
Red Hat Enterprise Linux 8

Managing file systems

Creating, modifying, and administering file systems in Red Hat Enterprise Linux 8

Last Updated: 2020-05-12

Red Hat Enterprise Linux 8 Managing file systems

Creating, modifying, and administering file systems in Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This documentation collection provides instructions on how to effectively manage file systems in
Red Hat Enterprise Linux 8.

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
1.1. TYPES OF FILE SYSTEMS
1.2. LOCAL FILE SYSTEMS

Available local file systems
1.3. THE XFS FILE SYSTEM

Performance characteristics
1.4. THE EXT4 FILE SYSTEM
1.5. COMPARISON OF XFS AND EXT4
1.6. CHOOSING A LOCAL FILE SYSTEM
1.7. NETWORK FILE SYSTEMS

Available network file systems
1.8. SHARED STORAGE FILE SYSTEMS

Comparison with network file systems
Concurrency
Performance characteristics
Available shared storage file systems

1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE SYSTEMS
1.10. VOLUME-MANAGING FILE SYSTEMS

Available volume-managing file systems

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
2.1. INTRODUCTION TO THE STORAGE ROLE
2.2. STORAGE ROLE PARAMETERS

CHAPTER 3. MOUNTING NFS SHARES
3.1. INTRODUCTION TO NFS
3.2. SUPPORTED NFS VERSIONS

Default NFS version
Features of minor NFS versions

3.3. SERVICES REQUIRED BY NFS
The RPC services with NFSv4

3.4. NFS HOST NAME FORMATS
3.5. INSTALLING NFS
3.6. DISCOVERING NFS EXPORTS
3.7. MOUNTING AN NFS SHARE WITH MOUNT
3.8. COMMON NFS MOUNT OPTIONS
3.9. RELATED INFORMATION

CHAPTER 4. EXPORTING NFS SHARES
4.1. INTRODUCTION TO NFS
4.2. SUPPORTED NFS VERSIONS

Default NFS version
Features of minor NFS versions

4.3. THE TCP AND UDP PROTOCOLS IN NFSV3 AND NFSV4
4.4. SERVICES REQUIRED BY NFS

The RPC services with NFSv4
4.5. NFS HOST NAME FORMATS
4.6. NFS SERVER CONFIGURATION

4.6.1. The /etc/exports configuration file
Export entry

9

10
10
10
11
11

12
12
13
14
15
15
15
15
15
16
16
16
16
16

18
18
18

20
20
20
20
20
21
22
22
23
23
23
24
25

27
27
27
27
27
28
28
29
29
30
30
30

Table of Contents

1

. .

. .

. .

. .

Default options
Default and overridden options

4.6.2. The exportfs utility
Common exportfs options

4.7. NFS AND RPCBIND
4.8. INSTALLING NFS
4.9. STARTING THE NFS SERVER
4.10. TROUBLESHOOTING NFS AND RPCBIND
4.11. CONFIGURING THE NFS SERVER TO RUN BEHIND A FIREWALL
4.12. EXPORTING RPC QUOTA THROUGH A FIREWALL
4.13. ENABLING NFS OVER RDMA (NFSORDMA)
4.14. CONFIGURING AN NFSV4-ONLY SERVER

4.14.1. Benefits and drawbacks of an NFSv4-only server
4.14.2. NFS and rpcbind
4.14.3. Configuring the NFS server to support only NFSv4
4.14.4. Verifying the NFSv4-only configuration

4.15. RELATED INFORMATION

CHAPTER 5. SECURING NFS
5.1. NFS SECURITY WITH AUTH_SYS AND EXPORT CONTROLS
5.2. NFS SECURITY WITH AUTH_GSS
5.3. CONFIGURING AN NFS SERVER AND CLIENT TO USE KERBEROS
5.4. NFSV4 SECURITY OPTIONS
5.5. FILE PERMISSIONS ON MOUNTED NFS EXPORTS

CHAPTER 6. ENABLING PNFS SCSI LAYOUTS IN NFS
6.1. THE PNFS TECHNOLOGY
6.2. PNFS SCSI LAYOUTS

Operations between the client and the server
Device reservations

6.3. CHECKING FOR A SCSI DEVICE COMPATIBLE WITH PNFS
6.4. SETTING UP PNFS SCSI ON THE SERVER
6.5. SETTING UP PNFS SCSI ON THE CLIENT
6.6. RELEASING THE PNFS SCSI RESERVATION ON THE SERVER
6.7. MONITORING PNFS SCSI LAYOUTS FUNCTIONALITY

6.7.1. Checking pNFS SCSI operations from the server using nfsstat
6.7.2. Checking pNFS SCSI operations from the client using mountstats

CHAPTER 7. MOUNTING AN SMB SHARE ON RED HAT ENTERPRISE LINUX
7.1. SUPPORTED SMB PROTOCOL VERSIONS
7.2. UNIX EXTENSIONS SUPPORT
7.3. MANUALLY MOUNTING AN SMB SHARE
7.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
7.5. AUTHENTICATING TO AN SMB SHARE USING A CREDENTIALS FILE
7.6. PERFORMING A MULTI-USER SMB MOUNT

7.6.1. Mounting a share with the multiuser option
7.6.2. Verifying if an SMB share is mounted with the multiuser option
7.6.3. Accessing a share as a user

7.7. FREQUENTLY USED MOUNT OPTIONS

CHAPTER 8. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
8.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
8.2. FILE SYSTEM AND DEVICE IDENTIFIERS

File system identifiers

31
32
32
32
33
33
33
34
35
36
37
37
37
38
38
39
40

41
41
41
41

42
42

44
44
44
44
44
45
46
46
47
48
48
48

50
50
50
51
52
52
53
53
54
54
54

56
56
56
57

Red Hat Enterprise Linux 8 Managing file systems

2

. .

. .

Device identifiers
Recommendations

8.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
8.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
The Label attribute in /dev/disk/by-label/

8.3.2. Device identifiers
The WWID attribute in /dev/disk/by-id/
The Partition UUID attribute in /dev/disk/by-partuuid
The Path attribute in /dev/disk/by-path/

8.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
8.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
8.6. LISTING PERSISTENT NAMING ATTRIBUTES
8.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

CHAPTER 9. GETTING STARTED WITH PARTITIONS
9.1. VIEWING THE PARTITION TABLE

9.1.1. Viewing the partition table with parted
9.1.2. Example output of parted print

9.2. CREATING A PARTITION TABLE ON A DISK
9.2.1. Considerations before modifying partitions on a disk

The maximum number of partitions
The maximum size of a partition
Size alignment

9.2.2. Comparison of partition table types
9.2.3. Creating a partition table on a disk with parted

9.3. CREATING A PARTITION
9.3.1. Considerations before modifying partitions on a disk

The maximum number of partitions
The maximum size of a partition
Size alignment

9.3.2. Partition types
Partition types or flags
Partition file system type

9.3.3. Partition naming scheme
9.3.4. Mount points and disk partitions
9.3.5. Creating a partition with parted
9.3.6. Setting a partition type with fdisk

9.4. REMOVING A PARTITION
9.4.1. Considerations before modifying partitions on a disk

The maximum number of partitions
The maximum size of a partition
Size alignment

9.4.2. Removing a partition with parted
9.5. RESIZING A PARTITION

9.5.1. Considerations before modifying partitions on a disk
The maximum number of partitions
The maximum size of a partition
Size alignment

9.5.2. Resizing a partition with parted

CHAPTER 10. GETTING STARTED WITH XFS
10.1. THE XFS FILE SYSTEM

57
57
57
57
57
58
58
58
59
59
59
60
60
62

63
63
63
63
64
64
65
65
65
66
66
67
67
67
68
68
68
68
68
69
69
70
71
72
72
73
73
73
74
75
75
75
75
76
76

78
78

Table of Contents

3

. .

. .

. .

Performance characteristics
10.2. CREATING AN XFS FILE SYSTEM

10.2.1. Creating an XFS file system with mkfs.xfs
10.2.2. Creating an XFS file system on a block device using RHEL System Roles

10.2.2.1. Example Ansible playbook to create an XFS file system on a block device
10.2.2.2. Additional resources

10.3. BACKING UP AN XFS FILE SYSTEM
10.3.1. Features of XFS backup
10.3.2. Backing up an XFS file system with xfsdump
10.3.3. Additional resources

10.4. RESTORING AN XFS FILE SYSTEM FROM BACKUP
10.4.1. Features of restoring XFS from backup
10.4.2. Restoring an XFS file system from backup with xfsrestore
10.4.3. Informational messages when restoring an XFS backup from a tape
10.4.4. Additional resources

10.5. INCREASING THE SIZE OF AN XFS FILE SYSTEM
10.5.1. Increasing the size of an XFS file system with xfs_growfs

10.6. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

CHAPTER 11. CONFIGURING XFS ERROR BEHAVIOR
11.1. CONFIGURABLE ERROR HANDLING IN XFS
11.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS ERROR CONDITIONS
11.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS
11.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS
11.5. SETTING THE XFS UNMOUNT BEHAVIOR

CHAPTER 12. CHECKING AND REPAIRING A FILE SYSTEM
12.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK
12.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK
12.3. ERROR-HANDLING MECHANISMS IN XFS

Unclean unmounts
Corruption

12.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR
12.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR
12.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4
12.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK
12.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

CHAPTER 13. MOUNTING FILE SYSTEMS
13.1. THE LINUX MOUNT MECHANISM
13.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS
13.3. MOUNTING A FILE SYSTEM WITH MOUNT
13.4. MOVING A MOUNT POINT
13.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT
13.6. COMMON MOUNT OPTIONS
13.7. SHARING A MOUNT ON MULTIPLE MOUNT POINTS

13.7.1. Types of shared mounts
13.7.2. Creating a private mount point duplicate
13.7.3. Creating a shared mount point duplicate
13.7.4. Creating a slave mount point duplicate
13.7.5. Preventing a mount point from being duplicated
13.7.6. Related information

13.8. PERSISTENTLY MOUNTING FILE SYSTEMS
13.8.1. The /etc/fstab file

79
79
79
80
80
81
81
81

82
82
83
83
83
84
85
85
85
85

87
87
87
88
88
89

90
90
91
91
91
91

92
93
94
94
95

96
96
96
97
98
98
99

100
100
100
102
103
104
105
105
105

Red Hat Enterprise Linux 8 Managing file systems

4

. .

. .

13.8.2. Adding a file system to /etc/fstab
13.8.3. Persistently mounting a file system using RHEL System Roles

13.8.3.1. Example Ansible playbook to persistently mount a file system
13.8.3.2. Additional resources

13.9. MOUNTING FILE SYSTEMS ON DEMAND
13.9.1. The autofs service
13.9.2. The autofs configuration files

The master map file
Map files
The amd map format

13.9.3. Configuring autofs mount points
13.9.4. Automounting NFS server user home directories with autofs service
13.9.5. Overriding or augmenting autofs site configuration files
13.9.6. Using LDAP to store automounter maps

13.10. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM
13.10.1. Files and directories that always retain write permissions
13.10.2. Configuring the root file system to mount with read-only permissions on boot

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS
14.1. DISK QUOTAS

14.1.1. The xfs_quota tool
Additional resources

14.2. MANAGING XFS DISK QUOTAS
14.2.1. File system quota management in XFS
14.2.2. Enabling disk quotas for XFS
14.2.3. Reporting XFS usage

Prerequisites
Procedure
Additional resources

14.2.4. Modifying XFS quota limits
Prerequisites
Procedure
Additional resources

14.2.5. Setting project limits for XFS
Procedure
Additional resources

14.3. MANAGING EXT3 AND EXT4 DISK QUOTAS
14.3.1. Installing the quota tool
14.3.2. Enabling quota feature on file system creation
14.3.3. Enabling quota feature on existing file systems
14.3.4. Enabling quota enforcement
14.3.5. Assigning quotas per user
14.3.6. Assigning quotas per group
14.3.7. Assigning quotas per project
14.3.8. Setting the grace period for soft limits
14.3.9. Turning file system quotas off
14.3.10. Reporting on disk quotas

CHAPTER 15. DISCARDING UNUSED BLOCKS
15.1. BLOCK DISCARD OPERATIONS

Requirements
15.2. TYPES OF BLOCK DISCARD OPERATIONS

Recommendations

105
106
107
107
107
107
108
108
108
109
109
110
111

112
114
114
115

117
117
117
117
117
118
118
118
119
119
119
119
119
119

120
120
120
120
121
121
121
121
122
123
124
125
126
126
127

128
128
128
128
128

Table of Contents

5

. .

. .

. .

15.3. PERFORMING BATCH BLOCK DISCARD
15.4. ENABLING ONLINE BLOCK DISCARD
15.5. ENABLING ONLINE BLOCK DISCARD USING RHEL SYSTEM ROLES

15.5.1. Example Ansible playbook to enable online block discard
15.5.2. Additional resources

15.6. ENABLING PERIODIC BLOCK DISCARD

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS
16.1. SETTING UP STRATIS FILE SYSTEMS

16.1.1. The purpose and features of Stratis
16.1.2. Components of a Stratis volume
16.1.3. Block devices usable with Stratis

Supported devices
Unsupported devices

16.1.4. Installing Stratis
16.1.5. Creating a Stratis pool
16.1.6. Creating a Stratis file system
16.1.7. Mounting a Stratis file system
16.1.8. Persistently mounting a Stratis file system
16.1.9. Related information

16.2. EXTENDING A STRATIS VOLUME WITH ADDITIONAL BLOCK DEVICES
16.2.1. Components of a Stratis volume
16.2.2. Adding block devices to a Stratis pool
16.2.3. Related information

16.3. MONITORING STRATIS FILE SYSTEMS
16.3.1. Stratis sizes reported by different utilities
16.3.2. Displaying information about Stratis volumes
16.3.3. Related information

16.4. USING SNAPSHOTS ON STRATIS FILE SYSTEMS
16.4.1. Characteristics of Stratis snapshots
16.4.2. Creating a Stratis snapshot
16.4.3. Accessing the content of a Stratis snapshot
16.4.4. Reverting a Stratis file system to a previous snapshot
16.4.5. Removing a Stratis snapshot
16.4.6. Related information

16.5. REMOVING STRATIS FILE SYSTEMS
16.5.1. Components of a Stratis volume
16.5.2. Removing a Stratis file system
16.5.3. Removing a Stratis pool
16.5.4. Related information

CHAPTER 17. GETTING STARTED WITH AN EXT3 FILE SYSTEM
17.1. FEATURES OF AN EXT3 FILE SYSTEM
17.2. CREATING AN EXT3 FILE SYSTEM
17.3. MOUNTING AN EXT3 FILE SYSTEM
17.4. RESIZING AN EXT3 FILE SYSTEM
17.5. CREATING AND MOUNTING EXT3 FILE SYSTEMS USING RHEL SYSTEM ROLES

17.5.1. Example Ansible playbook to create and mount an ext3 file system
17.5.2. Additional resources

CHAPTER 18. GETTING STARTED WITH AN EXT4 FILE SYSTEM
18.1. FEATURES OF AN EXT4 FILE SYSTEM
18.2. CREATING AN EXT4 FILE SYSTEM
18.3. MOUNTING AN EXT4 FILE SYSTEM

128
129
129
130
130
130

131
131
131
131
132
132
133
133
133
134
135
135
136
136
136
137
138
138
138
138
139
139
139
139
140
140
141
141

142
142
142
143
144

145
145
145
146
147
148
148
149

150
150
150
152

Red Hat Enterprise Linux 8 Managing file systems

6

18.4. RESIZING AN EXT4 FILE SYSTEM
18.5. CREATING AND MOUNTING EXT4 FILE SYSTEMS USING RHEL SYSTEM ROLES

18.5.1. Example Ansible playbook to create and mount an ext4 file system
18.6. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

152
153
154
154

Table of Contents

7

Red Hat Enterprise Linux 8 Managing file systems

8

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

9

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
Choosing the file system that is appropriate for your application is an important decision due to the
large number of options available and the trade-offs involved. This chapter describes some of the file
systems that ship with Red Hat Enterprise Linux 8 and provides historical background and
recommendations on the right file system to suit your application.

1.1. TYPES OF FILE SYSTEMS

Red Hat Enterprise Linux 8 supports a variety of file systems (FS). Different types of file systems solve
different kinds of problems, and their usage is application specific. At the most general level, available
file systems can be grouped into the following major types:

Table 1.1. Types of file systems and their use cases

Type File system Attributes and use cases

Disk or local FS XFS XFS is the default file system in RHEL. Because it
lays out files as extents, it is less vulnerable to
fragmentation than ext4. Red Hat recommends
deploying XFS as your local file system unless there
are specific reasons to do otherwise: for example,
compatibility or corner cases around performance.

ext4 ext4 has the benefit of longevity in Linux. Therefore,
it is supported by almost all Linux applications. In
most cases, it rivals XFS on performance. ext4 is
commonly used for home directories.

Network or client-and-
server FS

NFS Use NFS to share files between multiple systems on
the same network.

SMB Use SMB for file sharing with Microsoft Windows
systems.

Shared storage or
shared disk FS

GFS2 GFS2 provides shared write access to members of a
compute cluster. The emphasis is on stability and
reliability, with the functional experience of a local
file system as possible. SAS Grid, Tibco MQ, IBM
Websphere MQ, and Red Hat Active MQ have been
deployed successfully on GFS2.

Volume-managing FS Stratis (Technology
Preview)

Stratis is a volume manager built on a combination of
XFS and LVM. The purpose of Stratis is to emulate
capabilities offered by volume-managing file systems
like Btrfs and ZFS. It is possible to build this stack
manually, but Stratis reduces configuration
complexity, implements best practices, and
consolidates error information.

1.2. LOCAL FILE SYSTEMS

Red Hat Enterprise Linux 8 Managing file systems

10

Local file systems are file systems that run on a single, local server and are directly attached to storage.

For example, a local file system is the only choice for internal SATA or SAS disks, and is used when your
server has internal hardware RAID controllers with local drives. Local file systems are also the most
common file systems used on SAN attached storage when the device exported on the SAN is not
shared.

All local file systems are POSIX-compliant and are fully compatible with all supported Red Hat
Enterprise Linux releases. POSIX-compliant file systems provide support for a well-defined set of
system calls, such as read(), write(), and seek().

From the application programmer’s point of view, there are relatively few differences between local file
systems. The most notable differences from a user’s perspective are related to scalability and
performance. When considering a file system choice, consider how large the file system needs to be,
what unique features it should have, and how it performs under your workload.

Available local file systems

XFS

ext4

1.3. THE XFS FILE SYSTEM

XFS is a highly scalable, high-performance, robust, and mature 64-bit journaling file system that
supports very large files and file systems on a single host. It is the default file system in Red Hat
Enterprise Linux 8. XFS was originally developed in the early 1990s by SGI and has a long history of
running on extremely large servers and storage arrays.

The features of XFS include:

Reliability

Metadata journaling, which ensures file system integrity after a system crash by keeping a
record of file system operations that can be replayed when the system is restarted and the
file system remounted

Extensive run-time metadata consistency checking

Scalable and fast repair utilities

Quota journaling. This avoids the need for lengthy quota consistency checks after a crash.

Scalability and performance

Supported file system size up to 1024 TiB

Ability to support a large number of concurrent operations

B-tree indexing for scalability of free space management

Sophisticated metadata read-ahead algorithms

Optimizations for streaming video workloads

Allocation schemes

Extent-based allocation

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

11

Extent-based allocation

Stripe-aware allocation policies

Delayed allocation

Space pre-allocation

Dynamically allocated inodes

Other features

Reflink-based file copies (new in Red Hat Enterprise Linux 8)

Tightly integrated backup and restore utilities

Online defragmentation

Online file system growing

Comprehensive diagnostics capabilities

Extended attributes (xattr). This allows the system to associate several additional
name/value pairs per file.

Project or directory quotas. This allows quota restrictions over a directory tree.

Subsecond timestamps

Performance characteristics
XFS has a high performance on large systems with enterprise workloads. A large system is one with a
relatively high number of CPUs, multiple HBAs, and connections to external disk arrays. XFS also
performs well on smaller systems that have a multi-threaded, parallel I/O workload.

XFS has a relatively low performance for single threaded, metadata-intensive workloads: for example, a
workload that creates or deletes large numbers of small files in a single thread.

1.4. THE EXT4 FILE SYSTEM

The ext4 file system is the fourth generation of the ext file system family. It was the default file system
in Red Hat Enterprise Linux 6.

The ext4 driver can read and write to ext2 and ext3 file systems, but the ext4 file system format is not
compatible with ext2 and ext3 drivers.

ext4 adds several new and improved features, such as:

Supported file system size up to 50 TiB

Extent-based metadata

Delayed allocation

Journal checksumming

Large storage support

Red Hat Enterprise Linux 8 Managing file systems

12

The extent-based metadata and the delayed allocation features provide a more compact and efficient
way to track utilized space in a file system. These features improve file system performance and reduce
the space consumed by metadata. Delayed allocation allows the file system to postpone selection of the
permanent location for newly written user data until the data is flushed to disk. This enables higher
performance since it can allow for larger, more contiguous allocations, allowing the file system to make
decisions with much better information.

File system repair time using the fsck utility in ext4 is much faster than in ext2 and ext3. Some file
system repairs have demonstrated up to a six-fold increase in performance.

1.5. COMPARISON OF XFS AND EXT4

XFS is the default file system in RHEL. This section compares the usage and features of XFS and ext4.

Metadata error behavior

In ext4, you can configure the behavior when the file system encounters metadata errors. The
default behavior is to simply continue the operation. When XFS encounters an unrecoverable
metadata error, it shuts down the file system and returns the EFSCORRUPTED error.

Quotas

In ext4, you can enable quotas when creating the file system or later on an existing file system. You
can then configure the quota enforcement using a mount option.
XFS quotas are not a remountable option. You must activate quotas on the initial mount.

Running the quotacheck command on an XFS file system has no effect. The first time you turn on
quota accounting, XFS checks quotas automatically.

File system resize

XFS has no utility to reduce the size of a file system. You can only increase the size of an XFS file
system. In comparison, ext4 supports both extending and reducing the size of a file system.

Inode numbers

The ext4 file system does not support more than 232 inodes.
XFS dynamically allocates inodes. An XFS file system cannot run out of inodes as long as there is
free space on the file system.

Certain applications cannot properly handle inode numbers larger than 232 on an XFS file system.
These applications might cause the failure of 32-bit stat calls with the EOVERFLOW return value.
Inode number exceed 232 under the following conditions:

The file system is larger than 1 TiB with 256-byte inodes.

The file system is larger than 2 TiB with 512-byte inodes.

If your application fails with large inode numbers, mount the XFS file system with the -o inode32
option to enforce inode numbers below 232. Note that using inode32 does not affect inodes that are
already allocated with 64-bit numbers.

IMPORTANT

Do not use the inode32 option unless a specific environment requires it. The inode32
option changes allocation behavior. As a consequence, the ENOSPC error might
occur if no space is available to allocate inodes in the lower disk blocks.

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

13

1.6. CHOOSING A LOCAL FILE SYSTEM

To choose a file system that meets your application requirements, you need to understand the target
system on which you are going to deploy the file system. You can use the following questions to inform
your decision:

Do you have a large server?

Do you have large storage requirements or have a local, slow SATA drive?

What kind of I/O workload do you expect your application to present?

What are your throughput and latency requirements?

How stable is your server and storage hardware?

What is the typical size of your files and data set?

If the system fails, how much downtime can you suffer?

If both your server and your storage device are large, XFS is the best choice. Even with smaller storage
arrays, XFS performs very well when the average file sizes are large (for example, hundreds of
megabytes in size).

If your existing workload has performed well with ext4, staying with ext4 should provide you and your
applications with a very familiar environment.

The ext4 file system tends to perform better on systems that have limited I/O capability. It performs
better on limited bandwidth (less than 200MB/s) and up to around 1000 IOPS capability. For anything
with higher capability, XFS tends to be faster.

XFS consumes about twice the CPU-per-metadata operation compared to ext4, so if you have a CPU-
bound workload with little concurrency, then ext4 will be faster. In general, ext4 is better if an application
uses a single read/write thread and small files, while XFS shines when an application uses multiple
read/write threads and bigger files.

You cannot shrink an XFS file system. If you need to be able to shrink the file system, consider using
ext4, which supports offline shrinking.

In general, Red Hat recommends that you use XFS unless you have a specific use case for ext4. You
should also measure the performance of your specific application on your target server and storage
system to make sure that you choose the appropriate type of file system.

Table 1.2. Summary of local file system recommendations

Scenario Recommended file system

No special use case XFS

Large server XFS

Large storage devices XFS

Large files XFS

Red Hat Enterprise Linux 8 Managing file systems

14

Multi-threaded I/O XFS

Single-threaded I/O ext4

Limited I/O capability (under 1000 IOPS) ext4

Limited bandwidth (under 200MB/s) ext4

CPU-bound workload ext4

Support for offline shrinking ext4

Scenario Recommended file system

1.7. NETWORK FILE SYSTEMS

Network file systems, also referred to as client/server file systems, enable client systems to access files
that are stored on a shared server. This makes it possible for multiple users on multiple systems to share
files and storage resources.

Such file systems are built from one or more servers that export a set of file systems to one or more
clients. The client nodes do not have access to the underlying block storage, but rather interact with the
storage using a protocol that allows for better access control.

Available network file systems

The most common client/server file system for RHEL customers is the NFS file system. RHEL
provides both an NFS server component to export a local file system over the network and an
NFS client to import these file systems.

RHEL also includes a CIFS client that supports the popular Microsoft SMB file servers for
Windows interoperability. The userspace Samba server provides Windows clients with a
Microsoft SMB service from a RHEL server.

1.8. SHARED STORAGE FILE SYSTEMS

Shared storage file systems, sometimes referred to as cluster file systems, give each server in the
cluster direct access to a shared block device over a local storage area network (SAN).

Comparison with network file systems
Like client/server file systems, shared storage file systems work on a set of servers that are all members
of a cluster. Unlike NFS, however, no single server provides access to data or metadata to other
members: each member of the cluster has direct access to the same storage device (the shared
storage), and all cluster member nodes access the same set of files.

Concurrency
Cache coherency is key in a clustered file system to ensure data consistency and integrity. There must
be a single version of all files in a cluster visible to all nodes within a cluster. The file system must prevent
members of the cluster from updating the same storage block at the same time and causing data
corruption. In order to do that, shared storage file systems use a cluster wide-locking mechanism to

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

15

arbitrate access to the storage as a concurrency control mechanism. For example, before creating a new
file or writing to a file that is opened on multiple servers, the file system component on the server must
obtain the correct lock.

The requirement of cluster file systems is to provide a highly available service like an Apache web server.
Any member of the cluster will see a fully coherent view of the data stored in their shared disk file
system, and all updates will be arbitrated correctly by the locking mechanisms.

Performance characteristics
Shared disk file systems do not always perform as well as local file systems running on the same system
due to the computational cost of the locking overhead. Shared disk file systems perform well with
workloads where each node writes almost exclusively to a particular set of files that are not shared with
other nodes or where a set of files is shared in an almost exclusively read-only manner across a set of
nodes. This results in a minimum of cross-node cache invalidation and can maximize performance.

Setting up a shared disk file system is complex, and tuning an application to perform well on a shared
disk file system can be challenging.

Available shared storage file systems

Red Hat Enterprise Linux provides the GFS2 file system. GFS2 comes tightly integrated with
the Red Hat Enterprise Linux High Availability Add-On and the Resilient Storage Add-On.
Red Hat Enterprise Linux supports GFS2 on clusters that range in size from 2 to 16 nodes.

1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE
SYSTEMS

When choosing between network and shared storage file systems, consider the following points:

NFS-based network file systems are an extremely common and popular choice for
environments that provide NFS servers.

Network file systems can be deployed using very high-performance networking technologies
like Infiniband or 10 Gigabit Ethernet. This means that you should not turn to shared storage file
systems just to get raw bandwidth to your storage. If the speed of access is of prime
importance, then use NFS to export a local file system like XFS.

Shared storage file systems are not easy to set up or to maintain, so you should deploy them
only when you cannot provide your required availability with either local or network file systems.

A shared storage file system in a clustered environment helps reduce downtime by eliminating
the steps needed for unmounting and mounting that need to be done during a typical fail-over
scenario involving the relocation of a high-availability service.

Red Hat recommends that you use network file systems unless you have a specific use case for shared
storage file systems. Use shared storage file systems primarily for deployments that need to provide
high-availability services with minimum downtime and have stringent service-level requirements.

1.10. VOLUME-MANAGING FILE SYSTEMS

Volume-managing file systems integrate the entire storage stack for the purposes of simplicity and in-
stack optimization.

Available volume-managing file systems

Red Hat Enterprise Linux 8 provides the Stratis volume manager as a Technology Preview.

Red Hat Enterprise Linux 8 Managing file systems

16

Red Hat Enterprise Linux 8 provides the Stratis volume manager as a Technology Preview.
Stratis uses XFS for the file system layer and integrates it with LVM, Device Mapper, and other
components.
Stratis was first released in Red Hat Enterprise Linux 8.0. It is conceived to fill the gap created
when Red Hat deprecated Btrfs. Stratis 1.0 is an intuitive, command line-based volume manager
that can perform significant storage management operations while hiding the complexity from
the user:

Volume management

Pool creation

Thin storage pools

Snapshots

Automated read cache

Stratis offers powerful features, but currently lacks certain capabilities of other offerings that it
might be compared to, such as Btrfs or ZFS. Most notably, it does not support CRCs with self
healing.

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

17

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL
SYSTEM ROLES

To manage LVM and local file systems (FS) using Ansible, you can use the storage role, which is one of
the RHEL System Roles available in RHEL 8.

Using the storage role enables you to automate administration of file systems on disks and logical
volumes on multiple machines and across all versions of RHEL starting with RHEL 7.7.

For more information on RHEL System Roles and how to apply them, see What RHEL System Roles are
and which tasks they can be used for.

2.1. INTRODUCTION TO THE STORAGE ROLE

The storage role can manage:

File systems on disks which have not been partitioned

Complete LVM volume groups including their logical volumes and file systems

With the storage role you can perform the following tasks:

Create a file system

Remove a file system

Mount a file system

Unmount a file system

Create LVM volume groups

Remove LVM volume groups

Create logical volumes

Remove logical volumes

2.2. STORAGE ROLE PARAMETERS

The section provides a table with input variables that the storage role accepts.

Table 2.1. Storage role parameters

Parameter Description Additional information

storage_volumes List of file systems on all
unpartitioned disks to be
managed.

Partitions are currently
unsupported.

Red Hat Enterprise Linux 8 Managing file systems

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#what-rhel-system-roles-are_getting-started-with-system-administration

storage_pools List of pools to be managed. Currently the only supported pool
type is LVM. With LVM, pools
represent volume groups (VGs).
Under each pool there is a list of
volumes to be managed by the
role. With LVM, each volume
corresponds to a logical volume
(LV) with a file system.

storage_safe_mode Boolean option to enable and
disable safe mode.

In safe mode, the storage role
does not reformat disks
containing data such as file
systems or LVM physical volumes,
but instead the role aborts with an
error message. By default, safe
mode is on to prevent
accidentally overwriting existing
data. Red Hat recommends to
keep safe mode enabled, and
disable it only for specific cases
and after thorough testing.

Parameter Description Additional information

The storage role only changes file systems, volumes, and pools that are listed in the following variables:

storage_pools

storage_volumes

Additional resources

For more information, install the rhel-system-roles package, and see the /usr/share/doc/rhel-system-
roles/storage/ and /usr/share/ansible/roles/rhel-system-roles.storage/ directories.

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

19

CHAPTER 3. MOUNTING NFS SHARES
As a system administrator, you can mount remote NFS shares on your system to access shared data.

3.1. INTRODUCTION TO NFS

This section explains the basic concepts of the NFS service.

A Network File System (NFS) allows remote hosts to mount file systems over a network and interact
with those file systems as though they are mounted locally. This enables you to consolidate resources
onto centralized servers on the network.

The NFS server refers to the /etc/exports configuration file to determine whether the client is allowed
to access any exported file systems. Once verified, all file and directory operations are available to the
user.

3.2. SUPPORTED NFS VERSIONS

This section lists versions of NFS supported in Red Hat Enterprise Linux and their features.

Currently, Red Hat Enterprise Linux 8 supports the following major versions of NFS:

NFS version 3 (NFSv3) supports safe asynchronous writes and is more robust at error handling
than the previous NFSv2; it also supports 64-bit file sizes and offsets, allowing clients to access
more than 2 GB of file data.

NFS version 4 (NFSv4) works through firewalls and on the Internet, no longer requires an
rpcbind service, supports Access Control Lists (ACLs), and utilizes stateful operations.

NFS version 2 (NFSv2) is no longer supported by Red Hat.

Default NFS version
The default NFS version in Red Hat Enterprise Linux 8 is 4.2. NFS clients attempt to mount using
NFSv4.2 by default, and fall back to NFSv4.1 when the server does not support NFSv4.2. The mount
later falls back to NFSv4.0 and then to NFSv3.

Features of minor NFS versions
Following are the features of NFSv4.2 in Red Hat Enterprise Linux 8:

Server-side copy

Enables the NFS client to efficiently copy data without wasting network resources using the
copy_file_range() system call.

Sparse files

Enables files to have one or more holes, which are unallocated or uninitialized data blocks consisting
only of zeroes. The lseek() operation in NFSv4.2 supports seek_hole() and seek_data(), which
enables applications to map out the location of holes in the sparse file.

Space reservation

Permits storage servers to reserve free space, which prohibits servers to run out of space. NFSv4.2
supports the allocate() operation to reserve space, the deallocate() operation to unreserve space,
and the fallocate() operation to preallocate or deallocate space in a file.

Labeled NFS

Enforces data access rights and enables SELinux labels between a client and a server for individual
files on an NFS file system.

Red Hat Enterprise Linux 8 Managing file systems

20

Layout enhancements

Provides the layoutstats() operation, which enables some Parallel NFS (pNFS) servers to collect
better performance statistics.

Following are the features of NFSv4.1:

Enhances performance and security of network, and also includes client-side support for pNFS.

No longer requires a separate TCP connection for callbacks, which allows an NFS server to grant
delegations even when it cannot contact the client: for example, when NAT or a firewall
interferes.

Provides exactly once semantics (except for reboot operations), preventing a previous issue
whereby certain operations sometimes returned an inaccurate result if a reply was lost and the
operation was sent twice.

3.3. SERVICES REQUIRED BY NFS

This section lists system services that are required for running an NFS server or mounting NFS shares.
Red Hat Enterprise Linux starts these services automatically.

Red Hat Enterprise Linux uses a combination of kernel-level support and service processes to provide
NFS file sharing. All NFS versions rely on Remote Procedure Calls (RPC) between clients and servers.
To share or mount NFS file systems, the following services work together depending on which version of
NFS is implemented:

nfsd

The NFS server kernel module that services requests for shared NFS file systems.

rpcbind

Accepts port reservations from local RPC services. These ports are then made available (or
advertised) so the corresponding remote RPC services can access them. The rpcbind service
responds to requests for RPC services and sets up connections to the requested RPC service. This is
not used with NFSv4.

rpc.mountd

This process is used by an NFS server to process MOUNT requests from NFSv3 clients. It checks that
the requested NFS share is currently exported by the NFS server, and that the client is allowed to
access it. If the mount request is allowed, the nfs-mountd service replies with a Success status and
provides the File-Handle for this NFS share back to the NFS client.

rpc.nfsd

This process enables explicit NFS versions and protocols the server advertises to be defined. It works
with the Linux kernel to meet the dynamic demands of NFS clients, such as providing server threads
each time an NFS client connects. This process corresponds to the nfs-server service.

lockd

This is a kernel thread that runs on both clients and servers. It implements the Network Lock
Manager (NLM) protocol, which enables NFSv3 clients to lock files on the server. It is started
automatically whenever the NFS server is run and whenever an NFS file system is mounted.

rpc.statd

This process implements the Network Status Monitor (NSM) RPC protocol, which notifies NFS
clients when an NFS server is restarted without being gracefully brought down. The rpc-statd service
is started automatically by the nfs-server service, and does not require user configuration. This is not
used with NFSv4.

CHAPTER 3. MOUNTING NFS SHARES

21

rpc.rquotad

This process provides user quota information for remote users. The rpc-rquotad service is started
automatically by the nfs-server service and does not require user configuration.

rpc.idmapd

This process provides NFSv4 client and server upcalls, which map between on-the-wire NFSv4
names (strings in the form of user@domain) and local UIDs and GIDs. For idmapd to function with
NFSv4, the /etc/idmapd.conf file must be configured. At a minimum, the Domain parameter should
be specified, which defines the NFSv4 mapping domain. If the NFSv4 mapping domain is the same
as the DNS domain name, this parameter can be skipped. The client and server must agree on the
NFSv4 mapping domain for ID mapping to function properly.
Only the NFSv4 server uses rpc.idmapd, which is started by the nfs-idmapd service. The NFSv4
client uses the keyring-based nfsidmap utility, which is called by the kernel on-demand to perform
ID mapping. If there is a problem with nfsidmap, the client falls back to using rpc.idmapd.

The RPC services with NFSv4
The mounting and locking protocols have been incorporated into the NFSv4 protocol. The server also
listens on the well-known TCP port 2049. As such, NFSv4 does not need to interact with rpcbind,
lockd, and rpc-statd services. The nfs-mountd service is still required on the NFS server to set up the
exports, but is not involved in any over-the-wire operations.

Additional resources

To configure an NFSv4-only server, which does not require rpcbind, see Section 4.14,
“Configuring an NFSv4-only server”.

3.4. NFS HOST NAME FORMATS

This section describes different formats that you can use to specify a host when mounting or exporting
an NFS share.

You can specify the host in the following formats:

Single machine

Either of the following:

A fully-qualified domain name (that can be resolved by the server)

Host name (that can be resolved by the server)

An IP address.

Series of machines specified with wildcards

You can use the * or ? characters to specify a string match.
Wildcards are not to be used with IP addresses; however, they might accidentally work if reverse DNS
lookups fail. When specifying wildcards in fully qualified domain names, dots (.) are not included in
the wildcard. For example, *.example.com includes one.example.com but does not include
one.two.example.com.

IP networks

Either of the following formats is valid:

a.b.c.d/z, where a.b.c.d is the network and z is the number of bits in the netmask; for

Red Hat Enterprise Linux 8 Managing file systems

22

a.b.c.d/z, where a.b.c.d is the network and z is the number of bits in the netmask; for
example 192.168.0.0/24.

a.b.c.d/netmask, where a.b.c.d is the network and netmask is the netmask; for example,
192.168.100.8/255.255.255.0.

Netgroups

The @group-name format , where group-name is the NIS netgroup name.

3.5. INSTALLING NFS

This procedure installs all packages necessary to mount or export NFS shares.

Procedure

Install the nfs-utils package:

yum install nfs-utils

3.6. DISCOVERING NFS EXPORTS

This procedure discovers which file systems a given NFSv3 or NFSv4 server exports.

Procedure

With any server that supports NFSv3, use the showmount utility:

$ showmount --exports my-server

Export list for my-server
/exports/foo
/exports/bar

With any server that supports NFSv4, mount the root directory and look around:

mount my-server:/ /mnt/
ls /mnt/

exports

ls /mnt/exports/

foo
bar

On servers that support both NFSv4 and NFSv3, both methods work and give the same results.

Additional resources

The showmount(8) man page.

3.7. MOUNTING AN NFS SHARE WITH MOUNT

CHAPTER 3. MOUNTING NFS SHARES

23

This procedure mounts an NFS share exported from a server using the mount utility.

Procedure

To mount an NFS share, use the following command:

mount -t nfs -o options host:/remote/export /local/directory

This command uses the following variables:

options

A comma-delimited list of mount options.

host

The host name, IP address, or fully qualified domain name of the server exporting the file
system you wish to mount.

/remote/export

The file system or directory being exported from the server, that is, the directory you wish to
mount.

/local/directory

The client location where /remote/export is mounted.

Additional resources

Section 3.8, “Common NFS mount options”

Section 3.4, “NFS host name formats”

Section 13.3, “Mounting a file system with mount”

The mount(8) man page

3.8. COMMON NFS MOUNT OPTIONS

This section lists options commonly used when mounting NFS shares. These options can be used with
manual mount commands, /etc/fstab settings, and autofs.

Common NFS mount options

lookupcache=mode

Specifies how the kernel should manage its cache of directory entries for a given mount point. Valid
arguments for mode are all, none, or positive.

nfsvers=version

Specifies which version of the NFS protocol to use, where version is 3, 4, 4.0, 4.1, or 4.2. This is useful
for hosts that run multiple NFS servers, or to disable retrying a mount with lower versions. If no
version is specified, NFS uses the highest version supported by the kernel and the mount utility.
The option vers is identical to nfsvers, and is included in this release for compatibility reasons.

noacl

Turns off all ACL processing. This may be needed when interfacing with older versions of Red Hat
Enterprise Linux, Red Hat Linux, or Solaris, because the most recent ACL technology is not
compatible with older systems.

Red Hat Enterprise Linux 8 Managing file systems

24

nolock

Disables file locking. This setting is sometimes required when connecting to very old NFS servers.

noexec

Prevents execution of binaries on mounted file systems. This is useful if the system is mounting a
non-Linux file system containing incompatible binaries.

nosuid

Disables the set-user-identifier and set-group-identifier bits. This prevents remote users from
gaining higher privileges by running a setuid program.

port=num

Specifies the numeric value of the NFS server port. If num is 0 (the default value), then mount
queries the rpcbind service on the remote host for the port number to use. If the NFS service on the
remote host is not registered with its rpcbind service, the standard NFS port number of TCP 2049 is
used instead.

rsize=num and wsize=num

These options set the maximum number of bytes to be transferred in a single NFS read or write
operation.
There is no fixed default value for rsize and wsize. By default, NFS uses the largest possible value
that both the server and the client support. In Red Hat Enterprise Linux 8, the client and server
maximum is 1,048,576 bytes. For more details, see the What are the default and maximum values for
rsize and wsize with NFS mounts? KBase article.

sec=mode

Security flavors to use for accessing files on the mounted export.
The default setting is sec=sys, which uses local UNIX UIDs and GIDs. These use AUTH_SYS to
authenticate NFS operations.

Other options include:

sec=krb5 uses Kerberos V5 instead of local UNIX UIDs and GIDs to authenticate users.

sec=krb5i uses Kerberos V5 for user authentication and performs integrity checking of NFS
operations using secure checksums to prevent data tampering.

sec=krb5p uses Kerberos V5 for user authentication, integrity checking, and encrypts NFS
traffic to prevent traffic sniffing. This is the most secure setting, but it also involves the most
performance overhead.

tcp

Instructs the NFS mount to use the TCP protocol.

Additional resources

The mount(8) man page

The nfs(5) man page

3.9. RELATED INFORMATION

The Linux NFS wiki: https://linux-nfs.org

To mount NFS shares persistently, see Section 13.8, “Persistently mounting file systems” .

CHAPTER 3. MOUNTING NFS SHARES

25

https://access.redhat.com/solutions/753853
https://linux-nfs.org

To mount NFS shares on demand, see Section 13.9, “Mounting file systems on demand” .

Red Hat Enterprise Linux 8 Managing file systems

26

CHAPTER 4. EXPORTING NFS SHARES
As a system administrator, you can use the NFS server to share a directory on your system over network.

4.1. INTRODUCTION TO NFS

This section explains the basic concepts of the NFS service.

A Network File System (NFS) allows remote hosts to mount file systems over a network and interact
with those file systems as though they are mounted locally. This enables you to consolidate resources
onto centralized servers on the network.

The NFS server refers to the /etc/exports configuration file to determine whether the client is allowed
to access any exported file systems. Once verified, all file and directory operations are available to the
user.

4.2. SUPPORTED NFS VERSIONS

This section lists versions of NFS supported in Red Hat Enterprise Linux and their features.

Currently, Red Hat Enterprise Linux 8 supports the following major versions of NFS:

NFS version 3 (NFSv3) supports safe asynchronous writes and is more robust at error handling
than the previous NFSv2; it also supports 64-bit file sizes and offsets, allowing clients to access
more than 2 GB of file data.

NFS version 4 (NFSv4) works through firewalls and on the Internet, no longer requires an
rpcbind service, supports Access Control Lists (ACLs), and utilizes stateful operations.

NFS version 2 (NFSv2) is no longer supported by Red Hat.

Default NFS version
The default NFS version in Red Hat Enterprise Linux 8 is 4.2. NFS clients attempt to mount using
NFSv4.2 by default, and fall back to NFSv4.1 when the server does not support NFSv4.2. The mount
later falls back to NFSv4.0 and then to NFSv3.

Features of minor NFS versions
Following are the features of NFSv4.2 in Red Hat Enterprise Linux 8:

Server-side copy

Enables the NFS client to efficiently copy data without wasting network resources using the
copy_file_range() system call.

Sparse files

Enables files to have one or more holes, which are unallocated or uninitialized data blocks consisting
only of zeroes. The lseek() operation in NFSv4.2 supports seek_hole() and seek_data(), which
enables applications to map out the location of holes in the sparse file.

Space reservation

Permits storage servers to reserve free space, which prohibits servers to run out of space. NFSv4.2
supports the allocate() operation to reserve space, the deallocate() operation to unreserve space,
and the fallocate() operation to preallocate or deallocate space in a file.

Labeled NFS

Enforces data access rights and enables SELinux labels between a client and a server for individual
files on an NFS file system.

CHAPTER 4. EXPORTING NFS SHARES

27

Layout enhancements

Provides the layoutstats() operation, which enables some Parallel NFS (pNFS) servers to collect
better performance statistics.

Following are the features of NFSv4.1:

Enhances performance and security of network, and also includes client-side support for pNFS.

No longer requires a separate TCP connection for callbacks, which allows an NFS server to grant
delegations even when it cannot contact the client: for example, when NAT or a firewall
interferes.

Provides exactly once semantics (except for reboot operations), preventing a previous issue
whereby certain operations sometimes returned an inaccurate result if a reply was lost and the
operation was sent twice.

4.3. THE TCP AND UDP PROTOCOLS IN NFSV3 AND NFSV4

NFSv4 requires the Transmission Control Protocol (TCP) running over an IP network.

NFSv3 could also use the User Datagram Protocol (UDP) in earlier Red Hat Enterprise Linux versions. In
Red Hat Enterprise Linux 8, NFS over UDP is no longer supported. By default, UDP is disabled in the
NFS server.

4.4. SERVICES REQUIRED BY NFS

This section lists system services that are required for running an NFS server or mounting NFS shares.
Red Hat Enterprise Linux starts these services automatically.

Red Hat Enterprise Linux uses a combination of kernel-level support and service processes to provide
NFS file sharing. All NFS versions rely on Remote Procedure Calls (RPC) between clients and servers.
To share or mount NFS file systems, the following services work together depending on which version of
NFS is implemented:

nfsd

The NFS server kernel module that services requests for shared NFS file systems.

rpcbind

Accepts port reservations from local RPC services. These ports are then made available (or
advertised) so the corresponding remote RPC services can access them. The rpcbind service
responds to requests for RPC services and sets up connections to the requested RPC service. This is
not used with NFSv4.

rpc.mountd

This process is used by an NFS server to process MOUNT requests from NFSv3 clients. It checks that
the requested NFS share is currently exported by the NFS server, and that the client is allowed to
access it. If the mount request is allowed, the nfs-mountd service replies with a Success status and
provides the File-Handle for this NFS share back to the NFS client.

rpc.nfsd

This process enables explicit NFS versions and protocols the server advertises to be defined. It works
with the Linux kernel to meet the dynamic demands of NFS clients, such as providing server threads
each time an NFS client connects. This process corresponds to the nfs-server service.

lockd

This is a kernel thread that runs on both clients and servers. It implements the Network Lock

Red Hat Enterprise Linux 8 Managing file systems

28

This is a kernel thread that runs on both clients and servers. It implements the Network Lock
Manager (NLM) protocol, which enables NFSv3 clients to lock files on the server. It is started
automatically whenever the NFS server is run and whenever an NFS file system is mounted.

rpc.statd

This process implements the Network Status Monitor (NSM) RPC protocol, which notifies NFS
clients when an NFS server is restarted without being gracefully brought down. The rpc-statd service
is started automatically by the nfs-server service, and does not require user configuration. This is not
used with NFSv4.

rpc.rquotad

This process provides user quota information for remote users. The rpc-rquotad service is started
automatically by the nfs-server service and does not require user configuration.

rpc.idmapd

This process provides NFSv4 client and server upcalls, which map between on-the-wire NFSv4
names (strings in the form of user@domain) and local UIDs and GIDs. For idmapd to function with
NFSv4, the /etc/idmapd.conf file must be configured. At a minimum, the Domain parameter should
be specified, which defines the NFSv4 mapping domain. If the NFSv4 mapping domain is the same
as the DNS domain name, this parameter can be skipped. The client and server must agree on the
NFSv4 mapping domain for ID mapping to function properly.
Only the NFSv4 server uses rpc.idmapd, which is started by the nfs-idmapd service. The NFSv4
client uses the keyring-based nfsidmap utility, which is called by the kernel on-demand to perform
ID mapping. If there is a problem with nfsidmap, the client falls back to using rpc.idmapd.

The RPC services with NFSv4
The mounting and locking protocols have been incorporated into the NFSv4 protocol. The server also
listens on the well-known TCP port 2049. As such, NFSv4 does not need to interact with rpcbind,
lockd, and rpc-statd services. The nfs-mountd service is still required on the NFS server to set up the
exports, but is not involved in any over-the-wire operations.

Additional resources

To configure an NFSv4-only server, which does not require rpcbind, see Section 4.14,
“Configuring an NFSv4-only server”.

4.5. NFS HOST NAME FORMATS

This section describes different formats that you can use to specify a host when mounting or exporting
an NFS share.

You can specify the host in the following formats:

Single machine

Either of the following:

A fully-qualified domain name (that can be resolved by the server)

Host name (that can be resolved by the server)

An IP address.

Series of machines specified with wildcards

You can use the * or ? characters to specify a string match.
Wildcards are not to be used with IP addresses; however, they might accidentally work if reverse DNS

CHAPTER 4. EXPORTING NFS SHARES

29

lookups fail. When specifying wildcards in fully qualified domain names, dots (.) are not included in
the wildcard. For example, *.example.com includes one.example.com but does not include
one.two.example.com.

IP networks

Either of the following formats is valid:

a.b.c.d/z, where a.b.c.d is the network and z is the number of bits in the netmask; for
example 192.168.0.0/24.

a.b.c.d/netmask, where a.b.c.d is the network and netmask is the netmask; for example,
192.168.100.8/255.255.255.0.

Netgroups

The @group-name format , where group-name is the NIS netgroup name.

4.6. NFS SERVER CONFIGURATION

This section describes the syntax and options of two ways to configure exports on an NFS server:

Manually editing the /etc/exports configuration file

Using the exportfs utility on the command line

4.6.1. The /etc/exports configuration file

The /etc/exports file controls which file systems are exported to remote hosts and specifies options. It
follows the following syntax rules:

Blank lines are ignored.

To add a comment, start a line with the hash mark (#).

You can wrap long lines with a backslash (\).

Each exported file system should be on its own individual line.

Any lists of authorized hosts placed after an exported file system must be separated by space
characters.

Options for each of the hosts must be placed in parentheses directly after the host identifier,
without any spaces separating the host and the first parenthesis.

Export entry
Each entry for an exported file system has the following structure:

export host(options)

It is also possible to specify multiple hosts, along with specific options for each host. To do so, list them
on the same line as a space-delimited list, with each host name followed by its respective options (in
parentheses), as in:

export host1(options1) host2(options2) host3(options3)

Red Hat Enterprise Linux 8 Managing file systems

30

In this structure:

export

The directory being exported

host

The host or network to which the export is being shared

options

The options to be used for host

Example 4.1. A simple /etc/exports file

In its simplest form, the /etc/exports file only specifies the exported directory and the hosts
permitted to access it:

/exported/directory bob.example.com

Here, bob.example.com can mount /exported/directory/ from the NFS server. Because no options
are specified in this example, NFS uses default options.

IMPORTANT

The format of the /etc/exports file is very precise, particularly in regards to use of the
space character. Remember to always separate exported file systems from hosts and
hosts from one another with a space character. However, there should be no other space
characters in the file except on comment lines.

For example, the following two lines do not mean the same thing:

/home bob.example.com(rw)
/home bob.example.com (rw)

The first line allows only users from bob.example.com read and write access to the
/home directory. The second line allows users from bob.example.com to mount the
directory as read-only (the default), while the rest of the world can mount it read/write.

Default options
The default options for an export entry are:

ro

The exported file system is read-only. Remote hosts cannot change the data shared on the file
system. To allow hosts to make changes to the file system (that is, read and write), specify the rw
option.

sync

The NFS server will not reply to requests before changes made by previous requests are written to
disk. To enable asynchronous writes instead, specify the option async.

wdelay

The NFS server will delay writing to the disk if it suspects another write request is imminent. This can
improve performance as it reduces the number of times the disk must be accessed by separate write
commands, thereby reducing write overhead. To disable this, specify the no_wdelay option, which is
available only if the default sync option is also specified.

CHAPTER 4. EXPORTING NFS SHARES

31

root_squash

This prevents root users connected remotely (as opposed to locally) from having root privileges;
instead, the NFS server assigns them the user ID nfsnobody. This effectively "squashes" the power
of the remote root user to the lowest local user, preventing possible unauthorized writes on the
remote server. To disable root squashing, specify the no_root_squash option.
To squash every remote user (including root), use the all_squash option. To specify the user and
group IDs that the NFS server should assign to remote users from a particular host, use the anonuid
and anongid options, respectively, as in:

export host(anonuid=uid,anongid=gid)

Here, uid and gid are user ID number and group ID number, respectively. The anonuid and anongid
options enable you to create a special user and group account for remote NFS users to share.

By default, access control lists (ACLs) are supported by NFS under Red Hat Enterprise Linux. To disable
this feature, specify the no_acl option when exporting the file system.

Default and overridden options
Each default for every exported file system must be explicitly overridden. For example, if the rw option
is not specified, then the exported file system is shared as read-only. The following is a sample line from
/etc/exports which overrides two default options:

/another/exported/directory 192.168.0.3(rw,async)

In this example, 192.168.0.3 can mount /another/exported/directory/ read and write, and all writes to
disk are asynchronous.

4.6.2. The exportfs utility

The exportfs utility enables the root user to selectively export or unexport directories without restarting
the NFS service. When given the proper options, the exportfs utility writes the exported file systems to
/var/lib/nfs/xtab. Because the nfs-mountd service refers to the xtab file when deciding access
privileges to a file system, changes to the list of exported file systems take effect immediately.

Common exportfs options
The following is a list of commonly-used options available for exportfs:

-r

Causes all directories listed in /etc/exports to be exported by constructing a new export list in
/etc/lib/nfs/xtab. This option effectively refreshes the export list with any changes made to
/etc/exports.

-a

Causes all directories to be exported or unexported, depending on what other options are passed to
exportfs. If no other options are specified, exportfs exports all file systems specified in /etc/exports.

-o file-systems

Specifies directories to be exported that are not listed in /etc/exports. Replace file-systems with
additional file systems to be exported. These file systems must be formatted in the same way they
are specified in /etc/exports. This option is often used to test an exported file system before adding
it permanently to the list of exported file systems.

-i

Ignores /etc/exports; only options given from the command line are used to define exported file

Red Hat Enterprise Linux 8 Managing file systems

32

Ignores /etc/exports; only options given from the command line are used to define exported file
systems.

-u

Unexports all shared directories. The command exportfs -ua suspends NFS file sharing while keeping
all NFS services up. To re-enable NFS sharing, use exportfs -r.

-v

Verbose operation, where the file systems being exported or unexported are displayed in greater
detail when the exportfs command is executed.

If no options are passed to the exportfs utility, it displays a list of currently exported file systems.

Additional resources

For information on different methods for specifying host names, see Section 4.5, “NFS host
name formats”.

For a complete list of export options, see the exports(5) man page.

For more information about the exportfs utility, see the exportfs(8) man page.

4.7. NFS AND RPCBIND

This section explains the purpose of the rpcbind service, which is required by NFSv3.

The rpcbind service maps Remote Procedure Call (RPC) services to the ports on which they listen. RPC
processes notify rpcbind when they start, registering the ports they are listening on and the RPC
program numbers they expect to serve. The client system then contacts rpcbind on the server with a
particular RPC program number. The rpcbind service redirects the client to the proper port number so it
can communicate with the requested service.

Because RPC-based services rely on rpcbind to make all connections with incoming client requests,
rpcbind must be available before any of these services start.

Access control rules for rpcbind affect all RPC-based services. Alternatively, it is possible to specify
access control rules for each of the NFS RPC daemons.

Additional resources

For the precise syntax of access control rules, see the rpc.mountd(8) and rpc.statd(8) man
pages.

4.8. INSTALLING NFS

This procedure installs all packages necessary to mount or export NFS shares.

Procedure

Install the nfs-utils package:

yum install nfs-utils

4.9. STARTING THE NFS SERVER

CHAPTER 4. EXPORTING NFS SHARES

33

This procedure describes how to start the NFS server, which is required to export NFS shares.

Prerequisites

For servers that support NFSv2 or NFSv3 connections, the rpcbind service must be running. To
verify that rpcbind is active, use the following command:

$ systemctl status rpcbind

If the service is stopped, start and enable it:

$ systemctl enable --now rpcbind

Procedure

To start the NFS server and enable it to start automatically at boot, use the following command:

systemctl enable --now nfs-server

Additional resources

To configure an NFSv4-only server, which does not require rpcbind, see Section 4.14,
“Configuring an NFSv4-only server”.

4.10. TROUBLESHOOTING NFS AND RPCBIND

Because the rpcbind service provides coordination between RPC services and the port numbers used
to communicate with them, it is useful to view the status of current RPC services using rpcbind when
troubleshooting. The rpcinfo utility shows each RPC-based service with port numbers, an RPC program
number, a version number, and an IP protocol type (TCP or UDP).

Procedure

1. To make sure the proper NFS RPC-based services are enabled for rpcbind, use the following
command:

rpcinfo -p

Example 4.2. rpcinfo -p command output

The following is sample output from this command:

 program vers proto port service
 100000 4 tcp 111 portmapper
 100000 3 tcp 111 portmapper
 100000 2 tcp 111 portmapper
 100000 4 udp 111 portmapper
 100000 3 udp 111 portmapper
 100000 2 udp 111 portmapper
 100005 1 udp 20048 mountd
 100005 1 tcp 20048 mountd
 100005 2 udp 20048 mountd
 100005 2 tcp 20048 mountd

Red Hat Enterprise Linux 8 Managing file systems

34

 100005 3 udp 20048 mountd
 100005 3 tcp 20048 mountd
 100024 1 udp 37769 status
 100024 1 tcp 49349 status
 100003 3 tcp 2049 nfs
 100003 4 tcp 2049 nfs
 100227 3 tcp 2049 nfs_acl
 100021 1 udp 56691 nlockmgr
 100021 3 udp 56691 nlockmgr
 100021 4 udp 56691 nlockmgr
 100021 1 tcp 46193 nlockmgr
 100021 3 tcp 46193 nlockmgr
 100021 4 tcp 46193 nlockmgr

If one of the NFS services does not start up correctly, rpcbind will be unable to map RPC
requests from clients for that service to the correct port.

2. In many cases, if NFS is not present in rpcinfo output, restarting NFS causes the service to
correctly register with rpcbind and begin working:

systemctl restart nfs-server

Additional resources

For more information and a list of rpcinfo options, see the rpcinfo(8) man page.

To configure an NFSv4-only server, which does not require rpcbind, see Section 4.14,
“Configuring an NFSv4-only server”.

4.11. CONFIGURING THE NFS SERVER TO RUN BEHIND A FIREWALL

NFS requires the rpcbind service, which dynamically assigns ports for RPC services and can cause
issues for configuring firewall rules. This procedure describes how to configure the NFS server to work
behind a firewall.

Procedure

1. To allow clients to access NFS shares behind a firewall, set which ports the RPC services run on
in the [mountd] section of the /etc/nfs.conf file:

[mountd]

port=port-number

This adds the -p port-number option to the rpc.mount command line: rpc.mount -p port-
number.

2. To allow clients to access NFS shares behind a firewall, configure the firewall by running the
following commands on the NFS server:

firewall-cmd --permanent --add-service mountd
firewall-cmd --permanent --add-service rpc-bind
firewall-cmd --permanent --add-service nfs

CHAPTER 4. EXPORTING NFS SHARES

35

firewall-cmd --permanent --add-port=<mountd-port>/tcp
firewall-cmd --permanent --add-port=<mountd-port>/udp
firewall-cmd --reload

In the commands, replace <mountd-port> with the intended port or a port range. When
specifying a port range, use the --add-port=<mountd-port>-<mountd-port>/udp syntax.

3. To allow NFSv4.0 callbacks to pass through firewalls, set
/proc/sys/fs/nfs/nfs_callback_tcpport and allow the server to connect to that port on the
client.
This step is not needed for NFSv4.1 or higher, and the other ports for mountd, statd, and lockd
are not required in a pure NFSv4 environment.

4. To specify the ports to be used by the RPC service nlockmgr, set the port number for the
nlm_tcpport and nlm_udpport options in the /etc/modprobe.d/lockd.conf file.

5. Restart the NFS server:

systemctl restart nfs-server

If NFS fails to start, check /var/log/messages. Commonly, NFS fails to start if you specify a port
number that is already in use.

6. Confirm the changes have taken effect:

rpcinfo -p

Additional resources

To configure an NFSv4-only server, which does not require rpcbind, see Section 4.14,
“Configuring an NFSv4-only server”.

4.12. EXPORTING RPC QUOTA THROUGH A FIREWALL

If you export a file system that uses disk quotas, you can use the quota Remote Procedure Call (RPC)
service to provide disk quota data to NFS clients.

Procedure

1. Enable and start the rpc-rquotad service:

systemctl enable --now rpc-rquotad

NOTE

The rpc-rquotad service is, if enabled, started automatically after starting the
nfs-server service.

2. To make the quota RPC service accessible behind a firewall, the TCP (or UDP, if UDP is
enabled) port 875 need to be open. The default port number is defined in the /etc/services file.
You can override the default port number by appending -p port-number to the
RPCRQUOTADOPTS variable in the /etc/sysconfig/rpc-rquotad file.

3. By default, remote hosts can only read quotas. If you want to allow clients to set quotas, append

Red Hat Enterprise Linux 8 Managing file systems

36

3. By default, remote hosts can only read quotas. If you want to allow clients to set quotas, append
the -S option to the RPCRQUOTADOPTS variable in the /etc/sysconfig/rpc-rquotad file.

4. Restart rpc-rquotad for the changes in the /etc/sysconfig/rpc-rquotad file to take effect:

systemctl restart rpc-rquotad

4.13. ENABLING NFS OVER RDMA (NFSORDMA)

The remote direct memory access (RDMA) service works automatically in Red Hat Enterprise Linux 8 if
there is RDMA-capable hardware present.

Procedure

1. Install the rdma-core package:

yum install rdma-core

2. To enable automatic loading of NFSoRDMA server modules, add the SVCRDMA_LOAD=yes
option on a new line in the /etc/rdma/rdma.conf configuration file.
The rdma=20049 option in the [nfsd] section of the /etc/nfs.conf file specifies the port number
on which the NFSoRDMA service listens for clients. The RFC 5667 standard specifies that
servers must listen on port 20049 when providing NFSv4 services over RDMA.

The /etc/rdma/rdma.conf file contains a line that sets the XPRTRDMA_LOAD=yes option by
default, which requests the rdma service to load the NFSoRDMA client module.

3. Restart the nfs-server service:

systemctl restart nfs-server

Additional resources

The RFC 5667 standard: https://tools.ietf.org/html/rfc5667.

4.14. CONFIGURING AN NFSV4-ONLY SERVER

As an NFS server administrator, you can configure the NFS server to support only NFSv4, which
minimizes the number of open ports and running services on the system.

4.14.1. Benefits and drawbacks of an NFSv4-only server

This section explains the benefits and drawbacks of configuring the NFS server to only support NFSv4.

By default, the NFS server supports NFSv2, NFSv3, and NFSv4 connections in Red Hat
Enterprise Linux 8. However, you can also configure NFS to support only NFS version 4.0 and later. This
minimizes the number of open ports and running services on the system, because NFSv4 does not
require the rpcbind service to listen on the network.

When your NFS server is configured as NFSv4-only, clients attempting to mount shares using NFSv2 or
NFSv3 fail with an error like the following:

Requested NFS version or transport protocol is not supported.

CHAPTER 4. EXPORTING NFS SHARES

37

https://tools.ietf.org/html/rfc5667

Optionally, you can also disable listening for the RPCBIND, MOUNT, and NSM protocol calls, which are
not necessary in the NFSv4-only case.

The effects of disabling these additional options are:

Clients that attempt to mount shares from your server using NFSv2 or NFSv3 become
unresponsive.

The NFS server itself is unable to mount NFSv2 and NFSv3 file systems.

4.14.2. NFS and rpcbind

This section explains the purpose of the rpcbind service, which is required by NFSv3.

The rpcbind service maps Remote Procedure Call (RPC) services to the ports on which they listen. RPC
processes notify rpcbind when they start, registering the ports they are listening on and the RPC
program numbers they expect to serve. The client system then contacts rpcbind on the server with a
particular RPC program number. The rpcbind service redirects the client to the proper port number so it
can communicate with the requested service.

Because RPC-based services rely on rpcbind to make all connections with incoming client requests,
rpcbind must be available before any of these services start.

Access control rules for rpcbind affect all RPC-based services. Alternatively, it is possible to specify
access control rules for each of the NFS RPC daemons.

Additional resources

For the precise syntax of access control rules, see the rpc.mountd(8) and rpc.statd(8) man
pages.

4.14.3. Configuring the NFS server to support only NFSv4

This procedure describes how to configure your NFS server to support only NFS version 4.0 and later.

Procedure

1. Disable NFSv2 and NFSv3 by adding the following lines to the [nfsd] section of the
/etc/nfs.conf configuration file:

[nfsd]

vers2=no
vers3=no

2. Optionally, disable listening for the RPCBIND, MOUNT, and NSM protocol calls, which are not
necessary in the NFSv4-only case. Disable related services:

systemctl mask --now rpc-statd.service rpcbind.service rpcbind.socket

3. Restart the NFS server:

systemctl restart nfs-server

Red Hat Enterprise Linux 8 Managing file systems

38

The changes take effect as soon as you start or restart the NFS server.

4.14.4. Verifying the NFSv4-only configuration

This procedure describes how to verify that your NFS server is configured in the NFSv4-only mode by
using the netstat utility.

Procedure

Use the netstat utility to list services listening on the TCP and UDP protocols:

netstat --listening --tcp --udp

Example 4.3. Output on an NFSv4-only server

The following is an example netstat output on an NFSv4-only server; listening for RPCBIND,
MOUNT, and NSM is also disabled. Here, nfs is the only listening NFS service:

netstat --listening --tcp --udp

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:ssh 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:nfs 0.0.0.0:* LISTEN
tcp6 0 0 [::]:ssh [::]:* LISTEN
tcp6 0 0 [::]:nfs [::]:* LISTEN
udp 0 0 localhost.locald:bootpc 0.0.0.0:*

Example 4.4. Output before configuring an NFSv4-only server

In comparison, the netstat output before configuring an NFSv4-only server includes the
sunrpc and mountd services:

netstat --listening --tcp --udp

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:ssh 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:40189 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:46813 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:nfs 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:sunrpc 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:mountd 0.0.0.0:* LISTEN
tcp6 0 0 [::]:ssh [::]:* LISTEN
tcp6 0 0 [::]:51227 [::]:* LISTEN
tcp6 0 0 [::]:nfs [::]:* LISTEN
tcp6 0 0 [::]:sunrpc [::]:* LISTEN
tcp6 0 0 [::]:mountd [::]:* LISTEN
tcp6 0 0 [::]:45043 [::]:* LISTEN
udp 0 0 localhost:1018 0.0.0.0:*
udp 0 0 localhost.locald:bootpc 0.0.0.0:*
udp 0 0 0.0.0.0:mountd 0.0.0.0:*
udp 0 0 0.0.0.0:46672 0.0.0.0:*

CHAPTER 4. EXPORTING NFS SHARES

39

udp 0 0 0.0.0.0:sunrpc 0.0.0.0:*
udp 0 0 0.0.0.0:33494 0.0.0.0:*
udp6 0 0 [::]:33734 [::]:*
udp6 0 0 [::]:mountd [::]:*
udp6 0 0 [::]:sunrpc [::]:*
udp6 0 0 [::]:40243 [::]:*

4.15. RELATED INFORMATION

The Linux NFS wiki: https://linux-nfs.org

Red Hat Enterprise Linux 8 Managing file systems

40

https://linux-nfs.org

CHAPTER 5. SECURING NFS
To minimize NFS security risks and protect data on the server, consider the following sections when
exporting NFS file systems on a server or mounting them on a client.

5.1. NFS SECURITY WITH AUTH_SYS AND EXPORT CONTROLS

NFS provides the following traditional options in order to control access to exported files:

The server restricts which hosts are allowed to mount which file systems either by IP address or
by host name.

The server enforces file system permissions for users on NFS clients in the same way it does for
local users. Traditionally, NFS does this using the AUTH_SYS call message (also called
AUTH_UNIX), which relies on the client to state the UID and GIDs of the user. Be aware that
this means that a malicious or misconfigured client might easily get this wrong and allow a user
access to files that it should not.

To limit the potential risks, administrators often limits the access to read-only or squash user
permissions to a common user and group ID. Unfortunately, these solutions prevent the NFS share from
being used in the way it was originally intended.

Additionally, if an attacker gains control of the DNS server used by the system exporting the NFS file
system, they can point the system associated with a particular hostname or fully qualified domain name
to an unauthorized machine. At this point, the unauthorized machine is the system permitted to mount
the NFS share, because no username or password information is exchanged to provide additional
security for the NFS mount.

Wildcards should be used sparingly when exporting directories through NFS, as it is possible for the
scope of the wildcard to encompass more systems than intended.

Additional resources

For more information on securing NFS and rpcbind, see the iptables man page.

5.2. NFS SECURITY WITH AUTH_GSS

All version of NFS support RPCSEC_GSS and the Kerberos mechanism.

Unlike AUTH_SYS, with the RPCSEC_GSS Kerberos mechanism, the server does not depend on the
client to correctly represent which user is accessing the file. Instead, cryptography is used to
authenticate users to the server, which prevents a malicious client from impersonating a user without
having that user’s Kerberos credentials. Using the RPCSEC_GSS Kerberos mechanism is the most
straightforward way to secure mounts because after configuring Kerberos, no additional setup is
needed.

5.3. CONFIGURING AN NFS SERVER AND CLIENT TO USE KERBEROS

Kerberos is a network authentication system that allows clients and servers to authenticate to each
other by using symmetric encryption and a trusted third party, the KDC. Red Hat recommends using
Identity Management (IdM) for setting up Kerberos.

Prerequisites

CHAPTER 5. SECURING NFS

41

The Kerberos Key Distribution Centre (KDC) is installed and configured.

Procedure

1. Create the nfs/hostname.domain@REALM principal on the NFS server side.

Create the host/hostname.domain@REALM principal on both the server and the client
side.

Add the corresponding keys to keytabs for the client and server.

2. On the server side, use the sec= option to enable the wanted security flavors. To enable all
security flavors as well as non-cryptographic mounts:

/export *(sec=sys:krb5:krb5i:krb5p)

Valid security flavors to use with the sec= option are:

sys: no cryptographic protection, the default

krb5: authentication only

krb5i: integrity protection

krb5p: privacy protection

3. On the client side, add sec=krb5 (or sec=krb5i, or sec=krb5p, depending on the setup) to the
mount options:

mount -o sec=krb5 server:/export /mnt

Additional resources

If you need to write files as root on the Kerberos-secured NFS share and keep root ownership
on these files, see https://access.redhat.com/articles/4040141. Note that this configuration is
not recommended.

For more information on NFS configuration, see the exports(5) and nfs(5) man pages.

5.4. NFSV4 SECURITY OPTIONS

NFSv4 includes ACL support based on the Microsoft Windows NT model, not the POSIX model,
because of the Microsoft Windows NT model’s features and wide deployment.

Another important security feature of NFSv4 is the removal of the use of the MOUNT protocol for
mounting file systems. The MOUNT protocol presented a security risk because of the way the protocol
processed file handles.

5.5. FILE PERMISSIONS ON MOUNTED NFS EXPORTS

Once the NFS file system is mounted as either read or read and write by a remote host, the only
protection each shared file has is its permissions. If two users that share the same user ID value mount
the same NFS file system on different client systems, they can modify each others' files. Additionally,

Red Hat Enterprise Linux 8 Managing file systems

42

https://access.redhat.com/articles/4040141

anyone logged in as root on the client system can use the su - command to access any files with the
NFS share.

By default, access control lists (ACLs) are supported by NFS under Red Hat Enterprise Linux. Red Hat
recommends to keep this feature enabled.

By default, NFS uses root squashing when exporting a file system. This sets the user ID of anyone
accessing the NFS share as the root user on their local machine to nobody. Root squashing is controlled
by the default option root_squash; for more information about this option, see Section 4.6, “NFS server
configuration”.

When exporting an NFS share as read-only, consider using the all_squash option. This option makes
every user accessing the exported file system take the user ID of the nfsnobody user.

CHAPTER 5. SECURING NFS

43

CHAPTER 6. ENABLING PNFS SCSI LAYOUTS IN NFS
You can configure the NFS server and client to use the pNFS SCSI layout for accessing data. pNFS
SCSI is beneficial in use cases that involve longer-duration single-client access to a file.

Prerequisites

Both the client and the server must be able to send SCSI commands to the same block device.
That is, the block device must be on a shared SCSI bus.

The block device must contain an XFS file system.

The SCSI device must support SCSI Persistent Reservations as described in the SCSI-3 Primary
Commands specification.

6.1. THE PNFS TECHNOLOGY

The pNFS architecture improves the scalability of NFS. When a server implements pNFS, the client is
able to access data through multiple servers concurrently. This can lead to performance improvements.

pNFS supports the following storage protocols or layouts on RHEL:

Files

Flexfiles

SCSI

6.2. PNFS SCSI LAYOUTS

The SCSI layout builds on the work of pNFS block layouts. The layout is defined across SCSI devices. It
contains a sequential series of fixed-size blocks as logical units (LUs) that must be capable of
supporting SCSI persistent reservations. The LU devices are identified by their SCSI device
identification.

pNFS SCSI performs well in use cases that involve longer-duration single-client access to a file. An
example might be a mail server or a virtual machine housing a cluster.

Operations between the client and the server
When an NFS client reads from a file or writes to it, the client performs a LAYOUTGET operation. The
server responds with the location of the file on the SCSI device. The client might need to perform an
additional operation of GETDEVICEINFO to determine which SCSI device to use. If these operations
work correctly, the client can issue I/O requests directly to the SCSI device instead of sending READ
and WRITE operations to the server.

Errors or contention between clients might cause the server to recall layouts or not issue them to the
clients. In those cases, the clients fall back to issuing READ and WRITE operations to the server instead
of sending I/O requests directly to the SCSI device.

To monitor the operations, see Section 6.7, “Monitoring pNFS SCSI layouts functionality” .

Device reservations
pNFS SCSI handles fencing through the assignment of reservations. Before the server issues layouts to
clients, it reserves the SCSI device to ensure that only registered clients may access the device. If a
client can issue commands to that SCSI device but is not registered with the device, many operations

Red Hat Enterprise Linux 8 Managing file systems

44

from the client on that device fail. For example, the blkid command on the client fails to show the UUID
of the XFS file system if the server has not given a layout for that device to the client.

The server does not remove its own persistent reservation. This protects the data within the file system
on the device across restarts of clients and servers. In order to repurpose the SCSI device, you might
need to manually remove the persistent reservation on the NFS server.

6.3. CHECKING FOR A SCSI DEVICE COMPATIBLE WITH PNFS

This procedure checks if a SCSI device supports the pNFS SCSI layout.

Prerequisites

Install the sg3_utils package:

yum install sg3_utils

Procedure

On both the server and client, check for the proper SCSI device support:

sg_persist --in --report-capabilities --verbose path-to-scsi-device

Ensure that the Persist Through Power Loss Active (PTPL_A) bit is set.

Example 6.1. A SCSI device that supports pNFS SCSI

The following is an example of sg_persist output for a SCSI device that supports pNFS
SCSI. The PTPL_A bit reports 1.

 inquiry cdb: 12 00 00 00 24 00
 Persistent Reservation In cmd: 5e 02 00 00 00 00 00 20 00 00
 LIO-ORG block11 4.0
 Peripheral device type: disk
Report capabilities response:
 Compatible Reservation Handling(CRH): 1
 Specify Initiator Ports Capable(SIP_C): 1
 All Target Ports Capable(ATP_C): 1
 Persist Through Power Loss Capable(PTPL_C): 1
 Type Mask Valid(TMV): 1
 Allow Commands: 1
 Persist Through Power Loss Active(PTPL_A): 1
 Support indicated in Type mask:
 Write Exclusive, all registrants: 1
 Exclusive Access, registrants only: 1
 Write Exclusive, registrants only: 1
 Exclusive Access: 1
 Write Exclusive: 1
 Exclusive Access, all registrants: 1

Additional resources

CHAPTER 6. ENABLING PNFS SCSI LAYOUTS IN NFS

45

The sg_persist(8) man page

6.4. SETTING UP PNFS SCSI ON THE SERVER

This procedure configures an NFS server to export a pNFS SCSI layout.

Procedure

1. On the server, mount the XFS file system created on the SCSI device.

2. Configure the NFS server to export NFS version 4.1 or higher. Set the following option in the
[nfsd] section of the /etc/nfs.conf file:

[nfsd]

vers4.1=y

3. Configure the NFS server to export the XFS file system over NFS with the pnfs option:

Example 6.2. An entry in /etc/exports to export pNFS SCSI

The following entry in the /etc/exports configuration file exports the file system mounted at
/exported/directory/ to the allowed.example.com client as a pNFS SCSI layout:

/exported/directory allowed.example.com(pnfs)

Additional resources

For more information on configuring an NFS server, see Chapter 4, Exporting NFS shares.

6.5. SETTING UP PNFS SCSI ON THE CLIENT

This procedure configures an NFS client to mount a pNFS SCSI layout.

Prerequisites

The NFS server is configured to export an XFS file system over pNFS SCSI. See Section 6.4,
“Setting up pNFS SCSI on the server”.

Procedure

On the client, mount the exported XFS file system using NFS version 4.1 or higher:

mount -t nfs -o nfsvers=4.1 host:/remote/export /local/directory

Do not mount the XFS file system directly without NFS.

Additional resources

For more information on mounting NFS shares, see Chapter 3, Mounting NFS shares.

Red Hat Enterprise Linux 8 Managing file systems

46

6.6. RELEASING THE PNFS SCSI RESERVATION ON THE SERVER

This procedure releases the persistent reservation that an NFS server holds on a SCSI device. This
enables you to repurpose the SCSI device when you no longer need to export pNFS SCSI.

You must remove the reservation from the server. It cannot be removed from a different IT Nexus.

Prerequisites

Install the sg3_utils package:

yum install sg3_utils

Procedure

1. Query an existing reservation on the server:

sg_persist --read-reservation path-to-scsi-device

Example 6.3. Querying a reservation on /dev/sda

sg_persist --read-reservation /dev/sda

 LIO-ORG block_1 4.0
 Peripheral device type: disk
 PR generation=0x8, Reservation follows:
 Key=0x100000000000000
 scope: LU_SCOPE, type: Exclusive Access, registrants only

2. Remove the existing registration on the server:

sg_persist --out \
 --release \
 --param-rk=reservation-key \
 --prout-type=6 \
 path-to-scsi-device

Example 6.4. Removing a reservation on /dev/sda

sg_persist --out \
 --release \
 --param-rk=0x100000000000000 \
 --prout-type=6 \
 /dev/sda

 LIO-ORG block_1 4.0
 Peripheral device type: disk

Additional resources

CHAPTER 6. ENABLING PNFS SCSI LAYOUTS IN NFS

47

The sg_persist(8) man page

6.7. MONITORING PNFS SCSI LAYOUTS FUNCTIONALITY

You can monitor if the pNFS client and server exchange proper pNFS SCSI operations or if they fall
back on regular NFS operations.

Prerequisites

A pNFS SCSI client and server are configured.

6.7.1. Checking pNFS SCSI operations from the server using nfsstat

This procedure uses the nfsstat utility to monitor pNFS SCSI operations from the server.

Procedure

1. Monitor the operations serviced from the server:

watch --differences \
 "nfsstat --server | egrep --after-context=1 read\|write\|layout"

Every 2.0s: nfsstat --server | egrep --after-context=1 read\|write\|layout

putrootfh read readdir readlink remove rename
2 0% 0 0% 1 0% 0 0% 0 0% 0 0%
--
setcltidconf verify write rellockowner bc_ctl bind_conn
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
--
getdevlist layoutcommit layoutget layoutreturn secinfononam sequence
0 0% 29 1% 49 1% 5 0% 0 0% 2435 86%

2. The client and server use pNFS SCSI operations when:

The layoutget, layoutreturn, and layoutcommit counters increment. This means that the
server is serving layouts.

The server read and write counters do not increment. This means that the clients are
performing I/O requests directly to the SCSI devices.

6.7.2. Checking pNFS SCSI operations from the client using mountstats

This procedure uses the /proc/self/mountstats file to monitor pNFS SCSI operations from the client.

Procedure

1. List the per-mount operation counters:

cat /proc/self/mountstats \
 | awk /scsi_lun_0/,/^$/ \
 | egrep device\|READ\|WRITE\|LAYOUT

device 192.168.122.73:/exports/scsi_lun_0 mounted on /mnt/rhel7/scsi_lun_0 with fstype

Red Hat Enterprise Linux 8 Managing file systems

48

nfs4 statvers=1.1
 nfsv4:
bm0=0xfdffbfff,bm1=0x40f9be3e,bm2=0x803,acl=0x3,sessions,pnfs=LAYOUT_SCSI
 READ: 0 0 0 0 0 0 0 0
 WRITE: 0 0 0 0 0 0 0 0
 READLINK: 0 0 0 0 0 0 0 0
 READDIR: 0 0 0 0 0 0 0 0
 LAYOUTGET: 49 49 0 11172 9604 2 19448 19454
 LAYOUTCOMMIT: 28 28 0 7776 4808 0 24719 24722
 LAYOUTRETURN: 0 0 0 0 0 0 0 0
 LAYOUTSTATS: 0 0 0 0 0 0 0 0

2. In the results:

The LAYOUT statistics indicate requests where the client and server use pNFS SCSI
operations.

The READ and WRITE statistics indicate requests where the client and server fall back to
NFS operations.

CHAPTER 6. ENABLING PNFS SCSI LAYOUTS IN NFS

49

CHAPTER 7. MOUNTING AN SMB SHARE ON RED HAT
ENTERPRISE LINUX

The Server Message Block (SMB) protocol implements an application-layer network protocol used to
access resources on a server, such as file shares and shared printers.

NOTE

In the context of SMB, you can find mentions about the Common Internet File System
(CIFS) protocol, which is a dialect of SMB. Both the SMB and CIFS protocol are
supported, and the kernel module and utilities involved in mounting SMB and CIFS shares
both use the name cifs.

This section describes how to mount shares from an SMB server. For details about setting up an SMB
server on Red Hat Enterprise Linux using Samba, see Using Samba as a server .

Prerequisites

On Microsoft Windows, SMB is implemented by default. On Red Hat Enterprise Linux, the cifs.ko file
system module of the kernel provides support for mounting SMB shares. Therefor install the cifs-utils
package:

yum install cifs-utils

The cifs-utils package provides utilities to:

Mount SMB and CIFS shares

Manage NT Lan Manager (NTLM) credentials in the kernel’s keyring

Set and display Access Control Lists (ACL) in a security descriptor on SMB and CIFS shares

7.1. SUPPORTED SMB PROTOCOL VERSIONS

The cifs.ko kernel module supports the following SMB protocol versions:

SMB 1

SMB 2.0

SMB 2.1

SMB 3.0

SMB 3.1.1

NOTE

Depending on the protocol version, not all SMB features are implemented.

7.2. UNIX EXTENSIONS SUPPORT

Samba uses the CAP_UNIX capability bit in the SMB protocol to provide the UNIX extensions feature.

Red Hat Enterprise Linux 8 Managing file systems

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/assembly_using-samba-as-a-server_deploying-different-types-of-servers

Samba uses the CAP_UNIX capability bit in the SMB protocol to provide the UNIX extensions feature.
These extensions are also supported by the cifs.ko kernel module. However, both Samba and the kernel
module support UNIX extensions only in the SMB 1 protocol.

To use UNIX extensions:

1. Set the server min protocol parameter in the [global] section in the /etc/samba/smb.conf file
to NT1.

2. Mount the share using the SMB 1 protocol by providing the -o vers=1.0 option to the mount
command. For example:

mount -t cifs -o vers=1.0,username=user_name //server_name/share_name /mnt/

By default, the kernel module uses SMB 2 or the highest later protocol version supported by the
server. Passing the -o vers=1.0 option to the mount command forces that the kernel module
uses the SMB 1 protocol that is required for using UNIX extensions.

To verify if UNIX extensions are enabled, display the options of the mounted share:

mount
...
//server/share on /mnt type cifs (...,unix,...)

If the unix entry is displayed in the list of mount options, UNIX extensions are enabled.

7.3. MANUALLY MOUNTING AN SMB SHARE

If you only require an SMB share to be temporary mounted, you can mount it manually using the mount
utility.

NOTE

Manually mounted shares are not mounted automatically again when you reboot the
system. To configure that Red Hat Enterprise Linux automatically mounts the share when
the system boots, see Section 7.4, “Mounting an SMB share automatically when the
system boots”.

Prerequisites

The cifs-utils package is installed.

Procedure

To manually mount an SMB share, use the mount utility with the -t cifs parameter:

mount -t cifs -o username=user_name //server_name/share_name /mnt/
Password for user_name@//server_name/share_name: password

In the -o parameter, you can specify options that are used to mount the share. For details, see
Section 7.7, “Frequently used mount options” and the OPTIONS section in the mount.cifs(8) man page.

Example 7.1. Mounting a share using an encrypted SMB 3.0 connection

To mount the \\server\example\ share as the DOMAIN\Administrator user over an encrypted SMB

CHAPTER 7. MOUNTING AN SMB SHARE ON RED HAT ENTERPRISE LINUX

51

To mount the \\server\example\ share as the DOMAIN\Administrator user over an encrypted SMB
3.0 connection into the /mnt/ directory:

mount -t cifs -o username=DOMAIN\Administrator,seal,vers=3.0 //server/example /mnt/
Password for DOMAIN\Administrator@//server_name/share_name: password

7.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE
SYSTEM BOOTS

If access to a mounted SMB share is permanently required on a server, mount the share automatically at
boot time.

Prerequisites

The cifs-utils package is installed.

Procedure

To mount an SMB share automatically when the system boots, add an entry for the share to the
/etc/fstab file. For example:

//server_name/share_name /mnt cifs credentials=/root/smb.cred 0 0

IMPORTANT

To enable the system to mount a share automatically, you must store the user name,
password, and domain name in a credentials file. For details, see Section 7.5,
“Authenticating to an SMB share using a credentials file”.

In the fourth field of the row in the /etc/fstab, specify mount options, such as the path to the credentials
file. For details, see Section 7.7, “Frequently used mount options” and the OPTIONS section in the
mount.cifs(8) man page.

To verify that the share mounts successfully, enter:

mount /mnt/

7.5. AUTHENTICATING TO AN SMB SHARE USING A CREDENTIALS
FILE

In certain situations, such as when mounting a share automatically at boot time, a share should be
mounted without entering the user name and password. To implement this, create a credentials file.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Create a file, such as /root/smb.cred, and specify the user name, password, and domain name

Red Hat Enterprise Linux 8 Managing file systems

52

1. Create a file, such as /root/smb.cred, and specify the user name, password, and domain name
that file:

username=user_name
password=password
domain=domain_name

2. Set the permissions to only allow the owner to access the file:

chown user_name /root/smb.cred
chmod 600 /root/smb.cred

You can now pass the credentials=file_name mount option to the mount utility or use it in the
/etc/fstab file to mount the share without being prompted for the user name and password.

7.6. PERFORMING A MULTI-USER SMB MOUNT

The credentials you provide to mount a share determine the access permissions on the mount point by
default. For example, if you use the DOMAIN\example user when you mount a share, all operations on
the share will be executed as this user, regardless which local user performs the operation.

However, in certain situations, the administrator wants to mount a share automatically when the system
boots, but users should perform actions on the share’s content using their own credentials. The
multiuser mount options lets you configure this scenario.

IMPORTANT

To use the multiuser mount option, you must additionally set the sec mount option to a
security type that supports providing credentials in a non-interactive way, such as krb5 or
the ntlmssp option with a credentials file. For details, see Section 7.6.3, “Accessing a
share as a user”.

The root user mounts the share using the multiuser option and an account that has minimal access to
the contents of the share. Regular users can then provide their user name and password to the current
session’s kernel keyring using the cifscreds utility. If the user accesses the content of the mounted
share, the kernel uses the credentials from the kernel keyring instead of the one initially used to mount
the share.

Using this feature consists of the following steps:

Mount a share with the multiuser option.

Optionally, verify if the share was successfully mounted with the multiuser option.

Access the share as a user .

Prerequisites

The cifs-utils package is installed.

7.6.1. Mounting a share with the multiuser option

Before users can access the share with their own credentials, mount the share as the root user using an
account with limited permissions.

CHAPTER 7. MOUNTING AN SMB SHARE ON RED HAT ENTERPRISE LINUX

53

Procedure

To mount a share automatically with the multiuser option when the system boots:

1. Create the entry for the share in the /etc/fstab file. For example:

//server_name/share_name /mnt cifs multiuser,sec=ntlmssp,credentials=/root/smb.cred
0 0

2. Mount the share:

mount /mnt/

If you do not want to mount the share automatically when the system boots, mount it manually by
passing -o multiuser,sec=security_type to the mount command. For details about mounting an SMB
share manually, see Section 7.3, “Manually mounting an SMB share” .

7.6.2. Verifying if an SMB share is mounted with the multiuser option

To verify if a share is mounted with the multiuser option, display the mount options.

Procedure

mount
...
//server_name/share_name on /mnt type cifs (sec=ntlmssp,multiuser,...)

If the multiuser entry is displayed in the list of mount options, the feature is enabled.

7.6.3. Accessing a share as a user

If an SMB share is mounted with the multiuser option, users can provide their credentials for the server
to the kernel’s keyring:

cifscreds add -u SMB_user_name server_name
Password: password

When the user performs operations in the directory that contains the mounted SMB share, the server
applies the file system permissions for this user, instead of the one initially used when the share was
mounted.

NOTE

Multiple users can perform operations using their own credentials on the mounted share
at the same time.

7.7. FREQUENTLY USED MOUNT OPTIONS

When you mount an SMB share, the mount options determine:

How the connection will be established with the server. For example, which SMB protocol
version is used when connecting to the server.

Red Hat Enterprise Linux 8 Managing file systems

54

How the share will be mounted into the local file system. For example, if the system overrides
the remote file and directory permissions to enable multiple local users to access the content
on the server.

To set multiple options in the fourth field of the /etc/fstab file or in the -o parameter of a mount
command, separate them with commas. For example, see Section 7.6.1, “Mounting a share with the
multiuser option”.

The following list gives frequently used mount options:

Option Description

credentials=file_name Sets the path to the credentials file. See Section 7.5, “Authenticating to an
SMB share using a credentials file”

dir_mode=mode Sets the directory mode if the server does not support CIFS UNIX extensions.

file_mode=mode Sets the file mode if the server does not support CIFS UNIX extensions.

password=password Sets the password used to authenticate to the SMB server. Alternatively,
specify a credentials file using the credentials option.

seal Enables encryption support for connections using SMB 3.0 or a later
protocol version. Therefore, use seal together with the vers mount option
set to 3.0 or later. See Example 7.1, “Mounting a share using an encrypted
SMB 3.0 connection”.

sec=security_mode Sets the security mode, such as ntlmsspi, to enable NTLMv2 password
hashing and enabled packet signing. For a list of supported values, see the
option’s description in the mount.cifs(8) man page.

If the server does not support the ntlmv2 security mode, use sec=ntlmssp,
which is the default.

For security reasons, do not use the insecure ntlm security mode.

username=user_name Sets the user name used to authenticate to the SMB server. Alternatively,
specify a credentials file using the credentials option.

vers=SMB_protocol_version Sets the SMB protocol version used for the communication with the server.

For a complete list, see the OPTIONS section in the mount.cifs(8) man page.

CHAPTER 7. MOUNTING AN SMB SHARE ON RED HAT ENTERPRISE LINUX

55

CHAPTER 8. OVERVIEW OF PERSISTENT NAMING
ATTRIBUTES

As a system administrator, you need to refer to storage volumes using persistent naming attributes to
build storage setups that are reliable over multiple system boots.

8.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES

Red Hat Enterprise Linux provides a number of ways to identify storage devices. It is important to use
the correct option to identify each device when used in order to avoid inadvertently accessing the wrong
device, particularly when installing to or reformatting drives.

Traditionally, non-persistent names in the form of /dev/sd(major number)(minor number) are used on
Linux to refer to storage devices. The major and minor number range and associated sd names are
allocated for each device when it is detected. This means that the association between the major and
minor number range and associated sd names can change if the order of device detection changes.

Such a change in the ordering might occur in the following situations:

The parallelization of the system boot process detects storage devices in a different order with
each system boot.

A disk fails to power up or respond to the SCSI controller. This results in it not being detected by
the normal device probe. The disk is not accessible to the system and subsequent devices will
have their major and minor number range, including the associated sd names shifted down. For
example, if a disk normally referred to as sdb is not detected, a disk that is normally referred to
as sdc would instead appear as sdb.

A SCSI controller (host bus adapter, or HBA) fails to initialize, causing all disks connected to that
HBA to not be detected. Any disks connected to subsequently probed HBAs are assigned
different major and minor number ranges, and different associated sd names.

The order of driver initialization changes if different types of HBAs are present in the system.
This causes the disks connected to those HBAs to be detected in a different order. This might
also occur if HBAs are moved to different PCI slots on the system.

Disks connected to the system with Fibre Channel, iSCSI, or FCoE adapters might be
inaccessible at the time the storage devices are probed, due to a storage array or intervening
switch being powered off, for example. This might occur when a system reboots after a power
failure, if the storage array takes longer to come online than the system take to boot. Although
some Fibre Channel drivers support a mechanism to specify a persistent SCSI target ID to
WWPN mapping, this does not cause the major and minor number ranges, and the associated sd
names to be reserved; it only provides consistent SCSI target ID numbers.

These reasons make it undesirable to use the major and minor number range or the associated sd
names when referring to devices, such as in the /etc/fstab file. There is the possibility that the wrong
device will be mounted and data corruption might result.

Occasionally, however, it is still necessary to refer to the sd names even when another mechanism is
used, such as when errors are reported by a device. This is because the Linux kernel uses sd names (and
also SCSI host/channel/target/LUN tuples) in kernel messages regarding the device.

8.2. FILE SYSTEM AND DEVICE IDENTIFIERS

This sections explains the difference between persistent attributes identifying file systems and block

Red Hat Enterprise Linux 8 Managing file systems

56

This sections explains the difference between persistent attributes identifying file systems and block
devices.

File system identifiers
File system identifiers are tied to a particular file system created on a block device. The identifier is also
stored as part of the file system. If you copy the file system to a different device, it still carries the same
file system identifier. On the other hand, if you rewrite the device, such as by formatting it with the mkfs
utility, the device loses the attribute.

File system identifiers include:

Unique identifier (UUID)

Label

Device identifiers
Device identifiers are tied to a block device: for example, a disk or a partition. If you rewrite the device,
such as by formatting it with the mkfs utility, the device keeps the attribute, because it is not stored in
the file system.

Device identifiers include:

World Wide Identifier (WWID)

Partition UUID

Serial number

Recommendations

Some file systems, such as logical volumes, span multiple devices. Red Hat recommends
accessing these file systems using file system identifiers rather than device identifiers.

8.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN
/DEV/DISK/

This section lists different kinds of persistent naming attributes that the udev service provides in the
/dev/disk/ directory.

The udev mechanism is used for all types of devices in Linux, not just for storage devices. In the case of
storage devices, Red Hat Enterprise Linux contains udev rules that create symbolic links in the
/dev/disk/ directory. This enables you to refer to storage devices by:

Their content

A unique identifier

Their serial number.

Although udev naming attributes are persistent, in that they do not change on their own across system
reboots, some are also configurable.

8.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/

Entries in this directory provide a symbolic name that refers to the storage device by a unique identifier

CHAPTER 8. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

57

Entries in this directory provide a symbolic name that refers to the storage device by a unique identifier
(UUID) in the content (that is, the data) stored on the device. For example:

/dev/disk/by-uuid/3e6be9de-8139-11d1-9106-a43f08d823a6

You can use the UUID to refer to the device in the /etc/fstab file using the following syntax:

UUID=3e6be9de-8139-11d1-9106-a43f08d823a6

You can configure the UUID attribute when creating a file system, and you can also change it later on.

The Label attribute in /dev/disk/by-label/
Entries in this directory provide a symbolic name that refers to the storage device by a label in the
content (that is, the data) stored on the device.

For example:

/dev/disk/by-label/Boot

You can use the label to refer to the device in the /etc/fstab file using the following syntax:

LABEL=Boot

You can configure the Label attribute when creating a file system, and you can also change it later on.

8.3.2. Device identifiers

The WWID attribute in /dev/disk/by-id/
The World Wide Identifier (WWID) is a persistent, system-independent identifier that the SCSI
Standard requires from all SCSI devices. The WWID identifier is guaranteed to be unique for every
storage device, and independent of the path that is used to access the device. The identifier is a
property of the device but is not stored in the content (that is, the data) on the devices.

This identifier can be obtained by issuing a SCSI Inquiry to retrieve the Device Identification Vital
Product Data (page 0x83) or Unit Serial Number (page 0x80).

Red Hat Enterprise Linux automatically maintains the proper mapping from the WWID-based device
name to a current /dev/sd name on that system. Applications can use the /dev/disk/by-id/ name to
reference the data on the disk, even if the path to the device changes, and even when accessing the
device from different systems.

Example 8.1. WWID mappings

WWID symlink Non-persistent device Note

/dev/disk/by-id/scsi-
3600508b400105e210000900000490000

/dev/sda A device with a page
0x83 identifier

/dev/disk/by-id/scsi-
SSEAGATE_ST373453LW_3HW1RHM6

/dev/sdb A device with a page
0x80 identifier

Red Hat Enterprise Linux 8 Managing file systems

58

/dev/disk/by-id/ata-
SAMSUNG_MZNLN256HMHQ-
000L7_S2WDNX0J336519-part3

/dev/sdc3 A disk partition

WWID symlink Non-persistent device Note

In addition to these persistent names provided by the system, you can also use udev rules to implement
persistent names of your own, mapped to the WWID of the storage.

The Partition UUID attribute in /dev/disk/by-partuuid
The Partition UUID (PARTUUID) attribute identifies partitions as defined by GPT partition table.

Example 8.2. Partition UUID mappings

PARTUUID symlink Non-persistent device

/dev/disk/by-partuuid/4cd1448a-01 /dev/sda1

/dev/disk/by-partuuid/4cd1448a-02 /dev/sda2

/dev/disk/by-partuuid/4cd1448a-03 /dev/sda3

The Path attribute in /dev/disk/by-path/
This attribute provides a symbolic name that refers to the storage device by the hardware path used to
access the device.

WARNING

The Path attribute is unreliable, and Red Hat does not recommend using it.

8.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH

This section describes the mapping between the World Wide Identifier (WWID) and non-persistent
device names in a Device Mapper Multipath configuration.

If there are multiple paths from a system to a device, DM Multipath uses the WWID to detect this. DM
Multipath then presents a single "pseudo-device" in the /dev/mapper/wwid directory, such as
/dev/mapper/3600508b400105df70000e00000ac0000.

The command multipath -l shows the mapping to the non-persistent identifiers:



CHAPTER 8. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

59

Host:Channel:Target:LUN

/dev/sd name

major:minor number

Example 8.3. WWID mappings in a multipath configuration

An example output of the multipath -l command:

3600508b400105df70000e00000ac0000 dm-2 vendor,product
[size=20G][features=1 queue_if_no_path][hwhandler=0][rw]
_ round-robin 0 [prio=0][active]
 _ 5:0:1:1 sdc 8:32 [active][undef]
 _ 6:0:1:1 sdg 8:96 [active][undef]
_ round-robin 0 [prio=0][enabled]
 _ 5:0:0:1 sdb 8:16 [active][undef]
 _ 6:0:0:1 sdf 8:80 [active][undef]

DM Multipath automatically maintains the proper mapping of each WWID-based device name to its
corresponding /dev/sd name on the system. These names are persistent across path changes, and they
are consistent when accessing the device from different systems.

When the user_friendly_names feature of DM Multipath is used, the WWID is mapped to a name of the
form /dev/mapper/mpathN. By default, this mapping is maintained in the file /etc/multipath/bindings.
These mpathN names are persistent as long as that file is maintained.

IMPORTANT

If you use user_friendly_names, then additional steps are required to obtain consistent
names in a cluster.

8.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION

The following are some limitations of the udev naming convention:

It is possible that the device might not be accessible at the time the query is performed
because the udev mechanism might rely on the ability to query the storage device when the
udev rules are processed for a udev event. This is more likely to occur with Fibre Channel, iSCSI
or FCoE storage devices when the device is not located in the server chassis.

The kernel might send udev events at any time, causing the rules to be processed and possibly
causing the /dev/disk/by-*/ links to be removed if the device is not accessible.

There might be a delay between when the udev event is generated and when it is processed,
such as when a large number of devices are detected and the user-space udevd service takes
some amount of time to process the rules for each one. This might cause a delay between when
the kernel detects the device and when the /dev/disk/by-*/ names are available.

External programs such as blkid invoked by the rules might open the device for a brief period of
time, making the device inaccessible for other uses.

8.6. LISTING PERSISTENT NAMING ATTRIBUTES

Red Hat Enterprise Linux 8 Managing file systems

60

This procedure describes how to find out the persistent naming attributes of non-persistent storage
devices.

Procedure

To list the UUID and Label attributes, use the lsblk utility:

$ lsblk --fs storage-device

For example:

Example 8.4. Viewing the UUID and Label of a file system

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot afa5d5e3-9050-48c3-acc1-bb30095f3dc4 /boot

To list the PARTUUID attribute, use the lsblk utility with the --output +PARTUUID option:

$ lsblk --output +PARTUUID

For example:

Example 8.5. Viewing the PARTUUID attribute of a partition

$ lsblk --output +PARTUUID /dev/sda1

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT PARTUUID
sda1 8:1 0 512M 0 part /boot 4cd1448a-01

To list the WWID attribute, examine the targets of symbolic links in the /dev/disk/by-id/
directory. For example:

Example 8.6. Viewing the WWID of all storage devices on the system

$ file /dev/disk/by-id/*

/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001
symbolic link to ../../sda
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1
symbolic link to ../../sda1
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part2
symbolic link to ../../sda2
/dev/disk/by-id/dm-name-rhel_rhel8-root
symbolic link to ../../dm-0
/dev/disk/by-id/dm-name-rhel_rhel8-swap
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhP0RMFsNyySVihqEl2cWWbR7MjXJolD6g
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-

CHAPTER 8. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

61

QIWtEHtXGobe5bewlIUDivKOz5ofkgFhXqH2M45hD2H9nAf2qfWSrlRLhzfMyOKd
symbolic link to ../../dm-0
/dev/disk/by-id/lvm-pv-uuid-atlr2Y-vuMo-ueoH-CpMG-4JuH-AhEF-wu4QQm
symbolic link to ../../sda2

8.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

This procedure describes how to change the UUID or Label persistent naming attribute of a file system.

NOTE

Changing udev attributes happens in the background and might take a long time. The
udevadm settle command waits until the change is fully registered, which ensures that
your next command will be able to utilize the new attribute correctly.

In the following commands:

Replace new-uuid with the UUID you want to set; for example, 1cdfbc07-1c90-4984-b5ec-
f61943f5ea50. You can generate a UUID using the uuidgen command.

Replace new-label with a label; for example, backup_data.

Prerequisites

If you are modifying the attributes of an XFS file system, unmount it first.

Procedure

To change the UUID or Label attributes of an XFS file system, use the xfs_admin utility:

xfs_admin -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of an ext4, ext3, or ext2 file system, use the tune2fs
utility:

tune2fs -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of a swap volume, use the swaplabel utility:

swaplabel --uuid new-uuid --label new-label swap-device
udevadm settle

Red Hat Enterprise Linux 8 Managing file systems

62

CHAPTER 9. GETTING STARTED WITH PARTITIONS
As a system administrator, you can use the following procedures to create, delete, and modify various
types of disk partitions.

For an overview of the advantages and disadvantages to using partitions on block devices, see the
following KBase article: https://access.redhat.com/solutions/163853.

9.1. VIEWING THE PARTITION TABLE

As a system administrator, you can display the partition table of a block device to see the partition layout
and details about individual partitions.

9.1.1. Viewing the partition table with parted

This procedure describes how to view the partition table on a block device using the parted utility.

Procedure

1. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device you want to examine: for example,
/dev/sda.

2. View the partition table:

(parted) print

3. Optionally, use the following command to switch to another device you want to examine next:

(parted) select block-device

Additional resources

The parted(8) man page.

9.1.2. Example output of parted print

This section provides an example output of the print command in the parted shell and describes fields in
the output.

Example 9.1. Output of the print command

Model: ATA SAMSUNG MZNLN256 (scsi)
Disk /dev/sda: 256GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags

CHAPTER 9. GETTING STARTED WITH PARTITIONS

63

https://access.redhat.com/solutions/163853

 1 1049kB 269MB 268MB primary xfs boot
 2 269MB 34.6GB 34.4GB primary
 3 34.6GB 45.4GB 10.7GB primary
 4 45.4GB 256GB 211GB extended
 5 45.4GB 256GB 211GB logical

Following is a description of the fields:

Model: ATA SAMSUNG MZNLN256 (scsi)

The disk type, manufacturer, model number, and interface.

Disk /dev/sda: 256GB

The file path to the block device and the storage capacity.

Partition Table: msdos

The disk label type.

Number

The partition number. For example, the partition with minor number 1 corresponds to /dev/sda1.

Start and End

The location on the device where the partition starts and ends.

Type

Valid types are metadata, free, primary, extended, or logical.

File system

The file system type. If the File system field of a device shows no value, this means that its file
system type is unknown. The parted utility cannot recognize the file system on encrypted
devices.

Flags

Lists the flags set for the partition. Available flags are boot, root, swap, hidden, raid, lvm, or lba.

9.2. CREATING A PARTITION TABLE ON A DISK

As a system administrator, you can format a block device with different types of partition tables to
enable using partitions on the device.

WARNING

Formatting a block device with a partition table deletes all data stored on the
device.

9.2.1. Considerations before modifying partitions on a disk

This section lists key points to consider before creating, removing, or resizing partitions.

NOTE



Red Hat Enterprise Linux 8 Managing file systems

64

NOTE

This section does not cover the DASD partition table, which is specific to the IBM Z
architecture. For information on DASD, see:

Configuring a Linux instance on IBM Z

The What you should know about DASD article at the IBM Knowledge Center

The maximum number of partitions
The number of partitions on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, you can have either:

Up to four primary partitions, or

Up to three primary partitions, one extended partition, and multiple logical partitions within
the extended.

On a device formatted with the GUID Partition Table (GPT), the maximum number of
partitions is 128. While the GPT specification allows for more partitions by growing the area
reserved for the partition table, common practice used by the parted utility is to limit it to
enough area for 128 partitions.

NOTE

Red Hat recommends that, unless you have a reason for doing otherwise, you should at
least create the following partitions: swap, /boot/, and / (root).

The maximum size of a partition
The size of a partition on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, the maximum size is
2TiB.

On a device formatted with the GUID Partition Table (GPT), the maximum size is 8ZiB.

If you want to create a partition larger than 2TiB, the disk must be formatted with GPT.

Size alignment
The parted utility enables you to specify partition size using multiple different suffixes:

MiB, GiB, or TiB

Size expressed in powers of 2.

The starting point of the partition is aligned to the exact sector specified by size.

The ending point is aligned to the specified size minus 1 sector.

MB, GB, or TB

Size expressed in powers of 10.
The starting and ending point is aligned within one half of the specified unit: for example, ±500KB
when using the MB suffix.

CHAPTER 9. GETTING STARTED WITH PARTITIONS

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lgdd/lgdd_c_dasd_know.html

9.2.2. Comparison of partition table types

This section compares the properties of different types of partition tables that you can create on a block
device.

Table 9.1. Partition table types

Partition table Maximum number of partitions Maximum partition size

Master Boot Record (MBR) 4 primary, or 3 primary and 12
logical inside an extended
partition

2TiB

GUID Partition Table (GPT) 128 8ZiB

9.2.3. Creating a partition table on a disk with parted

This procedure describes how to format a block device with a partition table using the parted utility.

Procedure

1. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device where you want to create a partition table:
for example, /dev/sda.

2. Determine if there already is a partition table on the device:

(parted) print

If the device already contains partitions, they will be deleted in the next steps.

3. Create the new partition table:

(parted) mklabel table-type

Replace table-type with with the intended partition table type:

msdos for MBR

gpt for GPT

Example 9.2. Creating a GPT table

For example, to create a GPT table on the disk, use:

(parted) mklabel gpt

The changes start taking place as soon as you enter this command, so review it before executing
it.

Red Hat Enterprise Linux 8 Managing file systems

66

4. View the partition table to confirm that the partition table exists:

(parted) print

5. Exit the parted shell:

(parted) quit

Additional resources

The parted(8) man page.

Next steps

Create partitions on the device. See Section 9.3, “Creating a partition” for details.

9.3. CREATING A PARTITION

As a system administrator, you can create new partitions on a disk.

9.3.1. Considerations before modifying partitions on a disk

This section lists key points to consider before creating, removing, or resizing partitions.

NOTE

This section does not cover the DASD partition table, which is specific to the IBM Z
architecture. For information on DASD, see:

Configuring a Linux instance on IBM Z

The What you should know about DASD article at the IBM Knowledge Center

The maximum number of partitions
The number of partitions on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, you can have either:

Up to four primary partitions, or

Up to three primary partitions, one extended partition, and multiple logical partitions within
the extended.

On a device formatted with the GUID Partition Table (GPT), the maximum number of
partitions is 128. While the GPT specification allows for more partitions by growing the area
reserved for the partition table, common practice used by the parted utility is to limit it to
enough area for 128 partitions.

NOTE

Red Hat recommends that, unless you have a reason for doing otherwise, you should at
least create the following partitions: swap, /boot/, and / (root).

CHAPTER 9. GETTING STARTED WITH PARTITIONS

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lgdd/lgdd_c_dasd_know.html

The maximum size of a partition
The size of a partition on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, the maximum size is
2TiB.

On a device formatted with the GUID Partition Table (GPT), the maximum size is 8ZiB.

If you want to create a partition larger than 2TiB, the disk must be formatted with GPT.

Size alignment
The parted utility enables you to specify partition size using multiple different suffixes:

MiB, GiB, or TiB

Size expressed in powers of 2.

The starting point of the partition is aligned to the exact sector specified by size.

The ending point is aligned to the specified size minus 1 sector.

MB, GB, or TB

Size expressed in powers of 10.
The starting and ending point is aligned within one half of the specified unit: for example, ±500KB
when using the MB suffix.

9.3.2. Partition types

This section describes different attributes that specify the type of a partition.

Partition types or flags
The partition type, or flag, is used by a running system only rarely. However, the partition type matters
to on-the-fly generators, such as systemd-gpt-auto-generator, which use the partition type to, for
example, automatically identify and mount devices.

The parted utility provides some control of partition types by mapping the partition type to
flags. The parted utility can handle only certain partition types: for example LVM, swap, or RAID.

The fdisk utility supports the full range of partition types by specifying hexadecimal codes.

Partition file system type
The parted utility optionally accepts a file system type argument when creating a partition. The value is
used to:

Set the partition flags on MBR, or

Set the partition UUID type on GPT. For example, the swap, fat, or hfs file system types set
different GUIDs. The default value is the Linux Data GUID.

The argument does not modify the file system on the partition in any way. It only differentiates between
the supported flags or GUIDs.

The following file system types are supported:

xfs

Red Hat Enterprise Linux 8 Managing file systems

68

ext2

ext3

ext4

fat16

fat32

hfs

hfs+

linux-swap

ntfs

reiserfs

9.3.3. Partition naming scheme

Red Hat Enterprise Linux uses a file-based naming scheme, with file names in the form of /dev/xxyN.

Device and partition names consist of the following structure:

/dev/

This is the name of the directory in which all device files are located. Because partitions are placed on
hard disks, and hard disks are devices, the files representing all possible partitions are located in /dev.

xx

The first two letters of the partitions name indicate the type of device on which is the partition
located, usually sd.

y

This letter indicates which device the partition is on. For example, /dev/sda for the first hard disk,
/dev/sdb for the second, and so on. In systems with more than 26 drives, you can use more letters.
For example, /dev/sdaa1.

N

The final letter indicates the number that represents the partition. The first four (primary or
extended) partitions are numbered 1 through 4. Logical partitions start at 5. For example, /dev/sda3
is the third primary or extended partition on the first hard disk, and /dev/sdb6 is the second logical
partition on the second hard disk. Drive partition numbering applies only to MBR partition tables.
Note that N does not always mean partition.

NOTE

Even if Red Hat Enterprise Linux can identify and refer to all types of disk partitions, it
might not be able to read the file system and therefore access stored data on every
partition type. However, in many cases, it is possible to successfully access data on a
partition dedicated to another operating system.

9.3.4. Mount points and disk partitions

In Red Hat Enterprise Linux, each partition is used to form part of the storage necessary to support a

CHAPTER 9. GETTING STARTED WITH PARTITIONS

69

single set of files and directories. This is done using the process known as mounting, which associates a
partition with a directory. Mounting a partition makes its storage available starting at the specified
directory, known as a mount point.

For example, if partition /dev/sda5 is mounted on /usr/, that would mean that all files and directories
under /usr/ physically reside on /dev/sda5. So the file /usr/share/doc/FAQ/txt/Linux-FAQ would be
stored on /dev/sda5, while the file /etc/gdm/custom.conf would not.

Continuing the example, it is also possible that one or more directories below /usr/ would be mount
points for other partitions. For instance, a partition /dev/sda7 could be mounted on /usr/local, meaning
that /usr/local/man/whatis would then reside on /dev/sda7 rather than /dev/sda5.

9.3.5. Creating a partition with parted

This procedure describes how to create a new partition on a block device using the parted utility.

Prerequisites

There is a partition table on the disk. For details on how to format the disk, see Section 9.2,
“Creating a partition table on a disk”.

If the partition you want to create is larger than 2TiB, the disk must be formatted with the GUID
Partition Table (GPT).

Procedure

1. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device where you want to create a partition: for
example, /dev/sda.

2. View the current partition table to determine if there is enough free space:

(parted) print

If there is not enough free space, you can resize an existing partition. For more information,
see Section 9.5, “Resizing a partition” .

From the partition table, determine:

The start and end points of the new partition

On MBR, what partition type it should be.

3. Create the new partition:

(parted) mkpart part-type name fs-type start end

Replace part-type with with primary, logical, or extended based on what you decided from
the partition table. This applies only to the MBR partition table.

Replace name with an arbitrary partition name. This is required for GPT partition tables.

Red Hat Enterprise Linux 8 Managing file systems

70

Replace fs-type with any one of xfs, ext2, ext3, ext4, fat16, fat32, hfs, hfs+, linux-swap,
ntfs, or reiserfs. The fs-type parameter is optional. Note that parted does not create the
file system on the partition.

Replace start and end with the sizes that determine the starting and ending points of the
partition, counting from the beginning of the disk. You can use size suffixes, such as 512MiB,
20GiB, or 1.5TiB. The default size megabytes.

Example 9.3. Creating a small primary partition

For example, to create a primary partition from 1024MiB until 2048MiB on an MBR table, use:

(parted) mkpart primary 1024MiB 2048MiB

The changes start taking place as soon as you enter this command, so review it before executing
it.

4. View the partition table to confirm that the created partition is in the partition table with the
correct partition type, file system type, and size:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Use the following command to wait for the system to register the new device node:

udevadm settle

7. Verify that the kernel recognizes the new partition:

cat /proc/partitions

Additional resources

The parted(8) man page.

9.3.6. Setting a partition type with fdisk

This procedure describes how to set a partition type, or flag, using the fdisk utility.

Prerequisites

There is a partition on the disk.

Procedure

1. Start the interactive fdisk shell:

fdisk block-device

CHAPTER 9. GETTING STARTED WITH PARTITIONS

71

Replace block-device with the path to the device where you want to set a partition type: for
example, /dev/sda.

2. View the current partition table to determine the minor partition number:

Command (m for help): print

You can see the current partition type in the Type column and its corresponding type ID in the
Id column.

3. Enter the partition type command and select a partition using its minor number:

Command (m for help): type
Partition number (1,2,3 default 3): 2

4. Optionally, list the available hexadecimal codes:

Hex code (type L to list all codes): L

5. Set the partition type:

Hex code (type L to list all codes): 8e

6. Write your changes and exit the fdisk shell:

Command (m for help): write
The partition table has been altered.
Syncing disks.

7. Verify your changes:

fdisk --list block-device

9.4. REMOVING A PARTITION

As a system administrator, you can remove a disk partition that is no longer used to free up disk space.

WARNING

Removing a partition deletes all data stored on the partition.

9.4.1. Considerations before modifying partitions on a disk

This section lists key points to consider before creating, removing, or resizing partitions.

NOTE



Red Hat Enterprise Linux 8 Managing file systems

72

NOTE

This section does not cover the DASD partition table, which is specific to the IBM Z
architecture. For information on DASD, see:

Configuring a Linux instance on IBM Z

The What you should know about DASD article at the IBM Knowledge Center

The maximum number of partitions
The number of partitions on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, you can have either:

Up to four primary partitions, or

Up to three primary partitions, one extended partition, and multiple logical partitions within
the extended.

On a device formatted with the GUID Partition Table (GPT), the maximum number of
partitions is 128. While the GPT specification allows for more partitions by growing the area
reserved for the partition table, common practice used by the parted utility is to limit it to
enough area for 128 partitions.

NOTE

Red Hat recommends that, unless you have a reason for doing otherwise, you should at
least create the following partitions: swap, /boot/, and / (root).

The maximum size of a partition
The size of a partition on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, the maximum size is
2TiB.

On a device formatted with the GUID Partition Table (GPT), the maximum size is 8ZiB.

If you want to create a partition larger than 2TiB, the disk must be formatted with GPT.

Size alignment
The parted utility enables you to specify partition size using multiple different suffixes:

MiB, GiB, or TiB

Size expressed in powers of 2.

The starting point of the partition is aligned to the exact sector specified by size.

The ending point is aligned to the specified size minus 1 sector.

MB, GB, or TB

Size expressed in powers of 10.
The starting and ending point is aligned within one half of the specified unit: for example, ±500KB
when using the MB suffix.

CHAPTER 9. GETTING STARTED WITH PARTITIONS

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lgdd/lgdd_c_dasd_know.html

9.4.2. Removing a partition with parted

This procedure describes how to remove a disk partition using the parted utility.

Procedure

1. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device where you want to remove a partition: for
example, /dev/sda.

2. View the current partition table to determine the minor number of the partition to remove:

(parted) print

3. Remove the partition:

(parted) rm minor-number

Replace minor-number with the minor number of the partition you want to remove: for
example, 3.

The changes start taking place as soon as you enter this command, so review it before executing
it.

4. Confirm that the partition is removed from the partition table:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Verify that the kernel knows the partition is removed:

cat /proc/partitions

7. Remove the partition from the /etc/fstab file if it is present. Find the line that declares the
removed partition, and remove it from the file.

8. Regenerate mount units so that your system registers the new /etc/fstab configuration:

systemctl daemon-reload

9. If you have deleted a swap partition or removed pieces of LVM, remove all references to the
partition from the kernel command line in the /etc/default/grub file and regenerate GRUB
configuration:

On a BIOS-based system:

grub2-mkconfig --output=/etc/grub2.cfg

Red Hat Enterprise Linux 8 Managing file systems

74

On a UEFI-based system:

grub2-mkconfig --output=/etc/grub2-efi.cfg

10. To register the changes in the early boot system, rebuild the initramfs file system:

dracut --force --verbose

Additional resources

The parted(8) man page

9.5. RESIZING A PARTITION

As a system administrator, you can extend a partition to utilize unused disk space, or shrink a partition to
use its capacity for different purposes.

9.5.1. Considerations before modifying partitions on a disk

This section lists key points to consider before creating, removing, or resizing partitions.

NOTE

This section does not cover the DASD partition table, which is specific to the IBM Z
architecture. For information on DASD, see:

Configuring a Linux instance on IBM Z

The What you should know about DASD article at the IBM Knowledge Center

The maximum number of partitions
The number of partitions on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, you can have either:

Up to four primary partitions, or

Up to three primary partitions, one extended partition, and multiple logical partitions within
the extended.

On a device formatted with the GUID Partition Table (GPT), the maximum number of
partitions is 128. While the GPT specification allows for more partitions by growing the area
reserved for the partition table, common practice used by the parted utility is to limit it to
enough area for 128 partitions.

NOTE

Red Hat recommends that, unless you have a reason for doing otherwise, you should at
least create the following partitions: swap, /boot/, and / (root).

The maximum size of a partition
The size of a partition on a device is limited by the type of the partition table:

On a device formatted with the Master Boot Record (MBR) partition table, the maximum size is

CHAPTER 9. GETTING STARTED WITH PARTITIONS

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lgdd/lgdd_c_dasd_know.html

On a device formatted with the Master Boot Record (MBR) partition table, the maximum size is
2TiB.

On a device formatted with the GUID Partition Table (GPT), the maximum size is 8ZiB.

If you want to create a partition larger than 2TiB, the disk must be formatted with GPT.

Size alignment
The parted utility enables you to specify partition size using multiple different suffixes:

MiB, GiB, or TiB

Size expressed in powers of 2.

The starting point of the partition is aligned to the exact sector specified by size.

The ending point is aligned to the specified size minus 1 sector.

MB, GB, or TB

Size expressed in powers of 10.
The starting and ending point is aligned within one half of the specified unit: for example, ±500KB
when using the MB suffix.

9.5.2. Resizing a partition with parted

This procedure resizes a disk partition using the parted utility.

Prerequisites

If you want to shrink a partition, back up the data that are stored on it.

WARNING

Shrinking a partition might result in data loss on the partition.

If you want to resize a partition to be larger than 2TiB, the disk must be formatted with the GUID
Partition Table (GPT). For details on how to format the disk, see Section 9.2, “Creating a
partition table on a disk”.

Procedure

1. If you want to shrink the partition, shrink the file system on it first so that it is not larger than the
resized partition. Note that XFS does not support shrinking.

2. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device where you want to resize a partition: for
example, /dev/sda.



Red Hat Enterprise Linux 8 Managing file systems

76

3. View the current partition table:

(parted) print

From the partition table, determine:

The minor number of the partition

The location of the existing partition and its new ending point after resizing

4. Resize the partition:

(parted) resizepart minor-number new-end

Replace minor-number with the minor number of the partition that you are resizing: for
example, 3.

Replace new-end with the size that determines the new ending point of the resized
partition, counting from the beginning of the disk. You can use size suffixes, such as 512MiB,
20GiB, or 1.5TiB. The default size megabytes.

Example 9.4. Extending a partition

For example, to extend a partition located at the beginning of the disk to be 2GiB in size, use:

(parted) resizepart 1 2GiB

The changes start taking place as soon as you enter this command, so review it before executing
it.

5. View the partition table to confirm that the resized partition is in the partition table with the
correct size:

(parted) print

6. Exit the parted shell:

(parted) quit

7. Verify that the kernel recognizes the new partition:

cat /proc/partitions

8. If you extended the partition, extend the file system on it as well. See (reference) for details.

Additional resources

The parted(8) man page.

CHAPTER 9. GETTING STARTED WITH PARTITIONS

77

CHAPTER 10. GETTING STARTED WITH XFS
This is an overview of how to create and maintain XFS file systems.

10.1. THE XFS FILE SYSTEM

XFS is a highly scalable, high-performance, robust, and mature 64-bit journaling file system that
supports very large files and file systems on a single host. It is the default file system in Red Hat
Enterprise Linux 8. XFS was originally developed in the early 1990s by SGI and has a long history of
running on extremely large servers and storage arrays.

The features of XFS include:

Reliability

Metadata journaling, which ensures file system integrity after a system crash by keeping a
record of file system operations that can be replayed when the system is restarted and the
file system remounted

Extensive run-time metadata consistency checking

Scalable and fast repair utilities

Quota journaling. This avoids the need for lengthy quota consistency checks after a crash.

Scalability and performance

Supported file system size up to 1024 TiB

Ability to support a large number of concurrent operations

B-tree indexing for scalability of free space management

Sophisticated metadata read-ahead algorithms

Optimizations for streaming video workloads

Allocation schemes

Extent-based allocation

Stripe-aware allocation policies

Delayed allocation

Space pre-allocation

Dynamically allocated inodes

Other features

Reflink-based file copies (new in Red Hat Enterprise Linux 8)

Tightly integrated backup and restore utilities

Online defragmentation

Red Hat Enterprise Linux 8 Managing file systems

78

Online file system growing

Comprehensive diagnostics capabilities

Extended attributes (xattr). This allows the system to associate several additional
name/value pairs per file.

Project or directory quotas. This allows quota restrictions over a directory tree.

Subsecond timestamps

Performance characteristics
XFS has a high performance on large systems with enterprise workloads. A large system is one with a
relatively high number of CPUs, multiple HBAs, and connections to external disk arrays. XFS also
performs well on smaller systems that have a multi-threaded, parallel I/O workload.

XFS has a relatively low performance for single threaded, metadata-intensive workloads: for example, a
workload that creates or deletes large numbers of small files in a single thread.

10.2. CREATING AN XFS FILE SYSTEM

As a system administrator, you can create an XFS file system on a block device to enable it to store files
and directories.

10.2.1. Creating an XFS file system with mkfs.xfs

This procedure describes how to create an XFS file system on a block device.

Procedure

1. To create the file system:

If the device is a regular partition, an LVM volume, an MD volume, a disk, or a similar device,
use the following command:

mkfs.xfs block-device

Replace block-device with the path to the block device. For example, /dev/sdb1,
/dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or /dev/my-
volgroup/my-lv.

In general, the default options are optimal for common use.

When using mkfs.xfs on a block device containing an existing file system, add the -f
option to overwrite that file system.

To create the file system on a hardware RAID device, check if the system correctly detects
the stripe geometry of the device:

If the stripe geometry information is correct, no additional options are needed. Create
the file system:

mkfs.xfs block-device

If the information is incorrect, specify stripe geometry manually with the su and sw

CHAPTER 10. GETTING STARTED WITH XFS

79

If the information is incorrect, specify stripe geometry manually with the su and sw
parameters of the -d option. The su parameter specifies the RAID chunk size, and the
sw parameter specifies the number of data disks in the RAID device.
For example:

mkfs.xfs -d su=64k,sw=4 /dev/sda3

2. Use the following command to wait for the system to register the new device node:

udevadm settle

Additional resources

The mkfs.xfs(8) man page.

10.2.2. Creating an XFS file system on a block device using RHEL System Roles

This section describes how to create an XFS file system on a block device on multiple target machines
using the storage role.

Prerequisites

An Ansible playbook that uses the storage role exists.
For information on how to apply such a playbook, see Applying a role .

10.2.2.1. Example Ansible playbook to create an XFS file system on a block device

This section provides an example Ansible playbook. This playbook applies the storage role to create an
XFS file system on a block device (/dev/sdb) using the default parameters.

WARNING

The storage role can create file systems only on whole disks. Partitions are not
supported.

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 roles:
 - rhel-system-roles.storage

The volume name (barefs in the example) is currently arbitrary. The volume is identified by the disk



Red Hat Enterprise Linux 8 Managing file systems

80

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_what-rhel-system-roles-are

The volume name (barefs in the example) is currently arbitrary. The volume is identified by the disk
device listed under the disks: attribute.

XFS is the default file system type in RHEL 8, so fs_type: xfs can be omitted.

NOTE

To create a file system on a logical volume, do not provide the path to the LV device
under the disks: attribute. Instead, provide the LVM setup including the enclosing
volume group as described in Configuring and managing logical volumes.

10.2.2.2. Additional resources

For more information about the storage role, see Section 2.1, “Introduction to the storage role” .

10.3. BACKING UP AN XFS FILE SYSTEM

As a system administrator, you can use the xfsdump to back up an XFS file system into a file or on a
tape. This provides a simple backup mechanism.

10.3.1. Features of XFS backup

This section describes key concepts and features of backing up an XFS file system with the xfsdump
utility.

You can use the xfsdump utility to:

Perform backups to regular file images.
Only one backup can be written to a regular file.

Perform backups to tape drives.
The xfsdump utility also enables you to write multiple backups to the same tape. A backup can
span multiple tapes.

To back up multiple file systems to a single tape device, simply write the backup to a tape that
already contains an XFS backup. This appends the new backup to the previous one. By default,
xfsdump never overwrites existing backups.

Create incremental backups.
The xfsdump utility uses dump levels to determine a base backup to which other backups are
relative. Numbers from 0 to 9 refer to increasing dump levels. An incremental backup only backs
up files that have changed since the last dump of a lower level:

To perform a full backup, perform a level 0 dump on the file system.

A level 1 dump is the first incremental backup after a full backup. The next incremental
backup would be level 2, which only backs up files that have changed since the last level
1 dump; and so on, to a maximum of level 9.

Exclude files from a backup using size, subtree, or inode flags to filter them.

Additional resources

The xfsdump(8) man page.

CHAPTER 10. GETTING STARTED WITH XFS

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_logical_volumes#an-example-playbook-to-manage-logical-volumes_managing-lvm-logical-volumes-using-rhel-system-roles

10.3.2. Backing up an XFS file system with xfsdump

This procedure describes how to back up the content of an XFS file system into a file or a tape.

Prerequisites

An XFS file system that you can back up.

Another file system or a tape drive where you can store the backup.

Procedure

Use the following command to back up an XFS file system:

xfsdump -l level [-L label] \
 -f backup-destination path-to-xfs-filesystem

Replace level with the dump level of your backup. Use 0 to perform a full backup or 1 to 9 to
perform consequent incremental backups.

Replace backup-destination with the path where you want to store your backup. The
destination can be a regular file, a tape drive, or a remote tape device. For example,
/backup-files/Data.xfsdump for a file or /dev/st0 for a tape drive.

Replace path-to-xfs-filesystem with the mount point of the XFS file system you want to
back up. For example, /mnt/data/. The file system must be mounted.

When backing up multiple file systems and saving them on a single tape device, add a
session label to each backup using the -L label option so that it is easier to identify them
when restoring. Replace label with any name for your backup: for example, backup_data.

Example 10.1. Backing up multiple XFS file systems

To back up the content of XFS file systems mounted on the /boot/ and /data/ directories
and save them as files in the /backup-files/ directory:

xfsdump -l 0 -f /backup-files/boot.xfsdump /boot
xfsdump -l 0 -f /backup-files/data.xfsdump /data

To back up multiple file systems on a single tape device, add a session label to each backup
using the -L label option:

xfsdump -l 0 -L "backup_boot" -f /dev/st0 /boot
xfsdump -l 0 -L "backup_data" -f /dev/st0 /data

Additional resources

The xfsdump(8) man page.

10.3.3. Additional resources

The xfsdump(8) man page.

Red Hat Enterprise Linux 8 Managing file systems

82

10.4. RESTORING AN XFS FILE SYSTEM FROM BACKUP

As a system administrator, you can use the xfsrestore utility to restore XFS backup created with the
xfsdump utility and stored in a file or on a tape.

10.4.1. Features of restoring XFS from backup

This section describes key concepts and features of restoring an XFS file system from backup with the
xfsrestore utility.

The xfsrestore utility restores file systems from backups produced by xfsdump. The xfsrestore utility
has two modes:

The simple mode enables users to restore an entire file system from a level 0 dump. This is the
default mode.

The cumulative mode enables file system restoration from an incremental backup: that is,
level 1 to level 9.

A unique session ID or session label identifies each backup. Restoring a backup from a tape containing
multiple backups requires its corresponding session ID or label.

To extract, add, or delete specific files from a backup, enter the xfsrestore interactive mode. The
interactive mode provides a set of commands to manipulate the backup files.

Additional resources

The xfsrestore(8) man page.

10.4.2. Restoring an XFS file system from backup with xfsrestore

This procedure describes how to restore the content of an XFS file system from a file or tape backup.

Prerequisites

A file or tape backup of XFS file systems, as described in Section 10.3, “Backing up an XFS file
system”.

A storage device where you can restore the backup.

Procedure

The command to restore the backup varies depending on whether you are restoring from a full
backup or an incremental one, or are restoring multiple backups from a single tape device:

xfsrestore [-r] [-S session-id] [-L session-label] [-i]
 -f backup-location restoration-path

Replace backup-location with the location of the backup. This can be a regular file, a tape
drive, or a remote tape device. For example, /backup-files/Data.xfsdump for a file or
/dev/st0 for a tape drive.

Replace restoration-path with the path to the directory where you want to restore the file
system. For example, /mnt/data/.

CHAPTER 10. GETTING STARTED WITH XFS

83

To restore a file system from an incremental (level 1 to level 9) backup, add the -r option.

To restore a backup from a tape device that contains multiple backups, specify the backup
using the -S or -L options.
The -S option lets you choose a backup by its session ID, while the -L option lets you choose
by the session label. To obtain the session ID and session labels, use the xfsrestore -I
command.

Replace session-id with the session ID of the backup. For example, b74a3586-e52e-4a4a-
8775-c3334fa8ea2c. Replace session-label with the session label of the backup. For
example, my_backup_session_label.

To use xfsrestore interactively, use the -i option.
The interactive dialog begins after xfsrestore finishes reading the specified device.
Available commands in the interactive xfsrestore shell include cd, ls, add, delete, and
extract; for a complete list of commands, use the help command.

Example 10.2. Restoring Multiple XFS File Systems

To restore the XFS backup files and save their content into directories under /mnt/:

xfsrestore -f /backup-files/boot.xfsdump /mnt/boot/
xfsrestore -f /backup-files/data.xfsdump /mnt/data/

To restore from a tape device containing multiple backups, specify each backup by its
session label or session ID:

xfsrestore -L "backup_boot" -f /dev/st0 /mnt/boot/
xfsrestore -S "45e9af35-efd2-4244-87bc-4762e476cbab" \
 -f /dev/st0 /mnt/data/

Additional resources

The xfsrestore(8) man page.

10.4.3. Informational messages when restoring an XFS backup from a tape

When restoring a backup from a tape with backups from multiple file systems, the xfsrestore utility
might issue messages. The messages inform you whether a match of the requested backup has been
found when xfsrestore examines each backup on the tape in sequential order. For example:

xfsrestore: preparing drive
xfsrestore: examining media file 0
xfsrestore: inventory session uuid (8590224e-3c93-469c-a311-fc8f23029b2a) does not match the
media header's session uuid (7eda9f86-f1e9-4dfd-b1d4-c50467912408)
xfsrestore: examining media file 1
xfsrestore: inventory session uuid (8590224e-3c93-469c-a311-fc8f23029b2a) does not match the
media header's session uuid (7eda9f86-f1e9-4dfd-b1d4-c50467912408)
[...]

The informational messages keep appearing until the matching backup is found.

Red Hat Enterprise Linux 8 Managing file systems

84

10.4.4. Additional resources

The xfsrestore(8) man page.

10.5. INCREASING THE SIZE OF AN XFS FILE SYSTEM

As a system administrator, you can increase the size of an XFS file system to utilize larger storage
capacity.

IMPORTANT

It is not currently possible to decrease the size of XFS file systems.

10.5.1. Increasing the size of an XFS file system with xfs_growfs

This procedure describes how to grow an XFS file system using the xfs_growfs utility.

Prerequisites

Ensure that the underlying block device is of an appropriate size to hold the resized file system
later. Use the appropriate resizing methods for the affected block device.

Mount the XFS file system.

Procedure

While the XFS file system is mounted, use the xfs_growfs utility to increase its size:

xfs_growfs file-system -D new-size

Replace file-system with the mount point of the XFS file system.

With the -D option, replace new-size with the desired new size of the file system specified in
the number of file system blocks.
To find out the block size in kB of a given XFS file system, use the xfs_info utility:

xfs_info block-device

...
data = bsize=4096
...

Without the -D option, xfs_growfs grows the file system to the maximum size supported by
the underlying device.

Additional resources

The xfs_growfs(8) man page.

10.6. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file
systems.

CHAPTER 10. GETTING STARTED WITH XFS

85

Task ext4 XFS

Create a file system mkfs.ext4 mkfs.xfs

File system check e2fsck xfs_repair

Resize a file system resize2fs xfs_growfs

Save an image of a file system e2image xfs_metadump and
xfs_mdrestore

Label or tune a file system tune2fs xfs_admin

Back up a file system dump and restore xfsdump and xfsrestore

Quota management quota xfs_quota

File mapping filefrag xfs_bmap

Red Hat Enterprise Linux 8 Managing file systems

86

CHAPTER 11. CONFIGURING XFS ERROR BEHAVIOR
You can configure how an XFS file system behaves when it encounters different I/O errors.

11.1. CONFIGURABLE ERROR HANDLING IN XFS

The XFS file system responds in one of the following ways when an error occurs during an I/O operation:

XFS repeatedly retries the I/O operation until the operation succeeds or XFS reaches a set limit.
The limit is based either on a maximum number of retries or a maximum time for retries.

XFS considers the error permanent and stops the operation on the file system.

You can configure how XFS reacts to the following error conditions:

EIO

Error when reading or writing

ENOSPC

No space left on the device

ENODEV

Device cannot be found

You can set the maximum number of retries and the maximum time in seconds until XFS considers an
error permanent. XFS stops retrying the operation when it reaches either of the limits.

You can also configure XFS so that when unmounting a file system, XFS immediately cancels the retries
regardless of any other configuration. This configuration enables the unmount operation to succeed
despite persistent errors.

Default behavior

The default behavior for each XFS error condition depends on the error context. Some XFS errors such
as ENODEV are considered to be fatal and unrecoverable, regardless of the retry count. Their default
retry limit is 0.

11.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS
ERROR CONDITIONS

The following directories store configuration files that control XFS error behavior for different error
conditions:

/sys/fs/xfs/device/error/metadata/EIO/

For the EIO error condition

/sys/fs/xfs/device/error/metadata/ENODEV/

For the ENODEV error condition

/sys/fs/xfs/device/error/metadata/ENOSPC/

For the ENOSPC error condition

/sys/fs/xfs/device/error/default/

Common configuration for all other, undefined error conditions

Each directory contains the following configuration files for configuring retry limits:

CHAPTER 11. CONFIGURING XFS ERROR BEHAVIOR

87

max_retries

Controls the maximum number of times that XFS retries the operation.

retry_timeout_seconds

Specifies the time limit in seconds after which XFS stops retrying the operation.

11.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS

This procedure configures how XFS reacts to specific error conditions.

Procedure

Set the maximum number of retries, the retry time limit, or both:

To set the maximum number of retries, write the desired number to the max_retries file:

echo value > /sys/fs/xfs/device/error/metadata/condition/max_retries

To set the time limit, write the desired number of seconds to the retry_timeout_seconds
file:

echo value > /sys/fs/xfs/device/error/metadata/condition/retry_timeout_second

value is a number between -1 and the maximum possible value of the C signed integer type. This
is 2147483647 on 64-bit Linux.

In both limits, the value -1 is used for continuous retries and 0 to stop immediately.

device is the name of the device, as found in the /dev/ directory; for example, sda.

11.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS

This procedure configures how XFS reacts to all undefined error conditions, which share a common
configuration.

Procedure

Set the maximum number of retries, the retry time limit, or both:

To set the maximum number of retries, write the desired number to the max_retries file:

echo value > /sys/fs/xfs/device/error/default/max_retries

To set the time limit, write the desired number of seconds to the retry_timeout_seconds
file:

echo value > /sys/fs/xfs/device/error/default/retry_timeout_seconds

value is a number between -1 and the maximum possible value of the C signed integer type. This
is 2147483647 on 64-bit Linux.

In both limits, the value -1 is used for continuous retries and 0 to stop immediately.

Red Hat Enterprise Linux 8 Managing file systems

88

device is the name of the device, as found in the /dev/ directory; for example, sda.

11.5. SETTING THE XFS UNMOUNT BEHAVIOR

This procedure configures how XFS reacts to error conditions when unmounting the file system.

If you set the fail_at_unmount option in the file system, it overrides all other error configurations during
unmount, and immediately unmounts the file system without retrying the I/O operation. This allows the
unmount operation to succeed even in case of persistent errors.

WARNING

You cannot change the fail_at_unmount value after the unmount process starts,
because the unmount process removes the configuration files from the sysfs
interface for the respective file system. You must configure the unmount behavior
before the file system starts unmounting.

Procedure

Enable or disable the fail_at_unmount option:

To cancel retrying all operations when the file system unmounts, enable the option:

echo 1 > /sys/fs/xfs/device/error/fail_at_unmount

To respect the max_retries and retry_timeout_seconds retry limits when the file system
unmounts, disable the option:

echo 0 > /sys/fs/xfs/device/error/fail_at_unmount

device is the name of the device, as found in the /dev/ directory; for example, sda.



CHAPTER 11. CONFIGURING XFS ERROR BEHAVIOR

89

CHAPTER 12. CHECKING AND REPAIRING A FILE SYSTEM
RHEL provides file system administration utilities which are capable of checking and repairing file
systems. These tools are often referred to as fsck tools, where fsck is a shortened version of file system
check. In most cases, these utilities are run automatically during system boot, if needed, but can also be
manually invoked if required.

IMPORTANT

File system checkers guarantee only metadata consistency across the file system. They
have no awareness of the actual data contained within the file system and are not data
recovery tools.

12.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK

The relevant fsck tools can be used to check your system if any of the following occurs:

System fails to boot

Files on a specific disk become corrupt

The file system shuts down or changes to read-only due to inconsistencies

A file on the file system is inaccessible

File system inconsistencies can occur for various reasons, including but not limited to hardware errors,
storage administration errors, and software bugs.

IMPORTANT

File system check tools cannot repair hardware problems. A file system must be fully
readable and writable if repair is to operate successfully. If a file system was corrupted
due to a hardware error, the file system must first be moved to a good disk, for example
with the dd(8) utility.

For journaling file systems, all that is normally required at boot time is to replay the journal if required
and this is usually a very short operation.

However, if a file system inconsistency or corruption occurs, even for journaling file systems, then the
file system checker must be used to repair the file system.

IMPORTANT

It is possible to disable file system check at boot by setting the sixth field in /etc/fstab to
0. However, Red Hat does not recommend doing so unless you are having issues with fsck
at boot time, for example with extremely large or remote file systems.

Additional resources

The fstab(5) man page.

The fsck(8) man page.

The dd(8) man page.

Red Hat Enterprise Linux 8 Managing file systems

90

12.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK

Generally, running the file system check and repair tool can be expected to automatically repair at least
some of the inconsistencies it finds. In some cases, the following issues can arise:

Severely damaged inodes or directories may be discarded if they cannot be repaired.

Significant changes to the file system may occur.

To ensure that unexpected or undesirable changes are not permanently made, ensure you follow any
precautionary steps outlined in the procedure.

12.3. ERROR-HANDLING MECHANISMS IN XFS

This section describes how XFS handles various kinds of errors in the file system.

Unclean unmounts
Journalling maintains a transactional record of metadata changes that happen on the file system.

In the event of a system crash, power failure, or other unclean unmount, XFS uses the journal (also
called log) to recover the file system. The kernel performs journal recovery when mounting the XFS file
system.

Corruption
In this context, corruption means errors on the file system caused by, for example:

Hardware faults

Bugs in storage firmware, device drivers, the software stack, or the file system itself

Problems that cause parts of the file system to be overwritten by something outside of the file
system

When XFS detects corruption in the file system or the file-system metadata, it may shut down the file
system and report the incident in the system log. Note that if the corruption occurred on the file system
hosting the /var directory, these logs will not be available after a reboot.

Example 12.1. System log entry reporting an XFS corruption

dmesg --notime | tail -15

XFS (loop0): Mounting V5 Filesystem
XFS (loop0): Metadata CRC error detected at xfs_agi_read_verify+0xcb/0xf0 [xfs], xfs_agi block
0x2
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000027b3b56: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000005f9abc7a: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000005b0aef35: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000da9d2ded: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000001e265b07: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000006a40df69: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000000b272907: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000e484aac5: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

CHAPTER 12. CHECKING AND REPAIRING A FILE SYSTEM

91

XFS (loop0): metadata I/O error in "xfs_trans_read_buf_map" at daddr 0x2 len 1 error 74
XFS (loop0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -117, agno 0
XFS (loop0): Failed to read root inode 0x80, error 11

User-space utilities usually report the Input/output error message when trying to access a corrupted
XFS file system. Mounting an XFS file system with a corrupted log results in a failed mount and the
following error message:

mount: /mount-point: mount(2) system call failed: Structure needs cleaning.

You must manually use the xfs_repair utility to repair the corruption.

Additional resources

The xfs_repair(8) man page provides a detailed list of XFS corruption checks.

12.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR

This procedure performs a read-only check of an XFS file system using the xfs_repair utility. You must
manually use the xfs_repair utility to repair any corruption. Unlike other file system repair utilities,
xfs_repair does not run at boot time, even when an XFS file system was not cleanly unmounted. In the
event of an unclean unmount, XFS simply replays the log at mount time, ensuring a consistent file
system; xfs_repair cannot repair an XFS file system with a dirty log without remounting it first.

NOTE

Although an fsck.xfs binary is present in the xfsprogs package, this is present only to
satisfy initscripts that look for an fsck.file system binary at boot time. fsck.xfs
immediately exits with an exit code of 0.

Procedure

1. Replay the log by mounting and unmounting the file system:

mount file-system
umount file-system

NOTE

If the mount fails with a structure needs cleaning error, the log is corrupted and
cannot be replayed. The dry run should discover and report more on-disk
corruption as a result.

2. Use the xfs_repair utility to perform a dry run to check the file system. Any errors are printed
and an indication of the actions that would be taken, without modifying the file system.

xfs_repair -n block-device

3. Mount the file system:

mount file-system

Red Hat Enterprise Linux 8 Managing file systems

92

Additional resources

The xfs_repair(8) man page.

The xfs_metadump(8) man page.

12.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR

This procedure repairs a corrupted XFS file system using the xfs_repair utility.

Procedure

1. Create a metadata image prior to repair for diagnostic or testing purposes using the
xfs_metadump utility. A pre-repair file system metadata image can be useful for support
investigations if the corruption is due to a software bug. Patterns of corruption present in the
pre-repair image can aid in root-cause analysis.

Use the xfs_metadump debugging tool to copy the metadata from an XFS file system to a
file. The resulting metadump file can be compressed using standard compression utilities to
reduce the file size if large metadump files need to be sent to support.

xfs_metadump block-device metadump-file

2. Replay the log by remounting the file system:

mount file-system
umount file-system

3. Use the xfs_repair utility to repair the unmounted file system:

If the mount succeeded, no additional options are required:

xfs_repair block-device

If the mount failed with the Structure needs cleaning error, the log is corrupted and cannot
be replayed. Use the -L option (force log zeroing) to clear the log:

WARNING

This command causes all metadata updates in progress at the time of
the crash to be lost, which might cause significant file system damage
and data loss. This should be used only as a last resort if the log cannot
be replayed.

xfs_repair -L block-device

4. Mount the file system:

mount file-system



CHAPTER 12. CHECKING AND REPAIRING A FILE SYSTEM

93

Additional resources

The xfs_repair(8) man page.

12.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4

The ext2, ext3, and ext4 file systems use the e2fsck utility to perform file system checks and repairs.
The file names fsck.ext2, fsck.ext3, and fsck.ext4 are hardlinks to the e2fsck utility. These binaries are
run automatically at boot time and their behavior differs based on the file system being checked and the
state of the file system.

A full file system check and repair is invoked for ext2, which is not a metadata journaling file system, and
for ext4 file systems without a journal.

For ext3 and ext4 file systems with metadata journaling, the journal is replayed in userspace and the
utility exits. This is the default action because journal replay ensures a consistent file system after a
crash.

If these file systems encounter metadata inconsistencies while mounted, they record this fact in the file
system superblock. If e2fsck finds that a file system is marked with such an error, e2fsck performs a full
check after replaying the journal (if present).

Additional resources

The fsck(8) man page.

The e2fsck(8) man page.

12.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

This procedure checks an ext2, ext3, or ext4 file system using the e2fsck utility.

Procedure

1. Replay the log by remounting the file system:

mount file-system
umount file-system

2. Perform a dry run to check the file system.

e2fsck -n block-device

NOTE

Any errors are printed and an indication of the actions that would be taken,
without modifying the file system. Later phases of consistency checking may
print extra errors as it discovers inconsistencies which would have been fixed in
early phases if it were running in repair mode.

Additional resources

Red Hat Enterprise Linux 8 Managing file systems

94

The e2image(8) man page.

The e2fsck(8) man page.

12.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

This procedure repairs a corrupted ext2, ext3, or ext4 file system using the e2fsck utility.

Procedure

1. Save a file system image for support investigations. A pre-repair file system metadata image
can be useful for support investigations if the corruption is due to a software bug. Patterns of
corruption present in the pre-repair image can aid in root-cause analysis.

NOTE

Severely damaged file systems may cause problems with metadata image
creation.

If you are creating the image for testing purposes, use the -r option to create a sparse file of
the same size as the file system itself. e2fsck can then operate directly on the resulting file.

e2image -r block-device image-file

If you are creating the image to be archived or provided for diagnostic, use the -Q option,
which creates a more compact file format suitable for transfer.

e2image -Q block-device image-file

2. Replay the log by remounting the file system:

mount file-system
umount file-system

3. Automatically repair the file system. If user intervention is required, e2fsck indicates the unfixed
problem in its output and reflects this status in the exit code.

e2fsck -p block-device

Additional resources

The e2image(8) man page.

The e2fsck(8) man page.

CHAPTER 12. CHECKING AND REPAIRING A FILE SYSTEM

95

CHAPTER 13. MOUNTING FILE SYSTEMS
As a system administrator, you can mount file systems on your system to access data on them.

13.1. THE LINUX MOUNT MECHANISM

This section explains basic concepts of mounting file systems on Linux.

On Linux, UNIX, and similar operating systems, file systems on different partitions and removable
devices (CDs, DVDs, or USB flash drives for example) can be attached to a certain point (the mount
point) in the directory tree, and then detached again. While a file system is mounted on a directory, the
original content of the directory is not accessible.

Note that Linux does not prevent you from mounting a file system to a directory with a file system
already attached to it.

When mounting, you can identify the device by:

a universally unique identifier (UUID): for example, UUID=34795a28-ca6d-4fd8-a347-
73671d0c19cb

a volume label: for example, LABEL=home

a full path to a non-persistent block device: for example, /dev/sda3

When you mount a file system using the mount command without all required information, that is
without the device name, the target directory, or the file system type, the mount utility reads the
content of the /etc/fstab file to check if the given file system is listed there. The /etc/fstab file contains
a list of device names and the directories in which the selected file systems are set to be mounted as
well as the file system type and mount options. Therefore, when mounting a file system that is specified
in /etc/fstab, the following command syntax is sufficient:

Mounting by the mount point:

mount directory

Mounting by the block device:

mount device

Additional resources

The mount(8) man page.

For information on how to list persistent naming attributes such as the UUID, see Section 8.6,
“Listing persistent naming attributes”.

13.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS

This procedure describes how to list all currently mounted file systems on the command line.

Procedure

To list all mounted file systems, use the findmnt utility:

Red Hat Enterprise Linux 8 Managing file systems

96

$ findmnt

To limit the listed file systems only to a certain file system type, add the --types option:

$ findmnt --types fs-type

For example:

Example 13.1. Listing only XFS file systems

$ findmnt --types xfs

TARGET SOURCE FSTYPE OPTIONS
/ /dev/mapper/luks-5564ed00-6aac-4406-bfb4-c59bf5de48b5 xfs rw,relatime
├─/boot /dev/sda1 xfs rw,relatime
└─/home /dev/mapper/luks-9d185660-7537-414d-b727-d92ea036051e xfs rw,relatime

Additional resources

The findmnt(8) man page.

13.3. MOUNTING A FILE SYSTEM WITH MOUNT

This procedure describes how to mount a file system using the mount utility.

Prerequisites

Make sure that no file system is already mounted on your chosen mount point:

$ findmnt mount-point

Procedure

1. To attach a certain file system, use the mount utility:

mount device mount-point

Example 13.2. Mounting an XFS file system

For example, to mount a local XFS file system identified by UUID:

mount UUID=ea74bbec-536d-490c-b8d9-5b40bbd7545b /mnt/data

2. If mount cannot recognize the file system type automatically, specify it using the --types
option:

mount --types type device mount-point

Example 13.3. Mounting an NFS file system

CHAPTER 13. MOUNTING FILE SYSTEMS

97

For example, to mount a remote NFS file system:

mount --types nfs4 host:/remote-export /mnt/nfs

Additional resources

The mount(8) man page.

13.4. MOVING A MOUNT POINT

This procedure describes how to change the mount point of a mounted file system to a different
directory.

Procedure

1. To change the directory in which a file system is mounted:

mount --move old-directory new-directory

Example 13.4. Moving a home file system

For example, to move the file system mounted in the /mnt/userdirs/ directory to the /home/
mount point:

mount --move /mnt/userdirs /home

2. Verify that the file system has been moved as expected:

$ findmnt
$ ls old-directory
$ ls new-directory

Additional resources

The mount(8) man page.

13.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT

This procedure describes how to unmount a file system using the umount utility.

Procedure

1. Try unmounting the file system using either of the following commands:

By mount point:

umount mount-point

By device:

Red Hat Enterprise Linux 8 Managing file systems

98

umount device

If the command fails with an error similar to the following, it means that the file system is in use
because of a process is using resources on it:

umount: /run/media/user/FlashDrive: target is busy.

2. If the file system is in use, use the fuser utility to determine which processes are accessing it.
For example:

$ fuser --mount /run/media/user/FlashDrive

/run/media/user/FlashDrive: 18351

Afterwards, terminate the processes using the file system and try unmounting it again.

13.6. COMMON MOUNT OPTIONS

This section lists some commonly used options of the mount utility.

You can use these options in the following syntax:

mount --options option1,option2,option3 device mount-point

Table 13.1. Common mount options

Option Description

async Enables asynchronous input and output operations on the file system.

auto Enables the file system to be mounted automatically using the mount -a
command.

defaults Provides an alias for the async,auto,dev,exec,nouser,rw,suid options.

exec Allows the execution of binary files on the particular file system.

loop Mounts an image as a loop device.

noauto Default behavior disables the automatic mount of the file system using the
mount -a command.

noexec Disallows the execution of binary files on the particular file system.

nouser Disallows an ordinary user (that is, other than root) to mount and unmount the file
system.

remount Remounts the file system in case it is already mounted.

CHAPTER 13. MOUNTING FILE SYSTEMS

99

ro Mounts the file system for reading only.

rw Mounts the file system for both reading and writing.

user Allows an ordinary user (that is, other than root) to mount and unmount the file
system.

Option Description

13.7. SHARING A MOUNT ON MULTIPLE MOUNT POINTS

As a system administrator, you can duplicate mount points to make the file systems accessible from
multiple directories.

13.7.1. Types of shared mounts

There are multiple types of shared mounts that you can use. The difference between them is what
happens when you mount another file system under one of the shared mount points. The shared mounts
are implemented using the shared subtrees functionality.

The types are:

Private mount

This type does not receive or forward any propagation events.
When you mount another file system under either the duplicate or the original mount point, it is not
reflected in the other.

Shared mount

This type creates an exact replica of a given mount point.
When a mount point is marked as a shared mount, any mount within the original mount point is
reflected in it, and vice versa.

This is the default mount type of the root file system.

Slave mount

This type creates a limited duplicate of a given mount point.
When a mount point is marked as a slave mount, any mount within the original mount point is
reflected in it, but no mount within a slave mount is reflected in its original.

Unbindable mount

This type prevents the given mount point from being duplicated whatsoever.

13.7.2. Creating a private mount point duplicate

This procedure duplicates a mount point as a private mount. File systems that you later mount under the
duplicate or the original mount point are not reflected in the other.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

Red Hat Enterprise Linux 8 Managing file systems

100

mount --bind original-dir original-dir

2. Mark the original mount point as private:

mount --make-private original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rprivate option instead of --make-private.

3. Create the duplicate:

mount --bind original-dir duplicate-dir

Example 13.5. Duplicating /media into /mnt as a private mount point

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as private:

mount --make-private /media

3. Create its duplicate in /mnt:

mount --bind /media /mnt

4. It is now possible to verify that /media and /mnt share content but none of the mounts within
/media appear in /mnt. For example, if the CD-ROM drive contains non-empty media and
the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
#

5. It is also possible to verify that file systems mounted in the /mnt directory are not reflected
in /media. For instance, if a non-empty USB flash drive that uses the /dev/sdc1 device is
plugged in and the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

The mount(8) man page.

CHAPTER 13. MOUNTING FILE SYSTEMS

101

13.7.3. Creating a shared mount point duplicate

This procedure duplicates a mount point as a shared mount. File systems that you later mount under the
original directory or the duplicate are always reflected in the other.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as shared:

mount --make-shared original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rshared option instead of --make-shared.

3. Create the duplicate:

mount --bind original-dir duplicate-dir

Example 13.6. Duplicating /media into /mnt as a shared mount point

To make the /media and /mnt directories share the same content:

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as shared:

mount --make-shared /media

3. Create its duplicate in /mnt:

mount --bind /media /mnt

4. It is now possible to verify that a mount within /media also appears in /mnt. For example, if
the CD-ROM drive contains non-empty media and the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
EFI GPL isolinux LiveOS

5. Similarly, it is possible to verify that any file system mounted in the /mnt directory is
reflected in /media. For instance, if a non-empty USB flash drive that uses the /dev/sdc1
device is plugged in and the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk

Red Hat Enterprise Linux 8 Managing file systems

102

en-US publican.cfg
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

The mount(8) man page.

13.7.4. Creating a slave mount point duplicate

This procedure duplicates a mount point as a slave mount. File systems that you later mount under the
original mount point are reflected in the duplicate but not the other way around.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as shared:

mount --make-shared original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rshared option instead of --make-shared.

3. Create the duplicate and mark it as slave:

mount --bind original-dir duplicate-dir
mount --make-slave duplicate-dir

Example 13.7. Duplicating /media into /mnt as a slave mount point

This example shows how to get the content of the /media directory to appear in /mnt as well, but
without any mounts in the /mnt directory to be reflected in /media.

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as shared:

mount --make-shared /media

3. Create its duplicate in /mnt and mark it as slave:

mount --bind /media /mnt
mount --make-slave /mnt

4. Verify that a mount within /media also appears in /mnt. For example, if the CD-ROM drive
contains non-empty media and the /media/cdrom/ directory exists, use:

CHAPTER 13. MOUNTING FILE SYSTEMS

103

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
EFI GPL isolinux LiveOS

5. Also verify that file systems mounted in the /mnt directory are not reflected in /media. For
instance, if a non-empty USB flash drive that uses the /dev/sdc1 device is plugged in and
the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

The mount(8) man page.

13.7.5. Preventing a mount point from being duplicated

This procedure marks a mount point as unbindable so that it is not possible to duplicate it in another
mount point.

Procedure

To change the type of a mount point to an unbindable mount, use:

mount --bind mount-point mount-point
mount --make-unbindable mount-point

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-runbindable option instead of --make-unbindable.

Any subsequent attempt to make a duplicate of this mount fails with the following error:

mount --bind mount-point duplicate-dir

mount: wrong fs type, bad option, bad superblock on mount-point,
missing codepage or helper program, or other error
In some cases useful info is found in syslog - try
dmesg | tail or so

Example 13.8. Preventing /media from being duplicated

To prevent the /media directory from being shared, use:

mount --bind /media /media
mount --make-unbindable /media

Additional resources

Red Hat Enterprise Linux 8 Managing file systems

104

Additional resources

The mount(8) man page.

13.7.6. Related information

The Shared subtrees article on Linux Weekly News: https://lwn.net/Articles/159077/.

13.8. PERSISTENTLY MOUNTING FILE SYSTEMS

As a system administrator, you can persistently mount file systems to configure non-removable storage.

13.8.1. The /etc/fstab file

This section describes the /etc/fstab configuration file, which controls persistent mount points of file
systems. Using /etc/fstab is the recommended way to persistently mount file systems.

Each line in the /etc/fstab file defines a mount point of a file system. It includes six fields separated by
white space:

1. The block device identified by a persistent attribute or a path it the /dev directory.

2. The directory where the device will be mounted.

3. The file system on the device.

4. Mount options for the file system. The option defaults means that the partition is mounted at
boot time with default options. This section also recognizes systemd mount unit options in the
x-systemd.option format.

5. Backup option for the dump utility.

6. Check order for the fsck utility.

Example 13.9. The /boot file system in /etc/fstab

Block device Mount
point

File system Options Backup Check

UUID=ea74bbec-536d-
490c-b8d9-
5b40bbd7545b

/boot xfs defaults 0 0

The systemd service automatically generates mount units from entries in /etc/fstab.

Additional resources

The fstab(5) man page.

The fstab section of the systemd.mount(5) man page.

13.8.2. Adding a file system to /etc/fstab

CHAPTER 13. MOUNTING FILE SYSTEMS

105

https://lwn.net/Articles/159077/

This procedure describes how to configure persistent mount point for a file system in the /etc/fstab
configuration file.

Procedure

1. Find out the UUID attribute of the file system:

$ lsblk --fs storage-device

For example:

Example 13.10. Viewing the UUID of a partition

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot ea74bbec-536d-490c-b8d9-5b40bbd7545b /boot

2. If the mount point directory does not exist, create it:

mkdir --parents mount-point

3. As root, edit the /etc/fstab file and add a line for the file system, identified by the UUID.
For example:

Example 13.11. The /boot mount point in /etc/fstab

UUID=ea74bbec-536d-490c-b8d9-5b40bbd7545b /boot xfs defaults 0 0

4. Regenerate mount units so that your system registers the new configuration:

systemctl daemon-reload

5. Try mounting the file system to verify that the configuration works:

mount mount-point

Additional resources

Other persistent attributes that you can use to identify the file system: Section 8.3, “Device
names managed by the udev mechanism in /dev/disk/”

13.8.3. Persistently mounting a file system using RHEL System Roles

This section describes how to persistently mount a file system using the storage role.

Prerequisites

An Ansible playbook that uses the storage role exists.

Red Hat Enterprise Linux 8 Managing file systems

106

For information on how to apply such a playbook, see Applying a role .

13.8.3.1. Example Ansible playbook to persistently mount a file system

This section provides an example Ansible playbook. This playbook applies the storage role to
immediately and persistently mount an XFS file system.

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

NOTE

Applying the storage role in this playbook adds the file system to the /etc/fstab file, and
mounts the file system immediately. If the file system does not exist on the /dev/sdb disk
device, it is created. If the mount point directory does not exist, it is created as well.

13.8.3.2. Additional resources

For more information about the storage role, see Section 2.1, “Introduction to the storage role” .

13.9. MOUNTING FILE SYSTEMS ON DEMAND

As a system administrator, you can configure file systems, such as NFS, to mount automatically on
demand.

13.9.1. The autofs service

This section explains the benefits and basic concepts of the autofs service, used to mount file systems
on demand.

One drawback of permanent mounting using the /etc/fstab configuration is that, regardless of how
infrequently a user accesses the mounted file system, the system must dedicate resources to keep the
mounted file system in place. This might affect system performance when, for example, the system is
maintaining NFS mounts to many systems at one time.

An alternative to /etc/fstab is to use the kernel-based autofs service. It consists of the following
components:

A kernel module that implements a file system, and

A user-space service that performs all of the other functions.

The autofs service can mount and unmount file systems automatically (on-demand), therefore saving

CHAPTER 13. MOUNTING FILE SYSTEMS

107

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_what-rhel-system-roles-are

The autofs service can mount and unmount file systems automatically (on-demand), therefore saving
system resources. It can be used to mount file systems such as NFS, AFS, SMBFS, CIFS, and local file
systems.

Additional resources

The autofs(8) man page.

13.9.2. The autofs configuration files

This section describes the usage and syntax of configuration files used by the autofs service.

The master map file
The autofs service uses /etc/auto.master (master map) as its default primary configuration file. This can
be changed to use another supported network source and name using the autofs configuration in the
/etc/autofs.conf configuration file in conjunction with the Name Service Switch (NSS) mechanism.

All on-demand mount points must be configured in the master map. Mount point, host name, exported
directory, and options can all be specified in a set of files (or other supported network sources) rather
than configuring them manually for each host.

The master map file lists mount points controlled by autofs, and their corresponding configuration files
or network sources known as automount maps. The format of the master map is as follows:

mount-point map-name options

The variables used in this format are:

mount-point

The autofs mount point; for example, /mnt/data/.

map-file

The map source file, which contains a list of mount points and the file system location from which
those mount points should be mounted.

options

If supplied, these apply to all entries in the given map, if they do not themselves have options
specified.

Example 13.12. The /etc/auto.master file

The following is a sample line from /etc/auto.master file:

/mnt/data /etc/auto.data

Map files
Map files configure the properties of individual on-demand mount points.

The automounter creates the directories if they do not exist. If the directories exist before the
automounter was started, the automounter will not remove them when it exits. If a timeout is specified,
the directory is automatically unmounted if the directory is not accessed for the timeout period.

The general format of maps is similar to the master map. However, the options field appears between
the mount point and the location instead of at the end of the entry as in the master map:

Red Hat Enterprise Linux 8 Managing file systems

108

mount-point options location

The variables used in this format are:

mount-point

This refers to the autofs mount point. This can be a single directory name for an indirect mount or
the full path of the mount point for direct mounts. Each direct and indirect map entry key (mount-
point) can be followed by a space separated list of offset directories (subdirectory names each
beginning with /) making them what is known as a multi-mount entry.

options

When supplied, these are the mount options for the map entries that do not specify their own
options. This field is optional.

location

This refers to the file system location such as a local file system path (preceded with the Sun map
format escape character : for map names beginning with /), an NFS file system or other valid file
system location.

Example 13.13. A map file

The following is a sample from a map file; for example, /etc/auto.misc:

payroll -fstype=nfs4 personnel:/dev/disk/by-uuid/52b94495-e106-4f29-b868-fe6f6c2789b1
sales -fstype=xfs :/dev/disk/by-uuid/5564ed00-6aac-4406-bfb4-c59bf5de48b5

The first column in the map file indicates the autofs mount point: sales and payroll from the server
called personnel. The second column indicates the options for the autofs mount. The third column
indicates the source of the mount.

Following the given configuration, the autofs mount points will be /home/payroll and /home/sales.
The -fstype= option is often omitted and is generally not needed for correct operation.

Using the given configuration, if a process requires access to an autofs unmounted directory such as
/home/payroll/2006/July.sxc, the autofs service automatically mounts the directory.

The amd map format
The autofs service recognizes map configuration in the amd format as well. This is useful if you want to
reuse existing automounter configuration written for the am-utils service, which has been removed from
Red Hat Enterprise Linux.

However, Red Hat recommends using the simpler autofs format described in the previous sections.

Additional resources

The autofs(5), autofs.conf(5), and auto.master(5) man pages.

For details on the amd map format, see the /usr/share/doc/autofs/README.amd-maps file,
which is provided by the autofs package.

13.9.3. Configuring autofs mount points

This procedure describes how to configure on-demand mount points using the autofs service.

Prerequisites

CHAPTER 13. MOUNTING FILE SYSTEMS

109

Prerequisites

Install the autofs package:

yum install autofs

Start and enable the autofs service:

systemctl enable --now autofs

Procedure

1. Create a map file for the on-demand mount point, located at /etc/auto.identifier. Replace
identifier with a name that identifies the mount point.

2. In the map file, fill in the mount point, options, and location fields as described in Section 13.9.2,
“The autofs configuration files”.

3. Register the map file in the master map file, as described in Section 13.9.2, “The autofs
configuration files”.

4. Try accessing content in the on-demand directory:

$ ls automounted-directory

13.9.4. Automounting NFS server user home directories with autofs service

This procedure describes how to configure the autofs service to mount user home directories
automatically.

Prerequisites

The autofs package is installed.

The autofs service is enabled and running.

Procedure

1. Specify the mount point and location of the map file by editing the /etc/auto.master file on a
server on which you need to mount user home directories. To do so, add the following line into
the /etc/auto.master file:

/home /etc/auto.home

2. Create a map file with the name of /etc/auto.home on a server on which you need to mount
user home directories, and edit the file with the following parameters:

* -fstype=nfs,rw,sync host.example.com:/home/&i

You can skip fstype parameter, as it is nfs by default. For more information, see autofs(5) man
page.

3. Reload the autofs service:

Red Hat Enterprise Linux 8 Managing file systems

110

systemctl reload autofs

13.9.5. Overriding or augmenting autofs site configuration files

It is sometimes useful to override site defaults for a specific mount point on a client system.

Example 13.14. Initial conditions

For example, consider the following conditions:

Automounter maps are stored in NIS and the /etc/nsswitch.conf file has the following
directive:

automount: files nis

The auto.master file contains:

+auto.master

The NIS auto.master map file contains:

/home auto.home

The NIS auto.home map contains:

beth fileserver.example.com:/export/home/beth
joe fileserver.example.com:/export/home/joe
* fileserver.example.com:/export/home/&

The file map /etc/auto.home does not exist.

Example 13.15. Mounting home directories from a different server

Given the preceding conditions, let’s assume that the client system needs to override the NIS map
auto.home and mount home directories from a different server.

In this case, the client needs to use the following /etc/auto.master map:

/home ​/etc/auto.home
+auto.master

The /etc/auto.home map contains the entry:

* host.example.com:/export/home/&

Because the automounter only processes the first occurrence of a mount point, the /home directory
contains the content of /etc/auto.home instead of the NIS auto.home map.

Example 13.16. Augmenting auto.home with only selected entries

CHAPTER 13. MOUNTING FILE SYSTEMS

111

Alternatively, to augment the site-wide auto.home map with just a few entries:

1. Create an /etc/auto.home file map, and in it put the new entries. At the end, include the NIS
auto.home map. Then the /etc/auto.home file map looks similar to:

mydir someserver:/export/mydir
+auto.home

2. With these NIS auto.home map conditions, listing the content of the /home directory
outputs:

$ ls /home

beth joe mydir

This last example works as expected because autofs does not include the contents of a file map of
the same name as the one it is reading. As such, autofs moves on to the next map source in the
nsswitch configuration.

13.9.6. Using LDAP to store automounter maps

This procedure configures autofs to store automounter maps in LDAP configuration rather than in
autofs map files.

Prerequisites

LDAP client libraries must be installed on all systems configured to retrieve automounter maps
from LDAP. On Red Hat Enterprise Linux, the openldap package should be installed
automatically as a dependency of the autofs package.

Procedure

1. To configure LDAP access, modify the /etc/openldap/ldap.conf file. Ensure that the BASE,
URI, and schema options are set appropriately for your site.

2. The most recently established schema for storing automount maps in LDAP is described by the
rfc2307bis draft. To use this schema, set it in the /etc/autofs.conf configuration file by
removing the comment characters from the schema definition. For example:

Example 13.17. Setting autofs configuration

DEFAULT_MAP_OBJECT_CLASS="automountMap"
DEFAULT_ENTRY_OBJECT_CLASS="automount"
DEFAULT_MAP_ATTRIBUTE="automountMapName"
DEFAULT_ENTRY_ATTRIBUTE="automountKey"
DEFAULT_VALUE_ATTRIBUTE="automountInformation"

3. Ensure that all other schema entries are commented in the configuration. The automountKey
attribute replaces the cn attribute in the rfc2307bis schema. Following is an example of an
LDAP Data Interchange Format (LDIF) configuration:

Example 13.18. LDF Configuration

Red Hat Enterprise Linux 8 Managing file systems

112

extended LDIF
#
LDAPv3
base <> with scope subtree
filter: (&(objectclass=automountMap)(automountMapName=auto.master))
requesting: ALL
#

auto.master, example.com
dn: automountMapName=auto.master,dc=example,dc=com
objectClass: top
objectClass: automountMap
automountMapName: auto.master

extended LDIF
#
LDAPv3
base <automountMapName=auto.master,dc=example,dc=com> with scope subtree
filter: (objectclass=automount)
requesting: ALL
#

/home, auto.master, example.com
dn: automountMapName=auto.master,dc=example,dc=com
objectClass: automount
cn: /home

automountKey: /home
automountInformation: auto.home

extended LDIF
#
LDAPv3
base <> with scope subtree
filter: (&(objectclass=automountMap)(automountMapName=auto.home))
requesting: ALL
#

auto.home, example.com
dn: automountMapName=auto.home,dc=example,dc=com
objectClass: automountMap
automountMapName: auto.home

extended LDIF
#
LDAPv3
base <automountMapName=auto.home,dc=example,dc=com> with scope subtree
filter: (objectclass=automount)
requesting: ALL
#

foo, auto.home, example.com
dn: automountKey=foo,automountMapName=auto.home,dc=example,dc=com
objectClass: automount
automountKey: foo
automountInformation: filer.example.com:/export/foo

CHAPTER 13. MOUNTING FILE SYSTEMS

113

/, auto.home, example.com
dn: automountKey=/,automountMapName=auto.home,dc=example,dc=com
objectClass: automount
automountKey: /
automountInformation: filer.example.com:/export/&

Additional resources

The rfc2307bis draft: https://tools.ietf.org/html/draft-howard-rfc2307bis.

13.10. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE
SYSTEM

Sometimes, you need to mount the root file system (/) with read-only permissions. Example use cases
include enhancing security or ensuring data integrity after an unexpected system power-off.

13.10.1. Files and directories that always retain write permissions

For the system to function properly, some files and directories need to retain write permissions. When
the root file system is mounted in read-only mode, these files are mounted in RAM using the tmpfs
temporary file system.

The default set of such files and directories is read from the /etc/rwtab file, which contains:

dirs /var/cache/man
dirs /var/gdm
<content truncated>

empty /tmp
empty /var/cache/foomatic
<content truncated>

files /etc/adjtime
files /etc/ntp.conf
<content truncated>

Entries in the /etc/rwtab file follow this format:

copy-method path

In this syntax:

Replace copy-method with one of the keywords specifying how the file or directory is copied to
tmpfs.

Replace path with the path to the file or directory.

The /etc/rwtab file recognizes the following ways in which a file or directory can be copied to tmpfs:

empty

An empty path is copied to tmpfs. For example:

Red Hat Enterprise Linux 8 Managing file systems

114

https://tools.ietf.org/html/draft-howard-rfc2307bis

empty /tmp

dirs

A directory tree is copied to tmpfs, empty. For example:

dirs /var/run

files

A file or a directory tree is copied to tmpfs intact. For example:

files /etc/resolv.conf

The same format applies when adding custom paths to /etc/rwtab.d/.

13.10.2. Configuring the root file system to mount with read-only permissions on
boot

With this procedure, the root file system is mounted read-only on all following boots.

Procedure

1. In the /etc/sysconfig/readonly-root file, set the READONLY option to yes:

Set to 'yes' to mount the file systems as read-only.
READONLY=yes

2. Add the ro option in the root entry (/) in the /etc/fstab file:

/dev/mapper/luks-c376919e... / xfs x-systemd.device-timeout=0,ro 1 1

3. Add the ro option to the GRUB_CMDLINE_LINUX directive in the /etc/default/grub file and
ensure that the directive does not contain rw:

GRUB_CMDLINE_LINUX="rhgb quiet... ro"

4. Recreate the GRUB2 configuration file:

grub2-mkconfig -o /boot/grub2/grub.cfg

5. If you need to add files and directories to be mounted with write permissions in the tmpfs file
system, create a text file in the /etc/rwtab.d/ directory and put the configuration there.
For example, to mount the /etc/example/file file with write permissions, add this line to the
/etc/rwtab.d/example file:

files /etc/example/file

IMPORTANT

Changes made to files and directories in tmpfs do not persist across boots.

CHAPTER 13. MOUNTING FILE SYSTEMS

115

6. Reboot the system to apply the changes.

Troubleshooting

If you mount the root file system with read-only permissions by mistake, you can remount it with
read-and-write permissions again using the following command:

mount -o remount,rw /

Red Hat Enterprise Linux 8 Managing file systems

116

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH
QUOTAS

You can restrict the amount of disk space available to users or groups by implementing disk quotas. You
can also define a warning level at which system administrators are informed before a user consumes too
much disk space or a partition becomes full.

14.1. DISK QUOTAS

In most computing environments, disk space is not infinite. The quota subsystem provides a mechanism
to control usage of disk space.

You can configure disk quotas for individual users as well as user groups on the local file systems. This
makes it possible to manage the space allocated for user-specific files (such as email) separately from
the space allocated to the projects that a user works on. The quota subsystem warns users when they
exceed their allotted limit, but allows some extra space for current work (hard limit/soft limit).

If quotas are implemented, you need to check if the quotas are exceeded and make sure the quotas are
accurate. If users repeatedly exceed their quotas or consistently reach their soft limits, a system
administrator can either help the user determine how to use less disk space or increase the user’s disk
quota.

You can set quotas to control:

The number of consumed disk blocks.

The number of inodes, which are data structures that contain information about files in UNIX file
systems. Because inodes store file-related information, this allows control over the number of
files that can be created.

14.1.1. The xfs_quota tool

You can use the xfs_quota tool to manage quotas on XFS file systems. In addition, you can use XFS file
systems with limit enforcement turned off as an effective disk usage accounting system.

The XFS quota system differs from other file systems in a number of ways. Most importantly, XFS
considers quota information as file system metadata and uses journaling to provide a higher level
guarantee of consistency.

Additional resources

The xfs_quota(8) man page.

14.2. MANAGING XFS DISK QUOTAS

You can use the xfs_quota tool to manage quotas in XFS and to configure limits for project-controlled
directories.

Generic quota configuration tools (quota, repquota, and edquota for example) may also be used to
manipulate XFS quotas. However, these tools cannot be used with XFS project quotas.

IMPORTANT

Red Hat recommends the use of xfs_quota over all other available tools.

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS

117

14.2.1. File system quota management in XFS

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas
control or report on usage of these items on a user, group, or directory or project level. Group and
project quotas are only mutually exclusive on older non-default XFS disk formats.

When managing on a per-directory or per-project basis, XFS manages the disk usage of directory
hierarchies associated with a specific project.

14.2.2. Enabling disk quotas for XFS

This procedure enables disk quotas for users, groups, and projects on an XFS file system. Once quotas
are enabled, the xfs_quota tool can be used to set limits and report on disk usage.

Procedure

1. Enable quotas for users:

mount -o uquota /dev/xvdb1 /xfs

Replace uquota with uqnoenforce to allow usage reporting without enforcing any limits.

2. Enable quotas for groups:

mount -o gquota /dev/xvdb1 /xfs

Replace gquota with gqnoenforce to allow usage reporting without enforcing any limits.

3. Enable quotas for projects:

mount -o pquota /dev/xvdb1 /xfs

Replace pquota with pqnoenforce to allow usage reporting without enforcing any limits.

4. Alternatively, include the quota mount options in the /etc/fstab file. The following example
shows entries in the /etc/fstab file to enable quotas for users, groups, and projects, respectively,
on an XFS file system. These examples also mount the file system with read/write permissions:

vim /etc/fstab
/dev/xvdb1 /xfs xfs rw,quota 0 0
/dev/xvdb1 /xfs xfs rw,gquota 0 0
/dev/xvdb1 /xfs xfs rw,prjquota 0 0

Additional resources

The mount(8) man page.

The xfs_quota(8) man page.

14.2.3. Reporting XFS usage

You can use the xfs_quota tool to set limits and report on disk usage. By default, xfs_quota is run
interactively, and in basic mode. Basic mode subcommands simply report usage, and are available to all
users.

Red Hat Enterprise Linux 8 Managing file systems

118

Prerequisites

Quotas have been enabled for the XFS file system. See Enabling disk quotas for XFS .

Procedure

1. Start the xfs_quota shell:

xfs_quota

2. Show usage and limits for the given user:

xfs_quota> quota username

3. Show free and used counts for blocks and inodes:

xfs_quota> df

4. Run the help command to display the basic commands available with xfs_quota.

xfs_quota> help

5. Specify q to exit xfs_quota.

xfs_quota> q

Additional resources

The xfs_quota(8) man page.

14.2.4. Modifying XFS quota limits

Start the xfs_quota tool with the -x option to enable expert mode and run the administrator
commands, which allow modifications to the quota system. The subcommands of this mode allow actual
configuration of limits, and are available only to users with elevated privileges.

Prerequisites

Quotas have been enabled for the XFS file system. See Enabling disk quotas for XFS .

Procedure

1. Start the xfs_quota shell with the -x option to enable expert mode:

xfs_quota -x

2. Report quota information for a specific file system:

xfs_quota> report /path

For example, to display a sample quota report for /home (on /dev/blockdevice), use the
command report -h /home. This displays output similar to the following:

User quota on /home (/dev/blockdevice)

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS

119

Blocks
User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 0 0 0 00 [------]
testuser 103.4G 0 0 00 [------]

3. Modify quota limits:

xfs_quota> limit isoft=500m ihard=700m user /path

For example, to set a soft and hard inode count limit of 500 and 700 respectively for user john,
whose home directory is /home/john, use the following command:

xfs_quota -x -c 'limit isoft=500 ihard=700 john' /home/

In this case, pass mount_point which is the mounted xfs file system.

4. Run the help command to display the expert commands available with xfs_quota -x:

xfs_quota> help

Additional resources

The xfs_quota(8) man page.

14.2.5. Setting project limits for XFS

This procedure configures limits for project-controlled directories.

Procedure

1. Add the project-controlled directories to /etc/projects. For example, the following adds the
/var/log path with a unique ID of 11 to /etc/projects. Your project ID can be any numerical value
mapped to your project.

echo 11:/var/log >> /etc/projects

2. Add project names to /etc/projid to map project IDs to project names. For example, the
following associates a project called Logs with the project ID of 11 as defined in the previous
step.

echo Logs:11 >> /etc/projid

3. Initialize the project directory. For example, the following initializes the project directory /var:

xfs_quota -x -c 'project -s logfiles' /var

4. Configure quotas for projects with initialized directories:

xfs_quota -x -c 'limit -p bhard=lg logfiles' /var

Additional resources

The xfs_quota(8) man page.

Red Hat Enterprise Linux 8 Managing file systems

120

The projid(5) man page.

The projects(5) man page.

14.3. MANAGING EXT3 AND EXT4 DISK QUOTAS

You have to enable disk quotas on your system before you can assign them. You can assign disk quotas
per user, per group or per project. However, if there is a soft limit set, you can exceed these quotas for a
configurable period of time, known as the grace period.

14.3.1. Installing the quota tool

You must install the quota RPM package to implement disk quotas.

Procedure

Install the quota package:

yum install quota

14.3.2. Enabling quota feature on file system creation

This procedure describes how to enable quotas on file system creation.

Procedure

1. Enable quotas on file system creation:

mkfs.ext4 -O quota /dev/sda

NOTE

Only user and group quotas are enabled and initialized by default.

2. Change the defaults on file system creation:

mkfs.ext4 -O quota -E quotatype=usrquota:grpquota:prjquota /dev/sda

3. Mount the file system:

mount /dev/sda

Additional resources

See the man page for ext4 for additional information.

14.3.3. Enabling quota feature on existing file systems

This procedure describes how to enable the quota feature on existing file system using the tune2fs
command.

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS

121

Procedure

1. Unmount the file system:

umount /dev/sda

2. Enable quotas on existing file system:

tune2fs -O quota /dev/sda

NOTE

Only user and group quotas are initialized by default.

3. Change the defaults:

tune2fs -Q usrquota,grpquota,prjquota /dev/sda

4. Mount the file system:

mount /dev/sda

Additional resources

See the man page for ext4 for additional information.

14.3.4. Enabling quota enforcement

The quota accounting is enabled by default after mounting the file system without any additional
options, but quota enforcement is not.

Prerequisites

Quota feature is enabled and the default quotas are initialized.

Procedure

Enable quota enforcement by quotaon for the user quota:

mount /dev/sda /mnt

quotaon /mnt

NOTE

The quota enforcement can be enabled at mount time using usrquota,
grpquota, or prjquota mount options.

mount -o usrquota,grpquota,prjquota /dev/sda /mnt

Enable user, group, and project quotas for all file systems:

Red Hat Enterprise Linux 8 Managing file systems

122

quotaon -vaugP

If neither of the -u, -g, or -P options are specified, only the user quotas are enabled.

If only -g option is specified, only group quotas are enabled.

If only -P option is specified, only project quotas are enabled.

Enable quotas for a specific file system, such as /home:

quotaon -vugP /home

Additional resources

See the quotaon(8) man page.

14.3.5. Assigning quotas per user

The disk quotas are assigned to users with the edquota command.

NOTE

The text editor defined by the EDITOR environment variable is used by edquota. To
change the editor, set the EDITOR environment variable in your ~/.bash_profile file to
the full path of the editor of your choice.

Prerequisites

User must exist prior to setting the user quota.

Procedure

1. Assign the quota for a user:

edquota username

Replace username with the user to which you want to assign the quotas.

For example, if you enable a quota for the /dev/sda partition and execute the command
edquota testuser, the following is displayed in the default editor configured on the system:

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/sda 44043 0 0 37418 0 0

2. Change the desired limits.
If any of the values are set to 0, limit is not set. Change them in the text editor.

For example, the following shows the soft and hard block limits for the testuser have been set to
50000 and 55000 respectively.

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS

123

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/sda 44043 50000 55000 37418 0 0

The first column is the name of the file system that has a quota enabled for it.

The second column shows how many blocks the user is currently using.

The next two columns are used to set soft and hard block limits for the user on the file
system.

The inodes column shows how many inodes the user is currently using.

The last two columns are used to set the soft and hard inode limits for the user on the file
system.

The hard block limit is the absolute maximum amount of disk space that a user or group
can use. Once this limit is reached, no further disk space can be used.

The soft block limit defines the maximum amount of disk space that can be used.
However, unlike the hard limit, the soft limit can be exceeded for a certain amount of
time. That time is known as the grace period. The grace period can be expressed in
seconds, minutes, hours, days, weeks, or months.

Verification steps

Verify that the quota for the user has been set:

quota -v testuser
Disk quotas for user testuser:
Filesystem blocks quota limit grace files quota limit grace
/dev/sda 1000* 1000 1000 0 0 0

14.3.6. Assigning quotas per group

You can assign quotas on a per-group basis.

Prerequisites

Group must exist prior to setting the group quota.

Procedure

1. Set a group quota:

edquota -g groupname

For example, to set a group quota for the devel group:

edquota -g devel

This command displays the existing quota for the group in the text editor:

Red Hat Enterprise Linux 8 Managing file systems

124

Disk quotas for group devel (gid 505):
Filesystem blocks soft hard inodes soft hard
/dev/sda 440400 0 0 37418 0 0

2. Modify the limits and save the file.

Verification steps

Verify that the group quota is set:

quota -vg groupname

14.3.7. Assigning quotas per project

This procedure assigns quotas per project.

Prerequisites

Project quota is enabled on your file system.

Procedure

1. Add the project-controlled directories to /etc/projects. For example, the following adds the
/var/log path with a unique ID of 11 to /etc/projects. Your project ID can be any numerical value
mapped to your project.

echo 11:/var/log >> /etc/projects

2. Add project names to /etc/projid to map project IDs to project names. For example, the
following associates a project called Logs with the project ID of 11 as defined in the previous
step.

echo Logs:11 >> /etc/projid

3. Set the desired limits:

edquota -P 11

NOTE

You can choose the project either by its project ID (11 in this case), or by its
name (Logs in this case).

4. Using quotaon, enable quota enforcement:
See Enabling quota enforcement.

Verification steps

Verify that the project quota is set:

quota -vP 11

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS

125

NOTE

You can verify either by the project ID, or by the project name.

Additional resources

The edquota(8) man page.

The projid(5) man page.

The projects(5) man page.

14.3.8. Setting the grace period for soft limits

If a given quota has soft limits, you can edit the grace period, which is the amount of time for which a soft
limit can be exceeded. You can set the grace period for users, groups, or projects.

Procedure

Edit the grace period:

edquota -t

IMPORTANT

While other edquota commands operate on quotas for a particular user, group, or project,
the -t option operates on every file system with quotas enabled.

Additional resources

The edquota(8) man page.

14.3.9. Turning file system quotas off

Use quotaoff to turn disk quota enforcement off on the specified file systems. Quota accounting stays
enabled after executing this command.

Procedure

To turn all user and group quotas off:

quotaoff -vaugP

If neither of the -u, -g, or -P options are specified, only the user quotas are disabled.

If only -g option is specified, only group quotas are disabled.

If only -P option is specified, only project quotas are disabled.

The -v switch causes verbose status information to display as the command executes.

Additional resources

See the quotaoff(8) man page.

Red Hat Enterprise Linux 8 Managing file systems

126

14.3.10. Reporting on disk quotas

You can create a disk quota report using the repquota utility.

Procedure

1. Run the repquota command:

repquota

For example, the command repquota /dev/sda produces this output:

*** Report for user quotas on device /dev/sda
Block grace time: 7days; Inode grace time: 7days
 Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 36 0 0 4 0 0
kristin -- 540 0 0 125 0 0
testuser -- 440400 500000 550000 37418 0 0

2. View the disk usage report for all quota-enabled file systems:

repquota -augP

The -- symbol displayed after each user determines whether the block or inode limits have been
exceeded. If either soft limit is exceeded, a + character appears in place of the corresponding -
character. The first - character represents the block limit, and the second represents the inode limit.

The grace columns are normally blank. If a soft limit has been exceeded, the column contains a time
specification equal to the amount of time remaining on the grace period. If the grace period has expired,
none appears in its place.

Additional resources

The repquota(8) man page for more information.

CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS

127

CHAPTER 15. DISCARDING UNUSED BLOCKS
You can perform or schedule discard operations on block devices that support them.

15.1. BLOCK DISCARD OPERATIONS

Block discard operations discard blocks that are no longer in use by a mounted file system. They are
useful on:

Solid-state drives (SSDs)

Thinly-provisioned storage

Requirements
The block device underlying the file system must support physical discard operations.

Physical discard operations are supported if the value in the
/sys/block/device/queue/discard_max_bytes file is not zero.

15.2. TYPES OF BLOCK DISCARD OPERATIONS

You can run discard operations using different methods:

Batch discard

Are run explicitly by the user. They discard all unused blocks in the selected file systems.

Online discard

Are specified at mount time. They run in real time without user intervention. Online discard
operations discard only the blocks that are transitioning from used to free.

Periodic discard

Are batch operations that are run regularly by a systemd service.

All types are supported by the XFS and ext4 file systems and by VDO.

Recommendations
Red Hat recommends that you use batch or periodic discard.

Use online discard only if:

the system’s workload is such that batch discard is not feasible, or

online discard operations are necessary to maintain performance.

15.3. PERFORMING BATCH BLOCK DISCARD

This procedure performs a batch block discard operation to discard unused blocks on a mounted file
system.

Prerequisites

The file system is mounted.

The block device underlying the file system supports physical discard operations.

Red Hat Enterprise Linux 8 Managing file systems

128

Procedure

Use the fstrim utility:

To perform discard only on a selected file system, use:

fstrim mount-point

To perform discard on all mounted file systems, use:

fstrim --all

If you execute the fstrim command on:

a device that does not support discard operations, or

a logical device (LVM or MD) composed of multiple devices, where any one of the device does
not support discard operations,

the following message displays:

fstrim /mnt/non_discard

fstrim: /mnt/non_discard: the discard operation is not supported

Additional resources

The fstrim(8) man page

15.4. ENABLING ONLINE BLOCK DISCARD

This procedure enables online block discard operations that automatically discard unused blocks on all
supported file systems.

Procedure

Enable online discard at mount time:

When mounting a file system manually, add the -o discard mount option:

mount -o discard device mount-point

When mounting a file system persistently, add the discard option to the mount entry in the
/etc/fstab file.

Additional resources

The mount(8) man page

The fstab(5) man page

15.5. ENABLING ONLINE BLOCK DISCARD USING RHEL SYSTEM
ROLES

CHAPTER 15. DISCARDING UNUSED BLOCKS

129

This section describes how to enable online block discard using the storage role.

Prerequisites

An Ansible playbook including the storage role exists.

For information on how to apply such a playbook, see Applying a role .

15.5.1. Example Ansible playbook to enable online block discard

This section provides an example Ansible playbook. This playbook applies the storage role to mount an
XFS file system with online block discard enabled.

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 mount_options: discard
 roles:
 - rhel-system-roles.storage

NOTE

This playbook also performs all the operations of the persistent mount example
described in Section 13.8.3.1, “Example Ansible playbook to persistently mount a file
system”.

15.5.2. Additional resources

For more information about the storage role, see Section 2.1, “Introduction to the storage role” .

15.6. ENABLING PERIODIC BLOCK DISCARD

This procedure enables a systemd timer that regularly discards unused blocks on all supported file
systems.

Procedure

Enable and start the systemd timer:

systemctl enable --now fstrim.timer

Red Hat Enterprise Linux 8 Managing file systems

130

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_what-rhel-system-roles-are

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH
STRATIS

You can easily set up and manage complex storage configurations integrated by the Stratis high-level
system.

IMPORTANT

Stratis is available as a Technology Preview. For information on Red Hat scope of support
for Technology Preview features, see the Technology Preview Features Support Scope
document.

Customers deploying Stratis are encouraged to provide feedback to Red Hat.

16.1. SETTING UP STRATIS FILE SYSTEMS

As a system administrator, you can enable and set up the Stratis volume-managing file system on your
system to easily manage layered storage.

16.1.1. The purpose and features of Stratis

Stratis is a local storage-management solution for Linux. It is focused on simplicity and ease of use, and
gives you access to advanced storage features.

Stratis makes the following activities easier:

Initial configuration of storage

Making changes later

Using advanced storage features

Stratis is a hybrid user-and-kernel local storage management system that supports advanced storage
features. The central concept of Stratis is a storage pool. This pool is created from one or more local
disks or partitions, and volumes are created from the pool.

The pool enables many useful features, such as:

File system snapshots

Thin provisioning

Tiering

16.1.2. Components of a Stratis volume

Externally, Stratis presents the following volume components in the command-line interface and the
API:

blockdev

Block devices, such as a disk or a disk partition.

pool

Composed of one or more block devices.

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

131

https://access.redhat.com/support/offerings/techpreview

A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /stratis/my-pool/ directory for each pool. This directory contains links to devices
that represent Stratis file systems in the pool.

filesystem

Each pool can contain one or more file systems, which store files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with XFS.

IMPORTANT

Stratis tracks information about file systems created using Stratis that XFS is not
aware of, and changes made using XFS do not automatically create updates in Stratis.
Users must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /stratis/my-pool/my-fs path.

NOTE

Stratis uses many Device Mapper devices, which show up in dmsetup listings and the
/proc/partitions file. Similarly, the lsblk command output reflects the internal workings
and layers of Stratis.

16.1.3. Block devices usable with Stratis

This section lists storage devices that you can use for Stratis.

Supported devices
Stratis pools have been tested to work on these types of block devices:

LUKS

LVM logical volumes

MD RAID

DM Multipath

iSCSI

HDDs and SSDs

NVMe devices

Red Hat Enterprise Linux 8 Managing file systems

132

WARNING

In the current version, Stratis does not handle failures in hard drives or other
hardware. If you create a Stratis pool over multiple hardware devices, you increase
the risk of data loss because multiple devices must be operational to access the
data.

Unsupported devices
Because Stratis contains a thin-provisioning layer, Red Hat does not recommend placing a Stratis pool
on block devices that are already thinly-provisioned.

Additional resources

For iSCSI and other block devices requiring network, see the systemd.mount(5) man page for
information on the _netdev mount option.

16.1.4. Installing Stratis

This procedure installs all packages necessary to use Stratis.

Procedure

1. Install packages that provide the Stratis service and command-line utilities:

yum install stratisd stratis-cli

2. Make sure that the stratisd service is enabled:

systemctl enable --now stratisd

16.1.5. Creating a Stratis pool

This procedure creates a Stratis pool from one or more block devices.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

The block devices on which you are creating a Stratis pool are not in use and not mounted.

The block devices on which you are creating a Stratis pool are at least 1 GiB in size each.

On the IBM Z architecture, the /dev/dasd* block devices must to be partitioned. Use the
partition in the Stratis pool.
For information on partitioning DASD devices, see Configuring a Linux instance on IBM Z .

Procedure



CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

133

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel

1. If the selected block device contains file system, partition table, or RAID signatures, erase them:

wipefs --all block-device

Replace block-device with the path to a block device, such as /dev/sdb.

2. To create a Stratis pool on the block device, use:

stratis pool create my-pool block-device

Replace my-pool with an arbitrary name for the pool.

Replace block-device with the path to the empty or wiped block device, such as /dev/sdb.

To create a pool from more than one block device, list them all on the command line:

stratis pool create my-pool device-1 device-2 device-n

3. To verify, list all pools on your system:

stratis pool list

Additional resources

The stratis(8) man page

Next steps

Create a Stratis file system on the pool. See Section 16.1.6, “Creating a Stratis file system” .

16.1.6. Creating a Stratis file system

This procedure creates a Stratis file system on an existing Stratis pool.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis pool. See Section 16.1.5, “Creating a Stratis pool” .

Procedure

1. To create a Stratis file system on a pool, use:

stratis fs create my-pool my-fs

Replace my-pool with the name of your existing Stratis pool.

Replace my-fs with an arbitrary name for the file system.

2. To verify, list file systems within the pool:

Red Hat Enterprise Linux 8 Managing file systems

134

stratis fs list my-pool

Additional resources

The stratis(8) man page

Next steps

Mount the Stratis file system. See Section 16.1.7, “Mounting a Stratis file system” .

16.1.7. Mounting a Stratis file system

This procedure mounts an existing Stratis file system to access the content.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis file system. See Section 16.1.6, “Creating a Stratis file system” .

Procedure

To mount the file system, use the entries that Stratis maintains in the /stratis/ directory:

mount /stratis/my-pool/my-fs mount-point

The file system is now mounted on the mount-point directory and ready to use.

Additional resources

The mount(8) man page

16.1.8. Persistently mounting a Stratis file system

This procedure persistently mounts a Stratis file system so that it is available automatically after booting
the system.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis file system. See Section 16.1.6, “Creating a Stratis file system” .

Procedure

1. Determine the UUID attribute of the file system:

$ lsblk --output=UUID /stratis/my-pool/my-fs

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

135

For example:

Example 16.1. Viewing the UUID of Stratis file system

$ lsblk --output=UUID /stratis/my-pool/fs1

UUID
a1f0b64a-4ebb-4d4e-9543-b1d79f600283

2. If the mount point directory does not exist, create it:

mkdir --parents mount-point

3. As root, edit the /etc/fstab file and add a line for the file system, identified by the UUID. Use xfs
as the file system type and add the x-systemd.requires=stratisd.service option.
For example:

Example 16.2. The /fs1 mount point in /etc/fstab

UUID=a1f0b64a-4ebb-4d4e-9543-b1d79f600283 /fs1 xfs defaults,x-
systemd.requires=stratisd.service 0 0

4. Regenerate mount units so that your system registers the new configuration:

systemctl daemon-reload

5. Try mounting the file system to verify that the configuration works:

mount mount-point

Additional resources

Section 13.8, “Persistently mounting file systems”

16.1.9. Related information

The Stratis Storage website: https://stratis-storage.github.io/

16.2. EXTENDING A STRATIS VOLUME WITH ADDITIONAL BLOCK
DEVICES

You can attach additional block devices to a Stratis pool to provide more storage capacity for Stratis file
systems.

16.2.1. Components of a Stratis volume

Externally, Stratis presents the following volume components in the command-line interface and the
API:

Red Hat Enterprise Linux 8 Managing file systems

136

https://stratis-storage.github.io/

blockdev

Block devices, such as a disk or a disk partition.

pool

Composed of one or more block devices.
A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /stratis/my-pool/ directory for each pool. This directory contains links to devices
that represent Stratis file systems in the pool.

filesystem

Each pool can contain one or more file systems, which store files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with XFS.

IMPORTANT

Stratis tracks information about file systems created using Stratis that XFS is not
aware of, and changes made using XFS do not automatically create updates in Stratis.
Users must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /stratis/my-pool/my-fs path.

NOTE

Stratis uses many Device Mapper devices, which show up in dmsetup listings and the
/proc/partitions file. Similarly, the lsblk command output reflects the internal workings
and layers of Stratis.

16.2.2. Adding block devices to a Stratis pool

This procedure adds one or more block devices to a Stratis pool to be usable by Stratis file systems.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

The block devices that you are adding to the Stratis pool are not in use and not mounted.

The block devices that you are adding to the Stratis pool are at least 1 GiB in size each.

Procedure

To add one or more block devices to the pool, use:

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

137

stratis pool add-data my-pool device-1 device-2 device-n

Additional resources

The stratis(8) man page

16.2.3. Related information

The Stratis Storage website: https://stratis-storage.github.io/

16.3. MONITORING STRATIS FILE SYSTEMS

As a Stratis user, you can view information about Stratis volumes on your system to monitor their state
and free space.

16.3.1. Stratis sizes reported by different utilities

This section explains the difference between Stratis sizes reported by standard utilities such as df and
the stratis utility.

Standard Linux utilities such as df report the size of the XFS file system layer on Stratis, which is 1 TiB.
This is not useful information, because the actual storage usage of Stratis is less due to thin provisioning,
and also because Stratis automatically grows the file system when the XFS layer is close to full.

IMPORTANT

Regularly monitor the amount of data written to your Stratis file systems, which is
reported as the Total Physical Used value. Make sure it does not exceed the Total Physical
Size value.

Additional resources

The stratis(8) man page

16.3.2. Displaying information about Stratis volumes

This procedure lists statistics about your Stratis volumes, such as the total, used, and free size or file
systems and block devices belonging to a pool.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

Procedure

To display information about all block devices used for Stratis on your system:

stratis blockdev

Pool Name Device Node Physical Size State Tier
my-pool /dev/sdb 9.10 TiB In-use Data

Red Hat Enterprise Linux 8 Managing file systems

138

https://stratis-storage.github.io/

To display information about all Stratis pools on your system:

stratis pool

Name Total Physical Size Total Physical Used
my-pool 9.10 TiB 598 MiB

To display information about all Stratis file systems on your system:

stratis filesystem

Pool Name Name Used Created Device
my-pool my-fs 546 MiB Nov 08 2018 08:03 /stratis/my-pool/my-fs

Additional resources

The stratis(8) man page

16.3.3. Related information

The Stratis Storage website: https://stratis-storage.github.io/

16.4. USING SNAPSHOTS ON STRATIS FILE SYSTEMS

You can use snapshots on Stratis file systems to capture file system state at arbitrary times and restore
it in the future.

16.4.1. Characteristics of Stratis snapshots

This section describes the properties and limitations of file system snapshots on Stratis.

In Stratis, a snapshot is a regular Stratis file system created as a copy of another Stratis file system. The
snapshot initially contains the same file content as the original file system, but can change as the
snapshot is modified. Whatever changes you make to the snapshot will not be reflected in the original
file system.

The current snapshot implementation in Stratis is characterized by the following:

A snapshot of a file system is another file system.

A snapshot and its origin are not linked in lifetime. A snapshotted file system can live longer than
the file system it was created from.

A file system does not have to be mounted to create a snapshot from it.

Each snapshot uses around half a gigabyte of actual backing storage, which is needed for the
XFS log.

16.4.2. Creating a Stratis snapshot

This procedure creates a Stratis file system as a snapshot of an existing Stratis file system.

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

139

https://stratis-storage.github.io/

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis file system. See Section 16.1.6, “Creating a Stratis file system” .

Procedure

To create a Stratis snapshot, use:

stratis fs snapshot my-pool my-fs my-fs-snapshot

Additional resources

The stratis(8) man page

16.4.3. Accessing the content of a Stratis snapshot

This procedure mounts a snapshot of a Stratis file system to make it accessible for read and write
operations.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis snapshot. See Section 16.4.2, “Creating a Stratis snapshot” .

Procedure

To access the snapshot, mount it as a regular file system from the /stratis/my-pool/ directory:

mount /stratis/my-pool/my-fs-snapshot mount-point

Additional resources

Section 16.1.7, “Mounting a Stratis file system”

The mount(8) man page

16.4.4. Reverting a Stratis file system to a previous snapshot

This procedure reverts the content of a Stratis file system to the state captured in a Stratis snapshot.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis snapshot. See Section 16.4.2, “Creating a Stratis snapshot” .

Red Hat Enterprise Linux 8 Managing file systems

140

Procedure

1. Optionally, back up the current state of the file system to be able to access it later:

stratis filesystem snapshot my-pool my-fs my-fs-backup

2. Unmount and remove the original file system:

umount /stratis/my-pool/my-fs
stratis filesystem destroy my-pool my-fs

3. Create a copy of the snapshot under the name of the original file system:

stratis filesystem snapshot my-pool my-fs-snapshot my-fs

4. Mount the snapshot, which is now accessible with the same name as the original file system:

mount /stratis/my-pool/my-fs mount-point

The content of the file system named my-fs is now identical to the snapshot my-fs-snapshot.

Additional resources

The stratis(8) man page

16.4.5. Removing a Stratis snapshot

This procedure removes a Stratis snapshot from a pool. Data on the snapshot are lost.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis snapshot. See Section 16.4.2, “Creating a Stratis snapshot” .

Procedure

1. Unmount the snapshot:

umount /stratis/my-pool/my-fs-snapshot

2. Destroy the snapshot:

stratis filesystem destroy my-pool my-fs-snapshot

Additional resources

The stratis(8) man page

16.4.6. Related information

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

141

The Stratis Storage website: https://stratis-storage.github.io/

16.5. REMOVING STRATIS FILE SYSTEMS

You can remove an existing Stratis file system or a Stratis pool, destroying data on them.

16.5.1. Components of a Stratis volume

Externally, Stratis presents the following volume components in the command-line interface and the
API:

blockdev

Block devices, such as a disk or a disk partition.

pool

Composed of one or more block devices.
A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /stratis/my-pool/ directory for each pool. This directory contains links to devices
that represent Stratis file systems in the pool.

filesystem

Each pool can contain one or more file systems, which store files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with XFS.

IMPORTANT

Stratis tracks information about file systems created using Stratis that XFS is not
aware of, and changes made using XFS do not automatically create updates in Stratis.
Users must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /stratis/my-pool/my-fs path.

NOTE

Stratis uses many Device Mapper devices, which show up in dmsetup listings and the
/proc/partitions file. Similarly, the lsblk command output reflects the internal workings
and layers of Stratis.

16.5.2. Removing a Stratis file system

This procedure removes an existing Stratis file system. Data stored on it are lost.

Prerequisites

Red Hat Enterprise Linux 8 Managing file systems

142

https://stratis-storage.github.io/

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis file system. See Section 16.1.6, “Creating a Stratis file system” .

Procedure

1. Unmount the file system:

umount /stratis/my-pool/my-fs

2. Destroy the file system:

stratis filesystem destroy my-pool my-fs

3. Verify that the file system no longer exists:

stratis filesystem list my-pool

Additional resources

The stratis(8) man page

16.5.3. Removing a Stratis pool

This procedure removes an existing Stratis pool. Data stored on it are lost.

Prerequisites

Stratis is installed. See Section 16.1.4, “Installing Stratis” .

The stratisd service is running.

You have created a Stratis pool. See Section 16.1.5, “Creating a Stratis pool” .

Procedure

1. List file systems on the pool:

stratis filesystem list my-pool

2. Unmount all file systems on the pool:

umount /stratis/my-pool/my-fs-1 \
 /stratis/my-pool/my-fs-2 \
 /stratis/my-pool/my-fs-n

3. Destroy the file systems:

stratis filesystem destroy my-pool my-fs-1 my-fs-2

4. Destroy the pool:

CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS

143

stratis pool destroy my-pool

5. Verify that the pool no longer exists:

stratis pool list

Additional resources

The stratis(8) man page

16.5.4. Related information

The Stratis Storage website: https://stratis-storage.github.io/

Red Hat Enterprise Linux 8 Managing file systems

144

https://stratis-storage.github.io/

CHAPTER 17. GETTING STARTED WITH AN EXT3 FILE
SYSTEM

As a system administrator, you can create, mount, resize, backup, and restore an ext3 file system. The
ext3 file system is essentially an enhanced version of the ext2 file system.

17.1. FEATURES OF AN EXT3 FILE SYSTEM

Following are the features of an ext3 file system:

Availability: After an unexpected power failure or system crash, file system check is not required
due to the journaling provided. The default journal size takes about a second to recover,
depending on the speed of the hardware

NOTE

The only supported journaling mode in ext3 is data=ordered (default). For more
information, see Is the EXT journaling option "data=writeback" supported in
RHEL? Knowledgebase article.

Data Integrity: The ext3 file system prevents loss of data integrity during an unexpected power
failure or system crash.

Speed: Despite writing some data more than once, ext3 has a higher throughput in most cases
than ext2 because ext3’s journaling optimizes hard drive head motion.

Easy Transition: It is easy to migrate from ext2 to ext3 and gain the benefits of a robust
journaling file system without reformatting.

Additional resources

The ext3 man page.

17.2. CREATING AN EXT3 FILE SYSTEM

As a system administrator, you can create an ext3 file system on a block device using mkfs.ext3
command.

Prerequisites

A partition on your disk. For information on creating MBR or GPT partitions, see Section 9.2,
“Creating a partition table on a disk”.
Alternatively, use an LVM or MD volume.

Procedure

1. To create an ext3 file system:

For a regular-partition device, an LVM volume, an MD volume, or a similar device, use the
following command:

mkfs.ext3 /dev/block_device

CHAPTER 17. GETTING STARTED WITH AN EXT3 FILE SYSTEM

145

https://access.redhat.com/solutions/424073

Replace /dev/block_device with the path to a block device.

For example, /dev/sdb1, /dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or
/dev/my-volgroup/my-lv. In general, the default options are optimal for most usage
scenarios.

NOTE

To specify a UUID when creating a file system:

mkfs.ext3 -U UUID /dev/block_device

Replace UUID with the UUID you want to set: for example, 7cd65de3-e0be-
41d9-b66d-96d749c02da7.

Replace /dev/block_device with the path to an ext3 file system to have the
UUID added to it: for example, /dev/sda8.

To specify a label when creating a file system:

mkfs.ext3 -L label-name /dev/block_device

2. To view the created ext3 file system:

blkid

Additional resources

The ext3 man page.

The mkfs.ext3 man page.

17.3. MOUNTING AN EXT3 FILE SYSTEM

As a system administrator, you can mount an ext3 file system using the mount utility.

Prerequisites

An ext3 file system. For information on creating an ext3 file system, see Section 17.2, “Creating
an ext3 file system”.

Procedure

1. To create a mount point to mount the file system:

mkdir /mount/point

Replace /mount/point with the directory name where mount point of the partition must be
created.

2. To mount an ext3 file system:

To mount an ext3 file system with no extra options:

Red Hat Enterprise Linux 8 Managing file systems

146

mount /dev/block_device /mount/point

To mount the file system persistently, see Section 13.8, “Persistently mounting file
systems”.

3. To view the mounted file system:

df -h

Additional resources

The mount man page.

The ext3 man page.

The fstab man page.

Chapter 13, Mounting file systems

17.4. RESIZING AN EXT3 FILE SYSTEM

As a system administrator, you can resize an ext3 file system using the resize2fs utility. The resize2fs
utility reads the size in units of file system block size, unless a suffix indicating a specific unit is used. The
following suffixes indicate specific units:

s (sectors) - 512 byte sectors

K (kilobytes) - 1,024 bytes

M (megabytes) - 1,048,576 bytes

G (gigabytes) - 1,073,741,824 bytes

T (terabytes) - 1,099,511,627,776 bytes

Prerequisites

An ext3 file system. For information on creating an ext3 file system, see Section 17.2, “Creating
an ext3 file system”.

An underlying block device of an appropriate size to hold the file system after resizing.

Procedure

1. To resize an ext3 file system, take the following steps:

To shrink and grow the size of an unmounted ext3 file system:

umount /dev/block_device
e2fsck -f /dev/block_device
resize2fs /dev/block_device size

Replace /dev/block_device with the path to the block device, for example /dev/sdb1.

Replace size with the required resize value using s, K, M, G, and T suffixes.

CHAPTER 17. GETTING STARTED WITH AN EXT3 FILE SYSTEM

147

An ext3 file system may be grown while mounted using the resize2fs command:

resize2fs /mount/device size

NOTE

The size parameter is optional (and often redundant) when expanding. The
resize2fs automatically expands to fill the available space of the container,
usually a logical volume or partition.

2. To view the resized file system:

df -h

Additional resources

The resize2fs man page.

The e2fsck man page.

The ext3 man page.

17.5. CREATING AND MOUNTING EXT3 FILE SYSTEMS USING RHEL
SYSTEM ROLES

This section describes how to create an ext3 file system with a given label on a disk, and persistently
mount the file system using the storage role.

Prerequisites

An Ansible playbook including the storage role exists.

For information on how to apply such a playbook, see Applying a role .

17.5.1. Example Ansible playbook to create and mount an ext3 file system

This section provides an example Ansible playbook. This playbook applies the storage role to create and
mount an ext3 file system.

The playbook creates an ext3 file system with a given label defined in fs_label:, and persistently mounts
the file system.

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext3
 fs_label: label-name

Red Hat Enterprise Linux 8 Managing file systems

148

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_what-rhel-system-roles-are

 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

17.5.2. Additional resources

For more information about the storage role, see Section 2.1, “Introduction to the storage role” .

CHAPTER 17. GETTING STARTED WITH AN EXT3 FILE SYSTEM

149

CHAPTER 18. GETTING STARTED WITH AN EXT4 FILE
SYSTEM

As a system administrator, you can create, mount, resize, backup, and restore an ext4 file system. The
ext4 file system is a scalable extension of the ext3 file system. With Red Hat Enterprise Linux 8, it can
support a maximum individual file size of 16 terabytes, and file system to a maximum of 50 terabytes.

18.1. FEATURES OF AN EXT4 FILE SYSTEM

Following are the features of an ext4 file system:

Using extents: The ext4 file system uses extents, which improves performance when using large
files and reduces metadata overhead for large files.

Ext4 labels unallocated block groups and inode table sections accordingly, which allows the
block groups and table sections to be skipped during a file system check. It leads to a quick file
system check, which becomes more beneficial as the file system grows in size.

Metadata checksum: By default, this feature is enabled in Red Hat Enterprise Linux 8.

Allocation features of an ext4 file system:

Persistent pre-allocation

Delayed allocation

Multi-block allocation

Stripe-aware allocation

Extended attributes (xattr): This allows the system to associate several additional name and
value pairs per file.

Quota journaling: This avoids the need for lengthy quota consistency checks after a crash.

NOTE

The only supported journaling mode in ext4 is data=ordered (default). For more
information, see Is the EXT journaling option "data=writeback" supported in
RHEL? Knowledgebase article.

Subsecond timestamps — This gives timestamps to the subsecond.

Additional resources

The ext4 man page.

18.2. CREATING AN EXT4 FILE SYSTEM

As a system administrator, you can create an ext4 file system on a block device using mkfs.ext4
command.

Prerequisites

A partition on your disk. For information on creating MBR or GPT partitions, see Section 9.2,

Red Hat Enterprise Linux 8 Managing file systems

150

https://access.redhat.com/solutions/424073

A partition on your disk. For information on creating MBR or GPT partitions, see Section 9.2,
“Creating a partition table on a disk”.
Alternatively, use an LVM or MD volume.

Procedure

1. To create an ext4 file system:

For a regular-partition device, an LVM volume, an MD volume, or a similar device, use the
following command:

mkfs.ext4 /dev/block_device

Replace /dev/block_device with the path to a block device.

For example, /dev/sdb1, /dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or
/dev/my-volgroup/my-lv. In general, the default options are optimal for most usage
scenarios.

For striped block devices (for example, RAID5 arrays), the stripe geometry can be specified
at the time of file system creation. Using proper stripe geometry enhances the performance
of an ext4 file system. For example, to create a file system with a 64k stride (that is, 16 x
4096) on a 4k-block file system, use the following command:

mkfs.ext4 -E stride=16,stripe-width=64 /dev/block_device

In the given example:

stride=value: Specifies the RAID chunk size

stripe-width=value: Specifies the number of data disks in a RAID device, or the number
of stripe units in the stripe.

NOTE

To specify a UUID when creating a file system:

mkfs.ext4 -U UUID /dev/block_device

Replace UUID with the UUID you want to set: for example, 7cd65de3-e0be-
41d9-b66d-96d749c02da7.

Replace /dev/block_device with the path to an ext4 file system to have the
UUID added to it: for example, /dev/sda8.

To specify a label when creating a file system:

mkfs.ext4 -L label-name /dev/block_device

2. To view the created ext4 file system:

blkid

Additional resources

CHAPTER 18. GETTING STARTED WITH AN EXT4 FILE SYSTEM

151

Additional resources
The ext4 man page.

The mkfs.ext4 man page.

18.3. MOUNTING AN EXT4 FILE SYSTEM

As a system administrator, you can mount an ext4 file system using the mount utility.

Prerequisites

An ext4 file system. For information on creating an ext4 file system, see Section 18.2, “Creating
an ext4 file system”.

Procedure

1. To create a mount point to mount the file system:

mkdir /mount/point

Replace /mount/point with the directory name where mount point of the partition must be
created.

2. To mount an ext4 file system:

To mount an ext4 file system with no extra options:

mount /dev/block_device /mount/point

To mount the file system persistently, see Section 13.8, “Persistently mounting file
systems”.

3. To view the mounted file system:

df -h

Additional resources

The mount man page.

The ext4 man page.

The fstab man page.

Chapter 13, Mounting file systems

18.4. RESIZING AN EXT4 FILE SYSTEM

As a system administrator, you can resize an ext4 file system using the resize2fs utility. The resize2fs
utility reads the size in units of file system block size, unless a suffix indicating a specific unit is used. The
following suffixes indicate specific units:

s (sectors) - 512 byte sectors

K (kilobytes) - 1,024 bytes

Red Hat Enterprise Linux 8 Managing file systems

152

M (megabytes) - 1,048,576 bytes

G (gigabytes) - 1,073,741,824 bytes

T (terabytes) - 1,099,511,627,776 bytes

Prerequisites

An ext4 file system. For information on creating an ext4 file system, see Section 18.2, “Creating
an ext4 file system”.

An underlying block device of an appropriate size to hold the file system after resizing.

Procedure

1. To resize an ext4 file system, take the following steps:

To shrink and grow the size of an unmounted ext4 file system:

umount /dev/block_device
e2fsck -f /dev/block_device
resize2fs /dev/block_device size

Replace /dev/block_device with the path to the block device, for example /dev/sdb1.

Replace size with the required resize value using s, K, M, G, and T suffixes.

An ext4 file system may be grown while mounted using the resize2fs command:

resize2fs /mount/device size

NOTE

The size parameter is optional (and often redundant) when expanding. The
resize2fs automatically expands to fill the available space of the container,
usually a logical volume or partition.

2. To view the resized file system:

df -h

Additional resources

The resize2fs man page.

The e2fsck man page.

The ext4 man page.

18.5. CREATING AND MOUNTING EXT4 FILE SYSTEMS USING RHEL
SYSTEM ROLES

This section describes how to create an ext4 file system with a given label on a disk, and persistently

CHAPTER 18. GETTING STARTED WITH AN EXT4 FILE SYSTEM

153

This section describes how to create an ext4 file system with a given label on a disk, and persistently
mount the file system using the storage role.

Prerequisites

An Ansible playbook including the storage role exists.

For information on how to apply such a playbook, see Applying a role .

18.5.1. Example Ansible playbook to create and mount an ext4 file system

This section provides an example Ansible playbook. This playbook applies the storage role to create and
mount an ext4 file system.

The playbook creates an ext4 file system with a given label defined in fs_label:, and persistently mounts
the file system.

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext4
 fs_label: label-name
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

Additional resources

For more information about the storage role, see Section 2.1, “Introduction to the storage role” .

18.6. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file
systems.

Task ext4 XFS

Create a file system mkfs.ext4 mkfs.xfs

File system check e2fsck xfs_repair

Resize a file system resize2fs xfs_growfs

Save an image of a file system e2image xfs_metadump and
xfs_mdrestore

Red Hat Enterprise Linux 8 Managing file systems

154

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_what-rhel-system-roles-are

Label or tune a file system tune2fs xfs_admin

Back up a file system dump and restore xfsdump and xfsrestore

Quota management quota xfs_quota

File mapping filefrag xfs_bmap

Task ext4 XFS

CHAPTER 18. GETTING STARTED WITH AN EXT4 FILE SYSTEM

155

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
	1.1. TYPES OF FILE SYSTEMS
	1.2. LOCAL FILE SYSTEMS
	Available local file systems

	1.3. THE XFS FILE SYSTEM
	Performance characteristics

	1.4. THE EXT4 FILE SYSTEM
	1.5. COMPARISON OF XFS AND EXT4
	1.6. CHOOSING A LOCAL FILE SYSTEM
	1.7. NETWORK FILE SYSTEMS
	Available network file systems

	1.8. SHARED STORAGE FILE SYSTEMS
	Comparison with network file systems
	Concurrency
	Performance characteristics
	Available shared storage file systems

	1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE SYSTEMS
	1.10. VOLUME-MANAGING FILE SYSTEMS
	Available volume-managing file systems

	CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
	2.1. INTRODUCTION TO THE STORAGE ROLE
	2.2. STORAGE ROLE PARAMETERS

	CHAPTER 3. MOUNTING NFS SHARES
	3.1. INTRODUCTION TO NFS
	3.2. SUPPORTED NFS VERSIONS
	Default NFS version
	Features of minor NFS versions

	3.3. SERVICES REQUIRED BY NFS
	The RPC services with NFSv4

	3.4. NFS HOST NAME FORMATS
	3.5. INSTALLING NFS
	3.6. DISCOVERING NFS EXPORTS
	3.7. MOUNTING AN NFS SHARE WITH MOUNT
	3.8. COMMON NFS MOUNT OPTIONS
	3.9. RELATED INFORMATION

	CHAPTER 4. EXPORTING NFS SHARES
	4.1. INTRODUCTION TO NFS
	4.2. SUPPORTED NFS VERSIONS
	Default NFS version
	Features of minor NFS versions

	4.3. THE TCP AND UDP PROTOCOLS IN NFSV3 AND NFSV4
	4.4. SERVICES REQUIRED BY NFS
	The RPC services with NFSv4

	4.5. NFS HOST NAME FORMATS
	4.6. NFS SERVER CONFIGURATION
	4.6.1. The /etc/exports configuration file
	Export entry
	Default options
	Default and overridden options

	4.6.2. The exportfs utility
	Common exportfs options

	4.7. NFS AND RPCBIND
	4.8. INSTALLING NFS
	4.9. STARTING THE NFS SERVER
	4.10. TROUBLESHOOTING NFS AND RPCBIND
	4.11. CONFIGURING THE NFS SERVER TO RUN BEHIND A FIREWALL
	4.12. EXPORTING RPC QUOTA THROUGH A FIREWALL
	4.13. ENABLING NFS OVER RDMA (NFSORDMA)
	4.14. CONFIGURING AN NFSV4-ONLY SERVER
	4.14.1. Benefits and drawbacks of an NFSv4-only server
	4.14.2. NFS and rpcbind
	4.14.3. Configuring the NFS server to support only NFSv4
	4.14.4. Verifying the NFSv4-only configuration

	4.15. RELATED INFORMATION

	CHAPTER 5. SECURING NFS
	5.1. NFS SECURITY WITH AUTH_SYS AND EXPORT CONTROLS
	5.2. NFS SECURITY WITH AUTH_GSS
	5.3. CONFIGURING AN NFS SERVER AND CLIENT TO USE KERBEROS
	5.4. NFSV4 SECURITY OPTIONS
	5.5. FILE PERMISSIONS ON MOUNTED NFS EXPORTS

	CHAPTER 6. ENABLING PNFS SCSI LAYOUTS IN NFS
	6.1. THE PNFS TECHNOLOGY
	6.2. PNFS SCSI LAYOUTS
	Operations between the client and the server
	Device reservations

	6.3. CHECKING FOR A SCSI DEVICE COMPATIBLE WITH PNFS
	6.4. SETTING UP PNFS SCSI ON THE SERVER
	6.5. SETTING UP PNFS SCSI ON THE CLIENT
	6.6. RELEASING THE PNFS SCSI RESERVATION ON THE SERVER
	6.7. MONITORING PNFS SCSI LAYOUTS FUNCTIONALITY
	6.7.1. Checking pNFS SCSI operations from the server using nfsstat
	6.7.2. Checking pNFS SCSI operations from the client using mountstats

	CHAPTER 7. MOUNTING AN SMB SHARE ON RED HAT ENTERPRISE LINUX
	7.1. SUPPORTED SMB PROTOCOL VERSIONS
	7.2. UNIX EXTENSIONS SUPPORT
	7.3. MANUALLY MOUNTING AN SMB SHARE
	7.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
	7.5. AUTHENTICATING TO AN SMB SHARE USING A CREDENTIALS FILE
	7.6. PERFORMING A MULTI-USER SMB MOUNT
	7.6.1. Mounting a share with the multiuser option
	7.6.2. Verifying if an SMB share is mounted with the multiuser option
	7.6.3. Accessing a share as a user

	7.7. FREQUENTLY USED MOUNT OPTIONS

	CHAPTER 8. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
	8.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
	8.2. FILE SYSTEM AND DEVICE IDENTIFIERS
	File system identifiers
	Device identifiers
	Recommendations

	8.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
	8.3.1. File system identifiers
	The UUID attribute in /dev/disk/by-uuid/
	The Label attribute in /dev/disk/by-label/

	8.3.2. Device identifiers
	The WWID attribute in /dev/disk/by-id/
	The Partition UUID attribute in /dev/disk/by-partuuid
	The Path attribute in /dev/disk/by-path/

	8.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
	8.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
	8.6. LISTING PERSISTENT NAMING ATTRIBUTES
	8.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

	CHAPTER 9. GETTING STARTED WITH PARTITIONS
	9.1. VIEWING THE PARTITION TABLE
	9.1.1. Viewing the partition table with parted
	9.1.2. Example output of parted print

	9.2. CREATING A PARTITION TABLE ON A DISK
	9.2.1. Considerations before modifying partitions on a disk
	The maximum number of partitions
	The maximum size of a partition
	Size alignment

	9.2.2. Comparison of partition table types
	9.2.3. Creating a partition table on a disk with parted

	9.3. CREATING A PARTITION
	9.3.1. Considerations before modifying partitions on a disk
	The maximum number of partitions
	The maximum size of a partition
	Size alignment

	9.3.2. Partition types
	Partition types or flags
	Partition file system type

	9.3.3. Partition naming scheme
	9.3.4. Mount points and disk partitions
	9.3.5. Creating a partition with parted
	9.3.6. Setting a partition type with fdisk

	9.4. REMOVING A PARTITION
	9.4.1. Considerations before modifying partitions on a disk
	The maximum number of partitions
	The maximum size of a partition
	Size alignment

	9.4.2. Removing a partition with parted

	9.5. RESIZING A PARTITION
	9.5.1. Considerations before modifying partitions on a disk
	The maximum number of partitions
	The maximum size of a partition
	Size alignment

	9.5.2. Resizing a partition with parted

	CHAPTER 10. GETTING STARTED WITH XFS
	10.1. THE XFS FILE SYSTEM
	Performance characteristics

	10.2. CREATING AN XFS FILE SYSTEM
	10.2.1. Creating an XFS file system with mkfs.xfs
	10.2.2. Creating an XFS file system on a block device using RHEL System Roles
	10.2.2.1. Example Ansible playbook to create an XFS file system on a block device
	10.2.2.2. Additional resources

	10.3. BACKING UP AN XFS FILE SYSTEM
	10.3.1. Features of XFS backup
	10.3.2. Backing up an XFS file system with xfsdump
	10.3.3. Additional resources

	10.4. RESTORING AN XFS FILE SYSTEM FROM BACKUP
	10.4.1. Features of restoring XFS from backup
	10.4.2. Restoring an XFS file system from backup with xfsrestore
	10.4.3. Informational messages when restoring an XFS backup from a tape
	10.4.4. Additional resources

	10.5. INCREASING THE SIZE OF AN XFS FILE SYSTEM
	10.5.1. Increasing the size of an XFS file system with xfs_growfs

	10.6. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

	CHAPTER 11. CONFIGURING XFS ERROR BEHAVIOR
	11.1. CONFIGURABLE ERROR HANDLING IN XFS
	11.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS ERROR CONDITIONS
	11.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS
	11.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS
	11.5. SETTING THE XFS UNMOUNT BEHAVIOR

	CHAPTER 12. CHECKING AND REPAIRING A FILE SYSTEM
	12.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK
	12.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK
	12.3. ERROR-HANDLING MECHANISMS IN XFS
	Unclean unmounts
	Corruption

	12.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR
	12.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR
	12.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4
	12.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK
	12.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

	CHAPTER 13. MOUNTING FILE SYSTEMS
	13.1. THE LINUX MOUNT MECHANISM
	13.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS
	13.3. MOUNTING A FILE SYSTEM WITH MOUNT
	13.4. MOVING A MOUNT POINT
	13.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT
	13.6. COMMON MOUNT OPTIONS
	13.7. SHARING A MOUNT ON MULTIPLE MOUNT POINTS
	13.7.1. Types of shared mounts
	13.7.2. Creating a private mount point duplicate
	13.7.3. Creating a shared mount point duplicate
	13.7.4. Creating a slave mount point duplicate
	13.7.5. Preventing a mount point from being duplicated
	13.7.6. Related information

	13.8. PERSISTENTLY MOUNTING FILE SYSTEMS
	13.8.1. The /etc/fstab file
	13.8.2. Adding a file system to /etc/fstab
	13.8.3. Persistently mounting a file system using RHEL System Roles
	13.8.3.1. Example Ansible playbook to persistently mount a file system
	13.8.3.2. Additional resources

	13.9. MOUNTING FILE SYSTEMS ON DEMAND
	13.9.1. The autofs service
	13.9.2. The autofs configuration files
	The master map file
	Map files
	The amd map format

	13.9.3. Configuring autofs mount points
	13.9.4. Automounting NFS server user home directories with autofs service
	13.9.5. Overriding or augmenting autofs site configuration files
	13.9.6. Using LDAP to store automounter maps

	13.10. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM
	13.10.1. Files and directories that always retain write permissions
	13.10.2. Configuring the root file system to mount with read-only permissions on boot

	CHAPTER 14. LIMITING STORAGE SPACE USAGE WITH QUOTAS
	14.1. DISK QUOTAS
	14.1.1. The xfs_quota tool
	Additional resources

	14.2. MANAGING XFS DISK QUOTAS
	14.2.1. File system quota management in XFS
	14.2.2. Enabling disk quotas for XFS
	14.2.3. Reporting XFS usage
	Prerequisites
	Procedure
	Additional resources

	14.2.4. Modifying XFS quota limits
	Prerequisites
	Procedure
	Additional resources

	14.2.5. Setting project limits for XFS
	Procedure
	Additional resources

	14.3. MANAGING EXT3 AND EXT4 DISK QUOTAS
	14.3.1. Installing the quota tool
	14.3.2. Enabling quota feature on file system creation
	14.3.3. Enabling quota feature on existing file systems
	14.3.4. Enabling quota enforcement
	14.3.5. Assigning quotas per user
	14.3.6. Assigning quotas per group
	14.3.7. Assigning quotas per project
	14.3.8. Setting the grace period for soft limits
	14.3.9. Turning file system quotas off
	14.3.10. Reporting on disk quotas

	CHAPTER 15. DISCARDING UNUSED BLOCKS
	15.1. BLOCK DISCARD OPERATIONS
	Requirements

	15.2. TYPES OF BLOCK DISCARD OPERATIONS
	Recommendations

	15.3. PERFORMING BATCH BLOCK DISCARD
	15.4. ENABLING ONLINE BLOCK DISCARD
	15.5. ENABLING ONLINE BLOCK DISCARD USING RHEL SYSTEM ROLES
	15.5.1. Example Ansible playbook to enable online block discard
	15.5.2. Additional resources

	15.6. ENABLING PERIODIC BLOCK DISCARD

	CHAPTER 16. MANAGING LAYERED LOCAL STORAGE WITH STRATIS
	16.1. SETTING UP STRATIS FILE SYSTEMS
	16.1.1. The purpose and features of Stratis
	16.1.2. Components of a Stratis volume
	16.1.3. Block devices usable with Stratis
	Supported devices
	Unsupported devices

	16.1.4. Installing Stratis
	16.1.5. Creating a Stratis pool
	16.1.6. Creating a Stratis file system
	16.1.7. Mounting a Stratis file system
	16.1.8. Persistently mounting a Stratis file system
	16.1.9. Related information

	16.2. EXTENDING A STRATIS VOLUME WITH ADDITIONAL BLOCK DEVICES
	16.2.1. Components of a Stratis volume
	16.2.2. Adding block devices to a Stratis pool
	16.2.3. Related information

	16.3. MONITORING STRATIS FILE SYSTEMS
	16.3.1. Stratis sizes reported by different utilities
	16.3.2. Displaying information about Stratis volumes
	16.3.3. Related information

	16.4. USING SNAPSHOTS ON STRATIS FILE SYSTEMS
	16.4.1. Characteristics of Stratis snapshots
	16.4.2. Creating a Stratis snapshot
	16.4.3. Accessing the content of a Stratis snapshot
	16.4.4. Reverting a Stratis file system to a previous snapshot
	16.4.5. Removing a Stratis snapshot
	16.4.6. Related information

	16.5. REMOVING STRATIS FILE SYSTEMS
	16.5.1. Components of a Stratis volume
	16.5.2. Removing a Stratis file system
	16.5.3. Removing a Stratis pool
	16.5.4. Related information

	CHAPTER 17. GETTING STARTED WITH AN EXT3 FILE SYSTEM
	17.1. FEATURES OF AN EXT3 FILE SYSTEM
	17.2. CREATING AN EXT3 FILE SYSTEM
	17.3. MOUNTING AN EXT3 FILE SYSTEM
	17.4. RESIZING AN EXT3 FILE SYSTEM
	17.5. CREATING AND MOUNTING EXT3 FILE SYSTEMS USING RHEL SYSTEM ROLES
	17.5.1. Example Ansible playbook to create and mount an ext3 file system
	17.5.2. Additional resources

	CHAPTER 18. GETTING STARTED WITH AN EXT4 FILE SYSTEM
	18.1. FEATURES OF AN EXT4 FILE SYSTEM
	18.2. CREATING AN EXT4 FILE SYSTEM
	18.3. MOUNTING AN EXT4 FILE SYSTEM
	18.4. RESIZING AN EXT4 FILE SYSTEM
	18.5. CREATING AND MOUNTING EXT4 FILE SYSTEMS USING RHEL SYSTEM ROLES
	18.5.1. Example Ansible playbook to create and mount an ext4 file system

	18.6. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

