interoperability, as well as

mechanisms we can apply to achieve this.

Chapter 7 Cloud ComputIng

213

 Interoperability vs. Portability
Generally speaking, interoperability can be thought as the measurement

of the degree to which diverse systems or components can work together

successfully.

In cloud computing context, there are two parties: cloud service

customer and cloud service provider. They both interact over a network

connection using a prescribed interface or API. There are different aspects

of the cloud service, and there are typically separate interfaces for dealing

with these different aspects of the cloud service.

For instance, there could be functional interfaces of the cloud service

itself, interfaces for authentication and authorization, interfaces for

administration of the cloud services, and even more interfaces relating

to such business aspects as billing and invoicing. The objective of

interoperability is that these interfaces are standardized in a way that they

are interoperable so that there is minimal impact to the CSC’s component

while moving from one CSP to other.

Similarly, portability refers to the ability of a customer to move

and adapt their applications (application portability) and data (data

portability)

• Between a customer system and CSP

• From one CSP to another CSP

Portability is important because the lack of it leads to considerable cost

and effort when you do have to change systems. There are two aspects of

portability that need consideration:

• Cloud data portability is the ability to easily transfer

data: from one CSP to another and between a CSP and

customer’s system.

Chapter 7 Cloud ComputIng

214

• Cloud application portability is the ability to easily

transfer an application or application component:

from one CSP to another and between a CSP and

customer’s system. This typically only applies to IaaS

and PaaS services, since in the case of a SaaS service,

the application belongs to the cloud service provider

and there is no use case of that being ported elsewhere

by the customer.

As per the Cloud Standards Customer Council’s Interoperability

and Portability for Cloud Computing: A Guide Version 2.0 (2017), the

interoperability and portability aspects of the cloud solution could

pictorially be depicted as in Figure 7-5.

In Figure 7-5, the first three interfaces relate to the interoperability

aspect, while the rest relate to the portability aspect of the cloud services.

Figure 7-5. Elements of Interoperability and Portability in Cloud
Services

Chapter 7 Cloud ComputIng

215

 Interoperability Challenges

There are several reasons why interoperability challenges exist across

CSPs. The key reason is interfaces and services offered by CSPs are not

standardized. Different cloud service providers use different APIs even

for comparable cloud services. The greatest level of interoperability

is made available by IaaS, while the PaaS cloud services have lower

levels of interoperability because there are few interface standards for

PaaS. Recently, open source platforms such as Cloud Foundry are gaining

momentum and provide common open source–based solutions that can

run on any CSP platform. Similarly, SaaS applications present the greatest

interoperability challenge. That is because there are very few standards for

SaaS applications. Therefore, moving from one SaaS application to another

SaaS application usually requires interface changes.

To mitigate these challenges, the cloud service customer usually has

an isolation or mapping layer between their own applications and the

cloud service interface. For instance, technologies such as enterprise

service buses (ESBs) can be used to build these isolation layers. The other

potential mitigation option is to use the services offered by an inter-cloud

provider (aka cloud service broker), who maps a “standard” interface

offered to the customer to a varying set of interfaces offered by several

different CSPs.

 Portability Challenges

As discussed earlier, the portability challenges are different across IaaS,

PaaS, and SaaS. The biggest challenges are for applications built for PaaS

platforms, because

• Platforms can vary widely between different CSPs.

• The app environment can differ substantially across

CSPs.

Chapter 7 Cloud ComputIng

216

For example, to be scalable and elastic, a PaaS platform may enforce

a specific way to manage data that may not be supported by other PaaS

platforms. Although there are some standards relating to PaaS that are

picking up momentum, for IaaS cloud services, there are several standards

that are already in practice. Using these standards results in improved

portability of applications.

To minimize the portability challenges, there are a couple of best-

known strategies in place: one is increasing adoption of common open

source PaaS platforms such as Cloud Foundry, and another is leveraging

containerization that allows independent deployment of applications. In

the following sections, we discuss containerization and orchestration and

how they help enable portability.

 Containers, Docker, and Kubernetes
In order to make software and applications portable, the first consideration

is how we can isolate the application so that it has limited dependency

on and expectation from the underlying environment it is going to be

deployed on. That is where the idea of containers originated and was

first implemented by Docker. Essentially, a container is a standard unit of

software that packages up an application and all its dependencies so that

the application runs the same, regardless of the computing environment

(assuming similar compute resources are available).

Containers allow a developer to package up an application with all the

parts it needs, such as libraries and other dependencies, and deploy it as

one package: a container image. Container images become containers at

runtime.

So, in a way, containers are like virtual machines (VMs) in terms

of isolation benefits; however, they work at a slightly different level:

containers virtualize the operating system, while virtual machines

virtualize the hardware. As a by-product of this difference, containers are

lighter weight and efficient as compared to virtual machines.

Chapter 7 Cloud ComputIng

217

Note a container is a packaging of an application and its
dependencies as a self-contained package, and docker is one
implementation of this concept. there is an initiative to standardize
the container format for wider portability called the Open Container
Initiative.

Figure 7-6 shows the similarity and the difference between virtual

machine– and container (Docker)-based deployments.

As is evident from Figure 7-6, containers are an abstraction above

the OS layer that packages an application and its dependencies together.

Multiple containers can run on the same machine (virtual or physical) and

share the host OS kernel with each other. Each container runs as isolated

processes in user space. Containers are lighter weight in terms of space

and computing overhead than VMs and therefore more efficient than VMs.

Virtual machines have been around for some time now and are well

known. They provide abstraction of physical hardware each running its

Figure 7-6. Containers vs. Virtual Machines

Chapter 7 Cloud ComputIng

218

own copy of an operating system and the applications, necessary binaries,

and libraries. One or more VMs can run on the supplied hardware, but

each VM has a full OS.

As such, VMs are much heavier than containers. However, they are not

mutually exclusive. In fact, in today’s world, both virtual machines and

containers are combined to leverage the best of both. So, in practice, there

could be one capable machine running multiple virtual machines, each of

which in turn running more than one container as needed.

The use of containers requires three additional capabilities or tools:

• Builder: We need the tools and technology to build a

container image.

• Engine: We need the tools and technology to run an

image. A running image is a container.

• Orchestration: We need the tools and technology to

effectively manage container instances.

The first two pieces – Builder and Engine – are very clear. We need

Builder to create the image and Engine to run that image. Docker serves

that purpose. Essentially, Docker is a set of command line tools and

runtime to create and run the container images.

Figure 7-7 demonstrates a high-level architecture of Docker. The

command line tools like “Docker build” and “Docker run” are the client.

These commands are used by the end users to create and run Docker

images. The Docker images created are registered to a global registry

that allows an image to be built once and then used multiple times. The

“Docker daemon” creates and runs the images in contained environments

(containers).

Chapter 7 Cloud ComputIng

219

Containers are a portable way to bundle and run applications.

However, in a production environment, we need to manage the containers

that run and ensure that there is no downtime. Additionally, we need to be

able to scale the number of containers based on demand. Kubernetes (K8s)

does exactly that. It standardizes the process of deploying and managing

the sets of containers that are required for a given application.

Note Kubernetes is a container orchestration framework that
manages deployment of containers to provide resiliency to the
system.

Figure 7-8 shows the high-level Kubernetes architecture. At the top

layer, there is the command line interface (CLI), “kubectl,” that works

with the control plane to orchestrate the deployment. Kubernetes nodes

manage and run pods. The nodes could either be virtual or physical

machines. A node can host and manage one or more pods. Each of

these pods can run one or more containers. From the Kubernetes

perspective, pods are the unit of deployment. There could be pods with

Figure 7-7. Docker Architecture

Chapter 7 Cloud ComputIng

220

just one container; however, for more complex deployments, there is

likely to be more than one container to a pod. “kubelet” monitors and

manages containers within a pod. All these pieces put together is called a

Kubernetes “cluster.”

 Benefits of Containers and Container Orchestration

Although we talked about containers, Docker, and Kubernetes in the

context of portability, which clearly is one of the most important benefits of

using containers, there are other benefits. The key ones are described next.

Security

First and foremost, it adds extra security through isolation. While the

isolation and the security can be architected by the virtual machines

as well, however, since containers include only the necessary code

and libraries needed by the application, they have less code to be

compromised, compared to VMs.

Figure 7-8. Kubernetes architecture

Chapter 7 Cloud ComputIng

221

Scalability

Applying microservices, containers, and container orchestration together,

we can automatically scale up and down the application resources based

on the demand. For illustration, during the festive season when the

demand and load on the ecommerce portal, say Amazon, grows, more

instances of microservice-based containers can be automatically created

by Kubernetes to bear the load.

 The Way Forward
The cloud movement is still relatively young by technology standards and

is still rapidly evolving. How this evolution will impact the ecosystem is

anyone’s guess. That said, with faster and faster networks and throughput,

we are headed to a world where everything goes into/through the cloud.

All the applications and services reside in the cloud (public, private, and/

or hybrid). For example, one has moved to the cloud-based “Office 365.”

This model enables use of SaaS and pay-per-use.

There are several other factors in play while defining the future

of clients and clouds. First and foremost, even though there is wider

availability of the Internet across the globe, there still is a large portion of

the population that is not yet well connected with the Internet. Even for

the population where there is reasonable Internet access, bandwidth and

throughput are not always great enough to make it a seamless experience.

Additionally, there are new uses that require real-time responses. For a

real-time response, going back and forth between the cloud and client over

a network may not be performant, so clients still need reasonable compute

power. For instance, in gaming and other interactive applications, the

experience would be compromised if we fully relied on the cloud for all the

processing.

Chapter 7 Cloud ComputIng

222

Finally, data protection and privacy concerns could prevent users from

doing everything in the cloud.

So, in summary, the smart clients are not going away anytime soon. In

fact, they are going to co-exist and continue their symbiotic relationship

with the cloud.

Leading organizations have already realized they need both robust

client and cloud solutions working together and have started creating

architectures to provide the best experience for users. Specifically, the

idea is to look at the ways we can leverage the capabilities of both client

and cloud in developing a solution and offload the services at the client or

cloud, respectively, whichever is more efficient for the job.

 Recommendations
Based on the discussion on portability and interoperability, we would like to

consolidate the key recommendations for cloud service customers, as follows:

• Portability and interoperability should be key

considerations when choosing the CSP. Also, the

portability and interoperability requirements should be

part of the agreement with the CSP.

• Use open and standard technologies, protocols,

and mechanisms, and avoid using CSP proprietary

solutions, where practical. Choose a CSP that supports

these open and standard technologies.

• Ensure applications follow service-orientated

architecture (SOA) and employ standard APIs for

interoperability. Additionally, use protocol adapters

like enterprise service buses for handling protocol

mismatches.

• Leverage containers for virtualizing applications and

artifacts to ensure portability.

Chapter 7 Cloud ComputIng

223

 Summary
In this chapter, we presented the fundamentals of cloud computing,

its benefits, and the various potential deployment configurations and

why choose one over another. We introduced a few of the cloud service

providers (CSPs) in business today, as well as the key considerations in

choosing a cloud service provider for a specific use case or organization.

We emphasized the need for portability and interoperability as first- order

criteria to avoid lock-in to a specific CSP. We also covered how to develop

portable and interoperable solutions before closing with a brief conversation

on how the client and cloud will potentially evolve in the future.

 References and Further Reading
• European Journal of ePractice. Three Dimensions of

Organizational Interoperability: www.epractice.eu/

files/6.1.pdf

• Cloud Standards Customer Council (2017). Practical

Guide to Cloud Computing: www.cloud- council.

org/deliverables/practical- guide-to- cloud-

computing.htm

• Cloud Standards Customer Council (2015). Practical

Guide to Cloud Service Level Agreements: www.cloud-

council.org/deliverables/practical- guide- to-

cloud- service- agreements.htm

• Cloud Standards Customer Council (2016). Public

Cloud Service Agreements: What to Expect and What

to Negotiate: www.cloud- council.org/deliverables/

public- cloud- service- agreements- what- to- expect-

and-whatto- negotiate.htm

Chapter 7 Cloud ComputIng

http://www.epractice.eu/files/6.1.pdf
http://www.epractice.eu/files/6.1.pdf
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-computing.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-computing.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-computing.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-service-agreements.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-service-agreements.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-service-agreements.htm
http://www.cloud-council.org/deliverables/public-cloud-service-agreements-what-to-expect-and-whatto-negotiate.htm
http://www.cloud-council.org/deliverables/public-cloud-service-agreements-what-to-expect-and-whatto-negotiate.htm
http://www.cloud-council.org/deliverables/public-cloud-service-agreements-what-to-expect-and-whatto-negotiate.htm

224

• Cloud Standards Customer Council (2016). Practical

Guide to Hybrid Cloud Computing: www.cloud-

council.org/deliverables/practical-guide-to-

hybrid- cloud- computing.htm

• ISO/IEC 19941 Cloud Computing – Interoperability and

Portability: www.iso.org/standard/66639.html

• Cloud Standards Customer Council (2017). Practical

Guide to Cloud Management Platforms: www.cloud-

council.org/deliverables/practical-guide-to-

cloud- management- platforms.htm

• Cloud Standards Customer Council (2013). Migrating

Applications to Public Cloud Services: Roadmap for

Success: www.cloud- council.org/deliverables/

migrating-applications-to- public- cloud-

services- roadmapfor- success.htm

• Production-Grade Container Orchestration: https://

kubernetes.io/

• Containers and Dockers: www.docker.com/resources/

what- container

• Open Container Initiative: www.opencontainers.org/

• Open Virtualization Format: www.dmtf.org/

standards/ovf

• Cloud Foundry: Cloud Application Platform:

www.cloudfoundry.org/

• Cloud Data Management Interface (CDMI):

 www.snia.org/cdmi

Chapter 7 Cloud ComputIng

http://www.cloud-council.org/deliverables/practical-guide-to-hybrid-cloud-computing.htm
http://www.cloud-council.org/deliverables/practical-guide-to-hybrid-cloud-computing.htm
http://www.cloud-council.org/deliverables/practical-guide-to-hybrid-cloud-computing.htm
http://www.iso.org/standard/66639.html
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-management-platforms.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-management-platforms.htm
http://www.cloud-council.org/deliverables/practical-guide-to-cloud-management-platforms.htm
http://www.cloud-council.org/deliverables/migrating-applications-to-public-cloud-services-roadmapfor-success.htm
http://www.cloud-council.org/deliverables/migrating-applications-to-public-cloud-services-roadmapfor-success.htm
http://www.cloud-council.org/deliverables/migrating-applications-to-public-cloud-services-roadmapfor-success.htm
https://kubernetes.io/
https://kubernetes.io/
http://www.docker.com/resources/what-container
http://www.docker.com/resources/what-container
http://www.opencontainers.org/
http://www.dmtf.org/standards/ovf
http://www.dmtf.org/standards/ovf
http://www.cloudfoundry.org/
http://www.snia.org/cdmi

225© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_8

CHAPTER 8

Machine Learning
In earlier chapters, we discussed aspects of computer architecture and

how to efficiently program and deploy software. Thus far, we’ve been

successful getting computers to carry out what they have been programmed

to accomplish. Beyond traditional programming, questions arise about

whether or not computers can mimic humans in terms of intelligence and

learning. In science fiction literature, there are many stories of machines

taking over the world. Is this possible? Until relatively recently, these fictions

have been given little credence because there are fundamental differences

between how human intelligence and computing machines work. Machines

act as obedient servants – working as they are explicitly programmed to

accomplish a well-defined task. They did not learn and improve or develop

intelligence. And that’s where machine learning comes to play. Some of

the most succinct descriptions of machine learning are from Stanford

and McKinsey & Co. As per Stanford, “Machine learning is the science of

getting computers to act without being explicitly programmed.”1 And, as per

McKinsey & Co, “Machine learning is based on algorithms that can learn

from data without relying on rules-based programming.”2

1 Andrew Ng, http://mlclass.stanford.edu/#:~:text=Machine%20learning%20
is%20the%20science,understanding%20of%20the%20human%20genome.

2 Jacques Bughin et al., “Artificial Intelligence the Next Digital Frontier?”
McKinsey Global Institute, June 2017, www.mckinsey.com/~/media/McKinsey/
Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20
intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-
Artificial- Intelligence-Discussion-paper.pdf.

https://doi.org/10.1007/978-1-4842-7107-0_8#DOI
http://mlclass.stanford.edu/#:~:text=Machine%20learning%20is%20the%20science,understanding%20of%20the%20human%20genome
http://mlclass.stanford.edu/#:~:text=Machine%20learning%20is%20the%20science,understanding%20of%20the%20human%20genome
http://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.pdf
http://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.pdf
http://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.pdf
http://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.pdf

226

Note Fundamentally, machine learning is the science of getting
computers to learn as well as, or better than, humans.

The key difference between machine learning and conventional
machine intelligence is the way machines acquire intelligence. With
machine learning, machines gather intelligence based on examples
(data, aka experience). In the conventional machine intelligence
case, machines are explicitly programmed (instructed) to behave in a
certain intelligent way. So machines may still behave like intelligent
agents without applying machine learning, but they do not get better
with experience.

By the way, machine learning is not a completely new thing; it has

evolved and started to see more usage, proliferation, and success owing to

advancement in compute resource and availability of data. In the following

section, we talk about evolution of machine learning.

 Brief History of Machine Learning
From the very beginning of computing devices, when we thought about

learning and machines, we tried to draw parallels from the understanding

of how human brains work and how computing machines/algorithms

work. Neurons and their associated networks (neural networks) play the

foundational role in human learning process, so researchers have tried to

emulate these processes in machines. This field of study is broadly known

as machine learning and artificial intelligence.

ChapTer 8 MaChIne LearnIng

227

The first theory on neural networks was a paper published in

1943 where neurophysiologist Warren McCulloch and mathematician

Walter Pitts talked about neurons and how they work. They decided to

model these neurons using an electrical circuit, creating the underlying

framework for future machine learning progress.

In 1950, Alan Turing created the “Turing Test,” which is a method

for determining whether a computer is capable of thinking like a

human being. Turing proposed that a computer can be said to possess

artificial intelligence if it can mimic human responses under specific

conditions. This test is simple: for a computer to qualify as having artificial

intelligence, it must be able to convince a human that it is a human and

not a computer. The test was originally named “The Imitation Game.”

Arthur Samuel in 1952 created the first computer program that could

learn as it ran. It was a game that played checkers. Later in 1958, Frank

Rosenblatt designed the first artificial neural network to recognize patterns

and shapes. Then in 1959, Bernard Widrow and Marcian Hoff created

two neural network models at Stanford University. The first was called

ADALINE, and it could detect binary patterns. The other one (which was

the next generation) was called MADALINE. MADALINE was used to

eliminate echo on phone lines – so the first useful real-world application

of machine learning, MADALINE, came into use and continues to be used

today.

Despite the success of MADALINE, there was not much progress

until the late 1970s for many reasons. Recently, both the amount of data

available and exponential growth in processing capabilities, neural

networks, and other ML technologies have become viable.

ChapTer 8 MaChIne LearnIng

228

 Artificial Intelligence, Machine Learning,
and Deep Learning
We use the terms artificial intelligence, machine learning, and deep

learning a lot. Is there a difference between them? At times, we seem to use

these terms interchangeably, but it is important to understand that they

are related and not interchangeable. We define each one in the following.

Artificial intelligence (AI) refers to intelligence demonstrated by

machines. In other words, artificial intelligence refers to the simulation of

intelligent behavior in computers or the capability of a machine to imitate

intelligent human behavior. It is used broadly to refer to any algorithms,

methods, or technologies that make a system act and behave like a

human. It employs machine learning, computer vision, natural language

processing, cognitive robotics, and other related technologies.

Machine learning is a subfield of artificial intelligence that uses

algorithms that improve with experience or learn the rules without

explicitly being programmed.

Deep learning is a technique of machine learning that uses multilevel

(deep) neural networks for learning. Figure 8-1 represents the relationship

between the three. It illustrates that deep learning is a subfield of machine

learning that is a subfield of artificial intelligence.

ChapTer 8 MaChIne LearnIng

229

 Fundamental Tenets of Machine Learning
Having discussed machine learning and its evolution earlier, we now

discuss the key tenets of machine learning. In machine learning, machines

learn with data to detect patterns and rules to

• Categorize like objects.

• Predict likely outcomes based on identified (learned)

rules.

• Identify patterns and relationships.

• Detect anomalous behaviors.

Essentially there are three parts of a machine learning system: model,

training, and inference. Figure 8-2 illustrates the high-level flow. At first, a

machine learning model is created, and then it is trained with the training

data. After training, the model would have “learned,” based on the data,

and is ready to be used for making useful prediction for new data, which

Figure 8-1. Relationship Between Artificial Intelligence, Machine
Learning, and Deep Learning

ChapTer 8 MaChIne LearnIng

230

is known as inference. It is worth mentioning that a large volume of data

is required for the model to pick good rules and become reasonably

accurate. In practice, the training of the model is a continuous process,

bringing in new training data as we see more kinds of data from the real

world, making the model predictions more accurate over time. Because of

the iterations and amount of data that need to be processed, the training

process is computationally intensive. The degree of computational

requirement depends on the model (algorithm) being used and the size of

the training database. The good news here is that once a model is trained,

making an inference based on new data is fairly low cost.

 Models
A machine learning (ML) model is fundamentally a recipe (i.e., statistical

representation of the system) learned using examples (i.e., training data)

with an ability to predict behavior given new data. In other words, a

machine learning model is fundamentally the representation of a learning

system that can be used to predict (i.e., infer) results for new data.

The processes machines use to learn are known as algorithms.

Different algorithms learn in different ways. With the right model, as new

Figure 8-2. Representation of a Machine Learning System

ChapTer 8 MaChIne LearnIng

231

data is provided to the “machine,” the algorithm’s performance improves,

thereby resulting in increasing “intelligence” over time.

 Training
Training refers to the model being fed with the data such that it learns the

rules or improves the model. The structure of the data will be different

depending upon the type of machine learning and the chosen model.

Data points are generally represented as a feature vector, or feature. Each

feature represents one attribute of the data. A vector is just like an array

data structure, discussed previously.

So, taking an example, let’s say we are designing a machine learning

system to predict the price of a car in resale. The actual prices of cars sold

previously, along with the descriptions of cars, will be fed to the learning

model. The car description will have multiple attributes (features) like

maker of the car, age of the car, the distance the car has been driven, and

so on. Each of these features can be represented using one of the following

types of data:

 1. Categorical Data: Data that takes one of the few

values in a set, for example, color of a car

 2. Binary Data: Data that has two values, for example,

whether a car has valid insurance or not

 3. Numerical Data: Data that is a number, for example,

price of a car

 4. Graphical Data: Data that is in graphical form, for

example, picture of a car

As part of the training process, we usually divide the available data for

training into parts: one part used for training and learning and the other

part used for validation/checking accuracy of the model. Given a trained

model, we’re ready for inference. As mentioned in the preceding, we’re

ChapTer 8 MaChIne LearnIng

232

never really done training, as we need to constantly update our training

data set to accurately reflect the real-world data we encounter using the

model.

 Prediction (Inference)
Now, once the model is ready and trained, the “trained model” is used for

“prediction” or more formally “inference” with new data. The model is

fed the new data and predicts the “result/output” for the same. From the

computation resource perspective, inference is much faster than training

because it can be done in real time or near real time in many cases.

 Categories of Machine learning
In the context of machine learning, there are some well-known categories

of learning problems. The key ones are (1) supervised, (2) unsupervised,

(3) semi-supervised, and (4) reinforcement learning.

 Supervised Learning
We know that in machine learning, we feed data to a model and the

model learns using the data. In the case of supervised learning, the data

is labeled with the right answer (we know what is good and what is bad,

if you will). So, essentially, the model is being supervised while training.

Another way to look at it is a person curating the data and creating the

(good/bad) labels, essentially supervising the model. Supervised learning

models the relationship between the output and the input data such that it

can predict the output values for new data based on the derived (learned)

relationships from the previous data sets. In other words, supervised

learning can be considered a form of function approximation. Supervised

learning is the most common machine learning technique applied in real-

life use cases.

ChapTer 8 MaChIne LearnIng

233

One example is when we are creating a spam detector engine. The

model is fed with the description of the message along with the label

(spam or “not a spam”). The learning is anchored around the label

that is the correct answer (as per the supervisor). There are two major

subcategories of supervised learning:

 1. Regression: The simplest form of regression is linear

regression where we attempt to fit a straight line

to a given set of data. In more complex regression

systems, the predicted value (output) will fall within

a continuous spectrum (it won’t be a binary value

like true or false). An example of a regression system

is a car/house price predictor that will be used to

predict the price of a given car/house based on the

description of the same.

 2. Classification: In a classification system, the

prediction falls in one of a few classes (also referred

to as groupings or clusters). An example of a

classification system would be a spam detector that

will classify whether or not a given message is spam.

In supervised learning, there are many algorithms that can be used,

some of the most common ones being

• Linear regression

• Logistic regression

• Nearest neighbor

• Naïve Bayes

• Decision trees

• Support vector machines

ChapTer 8 MaChIne LearnIng

234

 Unsupervised Learning
In contrast to supervised learning, with unsupervised learning, the

model studies data to identify clusters, segmentation, and patterns. In

this case, the data fed to the learning model is unlabeled. Essentially, that

means there is no right or wrong answer key to the data set. The machine

determines correlations and relationships by learning from the available

data. This is pretty easy to do visually in two or even three dimensions,

but as you can imagine, it is not intuitive with more dimensions, where

each feature is a new dimension. A couple of applications of unsupervised

learning are anomaly detection and categorizing similar objects. Again,

there are many algorithms that can be used for unsupervised learning;

however, the most common ones are

• K-means clustering

• Association rules

 Semi-supervised Learning
Semi-supervised learning is used to address similar problems as

supervised learning. It combines the techniques from both supervised

and unsupervised learning. In semi-supervised learning, the machine

is provided some labeled data, along with additional data that is not

labeled. Typical use cases will be image and speech analysis, web content

classification, protein sequence classification, and so on.

 Reinforcement Learning
A reinforcement learning algorithm continuously learns from the

environment in an iterative fashion. In the process, the model learns from

the experiences of the environment. In other words, in reinforcement

learning, the model is provided a set of allowed actions, rules, and

ChapTer 8 MaChIne LearnIng

235

potential outcomes (rewards). Essentially, the rules of the game are

defined. The model then applies the rules and takes one of many possible

actions and earns a reward. Based on the reward (outcome), the model

determines what series of actions will lead to an optimal or optimized

result. Reinforcement learning is how we learn to play a game and get

better. The rules and objectives are clearly defined. However, the outcome

depends on the judgment of the player who must adjust the approach in

response to the environment, skill, and actions of the other player.

 Machine Learning in Practice
Machine learning is prevalent in all aspects of life today. For example,

social media platforms use machine learning for face detection, image

recognition, automatic friend suggestion, and so on. Ecommerce and

other product/service providers use machine learning for personalized

recommendations. Virtual personal assistants use machine learning for

speech recognition, natural language processing, and conversations.

Self-driving cars use machine learning for navigation and controls. In

the financial world, banks, for example, use machine learning to predict

loan defaults and accordingly approve/reject/limit loan applications.

Also, financial institutions use machine learning to detect fraudulent

transactions. These are just a few examples to illustrate the wide and

growing usage in day-to-day life; there are many more.

 Leading Machine Learning Frameworks
The rapid advancements in the machine learning world have led to

proliferation of frameworks. One of the most common frameworks today is

TensorFlow. TensorFlow is an open source platform for machine learning.

Because of its comprehensive toolset, it enables the creation, training, and

use of machine learning models easily. There are many other frameworks

ChapTer 8 MaChIne LearnIng

236

like Microsoft Cognitive Toolkit (CNTK), Theano, Scikit Learn, Caffe, H2O,

Amazon Machine Learning, Torch, Google Cloud ML Engine, Azure ML

Studio, Spark MLlib, and MXNet, for instance. Some of these frameworks

are better suited to specific areas or applications of machine learning than

others. Interested readers can find more about any of these frameworks,

but any further discussion of them is beyond the scope of this book.

To make it easy to use the machine learning frameworks, higher-level

APIs are created, which support multiple frameworks and also abstract

the framework differences. For example, Keras, developed by Google, is an

open source software library that provides a Python interface for artificial

neural networks. It works on Linux and OS X and supports multiple back

ends including TensorFlow. Another parallel high-level API is PyTorch.

PyTorch was developed by Facebook and works across Windows, Linux,

and OS X.

 Machine Learning and Cloud Computing
We often hear machine learning and “cloud” discussed together. A

casual observer might think they are connected somehow. Theoretically

speaking, they are not. Cloud computing is about computing resources

being available at will, and machine learning is about making computers

learn and make use of that learning. The reason we often talk about them

together is because machine learning training usually requires a lot of

computing resources. Therefore, it makes good sense to leverage cloud

computing for procuring and using these resources. As machine learning

assumes increase in importance in business applications, there is a strong

possibility of this technology being offered as a cloud-based service known

as Machine Learning as a Service (MLaaS).

ChapTer 8 MaChIne LearnIng

237

 The Way Forward
Artificial intelligence/machine learning (AI/ML) has the potential to touch

literally all aspects of our lives. By the time we read or reread this section,

any specific estimates on deployments and proliferation of AI and ML

across solutions will be out of date. As per Gartner, “Artificial Intelligence

and Machine Learning have reached a critical tipping point and will

increasingly augment and extend virtually every technology enabled

service, thing, or application.”3 One thing for sure, AI/ML is making

inroads and making real impact. As it progresses and more businesses look

to leverage the capabilities and benefits, ML will become an integral part of

intelligent systems.

We have reached or maybe exceeded human-level performance at

narrowly defined tasks such as strategy games, visual image detection, and

parsing natural language.

There is a lot of debate around how things will shape up around

machine learning. As we can imagine, with the continuous improvement in

computation capability, data storage, processing, and learning, machines

will continue to become more and more intelligent and powerful.

Extrapolating the advancements, some imagine that in the foreseeable

future, machines could be capable of having “artificial general intelligence,”

a more recent term. Artificial general intelligence is the intelligence of a

machine that has the capacity to understand/learn any intellectual task

that a human can. Today, it is a primary goal of some focused AI research

to gain the artificial general intelligence level where complete problems are

modeled and solutions are hypothesized. Applications include computer

vision, natural language understanding, and dealing with unexpected

circumstances for solving real-world problems.

3 Kasey Panetta, “Gartner’s Top 10 Strategic Technology Trends for 2017,”
October 18, 2016, www.gartner.com/smarterwithgartner/gartners-top-10-
technology-trends-2017/.

ChapTer 8 MaChIne LearnIng

https://en.wikipedia.org/wiki/Human_being
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Natural_language_understanding
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/

238

Whether or not machines reach the “artificial general intelligence”

level, machine learning is going to help solve problems that are intractable

today. For instance, machine learning can help discover what genes are

involved in specific disease pathways. Based on this, machine learning

can be used to determine the most effective personalized treatment based

on patient DNA and other related characteristics. Additionally, machine

learning is enabling autonomous driving and will continue to improve

safety. There are plenty of studies extrapolating the benefits of autonomous

driving saving lives resulting from accident avoidance and so on.

Like any technology, there are potentially negative side effects of

advancements in machine learning. Some worry about machines taking

over humans. While that may sound futuristic, there are more immediate

challenges or concerns. For instance, machine learning models may sound

like black boxes. While a lot of time can be spent in validating the model, one

can never be sure about the output of the machine learning model (especially

deep learning). Incorrect results could be incredibly costly or even fatal.

There are potentially dire consequences of machine learning, some of

which Elon Musk and Stephen Hawking present. For example, Musk has

repeatedly warned that AI will soon become just as smart as humans and

said that when it does, we should all be scared because humanity’s very

existence is at stake. Hawking said the emergence of artificial intelligence

could be the “worst event in the history of our civilization.”4 And he

followed up saying, "The development of full artificial intelligence could

spell the end of the human race.” And then there are others like James

Barat who have termed machine learning as “our final invention” with his

4 www.usatoday.com/story/tech/talkingtech/2017/11/07/hawking-ai-
could-worst-event-history-our-civilization/839298001/.

ChapTer 8 MaChIne LearnIng

http://www.usatoday.com/story/tech/talkingtech/2017/11/07/hawking-ai-could-worst-event-history-our-civilization/839298001/
http://www.usatoday.com/story/tech/talkingtech/2017/11/07/hawking-ai-could-worst-event-history-our-civilization/839298001/

239

book Our Final Invention: Artificial Intelligence and the End of the Human

Era.5 The book discusses the potential benefits and possible risks of

human-level or superhuman artificial intelligence

A fundamental misunderstanding or maybe myth is that AI/ML is

the solution for all the problems. Some of us feel like the AI/ML systems

train themselves and become the solution for everything. The reality is

that in order for a system to do something as simple as distinguish a cat

from a dog, it must undergo supervised (deep) learning with volumes of

data where its neural networks are trained to distinguish one from the

other. So, while machine learning may sound like a potential replacement

for an existing technology, we must be mindful of the time, effort, and

resources it takes to model, train, and use a machine learning model.

For example, machine learning may sound like the technology to replace

traditional statistical analysis algorithms; however, knowing the time and

resource penalty to build accurate models, we would be better off using

the conventional statistical algorithms in most cases. As we’ve learned in

previous chapters, we should be using “the” most appropriate tool for that

specific use case.

 Summary
In this chapter, we started with the fundamentals of machine learning,

their benefits, and the evolution of machine learning. Then we talked

about the various types of machine learning and the connection of

machine learning with cloud computing. We followed that up with how

machine learning is looking to shape up in the future.

5 Thomas Dunne Books, 2013.

ChapTer 8 MaChIne LearnIng

240

 References
• Artificial Intelligence/Machine Learning Primer:

www.actiac.org/system/files/Artificial%20

Intelligence%20Machine%20Learning%20Primer.pdf

• Machine Learning for All: www.coursera.org/learn/

uol- machine- learning- for- all

• Machine Learning: www.coursera.org/learn/

machine- learning

ChapTer 8 MaChIne LearnIng

http://www.actiac.org/system/files/Artificial Intelligence Machine Learning Primer.pdf
http://www.actiac.org/system/files/Artificial Intelligence Machine Learning Primer.pdf
http://www.coursera.org/learn/uol-machine-learning-for-all
http://www.coursera.org/learn/uol-machine-learning-for-all
http://www.coursera.org/learn/machine-learning
http://www.coursera.org/learn/machine-learning

241
© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0

 APPENDIX A

Software Development
Lifecycle
Whether you are working on a one-person project or as part of a complex

multitiered project with multiple teams, you should understand the

software development lifecycle. Each phase of the lifecycle has a purpose

that will help you write better software. The following phases can be

applied to both agile and waterfall project management practices

(Figure A-1). The waterfall method is the method where each phase is

completed before the work on the next phase begins, like a pool of water

that fills up and then spills over falling into the next pool. The agile or

iterative method is where software is developed partially, evaluated,

and then incrementally adjusted until it is sufficient. This is considered

agile because at each iteration the project can change direction to better

serve the users; in the waterfall method, the project would have to start

over from the beginning. The formality of the artifacts and collateral

that are produced by each phase will vary by industry and requirements

of the projects you may find yourself working on. It is also important to

remember that these phases are not strictly linear. You may find that you

do some planning, some analysis, and some design before completing any

one of those phases. Equally important is to remember that every software

project is different and these lifecycle stages are guidelines.

https://doi.org/10.1007/978-1-4842-7107-0#DOI

242

 Planning
The planning phase is used to determine what software you will create.

In planning, you think about what you want the software to do and begin

thinking about how you want to do the implementation. Once you have

some coherent thoughts on this, start writing those thoughts down.

Planning is important for all software development projects, even those

using agile methodologies. The detail and length of planning should be

determined by the amount of formality needed by the software and/or the

industry the software is being targeted to. For instance, planning on an agile

project may occur briefly to define what a minimal viable product (MVP)

should be for a given iteration. Likewise, on a project for a medical imaging

device, much more detailed and rigorous planning may be required.

Figure A-1. Software Development Lifecycle Phases

Appendix A SoftwAre development lifecycle

243

One important point about planning is that the original plan is rarely

what the result will be. It is impossible to predict the future, and plan for

every possible change that will affect the plan. There is certainly a point of

diminishing returns on planning. Planning will not reveal every possible

thing that could occur for your project, nor will everything in the plan

materialize. The key to planning is understanding the project and then

adjusting to the things that happen in later stages of the lifecycle, without

breaking.

 Analysis
In the analysis phase, you will define use cases and decompose the

problem into logical blocks to help you understand the system, to the best

of your ability. Use cases help you focus on how the software will be used;

this helps define what the software does and what the users need and

prevents creating software that will not be useful. In this phase, you would

compare possible algorithms for use in you project, leveraging Big-Oh

analysis. This is where you should also develop an understanding of the

type and amount of data that your program will be processing. During

the analysis phase, you should consider any constraints such as security

requirements, usability, cost, feature trade-offs, and long-term support.

For instance, if your software will be used over a network, the analysis

phase is when you should analyze the network throughput, latency, and

frequency requirements for your solution.

The analysis phase may include creating prototypes to better

understand the problem. It is important to remember that this is not the

implantation phase. Prototypes should be used to understand the problem

better and how to approach it. The code that is written as prototypes may

not (and probably should not) be included in the implementations.

Appendix A SoftwAre development lifecycle

244

 Architecture and Design
The design of the software is how all the various parts fit together into a

consistent whole solution to the problem. Typically we build a solution

architecture that lays out the components of a software and how/where

they interact. There are at least two interaction areas to cover during the

architecture and design phase. First is defining how people will interact

with the solution. Second is defining the application programming

interfaces (APIs) that define how the components interact with each other.

Some software may not have a significant human interaction component,

but all software will need to define interfaces (APIs) for access and control.

It’s a good idea to do user interface mockups during this phase, to

show how a user will interact with the system. If the software is sufficiently

complex, various diagrams should be created to help fully understand the

design of the software so it can be implemented. A block or object diagram

can show how the various components in the software are related to

each other. A sequence diagram can show the order that the components

communicate with each other and how they interact with each other. A

“paper” prototype, mockups, or wireframe diagrams can show what a user

might see as they interact with the software. Finally, an API spec should be

defined during the design phase to clearly communicate how to interact

with the software. The API spec is a key output of the design phase, and it

can act as a contract between the components.

 Implementation
The implementation phase is where you actually write the software that

will address the problems you are trying to solve. You should already

have a plan for the implementation and have analyzed the problem

to understand the data and algorithms you need. Don’t jump into

implementation, even on an agile project, without at least some thought

Appendix A SoftwAre development lifecycle

245

and discussion on the architecture and design. It is, of course, possible

to jump straight into implementation, and for the simplest of solutions,

that might be ok. But even simple projects will benefit from a lightweight

application of planning, analysis, and design.

The technologies and programing languages for your implementation

may already be determined for you as constraints of the environment or

business. If not, use what you learned in the analysis phase to choose your

technology stack.

 Test
Testing your software is important to demonstrate that you have indeed

solved the problem (verification) and that you have not introduced any

new problems or so-called “bugs” (validation).

With the practice of test-driven development (TDD), the test phase

and the implementation phase are combined. In TDD, a test is written that

will fail until the software is implemented to pass the test. Then the next

test and the next part of the implementation are created and so on. More

commonly tests are created after the implementation is complete.

Most tests should be written so that they can be run automatically.

There is likely some level of testing that cannot be easily automated. These

tests should still be documented like a checklist so that the procedure to

run these tests can be repeated.

The goals of testing are to discover errors in the software that can have

adverse effects on users and data, for instance. Testing can also prove

that the software does what is expected. Coverage is a concept in testing

that measures how much of the software is covered during testing. Only

the simplest of software can have every possible input tested, so coverage

helps us discuss how much of the software is tested, which can help build

confidence that the software is valid. There are different types of coverage

metrics we can measure to indicate how much of the software is covered.

Appendix A SoftwAre development lifecycle

246

The most common coverage measurement is line coverage. Line coverage

measures how many lines or statements of the software are executed

during testing. Another common coverage measurement is branch

coverage, which measures how many paths through the code are covered.

Test results and coverage measurements provide us with a sense of

assurance that the software we develop will work for the users of the software.

 Deploy
The deployment phase is when the software is made available for use.

There are many types of software deployment. For boxed software

deployment, it is preparing the final (compiled) software for inclusion

with installer software on a disk. With the growth of the Internet,

this mechanism for deployment is not very common anymore. More

commonly new deployments are available for download from the Internet,

either through an application store or as OS- and language-specific

packages. It should also be noted that a lot of software that is written today

is never distributed publicly; it’s used inside of companies to automate

and/or solve specific business problems.

Not only are there many methods to deploy software; software gets

deployed in a variety of cadences. Some software is deployed multiple

times a day, some once a year, and some only once. Despite the variety

of deployment mechanisms and cadences, there are common things you

should be aware of when deploying software, such as software licensing,

virus scans, and security checks.

The first key to deployment is to understand what audience or

audiences you are targeting. This will determine the type of packaging

or installer you need to prepare. Once you know your packaging format,

consider automating the mechanism of delivering the package of software

to your audience. The second key to deployment to consider is a checklist

of actions that need to be completed before deployment. These actions

Appendix A SoftwAre development lifecycle

247

should include items such as making sure whatever license you release

your software under matches the license of the ingredient software used

in the making of your solution. Of course, you should verify that your tests

have run and are successful. The checklist you define will depend on what

your audience needs or desires.

Much like testing and test-driven development, continuous integration

and continuous deployment (CI/CD) brings deployment into the

implementation phase.

 Maintenance
Last but certainly not least is the maintenance phase. This is when you

change the software to maintain over time. Maintaining software is a much

more common activity than creating new software. While maintaining

software, you need to be able to identify what parts of the source code need

to change (analyze), make changes (design and implementation), test

those changes (test), and deploy the new version of the software (deploy).

At times, especially when dealing with software that you did not write, this

can be difficult. There are some simple actions you can take in other phases

to simplify the maintenance phase. In the design phase, you can design the

blocks to have very clear, singular purposes. You can also make sure that

certain behaviors are only in one block of software. In the implementation

phase, you can follow the design as best as possible. Also, during the

implementation, comment your code with information about what you

are doing and why you are doing it. Consider these comments as a letter to

a future maintainer. Having automated tests from the test phase can help

prove that any changes during maintenance have not created new issues.

The software development lifecycle for your project will be unique,

whether it is closer to the waterfall model, highly iterative, or something in

between. This framework of phases should help you manage a broader set

of activities, beyond just writing the code.

Appendix A SoftwAre development lifecycle

249© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0

 APPENDIX B

Software Engineering
Practices
There are many practices for the various phases and types of software

development beyond writing the code. Here we will cover some common

software engineering practices, including tools and techniques that you

can apply to your software project.

 Planning and Management Practices: Agile
Agile practices, practices that attempt to follow the guidance of the Agile

Manifesto (https://agilemanifesto.org/), have become a dominant

approach to software development. Agile practices start with the concept

of a minimal viable product or MVP. The MVP is a version of software that

provides the minimum capabilities for users to use and developers to learn

from.

 Scrum
Scrum is one of the most common agile practices for organizing work. In

a nutshell, the scrum practice is focused on the short daily scrum meeting

like a rugby scrum, or American football huddle. In the scrum or huddle,

https://doi.org/10.1007/978-1-4842-7107-0#DOI
https://agilemanifesto.org/

250

the team coordinates on the work for the day and then breaks out and does

the work.

The work that the team needs to do is divided into small completable

segments, called stories. Those stories are organized into an ordered list

called a backlog. The ordered list of stories is then divided into groups that

a scrum team can complete in a fixed time segment. This time segment

can be any length, but at the end of each time segment, there should

be a viable/usable software. The time segments are called sprints or

iterations. They are called sprints to remind the team that they are short

and will finish. They are called iterations because after one is complete,

small adjustments can be made and then you start again. These iterations

commonly range from one week to one month, with two weeks being the

most common.

Scum recommends three ceremonies in addition to the scrum or

huddle. First, before the beginning of each iteration, the team confirms

what stories the team will be completing in that iteration. The team will

use the ordered backlog and, if available, feedback from previous iterations

to determine what should be done to have a viable/usable software

product at the end of the sprint. This is called the planning ceremony.

The second ceremony scrum recommends is the review. This happens at

the end of the sprint and is where the team reviews the software that they

created with their stakeholders and users of the software, if that is possible.

Any feedback from the review should be added to the backlog and taken

into consideration for future iterations. A retrospective, also conducted

at the end of a sprint, is the third ceremony. In the retrospective, the

team examines how they are working and looks for areas to improve. Any

feedback the team has will again be used to plan future iterations.

Scrum also recommends three roles to coordinate the work. The most

important role is the team. The team is all the developers in the scrum.

Next is the product owner or PO. The product owner’s main responsibility

is to represent the stakeholders for the team and manage the backlog of

work. Finally, there is the coach; this person’s responsibility is to enable

Appendix B SoftwAre engineering prActiceS

251

the team to work effectively. The coach will organize the ceremonies and

help the team implement any of the feedback from the retrospectives. The

coach was previously referred to as the scrum master, but that term has

fallen out of favor.

While scrum can be effective and is often a developer’s first

introduction to agile practices, there are some constraints to the practice.

First, scrum does not specifically outline how the work is broken into

stories. It does not cover requirements, analysis, or design; in some ways,

it assumes that those are already complete. Second, scrum does not cover

how the work will be implemented, validated, or deployed. There are other

agile practices that cover these areas such as test-driven development,

paired programming, and continuous integration and deployment (CI/CD).

Third, scrum works a specific team size of from five to nine people. Fewer

people than that, and all of the ceremonies are not really required; more

people than that, and the ceremonies are not sufficient.

 Kanban
Kanban is another agile practice for organizing work. The Kanban

process was originally developed by Toyota in Japan for automotive

manufacturing. Kanban means a signboard in Japanese. The original

Kanban practice used a card or sign that traveled with the work until the

work was completed; then the card was returned to the board. If no cards

were available on the board, then work was stalled somewhere in the

process, and the team could focus on that area until work was completed

and a card returned. Cards were intentionally limited to reduce the

amount of uncompleted work in progress. For agile software, this principle

of WIP (work in progress) limits can be applied to the development of

software. An individual or team can have a WIP limit and start work up to

that point and then focus on completing that work.

Appendix B SoftwAre engineering prActiceS

252

Kanban is like scrum in that work is organized into small compliable

segments and then organized into a backlog. Also, like scrum, Kanban

does not cover how work will be implemented, validated, or deployed.

Kanban differs from scrum in that instead of fixed time segments like

iterations, it has a fixed amount of work in progress. Kanban works well

when the work items are of similar scale. Kanban can also scale down to a

smaller team size or even an individual. It can scale down because Kanban

does not have the concepts of the various scrum ceremonies or dedicated

roles.

 Analysis and Design
As noted in the preceding, neither scrum nor Kanban specifically covers

the analysis and design phases of a project. This has led to the incorrect

belief that analysis, architecture, and design are not needed for agile

projects. Instead, those practices assume that analysis, architecture, and

design have happened to create the backlog. If that is not the case, then

you might consider inserting this work as work items or stories into the

backlog and have that work as part of the regular work the team does.

Another approach is having dedicated time periods such as every third

sprint to analyze and design the upcoming work to load into the backlog.

Another approach that could work with a larger team is to have one team

responsible for doing the analysis and design and feeding the backlog

through their own agile processes.

 Scaling Agile Practices
Both the practices of scrum and Kanban work well for small teams;

however, those practices become problematic as the number of people

on the team and the number of teams working on the project scale up.

There are a few recommendations about how to approach scaling up agile

Appendix B SoftwAre engineering prActiceS

253

practices such as Scrum of Scrums or the Scaled Agile Framework (SAFe).

The key to scaling agile practices up is to constantly keep agility in mind –

being able to quickly change direction and get back up to speed.

 Documentation
Documenting your software project is an important way to communicate

to the future. In the future, there may be different developers or

maintainers of the software. Ideally there will be future users of the

software. Questions such as why does it work this way or how do I do this

should be found in the documentation, without direct contact to you or the

development team.

 Requirements, Design, and Architecture
Documenting the requirements, the design, and the architecture is a

way to record and communicate what you learned during the design and

analysis phases. This is to inform the developer(s) on what to develop.

The formality of writing requirements and design will vary by the type

and scope of projects. This formality could be as informal as writing a user

story in the form “A user desires some outcome, because of some reason.”

A fully specified safety-centric software system where every known

possibility is documented will require more formality in its requirements.

We find that for most projects, using the Cockburn use case template is

a highly effective way of capturing and communicating the requirements.

The template helps to guide the requirement creation, and it helps avoid

specifying design and implementation details into the requirement.

Implementation details, like how to interface with a system and what

components make up a system, can be documented in the design and

architecture. Design and architecture will typically have illustrations in

Appendix B SoftwAre engineering prActiceS

254

addition to text. These documents should inform the developers of the

project how the software should work within itself and with the world.

Over time the requirements will change, the design will grow, and the

architecture will morph. It is important to remember that these documents

should also be able to change via controlled practices.

 Comments and Code
The code itself is a document about what is implemented. Comments in

the code should be limited to adding context and not a retelling of what is

in the code. This context will be helpful to maintainers of the code.

Well-written code is code that acts as its own documentation.

Meaningful variable and function names can help code be its own

documentation. However, source code is limited in expressiveness

compared to natural languages. When this additional expressiveness is

needed, it is a good time to write additional comments around that code.

 User
User documentation can take multiple forms: web pages, online help, or

even console output. This documentation should provide a road map to

your software and guide the users to accomplish what they desire.

 Testing
Testing your software is done to both validate and verify your software.

Verification is proving that your software behaves as expected, and

validation is proving that your software does not behave in unexpected

ways.

Appendix B SoftwAre engineering prActiceS

255

 Phases and Categories of Testing and Goals
Testing your software can be done with various goals and at different

phases of the software lifecycle.

 Algorithm Testing, Unit Testing, Integration Testing,
and the Like

Algorithm testing is typically done early in the lifecycle. Algorithm testing

is used to test a selected algorithm with a sample data set that your

software will be using. This is used to profile and understand whether the

algorithm will be the best match for the data.

Unit testing is done throughout the development of the software. It is

often tied into the continuous integration system. Continuous integration

is the practice of building and testing your software on every commit to

an SCM (source control management) system, which we discuss in more

detail in this chapter. Unit testing is when you test the software at the

smallest unit possible. This could be a single function, or class in object-

oriented programming. The goal of unit testing is to validate the units of

software work with a variety of inputs. Having unit tests with sufficient

coverage is helpful during the maintenance phase, because it allows a

unit of software to be improved while demonstrating that the inputs and

outputs are not negatively changed.

If unit testing is focused on individual software units, then integration

testing is focused on testing how those units work together. Integration

testing has a primary goal of verifying that the software does what it is

expected to do when all of the pieces come together. It also has a validation

role in that it will help identify any adverse interactions between various

units of the software.

There are other types of testing to be aware of, such as exploratory

testing, performance testing, and user acceptance testing. Exploratory

testing is where a user specifically “explores” to find issues that have not

Appendix B SoftwAre engineering prActiceS

256

been found through the other types of testing that are done regularly.

Performance testing is looking to record the performance in time or

memory of your software. User acceptance testing is testing whether a user

will accept the software deliverable.

 Test-Driven Development
Test-driven development (TDD) is the discipline of developing your

tests first, before you write any of the production code, and then writing

the production code to make the tests pass. This is a particularly useful

practice, especially for unit tests. It can keep the test coverage high for

your software. It can also help enforce a good modular design, by making

it difficult to have cross-dependencies given the goal of always having to

pass tests. Despite all these benefits, it is not practiced as much as it could

be. TDD requires a fairly complete knowledge of what the software should

do, which is not always possible. It also is sometimes difficult to get over

the hurdle of writing the tests first when the value to the users comes from

the production software, trading the immediate satisfaction of writing the

production code first to the delayed satisfaction of writing tests first.

 Developing for Debug
Debugging is typically the exploration of the software to find the root cause

of a defect or bug in the software. A debugger is software that will allow

a developer to step through the code, one line at a time. This brings the

computer speed down to the speed of the developer, so they can observe

the effects of each line being executed. For source line debugging, it is best

to have the source code available when you are debugging the software. If

you do not have the source code, debug symbols are the next best thing.

Debug symbols provide source-level information to a debugger without

providing the full source code. There are situations where developers will

Appendix B SoftwAre engineering prActiceS

257

need to debug without the benefit of source code or symbols. When you

are developing software, there are activities you can do to support debug

for the future engineers needing to debug your software.

 Asserts and Exceptions
Asserts and exceptions are program language constructs that can be

used to support debugging. An assertion will act as a checkpoint on

some fact in the source code, like the value of a variable. An assertion is

typically implemented with an assert keyword, which will typically stop

the execution of the software, if the assertion is false. Adding assertions to

your code will help prove that the data you expect is available. Assertions

are typically automatically removed when the code is compiled in an

optimization. And assertions that evaluate false actually halt the program,

so assertions should be used with caution.

Exceptions are like assertions. Exceptions will check for an event that

is not expected to occur. When an exception occurs, an exception handler

in your code can catch the exception. Once an exception is caught, it can

be raised up the stack for another exception handler to deal with, or it can

be handled immediately. A raised exception will provide data about where

a defect originates from. For debugging, unhandled exceptions are defects

that need to be addressed. Adding code to raise exceptions is a good

technique for making your code more debugger-friendly.

 Logging and Tracing
Two other practices that help make your code more debugger-friendly are

logging and tracing. Logging is recording events that occur in the software

to an external file, for instance, so a human or machine can go back and

follow the events of software execution. Tracing is using logs or live data to

observe the behavior of the software while it is running.

Appendix B SoftwAre engineering prActiceS

258

Most modern languages have built-in support for logging. It is a good

practice to use these logging frameworks whenever possible. Using a

logging framework will help distinguish between messages intended for

the logs and messages intended for active users. When adding logging

to your software, you need to strike a balance between how precise or

frequent you want your log messages to be and the number of messages in

the log. Remember that logging takes compute time and that if there is too

much information in the log, it may hide meaningful events.

 Source Control Management
Source control management (SCM) is the practice of managing the source

code of your software. This practice includes managing the directory

structure of the source code, maintaining a history of revisions of the code,

and versioning the code.

 Purpose and Mechanism
Source code management gives the developer or development team

confidence to proceed with development knowing that they can go

back to a previous revision of the source code, should they need too. A

fundamental purpose of SCM is to preserve the progression of the source

code development.

SCM systems allow for branches of the software to exist

simultaneously, so different revisions of source code can be compared or

merged. This allows a team of developers to operate safely, in their own

environment, without impacting each other with moment-to-moment

changes. When your code branch is ready, you use SCM to integrate the

branch to a trunk or mainline of the source code.

SCM systems typically have the same common concepts (Table B-1),

although different tools may call these concepts by different terms.

Appendix B SoftwAre engineering prActiceS

259

Imagine using SCM for a small team. For example, a developer will

check out a workspace. The workspace will define the directory structure

of the source code on the developer's system. As the developer makes

changes to the source code, they will commit this code to the SCM system

creating a revision. The developer may be creating multiple revisions on

a branch. They will then want to share their revisions with the rest of the

team by merging their revisions into the mainline. On the mainline, the

development team will define the next version by linearly selecting the

head revision on the mainline.

For another example, a bug is discovered in the recent version and

needs to be fixed. In this case, a developer will check out a workspace

based on that previous version. Then they will create a branch to fix

the code. As they fix the code, the developer will create revisions by

progressively committing their code to the SCM system. They can compare

their revisions to the revisions on another branch to identify changes or

even to help discover the root cause of the bug. Once they have fixed the

bug, they can again merge into the mainline and create another version.

Both examples are somewhat simplified and mix concepts from

multiple SCM tools. Each SCM tool will have its own process and

Table B-1. Common SCM Terms

Term Definition

workspace the directory structure on a development machine for the source

code of software.

revision A single incremental change of the source code.

Branch A line of revisions that are derived from a single point in the past.

Mainline the branch of the code that is where the integration of various

branches occurs. Sometimes called trunk.

Version A specific revision that has meaning or value.

Appendix B SoftwAre engineering prActiceS

260

workflow. SCM tools can generally be split into two categories: centralized

and distributed. A centralized SCM system maintains in a single location

a definitive list of revisions and versions. This has an advantage of

maintaining linearity of the software and explicit control of a version. A

distributed SCM system does not require a central system to maintain the

distributions but allows multiple systems to maintain individual history

and then add history of revisions from another node in the SCM system.

This has the advantage of allowing the full capabilities of an SCM system

while being disconnected from the team, but the linearity of the revisions

is not guaranteed.

 Tools
There are many source code management tools. Each tool has its own

unique differences. In the following, we will review two of the most

common tools that demonstrate the centralized and distributed SCM

systems.

 Perforce Helix

Perforce Helix is a good example of a centralized version control system

for SCM. It allows developers to define their workspace from the various

branches in the overall source code tree. By being a centralized system,

it can enforce that revisions are committed in a linear order and can

maintain that order. One area where Perforce Helix stands out is how it

handles source assets that are not text, such as large binary files like game

assets.

Appendix B SoftwAre engineering prActiceS

261

 Git

Git has become the industry de facto SCM. It is an example of a distributed

revision control system. Git maintains a repository history of revisions

locally within the workspace. To interact with another instance of the Git

repository, a developer can push changes to the other instance or pull

and merge changes from that other instance. Because Git does not have a

centralized location, other solutions like GitHub have been put in place to

act as a central instance of the repository. Other processes have emerged

around Git to help define definitive versions such as having merge or pull

request as a gate to a mainline branch and using tags to capture the linear

progression for versions.

 Build Optimizations and Tools
Build tools coordinate the compilation and linking of the source code into

usable software.

 Purpose and Mechanism
Originally source code had to be first compiled into object files one at

a time, and then all those object files had to be linked together into an

executable or library. As software got larger and larger, a tool to coordinate

the effort of compiling and linking many files together became necessary.

This is the basis of what a build tool does.

Adding to the complexity of compiling source code into object files,

some of those object files depended on other object files to exist before

they could be linked together. And in this case, some of those upstream

object files were needed for more than one downstream object file.

Managing this collection of object file dependencies is another piece of

what the build tool does. Build tools will typically enable a declaration

Appendix B SoftwAre engineering prActiceS

262

of dependencies and will make sure that the dependencies are satisfied

before attempting to compile and link a file. Most build tools will optimize

the satisfaction of dependencies by first checking if they exist and then

creating them only once, if it does not exist.

Scripted or interpreted languages like Python, Ruby, and JavaScript

don’t need to compile the source code into object files. Scripted languages

can still benefit from build tools that manage the dependencies and create

packages and other collateral.

Another thing a build tool does is manage configuration parameters for

multiple configurations to inform the compiler and linker how to behave.

This allows the object files and software to have multiple configurations,

such as debug instances or even support for multiple operating system

instances.

This ability to coordinate multiple tools like a compiler and a linker

led build tools to be used to coordinate additional tools that are expected

in a modern software project like unit test runners, security checkers, and

document generators.

Build tools will typically have their own source file to define the

configurations and parameters. The configuration file will usually list

targets that will be the output of some action and the dependencies that

need to be satisfied before the output can be created. Typically build tools

also allow a developer to define the tools and parameters to call to create

the output. Make and most modern build tools also have default rules for

doing the basics of compiling and linking object files.

 Tools
There are a lot of build tools available. Some are specific to a language, and

many modern languages such as Go and Rust have a build tool distributed

with the language. Some build tools are fully declarative, meaning that all

the possible options and dependencies are defined in the configuration

Appendix B SoftwAre engineering prActiceS

263

files. Most build tools are primarily declarative with limited scripting

ability for loops and conditional statements. Another category of build

tools are generators, like Cmake and GNU Autotools, which use data to

configure and generate a build script. Then this build script can be called

by another build tool.

 Make

Make is one of the older build tools. There are multiple implementations

of make that have mostly the same feature set; the most common make

is GNU make. The make configuration file is called the Makefile. Make

provides a declarative syntax for defining targets and dependencies.

Each target line starts with the target followed by a space-separated list

of dependencies on a single line. The commands to create the target are

the subsequent lines, tab indented, under the target line. Typically, these

lines are shell commands that make use of the underlying command shell.

By default, the targets are expected to be files that are created on the file

system; however, a target can have a .phony decorator added to it so that

make knows the target can be satisfied even if no output file is created.

This allows for an easy name like ALL or drivers to be applied to a list of

dependencies instead of the direct output, such as my_cool_program.exe.

 Gradle

Gradle is a more modern build tool that is built on top of the Groovy

language and its Java Virtual Machine (JVM). Gradle configurations are

written in a domain-specific language designed for builds. Like make,

Gradle can define targets and dependencies. Unlike make, these targets

do not have to be files that are created. Gradle remembers what targets

have been satisfied in a build cache. Gradle can even share this build cache

between multiple systems on a network making it easier to split the build

work to improve build time. The commands to satisfy the targets do not

have to be shell commands; they can be methods in Groovy.

Appendix B SoftwAre engineering prActiceS

264

 Cmake and Ninja

Cmake takes a different approach than Gradle or make. Instead of

defining the build targets and commands directly in the CMakefile, Cmake

defines a script for generating the targets and commands for another

build tool. This provides the ability to consistently model the targets and

dependencies for your software project and then generate equivalent

logic for multiple systems, such as different integrated development

environments or different implementations of make.

Ninja is a modern build tool like make. It is intended to be highly

performant and minimal compared to build systems like Gradle. Cmake

generates Ninja build files, a common practice, with the rich syntax being

handled by Cmake and the performant build done by Ninja.

 Continuous Integration and Continuous
Delivery
Continuous integration (CI) is the practice of building and testing your

software on every commit to an SCM system. Continuous delivery builds

on the concept of continuous integration to deliver the software to users

automatically, typically when the software is merged to the mainline in

the SCM system. The term continuous integration was coined by Martin

Fowler in 2000.

 Purpose and Mechanism
Prior to the practice of continuous integration, when a new version of

the software needed to be built and tested, all the various branches and

different developers' work would come together for integration in a so-

called “big-bang.” A build would be attempted, and if not successful,

Appendix B SoftwAre engineering prActiceS

265

engineers would have to find the reasons. This could be caused by code

conflict or even incompatible code between engineers. Once the initial

work to resolve the conflicts and any side effects would be resolved and the

build be complete, then testing could begin. All of this is very painful and

time consuming, hence the moniker “big-bang.” If this integration testing

found issues, then the code needed to be changed and any side effects

again resolved, and the process would start again. Historically this process

could take days or even weeks. So we want to avoid big-bangs.

Continuous integration addresses this “big-bang” integration problem

by shrinking integrations into a continuous stream of micro-integration

events. In the practice of continuous integration, developers push their

changes regularly, ideally daily, to be integrated to a mainline in the SCM

system, using build tools that automatically build and validate (through

unit testing, for instance) the new integrated version. If this build does

not work, the developer can see that within hours and make corrections

in the small amount of code that they worked on, instead of digging

through everybody’s code in the “big-bang” integration style. If the build

is successful, then automated unit tests and integration tests can be run.

Again, if the tests fail, there is only a small amount of code that could have

introduced the failure, so the developer can easily find and fix their code.

Continuous integration systems wait for source code to be pushed

to the SCM system and activate when there is a change. The CI system

will either monitor the SCM system or be triggered by an event on the

SCM system. At that point, the CI system will check out the code and

invoke the build tool automatically, and then the CI system will run the

tests. Typically, the CI system will report on the status of the build so the

developer and the team can review the results.

Continuous deployment utilizes the same CI systems for deployment

or delivery activities. After the source code is integrated, built, and tested,

the CI system can be triggered to automatically deploy the software. The

deployment may require additional steps or stages such as more testing,

Appendix B SoftwAre engineering prActiceS

266

checking security scans, packaging the software for install, and copying it

to a location to either run online or download to install on a local system.

 Tools
Like build tools and SCM systems, there are a lot of options for CI/CD

systems. They define the stages and steps to integrate and deploy the

software. CI/CD systems also define how the tools will interact with the

SCM systems.

 Jenkins

Jenkins is one of the oldest CI/CD systems. It is still the most popular CI/

CD system. Jenkins provides a lot of flexibility in how it can be configured

and deployed. Originally Jenkins enabled a wide variety of plugins to

expand the configuration interface for defining the rules for your software’s

CI and CD. Jenkins also provides a scripted, domain-specific language

and a declarative syntax, both based on Groovy, to define the CI/CD

pipeline. Jenkins is typically installed on-premises, but there are online

and commercial offerings. When Jenkins is installed on your premises, you

need to provide your own compute capacity for build and testing.

 CircleCI

CircleCI is a popular Software as a Service (SaaS) CI/CD system. It provides

an online tool to create a CI/CD pipeline and the compute resources for

compilation and testing. CircleCI provides a simple UI for defining the

connection to the SCM system and a YAML-based declarative syntax for

defining the pipeline.

Appendix B SoftwAre engineering prActiceS

267

 GitLab CI/CD

GitLab CI/CD is an example of a CI/CD system that is built into the SCM

system. The GitLab CI/CD system is available wherever the GitLab SCM

system is installed. Because GitLab CI/CD is integrated with the SCM

system, it requires minimal configuration to connect to the source code.

For configuring the CI/CD pipeline, GitLab uses a YAML-based declarative

syntax. Using the GitLab SaaS solution provides both the CI/CD system

interface and the compute capacity for build and test. Using GitLab

with your own environment requires you to provide your own compute

capacity. Despite GitLab CI/CD being associated with the GitLab SCM

solution, GitLab CI/CD can work with a variety of Git solutions including

GitHub.

Appendix B SoftwAre engineering prActiceS

269© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0

 APPENDIX C

ACPI System States
Power optimization of computer systems has become very important.

There are many governing bodies (like the California Energy Commission)

that mandate a certain level of power efficiency in computing devices. In a

computer system, there are multiple pieces of hardware and software that

all need to be in sync. Therefore, a mechanism is needed for these pieces

to pass information around. The Advanced Configuration and Power

Interface Special Interest Group (ACPI SIG) developed such a standard,

named after the group, ACPI.

ACPI provides an open standard that system firmware (BIOS) and

operating systems use to discover, configure, and carry out system-specific

operations. ACPI replaces the multiple earlier standards like Advanced

Power Management (APM), MultiProcessor Specification, and the Plug

and Play (PnP) BIOS Specification. ACPI defines a hardware abstraction

interface across system firmware, computer hardware components, and

operating systems. ACPI is the key element in operating system–directed

configuration and power management (OSPM). In 2013, the ACPI SIG

agreed to transfer the specification to the UEFI Forum, which now owns

the specification.

ACPI defines standard operating states for systems, devices, and

processors, among other things. Figure C-1 shows the various states

defined by ACPI and transitions between them. In the following sections,

we talk about these states and explain what they all mean.

https://doi.org/10.1007/978-1-4842-7107-0#DOI

270

 Global and System States
ACPI defines four global states and six system states. The global states are

marked G0–G3, while the system states are marked as S0–S5. It must be

noted, however, that some motherboard documents reference S6, which is

not an ACPI-defined state. If you come across this, you can safely map this

to G3.

ACPI defines a mechanism to transition the system between the

working state (G0) and the sleeping state (G1) or the soft-off state (G2).

During transitions between the working and sleeping states, the operating

system will maintain your context, so you don’t lose information on such

transitions. ACPI defines the level of the G1 sleeping state by defining the

system attributes of four types of ACPI sleeping states (S1, S2, S3, and S4).

Each sleeping state is defined to allow implementations to trade-off cost,

power, and wake latencies:

Figure C-1. Global and System Power States and Transitions

Appendix C ACpi SyStem StAteSACpi SyStem StAteS

271

• G0/S0: In the G0 state, work is being performed by the

OS/application software and the hardware. The CPU or

any particular hardware device could be in any one of

the defined power states (more on the device and CPU

power states in a later section); however, some work

will be taking place in the system.

 a. S0: System is in a fully working state.

• G1: In the G1 state, the system is assumed to be doing

no work. Prior to entering the G1 state, OSPM will

place devices in a device power state compatible with

the system sleeping state to be entered; if a device is

enabled to wake the system, then OSPM will place

these devices into the lowest Dx state from which the

device supports wake.

 a. S1: The S1 state is defined as a low wake latency

sleeping state. In this state, the entire system

context is preserved with the exception of CPU

caches. Before entering S1, OSPM will flush the

system caches.

 b. S2: The S2 state is defined as a low wake

latency sleep state. This state is similar to the

S1 sleeping state where any context except for

system memory may be lost.

 c. S3: Commonly referred to as Standby, Sleep, or

Suspend to RAM (STR). The S3 state is defined

as a low wake latency sleep state. From the

software viewpoint, this state is functionally the

same as the S2 state. The operational difference

is that some power resources that may have

been left ON in the S2 state may not be available

Appendix C ACpi SyStem StAteS

272

to the S3 state. As such, some devices may be in

a lower-power state when the system is in the

S3 state than when the system is in the S2 state.

Similarly, some device wake events can function

in S2 but not S3.

 d. S4: Also known as Hibernation or Suspend to

Disk. The S4 sleeping state is the lowest-power,

longest wake latency sleeping state supported by

ACPI. In order to reduce power to a minimum,

it is assumed that the hardware platform has

powered off all devices. Because this is a sleeping

state, the platform context is maintained.

Depending on how the transition into the S4

sleeping state occurs, the responsibility for

maintaining system context changes between

OSPM and BIOS. To preserve context, in this

state all content of the main memory is saved

to non-volatile memory such as a hard drive

and is powered down. The contents of RAM are

restored on resume. All hardware is in the off

state and maintains no context.

• G2/S5: Also referred to as Soft Off. In G2/S5, all

hardware is in the off state and maintains no context.

OSPM places the platform in the S5, soft-off, state to

achieve a logical off. The S5 state is not a sleeping state

(it is a G2 state), and no context is saved by OSPM or

hardware, but power may still be applied to parts of the

platform in this state, and as such, it is not safe to take

the system apart. Also, from a hardware perspective, the

S4 and S5 states are nearly identical. When initiated,

the hardware will sequence the system to a state similar

Appendix C ACpi SyStem StAteS

273

to the off state. The hardware has no responsibility

for maintaining any system context (memory or I/O);

however, it does allow a transition to the S0 state due to

a power button press or a remote start.

• G3: Mechanical Off. Same as S5. Additionally, the

power supply is isolated. The computer's power has

been totally removed via a mechanical switch, and

no electrical current is running through. This is the

only state that the system can be worked on without

damaging the hardware.

 Device States
In addition to global and system states, ACPI defines various device states

ranging from D0 to D3. The exact definition or meaning of specific device

states depends on the device class. A device class describes a type of

device – for example, audio, storage, network, and so on:

• D0: This state is assumed to be the highest level of

functionality and power consumption. The device is

completely active and responsive and is expected to

remember all relevant contexts.

• D1: Many device classes may not support D1. In

general, D1 is expected to save less power and preserve

more device context than D2. D1 may cause the device

to lose some context.

• D2: Many device classes may not support D2. In

general, D2 is expected to save more power and

preserve less device context than D1 or D0. D2 may

cause the device to lose some context.

Appendix C ACpi SyStem StAteS

274

• D3 Hot: Devices in the D3 Hot state are required to be

software enumerable. In general, D3 Hot is expected

to save more power and optionally preserve device

context. If device context is lost when this state is

entered, the OS software will reinitialize the device

when transitioning back to D0.

• D3 Cold: Power has been fully removed from the

device. The device context is lost when this state is

entered, so the OS software will have to fully reinitialize

the device when powering it back on. Devices in this

state have the longest restore times.

 Processor States
ACPI defines the power state of system processors while in the G0 working

state as being either active (executing) or sleeping (not executing).

Processor power states are designated as C0, C1, C2, C3, … Cn. The C0

power state is an active power state where the CPU executes instructions.

The C1–Cn power states are processor sleeping states where the processor

consumes less power and dissipates less heat than leaving the processor in

the C0 state. While in a sleeping state, the processor does not execute any

instructions. Each processor sleeping state has a latency associated with

entering and exiting that corresponds to the power savings. In general,

the longer the entry/exit latency, the greater the power savings is for

the state. To conserve power, OSPM places the processor into one of its

supported sleeping states when idle. While in the C0 state, ACPI allows the

performance of the processor to be altered through a defined “throttling”

process and through transitions into multiple performance states (P

states). A diagram of processor power states (not to be confused with

performance states) is provided in Figure C-2.

Appendix C ACpi SyStem StAteS

275

In summary, one of the main goals of OSPM is to save power/energy

when the workload allows it, and detecting inactivity and putting the

devices and the system (if possible) in their low-power states forms the

heart of power management software.

Figure C-2. Processor Power States

Appendix C ACpi SyStem StAteS

277© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0

 APPENDIX D

System Boot Flow
When we press the power button on our computing device, we are well

aware that the system goes through a bootup process. The boot process

culminates with the system being ready for use. But what happens during

the boot process is not very well understood widely. In this chapter, we will

strive to resolve that.

As shown in Figure D-1, there are four main boot phases on IA

devices. The first phase is system hardware bring-up/power-on, which is

primarily hardwired to bring up the foundation for software components

to get started and take over. Then the BIOS (aka system firmware) phase

is responsible for basic initialization and bring-up of system hardware

enabling things to pass to the next stage, where the boot loader loads the

OS into memory and then begins OS initialization. This last phase takes

care of initialization of critical parts of the HW and SW system before

making itself available to the user.

Figure D-1. High-Level System Boot Flow

https://doi.org/10.1007/978-1-4842-7107-0#DOI

278

On receiving a “Power Good” signal, CPUs are hardwired to start

fetching and executing at a predefined location (address), which is called

the “Reset Vector.” The Reset Vector points to BIOS code. So, when the CPU

is out of reset and starts fetching code from the “Reset Vector,” it happens

to be BIOS code, which is how BIOS code gets the control and starts

executing. Keep in mind that before control comes to CPU and BIOS code,

there are a few system hardware- and firmware-related initializations and

configurations that happen.

BIOS discovers, enumerates, and initializes the HW devices present.

After that it runs power-on self-test (POST). The POST is responsible for

validating the sanity of fundamental hardware components. One of the

fundamental hardware components in the system happens to be memory.

BIOS has a component specialized for memory initialization called the

Memory Reference Code (MRC). Another of BIOS’s responsibility is to

prepare the hardware configuration and memory map and pass those to

the OS, in the form of tables. The format and mechanism of information

exchange is defined by a standard body, Unified Extensible Firmware

Interface (UEFI). Today, most BIOS is UEFI spec compliant. BIOS

also adheres to the ACPI specification in passing platform resource(s)

information to the OS.

If all goes well, BIOS now identifies a bootable disk and reads the

master boot record (MBR) of that disk. The MBR is located in the first

sector of the bootable media (could be hard drive, flash, solid-state device,

etc.).

The MBR is 512 bytes in size. It has three components: primary boot

loader information in the first 446 bytes, partition table in the next 64 bytes,

and MBR validation check in the last 2 bytes.

The primary boot loader in the MBR will attempt to locate an active

(bootable) partition in the media’s partition table. If such a partition is

found, the boot sector of that partition is loaded in memory, and then

the control jumps to that. Each operating system has its own boot sector

Appendix d SyStem Boot Flow

279

format. The boot sector has a small program that locates the OS loader,

reads that into memory, and launches that.

The OS loader loads essential system drivers that are required to read

data from the disk and initializes the system to the point where the kernel

can begin execution.

After OS loading, the OS initialization phase starts. In the OS

initialization phase, first, the kernel initialization and plug-and-play

activity happen. After that, relevant services are started, and the user

interface (could be a command line shell or a full-blown graphical user

interface) is presented and the system is now ready for use.

Appendix d SyStem Boot Flow

281© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P. D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0

Index

A
Access control, 166

availability, 170
CA, 172
certificate chains, 173
confidentiality, 167
cryptography, 170
digital signature, 172
integrity, 169
nonces, 174
random numbers, 174
salts, 173, 174
security, 175

Acknowledgement (ACK), 141
Advanced Configuration and

Power Interface (ACPI), 110
definition, 269
device states, 273
global/system states, 270–272
processor states, 274

Advanced Configuration and Power
Interface Special Interest
Group (ACPI SIG), 269

Advanced Encryption
Standard (AES), 168

Advanced Micro Devices (AMD),
8, 168

Advanced Power
Management (APM), 269

Algorithm, 53
asymptotic notation, 55, 56
Big-Oh notation, 56
data structure, 57

array, 61, 62
dictionary, 62, 63
graph, 60
linked list, 60, 61
queue, 58, 59
searching/sorting, 63
stack, 57, 58
tree, 59

time/space, 54
Algorithm testing, 255
ALOHAnet, 135
Amazon Web Services (AWS), 198
Antivirus (AV) scanners, 176
Application programming interface

(API), 90, 144, 168, 244
ARPANET, 135
Artificial intelligence (AI),

177, 226, 228
Artificial neural networks

ADALINE, 227
MADALINE, 227

Asserts and exceptions, 257

https://doi.org/10.1007/978-1-4842-7107-0#DOI

282

Asymmetric key cryptography, 171
Asymptotic notation, 55
Availability, 170

B
Base pointer, 19
Big-Oh analysis, 65
Big-Oh notation, 56
Bigtable, 77
Biometric authentication, 181
Border Gateway Protocol (BGP), 148
Brute force algorithm, 70
Bulletin board systems (BBSs), 138
Buses, 110

C
Cascading Style Sheets (CSS), 160
Cassandra, 77
Central processing unit (CPU), 179

blocks, 3, 4
controlling flow, 13, 14
decode/execute/store, 10–12
fetch, 4–7
Flynn’s taxonomy, 22–24
instruction pipeline, 21
stack, 15–19

Certificate authorities (CAs), 172
ciphertext, 167
CircleCI, 266
Client-server architecture, 150, 151
Cloud computing

benefits

availability, 203
cost, 201
performance, 204
productivity, 203
reliability, 203
scalability, 202
use/maintenance, 204
velocity, 203

containers
benefits, 220
capabilities/tools, 218
definition, 217
production environment, 219
vs. VMs, 217, 218

definition, 195
deployment configurations

hybrid clouds, 206
ideal cloud, 206, 207
private cloud, 205
public clouds, 205

Docker, 218, 219
illustration, 195, 196
interface/mechanism, 207, 208
interoperability, 213–215
Kubernetes, 219, 220
and ML, 236
portability, 213–215

Cloud computing models,
196, 197

comparison, 200, 201
IaaS, 197, 198
PaaS, 198
SaaS, 200
serverless, 199

INDEX

283

Cloud service customers (CSCs),
197, 210, 212

Cloud service providers (CSPs),
195, 197, 205, 209

considerations, choosing,
209, 210

switching
business dynamics

change, 212
CSCs, 210
ecosystem change, 211
privacy change, 212
regulatory change, 212
usage/pricing change, 211

Command line
interface (CLI), 219

Communication security, 185
IPSec, 189
TLS, 186, 187
VPN, 188, 189

Compiler, 33
Computer security, 165
Computer system

CPU, 3
I/O operations, 26, 27
main memory/secondary

storage, 24, 25
Confidentiality, 167
Containers, 217
Continuous integration and

continuous deployment
(CI/CD), 247, 251

CircleCI, 266
definition, 264

GitLab, 267
Jenkins, 266
purpose/mechanism, 264, 265

Conventional machine
intelligence, 226

CouchDB, 78
Cryptographic algorithms, 167
Cryptographically secure random

numbers, 174
Cryptography, 167, 170

D
Darknet, 176
Database, 72

ACID, 72, 73
history, 74
persistence/volume, 72
systems, 74

Data hazard, 22
Data synchronization, 150
Data-to-hash relationship, 169
Deadlock, 120
Debugging, 256
Deep learning, 228
Diffie-Hellman Key Establishment

Protocol (DHKP), 171
Digital Millennium Copyright

Act (DMCA), 185
Digital Rights

Management (DRM), 185
Digital signatures, 172
Dijkstra algorithm, 70
Direct Memory Access (DMA), 113

INDEX

284

Distributed systems
client server, 150
FTP, 153, 154
HTTP, 156
N-tiered, 152
peer-to-peer, 151
WWW, 155

Divide and conquer technique,
68, 70

Docker, 218
Domain Name Service (DNS), 145
Durability, 73
Dynamic Host Configuration

Protocol (DHCP), 143, 146

E
Electronic Numerical Integrator

and Computer (ENIAC), 2
Elliptic Curve

Cryptography (ECC), 171
Enterprise service

buses (ESBs), 215
Extended stack pointer (ESP), 15
Ethernet, 135
Executable and Linkable

Format (ELF), 35
Extensible Markup

Language (XML), 123, 158

F
Fast Identity Online (FIDO), 181
File systems

access control, 125

access process, 122
access/protection, 126–129
applications, 122
concurrency/cleanup

control, 125
directory namespace, 124

File transfer (FTP) protocol, 153
Finish (FIN) message, 142

G
Gateway, 136
General-purpose computing

device, 87
get_capacity method, 44
Git, 261
GitLab CI/CD, 267
Google Compute

Engine (GCE), 198
Gradle, 263
Graphics Processing Units (GPUs),

47, 54, 88
Greedy algorithm, 70

H
Hashing, 169
Heterogeneous networks, 133
Higher-order functions, 41
Hosts, 143
HyperText Markup

Language (HTML), 138, 159
Hypertext Transfer

Protocol (HTTP), 138, 155

INDEX

285

I
Input and output (I/O)

operations, 26
Information technology (IT), 175
Infrastructure as a Service (IaaS),

196–198
Instruction set architecture (ISA),

7, 8
Integrity, 169
Internet Protocol (IP), 177
Interface Message Processors

(IMPs), 134
Inter-Integrated Circuit (I2C), 110
International Conference on

Computer and
Communications (ICCC), 134

International Organization for
Standardization (ISO), 137

Internet Corporation for Assigned
Names and Numbers
(ICANN), 146

Internet of Things (IoT), 144
Internet Protocol (IP), 139
Internet Protocol

Security (IPSec), 187
Interpreter, 45
Inter-process

communication (IPC), 90
message memory method, 108
shared memory method, 107

I/O management
devices, 109
subsystem

ACPI, 110
block devices, 111
character devices, 112
DMA, 113
instruction, 112
MMIO, 112, 113
performance, 115
polled vs. interrupt, 114, 115

synchronization, 116, 118–121
Isolation, 73

J
JavaScript Object Notation (JSON),

123, 158
Java Virtual Machine (JVM), 263
Jenkins, 266

K
Kanban, 251
Kubernetes, 219, 220

L
Linker, 34
Loader, 35
Local area network (LAN), 135

M
Machine learning (ML), 49

vs. AI, 228, 229
cloud computing, 236

INDEX

286

vs. conventional machine
intelligence, 226

vs. deep learning, 228, 229
definition, 225, 226
frameworks, 235
parts

models, 229, 230
prediction/inference, 230, 232
training, 229, 231

reinforcement learning, 234
representation, 229, 230
semi-supervised learning, 234
supervised learning, 232, 233
unsupervised learning, 234
uses, 235

Machine Learning as a
Service (MLaaS), 236

Malicious software, 176
Malware, 176

authorization, 180
data at rest, 177
data at use, 178
kernel, 179

Master boot record (MBR), 278
Mathematical technique, 53
Media access control (MAC), 143
Memory management

address binding, 103–105
IPC, 107
logical vs. physical address,

105, 106
requirements, 103

Memory-mapped I/O (MMIO), 112
Memory Reference Code (MRC), 278
Message passing method, 108
Microservice architecture, 150
Model-View-Controller (MVC), 152
Model-View-Presentation (MVP), 152
Model-View-View-

Model (MVVM), 152
MongoDB, 78
Mosaic, 138
Multicast DNS (mDNS), 151
Multi-cloud model, 207
Multiple instruction, single

data (MISD), 24
Multiple services, 144
Mutex, 118

N
National Center of

Supercomputing
Applications (NCSA), 138

National Institute of Standards and
Technology (NIST), 168

Neo4j, 77
Network Address Translation

(NAT), 148, 149
Network protocols, 139
Neural networks, 226, 227
Neurons, 226
Ninja, 264
Nonces, 174
Nondeterministic polynomial, 71

Machine learning (ML) (cont.)

INDEX

287

Non-volatile memory, 24
Not Only SQL (NoSQL) databases, 77

Neo4j, 77
NP-complete problem, 71
NP-hard problems, 71
NP problems, 71
N-tiered architecture, 152

O
Object-oriented programming,

42–44
Open Container Initiative, 217
Open Shortest Path First (OSPF), 148
Open Systems Interconnection

(OSI), 137, 187
Operating system–directed

configuration and power
management (OSPM), 269

Operating System (OS)
approach, 85, 86
built, 82, 83
categories, 84, 85
complex/multiprocessor

systems, 88
definition, 81
multitasking/multifunction

software, 88
multiuser system, 89, 91
purpose, 87
requirements/solutions, 92, 93

P, Q
Parallel programming, 47
Peer-to-peer architecture, 151
Perforce Helix, 260
Peripheral Component

Interconnect Express
(PCIe) protocol, 110

Personally Identifiable
Information (PII), 166

Plaintext, 167
Platform as a Service (PaaS),

196, 198
POP instruction, 16
Power-on self-test (POST), 278
printf function, 36
Process Control Block (PCB), 95
Programming

definition, 29
language

compile/link/load, 33–35
Hello, World, 31, 32
high-level, 35–38
machine languages, 30

paradigms
declarative programming,

40, 41
GPUs, 47, 48
imperative

programming, 39
interpreter, 45, 46

INDEX

288

machine learning, 49
object-oriented

programming, 42–44
Protocols, 139
Pseudorandom numbers, 174
Pure function, 40

R
Random numbers, 174
Read-only memory (ROM), 184
Recursive algorithm, 67
Registers, 8, 9
Reinforcement learning, 234
Relational data, 74, 75
Resource Stateless

Transfer (ReST), 158
Routers, 147
Routing Information

Protocol (RIP), 147

S
Salts, 173
Scaled Agile Framework (SAFe), 253
Scheduling

context switching, 97
criteria, 100
PCB, 95–97
process, 98, 99
process states, 94, 95
program/process basics, 94
thread, 101, 102

Schema, 76
Script kiddies, 176
Scrum, 249
Secure boot, 182
Secure programing, 189
Secure Sockets Layer (SSL), 186
Semaphore, 119
Semi-supervised learning, 234
Service-orientated architecture

(SOA), 222
Single instruction, multiple data

(SIMD), 22
Software as a service (SaaS), 196, 200
Software development lifecycle

analysis, 243
architecture/design, 244
deployment, 246
implementation, 244, 245
maintenance, 247
phases, 242
planning, 242, 243
testing, 245, 246

Software engineering
agile practices

analysis/design, 252
definition, 249
Kanban, 251
scaling, 252
scrum, 249–251

build optimization
CMake/Ninja, 264
gradle, 263
Make, 263
purpose/mechanism, 261, 262

Programming (cont.)

INDEX

289

debugging, 256, 257
documentation

comments/code, 254
requirements/design/

architecture, 253
user, 254

testing, 255, 256
Solid-state drive (SSD), 25, 177
Source control management (SCM)

definition, 258
purpose/mechanism,

258, 259
tools, 260, 261

SQL Statement Actions, 76
Stateful protocols, 139
Stateless protocols, 139
Static libraries, 34
Subnets, 147
Supervised learning, 232, 233
Suspend to RAM (STR), 271
Symmetric encryption algorithms,

168, 171
Synchronization (SYN), 141
System architecture, 159
System boot flow, 277, 278

T
Telnet, 134
TensorFlow, 235
Test-driven development (TDD),

245, 256
Threads, 3

Top-level domain (TLD), 145
Transmission Control Protocol

(TCP), 135, 139, 140
Transport Layer Security (TLS), 186
True random numbers (TRNs), 174
Trusted execution environments

(TEEs), 178, 182
secure boot, 182, 183
secure I/O, 184

Turing Test, 227

U
Unified Extensible Firmware

Interface (UEFI), 278
Unit testing, 255
Universal Resource

Locator (URL), 155
Unstructured data, 76
Unsupervised learning, 234
User Datagram Protocol (UDP), 142
User interface (UI), 128

V
Virtual Machine

Monitors (VMM), 178
Virtual machines (VMs),

127, 216, 217
Virtual Private Networks (VPNs), 188
Volatile memory, 24
von Neumann architecture, 1–3, 27
Vulnerability patches, 176

INDEX

290

W, X, Y, Z
Web application, 158

back end, 162

CSS, 160

front end, 160

HTML, 159

three-tiered architecture, 159
Windows Driver Framework

(WDF), 129
World Wide Web Consortium

(W3C), 139
World Wide Web (WWW), 153
WriteConsoleA function, 34

INDEX

	Table of Contents
	About the Authors
	About the Contributors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Fundamentals of a Computer System
	von Neumann Architecture
	CPU: Fetch, Decode, Execute, and Store
	Fetch
	Instruction Set Architecture
	Registers

	Decode, Execute, and Store
	Controlling the Flow
	The Stack
	Instruction Pipeline
	Flynn’s Taxonomy

	Main Memory and Secondary Storage
	Input and Output (I/O)
	Summary
	References and Further Reading

	Chapter 2: Programming
	Programming Language Fundamentals
	Hello, World!
	Compile, Link, and Load
	High-Level Languages

	Programming Paradigms
	Imperative Programming
	Declarative Programming
	Object-Oriented Programming
	Interpreted Programming
	Parallel Programming
	Machine Learning

	Summary
	References and Further Reading

	Chapter 3: Algorithm and Data Structure
	What Is an Algorithm
	Good and Not So Good Algorithm
	Time/Space Complexity
	Asymptotic Notation

	Fundamental Data Structures and Algorithms
	Store (Data Structure)
	Stack
	Queue
	Tree
	Graph
	Linked List
	Array
	Dictionary
	Making Use of the Data: Searching, Sorting

	Problem Solving Techniques
	Recursion
	Divide and Conquer
	Brute Force
	Greedy Algorithms

	Class of Problems
	NP-Complete and NP-Hard Problems

	Databases
	Persistence and Volume
	Fundamental Requirements: ACID
	Brief History of Database System Evolution
	Most Prominent Current Database Systems
	Relational Data and SQL
	Structured Data/Unstructured Data

	NoSQL
	Examples of NoSQL Databases
	Graph DB: Neo4j
	Column Family DB: Bigtable and Cassandra
	Document DB: CouchDB and MongoDB

	Summary
	References and Further Reading

	Chapter 4: Operating System
	What Is an Operating System
	OS Categories

	Why We Need an OS
	Purpose of an OS
	Complex and Multiprocessor Systems
	Multitasking and Multifunction Software
	Multiuser Systems
	Why Is It Important to Know About the OS?

	Responsibilities of an OS
	Scheduling
	Program and Process Basics
	Process States
	Process Control Block (PCB)
	Context Switching
	Scheduling
	Scheduling Criteria
	Thread Concepts

	Memory Management
	Address Binding
	Logical vs. Physical Address
	Inter-process Communication
	Shared Memory Method
	Message Passing Method
	Further Reading

	I/O Management
	I/O Subsystem
	Block Devices
	Character Devices
	Special Instruction I/O
	Memory-Mapped I/O
	Direct Memory Access (DMA)

	Polled vs. Interrupt I/Os
	I/O and Performance
	Synchronization Concepts
	Critical Sections
	Mutex
	Semaphore
	Deadlocks

	File Systems
	File Concepts
	Directory Namespace
	Access Control
	Concurrency and Cleanup Control

	Access and Protection
	Rings: User Mode and Kernel Mode
	Virtualization
	Protection

	User Interface and Shell
	Some OS Specifics
	Summary
	References and Further Reading

	Chapter 5: Computer Networks and Distributed Systems
	History and Evolution of Networks and the Internet
	Protocols: Stateful and Stateless
	Internet Protocol (IP): TCP and UDP
	Host, IP Address, MAC Address, Port, Socket
	DNS and DHCP
	Proxy, Firewall, Routing

	Distributed Systems: Prominent Architectures
	Client Server
	Peer to Peer
	N-Tiered

	Distributed System Examples
	FTP
	The World Wide Web

	Case Study: Web Application
	System Architecture
	HTML, CSS, and JavaScript
	Front End
	Back End

	Summary
	References and Further Reading

	Chapter 6: Computer Security
	Access Control
	Confidentiality
	Integrity
	Availability
	Symmetric Key Cryptography
	Asymmetric Key Cryptography
	Digital Signatures
	Digital Certificates
	Certificate Chains
	Salts and Nonces
	Random Numbers
	Security in Client Computing Systems
	Malware, the Bad Apples of Software
	Security of Data at Rest
	Security of Data in Use
	Application vs. Kernel vs. Drivers
	User Authentication and Authorization

	Trusted Execution Environments and Virtual Machines
	Secure Boot
	Secure I/O
	Digital Rights Management

	Communication Security: Security of Data in Motion
	Transport Layer Security
	Virtual Private Network
	IP Security

	Writing Secure Programs: Where Do We Start?
	Summary
	References and Further Reading

	Chapter 7: Cloud Computing
	Cloud Computing Models
	IaaS
	PaaS
	Serverless
	SaaS
	Comparison of Cloud Computing Models

	Benefits of Cloud Computing
	Cost
	Scalability
	Velocity
	Reliability and Availability
	Productivity
	Performance
	Ease of Use and Maintenance

	Cloud Deployment Configurations
	Private Cloud
	Public Cloud
	Hybrid Cloud
	Ideal Cloud Deployment Configuration
	Multi-cloud Model

	Cloud Configuration Interface/Mechanism
	Cloud Service Providers
	Considerations in Choosing a CSP
	Motivation for Switching CSPs
	Usage and Pricing Change
	CSP Ecosystem Change
	Regulatory, Privacy, and Business Dynamics Change

	Considerations for Developing Portable and Interoperable Cloud Solutions
	Interoperability vs. Portability
	Interoperability Challenges
	Portability Challenges

	Containers, Docker, and Kubernetes
	Benefits of Containers and Container Orchestration
	Security
	Scalability

	The Way Forward
	Recommendations

	Summary
	References and Further Reading

	Chapter 8: Machine Learning
	Brief History of Machine Learning
	Artificial Intelligence, Machine Learning, and Deep Learning
	Fundamental Tenets of Machine Learning
	Models
	Training
	Prediction (Inference)

	Categories of Machine learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Machine Learning in Practice
	Leading Machine Learning Frameworks

	Machine Learning and Cloud Computing
	The Way Forward
	Summary
	References

	Appendix A: Software Development Lifecycle
	Planning
	Analysis
	Architecture and Design
	Implementation
	Test
	Deploy
	Maintenance

	Appendix B: Software Engineering Practices
	Planning and Management Practices: Agile
	Scrum
	Kanban
	Analysis and Design
	Scaling Agile Practices

	Documentation
	Requirements, Design, and Architecture
	Comments and Code
	User

	Testing
	Phases and Categories of Testing and Goals
	Algorithm Testing, Unit Testing, Integration Testing, and the Like

	Test-Driven Development

	Developing for Debug
	Asserts and Exceptions
	Logging and Tracing

	Source Control Management
	Purpose and Mechanism
	Tools
	Perforce Helix
	Git

	Build Optimizations and Tools
	Purpose and Mechanism
	Tools
	Make
	Gradle
	Cmake and Ninja

	Continuous Integration and Continuous Delivery
	Purpose and Mechanism
	Tools
	Jenkins
	CircleCI
	GitLab CI/CD

	Appendix C: ACPI System States
	Global and System States
	Device States
	Processor States

	Appendix D: System Boot Flow
	Index

