An

Anarchist s
Guide to
Free
Sof tware

DC Radical Tech Collective

About the RTC

The Radical Technology Collective is an anonymous organization dedicated to
the furtherance of the free software movement and of digital security practices
in the anarchist community. The RTC believes that as anarchism enters the 21st
century, it will have no option but to embrace these concepts, or perish or
mutate into something fundamentally opposed to what it has stood for for
centuries.

The RTC sees the Free Software movement as a logical extension of anarchist
ideals applied to software. Free Software supports community involvement in the
use, distribution, and production of software over corporate involvement, and
ensures the user has liberty in the digital realm. Without |iberty, and without
community, how can we be anarchists?

Additionally, the RTC supports the safe and secure use of the Internet and
other computer-related infrastructure to further the goals of the anarchist
struggle. We recognize that many, if not most, among us are hunted by state or
corporate interests, and we attempt to help anarchists of every color and creed
remain secure, safe, and free.

It is the belief of the Radical Technology Collective that technology is
neither inherently good or bad, but fully neutral. Therefore, it is not only
our responsibility to advance technology as far as humanly possible, but also to
ensure it is only used for ethical means. We hold that the negative uses of any
technology have the potential to be |imited and outweighed by the positive uses.

We hold that the access to information is a fundamental human right, and
therefore, access to technology related to information, such as computers and
the Internet, is a fundamental human right.

Contacting the RTC

You can find the RTC’s contact information on our homepage, currently on
LibrePlanet:

<http://groups. fsf.org/wiki/RTC>

Our homepage contains |inks to our materials, our OpenPGP public key, and
our current contact information.

Anonymity

All RTC contributors remain anonymous with respect to their work with the
RTC. The RTC believes that the source of an idea is irrelevant to its worth,
and will never take the source of an idea into regard when attempting to judge
the worth of an idea.

An Introduction to Free Software

The central idea of the free software movement is, as is obvious,
freedom. The movement seeks nothing more, and nothing less, than freedom for
the user in the software realm. The desire for freedom is probably not new to
anarchists, seeing as it is the crux of that movement as well. One important
distinction to make, however, is between the two meanings in English of the
word 'free'. 'Free’ can mean either “having liberty”, or “without monetary
cost”. The "free' in 'free software’ refers only to “having liberty”. While
many, if not most, free programs are distributed at zero cost, some are not,
and remain free. The reason for this distinction is not to justify limiting
the dissemination of software by means of cost (though that would be
impossible with free software), but to point out that being available at zero
cost does not make software free.

The free software movement has sort of a creation story, and that’s the
best way to introduce it. It begins a long, long time ago, in the early 70’s,
back when all software was free.

In the early days of computing, all software was free. All| source code
was publicly available, because programs were written in machine code —— as a
result, the human-readable “source” code and computer-readable “machine” code
were the same thing. Eventually, programs began being written in assembler
language, but this wasn't really a divide between source and machine code,
since one instruction in assembly language had a 1:1 relationship with machine
code on the processor chip. As a result, if you had a program, you had access
to the source code, and could study, modify, and improve the program.

Furthermore, in the early days of computing, the community of computer
users was very small. There were only a few companies involved in making
computers and writing software, and most universities or corporations that
used computers wrote their own software. There was a sense of collaboration
rather than competition in these days —— if a programmer at a university wrote
code for a certain computer, he would freely share it with the programmers at
the company that made that computer, or with other universities, or even with
other corporations. At this point, in the 1970’s and early 1980's, there
weren't really companies that dealt only with software, and thus no reason to
zealously guard software — the software was just a thing you could do with
the hardware, analogous to instructions for building, say, a bookshelf, coming
with a toolkit.

One of the epicenters of this community was at the MIT Artificial
Intelligence lab. The Al lab was the birthplace of hackers —— the word,
"hacker’, originally meaning prankster (at MIT, senior pranks, or other
pranks, were called 'hacks’), came to refer to the people who gathered around
the computers in the Al lab, writing software not as a purely utilitarian

exercise, but as a lifestyle. Hackers distrusted authority, manifested by the
IBM engineers that kept them off the monstrous mainframes outside the Al lab —
while the massive IBM computers were maintained by a cabal of “priests” that
| imited access to anyone else, the hackers had their own, much smaller, but
more accessible, computer that they favored. The hackers disdained hoarding
tools or equipment —— they were known to break into offices of people who did
so and “|iberate” what they needed. The hackers had a culture of sharing ——
all the code they wrote was kept (in paper spools, because that’s how code was
stored then) in a desk in the Al lab, giving anyone the ability to learn from
those that had come before, and adapt on their designs to form new things. And
the hackers kept a strict meritocracy —— someone came to be respected by the
hackers, no matter what their age, degree status, or title, by writing good,
elegant or clever, "hackish’, code. The hackers would be hostile to nosy
administrators that tried to clear them off the computer for “legitimate”
users, and would welcome any who proved their skill (the most notable example
of this is Peter D, a local 10-year-old who could out-hack grad students).

Eventual ly, however, the hacker community, after stretching from MIT to
Berkley, fell apart. In the 80’s, two companies formed, seeking to profit from
the Lisp Machines the Al Lab wrote software for: Symbolics, and LMI. While LMI
was more open and hacker—ish in its dealings. Symbolics began to choke off the
atmosphere of collaboration that had made the hacker community rise to
greatness. The Al lab began to crumble, with all the hackers being drafted off
to one of the two companies. One hacker, however, remained stalwart at the Al
Lab. His name was Richard Stal Iman.

Stal Iman was enraged at Symbolics’ efforts to end the free exchange of
ideas that the Al lab had represented, and, in retaliation for their actions,
re—implemented every new feature Symbolics’ programming team produced, and
released the code as free software (though it wasn’t called that, yet). He was
able to keep cloning the output of Symbolics, Inc. for a matter of years.

However, at this point, the genie was out of the bottle. With the advent
of higher-level languages with a definite split of source and machine code, it
was possible for software distributors to lock out users from modifying their
software, and the war between LM|I and Symbolics made it clear that non—-free
software was going to become the norm. With this in mind, Stallman began work
on a free operating system, GNU, and years later, founded the Free Software
Foundation. Stallman can be credited more than any single other person with
starting the free software movement —— he was the first person to realize that
free software, formerly the standard way of using software, was going to need
a movement to defend it.

The story of the free software movement’s beginning is a tragic one,
because it is also the story of the free software |ifestyle's end. However,
since the 80's, the movement has progressed farther than even StalIman could
have thought. Today, it is possible to use an operating system with only free

software, and even to use an entire computer, from the lowest levels of the
hardware up to the 0S, with only free software. The Free Software Movement has
taken back the ground it held decades ago —— a person can use a computer, and
have freedom.

However, “having liberty” is a rather ambiguous way to define free
software. As such, the de facto standard for what makes software free is the
Free Software Definition[1], originally written by Stallman, and maintained by
the Free Software Foundation. The Definition itself is a moderately sized
document, but fundamentally, it boils down to four Freedoms software must have
if it is to be free. Since the Definition was written by programmers, and
programmers count starting from zero (since that’s how computers count), the
freedoms are numbered zero to four.

Freedom 0: The user is free to use the software, for any purpose.

Freedom 1: The user is free to study and modify the software.

Freedom 2: The user is free to redistribute (share) the software.

Freedom 3: The user is free to redistribute (share) modifications or
modified versions of the software.

[f a user has all of these freedoms with regards to a given piece of
software, that software is free, and if a user sticks to only free software,
that user is free.

Software that is available at zero—cost, |ike “shareware” or “pirated”
software, is clearly not free, since even though the user didn't have to pay
for the software, they still don’t have those four freedoms, and as a result,
they're still digitally chained to the software’s author when they use it.

Technology, as a rule, is a genie that does not go back into the bottle.
No matter how much we might wish it, there was no return to cottage industry
from the dawn of the industrial revolution, no return to hunting and gathering
after the dawn of the agricultural revolution, and there will be no return to
the analog after the digital revolution. The frameworks upon which
civilization itself depends are going to change, as everything else will, to
incorporate itself into this new digital world.

In short, everything is going to be, at some level, a computer. All
computers must run software. |f that software is free, the user is as well. If
it isn't, the user isn’t —— the freedom that a user should be able to exercise
turns into a power the software—controlling entity is able to bring to bear
against the user.

Like all technologies, the computer is neutral. |t can be used to
coordinate protests and to spread our message, or it can be used as a tool for
the state to further its oppression. It is up to us to ensure that as the
wor ld goes into the Digital era, the people of that world do not leave their
freedom in the past.

Why anarchists should use free software

When we talk about smashing the state, we often refer to the tools and
tactics we use to express dissent. Usually the subjects that arise are black
blocs, Really Really Free Markets, zines, pvc pipes, radical spaces and
dumpsters. Each of these tools has a unique place in supporting our efforts
from feeding us, to protecting one another to spreading information. But one
rarely mentioned tool that has the capacity to protect us and |iberate us from
the institutions of the old world is software.

Like anything else, Information Age technology has been embraced to
varying degrees by the anarchist community. While some are overly wary of
technology, not using it to coomunicate at the expense of efficiency, while
some use technology too |iberally, endangering the community with
surveil lance. But security and self-preservation are important goals for
anarchists, they are not the primary goal —— creating anarchy. It is well
known that technology can threaten our security, but what’'s not as well known
is that it can threaten our ideals.

At the heart of the anarchist dream is freedom. We strive to create a
world free from coercion, from an oppressive state, from gender and race and
every other hierarchy, a world in which we can be free. As such, as anarchism,
| ike every other movement, it swept into the technological age, it is
imperative that we evolve and adapt to the changing wor|d, but we must do this
in ways that do not betray our goals. The only way to do this is with Free
Software.

The “free” in Free Software means free as in freedom. An individual
program, or a group of programs acting as an operating system, can be called
Free Software, but what Free Software is primarily is a social movement,
dedicated to preserving the freedom of computer users. While non-free software
(like Microsoft or Apple products) forces you to use your computer on their
terms, free software (like GNU/Linux) allows for active participation in a
vibrant community.

In a world built on greed, hoarding information is advantageous to the
classes that oppress us. To be enslaved by their software, relying on their
programs with security holes and inefficiency is exactly what they want. They
want you to be forced to buy more products, to be attacked by Adware and
Spyware (their own, of course, not that of “criminals” who piggyback on their
shitty platforms), and they love that we can’t change or even understand their
software when we use it. They love that they are the central dictators of
their software world —— the only entity allowed to distribute, prohibiting us
from sharing, the only entity allowed to modify, prohibiting us from tinkering
and improving upon the tools we use. But in a world built on reciprocity and
time—honored Do It Yourself attitude, sharing and improving software is one of
the most basic freedoms. One of the primary functions of capitalism is to
force humans into a passive consumer role, just as Bill Gates wants, and as

Steve Jobs wants, and any other software monarch wants. With free software,
the user is a participant in the development and distribution of safe, non-
corporate, and most importantly, free, programs.

So if we reject corporate art, corporate media, corporate |ifestyles,
greed, suburbs, factory farms, capitalism and authoritarianism, why would we
want the software that supports it? Why do we rely on authoritarian capitalist
software when we could be using software that has a value system truly
compatible with our own? We have a better system now. It’s time to build a new
wor ld out of the monitor and keyboard of the old.

Why you should say Gnu/Linux instead of
L i nux

When | tell people that | use GNU or GNU/Linux, a lot of the time they
don't know what |’m talking about. But when | say “| run Linux”, they
know just fine. The “open source” revolution has been represented for
the most part by Linux, and that’'s just the term people know. When
someone refers Linux or GNU/Linux, they're referring to the same
thing: the free operating system, using Linux as a kernel and the GNU
utilities as a base. But it's important to say GNU/Linux instead of
Linux, especially for radicals.

Linux was released in the early 90's. In 1992, it was released
under the terms of the GNU GPL, making it copylefted free
software. |t gained popularity during the beginning of the dot—com boom in
America, and Linux soon gained a lot of publicity for what it was:
free software, but not just free, stable and secure, too. Companies
running the new Linux operating system on their servers proliferated
freely, and people wondered about the “death of Microsoft”.

It’s important to know that the term Linux wasn’t popularized
by free software advocates (the open source movement didn’t exist at
the time), but by the mass media, needing a name for the system that
was swarming the dot—-coms. The GNU Project had been around for quite a
while, since 1983, but they didn't care about that. Linux was the cool
new thing. The fact it was the last piece in a system that had been in
the making for years was a non—-issue. However, there were other
reasons why the media decided to use the term Linux.

Let’s break things down a bit now. Media outlets aren’'t really
in it to spread information around to the populace. They're there to
make money. How do media outlets make money? Advertising. In the tech
wold, who pays for advertising?

For the most part? Software companies.

Software companies don’t |ike free software; not because it would
put them out of work, but because software companies need users to
feel that they aren’t in control (see the article WHY FREE SOFTWARE?
for more on that), that they aren’t free. On that note, let’s compare
the two people “behind” the Linux project and the GNU project.

For Linux, we have Linus Torvalds. Linus was a student at the
University of Helsinki when he wrote the first versions of
Linux. Linus is extremely apolitical, and was one of the first

supporters of the Open Source movement (see WHY *NOT* OPEN SOURCE for
details on the 0.S. movement in general). He says that 'open source is
the best way of doing things’, but is more pragmatically affiliated
with open source than ethically: Linus has overseen the incorporation
of non—free code into Linux, and has forced kernel hackers to use
non-free programs to access the source. He's apolitical as far as
freedom goes.

For GNU, we have Richard StalIman. Stallman was a grad student at
MIT during the golden age of MIT hackers, but was one of the last
hackers to inhabit the MIT Al Lab. During the mid 80's, a series of
events happened in succession which proved one thing to StalIman:
software must be free. During the days of the Al Lab hackerdom, all
code was shared and free. But now, Stallman was encounter ing more and
more non—-disclosure agreements and |icense agreements that prevented
him from helping his community or his own interests with software. He
started the GNU Project in 1983. In stark contrast to Torvalds,
Stallman is extremely political. He speaks out against non-free
software, its purveyors, and even the apolitical open—source movement.

Now, let's imagine: |f you were the head of a media monolith, or
better yet, a tech media monolith, and you depending on millions of
dollars in ad revenue from proprietary software companies, what would
you call this upstart free 0S? Would you call it GNU/Linux, the more
techincal ly proper but politically dangerous name, or Linux, the
apolitical and proprietary-software—-friendly name?

As activists, it’s important for us to put freedom before the ad
dollars and doublethink of the software 'industry’. Saying GNU/Linux
puts freedom first, and supports OUR goals, not theirs. So the next
time you're talking to a friend about your new 0S, don’t say that you
installed Linux. Tell them you installed GNU/Linux.

See also: http://www.gnu.org/gnu/why—-gnu-1|inux. html

Why Radicals Should Not Use Non—Free Software
OR
Non-Free Software Considered Harmful

The biggest reason why anarchists should not use non-free software is the
simple fact that it denies them their freedom. By using this software, they are
implicitly advocating it and expanding the power that software’s developer has
over users. The reasons why anarchists should only use freedom-respecting
software are obvious to any anarchist that values freedom, but what many do not
know is how destructive, subversive, and detrimental to the movement non—free
software can be.

Most computer users, anarchists included, don’t give much thought, if any,
to the software installed on their computer past the immediately pragmatic. This
ignorance of both freedom and security ensures that corporations like Apple,
Adobe, and Microsoft are de facto standards. However, like all non—-free software,
the software produced by those corporations is not controlled by the people who
end up using the software, but by the initial authors of the software, a closed,
private cabal of developers buried inside a corporate structure. These developers
have absolute power over a users computer. The code they write, and users run,
can and will do anything, from introducing security unintentional security flaws
to opening backdoors, from over—aggressive logging that can give away sensitive
information to intentionally spying on users.

While anarchists should not use non—-free software first because it denies
them freedom, the second most immediate reason is the massive risk its use
imparts on their struggles, whatever it may be. Non—free software is a “black
box”, an unknown entity — there is no knowing what it can do, and what it can do
is nearly |limitless. However, on notable occasions, the activities of
corporations peddling non—free software have come to |ight as being openly
harmful. This article attempts to document the worst offenses in terms of
corporations abusing user’s misplaced trust through non-free software.

While it's important to be aware of what has happened in the past, it's much
better to be wary of what might happen in the future. As the saying goes, an
ounce of prevention is worth a pound of cure. Don't take this as a definitive
list of “bad” non-free software purveyors —— never trust anything that doesn’t
al low you your freedom.

Microsoft is quite frequently demonized in the free software community, and
not without reason. Microsoft grew to prominence by scolding users for daring to
share Atari BASIC, angering scores of hobbyist users who had spread a pre-release
version of the long-awaited and long-delayed program. Over the course of its
growth, Microsoft came to be known as one of the more cutthroat in a sphere of

cutthroats, and in 2000, was actually convicted in the United States of
monopol ism (though this never came to anything, giving Microsoft an effective
antitrust immunity).

Microsoft’s software has historically had a shitty security track record.
This stems from the fact that Microsoft’s first operating systems (and later
ones, until around Windows 98) were based on DOS, a single-user system.

We interrupt this article to bring you a fun fact about DOS. Typically,
if you ask someone what DOS stands for, they will tell you “"Disk Operating
System”. This is from PC-DOS, the operating system distributed by IBM in the
80's, which was actually just a licensed version of Microsoft’s 86-DOS.
Microsoft didn't write 86-DOS —— they bought it for a pittance of what it
eventual ly came to be worth from a much smal ler company. Its original name
should give you an idea of the quality of Microsoft software — QDOS, for
Quick and Dirty Operating System.

All programs in DOS ran in the most privileged mode on the central
processor —— this meant, among other things, that a flaw in a single program
could bring the entire system down. Since DOS was meant to be used by one user
sitting at the console, there wasn’t much of an effort to make it secure, and
when Microsoft re-wrote Windows from scratch to make Windows NT, it was
burdened by having to maintain some compatibility with older code. As such,
running a Microsoft program or operating system, assuming no malice on the
part of Microsoft (a naive assumption), exposes you to inordinate amounts of
security holes. This is why there is such a thriving market for Anti-Virus,
Ant i-Spyware, and other “security” software for Windows.

Microsoft is a massive software company, with a near monopoly on the home
operating system market. As such, it is naive to assume that such a company,
with its software running —— completely unaccountable to any outside of
Redmond — on so many computers, would be unapproachd the United States
government. Like any capitalist enterprise, Microsoft has no moral obligation
to its users —— only financial obligations to its shareholders. Thus, if an
arrangement between Microsoft and say, the NSA, or the FBI, were profitable,
Microsoft would have no logical objection. However, we need not rely on
speculation to show Microsoft’s involvement with the state. Their own actions
speak far more comprehensively than speculation ever could.

In 1999, Andrew Fernandes was analyzing the cryptographic engine in
Windows NT 4 Server Pack 5. This service pack had been shipped to users
without having it’'s symbols stripped, meaning that things |like variable and
function names from source code were still present in the binary. This mean
that previously incomprehensible chunks of hex were labeled and categorized.
Once such chunk of hex turned out to be a cryptographic key —— it’s name was
marked as _NSAKEY. Microsoft immediately denied any collusion with the NSA,

asserting that the key was merely a second key used to sign modules to be
loaded into the cryptography engine.

United States law prohibits the export of “strong cryptography” —— this
is mostly nominal, but software companies |ike Microsoft still need to abide
by the law. Part of their compliance is the fact that cryptographic modules
can only be loaded into the Windows NT crypto engine if they are
cryptographically “signed” by one of the keys in the system —— either
Microsoft’s key, or _NSAKEY, or a mysterious third key that was found later.
The holders of these keys are the only people able to insert cryptographic
software into Windows. While the NSA could use their key to load their own
super—secret crypto routines onto their copies of Windows, they could also use
it to load backdoored or crippled crypto modules into compromised systems ——
for example, dissident groups the government decides would be worth watching.
Combined with the fact that the FBI is known to hack into the computers of
those it investigates and install their own rootkit, the possibility of a
malicious crypto module signed by the NSA's key is not remote.

Microsoft does not, however, rely on government agencies to produce
surveillance-ware for its operating system — it does that for them. In order
to aid law enforcement agencies, Microsoft put together COFEE —— Computer
Online Forensic Evidence Extractor. COFEE combines 150 tools for extracting
passwords, web browser logs, and other information that might help the state
monitor its targets. According to Microsoft, all of the tools in COFEE are
publicly available and exploit no backdoors in Windows — but COFEE is only
available to law enforcement agencies, so nobody is able to verify Microsoft’s
claim. In reality, it's likely that if it doesn’t exploit any special ly-
designed backdoors in Windows, COFEE is likely to exploit any one of the
myriad of holes in a Windows system.

The best protection against Microsoft’s dealings with the state is to not
use Microsoft —— though the lessons learned from these two incidents is easily
transferable to any non-free software company. Non-free software is opaque to
the user and to the world at large. |t cannot be accounted for by anyone save
the cabal which produced it. Especially since most producers of non—-free
software are corporations and heavily invested in the maintenance of the
status quo, anarchists should never trust them to provide neutral platforms
upon which we can work freely and securely.

Free software, although developed and copyrighted by individual people or
entities, can be verified as benign by the community, and if any such backdoor
was detected, it could be quickly and easily removed.

While the state is the biggest threat to any anarchist, we must be
equal ly concerned about corporate wrongdoing committed not to be law-abiding
citizens or for the state’s interest at all, but merely for profit. Adobe is

the best example of a non—-free software company harming the security and
privacy of its users for the sake of profit.

The first example of Adobe’s aggressive anti-privacy measures is “Flash
Cookies”, or “Local Shared Objects”. Flash cookies are a 'feature’ of the
Adobe Flash Player. They act in a similar manner to browser cookies, with
oneexception —— they are only modifiable by Adobe’s non-free Flash Player.
This means that a user’s web browser is unable to delete them, or even tell
the user that they exist. As such, Flash cookies are immune to any browser-
based “private browsing” modes.

The implications of this for user privacy are obvious — where a normal
cookie will be deleted by browser—based privacy restrictions, flash cookies
will not. Flash cookies are difficult to delete, and can only be done through
certain flash-based editor programs. While sites are restricted to reading
their own flash cookies (a flash cookie stored by, say, google.com cannot be
read by yahoo.com), the only guarantee users have of this is Adobe’s word.
There is no way of verifying their claim without access to the source code of
the Adobe Flash Player, and needless to say, nobody has access to that source
code save Adobe itself.

Whenever non—-free software runs on your computer, you are giving it the
proverbial keys to the castle. There is nearly no |imit to what it can do
without the user’s knowledge. Users of Adobe’s CS3 programs learned that when
the more vigilant among them realized it was making network connections to a
site called “192.168.112.207.net” (that’s two—letter-oh-seven-dot-net). Of
course, a non—free program dialing home isn’t exactly new. Non—-free programs
lock users into a single distribution source, so they have to call back to the
Central Control for information on updates and security fixes (when those come
and you can get them without paying). But there's something special about the
address “192.168.112.207.net”.

The Internet is a global IP (Internet protocol) network. Every machine on
it has an IP address in the form of a special, “dotted-decimal” number —— four
numbers ranging from zero to 255, so 0.0.0.0 through 255.255.255.255 are all
valid |P addresses. However, some |P address ranges are for internal, non-
Internet traffic only —— so that you can have your own network without taking
up space on the global internet. Those ranges? 10.xxx.xxx.xxx, 172.16-
31.255.255, and —— you guess it —— 192.168.xxx.xxx. So when Adobe had their
software connect to “192.168.122.207.net”, they were deliberately trying to
fool people analyzing their own network usage with a firewall or other tool
into thinking that the traffic going to the Internet (to the site 207.net) was
instead going to their local network.

207.net is owned by Omniture, a “behavioral analytics firm” —— in other
words, a company that buys and sells user’s information. From this, we can

infer that Adobe is logging what its users are doing, in their software and
possibly beyond it (unless you take very stringent measures, any program on a
computer can “see” any other and tell, to some extent, what it is doing), and
shipping this data off to a collecting house where it can be sold to
advertisers —— or to anyone else with the money. While that data might never
be put to more harm than sending on—-topic spam, there is no Iimit on the uses
to which that data could be put, and there is no way for the user to control
those uses in any way.

At this point, it should be obvious how harmful non—-free software is to
any security-conscious or really, anyone with an expectation of privacy. Non-
free software acts as a spy for the state and capitalists, and by allowing it
to have free reign over a computer, its users are |likely doing their
communities a great deal of harm.

Software is, fundamentally, a tool. But we must not fall into the trap of

thinking it a coomon tool, a dumb tool —— a hammer that will hit only what we
aim it at, a blade that will cut whatever we place underneath it. Software is
a smart tool — a tool that can serve you loyally, or betray you without a

shred of guilt. Non—-free software is a set of chains, and an insidious one,
for its makers have become adept at making the enslaved unaware of their
chains, and even accepting of them. But, at a moment’s notice, at the flip of
a bit, at the wave of a finger, those chains can bind as tight, if not
tighter, than any other.

There is no reason to |ive chained when there is the possibility of
living free. For our coomunities safety, for our own safety, and most
importantly of all, for both their continued freedom, we must shed our chains.

What's Wrong with Software “Piracy”

NB: “PIRACY” IS THE COPYRIGHT FASCIST'S PROPAGANDA TERM TO SLANDER
SHARING. WE USED IT IN THE TITLE TO MAKE THIS ARTICLE’S SUBJECT
RECOGNIZABLE, BUT WITHIN, WE WILL REFER TO THE SPECIFIC ACTION TAKING
PLACE.

There is a fallacy pertaining to the free software fight that is worth
rebutting here. That fallacy is the argument “| didn’t pay for it, so
it's free”, where typically the means used to obtain the software is a
peer—to—peer system or other illicit means.

The most blatant way this fallacy can be disproved is with simple
linguistics. While the software may have been "free as in beer”, it
was not “free as in freedom” —— using a non-free program without
initial monetary cost does not give you freedom. There are far more
pressing reasons not to use free software beyond the matter of cost,
and indeed, cost is not even discussed in the free software movement,
as it is completely tangential.

The propagandists’ use of the term “piracy” to mean “forbidden
sharing” was not without reason. While the term holds strong negative
connotations to the “common citizen”, to the youth it is not a
negative term, but a positive one. To the young, the pirate is not a
figure to be feared, but an icon of personal freedom. |f piracy was
universal ly unappealing, we can imagine that Pirates of the Caribbean
would have fewer sequels. Anti-authoritarians drawn to classical
pirate lore are naturally attracted to the online world of “piracy” as
well, and they are encouraged by the pro—piracy movement that has
embraced the terminology of its enemy and the images of their
namesake. The Pirate Party, initially founded in Sweeden, has expanded
to other European countries and has gained seating in the European
Parliament. The Pirate Bay has become one of the core facets of
BitTorrent — roughly half of all torrents are tracked by its servers.

These images are not chosen arbitrarily. Filesharing provides possibly
the best advertising for non—-free software —— it allows users to grow
accustomed to non—free software products and insinuates them into
culture until they become de facto standards. Adobe Photoshop would
not have become a verb had it not been readily available over
peer—to—peer networks and other means of distribution, allowing
graphic design students and others who might not have been able to
obtain it legally to use it and become dependent on it.

Non-free software’s long—term marketing strategy, |ike any other
ensnar ing substance, has always been “target the children”. Schools
are given massive discounts on Microsoft Windows and other software,

in order to create unbreakable bonds between computer use and non—free
software. Companies that produce multimedia—editing software turn a
blind eye to filesharing, knowing that if enough professors look the
other way at student’s illegal downloading of their programs,

generations of digital artists will learn not generalizable tools |ike
their AFK counterparts, but will be locked into single programs:
Photoshop, |llustrator, and Avid all gain far more profits by creating

| i felong users than they lose through not cracking down on student’s
filesharing.

When one person in a community uses one of these non—-free programs,
damage is minimal to the community —— their lack of freedom does not
transfer. However, problems invariably arise whenever these programs
are used in a collaborative setting, since typically, users dependent
on non—-free programs will reject any free alternative. Even if there
is no conflict over the use of unethical software, problems will
arise when a free program becomes available to the conmunity — like
any other non—-free software, illicitly obtained non—-free software does
not make switching to any other format and breaking the chains an easy
process. Often, a substantial amount of reproduction must occur before
a migration is possible — reproduction that would not need to happen
if a free program was used from day zero.

The fact that these programs can be obtained without paying the
|icense fee is completely irrelevant. That does not make them
free. Illicit sharing exposes activists to legal problems that weaken
the movement. Security issues, caused by accidental bugs or
deliberately by user-tracking methods (common in Adobe products,
among others), weaken the security provided by other software, making
the computer essentially a hostile platform. These programs cannot be
adopted by the community, as they can only be altered by a closed
cabal of corporate developers. They do not allow the users to exercise
their freedom.

Freedom on the Net:
Why Anarchists Shouldn’t Use Facebook

There is a misguided conception in radical circles pertaining to free
software that has lead most, if not all of us astray. This conception is that
of confusing zero—cost access with free access. While it affects use of free
operating systems, that turns out to only be half the problem. Most activists,
anarchist and free software alike, are unaware and have been until recently
completely unaware of a new threat to their freedom: non—-free network services.

A network service, or “software as a service”, is an installation of
software that is accessible to users over a network. Instead of using software
running on their computer, users connect to the software over a network.
Examples of this paradigm include Facebook, Twitter, GMail, Google Docs, and
AIM —— mail services, instant messaging services, and social networking
websites are all more general examples of network services.

Free software ideals, specifically the four freedoms, are irrelevant in
the context of network services, because the only person “using” the software
is the person actually running it on their computer, and none of the users of
a network service are doing that — they're just interacting with it over a
network. As such, many of the predominant free software |icenses, including
the GNU GPL, can be “exploited” by this loophole —— the fact that the public
is not a real “user” of the software means that a network service can take
free software code, add proprietary modifications that would be illegal to
distribute, and then run the network service. Meebo is a good example of this -
- it is based on the libpurple library, which is GPL'd. |f Meebo were a
traditional application, running on the computers of those who actually used
it, it would have to be free software to use libpurple, but since it is a
network service, it can remain non—-free.

The Free Software Foundation, among others in the free software
community, understood the danger this loophole posed to the Free World, and in
2007, when they released the third version of the GNU General Public License,
they released the GNU Affero General Public License. The main difference
between the GPL and the AG PL is that the AGPL mandates free access to source
code for users of a network service. This is obviously important for freedom
in the network service world.

Unfortunately, however, free access to the source code of a network
service is only half the battle. Having the ability to host (at personal cost)
an alternative copy of network service software is irrelevant if all the data
you've accumulated on a network service is inaccessible. Take Facebook, for
example. What use would it be to be able to create alternative Facebooks, if

you were unable to take your friends, your pictures, and your messages with
you? What use would it be if once you were there, you were in a walled garden,
unable to communicate with anyone outside?

The criteria for freedom in a network service is clearly different than
that for traditional software. For a network service to be free, a user must
have access to two things:

- Freedom to Source: The corresponding source to the network service
software under a free |icense, so that they can have at least all of the
freedoms of traditional software

- Freedom to Data: Unfettered access to all of their data in the network
service, and the ability to export it in a standardized, portable format so
that they are not shackled to one particular instance of a network service.

These two freedoms are nonexistent in the vast majority of network
services used by anarchists. Facebook, Twitter, AIM, MSN, all are network
services that deny us our freedoms. While it’s certainly convenient for
anarchists to use these services, and some might be helpful for organizing or
protesting, they deny us our freedoms and as such are detrimental.

Non—-free network services might also prove themselves to be treacherous,
beyond merely being non-free. Most network services used by anarchists are
provided by corporations operating within the boundaries, and laws, of the
United States —— this means two things. First, the providers of those network
services will not be interested in ethics, they will be interested in profit.
Second, the providers of those network services will cooperate with the State
against anarchists if it is profitable. Should we, as opponents of the State
and capitalism, willingly hand over our communications and our social networks
to our enemies? Should we risk the shock of losing our infrastructure, if
those enemies were to rip it out from under us?

Twitter is a perfect example of the non—free network service. Twitter is
obviously non—-free software —— no user is able to see how it works, or create
their own instances. Twitter does not allow users access to their data in an
exportable way. These two factors mean that users are bound to Twitter, and
are unable to take their Twitter accounts elsewhere if they wish.
Additionally, Twitter is a “walled garden”: Twitter users can only communicate
with other Twitter users. While anarchists have successfully used Twitter to
communicate at actions, most notably the 2008 Republican National Convention,
this success has attracted the attention of the US Department of Defense and
the Department of Homeland Security (MINILUV, for short). Twitter has shown it
is willing to cooperate with the US Government’'s requests by delaying schedule
downtime in order to help lranian dissidents spread their message (which
happens to be parallel to that of the US Government) —— would it not cooperate

with an effort to capture “domestic terrorists”?

Twitter is also a perfect example of a solved problem, since a free
alternative exists that is free in every sense that Twitter is not. This
software is called Laconica.

Laconica is free software licensed under the GNU AGPL. All user data is
stored in the open standard FOAF (friend-of-a—friend) format, allowing users
to export their data in a single file. Additionally, Laconica is based on a
federated protocol, the Open Microblogging Protocol, allowing users on one
Laconica installation to coomunicate with users on another. Laconica
implements the Twitter program interface, so any software written for Twitter
will work for Laconica. Right now, the largest site running Laconica is
identi.ca, but if anarchists wanted to run Laconica on their own servers, and
thus have full control over the network service, it would be simple to do.
Combined with privacy—enhancing technologies |ike Tor, anarchists could create
ful ly anonymous and untraceable Laconica instances for use in a single day of
direct action —— removing the influence of capitalists and the state on our
infrastructure. Microblogging is a relatively new phenomenon, and while the
system is in its youth, we as anarchists have an opportunity to influence
society as a whole to adopt the free system, rather than the encumbered one,
and the best way to do that is to lead by example.

Clearly, non—-free network services are not an insurmountable obstacle.
Like most other issues in the free software struggle, the real problem is
simply human inertia: even anarchists find it difficult to rouse themselves
enough to shed the chains of Twitter or Facebook. But if we are to continue
struggling for freedom, for consent over coercion, for autonomy over control,
we have to shed those chains — for our own benefit, and for the security of
our communities. Right now, network service freedom is in the same state
software freedom was in circa possibly 1988: the call for freedom has been
heard, but not many have yet heeded it. With time, and with effort, the world
of network services can become a part of the Free World —— but we have to put
in that effort to make it happen. Anarchists fought for freedom throughout the
20th century — we must keep that fight alive throughout the 21st, and take it
to whatever new battlefields emerge.

Free Software Alternatives

AIM/MSN/Whatever — Pidgin
Photoshop — The GIMP
|InDesign — Scr ibus
| | lustrator — Inkscape
MS Word — OpenOffice.org
|E/Opera — Firefox
Outlook — Evolution or Thunderbird
Microsoft Windows or Apple 0S X — GNU/Linux

