

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Network Security Hacks

By Andrew Lockhart

Publisher : O'Reilly

Pub Date : April 2004

ISBN : 0-596-00643-8

Pages : 312

Slots : 1.0

This information-packed book provides more than 100

quick, practical, and clever things to do to help make your

Linux, UNIX, or Windows networks more secure. Loaded

with concise but powerful examples of applied encryption,

intrusion detection, logging, trending, and incident response,

Network Security Hacks demonstrates effective methods for

defending your servers and networks from a variety of

devious and subtle attacks.

http://www.oreilly.com/catalog/netsechacks/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=netsechacks
http://www.oreilly.com/catalog/netsechacks/errata/
http://academic.oreilly.com/
http://www.oreillynet.com/cs/catalog/view/au/1757?x-t=book.view

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Network Security Hacks

By Andrew Lockhart

Publisher : O'Reilly

Pub Date : April 2004

ISBN : 0-596-00643-8

Pages : 312

Slots : 1.0

 Copyright

 Credits

 About the Author

 Contributors

 Acknowledgments

 Preface

 Why Network Security Hacks?

 How This Book Is Organized

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Got a Hack?

 Chapter 1. Unix Host Security

 Hacks #1-20

 Section 1. Secure Mount Points

 Section 2. Scan for SUID and SGID Programs

http://www.oreilly.com/catalog/netsechacks/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=netsechacks
http://www.oreilly.com/catalog/netsechacks/errata/
http://academic.oreilly.com/
http://www.oreillynet.com/cs/catalog/view/au/1757?x-t=book.view

 Section 3. Scan For World- and Group-Writable Directories

 Section 4. Create Flexible Permissions Hierarchies with POSIX ACLs

 Section 5. Protect Your Logs from Tampering

 Section 6. Delegate Administrative Roles

 Section 7. Automate Cryptographic Signature Verification

 Section 8. Check for Listening Services

 Section 9. Prevent Services from Binding to an Interface

 Section 10. Restrict Services with Sandboxed Environments

 Section 11. Use proftp with a MySQL Authentication Source

 Section 12. Prevent Stack-Smashing Attacks

 Section 13. Lock Down Your Kernel with grsecurity

 Section 14. Restrict Applications with grsecurity

 Section 15. Restrict System Calls with Systrace

 Section 16. Automated Systrace Policy Creation

 Section 17. Control Login Access with PAM

 Section 18. Restricted Shell Environments

 Section 19. Enforce User and Group Resource Limits

 Section 20. Automate System Updates

 Chapter 2. Windows Host Security

 Hacks #21-30

 Section 21. Check Servers for Applied Patches

 Section 22. Get a List of Open Files and Their Owning Processes

 Section 23. List Running Services and Open Ports

 Section 24. Enable Auditing

 Section 25. Secure Your Event Logs

 Section 26. Change Your Maximum Log File Sizes

 Section 27. Disable Default Shares

 Section 28. Encrypt Your Temp Folder

 Section 29. Clear the Paging File at Shutdown

 Section 30. Restrict Applications Available to Users

 Chapter 3. Network Security

 Hacks #31-53

 Section 31. Detect ARP Spoofing

 Section 32. Create a Static ARP Table

 Section 33. Firewall with Netfilter

 Section 34. Firewall with OpenBSD's PacketFilter

 Section 35. Create an Authenticated Gateway

 Section 36. Firewall with Windows

 Section 37. Keep Your Network Self-Contained

 Section 38. Test Your Firewall

 Section 39. MAC Filtering with Netfilter

 Section 40. Block OS Fingerprinting

 Section 41. Fool Remote Operating System Detection Software

 Section 42. Keep an Inventory of Your Network

 Section 43. Scan Your Network for Vulnerabilities

 Section 44. Keep Server Clocks Synchronized

 Section 45. Create Your Own Certificate Authority

 Section 46. Distribute Your CA to Clients

 Section 47. Encrypt IMAP and POP with SSL

 Section 48. Set Up TLS-Enabled SMTP

 Section 49. Detect Ethernet Sniffers Remotely

 Section 50. Install Apache with SSL and suEXEC

 Section 51. Secure BIND

 Section 52. Secure MySQL

 Section 53. Share Files Securely in Unix

 Chapter 4. Logging

 Hacks #54-60

 Section 54. Run a Central Syslog Server

 Section 55. Steer Syslog

 Section 56. Integrate Windows into Your Syslog Infrastructure

 Section 57. Automatically Summarize Your Logs

 Section 58. Monitor Your Logs Automatically

 Section 59. Aggregate Logs from Remote Sites

 Section 60. Log User Activity with Process Accounting

 Chapter 5. Monitoring and Trending

 Hacks #61-66

 Section 61. Monitor Availability

 Section 62. Graph Trends

 Section 63. Run ntop for Real-Time Network Stats

 Section 64. Audit Network Traffic

 Section 65. Collect Statistics with Firewall Rules

 Section 66. Sniff the Ether Remotely

 Chapter 6. Secure Tunnels

 Hacks #67-81

 Section 67. Set Up IPsec Under Linux

 Section 68. Set Up IPsec Under FreeBSD

 Section 69. Set Up IPsec in OpenBSD

 Section 70. PPTP Tunneling

 Section 71. Opportunistic Encryption with FreeS/WAN

 Section 72. Forward and Encrypt Traffic with SSH

 Section 73. Quick Logins with SSH Client Keys

 Section 74. Squid Proxy over SSH

 Section 75. Use SSH as a SOCKS Proxy

 Section 76. Encrypt and Tunnel Traffic with SSL

 Section 77. Tunnel Connections Inside HTTP

 Section 78. Tunnel with VTun and SSH

 Section 79. Automatic vtund.conf Generator

 Section 80. Create a Cross-Platform VPN

 Section 81. Tunnel PPP

 Chapter 7. Network Intrusion Detection

 Hacks #82-95

 Section 82. Detect Intrusions with Snort

 Section 83. Keep Track of Alerts

 Section 84. Real-Time Monitoring

 Section 85. Manage a Sensor Network

 Section 86. Write Your Own Snort Rules

 Section 87. Prevent and Contain Intrusions with Snort_inline

 Section 88. Automated Dynamic Firewalling with SnortSam

 Section 89. Detect Anomalous Behavior

 Section 90. Automatically Update Snort's Rules

 Section 91. Create a Distributed Stealth Sensor Network

 Section 92. Use Snort in High-Performance Environments with Barnyard

 Section 93. Detect and Prevent Web Application Intrusions

 Section 94. Simulate a Network of Vulnerable Hosts

 Section 95. Record Honeypot Activity

 Chapter 8. Recovery and Response

 Hacks #96-100

 Section 96. Image Mounted Filesystems

 Section 97. Verify File Integrity and Find Compromised Files

 Section 98. Find Compromised Packages with RPM

 Section 99. Scan for Root Kits

 Section 100. Find the Owner of a Network

 Colophon

 Index

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472.

O'Reilly & Associates books may be purchased for educational, business, or sales

promotional use. Online editions are also available for most titles

(http://safari.oreilly.com). For more information, contact our corporate/institutional

sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered

trademarks of O'Reilly Media, Inc. The Hacks series designations, Network Security

Hacks, the image of barbed wire, "Hacks 100 Industrial-Strength Tips and Tricks,"

and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,

and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been

printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher

and authors assume no responsibility for errors or omissions, or for damages

resulting from the use of the information contained herein.

http://safari.oreilly.com/
mailto:corporate@oreilly.com

Credits
About the Author

Contributors

Acknowledgments

About the Author

Andrew Lockhart is originally from South Carolina but currently resides in northern

Colorado, where he spends his time trying to learn the black art of auditing

disassembled binaries and trying to keep from freezing to death. He holds a BS in

computer science from Colorado State University and has done security consulting

for small businesses in the area. When he's not writing, he currently works at a

Fortune 100 company. In his free time, he works on Snort-Wireless (http://snort-

wireless.org), a project intended to add wireless intrusion detection to the popular

open source IDS Snort.

http://snort-wireless.org/

Contributors

The following people contributed their hacks, writing, and inspiration to this book:

Oktay Altunergil is the founder of The Free Linux CD Project

(http://www.freelinuxcd.org) and one of the maintainers of Turk-PHP.com (a

Turkish PHP portal). He also works full-time as a Unix system administrator and

PHP programmer.

Michael D. (Mick) Bauer (http://mick.wiremonkeys.org) writes Linux Journal's

"Paranoid Penguin" security column. By day, he works to keep strangers out of

banks' computer networks.

Schuyler Erle (http://nocat.net) is a Free Software developer and activist. His

interests include collaborative cartography, wireless networking, software for

social and political change, and the Semantic Web. Schuyler is the lead

developer of NoCatAuth, the leading open source wireless captive portal.

Bob Fleck (http://www.securesoftware.com) is Director of Security Services at

Secure Software. He consults in the fields of secure development and wireless

security, and is a coauthor of O'Reilly's 802.11 Security book. The results of his

more recent investigations into Bluetooth security can be found at

http://bluetooth.shmoo.com.

Rob Flickenger (http://nocat.net) is a writer and editor for O'Reilly's Hacks

series. He currently spends his time hacking on various projects and promoting

community wireless networking.

Michael Lucas (http://www.blackhelicopters.org/~mwlucas) lives in a haunted

house in Detroit, Michigan, with his wife Liz, assorted rodents, and a multitude

of fish. He has been a pet wrangler, a librarian, and a security consultant, and

now works as a network engineer and system administrator with the Great

Lakes Technologies Group. He's the author of Absolute BSD, Absolute

OpenBSD, and Cisco Routers for the Desperate, and is currently preparing a

book about NetBSD.

Matt Messier (http://www.securesoftware.com) is Director of Engineering at

Secure Software and a security authority who has been programming for

nearly two decades. In addition to coauthoring the O'Reilly books Secure

Programming Cookbook for C and C++ and Network Security with OpenSSL,

Matt coauthored the Safe C String Library (SafeStr), XXL, RATS, and EGADS.

Ivan Ristic (http://www.modsecurity.org) is a web security specialist and the

author of mod_security, an open source intrusion detection and prevention

engine for web applications. He is a member of the OASIS Web Application

http://www.freelinuxcd.org/
http://mick.wiremonkeys.org/
http://nocat.net/
http://www.securesoftware.com/
http://bluetooth.shmoo.com/
http://nocat.net/
http://www.blackhelicopters.org/~mwlucas
http://www.securesoftware.com/
http://www.modsecurity.org/

Security Technical Committee, where he works on the standard for web

application protection.

John Viega (http://www.securesoftware.com/) is Chief Technology Officer and

Founder of Secure Software. He is also the coauthor of several books on

software security, including Secure Programming Cookbook for C and C++

(O'Reilly) and Building Secure Software (Addison-Wesley). John is responsible

for numerous software security tools, and he is the original author of Mailman,

the GNU mailing list manager.

http://www.securesoftware.com/

Acknowledgments

I would first like to thank the illustrious DJ Jackalope (aka Karen) for all of her

encouragement, support, and understanding throughout the writing of this book.

Without her, it would have languished in the doldrums, and I don't think I could

have done this book without her.

I'd also like to thank Nat Torkington for putting me in touch with Rob, my fearless

(and patient) editor for this book, as well as my parents for having the faith to let

me have time to tinker with computers and do silly things like read Phrack when I

was a kid; if not for that, I might have ended up doing something completely

different.

Preface
Nowhere is the term hacker more misconstrued than in the network security field.

This is understandable because the very same tools that network security

professionals use to probe the robustness of their own networks also can be used to

launch attacks on any machine on the Internet. The difference between system

administrators legitimately testing their own machines and a system cracker

attempting to gain unauthorized access isn't so much a question of techniques or

tools, but a matter of intent. After all, as with any powerful piece of technology, a

security tool isn't inherently good or bad�this determination depends entirely on

how it is used. The same hammer can be used to either build a wall or knock it

down.

The difference between "white hat" and "black hat" hackers isn't the tools or

techniques they use (or even the color of their hats), but their intent. The difference

is subtle but important. White hat hackers find that building secure systems

presents an interesting challenge, and their security can be truly tested only through

a thorough knowledge of how to subvert such systems. Black hat hackers (more

appropriately called crackers) pursue precisely the same knowledge, but without

regard for the people who built the systems or the servers they attack. They use

their knowledge to subvert these systems for their own personal gain, often to the

detriment of the systems they infiltrate.

Of course, tales of daring international techno-robberies and black-clad, cigarette-

smoking, laptop-wielding evil masterminds tend to sell better than simple tales of

the engineer who built a strong network, and so the term hacking has a bad

reputation in the popular press. They use it to refer to individuals who break into

systems or who wreak havoc using computers as their weapon. Among people who

solve problems, though, the term hack refers to a "quick-n-dirty" solution to a

problem, or a clever way to get something done. And the term hacker is taken very

much as a compliment, referring to someone as being creative, i.e., having the

technical chops to get things done. The Hacks series is an attempt to reclaim this

word, document the ways people are hacking (in a good way), and pass the hacker

ethic of creative participation on to the uninitiated. Seeing how others approach

systems and problems is often the quickest way to learn about a new technology.

Only by openly discussing security flaws and implementations can we hope to build

stronger systems.

Why Network Security Hacks?

Network Security Hacks is a grimoire of 100 powerful security techniques. This

volume demonstrates effective methods for defending your servers and networks

from a variety of devious and subtle attacks. Within this book are examples of how

to detect the presence (and track every keystroke) of network intruders, methods

for protecting your network and data using strong encryption, and even techniques

for laying traps for would-be system crackers. Many important security tools are

presented, as well as clever methods for using them to reveal real, useful

information about what is happening on your network.

How This Book Is Organized

Although each hack is designed to stand on its own, this book makes extensive use

of cross-referencing between hacks. If you find a reference to something you're

interested in while reading a particular hack, feel free to skip around and follow it

(much as you might while browsing the Web). The book itself is divided into several

chapters, organized by subject:

Chapter 1, Unix Host Security

As the old saying goes, Unix was designed to share information, not to protect

it. This old saw is no longer true with modern operating systems, where

security is an integral component to any server. Many new programs and

kernel features have been developed that provide a much higher degree of

control over what Unix-like operating systems can do. Chapter 1 demonstrates

advanced techniques for hardening your Linux, FreeBSD, or OpenBSD server.

Chapter 2, Windows Host Security

Microsoft Windows is used as a server platform in many organizations. As the

Windows platform is a common target for various attacks, administering these

systems can be challenging. This chapter covers many important steps that are

often overlooked by Windows administrators, including tightening down

permissions, auditing all system activity, and eliminating security holes that

are present in the default Windows installation.

Chapter 3, Network Security

Regardless of the operating system used by your servers, if your network is

connected to the Internet, it uses TCP/IP for communications. Networking

protocols can be subverted in a number of powerful and surprising ways,

leading to attacks that can range from simple denial of service to unauthorized

access with full privileges. This chapter demonstrates some tools and

techniques used to attack servers using the network itself, as well as methods

for preventing these attacks.

Chapter 4, Logging

Network security administrators live and die by the quality of their logs. If too

little information is tracked, intrusions can slip by unnoticed. If too much is

logged, attacks can be lost in the deluge of irrelevant information. Chapter 4

shows you how to balance the need for information with the need for brevity

by automatically collecting, processing, and protecting your system logs.

Chapter 5, Monitoring and Trending

As useful as system logs and network scans can be, they represent only a

single data point of information, relevant only to the instant that the events

were recorded. Without a history of activity on your network, you have no way

to establish a baseline for what is "normal," nor any real way to determine if

something fishy is going on. This chapter presents a number of tools and

methods for watching your network and services over time, allowing you to

recognize trends that will aid in future planning and enable you to tell at a

glance when something just isn't right.

Chapter 6, Secure Tunnels

How is it possible to maintain secure communications over networks as

untrustworthy as the Internet? The answer nearly always involves powerful

encryption and authentication techniques. Chapter 6 shows you how to

implement powerful VPN technologies, including IPSec, PPTP, and OpenVPN.

You will also find techniques for protecting services, using SSL, SSH, and

other strong encryption tools

Chapter 7, Network Intrusion Detection

How do you know when your network is under attack? While logs and historical

statistics can show you if something is out of sorts, there are tools designed to

notify you (or otherwise take action) immediately when common attacks are

detected. This chapter centers on the tremendously popular NIDS tool Snort

and presents many techniques and add-ons that unleash this powerful tool's

full potential. Also presented are methods for setting up your own "honeypot"

network to attract and confuse would-be system crackers.

Chapter 8, Recovery and Response

Even the most competent and careful network administrator will eventually

have to deal with successful security incidents. This chapter contains

suggestions on how to verify your system's integrity, preserve evidence for

later analysis, and track down the human being at the other end of undesirable

network traffic.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions,

pathnames, directories, daemons, programs, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,

types, classes, namespaces, methods, modules, properties, parameters, values,

objects, events, event handlers, XML tags, HTML tags, macros, the contents of

files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Color

The second color is used to indicate a cross-reference within the text.

The thermometer icons, found next to each hack, indicate the relative complexity of

the hack:

 beginner moderate expert

Using Code Examples

This book is here to help you get your job done. In general, you may use the code

in this book in your programs and documentation. You do not need to contact us

for permission unless you're reproducing a significant portion of the code. For

example, writing a program that uses several chunks of code from this book does

not require permission. Selling or distributing a CD-ROM of examples from O'Reilly

books does require permission. Answering a question by citing this book and

quoting example code does not require permission. Incorporating a significant

amount of example code from this book into your product's documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the

title, author, publisher, and ISBN. For example: "Network Security Hacks by Andrew

Lockhart. Copyright 2004 O'Reilly Media, Inc., 0-596-00643-8."

If you suspect your use of code examples falls outside fair use or the permission

given here, feel free to contact us at permissions@oreilly.com.

mailto:permissions@oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any

additional information. You can access this page at:

http://www.oreilly.com/catalog/netsechacks

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the

O'Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/netsechacks
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

http://hacks.oreilly.com/

Chapter 1. Unix Host Security
Hacks #1-20

Section 1. Secure Mount Points

Section 2. Scan for SUID and SGID Programs

Section 3. Scan For World- and Group-Writable Directories

Section 4. Create Flexible Permissions Hierarchies with POSIX ACLs

Section 5. Protect Your Logs from Tampering

Section 6. Delegate Administrative Roles

Section 7. Automate Cryptographic Signature Verification

Section 8. Check for Listening Services

Section 9. Prevent Services from Binding to an Interface

Section 10. Restrict Services with Sandboxed Environments

Section 11. Use proftp with a MySQL Authentication Source

Section 12. Prevent Stack-Smashing Attacks

Section 13. Lock Down Your Kernel with grsecurity

Section 14. Restrict Applications with grsecurity

Section 15. Restrict System Calls with Systrace

Section 16. Automated Systrace Policy Creation

Section 17. Control Login Access with PAM

Section 18. Restricted Shell Environments

Section 19. Enforce User and Group Resource Limits

Section 20. Automate System Updates

Hacks #1-20

Networking is all about connecting computers together, so it follows that a computer

network is no more secure than the machines that it connects. A single insecure

host can make lots of trouble for your entire network, as it can act as a tool for

reconnaissance or a strong base of attack if it is under the control of an adversary.

Firewalls, intrusion detection, and other advanced security measures are useless if

your servers offer easily compromised services. Before delving into the network part

of network security, you should first make sure that the machines you are

responsible for are as secure as possible.

This chapter offers many methods for reducing the risks involved in offering services

on a Unix-based system. Even though each of these hacks can stand on its own, it is

worth reading through this entire chapter. If you only implement one type of

security measure, you run the risk of all your preparation being totally negated once

an attacker figures out how to bypass it. Just as Fort Knox isn't protected by a

regular door with an ordinary dead bolt, no single security feature can ultimately

protect your servers. And the security measures you may need to take increase

proportionally to the value of what you're protecting.

As the old saying goes, security isn't a noun, it's a verb. That is, security is an active

process that must be constantly followed and renewed. Short of unplugging the

machine, there is no single action you can take to secure your machine. With that in

mind, consider these techniques as a starting point for building a secure server that

meets your particular needs.

Hack 1 Secure Mount Points

Use mount options to help prevent intruders from further escalating a

compromise.

The primary way of interacting with a Unix machine is through its filesystem. Thus,

when an intruder has gained access to a system, it is desirable to limit what he can

do with the files available to him. One way to accomplish this is with the use of

restrictive mount options.

A mount option is a flag that controls how the filesystem may be accessed. It is

passed to the operating system kernel's code when the filesystem is brought online.

Mount options can be used to prevent files from being interpreted as device nodes,

to disallow binaries from being executed, and to disallow the SUID bit from taking

affect (by using the nodev, noexec, and nosuid flags). Filesystems can also be

mounted read-only with the ro option.

These options are specified from the command line by running mount with the -o

flag. For example, if you have a separate partition for /tmp that is on the third

partition of your first IDE hard disk, you can mount with the nodev, noexec, and

nosuid flags, which are enabled by running the following command:

mount -o nodev,noexec,nosuid /dev/hda3 /tmp

An equivalent entry in your /etc/fstab would look something like this:

/dev/hda3 /tmp ext3 defaults,nodev,noexec,nosuid 1 2

By carefully considering your requirements and dividing up your storage into

multiple filesystems, you can utilize these mount options to increase the work that

an attacker will have to do in order to further compromise your system. A quick way

to do this is to first categorize your directory tree into areas that need write access

for the system to function and those that don't. You should consider using the read-

only flag on any part of the filesystem where the contents do not change regularly. A

good candidate for this might be /usr, depending on how often updates are made to

system software.

Obviously, many directories (such as /home) will need to be mounted as read-write.

However, it is unlikely that users on an average multiuser system will need to run

SUID binaries or create device files within their home directories. Therefore, a

separate filesystem, mounted with the nodev and nosuid options, could be created

to house the users' home directories. In addition, if you've determined that your

users will not need to execute programs stored in their home directories, you can

use the noexec mount option as well. Similar situations also arise when looking at

/tmp and /var, where it is highly unlikely that any process will legitimately need to

execute SUID or non-SUID binaries or access device files. This helps prevent the

possibility of an attacker leaving a Trojan horse in common directories, such as /tmp

or a user's home directory. The attacker may be able to install the program, but it

cannot actually run, with or without the proper chmod bits.

Note that services running in a [Hack #10] nodev is specified on the filesystem

running under the chroot. This is because device nodes such as /dev/log and

/dev/null must be available within the chroot() environment.

There are a number of ways that an attacker can still circumvent these mount

restrictions. For example, the noexec option on Linux can be bypassed by using

/lib/ld-linux.so to execute binaries residing on such filesystems. At first glance,

you'd think that this can be remedied by making ld-linux.so nonexecutable, but this

would render all dynamically linked binaries unexecutable. So, unless all of the

programs you rely on are statically linked (they're probably not), then the noexec

option is of little use in Linux. In addition, an attacker who has already gained root

privileges will not be significantly hampered by filesystems mounted with special

options, since these can often be remounted with the -o remount option. But by

using mount flags, you can easily limit the possible attacks available to a hostile

user before he gains root privileges.

Hack 2 Scan for SUID and SGID Programs

Quickly check for potential root-exploitable programs and backdoors.

One potential way for a user to escalate her privileges on a system is to exploit a

vulnerability in an SUID or SGID program. SUID and SGID are legitimately used

when programs need special permissions above and beyond those that are available

to the user who is running them. One such program is passwd. Simultaneously

allowing a user to change her password while not allowing any user to modify the

system password file means that the passwd program must be run with root

privileges. Thus the program has its SUID bit set, which causes it to be executed

with the privileges of the program file's owner. Similarly, when the SGID bit is set,

the program is executed with the privileges of the file's group owner.

Running ls -l on a binary that has its SUID bit set should look like this:

-r-s--x--x 1 root root 16336 Feb 13 2003 /usr/bin/passwd

Notice that instead of an execute bit (x) for the owner bits, it has an s. This signifies

an SUID file.

Unfortunately, a poorly written SUID or SGID binary can be used to quickly and

easily escalate a user's privileges. Also, an attacker who has already gained root

access may hide SUID binaries throughout your system in order to leave a backdoor

for future access. This leads us to the need for scanning systems for SUID and SGID

binaries. This is a simple process and can be done with the following command:

find / \(-perm -4000 -o -perm -2000 \) -type f -exec ls -la {} \;

One important thing to consider is whether an SUID program is in fact a shell script

rather than an executable, since it's trivial for someone to change an otherwise

innocuous script into a backdoor. Most operating systems will ignore any SUID or

SGID bits on a shell script, but if you want to find all SUID or SGID scripts on a

system, change the argument to the -exec option in the last command and add a

pipe so that the command reads:

find / \(-perm -4000 -o -perm -2000 \) \

 -type f -exec file {} \; | grep -v ELF

Now every time an SUID or SGID file is encountered, the file command will run

and determine what type of file is being examined. If it's an executable, grep will

filter it out; otherwise, it will be printed to the screen with some information about

what kind of file it is. Most operating systems use ELF-format executables, but if

you're running an operating system that doesn't (older versions of Linux used

a.out, and AIX uses XCOFF), you'll need to replace the ELF in the previous grep

command with the binary format used by your operating system and architecture. If

you're unsure of what to look for, run the file command on any binary executable,

and it will report the string you're looking for.

For example, here's an example of running file on a binary in Mac OS X:

$ file /bin/sh

/bin/sh: Mach-O executable ppc

To go one step further, you could even queue the command to run once a day using

cron and have it redirect the output to a file. For instance, this crontab entry would

scan for files that have either the SUID or SGID bits set, compare the current list to

the one from the day before, and then email the differences to the owner of the

crontab (make sure this is all on one line):

0 4 * * * find / \(-perm -4000 -o -perm -2000 \) -type f \

 > /var/log/sidlog.new &&

 diff /var/log/sidlog.new /var/log/sidlog &&

 mv /var/log/sidlog.new /var/log/sidlog

This example will also leave a current list of SUID and SGID files in /var/log/sidlog.

Hack 3 Scan For World- and Group-Writable Directories

Quickly scan for directories with loose permissions.

World- and group-writable directories present a problem: if the users of a system

have not set their umask properly, they will inadvertently create insecure files,

completely unaware of the implications. With this in mind, it seems it would be

good to scan for directories with loose permissions. Much like [Hack #2], this can

be accomplished by running the find command:

find / -type d \(-perm -g+w -o -perm -o+w \) -exec ls -lad {} \;

Any directories that are listed in the output should have the sticky bit set, which is

denoted by a t in the directory's permission bits. A world-writable directory with the

sticky bit set ensures that even though anyone may create files in the directory, they

may not delete or modify another user's files. If you see a directory in the output

that does not contain a sticky bit, consider whether it really needs to be world-

writable or whether the use of groups or ACLs [Hack #4] will work better for your

situation. If you really do need the directory to be world-writable, set the sticky bit

on it using chmod +t.

To get a list of the directories that don't have their sticky bit set, run this:

find / -type d \(-perm -g+w -o -perm -o+w \) \

 -not -perm -a+t -exec ls -lad {} \;

If you're using a system that creates a unique group for each user (e.g., you create

a user andrew, which in turn creates a group andrew as the primary group), you

may want to modify the commands to not scan for group-writable directories.

(Otherwise, you will get a lot of output that really isn't pertinent.) To do this, run

the command without the -perm -g+w portion.

Hack 4 Create Flexible Permissions Hierarchies with POSIX
ACLs

When Unix mode-based permissions just aren't enough, use an ACL.

Most of the time, the traditional Unix file permission system fits the bill just fine.

But in a highly collaborative environment with multiple people needing access to

files, this scheme can become unwieldy. Access control lists, otherwise known as

ACLs (pronounced to rhyme with "hackles"), are a feature that is relatively new to

the Linux operating system, but has been available in FreeBSD and Solaris for some

time. While ACLs do not inherently add "more security" to a system, they do reduce

the complexity of managing permissions. ACLs provide new ways to apply file and

directory permissions without resorting to the creation of unnecessary groups.

ACLs are stored as extended attributes within the filesystem metadata. As the name

implies, they allow you to define lists that either grant or deny access to a given file

based on the criteria you provide. However, ACLs do not abandon the traditional

permission system completely. ACLs may be specified for both users and groups and

are still separated into the realms of read, write, and execute access. In addition, a

control list may be defined for any user or group that does not correspond to any of

the user or group ACLs, much like the "other" mode bits of a file. Access control lists

also have what is called an ACL mask, which acts as a permission mask for all ACLs

that specifically mention a user and a group. This is similar to a umask, but not quite

the same. For instance, if you set the ACL mask to r--, any ACLs that pertain to a

specific user or group and are looser in permissions (e.g., rw-) will effectively

become r--. Directories also may contain a default ACL, which specifies the initial

ACLs of files and subdirectories created within them.

To modify or remove ACLs, use the setfacl command. To modify an ACL, the -m

option is used, followed by an ACL specification and a filename or list of filenames.

You can delete an ACL by using the -x option and specifying an ACL or list of ACLs.

There are three general forms of an ACL: one for users, another for groups, and one

for others. Let's look at them here:

User ACL

u:[user]:<mode>

Group ACL

g:[group]:<mode>

Other ACL

o:<mode>

Notice that in the user and group ACLs, the actual user and group names that the

ACL applies to are optional. If these are omitted, it means that the ACL will apply to

the base ACL, which is derived from the file's mode bits. Thus, if you modify these,

the mode bits will be modified and vice versa.

See for yourself by creating a file and then modifying its base ACL:

$ touch myfile

$ ls -l myfile

-rw-rw-r-- 1 andrew andrew 0 Oct 13 15:57 myfile

$ setfacl -m u::---,g::---,o:--- myfile

$ ls -l myfile

---------- 1 andrew andrew 0 Oct 13 15:57 myfile

From this example, you can also see that multiple ACLs can be listed by separating

them with commas.

You can also specify ACLs for an arbitrary number of groups or users:

$ touch foo

$ setfacl -m u:jlope:rwx,g:wine:rwx ,o:--- foo

$ getfacl foo

file: foo

owner: andrew

group: andrew

user::rw-

user:jlope:rwx

group::---

group:wine:rwx

mask::rwx

other::---

Now if you changed the mask to r--, the ACLs for jlope and wine would effectively

become r-- as well:

$ setfacl -m m:r-- foo

$ getfacl foo

file: foo

owner: andrew

group: andrew

user::rw-

user:jlope:rwx #effective:r--

group::---

group:wine:rwx #effective:r--

mask::r--

other::---

As mentioned earlier, directories can have default ACLs that will automatically be

applied to files that are created within the directory. Default ACLs are set by

prepending a d: to the ACL that you want to set:

$ mkdir mydir

$ setfacl -m d:u:jlope:rwx mydir

$ getfacl mydir

file: mydir

owner: andrew

group: andrew

user::rwx

group::---

other::---

default:user::rwx

default:user:jlope:rwx

default:group::---

default:mask::rwx

default:other::---

$ touch mydir/bar

$ getfacl mydir/bar

file: mydir/bar

owner: andrew

group: andrew

user::rw-

user:jlope:rwx #effective:rw-

group::---

mask::rw-

other::---

As you may have noticed from the previous examples, you can list ACLs by using

the getfacl command. This command is pretty straightforward and has only a few

options. The most useful is the -R option, which allows you to list ACLs recursively

and works very much like ls -R.

Hack 5 Protect Your Logs from Tampering

Use file attributes to prevent intruders from removing traces of their break-

in.

In the course of an intrusion, an attacker will more than likely leave telltale signs of

his actions in various system logs. This is a valuable audit trail that should be well

protected. Without reliable logs, it can be very difficult to figure out how the

attacker got in, or where the attack came from. This information is crucial in

analyzing the incident and then responding to it by contacting the appropriate

parties involved [Hack #100] . However, if the break-in attempt is successful and

the intruder gains root privileges, what's to stop him from removing the traces of

his misbehavior?

This is where file attributes come in to save the day (or at least make it a little

better). Both Linux and the BSDs have the ability to assign extra attributes to files

and directories. This is different from the standard Unix permissions scheme in that

the attributes set on a file apply universally to all users of the system, and they

affect file accesses at a much deeper level than file permissions or ACLs [Hack #4].

In Linux you can see and modify the attributes that are set for a given file by using

the lsattr and chattr commands, respectively. Under the BSDs, ls -lo can be used

to view the attributes, and chflags can be used to modify them. At the time of this

writing, file attributes in Linux are available only when using the ext2 and ext3

filesystems. There are also kernel patches available for attribute support in XFS and

reiserfs.

One useful attribute for protecting log files is append-only. When this attribute is

set, the file cannot be deleted, and writes are only allowed to append to the end of

the file.

To set the append-only flag under Linux, run this command:

chattr +a

filename

Under the BSDs, use this:

chflags sappnd

filename

See how the +a attribute works by creating a file and setting its append-only

attribute:

touch /var/log/logfile

echo "append-only not set" > /var/log/logfile

chattr +a /var/log/logfile

echo "append-only set" > /var/log/logfile

bash: /var/log/logfile: Operation not permitted

The second write attempt failed, since it would overwrite the file. However,

appending to the end of the file is still permitted:

echo "appending to file" >> /var/log/logfile

cat /var/log/logfile

append-only not set

appending to file

Obviously, an intruder who has gained root privileges could realize that file

attributes are being used and just remove the append-only flag from our logs by

running chattr -a. To prevent this, we need to disable the ability to remove the

append-only attribute. To accomplish this under Linux, use its capabilities

mechanism. Under the BSDs, use its securelevel facility.

The Linux capabilities model divides up the privileges given to the all-powerful root

account and allows you to selectively disable them. In order to prevent a user from

removing the append-only attribute from a file, we need to remove the

CAP_LINUX_IMMUTABLE capability. When present in the running system, this capability

allows the append-only attribute to be modified. To modify the set of capabilities

available to the system, we will use a simple utility called lcap

(http://packetstormsecurity.org/linux/admin/lcap-0.0.3.tar.bz2).

To unpack and compile the tool, run this command:

tar xvfj lcap-0.0.3.tar.bz2 && cd lcap-0.0.3 && make

Then, to disallow modification of the append-only flag, run:

./lcap CAP_LINUX_IMMUTABLE

./lcap CAP_SYS_RAWIO

The first command removes the ability to change the append-only flag, and the

second command removes the ability to do raw I/O. This is needed so that the

protected files cannot be modified by accessing the block device they reside on. It

also prevents access to /dev/mem and /dev/kmem, which would provide a loophole

for an intruder to reinstate the CAP_LINUX_IMMUTABLE capability. To remove these

capabilities at boot, add the previous two commands to your system startup scripts

(e.g., /etc/rc.local). You should ensure that capabilities are removed late in the boot

order, to prevent problems with other startup scripts. Once lcap has removed kernel

capabilities, they can be reinstated only by rebooting the system.

http://packetstormsecurity.org/linux/admin/lcap-0.0.3.tar.bz2

The BSDs accomplish the same thing through the use of securelevels. The

securelevel is a kernel variable that can be set to disallow certain functionality.

Raising the securelevel to 1 is functionally the same as removing the two previously

discussed Linux capabilities. Once the securelevel has been set to a value greater

than 0, it cannot be lowered. By default, OpenBSD will raise the securelevel to 1

when in multiuser mode. In FreeBSD, the securelevel is -1 by default.

To change this behavior, add the following line to /etc/sysctl.conf:

kern.securelevel=1

Before doing this, you should be aware that adding append-only flags to your log

files will most likely cause log rotation scripts to fail. However, doing this will greatly

enhance the security of your audit trail, which will prove invaluable in the event of

an incident.

Hack 6 Delegate Administrative Roles

Let others do your work for you without giving away root privileges.

The sudo utility can help you delegate some system responsibilities to other people,

without giving away full root access. It is a setuid root binary that executes

commands on an authorized user's behalf, after she has entered her current

password.

As root, run /usr/sbin/visudo to edit the list of users who can call sudo. The default

sudo list looks something like this:

root ALL=(ALL) ALL

Unfortunately, many system administrators tend to use this entry as a template and

grant unrestricted root access to all other admins unilaterally:

root ALL=(ALL) ALL

rob ALL=(ALL) ALL

jim ALL=(ALL) ALL

david ALL=(ALL) ALL

While this may allow you to give out root access without giving away the root

password, this method is truly useful only when all of the sudo users can be

completely trusted. When properly configured, the sudo utility provides tremendous

flexibility for granting access to any number of commands, run as any arbitrary uid.

The syntax of the sudo line is:

user machine=(effective user) command

The first column specifies the sudo user. The next column defines the hosts in which

this sudo entry is valid. This allows you to easily use a single sudo configuration

across multiple machines.

For example, suppose you have a developer who needs root access on a

development machine, but not on any other server:

peter beta.oreillynet.com=(ALL) ALL

The next column (in parentheses) specifies the effective user that may run the

commands. This is very handy for allowing users to execute code as users other than

root:

peter lists.oreillynet.com=(mailman) ALL

Finally, the last column specifies all of the commands that this user may run:

david ns.oreillynet.com=(bind) /usr/sbin/rndc,/usr/sbin/named

If you find yourself specifying large lists of commands (or, for that matter, users or

machines), then take advantage of sudo's Alias syntax. An Alias can be used in place

of its respective entry on any line of the sudo configuration:

User_Alias ADMINS=rob,jim,david

User_Alias WEBMASTERS=peter,nancy

Runas_Alias DAEMONS=bind,www,smmsp,ircd

Host_Alias WEBSERVERS=www.oreillynet.com,www.oreilly.com,www.perl.com

Cmnd_Alias PROCS=/bin/kill,/bin/killall,/usr/bin/skill,/usr/bin/top

Cmnd_Alias APACHE=/usr/local/apache/bin/apachectl

WEBMASTERS WEBSERVERS=(www) APACHE

ADMINS ALL=(DAEMONS) ALL

It is also possible to specify system groups in place of the user specification, to allow

any user who belongs to that group to execute commands. Just preface the group

with a %, like this:

%wwwadmin WEBSERVERS=(www) APACHE

Now any user who is part of the wwwadmin group can execute apachectl as the www

user on any of the web server machines.

One very useful feature is the NOPASSWD: flag. When present, the user won't have to

enter a password before executing the command:

rob ALL=(ALL) NOPASSWD: PROCS

This will allow the user rob to execute kill, killall, skill, and top on any machine, as

any user, without entering a password.

Finally, sudo can be a handy alternative to su for running commands at startup out

of the system rc files:

(cd /usr/local/mysql; sudo -u mysql ./bin/safe_mysqld &)

sudo -u www /usr/local/apache/bin/apachectl start

For that to work at boot time, the default line root ALL=(ALL) ALL must be present.

Use sudo with the usual caveats that apply to setuid binaries. Particularly if you

allow sudo to execute interactive commands (like editors) or any sort of compiler or

interpreter, you should assume that it is possible that the sudo user will be able to

execute arbitrary commands as the effective user. Still, under most circumstances

this isn't a problem, and it's certainly preferable to giving away undue access to root

privileges.

�Rob Flickenger

Hack 7 Automate Cryptographic Signature Verification

Use scripting and key servers to automate the chore of checking software authenticity.

One of the most important things you can do for the security of your system is to be familiar with the software you are installing.

You probably will not have the time, knowledge, or resources to actually go through the source code for all of the software that yo

are installing. However, verifying that the software you are compiling and installing is what the authors intended it to be can go a

long way toward preventing the widespread distribution of Trojan horses. Recently, several pivotal pieces of software (such as

tcpdump, LibPCap, Sendmail, and OpenSSH) have had Trojaned versions distributed. Since this is an increasingly popular vector fo

attack, verifying your software is critically important.

Why is this even an issue? Unfortunately, it takes a little bit of effort to verify software before installing it. Either through laziness

ignorance, many system administrators overlook this critical step. This is a classic example of "false" laziness, as it will likely lead t

more work for the sysadmin in the long run. This problem is difficult to solve because it relies on the programmers and distributor

to get their acts together. Then there's the laziness aspect: many times, software packages don't even come with a signature to us

for verifying the legitimacy of what you've downloaded. Often, signatures are available right along with the source code, but in

order to verify the code, you must then hunt through the site for the public key that was used to create the signature. After findin

the public key, you have to download it, verify that the key is genuine, add it to your keyring, and finally check the signature of th

code.

Here is what this would look like when checking the signature for Version 1.3.28 of the Apache web server using GnuPG

(http://www.gnupg.org):

gpg -import KEYS

gpg -verify apache_1.3.28.tar.gz.asc apache_1.3.28.tar.gz

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5

gpg: Good signature from "Jim Jagielski <jim@zend.com>"

gpg: aka "Jim Jagielski <jim@apache.org>"

gpg: aka "Jim Jagielski <jim@jaguNET.com>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Fingerprint: 8B39 757B 1D8A 994D F243 3ED5 8B3A 601F 08C9 75E5

As you can see, it's not terribly difficult to do, but this step is often overlooked when you are in a hurry. This is where this hack

comes to the rescue. We'll use a little bit of shell scripting and what are known as key servers to reduce the number of steps to

perform this process.

Key servers are a part of a public-key cryptography infrastructure that allows you to retrieve keys from a trusted third party. A nice

feature of GnuPG is its ability to query key servers for a key ID and to download the result into a local keyring. To figure out which

key ID to ask for, we rely on the fact that the error message generated by GnuPG tells us which key ID it was unable to find locally

when trying to verify the signature.

In the previous example, if the key that GnuPG was looking for had not been imported prior to verifying the signature, it would

have generated an error like this:

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5

gpg: Can't check signature: public key not found

The following script takes advantage of that error:

#!/bin/sh

VENDOR_KEYRING=vendors.gpg

KEYSERVER=search.keyserver.net

KEYID="0x`gpg --verify $1 $2 2>&1 | grep 'key ID' | awk '{print $NF}'`"

gpg --no-default-keyring --keyring $VENDOR_KEYRING --recv-key \

 --keyserver $KEYSERVER $KEYID

gpg --keyring $VENDOR_KEYRING --verify $1 $2

http://www.gnupg.org/

The first line of the script specifies the keyring in which the result from the key server query will be stored. You could use

pubring.gpg (which is the default keyring for GnuGP), but using a separate file will make managing vendor public keys easier. The

second line of the script specifies which key server to query (the script uses search.keyserver.net; another good one is pgp.mit.edu

The third line attempts (and fails) to verify the signature without first consulting the key server. It then uses the key ID it saw in th

error, and prepends an 0x in order to query the key server on the next line. Finally, GnuPG attempts to verify the signature, and

specifies the keyring in which the query result was stored.

This script has shortened the verification process by eliminating the need to search for and import the public key that was used to

generate the signature. Going back to the example of verifying the Apache 1.3.28 source code, you can see how much more

convenient it is to verify the package's authenticity:

checksig apache_1.3.28.tar.gz.asc apache_1.3.28.tar.gz

gpg: requesting key 08C975E5 from HKP keyserver search.keyserver.net

gpg: key 08C975E5: public key imported

gpg: Total number processed: 1

gpg: imported: 1

gpg: Warning: using insecure memory!

gpg: please see http://www.gnupg.org/faq.html for more information

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5

gpg: Good signature from "Jim Jagielski <jim@zend.com>"

gpg: aka "Jim Jagielski <jim@apache.org>"

gpg: aka "Jim Jagielski <jim@jaguNET.com>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Fingerprint: 8B39 757B 1D8A 994D F243 3ED5 8B3A 601F 08C9 75E5

With this small and quick script, both the number steps needed to verify a source package and the amount of time needed have

been reduced. As with any good shell script, it should help you to be lazy in a good way: by doing more work properly, but with le

effort on your part.

file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/search.keyserver.net
file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/pgp.mit.edu

Hack 8 Check for Listening Services

Find out whether unneeded services are listening and looking for possible

backdoors.

One of the first things that should be done after a fresh operating system install is to

see what services are running, and remove any unneeded services from the system

startup process. You could use a port scanner (such as nmap [Hack #42]) and run

it against the host, but if one didn't come with the operating system install, you'll

likely have to connect your fresh (and possibly insecure) machine to the network to

download one. Also, nmap can be fooled if the system is using firewall rules. With

proper firewall rules, a service can be completely invisible to nmap unless certain

criteria (such as the source IP address) also match. When you have shell access to

the server itself, it is usually more efficient to find open ports using programs that

were installed with the operating system. One program that will do what we need is

netstat, a program that will display various network-related information and

statistics.

To get a list of listening ports and their owning processes under Linux, run this:

netstat -luntp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1679/sshd

udp 0 0 0.0.0.0:68 0.0.0.0:* 1766/dhclient

From the output, you can see that this machine is probably a workstation, since it

just has a DHCP client running along with an SSH daemon for remote access. The

ports in use are listed after the colon in the Local Address column (22 for sshd and

68 for dhclient). The absence of any other listening processes means that this is

probably a workstation, and not a network server.

Unfortunately, the BSD version of netstat does not let us list the processes and the

process IDs (PIDs) that own the listening port. Nevertheless, the BSD netstat

command is still useful for listing the listening ports on your system.

To get a list of listening ports under FreeBSD, run this command:

netstat -a -n | egrep 'Proto|LISTEN'

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 *.587 *.* LISTEN

tcp4 0 0 *.25 *.* LISTEN

tcp4 0 0 *.22 *.* LISTEN

tcp4 0 0 *.993 *.* LISTEN

tcp4 0 0 *.143 *.* LISTEN

tcp4 0 0 *.53 *.* LISTEN

Again, the ports in use are listed in the Local Address column. Many seasoned

system administrators have memorized the common port numbers for popular

services, and can see that this server is running SSH, SMTP, DNS, IMAP, and

IMAP+SSL services. If you are ever in doubt about which services typically run on a

given port, either eliminate the -n switch from netstat (which tells netstat to use

names but can take much longer to run when looking up DNS addresses) or

manually grep the /etc/services file:

grep -w 993 /etc/services

imaps 993/udp # imap4 protocol over TLS/SSL

imaps 993/tcp # imap4 protocol over TLS/SSL

Also notice that, unlike the output of netstat on Linux, we don't get the PIDs of the

daemons themselves. You might also notice that no UDP ports were listed for DNS.

This is because UDP sockets do not have a LISTEN state in the same sense that TCP

sockets do. In order to display UDP sockets, you must add udp4 to the argument for

egrep, thus making it 'Proto|LISTEN|udp4'. However, due to the way UDP works, not

all UDP sockets will necessarily be associated with a daemon process.

Under FreeBSD, there is another command that will give us just what we want. The

sockstat command performs only a small subset of what netstat can do, and is

limited to just listing information on both Unix domain sockets and Inet sockets.

To get a list of listening ports and their owning processes with sockstat, run this

command:

sockstat -4 -l

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

root sendmail 1141 4 tcp4 *:25 *:*

root sendmail 1141 5 tcp4 *:587 *:*

root sshd 1138 3 tcp4 *:22 *:*

root inetd 1133 4 tcp4 *:143 *:*

root inetd 1133 5 tcp4 *:993 *:*

named named 1127 20 tcp4 *:53 *:*

named named 1127 21 udp4 *:53 *:*

named named 1127 22 udp4 *:1351 *:*

Once again, we see that sshd, SMTP, DNS, IMAP, and IMAP+SSL services are running,

but now we have the process that owns the socket plus its PID. We can now see that

the IMAP services are being spawned from inetd instead of standalone daemons, and

that sendmail and named are providing the SMTP and DNS services.

For most other Unix-like operating systems you can use the lsof utility

(http://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof/). lsof is short for "list open

files" and, as the name implies, allows you to list files that are open on a system, in

addition to the processes and PIDs that have them open. Since sockets and files

work the same way under Unix, lsof can also be used to list open sockets. This is

done with the -i command-line option.

To get a list of listening ports and the processes that own them using lsof, run this

command:

lsof -i -n | egrep 'COMMAND|LISTEN'

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

named 1127 named 20u IPv4 0xeb401dc0 0t0 TCP *:domain (LISTEN)

inetd 1133 root 4u IPv4 0xeb401ba0 0t0 TCP *:imap (LISTEN)

inetd 1133 root 5u IPv4 0xeb401980 0t0 TCP *:imaps (LISTEN)

sshd 1138 root 3u IPv4 0xeb401760 0t0 TCP *:ssh (LISTEN)

sendmail 1141 root 4u IPv4 0xeb41b7e0 0t0 TCP *:smtp (LISTEN)

sendmail 1141 root 5u IPv4 0xeb438fa0 0t0 TCP *:submission (LISTEN)

Again, you can change the argument to egrep to display UDP sockets. However, this

time use UDP instead of udp4, which makes the argument 'COMMAND|LISTEN|UDP'. As

mentioned earlier, not all UDP sockets will necessarily be associated with a daemon

process.

http://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof/

Hack 9 Prevent Services from Binding to an Interface

Keep services from listening on a port instead of firewalling them.

Sometimes you might want to limit a service to listen on only a specific interface.

For instance, Apache [Hack #50] can be configured to listen on a specific interface

as opposed to all available interfaces. You can do this by using the Listen directive

in your configuration file and specifying the IP address of the interface:

Listen 192.168.0.23:80

If you use VirtualHost entries, you can specify interfaces to bind to on a per-virtual-

host basis:

<VirtualHost 192.168.0.23>

...

</VirtualHost>

You may even have services that are listening on a TCP port but don't need to be.

Database servers such as MySQL are often used in conjunction with Apache, and are

frequently set up to coexist on the same server when used in this way. Connections

that come from the same machine that MySQL is installed on use a domain socket in

the filesystem for communications. Therefore, you don't need to have MySQL

listening on a TCP socket. To do this, you can either use the --skip-networking

command-line option when starting MySQL or specify it in the [mysqld] section of

your my.cnf file:

[mysqld]

...

skip-networking

...

Another program that you'll often find listening on a port is your X11 server, which

listens on TCP port 6000 by default. This port is traditionally used to enable remote

clients to connect to your X11 server so they can draw their windows and accept

keyboard and mouse input; however, with the advent of SSH and X11 forwarding,

this really isn't needed anymore. With X11 forwarding enabled in ssh, any client that

needs to connect to your X11 server will be tunneled through your SSH connection

and will bypass the listening TCP port when connecting to your X11 server. To get

your X Windows server to stop listening on this port, all you need to do is add -

nolisten tcp to the command that is used to start the server. This can be tricky,

�

though�figuring out which file controls how the server is started can be a daunting

task. Usually, you can find what you're looking for in /etc/X11.

If you're using gdm, open your gdm.conf and look for a line similar to this one:

command=/usr/X11R6/bin/X

Then just add -nolisten tcp to the end of the line.

If you're using xdm, look for a file called Xservers and make sure it contains a line

similar to this:

:0 local /usr/X11R6/bin/X -nolisten tcp

Alternatively, if you're not using a managed display and instead you're using startx

or a similar command to start your X11 server, you can just add -nolisten tcp to

the end of your startx command. To be sure that it is passed to the X server

process, start it after an extra set of hyphens:

$ startx -- -nolisten tcp

Once you start X, fire up a terminal and see what is listening using lsof or netstat

[Hack #8]. You should no longer see anything bound to port 6000.

Hack 10 Restrict Services with Sandboxed Environments

Mitigate system damage by keeping service compromises contained.

Sometimes keeping up with the latest patches just isn't enough to prevent a break-

in. Often, a new exploit will circulate in private circles long before an official advisory

is issued, during which time your servers may be open to unexpected attack. With

this in mind, it's wise to take extra preventative measures to contain the aftermath

of a compromised service. One way to do this is to run your services in sandbox

environments. Ideally, this lets the service be compromised while minimizing the

effects on the overall system.

Most Unix and Unix-like systems include some sort of system call or other

mechanism for sandboxing that offers various levels of isolation between the host

and the sandbox. The least restrictive and easiest to set up is a chroot()

environment, which is available on nearly all Unix and Unix-like systems. In addition

to chroot(), FreeBSD includes another mechanism called jail(), which provides a

few more restrictions beyond those provided by chroot().

chroot() very simply changes the root directory of a process and all of its children.

While this is a powerful feature, there are many caveats to using it. Most

importantly, there should be no way for anything running within the sandbox to

change its effective UID (EUID) to 0, which is root's UID. Naturally, this implies that

you don't want to run anything as root within the jail. If an attacker is able to gain

root privileges within the sandbox, then all bets are off. While the attacker will not

be able to directly break out of the sandbox environment, it does not prevent him

from running functions inside the exploited processes' address space that will let

him break out. There are many ways to break out of a chroot() sandbox. However,

they all rely on being able to get root privileges within the sandboxed environment.

The Achilles heel of chroot() is possession of UID 0 inside the sandbox.

There are a few services that support chroot() environments by calling the function

within the program itself, but many services do not. To run these services inside a

sandboxed environment using chroot(), we need to make use of the chroot

command. The chroot command simply calls chroot() with the first command-line

argument and attempts to execute the program specified in the second argument. If

the program is a statically linked binary, all you have to do is copy the program to

somewhere within the sandboxed environment; but if the program is dynamically

linked, you will need to copy all of its supporting libraries to the environment as

well.

See how this works by setting up bash in a chroot() environment. First we'll try to

run chroot without copying any of the libraries bash needs:

mkdir -p /chroot_test/bin

cp /bin/bash /chroot_test/bin/

chroot /chroot_test /bin/bash

chroot: /bin/bash: No such file or directory

Now we'll find out what libraries bash needs, which you can do with the ldd

command, and attempt to run chroot again:

ldd /bin/bash

libtermcap.so.2 => /lib/libtermcap.so.2 (0x4001a000)

libdl.so.2 => /lib/libdl.so.2 (0x4001e000)

libc.so.6 => /lib/tls/libc.so.6 (0x42000000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

mkdir -p chroot_test/lib/tls && \

> (cd /lib; \

> cp libtermcap.so.2 libdl.so.2 ld-linux.so.2 /chroot_test/lib; \

> cd tls; cp libc.so.6 /chroot_test/lib/tls)

chroot /chroot_test /bin/bash

bash-2.05b#

bash-2.05b# echo /*

/bin /lib

Setting up a chroot environment mostly involves trial and error in getting

permissions right and all of the library dependencies in order. Be sure to consider

the implications of having other programs such as mknod or mount available in the

chroot environment. If these were available, the attacker could possibly create

device nodes to access memory directly or to remount filesystems, thus breaking

out of the sandbox and gaining total control of the overall system. This threat can

be mitigated by putting the directory on a filesystem mounted with options that

prohibit the use of device files (as in [Hack #1]), but that isn't always convenient.

It is advisable to make as many of the files and directories in the chrooted directory

as possible owned by root and writable only by root, in order to make it impossible

for a process to modify any supporting files (this includes files such as libraries and

configuration files). In general it is best to keep permissions as restrictive as

possible, and to relax them only when necessary (for example, if the permissions

prevent the daemon from working properly).

The best candidates for a chroot() environment are services that do not need root

privileges at all. For instance, MySQL listens for remote connections on port 3306 by

default. Since this port is above 1024, mysqld can be started without root privileges

and therefore doesn't pose the risk of being used to gain root access. Other

daemons that need root privileges can include an option to drop these privileges

after completing all the operations for which it needs root access (e.g., binding to a

port below 1024), but care should be taken to ensure that the program drops its

privileges correctly. If a program uses seteuid() rather than setuid() to drop its

privileges, it is still possible to gain root access when exploited by an attacker. Be

sure to read up on current security advisories for programs that will run only with

root privileges.

You might think that simply not putting compilers, a shell, or utilities such as

mknod in the sandbox environment may protect them in the event of a root

compromise within the restricted environment. In reality, attackers can accomplish

the same functionality by changing their code from calling system("/bin/sh") to

calling any other C library function or system call that they desire. If you can mount

the filesystem that the chrooted program runs from using the read-only flag [Hack

#1], you can make it more difficult for attackers to install their own code, but this

is still not quite bulletproof. Unless the daemon you need to run within the

environment can meet the criteria discussed earlier, you might want to look into

using a more powerful sandboxing mechanism.

One such mechanism is available under FreeBSD and is implemented through the

jail() system call. jail() provides many more restrictions in isolating the sandbox

environment from the host system and provides additional features, such as

assigning IP addresses from virtual interfaces on the host system. Using this

functionality, you can create a full virtual server or just run a single service inside the

sandboxed environment.

Just as with chroot(), the system provides a jail command that uses the jail()

system call. The basic form of the jail command is:

jail

new root hostname ipaddr command

where ipaddr is the IP address of the machine on which the jail is running. Try it out

by running a shell inside a jail:

mkdir -p /jail_test/bin

cp /bin/sh /jail_test/sh

jail /jail_test jail_test 192.168.0.40 /bin/sh

echo /*

/bin

This time, no libraries needed to be copied, because FreeBSD's /bin/sh is statically

linked.

On the opposite side of the spectrum, we can build a jail that can function as a

nearly full-function virtual server with its own IP address. The steps to do this

basically involve building FreeBSD from source and specifying the jail directory as

the install destination.

You can do this by running the following commands:

mkdir /jail_test

cd /usr/src

make world DESTDIR=/jail_test

cd /etc && make distribution DESTDIR=/jail_test -DNO_MAKEDEV_RUN

cd /jail_test/dev && sh MAKEDEV jail

cd /jail_test && ln -s dev/null kernel

However, if you're planning to run just one service from within the jail, this is

definitely overkill. Note that in the real world you'll most likely need to create

/dev/null and /dev/log device nodes in your sandbox environment for most daemons

to work correctly.

Hack 11 Use proftp with a MySQL Authentication Source

Make sure that your database system's OS is running as efficiently as

possible with these tweaks.

proftpd is a powerful FTP daemon with a configuration syntax much like Apache. It

has a whole slew of options not available in most FTP daemons, including ratios,

virtual hosting, and a modularized design that allows people to write their own

modules.

One such module is mod_sql, which allows proftpd to use a SQL database as its

back-end authentication source. Currently, mod_sql supports MySQL and

PostgreSQL. This can be a good way to help lock down access to your server, as

inbound users will authenticate against the database (and therefore not require an

actual shell account on the server). In this hack, we'll get proftpd authenticating

against a MySQL database.

First, download and build the source to proftpd and mod_sql:

~$ bzcat proftpd-1.2.6.tar.bz2 | tar xf -

~/proftpd-1.2.6/contrib$ tar zvxf ../../mod_sql-4.08.tar.gz

~/proftpd-1.2.6/contrib$ cd ..

~/proftpd-1.2.6$./configure --with-modules=mod_sql:mod_sql_mysql \

--with-includes=/usr/local/mysql/include/ \

--with-libraries=/usr/local/mysql/lib/

(Naturally, substitute the path to your mySQL install, if it isn't in /usr/local/mysql/.)

Now, build the code and install it:

rob@catlin:~/proftpd-1.2.6$ make && sudo make install

Next, create a database for proftpd to use (assuming that you already have mysql

up and running):

$ mysqladmin create proftpd

Then, permit read-only access to it from proftpd:

$ mysql -e "grant select on proftpd.* to proftpd@localhost \

 identified by 'secret';"

Create two tables in the database, with this schema:

CREATE TABLE users (

userid varchar(30) NOT NULL default '',

password varchar(30) NOT NULL default '',

uid int(11) default NULL,

gid int(11) default NULL,

homedir varchar(255) default NULL,

shell varchar(255) default NULL,

UNIQUE KEY uid (uid),

UNIQUE KEY userid (userid)

) TYPE=MyISAM;

CREATE TABLE groups (

groupname varchar(30) NOT NULL default '',

gid int(11) NOT NULL default '0',

members varchar(255) default NULL

) TYPE=MyISAM;

One quick way to create the tables is to save this schema to a file called

proftpd.schema and run a command like mysql proftpd < proftpd.schema.

Now we need to tell proftpd to use this database for authentication. Add the

following lines to /usr/local/etc/proftpd.conf:

SQLConnectInfo proftpd proftpd secret

SQLAuthTypes crypt backend

SQLMinUserGID 111

SQLMinUserUID 111

The SQLConnectInfo line takes the form database user password. You could also

specify a database on another host (even on another port) with something like:

SQLConnectInfo proftpd@dbhost:5678 somebody somepassword

The SQLAuthTypes line lets you create users with passwords stored in the standard

Unix crypt format, or mysql's PASSWORD() function. Be warned that if you're using

mod_sql's logging facilities, the password may be exposed in plain text, so keep

those logs private.

The SQLAuthTypes line as specified won't allow blank passwords; if you need that

functionality, also include the empty keyword. The SQLMinUserGID and

SQLMinUserUID lines specify the minimum group and user ID that proftpd will permit

on login. It's a good idea to make this greater than 0 (to prohibit root logins), but it

should be as low as you need to allow proper permissions in the filesystem. On this

system, we have a user and group called www, with both its uid and gid set to 111.

As we'll want web developers to be able to log in with these permissions, we'll need

to set the minimum values to 111.

Finally, we're ready to create users in the database. This will create the user jimbo,

with effective user rights as www/www, and dump him in the

/usr/local/apache/htdocs/ directory at login:

mysql -e "insert into users values ('jimbo',PASSWORD('sHHH'),'111', \

 '111', '/usr/local/apache/htdocs','/bin/bash');" proftpd

The password for jimbo is encrypted with mysql's PASSWORD() function before being

stored. The /bin/bash line is passed to proftpd to pass proftpd's RequireValidShell

directive. It has no bearing on granting actual shell access to the user jimbo.

At this point, you should be able to fire up proftpd and log in as user jimbo, with a

password of sHHH. If you are having trouble getting connected, try running proftpd

in the foreground with debugging on, like this:

proftpd -n -d 5

Watch the messages as you attempt to connect, and you should be able to track

down the source of difficulty. In my experience, it's almost always due to a failure to

set something properly in proftpd.conf, usually regarding permissions.

The mod_sql module can do far more than I've shown here; it can connect to

existing mysql databases with arbitrary table names, log all activity to the database,

modify its user lookups with an arbitrary WHERE clause, and much more.

See Also

The mod_sql home page at

http://www.lastditcheffort.org/~aah/proftpd/mod_sql/

The proftpd home page at http://www.proftpd.org/

�Rob Flickenger (Linux Server Hacks)

http://www.lastditcheffort.org/~aah/proftpd/mod_sql/
http://www.proftpd.org/

Hack 12 Prevent Stack-Smashing Attacks

Learn how to prevent stack-based buffer overflows.

In C and C++, memory for local variables is allocated in a chunk of memory called

the stack. Information pertaining to the control flow of a program is also maintained

on the stack. If an array is allocated on the stack and that array is overrun (that is,

more values are pushed into the array than the available space provides), an

attacker can overwrite the control flow information that is also stored on the stack.

This type of attack is often referred to as a stack-smashing attack.

Stack-smashing attacks are a serious problem, since an otherwise innocuous service

(such as a web server or FTP server) can be made to execute arbitrary commands.

Several technologies have been developed that attempt to protect programs against

these attacks. Some are implemented in the compiler, such as IBM's ProPolice

(http://www.trl.ibm.com/projects/security/ssp/) and the Stackguard

(http://www.immunix.org/stackguard.html) versions of GCC. Others are dynamic

runtime solutions, such as LibSafe

(http://www.research.avayalabs.com/project/libsafe/). While recompiling the source

gets to the heart of the buffer overflow attack, runtime solutions can protect

programs when the source isn't available or recompiling simply isn't feasible.

All of the compiler-based solutions work in much the same way, although there are

some differences in the implementations. They work by placing a "canary" (which is

typically some random value) on the stack between the control flow information and

the local variables. The code that is normally generated by the compiler to return

from the function is modified to check the value of the canary on the stack; if it is

not what it is supposed to be, the program is terminated immediately.

The idea behind using a canary is that an attacker attempting to mount a stack-

smashing attack will have to overwrite the canary to overwrite the control flow

information. By choosing a random value for the canary, the attacker cannot know

what it is and thus cannot include it in the data used to "smash" the stack.

When a program is distributed in source form, the developer of the program cannot

enforce the use of StackGuard or ProPolice, because they are both nonstandard

extensions to the GCC compiler. It is the responsibility of the person compiling the

program to make use of one of these technologies.

For Linux systems, Avaya Labs's LibSafe technology is not implemented as a

compiler extension, but instead takes advantage of a feature of the dynamic loader

that causes a dynamic library to be preloaded with every executable. Using LibSafe

does not require the source code for the programs it protects, and it can be

deployed on a system-wide basis.

http://www.trl.ibm.com/projects/security/ssp/
http://www.immunix.org/stackguard.html
http://www.research.avayalabs.com/project/libsafe/

LibSafe replaces the implementation of several standard functions that are known to

be vulnerable to buffer overflows, such as gets(), strcpy(), and scanf(). The

replacement implementations attempt to compute the maximum possible size of a

statically allocated buffer used as a destination buffer for writing, using a GCC built-

in function that returns the address of the frame pointer. That address is normally

the first piece of information on the stack following local variables. If an attempt is

made to write more than the estimated size of the buffer, the program is

terminated.

Unfortunately, there are several problems with the approach taken by LibSafe. First,

it cannot accurately compute the size of a buffer; the best it can do is limit the size

of the buffer to the difference between the start of the buffer and the frame pointer.

Second, LibSafe's protections will not work with programs that were compiled using

the -fomit-frame-pointer flag to GCC, an optimization that causes the compiler not

to put a frame pointer on the stack. Although relatively useless, this is a popular

optimization for programmers to employ. Finally, LibSafe will not work on SUID

binaries without static linking or a similar trick.

In addition to providing protection against conventional stack-smashing attacks, the

newest versions of LibSafe also provide some protection against format-string

attacks. The format-string protection also requires access to the frame pointer

because it attempts to filter out arguments that are not pointers into either the

heap or the local variables on the stack.

In addition to user-space solutions, you can also opt to patch your kernel to use

nonexecutable stacks and detect buffer overflow attacks. We'll do just that in [Hack

#13] .

Hack 13 Lock Down Your Kernel with grsecurity

Harden your system against attacks with the grsecurity kernel patch.

Hardening a Unix system can be a difficult process. It typically involves setting up all

the services that the system will run in the most secure fashion possible, as well as

locking down the system to prevent local compromises. However, putting effort into

securing the services that you're running does little for the rest of the system and

for unknown vulnerabilities. Luckily, even though the standard Linux kernel provides

few features for proactively securing a system, there are patches available that can

help the enterprising system administrator do so. One such patch is grsecurity

(http://www.grsecurity.net).

grsecurity started out as a port of the OpenWall patch (http://www.openwall.com)

to the 2.4.x series of Linux kernels. This patch added features such as nonexecutable

stacks, some filesystem security enhancements, restrictions on access to /proc, as

well as some enhanced resource limits. These features helped to protect the system

against stack-based buffer overflow attacks, prevented filesystem attacks involving

race conditions on files created in /tmp, limited a user to only seeing his own

processes, and even enhanced Linux's resource limits to perform more checks. Since

its inception, grsecurity has grown to include many features beyond those provided

by the OpenWall patch. grsecurity now includes many additional memory address

space protections to prevent buffer overflow exploits from succeeding, as well as

enhanced chroot() jail restrictions, increased randomization of process and IP IDs,

and increased auditing features that enable you to track every process executed on a

system. grsecurity adds a sophisticated access control list (ACL) system that makes

use of Linux's capabilities system. This ACL system can be used to limit the

privileged operations that individual processes are able to perform on a case-by-case

basis.

Configuration of ACLs is handled through the gradm utility. If you already have

grsecurity installed on your machine, feel free to skip ahead to [Hack #14] .

To compile a kernel with grsecurity, you will need to download the patch that

corresponds to your kernel version and apply it to your kernel using the patch

utility.

For example, if you are running Linux 2.4.24:

cd /usr/src/linux-2.4.24

patch -p1 < ~andrew/grsecurity-1.9.13-2.4.24.patch

While the command is running, you should see a line for each kernel source file that

is being patched. After the command has finished, you can make sure that the patch

applied cleanly by looking for any files that end in .rej. The patch program creates

http://www.grsecurity.net/
http://www.openwall.com/

these when it cannot apply the patch cleanly to a file. A quick way to see if there are

any .rej files is to use the find command:

find ./ -name *.rej

If there are any rejected files, they will be listed on the screen. If the patch applied

cleanly, you should be returned back to the shell prompt without any additional

output.

After the patch has been applied, you can configure the kernel to enable grsecurity's

features by running make config to use text prompts, make menuconfig for a curses-

based interface, or make xconfig to use a Tk-based GUI. If you went the graphical

route and used make xconfig, you should then see a dialog similar to Figure 1-1. If

you ran make menuconfig or make config, the relevant kernel options have the same

name as the menu options described in this example.

Figure 1-1. Linux kernel configuration after the grsecurity patch has

been applied

To configure which grsecurity features will be enabled in the kernel, click the button

labeled Grsecurity. After doing that, you should see a dialog similar to Figure 1-2.

Figure 1-2. The Grsecurity configuration dialog

To enable grsecurity, click the y radio button. After you've done that, you can enable

predefined sets of features with the Security Level drop-down list, or set it to

Custom and go through the menus to pick and choose which features to enable.

Choosing Low is safe for any system and should not affect any software's normal

operation. Using this setting will enable linking restrictions in directories with mode

1777. This prevents race conditions in /tmp from being exploited, by only following

symlinks to files that are owned by the process following the link. Similarly, users

won't be able to write to FIFOs that they do not own if they are within a directory

with permissions of 1777.

In addition to the tighter symlink and FIFO restrictions, the Low setting increases the

randomness of process and IP IDs. This helps to prevent attackers from using

remote detection techniques to correctly guess the operating system your machine

is running (as in [Hack #40]), and it also makes it difficult to guess the process ID

of a given program. The Low security level also forces programs that use chroot()

to change their current working directory to / after the chroot() call. Otherwise, if a

program left its working directory outside of the chroot environment, it could be

used to break out of the sandbox. Choosing the Low security level also prevents

nonroot users from using dmesg, a utility that can be used to view recent kernel

messages.

Choosing Medium enables all of the same features as the Low security level, but this

level also includes features that make chroot()-based sandboxed environments

more secure. The ability to mount filesystems, call chroot(), write to sysctl

variables, or create device nodes within a chrooted environment are all restricted,

thus eliminating much of the risk involved in running a service in a sandboxed

environment under Linux. In addition, TCP source ports will be randomized, and

failed fork() calls, changes to the system time, and segmentation faults will all be

logged. Enabling the Medium security level will also restrict total access to /proc to

those who are in the wheel group. This hides each user's processes from other users

and denies writing to /dev/kmem, /dev/mem, and /dev/port. This makes it more

difficult to patch kernel-based root kits into the running kernel. Also, process

memory address space layouts are randomized, making it harder for an attacker to

successfully exploit buffer overrun attacks. Because of this, information on process

address space layouts is removed from /proc as well. Because of these /proc

restrictions, you will need to run your identd daemon (if you are running one) as an

account that belongs to the wheel group. According to the grsecurity

documentation, none of these features should affect the operation of your software,

unless it is very old or poorly written.

To enable nearly all of grsecurity's features, you can choose the High security level.

In addition to the features provided by the lower security levels, this level

implements additional /proc restrictions by limiting access to device and CPU

information to users who are in the wheel group. Sandboxed environments are also

further restricted by disallowing chmod to set the SUID or SGID bit when operating

within such an environment. Additionally, applications that are running within such

an environment will not be allowed to insert loadable modules, perform raw I/O,

configure network devices, reboot the system, modify immutable files, or change

the system's time. Choosing this security level will also cause the kernel's stack to

be laid out randomly, to prevent kernel-based buffer overrun exploits from

succeeding. In addition, the kernel's symbols will be hidden�making it even more

difficult for an intruder to install Trojan code into the running kernel�and filesystem

mounting, remounting, and unmounting will be logged.

The High security level also enables grsecurity's PaX code, which enables

nonexecutable memory pages. Enabling this will cause many buffer overrun exploits

to fail, since any code injected into the stack through an overrun will be unable to

execute. However, it is still possible to exploit a program with buffer overrun

vulnerabilities, although this is made much more difficult by grsecurity's address

space layout randomization features. PaX can also carry with it some performance

penalties on the x86 architecture, although they are said to be minimal. In addition,

some programs�such as XFree86, wine, and Java© virtual machines�will expect

that the memory addresses returned by malloc() will be executable. Unfortunately,

PaX breaks this behavior, so enabling it will cause those programs and others that

depend on it to fail. Luckily, PaX can be disabled on a per-program basis with the

chpax utility (http://chpax.grsecurity.net).

To disable PaX for a program, you can run a command similar to this one:

chpax -ps /usr/bin/java

There are also other programs that make use of special GCC features, such as

trampoline functions. This allows a programmer to define a small function within a

function, so that the defined function is only in the scope of the function in which it

is defined. Unfortunately, GCC puts the trampoline function's code on the stack, so

PaX will break any programs that rely on this. However, PaX can provide emulation

for trampoline functions, which can be enabled on a per-program basis with chpax,

as well by using the -E switch.

If you do not like the sets of features that are enabled with any of the predefined

security levels, you can just set the kernel option to "custom" and enable only the

http://chpax.grsecurity.net/

features you need.

After you've set a security level or enabled the specific options you want to use, just

recompile your kernel and modules as you normally would. You can do that with

commands similar to these:

make dep clean && make bzImage

make modules && make modules_install

Then reboot with your new kernel. In addition to the kernel restrictions already in

effect, you can now use gradm to set up ACLs for your system. We'll see how to do

that in [Hack #14] .

As you can see, grsecurity is a complex but tremendously useful modification of the

Linux kernel. For more detailed information on installing and configuring the

patches, consult the extensive documentation at

http://www.grsecurity.net/papers.php.

http://www.grsecurity.net/papers.php

Hack 14 Restrict Applications with grsecurity

Use Linux capabilities and grsecurity's ACLs to restrict applications on your

system.

Now that you have installed the grsecurity patches, you'll probably want to make

use of its flexible ACL system to further restrict the privileged applications on your

system, beyond what grsecurity's kernel security features provide. If you're just

joining us and are not familiar with grsecurity, read [Hack #13] first.

To restrict specific applications, you will need to make use of the gradm utility, which

can be downloaded from the main grsecurity site (http://www.grsecurity.net). You

can compile and install it in the usual way: unpack the source distribution, change

into the directory that it creates, and then run make && make install. This will

install gradm in /sbin, create the /etc/grsec directory containing a default ACL, and

install the manpage.

After gradm has been installed, the first thing you'll want to do is create a password

that gradm will use to authenticate itself to the kernel. You can do this by running

gradm with the -P option:

gradm -P

Setting up grsecurity ACL password

Password:

Re-enter Password:

Password written to /etc/grsec/pw.

To enable grsecurity's ACL system, use this command:

/sbin/gradm -E

Once you're finished setting up your ACLs, you'll probably want to add that

command to the end of your system startup. You can do this by adding it to the

end of /etc/rc.local or a similar script that is designated for customizing your system

startup.

The default ACL installed in /etc/grsec/acl is quite restrictive, so you'll want to create

ACLs for the services and system binaries you want to use. For example, after the

ACL system has been enabled, ifconfig will no longer be able to change interface

characteristics, even when run as root:

/sbin/ifconfig eth0:1 192.168.0.59 up

SIOCSIFADDR: Permission denied

http://www.grsecurity.net/

SIOCSIFFLAGS: Permission denied

SIOCSIFFLAGS: Permission denied

The easiest way to set up an ACL for a particular command is to specify that you

want to use grsecurity's learning mode, rather than specifying each ACL manually. If

you've enabled ACLs, you'll need to temporarily disable them for your shell by

running gradm -a. You'll then be able to access files within /etc/grsec; otherwise, the

directory will be hidden to you.

Add an entry like this to /etc/grsec/acl:

/sbin/ifconfig lo {

 / h

 /etc/grsec h

 -CAP_ALL

}

This is about the most restrictive ACL possible because it hides the root directory

from the process and removes any privileges that it may need. The lo next to the

binary to which the ACL applies says to use learning mode and to override the

default ACL. After you're done editing the ACLs, you'll need to tell grsecurity to

reload them by running gradm -R.

Now try to run the ifconfig command again:

/sbin/ifconfig eth0:1 192.168.0.59 up

/sbin/ifconfig eth0:1

eth0:1 Link encap:Ethernet HWaddr 00:0C:29:E2:2B:C1

 inet addr:192.168.0.59 Bcast:192.168.0.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 Interrupt:10 Base address:0x10e0

In addition to the command succeeding, grsecurity will create learning log entries.

You can then use gradm to generate an ACL for the program based on these logs:

gradm -a

Password:

gradm -L -O stdout

/sbin/ifconfig o {

 /usr/share/locale/locale.alias r

 /usr/lib/locale/locale-archive r

 /usr/lib/gconv/gconv-modules.cache r

 /proc/net/unix r

 /proc/net/dev r

 /proc/net r

 /lib/ld-2.3.2.so x

 /lib/i686/libc-2.3.2.so rx

 /etc/ld.so.cache r

 /sbin/ifconfig x

 /etc/grsec h

 / h

 -CAP_ALL

 +CAP_NET_ADMIN

}

Now you can replace the learning ACL for /sbin/ifconfig in /etc/grsec/acl with this

one, and ifconfig should work. You can then follow this process for each program

that needs special permissions to function. Just make sure to try out anything you

will want to do with those programs, to ensure that grsecurity's learning mode will

detect that it needs to perform a particular system call or open a specific file.

Using grsecurity to lock down applications can seem like tedious work at first, but it

will ultimately create a system that gives each process only the permissions it needs

to do its job�no more, no less. When you need to build a highly secured platform,

grsecurity can provide very finely grained control over just about everything the

system can possibly do.

Hack 15 Restrict System Calls with Systrace

Keep your programs from performing tasks they weren't meant to do.

One of the more exciting new features in NetBSD and OpenBSD is systrace, a

system call access manager. With systrace, a system administrator can specify which

programs can make which system calls, and how those calls can be made. Proper use

of systrace can greatly reduce the risks inherent in running poorly written or

exploitable programs. Systrace policies can confine users in a manner completely

independent of Unix permissions. You can even define the errors that the system

calls return when access is denied, to allow programs to fail in a more proper

manner. Proper use of systrace requires a practical understanding of system calls and

what functionality programs must have to work properly.

First of all, what exactly are system calls? A system call is a function that lets you

talk to the operating-system kernel. If you want to allocate memory, open a TCP/IP

port, or perform input/output on the disk, you'll need to use a system call. System

calls are documented in section 2 of the manpages.

Unix also supports a wide variety of C library calls. These are often confused with

system calls but are actually just standardized routines for things that could be

written within a program. For example, you could easily write a function to compute

square roots within a program, but you could not write a function to allocate

memory without using a system call. If you're in doubt whether a particular function

is a system call or a C library function, check the online manual.

You may find an occasional system call that is not documented in the online manual,

such as break(). You'll need to dig into other resources to identify these calls

(break() in particular is a very old system call used within libc, but not by

programmers, so it seems to have escaped being documented in the manpages).

Systrace denies all actions that are not explicitly permitted and logs the rejection

using syslog. If a program running under systrace has a problem, you can find out

which system call the program wants to use and decide if you want to add it to your

policy, reconfigure the program, or live with the error.

Systrace has several important pieces: policies, the policy generation tools, the

runtime access management tool, and the sysadmin real-time interface. This hack

gives a brief overview of policies; in [Hack #16], we'll learn about the systrace

tools.

The systrace(1) manpage includes a full description of the syntax used for policy

descriptions, but I generally find it easier to look at some examples of a working

policy and then go over the syntax in detail. Since named has been a subject of

recent security discussions, let's look at the policy that OpenBSD 3.2 provides for

named.

Before reviewing the named policy, let's review some commonly known facts about

the name server daemon's system-access requirements. Zone transfers and large

queries occur on port 53/TCP, while basic lookup services are provided on port

53/UDP. OpenBSD chroots named into /var/named by default and logs everything to

/var/log/messages.

Each systrace policy file is in a file named after the full path of the program,

replacing slashes with underscores. The policy file usr_sbin_named contains quite a

few entries that allow access beyond binding to port 53 and writing to the system

log. The file starts with:

Policy for named that uses named user and chroots to /var/named

This policy works for the default configuration of named.

Policy: /usr/sbin/named, Emulation: native

The Policy statement gives the full path to the program this policy is for. You can't

fool systrace by giving the same name to a program elsewhere on the system. The

Emulation entry shows which ABI this policy is for. Remember, BSD systems expose

ABIs for a variety of operating systems. Systrace can theoretically manage system-

call access for any ABI, although only native and Linux binaries are supported at the

moment.

The remaining lines define a variety of system calls that the program may or may

not use. The sample policy for named includes 73 lines of system-call rules. The

most basic look like this:

native-accept: permit

When /usr/sbin/named tries to use the accept() system call to accept a connection

on a socket, under the native ABI, it is allowed. Other rules are far more restrictive.

Here's a rule for bind(), the system call that lets a program request a TCP/IP port

to attach to:

native-bind: sockaddr match "inet-*:53" then permit

sockaddr is the name of an argument taken by the accept() system call. The match

keyword tells systrace to compare the given variable with the string inet-*:53,

according to the standard shell pattern-matching (globbing) rules. So, if the variable

sockaddr matches the string inet-*:53, the connection is accepted. This program

can bind to port 53, over both TCP and UDP protocols. If an attacker had an exploit

to make named attach a command prompt on a high-numbered port, this systrace

policy would prevent that exploit from working.

At first glance, this seems wrong:

native-chdir: filename eq "/" then permit

native-chdir: filename eq "/namedb" then permit

The eq keyword compares one string to another and requires an exact match. If the

program tries to go to the root directory, or to the directory /namedb, systrace will

allow it. Why would you possibly want to allow named to access the root directory?

The next entry explains why:

native-chroot: filename eq "/var/named" then permit

We can use the native chroot() system call to change our root directory to

/var/named, but to no other directory. At this point, the /namedb directory is

actually /var/named/namedb. We also know that named logs to syslog. To do this, it

will need access to /dev/log:

native-connect: sockaddr eq "/dev/log" then permit

This program can use the native connect() system call to talk to /dev/log and only

/dev/log. That device hands the connections off elsewhere.

We'll also see some entries for system calls that do not exist:

native-fsread: filename eq "/" then permit

native-fsread: filename eq "/dev/arandom" then permit

native-fsread: filename eq "/etc/group" then permit

Systrace aliases certain system calls with very similar functions into groups. You can

disable this functionality with a command-line switch and only use the exact system

calls you specify, but in most cases these aliases are quite useful and shrink your

policies considerably. The two aliases are fsread and fswrite. fsread is an alias for

stat(), lstat(), readlink(), and access() under the native and Linux ABIs.

fswrite is an alias for unlink(), mkdir(), and rmdir(), in both the native and Linux

ABIs. As open() can be used to either read or write a file, it is aliased by both

fsread and fswrite, depending on how it is called. So named can read certain /etc

files, it can list the contents of the root directory, and it can access the groups file.

Systrace supports two optional keywords at the end of a policy statement,

errorcode and log. The errorcode is the error that is returned when the program

attempts to access this system call. Programs will behave differently depending on

the error that they receive. named will react differently to a "permission denied"

error than it will to an "out of memory" error. You can get a complete list of error

codes from the errno manpage. Use the error name, not the error number. For

example, here we return an error for nonexistent files:

filename sub "<non-existent filename>" then deny[enoent]

If you put the word log at the end of your rule, successful system calls will be

logged. For example, if we wanted to log each time named attached to port 53, we

could edit the policy statement for the bind() call to read:

native-bind: sockaddr match "inet-*:53" then permit log

You can also choose to filter rules based on user ID and group ID, as the example

here demonstrates.

native-setgid: gid eq "70" then permit

This very brief overview covers the vast majority of the rules you will see. For full

details on the systrace grammar, read the systrace manpage. If you want some help

with creating your policies, you can also use systrace's automated mode [Hack

#16] .

The original article that this hack is based on is available online at

http://www.onlamp.com/pub/a/bsd/2003/01/30/Big_Scary_Daemons.html.

�Michael Lucas

http://www.onlamp.com/pub/a/bsd/2003/01/30/Big_Scary_Daemons.html

Hack 16 Automated Systrace Policy Creation

Let Systrace's automated mode do your work for you.

In a true paranoid's ideal world, system administrators would read the source code

for every application on their system and be able to build system-call access policies

by hand, relying only on their intimate understanding of every feature of the

application. Most system administrators don't have that sort of time, and would

have better things to do with that time if they did.

Luckily, systrace includes a policy-generation tool that will generate a policy listing

for every system call that an application makes. You can use this policy as a starting

point to narrow down the access you will allow the application. We'll use this

method to generate a policy for inetd.

Use the -A flag to systrace, and include the full path to the program you want to

run:

systrace -A /usr/sbin/inetd

To pass flags to inetd, add them at the end of the command line.

Then use the program for which you're developing a policy. This system has ident,

daytime, and time services open, so run programs that require those services. Fire

up an IRC client to trigger ident requests, and telnet to ports 13 and 37 to get time

services. Once you have put inetd through its paces, shut it down. inetd has no

control program, so you need to kill it by process ID.

Checking the process list will show two processes:

ps -ax | grep inet

24421 ?? Ixs 0:00.00 /usr/sbin/inetd

12929 ?? Is 0:00.01 systrace -A /usr/sbin/inetd

Do not kill the systrace process (PID 12929 in this example)�that process has all

the records of the system calls that inetd has made. Just kill the inetd process (PID

24421), and the systrace process will exit normally.

Now check your home directory for a .systrace directory, which will contain systrace's

first stab at an inetd policy. Remember, policies are placed in files named after the

full path to the program, replacing slashes with underscores.

Here's the output of ls:

ls .systrace

usr_libexec_identd usr_sbin_inetd

systrace created two policies, not one. In addition to the expected policy for

/usr/sbin/inetd, there's one for /usr/libexec/identd. This is because inetd

implements time services internally, while ident calls a separate program to service

requests. When inetd spawned identd, systrace captured the identd system calls

as well.

By reading the policy, you can improve your understanding of what the program

actually does. Look up each system call the program uses, and see if you can restrict

access further. You'll probably want to look for ways to further restrict the policies

that are automatically generated. However, these policies make for a good starting

point.

Applying a policy to a program is much like creating the systrace policy itself; just

run the program as an argument to systrace, using the -a option:

systrace -a /usr/sbin/inetd

If the program tries to perform system calls not listed in the policy, they will fail.

This may cause the program to behave unpredictably. Systrace will log failed entries

in /var/log/messages.

To edit a policy, just add the desired statement to the end of the rule list, and it will

be picked up. You could do this by hand, of course, but that's the hard way.

Systrace includes a tool to let you edit policies in real time, as the system call is

made. This is excellent for use in a network operations center environment, where

the person responsible for watching the network monitor can also be assigned to

watch for system calls and bring them to the attention of the appropriate personnel.

You can specify which program you wish to monitor by using systrace's -p flag.

This is called attaching to the program.

For example, earlier we saw two processes containing inetd. One was the actual

inetd process, and the other was the systrace process managing inetd. Attach to

the systrace process, not the actual program (to use the previous example, this

would be PID 12929), and give the full path to the managed program as an

argument:

systrace -p 12929 /usr/sbin/inetd

At first nothing will happen. When the program attempts to make an unauthorized

system call, however, a GUI will pop up. You will have the options to allow the

system call, deny the system call, always permit the call, or always deny it. The

program will hang until you make a decision, however, so decide quickly.

Note that these changes will only take effect so long as the current process is

running. If you restart the program, you must also restart the attached systrace

monitor, and any changes you set in the monitor are gone. You must add those

rules to the policy if you want them to be permanent.

The original article that this hack is based on is available online at

http://www.onlamp.com/pub/a/bsd/2003/02/27/Big_Scary_Daemons.html.

�

http://www.onlamp.com/pub/a/bsd/2003/02/27/Big_Scary_Daemons.html

�Michael Lucas

Hack 17 Control Login Access with PAM

Seize fine-grained control of when and where your users can access your system.

In traditional Unix authentication there is not much granularity available in limiting a user's

ability to log in. For example, how would you limit the hosts that users can come from when

logging into your servers? Your first thought might be to set up TCP wrappers or possibly

firewall rules [Hack #33] and [Hack #34] . But what if you wanted to allow some users to log

in from a specific host, but disallow others from logging in from it? Or what if you wanted to

prevent some users from logging in at certain times of the day because of daily maintenance,

but allow others (i.e., administrators) to log in at any time they wish? To get this working with

every service that might be running on your system, you would traditionally have to patch each

of them to support this new functionality. This is where PAM enters the picture.

PAM, or pluggable authentication modules, allows for just this sort of functionality (and more)

without the need to patch all of your services. PAM has been available for quite some time under

Linux, FreeBSD, and Solaris, and is now a standard component of the traditional authentication

facilities on these platforms. Many services that need to use some sort of authentication now

support PAM.

Modules are configured for services in a stack, with the authentication process proceeding from

top to bottom as the access checks complete successfully. You can build a custom stack for any

service by creating a file in /etc/pam.d with the same name as the service. If you need even

more granularity, an entire stack of modules can be included by using the pam_stack module.

This allows you to specify another external file containing a stack. If a service does not have its

own configuration file in /etc/pam.d, it will default to using the stack specified in

/etc/pam.d/other.

When configuring a service for use with PAM, there are several types of entries available. These

types allow one to specify whether a module provides authentication, access control, password

change control, or session setup and teardown. Right now, we are interested in only one of the

types: the account type. This entry type allows you to specify modules that will control access to

accounts that have been authenticated. In addition to the service-specific configuration files,

some modules have extended configuration information that can be specified in files within the

/etc/security directory. For this hack, we'll mainly use two of the most useful modules of this

type, pam_access and pam_time.

The pam_access module allows one to limit where a user or group of users may log in from. To

make use of it, you'll first need to configure the service you wish to use the module with. You

can do this by editing the service's PAM config file in /etc/pam.d.

Here's an example of what /etc/pam.d/login might look like under Red Hat 9:

#%PAM-1.0

auth required pam_securetty.so

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

session optional pam_console.so

Notice the use of the pam_stack module�it includes the stack contained within the system-auth

file. Let's see what's inside /etc/pam.d/system-auth:

#%PAM-1.0

This file is auto-generated.

User changes will be destroyed the next time authconfig is run.

auth required /lib/security/$ISA/pam_env.so

auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok

auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so

password required /lib/security/$ISA/pam_cracklib.so retry=3 type=

password sufficient /lib/security/$ISA/pam_unix.so nullok use_authtok md5 shadow

password required /lib/security/$ISA/pam_deny.so

session required /lib/security/$ISA/pam_limits.so

session required /lib/security/$ISA/pam_unix.so

To add the pam_access module to the login service, you could add another account entry to the

login configuration file, which would, of course, just enable the module for the login service.

Alternatively, you could add the module to the system-auth file, which would enable it for most

of the PAM-aware services on the system.

To add pam_access to the login service (or any other service for that matter), simply add a line

like this to the service's configuration file after any preexisting account entries:

account required pam_access.so

Now that we've enabled the pam_access module for our services, we can edit

/etc/security/access.conf to control how the module behaves. Each entry in the file can specify

multiple users, groups, and hostnames to which the entry applies, and specify whether it's

allowing or disallowing remote or local access. When pam_access is invoked by an entry in a

service configuration file, it will look through the lines of access.conf and stop at the first match

it finds. Thus, if you want to create default entries to fall back on, you'll want to put the more

specific entries first, with the general entries following them.

The general form of an entry in access.conf is:

permission

 :

users

 :

origins

where permission can be either a + or -. This denotes whether the rule grants or denies access,

respectively.

The users portion allows you to specify a list of users or groups, separated by whitespace. In

addition to simply listing users in this portion of the entry, you can use the form user@host,

where host is the local hostname of the machine being logged into. This allows you to use a

single configuration file across multiple machines, but still specify rules pertaining to specific

machines. The origins portion is compared against the origin of the access attempt. Hostnames

can be used for remote origins, and the special LOCAL keyword can be used for local access.

Instead of explicitly specifying users, groups, or origins, you can also use the ALL and EXCEPT

keywords to perform set operations on any of the lists.

Here's a simple example of locking out the user andrew (Eep! That's me!) from a host named

colossus:

- : andrew : colossus

Note that if a group that shares its name with a user is specified, the module will interpret the

rule as applying to both the user and the group.

Now that we've covered how to limit where a user may log in from and how to set up a PAM

module, let's take a look at how to limit what time a user may log in by using the pam_time

module. To configure this module, you need to edit /etc/security/time.conf. The format for the

entries in this file are a little more flexible than that of access.conf, thanks to the availability of

the NOT (!), AND (&), and OR (|) operators.

The general form for an entry in time.conf is:

services;devices;users;times

The services portion of the entry specifies what PAM-enabled service will be regulated. You can

usually get a full list of the available services by looking at the contents of your /etc/pam.d

directory.

For instance, here's the contents of /etc/pam.d on a RedHat Linux system:

$ ls -1 /etc/pam.d

authconfig

chfn

chsh

halt

internet-druid

kbdrate

login

neat

other

passwd

poweroff

ppp

reboot

redhat-config-mouse

redhat-config-network

redhat-config-network-cmd

redhat-config-network-druid

rhn_register

setup

smtp

sshd

su

sudo

system-auth

up2date

up2date-config

up2date-nox

vlock

To set up pam_time for use with any of these services, you'll need to add a line like this to the

file in /etc/pam.d that corresponds to the service that you want to regulate:

account required /lib/security/$ISA/pam_time.so

The devices portion specifies the terminal device that the service is being accessed from. For

console logins, you can use !ttyp*, which specifies all TTY devices except for pseudo TTYs. If

you want the entry to only affect remote logins, then use ttyp*. You can restrict it to all users

(console, remote, and X11) by using tty*.

For the users portion of the entry, you can specify a single user or a list of users by separating

each one with a | character. The times portion is used to specify the times that the rule will

apply. Each time range is specified with a combination of two character abbreviations, which

denote the days that the rule will apply, followed with a range of hours for that day. The

abbreviations for the days of the week are Mo, Tu, We, Th, Fr, Sa, and Su. For convenience you

can use Wk to specify weekdays and Wd to specify the weekend. In addition, you can use Al to

specify every day of the week. These last three basically expand to the set of days that compose

each time period. This is important to remember, since repeated days are subtracted from the

set of days that the rule will apply to (e.g., WkSu would effectively be just Sa). The range of

hours is simply specified as two 24-hour times, minus the colons, separated by a dash (e.g.,

0630-1345 is 6:30 A.M. to 1:45 P.M.).

If you wanted to disallow access to the user andrew from the local console on weekends and

during the week after hours, you could use an entry like this:

system-auth;!ttyp*;andrew;Wk1700-0800|Wd0000-2400

Or perhaps you want to limit remote logins through SSH during a system maintenance window

lasting from 7 P.M. Friday to 7 A.M. Saturday, but want to allow a sysadmin to log in:

sshd;ttyp*;!andrew;Fr1900-0700

As you can see, there's a lot of flexibility for creating entries, thanks to the logical Boolean

operators that are available. Just make sure that you remember to configure the service file in

/etc/pam.d for use with pam_time when you create entries in /etc/security/time.conf.

Hack 18 Restricted Shell Environments

Keep your users from shooting themselves (and you) in the foot.

Sometimes a sandboxed environment [Hack #10] is overkill for your needs. If you

want to set up a restricted environment for a group of users that only allows them

to run a few particular commands, you'll have to duplicate all of the libraries and

binaries for those commands for each user. This is where restricted shells come in

handy. Many shells include such a feature, which is usually invoked by running the

shell with the -r switch. While not as secure as a system call-based sandbox

environment, it can work well if you trust your users not to be malicious, but worry

that some might be curious to an unhealthy degree.

Some common features of restricted shells are the ability to prevent a program

from changing directories, to only allow the execution of commands using absolute

pathnames, and to prohibit executing commands in other subdirectories. In addition

to these restrictions, all of the command-line redirection operators are disabled.

With these features, restricting the commands a user can execute is as simple as

picking and choosing which commands should be available and making symbolic

links to them inside the user's home directory. If a sequence of commands needs to

be executed, you can also create shell scripts owned by another user. These scripts

will execute in a nonrestricted environment and can't be edited within the

environment by the user.

Let's try running a restricted shell and see what happens:

$ bash -r

bash: SHELL: readonly variable

bash: PATH: readonly variable

bash-2.05b$ ls

bash: ls: No such file or directory

bash-2.05b$ /bin/ls

bash: /sbin/ls: restricted: cannot specify `/' in command names

bash-2.05b$ exit

$ ln -s /bin/ls .

$ bash -r

bash-2.05b$ ls -la

total 24

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .

drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..

-rw------- 1 andrew andrew 18 Oct 20 08:00 .bash_history

-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout

-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile

-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc

lrwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 ls -> /bin/ls

Restricted ksh is a little different in that it will allow you to run scripts and binaries

that are in your PATH, which can be set before entering the shell:

$ rksh

$ ls -la

total 24

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .

drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..

-rw------- 1 andrew andrew 18 Oct 20 08:00 .bash_history

-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout

-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile

-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc

lrwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 ls -> /bin/ls

$ which ls

/bin/ls

$ exit

This worked because /bin was in the PATH before we invoked ksh. Now let's change

the PATH and run rksh again:

$ export PATH=.

$ /bin/rksh

$ /bin/ls

/bin/rksh: /bin/ls: restricted

$ exit

$ ln -s /bin/ls .

$ ls -la

total 24

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .

drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..

-rw------- 1 andrew andrew 18 Oct 20 08:00 .bash_history

-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout

-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile

-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc

lrwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 ls -> /bin/ls

Restricted shells are incredibly easy to set up and can provide minimal restricted

access. They may not be able to keep out determined attackers, but they certainly

make a hostile user's job much more difficult.

Hack 19 Enforce User and Group Resource Limits

Make sure resource-hungry users don't bring down your entire system.

Whether it's through malicious intent or an unintentional slip, having a user bring

your system down to a slow crawl by using too much memory or CPU time is no fun

at all. One popular way of limiting resource usage is to use the ulimit command.

This method relies on a shell to limit its child processes, and it is difficult to use

when you want to give different levels of usage to different users and groups.

Another, more flexible way of limiting resource usage is with the PAM module

pam_limits.

pam_limits is preconfigured on most systems that have PAM installed. All you

should need to do is edit /etc/security/limits.conf to configure specific limits for

users and groups.

The limits.conf configuration file consists of single-line entries describing a single

type of limit for a user or group of users. The general format for an entry is:

domain type resource value

The domain portion specifies to whom the limit applies. Single users may be

specified here by name, and groups can be specified by prefixing the group name

with an @. In addition, the wildcard character * may be used to apply the limit

globally to all users except for root. The type portion of the entry specifies whether

the limit is a soft or hard resource limit. Soft limits may be increased by the user,

whereas hard limits can be changed only by root. There are many types of resources

that can be specified for the resource portion of the entry. Some of the more useful

ones are cpu, memlock, nproc, and fsize. These allow you to limit CPU time, total

locked-in memory, number of processes, and file size, respectively. CPU time is

expressed in minutes, and sizes are in kilobytes. Another useful limit is maxlogins,

which allows you to specify the maximum number of concurrent logins that are

permitted.

One nice feature of pam_limits is that it can work together with ulimit to allow the

user to raise her limit from the soft limit to the imposed hard limit.

Let's try a quick test to see how it works. First we'll limit the number of open files

for the guest user by adding these entries to limits.conf:

guest soft nofile 1000

guest hard nofile 2000

Now the guest account has a soft limit of 1,000 concurrently open files and a hard

limit of 2,000. Let's test it out:

su - guest

$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

file size (blocks, -f) unlimited

max locked memory (kbytes, -l) unlimited

max memory size (kbytes, -m) unlimited

open files (-n) 1000

pipe size (512 bytes, -p) 8

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 1024

virtual memory (kbytes, -v) unlimited

$ ulimit -n 2000

$ ulimit -n

2000

$ ulimit -n 2001

-bash: ulimit: open files: cannot modify limit: Operation not permitted

There you have it. In addition to open files, you can create resource limits for any

number of other resources and apply them to specific users or entire groups. As you

can see, pam_limits is quite powerful and useful in that it doesn't rely upon the shell

for enforcement.

Hack 20 Automate System Updates

Patch security holes in a timely manner to prevent intrusions.

Updating and patching a system in a timely manner is one of the most important

things you can do to help protect your systems from the deluge of newly discovered

security vulnerabilities. Unfortunately, this task often gets pushed to the wayside in

favor of "more pressing" issues, such as performance tuning, hardware maintenance,

and software debugging. In some circles, it's viewed as a waste of time and

overhead that doesn't contribute to the primary function of a system. Coupled with

management demands to maximize production, keeping a system up-to-date is

often pushed even further down on the to-do list.

Updating a system can be very repetitive and time consuming if you're not using

scripting to automate it. Fortunately, most Linux distributions make their updated

packages available for download from a standard online location. We can monitor

that location for changes and automatically detect and download the new updates

when they're made available. To demonstrate how to do this on an RPM-based

distribution, we'll use AutoRPM (http://www.autorpm.org).

AutoRPM is a powerful Perl script that allows you to monitor multiple FTP sites for

changes. It will automatically download new or changed packages and either install

them automatically or alert you so that you may do so. In addition to monitoring

single FTP sites, you can also monitor a pool of mirror sites, to ensure that you still

get your updates in spite of a busy FTP server. This feature is especially nice in that

AutoRPM will monitor busy FTP servers and keep track of how many times a

connection to them has been attempted. Using this information, it assigns internal

scores to each of the FTP sites configured within a given pool, with the outcome that

the server in the pool that is available most often will be checked first.

To install AutoRPM, download the latest package and install it like this:

rpm -ivh autorpm-3.3-1.noarch.rpm

Although a tarball is also available, installation is a little more tricky than the typical

make; make install, and so it is recommended that you stick to installing from the

RPM package.

By default, AutoRPM is configured to monitor for updated packages for Red Hat's

Linux distribution. However, you can configure it to monitor any file repository of

your choosing, such as one for SuSe or Mandrake.

http://www.autorpm.org/

Chapter 2. Windows Host Security
Hacks #21-30

Section 21. Check Servers for Applied Patches

Section 22. Get a List of Open Files and Their Owning Processes

Section 23. List Running Services and Open Ports

Section 24. Enable Auditing

Section 25. Secure Your Event Logs

Section 26. Change Your Maximum Log File Sizes

Section 27. Disable Default Shares

Section 28. Encrypt Your Temp Folder

Section 29. Clear the Paging File at Shutdown

Section 30. Restrict Applications Available to Users

Hacks #21-30

This chapter shows you some ways to keep your Windows system up-to-date and

secure, thereby making your network a safer place to work (and have fun). Although

many may scoff at the mention of Windows and security in the same sentence, you

actually can make a Windows system fairly secure without too much effort.

One of the main reasons that Windows gets a bad rap is the poorly administered

state in which Windows machines seem to be kept. The recent deluge of worm and

virus attacks that have brought down many a network shows this to hold true. A lot

of this can be traced back to the "ease" of administration that Windows seems to

provide by effectively keeping the Windows administrator out of the loop about the

inner workings of her environment�effectively wresting control from the system

administrator's hands.

This chapter seeks to remedy that to some degree by showing you ways to see

exactly what your server is really doing. While this may seem old hat to a Unix

sysadmin, getting details on open ports and running services is often a new concept

to the average Windows administrator. In addition, this chapter shows you how to

disable some Windows "features," such as sharing out all your files automatically and

truncating log files. You'll also learn how to enable some of the auditing and logging

features of Windows, to give you early warning of possible security incidents (rather

than waiting for the angry phone call from someone at the wrong end of a denial-of-

service attack originating from your network).

Hack 21 Check Servers for Applied Patches

Make sure your Windows servers have the latest patches installed.

Keeping a network of systems patched and up-to-date is hard enough in Unix, but it

can be even more difficult on Windows systems. A lack of robust built-in scripting

and remote access capabilities makes Windows unsuitable for automation.

Nevertheless, before you even attempt to update your systems, you need to know

which updates have been applied to each system; otherwise, you might waste time

and effort updating systems that don't need it. Clearly, this problem gets more

difficult as the number of systems that need to be managed increases. We can avoid

much of the extra work of manually updating systems by using the HFNetChk tool,

which was originally a standalone program from Shavlik Technologies. It is now a

part of Microsoft's Baseline Security Analyzer

(http://download.microsoft.com/download/8/e/e/8ee73487-4d36-4f7f-92f2-

2bdc5c5385b3/mbsasetup.msi) and is available through its command-line interface,

mbsacli.exe.

Not only can HFNetChk remotely check the status of Windows Server 2003 and

Windows XP/2000/NT, but it can also check whether critical updates for IIS, SQL

Server, Exchange Server, Media Player, and Internet Explorer have been applied.

Although it can only check the update status of a system (and won't actually bring

the system up-to-date), it is still an invaluable timesaving tool.

HFNetChk works by downloading a signed and compressed XML file from Microsoft

that contains information on all currently available updates. This information

includes checksums and versions of files covered by each update, as well as the

registry keys modified by each update. Additional dependency information is also

included. When scanning a system, HFNetChk will first scan the registry for the keys

that are associated with the most current set of updates available for the current

system configuration. If any of these registry keys are missing or do not match what

is contained in the XML file, it will flag the update as not having been installed. If

the registry key for an update is present and matches the information in the XML

file, HFNetChk will then attempt to verify whether the files specified in the update

information are present on the system and whether their version and checksum

matches. If any of the checks fail, the update will be flagged. All flagged updates are

then displayed in a report, along with a reference to the Microsoft Knowledge Base

article with more information on the specific update.

To get HFNetChk installed on your system, you first need to download and install

the Microsoft Baseline Security Analyzer. To run HFNetChk, open a command prompt

and change to the directory that was created during the install (C:\Program

Files\Microsoft Baseline Security Analyzer is the default).

To check the update status of the local system, run this command:

http://download.microsoft.com/download/8/e/e/8ee73487-4d36-4f7f-92f2-2bdc5c5385b3/mbsasetup.msi

C:\> Program Files\Microsoft Baseline Security Analyzer> mbsacli /hf

Microsoft Baseline Security Analyzer

Version 1.1.1

Powered by HFNetChk Technology - Version 3.82.0.1

Copyright (C) Shavlik Technologies, 2001-2003

Developed for Microsoft by Shavlik Technologies, LLC

info@shavlik.com (www.shavlik.com)

Please use the -v switch to view details for

Patch NOT Found, Warning and Note messages

Attempting to get cab from http://go.microsoft.com/fwlink/?LinkId=16932

XML successfully loaded.

Scanning PLUNDER

.............................

Done scanning PLUNDER

PLUNDER(192.168.0.65)

 * WINDOWS XP SP1

 Note MS02-008 317244

 Warning MS02-055 323255

 Note MS03-008 814078

 Note MS03-030 819696

 Patch NOT Found MS03-041 823182

 Patch NOT Found MS03-044 825119

 Patch NOT Found MS03-045 824141

 Patch NOT Found MS03-049 828035

 Note MS03-051 813360

 * INTERNET EXPLORER 6 SP1

 Patch NOT Found MS03-048 824145

 * WINDOWS MEDIA PLAYER FOR WINDOWS XP SP1

 Information

 All necessary hotfixes have been applied.

The first column tells why the check for a particular update failed. The second

column shows which update failed the check, and the third column lists a Microsoft

Knowledge Base (http://support.microsoft.com) article number that you can refer to

for more information on the issue fixed by that particular update.

If you want more information on why a particular check failed, you can run the

command with the -v (verbose) switch. Here are the results of the previous

command, but this time with the verbose switch:

Scanning PLUNDER

.............................

Done scanning PLUNDER

http://support.microsoft.com/

PLUNDER(192.168.0.65)

 * WINDOWS XP SP1

 Note MS02-008 317244

 Please refer to Q306460 for a detailed explanation.

 Warning MS02-055 323255

 File C:\WINDOWS\system32\hhctrl.ocx has a file

 version [5.2.3735.0] greater than what is expected [5.2.3669.0].

 Note MS03-008 814078

 Please refer to Q306460 for a detailed explanation.

 Note MS03-030 819696

 Please refer to Q306460 for a detailed explanation.

 Patch NOT Found MS03-041 823182

 File C:\WINDOWS\system32\cryptui.dll has a file

 version [5.131.2600.1106] that is less than what is expected

 [5.131.2600.1243].

 Patch NOT Found MS03-044 825119

 File C:\WINDOWS\system32\itircl.dll has a file

 version [5.2.3644.0] that is less than what is expected

 [5.2.3790.80].

 Patch NOT Found MS03-045 824141

 File C:\WINDOWS\system32\user32.dll has a file

 version [5.1.2600.1134] that is less than what is expected

 [5.1.2600.1255].

 Patch NOT Found MS03-049 828035

 File C:\WINDOWS\system32\msgsvc.dll has a file

 version [5.1.2600.0] that is less than what is expected

 [5.1.2600.1309].

 Note MS03-051 813360

 Please refer to Q306460 for a detailed explanation.

 * INTERNET EXPLORER 6 SP1

 Patch NOT Found MS03-048 824145

 The registry key **SOFTWARE\Microsoft\Internet Explorer\ActiveX

 Compatibility\{69DEAF94-AF66-11D3-BEC0-00105AA9B6AE}** does not

 exist. It is required for this patch to be considered installed.

 * WINDOWS MEDIA PLAYER FOR WINDOWS XP SP1

 Information

 All necessary hotfixes have been applied.

After applying the listed updates, you should see something like this:

Scanning PLUNDER

.............................

Done scanning PLUNDER

PLUNDER(192.168.0.65)

 * WINDOWS XP SP1

 Information

 All necessary hotfixes have been applied.

 * INTERNET EXPLORER 6 SP1

 Information

 All necessary hotfixes have been applied.

 * WINDOWS MEDIA PLAYER FOR WINDOWS XP SP1

 Information

 All necessary hotfixes have been applied.

When scanning the local system, Administrator privileges are needed. If you wish to

scan a remote machine, you will need Administrator privileges on it. There are

several ways to scan remote machines. To scan a single remote system, a NetBIOS

name can be specified with the -h switch. Likewise, an IP address can be specified

with the -i switch.

For example, to scan the machine PLUNDER from another machine, either of these

two commands can be used:

mbsacli /hf -h PLUNDER

mbsacli /hf -i 192.168.0.65

You can also scan a handful of additional systems by listing them on the command

line with commas separating each NetBIOS name or IP address.

Note that, in addition to having Administrator privileges on the remote machine,

you must also ensure that you have not disabled the default shares [Hack #27] . If

the default administrative shares have been disabled, then HFNetChk will not be able

to check for the proper files on the remote system and, consequently, will not be

able to determine whether an update was applied.

If you wish to scan a group of systems, there are several options for this as well.

Using the -fh option, you can specify a file containing up to 256 NetBIOS

hostnames (one on each line) that will be scanned. You can do the same thing with

IP addresses, using the -fip option. Ranges of IP addresses may also be specified by

using the -r option.

For example, you could run a command like this to scan from 192.168.1.23 to

192.168.1.172:

mbsacli /hf -r 192.168.1.123 - 192.168.1.172

All of these options are very flexible, and you can use them in any combination to

specify which remote systems will be scanned.

In addition to specifying remote systems by NetBIOS name and IP address, you can

also scan systems by domain name by using the -d option, or you can scan your

entire local network segment by using the -n command-line option.

When scanning systems from a personal workstation, the -u and -p options can

prove useful. These allow you to specify a username and password to use when

accessing the remote systems. These switches are particularly handy if you don't

normally log in using the Administrator account. The account that is specified with

the -u option will of course need to have Administrator privileges on the remote

machines being scanned.

Also, if you're scanning a large number of systems, you might want to use the -t

option. This allows you to specify the number of threads used by the scanner, and

increasing this value generally will speed up scanning. Valid values are from 1 to

128; the default value is 64.

If you are scanning more than one machine, a huge amount of data will simply be

dumped to the screen. Use the -f option to specify a file to store the results of the

scan in, and view it at your leisure using a text editor.

HFNetChk is a very flexible tool and can be used to check the update status of a

large number of machines in a very short amount of time. It is especially useful

when a new worm has come onto the scene and you need to know if all of your

systems are up-to-date on their patches.

See Also

Frequently Asked Questions about the Microsoft Network Security Hotfix

Checker (Hfnetchk.exe) Tool: Knowledge Base Article 305385, at

http://support.microsoft.com/default.aspx?scid=kb;EN-US;

http://support.microsoft.com/default.aspx?scid=kb;EN-US;

Hack 22 Get a List of Open Files and Their Owning Processes

Look for suspicious activity by monitoring file accesses.

Suppose you're looking at the list of processes in the task manager one day after noticing some

odd behavior on your workstation, and you notice a process you haven't seen before. Well, what do

you do now? If you were running something other than Windows, you might try to determine what

the process is doing by looking at the files it has open. Unfortunately, Windows doesn't provide a

tool to do this.

Sysinternals makes an excellent tool called Handle, which is available for free at

http://www.sysinternals.com/ntw2k/freeware/handle.shtml. Handle is a lot like lsof [Hack #8], but

it can list many other types of operating resources, including threads, events, and semaphores. It

can also display open registry keys and IOCompletion structures.

Running handle without any command-line arguments will list all open file handles on the system.

You can also specify a filename, which will list the processes that are currently accessing it, by

typing this:

C:\> handle

filename

Or you can list only files that are opened by a particular process�in this case Internet Explorer:

C:\> handle -p iexplore

Handle v2.10

Copyright (C) 1997-2003 Mark Russinovich

Sysinternals - www.sysinternals.com

--

IEXPLORE.EXE pid: 688 PLUNDER\andrew

 98: Section \BaseNamedObjects\MTXCOMM_MEMORY_MAPPED_FILE

 9c: Section \BaseNamedObjects\MtxWndList

 12c: Section \BaseNamedObjects__R_0000000000d4_SMem_ _

 18c: File C:\Documents and Settings\andrew\Local Settings\Temporary Internet

Files\Content.IE5\index.dat

 198: Section \BaseNamedObjects\C:_Documents and Settings_andrew_Local

Settings_Temporary Internet Files_Content.IE5_index.dat_3194880

 1a0: File C:\Documents and Settings\andrew\Cookies\index.dat

 1a8: File C:\Documents and Settings\andrew\Local Settings\History\History.IE5\

http://www.sysinternals.com/ntw2k/freeware/handle.shtml

index.dat

 1ac: Section \BaseNamedObjects\C:_Documents and Settings_andrew_Local

Settings_History_History.IE5_index.dat_245760

 1b8: Section \BaseNamedObjects\C:_Documents and

Settings_andrew_Cookies_index.dat_81920

 228: Section \BaseNamedObjects\UrlZonesSM_andrew

 2a4: Section \BaseNamedObjects\SENS Information Cache

 540: File C:\Documents and Settings\andrew\Application

Data\Microsoft\SystemCertificates\My

 574: File C:\Documents and Settings\All Users\Desktop

 5b4: Section \BaseNamedObjects\mmGlobalPnpInfo

 5cc: File C:\WINNT\system32\mshtml.tlb

 614: Section \BaseNamedObjects\WDMAUD_Callbacks

 640: File C:\WINNT\system32\Macromed\Flash\Flash.ocx

 648: File C:\WINNT\system32\STDOLE2.TLB

 6a4: File \Dfs

 6b4: File C:\Documents and Settings\andrew\Desktop

 6c8: File C:\Documents and Settings\andrew\Local Settings\

Temporary Internet Files\Content.IE5\Q5USFST0\softwareDownloadIndex[1].htm

 70c: Section \BaseNamedObjects\MSIMGSIZECacheMap

 758: File C:\WINNT\system32\iepeers.dll

 75c: File C:\Documents and Settings\andrew\Desktop

 770: Section \BaseNamedObjects\RotHintTable

If you want to find the Internet Explorer process that owns a resource with a partial name of

handle, you could type:

C:\> handle -p iexplore handle

Handle v2.10

Copyright (C) 1997-2003 Mark Russinovich

Sysinternals - www.sysinternals.com

IEXPLORE.EXE pid: 1396 C:\Documents and Settings\andrew\Local Settings\Temporary

Internet Files\Content.IE5\H1EZGFSH\handle[1].htm

Additionally, if you wanted to list all types of resources, you could use the -a option. Handle is

quite a powerful tool, and any of its command-line options can be mixed together to quickly narrow

your search and find just what you want.

Hack 23 List Running Services and Open Ports

Check for remotely accessible services the Windows way.

Unix makes it quick and easy to see which ports on a system are open, but how can you do

that on Windows? Well, with FPort from Foundstone

(http://www.foundstone.com/resources/index_resources.htm) it's as quick and easy as

running good old netstat.

FPort has very few command-line options, and those deal mostly with specifying how you'd

like the output sorted. For instance, if you want the output sorted by application name, you

can use /a; if you want it sorted by process ID, you can use /i. While it may not be as full of

features as netstat, it definitely gets the job done.

To get a listing of all ports that are open on your system, simply type fport. If you want the

list to be sorted by port number, use the /p switch:

C:\> fport /p

FPort v2.0 - TCP/IP Process to Port Mapper

Copyright 2000 by Foundstone, Inc.

http://www.foundstone.com

Pid Process Port Proto Path

432 svchost -> 135 TCP C:\WINNT\system32\svchost.exe

8 System -> 139 TCP

8 System -> 445 TCP

672 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe

8 System -> 1028 TCP

8 System -> 1031 TCP

1116 navapw32 -> 1035 TCP C:\PROGRA~1\NORTON~1\navapw32.exe

788 svchost -> 1551 TCP C:\WINNT\system32\svchost.exe

788 svchost -> 1553 TCP C:\WINNT\system32\svchost.exe

788 svchost -> 1558 TCP C:\WINNT\system32\svchost.exe

1328 svchost -> 1565 TCP C:\WINNT\System32\svchost.exe

8 System -> 1860 TCP

http://www.foundstone.com/resources/index_resources.htm

1580 putty -> 3134 TCP C:\WINNT\putty.exe

772 WinVNC -> 5800 TCP C:\Program Files\TightVNC\WinVNC.exe

772 WinVNC -> 5900 TCP C:\Program Files\TightVNC\WinVNC.exe

432 svchost -> 135 UDP C:\WINNT\system32\svchost.exe

8 System -> 137 UDP

8 System -> 138 UDP

8 System -> 445 UDP

256 lsass -> 500 UDP C:\WINNT\system32\lsass.exe

244 services -> 1027 UDP C:\WINNT\system32\services.exe

688 IEXPLORE -> 2204 UDP C:\Program Files\Internet Explorer\IEXPLORE.EXE

1396 IEXPLORE -> 3104 UDP C:\Program Files\Internet Explorer\IEXPLORE.EXE

256 lsass -> 4500 UDP C:\WINNT\system32\lsass.exe

Notice that there are some processes listed�such as navapw32, putty, and IEXPLORE�that

don't appear to be services. These show up in the output because FPort lists all open ports,

not just opened ports that are listening.

While FPort is not as powerful as some of the commands available under other operating

systems, it is still a valuable, quick, and easy-to-use tool that is a great addition to Windows.

Hack 24 Enable Auditing

Log suspicious activity to help spot intrusions.

Windows 2000 includes some very powerful auditing features, but unfortunately

they are all disabled by default. Windows 2003 has corrected this by enabling some

features by default, but it is still wise to check that you are tracking precisely what

you want to audit. Using these capabilities, you can monitor failed logins, account

management events, file access, privilege use, and more. You can also log security

policy changes as well as system events.

To enable auditing in any one of these areas, locate and double-click the

Administrative Tools icon in the Control Panel. Now find and double-click the Local

Security Policy icon. Expand the Local Policies tree node, and you should see

something similar to Figure 2-1.

Figure 2-1. Audit Policy settings in the Local Security Settings applet

Now you can go through each of the audit policies and check whether to log

successes or failures for each type. You can do this by double-clicking the policy you

wish to modify, located in the right pane of the window. After double-clicking, you

should see a dialog similar to Figure 2-2.

Figure 2-2. The "Audit logon events" dialog

Leaving auditing off is akin to not logging anything at all, so you should enable

auditing for all policies. Once you've enabled auditing for a particular policy, you

should begin to see entries in the event logs for when a particular audit event

occurs. For example, once you have enabled logon event auditing, you should begin

to see entries for logon successes and failures in the system's security event log.

Hack 25 Secure Your Event Logs

Keep your system's logs from being tampered with.

Windows has some very powerful logging features. Unfortunately, by default the

event logs are not protected against unauthorized access or modification. You may

not realize that even though you have to view the logs through the Event Viewer,

the event logs are simply regular files just like any other. To secure them, all we

have to do is locate them and apply the proper ACLs.

Unless their location has been changed through the registry, you should be able to

find the logs in the %SystemRoot%\system32\config directory.

The three files that correspond to the Application Log, Security Log, and System

Log are AppEvent.Evt, SecEvent.Evt, and SysEvent.Evt, respectively. Now, apply

ACLs to limit access to only Administrator accounts. You can do this by bringing up

the Properties dialog for the files and clicking the Security tab. After you've done

this, remove any users or groups other than Administrators and SYSTEM from the

top pane.

Hack 26 Change Your Maximum Log File Sizes

Change your log properties so that they see the whole picture.

From a security point of view, logs are one of the most important assets contained

on a server. After all, without logs how will you know if or when someone has gained

access to your machine? Therefore, it is imperative that your logs not miss a beat. If

you're trying to track down the source of an incident, having missing log entries is

not much better than having no logs at all.

One common problem is that the maximum log size is set too low�the default is a

measly 512KB. To change this, open the Administrative Tools control panel, and

then open the Event Viewer. You should now see something similar to Figure 2-3.

Figure 2-3. The Windows Event Viewer

After you have done this, select one of the log files from the left pane of the Event

Viewer window and right-click it. Now select the Properties menu item. You should

now see something similar to Figure 2-4.

Figure 2-4. Security Log Properties

Now locate the text input box with the label "Maximum log size". You can type in the

new maximum size directly, or you can use the arrows next to the text box to

change the value. Anything above 1MB is good to use here. It all depends on how

often you want to review and archive your logs. However, keep in mind that having

very large log files won't inherently slow down the machine, but can slow down the

Event Viewer when you're trying to view the logs. While you're here, you may also

want to change the behavior for when the log file reaches its maximum size. By

default, it will start overwriting log entries that are older than seven days with newer

log entries. It is recommended that you change this value to something higher�say

31 days. Alternatively, you could elect not to have logs overwritten automatically at

all, in which case you'll need to clear the log manually.

Hack 27 Disable Default Shares

Stop sharing all your files with the world.

By default, Windows enables sharing for each logical disk on your system (C$ for the

C drive) in addition to another share called ADMIN$ for the %SystemRoot% directory

(e.g., C:\WINNT). Although this is accessible only to Administrators, it is wise to

disable these shares (if at all possible) since they still present a potential security

hole.

To disable these shares, open the Registry by running regedit.exe and then find the

HKey_Local_Machine\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters

key.

If you're using Windows 2000 workstation, add an AutoShareWks DWORD key with

the value of 0 (as shown in Figure 2-5) by clicking Edit New DWORD Value. For

Windows 2000 Server, add an AutoShareServer key with a value of 0. When you're

done editing the Registry, restart Windows for the change to take effect.

Figure 2-5. Adding an AutoShareWks registry key

After Windows has finished loading, you can verify that the default shares no longer

exist by running net share:

C:\>net share

Share name Resource Remark

--

IPC$ Remote IPC The command completed successfully.

Before doing this, you should be sure that disabling these shares will not negatively

affect your environment. Lack of these shares can cause some system management

software�such as HFNetChk [Hack #21] or System Management Server�to not

work. This is because software like this depends on remote access to the default

administrative shares in order to access the contents of the systems disks.

Hack 28 Encrypt Your Temp Folder

Keep prying eyes out of your temporary files.

Many Windows applications will create intermediary files while they do their work.

They typically store these files in a temporary folder within the current user's

settings directory. Most often these files are created world-readable and aren't

always cleaned up when the program exits. How would you like it if your word

processor left a copy of the last document you were working on for anyone to come

across and read? Not a pretty thought, is it?

One way to guard against this situation is to encrypt your temporary files folder. To

do this, open an Explorer window and go to the C:\Documents and Settings\

<username>\Local Settings folder. In this folder you should see another folder

called Temp. This is the folder that holds the temporary files. Right-click the folder

and bring up its Properties dialog. Make sure the General tab is selected, and click

the button labeled Advanced. This will bring up an Advanced Attributes dialog, as

seen in Figure 2-6. Here you can choose to encrypt the folder.

Figure 2-6. The Temp folder's Advanced Attributes dialog

Check the "Encrypt contents to secure data" box and click the OK button. When you

have done that, click the Apply button in the Properties dialog. Another dialog (as

seen in Figure 2-7) will open asking you whether you would like the encryption to

apply recursively.

Figure 2-7. Confirm the choice of encryption and make it recursive

To apply the encryption recursively, choose the "Apply changes to this folder,

subfolders and files" option. This will automatically create a public-key pair if you

have never encrypted any files before. Otherwise, Windows will use the public key

that it generated for you previously. When decrypting, Windows ensures that the

private keys are stored in nonpaged kernel memory, so that the decryption key will

never be left in the paging file. Unfortunately, the encryption algorithm used, DESX,

is barely an improvement on DES and is nowhere near as strong as 3DES. However,

it serves the purpose of transparently encrypting temporary files very well. If you

want to encrypt other files, it is suggested you use a third-party utility such as

GnuPG (http://www.gnupg.org), which has Windows binaries available on its web

site.

http://www.gnupg.org/

Hack 29 Clear the Paging File at Shutdown

Prevent information leaks by automatically clearing the swap file before

shutting down.

Virtual memory management (VMM) is truly a wonderful thing. It protects programs

from one another and lets them think that they have more memory available than is

physically in the system. To accomplish this, the VMM uses what is called a paging

file .

As you run more and more programs over the course of time, you'll begin to run

out of physical memory. Since things can start to go awry when this happens, the

memory manager will look for the least frequently used pieces of memory owned by

programs that aren't actively doing anything at the moment and write the chunks of

memory out to the disk (i.e., the virtual memory). This is known as swapping.

However, there is one possibly bad side effect of this feature: if a program

containing confidential information in its memory space is running, the memory

containing such information may be written out to disk. This is fine when the

operating system is running and there are safeguards to prevent the paging file

from being read, but what about when the system is off or booted into a different

operating system?

This is where this hack comes in handy. What we're going to do is tell the operating

system to overwrite the paging file with zeros when it shuts down. Keep in mind

that this will not work if the cord is pulled from the system or the system is shut

down improperly, since this overwrite will only be done during a proper shutdown.

To enable this feature of Windows, we must edit the system registry. To do this,

open the Registry and find the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management key. You should now see something that looks like

Figure 2-8.

Figure 2-8. The Memory Management registry key

Locate the ClearPageFileAtShutdown entry in the right pane of the window and

change its value to 1. Now restart Windows for the change to take effect, and your

swap file will be cleared at shutdown. The only side effect of enabling this is that

Windows may take longer to shut down. However, this is very much dependent on

your hardware (e.g., disk controller chipset, disk drive speed, processor speed, etc.),

since that's what will govern how long it will take to overwrite your paging file with

zeros.

Hack 30 Restrict Applications Available to Users

Prevent your users from running potentially dangerous applications.

Keeping users from running certain applications isn't so important when you're an

administrator using your own workstation. But when you're dealing with regular

users in an enterprise network environment, you don't want your users running any

nefarious programs. Such programs include those that can break their operating

system installation, introduce security holes to their system, or even attack other

machines on your network.

There are a couple ways to restrict the applications available to your users. First you

can modify the ACLs for a particular program so that users cannot execute it. For

example, suppose you have a sniffer installed on a user's machine for network

diagnostic purposes. Access to this program is fine for an administrator, but

probably is not appropriate for a normal user. You can prevent normal users from

running the program by removing execution permissions for the Users group. To do

this, locate the program's executable file and right-click it. Now click the Properties

menu item, and you should see a dialog box like the one shown in Figure 2-9.

Figure 2-9. Properties dialog for ethereal.exe, the Ethernet sniffer

Now click on the Security tab and select the Users group from the list at the top of

the dialog. You should now see something similar to Figure 2-10.

Figure 2-10. The Security tab of the ethereal.exe Properties dialog

Now click the Deny checkbox that applies to the Read & Execute permission. After

clicking the Apply button, anyone that is a member of the Users group will not be

able to run the program. Alternatively, you could also modify the ACL for the

directory that the program resides in and disallow read access. This approach could

be useful if you want to keep all of your administrative tools under a single folder

and restrict access to all of them at once.

If you are running a terminal-server version of Windows, there is another alternative

to using ACLs. If you have the Microsoft Windows 2000 resource kit installed, you

can use the AppSec program to disallow program access with just a few clicks. To

use AppSec, locate its directory and start the program. After the program loads, you

will be presented with a list of programs. If the program that you want to disallow

from your terminal-service users is on the list, simply click the Disabled radio

button. For instance, if you wanted to disable cmd.exe, you would see something

similar to Figure 2-11.

Figure 2-11. Restricting cmd.exe

If the application you want to restrict is not on the list, you can click the Add button

and browse for the application. After you have made your choices, click Exit. Before

these changes can fully take effect, all users will have to log off of the terminal

server.

Chapter 3. Network Security
Hacks #31-53

Section 31. Detect ARP Spoofing

Section 32. Create a Static ARP Table

Section 33. Firewall with Netfilter

Section 34. Firewall with OpenBSD's PacketFilter

Section 35. Create an Authenticated Gateway

Section 36. Firewall with Windows

Section 37. Keep Your Network Self-Contained

Section 38. Test Your Firewall

Section 39. MAC Filtering with Netfilter

Section 40. Block OS Fingerprinting

Section 41. Fool Remote Operating System Detection Software

Section 42. Keep an Inventory of Your Network

Section 43. Scan Your Network for Vulnerabilities

Section 44. Keep Server Clocks Synchronized

Section 45. Create Your Own Certificate Authority

Section 46. Distribute Your CA to Clients

Section 47. Encrypt IMAP and POP with SSL

Section 48. Set Up TLS-Enabled SMTP

Section 49. Detect Ethernet Sniffers Remotely

Section 50. Install Apache with SSL and suEXEC

Section 51. Secure BIND

Section 52. Secure MySQL

Section 53. Share Files Securely in Unix

Hacks #31-53

As we rely more and more on massively interconnected networks, the stability and

security of these networks is more vital than ever. The world of business has

adopted information technology to help streamline their processes, increase

productivity, and cut costs. As such, a company's IT infrastructure is a core asset to

many businesses. Because of this, many businesses would cease to function if

disaster (whether natural or digital) were to disrupt their network operations in a

significant way. At the same time, the widespread adoption of the Internet as a

global communications medium has also brought computer networks out of the

business and academic world and into our personal lives, where it is used not only

for entertainment, but also as a means to keep in touch with friends, family, and

loved ones.

Although this book as a whole is meant to address network security, the information

it contains extends into many other areas. After all, a network is simply a means to

connect machines and services together so that they can communicate. This chapter,

however, deals primarily with the security and integrity of the network itself. In this

chapter, you'll learn how to detect and prevent certain types of spoofing attacks that

can be used to compromise the core integrity of a TCP/IP Ethernet network at its

lowest level. This chapter also includes a great deal of information about firewalls,

discussing everything from basic port-based firewalling to MAC-address filtering, and

even shows you how to create a gateway that will authenticate machines based on

login credentials.

Although it is not always a direct security threat, network reconnaissance is often a

precursor to an attack. In this chapter, you'll learn how to fool those who are trying

to gather information about the hosts on your network, as well as ways to detect

eavesdroppers who are monitoring your network for juicy bits of information.

Hack 31 Detect ARP Spoofing

Find out if there's a "man in the middle" impersonating your server.

One of the biggest threats to a computer network is a rogue system pretending to be a trusted

host. Once someone has successfully impersonated another host, they can do a number of

nefarious things. For example, they can intercept and log traffic destined for the real host, or lay

in wait for clients to connect and begin sending the rogue host confidential information. Spoofing

a host has especially severe consequences in IP networks, as this opens many other avenues of

attack. One technique for spoofing a host on an IP network is Address Resolution Protocol (ARP)

spoofing. ARP spoofing is limited only to local segments and works by exploiting the way IP

addresses are translated to hardware Ethernet addresses.

When an IP datagram is sent from one host to another on the same physical segment, the IP

address of the destination host must be translated into a MAC address. This is the hardware

address of the Ethernet card that is physically connected to the network. To accomplish this, the

Address Resolution Protocol is used.

When a host needs to know another host's Ethernet address, it sends out a broadcast frame that

looks like this:

01:20:14.833350 arp who-has 192.168.0.66 tell 192.168.0.62

This is called an ARP request. Since this is sent to the broadcast address, all Ethernet devices on

the local segment should see the request. The machine that matches the requests responds by

sending an ARP reply:

01:20:14.833421 arp reply 192.168.0.66 is-at 0:0:d1:1f:3f:f1

Since the ARP request already contained the MAC address of the sender in the Ethernet frame,

the receiver can send this response without making yet another ARP request. Unfortunately,

ARP's biggest weakness is that it is a stateless protocol . This means that it does not track

responses to the requests that are sent out, and therefore will accept responses without having

sent a request. If someone wanted to receive traffic destined for another host, they could send

forged ARP responses matching any chosen IP address to their MAC address. The machines that

receive these spoofed ARP responses can't distinguish them from legitimate ARP responses, and

will begin sending packets to the attacker's MAC address.

Another side effect of ARP being stateless is that a system's ARP tables usually only use the

results of the last response. In order for someone to continue to spoof an IP address, it is

necessary to flood the host with ARP responses that overwrite legitimate ARP responses from the

original host. This particular kind of attack is commonly known as ARP cache poisoning .

Several tools�such as Ettercap (http://ettercap.sourceforge.net), Dsniff

(http://www.monkey.org/~dugsong/dsniff/), and Hunt (http://lin.fsid.cvut.cz/~kra/)�employ

techniques like this to both sniff on switched networks and perform man-in-the-middle attacks.

This technique can of course be used between any two hosts on a switched segment, including

the local default gateway. To intercept traffic bidirectionally between hosts A and B, the attacking

host C will poison host A's ARP cache, making it think that host B's IP address matches host C's

MAC address. C will then poison B's cache, to make it think A's IP address corresponds to C's

MAC address.

Luckily, there are methods to detect just this kind of behavior, whether you're using a shared or

switched Ethernet segment. One program that can help accomplish this is Arpwatch

http://ettercap.sourceforge.net/
http://www.monkey.org/~dugsong/dsniff/
http://lin.fsid.cvut.cz/~kra/

(ftp://ftp.ee.lbl.gov/arpwatch.tar.gz). It works by monitoring an interface in promiscuous mode

and recording MAC/IP address pairings over a period of time. When it sees anomalous behavior,

such as a change to one of the MAC/IP pairs that it has learned, it will send an alert to the syslog.

This can be very effective in a shared network using a hub, since a single machine can monitor all

ARP traffic. However, due to the unicast nature of ARP responses, this program will not work as

well on a switched network.

To achieve the same level of detection coverage in a switched environment, Arpwatch should be

installed on as many machines as possible. After all, you can't know with 100% certainty what

hosts an attacker will decide to target. If you're lucky enough to own one, many high-end

switches allow you to designate a monitor port that can see the traffic of all other ports. If you

have such a switch, you can install a server on that port for network monitoring, and simply run

Arpwatch on it.

After downloading Arpwatch, you can compile and install it in the usual manner by running:

./configure && make && make install

When running Arpwatch on a machine with multiple interfaces, you'll probably want to specify

the interface on the command line. This can be done by using the -i command-line option:

arpwatch -i iface

As Arpwatch begins to learn the MAC/IP pairings on your network, you'll see log entries similar to

this:

Nov 1 00:39:08 zul arpwatch: new station 192.168.0.65 0:50:ba:85:85:ca

When a MAC/IP address pair changes, you should see something like this:

Nov 1 01:03:23 zul arpwatch: changed ethernet address 192.168.0.65 0:e0:81:3:d8:8e

(0:50:ba:85:85:ca)

Nov 1 01:03:23 zul arpwatch: flip flop 192.168.0.65 0:50:ba:85:85:ca (0:e0:81:3:d8:8e)

Nov 1 01:03:25 zul arpwatch: flip flop 192.168.0.65 0:e0:81:3:d8:8e (0:50:ba:85:85:ca)

In this case, the initial entry is from the first fraudulent ARP response that was received, and the

subsequent two are from a race condition between the fraudulent and authentic responses.

To make it easier to deal with multiple Arpwatch installs on a switched environment, you can

send the log messages to a central syslogd [Hack #54], aggregating all the output into one

place. However, due to the fact that your machines can be manipulated by the same attacks that

Arpwatch is looking for, it would be wise to use static ARP table entries [Hack #32] on your

syslog server, as well as all the hosts running Arpwatch.

ftp://ftp.ee.lbl.gov/arpwatch.tar.gz

Hack 32 Create a Static ARP Table

Use static ARP table entries to combat spoofing and other nefarious activities.

As discussed in [Hack #31], a lot of bad things can happen if someone successfully poisons

the ARP table of a machine on your network. The previous hack discussed how to monitor for

this behavior, but how do we prevent the effects of someone attempting to poison an ARP

table?

One way to prevent the ill effects of this behavior is to create static ARP table entries for all of

the devices on your local network segment. When this is done, the kernel will ignore all ARP

responses for the specific IP address used in the entry and use the specified MAC address

instead.

To do this, you can use the arp command, which allows you to directly manipulate the

kernel's ARP table entries. To add a single static ARP table entry, run this:

arp -s ipaddr macaddr

If you know that the MAC address that corresponds to 192.168.0.65 is 00:50:BA:85:85:CA,

you could add a static ARP entry for it like this:

arp -s 192.168.0.65 00:50:ba:85:85:ca

For more than a few entries, this can be a time-consuming process. To be fully effective, you

must add an entry for each device on your network on every host that allows you to create

static ARP table entries.

Luckily, most versions of the arp command can take a file as input and use it to create static

ARP table entries. Under Linux, this is done with the -f command-line switch. Now all you

need to do is generate a file containing the MAC and IP address pairings, which you can then

copy to all the hosts on your network.

To make this easier, you can use this quick-n-dirty Perl script:

#!/usr/bin/perl

gen_ethers.pl <from ip> <to ip>

my ($start_1, $start_2, $start_3, $start_4) = split(/\./, $ARGV[0], 4);

my ($end_1, $end_2, $end_3, $end_4) = split(/\./, $ARGV[1], 4);

my $ARP_CMD="/sbin/arp -n";

for(my $oct_1 = $start_1; $oct_1 <= $end_1 && $oct_1 <= 255; $oct_1++){

 for(my $oct_2 = $start_2; $oct_2 <= $end_2 && $oct_2 <= 255; $oct_2++){

 for(my $oct_3 = $start_3; $oct_3 <= $end_3 && $oct_3 <= 255; $oct_3++){

 for(my $oct_4 = $start_4; $oct_4 <= $end_4 && $oct_4 < 255; $oct_4++){

 system("ping -c 1 -W 1 $oct_1.$oct_2.$oct_3.$oct_4 > /dev/null 2>&1");

 my $ether_addr = `$ARP_CMD $oct_1.$oct_2.$oct_3.$oct_4 | egrep 'HWaddress|

(incomplete)' | awk '{print \$3}'`;

 chomp($ether_addr);

 if(length($ether_addr) == 17){

 print("$ether_addr\t$oct_1.$oct_2.$oct_3.$oct_4\n");

 }

 }

 }

 }

}

This script will take a range of IP addresses and attempt to ping each one once. In doing this,

each active IP address will appear in the machine's ARP table. After an IP address is pinged,

the script will then look for that IP address in the ARP table, and print out the MAC/IP address

pair in a format suitable for putting into a file to load with the arp command. This script was

written with Linux in mind but should work on other Unix-like operating systems as well.

For example, if you wanted to generate a file for all the IP addresses from 192.168.1.1 to

192.168.1.255 and store the results in /etc/ethers, you would run the script like this:

./gen_ethers 192.168.1.1 192.168.1.255 > /etc/ethers

When using arp with the -f switch, it will automatically use the /etc/ethers file to create the

static entries. However, you can specify any file you prefer. For example, if you wanted to use

/root/arp_entries instead, you would run this:

arp -f /root/arp_entries

This script isn't perfect, but it can save a lot of time when creating static ARP table entries for

the hosts on your network. Once you've generated the file with the MAC/IP pairings, you can

copy it to the other hosts and add an arp command to the system startup scripts, to

automatically load them at boot time. The main downside to using this method is that all the

devices on your network need to be powered on when the script runs; otherwise, they will be

missing from the list. In addition, if the machines on your network change frequently, you'll

have to regenerate and distribute the file often, which may be more trouble than it's worth.

But for servers and devices that never change their IP or MAC address, this method can

protect your machines from ARP poisoning attacks.

Hack 33 Firewall with Netfilter

Protect your network with Linux's powerful firewalling features.

Linux has long had the capability for filtering packets, and it has come a long way

since the early days in terms of both power and flexibility. The first generation of

packet-filtering code was called ipfw (for "IP firewall") and provided basic filtering

capability. Since it was somewhat inflexible and inefficient for complex

configurations, ipfw is rarely used now. The second generation of IP filtering was

called IP chains. It improved greatly on ipfw and is still in common use. The latest

generation of filtering is called Netfilter and is manipulated with the iptables

command. It is used exclusively with the 2.4.x and later series of kernels. Although

Netfilter is the kernel component and iptables is the user-space configuration tool,

these terms are often used interchangeably.

An important concept in Netfilter is the chain , which consists of a list of rules that

are applied to packets as they enter, leave, or traverse through the system. The

kernel defines three chains by default, but new chains of rules can be specified and

linked to the predefined chains. The INPUT chain applies to packets that are received

and are destined for the local system, and the OUTPUT chain applies to packets that

are transmitted by the local system. Finally, the FORWARD chain applies whenever a

packet will be routed from one network interface to another through the system. It

is used whenever the system is acting as a packet router or gateway, and applies to

packets that are neither originating from nor destined for this system.

The iptables command is used to make changes to the Netfilter chains and rulesets.

You can create new chains, delete chains, list the rules in a chain, flush chains (that

is, remove all rules from a chain), and set the default action for a chain. iptables

also allows you to insert, append, delete, and replace rules in a chain.

Before we get started with some example rules, it's important to set a default

behavior for all the chains. To do this we'll use the -P command-line switch, which

stands for "policy":

iptables -P INPUT DROP

iptables -P FORWARD DROP

This will ensure that only those packets covered by subsequent rules that we specify

will make it past our firewall. After all, with the relatively small number of services

that will be provided by the network, it is far easier to explicitly specify all the types

of traffic that we want to allow, rather than all the traffic that we don't. Note that a

default policy was not specified for the OUTPUT chain; this is because we want to

allow traffic to proceed out of the firewall itself in a normal manner.

With the default policy set to DROP, we'll specify what is actually allowed. Here's

where we'll need to figure out what services will have to be accessible to the outside

world. For the rest of these examples, we'll assume that eth0 is the external

interface on our firewall and that eth1 is the internal one. Our network will contain a

web server (192.168.1.20), a mail server (192.168.1.21), and a DNS server

(192.168.1.18)�a fairly minimal setup for a self-managed Internet presence.

However, before we begin specifying rules, we should remove filtering from our

loopback interface:

iptables -P INPUT -i lo -j ACCEPT

iptables -P OUTPUT -o lo -j ACCEPT

Now let's construct some rules to allow this traffic through. First, we'll make a rule

to allow traffic on TCP port 80�the standard port for web servers�to pass to the

web server unfettered by our firewall:

iptables -A FORWARD -m state --state NEW -p tcp \

 -d 192.168.1.20 --dport 80 -j ACCEPT

And now for the mail server, which uses TCP port 25 for SMTP:

iptables -A FORWARD -m state --state NEW -p tcp \

 -d 192.168.1.21 --dport 25 -j ACCEPT

Additionally, we might want to allow remote POP3, IMAP, and IMAP+SSL access as

well:

POP3

iptables -A FORWARD -m state --state NEW -p tcp \

 -d 192.168.1.21 --dport 110 -j ACCEPT

IMAP

iptables -A FORWARD -m state --state NEW -p tcp \

 -d 192.168.1.21 --dport 143 -j ACCEPT

IMAP+SSL

iptables -A FORWARD -m state --state NEW -p tcp \

 -d 192.168.1.21 --dport 993 -j ACCEPT

Unlike the other services, DNS can use both TCP and UDP port 53:

file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/192.168.1.20
file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/192.168.1.21
file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/192.168.1.18

iptables -A FORWARD -m state --state NEW -p tcp \

-d 192.168.1.21 --dport 53 -j ACCEPT

Since we're using a default deny policy, it makes it slightly more difficult to use UDP

for DNS. This is because our policy relies on the use of state tracking rules, and

since UDP is a stateless protocol, there is no way to track it. In this case, we can

configure our DNS server either to use only TCP, or to use a UDP source port of 53

for any response that it sends back to clients that were using UDP to query the

nameserver.

If the DNS server is configured to respond to clients using UDP port 53, we can

allow this traffic through with the following two rules:

iptables -A FORWARD -p udp -d 192.168.1.18 --dport 53 -j ACCEPT

iptables -A FORWARD -p udp -s 192.168.1.18 --sport 53 -j ACCEPT

The first rule allows traffic into our network destined for the DNS server, and the

second rule allows responses from the DNS server to leave the network.

You may be wondering what the -m state and --state arguments are about. These

two options allow us to use Netfilter's stateful packet-inspection engine. Using these

options tells Netfilter that we want to allow only new connections to the destination

IP and port pairs that we have specified. When these rules are in place, the

triggering packet is accepted and its information is entered into a state table.

Now we can specify that we want to allow any outbound traffic that is associated

with these connections by adding a rule like this:

iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

The only thing left now is to allow traffic from machines behind the firewall to reach

the outside world. To do this, we'll use a rule like the following:

iptables -A FORWARD -m state --state NEW -i eth1 -j ACCEPT

This rule enters any outbound connections from the internal network into the state

table. It works by matching packets coming into the internal interface of our firewall

that are creating new connections. If we were setting up a firewall that had multiple

internal interfaces, we could have used a Boolean NOT operator on the external

interface (e.g., -i ! eth0). Now any traffic that comes into the firewall through the

external interface that corresponds to an outbound connection will be accepted by

the preceding rule, because this rule will have put the corresponding connection into

the state table.

In these examples, the order in which the rules were entered does not really matter.

Since we're operating with a default DENY policy, all our rules have an ACCEPT target.

However, if we had specified targets of DROP or REJECT as arguments to the -j

option, then we would have to take a little extra care to ensure that the order of

those rules would result in the desired effect. Remember that the first rule that

matches a packet is always triggered as the rule chains are traversed, so rule order

can sometimes be critically important.

It should also be noted that rule order can have a performance impact in some

circumstances. For example, the rule shown earlier that matches ESTABLISHED and

RELATED states should be specified before any of the other rules, since that particular

rule will be matched far more often than any of the rules that will match only on

new connections. By putting that rule first, it will prevent any packets that are

already associated with a connection from having to traverse the rest of the rule

chain before finding a match.

To complete our firewall configuration, we'll want to enable packet forwarding. Run

this command:

echo 1 > /proc/sys/net/ipv4/ip_forward

This tells the kernel to forward packets between interfaces whenever appropriate. To

have this done automatically at boot time, add the following line to /etc/sysctl.conf:

net.ipv4.ip_forward=1

If your system doesn't support /etc/sysctl.conf, you can put the preceding echo

command in one of your startup rc scripts, such as /etc/rc.local. Another useful

kernel parameter is rp_filter, which helps prevent IP spoofing. This enables source

address verification by checking that the IP address for any given packet has arrived

on the expected network interface. This can be enabled by running the following

command:

echo 1 > /proc/sys/net/ipv4/conf/default/rp_filter

Much like how we enabled IP forwarding, we can also enable source address

verification by editing /etc/sysctl.conf on systems that support it, or else put the

changes in your rc.local. To enable rp_filter in your sysctl.conf, add the following

line:

net.ipv4.conf.all.rp_filter=1

To save all of our rules, we can either write all of our rules to a shell script or use our

Linux distribution's particular way of saving them. We can do this in Red Hat by

running the following command:

/sbin/service iptables save

This will save all currently active filter rules to /etc/sysconfig/iptables. To achieve the

same effect under Debian, edit /etc/default/iptables and set

enable_iptables_initd=true.

After doing this, run the following command:

/etc/init.d/iptables save_active

When the machine reboots, your iptables configuration will be automatically

restored.

Hack 34 Firewall with OpenBSD's PacketFilter

Use OpenBSD's firewalling features to protect your network.

PacketFilter, commonly known as PF, is the firewalling system available in OpenBSD.

While it is a relatively new addition to the operating system, it has already surpassed

IPFilter, the system it has replaced, in both features and flexibility. PF shares many

features with Linux's Netfilter. Although Linux's Netfilter is more easily extensible

with modules, PF outshines it in its traffic normalization capabilities and enhanced

logging features.

To communicate with the kernel portion of PF, we need to use the pfctl command.

Unlike the iptables command that is used with Linux's Netfilter, it is not used to

specify individual rules, but instead uses its own configuration and rule specification

language. To actually configure PF, we must edit /etc/pf.conf. PF's rule specification

language is actually very powerful, flexible, and easy to use. The pf.conf file is split

up into seven sections, each of which contains a particular type of rule. Not all

sections need to be used�if you don't need a specific type of rule, that section can

simply be left out of the file.

The first section is for macros. In this section you can specify variables to hold either

single values or lists of values for use in later sections of the configuration file. Like

an environment variable or a programming-language identifier, macros must start

with a letter and also may contain digits and underscores.

Here are some example macros:

EXT_IF="de0"

INT_IF="de1"

RFC1918="{ 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"

A macro can be referenced later by prefixing it with the $ character:

block drop quick on $EXT_IF from any to $RFC1918

The second section allows you to specify tables of IP addresses to use in later rules.

Using tables for lists of IP addresses is much faster than using a macro, especially

for large numbers of IP addresses, because when a macro is used in a rule, it will

expand to multiple rules, with each one matching on a single value contained in the

macro. Using a table adds just a single rule when it is expanded.

Rather than using the macro from our previous example, we can define a table to

hold the nonroutable RFC 1918 IP addresses:

table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

The const keyword ensures that this table cannot be modified once it has been

created. Tables are specified in a rule in the same way that they were created:

block drop quick on $EXT_IF from any to <rfc1918>

You can also load a list of IP addresses into a table by using the file keyword:

table <spammers> file "/etc/spammers.table"

If you elect not to use the const keyword, then you can add addresses to a table by

running a command such as this:

pfctl -t spammers -T add 10.1.1.1

Additionally, you can delete an address by running a command like this:

pfctl -t spammers -T delete 10.1.1.1

To list the contents of a table, you can run:

pfctl -t spammers -T show

In addition to IP addresses, hostnames may also be specified. In this case, all valid

addresses returned by the resolver will be inserted into the table.

The next section of the configuration file contains options that affect the behavior of

PF. By modifying options, we can control session timeouts, defragmentation

timeouts, state-table transitions, statistic collection, and other behaviors. Options

are specified by using the set keyword. The number of options is too numerous to

discuss all of them in any meaningful detail; however, we will discuss the most

pertinent and useful ones.

One of the most important options is block-policy. This option specifies the default

behavior of the block keyword and can be configured to silently drop matching

packets by specifying drop. Alternatively, return may be used, to specify that

packets matching a block rule will generate a TCP reset or an ICMP unreachable

packet, depending on whether the triggering packet is TCP or UDP. This is similar to

the REJECT target in Linux's Netfilter.

For example, to have PF drop packets silently by default, add a line like this to

/etc/pf.conf:

set block-policy drop

In addition to setting the block-policy, additional statistics such as packet and byte

counts can be collected for an interface. To enable this for an interface, add a line

similar to this to the configuration file:

set loginterface de0

However, these statistics can only be collected on a single interface at a time. If you

do not want to collect any statistics, you can replace the interface name with the

none keyword.

To better utilize resources on busy networks, we can also modify the session-timeout

values. Setting this to a low value can help improve the performance of the firewall

on high-traffic networks, but at the expense of dropping valid idle connections.

To set the session timeout (in seconds), put a line similar to this in /etc/pf.conf:

set timeout interval 20

With this setting in place, any TCP connection that is idle for 20 seconds will

automatically be reset.

PF can also optimize performance on low-end hardware by tuning its memory use

regarding how many states may be stored at any one time or how many fragments

may reside in memory for fragment reassembly. For example, to set the number of

states to 20,000 and the number of entries used by the fragment reassembler to

15,000, we could put this in our pf.conf:

set limit states 20000

set limit frags 15000

Alternatively, we could combine these entries into a single one, like this:

set limit { states 20000, frags 15000 }

Moving on, the next section is for traffic normalization rules. Rules of this type

ensure that packets passing through the firewall meet certain criteria regarding

fragmentation, IP IDs, minimum TTLs, and other attributes of a TCP datagram.

Rules in this section are all prefixed by the scrub keyword. In general, just putting

scrub all is fine. However, if necessary, we can get quite detailed in specifying what

we want normalized and how we want to normalize it. Since we can use PF's general

filtering-rule syntax to determine what types of packets a scrub rule will match, we

can normalize packets with a great deal of control.

One of the more interesting possibilities is to randomize all IP IDs in the packets

leaving your network for the outside world. In doing this, we can make sure that

passive operating system determination methods based on IP IDs will break when

trying to figure out the operating system of a system protected by the firewall.

Because such methods depend on analyzing how the host operating system

increments the IP IDs in its outgoing packets, and our firewall ensures that the IP

IDs in all the packets leaving our network are totally random, it's pretty hard to

match them against a known pattern for an operating system. This also helps to

prevent enumeration of machines in a network address translated (NAT)

environment. Without random IP IDs, someone outside the network can perform a

statistical analysis of the IP IDs being emitted by the NAT gateway in order to count

the number of machines on the private network. Randomizing the IP IDs defeats

this kind of attack.

To enable random ID generation on an interface, put a line such as this in

/etc/pf.conf:

scrub out on de0 all random-id

We can also use the scrub directive to reassemble fragmented packets before

forwarding them to their destinations. This helps prevent specially fragmented

packets (such as packets that overlap) from evading intrusion-detection systems

that are sitting behind the firewall.

To enable fragment reassembly on all interfaces, simply put the following line in the

configuration file:

scrub fragment reassemble

If we want to limit reassembly to just a single interface, we can change this to:

scrub in on de0 all fragment reassemble

This will enable fragment reassembly for the de0 interface.

The next two sections of the pf.conf file involve packet queuing and address

translation, but since this hack focuses on packet filtering, we'll skip these. This

brings us to the last section, which contains the actual packet-filtering rules. In

general, the syntax for a filter rule can be defined by the following:

action direction [log] [quick] on int [af] [proto protocol] \

 from src_addr [port src_port] to dst_addr [port dst_port] \

 [tcp_flags] [state]

In PF, a rule can have only two actions: block and pass. As discussed previously, the

block policy affects the behavior of the block action. However, this can be modified

for specific rules by specifying it along with an action, such as block drop or block

return. Additionally, block return-icmp can be used, which will return an ICMP

unreachable message by default. An ICMP type can be specified as well, in which

case that type of ICMP message will be returned.

For most purposes, we want to start out with a default deny policy; that way we can

later add rules to allow the specific traffic that we want through the firewall.

To set up a default deny policy for all interfaces, put the following line in

/etc/pf.conf:

block all

Now we can add rules to allow traffic through our firewall. First we'll keep the

loopback interface unfiltered. To accomplish this, we'll use this rule:

pass quick on lo0 all

Notice the use of the quick keyword. Normally PF will continue through our rule list

even if a rule has already allowed a packet to pass, in order to see whether a more

specific rule that appears later on in the configuration file will drop the packet. The

use of the quick keyword modifies this behavior and causes PF to stop processing

the packet at this rule if it matches the packet and to take the specified action. With

careful use, this can greatly improve the performance of a ruleset.

To prevent external hosts from spoofing internal addresses, we can use the

antispoof keyword:

antispoof quick for $INT_IF inet

Next we'll want to block any packets from entering or leaving our external interface

that have a nonroutable RFC 1918 IP address. Such packets, unless explicitly

allowed later, would be caught by our default deny policy. However, if we use a rule

to specifically match these packets and use the quick keyword, we can increase

performance by adding a rule like this:

block drop quick on $EXT_IF from any to <rfc1918>

If we wanted to allow traffic into our network destined for a web server at

192.168.1.20, we could use a rule like this:

pass in on $EXT_IF proto tcp from any to 192.168.1.20 port 80 \

 modulate state flags S/SA

This will allow packets destined to TCP port 80 at 192.168.1.20 only if they are

establishing a new connection (i.e., the SYN flag is set), and will enter the connection

into the state table. The modulate keyword ensures that a high-quality initial

sequence number is generated for the session, which is important if the operating

system in use at either end of the connection uses a poor algorithm for generating

its ISNs.

Similarly, if we wanted to pass traffic to and from an email server at the IP address

192.168.1.21, we could use this rule:

pass in on $EXT_IF proto tcp from any to 192.168.1.21 \

 port { smtp, pop3, imap2, imaps } modulate state flags S/SA

Notice that multiple ports can be specified for a rule by separating them with

commas and enclosing them in curly braces. We can also use service names, as

defined in /etc/services, instead of specifying the service's port number.

To allow traffic to a DNS server at 192.168.1.18, we can add a rule like this:

pass in on $EXT_IF proto tcp from any to 192.168.1.18 port 53 \

 modulate state flags S/SA

This still leaves the firewall blocking UDP DNS traffic. To allow this through, add this

rule:

pass in on $EXT_IF proto udp from any to 192.168.1.18 port 53 \

 keep state

Notice here that even though this is a rule for UDP packets we have still used the

state keyword. In this case, PF will keep track of the connection using the source

and destination IP address and port pairs. Also, since UDP datagrams do not contain

file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/192.168.1.18

sequence numbers, the modulate keyword is not applicable. We use keep state

instead, which is how to specify stateful inspection when not modulating ISNs. In

addition, since UDP datagrams do not contain flags, we simply omit them.

Now we'll want to allow connections initiated from the internal network to pass

through the firewall. To do this, we'll need to add the following rules to let the traffic

into the internal interface of the firewall:

pass in on $INT_IF from $INT_IF:network to any

pass out on $INT_IF from any to $INT_IF:network

pass out on $EXT_IF proto tcp all modulate state flags S/SA

pass out on $EXT_IF proto { icmp, udp } all keep state

As you can see, OpenBSD has a very powerful and flexible firewalling system. There

are too many features and possibilities to discuss here. For more information, you

can look at the excellent PF documentation available online or the pf.conf manpage.

Hack 35 Create an Authenticated Gateway

Use PF to keep unauthorized users off the network.

Firewalling gateways have traditionally been used to block traffic from specific

services or machines. Instead of watching IP addresses and port numbers, an

authenticated gateway allows you to regulate traffic to or from machines based on a

user's credentials. With an authenticated gateway, a user will have to log in and

authenticate himself to the gateway in order to gain access to the protected

network. This can be useful in many situations, such as restricting Internet access or

restricting a wireless segment to be used only by authorized users.

With the release of OpenBSD 3.1, you can implement this functionality through the

use of PF and the authpf shell. Using authpf also provides an audit trail by logging

usernames, originating IP addresses, and the time that they authenticated with the

gateway, as well as when they logged off the network.

To set up authentication with authpf, you'll first need to create an account on the

gateway for each user. Specify /usr/sbin/authpf as the shell, and be sure to add

authpf as a valid shell to /etc/shells. When a user logs in through SSH, authpf will

obtain the user's name and IP address through the environment. After doing this, a

template file containing NAT and filter rules is read in, and the username and IP

address are applied to it. The resulting rules are then added to the running

configuration. When the user logs out (i.e., types ^C), the rules that were created

are unloaded from the current ruleset. For user-specific rule templates, authpf looks

in /etc/authpf/users/$USER/authpf.rules. Global rule templates are stored in

/etc/authpf/authpf.rules. Similarly, NAT entries are stored in authpf.nat, in either of

these two directories. When a user-specific template is present for the user who has

just authenticated, the template completely replaces the global rules, instead of just

adding to them. When loading the templates, authpf will expand the $user_ip

macro to the user's current IP address.

For example:

pass in quick on wi0 proto { tcp, udp } from $user_ip to any \

 keep state flags S/SA

This particular rule will pass in all traffic on the wireless interface from the newly

authenticated user's IP address. This works particularly well with a default deny

policy, where only the initial SSH connection to the gateway and DNS have been

allowed from the authenticating IP address.

You could be much more restrictive and allow only HTTP-, DNS-, and email-related

traffic through the gateway:

pass in quick on wi0 proto tcp from $user_ip to any \

 port { smtp, www, https, pop3, pop3s, imap, imaps } \

 keep state flags S/SA

pass in quick on wi0 proto udp from $user_ip to any port domain

After the template files have been created, you must then provide an entry point

into pf.conf for the rules that authpf will create for evaluation by PF. These entry

points are added to your pf.conf with the various anchor keywords:

nat-anchor authpf

rdr-anchor authpf

binat-anchor authpf

anchor authpf

Note that each anchor point needs to be added to the section it applies to�you

cannot just put them all at the end or beginning of your pf.conf. Thus the nat-

anchor, rdr-anchor, and binat-anchor entries must go into the address translation

section of the pf.conf. Likewise, the anchor entry, which applies only to filtering

rules, should be added to the filtering section.

When a user logs into the gateway, he should now be presented with a message like

this:

Hello andrew, You are authenticated from host "192.168.0.61"

The user will also see the contents of /etc/authpf/authpf.message if it exists and is

readable.

If you examine /var/log/daemon, you should also see log messages similar to these

for when a user logs in and out:

Dec 3 22:36:31 zul authpf[15058]: allowing 192.168.0.61, \

 user andrew

Dec 3 22:47:21 zul authpf[15058]: removed 192.168.0.61, \

 user andrew- duration 650 seconds

Note that since it is present in /etc/shells, any user that has a local account is

capable of changing his shell to authpf. If you want to ensure that the user cannot

do this, you can create a file named after his username and put it in the

/etc/authpf/banned directory. The contents of this file will be displayed when he logs

into the gateway. On the other hand, you can also explicitly allow users by listing

their usernames, one per line, in /etc/authpf/authpf.allow. However, any bans that

have been specified in /etc/authpf/banned take precedence over entries in

authpf.allow.

Since authpf relies on the SSH session to determine when the rules pertaining to a

particular user are to be unloaded, care should be taken in configuring your SSH

daemon to time out connections. Timeouts should happen fairly quickly, to revoke

access as soon as possible once a connection has gone stale. This also helps prevent

connections to systems outside the gateway from being held open by those

conducting ARP spoof attacks.

You can set up OpenSSH to guard against this by adding these to lines to your

sshd_config:

ClientAliveInterval 15

ClientAliveCountMax 3

This will ensure that the SSH daemon will send a request for a client response 15

seconds after it has received no data from the client. The ClientAliveCountMax

option specifies that this can happen three times without a response before the

client is disconnected. Thus, after a client has become unresponsive, it will be

disconnected after 45 seconds. These keepalive packets are sent automatically by

the SSH client software and don't require any intervention on the part of the user.

Authpf is very powerful in its flexibility and integration with PF, OpenBSD's native

firewalling system. It is easy to set up and has very little performance overhead,

since it relies on SSH and the operating system to do authentication and manage

sessions.

Hack 36 Firewall with Windows

Yes, you can use Windows as a firewall.

You may not know it, but Windows has a very capable firewall built right in. To

access it, run the Microsoft Management Console. You can do this by opening up a

Run dialog, typing mmc, and clicking the OK button. After the program loads, you

should see something similar to Figure 3-1.

Figure 3-1. The Microsoft Management Console

Click on the Console menu and select the "Add/Remove Snap-in..." menu item. Next

you should be presented with a dialog that has an Add button at the bottom. After

clicking the Add button, you should see a dialog box with a list of available snap-ins.

Scroll through the list and locate the item titled IP Security Policy Management.

After you've selected this, the dialog box should look like Figure 3-2.

Figure 3-2. Adding the IP Security Policy Management snap-in

Now click the Add button. You'll be presented with a dialog asking whether you want

the snap-in to manage the local computer or a domain. Determine whether you

want to apply the filtering settings to just the local computer or the entire domain,

and click the Finish button. Click the Close button in the Add Standalone Snap-in

list dialog as shown in Figure 3-2. You should now see the IP Security Policies snap-

in listed in the Add/Remove Snap-in dialog, as shown in Figure 3-3. Click the OK

button and you'll be returned to the original Management Console window. You

should now see the IP Security Policies snap-in listed in the window.

Figure 3-3. The Add/Remove Snap-in dialog with the IP Security

Policies snap-in loaded

Before setting up firewall rules, you'll need to create a block action for them to use.

To do this, right-click the IP Security Policies icon and select the "Manage IP filter

lists and filter actions" item. After the dialog appears, click on the Manage Filter

Actions tab. You should now see something similar to Figure 3-4.

Figure 3-4. The Manage Filter Actions tab

If the Use Add Wizard checkbox is not checked, be sure to check it. Now click the

Add button. Click the Next button after the wizard dialog opens. Then type "Block"

for name of the new filter action. For the description, type "Blocks Access" or

something similarly appropriate. After filling those in, click the Next button. Now

click the Block radio button, and then click the Next button once again. After that,

click the Finish button. You should now see the new filter action in the list that was

shown in Figure 3-3. You may now click the Close button.

Now you can set up the firewall rules. Right-click the security policy icon and select

the Create IP Security Policy item. This will bring up a wizard. Click the Next button

and fill in the Name and Description; a good choice for both of them would be

"Firewall". After filling those in, click the Next button. You should now see a

checkbox labeled "Activate the default response rule". Uncheck this box and then

click the Next button. After that, click the Finish button. You should now see a

dialog called Firewall Properties, as shown in Figure 3-5.

Figure 3-5. The Firewall Properties dialog

To create a new filtering rule, uncheck the Use Add Wizard box and click the Add

button. You should now see a dialog box that looks like Figure 3-6.

Figure 3-6. Adding a new rule

To select the IP addresses to match on, click the Add button in the IP Filter List tab.

This will also let you define ports and protocols to match on. After you have selected

the IP addresses and ports you want the rule to apply to, click the Filter Action tab

and choose your selections from the list of actions.

Hack 37 Keep Your Network Self-Contained

Use egress filtering to mitigate attacks and information leaks coming from your

network.

You're probably familiar with the concept of firewalling as it applies to blocking traffic coming

into your network. Have you considered the benefits of filtering traffic that leaves your network?

For instance, what would happen if someone compromised a host on your network and used it as

a platform to attack other networks? What if a worm somehow made it onto your network and

tried to infect hosts across the Internet? At the very least, you would probably receive some

angry phone calls and emails. Luckily, filtering your outbound traffic�otherwise known as egress

filtering�can help to contain such malicious behavior. Egress filtering can not only protect others

from attacks originating from your network, but can also be used to enforce network usage

policies and make sure information doesn't leak out of your network onto the wider Internet. In

many situations, egress filtering is just as important as filtering inbound traffic.

The general guideline when crafting egress-filtering rules is the same as when constructing any

inbound-filtering rule�devices should only be allowed to do what they were meant to do. That is,

a mail server should only be allowed to serve and relay mail, a web server should only be allowed

to serve web content, a DNS server should only service DNS requests, and so on. By ensuring

that this policy is implemented, you can better contain the threats mentioned earlier.

It may also be a good idea to force users to use internal services rather than Internet services

wherever possible. For example, if you are using your own DNS servers, clients shouldn't be able

to connect to external DNS servers to resolve hostnames. If a client is allowed to do this, you risk

the chance that they will reveal intranet hostnames to outside parties when the client attempts to

resolve an internal hostname through an external DNS server.

For instance, this restriction can be accomplished in OpenBSD with a rule like this:

rdr on $INT_IF inet proto { tcp, udp } from $INT_IF:network to any port 53

-> $DNS_SERVER port 53

Of course, you'll need to set INT_IF to the interface facing your internal network and set

DNS_SERVER to the IP address of your internal DNS server.

Similarly, if you're running an internal mail server, then company email need never cross the

Internet. If you have gone to the trouble of setting up an internal email server, do you really

want your employees to be able to connect to servers outside your network?

You can do this with a similar rule:

rdr on $INT_IF inet proto tcp from $INT_IF:network to any port 25 -> $SMTP_HOST port 25

Egress filtering can also prevent IP spoofing. By filtering on your external interface at the border

of your network, you can verify that packets leaving your network have source addresses that

match your address space. By filtering all other traffic, you can ensure that any IP spoofing attack

performed from your network or routed through it will be dropped before the packets are able to

leave.

Hack 38 Test Your Firewall

Find out if your firewall really works the way you think it should.

So you've set up a firewall and done a few cursory tests to make sure it's working,

but have you tested the firewall to be sure that it's blocking everything that it's

supposed to? You may not have done this because you think it will take too long or

be too difficult. Luckily there's ftester (http://ftester.sourceforge.net), a free tool for

doing extensive firewall tests.

Ftester consists of three Perl scripts. The ftest script is used for injecting custom

packets as defined in the configuration file ftest.conf. If you are testing how the

firewall behaves with ingress traffic, you should run this script on a machine outside

of your firewalled network. If you want to test your firewall's behavior toward egress

traffic, you will need to run ftest from a machine within your firewall's protected

network. One of the other scripts is ftestd, which listens for the packets injected

with ftest that come through the firewall that you are testing. This script should be

run on a machine within your internal network if you are testing the firewall's

ingress behavior. If you are testing egress behavior, you'll need to run it on a

machine external to your network. Both of these scripts keep a log of what they

send or receive. After a test run, their respective logs can be compared using the

freport script, to quickly see what packets were able to get through the firewall.

Before you can use Ftester, you will need the Net::RawIP , Net::PcapUtils, and

NetPacket Perl modules. You will also need the Net::Pcap module if it is not already

installed, since the Net::PcapUtils module depends on it. If you have the CPAN Perl

module available, you can install these modules with the following commands:

perl -MCPAN -e "install Net::RawIP"

perl -MCPAN -e "install Net::PcapUtils"

perl -MCPAN -e "install NetPacket"

Once these modules are available on the systems you will be using to conduct your

firewall test, you will need to create a configuration file to tell ftest what packets it

should generate.

The general form for a TCP or UDP packet in ftest.conf is:

source addr:source port:dest addr:dest port:flags:proto:tos

where source addr and source port are the source IP address and port, and dest

addr and dest port are the destination IP address and port. Address ranges can be

specified in the low-high format or by using CIDR notation. Port ranges can be

specified using the low-high format as well. The flags field is where you specify the

TCP that you want set for the packet. Valid values for this field are S for SYN, A for

http://ftester.sourceforge.net/

ACK, P for PSH, U for URG, R for RST, and F for FIN. The proto field specifies which

protocol to use (either TCP or UDP), and tos contains the number to set the Type-of-

Service (ToS) field in the IP header to. Sometimes routers will use the contents of

this field to make decisions about traffic prioritization. You can get more

information on the ToS field by reading RFC 791

(http://www.ietf.org/rfc/rfc0791.txt), which defines Internet Protocol.

ICMP packets can be defined in a similar manner. Here's the general form for one:

source addr::dest addr:::ICMP:type:code

Here you can see that the main difference between the two forms is the omission of

port numbers and flags. This is because ICMP does not use port numbers and does

not make use of flags. Instead, it uses types and codes, hence the addition of the

type and code fields. Currently, there are over 40 ICMP types. Some that may be

familiar to you are the ones used by the ping utility, echo (type 8) and echo reply

(type 0), or the type used by the traceroute command (type 30). ICMP codes are

like subclassifications of an ICMP type. Not all ICMP types have ICMP codes

associated with them, although there are roughly the same number of ICMP codes

as there are types. You can find out more about ICMP types and codes by reading

the IANA's assignments for them (see http://www.iana.org/assignments/icmp-

parameters).

Here's an ftest.conf that will check all of the unprivileged TCP ports on a machine

with the IP address 10.1.1.1:

192.168.1.10:1025:10.1.1.1:1-1025:S:TCP:0

stop_signal=192.168.1.10:1025:10.1.1.1:22:S:TCP:0

The stop_signal creates a payload for the packet that will tell ftestd that the testing

is over.

Before starting ftest, you should start ftestd:

./ftestd -i eth0

Now, to run ftest:

./ftest -f ftest.conf

This will create a log file called ftest.log containing an entry for every packet ftest

sent. When ftestd receives the signal to stop, it will exit. You can then find its log of

what packets it received in ftestd.log. Now you can copy the logs to the same

machine and run them through freport. If you used a configuration file like the one

shown earlier and were allowing SSH, SMPTP, and HTTP traffic, you might get a

report similar to this:

./freport ftest.log ftestd.log

Authorized packets:

http://www.ietf.org/rfc/rfc0791.txt
http://www.iana.org/assignments/icmp-parameters

22 - 192.168.1.10:1025 > 10.1.1.1:22 S TCP 0

25 - 192.168.1.10:1025 > 10.1.1.1:25 S TCP 0

80 - 192.168.1.10:1025 > 10.1.1.1:80 S TCP 0

Modified packets (probably NAT):

Filtered or dropped packets:

1 - 192.168.1.10:1025 > 10.1.1.1:1 S TCP 0

2 - 192.168.1.10:1025 > 10.1.1.1:2 S TCP 0

3 - 192.168.1.10:1025 > 10.1.1.1:3 S TCP 0

If you are using a stateful firewall and want to test this functionality, you can also

specify packets that have flags other than SYN set. For instance, if the previous

example had used ACK or some other flag instead of SYN, it would be dropped by

the firewall since only packets with the SYN flag set are used to initiate connections.

It's a good idea to run ftest each time you make changes to your firewall, or

periodically just to make sure that your firewall works as you expect it to. While

complex rulesets on your firewall can sometimes make it difficult to predict exactly

how it will behave, ftest will tell you with good authority exactly what kind of traffic

is permitted.

Hack 39 MAC Filtering with Netfilter

Keep unwanted machines off your network with MAC address whitelisting

Media Access Control (MAC) address filtering is a well-known method for protecting

wireless networks. This type of filtering works on the default deny principle: you

specify the hosts that are allowed to connect, while leaving unknown ones behind.

MAC addresses are unique 48-bit numbers that have been assigned to every

Ethernet device that has ever been manufactured, including 802.11 devices, and are

usually written as six 8-bit hexadecimal digits separated by colons.

In addition to Linux's native IP packet filtering system, Netfilter also contains MAC

address filtering functionality. While many of the wireless access points on the

market today already support this, there are many older ones that do not. MAC

filtering is also important if your access point is actually the Linux machine itself,

using a wireless card. If you have a Linux-based firewall already set up, it's a trivial

modification to enable it to filter at the MAC level. MAC address filtering with

iptables is very much like IP-based filtering, and is just as easy to do.

This example demonstrates how to allow a particular MAC address if your firewall

policy is set to DROP [Hack #33] :

iptables -A FORWARD -m state --state NEW \

 -m mac --mac-source 00:DE:AD:BE:EF:00 -j ACCEPT

This command will allow any traffic sent from the network interface with the address

00:DE:AD:BE:EF:00. Using rules like this one along with a default deny policy enables

you to create a whitelist of the MAC addresses that you want to allow through your

gateway. To create a blacklist, you can employ a default accept policy and change the

MAC address matching rule's target to DENY.

This is all pretty straightforward if you already know the MAC addresses for which

you want to create rules, but what if you don't? If you have access to the system,

you can find out the MAC address of an interface by using the ifconfig command:

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:29:E2:2B:C1

 inet addr:192.168.0.41 Bcast:192.168.0.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:132893 errors:0 dropped:0 overruns:0 frame:0

 TX packets:17007 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:46050011 (43.9 Mb) TX bytes:1601488 (1.5 Mb)

 Interrupt:10 Base address:0x10e0

Here you can see that the MAC address for this interface is 00:0C:29:E2:2B:C1. The

output of ifconfig is somewhat different on other operating systems, but they are

all similar to some degree (this output was from a Linux system).

Finding the MAC address of a system remotely is slightly more involved and can be

done by using the arp and ping commands. By pinging the remote system, its IP

address will be resolved to a MAC address, which can then be looked up using the

arp command.

For example, to look up the MAC address that corresponds to the IP address

192.168.0.61, you could run the following commands:

$ ping -c 1 192.168.0.61

$ /sbin/arp 192.168.0.61 | awk '{print $3}'

Or you could use this very small and handy shell script:

#!/bin/sh

ping -c $1 >/dev/null && /sbin/arp $1 | awk '{print $3}' \

 | grep -v Hwaddress

When implementing MAC address filtering, please be aware that it is not foolproof.

Under many circumstances, it is quite trivial to change the MAC address that an

interface uses by simply instructing the driver to do so. It is also possible to send

out link-layer frames with forged MAC addresses by using raw link-layer sockets.

Thus, MAC address filtering should only be considered as an additional measure that

you can use to protect your network. Treat MAC filtering more as a "Keep Out" sign,

rather than a good deadbolt.

Hack 40 Block OS Fingerprinting

Keep outsiders on a need-to-know basis regarding your operating systems.

When performing network reconnaissance, one very valuable piece of information for

would-be attackers is the operating system running on each system discovered in

their scans. From an attacker's point of view, this is very helpful in figuring out what

vulnerabilities the system might have or which exploits may work on a system.

Combined with the knowledge of open ports found during a port-scan, this

information can be devastating. After all, an RPC exploit for SPARC Solaris isn't very

likely to work for x86 Linux�the code for the portmap daemon isn't common to

both systems, and they have different processor architectures. Armed with the

knowledge of a given server's platform, attackers can very efficiently try the

techniques most likely to grant them further access without wasting time on exploits

that cannot work.

Traditionally, individuals performing network reconnaissance would simply connect to

any services detected by their port-scan, to see which operating system the remote

system is running. This works because many daemons, such as Sendmail, Telnet, and

even FTP, readily announce the underlying operating system, as well as their own

version numbers. Even though this method is easy and straightforward, it is now

seen as intrusive since it's easy to spot someone connecting in the system log files.

Additionally, most services can be configured not to disclose this sensitive

information. In response, more sophisticated methods were developed that do not

require a full connection to the target system to determine which operating system it

is running. These methods rely on the eccentricities of the host operating system's

TCP/IP stack and its behavior when responding to certain types of packets. Since

individual operating systems respond to these packets in a particular way, it is

possible to make a very good guess at what OS a particular server is running based

on how it responds to probe packets, which normally don't show up in log files.

Luckily, such probe packets can be blocked at the firewall to circumvent any

operating system detection attempts that deploy methods like this.

One popular tool that employs such OS detection methods is Nmap

(http://www.insecure.org/nmap/), which not only allows you to detect the operating

system running on a remote system, but also perform various types of port-scans.

Attempting to detect an operating system with Nmap is as simple as running it with

the -O switch. Here are the results of scanning an OpenBSD 3.3 system:

nmap -O puffy

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-02 19:14 MST

Interesting ports on puffy (192.168.0.42):

http://www.insecure.org/nmap/

(The 1653 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

13/tcp open daytime

22/tcp open ssh

37/tcp open time

113/tcp open auth

Device type: general purpose

Running: OpenBSD 3.X

OS details: OpenBSD 3.0 or 3.3

Nmap run completed -- 1 IP address (1 host up) scanned in 24.873 seconds

To thwart Nmap's efforts, we can employ firewall rules that block packets used for

operating-system probes. These are fairly easy to spot, since several of them have

invalid combinations of TCP flags. Some of the tests that Nmap performs cannot be

blocked by PF by simply adding block rules, but they can be blocked if stateful

filtering and a default deny policy have been implemented in the ruleset. This is

because some of the tests make use of TCP options, which cannot be filtered with PF.

To block these fingerprinting attempts with OpenBSD's PF, we can put rules similar to

these in our /etc/pf.conf:

set block-policy return

block in log quick proto tcp flags FUP/WEUAPRSF

block in log quick proto tcp flags WEUAPRSF/WEUAPRSF

block in log quick proto tcp flags SRAFU/WEUAPRSF

block in log quick proto tcp flags /WEUAPRSF

block in log quick proto tcp flags SR/SR

block in log quick proto tcp flags SF/SF

This also has the side effect of logging any attempts to the pflog0 interface. Even if

we can't block all of Nmap's tests, we can at least log some of the more unique

attempts, and possibly confuse it by providing an incomplete picture of our

operating system's TCP stack behavior. Packets that have triggered these rules can be

viewed with tcpdump by running the following commands:

ifconfig pflog0 up

tcpdump -n -i pflog0

Now let's look at the results of an Nmap scan after enabling these rules:

nmap -O puffy

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-02 22:56 MST

Interesting ports on puffy (192.168.0.42):

(The 1653 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

13/tcp open daytime

22/tcp open ssh

37/tcp open time

113/tcp open auth

No exact OS matches for host (If you know what OS is running on it, see

http://www.insecure.org/cgi-bin/nmap-submit.cgi).

TCP/IP fingerprint:

SInfo(V=3.48%P=i686-pc-linux-gnu%D=12/2%Time=3FCD7B3F%O=13%C=1)

TSeq(Class=TR%IPID=RD%TS=2HZ)

T1(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=Y%W=0%ACK=O%Flags=AR%Ops=)

T4(Resp=Y%DF=Y%W=4000%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=134%RID=E%RIPCK=F%UCK=E%ULEN=134%DAT=E)

Nmap run completed -- 1 IP address (1 host up) scanned in 27.028 seconds

As you can see, this time the attempt was unsuccessful. But if you are feeling

particularly devious, simply confusing Nmap attempts may not be enough. What if

you want to actually trick would-be attackers into believing that a server is running a

different OS entirely? For example, this could be useful when setting up a honeypot

[Hack #94] to attract miscreants away from your critical servers. If this sounds like

fun to you, read on.

Hack 41 Fool Remote Operating System Detection Software

Evade remote OS detection attempts by disguising your TCP/IP stack.

Another method to thwart operating system detection attempts is to modify the behavior of

your system's TCP/IP stack and make it emulate the behavior of another operating system.

This may sound difficult, but can be done fairly easily in Linux by patching your kernel with

code available from the IP Personality project (http://ippersonality.sourceforge.net). This code

extends the kernel's built-in firewalling system, Netfilter, as well as its user-space component,

the iptables command.

To set up IP Personality, download the package that corresponds to your kernel. If you can't

find the correct one, visit the SourceForge patches page for the project

(http://sourceforge.net/tracker/?group_id=7557&atid=307557), which usually has more recent

kernel patches available.

To patch your kernel, unpack the IP Personality source distribution and go to the directory

containing your kernel source; then run the patch command:

cd /usr/src/linux

patch -p1 < \

../ippersonality-20020819-2.4.19/patches/ippersonality-20020819-linux-2.4.19.diff

If you are using a patch downloaded from the patches page, just substitute it in your patch

command. To verify that the patch has been applied correctly, you can run this command:

find ./ -name *.rej

If the patch was applied correctly, this command should not find any files.

Now that the kernel is patched, you will need to configure the kernel for IP Personality support.

As mentioned in [Hack #13], running make xconfig, make menuconfig, or even make config

while you are in the kernel source's directory will allow you to configure your kernel. Regardless

of the method you choose, the menu options will remain the same.

First, be sure that "Prompt for development and/or incomplete code/drivers" is enabled under

"Code maturity level options". Under Networking Options, find and enable the option for

Netfilter Configuration.

The list displayed by make xconfig is shown in Figure 3-7. Find the option labeled IP

"Personality Support", and either select y to statically compile it into your kernel, or select m to

create a dynamically loaded module.

Figure 3-7. Enable IP Personality Support

http://ippersonality.sourceforge.net/
http://sourceforge.net/tracker/?group_id=7557&atid=307557

After you have configured in support for IP Personality, save your configuration. Now compile

the kernel and modules, and install them by running commands similar to these:

make dep && make clean

make bzImage && make modules

cp arch/i386/boot/bzImage /boot/vmlinuz

make modules_install

Now reboot with your new kernel. In addition to patching your kernel, you'll also need to patch

the user-space portion of Netfilter, the iptables command. To do this, go to the Netfilter web

site (http://www.netfilter.org) and download the version specified by the patch that came with

your IP Personality package. For instance, the iptables patch included in ippersonality-

20020819-2.4.19.tar.gz is for Netfilter Version 1.2.2.

After downloading the proper version and unpacking it, you will need to patch it with the patch

included in the IP Personality package. Then build and install it in the normal way:

tar xfj iptables-1.2.2.tar.bz2

cd iptables-1.2.2

patch -p1 < \

../ippersonality-20020819-2.4.19/patches/ippersonality-20020427-iptables-\1.2.2.diff

patching file pers/Makefile

patching file pers/example.conf

http://www.netfilter.org/

patching file pers/libipt_PERS.c

patching file pers/pers.h

patching file pers/pers.l

patching file pers/pers.y

patching file pers/pers_asm.c

patching file pers/perscc.c

make KERNEL_DIR=/usr/src/linux && make install

This will install the modified iptables command, its supporting libraries, and the manpage

under the /usr/local hierarchy. If you would like to change the default installation directories,

you can edit the Makefile and change the values of the BINDIR, LIBDIR, MANDIR, and INCDIR

macros. Be sure to set KERNEL_DIR to the directory containing the kernel sources you built

earlier.

If you are using Red Hat Linux, you can replace the iptables command that is installed by

changing the macros to these values:

LIBDIR:=/lib

BINDIR:=/sbin

MANDIR:=/usr/share/man

INCDIR:=/usr/include

In addition to running make install, you may also want to create a directory for the operating

system personality configuration files. These files are located in the samples/ directory within

the IP Personality distribution. For example, you could create a directory called

/etc/personalities and copy them there.

Before setting up IP Personality, try running Nmap against the machine to see which operating

system it detects:

nmap -O colossus

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-12 18:36 MST

Interesting ports on colossus (192.168.0.64):

(The 1651 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

111/tcp open rpcbind

139/tcp open netbios-ssn

505/tcp open mailbox-lm

631/tcp open ipp

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details: Linux Kernel 2.4.0 - 2.5.20

Uptime 3.095 days (since Tue Dec 9 16:19:55 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 7.375 seconds

If your machine has an IP address of 192.168.0.64 and you want it to pretend that it's running

Mac OS 9, you can run iptables commands like these:

iptables -t mangle -A PREROUTING -d 192.168.0.64 -j PERS \

 --tweak dst --local --conf /etc/personalities/macos9.conf

iptables -t mangle -A OUTPUT -s 192.168.0.64 -j PERS \

 --tweak src --local --conf /etc/personalities/macos9.conf

Now run Nmap again:

nmap -O colossus

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-12 18:47 MST

Interesting ports on colossus (192.168.0.64):

(The 1651 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

111/tcp open rpcbind

139/tcp open netbios-ssn

505/tcp open mailbox-lm

631/tcp open ipp

Device type: general purpose

Running: Apple Mac OS 9.X

OS details: Apple Mac OS 9 - 9.1

Uptime 3.095 days (since Tue Dec 9 16:19:55 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.274 seconds

You can of course emulate other operating systems that aren't provided with the IP Personality

package. All you need is a copy of Nmap's operating system fingerprints file, nmap-os-

fingerprints, and then you can construct your own IP Personality configuration file for any

operating system Nmap knows about.

Hack 42 Keep an Inventory of Your Network

Use Nmap to keep track of the devices and services on your network.

As we saw in [Hack #40] , Nmap (http://www.insecure.org/nmap/) is free a tool

that can be used to conduct various sorts of scans on networks. Normally when

people think of using Nmap, they assume it's used to conduct some sort of nefarious

network reconnaissance in preparation for an attack. But as with all powerful tools,

Nmap can be used for far more than breaking into networks.

For example, simple TCP connect scans can be conducted without needing root

privileges:

$ nmap rigel

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-15 17:42 MST

Interesting ports on rigel (192.168.0.61):

(The 1595 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

7/tcp open echo

9/tcp open discard

13/tcp open daytime

19/tcp open chargen

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

37/tcp open time

79/tcp open finger

111/tcp open rpcbind

512/tcp open exec

http://www.insecure.org/nmap/

513/tcp open login

514/tcp open shell

587/tcp open submission

4045/tcp open lockd

7100/tcp open font-service

32771/tcp open sometimes-rpc5

32772/tcp open sometimes-rpc7

32773/tcp open sometimes-rpc9

32774/tcp open sometimes-rpc11

32775/tcp open sometimes-rpc13

32776/tcp open sometimes-rpc15

32777/tcp open sometimes-rpc17

Nmap run completed -- 1 IP address (1 host up) scanned in 75.992 seconds

This is tremendously useful for checking on the state of your own machines. You

could probably guess that this scan was performed on a Solaris machine, and one

that needs to have some services disabled at that.

Nmap can also scan ranges of IP addresses by specifying the range or using CIDR

notation:

nmap 192.168.0.1-254

nmap 192.168.0.0/24

Nmap can provide much more information if it is run as root. When run as root, it

can use special packets to determine the operating system of the remote machine by

using the -O flag. Additionally, you can do half-open TCP scanning by using the -sS

flag. When doing a half-open scan, Nmap will send a SYN packet to the remote host

and wait to receive the ACK from it; if it receives an ACK, it knows that the port is

open. This is different from a normal three-way TCP handshake, where the client will

send a SYN packet and then send an ACK back to the server once it has received the

initial server ACK. Attackers typically use this option to avoid having their scans

logged on the remote machine.

Try it out for yourself:

nmap -sS -O rigel

Starting nmap V. 3.00 (www.insecure.org/nmap/)

Interesting ports on rigel.nnc (192.168.0.61):

(The 1578 ports scanned but not shown below are in state: filtered)

Port State Service

7/tcp open echo

9/tcp open discard

13/tcp open daytime

19/tcp open chargen

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

37/tcp open time

79/tcp open finger

111/tcp open sunrpc

512/tcp open exec

513/tcp open login

514/tcp open shell

587/tcp open submission

7100/tcp open font-service

32771/tcp open sometimes-rpc5

32772/tcp open sometimes-rpc7

32773/tcp open sometimes-rpc9

32774/tcp open sometimes-rpc11

32775/tcp open sometimes-rpc13

32776/tcp open sometimes-rpc15

32777/tcp open sometimes-rpc17

Remote operating system guess: Solaris 9 Beta through Release on SPARC

Uptime 44.051 days (since Sat Nov 1 16:41:50 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 166 seconds

With OS detection enabled, Nmap has confirmed that the operating system is

Solaris, but now you also know that it's probably Version 9 running on a SPARC

processor.

One powerful feature that can be used to help keep track of your network is Nmap's

XML output capabilities. This is activated by using the -oX command-line switch:

nmap -sS -O -oX scandata.xml rigel

This is especially useful when scanning a range of IP addresses or your whole

network, because you can put all the information gathered from the scan into a

single XML file that can be parsed and inserted into a database. Here's what an XML

entry for an open port looks like:

<port protocol="tcp" portid="22">

<state state="open" />

<service name="ssh" method="table" conf="3" />

</port>

Nmap is a powerful tool. By using its XML output capabilities, a little bit of scripting,

and a database, you can create an even more powerful tool that can monitor your

network for unauthorized services and machines.

Hack 43 Scan Your Network for Vulnerabilities

Use Nessus to quickly and easily scan your network for services that are

vulnerable to attack.

As a network administrator, you not only need to know which hosts are on your

network and the services they are running, but also if those services are vulnerable

to exploits. While Nmap [Hack #40] can only show you what machines and ports

are reachable on your network, a security scanner such as Nessus

(http://www.nessus.org) can tell you if those machines are vulnerable to known

exploits.

Unlike a regular port scanner, a security scanner first locates listening services, and

then connects to those services and attempts to execute all known exploits. It then

records whether the exploit was successful and continues scanning until all available

services have been tested. The key benefit here is that you'll know at a glance how

your systems perform against the most recent exploits, and thus know whether they

truly are vulnerable to attack.

If you're feeling a bit adventurous, Nessus can be installed by simply typing the

following command:

$ lynx -source http://install.nessus.org | sh

This will completely automate the installation of Nessus, but isn't really a good idea

since you don't know what you'll be executing on your system until you actually run

it. A better way to install Nessus that retains the benefits of the automated installer

is to download the nessus-installer.sh script and execute it manually. After you've

downloaded the installer script and run it, you will be asked where you want to

install Nessus (the default is /usr/local) and prompted for your root password. The

script will then create a temporary SUID shell that is accessible only through your

user account. This may sound alarming at first, but it tells you the filename for the

shell, so you can verify that it is indeed accessible only to you and make sure that it

is deleted when the installation has completed.

After installation has finished, you'll need to create a Nessus user (not the same

thing as a Unix account). Since Nessus uses a client-server model, you'll also need to

generate a certificate so that all communications can be encrypted.

To create a new Nessus user, run nessus-adduser. It will then prompt you for a

name and a password. To create a certificate, you can run nessus-mkcert, or if you

have your own Certificate Authority (CA) [Hack #45], you can use that to create a

certificate for Nessus to use. If you do use your own CA, you'll need to edit

nessus.conf to tell it where to look for the CA certificate and the certificate and key

that you generated.

http://www.nessus.org/

The configuration file usually lives in /etc or /usr/local/etc. To tell Nessus where its

certificates are, add lines similar to the following:

cert_file=/etc/ssl/nessus.key

key_file=/etc/ssl/nessus.crt

ca_file=/etc/ssl/ca.crt

If you generated a certificate-key pair and used a password, you can specify that

password here as well:

pem_password=mypassword

After you've done all of that, you can start the Nessus daemon. This is the business

end of Nessus and is what will actually perform the scans against the hosts on your

network.

You can start it by running something similar to this command:

/usr/local/sbin/nessusd -D

Now you can start the Nessus client and connect to the server. There are several

Nessus clients available, including a command-line interface, an X11 application, and

a Windows client. The figures in this hack show the X11 interface. You can start the

client by simply typing nessus. After you've done that, you should see a window like

the one shown in Figure 3-8.

Figure 3-8. Nessus client setup

You'll need to fill in the information for the user that you created and click the "Log

In" button. After that, you'll be presented with a dialog that allows you to verify the

information contained in the server's certificate.

To select which types of vulnerabilities to scan for, click on the Plugins tab, and you'll

see something similar to Figure 3-9.

Figure 3-9. Nessus plugin selection

In the top pane you can enable or disable types of scans, and in the bottom pane

you can disable individual vulnerability checks that belong to the category selected

in the top pane. One thing to note: scans listed in the bottom pane that have an

exclamation icon next to them will potentially crash the server that they are run

against. If you want to enable all scans except for these, you can click the "Enable all

but dangerous plugins" button. If you're running Nessus on a noncritical machine,

you can probably leave these scans on, but you have been warned! You'll probably

want to disable several types of scans unless you need to scan a machine or group

of machines that run a wide variety of services; otherwise, you'll waste time having

Nessus scan for services that you aren't running. For instance, if you wanted to scan

a Solaris system, you might disable CGI abuses, CISCO, Windows, Peer-To-Peer File

Sharing, Backdoors, Firewalls, Windows User Management, and Netware plug-ins.

In order for Nessus to more thoroughly test your services, you can supply it with

login information for various services. This way, it can actually log into the service

that it is testing and have access just like any normal user. You can tell Nessus about

the accounts to use with the Prefs tab, as shown in Figure 3-10.

Figure 3-10. Nessus's Prefs tab

In addition, you can tell Nessus to attempt brute-force logins to the services it is

scanning. This can be a good test�not only of the services themselves, but also of

your intrusion detection system (IDS) [Hack #82] and your system logs.

The "Scan options" tab lets you configure how Nessus will conduct its port-scans.

Most of these settings can be left at their default value, unless you are also checking

to see whether Nessus can evade detection by the hosts that you are scanning. For

instance, Nessus is configured by default to perform full TCP connect scans and to

ping the remote host that it is scanning. You can change this behavior by going to

the "Scan options" tab, enabling "SYN scans" instead of "TCP connect", and disabling

the ping. To specify which hosts you want to scan, you can use the "Target selection"

tab.

After you've made your selections, try scanning a host by clicking "Start the scan" at

the bottom of the window. You should now see a window similar to Figure 3-11. In

this case, Nessus is performing a scan against a Solaris machine.

Figure 3-11. Performing a vulnerability scan

The results of the scan are shown in Figure 3-12.

Figure 3-12. The vulnerability scan results

If you scanned multiple subnets, you can select those in the Subnet pane. Any hosts

that are in the selected subnet will then appear in the Host pane. Similarly, when

you select a host, the list of open ports on it will appear in the Port pane. You can

select these to view the warnings, notes, and possible security holes that were found

regarding the selected port. You can view the information that Nessus provides for

these by clicking on them in the Severity pane. Don't be too alarmed by most of

Nessus's security notes and warnings; they are designed mainly to let you know

what services you are running and to tell you if that service might present a

potential vulnerability. Security holes are far more serious and should be

investigated.

To save the report that you are viewing, click the "Save report" button. Nessus will

let you save reports in a variety of formats. If you want to view the report in Nessus

again at a later date, you should use Nessus's own report format (NBE). Reports in

this format can be viewed by using the "Load report" button in the main Nessus

client window. Additionally, you can save reports in XML, HTML, ASCII, and even

LaTeX format.

While Nmap is probably the champion of host and port detection, Nessus goes even

further to demonstrate whether your own services are vulnerable to known attacks.

Of course, new exploits surface all of the time, so it is important to keep your

Nessus plug-ins up-to-date. Using Nessus, you can protect your own services by

attempting to break into them before the bad boys do.

Hack 44 Keep Server Clocks Synchronized

Make log analysis easier by keeping the time on your systems in sync.

Correlating events that occurred on multiple servers can be a chore if there are

discrepancies between the machines' clocks. Keeping the clocks on your systems

synchronized can save valuable time when analyzing router, firewall, and host logs

after a compromise, or when debugging everyday networking issues. Luckily, it's not

that hard to do this with a little help from NTP, the Network Time Protocol.

NTP is a peer-to-peer protocol designed to provide subsecond precision and accuracy

between host clocks. To get this going, all you need is the NTP distribution

(http://www.ntp.org/downloads.html), which contains a daemon for performing

clock synchronization, plus other supporting tools. While NTP might not be installed

on your system, it usually comes with the various Linux distributions, FreeBSD, and

OpenBSD as an optional package or port, so poke around your installation media or

the ports tree if it's not already installed. If it isn't available with your OS of choice,

you can still download and compile it yourself.

Configuring ntpd as a client is a fairly simple process. However, first you'll need to

find out whether you have a local time server, either on your network or at your ISP.

If you don't, you'll have to locate an NTP server that will let you query from it. Don't

worry, though�a list of all the publicly accessible time servers is available at

http://www.eecis.udel.edu/~mills/ntp/servers.html. One new term you will

encounter when looking for a server is stratum (e.g., stratum 1 or stratum 2). This

refers to the hierarchy of the server within the public NTP infrastructure. Stratum 1

servers are usually machines that have a direct time-sync source, such as a GPS or

atomic clock signal that provides updates to the daemon running on that machine.

Stratum 2 servers obtain their time sync from stratum 1 servers. Using stratum 2

servers helps to reduce the load on stratum 1 servers and is still accurate enough for

our purposes. In addition, you'll want to find servers that are as geographically close

to you as possible.

With this in mind, let's look for some NTP servers that we can use (using more than

one is generally a good idea, in case one fails). I live in Colorado, so after following

the link to the stratum 2 server list

(http://www.eecis.udel.edu/~mills/ntp/clock2a.html), I find two entries:

US CO ntp1.linuxmedialabs.com

Location: Linux Media Labs LLC, Colorado Springs, CO

Service Area: US

Synchronization: NTP Secondary (stratum 2), i686/Linux

Access Policy: open access

http://www.ntp.org/downloads.html
http://www.eecis.udel.edu/~mills/ntp/servers.html
http://www.eecis.udel.edu/~mills/ntp/clock2a.html

Contact: ntp@linuxmedialabs.com

Note: ntp1 is an alias and the IP address may change, please use DNS

US CO ntp1.tummy.com

Location: tummy.com, ltd., Fort Collins, CO

Service Area: US

Synchronization: NTP Secondary (stratum 2), i686/Linux

Access Policy: open access.

Contact: ntp@tummy.com

Note: ntp1 is an alias and the IP address may change, please use DNS.

Since they're both listed as open access, I can just add them to /etc/ntp.conf:

server ntp1.linuxmedialabs.com

server ntp1.tummy.com

In addition, ntpd can automatically correct for the specific clock frequency drift of

your machine. It does this by learning the average drift over time as it receives sync

messages. To enable this, add a line similar to the following to your ntp.conf:

driftfile /etc/ntp.drift

Of course, if you're keeping all of your ntpd configuration files in /etc/ntp, you'll

want to use a directory similar to /etc/ntp/ntp.drift instead.

That's it. Simply add ntpd to your startup scripts, start it up, and you're ready to

go.

Hack 45 Create Your Own Certificate Authority

Sign your own certificates to use in securing your network.

SSL certificates are usually thought of as being used for secure communications over the HTTP

protocol. However, they are also useful in providing both a means for authentication and a means

for initiating key exchange for a myriad of other services where encryption is desired, such as POP

and IMAP [Hack #47], SMTP [Hack #48], IPSec (see Chapter 6), and, of course, SSL tunnels

[Hack #76] . To make the best use of SSL, you will need to properly manage your own

certificates.

If an SSL client needs to verify the authenticity of an SSL server, the cert used by the server needs

to be signed by a Certificate Authority (CA) that is already trusted by the client. Well-known

Certificate Authorities (such as Thawte and VeriSign) exist to serve as an authoritative, trusted

third party for authentication. They are in the business of signing SSL certificates that are used on

sites dealing with sensitive information (such as account numbers or passwords). If a site's SSL

certificate is signed by a trusted authority, then presumably it is possible to verify the identity of a

server supplying that cert's credentials. However, for anything other than e-commerce

applications, a self-signed certificate is usually sufficient for gaining all of the security advantages

that SSL provides. But even a self-signed cert must be signed by an authority that the client

recognizes.

OpenSSL, a free SSL implementation, is perfectly capable of generating everything you need to

run your own Certificate Authority. The CA.pl utility makes the process very simple.

In these examples, you'll need to type anything in boldface, and enter passwords wherever

appropriate (they don't echo to the screen). To establish your new Certificate Authority, first

change to the misc/ directory under wherever OpenSSL is installed (/System/Library/OpenSSL/ on

OpenBSD; /usr/ssl/ or /usr/local/ssl/ on most Linux systems). Then use these commands:

$./CA.pl -newca

CA certificate filename (or enter to create)

Making CA certificate ...

Generating a 1024 bit RSA private key

..........++++++

.....................++++++

writing new private key to './demoCA/private/cakey.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US

State or Province Name (full name) []:Colorado

Locality Name (eg, city) []:Denver

Organization Name (eg, company) []:NonExistant Enterprises

Organizational Unit Name (eg, section) []:IT Services

Common Name (eg, fully qualified host name) []:ca.nonexistantdomain.com

Email Address []:certadmin@nonexistantdomain.com

Note that you don't necessarily need root permissions, but you will need write permissions on the

current directory.

Congratulations! You're the proud owner of your very own Certificate Authority. Take a look

around:

$ ls -l demoCA/

total 16

-rw-r--r-- 1 andrew andrew 1399 3 Dec 19:52 cacert.pem

drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 certs

drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 crl

-rw-r--r-- 1 andrew andrew 0 3 Dec 19:49 index.txt

drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 newcerts

drwxr-xr-x 3 andrew andrew 102 3 Dec 19:49 private

-rw-r--r-- 1 andrew andrew 3 3 Dec 19:49 serial

The public key for your new Certificate Authority is contained in cacert.pem, and the private key is

in private/cakey.pem. You can now use this private key to sign other SSL certs.

By default, CA.pl will create keys that are good for only one year. To change this behavior, edit

CA.pl and change the line that reads:

$DAYS="-days 365";

Alternatively, you can forego CA.pl altogether and generate the public and private keys manually

with a command like this:

$ openssl req -new -x509 -keyout cakey.pem -out \

 cakey.pem -days 3650

This will create a key pair that is good for the next 10 years, which can of course be changed by

using a different argument to the -days switch. Additionally, you should change the private key's

permissions to 600, to ensure that it is protected from being read by anyone.

So far, we have only created the Certificate Authority. To actually create keys that you can use with

your services, you need to create a certificate-signing request and a key. Again, this can be done

easily with CA.pl. First, a certificate-signing request is created:

$./CA.pl -newreq-nodes

Generating a 1024 bit RSA private key

...++++++

...++++++

writing new private key to 'newreq.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Colorado

Locality Name (eg, city) []:Denver

Organization Name (eg, company) [Internet Widgits Pty Ltd]:NonExistant Enterprises

Organizational Unit Name (eg, section) []:IT Services

Common Name (eg, YOUR name) []:mail.nonexistantdomain.com

Email Address []:postmaster@nonexistantdomain.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:NonExistant Enterprises

Request (and private key) is in newreq.pem

If you wish to encrypt the private key, you can use the -newreq switch in place of -newreq-nodes.

However, if you encrypt the private key, you will have to enter the password for it each time the

service that uses it is started. If you decide not to use an encrypted private key, be extremely

cautious with your private key, as anyone who can obtain a copy of it can impersonate your server.

Now, to actually sign the request and generate the signed certificate:

$./CA.pl -sign

Using configuration from /System/Library/OpenSSL/openssl.cnf

Enter pass phrase for ./demoCA/private/cakey.pem:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 1 (0x1)

 Validity

 Not Before: Dec 3 09:05:08 2003 GMT

 Not After : Dec 3 09:05:08 2004 GMT

 Subject:

 countryName = US

 stateOrProvinceName = Colorado

 localityName = Denver

 organizationName = NonExistant Enterprises

 organizationalUnitName = IT Services

 commonName = mail.nonexistantdomain.com

 emailAddress = postmaster@nonexistantdomain.com

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 Netscape Comment:

 OpenSSL Generated Certificate

 X509v3 Subject Key Identifier:

 94:0F:E9:F5:22:40:2C:71:D0:A7:5C:65:02:3E:BC:D8:DB:10:BD:88

 X509v3 Authority Key Identifier:

 keyid:7E:AF:2D:A4:39:37:F5:36:AE:71:2E:09:0E:49:23:70:61:28:5F:4A

 DirName:/C=US/ST=Colorado/L=Denver/O=NonExistant Enterprises/OU=IT Services/

CN=Certificate Administration/emailAddress=certadmin@nonexistantdomain.com

 serial:00

Certificate is to be certified until Dec 7 09:05:08 2004 GMT (365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

Signed certificate is in newcert.pem

Now you can set up keys in this manner for each server that needs to provide an SSL-encrypted

service. It is easier to do this if you designate a single workstation to maintain the certificate

authority and all the files associated with it. Don't forget to distribute your CA cert to programs

that need to trust it [Hack #46] .

Hack 46 Distribute Your CA to Clients

Be sure all of your clients trust your new Certificate Authority.

Once you have created a Certificate Authority (CA) [Hack #45], any certificates

that are signed by your CA will be trusted by any program that trusts your CA. To

establish this trust, you need to distribute your CA's certificate to each program that

needs to trust it. This could include email programs, IPSec installations, or web

browsers.

Since SSL uses public key cryptography, there is no need to keep the certificate a

secret. You can simply install it on a web server and download it to your clients over

plain old HTTP. While the instructions for installing a CA cert are different for every

program, this hack will show you a quick and easy way to install your CA on web

browsers.

There are two possible formats that browsers will accept for new CA certs: pem and

der. You can generate a der from your existing pem with a single openssl

command:

$ openssl x509 -in demoCA/cacert.pem -outform DER -out cacert.der

Also, add the following line to the conf/mime.types file in your Apache installation:

application/x-x509-ca-cert der pem crt

Now restart Apache for the change to take effect. You should now be able to place

both the cacert.der and demoCA/cacert.pem files anywhere on your web server and

have clients install the new cert by simply clicking on either link.

Early versions of Netscape expected pem format, but recent versions will accept

either. Internet Explorer is just the opposite (early IE would accept only der format,

but recent versions will take both). Other browsers will generally accept either

format.

You will get a dialog box in your browser when downloading the new Certificate

Authority, asking if you'd like to continue. Accept the certificate, and that's all there

is to it. Now SSL certs that are signed by your CA will be accepted without warning

the user.

Keep in mind that Certificate Authorities aren't to be taken lightly. If you accept a

new CA in your browser, you had better trust it completely�a mischievous CA

manager could sign all sorts of certs that you should never trust, but your browser

would never complain (since you claimed to trust the CA when you imported it). Be

very careful about who you extend your trust to when using SSL-enabled browsers.

It's worth looking around in the CA cache that ships with your browser to see

exactly who you trust by default.

For example, did you know that AOL/Time Warner has its own CA? How about GTE?

Or VISA? CA certs for all of these entities (and many others) ship with Netscape 7.0

for Linux, and are all trusted authorities for web sites, email, and application add-

ons by default. Keep this in mind when browsing to SSL-enabled sites: if any of the

default authorities have signed online content, your browser will trust it without

requiring operator acknowledgment.

If you value your browser's security (and, by extension, the security of your client

machine), then make it a point to review your trusted CA relationships.

�Rob Flickenger (Linux Server Hacks)

Hack 47 Encrypt IMAP and POP with SSL

Keep your email safe from prying eyes while also protecting your POP and

IMAP passwords.

Having your email available on an IMAP server is invaluable when you have to access

your email from multiple locations. Unlike POP, IMAP stores all your email and any

folders you create on the server, so you can access all of your email from whatever

email client you decide to use. You can even set up a web-based email client so that

messages can be accessed from literally any machine with an Internet connection

and a web browser. But more than likely, you will need to cross untrusted networks

along the way. How do you protect your email account password and email from

others with less than desirable intentions? You use encryption, of course!

If you already have an IMAP or POP daemon installed that does not have the ability

to use SSL natively, you can use stunnel [Hack #76] to wrap the service in an SSL

tunnel. If you're starting from scratch, you have the luxury of choosing a daemon

that has SSL support compiled directly into the binary.

One daemon that supports SSL out of the box is the University of Washington's

IMAP daemon, otherwise known as UW-IMAP (http://www.washington.edu/imap/).

The IMAP daemon is included with their IMAP software distribution.

To compile and install the IMAP daemon, download the compressed tar archive and

run commands similar to these:

$ tar xfz imap.tar.Z

$ cd imap-2002e

$ make lnp SSLDIR=/usr SSLCERTS=/usr/share/ssl/certs

The Makefile target specifies what type of system you are building for. In this case,

lnp stands for Linux-PAM. Other popular Makefile targets are bsf for FreeBSD, bso

for OpenBSD, osx for Mac OS X, sol for Solaris, and gso for Solaris with GCC. The

SSLDIR variable is used to set the base directory for your OpenSSL installation. By

default, the Makefile is set to use /usr/local/ssl, which would cause it to look for the

libraries in /usr/local/ssl/lib and the headers in /usr/local/ssl/include. If a version of

OpenSSL came installed with your operating system and you want to use that, you

will most likely need to use SSLDIR=/usr as shown in the example. The SSLCERTS

variable is used to tell the imapd and popd where to find their SSL certificates.

If the compile aborts due to errors, look for a message similar to this:

In file included from /usr/include/openssl/ssl.h:179,

 from osdep.c:218:

http://www.washington.edu/imap/

/usr/include/openssl/kssl.h:72:18: krb5.h: No such file or directory

In file included from /usr/include/openssl/ssl.h:179,

 from osdep.c:218:

This means that the compiler cannot find the Kerberos header files, a known issue

with newer versions of Red Hat Linux. This happens because the files are located in

/usr/kerberos/include, which is a nonstandard directory on the system.

To tell the compiler where to find the headers, use the EXTRACFLAGS variable. The

make command from the previous example will now look like this:

$ make lnp SSLDIR=/usr SSLCERTS=/usr/share/ssl/certs \

EXTRACFLAGS=-I/usr/kerberos/include

After the binaries have been built, become root and copy them to a suitable place:

cp imapd/imapd ipopd/ipopd /usr/local/bin

Next, to create self-signed certificates, run these two commands:

$ openssl req -new -x509 -nodes \

 -out /usr/share/ssl/certs/imapd.pem \

 -keyout /usr/share/ssl/certs/imapd.pem -days 3650

$ openssl req -new -x509 -nodes \

 -out /usr/share/ssl/certs/ipopd.pem \

 -keyout /usr/share/ssl/certs/ipopd.pem -days 3650

Alternatively, you can sign the certificates with your own Certificate Authority [Hack

#45] . However, if you go this route, you must change the certificates' names to

imapd.pem and ipopd.pem.

All that's left to do now is edit your /etc/inetd.conf file so that inetd will listen on

the correct ports and spawn imapd and ipopd when a client connects. To do this,

add the following lines at the end of the file:

imaps stream tcp nowait root /usr/libexec/tcpd /usr/local/bin/imapd

pop3s stream tcp nowait root /usr/libexec/tcpd /usr/local/bin/ipop3d

Now tell inetd to reload its configuration:

kill -HUP `ps -ax | grep inetd | grep -v grep \

 | awk '{print $1}'`

That's the final task for the server end of things. All you need to do now is configure

your email clients to connect to the secure version of the service that you were

using. Usually, there will be a Use Encryption, Use SSL, or some other similarly

named checkbox in the incoming mail settings for your client. Just check the box,

reconnect, and you should be using SSL now. Be sure your client trusts your CA

cert, or you will be nagged with annoying (but important!) trust warnings.

Hack 48 Set Up TLS-Enabled SMTP

Protect your users' in-transit email from eavesdroppers.

If you have set up encrypted POP and IMAP services [Hack #47], your users' incoming email is

protected from others once it reaches your servers, but what about their outgoing email? You can

protect outgoing email quickly and easily by setting up your MTA to use Transport Layer Security

(TLS) encryption. Virtually all modern email clients support TLS�enable it by simply checking a

box in the email account preferences.

If you're using Sendmail, you can check to see if it has TLS support compiled-in by running this

command:

$ sendmail -bt -d0.1

This will print out the options that your sendmail binary was compiled with. If you see a line that

says STARTTLS, then all you need to do is supply some additional configuration information to get

TLS support working. However, if you don't see this line, you'll need to recompile sendmail.

Before recompiling sendmail, you will need to go into the directory containing sendmail's source

code and add the following lines to devtools/Site/site.config.m4:

APPENDDEF(`conf_sendmail_ENVDEF', `-DSTARTTLS')

APPENDDEF(`conf_sendmail_LIBS', `-lssl -lcrypto')

If this file doesn't exist, simply create it. The build process will automatically include the file once

you create it. The first line in the example will cause TLS support to be compiled into the sendmail

binary, and the second line will link the binary with libssl.so and libcrypto.so.

After adding these lines, you can recompile and reinstall sendmail by running this command:

./Build -c && ./Build install

After you've done this, you will need to create a certificate and key pair to use with sendmail

[Hack #45] . Then you'll need to reconfigure sendmail to use the certificate and key that you

created. You can do this by editing the file your sendmail.cf file is generated from, which is usually

/etc/mail/sendmail.mc. Once you've located the file, add lines, similar to the following, that point

to your Certificate Authority's certificate as well as the certificate and key you generated earlier:

define(`confCACERT_PATH', `/etc/mail/certs')

define(`confCACERT', `/etc/mail/certs/cacert.pem')

define(`confSERVER_CERT', `/etc/mail/certs/cert.pem')

define(`confSERVER_KEY', `/etc/mail/certs/key.pem')

define(`confCLIENT_CERT', `/etc/mail/certs/cert.pem')

define(`confCLIENT_KEY', `/etc/mail/certs/key.pem')

The first line tells sendmail where your Certificate Authority is located, and the second one tells it

where to find the CA certificate itself. The next two lines tell sendmail which certificate and key to

use when it is acting as a server (i.e., accepting mail from a MUA or another mail server). The last

two lines tell sendmail which certificate and key to use when it is acting as a client (i.e., relaying

mail to another mail server). Usually you can then rebuild your sendmail.cf by typing make

sendmail.cf while inside the /etc/mail directory. Now kill sendmail and then restart it.

After you've restarted sendmail, you can check whether TLS is set up correctly by connecting to it:

telnet localhost smtp

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

220 mail.example.com ESMTP Sendmail 8.12.9/8.12.9; Sun, 11 Jan 2004 12:07:43 -0800 (PST)

ehlo localhost

250-mail.example.com Hello IDENT:6l4ZhaGP3Qczqknqm/KdTFGsrBe2SCYC@localhost

[127.0.0.1], pleased to meet you

250-ENHANCEDSTATUSCODES

250-PIPELINING

250-EXPN

250-VERB

250-8BITMIME

250-SIZE

250-DSN

250-ETRN

250-AUTH DIGEST-MD5 CRAM-MD5

250-STARTTLS

250-DELIVERBY

250 HELP

QUIT

221 2.0.0 mail.example.com closing connection

Connection closed by foreign host.

When sendmail relays mail to another TLS-enabled mail server, your mail will be encrypted. Now

all you need to do is configure your mail client to use TLS when connecting to your mail server,

and your users' email will be protected all the way to the MTA.

While there isn't enough room in this hack to cover every MTA available, nearly all support some

variant of TLS. If you are running Exim (http://www.exim.org) or Courier (http://www.courier-

mta.org), you can build TLS support straight out of the box. Postfix (http://www.postfix.org) has

TLS support and is designed to be used in conjunction with Cyrus-SASL (see the HOWTO at

http://postfix.state-of-mind.de/patrick.koetter/smtpauth/). Qmail has an RFC 2487 (TLS) patch

http://www.exim.org/
http://www.courier-mta.org/
http://www.postfix.org/
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/

available at http://inoa.net/qmail-tls/. With TLS support in virtually all MTAs and email clients,

there is no longer any good reason to send email "in the clear."

http://inoa.net/qmail-tls/

Hack 49 Detect Ethernet Sniffers Remotely

Detect potential spies on your network without having to trust

compromised machines.

Ethernet sniffers are one of the most powerful tools in your network security

arsenal. However, in the wrong hands they can be one of the biggest threats to the

security of your network. It may be an insider or it could be a malicious intruder,

but, nevertheless, once a system has been detected they will most likely begin

sniffing the local network. This network reconnaissance will help these "spies" find

their next target, or simply collect juicy bits of information (such as usernames and

passwords, email, or other sensitive data).

Not too long ago, it was commonly thought that only shared-medium Ethernet

networks were vulnerable to being sniffed. These networks employed a central hub,

which would rebroadcast every transmitted packet to each port on the hub. In this

type of setup, every frame sent by any network node is received by every other node

on the local network segment. Each node's network interface then performs a quick

check to see if it is the node that the frame is destined for. If it is not, the frame is

discarded. If it is, the frame is passed up through the operating system's protocol

stack and is eventually processed by an application. Because of this, sniffing other

systems' traffic on the network was trivial. After all, since all the traffic was reaching

each system, one only needed to disable the check that the network interface

performs, and the system would have access to the traffic meant for others. This is

usually referred to as putting the network interface into promiscuous mode, which

usually can be done only by a privileged user.

Eventually, switched Ethernet networks became prevalent and the shared-medium

aspect no longer applied. Thus, the main facilitator of sniffing was removed. Unlike

hubs, Ethernet switches will only send traffic to the device that it is destined for. To

do this, an Ethernet switch learns which network device's MAC address corresponds

to what port on the switch as traffic passes through the switch. When the switch

sees an Ethernet frame with a certain destination MAC address, it will look up which

port on the switch corresponds to it and forward the frame to only that port. In

doing this, the switch effectively creates a virtual dedicated connection from the

sending station to the receiving station every time an Ethernet frame is transmitted

on the network. Thus, only the machine that the frame was originally intended for is

able to see it. This would be fine, but certain aspects of the Ethernet specification

and the TCP/IP can cause problems.

One problem is that switches can memorize only a limited number of MAC

addresses. The maximum number will often be several orders of magnitude higher

than the number of ports that the switch has, which allows switches to be connected

to each other hierarchically. In order to do this efficiently, each switch must

memorize the MAC addresses available on the switches to which it is connected. For

example, suppose you have a 24-port switch (switch A) with 23 machines plugged

into it, and the 24th port is occupied by another switch. This other switch (switch B)

has 48 ports, with the 47 other ports being occupied by machines. In this situation,

switch A will learn the MAC addresses of the 47 systems on switch B and associate it

with its 24th port, and switch B will learn the MAC addresses of the 23 systems

connected directly to switch A and associate it with its own 48th port. Even though

the average switch can memorize upwards of several thousand MAC addresses, it is

still possible to overflow the switch's MAC address table by generating large

amounts of traffic with fake MAC addresses. This tactic is desirable for a malicious

user because many switches will revert to behaving like a hub once their MAC

address tables have been filled. Once this happens, the network is no different than

a shared-medium segment using a hub. A malicious user will then be able to sniff

the network by simply putting her network interface into promiscuous mode.

Luckily this approach is fairly invasive�in order for it to work, the network will need

to be flooded with bogus traffic, which is something that can be detected passively

with tools such as Arpwatch [Hack #31] . A flood of bogus MAC and IP address

pairings would cause Arpwatch to likewise flood your system logs. As long as you're

good about monitoring your logs, this attack should be fairly easy to spot. As

mentioned in [Hack #31], Arpwatch is also capable of detecting ARP table

poisoning. That makes it an effective tool for detecting the two most common types

of ARP attacks that are usually precursors to data logging: ARP flooding and

targeted ARP poisoning.

Another way to monitor switched networks is to simply change the MAC address of

the Ethernet card in the system that is going to be used for sniffing. In Linux and

many other Unix and Unix-like operating systems, this can be done with the

ifconfig command:

/sbin/ifconfig eth1

eth1 Link encap:Ethernet HWaddr 00:E0:81:03:D8:8F

 BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

 Interrupt:11 Base address:0x1c80

/sbin/ifconfig eth0 hw ether 00:DE:AD:BE:EF:00

/sbin/ifconfig eth1

eth1 Link encap:Ethernet HWaddr 00:DE:AD:BE:EF:00

 BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

 Interrupt:11 Base address:0x1c80

The purpose of doing this is to trick the switch into forwarding the traffic to two

different nodes on the segment. This is sometimes a hit-or-miss deal, since different

switches will behave differently when there are duplicate MAC addresses in use on

the same network. The switch may forward traffic to both ports, distribute the traffic

unpredictably between them, stop passing traffic altogether, or raise an error. All of

these methods can be detected and stopped with more expensive managed

switches, which allow you to specify what MAC addresses are allowed on each

individual port. This feature is sometimes called port security.

However, even if attackers choose not to employ these methods, they can still

gather quite a bit of information by just putting the network interface into

promiscuous mode. For example, broadcast traffic such as DHCP and ARP requests

will still be sent to every port on the switch. This traffic is not as easy to detect,

unless you already have the infrastructure in place to do so.

One tool that can help to detect promiscuous interfaces on both switched and

unswitched networks is sniffdet (http://sniffdet.sourceforge.net). For a tool that

really only serves a single purpose, sniffdet is fairly versatile, as it can detect sniffers

in several ways. The main difference between sniffdet and a tool like Arpwatch is

that sniffdet actively scans for sniffers. That is, if you suspect that a machine may be

running a sniffer, you can simply run sniffdet and point it at that machine to

determine whether its network device is in promiscuous mode.

To build and install sniffdet, you will first have to obtain the libnet packet injection

library (http://www.packetfactory.net/projects/libnet/). Make sure to download the

latest 1.0.x version�the 1.1 versions of libnet are incompatible with programs

written for the 1.0.x versions.

To compile libnet, unpack the source distribution and go into the directory that it

creates. Then run this command:

$./configure && make

After it has finished compiling, become root and type make install.

Building sniffdet is a similar affair. Like libnet, you will need to unpack the source

distribution and change to the directory that it creates. Then, to build and install it,

do the same thing you did for libnet.

sniffdet has several methods for determining whether a target machine is running a

sniffer. However, only two of the methods that it employs will work with repeatable

http://sniffdet.sourceforge.net/
http://www.packetfactory.net/projects/libnet/

and predictable results. These are the ARP and DNS tests.

The ARP test relies on how the sniffing system's protocol stack deals with ARP

queries while in promiscuous mode. When running this test against a target

machine, sniffdet will send out an ARP query to the target machine. This request has

fake source and destination MAC addresses but uses the correct IP addresses of the

machine being checked. If the target machine is in promiscuous mode, the ARP

query with the fake MAC address will be passed up the protocol stack, and the target

machine will send a reply. If the machine is not in promiscuous mode, this ARP

query will be quietly discarded. This method is effective on both switched and

unswitched networks.

Let's look at a sniffdet scan against sirius (192.168.0.2) from colossus

(192.168.0.64), two machines that are on the same switched network.

Here are the results of running sniffdet against sirius:

colossus # sniffdet -i eth0 -t arp sirius

--

Sniffdet Report

Generated on: Wed Dec 31 03:49:28 2003

--

Tests Results for target sirius

--

Test: ARP Test (single host)

 Check if target replies a bogus ARP request (with wrong MAC)

Validation: OK

Started on: Wed Dec 31 03:49:08 2003

Finished on: Wed Dec 31 03:49:28 2003

Bytes Sent: 252

Bytes Received: 0

Packets Sent: 6

Packets Received: 0

--

RESULT: NEGATIVE

--

--

Number of valid tests: #1

Number of tests with positive result: #0

--

Now start a sniffer on sirius and run the scan again:

sirius # tcpdump -i le0 arp

tcpdump: listening on le0

06:58:00.458836 arp who-has sirius.nnc tell colossus.nnc

06:58:00.458952 arp reply sirius.nnc is-at 8:0:20:81:a4:a3

06:58:00.466601 arp who-has sirius.nnc (ff:0:0:0:0:0) tell colossus.nnc

06:58:00.466928 arp reply sirius.nnc is-at 8:0:20:81:a4:a3

Let's look at the results of the scan:

--

Sniffdet Report

Generated on: Wed Dec 31 06:58:01 2003

--

Tests Results for target sirius

--

Test: ARP Test (single host)

 Check if target replies a bogus ARP request (with wrong MAC)

Validation: OK

Started on: Wed Dec 31 06:58:00 2003

Finished on: Wed Dec 31 06:58:01 2003

Bytes Sent: 84

Bytes Received: 60

Packets Sent: 2

Packets Received: 1

--

RESULT: POSITIVE

--

--

Number of valid tests: #1

Number of tests with positive result: #1

--

The DNS test works very well, particularly on shared-medium networks such as hubs

or wireless LANs. However, it does rely on name resolution being enabled in the

sniffer. When performing DNS tests, sniffdet will send bogus packets that contain IP

addresses that are not in use on the local network segment. If name resolution is

enabled, the sniffer will attempt to do a reverse lookup in order to determine the

hostname that corresponds to the IP addresses. Since these addresses are not in

use, sniffdet will determine that the target machine is in promiscuous mode when it

sees the DNS queries.

This test can be performed just as the ARP test, but instead of using -t arp, use -t

dns.

Hack 50 Install Apache with SSL and suEXEC

Help secure your web applications with mod_ssl and suEXEC.

Web server security is a very important issue these days, especially since people are

always finding new and creative ways to put the Web to use. If you're using any sort

of web application that needs to handle authentication or provides some sort of

restricted information, you should seriously consider installing a web server with

SSL capabilities. Without SSL, any authentication information your users send to

the web server is sent over the network in the clear, and any information that clients

can access can be viewed by anyone with a sniffer. If you are already using Apache,

you can easily add SSL capabilities with mod_ssl (http://www.modssl.org).

In addition, if your web server serves up dynamic content for multiple users, you

may want to enable Apache's suEXEC functionality. suEXEC allows your web server

to execute server-side scripts as the user that owns them, rather than as the

account under which the web server is running. Otherwise, any user could create a

script and run code as the account the web server is running under. This is a bad

thing, particularly on a multiuser web server. If you don't review the scripts that

your users write before allowing them to be run, they could very well write code that

allows them to access other users' data or other sensitive information, such as

database accounts and passwords.

To compile Apache with mod_ssl, download the appropriate mod_ssl source

distribution for the version of Apache that you'll be using. (If you don't want to add

mod_ssl to an existing Apache source tree, you will also need to download and

unpack the Apache source.) After you've done that, unpack the mod_ssl distribution

and go into the directory that it created. Then run a command like this:

./configure \

--with-apache=../apache_1.3.29 \

--with-ssl=SYSTEM \

--prefix=/usr/local/apache \

--enable-module=most \

--enable-module=mmap_static \

--enable-module=so \

--enable-shared=ssl \

--disable-rule=SSL_COMPAT \

http://www.modssl.org/

--server-uid=www \

--server-gid=www \

--enable-suexec \

--suexec-caller=www \

--suexec-uidmin=500 \

--suexec-gidmin=500

This will both patch the Apache source tree with extensions provided with mod_ssl

and configure Apache for the build process.

You will probably need to change a number of options in order to build Apache. The

directory specified in the --with-apache switch should point to the directory that

contains the Apache source code for the version that you are building. In addition, if

you want to use a version of OpenSSL that has not been installed yet, specify the

location of its build tree with the --with-ssl switch. If you elect to do that, you

should configure and build OpenSSL in the specified directory before attempting to

build Apache and mod_ssl. The --server-uid and --server-gid switches are used to

specify what user and group the web server will run under. Apache defaults to the

"nobody" account. However, many programs that can be configured to drop their

privileges also default to the nobody account; if you end up accepting these defaults

with every program, the nobody account can become quite privileged. So, it is

recommended that you create a separate account for every program that provides

this option.

The remaining options enable and configure Apache's suEXEC. To provide the

suEXEC functionality, Apache uses a SUID wrapper program to execute users'

scripts. This wrapper program makes several checks before it will allow a program to

execute. One thing that the wrapper checks is the UID of the process that invoked it.

If it is not the account that was specified with the --suexec-caller option, then

execution of the user's script will abort. Since the suEXEC wrapper will be called by

the web server, this option should be set to the same value as --server-uid.

Additionally, since most privileged accounts and groups on a system usually all have

a UID and GID beneath a certain value, the suEXEC wrapper will check to see if the

UID or GID of the process invoking it is less than this threshold. For this to work,

you must specify the appropriate value for your system. In this example, Apache

and mod_ssl are being built on a Red Hat system, which starts regular user accounts

and groups at UID and GID 500. In addition to these checks, suEXEC performs a

multitude of other checks, such as ensuring that the script is writable only by the

owner, that the owner is not root, and that the script is not SUID or SGID.

After the configure script completes, change to the directory that contains the

Apache source code and run make and make install. You can run make certificates

if you would like to generate an SSL certificate to test out your installation. You can

also run make certificate TYPE=custom to generate a certificate signing request to

be signed by either a commercial Certificate Authority or your own CA. See [Hack

#45] if you would like to run your own Certificate Authority.

After installing Apache, you can start it by running this command:

/usr/local/apache/bin/apachectl startssl

If you want to start out by testing it without SSL, run this:

/usr/local/apache/bin/apacectl start

You can then verify that suEXEC support is enabled by running this command:

grep suexec /usr/local/apache/logs/error_log

[Thu Jan 1 16:48:17 2004] [notice] suEXEC mechanism enabled (wrapper:

/usr/local/apache/bin/suexec)

Now add a Directory entry similar to this to enable CGI scripts for user directories:

<Directory /home/*/public_html>

 AllowOverride FileInfo AuthConfig Limit

 Options MultiViews Indexes SymLinksIfOwnerMatch Includes ExecCGI

 <Limit GET POST OPTIONS PROPFIND>

 Order allow,deny

 Allow from all

 </Limit>

 <LimitExcept GET POST OPTIONS PROPFIND>

 Order deny,allow

 Deny from all

 </LimitExcept>

</Directory>

In addition, add this line to enable CGI scripts outside of the ScriptAlias directories:

AddHandler cgi-script .cgi

After you've done that, you can restart Apache by running this:

/usr/local/apache/bin/apachectl restart

Now test out suEXEC with a simple script that runs the id command, which will print

out information about the user the script is executed as:

#!/bin/sh

echo -e "Content-Type: text/plain\r\n\r\n"

/usr/sbin/id

Put this script in a directory such as /usr/local/apache/cgi-bin, name it suexec-

test.cgi, and make it executable. Now enter the URL for the script (i.e.,

http://webserver/cgi-bin/suexec-test.cgi) into your favorite web browser. You should

see something like this:

uid=80(www) gid=80(www) groups=80(www)

As you can see, it is being executed as the same user that the web server runs as.

Now copy the script into a user's public_html directory:

$ mkdir public_html && chmod 711 ~/ ~/public_html

$ cp /usr/local/apache/cgi-bin/suexec-test.cgi .

After you've done that, enter the URL for the script (i.e.,

http://webserver/~user/suexec-test.cgi) in your web browser. You should see

something similar to this:

uid=500(andrew) gid=500(andrew) groups=500(andrew)

In addition to handling scripts in users' private HTML directories, suEXEC can also

execute scripts as another user within a virtual host. However, to do this, you will

need to create all of your virtual host's directories beneath the web server's

document root (i.e., /usr/local/apache/htdocs). When doing this, you can configure

what user and group the script will execute as by using the User and Group

configuration directives within the VirtualHost statement.

For example:

<VirtualHost>

 User myuser

 Group mygroup

 DocumentRoot /usr/local/apache/htdocs/mysite

 ...

</VirtualHost>

Unfortunately, suEXEC is incompatible with mod_perl and mod_php because the

modules run within the Apache process itself instead of a separate program. Since

the Apache process is running as a nonroot user it cannot change the UID under

which the scripts execute. suEXEC works by having Apache call a special SUID

wrapper (e.g., /usr/local/apache/bin/suexec) that can only be invoked by Apache

http://webserver/cgi-bin/suexec-test.cgi
http://webserver/~user/suexec-test.cgi

processes. If you care to make the security/performance trade-off by using suEXEC

but still need to run Perl scripts, you can do so through the standard CGI interface.

Just as with Perl, you can also run PHP programs through the CGI interface, but

you'll have to create a php binary and specify it as the interpreter in all the PHP

scripts you wish to execute through suEXEC. You can also execute your scripts

through mod_perl or mod_php by locating them outside the directories where suEXEC

will work.

Hack 51 Secure BIND

Lock down your BIND setup to help contain potential security problems.

Due to BIND's not-so-illustrious track record with regard to security, you'll probably

want to spend some time hardening your setup if you want to continue using it. One

way to make running BIND a little safer is to run it inside a sandboxed environment.

This is easy to do with recent versions of BIND, since it natively supports running as

a nonprivileged user within a chroot() jail. All you need to do is set up the

directory you're going to have it chroot() to, and then change the command

you're using to start named to reflect this.

To begin, create a user and group to run named as (e.g., named). To prepare the

sandboxed environment, you'll need to create the appropriate directory structure.

You can create the directories for such an environment within /named_chroot by

running the following commands:

mkdir /named_chroot

cd /named_chroot

mkdir -p dev etc/namedb/slave var/run

Next, you'll need to copy your named.conf and namedb directory to the sandboxed

environment:

cp /etc/named.conf /named_chroot/etc

cp -a /var/namedb/* /named_chroot/etc/namedb

This assumes that you store your zone files in /var/namedb. If you're setting up

BIND as a secondary DNS server, you will need to make the

/named_chroot/etc/namedb/slave directory writable so that named can update the

records it contains when it performs a domain transfer from the master DNS node.

You can do this by running a command similar to the following:

chown -R named:named /named_chroot/etc/namedb/slave

In addition, named will need to write its process ID (PID) file to

/named_chroot/var/run, so you'll need to make this directory writable by the named

user as well:

chown named:named /named_chroot/var/run

Now you'll need to create some device files that named will need to access after it

has called chroot():

cd /named_chroot/dev

ls -la /dev/null /dev/random

crw-rw-rw- 1 root root 1, 3 Jan 30 2003 /dev/null

crw-r--r-- 1 root root 1, 8 Jan 30 2003 /dev/random

mknod null c 1 3

mknod random c 1 8

chmod 666 null random

You'll also need to copy your time zone file from /etc/localtime to

/named_chroot/etc/localtime. Additionally, named usually uses /dev/log to

communicate its log messages to syslogd. Since this doesn't exist inside the

sandboxed environment, you will need to tell syslogd to create a socket that the

chrooted named process can write to. You can do this by modifying your syslogd

startup command and adding -a /named_chroot/dev/log to it. Usually you can do

this by modifying an existing file in /etc.

For instance, under Red Hat Linux you would edit /etc/sysconfig/syslogd and modify

the SYSLOGD_OPTIONS line to read:

SYSLOGD_OPTIONS="-m 0 -a /named_chroot/dev/log"

Or if you're running FreeBSD, you would modify the syslogd_flags line in

/etc/rc.conf:

syslogd_flags="-s -a /named_chroot/dev/log"

After you restart syslogd, you should see a log socket in /named_chroot/dev.

Now to start named all you need to do is run this command:

named -u named -t /named_chroot

Other tricks for increasing the security of your BIND installation include limiting

zone transfers to your slave DNS servers and altering the response to BIND version

queries. Restricting zone transfers ensures that random attackers will not be able to

request a list of all the hostnames for the zones hosted by your name servers. You

can globally restrict zone transfers to certain hosts by putting an allow-transfer

section within the options section in your named.conf.

For instance, if you wanted to restrict transfers on all zones hosted by your DNS

server to only 192.168.1.20 and 192.168.1.21, you could use an allow-transfer

section like this:

allow-transfer {

 192.168.1.20;

 192.168.1.21;

};

If you don't want to limit zone transfers globally and instead want to specify the

allowed hosts on a zone-by-zone basis, you can put the allow-transfer section

inside the zone section.

Before an attacker attempts to exploit a BIND vulnerability, they will often scan for

vulnerable versions of BIND by connecting to name servers and performing a version

query. Since you should never need to perform a version query on your own name

server, you can modify the reply BIND sends to the requester. To do this, add a

version statement to the options section in your named.conf.

For example:

version "SuperHappy DNS v1.5";

Note that this really doesn't provide extra security, but if you don't want to advertise

what software and version you're running to the entire world, you don't have to.

See Also

The section "Securing BIND" in Building Secure Servers with Linux, by Michael

D. Bauer (O'Reilly)

Hack 52 Secure MySQL

Basic steps you can take to harden your MySQL installation.

MySQL (http://www.mysql.com), one of the most popular open source database systems

available today, is often used in conjunction with both the Apache web server and the PHP

scripting language to drive dynamic content on the Web. However, MySQL is a complex

piece of software internally and, given the fact that it often has to interact both locally and

remotely with a broad range of other programs, special care should be taken to secure it as

much as possible.

Some steps you can take are running MySQL in a chrooted environment [Hack #10],

running it as a nonroot user, and disabling MySQL's ability to load data from local files.

Luckily, none of these are as hard to do as they may sound. To start with, let's look at how

to chroot() MySQL.

First create a user and group for MySQL to run as. Next, you'll need to download the

MySQL source distribution. After you've done that, unpack it and go into the directory that

it created. Run this command to build MySQL and set up its directory structure for

chrooting:

$./configure --prefix=/mysql --with-mysqld-ldflags=-all-static && make

This configures MySQL to be installed in /mysql and statically links the mysqld binary. This

will make setting up the chroot environment much easier, since you won't need to copy any

additional libraries to the environment.

After the compilation finishes, become root and then run these commands to install

MySQL:

make install DESTDIR=/mysql_chroot && ln -s /mysql_chroot/mysql /mysql

scripts/mysql_install_db

The first command installs MySQL, but instead of placing the files in /mysql, it places them

in /mysql_chroot/mysql. In addition, it creates a symbolic link from that directory to

/mysql, which makes administering MySQL much easier after installation. The second

command creates MySQL's default databases. If you hadn't created the symbolic link prior

to running this command, the mysql_install_db script would have failed. This is because it

expected to find MySQL installed beneath /mysql. Many other scripts and programs will

expect this, too, so creating the symbolic link will make your life easier.

Now you need to set up the correct directory permissions so that MySQL will be able to

function properly. To do this, run these commands:

chown -R root:mysql /mysql

chown -R mysql /mysql/var

Now try running MySQL:

http://www.mysql.com/

/mysql/bin/mysqld_safe&

Starting mysqld daemon with databases from /mysql/var

ps -aux | grep mysql | grep -v grep

root 10137 0.6 0.5 4156 744 pts/2 S 23:01 0:00 /bin/sh /mysql/bin/

mysqld_safe

mysql 10150 7.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10151 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10152 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10153 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10154 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10155 0.3 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10156 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10157 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10158 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

mysql 10159 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]

/mysql/bin/mysqladmin shutdown

040103 23:02:45 mysqld ended

[1]+ Done /mysql/bin/mysqld_safe

Now that you know MySQL is working outside of its chroot environment, you can create the

additional files and directories it will need to work inside the chroot environment:

mkdir /mysql_chroot/tmp /mysql_chroot/dev

chmod 1777 /mysql_chroot/tmp

ls -l /dev/null

crw-rw-rw- 1 root root 1, 3 Jan 30 2003 /dev/null

mknod /mysql_chroot/dev/null c 1 3

Now try running mysqld in the chrooted environment:

/usr/sbin/chroot /mysql_chroot /mysql/libexec/mysqld -u 100

Here the UID of the user you want mysqld to run as is specified with the -u option. This

should correspond to the UID of the user created earlier.

To ease management, you may want to modify the mysqld_safe shell script to chroot

mysqld for you. You can accomplish this by finding the lines where mysqld is called and

modifying them to use the chroot program.

To do this, open up /mysql/bin/mysqld_safe and locate block of lines that looks like this:

if test -z "$args"

 then

 $NOHUP_NICENESS $ledir/$MYSQLD $defaults \

 --basedir=$MY_BASEDIR_VERSION \

 --datadir=$DATADIR $USER_OPTION \

 --pid-file=$pid_file --skip-locking >> $err_log 2>&1

 else

 eval "$NOHUP_NICENESS $ledir/$MYSQLD $defaults \

 --basedir=$MY_BASEDIR_VERSION \

 --datadir=$DATADIR $USER_OPTION \

 --pid-file=$pid_file --skip-locking $args >> $err_log 2>&1"

 fi

Change them to look like this:

if test -z "$args"

 then

 $NOHUP_NICENESS /usr/sbin/chroot /mysql_chroot \

 $ledir/$MYSQLD $defaults \

 --basedir=$MY_BASEDIR_VERSION \

 --datadir=$DATADIR $USER_OPTION \

 --pid-file=$pid_file --skip-locking >> $err_log 2>&1

 else

 eval "$NOHUP_NICENESS /usr/sbin/chroot /mysql_chroot \

 $ledir/$MYSQLD $defaults \

 --basedir=$MY_BASEDIR_VERSION \

 --datadir=$DATADIR $USER_OPTION \

 --pid-file=$pid_file --skip-locking $args >> $err_log 2>&1"

 fi

Now you can start MySQL by using the mysqld_safe wrapper script, like this:

/mysql/bin/mysqld_safe --user=100

In addition, you may want to create a separate my.conf file for the MySQL utilities and

server. For instance, in /etc/my.cnf you could specify socket =

/mysql_chroot/tmp/mysql.sock in the [client] section so you do not have to manually

specify the socket every time you run a MySQL-related program.

You'll also probably want to disable MySQL's ability to load data from local files. To do this,

you can add set-variable=local-infile=0 to the [mysqld] section of your

/mysql_chroot/etc/my.cnf. This disables MySQL's LOAD DATA LOCAL INFILE command.

Alternatively, you can disable it from the command line by using the --local-infile=0

option.

Hack 53 Share Files Securely in Unix

Use SFS to help secure your remote filesystems.

If you are using Unix systems and sharing files on your network, you are most likely using NFS.

However, there are a lot of security problems, not only with individual implementations, but also

with the design of the protocol itself. For instance, if a user can spoof an IP address and mount

an NFS share that is only meant for a certain computer, she essentially has root access to all the

files on that share. In addition, NFS employs secret file handles that are used with each file

request. Since NFS does not encrypt its traffic, this makes it very easy for attackers to guess

these file handles. If they guess correctly, they essentially get total root access to the remote

filesystem.

SFS (http://www.fs.net), the Self-certifying File System, fixes all of these problems by employing

a drastically different design philosophy. NFS was created with the notion that you can (and

should) trust your network. SFS has been designed from the beginning with the idea that no

network should ever be trusted until it can definitively prove its identity. To accomplish this, SFS

makes use of public keys on both the client and server ends. It uses these keys to verify the

identity of servers and clients, and also provides access control on the server side. One

particularly nice side effect of such strong encryption is that SFS provides a much finer grained

level of access control than NFS. With NFS, you are limited to specifying which hosts can or

cannot connect to a given exported filesystem. In order to access an SFS server, a user must

create a key pair and then authorizes the key by logging into the SFS server and registering the

key manually.

Building SFS can take up quite a lot of disk space. Before you attempt to build SFS, make sure

you have at least 550MB of disk space available on the filesystem on which you'll be compiling

SFS. You will also need to make sure that you have GMP (http://www.swox.com/gmp/), the GNU

multiple precision math library, installed. Before you begin to build SFS, you will also need to

create a user and group for SFS's daemons. By default, these are both called sfs. If you want to

use a different user or group, you can do this by passing options to the configure script.

Once your system is ready, you can build SFS by simply typing this command:

$./configure && make

Once that process is finished, become root and type make install.

If you want to use a user and group other than sfs, you can specify these with the --with-

sfsuser and --with-sfsgroup options:

$./configure --with-sfsuser=nobody --with-sfsgroup=nobody

Building SFS can take quite a bit of time, so you may want to take the opportunity to enjoy a

cup of coffee, a snack, or maybe even a full meal, depending on the speed of your machine and

the amount of memory it has.

After SFS has finished building and you have installed it, you can test it out by connecting to the

SFS project's public server. You can do this by starting the SFS client daemon, sfscd, and then

changing to the directory that the SFS server will be mounted under:

sfscd

cd /sfs/@sfs.fs.net,uzwadtctbjb3dg596waiyru8cx5kb4an

http://www.fs.net/
http://www.swox.com/gmp/

ls

CONGRATULATIONS cvs pi0 reddy sfswww

cat CONGRATULATIONS

You have set up a working SFS client.

#

sfscd automatically creates the /sfs directory and the directory for the SFS server. Note that SFS

relies on the operating system's portmap daemon and NFS mounter; you'll need to have those

running before running the client.

To set up an SFS server, first log into your server and generate a public and private key pair:

mkdir /etc/sfs

sfskey gen -P /etc/sfs/sfs_host_key

sfskey will then ask you to bang on the keys for a little while in order to gather entropy for the

random number generator.

Now you will need to create a configuration file for sfssd, the SFS server daemon. To do this,

create a file in /etc/sfs called sfsrwsd_config, which is where you configure the filesystem

namespace that SFS will export to other hosts.

If you wanted to export the /home filesystem, you would create a configuration file like this:

Export /var/sfs/root /

Export /home /home

Then you would need to create the /var/sfs/root and /var/sfs/home directories. After that, you

would create NFS exports so that the /home filesystem could be mounted under

/var/sfs/root/home. These are then reexported by sfssd. The NFS exports need only to allow

mounting from localhost.

Here's what /etc/exports looks like for exporting /home:

/var/sfs/root localhost(rw)

/home localhost(rw)

This exports file is for Linux. If you are running the SFS server on another operating system

(such as Solaris or OpenBSD), consult your operating system's mountd manpage for the proper

way to add these shares.

Now start your operating system's NFS server. Once NFS has started, you can then start sfssd.

After attempting to connect to the sfssd server, you should see some messages in your logs like

these:

Dec 12 12:29:14 colossus : sfssd: version 0.7.2, pid 3503

Dec 12 12:29:14 colossus : rexd: version 0.7.2, pid 3505

Dec 12 12:29:14 colossus : sfsauthd: version 0.7.2, pid 3506

Dec 12 12:29:14 colossus : rexd: serving @colossus.nnc,fd82m36uwxj6m3q8tawp56ztgsvu7g77

Dec 12 12:29:14 colossus : rexd: spawning /usr/local/lib/sfs-0.7.2/ptyd

Dec 12 12:29:15 colossus rpc.mountd: authenticated mount request from

localhost.localdomain:715 for /var/sfs/root (/var/sfs/root)

Dec 12 12:29:15 colossus rpc.mountd: authenticated mount request from

localhost.localdomain:715 for /home (/home)

Dec 12 12:29:15 colossus : sfsauthd: serving

@colossus.nnc,fd82m36uwxj6m3q8tawp56ztgsvu7g77

Dec 12 12:29:16 colossus : sfsrwsd: version 0.7.2, pid 3507

Dec 12 12:29:16 colossus : sfsrwsd: serving

/sfs/@colossus.nnc,fd82m36uwxj6m3q8tawp56ztgsvu7g77

The last log entry shows the path that users can use to mount your filesystem. Before mounting

any filesystems on your server, users will have to create a key pair and register it with your

server. They can do this by logging into your server and running the sfskey command:

$ sfskey register

sfskey: /home/andrew/.sfs/random_seed: No such file or directory

sfskey: creating directory /home/andrew/.sfs

sfskey: creating directory /home/andrew/.sfs/authkeys

/var/sfs/sockets/agent.sock: No such file or directory

sfskey: sfscd not running, limiting sources of entropy

Creating new key: andrew@colossus.nnc#1 (Rabin)

 Key Label: andrew@colossus.nnc#1

Enter passphrase:

 Again:

sfskey needs secret bits with which to seed the random number generator.

Please type some random or unguessable text until you hear a beep:

DONE

UNIX password:

colossus.nnc: New SRP key: andrew@colossus.nnc/1024

wrote key: /home/andrew/.sfs/authkeys/andrew@colossus.nnc#1

Alternatively, if you already have an existing key pair on another server, you can type sfskey

user@otherserver instead. This will retrieve the key from the remote machine and register it with

the server you are currently logged into.

Now that you have registered a key with the server, you can log into the SFS server from another

machine. This is also done with the sfskey program:

$ sfskey login andrew@colossus.nnc

Passphrase for andrew@colossus.nnc/1024:

SFS Login as andrew@colossus.nnc

Now try to access the remote server:

$ cd /sfs/@colossus.nnc,fd82m36uwxj6m3q8tawp56ztgsvu7g77

$ ls

home

As you can see, SFS is a very powerful tool for sharing files across a network, and even across the

Internet. Not only does it provide security, but it also provides a unique and universal method for

referencing a remote host and its exported filesystems. You can even put your home directory on

an SFS server, simply by linking the universal pathname of the exported filesystem /home.

Chapter 4. Logging
Hacks #54-60

Section 54. Run a Central Syslog Server

Section 55. Steer Syslog

Section 56. Integrate Windows into Your Syslog Infrastructure

Section 57. Automatically Summarize Your Logs

Section 58. Monitor Your Logs Automatically

Section 59. Aggregate Logs from Remote Sites

Section 60. Log User Activity with Process Accounting

Hacks #54-60

Keeping logs is a very important aspect of maintaining the security of your network,

as logs can assist in everything from alerting you to an impending attack to

debugging network problems. After an incident has occurred, good logs can help

you track down how the attacker got in, fix the security hole, and figure out which

machines were affected. In addition, logs can help with tracing the attack back to its

source, so you can identify or take legal action against the intruder. In short, log

files are worth their weight in gold (just pretend that bits and bytes weigh a lot). As

such, they should be given at least as much protection as any other information

that's stored on your servers�even the patent schematics for your perpetual motion

machine.

This chapter deals mostly with various ways to set up remote logging, whether it be

a simple central syslogd that your servers are logging to, setting up your Windows

machines to send to a syslogd, or using syslog-ng to collect logs from remote sites

through an encrypted TCP connection. Using these methods, you can ensure that

your logs are sitting safely on a dedicated server that's running minimal services, to

decrease the chance that the logs will be compromised.

Once you have all your logs collected in a central place, what can you do with them?

This chapter also covers ways to summarize your logs into reports that are easy to

read and understand, so you can quickly spot the most pertinent information. If

that's not fast enough for you, you'll also learn how to set up real-time alerts that

will notify you as soon as a critical event occurs. In some circumstances, responding

immediately to an event�rather than waiting around for it to end up in a report

that you read the next morning�can save hours of effort.

Hack 54 Run a Central Syslog Server

Keep your logs safe from attackers by storing them remotely.

Once an intruder has gained entry into one of your systems, how are you to know

when or if this has happened? By checking your logs, of course. What if the intruder

modified the logs? In this situation, centralized logging definitely saves the day.

After all, if a machine is compromised but the log evidence isn't kept on that

machine, it's going to be much more difficult for the attacker to cover his tracks. In

addition to providing an extra level of protection, it's also much easier to monitor

the logs for a whole network of machines when they're all in one place.

To quickly set up a central syslog server, just start your syslogd with the switch that

causes it to listen for messages from remote machines on a UDP port.

This is done under Linux by specifying the -r command-line option:

/usr/sbin/syslogd -m 0 -r

Under FreeBSD, run syslogd without the -s command-line option:

/usr/sbin/syslogd

The -s option causes FreeBSD's syslogd to not listen for remote connections.

FreeBSD's syslogd also allows you to restrict what hosts it will receive messages

from. To set these restrictions, use the -a option, which has the following forms:

 ipaddr/mask[:service]

 domain[:service]

 *domain[:service]

The first form allows you to specify a single IP address or group of IP addresses by

using the appropriate netmask. The service option allows you to specify a source

UDP port. If nothing is specified, it defaults to port 514, which is the default for the

syslog service. The next two forms allow you to restrict access to a specific domain

name, as determined by a reverse lookup of the IP address of the connecting host.

The difference between the second and third is the use of the * wildcard character,

which specifies that all machines ending in domain may connect.

Moving on, OpenBSD uses the -u option to listen for remote connections:

/usr/sbin/syslogd -a /var/empty/dev/log -u

whereas Solaris's syslogd uses -T:

/usr/sbin/syslogd -T

Now let's set up the clients. If you want to forward all logging traffic from a machine

to your central log host, simply put the following in your /etc/syslog.conf:

. @loghost

You can either make this the only line in the configuration file, in which case

messages will be logged only to the remote host, or add it to what is already there,

in which case logs will be stored both locally and remotely for safekeeping.

One drawback to remote logging is that the stock syslogd for most operating

systems fails to provide any measure of authentication or access control with regard

to who may write to a central log host. Firewalls can provide some protection,

keeping out everyone but those who are determined to undermine your logging

infrastructure; however, someone who has already gained access to your local

network can easily spoof his network connection and bypass any firewall rules that

you set up. If you've determined that this is a concern for your network, take a look

at [Hack #59], which discusses one method for setting up remote logging using

public-key authentication and SSL-encrypted connections.

Hack 55 Steer Syslog

Make syslog work harder, and spend less time looking through huge log

files.

The default syslog installation on many distributions doesn't do a very good job of

filtering classes of information into separate files. If you see a jumble of messages

from Sendmail, sudo, BIND, and other system services in /var/log/messages, then

you should probably review your /etc/syslog.conf.

There are a number of facilities and priorities that syslog can filter on. These

facilities include auth, auth-priv, cron, daemon, kern, lpr, mail, news, syslog, user,

uucp, and local0 through local7. In addition, each facility can have one of eight

priorities: debug, info, notice, warning, err, crit, alert, and emerg.

Note that applications decide for themselves at what facility and priority to log (and

the best apps let you choose), so they may not be logged as you expect. Here's a

sample /etc/syslog.conf that attempts to shuffle around what gets logged where:

auth.warning /var/log/auth

mail.err /var/log/maillog

kern.* /var/log/kernel

cron.crit /var/log/cron

*.err;mail.none /var/log/syslog

*.info;auth.none;mail.none /var/log/messages

#*.=debug /var/log/debug

local0.info /var/log/cluster

local1.err /var/log/spamerica

All of the lines in this example will log the specified priority (or higher) to the

respective file. The special priority none tells syslog not to bother logging the

specified facility at all. The local0 through local7 facilities are supplied for use with

your own programs, however you see fit. For example, the /var/log/spamerica file

fills with local1.err (or higher) messages that are generated by our spam processing

job. It's nice to have those messages separate from the standard mail delivery log

(which is in /var/log/maillog).

The commented *.=debug line is useful when debugging daemonized services. It

tells syslog to specifically log only debug priority messages of any facility, and

generally shouldn't be running (unless you don't mind filling your disks with debug

logs). Another approach is to log debug information to a fifo. This way, debug logs

take up no space, but they will disappear unless a process is watching it. To log to a

fifo, first create it in the filesystem:

mkfifo -m 0664 /var/log/debug

Then amend the debug line in syslog.conf to include a |, like this:

*.=debug |/var/log/debug

Now debug information is constantly logged to the fifo and can be viewed with a

command like less -f /var/log/debug. A fifo is also handy if you want a process to

constantly watch all system messages and perhaps notify you via email about a

critical system message. Try making a fifo called /var/log/monitor, and add a rule

like this to your syslog.conf:

. |/var/log/monitor

Now every message (at every priority) is passed to the /var/log/monitor fifo, and

any process watching it can react accordingly, all without taking up any disk space.

Mark Who?

Do you notice a bunch of lines like this in /var/log/messages?

Dec 29 18:33:35 catlin -- MARK --

Dec 29 18:53:35 catlin -- MARK --

Dec 29 19:13:35 catlin -- MARK --

Dec 29 19:33:35 catlin -- MARK --

Dec 29 19:53:35 catlin -- MARK --

Dec 29 20:13:35 catlin -- MARK --

Dec 29 20:33:35 catlin -- MARK --

Dec 29 20:53:35 catlin -- MARK --

Dec 29 21:13:35 catlin -- MARK --

These are generated by the mark functionality of syslog, as a way of "touching base"

with the system, so that you can (theoretically) tell if syslog has unexpectedly died.

Most times, this only serves to fill your log files, and unless you are having problems

with syslog, you probably don't need it. To turn this off, pass the -m 0 switch to

syslogd (after first killing any running syslogd), like this:

killall syslogd; /usr/sbin/syslogd -m 0

If all of this fiddling about with facilities and priorities strikes you as arcane Unix

speak, you're not alone. These examples are provided for systems that include the

default (and venerable) syslogd daemon. If you have the opportunity to install a

new syslogd, you will likely want to look into syslog-ng. This new implementation of

syslogd allows much more flexible filtering and a slew of new features. We take a

look at some of what is possible with syslog-ng in [Hack #59] .

�Rob Flickenger

Hack 56 Integrate Windows into Your Syslog Infrastructure

Keep track of all of your Windows hosts the Unix way.

It's hard enough to keep tabs on all the Event Logs for all your Windows hosts, but it's even more

difficult if your propensities predispose you to Unix. After all, Unix systems keep their logs in plain

text files that are easily searchable with common shell commands. This is a world apart from the

binary logs that Windows keeps in its Event Log. Wouldn't it be nice if you could have your Windows

machines work more like the Unix machines that you're used to? Someone has already thought of it

and has written a free Windows service that lets us do just that.

Ntsyslog (http://ntsyslog.sourceforge.net/) is a freely available service written for Windows that

allows you to log to a remote syslogd. To set it up, just download and extract the ZIP file, and then

copy the NTSyslogCtrl.exe and ntsyslog.exe files into your %SystemRoot%\system32 directory.

To install the service, open up a command prompt and run this:

C:\> ntsyslog -install

To verify that it was installed, open up the Administrative Tools Control Panel applet and double-click

the Services icon. Then scroll around and look for the NTsyslog service. You should see something

similar to Figure 4-1.

Figure 4-1. The Services Control Panel applet with the NTsyslog service shown

By default, NTsyslog installs itself to run under the Local System account, which has complete access

to the resources of the local host. This is obviously not the optimal configuration, since the NTsyslog

service needs access to the Event Log and nothing else. You can change this by double-clicking the

NTsyslog line in the Services Control Panel applet as shown in Figure 4-1. This will bring up the

Properties dialog for the service. However, before you do this, you might want to create an account

specifically for the NTsyslog service that has only the necessary privileges for NTsyslog to run

properly. To do this, go back to the Administrative Tools window and double-click the Computer

Management icon. After clicking the Local Users and Groups icon, you should see something similar

to Figure 4-2.

http://ntsyslog.sourceforge.net/

Figure 4-2. The Computer Management Control Panel applet with the Users

folder shown

Right-click the Users folder and click New User. You should now see a dialog where you can enter the

information for the new user. Enter information similar to that shown in Figure 4-3, and make sure

you pick a strong password.

Figure 4-3. Creating a new user for NTsyslog

Now we need to give our new user the rights it needs to do its job. Locate the Local Security Policy

icon in the Administrative Tools window and double-click it. Click the Local Policies folder in the left

pane of the Local Security Settings window, and then double-click the User Rights Assignment folder

in the right pane of the window. You should now see something similar to Figure 4-4.

Figure 4-4. Viewing the User Rights Assignments settings in the Local Security

Settings Control Panel applet

The access right that we are looking for is "Manage auditing and security log". Locate this in the

Policy list and double-click it. You should then see a dialog like Figure 4-5.

Figure 4-5. Settings for the "Manage auditing and security log" user right

Click the Add button, select the name of the user from the list, and then click OK.

We have the account and we've given it the proper access rights, so let's go back to the Services

window and double-click the NTsyslog service to bring up its Properties dialog. Click the Log On tab

and you should see something like Figure 4-6.

Figure 4-6. The Log On tab for the NTsyslog service Properties dialog

Click the "This account" radio button to enable the Browse... button. Now click the Browse... button

and locate and select the account that you created. Then click the OK button. You should now see

the account name in the text box to the right of the "This account" radio button. Enter the password

you set for the account and confirm it. After clicking the Apply button, a dialog will appear

confirming that the Log On As A Service right has been granted to the account. Click the OK button,

then click the General tab in the Properties dialog. To start the service as the new user that you

created, click the Start button. If you get an error dialog, you will need to change the ACL for the

ntsyslog.exe file and add Read and Execute permissions for the new account.

Now we'll use the included configuration program to configure the settings particular to NTsyslog.

You can use this to set up a primary and secondary syslogd to send messages to, as well as the

types of Event Log events to send and their mappings to syslog facilities and severities. You can also

start and stop the NTsyslog service from this screen. To use the configuration program, run

NTSyslogCtrl.exe. You should see a window like Figure 4-7.

Figure 4-7. The NTSyslog configuration program

To start the service, click the Start Service button; to stop the service, click the Stop Service button.

Clicking the Syslog Daemons button brings up the dialog shown in Figure 4-8.

Figure 4-8. Specifying a primary and backup syslog server

Again, this is pretty straightforward. Just put in the host you want to log to, and if you have a

secondary syslog host, put that in the appropriate field.

The most difficult part of the configuration is setting up the mappings of the Event Log entry types

to the syslog facilities and severity levels, but even this is fairly easy. In the drop-down list (as seen

in Figure 4-7) you can select between the Application, Security, and System Event Logs. To configure

one, simply select it in the drop-down list and click the EventLog button. If you select the Security

log and click the EventLog button, you should see something similar to Figure 4-9.

Figure 4-9. Mapping Security Event Log entries to syslog facilities and severities

To enable the forwarding of a particular type of event, click the checkbox next to it. Using the drop-

down listboxes, you can also configure the facility and severity mappings for each type. Since this is

the security log, you should probably pick one of the security/auth syslog facilities. For the severity,

choose something that sounds similar to the Event Log type. For example, I selected

(4)security/auth1 and (6)information for the Information type for the Security Event Log. You

could, however, pick a facility and severity that's not used on any of your Unix servers, and have

your syslogd log all Windows events to a common file separate from your Unix logs. Of course, if

you're using syslog-ng [Hack #59], you can use any facility you like and filter out your Windows

hosts by IP address.

Once you have it working, try logging in and out a few times using an incorrect password so that

you can see that everything is working.

If it is, you should see login failure messages similar to this:

Oct 29 17:19:04 plunder security[failure] 529 NT AUTHORITY\\SYSTEM Logon Failure:

Reason:Unknown user name or bad password User Name:andrew Domain:PLUNDER Logon Type:2

Logon Process:User32 Authentication Package:Negotiate Workstation Name:PLUNDER

One of the best things about doing this is that now you can use the wealth and flexibility of Unix

log-monitoring tools to help monitor all your Windows systems.

Hack 57 Automatically Summarize Your Logs

Wade through that haystack of logs to find the proverbial needle.

If you're logging almost every piece of information you can from all services and

hosts on your network, no doubt you're drowning in a sea of information. One way

to keep abreast of the real issues affecting your systems is summarizing your logs.

This easy with the logwatch tool (http://www.logwatch.org).

Logwatch analyzes your system logs over a given period of time and automatically

generates reports, and it can easily be run from cron so that it can email you the

results. Logwatch is available with most Red Hat Linux distributions. You can also

download RPM packages from the project's web site if you are using another RPM-

based Linux distribution.

To compile logwatch from source, you can download the source code package. Since

it is a script there is no need to compile anything. Thus installing it is as simple as

copying the logwatch script to a directory.

You can install it by running commands similar to these:

tar xfz logwatch-5.0.tar.gz

cd logwatch-5.0

mkdir /etc/log.d

cp -R conf lib scripts /etc/log.d

You can also install the manpage and, for added convenience, create a link from the

logwatch.pl script to /usr/sbin/logwatch:

cp logwatch.8 /usr/share/man/man8

(cd /usr/sbin && \

 ln -s ../../etc/log.d/scripts/logwatch.pl logwatch)

Running the following command will give you a taste of the summaries logwatch

creates:

logwatch --print | less

################### LogWatch 4.3.1 (01/13/03) ####################

 Processing Initiated: Sat Dec 27 21:12:26 2003

 Date Range Processed: yesterday

http://www.logwatch.org/

 Detail Level of Output: 0

 Logfiles for Host: colossus

 ##

 --------------------- SSHD Begin ------------------------

Users logging in through sshd:

 andrew logged in from kryten.nnc (192.168.0.60) using password: 2 Time(s)

 ---------------------- SSHD End -------------------------

 ###################### LogWatch End #########################

If you have an /etc/cron.daily directory, you can simply make a symbolic link from

the logwatch.pl script to /etc/cron.daily/logwatch.pl, and the script will be run daily.

Alternatively, you can create an entry in root's crontab, in which case you can also

modify logwatch's behavior by passing it command-line switches. For instance, you

can change the email address that logwatch sends reports to by using the --mailto

command-line option. They are sent to the local root account by default, which is

probably not what you want.

Logwatch supports most standard log files without any additional configuration, but

you can add support for any type of log file. To do this, you first need to create a

logfile group configuration for the new file type in /etc/log.d/conf/logfiles. This file

just needs to contain an entry pointing logwatch to the logfile for the service and

another entry specifying a globbing pattern for any archived log files for that service.

For example, if you had a service called myservice, you could create

/etc/log.d/conf/logfiles/myservice.conf with these contents:

LogFile = /var/log/myservice

Archive = /var/log/myservice.*

Next, you need to create a service definition file. This should be called

/etc/log.d/conf/services/myservice.conf and should contain the following line:

LogFile = myservice

Finally, since logwatch is merely a framework for generating log file summaries, you'll

also need to create a script in /etc/log.d/scripts/services called myservice. When

logwatch executes, it will strip all time entries from the logs and pass the rest of the

log entry through standard input to the myservice script. Therefore, you must write

your script to read from standard input, parse out the pertinent information, and

then print it to standard out.

This just scratches the surface of how to get logwatch running on your system. There

is a great deal of information in the HOWTO-Make-Filter, which is included with the

logwatch distribution.

Hack 58 Monitor Your Logs Automatically

Use swatch to alert you to possible problems as they happen.

Automatically generated log file summaries are fine for keeping abreast of what's

happening with your systems and networks, but if you want to know about events

as they happen, you'll need to look elsewhere. One tool that can help keep you

informed in real time is swatch (http://swatch.sourceforge.net), the "Simple

WATCHer."

Swatch is a highly configurable log file monitor that can watch a file for user-defined

triggers and dispatch alerts in a variety of ways. It consists of a Perl program, a

configuration file, and a library of actions to take when it sees a trigger in the file it

is monitoring.

To install swatch, download the package, unpack it, and go into the directory that it

creates. Then run these commands:

perl Makefile.PL

make && make install

Before swatch will build, the Date::Calc, Date::Parse, File::Tail, and Time::HiRes

Perl CPAN modules must be installed. If you get an error message like the following

when you run perl Makefile.PL, then you will need to install those modules:

Warning: prerequisite Date::Calc 0 not found.

Warning: prerequisite Date::Parse 0 not found.

Warning: prerequisite Time::HiRes 1.12 not found.

Writing Makefile for swatch

If you already have Perl's CPAN module installed, simply run these commands:

perl -MCPAN -e "install Date::Calc"

perl -MCPAN -e "install Date::Parse"

perl -MCPAN -e "Time::HiRes"

By default, swatch looks for its configuration in a file called .swatchrc in the current

user's home directory. This file contains regular expressions to watch for in the file

that you are monitoring with swatch. If you want to use a different configuration

file, tell swatch by using the -c command-line switch.

http://swatch.sourceforge.net/

For instance, to use /etc/swatch/messages.conf to monitor /var/log/messages, you

could invoke swatch like this:

swatch -c /etc/swatch/messages.conf -t /var/log/messages

The general format for entries in this file is the following:

watchfor /<regex>/

<action1>

[action2]

[action3]

...

Alternatively, you can ignore specific log messages that match a regular expression

by using the ignore keyword:

ignore /<regex>/

You can also specify multiple regular expressions by separating them with the |

character.

Swatch is very configurable in what actions it can take when a string matches a

regular expression. Some useful actions that you can specify in your .swatchrc are

echo, write, exec, mail, pipe, and throttle.

The echo action simply prints the matching line to the console; additionally, you can

specify what text mode it will use. Thus, lines can be printed to the console as bold,

underlined, blinking, inverted, or colored text.

For instance, if you wanted to print a matching line in red, blinking text, you could

use the following action:

echo blink,red

The write action is similar to the echo action, except it does not support text

modes. It can, however, write the matching line to any specified user's TTY:

write user:user2:...

The exec action allows you to execute any command:

exec <command>

You can use the $0 or $* variables to pass the entire matching line to the command

that you execute, $1 to pass the first field in the line, $2 for the second, and so on.

So, if you wanted to pass only the second and third fields from the matching line to

the command mycommand, you could use an action like this:

exec "mycommand $2 $3"

The mail action is especially useful if you have an email-enabled or text messaging-

capable cell phone or pager. When using the mail action, you can list as many

recipient addresses as you like, in addition to specifying a subject line. Swatch will

send the line that matched the regular expression to these addresses with the

subject you set.

Here is the general form of the mail action:

mail addresses=address:address2:...,subject=mysubject

When using the mail action, be sure to escape the @ characters in the email

addresses (i.e., @ becomes \@). If you have any spaces in the subject of the email,

you should escape those as well.

In addition to the exec action, swatch can execute external commands with the pipe

action as well. The only difference is that instead of passing arguments to the

command, swatch will execute the command and pipe the matching line to it. To use

this action, just put the pipe keyword followed by the command you want to use.

Alternatively, to increase performance, you can use the keep_open option to keep the

pipe to the program open until swatch exits or needs to perform a different pipe

action:

pipe mycommand,keep_open

One problem with executing commands or sending emails whenever a specific string

occurs in a log message is that sometimes the same log message may be generated

over and over again very rapidly. Clearly, if this were to happen, you wouldn't want

to get paged or emailed 100 times within a 10-minute period. To alleviate this

problem, swatch provides the throttle action. This action lets you suppress a

specific message or any message that matches a particular regular expression for a

specified amount of time.

The general form of the throttle action is:

throttle h:m:s

The throttle action will throttle based on the contents of the message by default. If

you would like to throttle the actions based on the regular expression that caused

the match, you can add a ,use=regex to the end of your throttle statement.

Swatch is an incredibly useful tool, but it can take some work to create a good

.swatchrc. The best way to figure out what to look for is to examine your log files

for behavior that you want to monitor closely.

Hack 59 Aggregate Logs from Remote Sites

Integrate collocated and other remote systems or networks into your central

syslog infrastructure.

Monitoring the logs of a remote site or just a collocated server can often be overlooked

when faced with the task of monitoring activity on your local network. You could use the

traditional syslog facilities to send logging information from the remote network or

systems, but since the syslog daemon uses UDP for sending to remote systems, this is

not the ideal solution. UDP provides no reliability in its communications, and so you risk

losing logging information. In addition, the traditional syslog daemon has no means to

encrypt the traffic that it sends, so your logs might being viewable by anyone with

access to the intermediary networks between you and your remote hosts or networks.

To get around these issues, you'll have to look beyond the syslog daemon that comes

with your operating system and find a replacement. One such replacement syslog

daemon is syslog-ng (http://www.balabit.com/products/syslog_ng/). syslog-ng is not

only a fully functional replacement for the traditional syslog daemon, but also adds

flexible message filtering capabilities, as well as support for logging to remote systems

over TCP (in addition to support for the traditional UDP protocol). With the addition of

TCP support, you can also employ stunnel or ssh to securely send the logs across

untrusted networks.

To build syslog-ng, you will need the libol library package

(http://www.balabit.com/downloads/syslog-ng/libol/) in addition to the syslog-ng

package. After downloading these packages, unpack them and then build libol:

$ tar xfz libol-0.3.9.tar.gz

$ cd libol-0.3.9

$./configure && make

When you build syslog-ng you can have it statically link to libol, so there is no need to

fully install the library.

And now to build syslog-ng:

$ tar xfz syslog-ng-1.5.26.tar.gz

$ cd syslog-ng-1.5.26

$./configure --with-libol=../libol-0.3.9

$ make

If you want to compile in TCP wrappers support, you can add the --enable-tcp-wrapper

flag to the configure script. After syslog-ng is finished compiling, become root and run

make install. This will install the syslog-ng binary and manpages. To configure the

http://www.balabit.com/products/syslog_ng/
http://www.balabit.com/downloads/syslog-ng/libol/

daemon, create the /usr/local/etc/syslog-ng directory and then create a syslog-ng.conf

to put in it. To start off with, you can use one of the sample configuration files in the

doc directory of the syslog-ng distribution.

There are five types of configuration file entries for syslog-ng, each of which begins with

a specific keyword. The options entry allows you to tweak the behavior of the daemon,

such as how often the daemon will sync the logs to the disk, whether the daemon will

create directories automatically, and hostname expansion behavior. source entries tell

syslog-ng where to collect log entries from. A source can include Unix sockets, TCP or

UDP sockets, files, or pipes. destination entries allow you to specify possible places for

syslog-ng to send logs to. You can specify files, pipes, Unix sockets, TCP or UDP sockets,

TTYs, or programs. Sources and destinations are then combined with filters (using the

filter keyword), which let you select syslog facilities and log levels. Finally, these are all

used together in a log entry to define precisely where the information is logged. Thus

you can arbitrarily combine any source, select what syslog facilities and levels you want

from it, and then route it to any destination. This is what makes syslog-ng an incredibly

powerful and flexible tool.

To set up syslog-ng on the remote end so that it can replace the syslogd on the system

and send traffic to a remote syslog-ng, you'll first need to translate your syslog.conf to

equivalent source, destination, and log entries.

Here's the syslog.conf for a FreeBSD system:

*.err;kern.debug;auth.notice;mail.crit /dev/console

*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

security.* /var/log/security

auth.info;authpriv.info /var/log/auth.log

mail.info /var/log/maillog

lpr.info /var/log/lpd-errs

cron.* /var/log/cron

*.emerg *

First you'll need to configure a source. Under FreeBSD, /dev/log is a link to /var/run/log.

The following source entry tells syslog-ng to read entries from this file:

source src { unix-dgram("/var/run/log"); internal(); };

If you were using Linux, you would specify unix-stream and /dev/log like this:

source src { unix-stream("/dev/log"); internal() };

The internal() entry is for messages generated by syslog-ng itself. Notice that you can

include multiple sources in a source entry. Next, include destination entries for each of

the actual log files:

destination console { file("/dev/console"); };

destination messages { file("/var/log/messages"); };

destination security { file("/var/log/security"); };

destination authlog { file("/var/log/auth.log"); };

destination maillog { file("/var/log/maillog"); };

destination lpd-errs { file("/var/log/lpd-errs"); };

destination cron { file("/var/log/cron"); };

destination slip { file("/var/log/slip.log"); };

destination ppp { file("/var/log/ppp.log"); };

destination allusers { usertty("*"); };

In addition to these destinations, you'll also want to specify one for remote logging to

another syslog-ng process. This can be done with a line similar to this:

destination loghost { tcp("192.168.0.2" port(5140)); };

The port number can be any available TCP port.

Defining the filters is straightforward. You can simply create one for each syslog facility

and log level, or you can create them according to those used in your syslog.conf. If you

do the latter, you will only have to specify one filter in each log statement, but it will still

take some work to create your filters.

Here are example filters for the syslog facilities:

filter f_auth { facility(auth); };

filter f_authpriv { facility(authpriv); };

filter f_console { facility(console); };

filter f_cron { facility(cron); };

filter f_daemon { facility(daemon); };

filter f_ftp { facility(ftp); };

filter f_kern { facility(kern); };

filter f_lpr { facility(lpr); };

filter f_mail { facility(mail); };

filter f_news { facility(news); };

filter f_security { facility(security); };

filter f_user { facility(user); };

filter f_uucp { facility(uucp); };

and examples for the log levels:

filter f_emerg { level(emerg); };

filter f_alert { level(alert..emerg); };

filter f_crit { level(crit..emerg); };

filter f_err { level(err..emerg); };

filter f_warning { level(warning..emerg); };

filter f_notice { level(notice..emerg); };

filter f_info { level(info..emerg); };

filter f_debug { level(debug..emerg); };

Now you can combine the source with the proper filter and destination within the log

entries:

*.err;kern.debug;auth.notice;mail.crit /dev/console

log { source(src); filter(f_err); destination(console); };

log { source(src); filter(f_kern); filter(f_debug); destination(console); };

log { source(src); filter(f_auth); filter(f_notice); destination(console); };

log { source(src); filter(f_mail); filter(f_crit); destination(console); };

*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

log { source(src); filter(f_notice); destination(messages); };

log { source(src); filter(f_kern); filter(f_debug); destination(messages); };

log { source(src); filter(f_lpr); filter(f_info); destination(messages); };

log { source(src); filter(f_mail); filter(f_crit); destination(messages); };

log { source(src); filter(f_news); filter(f_err); destination(messages); };

security.* /var/log/security

log { source(src); filter(f_security); destination(security); };

auth.info;authpriv.info /var/log/auth.log

log { source(src); filter(f_auth); filter(f_info); destination(authlog); };

log { source(src); filter(f_authpriv); filter(f_info); destination(authlog); };

mail.info /var/log/maillog

log { source(src); filter(f_mail); filter(f_info); destination(maillog); };

lpr.info /var/log/lpd-errs

log { source(src); filter(f_lpr); filter(f_info); destination(lpd-errs); };

cron.* /var/log/cron

log { source(src); filter(f_cron); destination(cron); };

*.emerg *

log { source(src); filter(f_emerg); destination(allusers); };

You can set up the machine that will be receiving the logs in much the same way as if

you were replacing the currently used syslogd.

To configure syslog-ng to receive messages from a remote host, you must specify a

source entry:

source r_src { tcp(ip("192.168.0.2") port(5140)); };

Alternatively, you can dump all the logs from the remote machines into the same

destinations that you use for your local log entries. This is not really recommended,

because it can be a nightmare to manage, but can be done by including multiple source

drivers in the source entry that you use for your local logs:

source src {

 unix-dgram("/var/run/log");

 tcp(ip("192.168.0.2") port(5140));

 internal();

};

Now logs gathered from remote hosts will appear in any of the destinations that were

combined with this source.

If you would like all logs from remote hosts to go into a separate file named for each

host in /var/log, you could use a destination like this:

destination r_all { file("/var/log/$HOST"); };

syslog-ng will expand the $HOST macro to the hostname of the system sending it logs

and create a file named after it in /var/log. An appropriate log entry to use with this

would be:

log { source(r_src); destination(r_all); };

However, an even better method is to recreate all of the remote syslog-ng log files on

your central log server. For instance, a destination for a remote machine's messages file

would look like this:

destination fbsd_messages { file("/var/log/$HOST/messages"); };

Notice here that the $HOST macro is used in place of a directory name. If you are using a

destination entry like this, be sure to create the directory beforehand, or use the

create_dirs() option:

options { create_dirs(yes); };

syslog-ng's macros are a very powerful feature. For instance, if you wanted to separate

logs by hostname and day, you could use a destination like this:

destination fbsd_messages {

 file("/var/log/$HOST/$YEAR.$MONTH.$DAY/messages");

};

You can combine the remote source with the appropriate destinations for the logs

coming in from the network just as you did when configuring syslog-ng for local

logging�just specify the remote source with the proper destination and filters.

Another neat thing you can do with syslog-ng is collect logs from a number of remote

hosts and then send all of those to yet another syslog-ng daemon. You can do this by

combining a remote source and a remote destination with a log entry:

log { source(r_src); destination(loghost); };

Since syslog-ng is now using TCP ports, you can use any encrypting tunnel you like to

secure the traffic between your syslog-ng daemons. You can use SSH port forwarding

[Hack #72] or stunnel [Hack #76] to create an encrypted channel between each of

your servers. By limiting connections on the listening port to include only localhost

(using firewall rules, as in [Hack #33] or [Hack #34]), you can eliminate the

possibility of bogus log entries or denial-of-service attacks.

Server logs are among the most critical information that a system administrator needs

to do her job. Using new tools and strong encryption, you can keep your valuable log

data safe from prying eyes.

Hack 60 Log User Activity with Process Accounting

Keep a detailed audit trail of what's being done on your systems.

Process accounting allows you to keep detailed logs of every command a user runs,

including CPU time and memory used. From a security standpoint, this means the

system administrator can gather information about what user ran which command

and at what time. This is not only very useful in assessing a break-in or local root

compromise, but can also be used to spot attempted malicious behavior by normal

users of the system. (Remember that intrusions don't always come from the

outside.)

To enable process accounting, run these commands:

mkdir /var/account

touch /var/account/pacct && chmod 660 /var/account/pacct

/sbin/accton /var/account/pacct

Alternatively, if you are running Red Hat or SuSE Linux and have the process

accounting package installed, you can run a startup script to enable process

accounting. On Red Hat, try this:

chkconfig psacct on

/sbin/service psacct start

On SuSE, use these commands:

chkconfig acct on

/sbin/service acct start

The process accounting package provides several programs to make use of the data

that is being logged. The ac program analyzes total connect time for users on the

system.

Running it without any arguments prints out the number of hours logged by the

current user:

[andrew@colossus andrew]$ ac

 total 106.23

If you want to display connect time for all users who have logged onto the system,

use the -p switch:

ac -p

 root 0.07

 andrew 106.05

 total 106.12

The lastcomm command lets you search the accounting logs by username, command

name, or terminal:

lastcomm andrew

ls andrew ?? 0.01 secs Mon Dec 15 05:58

rpmq andrew ?? 0.08 secs Mon Dec 15 05:58

sh andrew ?? 0.03 secs Mon Dec 15 05:44

gunzip andrew ?? 0.00 secs Mon Dec 15 05:44

lastcomm bash

bash F andrew ?? 0.00 secs Mon Dec 15 06:44

bash F root stdout 0.01 secs Mon Dec 15 05:20

bash F root stdout 0.00 secs Mon Dec 15 05:20

bash F andrew ?? 0.00 secs Mon Dec 15 05:19

To summarize the accounting information, you can use the sa command. By default

it will list all the commands found in the accounting logs and print the number of

times that each one has been executed:

sa

 14 0.04re 0.03cp 0avio 1297k troff

 7 0.03re 0.03cp 0avio 422k lastcomm

 2 63.90re 0.01cp 0avio 983k info

 14 34.02re 0.01cp 0avio 959k less

 14 0.03re 0.01cp 0avio 1132k grotty

 44 0.02re 0.01cp 0avio 432k gunzip

You can also use the -u flag to output per-user statistics:

sa -u

root 0.01 cpu 344k mem 0 io which

root 0.00 cpu 1094k mem 0 io bash

root 0.07 cpu 1434k mem 0 io rpmq

andrew 0.02 cpu 342k mem 0 io id

andrew 0.00 cpu 526k mem 0 io bash

andrew 0.01 cpu 526k mem 0 io bash

andrew 0.03 cpu 378k mem 0 io grep

andrew 0.01 cpu 354k mem 0 io id

andrew 0.01 cpu 526k mem 0 io bash

andrew 0.00 cpu 340k mem 0 io hostname

You can peruse the output of these commands every so often to look for suspicious

activity, such as increases in CPU usage or commands that are known to be used for

mischief.

Chapter 5. Monitoring and Trending
Hacks #61-66

Section 61. Monitor Availability

Section 62. Graph Trends

Section 63. Run ntop for Real-Time Network Stats

Section 64. Audit Network Traffic

Section 65. Collect Statistics with Firewall Rules

Section 66. Sniff the Ether Remotely

Hacks #61-66

While the importance of reliable system logs can't be overestimated, logs only tell

part of the story of what is happening on your network. When something out of the

ordinary happens, the event is duly logged to the appropriate file, where it waits for

a human to notice and take the appropriate action. But logs are valuable only if

someone actually reads them. When log files add to the deluge of information that

most network administrators already wade through each day, many log files may go

unread for days or weeks. This situation is made worse when log files are clogged

with irrelevant information. For example, a cry for help from an overburdened mail

server can easily be lost if it is surrounded by innocuous entries about failed spam

attempts. All too often, logs are used as a resource to figure out "what happened"

when systems fail, rather than as a guide to what is happening now.

Another important aspect of log entries is that they only provide a "spot check" of

your system at a particular moment. Without a history of what normal performance

looks like, it can be difficult to tell the difference between ordinary network traffic, a

DoS attack, and a visitation from Slashdot readers. While you can easily build a

report on how many times the /var partition filled up, how can you easily know what

usage looks like over time? Is the mail spool clogged due to one inconsiderate user,

or is it part of an attack by an adversary? Or is it simply a general trend that is the

result of trying to serve too many users on too small a disk?

This chapter describes a number of methods for tracking the availability of services

and resources over time. Rather than having to watch system logs manually, it is

usually far better to have the systems notify you when there is a problem�and only

when there is a problem. There are also a number of suggestions about how to

recognize trends in your network traffic by monitoring flows and plotting the results

on a graph. Sure, you may know what your average outbound Internet traffic looks

like, but how much of that traffic is made up of HTTP versus SMTP? You may know

roughly how much is being used by each server on your network, but what if you

want to break the traffic down by protocol? The hacks in this chapter will show you

how.

Hack 61 Monitor Availability

Use Nagios to keep tabs on your network.

Since remote exploits can often crash the service that is being broken into or cause its

CPU use to skyrocket, you should monitor the services that are running on your

network. Just looking for an open port (such as by using Nmap [Hack #42]) isn't

enough. The machine may be able to respond to a TCP connect request, but the service

may be unable to respond (or worse, could be replaced by a different program

entirely!). One tool that can help you verify your services at a glance is Nagios

(http://www.nagios.org).

Nagios is a network-monitoring application that monitors not only the services running

on the hosts on your network, but also the resources on each host, such as CPU usage,

disk space, memory usage, running processes, log files, and much more. In the advent

of a problem it can notify you through email, pager, or any other method that you

define, and you can check the status of your network at a glace by using the web GUI.

Nagios is also easily extensible through its plug-in API.

To install Nagios, download the source distribution from the Nagios web site. Then,

unpack the source distribution and go into the directory it creates:

$ tar xfz nagios-1.1.tar.gz

$ cd nagios-1.1

Before running Nagios's configure script, you should create a user and group for Nagios

to run as (e.g., nagios). Then run the configure script with a command similar to this:

$./configure --with-nagios-user=nagios --with-nagios-grp=nagios

This will install Nagios in /usr/local/nagios. As usual, you can modify this behavior by

using the --prefix switch. After the configure script finishes, compile Nagios by

running make all. Then become root and run make install to install it. In addition,

you can optionally install Nagios's initialization scripts by running make install-init.

If you take a look into the /usr/local/nagios directory right now, you will see that there

are four directories. The bin directory contains a single file, nagios, that is the core of

the package. This application does the actual monitoring. The sbin directory contains

the CGI scripts that will be used in the web-based interface. Inside the share directory,

you'll find the HTML files and documentation. Finally, the var directory is where Nagios

will store its information once it starts running.

Before you can use Nagios, you will need a couple of configuration files. These files go

into the etc directory, which will be created when you run make install-config. This

command also creates a sample copy of each required configuration file and puts them

into the etc directory.

http://www.nagios.org/

At this point the Nagios installation is complete. However, it is not very useful in its

current state, because it lacks the actual monitoring applications. These applications,

which check whether a particular monitored service is functioning properly, are called

plug-ins. Nagios comes with a default set of plug-ins, but they must be downloaded

and installed separately.

Download the latest Nagios Plugins package and decompress it. You will need to run

the provided configure script to prepare the package for compilation on your system.

You will find that the plug-ins are installed in a fashion similar to the actual Nagios

program.

To compile the plug-ins, run commands similar to these:

$./configure --prefix=/usr/local/nagios \

--with-nagios-user=nagios --with-nagis-grp=nagios

$ make all

You might get notifications about missing programs or Perl modules while the script is

running. These are mostly fine, unless you specifically need the mentioned applications

to monitor a service.

After compilation is finished, become root and run make install to install the plug-ins.

The plug-ins will be installed in the libexec directory of your Nagios base directory

(e.g., /usr/local/nagios/libexec).

There are a few rules that all Nagios plug-ins should implement, making them suitable

for use by Nagios. All plug-ins provide a --help option that displays information about

the plug-in and how it works. This feature is very helpful when you're trying to monitor

a new service using a plug-in you haven't used before.

For instance, to learn how the check_ssh plug-in works, run the following command:

$ /usr/local/nagios/libexec/check_ssh

check_ssh (nagios-plugins 1.4.0alpha1) 1.13

The nagios plugins come with ABSOLUTELY NO WARRANTY. You may redistribute

copies of the plugins under the terms of the GNU General Public License.

For more information about these matters, see the file named COPYING.

Copyright (c) 1999 Remi Paulmier <remi@sinfomic.fr>

Copyright (c) 2000-2003 Nagios Plugin Development Team

 <nagiosplug-devel@lists.sourceforge.net>

Try to connect to SSH server at specified server and port

Usage: check_ssh [-46] [-t <timeout>] [-p <port>] <host>

 check_ssh (-h | --help) for detailed help

 check_ssh (-V | --version) for version information

Options:

 -h, --help

 Print detailed help screen

 -V, --version

 Print version information

 -H, --hostname=ADDRESS

 Host name or IP Address

 -p, --port=INTEGER

 Port number (default: 22)

 -4, --use-ipv4

 Use IPv4 connection

 -6, --use-ipv6

 Use IPv6 connection

 -t, --timeout=INTEGER

 Seconds before connection times out (default: 10)

 -v, --verbose

 Show details for command-line debugging (Nagios may truncate output)

Send email to nagios-users@lists.sourceforge.net if you have questions

regarding use of this software. To submit patches or suggest improvements,

send email to nagiosplug-devel@lists.sourceforge.net

Now that both Nagios and the plug-ins are installed, we are almost ready to begin

monitoring our servers. However, Nagios will not even start before it's configured

properly.

The sample configuration files provide a good starting point:

$ cd /usr/local/nagios/etc

$ ls -1

cgi.cfg-sample

checkcommands.cfg-sample

contactgroups.cfg-sample

contacts.cfg-sample

dependencies.cfg-sample

escalations.cfg-sample

hostgroups.cfg-sample

hosts.cfg-sample

misccommands.cfg-sample

nagios.cfg-sample

resource.cfg-sample

services.cfg-sample

timeperiods.cfg-sample

Since these are sample files, the Nagios authors added a .cfg-sample suffix to each file.

First, we need to copy or rename each one to end in .cfg, so that the software can use

them properly. (If you don't change the configuration filenames, Nagios will not be able

to find them.)

You can either rename each file manually or use the following command to take care of

them all at once. Type the following script on a single line:

for i in *cfg-sample; do mv $i `echo $i | \

 sed -e s/cfg-sample/cfg/`; done;

First there is the main configuration file, nagios.cfg. You can pretty much leave

everything as is�the Nagios installation process will make sure the file paths used in

the configuration file are correct. There's one option, however, that you might want to

change: check_external_commands, which is set to 0 by default. If you would like to be

able to directly run commands through the web interface, you will want to set this to 1.

Depending on your network environment, this may or may not be an acceptable

security risk, as enabling this option will permit the execution of scripts from the web

interface. Other options you need to set in cgi.cfg configure which usernames are

allowed to run external commands.

To get Nagios running, you must modify all but a few of the sample configuration files.

Configuring Nagios to monitor your servers is not as difficult as it looks. To help you,

you can use the verbose mode of the Nagios binary by running:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

This command will go through the configuration files and report any errors. Start fixing

the errors one by one, and run the command again to find the next error. For testing

purposes, it is easiest to disable all hosts and services definitions in the sample

configuration files and merely use the files as templates for your own hosts and

services. You can keep most of the files as is, but remove the following, which will be

created from scratch:

hosts.cfg

services.cfg

contacts.cfg

contactgroups.cfg

hostgroups.cfg

Start by configuring a host to monitor. We first need to add our host definition and

configure some options for that host. You can add as many hosts as you like, but we

will stick with one for the sake of simplicity.

Here are the contents of hosts.cfg:

Generic host definition template

define host{

 # The name of this host template - referenced i

 name generic-host

 n other host definitions, used for template recursion/resolution

 # Host notifications are enabled

 notifications_enabled 1

 # Host event handler is enabled

 event_handler_enabled 1

 # Flap detection is enabled

 flap_detection_enabled 1

 # Process performance data

 process_perf_data 1

 # Retain status information across program restarts

 retain_status_information 1

 # Retain non-status information across program restarts

 retain_nonstatus_information 1

 # DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST,

 # JUST A TEMPLATE!

 register 0

}

Host Definition

define host{

 # Name of host template to use

 use generic-host

 host_name freelinuxcd.org

 alias Free Linux CD Project Server

 address www.freelinuxcd.org

 check_command check-host-alive

 max_check_attempts 10

 notification_interval 120

 notification_period 24x7

 notification_options d,u,r

}

The first host defined is not a real host but a template from which other host

definitions are derived. This mechanism can be seen in other configuration files and

makes configuration based on a predefined set of defaults a breeze.

With this setup we are monitoring only one host, www.freelinuxcd.org, to see if it is

alive. The host_name parameter is important because other configuration files will refer

to this server by this name. Now the host needs to be added to a hostgroup, so that

the application knows which contact group to send notifications to.

Here's what hostgroups.cfg looks like:

file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/www.freelinuxcd.org

define hostgroup{

 hostgroup_name flcd-servers

 alias The Free Linux CD Project Servers

 contact_groups flcd-admins

 members freelinuxcd.org

}

This defines a new hostgroup and associates the flcd-admins contact_group with it.

Now you'll need to define that contact group in contactgroups.cfg:

define contactgroup{

 contactgroup_name flcd-admins

 alias FreeLinuxCD.org Admins

 members oktay, verty

}

Here the flcd-admins contact_group is defined with two members, oktay and verty.

This configuration ensures that both users will be notified when something goes wrong

with a server that flcd-admins is responsible for. The next step is to set the contact

information and notification preferences for these users.

Here are the definitions for those two members in contacts.cfg:

define contact{

 contact_name oktay

 alias Oktay Altunergil

 service_notification_period 24x7

 host_notification_period 24x7

 service_notification_options w,u,c,r

 host_notification_options d,u,r

 service_notification_commands notify-by-email,notify-by-epager

 host_notification_commands host-notify-by-email,host-notify-by-epager

 email oktay@freelinuxcd.org

 pager dummypagenagios-admin@localhost.localdomain

 }

define contact{

 contact_name Verty

 alias David 'Verty' Ky

 service_notification_period 24x7

 host_notification_period 24x7

 service_notification_options w,u,c,r

 host_notification_options d,u,r

 service_notification_commands notify-by-email,notify-by-epager

 host_notification_commands host-notify-by-email

 email verty@flcd.org

 }

In addition to providing contact details for a particular user, the contact_name in the

contacts.cfg file is also used by the CGI scripts (i.e., the web interface) to determine

whether a particular user is allowed to access a particular resource. Now that your hosts

and contacts are configured, you can start to configure monitoring for individual

services on your server.

This is done in services.cfg :

Generic service definition template

define service{

The 'name' of this service template, referenced in other service definitions

 name generic-service

 # Active service checks are enabled

 active_checks_enabled 1

 # Passive service checks are enabled/accepted

 passive_checks_enabled 1

 # Active service checks should be parallelized

 # (disabling this can lead to major performance problems)

 parallelize_check 1

 # We should obsess over this service (if necessary)

 obsess_over_service 1

 # Default is to NOT check service 'freshness'

 check_freshness 0

 # Service notifications are enabled

 notifications_enabled 1

 # Service event handler is enabled

 event_handler_enabled 1

 # Flap detection is enabled

 flap_detection_enabled 1

 # Process performance data

 process_perf_data 1

 # Retain status information across program restarts

 retain_status_information 1

 # Retain non-status information across program restarts

 retain_nonstatus_information 1

 # DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE!

 register 0

 }

Service definition

define service{

 # Name of service template to use

 use generic-service

 host_name freelinuxcd.org

 service_description HTTP

 is_volatile 0

 check_period 24x7

 max_check_attempts 3

 normal_check_interval 5

 retry_check_interval 1

 contact_groups flcd-admins

 notification_interval 120

 notification_period 24x7

 notification_options w,u,c,r

 check_command check_http

 }

Service definition

define service{

 # Name of service template to use

 use generic-service

 host_name freelinuxcd.org

 service_description PING

 is_volatile 0

 check_period 24x7

 max_check_attempts 3

 normal_check_interval 5

 retry_check_interval 1

 contact_groups flcd-admins

 notification_interval 120

 notification_period 24x7

 notification_options c,r

 check_command check_ping!100.0,20%!500.0,60%

 }

This setup configures monitoring for two services. The first service definition, which has

been called HTTP, will monitor whether the web server is up and will notify you if there's

a problem. The second definition monitors the ping statistics from the server and

notifies you if the response time or packet loss become too high. The commands used

are check_http and check_ping, which were installed into the libexec directory during

the plug-in installation. Please take your time to familiarize yourself with all other

available plug-ins and configure them similarly to the previous example definitions.

Once you're happy with your configuration, run Nagios with the -v switch one last time

to make sure everything checks out. Then run it as a daemon by using the -d switch:

/usr/local/nagios/bin/nagios -d /usr/local/nagios/etc/nagios.cfg

That's all there is to it. Give Nagios a couple of minutes to generate some data, and

then point your browser to the machine and look at the pretty service warning lights.

Hack 62 Graph Trends

Use RRDtool to easily generate graphs for just about anything.

You may be familiar with graphing bandwidth usage with tools such as MRTG. From a security

standpoint it's useful to graph bandwidth usage, since it can help you spot anomalous

behavior. Having a history of typical bandwidth usage gives you a baseline to judge what's

going on. This can make it easier to determine if somebody is performing a DoS attack on

your site, or if a machine on your network is acting as a Warez depot.

RRDtool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) provides similar functionality

to MRTG, but it is much more flexible. RRDtool is basically a tool for storing data in a

general-purpose database that will never grow in size. RRD stands for round-robin database ,

which is a special type of database that maintains a fixed number of entries�the oldest entry

is constantly being replaced by the newest data. RRDtool also has the ability to generate

graphs of the data contained in a round-robin database.

The most common use of RRDtool is to make pretty bandwidth graphs. This is easily done

with RRDtool and snmpget, a utility that queries devices managed with SNMP. First, you'll

need to create a round-robin database by running a command similar to this one:

$ rrdtool create zul.rrd --start N \

DS:de0_in:COUNTER:600:U:U \

DS:de0_out:COUNTER:600:U:U \

RRA:AVERAGE:0.5:1:600 \

RRA:AVERAGE:0.5:6:700 \

RRA:AVERAGE:0.5:24:775 \

RRA:AVERAGE:0.5:288:797 \

RRA:MAX:0.5:1:600 \

RRA:MAX:0.5:6:700 \

RRA:MAX:0.5:24:775 \

RRA:MAX:0.5:288:797

This command creates a database containing entries for two separate counters, de0_in and

de0_out. These will store samples of interface statistics collected every five minutes from an

SNMP daemon on a router. In addition, it contains several fields for automatically maintaining

running averages.

You can populate the database by running a command like this:

$ rrdtool update zul.rrd N:\

`snmpget -Oqv zul public interfaces.ifTable.ifEntry.ifInOctets.4`:\

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

`snmpget -Oqv zul public interfaces.ifTable.ifEntry.ifOutOctets.4`

This command queries the input and output statistics for the de0 interface on a computer

named zul. To schedule it to run every five minutes, you could make a crontab entry similar

to the following:

0-55/5 * * * * rrdtool update /home/andrew/rrdbs/zul.rrd N:`snmpget -Oqv zul public

interfaces.ifTable.ifEntry.ifInOctets.4`:`snmpget -Oqv zul public

interfaces.ifTable.ifEntry.ifOutOctets.4`

However, you can use whatever methods you want to collect the data. To generate hourly

graphs of the data, you could run a command like this:

rrdtool graph zul_de0-hourly.png -t "Hourly Bandwidth" --start -3600 \

 DEF:inoctets=zul.rrd:de0_in:AVERAGE \

 DEF:outoctets=zul.rrd:de0_out:AVERAGE \

 AREA:inoctets#00FF00:"de0 In" \

 LINE1:outoctets#0000FF:"de0 Out"

This would create an image like the one shown in Figure 5-1.

Figure 5-1. A graph generated by RRDtool

The -3600 in the command tells rrdtool that you want to graph the data collected over the

last hour (there are 3,600 seconds in an hour). Likewise, if you wanted to create a graph over

the course of a day, you would use -86400.

But that's just the beginning. After collecting multiple data sources, you can combine them all

into a single graph that gives you a great deal of information at a glance. Figure 5-2 shows

the relative outbound usage of several servers simultaneously, with the total average for all

servers just below it. While this figure is in grayscale, the actual graph uses a different color

for each server, making it easy to tell at a glance which one is hogging all of the bandwidth.

Figure 5-2. Multiple servers on a single graph

As you can see, RRDtool is a very flexible tool. All you need to do is tell it how much data you

want to store and then set up some method to collect the data at a regular interval. Then you

can easily generate a graph of the data whenever you want it.

Hack 63 Run ntop for Real-Time Network Stats

See who's doing what on your network over time with ntop.

If you're looking for real-time network statistics, check out the terrific ntop tool

(http://www.ntop.org). It is a full-featured protocol analyzer with a web frontend,

complete with SSL and graphing support. Unfortunately, ntop isn't exactly

lightweight (the precise amount of resources required depend on the size of your

network and the volume of network traffic), but it can give you a very nice picture of

who's talking to whom on your network.

ntop needs to run initially as root (to throw your interfaces into promiscuous mode

and start capturing packets), but then releases its privileges to a user that you

specify. If you decide to run ntop for long periods of time, you'll probably be

happiest running it on a dedicated monitoring box (with few other services running

on it, for security and performance reasons).

Here's a quick reference on how to get ntop up and running. First, create an ntop

user and group:

groupadd ntop

useradd -c "ntop user" -d /usr/local/etc/ntop \

 -s /bin/true -g ntop ntop

Then unpack and build ntop per the instructions in docs/BUILD-NTOP.txt. I assume

that you have the source tree unpacked in /usr/local/src/ntop-2.1.3/.

Create a directory for ntop to keep its capture database in:

mkdir /usr/local/etc/ntop

Note that it should be owned by root, and not by the ntop user.

If you'd like to use SSL for HTTPS (instead of standard HTTP), then copy the default

SSL key to /usr/local/etc/ntop. Assuming that you have unpacked ntop into

/usr/local/src/ntop-2.1.3/, you can do this by running this command:

cp /usr/local/src/ntop-2.1.3/ntop/*pem /usr/local/etc/ntop

Note that the default SSL key will not be built with the correct hostname for your

server. So, you'll probably want to generate your own SSL certificate and key pair

[Hack #45] . Now you'll need to initialize the ntop databases and set an

administrative password:

ntop -A -u ntop -P /usr/local/etc/ntop

http://www.ntop.org/

21/Sep/2002 20:30:23 Initializing GDBM...

21/Sep/2002 20:30:23 Started thread (1026) for network packet analyser.

21/Sep/2002 20:30:23 Started thread (2051) for idle hosts detection.

21/Sep/2002 20:30:23 Started thread (3076) for DNS address resolution.

21/Sep/2002 20:30:23 Started thread (4101) for address purge.

Please enter the password for the admin user:

Please enter the password again:

21/Sep/2002 20:30:29 Admin user password has been set.

Finally, run ntop as a daemon, and start the SSL server on your favorite port (4242,

for example):

ntop -u ntop -P /usr/local/etc/ntop -W4242 -d

By default, ntop also runs a standard HTTP server on port 3000. You should

seriously consider locking down access to these ports, either at your firewall or by

using command-line iptables rules [Hack #33] .

Let ntop run for a while, then connect to https://your.server.here:4242/. You can

find out all sorts of details about what traffic has been seen on your network, as

shown in Figure 5-3.

Figure 5-3. Displaying a host's statistics in ntop's web interface

While tools like tcpdump and Ethereal give you detailed, interactive analysis of

network traffic, ntop delivers a wealth of statistical information in a very slick and

easy-to-use web interface. When properly installed and locked down, it will likely

become a favorite tool in your network analysis tool chest

�Rob Flickenger (Linux Server Hacks)

Hack 64 Audit Network Traffic

Use Argus to monitor your network and to keep an audit trail of your traffic.

Wouldn't it be nice if you could keep a complete record of everything that happened on

your network? It would certainly help to track down problems and would be invaluable

in the event of a security incident, but it would just take up too much space to keep all

of that data around. The next best thing would be to keep a log of all the packets, but

not actually keep the data. You can do this with Argus

(http://www.qosient.com/argus/).

Argus, or the Audit Record Generation and Utilization System, is a tool that can log

network transactions in a variety of ways and can even collect performance metrics on

every connection that it is able to see. Argus also contains several utilities that can

make queries against the logs, so you can easily extract the information you need.

These tools allow you to generate ASCII-, RMON-, or XML-formatted information from

an Argus log file. Argus also provides a Perl interface for accessing its log files, so you

can easily write custom scripts to make use of the data it collects.

To set up Argus, you'll first need to download the source distribution and unpack it.

Then change into the directory that it creates:

$ tar xfz argus-2.0.5.tar.gz

$ cd argus-2.0.5

To compile Argus, run this command:

$./configure && make

After compilation has finished, you can install Argus by becoming root and running this

command:

make install

To get a quick demo of Argus, run it and then let it collect some data for a little while:

argus -d -e `hostname` -w /tmp/arguslog

This command will start argus in daemon mode and have it write its logs to

/tmp/argus.

After letting it collect some data, try querying it with the ra command. This will show

you an ASCII representation of the packets that argus has logged:

$ ra -r /tmp/arguslog

12 Jan 04 05:42:48 udp plunder.nnc.netbios-ns -> 192.168.0.255.netbios-ns INT

http://www.qosient.com/argus/

12 Jan 04 05:43:09 udp 192.168.0.250.snmptrap -> 255.255.255.255.snmptrap INT

12 Jan 04 05:43:15 udp print.nnc.netbios-dgm -> 192.168.0.255.netbios-dgm INT

12 Jan 04 05:43:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:43:28 nvl 0:c0:2:57:98:79 -> Broadcast INT

12 Jan 04 05:43:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:43:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:44:19 udp kryten.nnc.56581 -> 255.255.255.255.2222 TIM

12 Jan 04 05:43:34 udp sunder.nnc.netbios-ns -> 192.168.0.255.netbios-ns INT

12 Jan 04 05:44:08 arp plunder.nnc who-has sirius.nnc INT

12 Jan 04 05:44:08 udp plunder.nnc.netbios-ns -> 192.168.0.255.netbios-ns INT

12 Jan 04 05:44:15 udp print.nnc.netbios-dgm -> 192.168.0.255.netbios-dgm INT

12 Jan 04 05:45:06 udp sunder.nnc.netbios-dgm -> 192.168.0.255.netbios-dgm TIM

12 Jan 04 05:40:26 man pkts 734 bytes 75574 drops 0 CON

12 Jan 04 05:44:28 nvl 0:c0:2:57:98:79 -> Broadcast INT

12 Jan 04 05:44:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:44:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:44:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:45:08 udp plunder.nnc.netbios-ns -> 192.168.0.255.netbios-ns INT

12 Jan 04 05:45:09 tcp kryten.nnc.54176 ?> colossus.nnc.ssh EST

12 Jan 04 05:45:15 udp print.nnc.netbios-dgm -> 192.168.0.255.netbios-dgm INT

This is just a few minutes of logs from one host, but it is stored in a very compact

manner. In fact, during testing, a whole day's worth of logs consumed only 1.4 MB!

The ra command can also take tcpdump-style filters so that you can query the logs for

packets that match a specific host, protocol, port, or any number of other

characteristics.

For instance, if you wanted to query the logs for all packets sent either to or from the

host named kryten, you could used a command similar to this one:

$ ra -r /tmp/argus - "host kryten"

12 Jan 04 09:26:34 udp kryten.nnc.55689 -> 255.255.255.255.2222 TIM

12 Jan 04 09:26:36 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

12 Jan 04 09:27:37 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

12 Jan 04 09:28:34 udp kryten.nnc.55691 -> 255.255.255.255.2222 TIM

12 Jan 04 09:28:05 icmp kryten.nnc <-> linux-vmm.nnc ECO

12 Jan 04 09:28:06 icmp kryten.nnc <-> linux-vmm.nnc ECO

12 Jan 04 09:29:06 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

12 Jan 04 09:30:34 udp kryten.nnc.55692 -> 255.255.255.255.2222 TIM

12 Jan 04 09:32:34 udp kryten.nnc.55693 -> 255.255.255.255.2222 TIM

12 Jan 04 09:33:06 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

12 Jan 04 09:34:34 udp kryten.nnc.55694 -> 255.255.255.255.2222

12 Jan 04 09:53:44 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

You can also generate a new Argus log file containing only the results of your query by

using the -w option to ra and specifying a file to write the results to.

To get XML output from Argus, you can use the raxml utility to make queries, much in

the same way as you can with ra. For instance, here's the first record returned by using

the previous query for all packets that matched the hostname of kryten:

$ raxml -r /tmp/arguslog - "host kryten"

<ArgusFlowRecord ArgusSourceId = "192.168.0.41" SequenceNumber = "3"

 Cause = "Status" StartDate = "2004-01-12" StartTime = "09:25:26"

 StartTimeusecs = "319091" LastDate = "2004-01-12"

 LastTime = "09:25:32" LastTimeusecs = "521982"

 Duration = "6.202891" TransRefNum = "0">

 <MACAddrs SrcAddr = "0:a:95:c7:2b:10" DstAddr = "0:c:29:e2:2b:c1" />

 <Flow> <IP SrcIPAddr = "192.168.0.60" DstIPAddr = "192.168.0.41"

 Proto = "tcp" Sport = "56060" Dport = "22" IpId = "27b8" /> </Flow>

 <FlowAttrs SrcTTL = "64" DstTTL = "64" SrcTOS = "10" DstTOS = "10" />

 <ExtFlow> <TCPExtFlow TCPState = "EST" TCPOptions = "TIME"

 SynAckuSecs = "0" AckDatauSecs = "0" >

 <TCPExtMetrics SrcTCPSeqBase = "4204580547"

 SrcTCPAckBytes = "527" SrcTCPBytes = "528"

 SrcTCPRetrans = "0" SrcTCPWin = "65535" SrcTCPFlags = "PA"

 DstTCPSeqBase = "3077608383" DstTCPAckBytes = "1135"

 DstTCPBytes = "992" DstTCPRetrans = "0" DstTCPWin = "9792"

 DstTCPFlags = "PA" />

 </TCPExtFlow>

 </ExtFlow>

 <Metrics SrcCount = "24" DstCount = "17" SrcBytes = "2112"

 DstBytes = "2258" SrcAppBytes = "528" DstAppBytes = "1136" />

 </ArgusFlowRecord>

As you can see, Argus keeps track of much more information than it would seem if you

were just going by the output generated by ra. This is where Argus really shines,

because it can store such a large amount of information about your network traffic in a

small amount of space. In addition, Argus makes it easy to convert this information

into other formats, such as XML, which makes it easy to write applications that can

understand the data.

Hack 65 Collect Statistics with Firewall Rules

Make your firewall ruleset do the work for you when you want to collect

statistics.

If you want to start collecting statistics on your network traffic but dread setting up

SNMP, you don't have to worry. You can use the firewalling code in your operating

system to collect statistics for you.

For instance, if you were using Linux, you could use iptables commands similar to

the following to keep track of bandwidth consumed by a particular machine that

passes traffic through your firewall:

iptables -N KRYTEN && iptables -A KRYTEN -j ACCEPT

iptables -N KRYTEN_IN && iptables -A KRYTEN_IN -j KRYTEN

iptables -N KRYTEN_OUT && iptables -A KRYTEN_OUT -j KRYTEN

iptables -A FORWARD -s 192.168.0.60 -j KRYTEN_OUT

iptables -A FORWARD -d 192.168.0.60 -j KRYTEN_IN

This leverages the packet and byte counters associated with each iptables rule to

provide input and output bandwidth statistics for traffic forwarded through the

firewall. It works by first defining a chain named KRYTEN, which is named after the

host that the statistics will be collected on. This chain contains an unconditional

accept rule and will be used to quickly add up the total bandwidth that kryten

consumes. To itemize the downstream bandwidth kryten is using, another chain is

created called KRYTEN_IN. This chain contains only one rule, which is to

unconditionally jump to the KRYTEN chain in order for the inbound bandwidth to be

added with the outbound bandwidth being consumed. Similarly, the KRYTEN_OUT

chain tallies outbound bandwidth being consumed and then jumps to the KRYTEN

chain so that the outbound bandwidth will be added to the inbound bandwidth

being consumed. Finally, rules are added to the FORWARD chain that direct the packet

to the correct chain, depending on whether it's coming from or going to kryten.

After applying these rules, you can then view the total bandwidth (inbound and

outbound) consumed by kryten by running a command like this:

iptables -vx -L KRYTEN

Chain kryten (2 references)

 pkts bytes target prot opt in out source destination

 442 46340 ACCEPT all -- any any anywhere anywhere

You can easily parse out the bytes field, and thereby generate graphs with RRDtool

[Hack #62], by using a command like this:

iptables -vx -L KRYTEN | egrep -v 'Chain|pkts' | awk '{print $2}'

To get the inbound or outbound bandwidth consumed, just replace KRYTEN with

KRYTEN_IN or KRYTEN_OUT, respectively. Of course, you don't have to limit your

statistic collection criteria to just per-computer bandwidth usage. You can collect

statistics on anything that you can create an iptables rule for, including ports, MAC

addresses, or just about anything else that passes through your network.

Hack 66 Sniff the Ether Remotely

Monitor your networks remotely with rpcapd.

If you've ever wanted to monitor network traffic from another segment and use a

graphical protocol analyzer like Ethereal (http://www.ethereal.com), you know how

time-consuming it can be. First you have to capture the data. Then you have to get

it onto the workstation that you're running the analyzer from, and then you have to

load the file into the analyzer itself. This creates a real problem because it increases

the time between performing an experiment and seeing the results, which makes

diagnosing and fixing network problems take much longer than they should.

One tool that solves this problem is rpcapd, a program included with WinPcap

(http://winpcap.polito.it). rpcapd is a daemon that monitors network interfaces in

promiscuous mode and sends the data that it collects back to a sniffer running on a

remote machine. You can run rpcapd either from the command line or as a service.

To start rpcapd, you will probably want to use the -n flag, which tells the daemon to

use null authentication. Using this option, you will be able to monitor the data

stream that rpcapd produces with any program that uses the WinPcap capture

interface. Otherwise, special code will have to be added to the program that you are

using that will allow it to authenticate itself with rpcapd. Since the -n option allows

anyone to connect to the daemon, you'll also want to use the -l option, which

allows you to specify a comma-separated list of hosts that can connect.

So, to run rpcapd from the command line, use a command similar to this:

C:\Program Files\WinPcap>rpcapd -l obsidian -n

Press CTRL + C to stop the server...

When run as a service, rpcapd uses the rpcapd.ini file for its configuration

information. This file resides in the same directory as the executable and is easily

created by running rpcapd with the -s switch, which instructs rpcapd to save its

configuration to the file you specify.

To create a pcap.ini, run a command like this:

C:\Program Files\WinPcap>rpcapd -l obsidian -n -s rpcapd.ini

Press CTRL + C to stop the server...

Now press Ctrl-C and see what the file contains:

C:\Program Files\WinPcap>type rpcapd.ini

Configuration file help.

http://www.ethereal.com/
http://winpcap.polito.it/

Hosts which are allowed to connect to this server (passive mode)

Format: PassiveClient = <name or address>

PassiveClient = obsidian

Hosts to which this server is trying to connect to (active mode)

Format: ActiveClient = <name or address>, <port | DEFAULT>

Permit NULL authentication: YES or NOT

NullAuthPermit = YES

To start the service, you can either use the Services control panel applet or use the

net command from the command line:

C:\Program Files\WinPcap>net start rpcapd

The Remote Packet Capture Protocol v.0 (experimental) service was started

successfully.

Now, to connect to the daemon you will need to find out the name that WinPcap

uses to refer to the network device you want to monitor. To do this, you can use

either WinDump, a command-line packet sniffer for Windows, or Ethereal. WinDump

is available from the same web site as WinPcap.

To get the device name with WinDump simply run it with the -D flag:

C:\Program Files\WinPcap>windump -D

1.\Device\NPF_{EE07A5AE-4D19-4118-97CE-3BF656CD718F} (NDIS 5.0 driver)

You can use Ethereal to obtain the device name by starting up Ethereal, going to

the Capture menu, and clicking Start. After you do that, a dialog will open that has

a list of the available adapters on the system, much like the one seen in Figure 5-4.

The device names in the list are those that you will later specify when connecting to

rpcapd from a remote system.

Figure 5-4. Ethereal Capture Options dialog

When you connect to a remote machine with your favorite sniffer, simply put the

device name for the interface you want to monitor prefixed by rpcap and the

hostname, like this:

rpcap://plunder/\Device\NPF_{EE07A5AE-4D19-4118-97CE-3BF656CD718F}

You can see an example of this with Ethereal in Figure 5-5.

Figure 5-5. Using a remote capture source with Ethereal

If you've set up everything correctly, you should see traffic streaming from the

remote end into your sniffer just as if it were being captured from a local interface.

Chapter 6. Secure Tunnels
Hacks #67-81

Section 67. Set Up IPsec Under Linux

Section 68. Set Up IPsec Under FreeBSD

Section 69. Set Up IPsec in OpenBSD

Section 70. PPTP Tunneling

Section 71. Opportunistic Encryption with FreeS/WAN

Section 72. Forward and Encrypt Traffic with SSH

Section 73. Quick Logins with SSH Client Keys

Section 74. Squid Proxy over SSH

Section 75. Use SSH as a SOCKS Proxy

Section 76. Encrypt and Tunnel Traffic with SSL

Section 77. Tunnel Connections Inside HTTP

Section 78. Tunnel with VTun and SSH

Section 79. Automatic vtund.conf Generator

Section 80. Create a Cross-Platform VPN

Section 81. Tunnel PPP

Hacks #67-81

Untrusted computer networks (such as the Internet and public wireless networks)

can be pretty hostile environments, but they can be tamed to some degree. By

leveraging encryption and some encapsulation tricks, you can build more

trustworthy networks on top of whatever network you choose, even if it is full of

miscreants trying to watch or otherwise manipulate your data. This chapter primarily

deals with how to set up secure, encrypted communications over networks that you

don't completely trust. Some of the hacks focus mainly on providing a secure and

encrypted transport mechanism, while others discuss how to create a virtual private

network (VPN).

In reading this chapter, you'll learn how to set up Ipsec-based encrypted links on

several operating systems, how to create virtual network interfaces that can be

tunneled through an encrypted connection, and how to forward TCP connections

over an encrypted channel. In addition, you'll also learn how to set up a cross-

platform VPN solution.

The beauty of most of these hacks is that after reading them, you can mix and

match transport-layer encryption solutions with whatever virtual network-oriented

approach that best meets your needs. In this way, you can safely build vast,

powerful private networks leveraging the public Internet as infrastructure. You can

use these techniques for anything from securely connecting two remote offices to

building a completely routed private network enterprise on top of the Internet.

Hack 67 Set Up IPsec Under Linux

Secure your traffic in Linux with FreeS/WAN.

The most popular way of configuring IPsec connections under Linux is to use the

FreeS/WAN (http://www.freeswan.org) package. FreeS/WAN is made up of two

components, KerneL IP Security (KLIPS) and pluto. KLIPS is the kernel-level code

that actually encrypts and decrypts the data; it also manages the Security Policy

Database (SPD). pluto is a user-land daemon that controls IKE negotiation.

The FreeS/WAN build process builds a new kernel and the required management

utilities. Download the latest FreeS/WAN source from the project's web site and

unpack the source tree in /usr/src. The documentation that comes with FreeS/WAN

is very extensive and can help you tailor the installation to suit your needs. The

kernel component can be either installed as a kernel-loadable module or statically

compiled directly into your kernel. In order to compile FreeS/WAN, the kernel source

must be installed on your machine. During the compilation process, the kernel

configuration utility will launch. This is normal. Compile FreeS/WAN using your

kernel configuration method of choice (such the menu-based or X11-based options).

Once the compilation is complete, install the kernel and user-land tools per the

FreeS/WAN documentation (typically a make install will suffice).

FreeS/WAN configuration is controlled by two configuration files: /etc/ipsec.conf and

/etc/ipsec.secrets. The examples given in this hack are very limited in scope and

apply only to a wireless network. The manpages for both files are quite informative

and useful for more complicated connection requirements. Another excellent

resource for more information is the book Building Linux Virtual Private Networks

(VPNs), by Oleg Kolesnikov and Brian Hatch (New Riders).

The ipsec.conf file breaks a VPN connection into right- and lefthand segments. This

difference is merely a logical division. The lefthand side can be either the internal or

external network; this allows the same configuration file to be used for both ends of

a VPN network-to-network tunnel. Unfortunately, in our case, there will be

differences between the client and gateway configurations.

The file is broken up into a configuration section (config) and a connection section

(conn). The config section specifies basic parameters for Ipsec, such as available

interfaces and specific directives to be passed to pluto. The conn section describes

the various connections that are available to the VPN. There is a global conn section

(conn %default) where you can specify values that are common to all connections,

such as the lifetime of a key and the method of key exchange.

The following ipsec.conf encrypts all information to the Internet with a VPN endpoint

on your gateway:

/etc/ipsec.conf

http://www.freeswan.org/

Set configuration options

config setup

 interfaces=%defaultroute

 # Debug parameters. Set either to "all" for more info

 klipsdebug=none

 plutodebug=none

 # standard Pluto configuration

 plutoload=%search

 plutostart=%search

 # make sure there are no PMTU Discovery problems

 overridemtu=1443

default configuration settings

conn %default

 # Be aggressive in rekeying attempts

 keyingtries=0

 # use IKE

 keyexchange=ike

 keylife=12h

 # use shared secrets

 authby=secret

setup the VPN to the Internet

conn wireless_connection1

 type=tunnel

 # left is the client side

 left=192.168.0.104

 # right is the internet gateway

 right=192.168.0.1

 rightsubnet=0.0.0.0/0

 # automatically start the connection

 auto=start

Now add the shared secret to ipsec.secrets:

192.168.0.104 192.168.0.1: PSK "supersecret"

That's it. Once your gateway is configured, try to ping your default gateway. pluto

will launch automatically and the connection should come up. If you have a problem

reaching the gateway, check the syslog messages on both the client and gateway.

The gateway configuration is largely the same as the client configuration. Given the

intelligence of the ipsec.conf file, very few changes need to be made. Since your

gateway has more than one Ethernet interface, you should hard-set the IPsec

configuration to use the right interface:

assume internal ethernet interface is eth0

interfaces="ipsec0=eth0"

You will then need to add a connection for each internal client. This can be handled

in different ways as your network scales, but the following configuration should work

for a reasonable number of clients:

...

conn wireless_connection2

 type=tunnel

 left=192.168.0.105

 right=192.168.0.1

 rightsubnet=0.0.0.0/0

 auto=start

conn wireless_connection3

 type=tunnel

 left=192.168.0.106

 right=192.168.0.1

 rightsubnet=0.0.0.0/0

 auto=start

...

Finally, add the shared secrets for all the clients to ipsec.secrets:

192.168.0.105 192.168.0.1: PSK "evenmoresecret"

192.168.0.106 192.168.0.1: PSK "notsosecret"

Clients should now be connecting to the Internet via a VPN tunnel to the gateway.

Check the log files or turn up the debug level if the tunnel does not come up.

Hack 68 Set Up IPsec Under FreeBSD

Use FreeBSD's built-in IPsec support to secure your traffic.

Using IPsec with IKE under FreeBSD requires enabling IPsec in the kernel and

installing a user-land program, racoon, to handle the IKE negotiations.

You'll need to make sure that your kernel has been compiled with the following

options:

options IPSEC #IP security

options IPSEC_ESP #IP security (crypto; define w/ IPSEC)

options IPSEC_DEBUG #debug for IP security

If it hasn't, you'll need to define them and then rebuild and install the kernel. After

you've done that, reboot to verify that it works.

racoon can be installed using the network section of the ports tree, or it can be

downloaded from ftp://ftp.kame.net/pub/kame/misc/. Install raccoon per the

instructions provided with the distribution.

On the client, you should first configure racoon. You will need to modify this

example racoon.conf to suit your needs:

path include "/usr/local/etc/racoon" ;

path pre_shared_key "/usr/local/etc/racoon/psk.txt" ;

remote anonymous

{

 exchange_mode aggressive,main;

 my_identifier user_fqdn "user1@domain.com";

 lifetime time 1 hour;

 initial_contact on;

 proposal {

 encryption_algorithm 3des;

ftp://ftp.kame.net/pub/kame/misc/

 hash_algorithm sha1;

 authentication_method pre_shared_key ;

 dh_group 2 ;

 }

}

sainfo anonymous

{

 pfs_group 1;

 lifetime time 30 min;

 encryption_algorithm 3des ;

 authentication_algorithm hmac_sha1;

 compression_algorithm deflate ;

}

In your firewall configuration, be sure you allow IKE connections to your machine

(UDP port 500). racoon needs to be configured to start at boot time. Save the

following script in /usr/local/etc/rc.d/racoon.sh:

#!/bin/sh

This script will start racoon in FreeBSD

case "$1" in

start)

start racoon

 echo -n 'starting racoon'

 /usr/local/sbin/racoon

 ;;

stop)

Delete the MAC address from the ARP table

 echo 'stopping racoon'

 killall racoon

 ;;

*)

Standard usage statement

 echo "Usage: `basename $0` {start|stop}" >&2

 ;;

esac

exit 0

Make sure the file is executable by performing this command:

chmod 755 /usr/local/etc/rc.d/racoon.sh

The /usr/local/etc/racoon/psk.txt file contains your credentials. This file must be

readable only by root. If the permissions are not set correctly, racoon will not

function. For a shared-secret IPsec connection, the file contains your identification

(in this case your email address) and the secret. For instance, you can set up a

psk.txt as the following:

user1@domain.com supersecret

Finally, you must set up the security policy, using the setkey utility to add entries to

the kernel SPD. Create the following client.spd that can be loaded by setkey. For this

setup, the station IP is 192.168.0.104 and the gateway is 192.168.0.1:

spdadd 192.168.0.104/32 0.0.0.0/0 any -P out ipsec \

esp/tunnel/192.168.0.104-192.168.0.1/require ;

spdadd 0.0.0.0/0 192.168.0.104/32 any -P in ipsec \

esp/tunnel/192.168.0.1-192.168.0.104/require ;

The first entry creates a security policy that sends all traffic to the VPN endpoint.

The second entry creates a security policy that allows all traffic back from the VPN

endpoint. Note that in this configuration the client is unable to talk to any hosts on

the local subnet, except for the VPN gateway. In a wireless network where the client

is a prime target for attack, this is probably a good thing for your workstation.

Load the SPD by running:

setkey -f client.spd

The gateway racoon.conf is the same as the file for the client side. This allows any

client to connect. The psk.txt file must contain all the identification and shared

secrets of all clients who may connect. For instance:

user1@domain.com supersecret

user2@domain.com evenmoresecret

user3@domain.com notsosecret

Again, make sure psk.txt is readable only by root. Start racoon and make sure there

are no errors. Finally, set up a gateway.spd that creates an SPD for each client. The

following example assumes your clients are at 192.168.0.10[4-6]:

spdadd 0.0.0.0/0 192.168.0.104/32 any -P out ipsec \

esp/tunnel/192.168.0.1-192.168.0.104/require ;

spdadd 192.168.0.104/32 0.0.0.0/0 any -P in ipsec \

esp/tunnel/192.168.0.104-192.168.0.1/require ;

spdadd 0.0.0.0/0 192.168.0.105/32 any -P in ipsec \

esp/tunnel/192.168.0.1-192.168.0.105/require ;

spdadd 192.168.0.105/32 0.0.0.0/0 any -P out \

ipsec esp/tunnel/192.168.0.105-192.168.0.1/require ;

spdadd 0.0.0.0/0 192.168.0.106/32 any -P in ipsec \

esp/tunnel/192.168.0.1-192.168.0.106/require ;

spdadd 192.168.0.106/32 0.0.0.0/0 any -P out ipsec \

esp/tunnel/192.168.0.106-192.168.0.1/require ;

Load the SPD by issuing setkey -f gateway.spd. Verify the SPD entries using the

spddump command in setkey. At this point, you should be able to ping a client from

the gateway. It may take a packet or two for the VPN negotiation to complete, but

the connection should be solid after that. If you are unable to ping, examine your

syslog output for errors and warnings.

Hack 69 Set Up IPsec in OpenBSD

Use IPsec the OpenBSD way.

Setting up IPsec in OpenBSD is fairly easy since it's compiled into the kernel that

ships with each release and is enabled by default. All that is left to do is to create

the appropriate /etc/isakmpd/isakmpd.conf and /etc/isakmpd/isakmpd.policy files

and start isakmpd (the IPsec key-management daemon). This may sound daunting,

but OpenBSD's outstanding documentation and example configuration files make it

easier.

First of all, you'll need to put something similar to this in your

/etc/isakmpd/isakmpd.policy:

KeyNote-Version: 2

Authorizer: "POLICY"

Licensees: "passphrase:mypassword"

Conditions: app_domain == "IPsec policy" &&

 esp_present == "yes" &&

 esp_enc_alg == "aes" &&

 esp_auth_alg == "hmac-sha" -> "true";

This sets a password to use for the IPsec connection.

Now you'll need to edit your /etc/isakmpd/isakmpd.conf to contain the following:

[General]

Listen-on= 192.168.1.1

Shared-SADB= Defined

[Phase 1]

Default= ISAKMP-peer-remote

#Default= ISAKMP-peer-remote-aggressive

[Phase 2]

Passive-Connections=IPsec-local-remote

[ISAKMP-peer-remote]

Phase= 1

Transport= udp

Local-address= 192.168.1.1

Configuration= Default-main-mode

Authentication= mypassword

[ISAKMP-peer-remote-aggressive]

Phase= 1

Transport= udp

Local-address= 192.168.1.1

Configuration= Default-aggressive-mode

Authentication= mypassword

[IPsec-local-remote]

Phase= 2

ISAKMP-peer= ISAKMP-peer-remote

Configuration= Default-quick-mode

Local-ID= Net-local

Remote-ID= Net-remote

[Net-remote]

ID-type= IPV4_ADDR

Address= 0.0.0.0

[Net-local]

ID-type= IPV4_ADDR

Address= 0.0.0.0

[Default-main-mode]

DOI= IPSEC

EXCHANGE_TYPE= ID_PROT

Transforms= 3DES-SHA

[Default-aggressive-mode]

DOI= IPSEC

EXCHANGE_TYPE= AGGRESSIVE

Transforms= 3DES-SHA-RSA

[Default-quick-mode]

DOI= IPSEC

EXCHANGE_TYPE= QUICK_MODE

Suites= QM-ESP-AES-SHA-PFS-SUITE

This configuration will allow anyone to connect with the password mypassword.

After you've edited the configuration files, you can start isakmpd by running this

command:

/sbin/isakmpd

To have isakmpd start up with each system boot, you should edit your

/etc/rc.conf.local (or create one if it doesn't exist) and put the following line in it:

isakmpd_flags=""

That should do it. As usual, check your system logs if your tunnel has trouble

connecting.

Hack 70 PPTP Tunneling

Set up quick and easy VPN access using the Point-to-Point Tunneling

Protocol.

The Point-to-Point Tunneling Protocol (PPTP) is basically a means to set up PPP

tunnels [Hack #81] automatically without needing to manually start a PPP daemon

on the remote machine. The main benefit of using PPTP is that both Windows and

Mac OS X natively support the creation of VPN connections, and both provide easy-

to-use GUIs for setting up the connections on the client side. Thus, you can provide

a VPN solution without much effort on your users' part.

To set up the server end, you can use PoPToP (http://www.poptop.org), an open

source PPTP server. You can get a very simple PPTP VPN going with minimal

effort�just download the source distribution and unpack it, then go into the

directory it created.

After you've done that, you can run this command to compile it:

$./configure && make

Then become root and run this command to install PoPToP:

make install

The PPTP daemon that this installs is called pptpd. Now you'll need to create a

configuration file for pptpd (i.e., /etc/pptpd.conf) and a pppd options file to use with

it.

Here's a suitable /etc/pptpd.conf to start out with:

option /etc/ppp/options.pptpd

localip 10.0.0.1

remoteip 10.0.0.2-100

This defines the IP address of the local end of the PPTP connection as 10.0.0.1 and

creates a pool of addresses to be dynamically allocated to clients (i.e., 10.0.0.2-

100). When you create your pptpd.conf file, you should use addresses from the

range used by your internal network. In addition, this configuration file tells pptpd

to set up the PPP interface using /etc/ppp/options.pptpd when it starts pppd.

Otherwise it would use the default of /etc/ppp/options, which probably isn't what

you want.

Now you'll need to create the aforementioned /etc/ppp/options.pptpd:

http://www.poptop.org/

lock

name pptpd

auth

These options basically tell pppd to use authentication (auth), and indicate what

entries in the /etc/ppp/chap-secrets file correspond to this instance of pppd (name

pptpd). So, to finish configuring authentication for pptpd, you'll need to create an

entry for each client in the /etc/ppp/chap-secrets file.

Here's a simple entry that allows someone with the username of andrew to connect

with the password mypassword from any remote IP address:

Secrets for authentication using CHAP

client server secret IP addresses

andrew pptpd mypassword *

The pptpd in the server field should be replaced with whatever you used in the name

directive in your /etc/ppp/options.pptpd file (if you didn't use pptpd). You can of

course limit the client to specific IP addresses by listing them.

Now that you have a basic setup for PoPToP , you can try it out by connecting to it

with a Windows machine. Go to your Network Connections folder and click "Create a

new connection" (this is for Windows XP; for Windows 2000, look for "Make New

Connection"). After you click this, a wizard dialog should appear that looks similar to

Figure 6-1.

Figure 6-1. Windows XP's New Connection Wizard

Click Next and then select the "Connect to the network at my workplace" radio

button, as shown in Figure 6-2.

Figure 6-2. Choosing the connection type

After you've done that, click Next again and then click the "Virtual Private Network

connection" radio button. You should now see something similar to Figure 6-3.

Figure 6-3. Selecting a VPN connection

Click Next and fill in a name for the newly created connection (e.g., PoPToP Test).

After you've done that, click Next once again and then enter the external IP address

of the server running pptpd. Now click Next and then Finish. You'll then be

presented with a login dialog similar to the one shown in Figure 6-4.

Figure 6-4. The connection login dialog

Before entering the username and password that you specified in the /etc/ppp/chap-

secrets file, you'll need to click Properties and locate the Security tab. After you've

done that, locate the "Require data encryption" checkbox and uncheck it. You should

now see something similar to Figure 6-5.

Figure 6-5. Changing the security properties

Now click OK, enter your login information, and then click Connect. In a few seconds

you should be connected to the PPTP server and will be allocated an IP address from

the pool that you specified. You should now test the connection by pinging the

remote end of the tunnel. With the PPTP connection active, all traffic leaving the

client side will be encrypted and sent to the PoPToP server. From there, traffic will

make its way to its ultimate destination.

Hack 71 Opportunistic Encryption with FreeS/WAN

Use FreeS/WAN and DNS TXT records to automatically create encrypted

connections between machines.

One particularly cool feature supported by FreeS/WAN [Hack #67] is opportunistic

encryption with other hosts running FreeS/WAN. This allows FreeS/WAN to

transparently encrypt traffic between all hosts that also support opportunistic

encryption. To do this, each host must have a public key generated to use with

FreeS/WAN. This key can then be stored in a DNS TXT record for that host. When a

host that is set up for opportunistic encryption wishes to initiate an encrypted

connection with another host, it will look up the host's public key through DNS and

use it to initiate the connection.

To begin, you'll need to generate a key for each host that you want to use this

feature with. You can do that by running this command:

ipsec newhostkey --output /tmp/`hostname`.key

Now you'll need to add the contents of the file that was created by that command to

/etc/ipsec.secrets:

cat /tmp/`hostname`.key >> /etc/ipsec.secrets

Next, you'll need to generate a TXT record to put into your DNS zone. You can do

this by running a command similar to this one:

ipsec showhostkey --txt @colossus.nnc

; RSA 2192 bits colossus Mon Jan 12 03:02:07 2004

 IN TXT "X-IPsec-Server(10)=@colossus.nnc" "

AQOR7rM7ZMBXu2ej/1vtzhNnMayZO1jwVHUyAIubTKpd/

PyTMogJBAdbb3I0xzGLaxadPGfiqPN2AQn76zLIsYFMJnoMbBTDY/2xK1X/

pWFRUUIHzJUqCBIijVWEMLNrIhdZbei1s5/

MgYIPaX20UL+yAdxV4RUU3JJQhV7adVzQqEmdaNUnCjZOvZG6m4zv6dGROrVEZmJFP54v6WhckYf

qSkQu3zkctfFgzJ/rMTB6Y38yObyBg2HuWZMtWI"

"8VrTQqi7IGGHK+mWk+wSoXer3iFD7JxRTzPOxLk6ihAJMibtKna3j7QP9ZHG0nm7NZ/

L5M9VpK+Rfe+evUUMUTfAtSdlpus2BIeXGWcPfz6rw305H9"

Now add this record to your zone and reload it. You can verify that DNS is working

correctly by running this command:

ipsec verify

Checking your system to see if IPsec got installed and started correctly

Version check and ipsec on-path [OK]

Checking for KLIPS support in kernel [OK]

Checking for RSA private key (/etc/ipsec.secrets) [OK]

Checking that pluto is running [OK]

DNS checks.

Looking for TXT in forward map: colossus [OK]

Does the machine have at least one non-private address [OK]

Now just restart FreeS/WAN by running a command similar to this:

/etc/init.d/ipsec restart

You should now be able to connect to any other host that supports opportunistic

encryption. But what if other hosts want to connect to you? To allow this, you'll need

to create a TXT record for your machine in your reverse DNS zone.

You can generate the record by running a command similar to this:

ipsec showhostkey --txt 192.168.0.64

; RSA 2192 bits colossus Tue Jan 13 03:02:07 2004

 IN TXT "X-IPsec-Server(10)=192.168.0.64" "

AQOR7rM7ZMBXu2ej/1vtzhNnMayZO1jwVHUyAIubTKpd/

PyTMogJBAdbb3I0xzGLaxadPGfiqPN2AQn76zLIsYFMJnoMbBTDY/2xK1X/

pWFRUUIHzJUqCBIijVWEMLNrIhdZbei1s5/

MgYIPaX20UL+yAdxV4RUU3JJQhV7adVzQqEmdaNUnCjZOvZG6m4zv6dGROrVEZmJFP54v6WhckYf

qSkQu3zkctfFgzJ/rMTB6Y38yObyBg2HuWZMtWI"

"8VrTQqi7IGGHK+mWk+wSoXer3iFD7JxRTzPOxLk6ihAJMibtKna3j7QP9ZHG0nm7NZ/

L5M9VpK+Rfe+evUUMUTfAtSdlpus2BIeXGWcPfz6rw305H9"

Add this record to the reverse zone for your subnet, and other machines will be able

to initiate opportunistic encryption with your machine. With opportunistic encryption

in use, all traffic between the hosts will be automatically encrypted, protecting all

services simultaneously. Pretty neat, huh?

Hack 72 Forward and Encrypt Traffic with SSH

Keep network traffic to arbitrary ports secure with ssh port forwarding.

In addition to providing remote shell access and command execution, OpenSSH can

also forward arbitrary TCP ports to the other end of your connection. This can be

extremely handy for protecting email, web, or any other traffic that you need to

keep private (at least, all the way to the other end of the tunnel).

ssh accomplishes local forwarding by binding to a local port, performing encryption,

sending the encrypted data to the remote end of the ssh connection, then

decrypting it and sending it to the remote host and port you specify. Start an ssh

tunnel with the -L switch (short for Local):

ssh -f -N -L 110:mailhost:110

user

@

mailhost

Naturally, substitute user with your username, and mailhost with your mail server's

name or IP address. Note that you will have to be root for this example, since you'll

be binding to a privileged port (110, the POP3 port). You should also disable any

locally running POP3 daemon (look in /etc/inetd.conf) or it will get in the way.

Now, to encrypt all of your POP3 traffic, configure your mail client to connect to

localhost port 110. It will happily talk to mailhost as if it were connected directly,

except that the entire conversation will be encrypted. Alternatively, you could tell

ssh to listen on a port above 1024 and eliminate the need to run it as root;

however, you would have to configure your email client to also use this port, rather

than port 110.

-f forks ssh into the background, and -N tells it not to actually run a command on

the remote end (just do the forwarding). One interesting feature is that when using

the -N switch you can still forward a port, even if you do not have a valid login shell

on the remote server. However, for this to work you'll need to set up public key

authentication with the account beforehand. If your ssh server supports it, you can

also try the -C switch to turn on compression. This can significantly reduce the time

it takes to download email. In addition, connections can be sped up even more by

using the blowfish cipher, which is generally faster than 3des (the default). To use

the blowfish cipher, type -c blowfish. You can specify as many -L lines as you like

when establishing the connection. To also forward outbound email traffic, try this:

ssh -f -N -L 110:mailhost:110 -L 25:mailhost:25

user

@

mailhost

Now set your outbound email host to localhost, and your email traffic will be

encrypted as far as mailhost. Generally, this is useful only if the email is bound for

an internal host, or if you can't trust your local network connection (as is the case

with most wireless networks). Obviously, once your email leaves mailhost, it will be

transmitted in the clear, unless you've encrypted the message with a tool such as

pgp or gpg.

If you're already logged into a remote host and need to forward a port quickly, try

this:

1. Press Enter.

2. Type ~C.

3. You should be at an ssh> prompt; enter the -L line as you would from the

command line.

For example:

rob@catlin:~$

rob@catlin:~$ ~C (it doesn't echo)

ssh> -L8080:localhost:80

Forwarding port.

Your current shell will then forward local port 8000 to catlin's port 80, as if you

had entered it in the first place.

You can also allow other (remote) clients to connect to your forwarded port, with

the -g switch. If you're logged into a remote gateway that serves as a NAT for a

private network, then use a command like this:

$ ssh -f -g -N -L8000:localhost:80 10.42.4.6

This will forward all connections from the gateway's port 8000 to internal host

10.42.4.6's port 80. If the gateway has a live Internet address, this will allow anyone

from the Net to connect to the web server on 10.42.4.6 as if it were running on port

8000 of the gateway.

One last point worth mentioning: the forwarded host doesn't have to be localhost; it

can be any host that the machine you're connecting to can access directly. For

example, to forward local port 5150 to a web server somewhere on an internal

network, try this:

$ ssh -f -N -L5150:intranet.insider.nocat:80 gateway.nocat.net

Assuming that you're running a private domain called .nocat, and that

gateway.nocat.net also has a connection to the private network, all traffic to port

5150 of remote will be obligingly forwarded to intranet.insider.nocat:80. The

address intranet.insider.nocat doesn't have to resolve in DNS to remote; it isn't

looked up until the connection is made to gateway.nocat.net, and then it's gateway

that does the lookup. To securely browse that site from remote, try connecting to

http://localhost:5150/ .

�Rob Flickenger (Linux Server Hacks)

Hack 73 Quick Logins with SSH Client Keys

Use SSH keys instead of password authentication to speed up and automate

logins.

When you're an admin on more than a few machines, being able to navigate quickly

to a shell on any given server is critical. Having to type ssh my.server.com (followed

by a password) is not only tedious, but it also breaks your concentration. Suddenly

having to shift from "where's the problem?" to "getting there" and then back to

"what's all this, then?" has led more than one admin to premature senility. It

promotes the digital equivalent of "Why did I come into this room, anyway?"

At any rate, more effort spent logging into a machine means less effort spent

solving problems. Recent versions of SSH offer a secure alternative to endlessly

entering a password: public key exchange.

For these examples, I assume that you're using OpenSSHv3.4p1 or later. To use

public keys with an SSH server, you'll first need to generate a public/private key

pair:

 $ ssh-keygen -t rsa

You can also use -t dsa for DSA keys, or -t rsa1 if you're using Protocol v1. (And

shame on you if you are using v1! Upgrade to v2 as soon as you can!) If at all

possible, use RSA keys�there are some problems with DSA keys, although they are

very rare.

After you enter the command, you should see something like this:

 Generating public/private rsa key pair.

 Enter file in which to save the key (/home/rob/.ssh/id_rsa):

Just press Enter there. It will then ask you for a passphrase; just press Enter twice

(but read the following section, Section 6.8.1). Here's what the results should look

like:

 Enter passphrase (empty for no passphrase):

 Enter same passphrase again:

 Your identification has been saved in /home/rob/.ssh/id_rsa.

 Your public key has been saved in /home/rob/.ssh/id_rsa.pub.

 The key fingerprint is:

 a6:5c:c3:eb:18:94:0b:06:a1:a6:29:58:fa:80:0a:bc rob@localhost

This created two files: ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub. To use this key pair on a

server, try this:

$ cat .ssh/id_rsa.pub | \

ssh

server

 "mkdir .ssh && chmod 0700 .ssh && cat > .ssh/authorized_keys2"

Of course, substitute your server name for server. Now, simply ssh server and it

should log you in automatically, without a password. And yes, it will use your shiny

new public key for scp, too.

If this didn't work for you, check your file permissions on both ~/.ssh/* and

server:~/.ssh/*. Your private key (id_rsa) should be mode 0600 (and be present

only on your local machine), and everything else should be mode 0655 or better. In

addition, your home directory on the server will need to be mode 755 or better. If it

is group writable, someone that belongs to the group that owns your home

directory could remove ~/.ssh, even if ~/.ssh is not writable by that group. This

might not seem obvious at first, but if they can do that, then they can create their

own ~/.ssh and an authorized_keys2 file, which could contain whatever keys they

wish. Luckily, the SSH daemon will catch this and deny public key authentication

until your permissions are fixed.

Security Concerns

Some consider the use of public keys a potential security risk. After all, one only has

to steal a copy of your private key to obtain access to your servers. While this is

true, the same is certainly true of passwords.

Ask yourself, how many times a day do you enter a password to gain shell access to

a machine (or scp a file)? How frequently is it the same password on many (or all) of

those machines? Have you ever used that password in a way that might be

questionable (on a web site, a personal machine that isn't quite up-to-date, or

possibly with an SSH client on a machine that you don't directly control)? If any of

these possibilities sound familiar, then consider that an SSH key in the same setting

would make it virtually impossible for an attacker to later gain unauthorized access

(providing, of course, that you keep your private key safe).

Another way to balance ease of use with security is to use a passphrase on your key,

but use the SSH agent to manage your keys for you. When you start the agent, it

will ask you for your passphrase once, and will cache it until you kill the agent.

Some people even go as far as to store their SSH keys on removable media (such as

a USB key chain), and take their keys with them wherever they go. However you

choose to use SSH keys, you'll almost certainly find that they're a very useful

alternative to traditional passwords.

�Rob Flickenger (Linux Server Hacks)

Hack 74 Squid Proxy over SSH

Secure your web traffic from prying eyes�and improve performance in the

process.

Squid (http://www.squid-cache.org) is normally used as an HTTP accelerator. It is a

large, well-managed, and full-featured caching HTTP proxy that is finding its way

into many commercial web platforms. Best of all, squid is open source and freely

available. Since it performs all of its magic on a single TCP port, it is an ideal

candidate for use with an SSH tunnel. This not only helps to secure your web

browser when using wireless networks, but also potentially makes your browser run

even faster.

First, choose a server on which to host your squid cache. Typically, this will be a

Linux or BSD machine on your local wired network�although squid also runs in

Windows, under Cygwin (http://www.cygwin.com/). You want to have a fast

connection to your cache, so choosing a squid cache at the other end of a dial-up

connection is probably a bad idea (unless you enjoy simulating what the Internet

was like in 1995). On a home network, this is typically the same machine you use as

a firewall or DNS server. Fortunately, squid isn't very demanding when it supports

only a few simultaneous users, so it can happily share a box that runs other services.

It is beyond the scope of this hack to include full squid installation instructions, but

configuration isn't especially difficult. Just be sure to check your access rules and set

a password for the management interface. If you have trouble getting it to run,

check out Jennifer Vesperman's "Installing and Configuring Squid"

(http://linux.oreillynet.com/pub/a/linux/2001/07/26/squid.html).

When squid is installed and running, it binds to TCP port 3128 by default. Once you

have it running, you should test it manually by setting your HTTP proxy to the

server. For example, suppose your server is running proxy.example.com. In Mozilla,

go to Preferences Advanced Proxies, as in Figure 6-6.

Figure 6-6. Testing your squid using the HTTP Proxy field in Mozilla

http://www.squid-cache.org/
http://www.cygwin.com/
http://linux.oreillynet.com/pub/a/linux/2001/07/26/squid.html

Enter "proxy.example.com" as the HTTP Proxy host and "3128" for the port. Click

OK, and try to load any web page. You should immediately see the page you

requested. If you see an Access Denied error, look over the http_access lines in your

squid.conf, and restart squid if necessary.

Once you are satisfied that you have a happy squid, then you need only forward

your connection to it over SSH. Set up a local listener on port 3128, forwarding to

proxy.example.com:3128 like this:

rob@caligula:~$ ssh -L 3128:localhost:3128 proxy.example.com -f -N

This will set up an SSH tunnel and fork into the background automatically. Next,

change the HTTP Proxy host in your browser to localhost, and reload your page. As

long as your SSH tunnel is running, your web traffic will be encrypted all the way to

proxy.example.com, where it is decrypted and sent on to the Internet.

The biggest advantage of this technique (compared to using the SSH SOCKS 4

proxy [Hack #75]) is that virtually all browsers support the use of HTTP proxies,

while not every browser supports SOCKS 4. Also, if you are using Mac OS X, there is

support for HTTP proxies built into the OS itself. This means that every properly

written application will use your proxy settings transparently.

Note that HTTP proxies have the same difficulties with DNS as a SOCKS 4 proxy, so

keep those points in mind when using your proxy. Typically, your squid proxy is used

from a local network, so you don't usually run into the DNS schizophrenia issue. But

your squid can theoretically run anywhere (even behind a remote firewall), so be

sure to check out the notes on DNS in [Hack #75] .

Running squid takes a little bit of preparation, but it can both secure and accelerate

your web traffic when using wireless. Of course, squid will support as many

simultaneous wireless users as you care to throw at it, so be sure to set it up for all

of your regular wireless users, and keep your web traffic private

�Rob Flickenger (Wireless Hacks)

Hack 75 Use SSH as a SOCKS Proxy

Protect your web traffic using the basic VPN functionality built into SSH

itself.

In the search for the perfect way to secure their wireless networks, many people

overlook one of the most useful features of SSH: the -D switch. This simple little

switch is buried within the SSH manpage, toward the bottom. Here is a direct quote

from the manpage:

-D port

Specifies a local "dynamic" application-level port forwarding. This works by

allocating a socket to listen to port on the local side, and whenever a

connection is made to this port, the connection is forwarded over the secure

channel, and the application protocol is then used to determine where to

connect to from the remote machine. Currently the SOCKS 4 protocol is

supported, and SSH will act as a SOCKS 4 server. Only root can forward

privileged ports. Dynamic port forwardings can also be specified in the

configuration file.

This turns out to be an insanely useful feature if you have software that is capable of

using a SOCKS 4 proxy. It effectively gives you an instant encrypted proxy server to

any machine that you can SSH to. It does this without the need for further

software, either on your machine or on the remote server.

Just as with SSH port forwarding [Hack #72], the -D switch binds to the specified

local port and encrypts any traffic to that port, sends it down the tunnel, and

decrypts it on the other side. For example, to set up a SOCKS 4 proxy from local

port 8080 to remote, type the following:

rob@caligula:~$ ssh -D 8080

remote

That's all there is to it. Now you simply specify localhost:8080 as the SOCKS 4

proxy in your application, and all connections made by that application will be sent

down the encrypted tunnel. For example, to set your SOCKS proxy in Mozilla, go to

Preferences Advanced Proxies, as shown in Figure 6-7.

Figure 6-7. Proxy settings in Mozilla.

Select "Manual proxy configuration", then type in localhost as the SOCKS host.

Enter the port number that you passed to the -D switch, and be sure to check the

SOCKSv4 button.

Click OK, and you're finished. All of the traffic that Mozilla generates is now

encrypted and appears to originate from the remote machine that you logged into

with SSH. Anyone listening to your wireless traffic now sees a large volume of

encrypted SSH traffic, but your actual data is well protected.

One important point to keep in mind is that SOCKS 4 has no native support for DNS

traffic. This has two important side effects to keep in mind when using it to secure

your wireless transmissions.

First of all, DNS lookups are still sent in the clear. This means that anyone listening

in can still see the names of sites that you browse to, although the actual URLs and

data are obscured. This is rarely a security risk, but it is worth keeping in mind.

Second, you are still using a local DNS server, but your traffic originates from the

remote end of the proxy. This can have interesting (and undesirable) side effects

when attempting to access private network resources.

To illustrate the subtle problems that this can cause, consider a typical corporate

network with a web server called intranet.example.com. This web server uses the

private address 192.168.1.10 but is accessible from the Internet through the use of

a forwarding firewall. The DNS server for intranet.example.com normally responds

with different IP addresses depending on where the request comes from, perhaps

using the views functionality in BIND 9. When coming from the Internet, you would

normally access intranet.example.com with the IP address 208.201.239.36, which is

actually the IP address of the outside of the corporate firewall.

Now suppose that you are using the SOCKS proxy example just shown, and remote

is actually a machine behind the corporate firewall. Your local DNS server returns

208.201.239.36 as the IP address for intranet.mybusiness.com (since you are

looking up the name from outside the firewall). But the HTTP request actually comes

from remote and attempts to go to 208.201.239.36. Many times, this is forbidden

by the firewall rules, as internal users are supposed to access the intranet by its

internal IP address, 192.168.1.10. How can you work around this DNS

schizophrenia?

One simple method to avoid this trouble is to make use of a local hosts file on your

machine. Add an entry like this to /etc/hosts (or the equivalent on your operating

system):

192.168.1.10 intranet.example.com

Likewise, you can list any number of hosts that are reachable only from the inside of

your corporate firewall. When you attempt to browse to one of those sites, the local

hosts file is consulted before DNS, so the private IP address is used. Since this

request is actually made from remote, it finds its way to the internal server with no

trouble. Likewise, responses arrive back at the SOCKS proxy on remote, are

encrypted and forwarded over your SSH tunnel, and appear in your browser as if

they came in from the Internet.

SOCKS 5 support is planned for an upcoming version of SSH, which will also make

tunneled DNS resolution possible. This is particularly exciting for Mac OS X users, as

there is support in the OS for SOCKS 5 proxies. Once SSH supports SOCKS 5, every

native OS X application will automatically be able to take advantage of encrypting

SSH socks proxies. In the meantime, we'll just have to settle for encrypted HTTP

proxies [Hack #74] .

�Rob Flickenger (Wireless Hacks)

Hack 76 Encrypt and Tunnel Traffic with SSL

Use stunnel to add SSL encryption to any network service.

Stunnel (http://www.stunnel.org) is a powerful and flexible program that, using

SSL, encrypts traffic to and from any TCP port in several different ways. It can

tunnel connections, much like SSH can, by providing a local port to connect to. It

will encrypt the traffic sent to this port, forward it to a remote system, decrypt the

traffic, and finally forward it to a local port on that system. Stunnel can also provide

transparent SSL support for inetd-compatible services.

To install stunnel, simply run ./configure from the directory that was created when

you unpacked the archive file that you downloaded. Since stunnel requires OpenSSL

(http://www.openssl.org), download and install that first if it is not already installed.

If you would like to compile stunnel with TCP wrappers support or install OpenSSL

in a nonstandard location, you'll probably want to make use of the --with-tcp-

wrappers or --with-ssl command-line options for configure.

For example, this will configure stunnel to include TCP wrapper support, using the

OpenSSL installation under /opt/:

$./configure --with-tcp-wrappers --with-ssl=/opt/openssl

After the script runs, you'll need to run make to actually compile stunnel. You will

then be prompted for information to create a self-signed certificate. Not only will

this certificate be self-signed, but it is valid for only one year. If this is not what you

want, you should create your own certificate and Certificate Authority [Hack #45] .

With the older 3.x versions of stunnel, it was possible to configure all options from

the command line. The newer 4.x versions make use of a configuration file,

stunnel.conf. A sample configuration file can usually be found in either

/etc/stunnel/stunnel.conf-sample or /usr/local/etc/stunnel/stunnel.conf-sample.

Let's take a look at the basic form of a configuration file used to forward a local port

to a remote port with stunnel.

The client side:

pid =

client = yes

[<server port>]

accept = <forwarded port>

http://www.stunnel.org/
http://www.openssl.org/

connect = <remote address>:<server port>

The server side:

cert = /etc/stunnel/stunnel.pem

pid =

client = no

[<forwarded port>]

accept = <server port>

connect = <forwarded port>

You can use the default configuration file or choose another file. If you want to use

the default configuration file, you can start stunnel without any arguments.

Otherwise, you can specify the configuration file as the first argument to stunnel.

With this setup, a program will be able to connect to <forwarded port> on the client

side. Then stunnel will encrypt the traffic it receives on this port and send it to

<server port> on the remote system specified by <remote address>. On the remote

system, stunnel will decrypt the traffic that it receives on this port and forward it to

the program that is listening on <forwarded port> on the remote system.

The equivalent ssh port-forwarding command would be:

ssh -f -N -L <forwarded port>:<remote address>:<forwarded port> \

<remote address>

If you wish to specify a PID file, you can set the pid variable to whatever filename

you wish. Leaving the pid variable in the configuration file without giving it a value

causes stunnel to not create a PID file. However, if you leave out the pid variable

completely, stunnel will try to create either /var/run/stunnel.pid or

/usr/local/var/run/stunnel.pid (i.e., $prefix/var/run/stunnel.pid), depending on how

you configured it at compile time.

In addition to providing SSH-style port forwarding, stunnel can also be used to add

SSL capabilities to inetd-style services. This is perfect for adding SSL capabilities to

email or other services that don't have native SSL functionality.

Here's an inetd.conf entry for SWAT, Samba's web-based configuration tool:

swat stream tcp nowait.400 root /usr/local/samba/bin/swat swat

To add SSL support to SWAT, you first need to create a configuration file for stunnel

to use. Let's call it swat.conf and put it in /etc/stunnel:

cert = /etc/stunnel/swat.pem

exec = /usr/local/samba/bin/swat

execargs = swat

Now modify the entry in inetd.conf to look like this:

swat stream tcp nowait.400 root /usr/sbin/stunnel stunnel \

/etc/stunnel/swat.conf

Now you can access SWAT securely with your favorite SSL-enabled web browser.

Alternatively, you can do away with inetd altogether and have stunnel listen for

connections from clients and then spawn the service process itself. To do this, create

a configuration file with contents similar to this:

cert = /etc/stunnel/swat.pem

[swat]

accept = 901

exec = /usr/local/samba/bin/swat

execargs = swat

Then start stunnel with the path to the configuration file:

stunnel /etc/stunnel/swat.conf

In addition, you can start it at boot time by putting the previous command in your

startup scripts (i.e., /etc/rc.local).

Stunnel is a very powerful tool: not only can it forward connections through an

encrypted tunnel, but it can also be used to add SSL capabilities to common

services. This is especially nice when clients with SSL support for these services

already exist. Thus, you can use stunnel solely on the server side, enabling

encryption for the service with no need for the client to install any extra software.

Hack 77 Tunnel Connections Inside HTTP

Break through draconian firewalls by using httptunnel.

If you've ever been on the road and found yourself in a place where the only

connectivity to the outside world is through an incredibly restrictive firewall, you

probably know the pain of trying to do anything other than sending and receiving

email or basic web browsing.

Here's where httptunnel (http://www.nocrew.org/software/httptunnel.html) comes to

the rescue. Httptunnel is a program that allows you to tunnel arbitrary connections

through the HTTP protocol to a remote host. This is especially useful in situations

like the one mentioned earlier, when web access is allowed but all other services are

denied. Of course, you could just use any kind of tunneling software and configure it

to use port 80, but where would that leave you if the firewall is actually a web proxy?

This is roughly the same as an application-layer firewall, and will accept only valid

HTTP requests. Fortunately, httptunnel can deal with these as well.

To compile httptunnel, download the tarball and run configure and make:

$ tar xfz httptunnel-3.3.tar.gz

$ cd httptunnel-3.3

$./configure && make

Install it by running make install, which will install everything under /usr/local. If

you want to install it somewhere else, you can use the standard --prefix= option to

the configure script.

The httptunnel client program is called htc, and the server is hts. As with ssh [Hack

#76], httptunnel can be used to listen on a local TCP port for connections, forward

the traffic that it receives on this port to a remote server, and then decrypt and

forward the traffic to another port outside of the tunnel.

Try tunneling an SSH connection over HTTP. On the server, run a command like this:

hts -F localhost:22 80

Now, run a command like this on the client:

htc -F 2222 colossus:80

In this case, colossus is the remote server, and htc is listening on port 2222. You

can use the standard port 22 if you aren't running a local sshd. If you're curious, you

can verify that htc is now listening on port 2222 by using lsof:

http://www.nocrew.org/software/httptunnel.html

/usr/sbin/lsof -i | grep htc

htc 2323 root 6u IPv4 0x02358a30 0t0 TCP *:2222 (LISTEN)

And now to try out the tunnel:

[andrew@kryten andrew]$ ssh -p 2222 localhost

andrew@localhost's password:

[andrew@colossus andrew]$

You can also forward connections to machines other than the one that you're

running hts on. To do this, just replace the localhost in the hts command with

whatever remote host you wish to forward to.

For instance, to forward the connection to oceana.ingsoc.net instead of colossus,

you could run this command:

hts -F oceana.ingsoc.net:22 80

If you're curious to see what an SSH connection tunneled through the HTTP protocol

looks like, you can take a look at it with a packet sniffer. Here's the initial portion of

the TCP stream that is sent to the httptunnel server by the client:

POST /index.html?crap=1071364879 HTTP/1.1

Host: linux-vm:80

Content-Length: 102400

Connection: close

SSH-2.0-OpenSSH_3.6.1p1+CAN-2003-0693

If your tunnel needs to go through a web proxy, no additional configuration is

needed as long as the proxy is transparent and does not require authentication. If

the proxy is not transparent, you can specify it with the -P switch. Additionally, if you

do need to authenticate with the proxy, you'll want to make use of the -A or --

proxy-authorization options, which allow you to specify a username and password

to authenticate with.

Here's how to use these options:

htc -P myproxy:8000 -A andrew:mypassword -F 22 colossus:80

If the port that the proxy listens on is the standard web proxy port (8080), then you

can just specify the proxy by using its IP address or hostname.

Hack 78 Tunnel with VTun and SSH

Connect two networks using VTun and a single SSH connection.

VTun is a user-space tunnel server, allowing entire networks to be tunneled to each

other using the tun universal tunnel kernel driver. An encrypted tunnel such as VTun

allows roaming wireless clients to secure all of their IP traffic using strong

encryption. It currently runs under Linux, BSD, and Mac OS X. The examples in this

hack assume that you are using Linux.

The procedure described next will allow a host with a private IP address (10.42.4.6)

to bring up a new tunnel interface with a real, live, routed IP address

(208.201.239.33) that works as expected, as if the private network weren't even

there. Do this by bringing up the tunnel, dropping the default route, and then

adding a new default route via the other end of the tunnel.

To begin with, here is the (pretunneled) network configuration:

root@client:~# ifconfig eth2

eth2 Link encap:Ethernet HWaddr 00:02:2D:2A:27:EA

inet addr:10.42.3.2 Bcast:10.42.3.63 Mask:255.255.255.192

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:662 errors:0 dropped:0 overruns:0 frame:0

TX packets:733 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:105616 (103.1 Kb) TX bytes:74259 (72.5 Kb)

Interrupt:3 Base address:0x100

root@client:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.42.3.0 * 255.255.255.192 U 0 0 0 eth2

loopback * 255.0.0.0 U 0 0 0 lo

default 10.42.3.1 0.0.0.0 UG 0 0 0 eth2

As you can see, the local network is 10.42.3.0/26, the IP is 10.42.3.2, and the

default gateway is 10.42.3.1. This gateway provides network address translation

(NAT) to the Internet. Here's what the path looks like to yahoo.com:

root@client:~# traceroute -n yahoo.com

traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets

1 10.42.3.1 2.848 ms 2.304 ms 2.915 ms

2 209.204.179.1 16.654 ms 16.052 ms 19.224 ms

3 208.201.224.194 20.112 ms 20.863 ms 18.238 ms

4 208.201.224.5 213.466 ms 338.259 ms 357.7 ms

5 206.24.221.217 20.743 ms 23.504 ms 24.192 ms

6 206.24.210.62 22.379 ms 30.948 ms 54.475 ms

7 206.24.226.104 94.263 ms 94.192 ms 91.825 ms

8 206.24.238.61 97.107 ms 91.005 ms 91.133 ms

9 206.24.238.26 95.443 ms 98.846 ms 100.055 ms

10 216.109.66.7 92.133 ms 97.419 ms 94.22 ms

11 216.33.98.19 99.491 ms 94.661 ms 100.002 ms

12 216.35.210.126 97.945 ms 93.608 ms 95.347 ms

13 64.58.77.41 98.607 ms 99.588 ms 97.816 ms

In this example, we are connecting to a tunnel server on the Internet at

208.201.239.5. It has two spare live IP addresses (208.201.239.32 and

208.201.239.33) to be used for tunneling. We'll refer to that machine as the server,

and our local machine as the client.

Now let's get the tunnel running. To begin with, load the tun driver on both

machines:

modprobe tun

It is worth noting that the tun driver will sometimes fail if the server and client

kernel versions don't match. For best results, use a recent kernel (and the same

version, e.g., 2.4.20) on both machines.

On the server machine, save this file to /usr/local/etc/vtund.conf:

options {

 port 5000;

 ifconfig /sbin/ifconfig;

 route /sbin/route;

 syslog auth;

}

default {

 compress no;

 speed 0;

}

home {

 type tun;

 proto tcp;

 stat yes;

 keepalive yes;

 pass sHHH; # Password is REQUIRED.

 up {

 ifconfig "%% 208.201.239.32 pointopoint 208.201.239.33";

 program /sbin/arp "-Ds 208.201.239.33 %% pub";

 program /sbin/arp "-Ds 208.201.239.33 eth0 pub";

 route "add -net 10.42.0.0/16 gw 208.201.239.33";

 };

 down {

 program /sbin/arp "-d 208.201.239.33 -i %%";

 program /sbin/arp "-d 208.201.239.33 -i eth0";

 route "del -net 10.42.0.0/16 gw 208.201.239.33";

 };

}

Launch the vtund server like so:

root@server:~# vtund -s

Now you'll need a vtund.conf file for the client side. Try this one, again in

/usr/local/etc/vtund.conf:

options {

 port 5000;

 ifconfig /sbin/ifconfig;

 route /sbin/route;

}

default {

 compress no;

 speed 0;

}

home {

 type tun;

 proto tcp;

 keepalive yes;

 pass sHHH; # Password is REQUIRED.

 up {

 ifconfig "%% 208.201.239.33 pointopoint 208.201.239.32 arp";

 route "add 208.201.239.5 gw 10.42.3.1";

 route "del default";

 route "add default gw 208.201.239.32";

 };

 down {

 route "del default";

 route "del 208.201.239.5 gw 10.42.3.1";

 route "add default gw 10.42.3.1";

 };

}

Finally, run this command on the client:

root@client:~# vtund -p home server

Presto! Not only do you have a tunnel up between client and server, but also a new

default route via the other end of the tunnel. Take a look at what happens when we

traceroute to yahoo.com with the tunnel in place:

root@client:~# traceroute -n yahoo.com

traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets

1 208.201.239.32 24.368 ms 28.019 ms 19.114 ms

2 208.201.239.1 21.677 ms 22.644 ms 23.489 ms

3 208.201.224.194 20.41 ms 22.997 ms 23.788 ms

4 208.201.224.5 26.496 ms 23.8 ms 25.752 ms

5 206.24.221.217 26.174 ms 28.077 ms 26.344 ms

6 206.24.210.62 26.484 ms 27.851 ms 25.015 ms

7 206.24.226.103 104.22 ms 114.278 ms 108.575 ms

8 206.24.238.57 99.978 ms 99.028 ms 100.976 ms

9 206.24.238.26 103.749 ms 101.416 ms 101.09 ms

10 216.109.66.132 102.426 ms 104.222 ms 98.675 ms

11 216.33.98.19 99.985 ms 99.618 ms 103.827 ms

12 216.35.210.126 104.075 ms 103.247 ms 106.398 ms

13 64.58.77.41 107.219 ms 106.285 ms 101.169 ms

This means that any server processes running on the client are now fully available to

the Internet, at IP address 208.201.239.33. This has all happened without making a

single change (e.g., port forwarding) on the gateway 10.42.3.1.

Here's what the new tunnel interface looks like on the client:

root@client:~# ifconfig tun0

tun0 Link encap:Point-to-Point Protocol

inet addr:208.201.239.33 P-t-P:208.201.239.32 Mask:255.255.255.255

UP POINTOPOINT RUNNING MULTICAST MTU:1500 Metric:1

RX packets:39 errors:0 dropped:0 overruns:0 frame:0

TX packets:39 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:10

RX bytes:2220 (2.1 Kb) TX bytes:1560 (1.5 Kb)

And here's the updated routing table (note that we still need to keep a host route to

the tunnel server's IP address via our old default gateway; otherwise, the tunnel

traffic can't get out):

root@client:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

208.201.239.5 10.42.3.1 255.255.255.255 UGH 0 0 0 eth2

208.201.239.32 * 255.255.255.255 UH 0 0 0 tun0

10.42.3.0 * 255.255.255.192 U 0 0 0 eth2

10.42.4.0 * 255.255.255.192 U 0 0 0 eth0

loopback * 255.0.0.0 U 0 0 0 lo

default 208.201.239.32 0.0.0.0 UG 0 0 0 tun0

To bring down the tunnel, simply kill the vtund process on client. This restores all

network settings back to their original states.

This method works fine if you trust VTun to use strong encryption and to be free

from remote exploits. Personally, I don't think you can be too paranoid when it

comes to machines connected to the Internet. To use VTun over SSH (and therefore

rely on the strong authentication and encryption that SSH provides), simply forward

port 5000 on the client to the same port on the server. Give this a try:

root@client:~# ssh -f -N -c blowfish -C -L5000:localhost:5000 server

root@client:~# vtund -p home localhost

root@client:~# traceroute -n yahoo.com

traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets

1 208.201.239.32 24.715 ms 31.713 ms 29.519 ms

2 208.201.239.1 28.389 ms 36.247 ms 28.879 ms

3 208.201.224.194 48.777 ms 28.602 ms 44.024 ms

4 208.201.224.5 38.788 ms 35.608 ms 35.72 ms

5 206.24.221.217 37.729 ms 38.821 ms 43.489 ms

6 206.24.210.62 39.577 ms 43.784 ms 34.711 ms

7 206.24.226.103 110.761 ms 111.246 ms 117.15 ms

8 206.24.238.57 112.569 ms 113.2 ms 111.773 ms

9 206.24.238.26 111.466 ms 123.051 ms 118.58 ms

10 216.109.66.132 113.79 ms 119.143 ms 109.934 ms

11 216.33.98.19 111.948 ms 117.959 ms 122.269 ms

12 216.35.210.126 113.472 ms 111.129 ms 118.079 ms

13 64.58.77.41 110.923 ms 110.733 ms 115.22 ms

In order to discourage connections to vtund on port 5000 of the server, add a net

filter rule to drop connections from the outside world:

root@server:~# iptables -A INPUT -t filter -i eth0 \

 -p tcp --dport 5000 -j DROP

This allows local connections to get through (since they use loopback), and therefore

requires an SSH tunnel to the server before accepting a connection.

As you can see, this can be an extremely handy tool to have around. In addition to

giving live IP addresses to machines behind a NAT, you can effectively connect any

two networks if you can obtain a single SSH connection between them (originating

from either direction).

If your head is swimming from this vtund.conf configuration or you're feeling lazy

and don't want to figure out what to change when setting up your own client's

vtund.conf file, take a look at the automatic vtund.conf generator [Hack #79] .

�Rob Flickenger (Linux Server Hacks)

Hack 79 Automatic vtund.conf Generator

Generate a vtund.conf on the fly to match changing network conditions.

If you've just come from [Hack #78], then the following script will generate a working

vtund.conf for the client side automatically.

If you haven't read the previous hack (or if you've never used VTun), then go back and read it

before attempting to grok this bit of Perl. Essentially, it attempts to take the guesswork out of

changing the routing table around on the client side by auto-detecting the default gateway and

building the vtund.conf accordingly.

To configure the script, take a look at the Configuration section. The first line of $Config

contains the addresses, port, and secret that we used in the VTun hack. The second line simply

serves as an example of how to add more.

To run the script, either call it as vtundconf home or set $TunnelName to the one you want to

default to. Better yet, make symlinks to the script, like this:

ln -s vtundconf home

ln -s vtundconf tunnel2

Then you can generate the appropriate vtund.conf by calling the symlink directly:

vtundconf home > /usr/local/etc/vtund.conf

You might be wondering why anyone would go to all of the trouble to make a vtund.conf-

generating script in the first place. Once you get the settings right, you'll never have to change

them, right?

Well, usually that is the case. But consider the case of a Linux laptop that uses many different

networks in the course of the day (say, a DSL line at home, Ethernet at work, and maybe a

wireless connection at the local coffee shop). By running vtundconf once at each location, you

will have a working configuration instantly, even if your IP and gateway is assigned by DHCP.

This makes it easy to get up and running quickly with a live, routable IP address, regardless of

the local network topology.

Incidentally, VTun currently runs well on Linux, FreeBSD, Mac OS X, Solaris, and others.

Save this file as vtundconf, and run it each time you use a new wireless network to generate an

appropriate vtund.conf for you on the fly:

#!/usr/bin/perl -w

vtund wrapper in need of a better name.

(c)2002 Schuyler Erle & Rob Flickenger

################ CONFIGURATION

If TunnelName is blank, the wrapper will look at @ARGV or $0.

Config is TunnelName, LocalIP, RemoteIP, TunnelHost, TunnelPort, Secret

my $TunnelName = "";

my $Config = q{

 home 208.201.239.33 208.201.239.32 208.201.239.5 5000 sHHH

 tunnel2 10.0.1.100 10.0.1.1 192.168.1.4 6001 foobar

};

################ MAIN PROGRAM BEGINS HERE

use POSIX 'tmpnam';

use IO::File;

use File::Basename;

use strict;

Where to find things...

$ENV{PATH} = "/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/[RETURN]sbin";

my $IP_Match = '((?:\d{1,3}\.){3}\d{1,3})'; # match xxx.xxx.xxx.xxx

my $Ifconfig = "ifconfig -a";

my $Netstat = "netstat -rn";

my $Vtund = "/bin/echo";

my $Debug = 1;

Load the template from the data section.

my $template = join("",);

Open a temp file -- adapted from Perl Cookbook, 1st Ed., sec. 7.5.

my ($file, $name) = ("", "");

$name = tmpnam()

 until $file = IO::File->new($name, O_RDWR|O_CREAT|O_EXCL);

END { unlink($name) or warn "Can't remove temporary file $name!\n"; }

If no TunnelName is specified, use the first thing on the command line,

or if there isn't one, the basename of the script.

This allows users to symlink different tunnel names to the same script.

$TunnelName ||= shift(@ARGV) || basename($0);

die "Can't determine tunnel config to use!\n" unless $TunnelName;

Parse config.

my ($LocalIP, $RemoteIP, $TunnelHost, $TunnelPort, $Secret);

for (split(/\r*\n+/, $Config)) {

 my ($conf, @vars) = grep($_ ne "", split(/\s+/));

 next if not $conf or $conf =~ /^\s*#/o; # skip blank lines, comments

 if ($conf eq $TunnelName) {

 ($LocalIP, $RemoteIP, $TunnelHost, $TunnelPort, $Secret) = @vars;

 last;

 }

}

die "Can't determine configuration for TunnelName '$TunnelName'!\n"

 unless $RemoteIP and $TunnelHost and $TunnelPort;

Find the default gateway.

my ($GatewayIP, $ExternalDevice);

for (qx{ $Netstat }) {

 # In both Linux and BSD, the gateway is the next thing on the line,

 # and the interface is the last.

 #

 if (/^(?:0.0.0.0|default)\s+(\S+)\s+.*?(\S+)\s*$/o) {

 $GatewayIP = $1;

 $ExternalDevice = $2;

 last;

 }

}

die "Can't determine default gateway!\n" unless $GatewayIP and $ExternalDevice;

Figure out the LocalIP and LocalNetwork.

my ($LocalNetwork);

my ($iface, $addr, $up, $network, $mask) = "";

sub compute_netmask {

 ($addr, $mask) = @_;

 # We have to mask $addr with $mask because linux /sbin/route

 # complains if the network address doesn't match the netmask.

 #

 my @ip = split(/\./, $addr);

 my @mask = split(/\./, $mask);

 $ip[$_] = ($ip[$_] + 0) & ($mask[$_] + 0) for (0..$#ip);

 $addr = join(".", @ip);

 return $addr;

}

for (qx{ $Ifconfig }) {

 last unless defined $_;

 # If we got a new device, stash the previous one (if any).

 if (/^([^\s:]+)/o) {

 if ($iface eq $ExternalDevice and $network and $up) {

 $LocalNetwork = $network;

 last;

 }

 $iface = $1;

 $up = 0;

 }

 # Get the network mask for the current interface.

 if (/addr:$IP_Match.*?mask:$IP_Match/io) {

 # Linux style ifconfig.

 compute_netmask($1, $2);

 $network = "$addr netmask $mask";

 } elsif (/inet $IP_Match.*?mask 0x([a-f0-9]{8})/io) {

 # BSD style ifconfig.

 ($addr, $mask) = ($1, $2);

 $mask = join(".", map(hex $_, $mask =~ /(..)/gs));

 compute_netmask($addr, $mask);

 $network = "$addr/$mask";

 }

 # Ignore interfaces that are loopback devices or aren't up.

 $iface = "" if /\bLOOPBACK\b/o;

 $up++ if /\bUP\b/o;

}

die "Can't determine local IP address!\n" unless $LocalIP and $LocalNetwork;

Set OS dependent variables.

my ($GW, $NET, $PTP);

if ($^O eq "linux") {

 $GW = "gw"; $PTP = "pointopoint"; $NET = "-net";

} else {

 $GW = $PTP = $NET = "";

}

Parse the config template.

$template =~ s/(\$\w+)/$1/gee;

Write the temp file and execute vtund.

if ($Debug) {

 print $template;

} else {

 print $file $template;

 close $file;

 system("$Vtund $name");

}

_ _DATA_ _

options {

 port $TunnelPort;

 ifconfig /sbin/ifconfig;

 route /sbin/route;

}

default {

 compress no;

 speed 0;

}

'mytunnel' should really be `basename $0` or some such

for automagic config selection

$TunnelName {

 type tun;

 proto tcp;

 keepalive yes;

 pass $Secret;

 up {

 ifconfig "%% $LocalIP $PTP $RemoteIP arp";

 route "add $TunnelHost $GW $GatewayIP";

 route "delete default";

 route "add default $GW $RemoteIP";

 route "add $NET $LocalNetwork $GW $GatewayIP";

 };

 down {

 ifconfig "%% down";

 route "delete default";

 route "delete $TunnelHost $GW $GatewayIP";

 route "delete $NET $LocalNetwork";

 route "add default $GW $GatewayIP";

 };

}

�Rob Flickenger (Linux Server Hacks)

Hack 80 Create a Cross-Platform VPN

Use OpenVPN to easily tie your networks together.

Creating a VPN can be quite difficult, especially when dealing with clients using

multiple platforms. Quite often, a single VPN implementation isn't available for all of

them. As an administrator, you can be left with trying to get different VPN

implementations to operate on all the different platforms that you need to support,

which can become a nightmare.

Luckily, someone has stepped in to fill the void in cross-platform VPN packages and

has written OpenVPN (http://openvpn.sourceforge.net). It supports Linux, Solaris,

OpenBSD, FreeBSD, NetBSD, Mac OS X, and Windows 2000/XP. OpenVPN achieves

this by implementing all of the encryption, key-management, and connection-setup

functionality in a user-space daemon, leaving the actual tunneling portion of the job

to the host operating system.

To accomplish the tunneling, OpenVPN makes use of the host operating system's

virtual TUN or TAP device. These devices export a virtual network interface, which is

then managed by the openvpn process to provide a point-to-point interface between

the hosts participating in the VPN. Instead of traffic being sent and received on

these devices, it's sent and received from a user-space program. Thus, when data is

sent across the virtual device, it is relayed to the openvpn program, which then

encrypts it and sends it to the openvpn process running on the remote end of the

VPN link. When the data is received on the other end, the openvpn process decrypts

it and relays it to the virtual device on that machine. It is then processed just like a

packet being received on any other physical interface.

OpenVPN uses SSL and relies on the OpenSSL library (http://www.openssl.org) for

encryption, authentication, and certification functionality. Tunnels created with

OpenVPN can either use preshared static keys or take advantage of TLS dynamic

keying and digital certificates. Since OpenVPN makes use of OpenSSL, it can support

any cipher that OpenSSL supports. The main advantage of this is that OpenVPN will

be able to transparently support any new ciphers as they are added to the OpenSSL

distribution.

If you're using a Windows-based operating system, all you need to do is download

the executable installer and configure OpenVPN. On all other platforms, you'll need

to compile OpenVPN yourself. Before you compile and install OpenVPN, make sure

that you have OpenSSL installed. You can also install the LZO compression library

(http://www.oberhumer.com/opensource/lzo/), which is generally a good idea. Using

LZO compression can make much more efficient use of your bandwidth, and even

greatly improve performance in some circumstances. To compile and install

OpenVPN, download the tarball and type something similar to this:

http://openvpn.sourceforge.net/
http://www.openssl.org/
http://www.oberhumer.com/opensource/lzo/

$ tar xfz openvpn-1.5.0.tar.gz

$ cd openvpn-1.5.0

$./configure && make

If you installed the LZO libraries and header files somewhere other than /usr/lib and

/usr/include, you will probably need to use the --with-lzo-headers and --with-lzo-

lib configure script options.

For example, if you have installed LZO under the /usr/local hierarchy, you'll want to

run the configure script like this:

$./configure --with-lzo-headers=/usr/local/include \

 --with-lzo-lib=/usr/local/lib

If the configure script cannot find the LZO libraries and headers, it will print out a

warning that looks like this:

LZO library and headers not found.

LZO library available from http://www.oberhumer.com/opensource/lzo/

configure: error: Or try ./configure --disable-lzo

If the script does find the LZO libraries, you should see output on your terminal that

is similar to this:

configure: checking for LZO Library and Header files...

checking lzo1x.h usability... yes

checking lzo1x.h presence... yes

checking for lzo1x.h... yes

checking for lzo1x_1_15_compress in -llzo... yes

Now that that's out of the way, you can install OpenVPN by running the usual make

install. If you are running Solaris or Mac OS X, you'll also need to install a

TUN/TAP driver. The other Unix-based operating systems already include one, and

the Windows installer installs the driver for you. You can get the source code to the

Solaris driver from the SourceForge project page (http://vtun.sourceforge.net/tun/).

The Mac OS X driver is available in both source and binary form from

http://chrisp.de/en/projects/tunnel.html.

Once you have LZO, OpenSSL, the TUN/TAP driver, and OpenVPN all installed, you

can test everything by setting up a rudimentary VPN from the command line.

On machine A (kryten in this example), run a command similar to this one:

openvpn --remote zul --dev tun0 --ifconfig 10.0.0.19 10.0.0.5

http://vtun.sourceforge.net/tun/
http://chrisp.de/en/projects/tunnel.html

The command that you'll need to run on machine B (zul) is a lot like the previous

command, except the arguments to --ifconfig are swapped:

openvpn --remote kryten --ifconfig 10.0.0.5 10.0.0.19

The first IP address is the local end of the tunnel, and the second is for the remote

end; this is why you need to swap the IP addresses on the other end. When running

these commands, you should see a warning about not using encryption, as well as

some status messages. Once OpenVPN starts, run ifconfig to see that the point-to-

point tunnel device has been set up:

[andrew@kryten andrew]$ /sbin/ifconfig tun0

tun0: flags=51<UP,POINTOPOINT,RUNNING> mtu 1300

 inet 10.0.0.19 --> 10.0.0.5 netmask 0xffffffff

Now try pinging the remote machine, using its tunneled IP address:

[andrew@kryten andrew]$ ping -c 4 10.0.0.5

PING 10.0.0.5 (10.0.0.5): 56 data bytes

64 bytes from 10.0.0.5: icmp_seq=0 ttl=255 time=0.864 ms

64 bytes from 10.0.0.5: icmp_seq=1 ttl=255 time=1.012 ms

64 bytes from 10.0.0.5: icmp_seq=2 ttl=255 time=0.776 ms

64 bytes from 10.0.0.5: icmp_seq=3 ttl=255 time=0.825 ms

--- 10.0.0.5 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 0.776/0.869/1.012 ms

Now that you have verified that OpenVPN is working properly, it is time to create a

configuration that's a little more useful in the real world. First you will need to

create SSL certificates [Hack #45] for each end of the connection. After you've

done this, you'll need to create configuration files and connection setup and

teardown scripts for each end of the connection.

Let's look at the configuration files first. For these examples, zul will be the gateway

into the private network and kryten will be the external client.

The configuration file for zul that is used for kryten is stored in

/etc/openvpn/openvpn.conf. Here are the contents:

dev tun0

ifconfig 10.0.0.5 10.0.0.19

up /etc/openvpn/openvpn.up

down /etc/openvpn/openvpn.down

tls-server

dh /etc/openvpn/dh1024.pem

ca /etc/ssl/ca.crt

cert /etc/ssl/zul.crt

key /etc/ssl/private/zul.key

ping 15

verb 0

You can see that the dev and ifconfig options are used in the same way as they are

on the command line. The up and down options specify scripts that will be executed

when the VPN connection is initiated or terminated. The tls-server option enables

TLS mode and specifies that you want to designate this side of the connection as

the server during the TLS handshaking process. The dh option specifies the Diffie-

Hellman parameters to use during key exchange.These are encoded in a .pem file

and can be generated with the following openssl command:

openssl dhparam -out dh1024.pem 1024

The next few configuration options deal with the SSL certificates. The ca option

specifies the Certificate Authority's public certificate, and the cert option specifies

the public certificate to use for this side of the connection. Similarly, the key option

specifies the private key that corresponds to the public certificate. To help ensure

that the VPN tunnel doesn't get dropped from any intervening firewalls that are

doing stateful filtering, the ping option is used. This causes OpenVPN to ping the

remote host every n seconds so that the tunnel's entry in the firewall's state table

does not time out.

On kryten, the following configuration file is used:

dev tun0

remote zul

ifconfig 10.0.0.19 10.0.0.5

up /etc/openvpn/openvpn.up

down /etc/openvpn/openvpn.down

tls-client

ca /etc/ssl/ca.crt

cert /etc/ssl/kryten.crt

key /etc/ssl/private/kryten.key

ping 15

verb 0

The main differences with this configuration file are that the remote and tls-client

options have been used. Other than that, the arguments to the ifconfig option

have been swapped, and the file uses kryten's public and private keys instead of

zul's. To turn on compression, add the comp-lzo option to the configuration files on

both ends of the VPN.

Finally, create the openvpn.up and openvpn.down scripts on both hosts participating

in the tunnel. These scripts set up and tear down the actual routes and other

networking requirements.

The openvpn.up scripts are executed whenever a VPN connection is established. On

kryten it looks like this:

#!/bin/sh

/sbin/route add -net 10.0.0.0 gw $5 netmask 255.255.255.0

This sets a route telling the operating system to send all traffic destined for the

10/24 network to the remote end of our VPN connection. From there it will be

routed to the interface on zul that has been assigned an address from the 10/24

address range. The $5 in the script is replaced by the IP address used by the remote

end of the tunnel. In addition to adding the route, you might want to set up

nameservers for the network you are tunneling into in this script. Unless you are

doing something fancy, the openvpn.down script on kryten is empty, since the route

is automatically dropped by the kernel when the connection ends.

No additional routes are needed on zul, because it already has a route to the

network that kryten is tunneling into. In addition, since tun0 on zul is a point-to-

point link between itself and kryten, there is no need to add a route to pass traffic

to kryten�by virtue of having a point-to-point link, a host route will be created for

kryten.

The only thing that needs to be in the openvpn.up script on zul is this:

#!/bin/sh

arp -s $5 00:00:d1:1f:3f:f1 permanent pub

This causes zul to answer ARP queries for kryten, since otherwise the ARP traffic will

not be able to reach kryten. This sort of configuration is popularly called proxy arp.

In this particular example, zul is running OpenBSD. If you are running Linux, simply

remove the permanent keyword from the arp command. Again, the $5 is replaced by

the IP address that is used at the remote end of the connection, which in this case is

kryten's.

The openvpn.down script on zul simply deletes the ARP table entry:

#!/bin/sh

arp -d kryten

Unfortunately, since scripts run through the down configuration file option are not

passed an argument telling them what IP address they should be dealing with, you

have to explicitly specify the IP address or hostname to delete from the ARP table.

Now the only thing to worry about is firewalling. You'll want to allow traffic coming

through your tun0 device, as well as UDP port 5000.

Finally, you are ready to run openvpn on both sides, using a command like this:

openvpn --config /etc/openvpn/openvpn.conf --daemon

Setting up OpenVPN under Windows is even easier. Simply run the installer, and

everything you need will be installed onto your system. This includes OpenSSL, the

TUN/TAP driver, and OpenVPN itself. The installer will also associate the .ovpn file

extension with OpenVPN. Simply put your configuration information in a .ovpn file,

double-click it, and you're ready to go.

This should get you started using OpenVPN, but it has far too many configuration

options to discuss here. Be sure to look at the OpenVPN web site for more

information.

Hack 81 Tunnel PPP

Use PPP and SSH to create a secure VPN tunnel.

There are so many options to choose from when creating a VPN or tunneled

connection that it's mind-boggling. You may not be aware that all the software you

need to create a VPN is probably already installed on your Unix machines�namely

PPP and SSH daemons.

You might have used PPP back in the day to connect to the Internet over a dial-up

connection, so you may be wondering how the same PPP can operate over SSH.

Well, when you used PPP in conjunction with a modem, it was talking to the modem

through what the operating system presented as a TTY interface, which is, in short,

a regular terminal device. The PPP daemon on your end would send its output to the

TTY, which the operating system would send out the modem and across the

telephone network until it reached the remote end, where the same thing would

happen in reverse.

The terminals that you use to run shell commands on (e.g., the console, an xterm,

etc.) use pseudo-TTY interfaces, which are designed to operate similarly to TTYs.

Because of this, PPP daemons can also operate over pseudo-TTYs. So, you can

replace the serial TTYs with pseudo-TTYs, but you still need a way to connect the

local pseudo-TTY to the remote one. Here's where SSH comes into the picture.

You can create the actual PPP connection in one quick command. For instance, if you

wanted to use the IP 10.1.1.20 for your local end of the connection and 10.1.1.1 on

the remote end, you could run a command similar to this:

/usr/sbin/pppd updetach noauth silent nodeflate \

pty "/usr/bin/ssh root@colossus /usr/sbin/pppd nodetach notty noauth" \

ipparam 10.1.1.20:10.1.1.1

root@colossus's password:

local IP address 10.1.1.20

remote IP address 10.1.1.1

The first line of the command starts the pppd process on the local machine and tells

it to fork into the background once the connection has been established (updetach).

It also tells pppd to not do any authentication (noauth)�the SSH daemon already

provides very strong authentication. The pppd command also turns off deflate

compression (nodeflate). The second line of the command tells pppd to run a

program and to communicate with it through the program's standard input and

standard output. This is used to log into the remote machine and run a pppd process

there. Finally, the last line specifies the local and remote IP addresses that are to be

used for the PPP connection.

After the command returns you to the shell, you should be able to see a ppp

interface in the output of ifconfig:

$ /sbin/ifconfig ppp0

ppp0 Link encap:Point-to-Point Protocol

 inet addr:10.1.1.20 P-t-P:10.1.1.1 Mask:255.255.255.255

 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1

 RX packets:58 errors:0 dropped:0 overruns:0 frame:0

 TX packets:50 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:3

 RX bytes:5372 (5.2 Kb) TX bytes:6131 (5.9 Kb)

Now to try pinging the remote end's IP address:

$ ping 10.1.1.1

PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.

64 bytes from 10.1.1.1: icmp_seq=1 ttl=64 time=4.56 ms

64 bytes from 10.1.1.1: icmp_seq=2 ttl=64 time=4.53 ms

64 bytes from 10.1.1.1: icmp_seq=3 ttl=64 time=5.45 ms

64 bytes from 10.1.1.1: icmp_seq=4 ttl=64 time=4.51 ms

--- 10.1.1.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3025ms

rtt min/avg/max/mdev = 4.511/4.765/5.451/0.399 ms

And finally, the ultimate litmus test�actually using the tunnel for something other

than ping:

$ ssh 10.1.1.1

The authenticity of host '10.1.1.1 (10.1.1.1)' can't be established.

RSA key fingerprint is 56:36:db:7a:02:8b:05:b2:4d:d4:d1:24:e9:4f:35:49.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.1.1.1' (RSA) to the list of known hosts.

andrew@10.1.1.1's password:

[andrew@colossus andrew]$

Before deciding to keep this setup, you may want to generate login keys to use with

ssh [Hack #73], so that you don't need to type in a password each time. In

addition, you may want to create a separate user for logging in on the remote

machine and starting pppd. However, pppd needs to be started as root, so you'll have

to make use of sudo [Hack #6]. Also, you can enable SSH's built-in compression

by adding a -C to the ssh command. In some circumstances, SSH compression can

greatly improve the speed of the link. Finally, to tear down the tunnel, simply kill the

ssh process that pppd spawned.

Although it's ugly and might not be as stable and full of features as actual VPN

implementations, the PPP and SSH combination can help you create an instant

encrypted network without the need to install additional software.

See Also

The section "Creating a VPN with PPP and SSH" in Virtual Private Networks,

Second Edition, by Charlie Scott, Paul Wolfe, and Mike Erwin (O'Reilly)

Chapter 7. Network Intrusion Detection
Hacks #82-95

Section 82. Detect Intrusions with Snort

Section 83. Keep Track of Alerts

Section 84. Real-Time Monitoring

Section 85. Manage a Sensor Network

Section 86. Write Your Own Snort Rules

Section 87. Prevent and Contain Intrusions with Snort_inline

Section 88. Automated Dynamic Firewalling with SnortSam

Section 89. Detect Anomalous Behavior

Section 90. Automatically Update Snort's Rules

Section 91. Create a Distributed Stealth Sensor Network

Section 92. Use Snort in High-Performance Environments with Barnyard

Section 93. Detect and Prevent Web Application Intrusions

Section 94. Simulate a Network of Vulnerable Hosts

Section 95. Record Honeypot Activity

Hacks #82-95

One class of tools that's come to the forefront in network security in recent years is

network intrusion detection systems (NIDS). These systems can be deployed on

your network and monitor the traffic until they detect suspicious behavior, when

they spring into action and notify you of what is going on. They are excellent tools

to use in addition to your logs, since a network IDS can often spot an attack before

it reaches the intended target or has a chance to end up in your logs.

Currently, there are two main types of NIDS. The first type detects intrusions by

monitoring the traffic for specific byte patterns that are similar to known attacks. A

NIDS that operates in this manner is known as a signature-based intrusion detection

system. The other type of network IDS is a statistical monitor. These monitor the

traffic on the network, but instead of looking for a particular pattern or signature,

they maintain a statistical history of the packets that pass through your network,

and report when they see a packet that falls outside of the normal network traffic

pattern. NIDS that employ this method are known as anomaly-based intrusion

detection systems.

In this chapter you'll learn how to set up Snort, a signature-based IDS. You'll also

learn how to set up Snort with SPADE, which adds anomaly-detection capabilities to

Snort, giving you the best of both worlds. This chapter also demonstrates how to

set up several different applications that can help you to monitor and manage your

NIDS once you have it deployed.

Finally, you'll see how to set up a system that appears vulnerable to attackers, but is

actually quietly waiting and monitoring everything it sees. These systems are called

honeypots, and the last few hacks will show you how to quickly and easily set one

up, and how to monitor intruders that have been fooled and trapped by it.

Hack 82 Detect Intrusions with Snort

Use one of the most powerful (and free) network intrusion detection systems available to

help you keep an eye on your network.

Monitoring your logs can take you only so far in detecting intrusions. If the logs are being

generated by a service that has been compromised, welcome to the security admin's worst

nightmare: you can no longer trust your logs. This is where NIDS come into play. They can alert

you to intrusion attempts, or even intrusions in progress.

The undisputed champion of open source NIDS is Snort (http://www.snort.org). Some of the

features that make Snort so powerful are its signature-based rule engine and its easy extensibility

through plug-ins and preprocessors. These features allow you to extend Snort in whichever

direction you need. Consequently, you don't have to depend on anyone else to provide you with

rules when a new exploit comes to your attention: with a basic knowledge of TCP/IP, you can write

your own rules quickly and easily. This is probably Snort's most important feature, since new

attacks are invented and reported all the time. Additionally, Snort has a very flexible reporting

mechanism that allows you to send alerts to a syslogd, flat files, or even a database.

To compile and install a plain-vanilla version of Snort, download the latest version and unpack it.

Run the configure script and then make:

$./configure && make

Then become root and run:

make install

Note that all the headers and libraries for libpcap (http://www.tcpdump.org) must be installed

before you start building Snort, or else compilation will fail. Additionally, you may need to make

use of the --with-libpcap-includes and --with-libpcap-libraries configure options to tell the

compiler where it can find the libraries and headers. However, you should only need to do this if

you have installed the libraries and headers in a nonstandard location (i.e., somewhere other than

the /usr or /usr/local hierarchy).

For example, if you have installed libpcap within the /opt hierarchy, you would use this:

$./configure --with-libpcap-includes=/opt/include\

 --with-libpcap-libraries=/opt/lib

Snort has the ability to respond to the host that has triggered one of its rules. This capability is

called flexible response . To enable this functionality, you'll also need to use the --enable-flexresp

option, which requires the libnet packet injection library

(http://www.packetfactory.net/projects/libnet/). After ensuring that this package is installed on your

system, you can use the --with-libnet-includes and --with-libnet-libraries switches to specify

its location.

If you want to include support for sending alerts to a database, you will need to make use of either

the --with-mysql, --with-postgresql, or --with-oracle options. To see the full list of configure

script options, you can type ./configure --help.

After you have installed Snort, test it out by using it in sniffer mode. You should immediately see

some traffic:

http://www.snort.org/
http://www.tcpdump.org/
http://www.packetfactory.net/projects/libnet/

./snort -evi eth0

Running in packet dump mode

Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--

Initializing Output Plugins!

Decoding Ethernet on interface eth0

 --== Initialization Complete ==--

-*> Snort! <*-

Version 2.0.5 (Build 98)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

12/14-16:25:17.874711 0:A:95:C7:2B:10 -> 0:C:29:E2:2B:C1 type:0x800 len:0x42

192.168.0.60:53179 -> 192.168.0.41:22 TCP TTL:64 TOS:0x10 ID:56177 IpLen:20 DgmLen:52 DF

A* Seq: 0x67E53951 Ack: 0x2BA09FF7 Win: 0xFFFF TcpLen: 32

TCP Options (3) => NOP NOP TS: 3426501948 469087

=+

12/14-16:25:17.874828 0:C:29:E2:2B:C1 -> 0:A:95:C7:2B:10 type:0x800 len:0x252

192.168.0.41:22 -> 192.168.0.60:53179 TCP TTL:64 TOS:0x10 ID:50923 IpLen:20 DgmLen:580 DF

AP Seq: 0x2BA09FF7 Ack: 0x67E53951 Win: 0x2200 TcpLen: 32

TCP Options (3) => NOP NOP TS: 469100 3426501948

=+

Some configuration files are provided with the Snort source distribution in the etc/ directory, but

they are not installed when running make install. You can create a directory to hold these in /etc

or /usr/local/etc and copy the pertinent files to it by running something similar to this:

mkdir /usr/local/etc/snort &&\

 cp etc/[^Makefile]* /usr/local/etc/snort

You'll probably want to copy the rules directory to there as well.

Now you need to edit the snort.conf file. Snort's sample snort.conf file lists a number of variables.

Some are defined with default values, and all are accompanied by comments that make this section

mostly self-explanatory. Of particular note, however, are these two variables:

var HOME_NET any

var EXTERNAL_NET any

HOME_NET specifies which IP address spaces should be considered local. The default is set so that any

IP address is included as part of the home network. Networks can be specified using CIDR notation

(i.e., xxx.xxx.xxx.xxx/yy). You can also specify multiple subnets and IP addresses by enclosing

them in brackets and separating them with commas:

var HOME_NET [10.1.1.0/24,192.168.1.0/24]

HOME_NET can also be automatically set to the network address of a particular interface by setting

the variable to $eth0_ADDRESS. In this particular case, $eth0_ADDRESS sets it to the network address

of eth0.

The EXTERNAL_NET variable allows you to explicitly specify IP addresses and networks that are not a

part of HOME_NET. Unless a subset of HOME_NET is considered hostile, you can just keep the default

value, which is any.

The rest of the variables that deal with IP addresses or network ranges� DNS_SERVERS,

SMTP_SERVERS, HTTP_SERVERS, SQL_SERVERS, and TELNET_SERVERS�are set to $HOME_NET by default.

These variables are used within the ruleset that comes with the Snort distribution and can be used

to fine-tune a rules behavior. For instance, rules that deal with SMTP-related attack signatures use

the SMTP_SERVERS variable to filter out traffic that isn't actually related to the rule. Fine-tuning

these variables not only leads to more relevant alerts and less false positives, but also to higher

performance.

Another important variable is RULE_PATH, which is used later in the configuration file to include

rulesets. The sample configuration file sets it to ../rules but, to be compatible with the previous

examples, this should be set to ./rules since snort.conf and the rules directory are both in

/usr/local/etc/snort.

The next section in the configuration file allows you to configure Snort's built-in preprocessors.

These do anything from reassembling fragmented packets to decoding HTTP traffic to detecting

portscans. For most situations, the default configuration is sufficient. However, if you need to tweak

any of these settings, the configuration file is fully documented with each preprocessor's options.

If you've compiled in database support, you'll probably want to enable the database output plug-in,

which will cause Snort to store any alerts that it generates in your database. Enable this plug-in by

putting lines similar to these in your configuration file:

output database: log, mysql, user=snort password=snortpass dbname=SNORT \ host=dbserver

output database: alert mysql, user=snort password=snortpass dbname=SNORT \ host=dbserver

The first line configures Snort to send any information generated by rules that specify the log

action to the database. Likewise, the second line tells Snort to send any information generated by

rules that specify the alert action to the database. For more information on the difference between

the log and alert actions, see [Hack #86] .

If you're going to use a database with Snort, you'll need to create a new database, and possibly a

new database user account. The Snort source code's contrib directory includes scripts to create

databases of the supported types: create_mssql, create_mysql, create_oracle.sql, and

create_postgresql.

If you are using MySQL, you can create a database and then create the proper tables by running a

command like this:

mysql SNORT -p < ./contrib/create_mysql

The rest of the configuration file deals mostly with the rule signatures Snort will use when

monitoring network traffic for intrusions. These rules are categorized and stored in separate files,

and are activated by using the include directive. For testing purposes (or on networks with light

traffic) the default configuration is sufficient, but you should look over the rules and decide which

rule categories you really need and which ones you don't.

Now that all of the hard configuration and setup work is out of the way, you should test your

snort.conf file. You can do this by running something similar to the following command:

snort -T -c /usr/local/etc/snort/snort.conf

Snort will report any errors that it finds and then exit. If there aren't any errors, run Snort with a

command similar to this:

snort -Dd -z est -c /usr/local/etc/snort/snort.conf

Two of these flags, -d and -c, were used previously (to tell Snort to decode packet data and to use

the specified configuration file, respectively). The other two are new. The -D flag tells Snort to print

out some startup messages and then fork into the background. The -z est argument tells Snort's

streams preprocessor plug-in to ignore TCP packets that aren't part of established sessions, which

makes your Snort system much less susceptible to spoofing attacks and certain DoS attacks. Some

other useful options are -u and -g, which let Snort drop its privileges and run under the user and

group that you specify. These are especially useful with the -t option, which will chroot() Snort to

the directory that you specify. Now you should start to see logs appearing in /var/log/snort.

See Also

Chapter 11, "Simple Intrusion Detection Techniques," in Building Secure Servers with Linux,

by Michael D. Bauer (O'Reilly)

Hack 83 Keep Track of Alerts

Use ACID to make sense of your IDS logs.

Once you have set up Snort to log information to your database [Hack #82]), you

may find it hard to cope with all the data that it generates. Very busy and high-

profile sites can generate a huge number of Snort warnings that eventually need to

be tracked down. One way to alleviate the problem is to install ACID

(http://acidlab.sourceforge.net).

ACID , otherwise known as the Analysis Console for Intrusion Databases, is a web-

based frontend to databases that contain alerts from intrusion detection systems. It

features the ability to search for alerts based on a variety of criteria, such as alert

signature, time of detection, source and destination address and ports, as well as

payload or flag values. ACID can display the packets that triggered the alerts, as well

as decode their layer-3 and layer-4 information. ACID also contains alert

management features that allow you to group alerts based on incident, delete

acknowledged or false positive alerts, email alerts, or archive them to another

database. ACID also provides many different statistics on the alerts in your database

based on time, the sensor they were generated by, signature, and packet-related

statistics such as protocol, address, or port.

To install ACID, you'll first need a web server and a working installation of PHP (e.g.,

Apache and mod_php), as well as a Snort installation that has been configured to log

to a database (e.g., MySQL). You will also need a couple of PHP code libraries:

ADODB (http://php.weblogs.com/adodb) for database abstraction and either PHPlot

(http://www.phplot.com) or JPGraph (http://www.aditus.nu/jpgraph) for graphics

rendering.

After you have downloaded these packages, unpack them into a directory that can

be used to execute PHP content on the web server. Next, change to the directory

that was created by unpacking the ACID distribution (i.e., ./acid) and edit the

acid_conf.php file. Here you will need to tell ACID where to find ADODB and

JPGraph, as well as how to connect to your Snort database.

You can do this by changing these variables to similar values that fit your situation:

$Dblib_path = "../adodb";

$Dbtype = "mysql";

$alert_dbname = "SNORT";

$alert_host = "localhost";

$alert_port = "";

http://acidlab.sourceforge.net/
http://php.weblogs.com/adodb
http://www.phplot.com/
http://www.aditus.nu/jpgraph

$alert_user="snort";

$alert_password = "snortpass";

This will tell ACID to look for the ADODB code in the adodb directory at the same

directory level as the acid directory. In addition, it will tell ACID to connect to a

MySQL database called SNORT that is running on the local machine, using the user

snort with the password snortpass. Since it is connecting to a MySQL server on the

local machine, there is no need to specify a port number. If you want to connect to a

database running on another system, you should specify 3389, which is the default

port used by MySQL.

Additionally, you can configure an archive database for ACID using variables that are

similar to the ones used to configure the alert database. The following variables will

need to be set to use ACID's archiving features:

$archive_dbname

$archive_host

$archive_port

$archive_user

$archive_password

To tell ACID where to find the graphing library that you want to use, you will need

to set the $ChartLib_path variable. If you are using JPGraph 1.13 and have

unpacked it from the same directory you unpacked the ACID distribution, you would

enter something like this:

$ChartLib_path = "../jpgraph-1.13/src";

Congratulations! You're finished mucking about in configuration files for the time

being. Now open a web browser and go to the URL that corresponds to the directory

where you unpacked ACID. You should then be greeted with a database setup page

as shown in Figure 7-1.

Figure 7-1. The ACID database setup page

Before you can use ACID, it must create some database tables for its own use. To do

this, click the Create ACID AG button. After this, you should see a screen confirming

that the tables were created. In addition, you can have ACID create indexes for your

events table if this was not done prior to setting up ACID. Indexes will greatly speed

up queries as your events table grows, at the expense of using a little more disk

space. Once you are done with the setup screen, you can click the Home link to go

to the main ACID page, as seen in Figure 7-2.

Figure 7-2. ACID's main page

ACID has a fairly intuitive user interface. The main table provides plenty of links to

see many useful views of the database at a glance, such as the list of source or

destination IP addresses associated with the alerts in your database, as well as the

source and destination ports.

Hack 84 Real-Time Monitoring

Use Sguil's advanced GUI to monitor and analyze IDS events in a timely manner.

One thing that's crucial when analyzing your IDS events is to be able to correlate all your

audit data from various sources, to determine the exact trigger for the alert and what

actions should be taken. This could involve anything from simply querying a database for

similar alerts to viewing TCP stream conversations. One tool to help facilitate this is Sguil

(http://sguil.sourceforge.net), the Snort GUI for Lamerz. In case you're wondering, Sguil

is pronounced "sgweel" (to rhyme with "squeal").

Sguil is a graphical analysis console written in Tcl/Tk that brings together the power of

such tools as Ethereal (http://www.ethereal.com), TcpFlow

(http://www.circlemud.org/~jelson/software/tcpflow/), and Snort's portscan and TCP

stream decoding processors into a single unified application, where it correlates all the

data from each of these sources. Sguil uses a client/server model and is made up of three

parts: a plug-in for Barnyard (op_guil), a server (sguild), and a client (sguil.tk). Agents

installed on each of your NIDS sensors are used to report back information to the Sguil

server. The server takes care of collecting and correlating all the data from the sensor

agents, and handles information and authentication requests from the GUI clients.

Before you begin, you'll need to download the Sguil distribution from the project's web

site and unpack it somewhere. This will create a directory that reflects the package and its

version number (e.g., sguil-0.3.0).

The first step in setting up Sguil is creating a MySQL database for storing its information.

You should also create a user that Sguil can use to access the database:

$ mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 546 to server version: 3.23.55

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE SGUIL;

Query OK, 1 row affected (0.00 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON SGUIL.* \

http://sguil.sourceforge.net/
http://www.ethereal.com/
http://www.circlemud.org/~jelson/software/tcpflow/

 TO sguil IDENTIFIED BY 'sguilpass';

Query OK, 0 rows affected (0.06 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.06 sec)

mysql>

Now you'll need to create Sguil's database tables. To do this, locate the create_sguildb.sql

file. It should be in the server/sql_scripts subdirectory of the directory that was created

when you unpacked the Sguil distribution. You'll need to feed this as input to the mysql

command like this:

$ mysql -u root -p SGUIL < create_sguildb.sql

sguild requires several Tcl packages in order to run. The first is Tclx

(http://tclx.sourceforge.net), which is an extensions library for Tcl. The second is mysqltcl

(http://www.xdobry.de/mysqltcl/). Both of these can be installed with the standard

./configure && make install routine.

You can verify that they were installed correctly by running the following commands:

$ tcl

tcl>package require Tclx

8.3

tcl>package require mysqltcl

2.40

tcl>

If you want to use SSL to encrypt the traffic between the GUI and the server, you will

also need to install tcltls (http://sourceforge.net/projects/tls/). After installing it, you can

verify that it was installed correctly by running this command:

$ tcl

tcl>package require tls

1.41

tcl>

Now you'll need to go about configuring sguild. First, you'll need to create a directory

suitable for holding its configuration files (i.e., /etc/sguild). Then copy sguild.users,

sguild.conf, sguild.queries, and autocat.conf to the directory that you created.

http://tclx.sourceforge.net/
http://www.xdobry.de/mysqltcl/
http://sourceforge.net/projects/tls/

For example:

mkdir /etc/sguild

cd server

cp autocat.conf sguild.conf sguild.queries \

 sguild.users /etc/sguild

This assumes that you're in the directory that was created when you unpacked the Sguil

distribution. You'll also want to copy the sguild script to somewhere more permanent,

such as /usr/local/sbin or something similar.

Now edit sguild.conf and tell it how to access the database you created. If you used the

database commands shown previously to create the database and user for Sguil, you

would set these variables to the following values:

set DBNAME SGUIL

set DBPASS sguilpass

set DBHOST localhost

set DBPORT 3389

set DBUSER sguil

In addition, sguild requires access to the Snort rules used on each sensor in order for it

to correlate the different pieces. You can tell sguild where to look for these by setting the

RULESDIR variable.

For instance, the following line will tell sguild to look for rules in /etc/snort/rules:

set RULESDIR /etc/snort/rules

However, sguild needs to find rules for each sensor that it monitors here, so this is really

just the base directory for the rules. When looking up rules for a specific host it will look

for them in a directory corresponding to the hostname within the directory that you

specified (e.g., zul's rules would be in /etc/snort/rules/zul).

Optionally, if you want to use SSL to encrypt sguild's traffic (which you should), you'll

need to create an SSL certificate and key pair [Hack #45] . After you've done that,

move them to /etc/sguild/certs and make sure they're named sguild.key and sguild.pem.

Next, you'll need to add users for accessing sguild from the Sguil GUI. To do this, use a

command similar to this:

sguild -adduser andrew

Please enter a passwd for andrew:

Retype passwd:

User 'andrew' added successfully

You can test out the server at this point by connecting to it with the GUI client. All you

need to do is edit the sguil.conf file and change the SERVERHOST variable to point to the

machine on which sguild is installed. In addition, if you want to use SSL, you'll need to

change the following variables to values similar to these:

set OPENSSL 1

set TLS_PATH /usr/lib/tls1.4/libtls1.4.so

Now test out the client and server by running sguil.tk. After a moment you should see a

login window like Figure 7-3.

Figure 7-3. The Sguil login dialog

Enter in the information that you used when you created the user and click OK. After

you've done that, you should see a dialog like Figure 7-4.

Figure 7-4. Sguil's no available sensors dialog

Since you won't have any sensors to monitor yet, click Exit.

To set up a Sguil sensor, you'll need to patch your Snort source code. You can find the

patches that you'll need in the sensor/snort_mods/2_0/ subdirectory of the Sguil source

distribution. Now change to the directory that contains the Snort source code, go to the

src/preprocessors subdirectory, and patch spp_portscan.c and spp_stream4.c.

For example:

$ cd ~/snort-2.0.5/src/preprocessors

$ patch spp_portscan.c < \

 ~/sguil0.3.0/sensor/snort_mods/2_0/spp_portscan_sguil.patch

patching file spp_portscan.c

$ patch spp_stream4.c < \

 ~/sguil-0.3.0/sensor/snort_mods/2_0/spp_stream4_sguil.patch

patching file spp_stream4.c

Hunk #9 succeeded at 988 (offset -5 lines).

Hunk #11 succeeded at 3324 (offset -5 lines).

Hunk #13 succeeded at 3674 (offset -5 lines).

Then compile Snort just as you normally would [Hack #82] . After you've done that,

edit your snort.conf and enable the portscan and stream4 preprocessors:

preprocessor portscan: $HOME_NET 4 3 /var/log/snort/portscans gw-ext0

preprocessor stream4: detect_scans, disable_evasion_alerts, keepstats db \

/var/log/snort/ssn_logs

The first line enables the portscan preprocessor and tells it to trigger a portscan alert if

connections to four different ports within a three-second interval have been received from

the same host. In addition, the portscan preprocessor will keep its logs in

/var/log/snort/portscans. The last field on the line is the name of the sensor. The second

line enables the stream4 preprocessor, directs it to detect stealth portscans, and to not

alert on overlapping TCP datagrams. It also tells the stream4 preprocessor to keep its

logs in /var/log/snort/ssn_logs.

You'll also need to set up Snort to use its unified output format, so that you can use

Barnyard to handle logging Snort's alert and log events:

output alert_unified: filename snort.alert, limit 128

output log_unified: filnemae snort.log, limit 128

Next, create a crontab entry for the log_packets.sh script that comes with Sguil. This

script starts an instance of Snort solely to log packets. This crontab line will have the

script restart the Snort logging instance every hour:

00 0-23/1 * * * /usr/local/bin/log_packets.sh restart

You should also edit the variables at the beginning of the script and change them to suit

your needs. These variables tell the script where to find the Snort binary (SNORT_PATH),

where to have Snort log packets to (LOG_DIR), what interface to sniff on (INTERFACE), and

what command-line options to use (OPTIONS). Pay special attention to the OPTIONS

variable. Here is where you can tell snort what user and group to run as; the default

won't work unless you've created a sguil user and group. In addition, you can specify

what traffic to not log by setting the FILTER variable to a BPF (i.e., tcpdump-style) filter.

Next, you'll need to compile and install Barnyard [Hack #92], but only run the configure

step for now. After that, patch in the op_sguil output plug-in provided by Sguil. To do

this, copy sensor/barnyard_mods/op_sguil.* to the output-plugins directory in the

Barnyard source tree.

For instance:

$ cd ~/barnyard-0.1.0/src/output-plugins

$ cp ~/sguil-0.3.0/sensor/barnyard_mods/op_sguil.* .

Now edit the Makefile in that directory to add op_sguil.c and op_sguil.h to the

libop_a_SOURCES variable, and add op_sguil.o to the libop_a_OBJECTS variable.

After you've done that, edit op_plugbase.c and look for a line that says:

#include "op_acid_db.h"

Add another line below it so that it becomes:

#include "op_acid_db.h"

#include "op_sguil.h"

Now look for another line like this:

AcidDbOpInit();

and add another line below it so that it looks like this:

AcidDbOpInit();

SguilOpInit();

Now run make from the current directory; when that completes, change to the top-level

directory of the source distribution and run make install. To configure Barnyard to use

the Sguil output plug-in, add a line similar to this one to your barnyard.conf:

output sguil: mysql, sensor_id 0, database SGUIL, server localhost, user sguil,

sguilpass, sguild_host localhost, sguild_port 7736

Now you can start Barnyard as you would normally. After you do that, you'll need to set

up Sguil's sensor agent script, sensor_agent.tcl, which can be found in the sensor

directory of the source distribution. Before running the script, you'll need to edit several

variables to fit your situation:

set SERVER_HOST localhost

set SERVER_PORT 7736

set HOSTNAME gw-ext0

set PORTSCAN_DIR /var/log/snort/portscans

set SSN_DIR /var/log/snort/ssn_logs

set WATCH_DIR /var/log/snort

The PORTSCAN_DIR and SSN_DIR variables should be set to where the Snort portscan and

stream4 preprocessors log to.

Now all you need to do is set up xscriptd on the same system that you installed sguild

on. This script is responsible for collecting the packet dumps from each sensor, pulling

out the requested information, and then sending it back to the GUI client. Before running

it, you'll need to edit some variables in this script too:

set LOCALSENSOR 1

set LOCAL_LOG_DIR /var/log/snort/archive

set REMOTE_LOG_DIR /var/log/snort/dailylogs

If you're running xscriptd on the same host as the sensor, set LOCALSENSOR to 1.

Otherwise, set it to 0. The LOCAL_LOG_DIR variable sets where xscriptd will archive the

data it receives when it queries the sensor, and REMOTE_LOG_DIR sets where xscriptd will

look on the remote host for the packet dumps. If you're installing xscriptd on a host

other than the sensor agent, you'll need to set up SSH client keys [Hack #73] in order

for it to retrieve data from the sensors. You'll also need to install tcpflow

(http://www.circlemud.org/~jelson/software/tcpflow/) and p0f

(http://www.stearns.org/p0f/) on the host that you install xscriptd on.

Now that everything's set up, you can start sguild and xscriptd with commands similar to

these:

sguild -O /usr/lib/tls1.4/libtls1.4.so

xscriptd -O /usr/lib/tls1.4/libtls1.4.so

If you're not using SSL, you should omit the -O /usr/lib/tls1.4/libtls1.4.so portions

of the commands. Otherwise, you should make sure that the argument to -O points to

the location of libtls on your system.

Getting Sguil running isn't trivial, but it is well worth the effort. Once everything is

running, you will have a very good overview of precisely what is happening on your

network. Sguil presents data from a bunch of sources simultaneously, giving you a good

view of the big picture that is sometimes impossible to see when simply looking at your

NIDS logs.

http://www.circlemud.org/~jelson/software/tcpflow/
http://www.stearns.org/p0f/

Hack 85 Manage a Sensor Network

Use SnortCenter's easy-to-use web interface to manage your NIDS sensors.

Managing an IDS sensor and keeping track of the alerts it generates can be a daunting task,

and even more so when you're dealing with multiple sensors. One way to unify all your IDS

management tasks into a single application is to use SnortCenter

(http://users.pandora.be/larc/), a management system for Snort.

SnortCenter is comprised of a web-based console and sensor agents that are run on each

machine in your NIDS infrastructure. It lets you unify all of your management and monitoring

duties into one program, which can help you get your work done quickly. SnortCenter has its

own user authentication scheme, and supports encrypted communication between the web-

based management console and the individual sensor agents. This enables you to update

multiple sensors with new Snort rules or create new rules of your own and push them to your

sensors securely. SnortCenter also allows you to start and stop your sensors remotely through

its management interface. To monitor the alerts from your sensors, SnortCenter can integrate

with ACID [Hack #83] .

To set up SnortCenter, you'll first need to install the management console on a web server that

has both PHP support and access to a MySQL database server where SnortCenter can store its

configuration database. To install the management console, download the distribution from the

download page (http://users.pandora.be/larc/download/) and unpack it. This will create a

directory called www (so be sure not to unpack it where there's already a www directory)

containing SnortCenter's PHP scripts, graphics, and SQL schemas. Then, copy the contents of

the www directory to a suitable location within your web server's document root.

For example:

tar xfz snortcenter-v1.0-RC1.tar.gz

cp -R www /var/www/htdocs/snortcenter

In order for SnortCenter to communicate with your database, you'll need to install ADODB

(http://php.weblogs.com/adodb) as well. This is a PHP package that provides database

abstraction functionality. After you've downloaded the ADODB code, unpack it into your

document root (e.g., /var/www/htdocs).

You'll also need to install curl (http://curl.haxx.se). Download the source distribution, unpack

it, and run ./configure && make install. Alternatively, it might be available with your

operating system (Red Hat has a curl RPM, and *BSD includes it in the ports tree).

After that's out of the way, you'll need to edit SnortCenter's config.php (e.g.,

/var/www/htdocs/snortcenter/config.php) and change these variables to similar values that fit

your situation:

$DBlib_path = "../adodb/";

$DBtype = "mysql";

$DB_dbname = "SNORTCENTER";

$DB_host = "localhost";

http://users.pandora.be/larc/
http://users.pandora.be/larc/download/
http://php.weblogs.com/adodb
http://curl.haxx.se/

$DB_port = "";

$DB_user = "snortcenter";

$DB_password = "snortcenterpass";

$hidden_key_num =1823701983719312;

This configuration will tell SnortCenter to look for the ADODB code in the adodb directory

located at the same directory level as the one containing SnortCenter. In addition, it will tell

SnortCenter to connect to a MySQL database called SNORTCENTER that is running on the local

machine as the user snortcenter with the password snortcenterpass. Since it is connecting to

a MySQL server on the local machine, there is no need to specify a port. If you want to connect

to a database running on another system, you should specify 3389 for the port, which is the

default used by MySQL. Set $hidden_key_num to a random number.

After you're done editing config.php, you'll need to create the database and user you specified

and set the proper password for it:

$ mysql -u root -p mysql

Enter password:

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 27 to server version: 3.23.55

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database SNORTCENTER;

Query OK, 1 row affected (0.01 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON SNORTCENTER.* TO \

snortcenter@localhost IDENTIFIED BY 'snortcenterpass';

Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.02 sec)

mysql> Bye

Now create the database tables:

$ mysql -u root -p SNORTCENTER < snortcenter_db.mysql

Congratulations, it's time to try out SnortCenter! To do this, go to the URL that corresponds

to where you installed it within your document root (e.g., http://example.com/snortcenter/).

You should see something like Figure 7-5.

Figure 7-5. The SnortCenter login page

Enter in the default login/password admin/change, and then click the Login button. After you

do that, you should see a page similar to Figure 7-6.

Figure 7-6. The initial SnortCenter main page

Now that you know that the management console has been installed successfully, you can

move on to installing the agent. But before doing that, you should change the password for

the admin account. To do this, click on the Admin button, then click on the User

Administration menu item that appears. After that, click on View Users. You should then see a

page like Figure 7-7.

Figure 7-7. SnortCenter's user listing page

http://example.com/snortcenter/

Clicking on the icon to the left of the username should bring you to a page similar to Figure 7-

8; here you can edit the admin account's information, including the password.

Figure 7-8. Changing the admin account's password and email address

Now you can go on to set up your sensor agents (really, I'm serious this time).

SnortCenter's sensor agents are written in Perl and require the Net::SSLeay module to

communicate with the management console through a secure channel. If you have Perl's CPAN

module installed, you can install Net::SSLeay easily by running the following command:

perl -MCPAN -e "install Net::SSLeay"

To install the sensor code, you'll first need to unpack it. This will create a directory called

sensor containing all of the sensor agent code. Then copy that directory to a suitable

permanent location.

For example:

tar xfz /tmp/snortcenter-agent-v1.0-RC1.tar.gz

cp -R sensor /usr/local/snortcenter

Next you'll need to create an SSL certificate for the sensor. You can do this by running the

following command:

cd /usr/local/snortcenter

mkdir conf

openssl req -new -x509 -days 3650 -nodes \

 -out conf/sensor.pem -keyout conf/sensor.pem

Alternatively, you can create a signed certificate [Hack #45] and use that.

After you've done that, run the sensor agent's setup script:

sh setup.sh

**

* Welcome to the SnortCenter Sensor Agent setup script, version 1.0 RC1 *

**

Installing Sensor in /usr/local/snortcenter ...

**

The Sensor Agent uses separate directories for configuration files and log files.

Unless you want to place them in a other directory, you can just accept the defaults.

Config file directory [/usr/local/snortcenter/conf]:

This script will prompt you for several pieces of information, such as the sensor agent's

configuration file and log directories, the full path to the perl binary (e.g., /usr/bin/perl), as

well as the location of your snort binary and rules. In addition, it will ask you questions about

your operating system, what port and IP address you want the sensor agent to listen on (the

default is TCP port 2525), and what IP addresses are allowed to connect to the agent. In

particular, it will ask you to set a login and password that the management console will use for

logging into the agent. After it has prompted you for all the information it needs, it will start

the sensor agent on the port and IP address specified in the configuration file. You can now

test out the sensor agent by accessing it with your web browser (be sure to use https instead

of http). You should see a page similar to Figure 7-9 after entering the login information

contained in the setup script.

Figure 7-9. The sensor agent direct console page

Now you can go back to the main management console and add the sensor to it. To do this,

log back into the management console and select Add Sensor from the Sensor Console menu.

After doing this, you should see something similar to Figure 7-10.

Figure 7-10. Adding a sensor agent

Fill in the information that you used when running the setup script and click the Save button.

When the next page loads, the sensor that you just added should appear in the sensor list. You

can push a basic configuration to the sensor by opening the Admin menu, then selecting the

Import/Update Rules item, and then Update from Internet. After you've done that, go back to

the sensor list by clicking View Sensors in the Sensor Consoles menu, and then click the Push

hyperlink for the sensor. To start Snort on that particular sensor, click the Start link. After

you've done that, you should see a page similar to Figure 7-11.

Figure 7-11. SnortCenter's sensor list after starting a sensor

You can now configure your sensor by using the Sensor Config and Resources menus. Once

you've created a configuration you're satisfied with, you can push it to your sensor(s) by going

back to the sensor list and selecting Push.

Hack 86 Write Your Own Snort Rules

Customize Snort for your own needs quickly and easily by leveraging its

flexible rule engine and language.

One of the best features of Snort is its rule engine and language. Snort's rule engine

provides an extensive language that enables you to write your own rules, allowing

you to extend it to meet the needs of your own network.

A Snort rule can be broken down into two basic parts, the rule header and options

for the rule. The rule header contains the action to perform, the protocol that the

rule applies to, and the source and destination addresses and ports. The rule options

allow you to create a descriptive message to associate with the rule, as well as check

a variety of other packet attributes by making use of Snort's extensive library of

plug-ins.

Here's the general form of a Snort rule:

action proto src_ip src_port direction dst_ip dst_port (options)

When a packet comes in, its source and destination IP addresses and ports are then

compared to the rules in the ruleset. If any of them are applicable to the packet,

then the options are compared to the packet. If all of these comparisons return a

match, then the specified action is taken.

Snort provides several built-in actions that you can use when crafting your rules. To

simply log the packet that matches a rule, use the log action. The alert action

generates an alert using the method specified in your configuration file or on the

command line, in addition to logging the packet. One nice feature is that you can

have very general rules and then create exceptions by writing a rule that uses the

pass action. This works especially well when you are using the rules distributed with

Snort, but are frequently getting false positives for some of them. If this happens

and it's not a security risk to ignore them, you can simply write a pass rule for it.

The last two built-in rule actions are used together to dynamically modify Snort's

ruleset at runtime. These are the activate and dynamic actions. Rules that use the

dynamic action are just like a log rule, except they will be considered only after they

have been enabled by an activate rule. To accomplish this, Snort enforces the use

of the activates and activated_by rule options in order to know what dynamic rules

to enable once an activate rule has been triggered. In addition, dynamic rules are

required to specify a count option in order for Snort to limit how many packets the

rule will record.

For instance, if you wanted to start recording packets once an exploit of a SSH

daemon on 192.168.1.21 was noticed, you could use a couple of rules similar to

these:

activate tcp any any -> 192.168.1.21 22 (content:"/bin/sh"; activates:1; \

msg:"Possible SSH buffer overflow";)

dynamic tcp any any -> 192.168.1.21 22 (activated_by:1; count:100;)

These two rules aren't completely foolproof, but if someone were to run an exploit

with shell code against an SSH daemon, it would most likely send the string /bin/sh

in the clear in order to spawn a shell on the system being attacked. In addition,

since SSH is encrypted, strings like that wouldn't be sent to the daemon under

normal circumstances. Once the first rule is triggered, it will activate the second one,

which will record 100 packets and then stop. This is useful, since you might be able

to catch the intruder downloading or installing a root kit within those first few

packets and be able to analyze the compromised system much more quickly.

You can also define custom rule actions, in addition to those that Snort has built-in.

This is done with the ruletype keyword:

ruletype redalert

{

 type alert

 output alert_syslog: LOG_AUTH LOG_ALERT

 output database: log, mysql, user=snort dbname=snort host=localhost

}

This custom rule action tells Snort that it behaves like the alert rule action, but

specifies that the alerts should be sent to the syslog daemon, while the packet will

be logged to a database. When defining a custom action, you can use any of Snort's

output plug-ins, just as you would if you were configuring them as your primary

output method.

Snort's detection engine supports several protocols. The proto field is used to

specify what protocol your rule applies to. Valid values for this field are ip, icmp,

tcp, and udp.

The next fields in a Snort rule are used to specify the source and destination IP

addresses and ports of the packet, as well as the direction the packet is traveling.

Snort can accept a single IP or a list of addresses. When specifying a list of IP

address, you should separate each one with a comma and then enclose the list

within square brackets, like this:

[192.168.1.1,192.168.1.45,10.1.1.24]

When doing this, be careful not to use any whitespace. You can also specify ranges

of IP addresses using CIDR notation, or even include CIDR ranges within lists. Snort

also allows you to apply the logical NOT operator (!) to an IP address or CIDR range

to specify that the rule should match all but that address or range of addresses.

As with IP addresses, Snort can accept single ports as well as ranges. To specify a

range, use a colon character to separate the lower bound from the upper bound. For

example, if you wanted to specify all ports from 1 to 1024, you would do it like this:

1:1024

You can also apply the NOT operator to a port, and you can specify a range of ports

without an upper or lower bound.

For instance, if you only wanted to examine ports greater than 1024, you would do

it this way:

1024:

Similarly, you could specify ports less than 1024 by doing this:

:1024

If you do not care about the IP address or port, you can simply specify any.

Moving on, the direction field is used to tell Snort which IP address and port is the

source and which pair is the destination. In earlier versions of Snort you could use

either -> or <- to specify the direction. However, the <- operator was removed since

you can make either one equivalent to the other by just switching the IP addresses

and port numbers. Snort does have another direction operator in addition to ->,

though. Specifying <> as the direction tells Snort that you want the rule to apply

bidirectionally. This is especially useful when using log rules or dynamic rules, since

you can log both sides of the TCP stream rather than just one direction.

The next part of the rule includes the options. This part lets you specify many other

attributes to check against. Each option is implemented through a Snort plug-in.

When a rule that specifies an option is triggered, Snort will run through the option's

corresponding plug-in to perform the check against the packet. Snort has over 40

plug-ins�too many to cover in detail in this hack. Here are some of the more useful

ones.

The single most useful option is msg. This option allows you to specify a custom

message that will be logged in the alert when a packet matching the rule is

detected. Without it, most alerts wouldn't make much sense at first glance. This

option takes a string enclosed in quotes as its argument.

For example, this specifies a logical message whenever Snort notices any traffic that

is sent from 192.168.1.35:

alert tcp 192.168.1.35 any -> any any (msg:"Traffic from 192.168.1.35";)

Be sure not to include any escaped quotes within the string. Snort's parser is a

simple one and does not support escaping characters.

Another useful option is content, which allows you to search a packet for a sequence

of characters or hexadecimal values. If you are searching for a string, you can just

put it in quotes. In addition, if you want it to do a case-insensitive search, you can

add nocase; to the end of all your options. However, if you are looking for a

sequence of hexadecimal digits, you must enclose them in | characters.

This rule will trigger when it sees the digit 0x90:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|";)

This digit is the hexadecimal equivalent of the NOP instruction on the x86

architecture and is often seen in exploit code since it can be used to make buffer

overflow exploits easier to write.

The offset and depth options can be used in conjunction with the content option to

limit the searched portion of the data payload to a specific range of bytes.

If you wanted to limit content matches for NOP instructions to between bytes 40

and 75 of the data portion of a packet, you could modify the previously shown rule

to look like this:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|"; \

offset:40; depth:75;)

You can also match against packets that do not contain the specified sequence by

prefixing it with a !. In addition, many shell code payloads can be very large

compared to the normal amount of data carried in a packet sent to a particular

service. You can check the size of a packet's data payload by using the dsize option.

This option takes a number as an argument. In addition, you can specify an upper

bound by using the < operator, or you can choose a lower bound by using the >

operator. Upper and lower bounds can be expressed with <>.

For example:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|"; \

offset:40; depth:75; dsize: >6000;)

This modifies the previous rule to match only if the data payload's size is greater

than 6000 bytes, in addition to the other options criteria.

To check the TCP flags of a packet, Snort provides the flags option. This option is

especially useful for detecting portscans that employ various invalid flag

combinations.

For example, this rule will detect when the SYN and FIN flags are set at the same

time:

alert any any -> any any (flags: SF,12; msg: "Possible SYN FIN scan";)

Valid flags are S for SYN, F for FIN, R for RST, P for PSH, A for ACK, and U for URG.

In addition, Snort lets you check the values of the two reserved flag bits. You can

specify these by using either 1 or 2. You can also match packets that have no flags

set by using 0. There are also several operators that the flags option will accept.

You can prepend either a + , *, or ! to the flags, to match on all the flags plus any

others, any of the flags, or only if none of the flags are set, respectively.

One of the best features of Snort is that it provides many plug-ins that can be used

in the options field of a rule. The options discussed here should get you off to a

good start. However, if you want to write more complex rules, consult Snort's

excellent rule documentation, which contains full descriptions and examples for each

of Snort's rule options. The Snort User's Manual is available at

http://www.snort.org/docs/writing_rules/.

http://www.snort.org/docs/writing_rules/

Hack 87 Prevent and Contain Intrusions with Snort_inline

Install Snort_inline on your firewall to contain intrusions, or to stop them as they're

happening.

Wouldn't it be nice if your NIDS could not only detect intrusions, but also do something about

them? It would be nice if it could actually stop the intrusion occurring on the host that was being

attacked, but the next best thing would be to block the network traffic that's propagating the

attack. One tool that can do this for you is Snort_inline (http://snort-inline.sf.net).

Snort_inline is a patch to Snort that modifies it to read data from the Linux kernel's Netfilter

queue, which allows Snort to effectively integrate itself with the firewall. This allows it to not only

detect intrusions, but to decide whether to drop packets or to forward them to another host (using

Libnet). This of course requires that your kernel be compiled with IP queue support, either statically

or as a module.

You can see if you have the module by running a command like this:

$ locate ip_queue.o

/usr/src/linux-2.4.20-8/net/ipv4/netfilter/ip_queue.o

/usr/src/linux-2.4.20-8/net/ipv4/netfilter/.ip_queue.o.flags

/lib/modules/2.4.20-8/kernel/net/ipv4/netfilter/ip_queue.o

In this case, you can see that the module is available by looking at the last line of the output. If

that doesn't exist, you can check to see whether the file /proc/net/ip_queue exists. If you can't find

the module, but that file exists, then it means IP queue support is compiled into your kernel

statically. If neither file exists, you'll need to enable it in your kernel and recompile.

In addition to requiring IP queue support, Snort_inline also needs libipq. This is a library that

comes with Netfilter and is used by applications to communicate with Netfilter's queue. You can

check to see if it's installed on your system by running this command:

$ locate libipq

/usr/include/libipq.h

/lib/libipq.a

If you don't see output similar to this, chances are that you don't have libipq installed. You can

install it by downloading the iptables source from the Netfilter distribution site

(http://www.netfilter.org). For instructions on compiling it, refer to [Hack #41] . After compilation

is finished, run make install-dev, since libipq is not installed by default.

In addition to those libraries, you'll also need the Libnet packet injection library

(http://www.packetfactory.net/projects/libnet/). To install Libnet, simply download the source

distribution, unpack it, and then run ./configure && make install as root.

Now that all the prerequisites are out of the way, you can compile Snort_inline. First download and

unpack the source distribution, and then change to the directory that it creates. Then run this

command:

$./configure --enable-inline && make

http://snort-inline.sf.net/
http://www.netfilter.org/
http://www.packetfactory.net/projects/libnet/

You can also use any configure options that you'd normally use with Snort, since at it's heart

Snort_inline is still Snort.

Don't be alarmed if your compile aborts with the following error:

gcc -DHAVE_CONFIG_H -I. -I. -I../.. -I../.. -I../../src -I../../src/sfutil

-I/usr/include/pcap -I../../src/output-plugins -I../../src/detection-plugins -I../../src/

preprocessors -I../../src/preprocessors/flow -I../../src/preprocessors/portscan -I../../

src/preprocessors/flow/int-snort -I../../src/preprocessors/HttpInspect/include -I/usr/

include/pcre -I/usr/local/include -g -O2 -Wall -DGIDS -D_BSD_SOURCE -D__BSD_SOURCE -D_

_FAVOR_BSD -DHAVE_NET_ETHERNET_H -DLIBNET_LIL_ENDIAN -c `test -f 'spo_alert_fast.c' ||

echo './'`spo_alert_fast.c

In file included from /usr/include/linux/netfilter_ipv4/ip_queue.h:10,

 from /usr/include/libipq.h:37,

 from ../../src/inline.h:8,

 from ../../src/snort.h:38,

 from spo_alert_fast.c:51:

/usr/include/linux/if.h:59: redefinition of `struct ifmap'

/usr/include/linux/if.h:77: redefinition of `struct ifreq'

/usr/include/linux/if.h:126: redefinition of `struct ifconf'

make[3]: *** [spo_alert_fast.o] Error 1

make[3]: Leaving directory `/home/andrew/snort_inline-2.1.0/src/output-plugins'

make[2]: *** [all-recursive] Error 1

make[2]: Leaving directory `/home/andrew/snort_inline-2.1.0/src'

make[1]: *** [all-recursive] Error 1

make[1]: Leaving directory `/home/andrew/snort_inline-2.1.0'

make: *** [all] Error 2

This is caused by /usr/include/linux/netfilter_ipv4/ip_queue.h including /usr/include/linux/if.h

instead of /usr/include/net/if.h (a problem that the author encountered while writing this). You can

fix this by simply editing ip_queue.h and changing this line near the top of the file:

#include <linux/if.h>

to this:

#include <net/if.h>

You can then restart the compilation from where it left off by simply typing make, or, if you're

paranoid, you can use this command to completely start over:

$ make clean && make

After compilation has finished, become root and type make install.

You can now configure Snort_inline just as you would configure Snort regularly. However, it's

recommended that you run a separate instance of Snort if you want alerting and use Snort_inline

solely for setting firewall rules.

In addition to modifying Snort to capture packets from Netfilter rather than libpcap, the

Snort_inline patch also adds three new rule types, as well as a new rule option. The new rule types

are drop , sdrop, and reject. The drop rule type will drop the packet that triggered the rule without

notifying the sending host, much like the iptables DROP target, and will log that it has done so. The

sdrop rule type is similar, except that packets are silently dropped with no log entry to tell you that

it occurred. Using the reject rule type will block the offending packet, but will notify the sending

host with either a TCP RST or an ICMP port unreachable message, depending on whether the

packet that triggered the rule used the TCP or UDP protocols, respectively. The new rule option

added by Snort_inline allows you to replace arbitrary content within a packet with whatever you

choose. The only restriction is that the replacement byte stream must be the same length as the

original. This is implemented with the replace rule option and is used in conjunction with the

content rule option to select what is to be replaced.

To run Snort_inline, start it just as you would start Snort. Snort_inline does add a new command-

line switch, though: -Q tells it to use IP queues rather than libpcap to gather packets. So, you'll

need to use this option if you want to use it in inline mode.

The only thing left to do before actually running it in inline mode is to configure the kernel to send

the packets to the IP queues. This is done with the iptables command:

iptables -F

iptables -A INPUT -j QUEUE

iptables -A OUTPUT -j QUEUE

iptables -A FORWARD -j QUEUE

This will push all traffic going in, out, and through the machine into an IP queue from which

Snort_inline will read its packets. You can then start snort_inline as you would Snort (just don't

forget to use the -Q option):

snort_inline -Qvc /etc/snort/snort_inline.conf

If you're administering the machine remotely, you'll probably want to start snort_inline before

enabling the QUEUE targets, since it's snort_inline that will actually pass the packets back and

forth. Otherwise, your remote logins will be dropped as soon as you put the iptables rules in place.

If you're particularly paranoid, have your QUEUE target rules ignore packets coming from a certain IP

address or range of addresses.

Hack 88 Automated Dynamic Firewalling with SnortSam

Use SnortSam to prevent intrusions by putting dynamic firewall rules in

place to stop in-progress attacks.

An alternative to running Snort on your firewall and having it activate filtering rules

on the machine it's running on [Hack #87] is to have Snort communicate which

filtering rules should be put in place when the an intrusion is detected on an

external firewall. To do this, you can use SnortSam (http://www.snortsam.net).

SnortSam uses Snort's plug-in architecture and extends Snort with the ability to

notify a remote firewall, which then dynamically applies filtering rules to stop attacks

that are in progress. Unlike Snort_inline, which is highly dependent on Linux,

SnortSam supports a wide variety of firewalls, such as Checkpoint, Cisco, Netscreen,

Firebox, OpenBSD's pf, and even Linux's ipchains and iptables interfaces to Netfilter.

SnortSam is made up of two components, a Snort plug-in and a daemon.

To set up SnortSam, first download the source distribution and then unpack it. After

you've done that, go into the directory it created and run this command:

$ sh makesnortsam.sh

This will build the snortsam binary, which you can then copy to a suitable place in

your path (e.g., /usr/bin or /usr/local/bin).

Now download the patch for Snort, which you can get from the same site as

SnortSam. After you've done that, unpack it:

$ tar xvfz snortsam-patch.tar.gz

NOTE

patchsnort.sh

patchsnort.sh.asc

snortpatch8

snortpatch8.asc

snortpatch9

snortpatch9.asc

snortpatchb

snortpatchb.asc

http://www.snortsam.net/

Next, run patchsnort.sh and specify the directory where you're keeping Snort's

source:

$ sh patchsnort.sh snort-2.0.5

Patching Snort version 2.0...

patching file spo_alert_fwsam.c

patching file spo_alert_fwsam.h

patching file twofish.c

patching file twofish.h

patching file plugbase.c

Hunk #1 succeeded at 29 with fuzz 2 (offset -73 lines).

Hunk #2 succeeded at 639 with fuzz 2 (offset 77 lines).

Patching Makefiles...

Done

Now compile Snort as you would normally [Hack #82] .

Before running SnortSam, you must create a configuration file for it. SnortSam's

configuration syntax is pretty easy to use, but there are quite a few options, so only

a subset of the available ones will be discussed here.

One useful option is accept, which lets you tell SnortSam what Snort sensors are

allowed to connect to it. This option can take a CIDR-format address range, a

hostname, or a single IP address. You can optionally specify a password as well. If

you don't specify a password, the one specified by the defaultkey option is used.

For example, if you wanted to allow all hosts from the network 192.168.1.0/24 with

the password qwijybo, you could put a line like this in your configuration file:

accept 192.168.1.0/24, qwijybo

To specify multiple hosts on network address ranges, you can use multiple accept

entries.

Another useful option is dontblock. This enables you to construct a whitelist of

hosts and networks that SnortSam will not block under any circumstances. This

option takes hostnames, single IP addresses, and CIDR addresses; you can also use

multiple dontblock entries, just as you can with accept.

To improve SnortSam's performance, you may want to use the skipinterval

option. This option lets you tell SnortSam how long to skip identical blocking

requests before it will resume applying rules for that request. This ensures that

SnortSam isn't constantly requesting the firewall to block the same IP address and

port over and over again. The skipinterval option takes a single number as its

argument, which specifies how many seconds to wait.

You'll probably want to keep tabs on what SnortSam's doing, since you're allowing

it to modify your firewall's rules. One way is to use the logfile option, which will

cause SnortSam to log events such as program start, blocking and unblocking

requests, and any errors that were encountered. This option takes a single

argument, which is the filename that the logs will be written to. The log file that you

specify will be created in /var/log.

A couple of other useful options are daemon and bindip. The daemon option simply

tells SnortSam to fork into the background and run as a daemon; it does not take

any arguments. The bindip option, on the other hand, allows you to specify which

IP address to listen on, which is useful when the machine that SnortSam is running

on has multiple addresses available.

For instance, if you wanted SnortSam to listen only on 192.168.1.15, you would use

a line like this:

bindip 192.168.1.15

In addition, the default port that SnortSam listens on is 898, but you can change

this with the port option.

After you're done with SnortSam's options, you'll need to tell it what kind of firewall

to communicate with and how to do it. To use SnortSam with a Checkpoint Ffwexec

or fwsamW-1 firewall, you can specify either the fwexec or fwsam keywords. Use

fwexec when you when you want to run SnortSam on the host that the firewall is

install fwexec or fwsamed on, and use fwsam when you want to communicate with a

remote firewall.

The fwexec keyword takes the full pathname to the fw executable as its only

argument, whereas the fwsam keyword uses the hostname or IP of the firewall. In

addition, you'll need to modify the fwopsec.conf file on your firewall to include the

following line:

sam_server port 1813

To use SnortSam with a PIX firewall, you'll need to use the pix keyword and specify

the IP address of the firewall as well as the Telnet and enable mode passwords.

For example:

pix 192.16.1.2 telnetpw enablepw

Or, if your firewall is set up to do user authentication, you can use user/password in

place of the Telnet password.

If you want to use SnortSam with OpenBSD's PF or Linux's iptables, you'll need to

use the pf or iptables keywords. For basic usage, all you need to do is specify the

interface on which to block packets.

To configure the Snort side of things, you'll need to add the alert_fwsam output

plug-in to the output plug-ins that you're already using. This plug-in takes a

hostname and an optional port to connect to, along with a password. If SnortSam is

using the default port, you don't need to specify the port here.

For example:

output alert_fwsam: firewall/mypassword firewall2:1025/mypassword

Notice that you can list multiple instances of SnortSam to send block requests to by

separating them with whitespace.

Any rules that you want to trigger a firewall rule should be modified to use the

fwsam rule option. This option takes as its arguments what to block and for how

long the block should be in effect. To block the source of the packet that caused the

alert, use src; to block the destination, use dst. If you want to block both, use

either. For the duration you can use a number along with a modifier specifying

what unit it's in (i.e., seconds, minutes, hours, days, weeks, months, or years), or

you can use 0 to specify an indefinite period of time.

For instance, to block the source address of the packet that triggered a rule for five

minutes, you could add this to your rule options:

fwsam: src, 5 minutes;

Now that everything is configured, start SnortSam by running a command similar to

this:

snortsam /usr/local/etc/snortsam.conf

Of course, you'll need to substitute the full path to your configuration file if it's not

/usr/local/etc/snortsam.conf. As for Snort, just start it as you normally would.

For more information on using SnortSam with other types of firewalls, be sure to

check out the README files included with the source distribution.

Hack 89 Detect Anomalous Behavior

Detect attacks and intrusions by monitoring your network for abnormal

traffic, regardless of the actual content.

Most NIDS monitor the network for specific signatures of attacks and trigger alerts

when one is spotted on the network. Another means of detecting intrusions is to

generate a statistical baseline of the traffic on the network and flag any traffic that

doesn't fit the statistical norms. One intrusion detection system of this type is

Spade (http://www.silicondefense.com/software/spice/).

Spade, or the Statistical Anomaly Detection Engine, is actually a modified version of

Snort that extends its functionality into the realm of anomaly-based intrusion

detection. The Spade preprocessor uses Snort to monitor the network and then

constructs probability tables based on the traffic that it sees. It then uses this table

to generate an anomaly between and 1 for each packet (i.e., 0 is a definite normal,

and 1 is a definite anomaly).

Installing Spade is easy. Just download the source distribution, unpack it, and

change into the directory that it created. Then type a command similar to this,

which will patch your Snort source code:

$ make SNORTBASE=../snort-2.0.5

Of course, if your Snort source tree isn't at ../snort-2.0.5, you'll need to specify a

different path.

Now change to the directory containing the Snort source code, and compile and

install Snort as you normally would [Hack #82] . Once you've done that, you'll

need to configure Snort to use Spade. You have two choices here: setting it up to

use only Spade functionality or using normal Snort functionality along with Spade.

For the former, you can use the spade.conf located in the Spade source distribution

as a starting point.

Most of the defaults are fine. However, you will need to set the SPADEDIR variable to

a place where Snort has read and write access. Spade will keep various logs and

check-pointing information here so that it does not lose its probability table

whenever Snort is restarted.

For example:

var SPADEDIR /var/log/snort/spade

It is also important that you tell Spade what network is your "home" network. You

can do this by using a line similar to this one in your configuration file:

peprocessor spade-homenet: 192.168.1.0/24

http://www.silicondefense.com/software/spice/

You can specify multiple networks by separating them with commas and enclosing

the list in square brackets.

If you want to run Snort with Spade and traditional Snort functionality, you can just

include your spade.conf in your snort.conf with a line like this:

include spade.conf

Run Snort just as you did before. Spade will now send its output to any of the

output plug-ins that you have configured when it detects anomalous behavior. This

is triggered when a given packet's anomaly score is in the range of .8 to .9 (it

depends on the type of packet). Any alerts generated by Spade will be prefixed with

Spade: and will include a description of the packet's deviant behavior and its

anomaly score.

Hack 90 Automatically Update Snort's Rules

Keep your Snort rules up-to-date with Oinkmaster.

If you have only a handful of IDS sensors, keeping your Snort rules up-to-date is a

fairly quick and easy process. However, as the number of sensors grows it can

become more difficult. Luckily, you automatically update your Snort rules with

Oinkmaster (http://oinkmaster.sourceforge.net/news.shtml).

Oinkmaster is a Perl script that does much more than just download new Snort rules.

It will also modify the newly downloaded rules according to rules that you specify or

selectively disable them, which is useful when you've modified the standard Snort

rules to fit your environment more closely or have disabled a rule that was reporting

too many false positives.

To install Oinkmaster, simply download the source distribution and unpack it. Then

copy the oinkmaster.pl file from the directory that it creates to some suitable place

on your system. In addition, you'll need to copy the oinkmaster.conf file to either

/etc or /usr/local/etc. The oinkmaster.conf that comes with the source distribution is

full of comments explaining all the minute options that you can configure.

Oinkmaster is most useful for when you want to update your rules but have a set of

rules that you don't want enabled and that are already commented out in your

current Snort rules. To have Oinkmaster automatically disable these rules, use the

disablesid directive with the Snort rule ID that you want disabled when your rules

are updated.

For instance, you may get a lot of ICMP unreachable datagrams on your network and

have determined that you don't want to receive alerts when Snort detects this type

of traffic. So, you decided to comment out the rule in your icmp.rules file:

alert icmp any any -> any any (msg:"ICMP Destination Unreachable

(Communication Administratively Prohibited)"; itype: 3; icode: 13; sid:485;

classtype:misc-activity; rev:2;)

This is only one rule, so it's easy to remember to go back and comment it out again

after updating your rules, but this can become quite a chore when you've done the

same thing with several dozen other rules. If you use Oinkmaster, putting the

following line in your oinkmaster.conf file will disable the preceding rule after

Oinkmaster has updated your rules with the newest ones available from snort.org:

disablesid 485

Then, when you want to update your rules, run oinkmaster.pl and tell it where you'd

like the updated rules to be placed:

http://oinkmaster.sourceforge.net/news.shtml

oinkmaster.pl -o /etc/snort/rules

Now you won't have to remember which rules to disable ever again.

Hack 91 Create a Distributed Stealth Sensor Network

Keep your IDS sensors safe from attack, while still giving yourself access to

their data.

Your IDS sensors are the early warning system that can both alert you to an attack

and provide needed evidence for investigating a break-in after one has occurred. You

should take extra care to protect them and the data that they collect. One way to do

this is to run your IDS sensors in stealth mode.

To do this, simply don't configure an IP address for the interface that your IDS

software will be collecting data from. Putting the interface up, but without specifying

an IP address, can do this.

For example:

tcpdump -i eth1

tcpdump: bind: Network is down

ifconfig eth1 up promisc

ifconfig eth1

eth1 Link encap:Ethernet HWaddr 00:DE:AD:BE:EF:00

 UP BROADCAST PROMISC MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

 Interrupt:11 Base address:0x1c80

/usr/sbin/tcpdump -i eth1

tcpdump: WARNING: eth1: no IPv4 address assigned

tcpdump: listening on eth1

After you've put the interface up, just start your IDS [Hack #82] . Your IDS will

run as normal, but since there is no way to directly access the machine, it is very

difficult to attack it.

However, just like potential attackers, you will be unable to access the machine

remotely. Therefore, if you want to manage the sensor remotely, you'll need to put

in a second network interface. Of course, if you did this and hooked it up to the

same network that the IDS sensor is monitoring, it would totally defeat the purpose

of running the other interface without an IP address. To keep the traffic isolated, you

should create a separate network for managing the IDS sensors. You can of course

attach this network to one that is remotely accessible and then firewall it heavily.

Another approach is to access the box using an alternate channel, such as a serial

port connected to another machine that does have a network connection. Just run a

console on the serial port, and take care to heavily secure the second machine. You

could also connect a modem (remember those?) to an unlisted phone number or,

better yet, an unlisted extension on your office's PBX. Depending on your situation,

simply using the console for access may be the simplest and most secure method.

Whichever method you decide to use for remote access is a choice you'll have to

make by weighing the value of increased security against the inconvenience of

jumping through hoops to access the machine. Security nearly always involves a

trade-off between convenience and confidence.

Hack 92 Use Snort in High-Performance Environments with Barnyard

Decouple Snort's output stage so it can keep pace with the packets.

Snort by itself is fine for monitoring small networks or networks with low amounts of traffic,

but it does not scale very well without some additional help. The problem is not with Snort's

detection engine itself, but stems from the fact that Snort is a single-threaded application.

Because of this, whenever an alert or log event is triggered, Snort must first send the alert or

log entry to its final destination before it can go back to looking at the incoming data stream.

This isn't such a big deal if you're just having Snort write to a file, but it can become a

problem if you are logging to a database, which can cause Snort to wait a relatively long time

for the database insert to complete. This of course is exacerbated when you're having Snort

log to a remote database server.

To solve this, another application called Barnyard (http://www.snort.org/dl/barnyard/) was

written. Functionally, Barnyard is the equivalent of Snort's output plug-ins all rolled into one

program, with a frontend for reading in files that Snort generates and then sending them to

the same database or other destination that you would normally have Snort log to. The only

draw back to Barnyard is its limited database support: Barnyard supports only MySQL, whereas

Snort supports MySQL, PostgreSQL, Oracle, and ODBC outputs (Barnyard claims to support

PostgreSQL, but unfortunately its current support is shaky at best).

After downloading Barnyard and unpacking it, change to the directory it created and run its

configure script:

$./configure --enable-mysql

This will enable MySQL support when Barnyard is compiled. If you've installed your MySQL

libraries and include files in a nonstandard place (i.e., underneath the /usr or /usr/local

hierarchies), you'll probably need to add the --with-mysql-includes and --with-mysql-

libraries command-line options.

After you're done with the configure script, you can compile Barnyard by running make. When it

finishes compiling, install it by becoming root and running make install.

Before you use Barnyard, you'll need to configure Snort to use its unified output format. This

is a binary format that includes both the alert information and the data for the packet that

triggered the alert, and it is the only type of input that Barnyard will understand.

To configure Snort to use the unified output format for both alert and log events, add lines

similar to these to your Snort configuration (e.g., /etc/snort/snort.conf or

/usr/local/etc/snort/snort.conf):

output alert_unified: filename snort.alert, limit 128

output log_unified: filnemae snort.log, limit 128

The filenames specified here are the basenames for the files that Snort will write its alert and

log event information to. When it writes a file, it will append the current Unix timestamp to the

end of the basename. In addition, the size of these files will be limited to 128MB.

Now you'll need to create a configuration file for use with Barnyard. To run Barnyard in daemon

mode and have it automatically fork itself into the background, add this line to your

http://www.snort.org/dl/barnyard/

configuration file:

config daemon

If you're going to be logging to a database for use with ACID [Hack #83], you'll also want to

add two lines similar to these:

config hostname: colossus

config interface: eth0

These two lines should be set to the name of the machine that you're running Barnyard on and

the interface that Snort is reading packets from. Next, you'll need to actually tell Barnyard to

read your unified log files.

You can do this for alert events by using this line:

processor dp_alert

Or, if you want to process log events, use this line:

processor dp_log

Note that Barnyard can process only one type of unified log at a time. So, if you want it to

process both alert and log events, you'll need to run an instance of Barnyard for each type.

Now all that's left to configure is where Barnyard will send the data. If you want to use Snort's

fast alert mode to generate single-line abbreviated alerts, you can use the alert_fast output

plug-in:

output alert_fast: fast_alerts.log

Or, if you want Barnyard to generate ASCII packet dumps of the data contained in the unified

logs, you can use a line similar to this:

output log_dump: ascii_dump.log

To have Barnyard output to your syslog daemon, you can use the alert_syslog plug-in just

like you would in your snort.conf. For instance, if you wanted to send data to the local syslogd

and use the auth facility and the alert log level, you could use a line like this:

output alert_syslog: LOG_AUTH LOG_ALERT

Or, if you want to send to a remote syslog daemon, you can use a line similar to this:

output alert_syslog: hostname=loghost, LOG_AUTH LOG_ALERT

You can also have Barnyard create Pcap-formatted files from the data in the unified logs. This

is useful for analyzing the data later in tools such as Ethereal. To do this, use the log_pcap

plug-in:

output log_pcap: alerts.pcap

Finally, you can also have Barnyard output to a database by using the alert_acid_db plug-in

for logging alert events and the log_acid_db for capturing log events.

For instance, this line would send alerts to the SNORT MySQL database running on dbserver

using the username snort:

output alert_acid_db: mysql, sensor_id 0, database SNORT, server dbserver, user snort

The sensor_id is the one assigned by ACID to the particular instance of Snort that is gathering

the data. You can find what sensor ID to use by clicking on the Sensors link on ACID's front

page [Hack #83], which will show you a list of the sensors that are currently logging to ACID.

The log_acid_db plug-in is similar, except it does not use the sensor_id option:

output log_acid_db: mysql, database SNORT, server dbserver, user snort, detail full

You can start Barnyard by simply using a command similar to the following if Snort's

configuration files are stored in /etc/snort and Snort is set to keep its logs in /var/log/snort:

barnyard -f snort.alert

Of course, this assumes that you used snort.alert when configuring Snort's alert_unified

plug-in. If your Snort configuration files aren't stored in /etc/snort, you can specify the

locations of all the files that Barnyard needs to access by running a command similar to this

one:

barnyard -c /usr/local/etc/snort/barnyard.conf \

-g /usr/local/etc/snort/gen-msg.map \

-s /usr/local/etc/snort/sid-msg.map -f snort.alert

This would tell Barnyard where to find all the files it needs if they are in /usr/local/etc/snort

(and are too stubborn to create a symlink to /etc/snort). If you're using a directory other than

/var/log/snort to store Snort's logs, you can specify it with the -d option.

Congratulations. With Barnyard running, you should be able to handle much larger volumes of

traffic without dropping log entries or missing a single packet.

Hack 93 Detect and Prevent Web Application Intrusions

Protect your web server and dynamic content from intrusions.

Detecting intrusions that utilize common protocols and services is a job that a

network intrusion detection system is well suited for. However, due to the

complexity of web applications and the variety of attacks they can be vulnerable to,

it is more difficult to detect and prevent intrusions without generating many false

positives. This is especially true for web applications that use SSL, since this requires

you to jump through hoops to enable the NIDS to actually get access to the

unencrypted traffic coming to and from the web server. One way to get around these

issues is to integrate the intrusion detection system into the web server itself. This

is just what mod_security (http://www.modsecurity.org) does for the popular

Apache (http://www.apache.org) web server.

mod_security, as the name suggests, is a module for the Apache web server that is

meant to increase the security of a web server by providing facilities for filtering

requests and performing arbitrary actions based on user-specified rules. In addition,

mod_security will also perform various sanity checks that normalize the requests

that the web server receives. With the proper filtering rules, mod_security can be

effective at defeating directory traversal, cross-site scripting, SQL injection, and

buffer overflow attacks.

To install mod_security, download and unpack the source distribution. If you wish to

install it as a DSO (i.e., a module), you can do so easily with the apxs utility. First

change to the directory appropriate for the version of Apache that you are

using�apache1 or apache2. Then run a command like this:

apxs -cia mod_security.c

This will compile mod_security and configure Apache to load it at startup. If you

would like to statically compile mod_security, you will have to rebuild Apache. If you

are using Apache 1.x, you can compile it statically by copying mod_security.c to the

src/modules/extra directory in the Apache source tree. Then, when you run

Apache's configure script, use these command-line switches:

--activate-module=src/modules/extra/mod_security

--enable-module=security

Now that mod_security has been installed, you'll need to enable it. You can do this

by putting the following lines in your httpd.conf file:

<IfModule mod_security.c>

 SecFilterEngine On

http://www.modsecurity.org/
http://www.apache.org/

</IfModule>

This will enable the request normalization features of mod_security for all requests

made to the web server. Alternatively, you can enable it only for dynamic content by

setting the SecFilterEngine variable to DynamicOnly. When mod_security is

enabled, it will intercept all requests coming into the web server and perform several

checks on it before passing it through any user-defined filters and finally either

servicing or denying the requests. During these sanity checks, mod_security will

convert several different types of evasive character sequences to their more

commonly used equivalent forms. Thus the character sequences // and /./ will be

transformed to /, and on Windows the \ character will be converted to /. In

addition, any URL-encoded characters will be decoded. In addition to these checks,

mod_security can also be configured to scan the payload of POST method requests

and validate URL encoding and Unicode encoding contained within requests.

To enable these features, add these lines to your httpd.conf:

SecFilterScanPOST On

SecFilterCheckURLEncoding On

SecFilterCheckUnicodeEncoding On

URL encoding allows someone making a request to encode characters by using

hexadecimal values, which use the numbers 0 through 9 and the letters A through F

prefixed by the % character. When URL-encoding validation is enabled, mod_security

simply ensures that any URL-encoded characters don't violate the hexadecimal

numbering system. When performing Unicode validation, mod_security basically

does the same type of thing�ensure that the string seen by the web server in

fulfilling the request is a valid Unicode string. Unicode validation is useful if your web

server is running on an operating system that supports Unicode or your web

application makes use of it.

To avoid buffer overflow exploits, you can also limit the range of bytes that are

allowed in request strings. For instance, to allow only printable characters (and not

ones that might show up in exploit shell code), add a line like this to your

httpd.conf:

SecFilterForceByteRange 32 126

User-defined filters are created with either the SecFilter or the SecFilterSelective

keyword. You can use SecFilter to search just the query string, or you can use

SecFilterSelective if you would like to filter requests based on the value of an

internal web server variable. Both of these filtering keywords can accept regular

expressions.

The following are filtering rules that can help prevent some common attacks.

The following rule will filter out requests that contain the character sequence ../:

SecFilter "\.\./"

Even though the web server will interpret the ../ correctly and disallow access if it

ends up resolving to something outside of its document root, that may not be the

case for scripts or applications that are on your server. This rule prevents such

requests from being processed.

Cross-site scripting (XSS) attacks are invoked by inserting HTML or JavaScript into

an existing page so that other users will execute it. Such attacks can be used to read

a user's session cookie and gain full control of that user's information. You can

prevent these attacks by having mod_security filter out requests that contain

JavaScript.

To disallow JavaScript in requests, use a rule like this:

SecFilter "<[[:space:]]*script"

In addition, you can disallow HTML by using this rule:

SecFilter "<(.|\n)+>"

SQL-injection attacks are similar to XSS attacks, except in this case attackers modify

a variable that is used for an SQL query in such a way that they can execute

arbitrary SQL commands.

To protect against this class of attacks, you can employ rules similar to these:

SecFilter "delete[[:space:]]+from"

SecFilter "insert[[:space:]]+into"

SecFilter "select.+from"

This rule prevents SQL injection in a cookie called sessionid:

SecFilterSelective COOKIE_sessionid "!^(|[0-9]{1,9})$"

If a sessiondid cookie is present, the request can proceed only if the cookie

contains one to nine digits.

This rule requires HTTP_USER_AGENT and HTTP_HOST headers in every request:

SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"

You can search on multiple variables by separating each variable in the list with a |

character. Attackers often investigate using simple tools (even Telnet) and don't

send all headers as browsers do. Such requests can be rejected, logged, and

monitored.

This rule rejects file uploads:

SecFilterSelective "HTTP_CONTENT_TYPE" multipart/form-data

This is a simple but effective protection, rejecting requests based on the content

type used for file upload.

This rule logs requests without an Accept header, so you can examine them later:

SecFilterSelective "HTTP_ACCEPT" "^$" log,pass

Again, manual requests frequently do not include all HTTP headers. The Keep-Alive

header is another good candidate. Notice that in addition to the variable and search

string this rule contains the keywords log and pass, which specify the actions to

take if a request matches the rule. In this case, any requests that match will be

logged to Apache's error log, and then the request will go on for further processing

by the web server. If you do not specify an action for a filter rule, the default action

will be used.

You can specify the default action like this:

SecFilterDefaultAction "deny,log,status:500"

If you set this as the default action, the web server will deny all requests that match

filter rules and that do not specify a custom action. In addition, they will be logged

and then redirected to an HTTP 500 status page, which will inform the client that an

internal server error occurred. Other possible actions are allow, which is similar to

pass, but stops other filters from being tried; redirect, which redirects the client to

an arbitrary URL; exec, which executes an external binary or script; and chain, which

allows you to effectively AND rules together.

In addition to filtering, mod_security provides extensive auditing features, allowing

you to keep logs of the full request sent to the server. To turn on audit logging, add

lines similar to these to your httpd.conf:

SecAuditEngine On

SecAuditLog logs/audit_log

However, this will log all requests sent to the web server. Obviously, this can

generate quite a lot of data very quickly. To only log requests that triggered a filter

rule, set the SecAuditEngine variable to RelevantOnly. Alternatively, you can set this

variable to DynamicOrRelevant, which will log requests to dynamic content or

requests that triggered a filter rule.

As with most other Apache configuration directives, you can enclose mod_security

configuration directives within a <Location> tag to specify individual configurations

for specific scripts or directory hierarchies.

mod_security is a very powerful tool for protecting your web applications, but it

should not take the place of actually validating input in your application or other

secure coding practices. If at all possible, it is best to employ such methods in

addition to using a tool such as mod_security.

See Also

"Introducing mod_security":

http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html

Mod_security Reference Manual v1.7.4:

http://www.modsecurity.org/documentation/modsecurity-manual-1.7.4.pdf

http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html
http://www.modsecurity.org/documentation/modsecurity-manual-1.7.4.pdf

Hack 94 Simulate a Network of Vulnerable Hosts

Use honeyd to fool would-be attackers into chasing ghosts.

As the saying goes, you will attract more flies with honey than with vinegar. (I've never

understood that saying; who wants to attract flies, anyway?) A honeypot is used to attract the

"flies" of the Internet: script kiddies and hacker wannabes that have nothing better to do with

their time than scan for vulnerable hosts and try to attack them. A honeypot does this by

pretending to be a server running vulnerable services, but is in fact collecting information about

the attackers who think themselves so clever.

Whether you want to simulate one or one thousand vulnerable network hosts, honeyd

(http://www.honeyd.org) makes the job as simple as editing a configuration file and running a

daemon. The honeyd daemon can simulate thousands of hosts simultaneously and will let you

configure what operating system each host will appear as when scanned with operating system

detection tools like Nmap [Hack #42] . Each system that honeyd simulates will appear to be a

fully functioning node on the network. Besides simply creating hosts that respond to pings and

traceroutes, honeyd also lets you configure what services each host appears to be running. You

can either use simple scripts to emulate a given service or have honeyd act as a proxy and forward

requests to another host for servicing.

honeyd has several prerequisites that you'll need to install before building the daemon itself.

These are libevent (http://www.monkey.org/~provos/libevent/), libdnet

(http://libdnet.sourceforge.net), and libpcap (http://www.tcpdump.org). These can be easily

installed by downloading and unpacking them and then using the standard./configure && make

install procedure. After the libraries are installed, you can install honeyd the same way. Then

copy the service emulation scripts from the source distribution to somewhere more permanent

(e.g., /usr/local/share/honeyd/scripts). There are only a few scripts that come with honeyd itself,

but there are additional service emulation scripts available on honeyd's contributions page

(http://www.citi.umich.edu/u/provos/honeyd/contrib.html).

Once honeyd has been installed, you'll need to create a configuration file that defines the types of

operating systems and services honeyd will emulate, and the IP addresses honeyd will respond to.

First, create some operating system templates:

Windows computers

create windows-web

set windows-web personality "MS Windows2000 Professional

 RC1/W2K Advance Server Beta3"

set windows-web default tcp action reset

set windows-web default udp action reset

add windows-web tcp port 80 "perl scripts/win2k/iisemulator-0.95

/iisemul8.pl"

add windows-web tcp port 139 open

add windows-web tcp port 137 open

http://www.honeyd.org/
http://www.monkey.org/~provos/libevent/
http://libdnet.sourceforge.net/
http://www.tcpdump.org/
http://www.citi.umich.edu/u/provos/honeyd/contrib.html

add windows-web tcp port 5900 "sh scripts/win2k/vnc.sh"

add windows-web udp port 137 open

add windows-web udp port 135 open

create windows-xchng

set windows-xchng personality "MS Windows2000 Professional RC1/W2K Advance Server Beta3"

set windows-xchng default tcp action reset

set windows-xchng default udp action reset

add windows-xchng tcp port 25 "sh scripts/win2k/exchange-smtp.sh"

add windows-xchng tcp port 110 "sh scripts/win2k/exchange-pop3.sh"

add windows-xchng tcp port 119 "sh scripts/win2k/exchange-nntp.sh"

add windows-xchng tcp port 143 "sh scripts/win2k/exchange-imap.sh"

add windows-xchng tcp port 5900 "sh scripts/win2k/vnc.sh"

add windows-xchng tcp port 139 open

add windows-xchng tcp port 137 open

add windows-xchng udp port 137 open

add windows-xchng udp port 135 open

Linux 2.4.x computer

create linux

set linux personality "Linux 2.4.7 (X86)"

set linux default tcp action reset

set linux default udp action reset

add linux tcp port 110 "sh scripts/pop3.sh"

add linux tcp port 25 "sh scripts/smtp.sh"

add linux tcp port 21 "sh scripts/ftp.sh"

And then bind them to the IP addresses that you want to use:

bind 192.168.0.10 windows-web

bind 192.168.0.11 windows-xchng

bind 192.168.0.12 linux

Save this configuration file in a good place (e.g., /usr/local/share/honeyd/honeyd.conf). Then start

honeyd and arpd like this:

arpd 192.168.0.10-192.168.0.12

cd /usr/local/share/honeyd

honeyd -p nmap.prints -x xprobe2.conf -a nmap.assoc \

 -0 pf.os -f honeyd.conf

honeyd[5861]: started with -p nmap.prints -x xprobe2.conf -a nmap.assoc -0 pf.os -f

honeyd.conf

honeyd[5861]: listening on eth0: (arp or ip proto 47 or (ip)) and not ether src

00:0c:29:e2:2b:c1

Honeyd starting as background process

Now try running Nmap on the IP addresses that honeyd is handling:

nmap -sS -sU -O 192.168.0.10-12

Starting nmap V. 3.00 (www.insecure.org/nmap/)

Interesting ports on (192.168.0.10):

(The 3063 ports scanned but not shown below are in state: closed)

Port State Service

80/tcp open http

135/udp open loc-srv

137/tcp open netbios-ns

137/udp open netbios-ns

139/tcp open netbios-ssn

5900/tcp open vnc

Remote operating system guess: MS Windows2000 Professional RC1/W2K

 Advance Server Beta3

Uptime 2.698 days (since Sun Jan 11 03:52:35 2004)

Interesting ports on (192.168.0.11):

(The 3060 ports scanned but not shown below are in state: closed)

Port State Service

25/tcp open smtp

110/tcp open pop-3

119/tcp open nntp

135/udp open loc-srv

137/tcp open netbios-ns

137/udp open netbios-ns

139/tcp open netbios-ssn

143/tcp open imap2

5900/tcp open vnc

Remote operating system guess: MS Windows2000 Professional RC1/W2K Advance Server Beta3

Uptime 2.172 days (since Sun Jan 11 16:29:38 2004)

Interesting ports on (192.168.0.12):

(The 1598 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

25/tcp open smtp

110/tcp open pop-3

Remote operating system guess: Linux 2.4.7 (X86)

You can certainly see that honeyd fools Nmap. But what happens when you try to access one of

the services that are purportedly running? Try connecting to the port 25 of the fake Windows mail

server:

$ telnet 192.168.0.11 25

Trying 192.168.0.11...

Connected to 192.168.0.11.

Escape character is '^]'.

220 bps-pc9.local.mynet Microsoft ESMTP MAIL Service, Version: 5.0.2195.5329 ready at

Mon Jan 12 12:55:04 MST 2004

EHLO kryten

250-bps-pc9.local.mynet Hello [kryten]

250-TURN

250-ATRN

250-SIZE

250-ETRN

250-PIPELINING

250-DSN

250-ENHANCEDSTATUSCODES

250-8bitmime

250-BINARYMIME

250-CHUNKING

250-VRFY

250-X-EXPS GSSAPI NTLM LOGIN

250-X-EXPS=LOGIN

250-AUTH GSSAPI NTLM LOGIN

250-AUTH=LOGIN

250-X-LINK2STATE

250-XEXCH50}

250 OK

Pretty effective at first glance isn't it? If you'd like to specify some real services for attackers to

play with, you can use the proxy keyword to forward any port to a host on another machine. For

example, this will forward SSH requests from our imaginary Linux host to the machine at

192.168.1.100:

add linux tcp port 22 proxy 192.168.0.100:22

In addition to running the service emulation scripts, honeyd can limit inbound or outbound

bandwidth, or even slow down access to a particular service. This can be used to tie up spammer's

resources, by holding open an apparently open mail relay. The possibilities provided by honeyd are

limited only by your imagination and the time you're willing to spend building your virtual fly-

catching network.

Hack 95 Record Honeypot Activity

Keep track of everything that happens on your honeypot.

Once an attacker has fallen prey to your honeypot and gained access to it, it is

critical that you monitor all activity on that machine. By monitoring every tiny bit of

activity on your honeypot, you can not only learn the intentions of your uninvited

guest, but can often learn about new techniques for compromising a system as the

intruder tries to gain further access. Besides, if you're not interested in what

attackers are trying to do, why run a honeypot at all?

One of the most effective methods for tracking every packet and keystroke is to use

a kernel-based monitoring tool. This way nearly everything that the attacker does on

your honeypot can be monitored, even if the attackers use encryption to protect

their data or network connection. One powerful package for monitoring a honeypot

at the kernel level is Sebek (http://www.honeynet.org/tools/sebek/).

Sebek is a loadable kernel module for Linux and Solaris that intercepts key system

calls in the kernel and monitors them for interesting information. It then transmits

the data to a listening server and hides the presence of the transmissions from the

local system. Sebek is actually made up of two kernel modules. The first, sebek.o,

actually does the monitoring. The other module is cleaner.o, which protects sebek.o

from being discovered.

To build the kernel modules on Linux, first make sure that /usr/src/linux-2.4 points

to the source code of the kernel that you want to compile the modules for. Either

unpack the kernel source under this directory or symlink it to an existing kernel

source tree. You can then download the source distribution, unpack it, and build it

with the usual commands:

$./configure

$ make

This will generate a tar archive containing the kernel modules and an installer script.

Copy this archive to your honeypot to complete the installation.

Here's what's inside:

$ tar tf sebek-linux-2.1.4-bin.tar

sebek-linux-2.1.4-bin/

sebek-linux-2.1.4-bin/sebek.o

sebek-linux-2.1.4-bin/cleaner.o

http://www.honeynet.org/tools/sebek/

sebek-linux-2.1.4-bin/sbk_install.sh

Before installing the modules on your honeypot, you'll need to edit the

sbk_install.sh script and modify several variables that tell sebek.o where to send the

information that it collects. These variables are DESTINATION_MAC, DESTINATION_IP,

SOURCE_PORT, and DESTINATION_PORT. These should all be set to point to the Sebek

server that you will build in a moment. Make sure to use the same

DESTINATION_PORT for all honeypots that you'll be operating. In addition, you'll need

to set the MAGIC_VAL variable to the same value on all your honeypots. This variable,

in conjunction with DESTINATION_PORT, is used to hide traffic from other honeypots

that you are operating. If you want Sebek to only collect keystrokes from your

honeypot, you can set the KEYSTROKE_ONLY variable to 1.

Now run the install script on your honeypot:

sh sbk_install.sh

Installing Sebek:

 sebek.o installed successfully

 cleaner.o installed successfully

 cleaner.o removed successfully

Once Sebek is installed, be sure to remove the archive and installation files. The

presence of these files on a system is a pretty clear indication that it is a honeypot,

and it could tip off intruders.

There are two ways to receive the data from Sebek. The simplest is to run the Sebek

server, which will sniff for the information and automatically extract it for you. If you

prefer to collect the data manually, you can use a sniffer on the host that you

configured in the sbk_install.sh script and later use Sebek's data extraction utility to

pull the information out of your packet dumps.

To install the server, download the source distribution, unpack it, and go into the

directory that it created. Then run this command:

$./configure && make

After compilation has finished, become root and run make install. This will install

sbk_extract, sbk_ks_log.pl, and sbk_upload.pl. To extract information sent from a

honeypot, use sbk_extract. You can run it in sniffer mode by using the -i and -p

options to specify which interface to listen on and which destination port to look for,

respectively. If you want to process packets that have already been captured using a

packet capture tool, use the -f option to specify the location of the packet dump

file. Once you've extracted the data, you can use sbk_ks_log.pl to display the

attacker's keystrokes.

Sebek also has an optional web interface that uses PHP and MySQL to allow more

complex queries of the collected data. In addition to logged keystrokes, the web

interface can extract files that have been uploaded to the honeypot. The

sbk_upload.pl script uploads the logs to the web interface. Installation of the web

interface is a bit more involved, since it requires an Apache server, PHP, and a MySQL

4 database. For more details, consult Sebek's homepage at

http://www.honeynet.org/tools/sebek/ .

http://www.honeynet.org/tools/sebek/

Chapter 8. Recovery and Response
Hacks #96-100

Section 96. Image Mounted Filesystems

Section 97. Verify File Integrity and Find Compromised Files

Section 98. Find Compromised Packages with RPM

Section 99. Scan for Root Kits

Section 100. Find the Owner of a Network

Hacks #96-100

Incident recovery and response is a very broad topic, and there are many opinions

on the proper methods to use and actions to take once an intrusion has been

discovered. Just as the debate rages on regarding vi versus emacs, Linux versus

Windows, and BSD versus everything else, there is much debate in the computer

forensics crowd on the "clean shutdown" versus "pull the plug" argument. A whole

book could be written on recovering from and responding to an incident since there

are many things to consider when doing so, and the procedure you should use is far

from well defined.

With this in mind, this chapter is not meant to be a guide on what to do when you

first discover an incident, but it does show you how to perform tasks that you might

decide to undertake in the event of a successful intrusion. In reading this chapter,

you will learn how to properly create a filesystem image to use for forensic

investigation of an incident, methods for verifying that files on your system haven't

been tampered with, and some ideas on how to quickly track down the owner of an

IP address.

Hack 96 Image Mounted Filesystems

Make a bit-for-bit copy of your system's disk for forensic analysis.

Before you format and reinstall the operating system on a recently compromised

machine, you should take the time to make duplicates of all the data stored on the

system. Having an exact copy of the contents of the system is not only invaluable for

investigating a break-in, but may be necessary for pursuing any future legal actions.

Before you begin, you should make sure that your md5sum, dd, and fdisk binaries are

not compromised (you are running Tripwire [Hack #97] or otherwise have installed

your packages using RPM [Hack #98], right?).

But hang on a second. Once you start wondering about the integrity of your system,

where do you stop? Hidden processes could be running, waiting for the root user to

log in on the console and ready to remove all evidence of the break-in. Likewise, there

could be scripts installed to run at shutdown to clean up log entries and delete any

incriminating files. Once you've determined that it is likely that a machine has been

compromised, you may want to simply power down the machine (yes, just switch it

off!) and boot from an alternate media. Use a boot CD or another hard drive that has

a known good copy of the operating system. That way you can know without a doubt

that you are starting the system from a known state, eliminating the possibility of

hidden processes that could taint your data before you can copy it. The downside to

this procedure is that it will obviously destroy any evidence of running programs or

data stored on a RAM disk. However, chances are very good that the intruder has

installed other backdoors that will survive a reboot, and these changes will most

certainly be saved to the disk.

To make a bit-for-bit copy of our disks, we'll use the dd command. But before we do

this we'll generate a checksum for the disk so that we can check our copy against the

disk contents, to ensure that it is indeed an exact copy.

To generate a checksum for the partition we wish to image, run this command:

md5sum /dev/hda2 > /tmp/hda2.md5

In this case we're using the second partition of the first IDE disk on a Linux system.

Now that that's out of the way, it's time to make an image of the disk:

dd if=/dev/hda of=/tmp/hda.img

Note that you will need enough space in /tmp to hold a copy of the entire /dev/hda

hard drive. This means that /tmp shouldn't be a RAM disk and should not be stored

on /dev/hda. Write it to another hard disk altogether.

Why do you want to image the whole disk? If you image just a partition, it is not an

exact copy of what is on the disk. An attacker could store information outside of the

partition, and this wouldn't be copied if you just imaged the partition itself. In any

case, we can always reconstruct a partition image as long as we have an image of the

entire disk.

In order to create separate partition images, we will need some more information.

Run fdisk to get the offsets and sizes for each partition in sectors. To get the

sectors offsets for the partition, run this:

fdisk -l -u /dev/hda

Disk /dev/hda: 4294 MB, 4294967296 bytes

255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors

Units = sectors of 1 * 512 = 512 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 * 63 208844 104391 83 Linux

/dev/hda2 208845 7341704 3566430 83 Linux

/dev/hda3 7341705 8385929 522112+ 82 Linux swap

Be sure to save this information for future reference, just in case you want to create

the separate image files at a later date.

Now create an image file for the second partition:

dd if=hda.img of=hda2.img bs=512 skip=208845 count=$[7341704-208845]

7132859+0 records in

7132859+0 records out

Note that the count parameter does some shell math for us: the size of the partition

is the location of the last block (7341704) minus the location of the first block

(208845). Be sure that the bs parameter matches the block size reported by fdisk

(usually 512, but it's best to check it when you run fdisk). Finally, we'll generate a

checksum of the image file and then compare it against the original one we created:

md5sum hda2.img > /tmp/hda2.img.md5 && diff /tmp/hda2.md5 /tmp/hda2.img.md5

The checksum for the image matches that of the actual partition exactly, so we know

we have a good copy. Now you can rebuild the original machine and look through the

contents of the copy at your leisure.

Hack 97 Verify File Integrity and Find Compromised Files

Use Tripwire to alert you to compromised files or verify file integrity in the

event of a compromise.

One tool that can help you detect intrusions on a host and also ascertain what

happened after the fact is Tripwire (http://sourceforge.net/projects/tripwire).

Tripwire is part of a class of tools known as file integrity checkers, which can detect

the presence of important changed files on your systems. This is desirable because

intruders who have gained access to a system will often install what's known as a

root kit, in an attempt to both cover their tracks and maintain access to the system.

A root kit usually accomplishes this by modifying key operating system utilities such

as ps, ls, and other programs that could give away the presence of a backdoor

program. This usually means that these programs will be patched to not report that

a certain process is active or that certain files exist on the system. Attackers could

also modify the system's MD5 checksum program (e.g., md5 or md5sum) to report

correct checksums for all the binaries that they have replaced. Since using MD5

checksums is usually one of the primary ways to verify whether a file has been

modified, it should be clear that something else is sorely needed.

This is where Tripwire comes in handy. It stores a snapshot of your files in a known

state, so you can periodically compare the files against the snapshot to discover

discrepancies. With this snapshot, Tripwire can track changes in a file's size, inode

number, permissions, or other attributes, such as the file's contents. To top all of

this off, Tripwire encrypts and signs its own files, to detect if it has been

compromised itself.

Tripwire is driven by two main components: a policy and a database. The policy lists

all files and directories that Tripwire should snapshot, along with rules for identifying

violations (i.e., unexpected changes). For example, a simple policy might treat any

changes in /root, /sbin, /bin, and /lib as violations. The Tripwire database contains

the snapshot itself, created by evaluating the policy against your filesystems. Once

setup is complete, you can compare filesystems against the snapshot at any time,

and Tripwire will report any discrepancies.

Along with the policy and database, Tripwire also has configuration settings, stored

in a file that controls global aspects of its behavior. For example, the configuration

specifies the locations of the database, policy file, and tripwire executable.

Tripwire uses two cryptographic keys to protect its files. The site key protects the

policy file and the configuration file, and the local key protects the database and

generated reports. Multiple machines with the same policy and configuration may

share a site key, but each machine must have its own local key for its database and

reports.

http://sourceforge.net/projects/tripwire

One caveat with Tripwire is that its batch-oriented method of integrity checking

gives intruders a window of opportunity to modify a file after it has been

legitimately modified and before the next integrity check has been run. The modified

file will be flagged, but it will be expected (because you know that the file is

modified) and probably dismissed as a legitimate change to the file. For this reason,

it is best to update your Tripwire snapshot as often as possible. Failing that, you

should note the exact time that you modified a file, so you can compare it with the

modification time that Tripwire reports.

Tripwire is available with the latest versions of Red Hat and as a port on FreeBSD.

However, if you're not running either of those, you'll need to compile it from source.

To compile Tripwire, download the source package and unpack it. Next, check

whether you have a symbolic link from /usr/bin/gmake to /usr/bin/make. (Operating

systems outside the world of Linux don't always come with GNU make, so Tripwire

explicitly looks for gmake, but this is simply called make on most Linux systems.) If

you don't have such a link, create one.

Another thing to check for is a full set of subdirectories in /usr/share/man. Tripwire

will need to place manpages in man4, man5, and man8. On systems where these are

missing, the installer will create files named after those directories, rather than

creating directories and placing the files within the appropriate ones. For instance, a

file called /usr/man/man4 would be created instead of a directory of the same name

containing the appropriate manual pages.

Now change your working directory to Tripwire source's root directory (e.g.,

./tripwire-2.3.1-2) and read the README and INSTALL files. Both are brief but

important.

Finally, change to the source tree's src directory (e.g., ./tripwire-2.3.1-2/src) and

make any necessary changes to the variable definitions in src/Makefile. Be sure to

verify that the appropriate SYSPRE definition is uncommented (SYSPRE = i686-pc-

linux or SYSPRE = sparc-linux, etc.).

Now you're ready to compile. While still in Tripwire's src directory, enter this

command:

$ make release

Then, after compilation has finished, run these commands:

$ cd ..

$ cp ./install/install.cfg .

$ cp ./intall/install.sh

Now open install.cfg with your favorite text editor to fine-tune the configuration

variables. While the default paths are probably fine, you should at the very least

examine the Mail Options section, which is where we initially tell Tripwire how to

route its logs. Note that these settings can be changed later.

If you set TWMAILMETHOD=SENDMAIL and specify a value for TWMAILPROGRAM, Tripwire

will use the specified local mailer (sendmail by default) to deliver its reports to a

local user or group. If instead you set TWMAILMETHOD=SMTP and specify values for

TWSMTPHOST and TWSMTPPORT, Tripwire will mail its reports to an external email

address via the specified SMTP server and port.

Once you are done editing install.cfg, it's time to install Tripwire. While still in the

root directory of the Tripwire source distribution, enter the following:

sh ./install.sh

You will be prompted for site and local passwords: the site password protects

Tripwire's configuration and policy files, whereas the local password protects

Tripwire's databases and reports. This allows the use of a single policy across

multiple hosts, to centralize control of Tripwire policies but distribute responsibility

for database management and report generation.

If you do not plan to use Tripwire across multiple hosts with shared policies, there's

nothing wrong with setting the site and local Tripwire passwords on a given system

to the same string. In either case, choose a strong passphrase that contains some

combination of upper- and lowercase letters, punctuation (which can include

whitespace), and numerals.

When you install Tripwire (whether via binary package or source build), a default

configuration file is created, /etc/tripwire/tw.cfg. You can't edit this file, because it's

an encrypted binary, but for your convenience, a clear-text version of it, twcfg.txt,

should also reside in /etc/tripwire. If it does not, you can create the text version

with this command:

twadmin --print-cfgfile > /etc/tripwire/twcfg.txt

By editing this file, you can make changes to the settings you used when installing

Tripwire, and you can change the location where Tripwire will look for its database.

This can be done by setting the DBFILE variable. One interesting use of this is to set

the variable to a directory within the /mnt directory hierarchy. Then, after the

database has been created you can copy it to a CD-ROM and remount it there

whenever you need to perform integrity checks.

After you are done editing the configuration file, you can re-encrypt it by running

this command:

twadmin --create-cfgfile --site-keyfile ./site.key twcfg.txt

You should also remove the twcfg.txt file.

You can then initialize Tripwire's database by running this command:

tripwire --init

Since this uses the default policy file that Tripwire installed, you will probably see

errors related to files and directories not being found. These errors are nonfatal, and

the database will finish initializing. If you want to get rid of these errors, you can

edit the policy and remove the files that were reported as missing.

First you'll need to decrypt the policy file into an editable plain text format. You can

do this by running the following command:

twadmin --print-polfile > twpol.txt

Then comment out any files that were reported as missing. You will probably want

to look through the file and determine whether any files that you would like to

catalog aren't already in there. For instance, you will probably want to monitor all

SUID files on your system [Hack #2]. Tripwire's policy-file language can allow for

far more complex constructs than simply listing one file per line; read the

twpolicy(4) manpage for more information if you'd like to use some of these

features.

After you've updated your policy, you'll also need to update Tripwire's database. You

can do this by running the following command:

tripwire --update-policy twpol.txt

To perform checks against your database, run this command:

tripwire --check

This will print a report to the screen and leave a copy of it in /var/lib/tripwire/report.

If you want Tripwire to automatically email the report to the configured recipients,

you can add --email-report to the end of the command. You can view the reports

by running twprint.

For example:

twprint --print-report --twrfile \

/var/lib/tripwire/report/colossus-20040102-205528.twr

Finally, to reconcile changes that Tripwire reports with its database, you can run a

command similar to this one:

tripwire --update --twrfile \

/var/lib/tripwire/report/colossus-20040102-205528.twr

You can and should schedule Tripwire to run its checks as regularly as possible. In

addition to keeping your database in a safe place, such as on a CD-ROM, you'll also

want to make backup copies of your configuration, policy, and keys. Otherwise you

will not perform an integrity check in the event that someone (malicious or not)

deletes them.

See Also

twpolicy (4)

The section "Using Tripwire" in Building Secure Servers with Linux, by Michael

D. Bauer (O'Reilly)

Hack 98 Find Compromised Packages with RPM

Verify operating system installed files in an RPM-based distribution.

So you've had a compromise and need to figure out which files (if any) were

modified by the intruder, but you didn't install Tripwire? Well, all is not lost if your

distribution uses RPM for its package management system. While not as powerful as

Tripwire, RPM can be useful for finding to what degree a system has been

compromised. RPM keeps MD5 signatures for all the files it has ever installed. We

can use this functionality to check the packages on a system against its signature

database. In addition to MD5 checksums, you can also check a file's size, user,

group, mode, and modification time against that which is stored in the system's

RPM database.

To verify a single package, run this:

rpm -V

package

If the intruder modified any binaries, it's very likely that the ps command was one of

them. Let's check its signature:

which ps

/bin/ps

rpm -V `rpm -qf /bin/ps`

S.5....T /bin/ps

Here we see from the S, 5, and T that the file's size, checksum, and modification

time has changed from when it was installed�not good at all. Note that only files

that do not match the information contained in the package database will result in

output.

If we want to verify all packages on the system, we can use the usual rpm option

that specifies all packages, -a:

rpm -Va

S.5....T /bin/ps

S.5....T c /etc/pam.d/system-auth

S.5....T c /etc/security/access.conf

S.5....T c /etc/pam.d/login

S.5....T c /etc/rc.d/rc.local

S.5....T c /etc/sysconfig/pcmcia

.......T c /etc/libuser.conf

S.5....T c /etc/ldap.conf

.......T c /etc/mail/sendmail.cf

S.5....T c /etc/sysconfig/rhn/up2date-uuid

.......T c /etc/yp.conf

S.5....T /usr/bin/md5sum

.......T c /etc/krb5.conf

There are other options that can be used to limit what gets checked on each file.

Some of the more useful ones are -nouser, -nogroup, -nomtime, and -nomode. These

can be used to eliminate a lot of the output that results from configuration files that

you've modified.

Note that you'll probably want to redirect the output to a file, unless you narrow

down what gets checked by using the command-line options. Running rpm -Va

without any options can result in quite a lot of output resulting from modified

configuration files and such.

This is all well and good, but ignores the possibility that someone has compromised

key system binaries and that they may have compromised the RPM database as well.

If this is the case, we can still use RPM, but we'll need to obtain the file the package

was installed from in order to verify the installed files against it.

The worst-case scenario is that the rpm binary itself has been compromised. It can

be difficult to be certain of this unless you boot from an alternate media, as

mentioned earlier. If this is the case, you should locate a safe rpm binary to use for

verifying the packages.

First find the name of the package that owns the file. You can do this by running:

rpm -qf

filename

Then you can locate that package from your distribution media, or download it from

the Internet. After doing so, you can verify the installed files against what's in the

package using this command:

rpm -Vp

package file

RPM can be used for quite a number of useful things, including verifying the

integrity of system binaries. However, it should not be relied on for this purpose. If

at all possible, something like Tripwire [Hack #97] or AIDE

(http://sourceforge.net/projects/aide) should be used instead.

http://sourceforge.net/projects/aide

Hack 99 Scan for Root Kits

Use chkrootkit to determine the extent of a compromise.

If you suspect that you have a compromised system, it is a good idea to check for

root kits that the intruder may have installed. In short, a root kit is a collection of

programs that intruders often install after they have compromised the root account

of a system. These programs will help the intruders clean up their tracks, as well as

provide access back into the system. Because of this, root kits will sometimes leave

processes running so that the intruder can come back easily and without the system

administrator's knowledge. This means that some of the system's binaries (like ps,

ls, and netstat) will need to be modified by the root kit in order to not give away

the backdoor processes that the intruder has put in place. Unfortunately, there are

so many different root kits that it would be far too time-consuming to learn the

intricacies of each one and look for them manually. Scripts like chkrootkit

(http://www.chkrootkit.org) will do the job for you automatically.

In addition to detecting over 50 different root kits, chkrootkit will also detect

network interfaces that are in promiscuous mode, altered lastlog files, and altered

wtmp files. These files contain times and dates of when users have logged on and off

the system, so if they have been altered, this is evidence of an intruder. In addition,

chkrootkit will perform tests in order to detect kernel module-based root kits. C

programs that are called by the main chkrootkit script perform all of these tests.

It isn't a good idea to install chkrootkit on your system and simply run it

periodically, since an attacker may simply find the installation and change it so that

it doesn't detect his presence. A better idea may be to compile it and put it on

removable or read-only media. To compile chrootkit, download the source package

and extract it. Then go into the directory that it created and type make sense.

Running chkrootkit is as simple as just typing ./chkrootkit from the directory it

was built in. When you do this, it will print each test that it performs and the result

of the test:

./chrootkit

ROOTDIR is `/'

Checking `amd'... not found

Checking `basename'... not infected

Checking `biff'... not found

Checking `chfn'... not infected

Checking `chsh'... not infected

http://www.chkrootkit.org/

Checking `cron'... not infected

Checking `date'... not infected

Checking `du'... not infected

Checking `dirname'... not infected

Checking `echo'... not infected

Checking `egrep'... not infected

Checking `env'... not infected

Checking `find'... not infected

Checking `fingerd'... not found

Checking `gpm'... not infected

Checking `grep'... not infected

Checking `hdparm'... not infected

Checking `su'... not infected

That's not very interesting, since the machine hasn't been infected (yet). chrootkit

can also be run on disks mounted in another machine; just specify the mount point

for the partition with the -r option, like this:

./chrootkit -r /mnt/hda2_image

Also, since chrootkit depends on several system binaries, you may want to verify

them before running the script (using the Tripwire [Hack #97] or RPM [Hack #98]

methods). These binaries are awk, cut, egrep, find, head, id, ls, netstat, ps,

strings, sed, and uname. However, if you have known good backup copies of these,

you can specify the path to them by using the -p option. For instance, if you copied

them to a CD-ROM and then mounted it under /mnt/cdrom, you would use a

command like this:

./chrootkit -p /mnt/cdrom

You can also add multiple paths by separating each one with a :. Instead of

maintaining a separate copy of each of these binaries, you could simply keep a

statically compiled copy of BusyBox handy (http://www.busybox.net). Intended for

embedded systems, BusyBox can perform the functions of over 200 common

binaries, and does so using a very tiny binary with symlinks. A floppy, CD, or USB

keychain (with the read-only switch enabled) with chkrootkit and a static BusyBox

installed can be a quick and handy tool for checking the integrity of your system.

http://www.busybox.net/

Hack 100 Find the Owner of a Network

Track down network contacts using WHOIS databases.

Looking through your IDS logs, you've seen some strange traffic coming from

another network across the Internet. When you look up the IP address in DNS, it

resolves as something like dhcp-103.badguydomain.com. Who do you contact to

help track down the person who sent this traffic? You're probably already aware that

you can use the whois command to find out contact information for owners of

Internet domain names. If you haven't used whois, it's as simple as typing, well,

"whois":

$ whois badguydomain.com

Registrant:

 Dewey Cheatum

 Registered through: GoDaddy.com

 Domain Name: BADGUYDOMAIN.COM

 Domain servers in listed order:

 PARK13.SECURESERVER.NET

 PARK14.SECURESERVER.NET

 For complete domain details go to:

 http://whois.godaddy.com

Unfortunately, this whois entry isn't as helpful as it might be. Normally,

administrative and technical contacts are listed, complete with a phone number and

email and snail mail addresses. Evidently, godaddy.com has a policy of releasing this

information only through their web interface, apparently to cut down on spam

harvesters. But if the registrant's name is listed as "Dewey Cheatum," how accurate

do you think the rest of this domain record is likely to be? Although domain

registrants are "required" to give legitimate information when setting up a domain, I

can tell you from experience that using whois in this way is a great tool for tracking

down honest people.

file:///tmp/calibre_4.11.2_tmp_OJYtXd/HOGYde_pdf_out/godaddy.com

Since this approach doesn't get you anywhere, what other options do you have? You

can use the whois command again, this time using it to query the number registry

for the IP address block of the offending address.

Number registries are entities that owners of large blocks of IP addresses must

register with, and are split up according to geographic region. The main difficulty is

picking the correct registry to query, but the WHOIS server for ARIN (American

Registry for Internet Numbers) is generally the best bet�it will tell you the correct

registry to query if the IP address is not found in its own database.

With that in mind, let's try out a query using the offending IP address:

whois -h whois.arin.net 208.201.239.103

[Querying whois.arin.net]

[whois.arin.net]

Final results obtained from whois.arin.net.

Results:

UUNET Technologies, Inc. UUNET1996B (NET-208-192-0-0-1)

 208.192.0.0 - 208.255.255.255

SONIC.NET, INC. UU-208-201-224 (NET-208-201-224-0-1)

 208.201.224.0 - 208.201.255.255

ARIN WHOIS database, last updated 2004-01-18 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

Our query returned multiple results, which will happen sometimes when an owner of

a larger IP block has delegated a subblock to another party. In this case, UUNET has

delegated a subblock to Sonic.net.

Now we'll run a query with Sonic.net's handle:

whois -h whois.arin.net NET-208-201-224-0-1

Checking server [whois.arin.net]

Results:

OrgName: SONIC.NET, INC.

OrgID: SNIC

Address: 2260 Apollo Way

City: Santa Rosa

StateProv: CA

PostalCode: 95407

Country: US

ReferralServer: rwhois://whois.sonic.net:43

NetRange: 208.201.224.0 - 208.201.255.255

CIDR: 208.201.224.0/19

NetName: UU-208-201-224

NetHandle: NET-208-201-224-0-1

Parent: NET-208-192-0-0-1

NetType: Reallocated

Comment:

RegDate: 1996-09-12

Updated: 2002-08-23

OrgTechHandle: NETWO144-ARIN

OrgTechName: Network Operations

OrgTechPhone: +1-707-522-1000

OrgTechEmail: noc@sonic.net

ARIN WHOIS database, last updated 2004-01-18 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

From the output, you can see that we have a contact listed with a phone number

and email. This is most likely the ISP who serves the miscreant who is causing the

trouble. Now you have a solid contact who should know exactly who is behind

badguydomain.com. You can let them know about the suspicious traffic you're

seeing, and get the situation resolved.

Incidentally, you may have trouble using whois if you are querying some of the new

TLDs (such as .us, .biz, .info, etc.). One great shortcut for automatically finding the

proper whois server is to use the whois proxy at geektools.com . It automatically

forwards your request to the proper whois server, based on the TLD you are

requesting. I specify an alias such as this in my .profile to always use the geektools

proxy:

alias whois='whois -h whois.geektools.com'

Now when I run whois from the command line, I don't need to remember the

address of a single whois server. The folks at geektools have a bunch of other nifty

tools to make sysadmin tasks easier. Check them out at http://geektools.com .

�Rob Flickenger

http://geektools.com/

Colophon

Our look is the result of reader comments, our own experimentation, and feedback

from distribution channels. Distinctive covers complement our distinctive approach

to technical topics, breathing personality and life into potentially dry subjects.

The image on the cover of Network Security Hacks is barbed wire. The type of

barbed wire pictured in the cover image was patented by Joseph Glidden in 1874.

Glidden improved on earlier attempts at manufacturing wire fencing by fashioning

sharp barbs, spacing them along a smooth wire, and then twisting another wire

around the first to hold the barbs in place. Advertised as "Cheaper than dirt and

stronger than steel," barbed wire was immediately adopted by farmers in the

American west as a way to control their herds. The days of free-roaming cattle and

cowboys were soon numbered, but battles over barbs were fought both in court and

on the ranch. Opponents called barbed wire "the Devil's rope," and the Cole Porter

song "Don't Fence Me In" mourned this change in the western landscape. Barbed

wire was here to stay, though--in addition to agricultural use, it has become a

ubiquitous component of warfare and is a common feature of high-security areas

such as prisons.

Genevieve d'Entremont was the production editor and copyeditor for Network

Security Hacks . Brian Sawyer proofread the book. Philip Dangler and Claire Cloutier

provided quality control. Jamie Peppard provided production support. Ellen

Troutman-Zaig wrote the index. Rob Flickenger wrote the Preface.

Hanna Dyer designed the cover of this book, based on a series design by Edie

Freedman. The cover image is a photograph from gettyimages.com . Emma Colby

produced the cover layout with QuarkXPress 4.1 using Adobe's Helvetica Neue and

ITC Garamond fonts.

Melanie Wang designed the interior layout, based on a series design by David

Futato. This book was converted by Andrew Savikas to FrameMaker 5.5.6 with a

format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike

Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the

heading font is Adobe Helvetica Neue Condensed; and the code font is LucasFont's

TheSans Mono Condensed. The illustrations that appear in the book were produced

by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe

Photoshop 6. This colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John

Chodacki, Becki Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion

and cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki,

Ellie Cutler, and Jeff Liggett.

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

! (logical NOT) operator

 matching IP addresses and ports for Snort rules

 TCP flag matching, Snort rules

<> (direction operator), in Snort rules

* operator, TCP flag matching in Snort rules

+ operator, TCP flag matching in Snort rules

-> (direction operator), in Snort rules

-nolisten tcp option for startup commands

../ character sequence in requests

.rej files, finding

/dev/mem and /dev/kmem, preventing access to

/proc directory, restricting access with grsecurity

: (colon), in port ranges for Snort rules

| character

 enclosing hexadecimal vales in Snort rules

 searching on multiple variables

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

ac command (process accounting)

Accept header, logging requests without

accept option, SnortSam

access.conf file (pam_access module)

ACID (Analysis Console for Intrusion Databases)

 archiving database, configuring

 Barnyard logging of Snort events

 database tables, creating for

 graphing, configuring

 libraries used with

 sensor id

ACLs (access control lists)

 application availability, restricting for users

 grsecurity 2nd

 Windows event logs, securing

activate and dynamic actions, Snort rules

Address Resolution Protocol [See ARP]

address space layouts, randomization with grsecurity

address spoofing

 detecting ARP spoofing

 preventing for internal addresses with FilterPacket

ADODB (PHP code library) 2nd

AIDE

alerts

 configuring Snort for

 generated by Spade

 IDS sensor, tracking

 Snort NIDS

 analyzing with Sguil

 handling with Barnyard

 tracking with ACID

 unified output format

Analysis Console for Intrusion Databases [See ACID]

anomalous network behavior, detecting with Spade

Apache web server

 configuring to listen on specific interface

 installing with SSL and suEXEC

 mod_security

append-only (file attribute)

 preventing removal of

applications

 restricting availability to users

 restricting with grsecurity

AppSec program (Windows)

Argus (Audit Record Generation and Utilization System)

 ra command, querying with

 XML output

ARIN (American Registry for Internet Numbers)

ARP (Address Resolution Protocol)

 arpd, starting with honeyd

 cache poisioning

 creating static ARP table

 detecting ARP spoofing

 proxy arp

 sniffdet tool, ARP test

arp command

 finding system MAC address

Arpwatch 2nd

attacks [See also entries under individual attack names]

 filtering rules that help to prevent

auditing

 enabling on Windows systems

 mod_security features for

authenticated gateway, creating

authentication

 MySQL source, using with proftpd

 PAM, controlling login access

authpf shell (OpenBSD)

AutoRPM (system update package)

Avaya Labs, LibSafe technology

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

backdoors

 checking for

 installed during root kit attacks

 listening services that check for

bandwidth usage

 graphing

 tracking for machine with firewall rules

Barnyard

 compiling and installing for Sguil

 using with Snort

 configuring Barnyard

 limited database support

 logging

bash shell

 restricted

 setting up in chroot() environment

binaries, disallowing execution of

 on Linux

 setuid, cautions with sudo utility

 SUID or SGID bit

BIND, securing

 restricting zone transfers

bindip option, SnortSam

bit-for-bit copy of system disks

block-policy option (PacketFilter)

 modifying for specific rules

booting compromised machine from an alternate media

browsers

 acceptable formats for CA certs

 Internet Explorer, listing files opened by

 Mozilla, testing squid proxy

 securing and accelerating with squid proxy over SSH

BSDs

 IPsec connections under FreeBSD

 IPsec connections under OpenBSD

 netstat program, listing listening ports

 OpenBSD and PacketFilter

 securelevels

 systrace, restricting system calls with

buffer overflow attacks

 0x90 in

 avoiding by limiting range of bytes in request strings

 kernel-based, preventing with grsecurity

 stack-based, preventing

BusyBox, performing functions of system binaries

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

C library calls supported by Unix

CA [See Certificate Authority]

cache poisioning (ARP)

CAP_LINUX_IMMUTABLE capability

capabilities model (Linux), modifying

centralized logging, aggregating logs from remote sites

Certificate Authority (CA)

 creating your own

 public and private keys

 distributing CA certificate to clients

 Well-known Certificate Authorities

certificate-signing request

certificates, SSL

 Apache SSL installation

 creating and using with OpenVPN

 creating for use with Sguil

 for SnortCenter sensor

 IMAP and POP, creating for

 Nessus, generating for

 self-signed, creating

CGI interface, running Perl scripts and PHP programs through

CGI scripts, enabling for user directories

chains (Netfilter)

check_ssh plug-in (Nagios)

checksums

 MD5, maintained by RPM for installed files

 modification of system MD5 program by attackers

 system disk, generating for

chkrootkit

chmod command

chpax utility

chroot command

chroot() environment

 availability of other programs within

 BIND, running in

 enhanced security using grsecurity

 MySQL, running in

 services running in

 UID 0, risks of

CIDR notation

 for network addresses

 ranges of IP addresses for Snort rules

clocks (server), synchronizing

code examples, using

commands, logging use by users

compiler-based solutions to stack-smashing attacks

compression

 LZO, use with OpenVPN

 SSH, built-in

connect time, analyzing for users on system

content option, Snort rules 2nd

content type for file upload

cookies, preventing SQL injection in

copying system disks, bit-for-bit

cross-site scripting (XSS) attacks

cryptographic signature verification, automating

cryptography

 encrypted tunnel, VTun

 encrypting IMAP and POP with SSL

 encrypting temp folder on Windows

 encrypting traffic with SSH

 keys for protection of Tripwire files

 opportunistic encryption with FreeS/WAN

 public keys, security concerns with

 SFS (Self-certifying File System)

 SSL encryption

 TLS encryption, setting up for SMTP

curses-based GUI, configuring kernel to enable grsecurity

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

daemon option, SnortSam

data size for packets (Snort, dsize option)

databases

 Barnyard output to

 Barnyard support for

 MySQL [See MySQL]

 NIDS, tracking alerts with ACID

 round-robin database (RRD)

 Snort, configuring to use

 Tripwire database 2nd

dd command

debugging, logging information for

default shares (Windows networks)

defaultkey option, SnortSam

deny policy (PacketFilter)

depth and offset options, Snort rules

DESX encryption algorithm

device nodes

 in chroot() environment

 creating from programs in chroot() environment

 for daemons in sandbox environment

 preventing creation of with grsecurity

directories

 dividing into read-only and read-write

 loose permissions, scanning for

dmesg utility, preceventing nonroot users from using

DNS

 HTTP proxy difficulties with

 SOCKS 4 problems with

 testing by sniffdet tool

 TXT records, using in encrypted connections

domain name, scanning remote Windows systems by

domain registrants, finding

dontblock option, SnortSam

drop option (PacketFilter)

drop, sdrop, and reject rules, Snort_inline

dsize option, Snort rules

Dsniff

dynamic and activate actions, Snort rules

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

echo action, swatch

effective UID (EUID), changing to 0 in chroot() environment

egress filtering of network traffic

Ethereal protocol analyzer

 device name for monitoring, obtaining

 remote capture device, using with

 Sguil, use with

Ethernet addresses, translation of IP addresses to

Ethernet sniffers, detecting remotely

Ettercap

event logs (Windows)

 securing

exec action, swatch

execution of binaries, disallowing

 on Linux

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

facilities and priorities, filtering log messages on

fdisk command

Ffwexec or fwsamW-1 firewall, using with SnortSam

FIFO restrictions (grsecurity)

file attributes, protecting logs with

file command

file integrity checker, Tripwire

file uploads, filter rule that rejects

files

 disabling default sharing on Windows

 integrity verification with RPM

 open

 listing for Windows systems

 listing with lsof utility

 verifying integrity of and finding compromised files

filesystems

 controlling access to

 mounting activity, logging

 image mounted

 NFS, security problems with

 Self-certifying File System (SFS)

filtering

 mod_security features for

 actions to take if request matches the rule

 rules to prevent common attacks

 user-defined filters

 outbound network traffic

 syslog facilities and priorities 2nd

find command

 files ending in .rej, locating

 scanning directories for loose permissions

 scanning for SUID and SGID binaries

fingerprinting attempts on operating systems

firewall rules, nmap and

firewalls

 collecting statistics with ruleset

 configuring to allow IKE connections on FreeBSD

 egress filtering

 HTTP tunneling and

 Netfilter

 MAC filtering with

 Snort integration with

 PacketFilter

 creating authenticated gateway

 packets used for operating-system probes, blocking

 SnortSam, using with

 testing

 Windows

flags option, Snort rules

flexible response (Snort)

format-string attacks

FORWARD chain

forwarding traffic with SSH

FPort tool (for Windows)

fragment reassembly (PacketFilter)

FreeS/WAN

 Linux IPsec connections, using for

 opportunistic encryption with

fsread and fswrite aliases (systrace)

ftester (firewall tester)

ftp daemon (proftpd), using with MySQL authentication source

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

gateway, authenticated

GCC compilers

 -fomit-frame-pointer flag, LibSafe and

 Stackguard and ProPolice versions

 trampoline functions, PaX and

geektools.com, whois proxy

gmake

GMP (GNU multiple precision math library)

GNU make

GnuPG

 querying key servers for key ID and downloading result

 verifying signature of software with

gradm utility

 restricting specific applications

graphical analysis console [See Sguil]

graphing

 PHPlot or JPGraph, using with ACID

 trends on the network

group-writable permissions for directories

groups

 privileged, GIDs for

 resource limits, enforcing

 specifying for scripts executed within virtual host

 specifying for use of sudo

grsecurity

 PaX code, enabling nonexecutable memory pages

 restricting applications with

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

Handle tool (for Windows)

hexadecimal values

 searching packets for with Snort

 URL encoding with

HFNetChk tool (for Windows)

honeyd

 configuring

 required libraries

 running Nmap on IP addresses handled by

 services emulated by, attempts to access

 starting

honeypot activity, monitoring

 Sebek package, using

hosts, ntop statistics for

HTML, use in cross-site scripting attacks

HTTP

 squid proxy over SSH, running

 tunnel connections inside

HTTP headers

 HTTP_ACCEPT header, logging requests without

 HTTP_USER_AGENT and HTTP_HOST, requiring in requests

httpd.conf file, limiting range of bytes in request strings

httptunnel

 downloading and compiling

 web site

Hunt

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

ICMP types and codes

id command

identd daemon

 running under grsecurity

 systrace policy for

ifconfig command

 changing MAC address of Ethernet card used for sniffing

 finding MAC address of an interface

 grsecurity ACLs and

IKE negotiations

 FreeBSD, controlling with racoon

 Linux, controlling with pluto

IMAP, encrypting with SSL

incident recovery and response

 finding compromised packages with RPM

 finding the owner of a network

 image mounted filesystems

 root kits, scanning for

 verifying file integrity and finding compromised files

inetd

 inetd.conf entry for SWAT

 systrace policy, generating for

initial sequence numbers (ISNs)

INPUT chain

Internet domain name, finding owner of

Internet Explorer, listing files opened by

intrusion detection

 detecting anomalous behavior

 distributed stealth sensor network

 network intrusion detection systems (NIDS)

 recording honeypot activity

 sensor network, managing

 Sguil, analyzing Snort events

 simulating network of vulnerable hosts

 Snort NIDS

 alerts, tracking with ACID

 rules, automatically updating

 setting up

 writing your own rules

 Snort_inline, preventing and containing intrusions

 web application intrusions

 mod_security, Apache

inventorying your network

IP addresses

 delegated by block owners to other parties

 direction, specifying for Snort rules

 nonroutable RFC 1918 address, handling with PacketFilter

 PacketFilter table for nonroutable RFC 1918 addresses

 pairing with MAC addresses, monitoring

 querying number registry for address blocks

 scanning ranges of with nmap

 Snort variables for

 SnortSam, specifying for

 source and destination, in Snort rules

 spoofing of, preventing with egress filtering

 translation to hardware Ethernet addresses

 for honeyd responses

IP IDs, randomizing for protection

IP Personality project

IP queue support, Linux kernel

IP Security Policy Management snap-in (Windows)

ip_queue.h file, editing for Snort_inline

IPsec connections

 configuring under FreeBSD

 configuring under Linux

 configuring under OpenBSD

iptables command

 -P (policy) switch

 allowing a particular MAC address

 bandwidth used by particular machine, tracking

 configuring kernel to send pakets to IP queues

 IP Personality patch

 SnortSam, using with

isakmpd (IPsec key-management daemon)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

jail command

jail() 2nd

JavaScript, use in cross-site scripting attacks

JPGraph

 configuring ACID to use

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

Kerberos header files

kernel

 IP queue support

 locking down with grsecurity

 configuring kernel after applying grsecurity

KerneL IP Security (KLIPS)

kernel module-based root kits, chkrootkit tests for

key pairs

 generating for use with SSH server

 security concerns with public keys

 SFS server, creating for

 SSL, creating for Sguil

key servers

keyring, specifying for key IDs

ksh shell, restricted

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

lastcomm command (process accounting)

lastlog files (altered), detection by chkrootkit

lcap utility

ldd command

libdnet

libevent

libipq library (Netfilter)

libnet packet injection library 2nd 3rd

libol library package

libpcap 2nd

libraries

 C library calls supported by Unix

 GMP (GNU multiple precision math librry)

LibSafe, protecting against buffer overflows

limits.conf file (pam_limits module)

Linux

 /etc/pam.d contents on RedHat Linux system

 binary formats used by

 bypassing noexec option for fileysytem mount

 capabilities model, modifying

 grsecurity kernel patch

 IPsec connections, configuring

 kernel support for IP queue

 LibSafe technology

 listening ports and their owning processes, listing

 Netfilter

 Sebek honeypot monitoring module

 system update package (AutoRPM)

 tunneling with VTun and SSH

list open files (lsof) utility

listening services, checking for

 listing listening ports and owning processes with sockstat

 lsof utility, using

 netstat program, using on BSD

 netstat program, using on Linux

log files, protecting from tampering

log levels for syslog facilities

logging

 aggregating logs from remote sites

 Barnyard, used with Snort

 changing maximum log file size (on Windows)

 filesystem mounting with grsecurity

 integrating Windows into syslog

 monitoring logs automatically

 network traffic audit with Argus

 running central syslog server

 securing Windows event logs

 Snort NIDS

 unified output format 2nd

 SnortSam

 Spade IDS

 summarizing logs automatically

 syslog, filtering information into separate files

 user activity with process accounting

login access, controlling with PAM

login keys for SSH

logins

 quick, using SSH client keys

 security concerns with public keys

logon event auditing (Windows)

logwatch tool

loopback interface

 keeping unfiltered (PacketFilter)

 removing filtering from

ls -l command

lsof (list open files) utility

LZO compression

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

MAC (Media Access Control) addresses

 filtering with Netfilter

 pairing with IP addresses, monitoring

 use by Ethernet switches

Mac OS X

 file command, running on a binary

 HTTP proxies, built-in support for

 SOCKS 5 proxies, support for

 TUN/TAP driver

 VPN connections, support for

mail action, swatch

mail transfer agents (MTAs)

 setting up to use TLS

 support for FLS

make

Makefile targets

man-in-the-middle attacks

mark functionality of syslog

masks, ACL

math library, GMP

MD5 checksums

 maintained by RPM for installed files

 program modification by attackers

 system binary, compromise of

Media Access Control [See MAC addresses]

memory pages, nonexecutable

memory, virtual memory management (VMM)

Microsoft Baseline Security Analyzer

Microsoft Knowledge Base articles

Microsoft Network Security Hotfix Checker [See HFNetChk tool]

mknod or mount program in chroot environment

mod_perl and mod_php, incompatibility with suEXEC

mod_security

 auditing features

 filtering features

 POST method requests, scanning

 preventing cross-site scripting attacks

 request normalization features

 Unicode validation

 URL encoding validation

mod_sql

mod_ssl

modules (Perl), for use with Ftester

monitor port

monitoring [See network monitoring]

mounting filesystems

 in chroot() environment

 logging of with grsecurity

 securing mount points

Mozilla, testing squid proxy in

msg option, Snort rules

MySQL

 authentication source, using with proftpd

 Barnyard, using with

 creating database for Sguil

 listening on TCP socket, disabling

 Sebek package, use by

 securing

 chrooted environment, setting up

 disabling LOAD DATA LOCAL INFILE command

 separate my.conf file for utilities and server

 Snort NIDS, using with

 SnortCenter database

mysqltcl package

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

Nagios

 configuration files

 contactgroups.cfg file

 contacts.cfg file

 examples of

 host.cfg

 hostgroup.cfg

 nagios.cfg

 services.cfg

 plug-ins, downloading and installing

name server, attacker scans for vulnerable versions of BIND

named policy (systrace)

NAT (network address translation)

 provided by Internet gateway

 randomizing IP IDs to prevent counting of machines on network

Nessus security scanner

 brute-force logins to services

 clients for

 generating certificate for

 hosts, scanning

 port scans, options for

 reports on scans

 vulnerability types, selecting

Net::PcapUtils Perl module

Net::RawIP Perl module

Net::SSLeay module

NetBIOS name, specifying for remote system

Netfilter

 chains

 iptables command

 libipq library

 MAC filtering with

 rule order

 saving all rules

 stateful packet-inspection engine

 web site for downloads

NetPacket Perl module

netstat program 2nd

network intrusion detection systems (NIDS) [See intrusion detection]

network monitoring

 auditing network traffic

 collecting statistics with firewall rules

 contact groups for hosts

 contacts for notification messages

 graphing trends

 hosts, configuring for

 ntop, running for real-time statistics

 remote monitoring with rpcapd

 services

network owner, finding

network security checker for Windows [See HFNetChk tool]

network segment, scanning under Windows

network time protocol (NTP)

NFS, security problems with

NIDS (network intrusion detection systems) [See intrusion detection]

Nmap

 detecting operating system with

 fooling by emulating another operating system

 inventorying your network

 running on IP addresses handled by honeyd

nobody account (Apache)

nodev, noexec, and nosuid flags (mount)

NOPASSWD: flag (sudo)

ntop tool

NTP (network time protocol)

Ntsyslog

 configuration program, using

number registries for IP address blocks

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

offset and depth options, Snort rules

Oinkmaster, automatically updating Snort rules

op_sguil output plug-in

OpenSSL 2nd [See also SSL]

 installing for Apache

 use of libraries by OpenVPN

OpenVPN [See also VPNs]

 compiling and installing

 LZO compression, using

 tunneling with host system virtual TUN or TAP device

 web site

operating system detection

 blocking OS fingerprinting

 fooling remote OS detection software

 Nmap, using for

operating systems, emulation by honeyd

opportunistic encryption with FreeS/WAN

options entry (sylog-ng.conf)

outbound network traffic, filtering

OUTPUT chain

owner of a network, finding

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

packages (compromised), finding with RPM

packet sniffers

 examining SSH connection tunneled through HTTP

 rpcapd remote capture device, using with

 WinDump

PacketFilter (PF)

 authenticated gateway, creating

 blocking packets used for operating-system probes

 pf.conf file, editing

 defining table of IP addresses

 macros

 options

 packet-filtering rules

 traffic normalization rules

 SnortSam, using with

paging file (Windows), clearing at shutdown

PAM (pluggable authentication modules)

 pam_access module

 pam_limits module

 pam_stack module

 pam_time module

partitions (disk), imaging

passwd program, SUID or SGID bit

passwords [See also authentication]

 command execution without password

patch utility, applying grsecurity patch to kernel

patching system security holes, automation of

PaX (grsecurity)

Pcap-formatted files, creating with Barnyard

Perl modules, necessary for swatch tool

Perl scripts, running through CGI interface

Perl, sensor agents for SnortCenter

permissions

 creating flexible hierarchies with POSIX ACLs

 world- and group-writable

PF [See PacketFilter]

pfctl command

PHP

 libraries for SnortCenter

 programs, running through CGI interface

 Sebek package, use by

 using with ACID

PHPlot

PIDs (process IDs)

 listing for listening services

 stunnel PID file

ping program

 finding system MAC address

 monitoring statistics from web server

pipe action, swatch

PIX firewall, using with SnortSam

pluggable authentication modules [See PAM]

pluto

Point-to-Point Tunneling Protocol [See PPTP tunneling]

poisioning the ARP cache

policies, systrace

 automated generation of

POP, encrypting with SSL

POP3 traffic, encrypting and forwarding with SSH

PoPToP (PPTP server)

 connecting to with Windows machine

port forwarding

 honeyd, using with

 httptunnel, using

 SSH, using as SOCKS proxy

 SSH, using for

 stunnel, using

port security (Ethernet switches)

ports

 monitor port

 open, listing for Windows systems

 scanning for listening services

 SnortSam port option

 specifying for packets in Snort rules

portscan and stream4 preprocessors, Snort 2nd

POST method requests, scanning by mod_security

PPP tunnels, setting up with PPTP tunneling

PPP, using with SSH to create secure VPN tunnel

PPTP (Point-to-Point Tunneling Protocol) tunneling

priorities, for logging

 configuring for syslog-ng

process accounting

 ac command

 lastcomm command

 summarizing with sa command

processes

 increasing security with grsecurity

 listing for listening services

 listing for open files on Windows

 listing for running services on Windows

 memory address space layouts, randomization with grsecurity

proftpd, using with MySQL authentication source

promiscuous mode (network interfaces)

 detecting to prevent intrusion

 detection with chkrootkit

 monitoring with rpcapd

ProPolice

protocol analyzers [See Ethereal protocol analyzer ntop tool]

protocols

 for Snort rule application

 specifying protocol for Snort rule

 stateless

proxies

 httptunnel connections through web proxy

 squid proxy over SSH

 SSH, using as SOCKS proxy

 whois proxy, geektools.com

proxy arp

pseudo-TTY interfaces, PPP daemons operating over

psk.txt file (racoon)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

ra command (Argus)

racoon program, IKE negotiations under FreeBSD

 starting at boot

ranges of IP addresses, scanning with nmap

raw I/O, removing ability for

Registry

 disabling default shares

 Memory Management key, editing

regular expressions for swatch tool

reject rule, Snort_inline

remote machines (Windows), scanning for system updates

replace rule option, Snort_inline

request normalization features, mod_security

resource limits, enforcing

return option (PacketFilter)

root access, selectively granting

root kits

 scanning for

root privileges

 administrative role delegation and

 effective UID (EUID) of 0

 Linux, modifying capabilities for

 services not needing

root user, running nmap as

root-exploitable programs, checking for

round-robin database

rpcapd, remote monitoring with

RPM

 AutoRPM for system updates

 finding compromised packages

RRDtool

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

sa command (process acounting)

Samba, SWAT configuration tool

sandboxed environments [See also chroot(environment)]

 BIND, running in

 restricting services with

 chroot()

 jail()

 security enhancement with grsecurity

scrub rules (PacketFilter)

sdrop rule, Snort_inline

searching packets, Snort rule options

Sebek (honeypot monitoring package)

SecFilter keyword

SecFilterSelective keyword

sectors offsets for a partition

secure tunnels [See tunnels, secure]

securelevels (BSD systems)

security holes (system), automating patching of

security policy

 auditing on Windows

 creating for Windows firewall

 setting up for IPsec connections on FreeBSD

Security Policy Database (SPD)

 FreeBSD, IPsec connections

 Linux, IPsec connections

security scanner (Nessus)

Self-certifying File System (SFS)

self-signed certificates

Sendmail, setting up to use TLS

sensor_id (ACID)

server clocks, keeping synchronized

services

 common port numbers

 emulated by honeyd

 attempts to access

 preventing from binding to an interface

 restricting with sandboxed environments

 running, listing on Windows

 scanning for vulnerabilities with Nessus

session cookies, attacks using

session-timeout values, setting for PacketFilter

seteuid()

setfacl command

setkey utility

setuid()

sfscd (SFS client daemon)

sfskey command

SGID or SUID programs, scanning for

Sguil

 client and server, testing

 compiling and installing Barnyard

 components of

 configuring sguild

 creating a MySQL database

 database tables, creating

 log_packets.sh script, setting up

 op_sguil output plug-in

 sensor agent script, setting up

 sensors, setting up

 SSL, using with

 starting up sguild and xscriptd

 Tcl packages required

 xscriptd, setting up

shared-medium Ethernet networks, sniffers and

shares (default), disabling on Windows

sharing files, using SFS (Self-certifying File System)

shell scripts, SUID or SGID bits on

shells

 exploit with shell code against SSH daemon

 restricted

signature verification, automating

Simple WATCHer [See swatch]

skipinterval option, SnortSam

SMTP (TLS-enabled), setting up

sniffdet tool

 ARP test

 DNS test

SNMP interface statistics (for SNMP daemon on a router)

snmpget utility

Snort GUI for Lamerz [See Sguil]

Snort NIDS

 alerts

 analyzing with Sguil

 tracking with ACID

 automatic rule updates with Oinkmaster

 Barnyard, using to increase performance

 unified output format for Snort

 configuration

 built-in preprocessors

 databases

 editing snort.conf file

 files provided with distribution

 rule signatures

 database support, enabling output plug-in

 downloading and installing

 firewalling with SnortSam

 configuring SnortSam

 firewall communications, setting up

 output plug-ins

 rules that trigger firewall rules

 flexible response

 preventing and containing intrusions with Snort_inline

 rules

 sensor network, managing

 support for sending alerts to a database

 testing in sniffer mode

 writing your own rules

 actions, built-in

 activate and dynamic actions

 defining custom actions

 direction of packets

 IP addresses and ports for packets

 online rule documentation

 options

 protocol, specifying for rule

 rule header and options

SnortCenter

 admin account information, editing

 config.php file, editing

 MySQL database

 sensor agent, adding to main management console

 sensor agents, setting up

 setting up

sockets (open), listing with lsof utility

SOCKS proxy, using SSH as

sockstat command

software authenticity, checking

Solaris

 Sebek honeypot monitoring module

 TUN/TAP driver

source entries (syslog-ng)

Spade IDS

 alerts generated by

SPD [See Security Policy Database]

spoofing addresses

 ARP spoofing

 preventing IP spoofing with egress filtering

 preventing with FilterPacket

SQL-injection attacks

squid proxy over SSH

SSH

 -D switch

 authpf shell and

 exploit launched against daemon, monitoring

 forwarding and encrypting traffic with

 keys, automating client logins

 security concerns with public keys

 login keys, generating for

 PPP, using with to create secure VPN tunnel

 SOCKS proxy, using as

 squid proxy over

 tunneling connection over HTTP with httptunnel

 VTun, using over

SSL

 Apache, installing with

 certificates

 encrypting and tunneling traffic with

 encrypting IMAP and POP with

 OpenVPN, use by

 Sguil, using with 2nd

 SnortCenter sensor, using with

 using for HTTPS with ntop

Stackguard

stacks

 buffer overflows based on

 PAM modules for

startup, running commands out of system rc files

startx command, -nolisten tcp option

stateless protocol

Statistical Anomaly Detection Engine [See Spade IDS]

statistics (network), collecting with firewall rules

stealth mode, running IDS sensors in

sticky bit set on directories, scanning for

stream4 preprocessor, enabling for Snort

strings, searching packets for with Snort

stunnel

 configuration file, stunnel.conf

 forwarding local port to remote port

su utility

sudo utility

suEXEC (Apache)

 enabling and configuring

SUID bit, disabling

SUID files, monitoring on your system

SUID or SGID programs, scanning for

SUID wrapper program, used by Apache

swapping

SWAT (Samba's web-based configuration tool)

swatch (log file monitor)

 regular expressions to match log messages

symlink restrictions (grsecurity)

sysctl.conf file, enabling packet forwarding

syslog

 aggregating logs from remote sites

 Barnyard output to

 centralized server, running

 filtering information into separate files

 integrating Windows into

syslog-ng 2nd

 configuration file entries

 encrypting tunnel for secure traffic between daemons

 filters, defining

 libol library package

 macros

 syslog.conf, translating to source, destination, and log entries

 TCP support

 web site

syslog.conf file, translating to syslog-ng configuration entries

system binaries

 modification by root kits

 performing functions of with BusyBox

 verifying for chrootkit

system calls

 definition of

 interception by Sebek

 restricting [See systrace utility]

system groups, specifying for use of sudo

system logs, protecting from tampering by intruders

system updates

 automating

 Windows, checking for

systrace utility

 aliases

 policies

 policy-generation tool

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S]

[T] [U] [V] [W] [X] [Z]

Tcl packages, required for Sguil

tcltls package

Tclx package

TCP flags of a packet, checking (Snort flags option)

TCP support, syslog-ng

TCP/IP stack, disguising to prevent remote OS detection

TcpFlow 2nd

temporary files folder, encrypting on Windows

throttle action, swatch

time

 connect time for users, analyzing

 NTP (network time protocol)

 pam_time module

Tk-based GUI, configuring kernel to enable grsecurity

TLDs, querying with whois

TLS (Transport Layer Security)

 setting up for SMTP

 VPN connections

ToS (Type-of-Service) field in IP header

traffic normalization rules (PacketFilter)

trampoline functions

Transport Layer Security [See TLS]

trends on the network, graphing

Tripwire

 compiling from source

 configuration file, editing

 configuration settings

 configuration variables, fine-tuning

 cryptographic keys that protect its files

 database

 database, updating

 installing

 policy

 policy file, decrypting and editing

 reports, handling of

 stored snapshots of files

 subdirectories

 vulnerability to file modification by intruders

Trojan horses

 distribution in software

 preventing in common directories

TTYs, PPP daemons operating over pseudo-TTYs

TUN/TAP driver for Solaris or Mac OS X

tunnels, secure

 cross-platform VPN, creating

 encrypting and tunneling traffic with SSL

 forwarding and encrypting traffic with SSH

 HTTP, tunnel connections inside

 IPsec, setting up under FreeBSD

 IPsec, setting up under Linux

 IPsec, setting up under OpenBSD

 opportunistic encryption with FreeS/WAN

 PPP and SSH, using to create secure VPN tunnel

 PPTP tunneling

 squid proxy over SSH

 SSH client keys, quick logins with

 SSH, using as SOCKS proxy

 VTun and SSH, using

 vtund.conf, automatically generating

TXT records [See DNS TXT records]

Type-of-Service (ToS) field in IP header

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

UDP DNS traffic

 rule for FilterPacket

 rules for Netfilter

UDP ports, listening services and

UDP, use by syslogd

UID 0, risks posed in chroot() environment

UIDs for privileged accounts and groups

ulimit command

Unicode validation, mod_security

University of Washington, IMAP daemon

Unix

 host security

 restricted shell environments

 secure mount points

 sharing files securely

 system updates, automating

 VPN, built-in software for

untrusted networks, secure communication over [See tunnels, secure]

URL encoding, validation by mod_security

user-defined security filters

users

 creating for Nessus

 logging activity with process accounting

 resource limits, enforcing

 restricting applications available to

 specifying for scripts executed within virtual host

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

verification of cryptographic signatures

virtual host, configuring for suEXEC

virtual memory management (VMM)

VPNs (virtual private networks)

 built-in functionality in SSH

 cross-platform, creating

 IPsec connections under Linux

 PPP and SSH, using to create secure tunnel

 PPTP tunneling, using

VTun

 tunneling with VTun and SSH

 SSH, VTun over

 tunnel interface on client

 vtund.conf file for client

 vtund.conf file for server

 vtund.conf, automatically generating

vulnerabilities, scanning your network for

vulnerable network hosts, simulating

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

web applications, detecting and preventing intrusions

web browsers [See browsers]

web page (for this book)

web servers [See also Apache web server]

 monitoring with Nagios

Well-known Certificate Authorities

whois command

 finding owner of Internet domain

 querying new TLDs with

 querying number registry for IP address block

Windows

 auditing, enabling

 changing maximum log file size

 checking servers for applied patches

 default shares, disabling

 encrypting temp folder

 firewalling with

 IP Security Policy Management snap-in

 security policy, setting up

 integrating into syslog

 listing open files and owning processes

 listing running services and open ports

 network security checker [See HFNetChk tool]

 OpenVPN

 downloading and compiling

 setting up

 paging file, clearing at shutdown

 PoPToP (PPTP server), connecting to

 restricting applications available to users 2nd

 rpcapd, remote network monitoring with

 securing system logs

 VPN connections using PPTP tunneling

WinDump (command-line packet sniffer)

WinPcap, rpcapd program

world- and group-writable permissions for directories

write action, swatch

wtmp files (altered), detection by chkrootkit

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

X11 server, preventing from listening on TCP port

XML

 output from Argus

 output from nmap

XSS (cross-site scripting) attacks

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T]

[U] [V] [W] [X] [Z]

zone transfers, restricting for DNS servers

	Network Security Hacks
	Table of Contents
	Copyright
	Credits
	About the Author
	Contributors
	Acknowledgments

	Preface
	Why Network Security Hacks?
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Got a Hack?

	Chapter 1. Unix Host Security
	Hacks #1-20
	Hack 1 Secure Mount Points
	Hack 2 Scan for SUID and SGID Programs
	Hack 3 Scan For World- and Group-Writable Directories
	Hack 4 Create Flexible Permissions Hierarchies with POSIX ACLs
	Hack 5 Protect Your Logs from Tampering
	Hack 6 Delegate Administrative Roles
	Hack 7 Automate Cryptographic Signature Verification
	Hack 8 Check for Listening Services
	Hack 9 Prevent Services from Binding to an Interface
	Hack 10 Restrict Services with Sandboxed Environments
	Hack 11 Use proftp with a MySQL Authentication Source
	Hack 12 Prevent Stack-Smashing Attacks
	Hack 13 Lock Down Your Kernel with grsecurity
	Hack 14 Restrict Applications with grsecurity
	Hack 15 Restrict System Calls with Systrace
	Hack 16 Automated Systrace Policy Creation
	Hack 17 Control Login Access with PAM
	Hack 18 Restricted Shell Environments
	Hack 19 Enforce User and Group Resource Limits
	Hack 20 Automate System Updates

	Chapter 2. Windows Host Security
	Hacks #21-30
	Hack 21 Check Servers for Applied Patches
	Hack 22 Get a List of Open Files and Their Owning Processes
	Hack 23 List Running Services and Open Ports
	Hack 24 Enable Auditing
	Hack 25 Secure Your Event Logs
	Hack 26 Change Your Maximum Log File Sizes
	Hack 27 Disable Default Shares
	Hack 28 Encrypt Your Temp Folder
	Hack 29 Clear the Paging File at Shutdown
	Hack 30 Restrict Applications Available to Users

	Chapter 3. Network Security
	Hacks #31-53
	Hack 31 Detect ARP Spoofing
	Hack 32 Create a Static ARP Table
	Hack 33 Firewall with Netfilter
	Hack 34 Firewall with OpenBSD's PacketFilter
	Hack 35 Create an Authenticated Gateway
	Hack 36 Firewall with Windows
	Hack 37 Keep Your Network Self-Contained
	Hack 38 Test Your Firewall
	Hack 39 MAC Filtering with Netfilter
	Hack 40 Block OS Fingerprinting
	Hack 41 Fool Remote Operating System Detection Software
	Hack 42 Keep an Inventory of Your Network
	Hack 43 Scan Your Network for Vulnerabilities
	Hack 44 Keep Server Clocks Synchronized
	Hack 45 Create Your Own Certificate Authority
	Hack 46 Distribute Your CA to Clients
	Hack 47 Encrypt IMAP and POP with SSL
	Hack 48 Set Up TLS-Enabled SMTP
	Hack 49 Detect Ethernet Sniffers Remotely
	Hack 50 Install Apache with SSL and suEXEC
	Hack 51 Secure BIND
	Hack 52 Secure MySQL
	Hack 53 Share Files Securely in Unix

	Chapter 4. Logging
	Hacks #54-60
	Hack 54 Run a Central Syslog Server
	Hack 55 Steer Syslog
	Hack 56 Integrate Windows into Your Syslog Infrastructure
	Hack 57 Automatically Summarize Your Logs
	Hack 58 Monitor Your Logs Automatically
	Hack 59 Aggregate Logs from Remote Sites
	Hack 60 Log User Activity with Process Accounting

	Chapter 5. Monitoring and Trending
	Hacks #61-66
	Hack 61 Monitor Availability
	Hack 62 Graph Trends
	Hack 63 Run ntop for Real-Time Network Stats
	Hack 64 Audit Network Traffic
	Hack 65 Collect Statistics with Firewall Rules
	Hack 66 Sniff the Ether Remotely

	Chapter 6. Secure Tunnels
	Hacks #67-81
	Hack 67 Set Up IPsec Under Linux
	Hack 68 Set Up IPsec Under FreeBSD
	Hack 69 Set Up IPsec in OpenBSD
	Hack 70 PPTP Tunneling
	Hack 71 Opportunistic Encryption with FreeS/WAN
	Hack 72 Forward and Encrypt Traffic with SSH
	Hack 73 Quick Logins with SSH Client Keys
	Hack 74 Squid Proxy over SSH
	Hack 75 Use SSH as a SOCKS Proxy
	Hack 76 Encrypt and Tunnel Traffic with SSL
	Hack 77 Tunnel Connections Inside HTTP
	Hack 78 Tunnel with VTun and SSH
	Hack 79 Automatic vtund.conf Generator
	Hack 80 Create a Cross-Platform VPN
	Hack 81 Tunnel PPP

	Chapter 7. Network Intrusion Detection
	Hacks #82-95
	Hack 82 Detect Intrusions with Snort
	Hack 83 Keep Track of Alerts
	Hack 84 Real-Time Monitoring
	Hack 85 Manage a Sensor Network
	Hack 86 Write Your Own Snort Rules
	Hack 87 Prevent and Contain Intrusions with Snort_inline
	Hack 88 Automated Dynamic Firewalling with SnortSam
	Hack 89 Detect Anomalous Behavior
	Hack 90 Automatically Update Snort's Rules
	Hack 91 Create a Distributed Stealth Sensor Network
	Hack 92 Use Snort in High-Performance Environments with Barnyard
	Hack 93 Detect and Prevent Web Application Intrusions
	Hack 94 Simulate a Network of Vulnerable Hosts
	Hack 95 Record Honeypot Activity

	Chapter 8. Recovery and Response
	Hacks #96-100
	Hack 96 Image Mounted Filesystems
	Hack 97 Verify File Integrity and Find Compromised Files
	Hack 98 Find Compromised Packages with RPM
	Hack 99 Scan for Root Kits
	Hack 100 Find the Owner of a Network

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Z

