
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Red Hat RHCE 8 (EX294)
Cert Guide

Sander van Vugt

Hoboken, NJ

® ®

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Red Hat RHCE 8 (EX294) Cert Guide

Copyright © 2021 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-1368-7243-6
ISBN-10: 0-1368-7243-3

Library of Congress Control Number: 2020941743

ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Pearson IT Certification
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

Pearson IT Certification and Sander van Vugt have no affiliation with Red
Hat, Inc. The RED HAT and RHCE trademarks are used for identification
purposes only and are not intended to indicate affiliation with or approval
by Red Hat, Inc.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided
is on an “as is” basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief
Mark Taub

Product Line Manager
Brett Bartow

Executive Editor
Denise Lincoln

Development Editor
Ellie Bru

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Chuck Hutchinson

Indexer

Proofreader

Technical Editors
John McDonough
William “Bo” Rothwell

||||||||||||||||||||

||||||||||||||||||||

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
https://technet24.ir
https://technet24.ir

Publishing Coordinator
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents at a Glance
Introduction

Part I: Introduction to Ansible

1 Understanding Configuration Management

2 Installing Ansible

3 Setting Up an Ansible Managed Environment

4 Using Ad Hoc Commands

5 Getting Started with Playbooks

6 Working with Variables and Facts

Part II: Common Ansible Management Tasks

7 Using Task Control

8 Deploying Files

9 Using Ansible Roles

10 Using Ansible in Large Environments

11 Troubleshooting Ansible

Part III: Managing Systems with Ansible

12 Managing Software with Ansible

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

13 Managing Users

14 Managing Processes and Tasks

15 Managing Storage

16 Final Preparation

Part IV: Practice Exams

Practice Exam A

Practice Exam B

Part V: Appendixes

Appendix A: Answers to the “Do I Know This
Already?” Quizzes and Review Questions

Appendix B: Getting Started with Ansible Tower

Appendix C: Red Hat RHCE 8 (EX294) Cert Guide
Exam Updates

Glossary

Online Elements

Practice Exam C

Practice Exam D

Appendix D: Memory Tables

Appendix E: Memory Tables Answer Key

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Appendix F: Study Planner

Glossary

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table of Contents
Introduction

Goals and Methods

Other Resources

Who Should Read This Book?

How This Book Is Organized

How to Use This Book

Other Features

Book Organization, Chapters, and Appendixes

Where Are the Companion Content Files?

Part I: Introduction to Ansible

1 Understanding Configuration Management

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Automation

Understanding Ansible Essential Components

Understanding Ansible Use Cases

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

2 Installing Ansible

“Do I Know This Already?” Quiz

Foundation Topics

Understanding an Ansible Environment

Understanding Controller Host Requirements

Understanding Installation Methods

Configuring Managed Hosts

Configuring the Ansible User

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

End-of-Chapter Lab

Lab 2-1

3 Setting Up an Ansible Managed
Environment

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Projects

Configuring Static Inventory

Working with Dynamic Inventory

Managing Settings in ansible.cfg

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 3-1

4 Using Ad Hoc Commands

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Ad Hoc Commands

Working with Modules

Consulting Module Documentation

Running Ad Hoc Commands from Shell Scripts

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key terms

Review Questions

End-of-Chapter Lab

Lab 4-1

5 Getting Started with Playbooks

“Do I Know This Already?” Quiz

Foundation Topics

Exploring Your First Playbook

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Working with YAML

Managing Multiplay Playbooks

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 5-1

6 Working with Variables and Facts

“Do I Know This Already?” Quiz

Foundation Topics

Understanding the Use of Variables in Ansible
Playbooks

Working with Ansible Facts

Working with Variables

Using Vault to Manage Sensitive Values

Capturing Command Output Using register

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 6-1

Lab 6-2

Part II: Common Ansible Management Tasks

7 Using Task Control

“Do I Know This Already?” Quiz

Foundation Topics

Using Loops and Items

Using when to Run Tasks Conditionally

Using Handlers

Dealing with Failures

Summary

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 7-1

8 Deploying Files

“Do I Know This Already?” Quiz

Foundation Topics

Using Modules to Manipulate Files

Managing SELinux Properties

Using Jinja2 Templates

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Review Questions

Exercise Answers

End-of-Chapter Lab

Lab 8-1: Generate an /etc/hosts File

Lab 8-2: Manage a vsftpd Service

9 Using Ansible Roles

“Do I Know This Already?” Quiz

Foundation Topics

Using Ansible Roles

Using Ansible Galaxy Roles

Using RHEL System Roles

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 9-1

Lab 9-2

10 Using Ansible in Large Environments

“Do I Know This Already?” Quiz

Foundation Topics

Advanced Inventory Usage

Optimizing Ansible Processing

Including and Importing Files

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 10-1

11 Troubleshooting Ansible

“Do I Know this Already?” Quiz

Foundation Topics

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Managing Ansible Errors and Logs

Using Modules for Troubleshooting and
Testing

Using Tags

Troubleshooting Common Scenarios

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 11-1

Part III: Managing Systems with Ansible

12 Managing Software with Ansible

“Do I Know This Already?” Quiz

Foundation Topics

Using Modules to Manage Packages

Using Modules to Manage Repositories and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Subscriptions

Implementing a Playbook to Manage Software

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 12-1

Lab 12-2

13 Managing Users

”Do I Know This Already?” Quiz

Foundation Topics

Using Ansible Modules to Manage Users and
Groups

Managing SSH Connections

Managing Encrypted Passwords

Managing Users Advanced Scenario Exercise

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 13-1

14 Managing Processes and Tasks

“Do I Know This Already?” Quiz

Foundation Topics

Managing Services

Managing the Boot Process

Managing the Boot Process and Services
Advanced Exercise

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 14-1

15 Managing Storage

“Do I Know This Already?” Quiz

Foundation Topics

Discovering Storage-Related Facts

Managing Partitions and LVM

Configuring Storage Advanced Exercise

Summary

Exam Preparation Tasks

Review All Key Topics

Memory Tables

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 15-1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

16 Final Preparation

Generic Tips

Part IV: Practice Exams

Practice Exam A

Practice Exam B

Part V: Appendixes

Appendix A: Answers to the “Do I Know This
Already?” Quizzes and Review Questions

Appendix B: Getting Started with Ansible Tower

Appendix C: Red Hat RHCE 8 (EX294) Cert Guide
Exam Updates

Glossary

Online Elements

Practice Exam C

Practice Exam D

Appendix D: Memory Tables

Appendix E: Memory Tables Answer Key

Appendix F: Study Planner

Glossary

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the Author
Sander van Vugt has been teaching Linux classes
since 1995 and has written more than 60 books about
different Linux-related topics, including the best-selling
RHCSA-RHCE 7 Cert Guide and the RHCSA 8 Cert
Guide. Sander is also the author of more than 25 video
courses, including his RHCSA and RHCE Complete
Video Courses, Hands-On Ansible LiveLessons, and
many other titles. He teaches courses for customers
around the world and is also a regular speaker at major
conferences related to open-source software. Sander is
also the founder of the Living Open Source Foundation,
a nonprofit organization that teaches open-source
courses in African countries.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Dedication
This book is dedicated to my family: Florence,
Franck, and Alex. Together we’ve made great
accomplishments over the past year.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Acknowledgments
This book could not have been written without the help
of all the people who contributed to it. To start, I want to
thank the people at Pearson—Denise Lincoln and Ellie
Bru in particular. We’ve worked a lot together over the
past years, and this book is another milestone on our
road to success! It has been fantastic how you both have
helped me to realize this book in just two months!

Next, I want to thank my technical reviewers. Big thanks
to Bo and John! Thanks to your great feedback, I’ve
been able to apply important improvements to the
contents of this book. Also, a special thanks to Etienne
Esterhuizen, from New Zeeland and Santos Venter
Chibenga, and Robert Charles Muchendu from the
African Living Open Source Community, who helped me
as volunteer reviewers. And last but not least, thanks to
my fellow instructor and colleague Pascal van Dam, who
helped me make some important last-minute
improvements.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the Technical
Reviewers
John McDonough has more than 30 years of
development experience; currently, John is a developer
advocate for Cisco DevNet. As a developer advocate,
John writes code and creates DevNet Learning Labs
about how to write code; writes blogs about writing
code; and presents at Cisco Live, SXSW, AnsibleFest,
and other industry events. John focuses on the Cisco
computing systems products, Cisco UCS, and Cisco
Intersight. John’s career at Cisco has varied from
product engineer to custom application developer,
technical marketing engineer, and now a developer
advocate.

William “Bo” Rothwell crossed paths with a TRS-80
Micro Computer System (affectionately known as a
“Trash 80”) at the impressionable age of 14. Soon after,
the adults responsible for Bo made the mistake of
leaving him alone with the TRS-80. He immediately
dismantled it and held his first computer class, showing
his friends what made this “computer thing” work.

Since this experience, Bo’s passion for understanding
how computers work and sharing this knowledge with

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

others has resulted in a rewarding career in IT training.
His experience includes Linux, UNIX, and programming
languages such as Perl, Python, Tcl, and BASH. He is the
founder and president of One Course Source, an IT
training organization.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We Want to Hear from
You!
As the reader of this book, you are our most important
critic and commentator. We value your opinion and
want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our
way.

We welcome your comments. You can email or write to
let us know what you did or didn’t like about this book—
as well as what we can do to make our books better.

Please note that we cannot help you with technical
problems related to the topic of this book.

When you write, please be sure to include this book’s
title and author as well as your name and email address.
We will carefully review your comments and share them
with the author and editors who worked on the book.

Email: community@informit.com

||||||||||||||||||||

||||||||||||||||||||

mailto:community@informit.com
https://technet24.ir
https://technet24.ir

Reader Services
Register your copy of Red Hat RHCE 8 (EX294) Cert
Guide at www.pearsonitcertification.com for convenient
access to downloads, updates, and corrections as they
become available. To start the registration process, go to
www.pearsonitcertification.com/register and log in or
create an account*. Enter the product ISBN
9780136872436 and click Submit. When the process is
complete, you will find any available bonus content
under Registered Products.

*Be sure to check the box that you would like to hear
from us to receive exclusive discounts on future editions
of this product.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.pearsonitcertification.com
http://www.pearsonitcertification.com/register
https://technet24.ir
https://technet24.ir
https://technet24.ir

Introduction
Welcome to the Red Hat RHCE 8 (EX294) Cert Guide!
With the release of Red Hat Enterprise Linux 8, Red Hat
has decided to take a completely new direction for the
RHCE exam. The exam is now completely about
managing configurations with Ansible. This is a great
choice because in the current IT landscape the days of
the system administrator who applies specialized skills
to tune individual servers is over. Today the work is all
about automation, and Ansible has rapidly become one
of the most important solutions to do so.

As a Linux instructor with more than 25 years of
experience, I have been certified for both the RHCSA
and RHCE exams for every RHEL version since RHEL 4.
Taking the exams myself has helped me keep current on
the progression of the exam, what is new, and what is
different. I am thrilled to be able to share my knowledge
with you in this comprehensive Cert Guide so you can
get the guidance you need to pass your RHCE RHEL 8
EX294 exam.

As you will see, this Cert Guide covers every objective in
the updated RHCE exam, with 16 chapters, more than
40 exercises, 4 practice exams (2 printed in the book and
2 on the companion website), and 2 hours of video

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

training. This Red Hat RHCE 8 (EX294) Cert Guide is
the best resource you can get to prepare for and pass the
exams.

GOALS AND METHODS
To learn the topics described in this book, I recommend
that you create your own testing environment, which is
explained in Chapter 2, “Installing Ansible.” You cannot
become an RHCE without practicing a lot. To get
familiar with the topics in the chapters, here is what I
recommend:

• Read the explanation in the chapters and study the
code examples that are provided in the listings. For
your convenience, the listings are also provided in
the book GitHub repository at
https://github.com/sandervanvugt/rhce8-book.
Study the examples and try to understand what they
do.

• Walk through all of the numbered exercises in the
book. The numbered exercises provide step-by-step
instructions, and you should follow along with all of
them, to walk through configuration tasks and learn
how to manage specific features.

• At the end of each chapter, there’s an end-of-chapter
lab. This lab is much like the lab assignments that
you will find on the exam.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir
https://technet24.ir

Within the exercises included in every chapter of the
book, you will find all the examples you need to
understand what is on the exam and thoroughly learn
the material needed to pass it. The exercises in the
chapters provide step-by-step procedure descriptions
that you can work through to find working solutions so
that you can get real experience before taking the tests.
Although you may feel familiar with some topics, it’s a
good idea to work through all of the exercises in the
book. The RHCE exam is hands-on, which can be a lot of
pressure on test day. The exercises in each chapter help
provide the practice you need to make sure you have the
experience you need to not make small errors and
mistakes while taking the exam. The exercises are the
best way to make sure you work through common
errors and learn from your mistakes before you take the
test.

Each chapter also includes an end-of-chapter lab. These
labs ask questions that are similar to the questions that
you might encounter on the exam so you can use them
to practice. I have purposely excluded solutions for
these labs for a few reasons: (1) you need to train
yourself to verify your work before test day because you
will be expected to do this on the exam; (2) while taking
the test, you will be required to verify for yourself
whether your solution is working as expected; and (3)
most labs have multiple solutions and I don’t want to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

suggest that my solution is the right one and yours is
wrong because it takes a different approach. Your
solution is as good as mine, as long as it accomplishes
what was asked for in the exercise.

OTHER RESOURCES
This book contains everything you need to pass the
exam, but if you want more guidance and practice, I
have a number of video training titles available to help
you study, including the following:

• Hands-on Ansible Complete Video Course

• Red Hat Certified Engineer (RHCE) 3/ed Complete
Video Course

Apart from these products, you might also appreciate
my website: rhatcert.com. Through this website, I
provide updates on anything that is useful to exam
candidates. I recommend that you register on the
website so that I can send you messages about
important updates that I’ve made available. Also, you’ll
find occasional video updates on my YouTube channel:
rhatcert. I hope that all these resources provide you with
everything you need to pass the Red Hat exams in an
affordable way! Good luck!

WHO SHOULD READ THIS
BOOK?

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://rhatcert.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

This book is written as an RHCE exam preparation
guide. That means that you should read it if you want to
increase your chances of passing the RHCE exam. I have
also written this book to help you become familiar with
Ansible. So even if you’re not interested in the RHCE
EX294 exam at all, this book will teach you everything
you need to know to get your Ansible career up and
running.

So, why should you consider passing the RHCE exam?
That question is simple to answer. Linux has become a
very important operating system, and qualified
professionals are sought after all over the world. If you
want to work as a Linux professional and prove your
skills, the RHCE certificate really helps. Having these
certificates dramatically increases your chances of
becoming hired as a Linux professional. Notice that in
order to get RHCE certified, you must hold a current
RHCSA certification. You can take the RHCE EX294
exam before you are RHCSA certified, but you can call
yourself an RHCE only if you have passed both the
RHCSA exam and the RHCE exam.

HOW THIS BOOK IS
ORGANIZED
This book is organized as a reference guide to help you
prepare for the exams. If you’re new to the topics, you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

can just read it cover to cover. You can also read the
individual chapters that you need to fine-tune your
skills in this book. Every chapter starts with a “Do I
Know This Already?” quiz. This quiz asks questions
about 10 topics that are covered in each chapter and
provides a simple tool to check whether you’re already
familiar with the topics covered in a chapter. These
quizzes do not represent the types of questions you will
get on the real exam though.

The best exam preparation is offered in the RHCE
practice exams; these are an essential part of readying
yourself for the real testing experience. You might be
able to provide the right answer to the multiple-choice
chapter questions, but that doesn’t mean that you can
create the configurations when you take the tests. We
have included two practice exams in the printed book.
The book’s companion website then includes two
additional practice exams as well as flashcards created
from the book’s glossary so you can further test your
knowledge and skills. You will also find two hours of
video from my Red Hat Certified Engineer (RHCE) 3/ed
Complete Video Course.

The following topics are covered in the chapters:

• Chapter 1, “Understanding Configuration
Management”: In this chapter, you learn about
Ansible as a solution. The chapter explains what can
be done with Ansible and how Ansible relates to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

other solutions for configuration management.

• Chapter 2, “Installing Ansible”: This chapter
covers installation of Ansible. You learn what is
needed to set up the Ansible control node, as well as
the other parts of the Ansible software.

• Chapter 3, “Setting Up an Ansible Managed
Environment”: In this chapter you learn how to
get started with node management. The chapter
explains what is needed on the managed nodes as
well as the essential Ansible configuration files that
are required to reach out to the managed nodes.

• Chapter 4, “Using Ad Hoc Commands”: In this
chapter you learn about Ansible modules. Modules
are the heart of Ansible, they provide solutions for
everything that Ansible can do, and the easiest way
to use these modules is in ad hoc commands. In this
chapter you learn how to work with them.

• Chapter 5, “Getting Started with Playbooks”:
This chapter provides an introduction to working
with playbooks. You learn about YAML, the
language used to write playbooks, and how to
structure a playbook using plays and tasks.

• Chapter 6, “Working with Variables and
Facts”: In Ansible, variables can be used to provide
dynamic values to specific configuration items.
Using variables enables you to separate the static

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

code in a playbook with host-specific information. In
this chapter you learn how to work with variables as
well as Ansible facts, which are variables that are
automatically set for managed nodes.

• Chapter 7, “Using Task Control”: To make
Ansible smart, you must apply task control. Using
task control enables you to run tasks conditionally,
and that can be done in many ways. You learn how
to use tests, to test for a specific condition, as well as
loops that allow you to evaluate a range of items,
and handlers, which allow for task execution only if
another task was executed successfully.

• Chapter 8, “Deploying Files”: Ansible is used for
configuration management, and configuration on
Linux is stored in files. Hence, managing files is a
key skill in Ansible. In this chapter you learn how to
use modules to modify files and how to use
templates to automatically set up configuration files
with specific parameters obtained from facts or
variables.

• Chapter 9, “Using Ansible Roles”: When you
are working with Ansible, it’s good if code can be
reused. That is what Ansible roles are all about. In
this chapter you learn how to work with roles, which
are provided through Ansible Galaxy, or as RHEL
system roles.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Chapter 10, “Using Ansible in Large
Environments”: When working with Ansible in
large environments, you should know about a few
specific techniques. These techniques are covered in
this chapter. You learn how to optimize Ansible by
modifying the number of concurrent tasks that can
be executed. You also learn how to work with
includes and imports, which allow you to set up
modular playbooks.

• Chapter 11, “Troubleshooting Ansible”: In
some cases your playbook might not give you the
desired result. Then you need to start
troubleshooting. This chapter contains all you need
to know about troubleshooting, including some best
practices while developing playbooks, but also
information about modules that can be used to
make troubleshooting easier.

• Chapter 12, “Managing Software with
Ansible”: This is the first chapter about specific
common tasks that you can perform with Ansible. In
this chapter you learn how to set up repositories and
how to manage software packages with Ansible.

• Chapter 13, “Managing Users”: To do anything
on Linux, you need user accounts. In this chapter
you learn all that is needed to create user accounts,
including setting encrypted passwords.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Chapter 14, “Managing Processes and Tasks”:
Occasionally, you might want to run scheduled jobs.
These jobs will be executed at a specific time, using
either cron or at. In this chapter you learn how to do
that, and you also learn how to manage the systemd
default target.

• Chapter 15, “Managing Storage”: Setting up
storage is a key task when working with Linux. In
this chapter you learn how to automate storage
configuration with Ansible. You also learn how to
discover disk devices available on your managed
systems and how to set them up, using partitions,
logical volumes, filesystems, and mounts.

• Chapter 16, “Final Preparation”: In this chapter
you get some final exam preparation tasks. It
contains some test exams and many tips that help
you maximize your chances of passing the exam.

HOW TO USE THIS BOOK
To help you customize your study time using these
books, the core chapters have several features that help
you make the best use of your time:

• “Do I Know This Already?” Quizzes: Each
chapter begins with a quiz that helps you determine
the amount of time you need to spend studying that
chapter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Foundation Topics: These are the core sections of
each chapter. They explain the protocols, concepts,
and configuration for the topics in that chapter.

• Exam Preparation Tasks: At the end of the
“Foundation Topics” section of each chapter, the
“Exam Preparation Tasks” section lists a series of
study activities that should be done at the end of the
chapter. Each chapter includes the activities that
make the most sense for studying the topics in that
chapter. The activities include the following:

• Review Key Topics: The Key Topic icon is
shown next to the most important items in the
“Foundation Topics” section of the chapter. The
Key Topics Review activity lists the key topics
from the chapter and their corresponding page
numbers. Although the contents of the entire
chapter could be on the exam, you should
definitely know the information listed in each key
topic.

• Complete Tables and Lists from Memory:
To help you exercise your memory and memorize
some lists of facts, many of the more important
lists and tables from the chapter are included in a
document on the DVD and companion website.
This document lists only partial information,
allowing you to complete the table or list.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Define Key Terms: This section lists the most
important terms from the chapter, asking you to
write a short definition and compare your answer
to the glossary at the end of this book.

• Review Questions: Questions at the end of
each chapter measure insight in the topics that
were discussed in the chapter.

• End-of-Chapter Labs: These real labs give you
the right impression on what an exam
assignment looks like. The end-of-chapter labs
are your first step in finding out what the exam
tasks really look like.

OTHER FEATURES
In addition to the features in each of the core chapters,
this book, as a whole, has additional study resources on
the companion website, including the following:

• Four practice exams: The companion website
contains the four practice exams: two provided in
the book and two available on the companion
website.

• Flashcards: The companion website contains
interactive flashcards created from the glossary
terms in the book so you can better learn key terms
and test your knowledge.

• More than two hours of video training: The

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

companion website contains more than two hours of
video training from the best-selling Red Hat
Certified Engineer (RHCE) 3/ed Complete Video
Course.

BOOK ORGANIZATION,
CHAPTERS, AND
APPENDIXES
I have also included a table that details where every
objective in the RHCE exam is covered in this book so
that you can more easily create a successful plan for
passing the tests.

Table 1 RHCE Objectives

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

WHERE ARE THE
COMPANION CONTENT
FILES?
Register this print version of Red Hat RHCE 8 (EX294)
Cert Guide to access the bonus content online.

This print version of this title comes with a disc of
companion content. You have online access to these
files by following these steps:

1. Go to www.pearsonITcertification.com/register
and log in or create a new account.

||||||||||||||||||||

||||||||||||||||||||

http://www.pearsonITcertification.com/register
https://technet24.ir
https://technet24.ir

2. Enter the ISBN: 9780136872436.

3. Answer the challenge question as proof of
purchase.

4. Click on the Access Bonus Content link in the
Registered Products section of your account page
to be taken to the page where your downloadable
content is available.

Please note that many of our companion content files
can be very large, especially image and video files.

If you are unable to locate the files for this title by
following the steps, please visit
www.pearsonITcertification.com/contact and select the
Site Problems/Comments option. Our customer service
representatives will assist you.

This book also includes an exclusive offer for 70 percent
off the Premium Edition eBook and Practice Tests
edition of this title. Please see the coupon code included
with the book for information on how to purchase the
Premium Edition.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.pearsonITcertification.com/contact
https://technet24.ir
https://technet24.ir
https://technet24.ir

Part I: Introduction to Ansible

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 1. Understanding
Configuration
Management
This chapter covers the following subjects:

• Understanding Automation

• Understanding Ansible Essential Components

• Understanding Ansible Use Cases

The following RHCE exam objectives are covered
in this chapter:

• Understand Core Components of Ansible

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 1-1 lists the major
headings in this chapter and their corresponding “Do I

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 1-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following are disadvantages of using
shell scripts for automation? (Choose two.)

a. They don’t work on any target managed
operating system.

b. They require advanced skills.

c. It is difficult to guarantee they will always
produce the same result if the configuration
changes.

d. Using shell scripts makes sense only when
they are used with root privileges.

2. In DevOps, the application life cycle is managed by
focusing on different key aspects. Which of the
following key aspects comes after releasing?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

a. Testing

b. Configuring

c. Monitoring

d. Packaging

3. Which of the following are advantages of using a
CVS to manage the machine-readable configuration
files that are used in infrastructure as code?

a. It is easy to reproduce.

b. It makes upgrades easy.

c. It makes rollbacks easy.

d. All the above are true.

4. Ansible is an automation tool. Other automation
solutions exist as well. Which of the following is not
one of them?

a. Puppet

b. SaltStack

c. Satellite

d. Chef

5. When you compare Ansible to competing solutions
such as Puppet, SaltStack, and Chef, Ansible offers
two significant benefits. Which are these?

a. Speed

b. Easy configuration

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

c. Agentless operation

d. Price

6. Ansible provides different solutions to access
remote hosts. Which of the following is not one of
them?

a. Agent

b. API access

c. winRM

d. SSH

7. What is the name of the free open-source project
that enables you to manage Ansible from a web
interface?

a. Ansible Galaxy

b. OKD

c. AWX

d. Ansible Tower

8. Which of the following is the best description of the
declarative approach?

a. In the declarative approach you run commands
to get a specific approach.

b. The declarative approach in Ansible is
implemented by using scripts.

c. The declarative approach enables you to focus

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

on changes that are required to reach the
desired state.

d. The declarative approach uses playbooks.

9. Ansible can be used for provisioning. Which of the
following is not a common provisioning scenario
that Ansible is used for?

a. Deploying instances in cloud

b. Provisioning virtual machines

c. PXE-booting bare-metal servers

d. Deploying containers

10. Ansible can be used for different purposes. Which
of the following can be considered the core function
of Ansible?

a. Configuration management

b. Application management

c. Provisioning

d. Continuous delivery

FOUNDATION TOPICS

UNDERSTANDING
AUTOMATION
Ansible is often referred to as a configuration

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

management solution. That description doesn’t do
justice to all that Ansible can do. Ansible is more a
solution for automation, allowing system administrators
to take care of multiple systems in an efficient way. In
this section you learn about all that Ansible can do as an
automation tool. We also take a quick look at other
automation solutions.

What Is Automation?
In the years of the system administrator, companies
used servers. These servers performed a wide range of
different tasks, and to ensure that every server was
doing what it needed to be doing, a system
administrator was needed. System administrators
typically had advanced skills in managing different parts
of the operating system that ran on their servers.

Even though the years of the system administrator were
glorious, and many gurus worked in IT departments,
from a company perspective, this scenario was not ideal.
First, because system administrator skills are specific to
that person, if that person goes away, forgets about
brilliant solutions applied earlier, or just has a bad day,
things might go wrong.

Another part that was not ideal was that the system
administrator typically took care of individual servers,
and with the development of IT in recent years,
companies have gone from a handful of servers to data

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

centers and cloud environments with hundreds if not
thousands of servers. So a more efficient approach was
needed.

A first attempt in many sites was the use of shell scripts.
Based on the deep knowledge of many system
administrators, shell scripts can be used in a flexible
way to automate a wide range of tasks on many servers.
Using shell scripts, however, does come with some
disadvantages:

• Shell scripts cannot be used on a wide range of
different devices that need management.

• It is difficult to write shell scripts in a way that will
always produce the same result in every situation.

Because of these differences, and also because of
changes in the way companies consume IT, a new
approach was needed.

Understanding the DevOps Way of
Working
Throughout the years the way IT is consumed has
changed. In the past, IT was used to provide great
services to end users who just had to deal with them.
Now the landscape has changed to an environment in
which IT is everywhere, and multiple applications can
provide a solution to the same IT problem. The years of
the system administrator slowly came to an end, and the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

system administrator’s role needed to come closer to
that of the developers.

In this new way of working, the developers take care of
building applications, and system administrators take
care of implementing the code as a working application.
Because this change required a deep cooperation
between the developer and the system administrator, a
new role was created: the role of the DevOps. The term
DevOps is a contraction of developer and operator. In
this role, tasks performed by the developer and the
system administrator come together. A common
definition of DevOps is “a set of practices intended to
reduce the time between committing a change to a
system and the change being placed into normal
production, while ensuring high quality” (Len Bass, Ingo
Weber, and Liming Zhu, DevOps: A Software Architect’s
Perspective, Boston, MA: Addison-Wesley Professional,
2015).

With this new role, the “DevOps way of working” was
introduced. The exact definition is not always the same,
but in general, it comes down to managing the entire
application life cycle, which consists of the following
elements:

• Coding: Developing and reviewing application
source code

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Building: Using continuous integration to include
changes in the source code and convert to a working
application

• Testing: Using a toolchain that takes care of testing
the application and making sure that feedback is
provided on business risks, if there are any

• Packaging: Delivering the code to its end users by
bundling it into packages and offering these
packages in a repository

• Releasing: Approving, managing, and automating
new software releases

• Configuring: Managing the infrastructure to
support the new code

• Monitoring: Keeping an eye on application
performance and the way it is experienced by the
end users

To manage these different elements in the application
life cycle, new tools were introduced. Ansible is one of
these tools, with a strong focus on managing the
configuration of the managed environment according to
the infrastructure as code approach.

Some categories in the DevOps approach are more
important than others. The most important elements
are continuous integration, with solutions such as
Jenkins and GitLab, but also OpenShift and even
Ansible. The other main component is infrastructure as

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

code, where Ansible, Puppet, and Terraform are
important solutions.

Understanding Infrastructure as Code
The essence in infrastructure as code is that machine-
readable code (the automation language) is used to
describe the state the managed IT infrastructure needs
to be in. This is referred to as the desired state. This
code is next applied to the infrastructure to ensure that
it actually is in that state.

In this approach, the machine-readable code files, which
basically are simple text files, should be managed like
software code, using a version control system, or
Concurrent Version System (CVS). That means the tools
that are common to the developer are implemented to
manage the infrastructure as code. Commonly, Git
repositories are used for this purpose.

Putting these files in a CVS makes managing it easy.
This approach provides some benefits, such as easy
management of change history, upgrades, and rollback.
Infrastructure as code is the place where the developer
meets the operator in DevOps. Developers can easily
review changes, and operators can ensure that the
systems are in the state that developers expect.

Other Automation Solutions
To provide automation of configuration management,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ansible is one of the most common solutions. Even if it
seems to be currently the most-used configuration
management solution, it’s not the only one. Other
common solutions include Puppet, Chef, and SaltStack.

Like Ansible, Puppet is one of the most important
automation solutions. There are a few reasons why
Ansible is taking over market share from Puppet
though. One of the reasons is YAML. Ansible
configurations are written in YAML, which is an easy-to-
use and easy-to-understand language. Puppet uses its
own language, which is just not as easy. Another major
difference is that Ansible uses a push approach, where
configurations are sent from the controller node to the
managed nodes. Puppet uses a pull approach as its main
strategy, where managed nodes use an agent to connect
to the Puppet master to fetch their desired state.

Chef is built as a client/server solution, where the server
parts run on the master machine and the client parts are
implemented as an agent on the managed machines.
Chef provides its configuration in Ruby DSL, whereas
Ansible uses playbooks written in YAML. As a result,
Ansible is easier to learn because YAML is a much more
accessible data format.

SaltStack is another important alternative to Ansible.
The main difference between Ansible and SaltStack is
the performance. SaltStack uses the ZeroMQ message
queue to realize communication between the SaltStack

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

minions and the master, and that seems to be faster.
SaltStack uses configurations that are written in Jinja2
and use an agent, which makes the learning curve to get
started with SaltStack also more complex.

UNDERSTANDING ANSIBLE
ESSENTIAL COMPONENTS
Now that you know a bit about Ansible and how it
works, let’s look at the different components used in
Ansible. In this section you learn about the role of
Python, the Ansible architecture, the Ansible Tower
management platform, and how to manage systems the
Ansible way.

Ansible Is Python
There are many programming and scripting languages in
use in IT. In open source, the last few decades have seen
the rise of the Python scripting language. Python has
become the foundation of different solutions, such as
Ansible and OpenStack. The reason is that Python is
relatively easy to learn. The focus in Python is on
readability of code, while at the same time Python
makes it possible to do things in an easy way.

Ansible is written in Python, and most components that
are used in Ansible are written in Python as well. The
default Ansible version that is installed on Red Hat

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Enterprise Linux 7 is based on Python 2.7; the Ansible
release that is used in RHEL 8 is based on Python 3.6.
There is no direct relation between an Ansible version
and a Python version. Recent versions of Ansible can
call either Python 2.x or Python 3.x scripts, but Python
3.x is the better option nowadays because Python 2 is
past its end of support life.

The fact that Ansible is written in Python makes it
easier to integrate Ansible with custom scripts because
Python is a very common and widely known scripting
language. This doesn’t mean you have to know Python
to work with Ansible though. It’s true that if you
understand the workings of Python it’s easier to explain
specific behavior in Ansible, but it’s perfectly possible to
be an expert in Ansible without even knowing how to
write a Hello World script in Python.

Ansible Architecture
There are two main node roles in Ansible. The controller
node is the node that runs the Ansible software and
from which the operator issues Ansible commands. The
controller node can be a server running Linux, an
operator laptop, or a system running Ansible Tower. The
only requirement is that the controller node needs to be
Linux.

From the controller node, the managed nodes are
addressed. On the controller node, an inventory is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

maintained to know which managed nodes are available.
Ansible doesn’t require the use of any agents. That
means it can reach out to managed nodes without a
need to install anything. To do so, Ansible uses native
remote access solutions that are provided by the
managed node. On Linux, remote access is realized by
using SSH; on Windows, it is realized by using Windows
Remote Management (WinRM); and on network
devices, it can be provided by using SSH or API access.

To configure the managed nodes, Ansible uses
playbooks. A playbook is written in YAML and contains
one or more plays. Each play consists of one or more
tasks that are executed on the managed nodes.

To implement the tasks, Ansible uses modules. Modules
are the pieces of code that do the actual work on the
managed nodes, and many modules are available—more
than 3,000 already, and the number is increasing.
Ansible also provides plug-ins. Ansible plug-ins are used
to extend Ansible functionality with additional features.

Ansible playbooks should be developed to be
idempotent. That means a playbook will always produce
the same results, even if it is started multiple times on
the same node. As a part of the idempotency, playbooks
should also be self-containing and not depend on any
other playbooks to be successful.

Understanding Ansible Tower

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ansible can be used in two different ways: Ansible
Engine or Ansible Tower. Ansible Engine is the
command-line version of Ansible, where modules and
plug-ins are used to offer Ansible functionality. Ansible
Engine is the solution of choice for people who like to
work from the command line in a medium- to mid-sized
environment.

Apart from Ansible Engine, there is Ansible Tower,
which is based on the AWX open-source solution. It
provides a web-based interface to manage Ansible.
Ansible Tower adds different features to Ansible Engine,
such as

• Web management interface

• Role-based access control

• Job scheduling

• Enhanced security

• Centralized logging

Because the RHCE EX294 exam is about Ansible
Engine, you won’t find much information about Ansible
Tower in this book.

Understanding the Ansible Way
While working with Ansible, you need to make choices
on how to approach specific tasks. In many cases, many

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

solutions are available. If, however, you choose to work
the Ansible way, making the right solution becomes a
lot easier. The Ansible way is focused around the
following rules:

• Keep it simple: At its launch, Ansible was
positioned as a solution that is simpler than the
others. That goes for the playbooks and other
solutions you’ll develop as well. Keep it simple, and
it will be easier for others to understand what you
had in mind.

• Make it readable: As with anything in IT, you can
make it very complex and use compact structures to
ensure that nobody understands what you were
trying to do. That approach doesn’t make sense. You
should keep it readable, and that starts with your
development of Ansible playbooks.

• Use a declarative approach: In Ansible, it’s all
about the desired state. The purpose of Ansible is to
bring managed assets in the desired state, regardless
of the current state, and make only the
modifications that are necessary. The desired state is
implemented in playbooks, and using playbooks to
make the current state match the desired state is
what is known as the declarative approach.

• Use specific solutions: On many occasions, you’ll

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

find that multiple solutions are available to reach a
specific desired state. For instance, you can use the
command module to run arbitrary commands,
making it possible to accomplish almost anything.
You shouldn’t, though. To make sure that you get
the desired result, use the most specific solution. So
if, for instance, a user module allows you to create
users, use that module and don’t use the Linux
useradd command with the command module.

UNDERSTANDING ANSIBLE
USE CASES
The core of Ansible is configuration management. The
Ansible modules and plug-ins cover a wide range of
functions, which means that Ansible can be used for
configuration management and beyond. Here are some
common use cases.

Using Ansible for Configuration
Management
Many people know Ansible only as a configuration
management solution, and there’s a reason for that.
Ansible started as a solution for configuration
management, and that is what it still is used for in most
cases. In configuration management, Ansible is used to
manage configuration files, install software, create

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

users, and perform similar tasks to guarantee that the
managed systems all are in the desired state.

Using Ansible for Provisioning
Another common scenario for use of Ansible is for
deploying and installing systems (provisioning).
Provisioning is particularly common in virtual and cloud
environments, where in the end a new machine is just a
configuration file that needs to be pushed to the
managed machine and started from there. Ansible does
not offer the functionality to PXE-boot and kickstart a
bare-metal server but is used in combination with
solutions that can take care of that as well. While
exploring the different modules that are available, you’ll
notice that a wide range of modules is provided to work
with Ansible in different cloud environments.

Using Ansible for Continuous
Delivery
Continuous integration/continuous delivery (CI/CD)
makes sure that source code can easily be developed and
updated, and the results are easily provisioned as a new
version of an application. Ansible cannot take care of the
entire CI/CD procedure itself, but Ansible playbooks can
play an important role in the CD part of the CI/CD
pipeline.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SUMMARY
In this chapter you learned about configuration
management in general and the role of Ansible in
configuration management solutions. You also read
what makes Ansible unique and in which typical use
cases Ansible is used. In the next chapter you’ll learn
how to build your own management infrastructure
based on Ansible.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 1-2 lists a reference of these key topics and
the page numbers on which each is found.

Table 1-2 Key Topics for Chapter 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

automation language

CI/CD

current state

CVS

declarative approach

desired state

DevOps

Git repository

idempotent

infrastructure as code

pipelines

provisioning

Python

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

version control system

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 2. Installing
Ansible
This chapter covers the following subjects:

• Understanding an Ansible Environment

• Understanding Controller Host Requirements

• Understanding Installation Methods

• Configuring Managed Hosts

• Configuring the Ansible User

The following RHCE exam objectives are covered
in this chapter:

• Install and configure an Ansible control node

• Install required packages

• Configure Ansible managed nodes

• Create and distribute SSH keys to managed nodes

• Configure privilege escalation on managed nodes

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 2-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 2-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following are required on Ansible
managed nodes?

a. An Ansible agent

b. Python

c. Root access

d. SSH access

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. Which statements about Python in an Ansible
environment are true? (Choose two.)

a. Python needs to be installed only on the
control node.

b. Python needs to be installed on the managed
nodes.

c. Python 3 is the default version in RHEL 8.

d. While installing Ansible on CentOS 8, you can
select which Python version you want to use.

3. While you are setting up an Ansible managed
environment, there are a few requirements. Which
of the following is not a mandatory requirement?

a. Set up a dedicated user account.

b. Configure SSH key-based login.

c. Install Python on managed hosts.

d. Install Python on the Ansible control node.

4. Which statement about sudo is not true?

a. On managed hosts, the Ansible user must be
able to escalate permissions without entering a
password.

b. Setting up sudo on the control node is not
required.

c. Setting up sudo is not required on all types of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

managed nodes.

d. Privilege escalation should be set up to run
tasks as root.

5. To set up Ansible to learn for EX294, there are
different requirements. Which of the following is
not one of them?

a. RHEL or CentOS 8.x

b. 1 GB of RAM or more

c. 20 GB or more disk space

d. 1 CPU

6. Ansible can be installed in different ways. Which of
the following is not one of them?

a. Use RHEL subscription manager to install
from the RHEL Ansible repository.

b. Use EPEL on either RHEL or CentOS 8.

c. Use the python-pip installer.

d. Use the Java installer.

7. Executing tasks as a remote user can be secured in
different ways. Which of the following is not one of
them?

a. Protect the SSH private key with a passphrase.

b. Use password-based SSH login.

c. Disallow root execution through sudo.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

d. Make password use mandatory while using
sudo.

8. Which of the following is not a required setup task
while installing Ansible on CentOS 8?

a. Add the EPEL repository.

b. Install Python 3.

c. Configure sudo.

d. Enable SSH access.

9. Which firewall ports need to be open on Ansible-
managed hosts? (Choose all that apply.)

a. 22

b. 80

c. 443

d. 2022

10. After you use ssh-keygen to create the SSH
public/private key pair, what is the next step?

a. Configure sudo access.

b. Use ssh-copy-id to copy the private key to the
managed machines.

c. Copy the public key to the remote hosts.

d. Install Python 3 on the managed hosts.

FOUNDATION TOPICS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In this chapter you learn how to set up Ansible. This
process involves setting up not just the controller host,
from which Ansible tasks will be executed on the
managed hosts and devices, but also the managed hosts.
Because this book was written with the RHCE EX294 in
mind, we focus on setting up an environment to manage
RHEL/CentOS 8 Linux hosts.

UNDERSTANDING AN
ANSIBLE ENVIRONMENT
Ansible is about managing a wide range of different
device types. To do so, you need a host that plays the
role of the manager. In this book, we call that the
controller node. The controller node runs the Ansible
software; the managed nodes run nothing in particular.
The only requirement on managed nodes is that Ansible
should be able to contact them. On Linux and many
network devices, that means you need to run Secure
Shell (SSH). On Windows that means you need to
configure Remote Management or Secure Shell for
Windows. To work with Ansible, you don’t need to run
or configure any agent on managed devices.

To set up this book’s test environment, you need a
minimum of three nodes. The requirements of these
nodes are listed in Table 2-2. One of these nodes is used
as the controller node; the other nodes are used as

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

managed nodes. Notice that in this book I’ve chosen not
to manage the controller node with Ansible also. The
controller node is an isolated environment to reduce the
risk of things going wrong and the controller node
accidentally getting changed so that it no longer works.

Notice that the specific operating system version is not
very important, which is why Table 2-2 mentions RHEL
or CentOS 8.x. While writing this book, I installed on
8.1. By the time you read this, a newer version of the
operating system will be available. Even if you are
installing Ansible on RHEL or CentOS 8.8, it should not
matter. The underlying operating system doesn’t change
how Ansible approaches things. What matters is the
Ansible version that is used, and for RHCE EX294, that
is Ansible 2.x—version 2.8 or later, to be even more
specific.

Also note that for the node setup in this book, I used a
virtual machine installation from the CentOS and Red
Hat Enterprise Linux ISO files. It is also possible to use
different environments for creating the setup described
in this chapter, such as cloud instances for either RHEL
or CentOS. While you work with Cloud instances, the
operating system will be configured slightly differently,
according to the cloud platform that is used. I do not try
to cover all these differences in this chapter because
there are just too many platforms to consider.
Everything in this book is based on virtual machines

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

because that is what you’ll work with in the exam. For
that reason I recommend you set up your test
environment in a virtual machine and not in cloud.

Tip

In a production environment, you do want to manage the controller node
with Ansible as well. You would just set up a set of playbooks that allow
you to easily configure, update, and manage the controller node.

Table 2-2 Test Environment Node Requirements

Exercise 2-1 Setting Up the Test Network

1. Set up a test network, consisting of three virtual
machines, using the specifications mentioned
in Table 2-1. Ensure that the following names
are used:

• control.example.com: the Ansible control
machine

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• ansible1.example.com: the first managed node

• ansible2.example.com: the second managed
node

2. Provide fixed IP addresses in each of the virtual
machines. Use IP addresses that match your
current network environment. The IP addresses
should allow your machines to connect to the
Internet.

3. While installing, create a user account with the
name ansible.

4. Edit the /etc/hosts file on each of the three
virtual machines such that you can ping each of
the other virtual machines. See Listing 2-1 for
an example of the /etc/hosts contents.

Listing 2-1 Sample /etc/hosts Contents

127.0.0.1 localhost localhost.localdomain localhost4 \
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6
localhost6.localdomain6
192.168.4.200 control.example.com. control
192.168.4.201 ansible1.example.com. ansible1
192.168.4.202 ansible2.example.com ansible2

UNDERSTANDING
CONTROLLER HOST

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

REQUIREMENTS
To install Ansible on the controller node, you need a few
items:

• Python 3.x

• An SSH client

• Access to an Ansible Repository

• A dedicated user account that is configured with
SSH and sudo permissions

Ansible is written in Python, and as a result you have to
install Python on the Ansible controller node as well as
the Ansible managed nodes. On older versions of RHEL,
this was something you needed to do separately. In
RHEL 8, a default Python stack is installed
automatically, so you don’t have to do anything about
that anymore. Notice that on some public cloud
instances, a Python stack is not installed by default, and
you might still have to manually install it.

Python is needed because, for managing managed hosts,
Ansible generates Python scripts. These Python scripts
are next executed, using ssh on the remote host.
Managed network devices are an exception though, as
network devices don’t typically run a Python stack. But
managing network devices with Ansible is outside the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

scope of the RHCE EX294 exam anyway.

Currently, there are two major versions of Python.
Python 3.x slowly has become the standard in recent
years, but Python 2.x is still used on many sites.
Transitioning from Python 2.x to Python 3.x is not
always easy because the scripts are not compatible. On
RHEL 8, Ansible uses Python 3 as the default stack
though. And even if it is technically possible to use
Python 2.x on RHEL 8, this is not something you have
to master for the RHCE 8 exam. You shouldn’t want to
do this anyway. Python 2.x is old and becoming
obsolete; Python 3.x is what matters.

UNDERSTANDING
INSTALLATION METHODS
Ansible is open-source software, and as a result, Ansible
can be installed on many platforms, each of which
comes with its own installation method. In this book we
cover installation of Ansible on either Red Hat
Enterprise Linux 8 or CentOS 8. On both platforms you
can install Ansible from the distribution repositories or
using Python pip. In the following sections you read
how to do this.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Note

Use the instructions that correspond to the operating system and
installation method that you want to use. So do not perform Exercises 2-
2, 2-3, and 2-4 but pick the one that applies to your operating system
platform.

Installing Ansible on RHEL 8
Obviously, to take the RHCE 8 exam, you run all
assignments on Red Hat Enterprise Linux. Using
Ansible on Red Hat Enterprise Linux does require you
to have a valid license though. Free developer licenses
can be requested from https://developers.redhat.com,
and using such a license allows you to install RHEL 8 as
well as Ansible for free. After you set up the base RHEL
8 environment, the rest of the setup procedure is easy;
you just have to add a repository and can then install
Ansible. Exercise 2-2 outlines the steps that need to be
performed on a pre-installed RHEL 8 machine.

Exercise 2-2 Installing Ansible on RHEL 8

1. On the RHEL 8 control node, open a root shell
and type subscription-manager repos --list.
This shows you a list of currently configured
repositories. You should see the standard RHEL
8 repositories.

2. Type subscription-manager repos --

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://developers.redhat.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

enable=ansible-2-for-rhel-8-x86_64-
rpms to add the Ansible 2.x repository.

3. Use yum install ansible to install the Ansible
software.

4. Use ansible --version to verify that the
Ansible software has been installed.

5. Type rpm -qa | grep python to verify that
Python 3 is also installed.

Installing Ansible on CentOS 8
If you are using CentOS 8, the Ansible software can be
installed from the EPEL repository. The EPEL
repository contains Extra Packages for Enterprise Linux.
Ansible is among the EPEL packages. After enabling
access to the EPEL repository, you can install Ansible
using a simple yum install -y ansible. Exercise 2-3
guides you through this procedure.

Exercise 2-3 Installing Ansible on CentOS 8

1. On the CentOS 8 control node, open a root
shell.

2. Type yum install -y epel-release to add the
EPEL repository.

3. Type yum install -y ansible to install the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ansible software.

4. Type ansible --version to verify that the
Ansible software has been installed.

Using python-pip to Install Ansible
Ansible is completely written in the scripting language
Python, and Python includes its own package manager:
python-pip. As a result, for software that is written in
Python, you can use either the package manager of your
Linux repository or the python-pip software manager.
Because Ansible is written in Python, this applies to
Ansible as well.

The advantage of using python-pip is that it is an
advanced method of managing software, often giving
you access to the most recent version of the software
before it is available in the repositories of your
distribution. The disadvantage is that the software isn’t
controlled from your distribution, which makes it
harder to manage software updates from a generic
interface. In Exercise 2-4 you learn how to install
Ansible from the python-pip installer.

Exercise 2-4 Using python-pip to Install Ansible

1. From a root shell on your CentOS or RHEL 8
control node, type yum install -y python3-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

pip to install the Python 3 pip installer.

2. Type alternatives --set python
/usr/bin/python3. This creates a symbolic
link with the name python that allows you to
start the python3 binary.

3. Exit the root shell, and open a shell as your
Ansible user. From the ansible user shell, type
pip3 install ansible --user.

4. Once the installation completes, type ansible -
-version to verify that Ansible has been
installed.

CONFIGURING MANAGED
HOSTS

Managed hosts in an Ansible environment don’t need a
lot. Opposed to what is needed in some other
configuration management solutions, no agents need to
be installed on the managed hosts. You only have to
enable SSH access and ensure that Python is available
on the managed hosts.

If you want to manage non-Linux nodes, notice that
additional steps might be required. To manage Windows
with Ansible, for instance, you must enable a Windows-

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

native remote access mechanism, like Windows Remote
Management (WinRM) or the Windows SSH daemon,
and if you want to manage network devices, you might
have to use device-specific requirements. This is not
relevant for RHCE EX294 though, where you only have
to manage Linux machines with Ansible. Exercise 2-5
guides you through the procedure of setting up the
managed nodes.

Exercise 2-5 Setting Up a RHEL 8 Managed
Node

1. On your RHEL 8 managed nodes, open a root
shell.

2. Type systemctl status sshd to verify whether
the SSH process is running and available to
receive incoming connections. SSH is
automatically installed and started on a
RHEL/CentOS 8 installation, so no further
action should be required here.

3. Type rpm -qa | grep python. You should now
see a list of packages. Often, you do not need to
manually install Python on RHEL or CentOS 8
because it’s a part of the default configuration
in most installation types.

4. Finally, type firewall-cmd --list-all. In the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

list of services, you should see that ssh is listed.
This means that the remote host is accessible
through ssh as well.

5. From the control machine, still as user ansible,
type ssh ansible1. This opens an SSH session
to the ansible1 machine, which verifies that
everything required is up and running.

In the procedure described in Exercise 2-5, you have
manually set up a managed node. This approach is not
practical if you’re configuring a big Ansible managed
environment, and it’s not needed for setting up a large
Ansible managed environment. To use a more
automated approach, you can use the raw module. In
Chapter 12, “Managing Software with Ansible,” you’ll
learn how to use this module to configure a managed
node.

CONFIGURING THE ANSIBLE
USER
While managing an environment with Ansible, you need
a dedicated user account. In this book I use a user with
the name “ansible” in all examples. Obviously, in a
production environment you can pick any username you
would like. Because the examples in this book all use
the username “ansible,” I advise you to create a user

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

with that name as well.

The ansible user is used to run the ansible scripts on the
managed hosts. To do so, you issue an ssh command
under the hood, which allows Ansible to push a Python
script that performs all configuration tasks on the
managed machines. For this procedure to work easily,
two steps are required for setting up the ansible user:

1. The user must be able to SSH into the managed
machines.

2. The user must be enabled to run tasks as root on
the managed machines.

Setting Up SSH for the Ansible User
Setting up SSH to allow the ansible user to log in to a
managed host is not difficult. Just ensure the user
account exists on all machines and use the ssh
command. You should consider how to configure SSH
access though.

If nothing is configured, the user needs to enter a
password each time the remote connection is
established. Although secure, this is not convenient,
especially not in an environment where Ansible is used
to manage remote machines.

The most convenient way to connect to managed

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

machines is by using SSH public/private keys, and that
is exactly what we’re going to do in our sample
configuration. SSH public/private keys can be used as
authentication credentials, and because a private key
cannot be guessed, it is considered a more secure way to
log in to managed hosts.

While working with public/private keys, the
public/private key pair is generated on the workstation
that the user typically is connecting from. In our case,
that is the Ansible control machine. After generating the
public/private key pair, the public key needs to be
copied over to the managed hosts. While authenticating,
the user generates an authentication token using its
private key, and this authentication is sent to the
managed machine, where it is matched against the
public key that is stored on the managed machine. If the
matching succeeds, the user is authenticated.

To work with public/private keys, a passphrase may be
used to further secure private key access. Normally, the
private key should be accessible by the user who owns
the key only, which is accomplished by putting the key
in a secured place in the user home directory. If,
however, someone would be able to copy the user
private key, the user identity would be stolen and freely
accessible. For that reason, it makes sense to secure the
private key with a passphrase.

A passphrase is like a password; it needs to be entered

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

each time the private key is used. Using passphrases
makes using public/private key pairs a lot more secure,
but it makes working with Ansible a little less
convenient as well. For that reason, on the RHCE exam,
you don’t have to secure SSH setup with passphrases,
and you can work with password-less private keys. In
Exercise 2-6 you learn how to set up SSH keys that allow
the ansible user to connect to the managed machines.

Exercise 2-6 Setting Up SSH Key-Based User
Authentication

1. On control.example.com, open a shell as the
user ansible.

2. Type ssh-keygen. Press Enter to accept the
default file name for storing the private key.

3. When prompted for a passphrase, press Enter.
This configures a passphrase-less private key.
Press Enter again to confirm.

4. After generating the public/private key-pair,
type ssh-copy-id ansible1. This prompts for
the user ansible password on server ansible1,
after which the public key can be copied to the
appropriate location. Repeat this step for
ansible2, using ssh-copy-id ansible2.

5. Verify that the passphrase-less private key has

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

been correctly configured by using ssh
ansible1. You should get access to a prompt on
ansible1 without having to enter a password or
anything.

If you want to secure your environment a bit more than
what is required on the exam, you can easily
passphrase-protect your user accounts by applying the
following procedure:

1. While using ssh-keygen to generate the SSH
public/private key pair, enter a passphrase to
protect the private key.

2. At the start of each Ansible session, type ssh-
agent /bin/bash.

3. Next, type ssh-add. This prompts for the SSH
private key passphrase, and after it is entered
once, the passphrase can be obtained from the
secured SSH passphrase cache for the remainder
of the duration of your session.

Tip

In a production environment, you might want to consider working with
different types of Ansible projects. You might consider setting up a high-
security user account with passphrase-protected private keys for the
more sensitive jobs, and using a low-security user account that can run
specific tasks without entering any passphrase.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Configuring sudo for the Ansible User
While working with Ansible, the ansible user account is
used to gather information from managed hosts but also
to install software, change configurations, and perform
other tasks that require root privileges. To ensure that
Ansible can complete these tasks, you must configure
privilege escalation. The default solution to do so on
Linux is to use sudo.

To set up sudo, you have two options. You can use the
Linux visudo command to write the desired
configuration to the /etc/sudoers file. Alternatively, you
can use snapin files. These independent files that are
created in the /etc/sudoers.d/ directory. Using these
snapin files is the preferred way because it allows for
easy management of settings for different users,
without changing the main /etc/sudoers configuration
file.

While setting up a sudo configuration, like when setting
up SSH login, you have the choice to do it secure or
conveniently. If sudo is used occasionally, it is common
to require the user to enter a password before being
allowed to escalate permissions. In Ansible playbooks,
where tasks often are executed on many hosts, it is very
inconvenient if the sudo password needs to be entered
every time and on each host. This is why it is common
to configure sudo such that no password has to be

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

entered to acquire root privileges. In Exercise 2-7 you
are guided through the procedure to do so.

Exercise 2-7 Setting Up Privilege Escalation

1. Ensure that the user ansible exists on all
managed nodes and has been configured for
SSH key-based access as described in Exercise
2-6.

2. On all managed nodes as well as on the control
node, from a root shell, use the command echo
“ansible ALL=(ALL) NOPASSWD: ALL” >
/etc/sudoers.d/ansible.

3. On all managed nodes, as the ansible user, type
sudo ls -l /root/. This command should show
you the contents of the /root/ directory (which
is accessible by the root user only) without
prompting for a password.

Tip

If using password-less privilege escalation is unacceptable in your
environment, you might want to consider using Ansible Tower. Ansible
Tower is a web-based platform, based on the AWX open-source project,
which was developed to meet some inconveniences that are met when
using Ansible from the command line. One of its features is to securely
store the password that is required to run commands using sudo. Read
Appendix B, “Getting Started with Ansible Tower,” for a quick impression
of what Ansible Tower can do.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SUMMARY
In this chapter you learned how to set up an
environment that is ready to be used as the lab
environment throughout this book. You installed the
required virtual machines, created and configured the
user ansible, and ensured that the user ansible is
allowed to run tasks with sudo root privileges on the
managed nodes. In the next chapter, you’ll read how to
further set up your Ansible-managed environment.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 2-3 lists a reference of these key topics and
the page numbers on which each is found.

Table 2-3 Key Topics for Chapter 2

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

Ansible Tower

AWX

controller node

EPEL repository

managed node

pip

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

WinRM

REVIEW QUESTIONS
1. Which installation method should you use when

installing Ansible on RHEL 8?

2. What are the requirements on CentOS 8 hosts
you want to manage with Ansible?

3. What is the name of the program that can be
used to install Ansible from Python?

4. Which agent needs to be running on a RHEL 8
machine to manage it with Ansible?

5. What is the name of the open-source project
behind Ansible Tower?

6. If a user wants to configure Ansible to use
public/private keys but doesn’t want to use
passphrase-less private keys, which option can be
used?

7. Which directory can be used to create a snapin
file that adds sudo configuration for a specific
user?

8. Which solution can be used to make setting up
managed nodes in Ansible easier?

9. Is Python always required on managed nodes?

10. A user wants to use SSH passwords and not keys

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

to connect to Ansible-managed machines but
doesn’t want to enter the password at every new
connection that is opened. What solution would
you suggest?

END-OF-CHAPTER LAB
In this chapter, you learned how to configure your
control node as well as your ansible nodes for Ansible.
You can now practice these skills in the end-of-chapter
lab. Notice that if you have already worked through the
exercises in this chapter, you do not need to perform
this lab as well because your environment has already
been set up correctly in that case.

LAB 2-1
Set up an Ansible environment according to the
directions in this chapter. Make sure this environment
meets the following requirements:

• Three hosts are used: control.example.com,
ansible1.example.com, and ansible2.example.com.

• A user named ansible is created on all hosts.

• On ansible1 as well as ansible2, the ansible user is
allowed to run root commands using sudo, without
being required to enter a password.

• User ansible can log in to ansible1 and ansible2

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

using ssh, based on passphrase-less private keys.

• The ansible software is installed on control.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 3. Setting Up an
Ansible Managed
Environment
This chapter covers the following subjects:

• Understanding Projects

• Configuring Static Inventory

• Working with Dynamic Inventory

• Managing Settings in ansible.cfg

The following RHCE exam objectives are covered
in this chapter:

• Understand core components of Ansible

• Inventories

• Configuration files

• Install and configure an Ansible control node

• Create a static host inventory file

• Create a configuration file

• Create and use static inventories to define groups
of hosts

“DO I KNOW THIS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 3-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 3-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following is not a valid method of
using inventory?

a. If nothing is specified, Ansible looks for a file
with the name inventory in the current

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

directory.

b. Specify the name of the inventory file in
ansible.cfg.

c. Specify the name of the inventory file as a
command-line argument using the -i option.

d. Use the default inventory in
/etc/ansible/hosts.

2. Which of the following symptoms do you see if no
inventory file was specified?

a. Ansible generates an error message.

b. Ansible tells you that no inventory hosts could
be found.

c. Ansible tries to run commands against
localhost.

d. The Ansible command doesn’t complain but
just doesn’t give anything as a result.

3. What is the name of the default Ansible inventory?

a. /etc/hosts

b. /etc/inventory

c. /etc/ansible/inventory

d. /etc/ansible/hosts

4. Which of the following is not a requirement that
must be met by a dynamic inventory script?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

a. It must be executable.

b. It must be written in Python.

c. It must respect the arguments --list and --
host.

d. It must produce its output in JSON format.

5. Which statement about using multiple inventory
files is true?

a. Ansible doesn’t support using multiple
inventory files.

b. Multiple dynamic inventory files are
supported; using multiple static inventory files
is not.

c. When the name of a directory is specified as
the inventory that has to be used, all files in
that directory are used as inventory.

d. When multiple inventory files are used, each
file has to be specified separately as a
command-line option using the -i option.

6. Which of the following should not be used in
inventory files?

a. Variables that apply to specific hosts

b. Host groups

c. IP addresses

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

d. Nested host groups

7. Which statement about privilege escalation is not
true?

a. Privilege escalation can be defined in the
ansible.cfg file.

b. Privilege escalation can be defined in
individual playbooks.

c. Privilege escalation parameters can be
specified on the command line.

d. Privilege escalation can be specified in the
inventory file.

8. Where should the inventory file be stored in a big
corporation where Ansible is used to manage
hundreds of servers and appliances?

a. In /etc/ansible/hosts

b. In DNS

c. In the project directory

d. In Ansible Tower

9. Which statement about the remote_user setting is
not true?

a. The remote_user typically is defined in the
[defaults] section in ansible.cfg.

b. The remote_user setting refers to the user

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

account that is used to run all tasks on
managed hosts after privilege escalation.

c. The remote_user setting can also be applied on
the command line or in a playbook.

d. Without a remote_user setting, Ansible won’t
work correctly.

10. Which parameter can be used to disable the
requirement to check validity of SSH host keys?

a. host_key_checking

b. ssh_host_keys

c. verify_host_keys

d. verify_ssh_keys

FOUNDATION TOPICS
In the preceding chapter you read about the Linux
requirements of an Ansible managed environment. At
this point your hosts should all meet these
requirements, so now it’s time to focus on the Ansible
part of the configuration. In this chapter you learn about
two essential components: the inventory and the
ansible.cfg configuration file. But first, we need to spend
some time talking about Ansible projects.

UNDERSTANDING PROJECTS

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In some cases, a small IT staff may use Ansible to
manage just a few servers. In other cases, Ansible is
used to manage multiple IT projects in a worldwide
organization. These different use cases ask for a
different approach in the way Ansible is used. If it is
used at a small scale, there’s nothing wrong with having
just one Ansible configuration take care of all needs in
IT. If, however, Ansible is used to manage large-scale
environments, it’s a good idea to work with different
project directories.

A project directory is a self-contained environment that
includes everything needed to work in a specific project.
The playbooks are found within the project directory.
These are the Ansible scripts, written in YAML, that
enforce the desired configuration on managed hosts.
Apart from these playbooks, other components may also
be found in the project directory, such as variable files,
additional files used to include tasks, and the inventory
and the ansible.cfg configuration files.

Having all of these within the same project directory
makes it easy to delegate tasks in an Ansible managed
environment. If you’re working on just a few servers,
this approach might not make too much sense, but once
your Ansible environment is taking care of many
managed assets, you will recognize the convenience of
working with project directories.

Using project directories is good to keep together items

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

that belong together. While using the project directory,
you may put the ansible.cfg file and the inventory file in
the specific project directory. This approach makes
sense if each project has its own specific configuration
files. Alternatively, the configuration files may be in the
ansible user home directory. This approach makes sense
if different user accounts exist for managing Ansible,
where each user has his own configuration. You can also
choose to manage all Ansible configuration at a system
level, where inventory and ansible.cfg are the same for
your entire system. Table 3-2 summarizes the different
options.

Table 3-2 Options for Storing Configuration Files

CONFIGURING STATIC
INVENTORY
The purpose of the Ansible inventory is to identify hosts
that Ansible has to manage. Inventory also can be used

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

for other purposes:

• List hosts

• Group hosts

• Specify host variables

Listing Hosts
In its simplest form, the inventory file is just a list of
hosts that Ansible uses to identify the hosts that matter
in this project. If you prefer a project-oriented approach,
you can have different inventories in different projects
because in one project you may be addressing different
hosts than in other projects. In the project approach,
each project directory should have its own inventory
file.

In smaller Ansible managed environments, the file
/etc/ansible/hosts can be used as the inventory file. If
this file exists, it’s not necessary to have project
inventory files as well.

Exam tip

If you have doubts about the format of lines in the inventory file on the
exam, look at /etc/ansible/hosts. It contains nice examples of how hosts
can be specified in the inventory file.

An Ansible inventory can be just a list of host names or

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IP addresses. You don’t need to specify name-resolving
information as well because DNS or the /etc/hosts file
should be taking care of name resolving. Apart from just
listing the names or IP addresses of hosts, the inventory
file also can work with ranges. For instance, the line
server[1:6].example.com would address all servers
between server1 and server6.

Inventory Host Groups
When you’re working with many hosts, using host
groups is convenient. Host groups can be defined in
inventory, and a host may be a member of multiple host
groups. You can also work with nested groups, where a
group is a member of another group. The example in
Listing 3-1 shows what host group definitions should
look like.

Listing 3-1 Inventory File with Host Groups

ansible1
ansible2
192.168.4.1
192.168.4.2

[web]
web1
web2

[db]
db1
db2

[servers:children]
web

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

db

In Listing 3-1, you first see the hosts ansible1 and
ansible2, which are not members of any specific group.
Also, you see two IP addresses. You are allowed (though
it is not recommended) to include IP addresses as well.
Next, a group web and a group db are defined. In the
example you also see the group servers that address all
hosts in the group [web] as well as the [db] group.

In general, there are three different approaches for
using groups. Functional groups are used to be able to
address specific groups of hosts, like web servers and
file servers. Regional host groups are convenient when
working with a region-oriented infrastructure, and
staging host groups can be defined to address different
hosts according to the staging phase your current
environment is in. Table 3-3 gives a summary of a host
groups approach.

Table 3-3 Host Group Usage Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Apart from the defined host groups, there are also
implicit host groups, as shown in Table 3-4. These group
names don’t have to be defined because they are
implicitly there. These are the groups all and ungrouped.
Apart from that, there is the implicit host localhost,
which doesn’t have to be addressed in inventory.

Table 3-4 Implicit Hosts and Host Groups

Using Inventory in Commands
The inventory file is an essential component of your
Ansible configuration because it identifies hosts and
allows you to put hosts together in groups. To view the
current inventory, you can use the ansible -i
inventory <pattern> --list-hosts command. Notice
the use of the -i inventory option, which is mandatory
to indicate that a specific inventory must be used.

Another command to show inventory information is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ansible-inventory:

• Use ansible-inventory -i inventory --list to list
inventory hosts in JSON output format.

• Use ansible-inventory -i inventory --graph to
display a graphical overview of hosts in the
inventory.

If you’re using Ansible commands and don’t want to use
the default inventory in /etc/ansible/hosts, you must
use the -i option to point to the inventory file you want
to use. This may be an absolute pathname or a relative
pathname, so in the example ansible -i inventory --
list-hosts, a file with the name inventory in the local
directory is addressed. As an alternative, you may also
set the default inventory to use in the ansible.cfg file,
which is discussed later.

In Exercise 3-1 you learn how to work with host groups.

Exercise 3-1 Working with Host Groups

1. Log in as the ansible user and use the command
mkdir base to create a project directory with
the name base. Use cd base to get into this
directory.

2. In this directory, create a file with the name
inventory and give it the following contents:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ansible1
ansible2

[web]
web1
web2

[db]
db1
db2

[servers:children]
db
web

3. Type ansible all --list-hosts. You get a failure
message because the ansible command does
not find any inventory containing hosts.

4. Type ansible -i inventory all --list-hosts.
Now you see a list of all hosts in inventory.

5. Type ansible -i inventory ungrouped --list-
hosts. This command shows all hosts that are
not a member of any group.

6. Use ansible-inventory -i inventory --
graph. This command shows a hierarchical
overview of inventory, including information
about which host is a member of which group.

7. Use ansible-inventory -i inventory --list.
This command shows the contents of the
inventory represented in JSON format.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Specifying Host Variables
In older versions of Ansible, the inventory file was also
used to define variables for specific hosts. This behavior
is deprecated and should not be used anymore. You
might, however, see inventory files that still contain
variable definitions, and for that reason, this section
describes how it works.

Listing 3-2 shows an inventory file that contains host
variables.

Listing 3-2 Sample Inventory with Variables

[lamp]
ansible1.example.com

[file]
ansible2.example.com

[win]
windows.example.com

[win:vars]
ansible_user=ansible
ansible_password=@nsible123
ansible_connection=winrm
ansible_winrm_server_cert_validation=ignore

As you can see, the variables are set at a group level,
using [groupname:vars]. You shouldn’t use this
approach anymore, though. Variables in current
versions of Ansible should be set using the host_vars
and group_vars directories, as explained in Chapter 6,
“Working with Variables and Facts.”

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

WORKING WITH DYNAMIC
INVENTORY
In small environments it is common to manually define
the Ansible inventory. If you’re using Ansible in big and
dynamic environments, like public cloud environments,
you should use dynamic inventory instead. In dynamic
inventory a script is used to discover inventory hosts in
a specific environment. Community-provided inventory
scripts are available on GitHub (Google for the exact
link of the environment for which you want to find a
dynamic inventory script); alternatively, it’s not difficult
to write your own dynamic inventory scripts.

Working with Community-Provided
Dynamic Inventory Scripts
As mentioned, many community-provided inventory
scripts are available. The scripts often come with an .ini
file that is used to provide specific information on how
to connect to the specific resource. To use the
community-provided inventory scripts, you have to
make sure that they are made executable, using the
Linux chmod +x command. After making the scripts
executable, you must provide required parameters,
either by putting them in the .ini file that comes with
the inventory script or by providing them as command-
line parameters to the ansible command. You can

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

obtain good inventory script-specific information on
how to do this from the Ansible documentation at
https://docs.ansible.com.

Writing Your Own Inventory Scripts
Writing your own inventory script is not too difficult,
particularly if you have programming experience.
Inventory scripts have a few requirements: they must
contain a --list option as well as a --host option. Also,
the output must be produced in JSON format.

In Listing 3-3 you can see an example of the dynamic
inventory script pascal.py written in Python. This script
generates an inventory that is based on the local Linux
host resolving mechanisms in use. This means that it
uses the contents of /etc/hosts as the inventory.

Listing 3-3 Dynamic Inventory Script Example

#!/usr/bin/python
""" Dynamic Inventory Script Example """

from subprocess import Popen, PIPE
import sys

try:
 import json
except ImportError:
 import simplejson as json

RESULT = {}
RESULT[’all’] = {}

PIPE = Popen([’getent’, ’hosts’], stdout=PIPE,
universal_newlines=True)

||||||||||||||||||||

||||||||||||||||||||

https://docs.ansible.com
https://technet24.ir
https://technet24.ir

RESULT[’all’][’hosts’] = []

for line in PIPE.stdout.readlines():
 s = line.split()
 RESULT[’all’][’hosts’] = RESULT[’all’][’hosts’]+s

RESULT[’all’][’vars’] = {}

if len(sys.argv) == 2 and sys.argv[1] == ’--list’:
 print(json.dumps(RESULT))

elif len(sys.argv) == 3 and sys.argv[1] == ’--host’:
 print(json.dumps({}))

else:
 print("Requires an argument, please use --list or --
host <host>")

Note

You can download the script in Listing 3-3 from the GitHub repository; it
is named listing33.py. Use git clone
https://github.com/sandervanvugt/rhce8-book to get access to this
sample file and many others.

To use the sample inventory script in Listing 3-3, you
can run it directly by using the command
./listing33.py --list. Alternatively, you can use it as an
argument to the ansible command. You learn how to
do this in Exercise 3-2.

Exercise 3-2 Using a Dynamic Inventory Script

1. Type cd ~ to get back to the current user home
directory, and type sudo yum install -y git to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir
https://technet24.ir

install the git software.

2. Type git clone
https://github.com/sandervanvugt/rhce8
-book to clone this book’s GitHub repository.

3. Type cd rhce8-book to go into the rhce8-book
directory.

4. Type alternatives --set python
/usr/bin/python3. This command creates a
symbolic link with the name python that points
to the python3 binary and thus guarantees that
all scripts that are configured to use
/usr/bin/python are also working.

5. Type ./listing33.py --list to show the result of
the Python script when it is started by itself.
You then see the unformatted command
output.

6. Install json_pp by typing sudo yum install
perl-JSON-PP.

7. Type ./listing33.py --list | json_pp to show
output that is formatted in a readable way.

8. Type ansible -i listing33.py all --list-hosts
to use the script to show all hosts.

Using Multiple Inventory Files

||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir

In large environments, it may be useful to access
multiple inventory files. You can easily do that by
putting all inventory files in a directory and specifying
the name of the directory as the inventory file to be
used. If it’s a static inventory file, you just have to copy
it to the inventory directory. If it’s a dynamic inventory
file, you also need to do that, and in addition you have to
make sure that the execute permission is set on the
inventory file.

MANAGING SETTINGS IN
ANSIBLE.CFG
When you’re working with Ansible, multiple settings are
required to reach out to manage hosts. Table 3-5 lists
the most important of these settings. To provide the
settings in a persistent way, the ansible.cfg
configuration file is used. Specific ansible.cfg files can
be created in the current project directory; a generic
ansible.cfg file is available as /etc/ansible/ansible.cfg.
Listing 3-4 shows an example of an ansible.cfg file.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam tip

The /etc/ansible/ansible.cfg file is well annotated, and that makes it an
excellent resource on the RHCE exam. If you have any doubt about
specific parameters to be used, check the /etc/ansible/ansible.cfg file for
examples!

Listing 3-4 Sample ansible.cfg File

[defaults]
remote_user = ansible
host_key_checking = false
inventory = inventory

[privilege_escalation]
become = True
become_method = sudo
become_user = root
become_ask_pass = False

As seen in Listing 3-4, the ansible.cfg file is laid out in
.ini file format, with different sections. The section
header is between square brackets, and parameters are
specified in a key = value format. The common sections
in ansible.cfg are [defaults] and [privilege escalation]. In
the default section, generic information is provided. The
privilege_escalation section defines how the ansible
user should require administrative privileges to connect
to the managed hosts.

Table 3-5 ansible.cfg Common Settings

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Notice that all of the settings specified in the ansible.cfg
file can also be specified in Ansible playbooks. If there
are conflicting settings, the most specific setting always
wins. So settings defined in a playbook override the
settings in the ansible.cfg file. In Exercise 3-3 you
practice creating an ansible.cfg as well as an inventory
file in the current user home directory.

Exercise 3-3 Creating an ansible.cfg File

1. Type cd ~ to ensure that you are in the current
user home directory.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. Type vim ansible.cfg to open a new inventory
file that is to be created.

3. Create the defaults section by including the
following lines:

[defaults]

remote_user = ansible

host_key_checking = false

inventory = inventory

4. Configure the privilege escalation section by
including the following lines:

[privilege_escalation]
become = True
become_method = sudo
become_user = root
become_ask_pass = False

5. Copy the inventory file that you created earlier
by using cp base/inventory.

6. Type ansible-inventory --list. This shows
you all hosts currently in inventory, without the
need to use the -i inventory option to specify
the name of the inventory file.

SUMMARY
In this chapter you learned about two essential
components in every Ansible project: the inventory file

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and the ansible.cfg file. You read how to create static as
well as dynamic inventory files and how to define
default settings that Ansible should be working with in
the ansible.cfg file. In the next chapter you’ll learn how
to use all of these settings when working with Ansible
ad hoc commands and modules.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topic icon in the outer margin of the page.
Table 3-6 lists a reference to these key topics and the
page numbers on which each is found.

Table 3-6 Key Topics for Chapter 3

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

ansible.cfg

inventory

playbook

project

YAML

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

REVIEW QUESTIONS
1. What syntax do you use to define a group named

all in inventory?

2. Which name should you use for an inventory file
that is created in your local project directory?

3. What is the name of the default inventory file?

4. How do you define a group with the name linux
that has as members the groups web and file?

5. Which two command-line options should be
respected by any dynamic inventory script?

6. How do you refer to hosts web001 up to web010
from one line in inventory?

7. What is the default name of the group that hosts
are automatically a member of if they don’t
belong to any specific group?

8. Which command should you use to display a
graphical overview of inventory hosts, including
the groups they are a member of?

9. What is wrong with the following command?

ansible -i inventory --list-hosts

10. Which parameter in ansible.cfg should you use
to specify the mechanism to escalate

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

permissions?

END-OF-CHAPTER LAB
In the preceding chapter you set up the basic Linux
environment to work with Ansible. Now it’s time to
create a project directory.

LAB 3-1
Configure a project directory that meets the following
requirements:

• All hosts are entered in a static inventory file.

• An Ansible configuration file is created to take care
of the following:

• The project inventory file is used as the default
inventory.

• Privilege escalation is configured such that the
ansible user is used, and sudo is used to run tasks
that require privilege escalation.

• After setting up this environment, use the
appropriate command to list all hosts in inventory.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 4. Using Ad Hoc
Commands
This chapter covers the following subjects:

• Understanding Ad Hoc Commands

• Working with Modules

• Consulting Module Documentation

• Running Ad Hoc Commands from Shell Scripts

The following RHCE exam objectives are covered
in this chapter:

• Understand core components of Ansible

• Modules

• Use provided documentation to look up specific
information about Ansible modules and
commands

• Configure Ansible managed nodes

• Validate a working configuration using ad hoc
Ansible commands

• Script administration tasks

• Create simple shell scripts

• Create simple shell scripts that run ad hoc

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Ansible commands

• Create Ansible plays and playbooks

• Know how to work with commonly used Ansible
modules

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 4-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 4-1 “Do I Know This Already?” Section-to-
Question Mapping

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. Using ad hoc commands is useful in multiple
situations. Which of the following is not one of
them?

a. Making it easy to repeat tasks in a consistent
way

b. Using setup tasks to quickly bring a managed
node to a desired state

c. Performing a quick test to verify that a
playbook has executed successfully

d. Running a discovery task to verify that a node
meets certain criteria

2. What is wrong in the following sample ad hoc
command?

ansible all -a "rpm -qa | grep http"

a. Nothing.

b. There is no option -m to specify which module

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

should be used.

c. It uses the command module but uses a pipe in
the argument.

d. It misses the key=value format in the
specification of the arguments.

3. A user runs the ad hoc command ansible all -m
user -a “name=lisa” on a host where user lisa
already exists. What happens?

a. A second user with the name lisa_0 is created.

b. The current user lisa is removed, and a new
user lisa is created.

c. The command gives an error message, and
nothing is changed.

d. The command shows the SUCCESS result, and
nothing is changed.

4. Which of the following modules must be used if
you want to run a shell command that redirects the
output of the command to the file output.txt?

a. command

b. shell

c. raw

d. bash

5. You want to run a command on an Ansible-

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

managed Cisco router. Which module should you
use?

a. command

b. shell

c. raw

d. bash

6. You want to install software in a network that has
multiple Linux distributions. Which module would
you use to do this on the Ubuntu nodes?

a. apt

b. package

c. software

d. install

7. Which of the following is the most accurate
statement about the ping module?

a. It tests connectivity to an Ansible-managed
machine.

b. It tests whether a host is currently running.

c. It tests the contents of the inventory.

d. It tests whether the host is in a manageable
state.

8. Which command should you use to get a list of all
modules installed on your control node?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

a. ansible-modules

b. ansible -l

c. ansible-doc -l

d. ansible-modules --list

9. Which command shows you just a list of arguments
that can be used with a module in a format that is
ready to be used in a playbook?

a. ansible-doc

b. ansible-doc -l

c. ansible-doc -s

d. ansible-doc -e

10. What is the best approach to get a list of modules
that can be used for system management?

a. Grep on the output of ansible-doc -l.

b. Use ansible-doc system.

c. Look up the module index in docs.ansible.com
and navigate to the system modules section.

d. Use ansible-doc --system.

FOUNDATION TOPICS
At this point you should have a base Ansible
infrastructure available, so let’s start using it! In
Ansible, you typically work with playbooks. Playbooks

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

are scripts that are written in YAML and provide all the
instructions for getting managed nodes in their desired
state. Configuring playbooks will be covered in Chapter
5, “Getting Started with Playbooks.” In this chapter we
work on some of the preliminary knowledge that is
required before you start working with playbooks. You
learn about ad hoc commands and modules, which allow
you to perform quick tasks on Ansible without having to
create any playbooks.

UNDERSTANDING AD HOC
COMMANDS
An ad hoc command is an Ansible task that you can run
against managed hosts without the need to use any
playbook files or other script-like solutions. Ad hoc
commands are easy to use and they are fast, and for that
reason, they are commonly used.

Ad hoc commands are used in particular on the
following:

• Setup tasks that bring nodes to a desired state

• Quick tests to verify that a playbook was indeed
successful

• Quick discovery tasks to verify that a node meets
certain criteria

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Let’s look at a sample command, and based on that
sample, try to understand what is needed in an ad hoc
command:

ansible all -m user -a "name=lisa"

This command contains a few ingredients. To start with,
there is the ansible command, which is the command
for running ad hoc commands. Next, you need to specify
on which hosts you want to run the ad hoc commands,
which is accomplished by the all part of the command.
The third element refers to the module that you want to
run. A module is a script that is executed by Ansible to
perform a specific task. In the sample command shown,
the -m option is used to call the module, and the
specific module in this example is user. Finally, you
need to provide arguments to the module by using the -
a option. In an ad hoc command, all arguments are
provided between double quotes. In this case there is
just one argument, but if there are many arguments, all
of them need to be included between double quotes.
Table 4-2 summarizes all these components of the ad
hoc command.

Table 4-2 Ad Hoc Command Components

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When running an ad hoc command, you must be using
your Ansible user account (not root), and you must be
in a project directory where the inventory file and the
ansible.cfg file can be found. Next, you run the
command ansible all -m user -a “name=lisa”, which
reaches out to all hosts in inventory to ensure that user
lisa exists.

While doing so, Ansible compares the desired state
(which is what you just specified in the ad hoc
command) with the current state of the managed
machine, and if so required, it applies changes to the
managed machine. In Listing 4-1 you can see what the
output of the command looks like. Notice the listing
executed the command on ungrouped, which refers to
all hosts that are not a part of any specific group.

Listing 4-1 Ad Hoc Command Output

[ansible@control ~]$ ansible ungrouped -m user -a
"name=lisa"
ansible2 | SUCCESS => {

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "append": false,
 "changed": false,
 "comment": "",
 "group": 1002,
 "home": "/home/lisa",
 "move_home": false,
 "name": "lisa",
 "shell": "/bin/bash",
 "state": "present",
 "uid": 1002
}
ansible1 | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": true,
 "comment": "",
 "create_home": true,
 "group": 1001,
 "home": "/home/lisa",
 "name": "lisa",
 "shell": "/bin/bash",
 "state": "present",
 "system": false,
 "uid": 1001
}

Listing 4-1 shows the output of the ad hoc command.
You can see that the first line shows ansible2 |
SUCCESS. This line indicates that host ansible2 already
meets the desired state, and as a result, no changes had
to be applied. For host ansible1, you can see ansible1 |
CHANGED, which indicates that host ansible1 did not
meet the desired state yet, and changes had to be
applied.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This is how each Ansible command works. Ansible
commands are idempotent, which means that regardless
of the current condition, Ansible brings the managed
host to the desired state. No matter how often you run
the command, it always results in the same desired
state. This is what is referred to as the idempotent
behavior of Ansible commands: even if you run a
command multiple times, the result is always the same.
In Exercise 4-1 you can try running an ad hoc command
for yourself.

Note

In this and the following exercises, you need to execute tasks as a non-
root user account. To do so, according to the setup instructions in
Chapter 2, “Installing Ansible,” you have created a user with the name
ansible. If you have created a user with a different name, make sure that
the name of that specific user is used instead of “user ansible”.

Exercise 4-1 Running an Ad Hoc Command

1. Open a shell as user ansible on the control host.
Make sure that you are in a directory that
contains the ansible.cfg configuration file that
you created in Exercise 3-3.

2. Create an inventory file with the name
inventory and make sure it has the following
contents:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ansible1
ansible2

3. Type ansible all -m user -a “name=lisa” to
instruct the user module to create a user with
the name lisa. This creates user lisa on all
managed hosts.

4. Observe the command output, and make sure
that all hosts return either the SUCCESS state
or the CHANGED state.

5. Run the command again. All hosts now return
the SUCCESS state because nothing needed to
be changed this time: the current state of the
hosts already met the desired state.

6. Type the command ansible all -m command
-a “id lisa”. In this command you run the
command module, a module that enables you
to run arbitrary commands on managed
machines, with the argument id lisa, which
actually is the command executed on the
managed nodes.

7. Observe the output of the command, which
should show that user lisa exists and show the
groups the user is a member of.

8. Clean up the managed machines using ansible
all -m user -a “name=lisa state=absent”.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This command reaches out to the managed
machines and removes user lisa again.

WORKING WITH MODULES
Ansible functionality is provided by modules. More than
3000 modules are available to take care of a wide range
of tasks, allowing administrators to manage Linux
servers, Windows servers, cloud infrastructure, cloud
instances, containers, network devices, and much more.
Knowing Ansible equals knowing modules. Finding the
right module for the right task is a key skill, and the
more modules you know, the easier working with
Ansible will be.

The modules can best be seen as plug-in programs that
are used in Ansible playbooks or when using ad hoc
commands. The modules themselves are written as
Python scripts. That doesn’t mean that you have to
know Python though. Python knowledge is required
only if you are a developer who wants to develop your
own modules.

Exploring Essential Modules
Because working with modules is key, let’s explore some
key modules. Table 4-3 provides an overview.

Table 4-3 Ansible Key Modules

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Let’s take a closer look at these core modules.

command
The command module allows users to run arbitrary
commands using Ansible. Commands that are run by
the command module are not interpreted by a shell.
This means that common shell features, such as pipes
and redirects, don’t work while using the command
module. For instance, the command ansible all -m
command -a “rpm -qa | grep nmap” does not work.

The command module is the default module. This
means that if the option -m command is omitted,
Ansible interprets the argument that is provided by
default as an argument to the command module. If
another default module is needed, the option

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

module_name = module can be set in ansible.cfg.

Exam tip

You need to perform quite a few tasks on the RHCE exam. For sure, the
most elegant way to do so is to use the appropriate module. However,
using the command module or the shell module is not wrong; it’s just
not elegant. So if, on the exam, you cannot accomplish a task using the
module that was designed to perform that task, just use the command
module instead. All that counts is the result, and on the exam it doesn’t
really matter how you got there.

shell
The shell module is similar to the command module and
allows you to run arbitrary commands, with one
important difference: the shell module does run the
commands through a shell. That means the usual shell
features, such as pipes and redirects, do work while
using this module. Compare, for instance, the result of
the command ansible all -m shell -a “rpm -qa | grep
nmap” to the command used before. This time it will
work.

raw
The third module that enables you to run arbitrary
commands on managed nodes is the raw module. The
shell and the command modules, when used, generate a
Python script, which is sent over SSH to be executed on
the managed host. The raw module, however, doesn’t
need Python on the managed host; it sends the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

command straight over the SSH connection. This makes
the raw module an excellent choice while setting up a
machine or to work on a managed machine that doesn’t
have a Python stack, such as a network device.

Using the appropriate options, you can use the raw
module to perform initial setup tasks on managed hosts.
An example is the command ansible -u root -i
inventory ansible3 --ask-pass -m raw -a “yum
install python3”, which can be used to install Python
3 on host ansible3, which may be a node that hasn’t
received any Ansible configuration yet. Notice that the
raw module could be used as an alternative to the
command or shell module, but this approach is not
recommended. As a generic rule of thumb, you should
always try to use the module that is the most specific for
the task that you want to accomplish.

Note

The command, shell, and raw modules are all used to run arbitrary
commands on a managed node. In most cases, it is recommended to
avoid using them. Most other modules are idempotent and make it easy
to track changes. The command, shell, and raw modules just run an
arbitrary command, and it’s hard to track what exactly has been changed
using these modules, and for that reason it is difficult to guarantee
idempotency when they are used. For that reason, you should try to avoid
them as much as you can.

copy
As its name suggests, the copy module is used to copy

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

things. You can use it to copy files, but you can also use
it to copy simple lines of text into a managed files. An
example is ansible all -m copy -a 'content="hello
world" dest=/etc/motd', which copies the text “hello
world” into the /etc/motd file.

yum
The yum module can be installed to manage software on
the Red Hat distribution and related distributions. Use,
for example, ansible all -m yum -a “name=nmap
state=latest” to install the latest version of the nmap
package on all managed nodes. Notice that yum is not
the only module available for managing software. A
more generic module is package, which has the
advantage that it works on any Linux distribution.
Between the two of them, use the yum module if you
need to work with specific yum command features, and
use the package module if the highest priority is to
manage software on different managed distributions.

service
The service module is used to manage the state of
services through either the legacy system V (init)
process, or systemd. While using it, make sure that you
don’t just start the service using the argument
state=started, but also enable the service using
enabled=yes. If you just use state=started, the managed
service is started now but won’t be started automatically

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

again after a restart. It’s like using systemctl start
myservice without using systemctl enable
myservice.

Use, for instance, ansible all -m service -a
“name=httpd state=started enabled=yes” to
enable and start the httpd service. (Obviously, you have
to use the yum module to install the httpd service
before you can do that.)

ping
The ping module is a simple module that can be used to
check whether hosts have been set up correctly to be
managed with Ansible. So it doesn’t just test
connectivity; it tests manageability. It doesn’t need any
arguments. Just use ansible all -m ping to check
connectivity for all hosts in inventory. Listing 4-2 shows
what the answer looks like for hosts that are available
but also shows what you see if a host is not available. To
get the same result, just add the hostname ansible3 to
the inventory file. In Exercise 4-2 you can practice
working with this module as well as the other modules
discussed here.

Listing 4-2 Analyzing ping Module Output

[ansible@control ~]$ ansible all -m ping
ansible3 | UNREACHABLE! => {

 "changed": false,

 "msg": "Failed to connect to the host via ssh: ssh:
Could not resolve hostname ansible3: Name or service not

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

known",

 "unreachable": true

}

ansible2 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}
ansible1 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}

Exercise 4-2 Using Modules in Ad Hoc
Commands

1. Use ansible all -m ping to verify that all hosts
in inventory are in a manageable state.

2. Type ansible ansible1 -m yum -a
“name=httpd state=installed” to install the
httpd software package on host ansible1.

3. Verify that the package is installed using
ansible all -m command -a “rpm -qa |
grep httpd”. Analyzing the output, you can see
that the rpm -qa command runs successfully
on the managed hosts, but the pipe is ignored.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Use ansible all -m shell -a “rpm -qa | grep
httpd”. In the output you can see that node
ansible2 gives a “non-zero return code”
message, meaning that the command did not
complete successfully. You can also see a list of
matching packages on ansible1. Last, you can
see a warning message stating that you should
use the yum module instead. Notice that the
shell as well as the command modules reported
a changed status as the result, even if nothing
has really changed.

5. Use ansible all -m yum -a “list=httpd” and
compare the output to the output of the
command used in step 4.

6. Use ansible all -m command -a “systemctl
status httpd” to verify the current status of
the httpd service. It should show the service is
not found on ansible2 and the service is inactive
and disabled on ansible1.

7. Use ansible ansible1 -m service -a
“name=httpd enabled=yes state=started”
to start and enable the httpd service on
ansible1.

8. Run the command ansible all -m command
-a “systemctl status httpd” again to verify
the modification has been applied.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Browsing Available Modules
As mentioned before, to be successful with Ansible, you
need to know modules. There are many modules, of
course, and to figure out which modules are available,
you can use ansible-doc -l. This command lists all
modules that are installed on your system. When you
use it on a CentOS 8.1 installation with a default Ansible
installation, you see that no fewer than 3387 modules
are installed!

The fact is that many modules are available for Ansible
—so many that you’ll never use all of them, and also so
many that in some cases you’ll have a choice between
different modules to accomplish the same task. When
you’re new to Ansible, finding the appropriate module
can be hard. By working your way through this Cert
Guide, you’ll learn about some of the most useful
modules, but you’re always advised to search whether a
better module might be available. You can do that by
using ansible-doc -l and filtering the output using the
Linux grep utility. Use, for instance, the command
ansible-doc -l | grep vmware to see all the modules
available in Ansible to manage VMware environments.

CONSULTING MODULE
DOCUMENTATION

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Ansible modules are well documented. You can find
documentation for all the installed modules using the
ansible-doc command. Apart from the ansible-doc
command, which is always available on your Ansible
installation, you can visit the Ansible documentation
website, which is available at https://docs.ansible.com.

Exam tip

Documentation is available on your exam, so learn how to use it. You
have access to the ansible-doc command but also to a local copy of all
documentation at https://docs.ansible.com for the Ansible version used
on the exam. As you study for the exam, make sure you practice using
these valuable resources!

Using ansible-doc
The ansible-doc command provides information about
all Ansible modules. This documentation is presented in
a structured way. Listing 4-3 shows the result of the
command ansible-doc ping.

Listing 4-3 Analyzing ansible-doc Command Output

> PING (/usr/lib/python3.6/site-
packages/ansible/modules/system/ping.py)

 A trivial test module, this module always returns
`pong’ on
 successful contact. It does not make sense in
playbooks, but
 it is useful from `/usr/bin/ansible’ to verify the
ability to
 login and that a usable Python is configured. This
is NOT ICMP

||||||||||||||||||||

||||||||||||||||||||

https://docs.ansible.com
https://docs.ansible.com
https://technet24.ir
https://technet24.ir

 ping, this is just a trivial test module that
requires Python
 on the remote-node. For Windows targets, use the
[win_ping]
 module instead. For Network targets, use the
[net_ping] module
 instead.

 * This module is maintained by The Ansible Core Team
OPTIONS (= is mandatory):

- data
 Data to return for the `ping’ return value.
 If this parameter is set to `crash’, the module
will cause an
 exception.
 [Default: pong]
 type: str

SEE ALSO:
 * Module net_ping
 The official documentation on the net_ping
module.

https://docs.ansible.com/ansible/2.9/modules/net_ping
 _module.html
 * Module win_ping
 The official documentation on the win_ping
module.

https://docs.ansible.com/ansible/2.9/modules/win_ping
 _module.html

AUTHOR: Ansible Core Team, Michael DeHaan
 METADATA:
 status:
 - stableinterface
 supported_by: core

EXAMPLES:

Test we can logon to ’webservers’ and execute python
with json lib.
ansible webservers -m ping

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example from an Ansible Playbook
- ping:

Induce an exception to see what happens
- ping:
 data: crash

RETURN VALUES:

ping:
 description: value provided with the data parameter
 returned: success
 type: str
 sample: pong

Because all the ansible-doc resulting pages show the
same structure, it makes sense to understand the
different elements. Table 4-4 shows default elements in
the ansible-doc command result.

Table 4-4 ansible-doc Output Elements

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The first interesting element in the result of ansible-
doc is the name of the module, which is followed by the
name of the Python script that is used by this module.
Ansible modules are written in Python, and the Python
scripts are just installed on your control system. So if
you want to see what is happening, you can open the
Python script, analyze it, and—if you want—even
optimize it.

Following the name of the underlying script is a short
module description. It’s a good idea to read the module
description, particularly if you’re using a module for the
first time. The examples that you may have copied from
your Google search don’t provide information about the
gotchas in a particular module, so read it!

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, you see who is responsible for maintaining a
module. This is important information that can help you
in selecting the best module for your specific purpose.
In general, it’s a good idea to look for modules that are
maintained by the Ansible Core Team, but if you’re
working on a specific network appliance, using the
modules provided by the appliance vendor may be a
better idea.

The following element is a list of all the options. Most
modules have options, and many modules have at least
one option that is mandatory. If your module has
mandatory options, you’ll find the option indicated as
=option (instead of -option). The SEE ALSO section that
is next gives information about related and/or similar
modules. It’s a good idea to have a look at this section
because you might find yourself in a specific module
where there’s also another module that is just a little bit
better to accomplish your task.

At the end of the ansible-doc output, you’ll find the
name of the author, and most important, usage
examples. In most cases, the examples show sample
playbook code. This information is most useful because
you’ll find examples of the most common use cases and
the playbook code you need to use to implement the
module in a playbook. All the way at the end of the
output you’ll find the return values. This section
provides information about the type of output that is to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

be expected from this module.

By default, the ansible-doc command provides full
documentation about a module. When working on
playbooks, you are typically most interested in how to
use required parameters in a playbook. To get that
information, you can use ansible-doc -s
modulename. The result of this command shows a
sample playbook structure, with a list of the arguments
that can be used and a short description for each
argument. Because the result of ansible-doc -s is not
as overwhelming as the complete output, many people
like using this approach. Listing 4-4 shows partial
sample output of this command.

Listing 4-4 Showing Usage Information with ansible-
doc -s service

- name: Manage services
 service:
 arguments: # Additional arguments
provided on the
 command line.
 enabled: # Whether the service should
start on boot.
 *At least one of state and
 enabled are required.*
 name: # (required) Name of the
service.
 pattern: # If the service does not
respond to the
 status command, name a
substring to
 look for as would be
 found in the output of
 the `ps’ command as a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 stand-in for a status
 result. If the string
 is found, the service
 will be assumed to be
 started.
 runlevel: # For OpenRC init scripts
(e.g. Gentoo) only.
 The runlevel that this
 service belongs to.
 sleep: # If the service is being
`restarted’ then
 many seconds between
 the stop and start
 command. This helps to
 work around badly-
 behaving init scripts
 that exit immediately
 after signaling a
 process to stop. Not
 all service managers
 support sleep, i.e when
 using systemd this
 setting will be
 ignored.

Using https://docs.ansible.com
Apart from the on-system documentation provided by
ansible-doc, on the exam you’ll also have access to the
docs.ansible.com website (see Figure 4-1). On this
website you can find all you need to know about
Ansible, but in some cases it’s not obvious where to find
that information. For that reason, you must practice
using the documentation before taking the exam. In
particular, you use the search bar in the upper-left part
of the screen. Where appropriate, you’ll also find
guidelines in this book on where to find specific types of

||||||||||||||||||||

||||||||||||||||||||

https://docs.ansible.com
http://docs.ansible.com
https://technet24.ir
https://technet24.ir

information. You can practice working with the
documentation in Exercise 4-3.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 4-1 Browsing documentation at
docs.ansible.com

Exercise 4-3 Working with the Documentation

1. Type ansible-doc -l | grep user. You see a
long list of all modules that have the string
“user” either in the module name or in the
description of the module.

2. Type ansible-doc user and look up mandatory
arguments. You should find that the name
argument is mandatory. Also, look at the SEE
ALSO section, where you can find information
about related modules.

3. Scroll forward to the EXAMPLES section and
look at the examples there.

4. Type ansible-doc -s user to see the output of
this command. Notice that the output looks like
a combination of the list of arguments and the
examples in the ansible-doc command.

5. Open the Ansible documentation at
https://docs.ansible.com from your browser
and click Documentation in the upper-left
corner.

6. In the search bar in the upper-left corner, type
user module system.

||||||||||||||||||||

||||||||||||||||||||

http://docs.ansible.com
https://docs.ansible.com
https://technet24.ir
https://technet24.ir

7. In the results list, open the link to System
Modules. This takes you to a list with all
modules that relate to system management
tasks. From this list, select the User module
and look at the web page. Notice that the
resulting web page contains the exact same
information as what you find in the result of
ansible-doc user.

RUNNING AD HOC
COMMANDS FROM SHELL
SCRIPTS
To understand why in a book about Ansible there is a
section about shell scripting, you need to look at the
Exam Format section on the “What you need to know”
page in Red Hat’s description of the Ansible exam
(https://www.redhat.com/en/services/training/ex294-
red-hat-certified-engineer-rhce-exam-red-hat-
enterprise-linux-8). In this section you find the
following text:

Your work will be evaluated by applying the
playbooks created during the exam against freshly
installed systems and verifying that those systems
and services work as specified.

This means that during the exam, you will be creating

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.redhat.com/en/services/training/ex294-red-hat-certified-engineer-rhce-exam-red-hat-enterprise-linux-8
https://technet24.ir
https://technet24.ir
https://technet24.ir

Ansible playbooks, and during the exam you can test
these playbooks on the managed machines that are
provided. Once the exam is over, your playbook will be
graded. In the grading process, a new set of managed
machines will be provided, and your playbooks will be
executed against this new set of managed machines.

In the exam, it is most likely that you will have to work
with ad hoc commands as well, and “Create simple shell
scripts that run ad hoc Ansible commands” is one of the
exam objectives. You’ll have to do that in a script
because that is the only way the exam evaluation engine
will be able to verify your work. As a result, you need to
have at least minimal knowledge about using shell
scripts. In this section you get a minimal introduction to
working with Bash shell scripts. The purpose is not to
teach everything there is to know about shell scripts, but
just to show you the shell scripting essentials required
on the exam.

On Red Hat Enterprise Linux, the Bash shell is used as
the default command interpreter. Users can type
commands at the shell prompt, and the command will
provide its output. For complex tasks, it may be useful
to create a script that executes all the commands that
are needed to run a task. Doing this is not complicated:
just enter all commands you want to use as a list in the
script. Also, to avoid any interpretation issues, it’s a
good idea to include a “shebang” (#!) on the first line of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the shell script. The shebang indicates which shell
should be used while executing the commands in the
script.

Listing 4-5 shows a sample script that is created to run
two ad hoc commands.

Listing 4-5 Running Ad Hoc Commands from a Script

#!/bin/bash

ansible all -m yum -a "name=httpd state=latest"
ansible all -m service -a "name=httpd state=started
enabled=yes"

If you put the sample lines in Listing 4-5 into a file, you
can then run that file as a shell script.

To create a shell script, the file has few requirements.
The contents must be plain ASCII text that is not
formatted. The filename itself has no requirements, but
many people like using the .sh file extension. This
extension is not needed (the Linux operating system
doesn’t work with extensions), but the extension may
make it easier to recognize a script as a script file. If you
agree to that statement, call your script file myscript.sh
instead of myscript.

After creating the script code, you need to run it. To run
a script, it needs to have the execute permission. The
easiest way to apply that permission is to use chmod
+x myscript.sh. This applies the execute permission to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

all users who currently have read permission to the file.
Next, you can run the script.

To run a script from the current directory, you would
normally use the command ./myscript.sh. In this
command, the dot refers to the current directory. Using
this dot is required if the current directory is not in the
$PATH variable. If you want to run the script without
having to enter the ./ first, you need to make sure it is in
a directory that is in the $PATH variable. You can do
that by copying the script to the /usr/local/bin directory,
which is in the $PATH variable for normal users. In
Exercise 4-4 you can practice writing a shell script that
runs Ansible ad hoc commands.

Exercise 4-4 Running Ad Hoc Commands from
a Script

1. From the directory that contains the inventory
and ansible.cfg files, type vim setup.sh to
create a setup script.

2. Make sure the script contains the following
lines and save the file:

#!/bin/bash

ansible all -m yum -a "name=vsftpd state=i

nstalled"

ansible all -m service -a "name=vsftpd sta

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

te=started enabled=yes"

3. Type chmod +x setup.sh to make the script
file executable.

4. Type the command ./setup.sh to run the script
and perform the selected tasks on the managed
hosts.

SUMMARY
In this chapter you learned how to work with ad hoc
commands to set up managed hosts and to run quick
checks on managed hosts. You also learned about
Ansible modules and how to get information about
Ansible modules using the appropriate tools. In the next
chapter you’ll learn how to use playbooks, which allow
you to work with Ansible in a consistent way.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 4-5 lists a reference of these key topics and
the page numbers on which each is found.

Table 4-5 Key Topics for Chapter 4

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

ad hoc command

bash script

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

current state

desired state

idempotent

module

REVIEW QUESTIONS
1. In what situations would you use ad hoc

commands?

2. Which module should you use to install Python
on a managed host?

3. Which module should you use to run the rpm -
qa | grep httpd command?

4. On the RHCE exam, you cannot find the specific
module to install software, so you decide to
install software using the command module. Is
that acceptable?

5. Which arguments should you use to start and
enable the httpd service with the service module?

6. You use ansible-doc on the user module and
find out that this module cannot create users on
Windows. Which part of the documentation
would you look at to find the command that
needs to be used on Windows?

7. You are a Python programmer and want to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

optimize a module for use in your environment.
Where do you get the module source code?

8. While executing a script that runs ad hoc
commands, you get a “permission denied” error
message. What is the most likely explanation?

9. How would you change the default module used
in ad hoc commands?

10. What is the best way to get some examples of
playbook code that can be used for a specific
module?

END-OF-CHAPTER LAB
In the end-of-chapter lab, this time you create a script
that runs some ad hoc commands on managed hosts.

LAB 4-1
Create a script with the name install.sh that makes sure
managed hosts meet the following requirements. It
doesn’t matter if the hosts already meet the
requirements; your script should be created such that it
sets up a managed host according to these requirements
if it has not yet been configured.

• Install the httpd web server.

• Start and enable the httpd web server.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Create a user with the name anna.

• Copy the /etc/hosts file from the control machine to
the /tmp/ directory on the managed host.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 5. Getting Started
with Playbooks
This chapter covers the following subjects:

• Exploring Your First Playbook

• Working with YAML

• Managing Multiplay Playbooks

The following RHCE exam objectives are covered
in this chapter:

• Understand core components of Ansible

• Plays

• Playbooks

• Create Ansible plays and playbooks

• Create playbooks to configure systems to a
specified state

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 5-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 5-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following do you normally find on the
first line of a playbook?

a. The name of the first play

b. The name of the hosts that are addressed

c. ---

d. ...

2. Each play must have at least three parameters in its
header. Which of the following is not one of them?

a. hosts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

b. tasks

c. name

d. become

3. Which statements about indentation are true?

a. Indentation is used to identify the relationship
between parent and child objects.

b. Spaces may not be used.

c. Tabs may not be used.

d. Plays without indentation are hard to read but
do work.

4. How do you undo modifications that are applied
from a playbook?

a. Use ansible-playbook -u.

b. Use ansible-playbook -u --force.

c. You cannot undo changes made by a playbook.

d. You can create a playbook that accomplishes
the opposite of the original playbook.

5. What status would you expect to see while running
a task that has modified the managed system?

a. ok

b. changed

c. modified

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

d. applied

6. Which statement about using YAML lists in
playbooks is true?

a. Any module can use a YAML list to specify the
names of items that need to be processed.

b. YAML lists can be used at a play level, not at a
tasks level.

c. The service module does not support YAML
lists to manage multiple servers.

d. A YAML list can be used to run multiple
modules.

7. Which option can you use to feed multiple lines of
text to a text file, while keeping the newline
characters to guarantee proper formatting?

a. |

b. >

c. :

d. \

8. Which of the following can you use to verify which
tasks in a playbook would trigger a change?

a. --syntax-check

b. --dry-run

c. -vvv

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

d. -C

9. Which of the following indicates the best use case
for a multiplay playbook?

a. A web server must be installed on server1; a
database server must be installed on server2.

b. An FTP server must be installed on server1,
after which localhost is used to test
connectivity to that server.

c. A task must run using a different user account.

d. A play must run with different privilege
escalation parameters.

10. Which of the following is not a benefit of using a
multiplay playbook?

a. Different hosts may be addressed.

b. Plays may run with different user accounts.

c. Plays can be scheduled separately.

d. Some plays may be configured to run without
privilege escalation.

FOUNDATION TOPICS

EXPLORING YOUR FIRST
PLAYBOOK

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ansible is all about running playbooks. In this section
you learn how to move forward from entering tasks as
ad hoc commands on the command line to writing
Ansible playbooks.

From Ad Hoc Commands to Playbook
Before we get into the details about playbooks and
explore the possibilities of using them, let’s run a
playbook. In Chapter 4, “Using Ad Hoc Commands,” you
learned how to work with ad hoc commands, and in
Listing 4-5, you created a Bash script to run some of
these commands against managed nodes. Listing 5-1
shows you the commands.

Listing 5-1 Running Ad Hoc Commands from a Script

#!/bin/bash

ansible all -m yum -a "name=httpd state=installed"
ansible all -m service -a "name=httpd state=started
enabled=yes"

All that you do in this script can be done in a playbook
as well. Just take a look at the playbook example in
Listing 5-2 to see what such a playbook would look like.
If you look close enough, you can see that all elements
that were specified in the ad hoc commands also occur
in the playbook.

Listing 5-2 Configuring Hosts from a Playbook

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- name: install start and enable httpd
 hosts: all
 tasks:
 - name: install package
 yum:
 name: httpd
 state: installed
 - name: start and enable service
 service:
 name: httpd
 state: started
 enabled: yes

Playbook Elements
A playbook is a collection of plays. Each play targets
specific hosts, and in each play a list of tasks is specified.
In the sample playbook in Listing 5-2, one play with the
name “install start and enable httpd” is defined.

Playbooks are written in the YAML format and are
normally saved with either the .yml or the .yaml
extension. YAML format essentially specifies objects as
key-value pairs. Dashes can be used to specify lists of
embedded objects. For more details about YAML, see
the section “Working with YAML” later in this chapter.

At the start of each playbook, you find three dashes.
Optionally, you may also find three dots at the end of
the playbook. Using these characters makes it easy to
embed the playbook code into something else and easily
isolate the playbook code when it is included.

While you’re working with playbooks, the target hosts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

are specified in the play, not in the command that runs
the playbook (which happens in ad hoc commands).
After you indicate the target hosts, you specify a list of
tasks. Each item in the list is identified with a hyphen.

For each task, you specify the Ansible module that the
task is running and a name. Notice that using names for
tasks is not mandatory but is highly recommended,
because using names makes it a little easier to identify
which tasks have been able to run successfully. Next,
you should identify the arguments that the task should
be running.

To identify hierarchical relations in playbooks, you use
indentation. The basic rules for indentation are easy:

• Data elements at the same level in the hierarchy
must have the same indentation.

• Items that are children (properties) and another
element are indented more than the parents.

You create indentation using spaces. There is no
requirement for how many spaces to use, but using two
spaces is common. Using tabs for indentation is not
permitted.

Within the playbook, one or more plays are defined.
Plays are the highest level in the playbook, and each
play starts with a hyphen. The reason is that the
playbook defines a list of plays, and it is valid if the list
contains just one play. All properties of the play (name,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

hosts, and the word tasks) are indented at the same
level, and next there is a list of tasks. The list of tasks is
a property of the play, and these tasks are indented one
level deeper than the parent items to show the
hierarchical relation between play and tasks. The next
level of indentation happens at the task argument level,
where each argument that is passed to a task is indented
one more level deeper.

Tip

To make working with indentation easier, you may configure the vi editor.
If the following line is included in the file ~/.vimrc, indentation
automatically happens correctly if vi detects that a YAML file is created.
Notice this requires you to either use the .yml or the .yaml extension to
the files.

autocmd FileType yaml setlocal ai ts=2 sw=2 et

In playbooks, you may find one or more plays. Each play
has some required elements, which are listed in Table 5-
2.

Table 5-2 Playbook Play Required Keys

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Running the Playbook
To run the playbook, you use the command ansible-
playbook listing52.yaml. The result is shown in
Listing 5-3. Notice that depending on the state of the
managed machine, you might see a slightly different
result, showing “changed” instead of “ok.”

Listing 5-3 Running a Playbook Output

[ansible@control ~]$ ansible-playbook listing52.yaml

PLAY [install start and enable httpd]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [install package]
**

ok: [ansible1]
ok: [ansible2]

TASK [start and enable service]
**

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ok: [ansible2]
ok: [ansible1]

PLAY RECAP
**

ansible1 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

In the output of the ansible-playbook command, you
always see the same elements. The output starts with
the name of the play. This is the name that you defined
yourself in the name part of each play. Next, you get an
overview of the tasks that you defined in the playbook.
Each task is identified by the name that you used for the
task in the playbook code, and for each task, the
ansible-playbook command indicates on which
managed host it was executed and whether that was
successful.

Before the list of tasks that you defined, the ansible-
playbook command gathers facts. Fact gathering is an
important part of Ansible, where Ansible learns about
current configuration and settings on managed nodes;
you’ll learn more about this topic in Chapter 6,
“Working with Variables and Facts.”

The last element is the Play Recap. In this element you
get an overview of the status of each task. If you see
“ok” in the task result status, the task has executed

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

successfully and no changes were required. If a task
gives the result status “changed,” a task has successfully
applied modifications to apply the desired state as
defined in the playbook. We discuss the other output
status options later.

Undoing Playbook Modifications
Undoing playbook modifications is easy to understand.
Ansible does not offer any undo functionality, so if you
created a playbook and later regret the modifications the
playbook has made, you must write a new playbook to
define a new desired state that reverts the changes you
applied earlier. In Exercise 5-1 you practice all the skills
discussed so far and run your first playbook.

Exercise 5-1 Running Your First Playbook

1. Type vim exercise51.yaml to open a new file
that will contain the desired playbook code.
Make sure the file is created in your home
directory, where an ansible.cfg and inventory
file already exist.

2. Type three dashes to start the playbook code:

3. Start the play definition on a new line. This play

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

definition starts with a dash, which is followed
by a space and name:, which is followed by the
name of the play:

- name: install and start the vsftpd servi

ce

4. You need to add a line that defines the hosts
that the play should manage. Notice that this
line is indented at the same level as the word
“name” because this line is a part of the same
play definition:

- name: install and start the vsftpd servi

ce

 hosts: all

5. In the next part of the play, you define the tasks
that will be executed by this play. Under the
word hosts, indented at the same level, type
tasks:. There is nothing after the colon because
the value of the key tasks is a list of tasks,
which is provided on the next couple of lines:

- name: install and start the vsftpd servi

ce

 hosts: all

 tasks:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6. At this point, you can start defining the tasks.
The first task ensures that the yum module is
used to define the vsftpd package. Notice the
indentation, which identifies that the task is a
child element of the play:

- name: install and start the vsftpd servi

ce

 hosts: all

 tasks:

 - name: install vsftpd

 yum:

7. At this point, you may specify the arguments to
the yum module. Because these arguments are
child elements in relation to the yum module,
you need another level of indentation:

- name: install and start the vsftpd servi

ce

 hosts: all

 tasks:

 - name: install vsftpd

 yum:

 name: vsftpd

 state: latest

8. The first task is now defined, and you can

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

specify the next task that calls the service
module to start and enable the vsftpd service.
Notice that this task is indented at the same
level as the yum task:

- name: install and start the vsftpd servi

ce

 hosts: all

 tasks:

 - name: install vsftpd

 yum:

 name: vsftpd

 state: latest

 - name: start and enable vsftpd service

 service:

 name: vsftpd

 state: started

 enabled: yes

9. The playbook is now completed, so write your
changes to the file and quit the editor. Next, use
ansible-playbook exercise51.yaml to run
the playbook.

10. Observe the output of the playbook and verify
that everything has executed all right.

WORKING WITH YAML
YAML (an acronym for YAML Ain’t Markup Language

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

according to some, and Yet Another Markup Language
according to others) is an easy-to-read data-serialization
language. YAML is a common language used for
configuration files, not only in Ansible but also in other
environments, like Kubernetes and in configuration of
some Linux services. YAML isn’t difficult to use, but you
should know a few things when working with YAML.

Indentation
To start with, YAML uses indentation. As discussed
earlier, indentation identifies relations between parts of
the configuration so that you can easily see what is a
parent object and what is a child object. The most
important rule in indentation is that you must use
spaces and not tabs.

Using Key-Value Pairs
YAML is all about defining key-value pairs, also known
as dictionaries. An example of such a key-value pair is
name: vsftpd. Key-value pairs can be defined in two
ways: key: value or key=value. Of these two, the first
method is preferred, but the second way works also.

If an object in YAML needs multiple key-value pairs to
define its properties, it is common to define one key-
value pair on a line. If the key=value format is used,
it’s possible to define all the multiple key-value pairs on
one line. The sample playbook in Listing 5-4 shows such

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

an example.

Listing 5-4 Multiple Ways to Define Key-Value Pairs

- name: deploy vsftpd
 hosts: ansible2
 tasks:
 - name: install vsftpd
 yum: name=vsftpd
 - name: enable vsftpd
 service: name=vsftpd enabled=true
 - name: create readme file
 copy:
 content: "welcome to the FTP server\n"
 dest: /var/ftp/pub/README
 force: no
 mode: 0444
...

In the sample playbook in Listing 5-4, three tasks are
defined. In the first two tasks, all key-value pairs are
defined in the key=value format on the same line as the
name of the module that is used. The third task defines
all key-value pairs in the key: value format on separate
lines. To keep your playbooks readable, you should use
only the latter approach.

Note

In Ansible, on multiple occasions it’s possible to use a different syntax.
This section is provided as an introduction to working with YAML, not as
a complete overview to working with the language. If you need a more
complete overview of YAML syntax variations, look for “YAML Syntax” in the
Ansible documentation.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Notice that in the third task the copy module is used to
copy a line of text into a destination file. This is an easy
way to create a configuration file that contains some
standard text. There are other modules to manage text
that needs to be copied into a file; you’ll learn more
about them in Chapter 8, “Deploying Files.”

Understanding YAML Lists
While you’re working with YAML in Ansible playbooks,
keys can have one value, and some keys can have
multiple values. No standard rule defines what is the
case in which situation. Whether a key can contain
multiple values depends on the Ansible module. When
you use the yum module, for instance, you can specify a
list of packages to the name key. When you use the
service module, for instance, it’s not possible to specify
a list as the argument to the name key. The module
documentation normally indicates whether it’s possible
to specify a list as a value to a specific key. Listing 5-5
shows an example of a playbook that uses a list to define
the values of a key.

Listing 5-5 Installing Multiple Packages Using Lists

- name: using lists
 hosts: all
 tasks:
 - name: install packages
 yum:
 name:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - nmap
 - httpd
 - vsftpd
 state: latest

Tip

The yum module can work with different package states. For example,
you can use state: installed to make sure that a package is installed
and use state: latest to ensure that the latest version of a package is
installed, which triggers a package update if needed.

Using YAML Strings
In YAML files, you include strings on multiple
occasions. Using strings is not difficult because the
string doesn’t have to be escaped by using quotation
marks. However, you are allowed to use quotation
marks anyway. This means that all the following
notations are valid:

Line of text

“Line of text”

‘Line of text’

There are two ways to deal with multiline strings. You
can use the | sign in a multiline string to take over all
newline characters. If all text in a multiline string just
needs to be treated as a line of text, without any further
formatting, you can use the > sign. Use the | sign if you
want to maintain formatting. Use the > sign if you want

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

to split text over multiple lines in the playbook for
better readability, but the lines don’t have to be written
as multiple lines in the target file.

Verifying Syntax
Because you can easily make a typo or indent items at
the wrong level, it might be wise to verify syntax. The
ansible-playbook command provides the --syntax-
check option for this task. Listing 5-6 shows what the
result of this command might look like.

Listing 5-6 Checking Syntax with ansible-playbook
--syntax-check

[ansible@control ~]$ ansible-playbook --syntax-check
listing56.yaml
ERROR! Syntax Error while loading YAML.
 mapping values are not allowed in this context

The error appears to be in ’/home/ansible/listing54.yaml’:
line 8, column 12, but may
be elsewhere in the file depending on the exact syntax
problem.

The offending line appears to be:

 name: httpd
 state: latest
 ^ here

As you can see, the ansible-playbook command tries
to make a reasonable guess about where the syntax
problem occurs. Based on the exact error, this guess
may be accurate or totally inaccurate. In this case it is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

quite accurate, as you can see in Listing 5-7, which
shows the code that is used to produce the error in
Listing 5-6 (as the error occurs just one line earlier).

Tip

Where relevant, the playbook code that is used in the listings in this book
is available in the book github repository. If you haven’t done so yet, you
can get the files by using the command git clone
https://github.com/sandervanvugt/rhce8-book.

Listing 5-7 Sample YAML File with Errors

- name: install start and enable httpd
 hosts: all
 tasks:
 - name: install package
 yum:
 name: httpd
 state: latest
 - service:
 name: httpd
 state: started
 enabled: yes

As seen in the output of the ansible-playbook --
syntax-check command in Listing 5-6, the output is
quite accurate while indicating the exact location of the
problem. In Listing 5-7, you might also notice a second
problem that was not found in the code; the line name:
httpd should be indented as a child element to the
service: module. The reason is that the ansible-
playbook --syntax-check stops after finding the first

||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir

error. You have to fix this error and run the command
again to see the second error as well.

One last word about --syntax-check. It may be a
useful option, but you should realize that the ansible-
playbook command checks syntax by default. So if you
had just run ansible-playbook listing56.yaml, you
would have seen the exact same message.

Performing a Playbook Dry Run
Before you actually run a playbook and make all
modifications to the managed hosts, it may make sense
to perform a dry run. You can do this by using the
ansible-playbook -C myplaybook.yaml command.
While you perform a dry run, the ansible-playbook
command shows you which hosts would be changed by
running the playbook without actually applying the
changes. See Listing 5-8 for an example. After that, you
can work on Exercise 5-2 to practice your YAML skills.

Listing 5-8 Performing a Playbook Dry Run

[ansible@control ~]$ ansible-playbook -C listing56.yaml

PLAY [using lists]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TASK [install packages]
**

changed: [ansible2]
changed: [ansible1]

PLAY RECAP
**
**
ansible1 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Exercise 5-2 Practicing YAML Skills

1. Open an editor to create the file
exercise52.yaml. Define the playbook header by
including the following lines:

- name: copy multiline text

 hosts: ansible1

 tasks:

2. Add the first task. In this task you use the copy
module, using content and the | sign to copy
two lines of text to a file that does not yet exist:

- name: copy multiline text

 hosts: ansible1

 tasks:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - name: copy text

 copy:

 content: |

 line 1

 line 2

 dest: /tmp/multiline1.txt

3. Add a second task that also uses the copy
module but this time uses the > sign:

- name: copy multiline text

 hosts: ansible1

 tasks:

 - name: copy text

 copy:

 content: |

 line 1

 line 2

 dest: /tmp/multiline1.txt

 - name: copy more text

 copy:

 content: >

 line 1

 line 2

 dest: /tmp/multiline2.txt

4. Use ansible-playbook exercise52.yaml to
run the playbook and verify that in the output
you see two tasks reporting a changed status.

5. Verify the files that have been created. First,
use ansible ansible1 -a “cat

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

/tmp/multiline1.txt” to verify the contents of
the first file. Notice that it contains multiple
lines.

6. Next, use ansible ansible1 -a “cat
/tmp/multiline2.txt” to verify that the file
contains all the separate lines on one single
line.

MANAGING MULTIPLAY
PLAYBOOKS
Up to now, you’ve worked with a playbook that has just
one play. Many playbooks that you find out in the wild
work with multiple plays though. Using multiple plays
in a playbook makes it easy to perform the complete
setup of a managed environment, where you can set up
one group of servers with one specific configuration and
another group of servers with another configuration.
When you work with multiplay playbooks, each play has
its own list of hosts to address.

Multiplay Playbook Considerations
The main benefit of running a multiplay playbook is
that you can configure multiple plays that should all be
run in the same procedure. In each play, different
connectivity options can be used. To start with, you can
define different hosts or host groups, but it’s also

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

possible to use different connection parameters that
may even overwrite default parameters that have been
set in the ansible.cfg file. Think of parameters like
become: no, which indicates that no privilege
escalation is needed, or remote_user: bob, which
instructs the playbook to run the remote tasks as user
bob instead of using the default user account.

When you are writing playbooks, there are many
options. It might seem tempting to write huge
playbooks, including many tasks and multiple plays.
Doing so is not recommended as a best practice though.
To summarize the most important guideline from the
best practices: keep it simple. If there is no need to put
everything in one playbook, then simply don’t. The
bigger the playbook, the more difficult it will be to
troubleshoot.

In many cases it’s a much better solution to write
multiple smaller playbooks and use includes to include
functionality from other playbooks. One advantage is
that this approach makes troubleshooting a lot easier.
Another advantage is that this approach makes it easy to
develop a toolkit with many small playbooks that can be
used in a flexible way to perform a wide range of
management tasks. You’ll read more about this
approach in Chapter 10, “Using Ansible in Large
Environments.”

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Multiplay Playbook Example
Listing 5-9 shows an example of a multiplay playbook.
The first play sets up the httpd service on a managed
host. In the second play, the uri module is used to test
web server accessibility. If no further configuration is
used, this module tries to connect to a target web server
and expects the HTTP return code 200, indicating that
the target web page was accessed successfully.

In this multiplay playbook, the first play is executed on
the host group all. This host group includes all hosts
that are defined in inventory, but it does not include
localhost. The host localhost is not defined in inventory;
it’s an implicit host that is always usable and that refers
to the Ansible control machine. Using localhost can be
an efficient way to verify the accessibility of services on
managed hosts.

Listing 5-9 Multiplay Playbook Example

- name: install start and enable httpd
 hosts: all
 tasks:
 - name: install package
 yum:
 name: httpd
 state: latest
 - name: start and enable service
 service:
 name: httpd
 state: started
 enabled: yes

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

- name: test httpd accessibility
 hosts: localhost
 tasks:
 - name: test httpd access
 uri:
 url: http://ansible1

In Listing 5-10 you can see what happens when you run
the playbook. The uri module indicates that the status
code is −1, which indicates the httpd service could not
be accessed on the managed host. The exit code 200 was
expected, and because this is not the case, the uri
module returns an error. Do you have any idea why?
You don’t need to fix this problem yet; you’ll do this in
the end-of-chapter lab with this chapter.

Listing 5-10 Playbook Result

[ansible@control ~]$ ansible-playbook listing59.yaml

PLAY [install start and enable httpd]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [install package]
**

ok: [ansible2]
ok: [ansible1]

TASK [start and enable service]
**

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ok: [ansible2]
ok: [ansible1]

PLAY [test httpd accessibility]
**

TASK [Gathering Facts]
**

ok: [localhost]

TASK [test httpd access]
**

fatal: [localhost]: FAILED! => {"changed": false,
"content": "", "elapsed": 0, "msg": "Status code was -1
and not [200]: Request failed: <urlopen error [Errno 113]
No route to host>", "redirected": false, "status": -1,
"url": "http://ansible1"}

PLAY RECAP
**
**
ansible1 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
localhost : ok=1 changed=0
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

Increasing Output Verbosity
While you are analyzing playbook errors, it might be
helpful to increase playbook output verbosity. To do so,
you can use the -v command-line option one time or
multiple times. Table 5-3 gives an overview.

Table 5-3 Output Verbosity Options Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Increasing output verbosity can be useful and provide
you with additional information. Output verbosity must
be used with moderation, though. While -vv can be
useful in many cases, the -vvvv option just overloads
you with irrelevant information in most cases. Listing 5-
11 shows partial output of the command ansible-
playbook -vv listing59.yaml, and Listing 5-12 shows
partial output of the command ansible-playbook -
vvvv listing59.yaml.

Listing 5-11 ansible-playbook -vv Partial Output

[ansible@control ~]$ ansible-playbook -vv listing59.yaml
ansible-playbook 2.9.5
 config file = /home/ansible/ansible.cfg
 configured module search path =
[’/home/ansible/.ansible/plugins/modules’,
’/usr/share/ansible/plugins/modules’]
 ansible python module location =
/usr/lib/python3.6/site-packages/ansible
 executable location = /usr/bin/ansible-playbook
 python version = 3.6.8 (default, Nov 21 2019, 19:31:34)
[GCC 8.3.1 20190507 (Red Hat 8.3.1-4)]
Using /home/ansible/ansible.cfg as config file

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

PLAYBOOK: listing59.yaml
**

2 plays in listing59.yaml

PLAY [install start and enable httpd]
**

TASK [Gathering Facts]
**

task path: /home/ansible/listing59.yaml:2

ok: [ansible2]
ok: [ansible1]
META: ran handlers

TASK [install package]
**

task path: /home/ansible/listing59.yaml:5

ok: [ansible2] => {"changed": false, "msg": "Nothing to
do", "rc": 0, "results": []}
ok: [ansible1] => {"changed": false, "msg": "Nothing to
do", "rc": 0, "results": []}

Listing 5-12 ansible-playbook -vvvv Partial Output

[ansible@control ~]$ ansible-playbook -vvvv listing59.yaml
ansible-playbook 2.9.5
 config file = /home/ansible/ansible.cfg
 configured module search path =
[’/home/ansible/.ansible/plugins/modules’,
’/usr/share/ansible/plugins/modules’]
 ansible python module location =
/usr/lib/python3.6/site-packages/ansible
 executable location = /usr/bin/ansible-playbook
 python version = 3.6.8 (default, Nov 21 2019, 19:31:34)
[GCC 8.3.1 20190507 (Red Hat 8.3.1-4)]
Using /home/ansible/ansible.cfg as config file
setting up inventory plugins
host_list declined parsing /home/ansible/inventory as it
did not pass its verify_file() method

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

script declined parsing /home/ansible/inventory as it did
not pass its verify_file() method
auto declined parsing /home/ansible/inventory as it did
not pass its verify_file() method
Parsed /home/ansible/inventory inventory source with ini
plugin
Loading callback plugin default of type stdout, v2.0 from
/usr/lib/python3.6/site-
packages/ansible/plugins/callback/default.py

PLAYBOOK: listing59.yaml
**

Positional arguments: listing59.yaml
verbosity: 4
remote_user: ansible
connection: smart
timeout: 10
become: True
become_method: sudo
tags: (’all’,)
inventory: (’/home/ansible/inventory’,)
forks: 5
2 plays in listing57.yaml

PLAY [install start and enable httpd]
**

TASK [Gathering Facts]
**

task path: /home/ansible/listing59.yaml:2

<ansible2> ESTABLISH SSH CONNECTION FOR USER: ansible
<ansible2> SSH: EXEC ssh -vvv -C -o ControlMaster=auto -o
ControlPersist=60s -o StrictHostKeyChecking=no -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
’User="ansible"’ -o ConnectTimeout=10 -o
ControlPath=/home/ansible/.ansible/cp/b95d9eb347 ansible2
’/bin/sh -c ’"’"’echo ~ansible && sleep 0’"’"’’
<ansible1> ESTABLISH SSH CONNECTION FOR USER: ansible
<ansible1> SSH: EXEC ssh -vvv -C -o ControlMaster=auto -o
ControlPersist=60s -o StrictHostKeyChecking=no -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

keyex,hostbased,publickey -o PasswordAuthentication=no -o
’User="ansible"’ -o ConnectTimeout=10 -o
ControlPath=/home/ansible/.ansible/cp/88f8e128b5 ansible1
’/bin/sh -c ’"’"’echo ~ansible && sleep 0’"’"’’
<ansible2> (0, b’/home/ansible\n’, b"OpenSSH_8.0p1,
OpenSSL 1.1.1c FIPS 28 May 2019\r\ndebug1: Reading
configuration data /etc/ssh/ssh_config\r\ndebug3:
/etc/ssh/ssh_config line 51: Including file
/etc/ssh/ssh_config.d/05-redhat.conf depth 0\r\ndebug1:
Reading configuration data /etc/ssh/ssh_config.d/05-
redhat.conf\r\ndebug2: checking match for ’final all’ host
ansible2 originally ansible2\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf line 3: not matched
’final’\r\ndebug2: match not found\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf line 5: Including
file /etc/crypto-policies/back-ends/openssh.config depth 1
(parse only)\r\ndebug1: Reading configuration data
/etc/crypto-policies/back-ends/openssh.config\r\ndebug3:
gss kex names ok: [gss-gex-sha1-,gss-group14-sha1-
]\r\ndebug3: kex names ok: [curve25519-sha256,curve25519-
sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-
nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-
sha256,diffie-hellman-group14-sha256,diffie-hellman-
group16-sha512,diffie-hellman-group18-sha512,diffie-
hellman-group-exchange-sha1,diffie-hellman-group14-
sha1]\r\ndebug1: configuration requests final Match
pass\r\ndebug1: re-parsing configuration\r\ndebug1:
Reading configuration data /etc/ssh/ssh_config\r\ndebug3:
/etc/ssh/ssh_config line 51: Including file
/etc/ssh/ssh_config.d/05-redhat.conf depth 0\r\ndebug1:
Reading configuration data /etc/ssh/ssh_config.d/05-
redhat.conf\r\ndebug2: checking match for ’final all’ host
ansible2 originally ansible2\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf line 3: matched
’final’\r\ndebug2: match found\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf line 5: Including
file /etc/crypto-policies/back-ends/openssh.config depth
1\r\ndebug1: Reading configuration data /etc/crypto-
policies/back-ends/openssh.config\r\ndebug3: gss kex names
ok: [gss-gex-sha1-,gss-group14-sha1-]\r\ndebug3: kex names
ok: [curve25519-sha256,curve25519-sha256@libssh.org,ecdh-
sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-
nistp521,diffie-hellman-group-exchange-sha256,diffie-
hellman-group14-sha256,diffie-hellman-group16-
sha512,diffie-hellman-group18-sha512,diffie-hellman-group-
exchange-sha1,diffie-hellman-group14-sha1]\r\ndebug1:
auto-mux: Trying existing master\r\ndebug2: fd 4 setting

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

O_NONBLOCK\r\ndebug2: mux_client_hello_exchange: master
version 4\r\ndebug3: mux_client_forwards: request
forwardings: 0 local, 0 remote\r\ndebug3:
mux_client_request_session: entering\r\ndebug3:
mux_client_request_alive: entering\r\ndebug3:
mux_client_request_alive: done pid = 2384\r\ndebug3:
mux_client_request_session: session request
sent\r\ndebug3: mux_client_read_packet: read header
failed: Broken pipe\r\ndebug2: Received exit status from
master 0\r\n")
<ansible2> ESTABLISH SSH CONNECTION FOR USER: ansible
<ansible2> SSH: EXEC ssh -vvv -C -o ControlMaster=auto -o
ControlPersist=60s -o StrictHostKeyChecking=no -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
’User="ansible"’ -o ConnectTimeout=10 -o
ControlPath=/home/ansible/.ansible/cp/b95d9eb347 ansible2
’/bin/sh -c ’"’"’(umask 77 && mkdir -p "` echo
/home/ansible/.ansible/tmp/ansible-tmp-1585565643.3326187-
58978915363330 `" && echo ansible-tmp-1585565643.3326187-
58978915363330="` echo /home/ansible/.ansible/tmp/ansible-
tmp-1585565643.3326187-58978915363330 `") && sleep
0’"’"’’
<ansible1> (0, b’/home/ansible\n’, b"OpenSSH_8.0p1,
OpenSSL 1.1.1c FIPS 28 May 2019\r\ndebug1: Reading
configuration data /etc/ssh/ssh_config\r\ndebug3:
/etc/ssh/ssh_config line 51: Including file
/etc/ssh/ssh_config.d/05-redhat.conf depth 0\r\ndebug1:
Reading configuration data /etc/ssh/ssh_config.d/05-
redhat.conf\r\ndebug2: checking match for ’final all’ host
ansible1 originally ansible1\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf line 3: not matched
’final’\r\ndebug2: match not found\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf

If you think Listing 5-12 is too much, that’s exactly the
idea I want to transmit. The -vvvv output shows all
there is to show, and it’s not uncommon to see it
producing thousands of lines of output code. There are
very few situations in which that information may be
useful, however.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam tip

Of the troubleshooting options you’ve seen so far, the output verbosity
options are not the most useful. Using common sense is. Most errors in
playbooks are the result of logic errors, where the flow of tasks in a
playbook has not been well thought through. It is relatively easy to avoid
those types of errors: don’t include too many tasks in a play, and don’t
include too many plays in a playbook. That way, you make it easy to avoid
losing oversight.

In Exercise 5-3 you work on a multiplay playbook.

Exercise 5-3 Creating a Multiplay Playbook

1. Use an editor to create the file
exercise53.yaml and create the first play:

- name: enable web server

 hosts: ansible1

 tasks:

 - name: install stuff

 yum:

 - httpd

 - firewalld

 - name: create a welcome page

 copy:

 content: "welcome to the webserver\n

"

 dest: /var/www/html/index.html

 - name: enable webserver

 service:

 name: httpd

 state: started

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 enabled: true

 - name: enable firewall

 service:

 name: firewalld

 state: started

 enabled: true

 - name: open service in firewall

 firewalld:

 service: http

 permanent: true

 state: enabled

 immediate: yes

2. Continue by adding the second play to complete
the playbook. Notice the use of the
return_content in the uri module, which
ensures that the result of the command is
shown while running the playbook:

- name: enable web server

 hosts: ansible1

 tasks:

 - name: install stuff

 yum:

 name:

 - httpd

 - firewalld

 - name: create a welcome page

 copy:

 content: "welcome to the webserver\n

"

 dest: /var/www/html/index.html

 - name: enable webserver

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 service:

 name: httpd

 state: started

 enabled: true

 - name: enable firewall

 service:

 name: firewalld

 state: started

 enabled: true

 - name: open service in firewall

 firewalld:

 service: http

 permanent: true

 state: enabled

 immediate: yes

- name: test webserver access

 hosts: localhost

 become: no

 tasks:

 - name: test webserver access

 uri:

 url: http://ansible1

 return_content: yes

 status_code: 200

3. Verify playbook syntax by using ansible-
playbook --syntax-check exercise53.yaml.

4. Run the playbook by using ansible-playbook
-vv exercise53.yaml.

SUMMARY

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In this chapter you read how to work with playbooks. To
start with, you ran a sample playbook and verified its
results. Next, you learned about the YAML file format
used in playbooks and some of its most important
features. In the last section you read how to work with
multiplay playbooks and learned when using them
makes sense.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 5-4 lists a reference of these key topics and
the page numbers on which each is found.

Table 5-4 Key Topics for Chapter 5

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

dictionary

key-value

list

play

playbook

task

YAML

REVIEW QUESTIONS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. Which option do you use to show the most
verbose output to the ansible-playbook
command?

2. What characters must be used for indentation in
YAML files?

3. How can you verify syntax of an Ansible
playbook?

4. Which module can you use to verify connectivity
to a web server?

5. Which module can you use to add a few lines of
text to a file?

6. What is the use case for using a > sign before
specifying a string of text in a playbook?

7. When should multiple playbooks be used instead
of multiplay playbooks?

8. What does a task show that has successfully
been executed but does not trigger any changes?

9. If a playbook has run three tasks, and none of
these tasks trigger any changes on the managed
hosts, how many times would you see “ok” in the
playbook output?

10. Which exit code does the uri module look for to
check whether web content is accessible?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

END-OF-CHAPTER LAB
In the end-of-chapter lab with this chapter, you analyze
what is wrong with a playbook and fix it.

LAB 5-1
Run the playbook listing57.yaml. As you’ve seen before,
it generates an error. Fix the error by using the
following directions:

• What specific information do you obtain when
increasing verbosity?

• Does it help to perform a syntax check?

• Does it help to perform a dry run?

• Which module is required to fix this playbook?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 6. Working with
Variables and Facts
This chapter covers the following subjects:

• Understanding the Use of Variables in Ansible
Playbooks

• Working with Ansible Facts

• Working with Variables

• Using Vault to Manage Sensitive Values

• Capturing Command Output Using register

The following RHCE exam objectives are covered
in this chapter:

• Understand core components of Ansible

• Variables

• Facts

• Create Ansible plays and playbook

• Use variables to retrieve the results of running a
command

• Use advanced Ansible features

• Use Ansible Vault in playbooks to protect
sensitive data

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 6-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 6-1 “Do I Know This Already?” Section-to-
Question Mapping

1. A user wants to print the message “lisa is created,”

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

where lisa refers to the value of a variable. How
should this variable be written in the playbook
YAML code?

a. “{{ ansible_user }}”

b. {{ ansible_user }}

c. ’{{ user }}’

d. “{{ user }}”

2. Which module is used to gather facts using an ad
hoc command?

a. facter

b. setup

c. gather

d. collect

3. There are different valid methods to address the
value of a fact. Which of the following should be
considered the preferred way?

a. ansible_facts[’default_ipv4’][’address’]

b. ansible_facts.default_ipv4.address

c. ansible_default_ipv4.address

d. ansible_default_ipv4[’address’]

4. Custom facts have different requirements. Which
of the following is not one of them?

a. Custom facts must be stored on the managed

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

host in the directory /etc/ansible/facts.d.

b. Custom fact files must be executable.

c. Custom facts are written in INI or JSON
format.

d. Custom fact files must use the .fact extension.

5. Which of the following variable names is correct?

a. my.file1

b. 1file

c. my_file1

d. my-file

6. Which of the following is not a valid way to define
variables in a playbook?

a. Use vars_files: in the playbook header.

b. Create a file with the name
group_vars/groupname that contains variables
that apply to a host group.

c. Create a file with the name
host_vars/hostname that contains variables
that apply to a specific host.

d. Define the variables: key in the play header
and give it a list value.

7. Which of the following is used as a magic variable
and cannot be overwritten for that reason?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

a. hostvars

b. host_groups

c. inventory

d. config_file

8. Which command can you use to change the
password on an Ansible Vault-encrypted file?

a. ansible-vault change

b. ansible-vault rekey

c. ansible-vault create

d. ansible-vault password

9. Which option can you use with the ansible-vault
command to decrypt multiple Ansible Vault-
encrypted files with different passwords from one
playbook?

a. --ask-vault-pass

b. --vault-id @prompt

c. --vault-password-file=password-file

d. Use --ask-vault-pass multiple times.

10. How can the result of a command be used as a
variable in Ansible?

a. Get it from Ansible facts.

b. Use the command_facts module.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

c. Use the register parameter.

d. Redirect the standard output to a file and
analyze that.

FOUNDATION TOPICS

UNDERSTANDING THE USE
OF VARIABLES IN ANSIBLE
PLAYBOOKS
Up to now you’ve learned how to work with playbooks.
Although convenient, a playbook that just works with
static data is not very impressive. That’s why using
variables is important in Ansible. Variables are labels
that refer to data that can be dynamically changed, and
that makes Ansible really flexible, particularly when
variables are used in combination with conditionals, as
discussed in Chapter 7, “Using Task Control.” Before
learning about variables and facts in detail, let’s look at
the example in Listing 6-1 showing how variables are
used.

Listing 6-1 Using Variables Example

- name: create a user using a variable
 hosts: ansible1
 vars:
 users: lisa
 tasks:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - name: create a user {{ users }} on host {{
ansible_hostname }}
 user:
 name: "{{ users }}"

As you can see, the sample playbook in Listing 6-1 has a
vars section. In this section, one variable is defined,
using the common key: value syntax. Next, in the task
definition the user module is used to work with this
variable. To refer to the variable, you just place the
name definition between double curly brackets.
However, in the name argument to the user module,
the variable is between double quotes and double curly
braces. The reason is that the value in this case starts
with the variable. If a value starts with a variable, the
variable must be placed between double quotes. If more
than just the variable name in the line specifies the
value, the entire line that starts with the variable must
be between double quotes.

Next you see the variable ansible_hostname, which is
not defined anywhere. That is because this variable is an
Ansible fact. Ansible facts are also used as variables, but
they are variables that are automatically set, based on
properties of the managed system. Fact discovery is
used by default to discover all that Ansible possibly
might want to know about a machine to use in
conditionals. You don’t have to define facts; facts are a
part of the system properties.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Listing 6-2 shows the command output when running
this playbook.

Listing 6-2 Running the Listing 6-1 Sample Playbook

[ansible@control ~]$ ansible-playbook listing61.yaml

PLAY [create a user using a variable]
**

TASK [Gathering Facts]
**

ok: [ansible1]

TASK [create a user lisa on host ansible1]
**

changed: [ansible1]

PLAY RECAP
**

ansible1 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

As shown in Listing 6-2, the ansible-playbook
command shows the task description “create a user lisa
on host ansible,” in which the variable defined in the
playbook is used along with the Ansible fact
ansible_hostname, which is the discovered variable that
reveals system properties.

WORKING WITH ANSIBLE
FACTS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In Ansible, there are three types of variables. Table 6-2
provides an overview.

Table 6-2 Ansible Variable Types Overview

Ansible facts are system properties that are collected
when Ansible executes on a remote system. After facts
are gathered, the facts can be used as variables. Apart
from the system facts, which just exist as a system
property, there are custom facts. These facts are defined
by an administrator and stored as a file on the managed
hosts. In the following sections, you learn how to work
with facts on Ansible-managed systems. Magic Variables
are specific system variables, which will be discussed
later in this chapter.

Gathering Facts
When any Ansible playbook is used, it first gathers facts
for all the managed hosts. This is done by an implicit
fact gathering task in every playbook. The result of this
process is stored in the ansible_facts variable. Let’s run

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the simple playbook in Listing 6-3 to analyze fact
gathering.

Listing 6-3 Simple Playbook to Show Fact Gathering

- name: show fact gathering
 hosts: all
 tasks:
 - name: show all facts
 debug:
 var: ansible_facts

The playbook in Listing 6-3 collects all known facts
about the managed hosts and stores them in the
variable ansible_facts. To show how this process works,
Listing 6-3 uses the debug module. This module can be
used for debugging purposes, and it is used to either
show a message or print the contents of a variable. In
this case, the debug module prints all the contents of
the multivalued variable ansible_facts; see Listing 6-4
for a partial result. Notice that when variables are
referred to using the var argument to the debug module,
the name of the variables doesn’t have to be between
curly brackets and quotes. This is one of many
exceptions that you may find while working with
variables.

Listing 6-4 Fact Gathering Partial Result

TASK [show all facts]
**

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ok: [ansible1] => {
 "ansible_facts": {
 "_facts_gathered": true,
 "all_ipv4_addresses": [
 "192.168.122.1",
 "192.168.4.201"
],
 "all_ipv6_addresses": [
 "fe80::e564:5033:5dec:aead"
],
 "ansible_local": {},
 "apparmor": {
 "status": "disabled"
 },
 "architecture": "x86_64",
 "bios_date": "07/29/2019",
 "bios_version": "6.00",
 "cmdline": {
 "BOOT_IMAGE": "(hd0,msdos1)/vmlinuz-4.18.0-
147.el8.x86_64",
 "crashkernel": "auto",
 "quiet": true,
 "rd.lvm.lv": "cl/swap",
 "resume": "/dev/mapper/cl-swap",
 "rhgb": true,
 "ro": true,
 "root": "/dev/mapper/cl-root"
 },
 "date_time": {
 "date": "2020-03-30",
 "day": "30",
 "epoch": "1585579970",
 "hour": "10",
 "iso8601": "2020-03-30T14:52:50Z",
 "iso8601_basic": "20200330T105250355357",
 "iso8601_basic_short": "20200330T105250",
 "iso8601_micro": "2020-03-
30T14:52:50.355419Z",
 "minute": "52",
 "month": "03",
 "second": "50",
 "time": "10:52:50",
 "tz": "EDT",
 "tz_offset": "-0400",
 "weekday": "Monday",
 "weekday_number": "1",
 "weeknumber": "13",

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 "year": "2020"
 },
 "default_ipv4": {
 "address": "192.168.4.201"

The result of fact gathering is stored in a multivalued
variable with the name ansible_facts, which is organized
as a dictionary (see the “Using Multivalued Variables”
section). To address specific values in this dictionary,
you can use two formats:

• Notation with square brackets:
ansible_facts[’default_ipv4’][’address’]

• Dotted notation:
ansible_facts.default_ipv4.address

Of these two notations, the notation with the square
brackets is preferred.

As you can see when browsing through the result of
Ansible fact gathering, a wide range of facts is collected.
Table 6-3 provides an overview of some of the most
commonly used facts.

Table 6-3 Commonly Used Ansible Facts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Note that Ansible gathers a lot of facts by default. Some
information is not included, though, and if that type of
information is needed, it may be collected using
additional modules. For an overview of all available
modules for gathering specific types of facts, type
ansible-doc -l | grep fact. This command shows that
a wide range of fact gathering modules is available. One
of these modules is package_facts, which collects
information about software packages installed on
managed hosts.

Understanding How Facts Are
Displayed

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

While working with facts, you may encounter two
different ways in which facts are displayed. In the
current way, all facts are stored in a dictionary with the
name ansible_facts, and items in this dictionary are
addressed using the notation with square brackets,
which can be seen in Table 6-3. In the old way, Ansible
facts were injected as individual variables, which were
prefixed with the string ansible_ (like
ansible_hostname), allowing the variables to be
addressed individually. This approach is known as
injected variables.

The confusing thing is that the old approach and the
new approach both still occur. Compare, for instance,
the output of the ansible ansible1 -m setup
command shown in Listing 6-5 with the output of the
playbook that displays contents of the ansible_fact
variable, which you saw in Listing 6-4. As you can see, in
Listing 6-5 Ansible facts are injected as variables.

Listing 6-5 ansible -m setup Shows Facts Injected
as Variables

ansible1 | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "192.168.122.1",
 "192.168.4.201"
],
 "ansible_all_ipv6_addresses": [
 "fe80::e564:5033:5dec:aead"
],
 "ansible_apparmor": {

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 "status": "disabled"
 },
 "ansible_architecture": "x86_64",
 "ansible_bios_date": "07/29/2019",
 "ansible_bios_version": "6.00",
 "ansible_cmdline": {
 "BOOT_IMAGE": "(hd0,msdos1)/vmlinuz-4.18.0-
147.el8.x86_64",
 "crashkernel": "auto",
 "quiet": true,
 "rd.lvm.lv": "cl/swap",
 "resume": "/dev/mapper/cl-swap",
 "rhgb": true,
 "ro": true,
 "root": "/dev/mapper/cl-root"
 },
 "ansible_date_time": {
 "date": "2020-03-31",
 "day": "31",
 "epoch": "1585645366",
 "hour": "05",
 "iso8601": "2020-03-31T09:02:46Z",
 "iso8601_basic": "20200331T050246844129",
 "iso8601_basic_short": "20200331T050246",
 "iso8601_micro": "2020-03-
31T09:02:46.844200Z",
 "minute": "02",
 "month": "03",
 "second": "46",
 "time": "05:02:46",
 "tz": "EDT",
 "tz_offset": "-0400",
 "weekday": "Tuesday",
 "weekday_number": "2",
 "weeknumber": "13",
 "year": "2020"
 },
 "ansible_default_ipv4": {
 "address": "192.168.4.201",
 "alias": "ens33",
 "broadcast": "192.168.4.255",
 "gateway": "192.168.4.2",
 "interface": "ens33",
 "macaddress": "00:0c:29:1f:c1:23",
 "mtu": 1500,
 "netmask": "255.255.255.0",
 "network": "192.168.4.0",

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 "type": "ether"
 },

When you are working with facts, the recommended
way is to use the ansible_facts variable, not injected
facts, because at some point, injected variables won’t be
supported anymore. Table 6-4 shows how injected
variables compare to the new ansible_facts style to
address variables.

Table 6-4 Comparing ansible_facts Versus Injected
Facts as Variables

Listing 6-6 and Listing 6-7 show two playbooks. Listing
6-6 addresses facts in the old way, and Listing 6-7

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

addresses the facts using the new way, using the
ansible_facts variable. To make sure you understand
that different notations can be used in either method,
the listings address the facts in dotted notation, not in
the notation with square brackets.

Listing 6-6 Addressing Facts with Injected Variables

- hosts: all
 tasks:
 - name: show IP address
 debug:
 msg: >
 This host uses IP address {{
ansible_default_ipv4.address }}

Listing 6-7 Addressing Facts Using the ansible_facts
Variable

- hosts: all
 tasks:
 - name: show IP address
 debug:
 msg: >
 This host uses IP address {{
ansible_facts.default_ipv4.address }}

Tip

If, for some reason, you want the method where facts are injected into
variables to be the default method, you can use
inject_facts_as_vars=true in the [default] section of the ansible.cfg file.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Because there are many different ways to refer to facts,
they may be quite confusing. Let’s finish this section
with an overview of all options:

• In Ansible versions since 2.5, all facts are stored in
one variable: ansible_facts. This method is used
while gathering facts from a playbook

• Before Ansible version 2.5, facts were injected into
variables such as ansible_hostname. This method is
used by the setup module. (Note that this may
change in future versions of Ansible.)

• Facts can be addressed in dotted notation: {{
ansible_facts.default_ipv4.address }}.

• Alternatively, facts can be addressed in square
brackets notation: {{
ansible_facts[’default_ipv4’][’address’] }}.
This notation is preferred.

Managing Fact Gathering
By default, upon execution of each playbook, facts are
gathered. This does slow down playbooks, and for that
reason, it is possible to disable fact gathering
completely. To do so, you can use the gather_facts:
no parameter in the play header. If later in the same
playbook it is necessary to gather facts, you can do this
by running the setup module in a task.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Even if it is possible to disable fact gathering for all of
your Ansible configuration, this practice is not
recommended. Too many playbooks use conditionals
that are based on the current value of facts, and all of
these conditionals would stop working if fact gathering
were disabled altogether.

As an alternative to make working with facts more
efficient, you can disable a fact cache. To do so, you need
to install an external plug-in. Currently, two plug-ins are
available for this purpose: jsonfile and redis. To
configure fact caching using the redis plug-in, you need
to install it first. Next, you can enable fact caching
through ansible.cfg. The following procedure describes
how to do this:

1. Use yum install redis.

2. Use service redis start.

3. Use pip install redis.

4. Edit /etc/ansible/ansible.cfg and ensure it
contains the following parameters:

[defaults]

gathering = smart

fact_caching = redis

fact_caching_timeout = 86400

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Note

Fact caching can be convenient but should be used with caution. If, for
instance, a playbook installs a certain package only if a sufficient amount
of disk space is available, it should not do this based on information that
may be up to 24 hours old. For that reason, using a fact cache is not
recommended in many situations.

Working with Custom Facts
Apart from the facts that can be gathered in all cases,
Ansible also offers an option to work with custom facts.
A custom fact is used to provide a host with arbitrary
values that Ansible can use to change the behavior of
plays. Custom facts can be provided as static files. These
files must be in either INI or JSON format, have the
extension .fact, and on the managed hosts must be
stored in the /etc/ansible/facts.d directory.

Alternatively, custom facts can be generated by a script,
and in that case the only requirement is that the script
must generate its output in JSON format. Dynamic
custom facts are useful because they allow the facts to
be determined at the moment that a script is running.
Listing 6-8 provides an example of a static custom fact
file.

Listing 6-8 Custom Facts Sample File

[packages]
web_package = httpd
ftp_package = vsftpd

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

[services]
web_service = httpd
ftp_service = vsftpd

To get the custom facts files on the managed hosts, you
can use a playbook. Listing 6-9 provides an example of a
playbook that copies a local custom fact file (existing in
the current Ansible project directory) to the appropriate
location on the managed hosts. Notice that this
playbook uses variables, which are explained in more
detail in the section titled “Working with Variables.”

Listing 6-9 Sample Playbook to Copy Custom Facts

- name: Install custom facts
 hosts: all
 vars:
 remote_dir: /etc/ansible/facts.d
 facts_file: listing68.fact
 tasks:
 - name: create remote directory
 file:
 state: directory
 recurse: yes
 path: "{{ remote_dir }}"
 - name: install new facts
 copy:
 src: "{{ facts_file }}"
 dest: "{{ remote_dir }}"

Custom facts are stored in the variable
ansible_facts.ansible_local. In this variable, you use the
filename of the custom fact file and the label in the
custom fact file. For instance, after you run the
playbook in Listing 6-9, the web_package fact that was

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

defined in listing68.fact is accessible as

{{ ansible_facts[’ansible_local’][’listing67’][’packages’]
[’web_package’] }}

To verify, you can use the setup module with the filter
argument. Notice that because the setup module
produces injected variables as a result, the ad hoc
command to use is ansible all -m setup -a
“filter=ansible_local”. The command ansible all -m
setup -a “filter=ansible_facts[’ansible_local’]”
does not work. In Exercise 6-1 you practice working with
facts.

Exercise 6-1 Working with Ansible Facts

1. Create a custom fact file with the name
custom.fact and the following contents:

[software]

package = httpd

service = httpd

state = started

enabled = true

2. Write a playbook with the name
copy_facts.yaml and the following contents:

- name: copy custom facts

 hosts: ansible1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 tasks:

 - name: create the custom facts director

y

 file:

 state: directory

 recurse: yes

 path: /etc/ansible/facts.d

 - name: copy the custom facts

 copy:

 src: custom.fact

 dest: /etc/ansible/facts.d

3. Apply the playbook using ansible-playbook
copy_facts.yaml.

4. Check the availability of the custom facts by
using ansible all -m setup -a
“filter=ansible_local”.

5. Use an ad hoc command to ensure that the
httpd service is not installed on any of the
managed servers: ansible all -m yum -a
“name=httpd state=absent”.

6. Create a playbook with the name
setup_with_facts.yaml that installs and enables
the httpd service, using the custom facts:

- name: install and start the web service

 hosts: ansible1

 tasks:

 - name: install the package

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 yum:

 name: "{{ ansible_facts[’ansible_loc

al’][’custom’][’software’][’package’] }}"

 state: latest

 - name: start the service

 service:

 name: "{{ ansible_facts[’ansible_loc

al’][’custom’][’software’][’service’] }}"

 state: "{{ ansible_facts[’ansible_lo

cal’][’custom’][’software’][’state’] }}"

 enabled: "{{ ansible_facts[’ansible_

local’][’custom’][’software’][’enabled’] }

}"

7. Run the playbook to install and set up the
service by using ansible-playbook
setup_with_facts.yaml.

8. Use an ad hoc command to verify the service is
running: ansible ansible1 -a “systemctl
status httpd”.

WORKING WITH VARIABLES
In the previous section you learned how you can use
Ansible facts to work with dynamic values that are based
on something that exists on a managed host. In this
section you learn about variables. Variables in general
are used to separate static data from dynamic data. By
putting the dynamic data in variables, you make it easier
to manage the dynamic data, in particular if the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

variables are excluded from external files.

Variables can be used to refer to a wide range of
dynamic data, such as names of files, services, packages,
users, URLs to specific servers, and much more.

Defining Variables
To define a variable, you can just use the key: value
structure in a vars section in the play header. Other
ways to define and include variables are discussed later
in this section. A variable definition may look like the
sample in Listing 6-10.

Listing 6-10 Defining Variables in a Playbook Header

- name: using variables
 hosts: ansible1
 vars:
 ftp_package: vsftpd
 tasks:
 - name: install package
 yum:
 name: "{{ ftp_package }}"
 state: latest

In the example in Listing 6-10, a vars section is included
in the play header to define the variable ftp_package.
This variable is next referred to in the yum task. As the
variable is the first item in the value, its name must be
placed between double curly brackets as well as double
quotes.

When you define variables, there are a few

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

requirements:

• Variable names must start with a letter.

• Variable names are case sensitive.

• Variable names can contain only letters, numbers,
and underscores.

Using Include Files
When you are defining variables, you can define them
all in the header of the play. For small playbooks this
approach can work fine, but as a playbook grows bigger
and gets more complex, you can easily lose oversight.
For that reason, it is common to define variables in
include files. Specific host and host group variables can
be used as include files (see the section “Managing Host
and Group Variables” later in this chapter), but it’s also
possible to include an arbitrary file as a variable file,
using the vars_files: statement. Notice that the
vars_files: parameter can have a single value or a list
providing multiple values. If a list is used, each item
needs to start with a dash; see the “Using Multivalued
Variables” section for more information about using
lists.

When you include variables from files, it’s a good idea to
work with a separate directory that contains all variables
because that makes it easier to manage as your projects

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

grow bigger.

Listing 6-11 shows a sample playbook, where the line
vars_files: vars/common is used to include variables
defined in the file vars/common, for which contents are
displayed in Listing 6-12.

Listing 6-11 Using a Variable Include File

- name: using a variable include file
 hosts: ansible1
 vars_files: vars/common
 tasks:
 - name: install package
 yum:
 name: "{{ my_package }}"
 state: latest

Listing 6-12 Variable Include File Contents

my_package: nmap
my_ftp_service: vsftpd
my_file_service: smb

Among the most important benefits of using variable
include files is the option to manage variables from one
central location. If variables are defined in individual
playbooks, they are spread all over, and it may be
difficult to get an overview of all variables that are used
on a site. When you put variables in variable files, it’s
much easier to manage them in a consistent way and to
guarantee that the same variables are used throughout a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

site.

Managing Host and Group Variables
In some cases you might want to set variables for
specific hosts or specific host groups. You can do this by
using host_vars and group_vars inclusions. In older
versions of Ansible, it was common to set host variables
and group variables in inventory, but this practice is
now deprecated.

If you want to use host variables, you must create a
subdirectory with the name host_vars within the
Ansible project directory. In this directory, create a file
that matches the inventory name of the host to which
the variables should be applied. So the variables for host
ansible1 are defined in host_vars/ansible1. To use host
group variables, you use a similar approach. To start,
you create a directory with the name group_vars. In this
directory, a file with the name of the host group is
created, and in this file all variables are defined. So if
you want to define variables for the host group web
servers, you need to create a file with the name
group_vars/webservers. In Exercise 6-2 you practice
working with host and host group variables.

Exercise 6-2 Using Host and Host Group
Variables

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. Create a project directory in your home
directory. Type mkdir ~/chapter6 to create
the chapter6 project directory, and use cd
~/chapter6 to go into this directory.

2. Type cp ../ansible.cfg . to copy the ansible.cfg
file that you used before. No further
modifications to this file are required.

3. Type vim inventory to create a file with the
name inventory, and ensure it has the following
contents:

[webservers]

ansible1

[dbservers]

ansible2

4. Create the file webservers.yaml, containing the
following contents. Notice that nothing is really
changed by running this playbook. It just uses
the debug module to show the current value of
the variables.

- name: configure web services

 hosts: webservers

 tasks:

 - name: this is the {{ web_package }} pa

ckage

 debug:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 msg: "Installing {{ web_package }}"

 - name: this is the {{ web_service }} se

rvice

 debug:

 msg: "Starting the {{ web_service }}"

5. Create the file group_vars/webservers with the
following contents:

web_package: httpd

web_service: httpd

6. Run the playbook with some verbosity to verify
it is working by using ansible-playbook -vv
webservers.yaml.

As you saw in Exercise 6-2, the host group variables are
automatically picked up, even if there is not any specific
reference to the file that should be included anywhere in
the playbook.

Note

Using host and host group variables this way is efficient, but at the same
time it’s confusing. In Ansible it’s possible to get variables and other
contents from multiple locations, and because the group_vars and
host_vars locations are not specified in the playbook, it’s easy to
overlook where they are coming for. Therefore, it’s a good idea to analyze
the entire project directory to understand what is happening in a
playbook. And using these includes is also one reason why it makes
sense to work with project directories and to ensure that these project
directories don’t become too big.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using Multivalued Variables
When you work with variables in Ansible, it is common
to work with multivalued variables. Two types of
multivalued variables can be used: the array (also
known as a list) and the dictionary (also known as a
hash). Each of these has its own specific use cases.

In variable definition, a list (also known as an array) is a
key that can have multiple items as its value. Each item
in a list starts with a dash (-). Individual items in a list
can be addressed using the index number (starting at
zero), as in {{ users[1] }} (which would print the key-
value pairs that are set for user lisa). Listing 6-13 shows
an example of a variable that is defined as an array.

Listing 6-13 Array Example

users:
 - linda:
 username: linda
 homedir: /home/linda
 shell: /bin/bash
 - lisa:
 username: lisa
 homedir: /home/lisa
 shell: /bin/bash
 - anna:
 username: anna
 homedir: /home/anna
 shell: /bin/bash

In Python, a dictionary (also known as a hash) is an
unordered collection of items, a collection of key-value
pairs. In Python, a dictionary is defined as my_dict = {

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

key1: ’car’, key2:’bike’ }. Because it is based on Python,
Ansible lets users use dictionaries as an alternative
notation to arrays, though dictionaries are not as
common in use as arrays. Items in values in a dictionary
are not started with a dash. Using dictionaries is one
way; the alternative is to use a list. Listing 6-14 shows
an example of a variable that is defined as a dictionary.

Listing 6-14 Dictionary Example

users:
 linda:
 username: linda
 homedir: /home/linda
 shell: /bin/bash
 lisa:
 username: lisa
 homedir: /home/lisa
 shell: /bin/bash
 anna:
 username: anna
 homedir: /home/anna
 shell: /bin/bash

Using multivalued variables is particularly useful in
combination with task control structures such as loops
because this allows you to iterate through the multiple
values of the variable. Read Chapter 7 for more
examples about this. Listing 6-15 shows a sample
playbook that uses the debug module to show how to
address different keys in a dictionary multivalued
variable.

Listing 6-15 Addressing Specific Keys in a Dictionary

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Multivalued Variable

- name: show dictionary also known as hash
 hosts: ansible1
 vars_files:
 - vars/users-dictionary
 tasks:
 - name: print dictionary values
 debug:
 msg: "User {{ users.linda.username }} has
homedirectory {{ users.linda.homedir }} and shell {{
users.linda.shell }}"

As you saw in “Working with Ansible Facts,”
multivalued variables can be addressed in two ways. In
Listing 6-14 the dotted notation is used. In Listing 6-16
you can see how to use the square brackets notation as
an alternative. Of these two notations, the
recommendation is to use the notation with square
brackets.

Listing 6-16 Using the Square Brackets Notation to
Address Multivalued Variables

- name: show dictionary also known as hash
 hosts: ansible1
 vars_files:
 - vars/users-dictionary
 tasks:
 - name: print dictionary values
 debug:
 msg: "User {{ users[’linda’][’username’] }} has
homedirectory {{ users[’linda’][’homedir’] }} and shell {{
users[’linda’][’shell’] }}"

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Working with Magic Variables
Apart from the variables that can be set by the Ansible
user or administrator and the variables that are
discovered as Ansible facts, there are also the so-called
magic variables. Magic variables are variables that are
set automatically by Ansible to reflect an Ansible
internal state. There are about 30 magic variables; Table
6-5 shows an overview of some of the most important
magic variables.

Table 6-5 Magic Variables Overview

The most important thing that you should remember
about magic variables is that you cannot use their name
for anything else. If you try to set a magic variable to
another value anyway, it always resets to the default
internal value. So don’t try to set your own variable
groups to store usergroups; the variable groups is

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

already used as a magic variable! In Listing 6-17 you can
see how the debug module is used to show the current
values assigned to the hostvars magic variable. As you
can see, this variable shows many settings that you can
change by modifying the ansible.cfg configuration file. If
local facts are defined on the host, you will see them
also.

Listing 6-17 Using the debug Module to Show
Hostvars Variables

[ansible@control ~]$ ansible localhost -m debug -a
’var=hostvars["ansible1"]’
localhost | SUCCESS => {
 "hostvars[\"ansible1\"]": {
 "ansible_check_mode": false,
 "ansible_diff_mode": false,
 "ansible_facts": {},
 "ansible_forks": 5,
 "ansible_inventory_sources": [
 "/home/ansible/inventory"
],
 "ansible_playbook_python": "/usr/bin/python3.6",
 "ansible_verbosity": 0,
 "ansible_version": {
 "full": "2.9.5",
 "major": 2,
 "minor": 9,
 "revision": 5,
 "string": "2.9.5"
 },
 "group_names": [
 "ungrouped"
],
 "groups": {
 "all": [
 "ansible1",
 "ansible2"
],
 "ungrouped": [

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 "ansible1",
 "ansible2"
]
 },
 "inventory_dir": "/home/ansible",
 "inventory_file": "/home/ansible/inventory",
 "inventory_hostname": "ansible1",
 "inventory_hostname_short": "ansible1",
 "omit":
"__omit_place_holder__38849508966537e44da5c665d4a784c3bc00
60de",
 "playbook_dir": "/home/ansible"
 }
}

Understanding Variable Precedence
With all the different locations where variables can be
set, it’s important to know what happens if variables are
set at multiple levels. Understanding variable
precedence is not always easy because they can be set at
so many different levels. The most important advice is
to just keep it simple and avoid using variables with the
same names that are defined at different levels. That
way, you avoid having to think about variable
precedence.

If a variable with the same name is defined at different
levels anyway, the most specific variable always wins.
Variables that are defined while running the playbook
command using the -e key=value command-line
argument have the highest precedence. After variables
that are passed as command-line options, playbook
variables are considered. Next are variables that are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

defined for inventory hosts or host groups. Consult the
Ansible documentation item “Variable precedence” for
more details and an overview of the 22 different levels
where variables can be set and how precedence works
for them.

Variable Precedence Overview

1. Variables passed on the command line

2. Variables defined in or included from a playbook

3. Inventory variables

USING VAULT TO MANAGE
SENSITIVE VALUES
Sometimes, you must deal with sensitive data when
working with Ansible—think about webkeys, passwords,
and other types of sensitive data that you really
shouldn’t store as plain text in a playbook. Ansible Vault
is the solution to that problem. You can use Ansible
Vault to encrypt and decrypt sensitive data to make it
unreadable, and only while accessing data does it ask for
a password so that it is decrypted.

Understanding Vault
Ansible may need to access environments where

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

passwords, webkeys, or other authentication tokens are
needed. Storing these elements as plain text in a
playbook would be a huge risk, so Ansible Vault is the
solution. Ansible Vault can be used to encrypt and
decrypt any data file in Ansible.

The following approach is used while working with
Ansible Vault:

1. Sensitive data is stored as values in variables in a
separate variable file.

2. The variable file is encrypted, using the ansible-
vault command.

3. While accessing the variable file from a playbook,
you enter a password to decrypt.

Managing Encrypted Files
The foundation of working with Ansible Vault is the
creation of encrypted files. When the command
ansible-vault create secret.yaml is used, Ansible
Vault prompts for a password and then opens the file
using the default editor. Alternatively, the password can
be provided in a password file. In that case, the
password file must be really well protected (for example,
by putting it in the user root home directory). If a
password file is used, the encrypted variable file can be

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

created using ansible-vault create --vault-
password-file=passfile secret.yaml.

Apart from using ansible-vault create to create a new
encrypted file, you can use the command ansible-vault
encrypt to encrypt one or more existing files. The
encrypted file can next be used from a playbook, where a
password needs to be entered to decrypt. Alternatively,
the ansible-vault decrypt command can be used to
decrypt the file. Table 6-6 gives an overview of the most
commonly used ansible-vault commands.

Table 6-6 ansible-vault Command Options

Using Vault in Playbooks
When a Vault-encrypted file is accessed from a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

playbook, a password must be entered. To have the
ansible-playbook command prompt for a password,
you need to tell the appropriate option. The option --
vault-id @prompt provides the most elegant option,
where the ansible-playbook command prompts for a
password for each of the Vault-encrypted files that may
be used.

Using --vault-id @prompt enables a playbook to work
with multiple Vault-encrypted files where these files are
allowed to have different passwords set. If all Vault-
encrypted files a playbook refers to have the same
password set, you can use the command ansible-
playbook --ask-vault-pass.

Alternatively, you can use the command ansible-
playbook --vault-password-file=secret to obtain
the Vault password from a password file. The password
file should contain a string that is stored as a single line
in the file. Make sure the vault password file is
protected through file permissions, such that it is not
accessible by unauthorized users!

Managing Files with Sensitive
Variables
When you work with Vault-encrypted variable files, it’s
good practice to separate files containing unencrypted
variables from files that contain encrypted variables. A
good approach to do so is to use group_vars and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

host_vars variable inclusion. You read earlier that in the
group_vars directory, a file with the name of a host
group can be used. Likewise, in the host_vars directory,
a file with the name of a host can be created.

While separating encrypted variables from unencrypted
files, you may create a directory (instead of a file) with
the name of the host or host group. Next, within that
directory you can create a file with the name vars, which
contains unencrypted variables, and a file with the name
vault, which contains Vault-encrypted variables.
Alternatively, Vault-encrypted variables can be included
from a file using the vars_files parameter. In Exercise
6-3 you practice your skills working with Ansible Vault.

Exercise 6-3 Working with Ansible Vault

1. Create a secret file containing encrypted values
for a variable user and a variable password by
using ansible-vault create secrets.yaml. Set
the password to password and enter the
following lines:

username: bob

pwhash: password

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Note

When creating users, you cannot provide the password in plain text; it
needs to be provided as a hashed value. Because this exercise
focuses on the use of Vault, the password is not provided as a
hashed value, and as a result, a warning is displayed. You may ignore
this warning. In Chapter 13, “Managing Users,” you’ll learn how to
create users with a password provided as a properly hashed value.

2. Create the file create-users.yaml and provide
the following contents:

- name: create a user with vaulted variabl

es

 hosts: ansible1

 vars_files:

 - secrets.yaml

 tasks:

 - name: creating user

 user:

 name: "{{ username }}"

 password: "{{ pwhash }}"

3. Run the playbook by using ansible-playbook
--ask-vault-pass create-users.yaml. Provide
the password when asked for it.

4. Change the current password on secrets.yaml
by using ansible-vault rekey secrets.yaml
and set the new password to secretpassword.

5. To automate the process of entering the
password, use echo secretpassword > vault-

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

pass.

6. Use chmod 400 vault-pass to ensure the file
is readable for the ansible user only; this is
about as much as you can do to secure the file.

7. Verify that it’s working by using ansible-
playbook --vault-password-file=vault-
pass create-users.yaml.

CAPTURING COMMAND
OUTPUT USING REGISTER
Variables can be set by the user or the Ansible
administrator. Alternatively, the result of commands
can be used as a variable, using the register parameter
in a task. Let’s look at the example in Listing 6-18 to
understand how it works:

Listing 6-18 Sample Playbook That Uses register

- name: test register
 hosts: ansible1
 tasks:
 - shell: cat /etc/passwd
 register: passwd_contents
 - debug:
 var: "passwd_contents"

In the sample playbook in Listing 6-18, the cat
/etc/passwd command is executed by the shell

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

module. Notice that in this playbook no names are used
for tasks. Using names for tasks is not mandatory; it’s
just recommended in more complex playbooks because
this convention makes identification of the tasks easier.
The entire contents of the command are next stored in
the variable passwd_contents. This variable contains the
output of the command, stored in different keys. Table
6-7 provides an overview of the most useful keys, and
Listing 6-19 shows the partial result of the ansible-
playbook listing618.yaml command.

Table 6-7 Keys Used with register

Listing 6-19 Partial Result of Running ansible-
playbook listing618.yaml

[ansible@control ~]$ ansible-playbook listing618.yaml

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

PLAY [test register]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [shell]
**

changed: [ansible2]
changed: [ansible1]

TASK [debug]
**

ok: [ansible1] => {
 "passwd_contents": {
 "changed": true,
 "cmd": "cat /etc/passwd",
 "delta": "0:00:00.004149",
 "end": "2020-04-02 02:28:10.692306",
 "failed": false,
 "rc": 0,
 "start": "2020-04-02 02:28:10.688157",
 "stderr": "",
 "stderr_lines": [],
 "stdout":
"root:x:0:0:root:/root:/bin/bash\nbin:x:1:1:bin:/bin:/sbin
/nologin\ndaemon:x:2:2:daemon:/sbin:/sbin/nologin\nadm:x:3
:4:adm:/var/adm:/sbin/nologin\nlp:x:4:7:lp:/var/spool/lpd:
/sbin/nologin\nsync:x:5:0:sync:/sbin:/bin/sync\nshutdown:x
:6:0:shutdown:/sbin:/sbin/shutdown\nhalt:x:7:0:halt:/sbin:
/sbin/halt\nansible:x:1000:1000:ansible:/home/ansible:/bin
/bash\napache:x:48:48:Apache:/usr/share/httpd:/sbin/nologi
n\nlinda:x:1002:1002::/home/linda:/bin/bash\nlisa:x:1003:1
003::/home/lisa:/bin/bash",
 "stdout_lines": [
 "root:x:0:0:root:/root:/bin/bash",
 "bin:x:1:1:bin:/bin:/sbin/nologin",
 "daemon:x:2:2:daemon:/sbin:/sbin/nologin",
 "adm:x:3:4:adm:/var/adm:/sbin/nologin",
 "lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin",
 "sync:x:5:0:sync:/sbin:/bin/sync",

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

"shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown",
 "halt:x:7:0:halt:/sbin:/sbin/halt",

"ansible:x:1000:1000:ansible:/home/ansible:/bin/bash",

"apache:x:48:48:Apache:/usr/share/httpd:/sbin/nologin",
 "linda:x:1002:1002::/home/linda:/bin/bash",
 "lisa:x:1003:1003::/home/lisa:/bin/bash"
]
 }
}

Using register is particularly useful in combination
with conditionals, as discussed in Chapter 7. While
doing so, you can ensure that a task runs only if a
command produces a specific result.

Notice that register shows the values that are returned
by specific tasks. Tasks have common return values, but
modules may have specific return values. That means
you cannot assume, based on the result of an example
using a specific module, that the return values you see
are available for all modules. Consult the module
documentation for more information about specific
return values.

SUMMARY
In this chapter you learned how to work with variables
in many different ways. First you read about Ansible
facts, the variables that are automatically set to contain
many different system parameters. You also read how to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

use Ansible facts to set local variables on a host, using
custom facts. Next, you explored working with variables
and saw how single-valued as well as multivalued
variables can be used. After that you read how to secure
variables using Ansible Vault, and in the last part of this
chapter, you saw how the register parameter can be
used to store the result of a command that is used in a
playbook.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 6-8 lists a reference of these key topics and
the page numbers on which each is found.

Table 6-8 Key Topics for Chapter 6

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

array

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

dictionary

fact

hash

list

local fact

magic variable

register

Vault

REVIEW QUESTIONS
1. What are the two requirements for working with

custom facts?

2. Which module is used to enable fact gathering or
to run fact gathering manually?

3. What needs to be done to use a fact cache?

4. How can you include a variables file in a
playbook?

5. How do you set variables that apply to a group of
hosts as defined in the inventory?

6. Which type of multivalued variable should you
use if you want to use a loop to parse through the
different values?

7. Which magic variable can be used to request

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

current settings for variables on a specific host?

8. How do you change the password on a file that
has been encrypted with ansible-vault?

9. How can a Vault-encrypted file that contains
variables be assigned to hosts in a specific
inventory host group?

10. You have used register in a playbook to register
the result of a command in a variable
cmd_result. How would you show the exit code
of the command in a playbook?

END-OF-CHAPTER LAB
Now that we’re at the end of this chapter, it’s time to do
a more complex end-of-chapter lab. This lab consists of
two parts: in the first part, you work with custom facts,
and in the second part, you use the custom facts in a
second playbook.

LAB 6-1
Configure a playbook that works with custom facts and
meets the following requirements:

• Use the project directory chapter6.

• Create an inventory file where ansible1 is member
of the host group named file and ansible2 is member
of the host group named lamp.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Create a custom facts file that contains a section
named packages and set the following variables:

smb_package = samba

ftp_package = vsftpd

db_package = mariadb

web_package = httpd

firewall_package = firewalld

• Create another custom facts file that contains a
section named services and set the following
variables:

smb_service = smbd

ftp_service = vsftpd

db_service = mariadb

web_service = httpd

firewall_service = firewalld

• Create a playbook with the name copy_facts.yaml
that copies these facts to all managed hosts. In this
playbook define a variable remote_dir to specify the
directory the fact files should be copied to. Use the
variable fact_file to copy the fact files to the
appropriate directories.

• Run the playbook and verify whether it works.

LAB 6-2
After copying over the facts files, create a playbook that
uses the facts to set up the rest of the environment.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Make sure it meets the following requirements:

• Use a variable inclusion file with the name
allvars.yaml and set the following variables:

web_root = /var/www/html

ftp_root = /var/ftp

• Create a playbook that sets up the file services and
the web services. Also ensure the playbook opens
the firewalld firewall to provide access to these
servers.

• Make sure the webservice provides access to a file
index.html, which contains the text “Welcome to the
Ansible Web Server.”

• Run the playbook and use ad hoc commands to
verify that the services have been started.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Part II: Common Ansible
Management Tasks

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 7. Using Task
Control
This chapter covers the following subjects:

• Using Loops and Items

• Using when to Run Tasks Conditionally

• Using Handlers

• Dealing with Failures

The following RHCE exam objectives are covered
in this chapter:

• Create Ansible plays and playbooks

• Use conditionals to control play execution

• Configure error handling

• Create playbooks to configure systems to a
specified state

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 7-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 7-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following should you use to iterate
through a variable that contains a list of items as its
value?

a. with_items

b. with_value

c. item

d. loop

2. Which statement about using variables in when

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

conditional statements is true?

a. Loops cannot be used in when statements.

b. When used in a when statement, the variable
name is written without curly brackets.

c. When using variables in a when statement,
you always need to write them between curly
brackets as well as double quotes.

d. When using variables in a when statement,
you need to address them using a %% sign.

3. Which of the following shows the proper test to
verify whether a Boolean variable is true?

a. variable is defined

b. variable

c. variable = “true”

d. variable == 1

4. Which of the following shows correct syntax for a
string test used to check whether variable has a
specific value?

a. variable = value

b. variable == value

c. variable = “value”

d. variable == “value”

5. Which of the following shows correct syntax for a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

test that checks whether a variable has a specific
numeric value?

a. key == “n”

b. key = “n”

c. key == n

d. key = n

6. What can you use in a playbook to show a prompt
while a user executes the playbook, asking the user
to provide a specific value for a variable?

a. prompt

b. ask_vars

c. vars_prompt

d. prompt_vars

7. Which can be used in a playbook to activate a
handler upon successful execution of a task?

a. notify

b. alert

c. handler

d. call

8. While working with handlers, different
requirements apply. Which of the following is not
one of them?

a. If one task in the play fails, no handlers will

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

run.

b. Handlers will run only after all tasks in the
play have been processed.

c. Handlers will run only if the task results in an
ok or a changed status.

d. Handlers will run in the order specified in the
handlers section.

9. Which of the following can be used to ensure that
handlers will also run if any task finishes with an
error?

a. force_handlers

b. ignore_errors

c. run_always

d. ignore_all

10. Which module should be used to generate a
specific error message if a specific failure occurs?

a. failed_when

b. failed

c. fail

d. failure

FOUNDATION TOPICS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

USING LOOPS AND ITEMS
Some modules enable you to provide a list that needs to
be processed. Many modules don’t, and in these cases, it
makes sense to use a loop mechanism to iterate over a
list of items. Take, for instance, the yum module. While
specifying the names of packages, you can use a list of
packages. If, however, you want to do something similar
for the service module, you find out that this is not
possible. That is where loops come in. In this section
you learn all there is to know about using loops.

Working with Loops
To help you understand working with loops, Listing 7-1
shows a simple playbook that installs software packages
using the yum module and then ensures that services
installed from these packages are started using the
service module.

Listing 7-1 Using loop

- name: install and start services
 hosts: ansible1
 tasks:
 - name: install packages
 yum:
 name:
 - vsftpd
 - httpd
 - samba
 state: latest
 - name: start the services

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 service:
 name: "{{ item }}"
 state: started
 enabled: yes
 loop:
 - vsftpd
 - httpd
 - smb

In Listing 7-1, you can see that a loop is defined at the
same level as the service module. The loop has a list of
services in the list (array) statement that you have seen
before. Items in the loop can be accessed by using the
system internal variable item. At no place in the
playbook is there a definition of the variable item; the
loop takes care of this.

In Listing 7-1 you can also see that a different approach
is used for the yum module. The name in the yum
module does support a list by default, so in this case
there is no further need to use loop and item.

When considering whether to use a loop, you should
first investigate whether a module offers support for
providing lists as values to the keys that are used. If this
is the case, just provide a list, as all items in the list can
be considered in one run of the module. If not, define
the list using loop and provide “{{ item }}” as the
value to the key. Notice that when using loop, the
module is activated again on each iteration.

Using Loops on Variables

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Although it’s possible to define a loop within a task, it’s
not the most elegant way. To create a flexible
environment where static code is separated from
dynamic site-specific parameters, it’s a much better idea
to define loops outside the static code, in variables.
When you define loops within a variable, all the normal
rules for working with variables apply: The variables can
be defined in the play header, using an include file, or as
host/hostgroup variables. In Listing 7-2 you can see how
the example from Listing 7-1 has been rewritten to
include the loop from a variable.

Listing 7-2 Providing the Loop by a Variable

- name: install and start services
 hosts: ansible1
 vars:
 services:
 - vsftpd
 - httpd
 - smb
 tasks:
 - name: install packages
 yum:
 name:
 - vsftpd
 - httpd
 - samba
 state: latest
 - name: start the services
 service:
 name: "{{ item }}"
 state: started
 enabled: yes
 loop: "{{ services }}"

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Loops on Multivalued
Variables
An item can be a simple list, but it can also be presented
as a multivalued variable, as long as the multivalued
variable is presented as a list. Consider the sample
playbook in Listing 7-4, which uses variables that are
imported from the file vars/users-list shown in Listing
7-3.

Listing 7-3 Variables File

users:
 - username: linda
 homedir: /home/linda
 shell: /bin/bash
 groups: wheel
 - username: lisa
 homedir: /home/lisa
 shell: /bin/bash
 groups: users
 - username: anna
 homedir: /home/anna
 shell: /bin/bash
 groups: users

Listing 7-4 Using Multivalued Variables

- name: create users using a loop from a list
 hosts: ansible1
 vars_files: vars/users-list
 tasks:
 - name: create users
 user:
 name: "{{ item.username }}"
 state: present
 groups: "{{ item.groups }}"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 shell: "{{ item.shell }}"
 loop: "{{ users }}"

Working with multivalued variables is possible, but the
variables in that case must be presented as a list; using
dictionaries is not supported. The only way to loop over
dictionaries is to use the dict2items filter. Use of filters
is not included in the RHCE topics and for that reason is
not explained further here. You can look up “Iterating
over a dictionary” in the Ansible documentation for
more information. Listing 7-5 shows the output of the
command ansible-playbook listing74.yaml.

Listing 7-5 Working with Multivalued Variables
Output

[ansible@control ~]$ ansible-playbook listing74.yaml

PLAY [create users using a loop from a list]

TASK [Gathering Facts]
**

ok: [ansible1]

TASK [create users]
**

changed: [ansible1] => (item={’username’: ’linda’,
’homedir’: ’/home/linda’, ’shell’: ’/bin/bash’, ’groups’:
’wheel’})
changed: [ansible1] => (item={’username’: ’lisa’,
’homedir’: ’/home/lisa’, ’shell’: ’/bin/bash’, ’groups’:
’users’})
changed: [ansible1] => (item={’username’: ’anna’,
’homedir’: ’/home/anna’, ’shell’: ’/bin/bash’, ’groups’:
’users’})

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

PLAY RECAP
**

ansible1 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Understanding with_items
Since Ansible 2.5, using loop has been the command
way to iterate over the values in a list. In earlier versions
of Ansible, the with_keyword statement was used
instead. In this approach, the keyword is replaced with
the name of an Ansible look-up plug-in, but the rest of
the syntax is very common. Table 7-2 provides an
overview of some of the most common options. Notice
that the syntax was still supported at the time this book
was written but will be deprecated in a future version of
Ansible.

Table 7-2 with_keyword Options Overview

In Listing 7-6 you can see how the playbook from
Listing 7-2 is rewritten to use with_items. Notice that

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

it has only one change: loop has been changed to
with_items.

Listing 7-6 Using with_items

- name: install and start services
 hosts: ansible1
 vars:
 services:
 - vsftpd
 - httpd
 - smb
 tasks:
 - name: install packages
 yum:
 name:
 - vsftpd
 - httpd
 - samba
 state: latest
 - name: start the services
 service:
 name: "{{ item }}"
 state: started
 enabled: yes
 with_items: "{{ services }}"

In Exercise 7-1 you practice working with loop.

Exercise 7-1 Working with loop

1. Use your editor to define a variables file with
the name vars/packages and the following
contents:

packages:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- name: httpd

 state: absent

- name: vsftpd

 state: installed

- name: mysql-server

 state: latest

2. Use your editor to define a playbook with the
name exercise71.yaml and create the play
header:

- name: manage packages using a loop from

a list

 hosts: ansible1

 vars_files: vars/packages

 tasks:

3. Continue the playbook by adding the yum task
that will manage the packages, using the
packages variable as defined in the
vars/packages variable include file:

- name: manage packages using a loop from

a list

 hosts: ansible1

 vars_files: vars/packages

 tasks:

 - name: install packages

 yum:

 name: "{{ item.name }}"

 state: "{{ item.state }}"

 loop: "{{ packages }}"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

4. Run the playbook using ansible-playbook
exercise71.yaml, and observe the results. In
the results you should see which packages it is
trying to manage and in which state it is trying
to get the packages.

USING WHEN TO RUN TASKS
CONDITIONALLY
In Ansible, you can use a when statement to run tasks
conditionally. Multiple tests can be done using when;
for instance, you can test whether a variable has a
specific value, whether a file exists, whether a minimal
amount of memory is available, and more.

Working with when
Let’s get started with a simple playbook to explore the
workings of when. In the sample playbook in Listing 7-
7, you can see how a when statement is used to install
the right software package for the Apache web server,
based on the Linux distribution that was found in the
Ansible facts. Notice that when used in when
statements, the variable that is evaluated is not placed
between double curly braces.

Listing 7-7 Using when for Conditional Software
Installation

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- name: conditional install
 hosts: all
 tasks:
 - name: install apache on Red Hat and family
 yum:
 name: httpd
 state: latest
 when: ansible_facts[’os_family’] == "RedHat"
 - name: install apache on Ubuntu and family
 apt:
 name: apache2
 state: latest
 when: ansible_facts[’os_family’] == "Debian"

Notice the use of when: Because it is not a part of any
properties of the modules on which it is used, the when
statement must be indented at the same level as the
module itself. In the example in Listing 7-7, a string test
is used to check whether the value of the Ansible fact
ansible_os_family (which in the playbook is written
as the equivalent ansible_facts[’os_family’]) is
equal to the string RedHat. Because this is a string test,
the string itself must be between double quotes.
Without the double quotes, it would be considered an
integer test. A string test is just one of the many
conditional tests that can be executed. Table 7-3
provides an overview with some other examples of
conditional tests.

Listing 7-8 shows the output of the playbook in Listing
7-7. Because no hosts use a Linux distribution from the
Debian family, the second task reports a status of
skipped.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 7-8 Conditional Playbook Result

[ansible@control ~]$ ansible-playbook listing77.yaml

PLAY [conditional install]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [install apache on Red Hat and family]
**
ok: [ansible1]
changed: [ansible2]

TASK [install apache on Ubuntu and family]

skipping: [ansible1]
skipping: [ansible2]

PLAY RECAP
**

ansible1 : ok=2 changed=0
unreachable=0 failed=0 skipped=1 rescued=0
ignored=0
ansible2 : ok=2 changed=1
unreachable=0 failed=0 skipped=1 rescued=0
ignored=0

Using Conditional Test Statements
When working with when, you use conditional test
statements. In the example in Listing 7-7 you saw a
string test, but many other tests are also available. Table
7-3 gives an overview of some common conditional tests

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that you can perform with the when statement.

Table 7-3 Conditional Tests Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Exam tip

Conditional tests are important, but you won’t find a nice table like Table
7-3 in the Ansible documentation. Look for “Tests” in the Ansible
documentation, and use the item that is found in Templating (Jinja2).
This section contains useful examples that might help you during the
exam.

When referring to variables in when statements, you
don’t have to use curly brackets because items in a
when statement are considered to be variables by
default. So you can write when: text == “hello”
instead of when: “{{ text }}” == “hello”.

As you can see in Table 7-3, there are roughly four types
of when conditional tests:

• Checks related to variable existence

• Boolean checks

• String comparisons

• Integer comparisons

The first type of test checks whether a variable exists or
is a part of another variable, such as a list. This is a
useful test to figure out if, for instance, a specific
Ansible fact has been set. An example is shown in
Listing 7-9 where the sample playbook checks for the
existence of a specific disk device, using variable is
defined and variable is not defined. When you run

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

this playbook, you’ll notice that all failing tests result in
the message “skipping.”

Listing 7-9 Using when to Check Whether a Variable
Exists

- name: check for existence of devices
 hosts: all
 tasks:
 - name: check if /dev/sda exists
 debug:
 msg: a disk device /dev/sda exists
 when: ansible_facts[’devices’][’sda’] is defined
 - name: check if /dev/sdb exists
 debug:
 msg: a disk device /dev/sdb exists
 when: ansible_facts[’devices’][’sdb’] is defined
 - name: dummy test, intended to fail
 debug:
 msg: failing
 when: dummy is defined
 - name: check if /dev/sdc does not exist
 debug:
 msg: there is no /dev/sdc device
 when: ansible_facts[’devices’][’sdc’] is not defined

Closely related to the is defined check is the check that
finds whether the first variable value is present in the
second variable’s list. This scenario is demonstrated in
Listing 7-10, which executes the debug task if the
variable my_answer is in supported_packages.
Notice that in this listing vars_prompt is used. This
stops the playbook, asks the user for input, and stores
the input in a variable with the name my_answer.

Listing 7-10 Checking Whether a Variable Occurs in a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

List

- name: test if variable is in another variables list
 hosts: all
 vars_prompt:
 - name: my_answer
 prompt: which package do you want to install
 vars:
 supported_packages:
 - httpd
 - nginx
 tasks:
 - name: something
 debug:
 msg: you are trying to install a supported package
 when: my_answer in supported_packages

The next type of check is the Boolean check. This check
works on variables that have a Boolean value, but these
variables are not very common. The most important
thing to know about this type of check is that it should
not be defined with the check for existence. Boolean
checks are used to check the Boolean value of a variable;
is defined is used to check whether a variable is
defined.

The last types of checks are string comparisons and
integer comparisons. You already saw a string test in
Listing 7-7. In an integer comparison, you check
whether a variable has a specific value. You can, for
instance, check if more than 1 GB of disk space is
available. When doing checks on available disk space
and available memory, carefully look at the expected

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

value. Memory is shown in megabytes, by default,
whereas disk space is expressed in bytes. Listing 7-11
shows an example that will install vsftpd if more than
50 MB of memory is available.

Listing 7-11 Using an Integer Check

- name: conditionals test
 hosts: all
 tasks:
 - name: install vsftpd if sufficient memory available
 package:
 name: vsftpd
 state: latest
 when: ansible_facts[’memory_mb’][’real’][’free’] > 50

Testing Multiple Conditions
Apart from doing single evaluations, when statements
can also be used to evaluate multiple conditions. To do
so, you can group the conditions with parentheses and
combine them with and and or keywords. Listing 7-12
shows an example where and is used and that runs the
task only if both conditions are true. Alternatively,
consider using or to allow a task to run if one of the
conditions is true.

Listing 7-12 Combining Multiple Conditions

- name: testing multiple conditions
 hosts: all
 tasks:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - name: showing output
 debug:
 msg: using CentOS 8.1
 when: ansible_facts[’distribution_version’] == "8.1"
and ansible_facts[’distribution’] == "CentOS"

Apart from the simple and statement in Listing 7-12,
you can make more complex statements by grouping
conditions together in parentheses. Listing 7-13 shows
an example. Note that in this example the when
statement starts with a > sign because the statement is
wrapped over the next five lines for readability. The >
sign makes sure that all the values provided to the
when statement are interpreted as one line and not as
five.

Listing 7-13 Combining Complex Statements

- name: using multiple conditions
 hosts: all
 tasks:
 - package:
 name: httpd
 state: removed
 when: >
 (ansible_facts[’distribution’] == "RedHat" and
 ansible_facts[’memfree_mb’] < 512)
 or
 (ansible_facts[’distribution’] == "CentOS" and
 ansible_facts[’memfree_mb’] < 256)

Combining loop and when
Although you use when to execute a task only if a
specific condition is true, you can use loop to iterate

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

over a list of items. To unleash the full power of Ansible
playbooks, you can use a combination. The playbook in
Listing 7-14 performs a kernel update only if /boot is on
a dedicated mount point and at least 200 MB is available
in the mount.

Listing 7-14 Combining loop and when

- name: conditionals test
 hosts: all
 tasks:
 - name: update the kernel if sufficient space is
available in /boot
 package:
 name: kernel
 state: latest
 loop: "{{ ansible_facts[’mounts’] }}"
 when: item.mount == "/boot" and item.size_available >
200000000

Because the sample playbook from Listing 7-14 loops
over all the mounts that were found, it’s interesting to
observe its output. In Listing 7-15 you can see how the
task first skips the / mount and next performs the task
on the /boot mount as it meets the conditions. Later in
Exercise 7-2 you practice working with when.

Listing 7-15 Listing 7-14 Task Result

[ansible@control ~]$ ansible-playbook listing714.yaml

PLAY [conditionals test]
**

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [update kernel if sufficient space in /boot]

skipping: [ansible1] => (item={’mount’: ’/’, ’device’:
’/dev/mapper/cl-root’, ’fstype’: ’xfs’, ’options’:
’rw,seclabel,relatime,attr2,inode64,noquota’,
’size_total’: 18238930944, ’size_available’: 13722013696,
’block_size’: 4096, ’block_total’: 4452864,
’block_available’: 3350101, ’block_used’: 1102763,
’inode_total’: 8910848, ’inode_available’: 8790863,
’inode_used’: 119985, ’uuid’: ’ef0bb39c-5a29-4c0a-9152-
7dd3fd5254c2’})
skipping: [ansible2] => (item={’mount’: ’/’, ’device’:
’/dev/mapper/cl-root’, ’fstype’: ’xfs’, ’options’:
’rw,seclabel,relatime,attr2,inode64,noquota’,
’size_total’: 18238930944, ’size_available’: 16635084800,
’block_size’: 4096, ’block_total’: 4452864,
’block_available’: 4061300, ’block_used’: 391564,
’inode_total’: 8910848, ’inode_available’: 8877221,
’inode_used’: 33627, ’uuid’: ’acdeb1af-c439-4030-b9ba-
c21d4d4fb0a8’})
changed: [ansible2] => (item={’mount’: ’/boot’, ’device’:
’/dev/sda1’, ’fstype’: ’ext4’, ’options’:
’rw,seclabel,relatime’, ’size_total’: 1023303680,
’size_available’: 811139072, ’block_size’: 4096,
’block_total’: 249830, ’block_available’: 198032,
’block_used’: 51798, ’inode_total’: 65536,
’inode_available’: 65227, ’inode_used’: 309, ’uuid’:
’cc870ab6-1e0e-4d27-9df3-9e5961d9fa62’})
changed: [ansible1] => (item={’mount’: ’/boot’, ’device’:
’/dev/sda1’, ’fstype’: ’ext4’, ’options’:
’rw,seclabel,relatime’, ’size_total’: 1023303680,
’size_available’: 803180544, ’block_size’: 4096,
’block_total’: 249830, ’block_available’: 196089,
’block_used’: 53741, ’inode_total’: 65536,
’inode_available’: 65227, ’inode_used’: 309, ’uuid’:
’7acd65d6-115f-499f-a02f-90364a18b9fc’})

PLAY RECAP
**

ansible1 : ok=2 changed=1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Combining loop and register
In Chapter 6, “Working with Variables and Facts,” you
learned that the results of a command can be stored in a
variable when you use register. Using register, you
store the result of a command in a multivalued variable,
and based on this result, another conditional task can
run. In the example in Listing 7-16, you can see how this
statement is used in a playbook.

Listing 7-16 Combining register and loop

- name: test register
 hosts: all
 tasks:
 - shell: cat /etc/passwd
 register: passwd_contents
 - debug:
 msg: passwd contains user lisa
 when: passwd_contents.stdout.find(’lisa’) != -1

You might notice that in this playbook, the when
statement makes use of some particular items that we
haven’t seen before. To start with, it refers to
passwd_contents.stdout.find, but
passwd_contents.stdout does not contain any item
with the name find. The construction that is used here

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

is variable.find, which enables a task to search a
specific string in a variable. To do so, the find function
in Python is used—after all, Ansible is written in Python.
When the Python find function does not find a string, it
returns a value of −1. If the requested string is found,
the find function returns an integer that returns the
position where the string was found. For instance, if the
string lisa is found in /etc/passwd, it returns an
unexpected value like 2604, which is the position in the
file, expressed as a byte offset from the beginning,
where the string is found for the first time.

Because of the behavior of the Python find function,
variable.find needs not to be equal to −1 to have the
task succeed. So don’t write
passwd_contents.stdout.find(’lisa’) = 0 (because it
is not a Boolean), but instead write
passwd_contents.stdout.find(’lisa’) != -1. In
Exercise 7-2 you practice working with conditionals
using register.

Note that when using register, you might want to
define a task that runs a command that will fail, just to
capture the return code of that command, after which
the playbook should continue. If that is the case, you
must ensure that ignore_errors: yes is used in the
task definition. The default behavior is that if a task

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

fails, execution of the playbook is aborted, and no other
tasks run.

Exercise 7-2 Using when

1. Use your editor to create a new file with the
name exercise72.yaml. Start writing the play
header as follows:

- name: restart sshd service if httpd is r

unning

 hosts: ansible1

 tasks:

2. Add the first task, which checks whether the
httpd service is running, using command output
that will be registered. Notice the use of
ignore_errors: yes. This line makes sure that
if the service is not running, the play is still
executed further.

- name: restart sshd service if httpd is r

unning

 hosts: ansible1

 tasks:

 - name: get httpd service status

 command: systemctl is-active httpd

 ignore_errors: yes

 register: result

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3. Add a debug task that shows the output of the
command so that you can analyze what is
currently in the registered variable:

- name: restart sshd service if httpd is r

unning

 hosts: ansible1

 tasks:

 - name: get httpd service status

 command: systemctl is-active httpd

 ignore_errors: yes

 register: result

 - name: show result variable contents

 debug:

 msg: printing contents of the regist

ered variable {{ result }}

4. Complete the playbook by including the
service task, which is started only if the value
stored in result.rc (which is the return code of
the command that was registered) contains a 0.
This is the case if the previous command
executed successfully.

- name: restart sshd service if httpd is r

unning

 hosts: ansible1

 tasks:

 - name: get httpd service status

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 command: systemctl is-active httpd

 ignore_errors: yes

 register: result

 - name: show result variable contents

 debug:

 msg: printing contents of the regist

ered variable {{ result }}

 - name: restart sshd service

 service:

 name: sshd

 state: restarted

 when: result.rc == 0

5. Use an ad hoc command to make sure the httpd
service is installed: ansible ansible1 -m yum
-a “name=httpd state=latest”.

6. Use an ad hoc command to make sure the httpd
service is stopped: ansible ansible1 -m
service -a “name=httpd state=stopped”.

7. Run the playbook using ansible-playbook
exercise72.yaml and analyze the result. You
should see that the playbook skips the service
task.

8. Type ansible ansible1 -m service -a
“name=httpd state=started” and run the
playbook again, using ansible-playbook
exercise72.yaml. Playbook execution at this
point should be successful.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

USING HANDLERS
Playbooks contain lists of tasks. Tasks are always
executed in order, and if one task fails, none of the
following tasks are executed. In some cases, you might
need to manage execution dependencies in a more
specific way. That is when handlers can come in handy.
A handler is a task that is triggered and is executed by a
successful task.

Working with Handlers
To work with handlers, you should define a notify
statement at the level where the task is defined. The
notify statement should list the name of the handler
that is to be executed, and the handlers are listed at the
end of the play. Make sure the name of the handler
matches the name of the item that is called in the
notify statement, because that is what the handler is
looking for.

The playbook in Listing 7-17 shows how to work with
handlers. It is a multiplay playbook, where the first play
is used to define the file index.html on localhost. Next,
this file is used in the second play to set up the web
server.

The handler is triggered from the task where the copy
module is used to copy the index.html file. If this task is
successful, the notify statement calls the handler.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Notice that handlers can be specified as a list, so one
task can call multiple handlers. Also notice that in
Listing 7-17, a second task is defined, which is intended
to fail.

Listing 7-17 Working with Handlers

- name: create file on localhost
 hosts: localhost
 tasks:
 - name: create index.html on localhost
 copy:
 content: "welcome to the webserver"
 dest: /tmp/index.html

- name: set up web server
 hosts: all
 tasks:
 - name: install httpd
 yum:
 name: httpd
 state: latest
 - name: copy index.html
 copy:
 src: /tmp/index.html
 dest: /var/www/html/index.html
 notify:
 - restart_web
 - name: copy nothing - intended to fail
 copy:
 src: /tmp/nothing
 dest: /var/www/html/nothing.html
 handlers:
 - name: restart_web
 service:
 name: httpd
 state: restarted

Listing 7-18 shows the result of the command ansible-
playbook listing717.yaml.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 7-18 ansible-playbook listing717.yaml
Command Result

[ansible@control ~]$ ansible-playbook listing717.yaml

PLAY [create file on localhost]
**

TASK [Gathering Facts]
**

ok: [localhost]

TASK [create index.html on localhost]
**
changed: [localhost]

PLAY [set up web server]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [install httpd]
**

changed: [ansible2]
changed: [ansible1]

TASK [copy index.html]
**

changed: [ansible2]
changed: [ansible1]

TASK [copy nothing - intended to fail]

An exception occurred during task execution. To see the
full traceback, use -vvv. The error was: If you are using
a module and expect the file to exist on the remote, see
the remote_src option

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

fatal: [ansible2]: FAILED! => {"changed": false, "msg":
"Could not find or access ’/tmp/nothing’ on the Ansible
Controller.\nIf you are using a module and expect the file
to exist on the remote, see the remote_src option"}
An exception occurred during task execution. To see the
full traceback, use -vvv. The error was: If you are using
a module and expect the file to exist on the remote, see
the remote_src option
fatal: [ansible1]: FAILED! => {"changed": false, "msg":
"Could not find or access ’/tmp/nothing’ on the Ansible
Controller.\nIf you are using a module and expect the file
to exist on the remote, see the remote_src option"}

RUNNING HANDLER [restart_web]
**

PLAY RECAP
**

ansible1 : ok=3 changed=2
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=2
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
localhost : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

As you can see in the command result in Listing 7-18, all
tasks up to copy index.html run successfully.
However, the task copy nothing fails, which is why the
handler does not run. The solution seems easy: the
handler doesn’t run because the task that copies the file
/tmp/nothing fails as the source file doesn’t exist. So
the solution seems simple: create the source file using
touch /tmp/nothing on the control host and run the
task again. Listing 7-19 shows the result of this
approach.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 7-19 Running playbook listing717.yaml
Again

[ansible@control ~]$ ansible-playbook listing717.yaml

PLAY [create file on localhost]
**

TASK [Gathering Facts]
**

ok: [localhost]

TASK [create index.html on localhost]
**
ok: [localhost]

PLAY [set up web server]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [install httpd]
**

ok: [ansible2]
ok: [ansible1]

TASK [copy index.html]
**

ok: [ansible2]
ok: [ansible1]

TASK [copy nothing - intended to fail]

changed: [ansible2]
changed: [ansible1]

PLAY RECAP

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

**

ansible1 : ok=4 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=4 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
localhost : ok=2 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

As you can see, despite what you might have expected,
after creating the source file and running the playbook
again, the handler still doesn’t run. The reason is that
handlers run only if the task that triggers them gives a
changed status, and that doesn’t happen in Listing 7-19
because the task already executed successfully while
running the playbook in Listing 7-18. To see the handler
being triggered successfully, you must run an ad hoc
command to remove the /var/www/html/index.html
file on the managed hosts and run the playbook again.
Listing 7-20 shows the result.

Listing 7-20 Successfully Running Listing 7-17

[ansible@control ~]$ ansible ansible2 -m file -a
"name=/var/www/html/index.html state=absent"
ansible2 | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": true,
 "path": "/var/www/html/index.html",
 "state": "absent"
}

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

[ansible@control ~]$ ansible-playbook listing717.yaml

PLAY [create file on localhost]
**

TASK [Gathering Facts]
**

ok: [localhost]

TASK [create index.html on localhost]
**
ok: [localhost]

PLAY [set up web server]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [install httpd]
**

ok: [ansible2]
ok: [ansible1]

TASK [copy index.html]
**

changed: [ansible2]
ok: [ansible1]

TASK [copy nothing - intended to fail]

ok: [ansible2]
ok: [ansible1]

RUNNING HANDLER [restart_web]
**
changed: [ansible2]

PLAY RECAP
**

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ansible1 : ok=4 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=5 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
localhost : ok=2 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Understanding Handler Execution
and Exceptions
When a task fails, none of the following tasks run. How
does that make handlers different? A handler runs only
on the success of a task, but the next task in the list also
runs only if the previous task was successful. What,
then, is so special about handlers?

The difference is in the nature of the handler. Handlers
are meant to perform an extra action when a task makes
a change to a host. So in the design of the playbook, the
handler should be considered an extension to the
regular task. They are a conditional task that runs only
upon the success of a previous task.

If a handler is triggered and a task that is later in the
play fails, the handler will not be executed on the node
where the subsequent task has failed. There are two
solutions to prevent this. To start with, you can use
force_handlers: true in the play header to ensure
that the handler will run anyway. You also can use the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

more generic ignore_errors: true statement in the
play header to accomplish the same thing. Because
force_handlers: true is more specific, using that
option is preferred if you just need to make sure that
your handlers will run.

When you work with handlers, there are a few specifics
to be aware of:

• Handlers are specified in a handlers section at the
end of the play.

• Handlers run in the order they occur in the handlers
section and not in the order as triggered.

• Handlers run only if the task calling them generates
a changed status.

• Handlers by default will not run if any task in the
same play fails, unless force_handlers or
ignore_errors are used.

• Handlers run only after all tasks in the play where
the handler is activated have been processed. You
might want to define multiple plays to avoid this
behavior.

Exercise 7-3 Working with Handlers

1. Open a playbook with the name

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

exercise73.yaml.

2. Define the play header:

- name: update the kernel

 hosts: all

 force_handlers: true

 tasks:

3. Add a task that updates the current kernel:

- name: update the kernel

 hosts: all

 force_handlers: true

 tasks:

 - name: update kernel

 yum:

 name: kernel

 state: latest

 notify: reboot_server

4. Add a handler that reboots the server in case
the kernel was successfully updated:

- name: update the kernel

 hosts: all

 force_handlers: true

 tasks:

 - name: update kernel

 yum:

 name: kernel

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 state: latest

 notify: reboot_server

 handlers:

 - name: reboot_server

 command: reboot

5. Run the playbook using ansible-playbook
exercise73.yaml and observe its result. Notice
that the handler runs only if the kernel was
updated. If the kernel already was at the latest
version, nothing has changed and the handler
does not run. Also notice that it wasn’t really
necessary to use force_handlers in the play
header, but by using it anyway, at least you now
know where to use it.

DEALING WITH FAILURES
When working with playbooks, you can get unexpected
results. To deal with these situations, you need to
understand normal playbook operations. Based on your
understanding of the expected result, you can handle a
situation if something doesn’t go as expected.

Understanding Task Execution
Tasks in Ansible playbooks are executed in the order
they are specified. If a task in the playbook fails to
execute on a host, the task generates an error and the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

play does not further execute on that specific host. This
also goes for handlers: if any task that follows the task
that triggers a handler fails, the handlers do not run. In
both of these cases, it is important to know that the
tasks that have run successfully still generate their
result. Because this can give an unexpected result, it is
important to always restore the original situation if that
happens.

In some cases you might want the entire playbook to
stop executing on all hosts when a failing task is
encountered. If that is the case, you can use
any_errors_fatal in the play header or on a block
(blocks are explained later in this chapter).

Managing Task Errors
Generically, tasks can generate three different types of
results. Table 7-4 gives an overview.

Table 7-4 Tasks Result Overview

As you saw before, if a task fails, all execution stops.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This outcome can be prevented by using
ignore_errors and force_handlers. If you specify
ignore_errors: yes in a task, the playbook continues,
even after processing the failing task. Likewise,
force_handlers can be used to ensure that handlers
will be executed, even if a failing task was encountered.
Listing 7-21 shows an example of a playbook that uses
ignore_errors.

Listing 7-21 Example with ignore_errors

- name: restart sshd only if crond is running
 hosts: all
 tasks:
 - name: get the crond server status
 command: /usr/bin/systemctl is-active crond
 ignore_errors: yes
 register: result
 - name: restart sshd based on crond status
 service:
 name: sshd
 state: restarted
 when: result.rc == 0

The essence of the playbook in Listing 7-21 is that the
sshd service needs to be restarted, based on the result of
the current status of the crond service. To find the
current status of the crond service, you use the
command systemctl is-active crond, and the result of
that command is registered. To allow the playbook to
continue, even if the service currently is not running,
you include ignore_errors: yes in the task definition.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This allows the result of the command module to be
recorded using register. Next, the sshd service is
restarted based on the value of the registered command
result.

In Listing 7-17 you learned how to work with handlers.
Also in this playbook, you saw how the handlers aren’t
triggered if any task in the play will fail. You can easily
fix this issue by including force_handlers in the play
header. Listing 7-22 shows the modified playbook where
this approach is applied.

Listing 7-22 Forcing Handlers to Run

- name: create file on localhost
 hosts: localhost
 tasks:
 - name: create index.html on localhost
 copy:
 content: "welcome to the webserver"
 dest: /tmp/index.html

- name: set up web server
 hosts: all
 force_handlers: yes
 tasks:
 - name: install httpd
 yum:
 name: httpd
 state: latest
 - name: copy index.html
 copy:
 src: /tmp/index.html
 dest: /var/www/html/index.html
 notify:
 - restart_web
 - name: copy nothing - intended to fail
 copy:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 src: /tmp/nothing
 dest: /var/www/html/nothing.html
 handlers:
 - name: restart_web
 service:
 name: httpd
 state: restarted

As you can see, regardless of the fact that the copy
nothing task fails, the handler is executed anyway
because of the use of force_handlers.

Specifying Task Failure Conditions
If a task successfully runs a command, according to
Ansible it has run successfully, even if the command
output itself indicates a failure. In that case it makes
sense to set a failure condition anyway. You can do so by
using the failed_when conditional. Notice that
failed_when is a true conditional, so it must be used
to evaluate some expression. Listing 7-23 shows a
sample script where this conditional is demonstrated.

Listing 7-23 Using failed_when

- name: demonstrating failed_when
 hosts: all
 tasks:
 - name: run a script
 command: echo hello world
 ignore_errors: yes
 register: command_result
 failed_when: "’world’ in command_result.stdout"
 - name: see if we get here
 debug:
 msg: second task executed

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In Listing 7-23, the command module is used to run a
simple command. As it runs the echo command, the
command itself would be considered successful.
However, register is used to capture command output,
and failed_when is used to define the command as
failed when the text “world” occurs in the stdout of the
command. That means the command generates a failed
status in all cases. At the same time, the
ignore_errors: yes statement enables the task to fail,
after which the playbook still continues. As a result,
after showing the failure on the first task, the second
task does get executed, as you can see in Listing 7-24.

Listing 7-24 Result of Running ansible-playbook
listing723yaml

[ansible@control ~]$ ansible-playbook listing723.yaml

PLAY [demonstrating failed_when]

TASK [Gathering Facts]
**

ok: [ansible1]
ok: [ansible2]

TASK [run a script]
**

fatal: [ansible2]: FAILED! => {"changed": true, "cmd":
["echo", "hello", "world"], "delta": "0:00:00.004303",
"end": "2020-04-06 03:44:56.748552", "failed_when_result":
true, "rc": 0, "start": "2020-04-06 03:44:56.744249",
"stderr": "", "stderr_lines": [], "stdout": "hello world",

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

"stdout_lines": ["hello world"]}
...ignoring
fatal: [ansible1]: FAILED! => {"changed": true, "cmd":
["echo", "hello", "world"], "delta": "0:00:00.004261",
"end": "2020-04-06 03:44:56.770166", "failed_when_result":
true, "rc": 0, "start": "2020-04-06 03:44:56.765905",
"stderr": "", "stderr_lines": [], "stdout": "hello world",
"stdout_lines": ["hello world"]}
...ignoring

TASK [see if we get here]
**

ok: [ansible1] => {
 "msg": "second task executed"
}
ok: [ansible2] => {
 "msg": "second task executed"
}

PLAY RECAP
**

ansible1 : ok=3 changed=1
unreachable=0 failed=0 skipped=0 rescued=0

ignored=1
ansible2 : ok=3 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=1

Alternatively, you can use the fail module to specify
when a task fails. Using this module makes sense only if
when is used to define the exact condition when a
failure should occur. Listing 7-25 shows how the
playbook from Listing 7-23 can be rewritten using the
fail module.

Listing 7-25 Using the fail Module

- name: demonstrating the fail module

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 hosts: all
 ignore_errors: yes
 tasks:
 - name: run a script
 command: echo hello world
 register: command_result
 - name: report a failure
 fail:
 msg: the command has failed
 when: "’world’ in command_result.stdout"
 - name: see if we get here
 debug:
 msg: second task executed

Notice that in the rewritten playbook in Listing 7-25, the
ignore_errors statement has moved from the task
definition to the play header. Without this move, the
message “second task executed” would never be shown
because the fail module always generates a failure
message. The main advantage of using the fail module
instead of using failed_when is that the fail module
can easily be used to set a clear failure message, which
is not possible when using failed_when.

Managing Changed Status
In Ansible, there are commands that change something
and commands that don’t. Some commands, however,
are not very obvious in reporting their status. Run the
playbook in Listing 7-26, for example.

Listing 7-26 Sample Playbook Contents

- name: demonstrate changed status
 hosts: all

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 tasks:
 - name: check local time
 command: date
 register: command_result

 - name: print local time
 debug:
 var: command_result.stdout

As you can see in Listing 7-27, this playbook reports a
changed status, even if nothing really was changed!

Listing 7-27 Result of Running ansible-playbook
listing726.yaml

[ansible@control ~]$ ansible-playbook listing726.yaml

PLAY [demonstrate changed status]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [check local time]
**

changed: [ansible2]
changed: [ansible1]

TASK [print local time]
**

ok: [ansible1] => {
 "command_result.stdout": "Mon Apr 6 04:11:26 EDT
2020"
}
ok: [ansible2] => {
 "command_result.stdout": "Mon Apr 6 04:11:26 EDT
2020"
}

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

PLAY RECAP
**

ansible1 : ok=3 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

In some cases, managing the changed status can be
useful in avoiding unexpected results while running a
playbook. Listing 7-28 shows how the sample playbook
from Listing 7-26 can be changed accordingly, using
changed_when, and Listing 7-29 shows the result of
running the playbook in Listing 7-28. If you set
changed_when to false, the playbook reports only an
ok or failed status and never reports a changed status.

Listing 7-28 Using changed_when

- name: demonstrate changed status
 hosts: all
 tasks:
 - name: check local time
 command: date
 register: command_result
 changed_when: false

 - name: print local time
 debug:
 var: command_result.stdout

Listing 7-29 Result of Running ansible-playbook
listing728.yaml

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

[ansible@control ~]$ ansible-playbook listing728.yaml

PLAY [demonstrate changed status]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [check local time]
**

ok: [ansible2]
ok: [ansible1]

TASK [print local time]
**

ok: [ansible1] => {
 "command_result.stdout": "Mon Apr 6 04:15:26 EDT
2020"
}
ok: [ansible2] => {
 "command_result.stdout": "Mon Apr 6 04:15:26 EDT
2020"
}

PLAY RECAP
**

ansible1 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Using Blocks
When you are working with conditional statements,
blocks can be very useful. A block is a group of tasks to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

which a when statement can be applied. As a result, if a
single condition is true, multiple tasks can be executed.
To do so, between the tasks: statement in the play
header and the actual tasks that run the specific
modules, you can insert a block: statement. Listing 7-
30 shows an example.

Listing 7-30 Using Blocks

- name: simple block example
 hosts: all
 tasks:
 - name: setting up http
 block:
 - name: installing http
 yum:
 name: httpd
 state: present
 - name: restart httpd
 service:
 name: httpd
 state: started
 when: ansible_distribution == "CentOS"

To understand the sample playbook in Listing 7-30,
notice that the when statement is applied at the same
level as the block definition. When you define it this
way, the tasks in the block are executed only if the
when statement is true.

Using Blocks with rescue and always
Statements
Listing 7-30 shows how a block is used to group
different tasks together. Blocks can be used for simple

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

error handling as well, in such a way that if any task that
is defined in the block statement fails, the tasks that
are defined in the rescue section are executed. Besides
that, an always section can be used to define tasks that
should always run, regardless of the success or failure of
the tasks in the block. Listing 7-31 shows an example.

Exam tip

On the RHCE exam, you definitely need to work out a playbook that
handles complex conditional statements. Make sure you fully
understand how to use blocks, because they provide an excellent way to
do this.

Listing 7-31 Using Blocks, rescue, and always

- name: using blocks
 hosts: all
 tasks:
 - name: intended to be successful
 block:
 - name: remove a file
 shell:
 cmd: rm /var/www/html/index.html
 - name: printing status
 debug:
 msg: block task was operated
 rescue:
 - name: create a file
 shell:
 cmd: touch /tmp/rescuefile
 - name: printing rescue status
 debug:
 msg: rescue task was operated
 always:
 - name: always write a message to logs
 shell:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 cmd: logger hello
 - name: always printing this message
 debug:
 msg: this message is always printed

In Listing 7-32 you can see the output of the command
ansible-playbook listing731yaml.

Listing 7-32 Output of Command ansible-playbook
listing731.yaml

[ansible@control ~]$ ansible-playbook listing731.yaml

PLAY [using blocks]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [remove a file]
**

[WARNING]: Consider using the file module with

state=absent rather than running ’rm’.
If you need to use command because file is insufficient

you can add ’warn: false’ to
this command task or set ’command_warnings=False’ in

ansible.cfg to get rid of this

message.

changed: [ansible2]
changed: [ansible1]

TASK [printing status]
**

ok: [ansible1] => {
 "msg": "block task was operated"
}
ok: [ansible2] => {

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 "msg": "block task was operated"
}

TASK [always write a message to logs]
**
changed: [ansible2]
changed: [ansible1]

TASK [always printing this message]
**
ok: [ansible1] => {
 "msg": "this message is always printed"
}
ok: [ansible2] => {
 "msg": "this message is always printed"
}

PLAY RECAP
**

ansible1 : ok=5 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=5 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

As you can see in the output in Listing 7-32, the tasks in
the block were successfully executed, and for that
reason, the tasks in the rescue section were all skipped,
and the tasks in the always section were also executed
successfully. As a result of the code in this specific
playbook, the next time that the same playbook is used,
it will not be able to run the tasks in the block
statement (as the file was already removed in the
previous run) and, for that reason, run the tasks in the
rescue statement as well as the tasks in always. You
can see this in the output in Listing 7-33.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Listing 7-33 Tasks in rescue Are Executed If Tasks in
block Are Failing

[ansible@control ~]$ ansible-playbook listing731.yaml

PLAY [using blocks]
**

TASK [Gathering Facts]
**

ok: [ansible2]
ok: [ansible1]

TASK [remove a file]
**

[WARNING]: Consider using the file module with

state=absent rather than running ’rm’.
If you need to use command because file is insufficient

you can add ’warn: false’ to
this command task or set ’command_warnings=False’ in

ansible.cfg to get rid of this

message.

fatal: [ansible2]: FAILED! => {"changed": true, "cmd": "rm
/var/www/html/index.html", "delta": "0:00:00.003018",
"end": "2020-04-06 05:16:29.810703", "msg": "non-zero
return code", "rc": 1, "start": "2020-04-06
05:16:29.807685", "stderr": "rm: cannot remove
’/var/www/html/index.html’: No such file or directory",
"stderr_lines": ["rm: cannot remove
’/var/www/html/index.html’: No such file or directory"],
"stdout": "", "stdout_lines": []}
fatal: [ansible1]: FAILED! => {"changed": true, "cmd": "rm
/var/www/html/index.html", "delta": "0:00:00.012466",
"end": "2020-04-06 05:16:29.836735", "msg": "non-zero
return code", "rc": 1, "start": "2020-04-06
05:16:29.824269", "stderr": "rm: cannot remove
’/var/www/html/index.html’: No such file or directory",
"stderr_lines": ["rm: cannot remove
’/var/www/html/index.html’: No such file or directory"],
"stdout": "", "stdout_lines": []}

TASK [create a file]

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

**

[WARNING]: Consider using the file module with state=touch

rather than running ’touch’.
If you need to use command because file is insufficient

you can add ’warn: false’ to
this command task or set ’command_warnings=False’ in

ansible.cfg to get rid of this

message.

changed: [ansible2]
changed: [ansible1]

TASK [printing rescue status]
**
ok: [ansible1] => {
 "msg": "rescue task was operated"
}
ok: [ansible2] => {
 "msg": "rescue task was operated"
}

TASK [always write a message to logs]
**
changed: [ansible2]
changed: [ansible1]

TASK [always printing this message]
**
ok: [ansible1] => {
 "msg": "this message is always printed"
}
ok: [ansible2] => {
 "msg": "this message is always printed"
}

PLAY RECAP
**

ansible1 : ok=5 changed=2
unreachable=0 failed=0 skipped=0 rescued=1
ignored=0
ansible2 : ok=5 changed=2
unreachable=0 failed=0 skipped=0 rescued=1
ignored=0

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see in Listing 7-33, the tasks in the block
statement have failed, which is why the tasks in the
rescue statement are executed instead.

In the output of Listing 7-32 as well as Listing 7-33, a
warning is shown because the command module is used
to run a command that can also be issued using the file
module. This is just a warning in which Ansible informs
you that a better solution is available. This relates to one
of the basic principles while working with Ansible: Don’t
use the command module if a specific module is
available to do the same thing. As indicated, you can set
command_warnings=False in ansible.cfg to avoid
seeing this message. Or you can rewrite the task that
uses the shell module to remove a file (which is not a
very Ansible way of doing things). Better use the file
module and set its argument state to absent to remove
the file.

Note

Blocks are useful, but one thing is inconvenient: you cannot use a block
on a loop. If you need to iterate over a list of values, think of using a
different solution.

SUMMARY
In this lesson you learned about using conditionals in
Ansible. In the first part you explored how to work with

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

loop, allowing iteration over a list of items. Next, you
learned how to define conditional tasks using when.
After that, we explored the workings of handlers, which
allow for conditional task execution. In the last part of
this chapter, you read how to manage error handling in
Ansible playbook, in which using blocks plays an
important role.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topic icon in the outer margin of the page.
Table 7-5 lists a reference of these key topics and the
page numbers on which each is found.

Table 7-5 Key Topics for Chapter 7

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

block

failure condition

handler

item

lookup plug-in

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

when

REVIEW QUESTIONS
1. If a loop is used on the contents of the variable

“{{ services }}”, what is the name of the specific
variable that should be used while iterating over
the different values?

2. What should you do to loop over the values in a
dictionary?

3. Which statement should you use to run a task
only if a specific condition is true?

4. What do you need to include in your playbook to
have it execute a task only if the variable myvar
exists?

5. How do you write a when statement that tests
whether the variable myvar has the string value
“myvalue”?

6. Which conditional test should you use to verify
that mypackage is a value in the list mypackages?

7. How would you write a test that checks whether
var1 has the value value1 and var2 has the value
value2, or var3 has the value value3 and var4 has
the value value4?

8. What can you do to check whether the output of

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

a command, as registered in the variable
cmd_out using register, contains the text
“error”?

9. How can you make sure that a play continues,
even if a specific task has resulted in an error?

10. How can you stop execution of a complete
playbook if any task generates an error?

END-OF-CHAPTER LAB
Now that we’re at the end of this chapter, let’s do a lab.
In this lab, you install and set up an Apache web server.

LAB 7-1
Write a playbook that meets the following
requirements. Use multiple plays in a way that makes
sense.

• Write a first play that installs the httpd and mod_ssl
packages on host ansible2.

• Use variable inclusion to define the package names
in a separate file.

• Use a conditional to loop over the list of packages to
be installed.

• Install the packages only if the current operating
system is CentOS or RedHat (but not Fedora)
version 8.0 or later. If that is not the case, the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

playbook should fail with the error message “Host
hostname does not meet minimal requirements,”
where hostname is replaced with the current host
name.

• On the Ansible control host, create a file
/tmp/index.html. This file must have the contents
“welcome to my webserver”.

• If the file /tmp/index.html is successfully copied to
/var/www/html, the web server process must be
restarted. If copying the package fails, the playbook
should show an error message.

• The firewall must be opened for the http as well as
the https services.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 8. Deploying Files
This chapter covers the following subjects:

• Using Modules to Manipulate Files

• Managing SELinux Properties

• Using Jinja2 Templates

The following RHCE exam objectives are covered
in this chapter:

• Use Ansible modules for system administration
tasks that work with:

• File contents

• Use advanced Ansible features

• Create and use templates to create customized
configuration files

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

read the entire chapter. Table 8-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 8-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which module should you use to check the current
permission mode on a file?

a. stat

b. file

c. permissions

d. acl

2. Which module should you use to replace a line of
text in a configuration file with another line of text?

a. copy

b. regex

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

c. lineinfile

d. blockinfile

3. Which of the following shows correct syntax for a
when statement that runs a task only if the
permission mode as discovered by the stat module
and registered to the st variable is not set to 0640?

a. st.mode != ’0640’

b. st.stat.mode != 0640

c. st.stat.mode != ’0640’

d. st.mode != 0640

4. Which of the following lines shows correct use of
the lineinfile module to find a line that begins with
PermitRootLogin based on a regular expression?

a. line: “PermitRootLogin”

b. line: “^PermitRootLogin”

c. regexp: “PermitRootLogin”

d. regexp: “^PermitRootLogin”

5. Which of the following is not a common task that
the file module can do?

a. Remove files

b. Copy a line of text into a file

c. Create links

d. Set permissions

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6. Which module can you use to copy a file from a
managed node to the control node?

a. copy

b. file

c. sync

d. fetch

7. Different modules can be used when working with
SELinux. Which of the following modules should
you avoid?

a. file

b. sefcontext

c. command

d. selinux

8. After you set an SELinux context, the Linux
restorecon command must be executed. How
would you do this?

a. Use the command module to run the
restorecon command.

b. Use the restorecon module.

c. Use the selinux module.

d. No further action is needed; this is done
automatically when using the appropriate
SELinux module.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

9. What do you need to transform the contents of a
variable to the JSON format?

a. The lineinfile module

b. A Jinja2 template

c. A filter

d. The copy module

10. What should you use to process host-specific facts
from a template?

a. The hostvars macro

b. The hostvars magic variable

c. The hostvars module

d. The hostvars filter

FOUNDATION TOPICS

USING MODULES TO
MANIPULATE FILES
Managing files is an important task for Linux
administrators. Different types of manipulations are
performed on files on a frequent basis. They include
managing files, managing file contents, and moving files
around. In this section you learn how to use Ansible
modules to apply these different tasks.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

File Module Manipulation Overview
Many modules are available to manage different aspects
of files. Table 8-2 provides an overview of some of the
most commonly used file modules.

Table 8-2 File Manipulation Module Overview

Most of these modules are discussed in the following
sections. When using file-related modules, you might
need a module that is not discussed here. If that is the
case, the best approach is to use the ansible-doc

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

command. When you use this command on any module,
you always see related modules mentioned in the SEE
ALSO section of the documentation.

Managing File Attributes
If you need to work with file attributes, the stat module
and the file module come in handy. The stat module
enables you to retrieve file status information. Because
this module gets status information and is not used to
change anything, you mainly use it to check specific file
properties and perform an action if the properties are
not set as expected. In Listing 8-1 you can see a
playbook that uses the stat and debug modules to
explore what exactly the stat module is doing. Listing 8-
2 shows the output shown while running ansible-
playbook listing81.yaml.

Listing 8-1 Exploring the stat Module

- name: stat module tests
 hosts: ansible1
 tasks:
 - stat:
 path: /etc/hosts
 register: st
 - name: show current values
 debug:
 msg: current value of the st variable is {{ st }}

Listing 8-2 Running ansible-playbook
listing81.yaml

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

[ansible@control ~]$ ansible-playbook listing81.yaml

PLAY [stat module tests]
**

TASK [Gathering Facts]
**

ok: [ansible1]

TASK [stat]
**

ok: [ansible1]

TASK [show current values]
**

ok: [ansible1] => {
 "msg": "current value of the st variable is
{’changed’: False, ’stat’: {’exists’: True, ’path’:
’/etc/hosts’, ’mode’: ’0644’, ’isdir’: False, ’ischr’:
False, ’isblk’: False, ’isreg’: True, ’isfifo’: False,
’islnk’: False, ’issock’: False, ’uid’: 0, ’gid’: 0,
’size’: 158, ’inode’: 16801440, ’dev’: 64768, ’nlink’: 1,
’atime’: 1586230060.147566, ’mtime’: 1536580263.0,
’ctime’: 1584958718.8117938, ’wusr’: True, ’rusr’: True,
’xusr’: False, ’wgrp’: False, ’rgrp’: True, ’xgrp’: False,
’woth’: False, ’roth’: True, ’xoth’: False, ’isuid’:
False, ’isgid’: False, ’blocks’: 8, ’block_size’: 4096,
’device_type’: 0, ’readable’: True, ’writeable’: True,
’executable’: False, ’pw_name’: ’root’, ’gr_name’: ’root’,
’checksum’: ’7335999eb54c15c67566186bdfc46f64e0d5a1aa’,
’mimetype’: ’text/plain’, ’charset’: ’us-ascii’,
’version’: ’408552077’, ’attributes’: [], ’attr_flags’:
’’}, ’failed’: False}"
}

PLAY RECAP
**

ansible1 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see from Listing 8-2, the stat module returns
many file properties. It tests which permission mode is
set, whether it is a link, which checksum is set on the
file, and much more. For a complete list of output data,
you can consult the documentation as provided while
running ansible-doc stat.

Based on the output that is provided, a conditional test
can be performed. The sample playbook in Listing 8-3
shows how this can be done and how the playbook can
write a message if the expected permission mode is not
set.

Listing 8-3 Performing File State Tests with the stat
Module

- name: stat module tests
 hosts: ansible1
 tasks:
 - command: touch /tmp/statfile
 - stat:
 path: /tmp/statfile
 register: st
 - name: show current values
 debug:
 msg: current value of the st variable is {{ st }}
 - fail:
 msg: "unexpected file mode, should be set to 0640"
 when: st.stat.mode != ’0640’

As you can see in the playbook output in Listing 8-4, the
playbook fails with the unexpected file mode message.
Also notice the warning in the Listing 8-4 output: it tells

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you that there is a better solution to do what you wanted
to do here. This happens on multiple occasions when
you might have selected a module that is not the best
solution for the task you want to perform. Remember:
Using the command module will work in almost all
cases, but often a better solution is available.

Listing 8-4 Running ansible-playbook
listing83.yaml Result

[ansible@control ~]$ ansible-playbook listing83.yaml

PLAY [stat module tests]
**

TASK [Gathering Facts]
**

ok: [ansible1]

TASK [command]
**

[WARNING]: Consider using the file module with state=touch

rather than running ’touch’.
If you need to use command because file is insufficient

you can add ’warn: false’ to
this command task or set ’command_warnings=False’ in

ansible.cfg to get rid of this

message.

changed: [ansible1]

TASK [stat]
**

ok: [ansible1]

TASK [show current values]
**

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ok: [ansible1] => {
 "msg": "current value of the st variable is
{’changed’: False, ’stat’: {’exists’: True, ’path’:
’/tmp/statfile’, ’mode’: ’0644’, ’isdir’: False, ’ischr’:
False, ’isblk’: False, ’isreg’: True, ’isfifo’: False,
’islnk’: False, ’issock’: False, ’uid’: 0, ’gid’: 0,
’size’: 0, ’inode’: 51440456, ’dev’: 64768, ’nlink’: 1,
’atime’: 1586253087.057596, ’mtime’: 1586253087.057596,
’ctime’: 1586253087.057596, ’wusr’: True, ’rusr’: True,
’xusr’: False, ’wgrp’: False, ’rgrp’: True, ’xgrp’: False,
’woth’: False, ’roth’: True, ’xoth’: False, ’isuid’:
False, ’isgid’: False, ’blocks’: 0, ’block_size’: 4096,
’device_type’: 0, ’readable’: True, ’writeable’: True,
’executable’: False, ’pw_name’: ’root’, ’gr_name’: ’root’,
’checksum’: ’da39a3ee5e6b4b0d3255bfef95601890afd80709’,
’mimetype’: ’inode/x-empty’, ’charset’: ’binary’,
’version’: ’158303785’, ’attributes’: [], ’attr_flags’:
’’}, ’failed’: False}"
}

TASK [fail]
**

fatal: [ansible1]: FAILED! => {"changed": false, "msg":
"unexpected file mode, should be set to 0640"}

PLAY RECAP
**

ansible1 : ok=4 changed=1
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

In the earlier examples in this section, you saw how you
can use the stat module to show different types of file
properties. Based on the output of the stat module, you
may use the file module to set specific file properties. In
Listing 8-5 you can see how the playbook from Listing
8-3 is rewritten to automatically set the desired
permissions state.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 8-5 Using the file Module to Correct File
Properties Discovered with stat

- name: stat module tests
 hosts: ansible1
 tasks:
 - command: touch /tmp/statfile
 - stat:
 path: /tmp/statfile
 register: st
 - name: show current values
 debug:
 msg: current value of the st variable is {{ st }}
 - name: changing file permissions if that’s needed
 file:
 path: /tmp/statfile
 mode: 0640
 when: st.stat.mode != ’0640’

Exam tip

In the examples in this chapter, some tasks don’t have a name
assigned. Using a name for each task is not required; however, it does
make troubleshooting a lot easier if each task does have a name. For
that reason, on the exam it’s a good idea to use names anyway. Doing
so makes it easier to identify which tasks lead to which specific result.

Managing File Contents
If you need to manage file contents, multiple modules
can be useful. The find module enables you to find files,
just like the Linux find command. The lineinfile
module enables you to manipulate lines in files, and
blockinfile enables you to manipulate complete blocks
of text. Also, don’t forget the copy module. We look at it

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

in the next section, but you can also use it to copy a
specified text to a file. For managing text operations on
files, however, it is recommended that you use lineinfile
or blockinfile instead because these give more options
to specify where exactly the text should be written to.

Listing 8-6 shows an example where lineinfile is used to
change a string, based on a regular expression.

Listing 8-6 Changing File Contents Using lineinfile

- name: configuring SSH
 hosts: all
 tasks:
 - name: disable root SSH login
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: "^PermitRootLogin"
 line: "PermitRootLogin no"
 notify: restart sshd

 handlers:
 - name: restart sshd
 service:
 name: sshd
 state: restarted

As you can see in Listing 8-6, lineinfile uses the dest
key to specify the filename. Next, a regular expression is
used to search for lines that have text starting with
PermitRootLogin. If this regular expression is found,
it is changed into the line PermitRootLogin no.

You can use the lineinfile module to manipulate a single
line in a file. In some cases you have to manage multiple

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

lines in a file. In that case, you can use the blockinfile
module. Listing 8-7 provides an example.

Listing 8-7 Using blockinfile to Manipulate Multiple
Lines of Text

- name: modifying file
 hosts: all
 tasks:
 - name: ensure /tmp/hosts exists
 file:
 path: /tmp/hosts
 state: touch
 - name: add some lines to /tmp/hosts
 blockinfile:
 path: /tmp/hosts
 block: |
 192.168.4.110 host1.example.com
 192.168.4.120 host2.example.com
 state: present

Based on what you’ve learned so far, the use of
blockinfile should be easy to understand. Just
remember the use of the | after block:. This character
is used to specify that the next couple of lines should be
treated as lines, adding the newline character to the end
of the line. Alternatively, you could use block: >, but
that would add one long line to the destination file.

Notice that when blockinfile is used, the text specified in
the block is copied with a start and end indicator. See
Listing 8-8 for an example:

Listing 8-8 Resulting File Modification by blockinfile

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6
localhost6.localdomain6
192.168.4.200. control.example.com. control
192.168.4.201 ansible1.example.com ansible1
192.168.4.202 ansible2.example.com ansible2

BEGIN ANSIBLE MANAGED BLOCK
192.168.4.110 host1.example.com
192.168.4.120 host2.example.com
END ANSIBLE MANAGED BLOCK

Creating and Removing Files
In an earlier example in this chapter you saw how the
command module was used to create a new file by using
the Linux touch command. While running this
playbook, you saw a warning that you shouldn’t do it
this way, but you should use the file module instead,
and that is totally right.

You can use the file module to perform some pretty
common tasks:

• Create new files or directories

• Create links

• Remove files

• Set permissions and ownership

Listing 8-9 shows a sample playbook where the file
module is used to create a new directory and in that

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

directory create an empty file, after which the same file
module is used again to remove the directory
recursively. This approach is not very useful, but at least
it shows you some of the most common uses of the file
module.

Listing 8-9 Creating and Removing Files with the file
Module

- name: using the file module
 hosts: ansible1
 tasks:
 - name: create directory
 file:
 path: /newdir
 owner: ansible
 group: ansible
 mode: 770
 state: directory
 - name: create file in that directory
 file:
 path: /newdir/newfile
 state: touch
 - name: show the new file
 stat:
 path: /newdir/newfile
 register: result
 - debug:
 msg: |
 This shows that newfile was created
 "{{ result }}"
 - name: removing everything again
 file:
 path: /newdir
 state: absent

In Listing 8-9, you can see that the last task is
configured to remove a directory. Just specifying the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

path to the directory and state: absent recursively
removes the directory. You don’t need to specify any
other options here, and the recurse key also is not
required.

Moving Files Around
Three modules are particularly useful for moving files
around. The copy module copies a file from the Ansible
control host to a managed machine. The fetch module
enables you to do the opposite, and the synchronize
module performs Linux rsync-like tasks, ensuring that a
file from the control host is synchronized to a file with
that name on the managed host. The main difference
between copy and synchronize is that the copy module
always creates a new file, whereas the synchronize
module updates a current existing file. In Listing 8-10
you can see how these modules are used.

Listing 8-10 Moving a File Around with Ansible

- name: file copy modules
 hosts: all
 tasks:
 - name: copy file demo
 copy:
 src: /etc/hosts
 dest: /tmp/
 - name: add some lines to /tmp/hosts
 blockinfile:
 path: /tmp/hosts
 block: |
 192.168.4.110 host1.example.com
 192.168.4.120 host2.example.com

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 state: present
 - name: verify file checksum
 stat:
 path: /tmp/hosts
 checksum_algorithm: md5
 register: result
 - debug:
 msg: "The checksum of /tmp/hosts is {{
result.stat.checksum }}"
 - name: fetch a file
 fetch:
 src: /tmp/hosts
 dest: /tmp/

After running the playbook in Listing 8-10, you might
expect to find the file /tmp/hosts on the Ansible control
machine. This, however, is not the case, and the reason
is easy to understand. Ansible playbooks typically are
used on multiple hosts, so if a file is fetched from a
managed host, it must be stored in a unique location. To
guarantee the uniqueness, Ansible creates a
subdirectory for each managed host in the dest directory
and puts the file that fetch has copied from the remote
host in that subdirectory. So the result of the playbook
in Listing 8-10 is stored as /tmp/ansible1/hosts and
/tmp/ansible2/hosts. You practice working with files in
Exercise 8-1.

Exercise 8-1 Managing Files with Ansible

1. Create a file with the name exercise81.yaml and
give it the following play header:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

2. Add a task that creates a new empty file:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

3. Use the stat module to check on the status of
the new file:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 - name: check status of the new file

 stat:

 path: /tmp/newfile

 register: newfile

4. To see what the status module is doing, add a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

line that uses the debug module:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 - name: check status of the new file

 stat:

 path: /tmp/newfile

 register: newfile

 - name: for debugging only

 debug:

 msg: the current values for newfile

are {{ newfile }}

5. Now that you understand which values are
stored in newfile, you can add a conditional
playbook that changes the current owner if not
set correctly:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 - name: check status of the new file

 stat:

 path: /tmp/newfile

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 register: newfile

 - name: for debugging only

 debug:

 msg: the current values for newfile

are {{ newfile }}

 - name: change file owner if needed

 file:

 path: /tmp/newfile

 owner: ansible

 when: newfile.stat.pw_name != ’ansible’

6. Add a second play to the playbook that fetches a
remote file:

- name: fetching a remote file

 hosts: ansible1

 tasks:

 - name: fetch file from remote machine

 fetch:

 src: /etc/motd

 dest: /tmp

7. Now that you have fetched the file so that it is
on the Ansible control machine, use blockinfile
to edit it:

- name: adding text to the file that is no

w on localhost

 hosts: localhost

 tasks:

 - name: add a message

 blockinfile:

 path: /tmp/ansible1/etc/motd

 block: |

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 welcome to this server

 for authorized users only

 state: present

8. In the final step, copy the modified file to
ansible2 by including the following play:

- name: copy the modified file to ansible2

 hosts: ansible2

 tasks:

 - name: copy motd file

 copy:

 src: /tmp/ansible1/etc/motd

 dest: /tmp

9. At this point you’re ready to run the playbook.
Type ansible-playbook exercise81.yaml to
run it and observe the results.

10. Type ansible ansible2 -a “cat /tmp/motd”
to verify that the modified motd file was
successfully copied to ansible2.

MANAGING SELINUX
PROPERTIES
In the security of any Linux system, SELinux is an
important component. SELinux can be used on files to
manage file context; apart from that, context can be set
on ports; and SELinux properties can be managed using

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Booleans. Ansible has a few modules that allow for
making changes to the SELinux configuration, which are
listed in Table 8-3.

Tip

To work with SELinux in Ansible, you need to have knowledge about
SELinux. This is a part of the RHCSA level knowledge that is required for
anyone who wants to take EX294. This section does not explain SELinux
itself. For more information about SELinux, consult the Red Hat RHCSA
8 Cert Guide.

Table 8-3 Modules for Managing Changes on
SELinux

Managing SELinux File Context
The essential thing to understand when working with
SELinux to secure files is that the context type that is
set on the file defines which processes can work with
the files. The file context type can be set on a file

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

directly, or it can be set on the SELinux policy.

When you’re working with SELinux, all of its properties
should be set in the SELinux policy. To do this, you use
the Ansible sefcontext module. Setting a context type in
the policy doesn’t automatically apply it to files though.
You still need to run the Linux restorecon command
to do this. Ansible does not offer a module to run this
command; it needs to be invoked using the command
module.

As an alternative, you can use the file module to set
SELinux context. The disadvantage of this approach is
that the context is set directly on the file, not in the
SELinux policy. As a result, if at any time default context
is applied from the policy to the file system, all context
that has been set with the Ansible file module risks
being overwritten. For that reason, the recommended
way to manage SELinux context in Ansible is to use the
sefcontext module.

To be able to work with the Ansible sefcontext module
and the Linux restorecon command, you also need to
make sure that the appropriate software is installed on
Linux. This software comes from the policycoreutils-
python-utils RPM package, which is not installed by
default in all installation patterns.

Listing 8-11 shows a sample playbook that uses this
module to manage SELinux context type.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Listing 8-11 Managing SELinux Context with
sefcontext

- name: show selinux
 hosts: all
 tasks:
 - name: install required packages
 yum:
 name: policycoreutils-python-utils
 state: present
 - name: create testfile
 file:
 name: /tmp/selinux
 state: touch
 - name: set selinux context
 sefcontext:
 target: /tmp/selinux
 setype: httpd_sys_content_t
 state: present
 notify:
 - run restorecon
 handlers:
 - name: run restorecon
 command: restorecon -v /tmp/selinux

In the sample playbook in Listing 8-11, the required
software package is installed first. Next, a test file is
created using the file module; then in the next task the
sefcontext command is used to write the new context
to the policy. If executed successfully, this task will
trigger a handler to run the Linux restorecon
command by using the command module.

Don’t forget: A handler will run only if the task that
triggers it generates a changed status. If the current
state already matches the desired state, no changes are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

applied and the handler won’t run!

Exam tip

The exam assignment might not be as specific as to ask you to change
a context using SELinux. You might just have to configure a service with a
nondefault documentroot, which means that SELinux will deny access to
the service. So also on the EX294 exam, with all tasks, you should ask
yourself if this task requires any changes at an SELinux level.

Applying Generic SELinux
Management Tasks
Some additional modules are available as well. The
selinux module enables you to set the current state of
SELinux to either permissive, enforcing, or disabled.
The seboolean module enables you to easily enable or
disable functionality in SELinux using Booleans. Listing
8-12 shows an example of a playbook that uses both of
these modules.

Listing 8-12 Changing SELinux State and Booleans

- name: enabling SELinux and a boolean
 hosts: ansible1
 vars:
 myboolean: httpd_read_user_content
 tasks:
 - name: enabling SELinux
 selinux:
 policy: targeted
 state: enforcing
 - name: checking current {{ myboolean }} Boolean status
 shell: getsebool -a | grep {{ myboolean }}
 register: bool_stat

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - name: showing boolean status
 debug:
 msg: the current {{ myboolean }} status is {{
bool_stat.stdout }}
 - name: enabling boolean
 seboolean:
 name: "{{ myboolean }}"
 state: yes
 persistent: yes

In the sample playbook in Listing 8-12, to start with, the
selinux module is used to ensure that SELinux is in the
enforcing state. When using this module, you also have
to specify the name of the policy, which in most cases is
the targeted policy.

Next, the seboolean module is used to enable a Boolean.
As you can see, this Boolean is defined as the variable
myboolean. Before the Boolean is enabled, the shell
and debug modules are used to show its current status.
In Exercise 8-2 you practice working with SELinux.

Exercise 8-2 Changing SELinux Context

In this exercise you configure a more complicated
playbook, running different tasks. To guide you
through this process, which will prepare you for the
exam in a somewhat better way, I show you a different
approach this time. To start with, this is the
assignment you’re going to work on.

Install, start, and configure a web server that has the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

DocumentRoot set to the /web directory. In this
directory, create a file named index.html that shows
the message “welcome to the Exercise 8-2 webserver.”
Ensure that SELinux is enabled and allows access to
the web server document root. Also ensure that
SELinux allows users to publish web pages from their
home directory.

1. Because this is a complex task, you should start
this time by creating a playbook outline. A good
approach for doing this is to create the playbook
play header and list all tasks that need to be
accomplished by providing a name as well as
the name of the task that you want to run.
Create this structure as follows:

- name: Managing web server SELinux proper

ties

 hosts: ansible1

 tasks:

 - name: ensure SELinux is enabled and en

forcing

 - name: install the webserver

 - name: start and enable the webserver

 - name: open the firewall service

 - name: create the /web directory

 - name: create the index.html file in /w

eb

 - name: use lineinfile to change webserv

er configuration

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - name: use sefcontext to set context on

 new documentroot

 - name: run the restorecon command

 - name: allow the web server to run user

 content

2. Now that the base structure has been defined,
you can define the rest of the task properties.
To start with, enable SELinux and set to the
enforcing state:

- name: Managing web server SELinux proper

ties

 hosts: ansible1

 tasks:

 - name: ensure SELinux is enabled and en

forcing

 selinux:

 policy: targeted

 state: enforcing

3. You can install the web server, start and enable
it, create the /web directory, and create the
index.html file in the /web directory. You
should be familiar with these tasks, so you can
do them all in one run:

 - name: install the webserver

 yum:

 name: httpd

 state: latest

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - name: start and enable the webserver

 service:

 name: httpd

 state: started

 enabled: yes

 - name: open the firewall service

 firewalld:

 service: http

 state: enabled

 immediate: yes

 - name: create the /web directory

 file:

 name: /web

 state: directory

 - name: create the index.html file in /w

eb

 copy:

 content: ’welcome to the exercise82

web server’

 dest: /web/index.html

 - name: use lineinfile to change webserv

er configuration

 - name: use sefcontext to set context on

 new documentroot

 - name: run the restorecon command

 - name: allow the web server to run user

 content

4. You must use the lineinfile module to change
the httpd.conf contents. Two different lines
need to be changed, which you accomplish by
making the following modifications:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - name: use lineinfile to change webserv

er configuration

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: ’^DocumentRoot "/var/www/htm

l"’

 line: DocumentRoot "/web"

 - name: use lineinfile to change webserv

er security

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: ’^<Directory "/var/www">’

 line: ’<Directory "/web">’

 - name: use sefcontext to set context on

 new documentroot

 - name: run the restorecon command

 - name: allow the web server to run user

 content

5. In the final steps, you take care of configuring
the SELinux-specific settings:

 - name: use sefcontext to set context on

 new documentroot

 sefcontext:

 target: ’/web(/.*)?

 setype: httpd_sys_content_t

 state: present

 - name: run the restorecon command

 command: restorecon -Rv /web

 - name: allow the web server to run user

 content

 seboolean:

 name: httpd_read_user_content

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 state: yes

 persistent: yes

6. At this point, the complete playbook should
look as follows:

- name: Managing web server SELinux proper

ties

 hosts: ansible1

 tasks:

 - name: ensure SELinux is enabled and en

forcing

 selinux:

 policy: targeted

 state: enforcing

 - name: install the webserver

 yum:

 name: httpd

 state: latest

 - name: start and enable the webserver

 service:

 name: httpd

 state: started

 enabled: yes

 - name: open the firewall service

 firewalld:

 service: http

 state: enabled

 immediate: yes

 - name: create the /web directory

 file:

 name: /web

 state: directory

 - name: create the index.html file in /w

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

eb

 copy:

 content: ’welcome to the exercise82

web server’

 dest: /web/index.html

 - name: use lineinfile to change webserv

er configuration

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: ’^DocumentRoot "/var/www/htm

l"’

 line: DocumentRoot "/web"

 - name: use lineinfile to change webserv

er security

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: ’^<Directory "/var/www">’

 line: ’<Directory "/web">’

 - name: use sefcontext to set context on

 new documentroot

 sefcontext:

 target: ’/web(/.*)?’

 setype: httpd_sys_content_t

 state: present

 - name: run the restorecon command

 command: restorecon -Rv /web

 - name: allow the web server to run user

 content

 seboolean:

 name: httpd_read_user_content

 state: yes

 persistent: yes

7. Run the playbook by using ansible-playbook
exercise82.yaml and verify its output.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

8. Verify that the web service is accessible by
using curl http://ansible1. In this case, it
should not work. Try to analyze why. You can
find the answer at the end of this chapter before
the end-of-chapter lab.

USING JINJA2 TEMPLATES
A template is a configuration file that contains variables
and, based on the variables, is generated on the
managed hosts according to host-specific requirements.
Using templates allows for a structural way to generate
configuration files, which is much more powerful than
changing specific lines from specific files. Ansible uses
Jinja2 to generate templates.

Working with Simple Templates
Jinja2 is a generic templating language for Python
developers. It is used in Ansible templates, but Jinja2-
based approaches are also found in other parts of
Ansible. For instance, the way variables are referred to is
based on Jinja2.

In a Jinja2 template, three elements can be used. Table
8-4 provides an overview.

Table 8-4 Jinja2 Template Elements

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To work with a template, you must create a template
file, written in Jinja2. Next, this template file must be
included in an Ansible playbook that uses the template
module. Listing 8-13 shows what a template file might
look like, and Listing 8-14 shows an example of a
playbook that calls the template.

Listing 8-13 Sample Template

{{ ansible_managed }}

<VirtualHost *:80>
 ServerAdmin webmaster@{{ ansible_facts[’fqdn’] }}
 ServerName {{ ansible_facts[’fqdn’] }}
 ErrorLog logs/{{ ansible_facts[’hostname’] }}-
error.log
 CustomLog logs/{{ ansible_facts[’hostname’]
}}-common.log common
 DocumentRoot /var/www/vhosts/{{
ansible_facts[’hostname’] }}/

 <Directory /var/www/vhosts/{{
ansible_facts[’hostname’] }}>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 Options +Indexes +FollowSymlinks +Includes
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

The sample template in Listing 8-13 starts with # {{
ansible_managed }}. This string is commonly used to
identify that a file is managed by Ansible so that
administrators are not going to change file contents by
accident. While processing the template, this string is
replaced with the value of the ansible_managed
variable. This variable can be set in ansible.cfg. For
instance, you can use ansible_managed = This file
is managed by Ansible to substitute the variable with
its value while generating the template.

As for the remainder, the template file is just a text file
that uses variables to substitute specific variables to
their values. In this case that is just the ansible_fqdn
and ansible_hostname variables that are set as
Ansible facts. To generate the template, you need a
playbook that uses the template module to call the
template. Listing 8-14 shows an example.

Listing 8-14 Sample Playbook

- name: installing a template file
 hosts: ansible1
 tasks:
 - name: install http
 yum:
 name: httpd

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 state: latest
 - name: start and enable httpd
 service:
 name: httpd
 state: started
 enabled: true
 - name: install vhost config file
 template:
 src: listing813.j2
 dest: /etc/httpd/conf.d/vhost.conf
 owner: root
 group: root
 mode: 0644
 - name: restart httpd
 service:
 name: httpd
 state: restarted

In the sample playbook in Listing 8-14, the template
module is used to work on the source file specified as
src, to generate the destination file, specified as dest.
The result is that on the managed host the template is
generated, with all the variables substituted to their
values.

Applying Control Structures in Jinja2
Using for
In templates, control structures can be used to
dynamically generate contents. A for statement can be
used to iterate over all elements that exist as the value
of a variable. Let’s look at some examples.

To start with, Listing 8-15 shows a template where a for
statement is shown.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 8-15 Exploring Jinja2 for Statements

{% for node in groups[’all’] %}
host_port={{ node }}:8080
{% endfor %}

In this Jinja2 file, a variable with the name host_ports
is defined on the second line (which is the line that will
be written to the target file). To produce its value, the
host group all is processed in the for statement on the
first line. While processing the host group, a temporary
variable with the name node is defined. This value of
the node variable is replaced with the name of the host
while it is processed, and after the host name, the string
:8080 is copied, which will result in a separate line for
each host that was found. As the last element, {%
endfor %} is used to close the for loop. In Listing 8-16
you can see an example of a playbook that runs this
template.

Listing 8-16 Generating a Template with a
Conditional Statement

- name: generate host list
 hosts: ansible2
 tasks:
 - name: template loop
 template:
 src: listing815.j2
 dest: /tmp/hostports.txt

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

As you can see, the sample playbook in Listing 8-16 uses
the template as the source file and, based on the
template, produces the file /tmp/hostports.txt on the
managed host. To verify, you can use the ad hoc
command ansible ansible2 -a “cat
/tmp/hostports.txt”.

Using Conditional Statements with if
The for statement can be used in templates to iterate
over a series of values. The if statement can be used to
include text only if a variable contains a specific value or
evaluates to a Boolean true. Listing 8-17 shows a sample
template file that reacts on a variable that is set in the
sample playbook in Listing 8-18.

Listing 8-17 Template Example with if

{% if apache_package == ’apache2’ %}
 Welcome to Apache2
{% else %}
 Welcome to httpd
{% endif %}

Listing 8-18 Using the Template with if

- name: work with template file
 vars:
 apache_package: ’httpd’
 hosts: ansible2
 tasks:
 - template:
 src: listing817.j2

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 dest: /tmp/httpd.conf

Using Filters
In Jinja2 templates, you can use filters. Filters are a way
to perform an operation on the value of a template
expression, such as a variable. The filter is included in
the variable definition itself, and the result of the
variable and its filter is used in the file that is generated.
Table 8-5 gives an overview of some common filters. In
Exercise 8-3 you practice your skills and work with
templates that use a conditional statement.

Table 8-5 Common Filters Overview

Exam tip

The Ansible documentation at https://docs.ansible.com contains a
section with the title “Frequently Asked Questions.” In this section you
can find the question “How do I loop over a list of hosts in a group, inside
a template.” Read it now, and study it. The response here provides a very
nice example of using conditional statements in templates, and that
information might be useful on the exam.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://docs.ansible.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Exercise 8-3 Working with Conditional
Statements in Templates

1. Use your editor to create the file exercise83.j2.
Include the following line to open the Jinja2
conditional statement:

{% for host in groups[’all’] %}

2. This statement defines a variable with the name
host. This variable iterates over the magic
variable groups, which holds all Ansible host
groups as defined in inventory. Of these groups,
the all group (which holds all inventory host
names) is processed.

3. Add the following line (write it as one line; it
will wrap over two lines, but do not press Enter
to insert a newline character):

{{ hostvars[host][’ansible_default_ipv4’][

’address’] }} {{ hostvars[host][’ansible_f

qdn’] }} {{ hostvars[host][’ansible_hostn

ame’] }}

This line writes a single line for each
inventory host, containing three items. To do
so, you use the magic variable hostvars,
which can be used to identify Ansible facts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

that were discovered on the inventory host.
The [host] part is replaced with the name of
the current host, and after that, the specific
facts are referred to. As a result, for each host
a line is produced that holds the IP address,
the FQDN, and next the host name.

4. Add the following line to close the for loop:

{% endfor %}

5. Verify that the complete file contents look like
the following and write and quit the file:

{% for host in groups[’all’] %}

{{ hostvars[host][’ansible_default_ipv4’][

’address’] }} {{ hostvars[host][’ansible_f

qdn’] }} {{

ostvars[host][’ansible_hostname’] }}

{% endfor %}

6. Use your editor to create the file
exercise83.yaml. It should contain the following
lines:

- name: generate /etc/hosts file

 hosts: all

 tasks:

 - name:

 template:

 src: exercise83.j2

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 dest: /tmp/hosts

7. Run the playbook by using ansible-playbook
exercise83.yaml.

8. Verify the /tmp/hosts file was generated by
using ansible all -a “cat /tmp/hosts”.

SUMMARY
In this chapter you learned how to manipulate text files
with Ansible. In the first section you learned about the
most important Ansible modules that can be used. Next,
you learned how to manage SELinux with Ansible. In
the last part of this chapter, you read about generating
configuration files using Jinja2 templates.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

page. Table 8-6 lists a reference of these key topics and
the page numbers on which each is found.

Table 8-6 Key Topics for Chapter 8

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

Jinja2

template

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

REVIEW QUESTIONS
1. Which module should you use to work with file

system ACLs?

2. Which modules can you use to replace strings in
text files based on regex? (List two.)

3. Which module should you use to retrieve file
status?

4. List three tasks that are commonly executed
using the file module.

5. Which module should you use to synchronize
the contents of a file with the contents of a file on
the control host?

6. What is wrong with using the file module to
manipulate SELinux file context?

7. Which module can you use to change SELinux
Booleans?

8. A playbook runs successfully, but the handler in
that playbook is not triggered. What is the most
common explanation?

9. How do you include a comment line in a Jinja2
template?

10. What is the if statement used for in Ansible
templates?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

EXERCISE ANSWERS
After you perform all the steps in Exercise 8-2, the web
server still doesn’t work. Further analysis shows that
the changes in httpd.conf have been made successfully
and also that the SELinux context is set correctly.
However, after you apply the changes with lineinfile, the
web server needs to be started. You can do this either by
using a handler or by moving the service task to be
performed after the lineinfile task.

END-OF-CHAPTER LAB

LAB 8-1: GENERATE AN
/ETC/HOSTS FILE
Write a playbook that generates an /etc/hosts file on all
managed hosts. Apply the following requirements:

• All hosts that are defined in inventory should be
added to the /etc/hosts file.

LAB 8-2: MANAGE A VSFTPD
SERVICE
Write a playbook that uses at least two plays to install a
vsftpd service, configure the vsftpd service using
templates, and configure permissions as well as

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

SELinux. Apply the following requirements:

• Install, start, and enable the vsftpd service. Also,
open a port in the firewall to make it accessible.

• Use the /etc/vsftpd/vsftpd.conf file to generate a
template. In this template, you should use the
following variables to configure specific settings.
Replace these settings with the variables and leave
all else unmodified:

• Anonymous_enable: yes

• Local_enable: yes

• Write_enable: yes

• Anon_upload_enable: yes

• Set permissions on the /var/ftp/pub directory to
mode 0777.

• Configure the ftpd_anon_write Boolean to allow
anonymous user writes.

• Set the public_content_rw_t SELinux context
type to the /var/ftp/pub directory.

• If any additional tasks are required to get this done,
take care of them.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 9. Using Ansible
Roles
This chapter covers the following subjects:

• Using Ansible Roles

• Using Ansible Galaxy Roles

• Using RHEL System Roles

The following RHCE exam objectives are covered
in this chapter:

• Work with roles

• Create roles

• Download roles from Ansible Galaxy and use
them

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

read the entire chapter. Table 9-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 9-1 “Do I Know This Already?” Section-to-
Question Mapping

1. In which role directory should you define role
variables that are not supposed to be overwritten
from a playbook?

a. vars

b. meta

c. files

d. defaults

2. Roles can be found in many locations. Which of the
following locations should not be used for storing
custom-made roles?

a. ./roles

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

b. ~/.ansible/roles

c. /etc/ansible/roles

d. /usr/share/ansible/roles

3. Where do you find Ansible community-provided
roles?

a. In the Ansible registry

b. In the Ansible Git repository

c. In Ansible Galaxy

d. On the Ansible website

4. You want to define a task that is executed after the
handlers in a playbook. How can you do that?

a. You can’t; handlers are always executed last.

b. You include these tasks in a role.

c. You make sure these tasks are defined after the
tasks that call the handlers.

d. You include them in a post_tasks section.

5. Which file is used to define role dependencies?

a. README.md in the role directory

b. meta/main.yml in the role

c. meta/main.yml in the project directory

d. the Ansible playbook

6. Which of the following commands allows you to set

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

up a directory structure for a custom role easily?

a. mkdir

b. ansible init

c. ansible-galaxy init

d. ansible-galaxy setup

7. When working with Ansible Galaxy, you can specify
a requirements file. Which of the following specifies
the correct way to indicate the requirements file that
should be used?

a. Include requirements_file: filename in the
playbook that calls the roles.

b. Use ansible-galaxy install -r filename.

c. Include a dependencies section in the
playbook, and in this section specify the name
of the requirements file.

d. Use the ansible galaxy -r filename
command.

8. Which command-line switch must be used with the
ansible-galaxy search command to find roles that
work on RHEL and CentOS?

a. --platforms EL

b. --platforms RHEL-family

c. --platforms RHEL

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

d. --platforms CentOS

9. Which variable is used in the RHEL Timesync
System Role to identify that fast synchronization
should be used?

a. iburst

b. fast_sync

c. hostname

d. timesync_ntp_servers

10. Which variables should be used in the RHEL
SELinux System Role to manage file context?
(Choose two.)

a. selinux_context

b. selinux_fcontext

c. selinux_dirs

d. selinux_restore_dirs

FOUNDATION TOPICS

USING ANSIBLE ROLES
In Ansible, playbooks are used to perform common
tasks. Tasks in an Ansible environment are rarely
unique, however. If you write a playbook to install,
enable, and expose the latest version of Nginx, it is very
likely that someone else has done that before. That is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

exactly what roles are all about. Ansible roles are ready-
to-use playbook-based Ansible solutions that you can
easily include in your own playbooks. Community roles
are provided through Ansible Galaxy, but it’s also
possible to create your own roles. And apart from that,
Red Hat provides RHEL System Roles. In this chapter
you learn all about roles.

Working with Ansible roles has many benefits. The
most important benefit is that roles make it possible to
provide Ansible code in a reusable way. You can easily
define a specific task in a role, and after defining it in a
role, you can easily redistribute that and ensure that
tasks are handled the same way, no matter where they
are executed. Roles can be custom-made for specific
environments, or default roles provided from Ansible
Galaxy can be used.

Understanding Ansible Roles
The essence of using Ansible roles is that they work
with include files. All the different components that you
may use in a playbook are used in roles and stored in
separate directories. While defining the role, you don’t
need to tell the role that it should look in some of these
specific directories; it does that automatically. The only
thing you need to do is tell your Ansible playbook that it
should include a role. While you are doing that, the
different components of the role are stored in different

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

subdirectories. Listing 9-1 shows an example of the
default role directory structure. Table 9-2 provides an
overview of the use of these subdirectories and which
type of file you’ll find where.

Listing 9-1 Roles Sample Directory Structure

[ansible@control roles]$ tree testrole/
testrole/
|-- defaults
| `-- main.yml
|-- files
|-- handlers
| `-- main.yml
|-- meta
| `-- main.yml
|-- README.md
|-- tasks
| `-- main.yml
|-- templates
|-- tests
| |-- inventory
| `-- test.yml
`-- vars
 `-- main.yml

Table 9-2 Role Directory Structure

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Most of the role directories have a main.yml file. This is
the entry-point YAML file that is used to define
components in the role.

Understanding Role Location
Before creating your own custom role, you need to
decide where to store it. Roles can be stored in different
locations:

• ./roles is used to store roles in the current project
directory. This location has the highest precedence.

• ~/.ansible/roles exists in the current user home
directory and makes the role available to the current
user only. This location has second-highest

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

precedence.

• /etc/ansible/roles is the location where roles are
stored to make them accessible to any user.

• /usr/share/ansible/roles is the location where roles
are stored after they are installed from RPM files.
This location has lowest precedence and should not
be used for storing custom-made roles.

To create a custom role, you just have to create the
default role directory structure with a main.yml file at
the location where it is expected. To easily create the
custom directory structure, you can use the ansible-
galaxy init command. This command creates all
directories including sample files for you, after which
you just have to provide the specific contents.

Using Roles from Playbooks
After making the roles you want to use available, you
need to use them from a playbook. Using roles from a
playbook is not difficult: you call them in a way that is
similar to calling tasks from a playbook, and roles are
included as a list. Listing 9-2 shows what this process
may look like.

Listing 9-2 Calling Roles from a Playbook

- name: include some roles
 roles:
 - role1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - role2

When roles are included in a playbook, that does change
the order of execution in the playbook. Normally, all
tasks in the playbook are executed, after which the
handlers that are triggered are executed. When roles are
included, the roles are executed before the tasks. In
specific cases you might have to execute tasks before the
roles. To do so, you can specify these tasks in a
pre_tasks section. Also, it’s possible to use the
post_tasks section to include tasks that will be executed
after the roles, but also after tasks specified in the
playbook as well as the handlers they call.

Creating Custom Roles
Creating roles is not difficult; you just have to provide
the required components in specific locations. Listing 9-
3 shows an example of the motd role that you’ll create
yourself in Exercise 9-1. Look at how it is composed
before starting on the exercise.

Listing 9-3 Sample motd Role Structure

motd
|-- defaults
`-- main.yml
defaults file for motd
system_manager: anna@example.com
-- meta
`-- main.yml
galaxy_info:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

| author: Sander van V
| description: your description
| company: your company (optional)
| license: license (GPLv2, CC-BY, etc)
| min_ansible_version: 2.5
|-- README.md
|-- tasks
`-- main.yml
tasks file for motd
- name: copy motd file
template:
src: templates/motd.j2
dest: /etc/motd
owner: root
group: root
mode: 0444
`-- templates
 `-- motd.j2
 Welcome to {{ ansible_hostname }}

 This file was created on {{
ansible_date_time.date }}
 Disconnect if you have no business being here

 Contact {{ system_manager }} if anything is
wrong

The best way to learn how to create a custom role is to
do it. So let’s look at Exercise 9-1, which guides you
through the procedure to create roles.

Exercise 9-1 Creating a Custom Role

1. Use mkdir roles to create a roles subdirectory
in the current directory, and use cd roles to get
into that subdirectory.

2. Use ansible-galaxy init motd to create the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

motd role structure.

3. Open the file motd/tasks/main.yml with an
editor and ensure it has the following contents:

- name: copy motd file

 template:

 src: templates/motd.j2

 dest: /etc/motd

 owner: root

 group: root

 mode: 0444

4. Create the file motd/templates/motd.j2 and
give it the following contents:

Welcome to {{ ansible_hostname }}

This file was created on {{ ansible_date_t

ime.date }}

Disconnect if you have no business being h

ere

Contact {{ system_manager }} if anything i

s wrong

5. Add the following contents to the file
motd/defaults/main.yml :

system_manager: anna@example.com

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6. Open the file motd/meta/main.yml and give it
the following contents:

galaxy_info:

 author: student

 description: sample motd role

 company: mycompany

 license: license GPLv2

 min_ansible_version: 2.5

7. This is all that you need to include in the role.
Now create the playbook exercise91.yaml with
the following contents:

- name: use the motd role playbook

 hosts: ansible2

 roles:

 - role: motd

 system_manager: bob@example.com

8. Run the playbook by using ansible-playbook
exercise91.yaml.

9. Verify that modifications have been applied
correctly by using the ad hoc command ansible
ansible2 -a “cat /etc/motd”.

Managing Role Dependencies
Roles may have dependencies, meaning that one role

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

might need another role to do what is needed. Using
role dependencies makes sense if, for instance, you
develop a custom role that installs an e-commerce
solution that is based on a generic Apache web server
and a generic Mariadb database server. In that case the
custom role should trigger the dependencies, which can
be done in the role meta/main.yml file.

When you’re working with dependencies, dependent
roles are always executed before the roles that depend
on them. Also, they are executed once. That means
when two roles that are used in a playbook call the same
dependency, the dependent role is executed once only.
When calling dependent roles, it is possible to pass
variables to the dependent role. Also, you can define a
when statement to ensure that the dependent role is
executed only in specific situations. Listing 9-4 shows
an example.

Listing 9-4 Defining Role Dependencies in
meta/main.yml

dependencies:
- role: apache
 port: 8080
- role: mariabd
 when: environment == ’production’

Understanding File Organization Best
Practices

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Working with roles splits the contents of the role off the
tasks that are run through the playbook. Splitting files
to store them in a location that makes sense is common
in Ansible, and this approach is documented in the
Ansible Best Practices, which you can find at the Ansible
documentation website. In this section you find a
summary of some of the most important best practices
from this document. Notice that in this book the best
practice of using project directories is not applied.

• When you’re working with Ansible, it’s a good idea
to work with project directories in bigger
environments. Working with project directories
makes it easier to delegate tasks and have the right
people responsible for the right things.

• Each project directory may have its own ansible.cfg
file, inventory file, and playbooks.

• If the project grows bigger, variable files and other
include files may be used, and they are normally
stored in subdirectories.

• At the top-level directory, create the main playbook
from which other playbooks are included. The
suggested name for the main playbook is site.yml.

• Use group_vars/ and host_vars/ to set host-related
variables and do not define them in inventory.

• Consider using different inventory files to
differentiate between production and staging

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

phases.

• Use roles to standardize common tasks.

When you are working with roles, some additional
recommendations apply:

• Use a version control repository to maintain roles in
a consistent way. Git is commonly used for this
purpose.

• Sensitive information should never be included in
roles. Use Ansible Vault to store sensitive
information in an encrypted way.

• Use ansible-galaxy init to create the role base
structure. Remove files and directories you don’t
use.

• Don’t forget to provide additional information in the
role’s README.md and meta/main.yml files.

• Keep roles focused on a specific function. It is better
to use multiple roles to perform multiple tasks.

• Try to develop roles in a generic way, such that they
can be used for multiple purposes.

USING ANSIBLE GALAXY
ROLES
As an Ansible user or administrator, you can develop
your own roles. The fact is, however, many tasks are
common and need to be executed in different

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

environments, so you might not have to develop roles
yourself. For all of these standard tasks, there is Ansible
Galaxy. Ansible Galaxy is a public library of Ansible
content and contains thousands of roles that have been
provided by community members.

Working with Galaxy
The easiest way to work with Ansible Galaxy is to use
the website at https://galaxy.ansible.com, which is
shown in Figure 9-1.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://galaxy.ansible.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure 9-1 Ansible Galaxy Website Main Page

On the main page of the Galaxy website, you can see
different categories of content that is provided. If you’re
looking for something specific, you can use the Search
option. This option enables you to type what you’re
looking for, and you see a list of matching results next
(see Figure 9-2).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 9-2 Use the Search Feature to Search for
Specific Packages

In the result of any Search action, you see a list of

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

collections as well as a list of roles. An Ansible Galaxy
collection is a distribution format for Ansible content. It
can contain roles, but also playbooks, modules, and
plug-ins. In most cases you just need the roles, not the
collection: roles contain all that you include in the
playbooks you’re working with.

When you select a role, Ansible Galaxy shows
information about it. Some important indicators are the
number of times the role has been downloaded and the
score of the role. This information enables you to easily
distinguish between commonly used roles and roles that
are not used that often. Also, you can use tags to make
identifying Galaxy roles easier. These tags provide more
information about a role and make it possible to search
for roles in a more efficient way. Figure 9-3 shows an
example of these role properties.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure 9-3 Ansible Galaxy Shows Appreciation
Information for Roles

You can download roles directly from the Ansible Galaxy

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

website; alternatively, you can use the ansible-galaxy
command.

Using the ansible-galaxy Command
As an alternative to using the website, you can use the
ansible-galaxy command to find roles based on many
different keywords and manage them as well. When you
use ansible-galaxy search, you need to provide a
string as an argument. Ansible searches for this string in
the name and description of the roles. Because you may
get a lot of results, it makes sense to filter down the
result of the search action a bit. Some useful command-
line arguments are listed in Table 9-3.

Table 9-3 ansible-galaxy Useful Command-Line
Options

After finding a role, you may use ansible-galaxy info
to get more information about a role. Listing 9-5 shows
what the information provided about the
geerlingguy.docker role looks like.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 9-5 Requesting Additional Information with
ansible-galaxy info

[ansible@control ~]$ ansible-galaxy info
geerlingguy.docker

Role: geerlingguy.docker
 description: Docker for Linux.
 active: True
 commit: c94e327a74a16a85f23d73be386c161a9cfe81d4
 commit_message: Allow rc 1 on centos7 when waiting
for systemctl.
 commit_url:
https://api.github.com/repos/geerlingguy/ansible-role-
docker/gi
 company: Midwestern Mac, LLC
 created: 2017-02-24T04:13:02.804883Z
 download_count: 5311691
 forks_count: 404
 github_branch: master
 github_repo: ansible-role-docker
 github_server: https://github.com
 github_user: geerlingguy
 id: 15836
 imported: 2020-04-12T10:53:22.695455-04:00
 is_valid: True
 issue_tracker_url:
https://github.com/geerlingguy/ansible-role-docker/issues
 license: license (BSD, MIT)
 min_ansible_version: 2.4
 modified: 2020-04-12T14:53:22.705998Z
 open_issues_count: 18
 path: (’/home/ansible/.ansible/roles’,
’/usr/share/ansible/roles’, ’/etc/an
 role_type: ANS
 stargazers_count: 596
 travis_status_url: https://travis-
ci.org/geerlingguy/ansible-role-docker.sv

Managing Ansible Galaxy Roles

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once the role you need has been identified, you can
install it using ansible-galaxy install. This command
normally installs the role into the ~/.ansible/roles
directory because this role is specified in the role_path
setting in ansible.cfg. If you want roles to be installed in
another directory, consider changing this parameter.
Alternatively, use ansible-galaxy install with the -p
option to install the role to a different role path
directory.

When working with Ansible roles, you can use a
requirements file. The requirements file is a YAML file
that you can include when using the ansible-roles
command. The content of the file itself is quite simple
and may look like the code in Listing 9-6. It’s also
possible to add roles from sources other than Ansible
Galaxy, such as a Git repository or a tarball. In that case,
you must specify the exact URL to the role using the src
option. When you are installing roles from a Git
repository, the scm keyword is also required and must
be set to git.

Listing 9-6 Ansible Role Requirements File Example

- src: geerlingguy.nginx
 version: "2.7.0"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To install a role using the requirements file, you can use
the -r option with the ansible-galaxy install
command like this: ansible-galaxy install -r
roles/requirements.yml.

To get an overview of currently installed roles, you can
use the ansible-galaxy list command. Based on the
role name that is found, you can use the ansible-
galaxy remove command to remove roles from your
system. You can practice working with ansible-galaxy
in Exercise 9-2.

Exercise 9-2 Using ansible-galaxy to Manage
Roles

1. Type ansible-galaxy search --author
geerlingguy --platforms EL to see a list of
roles that geerlingguy has created.

2. Make the command more specific and type
ansible-galaxy search nginx --author
geerlingguy --platforms EL to find the
geerlingguy.nginx role.

3. Request more information about this role by
using ansible-galaxy info
geerlingguy.nginx.

4. Create a requirements file with the name
listing96.yaml and give this file the following

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

contents:

- src: geerlingguy.nginx

 version: "2.7.0"

5. Add the line roles_path =
/home/ansible/roles to the ansible.cfg file.

6. Use the command ansible-galaxy install -r
listing96.yaml to install the role from the
requirements file. It is possible that by the time
you run this exercise, the specified version 2.7.0
is no longer available. If that is the case, use
ansible-galaxy info again to find a version
that still is available, and change the
requirements file accordingly.

7. Type ansible-galaxy list to verify that the new
role was successfully installed on your system.

8. Write a playbook with the name
exercise92.yaml that uses the role and has the
following contents:

- name: install nginx using Galaxy role

 hosts: ansible2

 roles:

 - geerlingguy.nginx

9. Run the playbook using ansible-playbook

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

exercise92.yaml and observe that the new
role is installed from the custom roles path.

USING RHEL SYSTEM ROLES
Some parts of the RHEL operating system have changed
significantly between RHEL versions. Examples are
networking, which has changed from the init-based
network script to the current solution that is based on
NetworkManager. Another example is time
synchronization, which has evolved from an NTP-based
solution to a Chrony-based solution.

To allow for a uniform approach while managing
multiple RHEL versions, Red Hat provides RHEL
System Roles. RHEL System Roles make managing
different parts of the operating system easy. Table 9-4
provides an overview.

Table 9-4 RHEL System Roles Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding RHEL System Roles
RHEL System Roles are based on the community Linux
System Roles and provide a uniform interface to make
configuration tasks easier where significant differences
may exist between versions of the managed operating
system. RHEL System Roles can be used to manage Red
Hat Enterprise Linux 6.10 and later, as well as RHEL 7.4
and later, and all versions of RHEL 8. The RHEL System
Roles listed in Table 9-4 are based on the generic Linux
System Roles. Although they may be used for the
specific task you want to accomplish, the Linux System
Roles are not supported by RHEL technical support.

Installing RHEL System Roles
To use RHEL System Roles, you need to install the rhel-
system-roles package on the control node by using sudo

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

yum install rhel-system-roles. This package can be
found in the RHEL 8 AppStream repository. After
installation, the roles are copied to the
/usr/share/ansible/roles directory, a directory that is a
default part of the Ansible roles_path setting. If a
modification to the roles_path setting has been made
in ansible.cfg, the roles are applied to the first directory
listed in the roles_path. With the roles, some very
useful documentation is installed also; you can find it in
the /usr/share/doc/rhel-system-roles directory.

To pass configuration to the RHEL System Roles,
variables are important. In the documentation directory,
you can find information about variables that are
required and used by the role. Some roles also contain a
sample playbook that can be used as a blueprint when
defining your own role. It’s a good idea to use these as
the basis for your own RHEL System Roles–based
configuration. The next two sections describe the
SELinux and the TimeSync System Roles, which provide
nice and easy-to-implement examples of how you can
use the RHEL System Roles.

Using the RHEL SELinux System
Role
You learned earlier how to manage SELinux settings
using task definitions in your own playbooks. Using the
RHEL SELinux System Role provides an easy-to-use

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

alternative. To use this role, start by looking at the
documentation, which is in the /usr/share/doc/rhel-
system-roles/selinux directory. A good file to start with
is the README.md file, which provides lists of all the
ingredients that can be used.

The SELinux System Role also comes with a sample
playbook file. The most important part of this file is the
vars: section, which defines the variables that should be
applied by SELinux. Listing 9-7 shows an example of the
section that contains the variable definitions.

Listing 9-7 Variable Definition in the SELinux System
Role

- hosts: all
 become: true
 become_method: sudo
 become_user: root
 vars:
 selinux_policy: targeted
 selinux_state: enforcing
 selinux_booleans:
 - { name: ’samba_enable_home_dirs’, state: ’on’ }
 - { name: ’ssh_sysadm_login’, state: ’on’,
persistent: ’yes’ }
 selinux_fcontexts:
 - { target: ’/tmp/test_dir(/.*)?’, setype:
’user_home_dir_t’, ftype: ’d’ }
 selinux_restore_dirs:
 - /tmp/test_dir
 selinux_ports:
 - { ports: ’22100’, proto: ’tcp’, setype:
’ssh_port_t’, state: ’present’ }
 selinux_logins:
 - { login: ’sar-user’, seuser: ’staff_u’, serange:
’s0-s0:c0.c1023’, state: ’present’ }

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As you can be see in Listing 9-7, the variables are used
to define the most important parts of what needs to be
configured with SELinux. Using the RHEL SELinux
System Role is just as easy as copying over the sample
playbook in the documentation directory, edit the
variables to represent the configuration that you want to
create, and run the playbook. Table 9-5 provides an
overview of the variables and the way they should be
used.

Table 9-5 SELinux Variables Overview

Most of the time while configuring SELinux, you need

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

to apply the correct state as well as file context. To set
the appropriate file context, you first need to define the
selinux_fcontext variable. Next, you have to define
selinux_restore_dirs also to ensure that the desired
context is applied correctly. In Listing 9-8 you can see
what a playbook looks like; this one sets the
httpd_sys_content_t context type to the /web directory.
Notice that this playbook is completely based on the
sample playbook in /usr/share/doc. The most
significant change is that unnecessary lines are removed
and the values of two variables have been set.

Listing 9-8 Sample Playbook That Uses the SELinux
RHEL System Role

- hosts: ansible2
 vars:
 selinux_policy: targeted
 selinux_state: enforcing
 selinux_fcontexts:
 - { target: ’/web(/.*)?’, setype:
’httpd_sys_content_t’, ftype: ’d’ }
 selinux_restore_dirs:
 - /web

 # prepare prerequisites which are used in this playbook
 tasks:
 - name: Creates directory
 file:
 path: /web
 state: directory
 - name: execute the role and catch errors
 block:
 - include_role:
 name: rhel-system-roles.selinux

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When you use the RHEL SELinux System Role, some
changes require the managed host to be rebooted. To
take care of this, a block structure is used, where the
System Role runs in the block. When a change that
requires a reboot is applied, the SELinux System Role
sets the variable selinux_reboot_required and fails.
As a result, the rescue section in the playbook is
executed. This rescue section first makes sure that the
playbook fails because of the
selinux_reboot_required variable being set to true.
If that is the case, the reboot module is called to reboot
the managed host. While rebooting, playbook execution
waits for the rebooted host to reappear, and when that
happens, the RHEL SELinux System Role is called again
to complete its work. Listing 9-9 shows the part of the
sample playbook that takes care of this task.

Listing 9-9 Rebooting Managed Hosts If Required

- name: execute the role and catch errors
 block:
 - include_role:
 name: rhel-system-roles.selinux
 rescue:
 # Fail if failed for a different reason than
selinux_reboot_required.
 - name: handle errors
 fail:
 msg: "role failed"
 when: not selinux_reboot_required

 - name: restart managed host
 shell: sleep 2 && shutdown -r now "Ansible
updates triggered"

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 async: 1
 poll: 0
 ignore_errors: true

 - name: wait for managed host to come back
 wait_for_connection:
 delay: 10
 timeout: 300

 - name: reapply the role
 include_role:
 name: rhel-system-roles.selinux

Using the RHEL TimeSync System
Role
Another example of an RHEL System Role is the
TimeSync role. Using this role is convenient and
relatively easy, and using it comes down to setting the
appropriate variables in the playbook that calls the role.
The most important setting that needs to be changed is
the timesync_ntp_servers variable. This variable
specifies attributes to indicate which time servers
should be used. The hostname attribute identifies the
name of IP address of the time server. The iburst
option is used to enable or disable fast initial time
synchronization using the timesync_ntp_servers
variable.

All the other benefits of using this RHEL System Role
happen under the hood. The System Role finds out
which version of RHEL is used, and according to the
currently used version, it either configures NTP or

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chronyd. Because this is automatically detected, no
further action is required. In Exercise 9-3 you practice
how to use the RHEL TimeSync System Role.

Exercise 9-3 Using an RHEL System Role to
Manage Time Synchronization

1. Use cp /usr/share/doc/rhel-system-
roles/timesync/example-timesync-
playbook.yml exercise93.yaml to copy the
sample timesync playbook to the current
directory.

2. Edit the file exercise93.yaml to look like the
following:

- hosts: ansible

 vars:

 timesync_ntp_servers:

 - hostname: pool.ntp.org

 iburst: yes

 roles:

 - rhel-system-roles.timesync

3. Add the timezone module and the timezone
variable to the playbook to set the timezone as
well. The complete playbook should look like
the following:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- hosts: ansible2

 vars:

 timesync_ntp_servers:

 - hostname: pool.ntp.org

 iburst: yes

 timezone: UTC

 roles:

 - rhel-system-roles.timesync

 tasks:

 - name: set timezone

 timezone:

 name: "{{ timezone }}"

4. Use ansible-playbook exercise93.yaml to
run the playbook. Observe its output. Notice
that some messages in red are shown, but these
can safely be ignored.

5. Use ansible ansible2 -a “timedatectl
show” and notice that the timezone variable
is set to UTC.

SUMMARY
Ansible roles make working with Ansible easier because
they provide standard chunks of code that can easily be
included in a playbook. Ansible roles can be provided to
playbooks in multiple ways: you can write them
yourself, you can obtain them from Ansible Galaxy, and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you can also use them as provided by the rhel-system-
roles RPM package. In this chapter you learned how to
work with all these approaches.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 9-6 lists a reference of these key topics and
the page numbers on which each is found.

Table 9-6 Key Topics for Chapter 9

MEMORY TABLES

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Print a copy of Appendix E, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

role

Galaxy

requirements file

RHEL system role

REVIEW QUESTIONS
1. How do you specify that roles should be stored in

a nonstandard directory?

2. Where in a role should you define default
variables that may be overwritten?

3. Which file in the role specification should
contain dependency specifications?

4. If no changes have been made to the default
directory where roles should be stored, in which

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

directory will you find newly installed roles?

5. What can you do to make sure that tasks in a
playbook are executed before the roles?

6. What can you do to set tasks to be executed after
all roles, but also after all other tasks and their
handlers in a playbook?

7. Which command should you use to define the
default role directory and file structure?

8. How can you install multiple roles from Ansible
Galaxy all at once?

9. What is the best way to start writing a playbook
that is based on an RHEL System Role?

10. While investigating what to modify while
working with RHEL System Roles, what should
you look at first?

END-OF-CHAPTER LAB
This chapter includes two labs. The first lab allows you
to practice working with Ansible roles, and in the second
lab, you apply an RHEL System Role.

LAB 9-1
Create a playbook that starts the Nginx web server on
ansible1, according to the following requirements:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• A requirements file must be used to install the
Nginx web server. Do NOT use the latest version of
the Galaxy role, but instead use the version before
that.

• The same requirements file must also be used to
install the latest version of postgresql.

• The playbook needs to ensure that neither httpd nor
mysql is currently installed.

LAB 9-2
Use the RHEL SELinux System Role to manage SELinux
properties according to the following requirements:

• A Boolean is set to allow SELinux relabeling to be
automated using cron.

• The directory /var/ftp/uploads is created,
permissions are set to 777, and the context label is
set to public_content_rw_t.

• SELinux should allow web servers to use port 82
instead of port 80.

• SELinux is in enforcing state.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 10. Using Ansible
in Large Environments
This chapter covers the following subjects:

• Advanced Inventory Usage

• Optimizing Ansible Processing

• Including and Importing Files

The following RHCE exam objectives are covered
in this chapter:

• Install and configure an Ansible control node

• Create a static host inventory file

• Manage parallelism

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 10-1 lists the major

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 10-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following host name patterns is
invalid?

a. webservers*

b. 192.168.4.200,web1

c. all,!web1

d. web&,file

2. Dynamic inventory scripts can be used in many
environments. Which of the following environments
is not supported?

a. Red Hat Satellite

b. Active Directory

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

c. OpenStack

d. None of the above

3. The ansible-inventory command can be used
with different options. Which of the following is not
one of them?

a. --list

b. --graph

c. --host

d. --all

4. Dynamic inventory scripts have some
requirements. Which of the following is not one of
them?

a. Is written in Python

b. Produces output in JSON format

c. Implements a --list option

d. Implements a --host <hostname> option

5. How would you make sure that all tasks in one
specific playbook are fully executed on a group of
three hosts before moving over to the next group of
three hosts?

a. Use forks: 3 in ansible.cfg.

b. Start the play using the --forks 3 parameter.

c. Use serial: 3 in ansible.cfg.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

d. Use serial: 3 in the play header.

6. How would you improve performance and make
sure that tasks can be executed on 50 hosts
simultaneously?

a. Use forks: 50 in ansible.cfg.

b. Start the play using the --forks 50 parameter.

c. Use serial: 50 in ansible.cfg.

d. Use serial: 50 in the play header.

7. Which solution should you use if contents from an
external file need to be processed in a playbook if a
specific condition is true?

a. Role

b. Include

c. Import

d. Expansion

8. Which do you need if you want tasks to be included
in the playbook before the work on any task in the
playbook is started?

a. import_playbook

b. import_tasks

c. include_playbook

d. include_tasks

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

9. When you use include_tasks, several limitations
apply. Which of the following is not one of them?

a. When you use ansible-playbook --list-
tasks, tasks that are included tasks are not
displayed.

b. You cannot use ansible-playbook --start-
at-task to start a playbook at a task from an
included task file.

c. You cannot use notify to trigger a handler that
is in the included tasks file.

d. You cannot use a conditional statement on
included task files.

10. When you use import_tasks, several limitations
apply. Which of the following is not one of them?

a. Loops cannot be used.

b. If a variable is used to specify the name of the
file to import, this cannot be a host or group
inventory variable.

c. The ansible-playbook --start-at-task
command cannot be used.

d. When using a when statement on an entire
import_tasks file, the conditional statements
are applied to each of the tasks in this file.

FOUNDATION TOPICS

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADVANCED INVENTORY
USAGE
You have already learned how to create an inventory
file. Up to now, you have worked with a small inventory
file that contains just a couple of hosts, which can be
put into inventory groups. When an environment is
getting bigger, you’ll probably want some more
flexibility regarding inventory files. This section is about
advanced inventory usage. You learn how to make
inventory flexible by working with host name patterns,
dynamic inventory, and multiple inventory files.

Working with Host Name Patterns
To work with hosts, you need to list them in inventory.
This can be done by including host names, as well as IP
addresses. If you want to use an IP address in a
playbook, the IP address must be specified as such in
the inventory. You cannot use IP addresses that are
based only on DNS name resolving. So specifying an IP
address in the playbook but not in the inventory file—
assuming DNS name resolution is going to take care of
the IP address resolving—doesn’t work.

The easiest way to refer to multiple hosts is to use host
groups. Groups can be specified in inventory, and apart
from the specified groups, there are the implicit host

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

groups all and ungrouped. Apart from that, host name
wildcards may be used. For instance, you can use
ansible -m ping ’ansible*’ to match all hosts that
have a name starting with ansible. When you use
wildcards in host name patterns, it is important to
always put the pattern between single quotes: the
command ansible -m ping ansible* will fail with a no
matching hosts error. Wildcards can be used at any
place in the host name. So you also can use ansible -m
ping ’*ble1’, as long as the pattern is placed between
single quotes.

Notice that when you use wildcards to match host
names, Ansible doesn’t distinguish between IP
addresses, host names, or hosts; it just matches
anything. So the pattern ’web*’ matches all servers that
are members of the group ’webservers’, but also hosts
’web1’ and ’web2’.

To address multiple hosts, you can also specify a
comma-separated list of targets, as in ansible -m ping
ansible1,192.168.4.202. The comma-separated list
can be a mix of anything and can include host names, IP
addresses, and host group names.

Some more advanced patterns are possible as well. You
can specify a logical AND condition by including an
ampersand (&), and a logical NOT by using an
exclamation point (!). So the pattern web,&file applies
to hosts only if they are members of the web and file

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

groups, and the pattern web,!webserver1 applies to all
hosts in the web group, except host webserver1. When
you use the logical AND operator, the position of the
ampersand doesn’t really matter. So you can rewrite
web,&file as &web,file also. Notice that you can use a
colon (:) instead of a comma (,), but using a comma is
better to avoid confusion when using IPv6 addresses,
which contain colons by default.

Configuring Dynamic Inventory
Static inventories work well for a small environment.
However, if the environment is getting bigger and more
dynamic, static inventories are not that efficient
anymore, so dynamic inventories may be considered. A
dynamic inventory is a script that can be used to detect
whether new hosts have been added to the managed
environment.

Dynamic inventory scripts are provided by the
community and exist for many different environments.
Alternatively, it is fairly easy to write your own dynamic
inventory script. The main requirement is that the
dynamic inventory script works with a --list and a --
host <hostname> option and produces its output in
JSON format. Also, the script must have the Linux
execute permission set. Many dynamic inventory scripts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

are written in Python, but this is not a requirement. Any
script that supports the --list and --host options and
generates JSON output will do.

Writing dynamic inventory scripts is not an exam
requirement, but Listing 10-1 shows what a sample
dynamic inventory script looks like.

Listing 10-1 Sample Dynamic Inventory Script

#!/usr/bin/python

from subprocess import Popen,PIPE
import sys

try:
 import json
except ImportError:
 import simplejson as json

result = {}
result[’all’] = {}

pipe = Popen([’getent’, ’hosts’], stdout=PIPE,
universal_newlines=True)

result[’all’][’hosts’] = []

for line in pipe.stdout.readlines():
 s = line.split()
 result[’all’][’hosts’]=result[’all’][’hosts’]+s

result[’all’][’vars’] = {}

if len(sys.argv) == 2 and sys.argv[1] == ’--list’:
 print(json.dumps(result))

elif len(sys.argv) == 3 and sys.argv[1] == ’--host’:
 print(json.dumps({}))

else:
 print("Requires an argument, please use --list or --

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

host <host>")

As you can see in Listing 10-1, the script core is the line
pipe = Popen([’getent’, ’hosts’], stdout=PIPE,
universal_newline=True), which gets a list of hosts
using the getent function. This queries all hosts in
/etc/hosts and other mechanisms where host name
resolving is enabled. To show the resulting host list, you
can use the --list command, and to show details for a
specific host, you can use the option --host hostname.
Listing 10-2 shows an example of the output in JSON
format.

Listing 10-2 JSON Output of the listing101.py Script

[ansible@control rhce8-book]$./listing101.py --list
{"all": {"hosts": ["127.0.0.1", "localhost",
"localhost.localdomain", "localhost4",
"localhost4.localdomain4", "127.0.0.1", "localhost",
"localhost.localdomain", "localhost6",
"localhost6.localdomain6", "192.168.4.200",
"control.example.com", "control", "192.168.4.201",
"ansible1.example.com", "ansible1", "192.168.4.202",
"ansible2.example.com", "ansible2"], "vars": {}}}

Even if simple, the script in Listing 10-1 is beneficial
because it automatically detects when new hosts have
been added to DNS or modify the /etc/hosts file.
Dynamic inventory scripts are activated in the same way
as regular inventory scripts: you use the -i option to
either the ansible or the ansible-playbook command
to pass the name of the inventory script as an argument.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You just need to make sure that the dynamic inventory
script has the Linux execute permission set. Use
chmod +x scriptname if this is not the case.

You can see the real value of dynamic inventory scripts
when they are used in large environments. That can be
an environment where an external directory service is
used, one that keeps track of all hosts in the
environment. Such a directory service can be based on a
wide range of solutions, including FreeIPA, Active
Directory, or Red Hat Satellite. Dynamic inventory
scripts also are available for virtual machine-based
infrastructures such as VMware of Red Hat Enterprise
Virtualization, where virtual machines can be discovered
dynamically. Another main area where dynamic
inventory scripts can be found is in cloud environments,
where scripts are available for many solutions, including
AWS, GCE, Azure, and OpenStack.

When you are working with dynamic inventory,
additional parameters are normally required. For
instance, to get an inventory from an EC2 cloud
environment, you need to enter your web keys. To pass
these parameters, many inventory scripts come with an
additional configuration file that is formatted in .ini
style. The community-provided ec2.py script, for
instance, comes with an ec2.ini parameter file.

Another feature that is seen in many inventory scripts is
cache management. To make working with inventory

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

scripts more efficient, you can use a cache to store
names and parameters of recently discovered hosts. If a
cache is provided, options exist to manage the cache,
allowing you, for instance, to make sure that the
inventory information really is recently discovered.

Using the ansible-inventory
Command
As shown in Listing 10-2, the default output of a
dynamic inventory script is unformatted. To show
formatted JSON output of the scripts, you can use the
ansible-inventory command. Apart from the --list
and --host options, this command also uses the --
graph option to show a list of hosts, including the host
groups they are a member of. In Listing 10-3, you can
see the output of the ansible-inventory -i
listing101.py --graph command. Remember this will
work only if the Linux execute permission is set on the
dynamic inventory file.

Listing 10-3 Showing Output of the ansible-
inventory Command

[ansible@control rhce8-book]$ ansible-inventory -i
listing101.py --graph
[WARNING]: A duplicate localhost-like entry was found

(localhost). First found

localhost was 127.0.0.1

@all:
 |--@ungrouped:
 | |--127.0.0.1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 | |--192.168.4.200
 | |--192.168.4.201
 | |--192.168.4.202
 | |--ansible1
 | |--ansible1.example.com
 | |--ansible2
 | |--ansible2.example.com
 | |--control
 | |--control.example.com
 | |--localhost
 | |--localhost.localdomain
 | |--localhost4
 | |--localhost4.localdomain4
 | |--localhost6
 | |--localhost6.localdomain6

Working with Multiple Inventory Files

Ansible supports working with multiple inventory files.
One way of using multiple inventory files is to enter
multiple -i parameters with the ansible or ansible-
playbook commands to specify the name of the files to
be used. So ansible-inventory -i inventory -i
listing101.py --list would produce an output list based
on the static inventory in the inventory file, as well as
the dynamic inventory that is generated by the
listing101.py Python script. Alternatively, you can
specify the name of a directory using the -i command-
line option. This approach uses all files in the directory
as inventory files. Notice that when using an inventory
directory, dynamic inventory files still must be
executable for this approach to work. In Exercise 10-1,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

you practice working with multiple inventories.

Exercise 10-1 Using Multiple Inventories

1. Open a shell as the ansible user and create a
directory with the name inventories.

2. Copy the file listing101.py to the directory
inventories.

3. Also copy the inventory file to the directory
inventories.

4. To make sure both inventories have some
unique contents, add the following lines to the
file inventories/inventory:

webserver1

webserver2

5. Add the following lines to the Linux /etc/hosts
file:

192.168.4.203 ansible3.example.com a

nsible3

192.168.4.204 ansible4.example.com a

nsible4

6. Use the command ansible-inventory -i
inventories --list. In the result you should see
the web servers that you added to the static

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

inventory file, as well as the hosts that you
added to /etc/hosts, which is the input file for
the dynamic inventory. This result proves that
the new inventory directory works.

OPTIMIZING ANSIBLE
PROCESSING
To optimize the working of Ansible, you can manage
parallel as well as serial task execution. Parallel task
execution manages the number of hosts on which tasks
are executed simultaneously. Serial task execution can
be used to make sure that all tasks are executed on a
host or group of hosts before proceeding to the next
host or group of hosts.

Managing Parallel Task Execution
While processing a playbook, Ansible can apply the
tasks to multiple hosts simultaneously. Theoretically,
Ansible can run tasks on all hosts at the same time, and
in many cases that would not be a problem because
processing is executed on the managed host anyway. If,
however, network devices or other nodes that do not
have their own Python stack are involved, processing
needs to be done on the control host. To prevent the
control host from being overloaded in that case, the
maximum number of simultaneous connections by

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

default is set to 5. You can manage this setting by using
the forks parameter in ansible.cfg. Alternatively, you
can use the -f option with the ansible and ansible-
playbook commands.

Processing a maximum of five managed nodes
simultaneously is good if processing needs to be done
on the control host. Because processing in most
environments is done on the managed hosts, the
maximum setting of five forks just slows down the
working of Ansible, and it is a good idea to increase this
maximum to something significantly higher. If only
Linux hosts are managed, there is no reason to keep the
maximum number of simultaneous tasks much lower
than 100.

While executing tasks, Ansible processes tasks in a
playbook one by one. This means that, by default, the
first task is executed on all managed hosts. Once that is
done, the next task is processed, until all tasks have
been executed. Notice that there is no specific order in
the execution of tasks, so you may see that in one run
ansible1 is processed before ansible2, while on another
run they might be processed in the opposite order.

Managing Serial Task Execution
By default, Ansible runs task by task. This means that it
runs the first task on all hosts, and once that is done, it
proceeds to run the next task on all hosts. In some

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

cases, this is undesired behavior. If, for instance, a
playbook is used to update a cluster of hosts this way,
this would create a situation where the old software has
been updated, but the new version has not been started
yet and the entire cluster would be down. To prevent
this situation from happening, you can configure serial
task execution. To do so, you use the serial keyword in
the play header.

When, for instance, the serial: 3 keyword is used in the
header of a play, all tasks are executed on three hosts,
and after completely running all tasks on three hosts,
the next group of three hosts is handled. In Exercise 10-
2, you practice using the serial and forks parameters.

Exercise 10-2 Managing Parallelism

1. Apply the instructions in Chapter 2, “Installing
Ansible,” to add two more managed nodes with
the names ansible3.example.com and
ansible4.example.com. Specific steps are shown
in Exercises 2-1, 2-5, 2-6, and 2-7.

2. Open the inventory file with an editor and add
the following lines:

ansible3

ansible4

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

3. Open the ansible.cfg file and add the line forks
= 4 to the [defaults] section.

4. Write a playbook with the name exercise102-
install that installs and enables the Apache web
server and another playbook with the name
exercise102-remove that disables and removes
the Apache web server. Because this is a fairly
basic task, no specific instructions are provided.
Consult the files exercise102-install.yaml
and exercise102-remove.yaml in the GitHub
repository at
https://github.com/sandervanvugt/rhce8-book
if you need additional help with these tasks.

5. Run ansible-playbook exercise102-
remove.yaml to remove and disable the
Apache web server on all hosts. This is just to
make sure you start with a clean configuration.

6. Run the playbook to install and run the web
server, using time ansible-playbook
exercise102-install.yaml, and notice the
time it takes to run the playbook.

7. Run ansible-playbook exercise102-
remove.yaml again to get back to a clean state.

8. Edit ansible.cfg and change the forks
parameter to forks = 2. Run the time
ansible-playbook exercise102-

||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir

install.yaml command again to see how much
time it takes now; it should take considerably
longer. Notice that apart from the time that it
takes, you see no output in the playbook
execution while it runs.

9. Edit the exercise102-install.yaml playbook
and include the line serial: 2 in the play
header.

10. Run the ansible-playbook exercise102-
remove.yaml command again to get back to a
clean state.

11. Run the ansible-playbook exercise102-
install.yaml command again and observe that
the entire play is executed on two hosts only
before the next group of two hosts is taken care
of.

INCLUDING AND IMPORTING
FILES
When playbooks get larger, the recommendation is to
split them into separate files. This makes managing
large playbooks easier and allows you to dedicate
specific management tasks to specific administrators.
Also, splitting the files makes it possible to reuse
playbook contents in different projects.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You have already seen how roles can be used to include
generic code from other playbooks. Apart from using
roles, you also can include and import files. When
content is included, it is dynamically processed at the
moment that Ansible reaches that content. If content is
imported, Ansible performs the import operation before
starting to work on the tasks in the playbook.

Files can be included and imported at different levels:

• Roles: Roles are typically used to process a
complete set of instructions provided by the role.
Roles have a specific structure as well.

• Playbooks: Playbooks can be imported as a
complete playbook. You cannot do this from within
a play. Playbooks can be imported only at the top
level of the playbook.

• Tasks: A task file is just a list of tasks and can be
imported or included in another task.

• Variables: As discussed in Chapter 6, “Working
with Variables and Facts,” variables can be
maintained in external files and included in a
playbook. This makes managing generic
multipurpose variables easier.

Importing Playbooks

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Importing playbooks is common in a setup where one
master playbook is used, from which different
additional playbooks are included. According to the
Ansible Best Practices Guide (which is a part of the
Ansible documentation), the master playbook could
have the name site.yaml, and it can be used to include
playbooks for each specific set of servers, for instance.
When a playbook is imported, this replaces the entire
play. So, you cannot import a playbook at a task level; it
needs to happen at a play level. Listing 10-4 gives an
example of the playbook imported in Listing 10-5. In
Listing 10-6, you can see the result of running the
ansible-playbook listing105.yaml command.

Listing 10-4 Sample Playbook to Be Imported

- hosts: all
 tasks:
 - debug:
 msg: running the imported play

Listing 10-5 Importing a Playbook

- name: run a task
 hosts: all
 tasks:
 - debug:
 msg: running task1

- name: importing a playbook
 import_playbook: listing104.yaml

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Listing 10-6 Running ansible-playbook
listing105.yaml Result

[ansible@control rhce8-book]$ ansible-playbook
listing105.yaml

PLAY [run a task]
**

TASK [Gathering Facts]

ok: [ansible2]
ok: [ansible1]
ok: [ansible3]
ok: [ansible4]

TASK [debug]
**

ok: [ansible1] => {
 "msg": "running task1"
}
ok: [ansible2] => {
 "msg": "running task1"
}
ok: [ansible3] => {
 "msg": "running task1"
}
ok: [ansible4] => {
 "msg": "running task1"
}

PLAY [all]
**

TASK [Gathering Facts]

ok: [ansible2]
ok: [ansible1]
ok: [ansible3]
ok: [ansible4]

TASK [debug]

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

**

ok: [ansible1] => {
 "msg": "running the imported play"
}
ok: [ansible2] => {
 "msg": "running the imported play"
}
ok: [ansible3] => {
 "msg": "running the imported play"
}
ok: [ansible4] => {
 "msg": "running the imported play"
}

PLAY RECAP
**

ansible1 : ok=4 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=4 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible3 : ok=4 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible4 : ok=4 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Importing and Including Task Files
Instead of importing complete playbooks, you may
include task files. When you use import_tasks, the
tasks are statically imported while executing the
playbook. When you use include_tasks, the tasks are
dynamically included at the moment they are needed.
Dynamically including task files is recommended when
the task file is used in a conditional statement. If task

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

files are mainly used to make development easier by
working with separate task files, they can be statically
imported.

There are a few considerations when working with
import_tasks to statically import tasks:

• Loops cannot be used with import_tasks.

• If a variable is used to specify the name of the file to
import, this cannot be a host or group inventory
variable.

• When you use a when statement on the entire
import_tasks file, the conditional statements are
applied to each task that is involved.

As an alternative, include_tasks can be used to
dynamically include a task file. This approach also
comes with some considerations:

• When you use the ansible-playbook --list-tasks
command, tasks that are in the included tasks are
not displayed.

• You cannot use ansible-playbook --start-at-task
to start a playbook on a task that comes from an
included task file.

• You cannot use a notify statement in the main

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

playbook to trigger a handler that is in the included
tasks file.

Tip

When you use includes and imports to work with task files, the
recommendation is to store the task files in a separate directory. Doing
so makes it easier to delegate task management to specific users.

Using Variables When Importing and
Including Files
The main goal to work with imported and included files
is to make working with reusable code easy. To make
sure you reach this goal, the imported and included files
should be as generic as possible. That means it’s a bad
idea to include names of specific items that may change
when used in a different context. Think, for instance, of
the names of packages, users, services, and more.

To deal with include files in a flexible way, you should
define specific items as variables. Within the
include_tasks file, for instance, you refer to {{
package }}, and in the main playbook from which the
include files are called, you can define the variables.
Obviously, you can use this approach with a straight
variable definition or by using host variable or group
variable include files.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exam tip

It’s always possible to configure items in a way that is brilliant but quite
complex. On the exam it’s not a smart idea to go for complex. Just keep
your solution as easy as possible. The only requirement on the exam is
to get things working, and it doesn’t matter exactly how you do that.

In Listings 10-7 through 10-10, you can see how include
and import files are used to work on one project. The
main playbook, shown in Listing 10-9, defines the
variables to be used, as well as the names of the include
and import files. Listings 10-7 and 10-8 show the code
from the include files, which use the variables that are
defined in Listing 10-9. The result of running the
playbook in Listing 10-9 can be seen in Listing 10-10.

Listing 10-7 The Include Tasks File tasks/service.yaml
Used for Services Definition

- name: install {{ package }}
 yum:
 name: "{{ package }}"
 state: latest
- name: start {{ service }}
 service:
 name: "{{ service }}"
 enabled: true
 state: started

The sample tasks file in Listing 10-7 is straightforward;
it uses the yum module to install a package and the
service module to start and enable the package. The
variables this file refers to are defined in the main

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

playbook in Listing 10-9.

Listing 10-8 The Import Tasks File
tasks/firewall.yaml Used for Firewall Definition

- name: install the firewall
 package:
 name: "{{ firewall_package }}"
 state: latest
- name: start the firewall
 service:
 name: "{{ firewall_service }}"
 enabled: true
 state: started
- name: open the port for the service
 firewalld:
 service: "{{ item }}"
 immediate: true
 permanent: true
 state: enabled
 loop: "{{ firewall_rules }}"

In the sample firewall file in Listing 10-8, the firewall
service is installed, defined, and configured. In the
configuration of the firewalld service, a loop is used on
the variable firewall_rules. This variable obviously is
defined in Listing 10-9, which is the file where site-
specific contents such as variables are defined.

Listing 10-9 Main Playbook Example

- name: setup a service
 hosts: ansible2
 tasks:
 - name: include the services task file
 include_tasks: tasks/service.yaml
 vars:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 package: httpd
 service: httpd
 when: ansible_facts[’os_family’] == ’RedHat’
 - name: import the firewall file
 import_tasks: tasks/firewall.yaml
 vars:
 firewall_package: firewalld
 firewall_service: firewalld
 firewall_rules:
 - http
 - https

The main playbook in Listing 10-9 shows the site-
specific configuration. It performs two main tasks: it
defines variables, and it calls an include file and an
import file. The variables that are defined are used by
the include and import files. The include_tasks
statement is executed in a when statement. Notice that
the firewall_rules variable contains a list as its value,
which is used by the loop that is defined in the import
file.

Listing 10-10 Running ansible-playbook
listing109.yaml

[ansible@control rhce8-book]$ ansible-playbook
listing109.yaml

PLAY [setup a service]

TASK [Gathering Facts]

ok: [ansible2]

TASK [include the services task file]
**
included: /home/ansible/rhce8-book/tasks/service.yaml for

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ansible2

TASK [install httpd]
**
*
ok: [ansible2]

TASK [start httpd]
**

changed: [ansible2]

TASK [install the firewall]
**
changed: [ansible2]

TASK [start the firewall]
**
ok: [ansible2]

TASK [open the port for the service]

changed: [ansible2] => (item=http)
changed: [ansible2] => (item=https)

PLAY RECAP
**

ansible2 : ok=7 changed=3
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

The interesting thing in the Listing 10-10 output is that
the include file is dynamically included while running
the playbook. This is not the case for the statically
imported file. In Exercise 10-3 you practice working
with include files.

Exercise 10-3 Using Includes and Imports

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this exercise you create a simple master playbook
that installs a service. The name of the service is
defined in a variable file, and the specific tasks are
included through task files.

1. Open the file exercise103-vars.yaml and define
three variables as follows:

packagename: vsftpd

servicename: vsftpd

firewalld_servicename: ftp

2. Create the exercise103-ftp.yaml file and give it
the following contents to install, enable, and
start the vsftpd service and also to make it
accessible in the firewall:

- name: install {{ packagename }}

 yum:

 name: "{{ packagename }}"

 state: latest

- name: enable and start {{ servicename }}

 service:

 name: "{{ servicename }}"

 state: started

 enabled: true

- name: open the service in the firewall

 firewalld:

 service: "{{ firewalld_servicename }}"

 permanent: yes

 state: enabled

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3. Create the exercise103-copy.yaml file that
manages the /var/ftp/pub/README file and
make sure it has the following contents:

- name: copy a file

 copy:

 content: "welcome to this server"

 dest: /var/ftp/pub/README

4. Create the master playbook exercise103.yaml
that includes all of them and give it the
following contents:

- name: install vsftpd on ansible2

 vars_files: exercise103-vars.yaml

 hosts: ansible2

 tasks:

 - name: install and enable vsftpd

 import_tasks: exercise103-ftp.yaml

 - name: copy the README file

 import_tasks: exercise103-copy.yaml

5. Run the playbook and verify its output

6. Run an ad hoc command to verify the
/var/ftp/pub/README file has been created:
ansible ansible2 -a “cat
/var/ftp/pub/README”.

SUMMARY

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this chapter you learned how to work with Ansible in
a large environment. We focused on three different
aspects. First, you learned how to manage large
numbers of hosts in an efficient way, using dynamic
inventory and host name patterns. Next, you learned
how to optimize working with Ansible by modifying the
number of hosts in parallel as well as serial task
execution. In the last part of this chapter, you learned
how to work with includes and imports of plays and
tasks.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 10-2 lists a reference of these key topics and
the page numbers on which each is found.

Table 10-2 Key Topics for Chapter 10

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

fork

import

include

parallel task execution

serial task execution

REVIEW QUESTIONS
1. How would you address only hosts that are a

member of the group web as well as a member of
the group file?

2. Which two arguments must be implemented in

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

every dynamic inventory script?

3. If a dynamic inventory script needs additional
parameters, how do you normally provide them?

4. Which command do you use to show all
currently known hosts including the groups that
they are a member of in a tree-like output?

5. Which command-line option can you use with
the ansible-playbook command to ensure that
10 hosts are configured at the same time while
running a playbook?

6. How do you write a playbook in such a way that
all tasks are first executed on three hosts before
the next group of three hosts is dealt with?

7. What should you do if you want to dynamically
include tasks?

8. What is the recommended way to work with
variables, assuming that you want to separate
static code from dynamic parameters?

9. You have split up your project into different task
files, but now you cannot use ansible-playbook
--list-tasks anymore. How can you fix this?

10. What is a good reason to import playbooks
instead of tasks?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

END-OF-CHAPTER LAB
In the end-of-chapter lab with this chapter, you
reorganize a playbook to work with several different
files instead of one big file. Do this according to the
instructions in Lab 10-1.

LAB 10-1
The lab82.yaml file, which you can find in the GitHub
repository that goes with this course, is an optimal
candidate for optimization. Optimize this playbook
according to the following requirements:

• Use includes and import to make this a modular
playbook where different files are used to
distinguish between the different tasks.

• Optimize this playbook such that it will run on no
more than two hosts at the same time and
completes the entire playbook on these two hosts
before continuing with the next host.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 11.
Troubleshooting Ansible
This chapter covers the following subjects:

• Managing Ansible Errors and Logs

• Using Modules for Troubleshooting and Testing

• Using Tags

• Troubleshooting Common Scenarios

The following RHCE exam objectives are covered
in this chapter:

• Create Ansible plays and playbooks

• Configure error handling

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 11-1 lists the major

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 11-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which of the following is the most important
reason why it doesn’t really make sense to configure
Ansible to write log files containing command
output?

a. The log files would get very big fast.

b. All relevant output while running a command
is written to the STDOUT.

c. Writing log files requires root privileges.

d. Ansible doesn’t work with rsyslogd.

2. Which command-line option to the ansible-
playbook command should you use to preview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

differences that would be made while processing
template files without actually writing the
modifications?

a. --diff

b. --check

c. --check --diff

d. --template

3. What would you see in the playbook output if a task
was not executed because it did not meet a
requirement that was set by a conditional
statement?

a. failed

b. skipped

c. rescued

d. ignored

4. You are trying to get an overview of all tasks that
are executed by a playbook that has been set up in a
modular way by using the ansible-playbook --
list-tasks command. You notice that you don’t see
all tasks. Which of the following is the most likely
explanation?

a. Tasks that are added from an included or
imported file are not shown.

b. If a file is dynamically included, you don’t see

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

its tasks.

c. The playbook uses roles and tasks from roles
that are not displayed.

d. The tasks that don’t show in the overview work
with variables that are undefined.

5. To analyze what a play is doing, you want to include
easy-to-understand messages about what is going
wrong and what is going well. Which of the
following modules should you use?

a. debug

b. fail

c. assert

d. stat

6. Which module would you use to check values that
are returned by an API?

a. uri

b. api

c. url

d. web

7. You want to check the owner of a file. Which
module should you use?

a. file

b. user

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

c. mode

d. stat

8. You want to use tags to run a debug task only if it is
specifically requested, and you decide to tag this
task using the tags [debug, never] line. Which
commands run all tasks, including the task with this
tag?

a. ansible-playbook --tags debug

b. ansible-playbook --tags never

c. ansible-playbook --tags all,debug

d. ansible-playbook --tags untagged,debug

9. You can use the ping module to verify connectivity
to the remote host. When it is used without further
arguments, which of the following is not tested
while using the ping module?

a. IP connectivity

b. Accessibility of the SSH service

c. Availability of a Python stack

d. None of the above

10. While running an Ansible playbook, a user
receives the error message “Missing sudo
password.” Which of the following is the most likely
explanation?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

a. SSH keys have not been copied successfully.

b. The remote_user has not been set.

c. Passwordless sudo has not been configured for
remote_user.

d. The become_user has not been set.

FOUNDATION TOPICS

MANAGING ANSIBLE ERRORS
AND LOGS
When a playbook is processed or an ad hoc command is
executed, Ansible produces output. This output gives a
first indication of what has happened. If the output does
not provide enough information, you can use additional
solutions. In this section you learn about them.

Using Check Mode
Before actually running a playbook in a way that all
changes are implemented, you can start the playbooks
in check mode. To do this, you use the --check or -C
command-line argument to the ansible or ansible-
playbook command. The effect of using check mode is
that changes that would have been made are shown but
not executed. You should realize, though, that check
mode is not supported in all cases. You will, for

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

instance, have problems with check mode if it is applied
to conditionals, where a specific task can do its work
only after a preceding task has made some changes.
Also, to successfully use check mode, the modules need
to support it, but some don’t. Modules that don’t
support check mode don’t show any result while
running check mode, but also they don’t make any
changes.

Apart from the command-line argument, you can use
check_mode: yes or check_mode: no with any task
in a playbook. If check_mode: yes is used, the task
always runs in check mode (and does not implement
any changes), regardless of the use of the --check
option. If a task has check_mode: no set, it never
runs in check mode and just does its work, even if the
ansible-playbook command is used with the --check
option. Using check mode on individual tasks might be a
good idea if using check mode on the entire playbook
gives unpredicted results: you can enable it on just a
couple of tasks to ensure that they run successfully
before proceeding to the next set of tasks. Notice that
using check_mode: no for specific tasks can be
dangerous; these tasks will make changes, even if the
entire playbook was started with the --check option!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Note

The check_mode argument is a replacement for the always_run option
that was used in Ansible 2.5 and earlier. In current Ansible versions, you
should not use always_run anymore.

Another option that is commonly used with the --check option is --diff. This
option reports changes to template files without actually applying them.
Listing 11-1 shows a sample playbook, Listing 11-2 shows the template
that it is processing, and Listing 11-3 shows the result of running this
playbook with the ansible-playbook listing111.yaml --check --diff
command.

Listing 11-1 Sample Playbook

- name: simple template example
 hosts: ansible2
 tasks:
 - template:
 src: listing112.j2
 dest: /etc/issue

Listing 11-2 Sample Template File

{# /etc/issue #}
Welcome to {{ ansible_facts[’hostname’] }}

Listing 11-3 Running the listing111.yaml Sample
Playbook

[ansible@control rhce8-book]$ ansible-playbook

listing111.yaml --check --diff

PLAY [simple template example]

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TASK [Gathering Facts]

ok: [ansible2]

TASK [template]
**

--- before
+++ after: /home/ansible/.ansible/tmp/ansible-local-
4493uxbpju1e/tmpm5gn7crg/listing112.j2
@@ -0,0 +1,3 @@
+Welcome to ansible2
+
+

changed: [ansible2]

PLAY RECAP
**

ansible2 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Understanding Output
When you run the ansible-playbook command,
output is generated. You’ve probably had a glimpse of it
before, but let’s look at the output in a more structured
way now. Listing 11-4 shows some typical sample output
generated by running the ansible-playbook
command.

Listing 11-4 ansible-playbook Command Output

[ansible@control rhce8-book]$ ansible-playbook

listing52.yaml

PLAY [install start and enable httpd]
**

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TASK [Gathering Facts]

ok: [ansible2]
ok: [ansible1]
ok: [ansible3]
ok: [ansible4]

TASK [install package]

changed: [ansible2]
changed: [ansible1]
changed: [ansible3]
changed: [ansible4]

TASK [start and enable service]
**
changed: [ansible2]
changed: [ansible1]
changed: [ansible3]
changed: [ansible4]

PLAY RECAP
**

ansible1 : ok=3 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible3 : ok=3 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible4 : ok=3 changed=2
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

In the output of any ansible-playbook command, you
can see different items:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• An indicator of the play that is started

• If not disabled, the Gathering Facts task that is
executed for each play

• Each individual task, including the task name if that
was specified

• The Play Recap, which summarizes the play results

In the Play Recap, different results can be shown. Table
11-2 gives an overview.

Table 11-2 Playbook Recap Overview

As discussed before, when you use the ansible-
playbook command, you can increase the output
verbosity level using one or more -v options. Table 11-3
lists what these options accomplish. For generic

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

troubleshooting, you might want to consider using -vv,
which shows output as well as input data. In particular
cases using the -vvv option can be useful because it
adds connection information as well.

The -vvvv option just brings too much information in
many cases but can be useful if you need to analyze
which exact scripts are executed or whether any
problems were encountered in privilege escalation.
Make sure to capture the output of any command that
runs with -vvvv to a text file, though, so that you can
read it in an easy way. Even for a simple playbook, it can
easily generate more than 10 screens of output.

Table 11-3 Verbosity Options Overview

In Listing 11-5 you can see the output of a small
playbook that runs different tasks on the managed
hosts. Listing 11-5 shows details about execution of one
task on host ansible4, and as you can see, it goes deep in
the amount of detail that is shown. One component is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

worth looking at, and that is the escalation succeeded
that you can see in the output. This means that privilege
escalation was successful and tasks were executed
because become_user was defined in ansible.cfg.
Failing privilege escalation is one of the common
reasons why playbook execution may go wrong, which is
why it’s worth keeping an eye on this indicator.

Listing 11-5 Analyzing Partial -vvvv Output

<ansible4> ESTABLISH SSH CONNECTION FOR USER: ansible
<ansible4> SSH: EXEC ssh -vvv -C -o ControlMaster=auto -o
ControlPersist=60s -o StrictHostKeyChecking=no -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
’User="ansible"’ -o ConnectTimeout=10 -o
ControlPath=/home/ansible/.ansible/cp/859d5267e3 ansible4
’/bin/sh -c ’"’"’chmod u+x
/home/ansible/.ansible/tmp/ansible-tmp-1587544652.4716983-
118789810824208/ /home/ansible/.ansible/tmp/ansible-tmp-
1587544652.4716983-118789810824208/AnsiballZ_systemd.py &&
sleep 0’"’"’’
Escalation succeeded

<ansible4> (0, b’’, b"OpenSSH_8.0p1, OpenSSL 1.1.1c FIPS
28 May 2019\r\ndebug1: Reading configuration data
/etc/ssh/ssh_config\r\ndebug3: /etc/ssh/ssh_config line
51: Including file /etc/ssh/ssh_config.d/05-redhat.conf
depth 0\r\ndebug1: Reading configuration data
/etc/ssh/ssh_config.d/05-redhat.conf\r\ndebug2: checking
match for ’final all’ host ansible4 originally
ansible4\r\ndebug3: /etc/ssh/ssh_config.d/05-redhat.conf
line 3: not matched ’final’\r\ndebug2: match not
found\r\ndebug3: /etc/ssh/ssh_config.d/05-redhat.conf line
5: Including file /etc/crypto-policies/back-
ends/openssh.config depth 1 (parse only)\r\ndebug1:
Reading configuration data /etc/crypto-policies/back-
ends/openssh.config\r\ndebug3: gss kex names ok: [gss-gex-
sha1-,gss-group14-sha1-]\r\ndebug3: kex names ok:
[curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-
nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

hellman-group-exchange-sha256,diffie-hellman-group14-
sha256,diffie-hellman-group16-sha512,diffie-hellman-
group18-sha512,diffie-hellman-group-exchange-sha1,diffie-
hellman-group14-sha1]\r\ndebug1: configuration requests
final Match pass\r\ndebug1: re-parsing
configuration\r\ndebug1: Reading configuration data
/etc/ssh/ssh_config\r\ndebug3: /etc/ssh/ssh_config line
51: Including file /etc/ssh/ssh_config.d/05-redhat.conf
depth 0\r\ndebug1: Reading configuration data
/etc/ssh/ssh_config.d/05-redhat.conf\r\ndebug2: checking
match for ’final all’ host ansible4 originally
ansible4\r\ndebug3: /etc/ssh/ssh_config.d/05-redhat.conf
line 3: matched ’final’\r\ndebug2: match found\r\ndebug3:
/etc/ssh/ssh_config.d/05-redhat.conf line 5: Including
file /etc/crypto-policies/back-ends/openssh.config depth
1\r\ndebug1: Reading configuration data /etc/crypto-
policies/back-ends/openssh.config\r\ndebug3: gss kex names
ok: [gss-gex-sha1-,gss-group14-sha1-]\r\ndebug3: kex names
ok: [curve25519-sha256,curve25519-sha256@libssh.org,ecdh-
sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-
nistp521,diffie-hellman-group-exchange-sha256,diffie-
hellman-group14-sha256,diffie-hellman-group16-
sha512,diffie-hellman-group18-sha512,diffie-hellman-group-
exchange-sha1,diffie-hellman-group14-sha1]\r\ndebug1:
auto-mux: Trying existing master\r\ndebug2: fd 4 setting
O_NONBLOCK\r\ndebug2: mux_client_hello_exchange: master
version 4\r\ndebug3: mux_client_forwards: request
forwardings: 0 local, 0 remote\r\ndebug3:
mux_client_request_session: entering\r\ndebug3:
mux_client_request_alive: entering\r\ndebug3:
mux_client_request_alive: done pid = 4764\r\ndebug3:
mux_client_request_session: session request
sent\r\ndebug3: mux_client_read_packet: read header
failed: Broken pipe\r\ndebug2: Received exit status from
master 0\r\n")
<ansible4> ESTABLISH SSH CONNECTION FOR USER: ansible
<ansible4> SSH: EXEC ssh -vvv -C -o ControlMaster=auto -o
ControlPersist=60s -o StrictHostKeyChecking=no -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
’User="ansible"’ -o ConnectTimeout=10 -o
ControlPath=/home/ansible/.ansible/cp/859d5267e3 -tt
ansible4 ’/bin/sh -c ’"’"’sudo -H -S -n -u root /bin/sh -
c ’"’"’"’"’"’"’"’"’echo BECOME-SUCCESS-
muvtpdvqkslnlegyhoibfcrilvlyjcqp ; /usr/libexec/platform-
python /home/ansible/.ansible/tmp/ansible-tmp-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

1587544652.4716983-
118789810824208/AnsiballZ_systemd.py’"’"’"’"’"’"’"’"’ &&
sleep 0’"’"’’
Escalation succeeded

Optimizing Command Output Error
Formatting
You might have noticed that the formatting of error
messages in Ansible command output can be a bit hard
to read. Fortunately, there’s an easy way to make it a
little more readable by including two options in the
ansible.cfg file. These options are stdout_callback =
debug and stdout_callback = error. After including
these options, you’ll notice it’s a lot easier to read error
output and distinguish between its different
components!

Logging to Files
By default, Ansible does not write anything to log files.
The reason is that the Ansible commands have all the
options that may be useful to write output to the
STDOUT. If so required, it’s always possible to use shell
redirection to write the command output to a file.

If you do need Ansible to write log files, you can set the
log_path parameter in ansible.cfg. Alternatively,
Ansible can log to the filename that is specified as the
argument to the $ANSIBLE_LOG_PATH variable.
Notice that Ansible logs can grow big very fast, so if

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

logging to output files is enabled, make sure that Linux
log rotation is configured to ensure that files cannot
grow beyond a specific maximum size.

Running Task by Task
When you analyze playbook behavior, it’s possible to
run playbook tasks one by one or to start running a
playbook at a specific task. The ansible-playbook --
step command runs playbooks task by task and prompts
for confirmation before running the next task.
Alternatively, you can use the ansible-playbook --
start-at-task="task name" command to start
playbook execution as a specific task. Before using this
command, you might want to use ansible-playbook --
list-tasks for a list of all tasks that have been
configured. To use these options in an efficient way, you
must configure each task with its own name. In Listing
11-6 you can see what running playbooks this way looks
like. This listing first shows how to list tasks in a
playbook and next how the --start-at-task and --step
options are used.

Listing 11-6 Running Tasks One by One

[ansible@control rhce8-book]$ ansible-playbook --list-

tasks exercise81.yaml

playbook: exercise81.yaml

 play #1 (ansible1): testing file manipulation skills.
TAGS: []

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 tasks:
 create a new file TAGS: []
 check status of the new file TAGS: []
 for debugging purposes only TAGS: []
 change file owner if needed TAGS: []

 play #2 (ansible1): fetching a remote file. TAGS: []
 tasks:
 fetch file from remote machine. TAGS: []

 play #3 (localhost): adding text to the file that is now
on localhost TAGS: []
 tasks:
 add a message. TAGS: []

 play #4 (ansible2): copy the modified file to ansible2.
TAGS: []
 tasks:
 copy motd file. TAGS: []

[ansible@control rhce8-book]$ ansible-playbook --start-at-

task "add a message" --step exercise81.yaml

PLAY [testing file manipulation skills]
**

PLAY [fetching a remote file]
**

PLAY [adding text to the file that is now on localhost]

Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue:

In Exercise 11-1 you learn how to apply check mode
while working with templates.

Exercise 11-1 Using Templates in Check Mode

1. Locate the file httpd.conf; you can find it in the
rhce8-book directory, which you can download
from the GitHub repository at

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

https://github.com/sandervanvugt/rhce8-book.
Use mv httpd.conf exercise111-httpd.j2 to
rename it to a Jinja2 template file.

2. Open the exercise111-httpd.j2 file with an
editor, and apply modifications to existing
parameters so that they look like the following:

ServerRoot "{{ apache_root }}"

User {{ apache_user }}

Group {{ apache_group }}

3. Write a playbook that takes care of the
complete Apache web server setup and
installation, starts and enables the service,
opens a port in the firewall, and uses the
template module to create the
/etc/httpd/conf/httpd.conf file based on the
template that you created in step 2 of this
exercise. The complete playbook with the name
exercise111.yaml looks like the following (make
sure you have the exact contents shown below
and do not correct any typos):

- name: perform basic apache setup

 hosts: ansible2

 vars:

 apache_root: /etc/httpd

 apache_user: httpd

 apache_group: httpd

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir
https://technet24.ir

 tasks:

 - name: install RPM package

 yum:

 name: httpd

 state: latest

 - name: copy template file

 template:

 src: exercise111-httpd.j2

 dest: /etc/httpd/httpd.conf

 - name: start and enable service

 service:

 name: httpd

 state: started

 enabled: yes

 - name: open port in firewall

 firewalld:

 service: http

 permanent: yes

 state: enabled

 immediate: yes

4. Run the command ansible-playbook --
syntax-check exercise111.yaml. If no errors
are found in the playbook syntax, you should
just see the name of the playbook.

5. Run the command ansible-playbook --check
--diff exercise111.yaml. In the output of the
command, pay attention to the task copy
template file. After the line that starts with +++
after, you should see the lines in the template
that were configured to use a variable, using the
right variables.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6. Run the playbook to perform all its tasks step
by step, using the command ansible-
playbook --step exercise111.yaml. Press y to
confirm the first step. Next, press c to
automatically continue. The playbook will fail
on the copy template file task because the target
directory does not exist. Notice that the --
syntax-check and the --check options do not
check for any logical errors in the playbook and
for that reason have not detected this problem.

7. Edit the exercise111.yaml file and ensure the
template task contains the following corrected
line: (replace the old line starting with dest:):

dest: /etc/httpd/conf/httpd.conf

8. Type ansible-playbook --list-tasks
exercise111.yaml to list all the tasks in the
playbook.

9. To avoid running the entire playbook again, use
ansible-playbook --start-at-task="copy
template file" exercise111.yaml to run the
playbook to completion.

USING MODULES FOR
TROUBLESHOOTING AND

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TESTING
While working with playbooks, you may use different
modules for troubleshooting. The debug module was
used in previous chapters and is particularly useful for
analyzing variable behavior. Some other modules may
prove useful when troubleshooting Ansible. Table 11-4
gives an overview.

Table 11-4 Troubleshooting Modules Overview

The following sections discuss how these modules can
be used.

Using the Debug Module
The debug module is useful to visualize what is
happening at a certain point in a playbook. It works with

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

two arguments: the msg argument can be used to print
a message, and the var argument can be used to print
the value of a variable. Notice that when you use the var
argument, the variable does not have to be referred to
using the usual {{ varname }} structure, just use
varname instead. If variables are used in the msg
argument, they must be referred to the normal way,
using the {{ varname }} syntax.

Because you have already seen the debug module in
action in numerous examples in Chapters 6, 7, and 8 of
this book, no new examples are included here.

Using the uri Module
The best way to learn how to work with these modules
is to look at some examples. Listing 11-7 shows an
example where the uri module is used.

Listing 11-7 Using the uri Module

- name: test webserver access
 hosts: localhost
 become: no
 tasks:
 - name: connect to the web server
 uri:
 url: http://ansible2.example.com
 return_content: yes
 register: this
 failed_when: "’welcome’ not in this.content"
 - debug:
 var: this.content

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The playbook in Listing 11-7 uses the uri module to
connect to a web server. The return_content
argument captures the web server content, which is
stored in a variable using register. Next, the
failed_when statement makes this module fail if the
text “welcome” is not in the registered variable. For
debugging purposes, the debug module is used to show
the contents of the variable.

In Listing 11-8 you can see the partial result of running
this playbook. Notice that the playbook does not
generate a failure because the default web page that is
shown by the Apache web server contains the text
“welcome.”

Listing 11-8 ansible-playbook listing117.yaml
Command Result

[ansible@control rhce8-book]$ ansible-playbook

listing117.yaml

PLAY [test webserver access]

TASK [Gathering Facts]

ok: [localhost]

TASK [connect to the web server]

ok: [localhost]

TASK [debug]
**

ok: [localhost] => {

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 "this.content": "<?xml version=\"1.0\" encoding=\"utf-
8\"?>\n<!DOCTYPE HTML>\n<html lang=\"en\">\n <head>\n
<title>CentOS Apache HTTP </title>\n <meta
charset=\"utf-8\"/>\n <meta name=\"viewport\"
content=\"width=device-width, initial-scale=1, shrink-to-
fit=no\"/>\n <link rel=\"shortcut icon\"
href=\"http://www.centos.org/favicon.ico\"/>\n <link
rel=\"stylesheet\" media=\"all\"
href=\"noindex/common/css/bootstrap.min.css\"/>\n <link
rel=\"stylesheet\" media=\"all\"
href=\"noindex/common/css/styles.css\"/>\n </head>\n
<body>\n <header class=\"container\">\n <section
class=\"row\">\n <div class=\"header-graphic v3-
banner platform-banner centos-banner\" role=\"banner\">\n
<div class=\"graphic-inner\">\n <div
class=\"graphic-inner2\">\n <div
class=\"banner-... href=\"https://www.centos.org/legal/\">
 |
</p>\n </footer>\n </body>\n</html>\n"
}

PLAY RECAP
**

localhost : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Using the uri module can be useful to perform a simple
test to check whether a web server is available, but you
can also use it to check accessibility or returned
information from an API endpoint.

Using the stat Module
You can use the stat module to check on the status of
files. Although this module can be useful for checking
on the status of just a few files, it’s not a file system
integrity checker that was developed to check file status

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

on a large scale. If you need large-scale file system
integrity checking, you should use Linux utilities such
as aide.

The stat module is useful in combination with register.
In this use, the stat module is used to register the status
of a specific file, and in a when statement, a check can
be done to see whether the file status is not as expected.
In combination with the fail module, you can use this
module to generate a failure and error message if the
file does not meet the expected status. Listing 11-9
shows an example, and Listing 11-10 shows the resulting
output, where you can see that the fail module fails the
playbook because the file owner is not root.

Listing 11-9 Using stat to Check Expected File Status

- name: create a file
 hosts: all
 tasks:
 - file:
 path: /tmp/statfile
 state: touch
 owner: ansible

- name: check file status
 hosts: all
 tasks:
 - stat:
 path: /tmp/statfile
 register: stat_out
 - fail:
 msg: "/tmp/statfile file owner not as expected"
 when: stat_out.stat.pw_name != ’root’

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 11-10 ansible-playbook listing119.yaml
Command Result

[ansible@control rhce8-book]$ ansible-playbook

listing119.yaml

PLAY [create a file]
**
*

TASK [Gathering Facts]

ok: [ansible2]
ok: [ansible1]
ok: [ansible3]
ok: [ansible4]
fatal: [ansible6]: UNREACHABLE! => {"changed": false,
"msg": "Failed to connect to the host via ssh:
ansible@ansible6: Permission denied (publickey,gssapi-

keyex,gssapi-with-mic,password).", "unreachable": true}
fatal: [ansible5]: UNREACHABLE! => {"changed": false,
"msg": "Failed to connect to the host via ssh: ssh:
connect to host ansible5 port 22: No route to host",

"unreachable": true}

TASK [file]
**

changed: [ansible2]
changed: [ansible1]
changed: [ansible3]
changed: [ansible4]

PLAY [check file status]

TASK [Gathering Facts]

ok: [ansible1]
ok: [ansible2]
ok: [ansible3]
ok: [ansible4]

TASK [stat]
**

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ok: [ansible2]
ok: [ansible1]
ok: [ansible3]
ok: [ansible4]

TASK [fail]
**

fatal: [ansible2]: FAILED! => {"changed": false, "msg":
"/tmp/statfile file owner not as expected"}
fatal: [ansible1]: FAILED! => {"changed": false, "msg":
"/tmp/statfile file owner not as expected"}
fatal: [ansible3]: FAILED! => {"changed": false, "msg":
"/tmp/statfile file owner not as expected"}
fatal: [ansible4]: FAILED! => {"changed": false, "msg":
"/tmp/statfile file owner not as expected"}

PLAY RECAP
**

ansible1 : ok=4 changed=1
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible2 : ok=4 changed=1
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible3 : ok=4 changed=1
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible4 : ok=4 changed=1
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible5 : ok=0 changed=0
unreachable=1 failed=0 skipped=0 rescued=0

ignored=0
ansible6 : ok=0 changed=0
unreachable=1 failed=0 skipped=0 rescued=0

ignored=0

Using the assert Module
The assert module is a bit like the fail module. You can
use it to perform a specific conditional action. The assert

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

module works with a that option that defines a list of
conditionals. If any one of these conditionals is false,
the task fails, and if all the conditionals are true, the
task is successful. Based on the success or failure of a
task, the module uses the success_msg or fail_msg
options to print a message. Listing 11-11 shows an
example that uses the assert module.

Listing 11-11 Using the assert Module

- hosts: localhost
 vars_prompt:
 - name: filesize
 prompt: "specify a file size in megabytes"
 tasks:
 - name: check if file size is valid
 assert:
 that:
 - "{{ (filesize | int) <= 100 }}"
 - "{{ (filesize | int) >= 1 }}"
 fail_msg: "file size must be between 0 and 100"
 success_msg: "file size is good, let\’s continue"
 - name: create a file
 command: dd if=/dev/zero of=/bigfile bs=1 count={{
filesize }}

The example in Listing 11-11 contains a few new items.
As you can see, the play header starts with a
vars_prompt. This defines a variable named filesize,
which is based on the input provided by the user. This
filesize variable is next used by the assert module. The
that statement contains a list in which two conditions
are stated. If specified like this, all conditions stated in

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the that condition must be true. So you are looking for
filesize to be equal to or bigger than 1, and smaller than
or equal to 100.

Before this can be done, one little problem needs to be
managed: when vars_prompt is used, the variable type
is set to be a string by default. This means that a
statement like filesize <= 100 would fail with a type
mismatch. That is why a Jinja2 filter is used to convert
the variable type from string to integer.

Filters are a powerful feature provided by the Jinja2
templating language and can be used in Ansible to
modify variables before processing. For more
information about filters, see
https://docs.ansible.com/ansible/latest/user_guide/pla
ybooks_filters.html. The int filter can be used to convert
the value of a string variable to an integer. To do this,
you need to rewrite the entire variable as a Jinja2
operation, which is done using “{{ (filesize | int) <=
100 }}”.

In this line, the entire string is written as a variable. The
variable is further treated in a Jinja2 context. In this
context, the part (filesize | int) ensures that the string
is converted to an integer, which makes it possible to
check if the value is smaller than 100.

When you run the code in Listing 11-11, the result
shown in Listing 11-12 is produced.

||||||||||||||||||||

||||||||||||||||||||

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html
https://technet24.ir
https://technet24.ir

Listing 11-12 ansible-playbook listing1111.yaml
Output

[ansible@control rhce8-book]$ ansible-playbook

listing1111.yaml

PLAY [localhost]
**

TASK [Gathering Facts]
**
*
ok: [localhost]

TASK [check if file size is valid]

fatal: [localhost]: FAILED! => {
 "assertion": "filesize <= 100",
 "changed": false,
 "evaluated_to": false,
 "msg": "file size must be between 0 and 100"
}

PLAY RECAP
**

localhost : ok=1 changed=0
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

As you can see, the task that is defined with the assert
module fails because the variable has a value that is not
between the minimum and maximum sizes that are
defined.

Understanding the need for using the filter to convert
the variable type might not be easy. So, let’s also look at
Listing 11-13, which shows an example of a playbook

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that will fail. You can see its behavior in Listing 11-14,
where the playbook is executed.

Listing 11-13 Failing Version of the Listing 11-11
Playbook

- hosts: localhost
 vars_prompt:
 - name: filesize
 prompt: "specify a file size in megabytes"
 tasks:
 - name: check if file size is valid
 assert:
 that:
 - filesize <= 100
 - filesize >= 1
 fail_msg: "file size must be between 0 and 100"
 success_msg: "file size is good, let\’s continue"
 - name: create a file
 command: dd if=/dev/zero of=/bigfile bs=1 count={{
filesize }}

Listing 11-14 ansible-playbook listing1113.yaml
Failing Result

[ansible@control rhce8-book]$ ansible-playbook

listing1113.yaml

specify a file size in megabytes:

PLAY [localhost]
**

TASK [Gathering Facts]
**
*
ok: [localhost]

TASK [check if file size is valid]

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

fatal: [localhost]: FAILED! => {"msg": "The conditional
check ’filesize <= 100’ failed. The error was: Unexpected
templating type error occurred on ({% if filesize <= 100
%} True {% else %} False {% endif %}): ’<=’ not supported
between instances of ’str’ and ’int’"}

PLAY RECAP
**

localhost : ok=1 changed=0
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

As you can see, the code in Listing 11-13 fails because
the <= test is not supported between a string and an
integer.

In Exercise 11-2 you work with some of the modules
discussed in this section.

Exercise 11-2 Using Modules for
Troubleshooting

1. Open your editor to create the file
exercise112.yaml and define the play header:

- name: using assert to check if volume gr

oup vgdata exists

 hosts: all

 tasks:

2. Add a task that uses the command vgs vgdata

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

to check whether a volume group with the
name vgdata exists. The task should use
register to register the command result, and it
should continue if this is not the case.

- name: check if vgdata exists

 command: vgs vgdata

 register: vg_result

 ignore_errors: true

3. To make it easier to use assert in the next step
on the right variable, include a debug task to
show the value of the variable:

- name: show vg_result variable

 debug:

 var: vg_result

4. Add a task to print a success or failure message,
depending on the result of the vgs command
from the first task:

- name: print a message

 assert:

 that:

 - vg_result.rc == 0

 fail_msg: volume group not found

 success_msg: volume group was found

5. Use the command ansible-playbook
exercise112.yaml to verify its contents.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Assuming that the LVM Volume Group vgdata
was not found, it should print “volume group
not found.”

6. Change the playbook to verify that it will print
the success_msg if the requested volume
group was found. You can do so by having it run
the command vgs cl, which on CentOS 8
should give a positive result.

USING TAGS
When you are using larger playbooks, Ansible enables
you to use the tags attribute. A tag is a label that is
applied to a task or another item like a block or a play,
and while using the ansible-playbook --tags or
ansible-playbook --skip-tags command, you can
specify which tags need to be executed. Listing 11-15
shows a simple playbook example where tags are used,
and in Listing 11-16 you can see the output generated
while running this playbook.

Listing 11-15 Using tags in a Playbook

- name: using tags example
 hosts: all
 vars:
 service:
 - vsftpd
 - httpd
 tasks:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - yum:
 name:
 - httpd
 - vsftpd
 state: present
 tags:
 - install
 - service:
 name: "{{ item }}"
 state: started
 enabled: yes
 loop: "{{ services }}"
 tags:
 - services

Listing 11-16 ansible-playbook --tags “install”
listing1115.yaml Output

[ansible@control rhce8-book]$ ansible-playbook --tags

"install" listing1115.yaml

PLAY [using tags example]
**

TASK [Gathering Facts]

ok: [ansible2]
ok: [ansible1]
ok: [ansible4]
ok: [ansible3]

TASK [yum]
**

ok: [ansible2]
ok: [ansible1]
changed: [ansible3]
changed: [ansible4]

PLAY RECAP
**

ansible1 : ok=2 changed=0
unreachable=0 failed=0 skipped=0 rescued=0

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ignored=0
ansible2 : ok=2 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible3 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible4 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Tags can be applied to many structures, such as
imported plays, tasks, and roles, but the easiest way to
get familiar with tags is to use them on a task. Note that
tags cannot be applied on items that are dynamically
included (instead of imported), using include_roles or
include_tasks.

While writing playbooks, you may apply the same tag
multiple times. This capability allows you to define
groups of tasks, where multiple tasks are configured
with the same tag, and as a result, you can easily run a
specific part of the requested configuration. When
multiple tasks with multiple tags are used, you can get
an overview of each using the ansible-playbook --
list-tasks --list-tags command. In Listing 11-17 you
can see an example that is based on the playbook
listing1114.yaml.

Listing 11-17 Listing Tasks and Tags

[ansible@control rhce8-book]$ ansible-playbook --list-tags

--list-tasks listing1115.yaml

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

playbook: listing1115.yaml

 play #1 (all): using tags example. TAGS: []
 tasks:
 yum. TAGS: [install]
 service. TAGS: [services]
 TASK TAGS: [install, services]

When working with tags, you can use some special tags.
Table 11-5 gives an overview.

Table 11-5 Special Tags Overview

Apart from these special tags, you might also want to set
a debug tag to easily identify tasks that should be run
only if you specifically want to run debug tasks as well.
If combined with the never tag, the task that is tagged
with the debug,never tasks runs only if the debug tag
is specifically requested. So in case you want to run the
entire playbook, including tasks that have been tagged
with debug, you need to use the ansible-playbook --

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

tags all,debug command. In Exercise 11-3 you can see
how this can be used to optimize the playbook that was
previously used in Exercise 11-2.

Exercise 11-3 Using Tags to Make Debugging
Easier

1. Rewrite the exercise112.yaml playbook that you
created in the previous exercise, and include the
line tags: [never, debug] in the debug task.
The complete playbook looks as follows:

- name: using assert to check if volume gr

oup vgdata exists

 hosts: all

 tasks:

 - name: check if vgdata exists

 command: vgs vgdata

 register: vg_result

 ignore_errors: true

 - name: show vg_result variable

 debug:

 var: vg_result

 tags: [never, debug]

 - name: print a message

 assert:

 that:

 - vg_result.rc == 0

 fail_msg: volume group not found

 success_msg: volume group was found

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. Run the playbook using ansible-playbook --
tags all exercise113.yaml. Notice that it does
not run the debug task.

3. Run the playbook using ansible-playbook --
tags all,debug exercise113.yaml. Notice that
it now does run the debug task as well.

TROUBLESHOOTING
COMMON SCENARIOS
Apart from the problems that may arise in playbooks,
another type of error relates to connectivity issues. To
connect to managed hosts, SSH must be configured
correctly, and also authentication and privilege
escalation must work as expected.

Analyzing Connectivity Issues
To be able to connect to a managed host, you need to
have an IP network connection. Apart from that, you
need to make sure that the host has been set up
correctly:

• The SSH service needs to be accessible on the
remote host.

• Python must be installed.

• Privilege escalation needs to be set up.

Apart from these, inventory settings may be specified to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

indicate how to connect to a remote host. Normally, the
inventory contains a host name only. If a host resolves
to multiple IP addresses, you may want to specify how
exactly the remote host must be connected to. The
ansible_host parameter can be configured to do so. In
inventory, for instance, you may include the following
line to ensure that your host is connected in the right
way:

ansible5.example.com ansible_host=192.168.4.55

Notice that this setting makes sense only in an
environment where a host can be reached on multiple
different IP addresses.

To test connectivity to remote hosts, you can use the
ping module. It checks for IP connectivity, accessibility
of the SSH service, sudo privilege escalation, and the
availability of a Python stack. The ping module does not
take any arguments. Listing 11-18 shows the result of
running on the ad hoc command ansible all -m ping
where hosts that are available send “pong” as a reply,
and for hosts that are not available, you see why they
are not available.

Listing 11-18 Verifying Connectivity Using the ping
Module

[ansible@control rhce8-book]$ ansible all -m ping

ansible2 | SUCCESS => {
 "ansible_facts": {

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}
ansible1 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}
ansible3 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}
ansible4 | FAILED! => {
 "msg": "Missing sudo password"
}

Analyzing Authentication Issues
A few settings play a role in authentication on the
remote host to execute tasks:

• The remote_user setting determines which user
account to use on the managed nodes.

• SSH keys need to be configured for the remote_user
to enable smooth authentication.

• The become parameter needs to be set to true.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• The become_user needs to be set to the root user
account.

• Linux sudo needs to be set up correctly.

In Exercise 11-4 you work on troubleshooting some
common scenarios.

Exercise 11-4 Troubleshooting Connectivity
Issues

1. Use an editor to create the file exercise114-
1.yaml and give it the following contents:

- name: remove user from wheel group

 hosts: ansible4

 tasks:

 - user:

 name: ansible

 groups: ’’

2. Run the playbook using ansible-playbook
exercise114-1.yaml and use ansible
ansible4 -m reboot to reboot node ansible4.

3. Once the reboot is completed, use ansible all -
m ping to verify connectivity. Host ansible4
should give a “Missing sudo password” error.

4. Type ansible ansible4 -m raw -a “usermod
-aG wheel ansible” -u root -k to make user

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ansible a member of the group wheel again.

5. Repeat the ansible all -m ping command. You
should now be able to connect normally to the
host ansible4 again.

SUMMARY
In this chapter you read about troubleshooting Ansible.
We covered four different troubleshooting-related
topics. First, you learned how to make sure that
sufficient troubleshooting information is printed while
running tasks. This section covered working with log
files, running in check mode, and increasing the
verbosity level. Next you learned how to use different
modules that can be useful to make playbook success or
failure more insightful. The third topic was about using
tags, which may be particularly useful to run only
specific tasks. In the last topic you learned about
troubleshooting some common scenarios.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 11-6 lists a reference of these key topics and
the page numbers on which each is found.

Table 11-6 Key Topics for Chapter 11

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

check your answers in the glossary:

check mode

filter

tag

REVIEW QUESTIONS
1. What can you do to ensure a task will not run in

check mode?

2. What would you expect to see in the playbook
output summary if the main task in a block has
failed and the rescue action is executed instead?

3. Which parameter can you set in the ansible.cfg
file to specify where Ansible command output is
logged?

4. Which module would you use to analyze API
output?

5. You want to write a playbook in which you define
a condition to specify when a task would be
considered failing. Which module should you use
to do so?

6. Which module would you use to test whether an
expected result is present and fail in all other
cases?

7. How would you convert a variable data type from

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

a string to an integer?

8. Which tag would you use to make sure that a
task never runs unless specifically requested?

9. A task has been configured with the [debug,
never] tasks. How can you run the playbook to
run all tasks, including this one?

10. Which command should you use to verify
connectivity to Ansible-managed machines?

END-OF-CHAPTER LAB
Now that we are at the end of this chapter, let’s do a lab!
The following lab enables you to practice your
troubleshooting skills.

LAB 11-1
The lesson11-lab.yaml playbook contains some errors.
Fix them according to the following instructions:

• Use command-line tools and arguments to find the
errors. Don’t fix them by just reading the YAML file,
even if some errors are obvious.

• After fixing an error in one task, start running the
playbook with the next task. Try to avoid running
the same task over and over again.

• Before applying the template, use a dry-run and a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

diff to see what the template will change.

• Use the debug module where necessary.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Part III: Managing Systems
with Ansible

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 12. Managing
Software with Ansible
This chapter covers the following subjects:

• Using Modules to Manage Packages

• Using Modules to Manage Repositories and
Subscriptions

• Implementing a Playbook to Manage Software

The following RHCE exam objectives are covered
in this chapter:

• Using Ansible modules for system administration
tasks that work with

• Software packages and repositories

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 12-1 lists the major

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 12-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which module should you use to set up access to a
yum repository?

a. yum

b. dnf

c. repository

d. yum_repository

2. How do you get access to facts about packages that
are installed on managed machines?

a. Package facts are collected by the default fact
gathering as performed with the setup module.

b. Package facts need to be gathered separately
using the package_facts module.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

c. There is no module for gathering package facts.
Use the command module instead.

d. There is no module for gathering package
facts. Use the shell module instead.

3. Which argument should be used with the
yum_repository module to specify the name of the
repository file that should be created on the RHEL
managed machine?

a. file

b. name

c. filename

d. repofile

4. Which of the following lines shows correct syntax
for installing an AppStream module?

a. name: ’mymodule:1.2/devel’

b. name: mymodule:1.2/devel

c. name: ’@mymodule:1.2/devel’

d. name: @mymodule:1.2/devel

5. How would you perform an update to all packages
on your system?

a. Use the yum_update module.

b. Use update: all as an argument to the yum
module.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

c. Use name: ’*’ and state: latest as arguments
to the yum module.

d. Use update: ’*’ as an argument to the yum
module.

6. While setting up a repository server, which module
can you use to generate the repository metadata?

a. yumrepository

b. command

c. yumrepo

d. createrepo

7. You can use the yum module to download packages
using the download_only argument. Which of the
following statements about using this argument is
true?

a. The download_only argument downloads
packages to the current directory.

b. The download_only argument downloads
packages to the /var/lib/rpm directory.

c. The download_only argument downloads
packages to the /tmp directory.

d. When download_only is used, you also
must use the download_dir argument to
specify to which directory the packages are
downloaded.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

8. Which modules can you use to set up repository
access on a RHEL system that is registered with
Subscription Manager? (Choose two.)

a. rhsm_repository

b. yum_repository

c. rhel_repository

d. redhat_subscription

9. You want to configure a new host using a playbook.
To do so, you want to set the host name as a
variable, such that it can be used in all plays in the
playbook. How do you do this?

a. Set the variable in the playbook header.

b. Set the variable in the header of the first play.

c. Use vars_prompt to prompt for the variable
value.

d. Use the -e varname=value option to provide
the variable as a startup option while running
the playbook.

10. To use the redhat_subscription module in Ansible,
you must set a username and password. How
should you provide them? (Choose two.)

a. Set the username and password arguments to
the redhat_subscription module.

b. Use vars_prompt to prompt for the variables

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

when the playbook runs.

c. Use Ansible Vault to securely store the values
of these variables.

d. Specify the variables using the -e command-
line option, while running the playbook with
the ansible-playbook command.

FOUNDATION TOPICS

USING MODULES TO
MANAGE PACKAGES
Managing software packages on managed nodes is one
of the first requirements when working with Ansible.
Different modules are available. Table 12-2 provides an
overview.

Table 12-2 Software Management Modules Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Repository Access
Before you can manage any software packages, you need
to set up access to a repository. To do so, the
yum_repository module is provided. If you have worked
with yum repository files in the /etc/yum.repos.d/
directory, using the yum_repository module is not
difficult because it uses the same information.

Listing 12-1 shows an example of a playbook that sets up
access to a yum repository. Notice that this is an
example only, and it doesn’t work yet because the
repository has not been set up yet.

Listing 12-1 Configuring Repository Access

- name: setting up repository access
 hosts: all
 tasks:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - name: connect to example repo
 yum_repository:
 name: example repo
 description: RHCE8 example repo
 file: examplerepo
 baseurl: ftp://control.example.com/repo/
 gpgcheck: no

While setting up repository access, you should use a few
arguments. You can see an example of them in Listing
12-1. Table 12-3 provides an overview.

Table 12-3 yum_repository Key Arguments

Notice that use of the gpgcheck argument is
recommended but not mandatory. Most repositories are
provided with a GPG key to verify that packages in the
repository have not been tampered with. However, if no
GPG key is set up for the repository, the gpgcheck

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

parameter can be set to no to skip checking the GPG
key.

Managing Software with yum
The yum module can be used to manage software
packages. You use it to install and remove packages or to
update packages. This can be done for individual
packages, as well as package groups and modules. Let’s
look at some examples that go beyond the mere
installation or removal of packages, which was covered
sufficiently in earlier chapters.

Listing 12-2 shows a module that will update all
packages on this system.

Listing 12-2 Using yum to Perform a System Update

- name: updating all packages
 hosts: ansible2
 tasks:
 - name: system update
 yum:
 name: ’*’
 state: latest

Notice the use of the name argument to the yum
module. It has ’*’ as its argument. To prevent the
wildcard from being interpreted by the shell, you must
make sure it is placed between single quotes.

Listing 12-3 shows an example where yum package
groups are used to install the Virtualization Host

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

package group.

Listing 12-3 Installing Package Groups

- name: install or update a package group
 hosts: ansible2
 tasks:
 - name: install or update a package group
 yum:
 name: ’@Virtualization Host’
 state: latest

When a yum package group instead of an individual
package needs to be installed, the name of the package
group needs to start with an at sign (@), and the entire
package group name needs to be put between single
quotes. Also notice the use of state: latest in Listing
12-3. This line ensures that the packages in the package
group are installed if they have not been installed yet. If
they have already been installed, they are updated to the
latest version.

A new feature in RHEL 8 is the yum AppStream module.
Modules as listed by the Linux yum modules list
command can be managed with the Ansible yum
module also. Working with yum modules is similar to
working with yum package groups. In the example in
Listing 12-4, the main difference is that a version
number and the installation profile are included in the
module name.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Listing 12-4 Installing AppStream Modules with the
yum Module

- name: installing an AppStream module
 hosts: ansible2
 tasks:
 - name: install or update an AppStream module
 yum:
 name: ’@php:7.3/devel’
 state: present

Note

When using the yum module to install multiple packages, you can
provide the name argument with a list of multiple packages. Alternatively,
you can provide multiple packages in a loop. Of these solutions, using a
list of multiple packages as the argument to name is always preferred. If
multiple package names are provided in a loop, the module must
execute a task for every single package. If multiple package names are
provided as the argument to name, yum can install all these packages in
one single task.

Managing Package Facts
When Ansible is gathering facts, package facts are not
included. To include package facts as well, you need to
run a separate task; that is, you need to use the
package_facts module. Facts that have been gathered
about packages are stored to the ansible_facts.packages
variable. The sample playbook in Listing 12-5 shows
how to use the package_facts module.

Listing 12-5 Using the package_facts Module to Show

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Package Details

- name: using package facts
 hosts: ansible2
 vars:
 my_package: nmap
 tasks:
 - name: install package
 yum:
 name: "{{ my_package }}"
 state: present
 - name: update package facts
 package_facts:
 manager: auto
 - name: show package facts for {{ my_package }}
 debug:
 var: ansible_facts.packages[my_package]
 when: my_package in ansible_facts.packages

As you can see, the package_facts module does not need
much to do its work. The only argument used here is the
manager argument, which specifies which package
manager to communicate to. Its default value of auto
automatically detects the appropriate package manager
and uses that. If you want, you can specify the package
manager manually, using any package manager such as
yum or dnf. Listing 12-6 shows the output of running
the Listing 12-5 playbook, where you can see details that
are collected by the package_facts module.

Listing 12-6 Running ansible-playbook
listing125.yaml Results

[ansible@control rhce8-book]$ ansible-playbook

listing125.yaml

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

PLAY [using package facts]
**

TASK [Gathering Facts]
**

ok: [ansible2]

TASK [install package]
**

ok: [ansible2]

TASK [update package facts]
**

ok: [ansible2]

TASK [show package facts for my_package]
**
ok: [ansible2] => {
 "ansible_facts.packages[my_package]": [
 {
 "arch": "x86_64",
 "epoch": 2,
 "name": "nmap",
 "release": "5.el8",
 "source": "rpm",
 "version": "7.70"
 }
]
}

PLAY RECAP
**

ansible2 : ok=4 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

In Exercise 12-1 you can practice working with the
different tools Ansible provides for module

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

management.

Exercise 12-1 Managing Software Packages

1. Use your editor to create a new file with the
name exercise121.yaml.

2. Write a play header that defines the variable
my_package and sets its value to virt-
manager:

- name: exercise121

 hosts: ansible2

 vars:

 my_package: virt-manager

 tasks:

3. Add a task that installs the package based on
the name of the variable that was provided:

- name: install package

 yum:

 name: "{{ my_package }}"

 state: present

4. Add a task that gathers facts about installed
packages:

- name: update package facts

 package_facts:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 manager: auto

5. As the last part of this exercise, add a task that
shows facts about the package that you have
just installed:

- name: show package facts for {{ my_packa

ge }}

 debug:

 var: ansible_facts.packages[my_package

]

 when: my_package in ansible_facts.packag

es

6. Run the playbook using ansible-playbook
exercise121.yaml and verify its output.

USING MODULES TO
MANAGE REPOSITORIES AND
SUBSCRIPTIONS
To work with software packages, you need to make sure
that repositories are accessible and subscriptions are
available. In the previous section you learned how to
write a playbook that enables you to access an existing
repository. In this section you learn how to set up the
server part of a repository if that still needs to be done.
Also, you learn how to manage RHEL subscriptions
using Ansible.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Setting Up Repositories
Most managed systems access the default distributions
that are provided while installing the operating system.
In some cases external repositories might not be
accessible. If that happens, you need to set up a
repository yourself. Before you can do that, however, it’s
important to know what a repository is. A repository is a
directory that contains RPM files, as well as the
repository metadata, which is an index that allows the
repository client to figure out which packages are
available in the repository.

Ansible does not provide a specific module to set up a
repository. You must use a number of modules instead.
Exactly which modules are involved depends on how
you want to set up the repository. For instance, if you
want to set up an FTP-based repository on the Ansible
control host, you need to accomplish the following
tasks:

• Install the FTP package.

• Start and enable the FTP server.

• Open the firewall for FTP traffic.

• Make sure the FTP shared repository directory is
available.

• Download packages to the repository directory.

• Use the Linux createrepo command to generate
the index that is required in each repository.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The playbook in Listing 12-7 provides an example of
how this can be done.

Listing 12-7 Setting Up an FTP-based Repository

- name: install FTP to export repo
 hosts: localhost
 tasks:
 - name: install FTP server
 yum:
 name:
 - vsftpd
 - createrepo_c
 state: latest
 - name: start FTP server
 service:
 name: vsftpd
 state: started
 enabled: yes
 - name: open firewall for FTP
 firewalld:
 service: ftp
 state: enabled
 permanent: yes

- name: setup the repo directory
 hosts: localhost
 tasks:
 - name: make directory
 file:
 path: /var/ftp/repo
 state: directory
 - name: download packages
 yum:
 name: nmap
 download_only: yes
 download_dir: /var/ftp/repo
 - name: createrepo
 command: createrepo /var/ftp/repo

The most significant tasks in setting up the repository
are the download packages and createrepo tasks. In

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the download packages task, the yum module is used
to download a single package. To do so, the
download_only argument is used to ensure that the
package is not installed but downloaded to a directory.
When you use the download_only argument, you also
must specify where the package needs to be installed. To
do this, the task uses the download_dir argument.

There is one disadvantage in using this approach to
download the package, though: it requires repository
access. If repository access is not available, the fetch
module can be used instead to download a file from a
specific URL.

Managing GPG Keys
To guarantee the integrity of packages, most
repositories are set up with a GPG key. This enables the
client to verify that packages have not been tampered
with while transmitted between the repository server
and client. For that reason, if packages are installed
from a repository server on the Internet, you should
always make sure that gpgcheck: yes is set while using
the yum_repository module.

However, if you want to make sure that a GPG check is
performed, you need to make sure the client knows
where to fetch the repository key. To help with that, you
can use the rpm_key module. You can see how to do
this in Listing 12-8. Notice that the playbook in this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

listing doesn’t work because no GPG-protected
repository is available. Setting up GPG-protected
repositories is complex and outside the scope of the
EX294 objectives, and for that reason is not covered
here.

Listing 12-8 Using rpm_key to Fetch an RPM Key

- name: use rpm_key in repository access
 hosts: all
 tasks:
 - name: get the GPG public key
 rpm_key:
 key: ftp://control.example.com/repo/RPM-GPG-KEY
 state: present
 - name: set up the repository client
 yum_repository:
 file: myrepo
 name: myrepo
 description: example repo
 baseurl: ftp://control.example.com/repo
 enabled: yes
 gpgcheck: yes
 state: present

Managing RHEL Subscriptions
When you work with Red Hat Enterprise Linux,
configuring repository access using the method
described before is not enough. Red Hat Enterprise
Linux works with subscriptions, and to be able to access
software that is provided through your subscription
entitlement, you need to set up managed systems to
access these subscriptions.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Tip

Free developer subscriptions are available for RHEL as well as Ansible.
Register yourself at https://developers.redhat.com and sign up for a free
subscription if you want to test the topics described in this section on
RHEL and you don’t have a valid subscription yet.

To understand how to use the Ansible modules to
register a RHEL system, you need to understand how to
use the Linux command-line utilities. When you are
managing subscriptions from the Linux command line,
multiple steps are involved.

1. First, you use the subscription-manager
register command to provide your RHEL
credentials. Use, for instance, subscription-
manager register --username=yourname --
password=yourpassword.

2. Next, you need to find out which pools are
available in your account. A pool is a collection of
software channels available to your account. Use
subscription-manager list --available for an
overview.

3. Now you can connect to a specific pool using
subscription-manager attach --
pool=poolID. Note that if only one subscription
pool is available in your account, you don’t have
to provide the --pool argument.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://developers.redhat.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Next, you need to find out which additional
repositories are available to your account by
using subscription-manager repos --list.

5. To register to use additional repositories, you use
subscription-manager repos --enable
“repos name”. Your system then has full access
to its subscription and related repositories.

Two significant modules are provided by Ansible:

• redhat_subscription: This module enables you to
perform subscription and registration in one task.

• rhsm_repository: This module enables you to add
subscription manager repositories.

Listing 12-9 shows an example of a playbook that uses
these modules to fully register a new RHEL 8 machine
and add a new repository to the managed machine.
Notice that this playbook is not runnable as such
because important additional information needs to be
provided. Exercise 12-3, later in the section titled
“Implementing a Playbook to Manage Software,” will
guide you to a scenario that shows how to use this code
in production.

Listing 12-9 Using Subscription Manager to Set Up
Ansible

- name: use subscription manager to register and set up
repos

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 hosts: ansible5
 tasks:
 - name: register and subscribe ansible5
 redhat_subscription:
 username: bob@example.com
 password: verysecretpassword
 state: present
 - name: configure additional repo access
 rhsm_repository:
 name:
 - rh-gluster-3-client-for-rhel-8-x86_64-rpms
 - rhel-8-for-x86_64-appstream-debug-rpms
 state: present

In the sample playbook in Listing 12-9, you can see how
the redhat_subscription and rhsm_repository modules
are used. Notice that redhat_subscription requires a
password. In Listing 12-9 the username and password
are provided as clear-text values in the playbook. From a
security perspective, this is very bad practice. You
should use Ansible Vault instead. Exercise 12-3 will
guide you through a setup where this is done.

In Exercise 12-2 you are guided through the procedure
of setting up your own repository and using it. This
procedure consists of two distinct parts. In the first part
you set up a repository server that is based on FTP.
Because in Ansible you often need to configure topics
that don’t have your primary attention, you set up the
FTP server and also change its configuration. Next, you
write a second playbook that configures the clients with
appropriate repository access, and after doing so, install
a package.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Exercise 12-2 Setting Up a Repository

1. Use your editor to create the file exercise122-
server.yaml.

2. Define the play that sets up the basic FTP
configuration. Because all its tasks should be
familiar to you at this point, you can enter all
the tasks at once:

- name: install, configure, start and enab

le FTP

 hosts: localhost

 tasks:

 - name: install FTP server

 yum:

 name: vsftpd

 state: latest

 - name: allow anonymous access to FTP

 lineinfile:

 path: /etc/vsftpd/vsftpd.conf

 regexp: ’^anonymous_enable=NO’

 line: anonymous_enable=YES

 - name: start FTP server

 service:

 name: vsftpd

 state: started

 enabled: yes

 - name: open firewall for FTP

 firewalld:

 service: ftp

 state: enabled

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 immediate: yes

 permanent: yes

3. Set up a repository directory. Add the following
play to the playbook. Notice the use of the
download packages task, which uses the yum
module to download a package without
installing it. Also notice the createrepo task,
which creates the repository metadata that
converts the /var/ftp/repo directory into a
repository.

- name: setup the repo directory

 hosts: localhost

 tasks:

 - name: make directory

 file:

 path: /var/ftp/repo

 state: directory

 - name: download packages

 yum:

 name: nmap

 download_only: yes

 download_dir: /var/ftp/repo

 - name: install createrepo package

 yum:

 name: createrepo_c

 state: latest

 - name: createrepo

 command: createrepo /var/ftp/repo

 notify:

 - restart_ftp

 handlers:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - name: restart_ftp

 service:

 name: vsftpd

 state: restarted

4. Use the command ansible-playbook
exercise122-server.yaml to set up the FTP
server on control.example.com. If you haven’t
made any typos, you shouldn’t encounter any
errors.

5. Now that the repository server has been
installed, it’s time to set up the repository
client. Use your editor to create the file
exercise122-client.yaml and write the play
header as follows:

- name: configure repository

 hosts: all

 vars:

 my_package: nmap

 tasks:

6. Add a task that uses the yum_repository
module to configure access to the new
repository:

- name: connect to example repo

 yum_repository:

 name: exercise122

 description: RHCE8 exercise 122 repo

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 file: exercise122

 baseurl: ftp://control.example.com/rep

o/

 gpgcheck: no

7. After setting up the repository client, you also
need to make sure that the clients know how to
reach the repository server by addressing its
name. Add the next task that writes a new line
to /etc/hosts to make sure host name resolving
on the clients is set up correctly:

- name: ensure control is resolvable

 lineinfile:

 path: /etc/hosts

 line: 192.168.4.200 control.example.c

om control

- name: install package

 yum:

 name: "{{ my_package }}"

 state: present

8. If you are using the package_facts module, you
need to remember to update it after installing
new packages. Add the following task to get this
done:

- name: update package facts

 package_facts:

 manager: auto

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

9. As the last task, just because it’s fun, use the
debug module together with the package facts
to get information about the newly installed
package:

- name: show package facts for {{ my_packa

ge }}

 debug:

 var: ansible_facts.packages[my_package

]

 when: my_package in ansible_facts.packag

es

10. Use the command ansible-playbook
exercise122-client.yaml -e
my_package=redis. That’s right; this
command overwrites the my_package variable
that was set in the playbook—just to remind
you a bit about variable precedence.

IMPLEMENTING A PLAYBOOK
TO MANAGE SOFTWARE
In the previous sections you learned how to use
different modules to manage software. In this section
you apply this knowledge in a more advanced playbook
example. You’ll also find an advanced example like this
in Chapters 13 through 15 so that you get the best
possible preparation for the EX294 exam. To match the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

exam style of questions, the example is scenario based,
and the assignment is formatted as a step-by-step
exercise. As is the case for all exercises, the complete
playbook discussed here is available in the GitHub
repository at https://github.com/sandervanvugt/rhce8-
book/exercise123.yaml.

To run this assignment on a RHEL 8 target, you need
access to a valid RHEL 8 subscription. If you don’t have
a current subscription, you can request it from
https://developers.redhat.com.

Exercise 12-3 Configuring a New RHEL
Managed Node

Create a playbook that will fully automate the setup of
a new RHEL host. Write this playbook according to the
following requirements:

• Add the new host information to the inventory and
/etc/hosts file on the control host.

• Work with variables for the name of the host you
want to set up.

• Connect as user root to the new host. While
running the playbook, run it with the appropriate
option so that you will be prompted for the root
password.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book/exercise123.yaml
https://developers.redhat.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

• Set up the user ansible on the new host and make
sure this user is a member of the group wheel.

• Also, set a password for user ansible using the
playbook.

• Modify the sudoers file such that the user ansible
can run root commands using sudo without having
to enter a password.

• Automatically register the host with the RHEL
Subscription Manager.

• Use Ansible Vault to provide the username and
password in a secure way.

• Add the new host to the rh-gluster-3-client-for-
rhel-8-x86_64-rpms repository and the rhel-8-for-
x86_64-appstream-debug-rpms repository.

• Use tags so that you can run individual parts of the
playbook.

1. On the control host, use sudo yum install
sshpass to install the sshpass package. This
package enables you to work with SSH
passwords in a noninteractive way, and you
need it to automate working with SSH
passwords from a playbook environment.

2. To start, you need to set up the control host to
include information about the new host. To
make this playbook flexible, this playbook

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

requires variables to be set from the command
line because that is the only way to ensure that
the variable is available in all of the plays. Using
vars_prompt would have been an option, but
variables that are set with vars_prompt apply
only to the play in which they are set. To check
that the variables were indeed passed as an
argument to the ansible-playbook command,
use the fail module as follows to check whether
the variable newhost and the variable
newhostip are provided as startup arguments.
Create a file with the name exercise123.yaml as
follows:

- name: add host to inventory

 hosts: localhost

 tasks:

 - fail:

 msg: "add the options -e newhost=hos

tname -e newhostip=ip.ad.dr.ess and try ag

ain"

 when: (newhost is undefined) or (newho

stip is undefined)

3. Write the tasks for this first play. In these tasks,
you want to make sure that the local inventory
file and the /etc/hosts file are modified. To do
this, the lineinfile module provides good
service. Notice the use of the line the second
time the lineinfile module is called. The line

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

contains only variables, and for that reason the
entire variable string must be between double
quotes. Also, at the end of the play, include the
tags: addhost line, which makes it easy to skip
this task after it has run successfully in case it
is needed to run the playbook again. Make sure
to add the following text to complete the first
play:

- name: add new host to inventory

 lineinfile:

 path: inventory

 state: present

 line: "{{ newhost }}"

- name: add new host to /etc/hosts

 lineinfile:

 path: /etc/hosts

 state: present

 line: "{{ newhostip }} {{ newhost}}"

tags: addhost

4. At this point it’s a good idea to test that all is
going well so far. Use ansible-playbook -C
exercise123.yaml and observe playbook
output. It should fail because no arguments are
provided on the command line. Use ansible-
playbook -C exercise123.yaml -e
newhost=ansible5 -e
newhostip=192.168.4.205 and try again.

5. The first play is ready at this point, so it’s time

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

to configure the second play. This play is
executed on the new host. The target host name
is set to the variable newhost, which is defined
while running the ansible-playbook
command. Also notice that the remote_user
and the become statements must be set
because the default user ansible is not
configured for privilege escalation yet. Write
the play header for this second play as follows:

- name: configure a new RHEL host

 hosts: "{{ newhost }}"

 remote_user: root

 become: false

 tasks:

6. Now it’s time to add the tasks, as well as the tag
to this play. In the tasks you need to make sure
a user ansible exists and is a member of the
group wheel. Next, you use the shell module to
set a password for the user ansible. It’s an ugly
approach, but it works. In Chapter 13,
“Managing Users,” you’ll learn how to do this in
a much nicer way. As the next task you use the
lineinfile module to modify the /etc/sudoers
file and allow members of the group wheel to
escalate permissions without entering a
password. Add the tasks to do this as follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- name: configure user ansible

 user:

 name: ansible

 groups: wheel

 append: yes

 state: present

- name: set a password for this user

 shell: ’echo password | passwd --stdin a

nsible’

- name: enable sudo without passwords

 lineinfile:

 path: /etc/sudoers

 regexp: ’^%wheel’

 line: ’%wheel ALL=(ALL) NOPASSWD: ALL

’

 validate: /usr/sbin/visudo -cf %s

7. With this part you have set up the user ansible
on the managed host, but one element is still
missing: the user cannot log in with an SSH
public/private key pair yet. In Chapter 13 you’ll
learn about a nice way to add the SSH public
key to the remote user; for now you can do it in
a quick-and-dirty way that will also work. Add
the following lines to the playbook to conclude
the second play:

- name: create SSH directory in user ansib

le home

 file:

 path: /home/ansible/.ssh

 state: directory

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 owner: ansible

 group: ansible

- name: copy SSH public key to remote host

 copy:

 src: /home/ansible/.ssh/id_rsa.pub

 dest: /home/ansible/.ssh/authorized_ke

ys

tags: setuphost

8. Feel free to test the second play at this point;
it’s better to filter out any errors now than to do
it later. To test, use ansible-playbook -C -k
exercise123.yaml -e newhost=ansible5 -e
newhostip=192.168.4.205. Notice the use of
the -k option, which prompts for the SSH
password that user root in this play needs to set
up the target host.

9. At this point your RHEL host should be ready
for use. The only thing that is still missing is
that it has not been registered against Red Hat
Subscription Manager. To do this, you need
your Red Hat credentials. Because these
credentials are sensitive information, you
should use Ansible Vault. So let’s start creating
the vault file and define the username and
password variables in the Vault file. To create
the Vault file, use ansible-vault create
exercise123-vault.yaml and provide the
following input, where you should use your real

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

username and password and not XXXXXXXXX.
Your rhsm_user name is the name (typically an
email address) that you use to log in at
redhat.com, and the rhsm_password is the
password that you use with it. Also notice that
for obvious security reasons, this file is NOT
provided in the GitHub repository that comes
with this book:

rhsm_user: XXXXXXXXXXX

rhsm_password: XXXXXXXXXXX

10. Now that you have created the Vault file, you
can write the header for the third and last play
in the file exercise123.yaml. The most
important part of this header is the vars_files
part, which refers to the Vault file:

- name: use subscription manager to regist

er and set up repos

 hosts: "{{ newhost }}"

 vars_files:

 - exercise123-vault.yaml

 tasks:

11. At this point you can complete the playbook and
add the remaining tasks:

- name: register and subscribe {{ newhost

}}

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 redhat_subscription:

 username: "{{ rhsm_user }}"

 password: "{{ rhsm_password }}"

 state: present

- name: configure additional repo access

 rhsm_repository:

 name:

 - rh-gluster-3-client-for-rhel-8-x86_6

4-rpms

 - rhel-8-for-x86_64-appstream-debug-rp

ms

 state: present

tags: registerhost

12. At this point the playbook is ready. Compare
what you have written to the sample playbook
exercise123.yaml that is in the GitHub
repository and give it a try. To do so, use the
ansible-playbook -k --ask-vault-pass
exercise123.yaml -e newhost=ansible5 -e
newhostip=192.168.4.205 command.
Everything should be running smoothly, but
because this is a large playbook and it is very
difficult to write it without typos right from the
beginning, you might have to do a little bit of
troubleshooting. To do so, I recommend that
you use the tags that have been provided with
the plays. If, after running the first and second
plays successfully, the third play generates an
error, you can run just that play again, using

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ansible-playbook --tags=registerhost
exercise123.yaml -e newhost=ansible5.
(Notice that this command doesn’t use as many
command-line options as the command you
used just a minute ago because these
parameters don’t apply to the registerhost
tag.)

SUMMARY
In this chapter you learned how to work with software.
You read about the different modules that are available
for managing packages, as well as how to set up
repositories and subscriptions. You also worked through
an advanced scenario that implements a playbook to
manage software.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

with the Key Topics icon in the outer margin of the
page. Table 12-4 lists a reference of these key topics and
the page numbers on which each is found.

Table 12-4 Key Topics for Chapter 12

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

AppStream

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

GNU Privacy Guard (GPG)

pool

subscription

REVIEW QUESTIONS
1. Which Ansible module must be used to get

information about software packages that are
installed?

2. Which module is used to configure repository
clients?

3. What line would you use in a playbook to install
the Virtualization Host package group?

4. Which Linux command is used to generate
repository metadata?

5. Which module can you use to download
packages from a yum repository without
installing them?

6. Which module can you use to get a file from a
URL?

7. Which module would you use to import a GPG
key from a yum repository?

8. Which module would you use to register a RHEL
system with Red Hat Subscription Manager?

9. Which module would you use to add a repository

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

that is offered through Red Hat Subscription
Manager?

10. How do you provide a variable that can be used
in all plays in a multiplay playbook?

END-OF-CHAPTER LAB
In the end-of-chapter labs this time, you set up a
configuration for managing playbooks.

LAB 12-1
Configure the control.example.com host as a repository
server, according to the following requirements:

• Create a directory with the name /repo, and in that
directory copy all packages that have a name starting
with nginx.

• Generate the metadata that makes this directory a
repository.

• Configure the Apache web server to provide access
to the repository server. You just have to make sure
that the DocumentRoot in Apache is going to be set
to the /repo directory.

LAB 12-2
Write a playbook to configure all managed servers
according to the following requirements:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• All hosts can access the repository that was created
in Lab 12-1.

• Have the same playbook install the nginx package.

• Do NOT start the service. Use the appropriate
module to gather information about the installed
nginx package, and let the playbook print a message
stating the name of the nginx package as well as the
version.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 13. Managing
Users
This chapter covers the following subjects:

• Using Ansible Modules to Manage Users and
Groups

• Managing SSH Connections

• Managing Encrypted Passwords

• Managing Users Advanced Scenario Exercise

The following RHCE exam objectives are covered
in this chapter:

• Use Ansible modules for system administration
tasks that work with:

• Users and groups

”DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

your own assessment of your knowledge of the topics,
read the entire chapter. Table 13-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ‘Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 13-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which Ansible module would you use to manage
the SSH known hosts file for existing or new users?

a. lineinfile

b. ssh_key

c. ssh_config

d. known_hosts

2. Which arguments must be used with the user
module to make an existing user a member of
additional groups without overwriting any current

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

group assignments? (Choose two.)

a. group

b. groups

c. append

d. newgroups

3. Which Ansible modules can you use to manage the
sudoers configuration file? (Choose two.)

a. lineinfile

b. template

c. sudoers

d. sudo

4. Which module can you use to manage a server’s
SSH public key?

a. authorized_key

b. authorized_hosts

c. known_keys

d. known_hosts

5. What should you use to look up a specific file and
copy that file over to the managed host?

a. The copy module

b. The lookup module

c. The copy plug-in

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

d. The lookup plug-in

6. Which of the following restrictions applies to the
authorized_keys module?

a. It cannot read files from a hidden directory.

b. It works only for the default Ansible user.

c. It needs permission mode to be set to 644 on
the target file.

d. It doesn’t work from a sudo shell.

7. An encrypted password as stored in /etc/shadow
consists of different parts. Which of the following is
not one of them?

a. The hashing algorithm that was used

b. The random salt that was used to encrypt the
password

c. The username

d. The encrypted hash of the user password

8. Different solutions can be used to generate an
encrypted password for use by the Ansible user
module. Which of the following is not one of them?

a. Use the shell module with the passwd --stdin
command to store the encrypted password in a
variable.

b. Use the command module with the passwd --

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

stdin command to store the encrypted
password in a variable.

c. Use an ad hoc command with the debug
module to generate the encrypted password
string.

d. Create a task that uses the debug module to
generate the encrypted password string.

9. When you’re working with encrypted passwords in
playbooks, there must be some way to ensure that
security is guaranteed. Which of the following
solutions is best?

a. Store the password in a Vault file.

b. Have the playbook prompt for the password to
be used.

c. Store the password in a file that is accessible by
the root user only.

d. Use an inventory variables file to read the
password.

10. What is the best way to create multiple user
accounts?

a. Use loop to iterate over a list of users.

b. Define the users in a variable and use loop to
iterate over that variable.

c. Define a variables file, in which the users are

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

defined as a list, and use loop from the
playbook to iterate over that.

d. Use vars_prompt to have the playbook prompt
for variable names to be used.

FOUNDATION TOPICS

USING ANSIBLE MODULES TO
MANAGE USERS AND
GROUPS
To manage users on Ansible, different tasks are
involved. To begin with, there is the management of the
user and group accounts and their direct properties. This
includes management of sudo privilege escalation also
because the new user may need to be configured to run
tasks with privilege escalation. Setting up SSH
connections and setting user passwords are different
topics that require attention.

Modules Overview
Different modules are involved for managing users,
groups, and their most important properties. Table 13-2
provides an overview.

Table 13-2 Managing Users and Groups Modules
Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Managing Users and Groups
Managing users and groups is a pretty straightforward
procedure in which you use the user and group modules
to set the properties that are required for user accounts.
Listing 13-1 provides an example.

Listing 13-1 Managing Users and Groups

- name: creating a user and group
 hosts: ansible2
 tasks:
 - name: setup the group account
 group:
 name: students
 state: present
 - name: setup the user account
 user:
 name: anna
 create_home: yes
 groups: wheel,students

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 append: yes
 generate_ssh_key: yes
 ssh_key_bits: 2048
 ssh_key_file: .ssh/id_rsa

When you use the user module, many options are
available. Most of them speak for themselves; however,
just two arguments need attention, and they are group
and groups. The group argument is used to specify the
primary group of the user. By default, when you are
creating a new user, a new group is created with the
name of that user, and that group is set as the primary
group. The groups argument is used to make the user a
member of additional groups. While using the groups
argument for existing users, make sure to include the
append argument as well. Without append, all current
secondary group assignments are overwritten.

Also notice that the user module has some options that
cannot normally be managed with the Linux useradd
command. As shown in Listing 13-1, the module can also
be used to generate an SSH key and specify its
properties.

Managing sudo
When you’re setting up new user accounts on Ansible,
some of these users may require sudo privileges to be
set up. Because no Ansible module specifically targets
managing a sudo configuration, you need to use generic
Ansible modules instead. There are two options. First,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you can use the template module to create a sudo
configuration file in the directory /etc/sudoers.d. Using
such a file is recommended because the file is managed
independently, and as such, there is no risk it will be
overwritten by an RPM update. The alternative is to use
the lineinfile module to manage the /etc/sudoers main
configuration file directly.

In Listings 13-2, 13-3, and 13-4 you can see a playbook
construction where users are created and added to a
sudo file that is generated from a template. To split
static code from the dynamic site-specific settings, the
playbook in Listing 13-4 makes use of two variable files
shown in Listing 13-2.

Listing 13-2 Variables for Managing sudo

[ansible@control rhce8-book]$ cat vars/sudo

sudo_groups:
 - name: developers
 groupid: 5000
 sudo: false
 - name: admins
 groupid: 5001
 sudo: true
 - name: dbas
 groupid: 5002
 sudo: false
 - name: sales
 groupid: 5003
 sudo: true
 - name: account
 groupid: 5004
 sudo: false
[ansible@control rhce8-book]$ cat vars/users
users:
 - username: linda

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 groups: sales
 - username: lori
 groups: sales
 - username: lisa
 groups: account
 - username: lucy
 groups: account

As you can see, the vars/users file defines users and the
groups they should be a member of. Apart from that, the
vars/sudo file defines new groups and, for each of these
groups, sets a sudo parameter, which will be used in the
template file shown in Listing 13-3.

Listing 13-3 Template File for Managing sudo

{% for item in sudo_groups %}
{% if item.sudo %}
%{{ item.name}} ALL=(ALL:ALL) NOPASSWD:ALL
{% endif %}
{% endfor %}

In the template file in Listing 13-3, a for loop is used to
walk through all items that have been defined in the
sudo_groups variable in the vars/sudo file. Next, for
each of these groups an if statement is used to check the
value of the Boolean variable sudo. If this variable is set
to the Boolean value true, the group is added as a sudo
group to the /etc/sudoers.d/sudogroups file.

Listing 13-4 Managing sudo

- name: configure sudo
 hosts: ansible2

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 vars_files:
 - vars/sudo
 - vars/users
 tasks:
 - name: add groups
 group:
 name: "{{ item.name }}"
 loop: "{{ sudo_groups }}"
 - name: add users
 user:
 name: "{{ item.username }}"
 groups: "{{ item.groups }}"
 loop: "{{ users }}"
 - name: allow group members in sudo
 template:
 src: listing133.j2
 dest: /etc/sudoers.d/sudogroups
 validate: ‘visudo -cf %s’
 mode: 0440

The playbook in Listing 13-4 uses the variables as well
as the template file to create the users and the sudoers
configuration. The result is written to the relevant
configuration files on the managed hosts, such that a
sudo configuration is automatically created. In Exercise
13-1 you practice managing users and groups.

Exercise 13-1 Managing Users and Groups

1. Use mkdir host_vars to create the host_vars
directory.

2. Use your editor to create the file
host_vars/ansible1 and give it the following
contents:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

users:

- username: zeina

 groups: admins

- username: marlet

 groups: admins

- username: victoria

 groups: students

- username: emma

 groups: students

3. Create the file exercise131.yaml and write the
following play header:

- name: create user accounts

 hosts: ansible1

 tasks:

4. Continue and add the first task that will create
required groups:

- name: create groups

 group:

 name: "{{ item.groups }}"

 state: present

 loop: "{{ users }}"

5. Add a task to create user accounts:

- name: create users

 user:

 name: "{{ item.username }}"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 group: "{{ item.groups }}"

 loop: "{{ users }}"

6. Create the file exercise131.j2 as a Jinja2
template and make sure it has the following
contents:

{{ item.groups }} ALL=(ALL:ALL) NOPASSWD:A

LL

7. Add the last task, which generates the template
file:

- name: allow group members in sudo

 template:

 src: exercise131.j2

 dest: /etc/sudoers.d/sudogroups

 validate: ‘visudo -cf %s’

 mode: 0440

 loop: "{{ users }}"

8. Use the command ansible-playbook
exercise131.yaml and verify the playbook is
working as expected.

MANAGING SSH
CONNECTIONS
While creating users, you might also have to set up SSH
keys. In Chapter 12, “Managing Software with Ansible,”

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

you saw an example where a complete host was set up
to be managed by Ansible. In that example the copy
module was used to copy over an SSH public key to the
target user account, which allowed for password-less
SSH login to the remote host as this user. The main
topic in this section is how to provide for SSH keys for
new users in such a way that users are provided with
SSH keys without having to set them up themselves. To
do this, you use the authorized_key module together
with the generate_ssh_key argument to the user
module.

Understanding SSH Connection
Management Requirements
Before we look at setting up SSH keys, let me quickly
summarize how SSH keys are used in the
communication process between a user and an SSH
server. The following list provides a simplified overview
of the procedure when a user logs in to an SSH server:

1. The user initiates a session with an SSH server.

2. The server sends back an identification token
that is encrypted with the server private key to
the user.

3. The user uses the server’s public key fingerprint,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

which is stored in the ~/.ssh/known_hosts file to
verify the identification token.

4. If no public key fingerprint was stored yet in the
~/.ssh/known_hosts file, the user is prompted to
store the remote server identity in the
~/.ssh/known_hosts file. At this point there is no
good way to verify whether the user is indeed
communicating with the intended server.

5. After establishing the identity of the remote
server, the user can either send over a password
or generate an authentication token that is based
on the user’s private key.

6. If an authentication token that was based on the
user’s private key is sent over, this token is
received by the server, which tries to match it
against the user’s public key that is stored in the
~/.ssh/authorized_keys file.

7. After the incoming authentication token to the
stored user public key in the authorized_keys file
is matched, the user is authenticated. If this
authentication fails and password authentication
is allowed, password authentication is attempted
next.

In the authentication procedure, two key pairs play an
important role. First, there is the server’s public/private
key pair, which is used to establish a secure connection.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To manage the host public key, you can use the Ansible
known_hosts module. Next, there is the user’s
public/private key pair, which the user uses to
authenticate. To manage the public key in this key pair,
you can use the Ansible authorized_key module.

Using the Lookup Plug-in
When you’re working with SSH public keys, the lookup
plug-in plays an important role. Ansible comes with a
number of plug-ins to add to the Ansible core
functionality. The lookup plug-in enables Ansible to
access data from outside sources. You can use it to read
the file system, for instance, or to contact external
datastores and services.

Operations that are performed by a plug-in run on the
Ansible control host, and the result of the plug-in work
is typically stored in variables or templates. In the case
of handling SSH keys, the lookup plug-in comes in
handy to find items in the file system. Listing 13-5
shows a simple example where the lookup plug-in is
used to set the value of a variable to the contents of a
file.

Listing 13-5 Setting Variable Value to File Contents
with the lookup Plug-in

- name: simple demo with the lookup plugin
 hosts: localhost

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 vars:
 file_contents: "{{lookup(‘file’, ‘/etc/hosts’)}}"
 tasks:
 - debug:
 var: file_contents

Setting Up SSH User Keys
To use SSH to connect to a user account on a managed
host, using a user account from the control host, you
might want to copy over the local user public key to the
remote user ~/.ssh/authorized_keys file. If the target
authorized_keys file just has to contain one single key,
you could use the copy module to copy it over. If,
however, you want to manage multiple keys in the
remote user authorized_keys file, you’re better off using
the authorized_key module. In essence, this module is
simple to use.

In the example in Listing 13-6, you can see how the
authorized_key module is used to copy the
authorized_key for user ansible. As the input source,
the file /home/ansible/.ssh/id_rsa.pub is used. The
lookup plug-in is used to refer to the file contents that
should be used.

Listing 13-6 Using the authorized_key Module

- name: authorized_key simple demo
 hosts: ansible2
 tasks:
 - name: copy authorized key for ansible user

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 authorized_key:
 user: ansible
 state: present
 key: "{{ lookup(‘file’,
‘/home/ansible/.ssh/id_rsa.pub’) }}"

If you understand how Listing 13-6 works, it’s easy to
enhance that code such that it will do the same for
multiple users. Listing 13-7 shows the contents of two
variable include files, which are applied in the playbook
in Listing 13-8.

Listing 13-7 Variable Files Used in Listing 13-8

[ansible@control rhce8-book]$ cat vars/users

users:
 - username: linda
 groups: sales
 - username: lori
 groups: sales
 - username: lisa
 groups: account
 - username: lucy
 groups: account
[ansible@control rhce8-book]$ cat vars/groups

usergroups:
 - groupname: sales
 - groupname: account

Listing 13-8 Using the authorized_key Module with
the lookup Plug-in

- name: configure users with SSH keys
 hosts: ansible2
 vars_files:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - vars/users
 - vars/groups
 tasks:
 - name: add groups
 group:
 name: "{{ item.groupname }}"
 loop: "{{ usergroups }}"
 - name: add users
 user:
 name: "{{ item.username }}"
 groups: "{{ item.groups }}"
 loop: "{{ users }}"
 - name: add SSH public keys
 authorized_key:
 user: "{{ item.username }}"
 key: "{{ lookup(‘file’, ‘files/’+ item.username +
‘/id_rsa.pub’) }}"
 loop: "{{ users }}"

The most interesting new part in Listing 13-8 is the
authorized_key module, which is set up to work on
item.username, using a loop on the users variable.
This construction enables the playbook to apply to each
user. Notice that the id_rsa.pub files that have to be
copied over are expected to exist in the files directory,
which exists in the current project directory.

Copying over the user public keys to the project
directory is a solution for an important problem that’s
difficult to deal with: the authorized_keys module
cannot read files from a hidden directory. It would be
much nicer to use key: “{{ lookup(‘file’, ‘/home/’+
item.username + ‘.ssh/id_rsa.pub’) }}”, but that
doesn’t work. For that reason, to get it working anyway,
you need to apply a workaround. You apply this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

workaround in the sample playbook in Exercise 13-2.
Before you work on the exercise, though, let’s look at
what exactly you are going to do in this exercise.

In the first task (see Listing 13-9), you create a local
user, including an SSH key. Because an SSH key should
include the name of the user and host that it applies to,
you need to use the generate_ssh_key argument, as
well as the ssh_key_comment argument to write the
correct comment into the public key. Without this
content, the key will have generic content and not be
considered a valid key.

Listing 13-9 Creating the User with SSH Key

- name: create the local user, including SSH key
 user:
 name: "{{ username }}"
 generate_ssh_key: true
 ssh_key_comment: "{{ username }}@{{ ansible_fqdn }}"

After creating the SSH keys this way, you aren’t able to
fetch the key directly from the user home directory. To
fix that problem, you create a directory with the name of
the user in the project directory and copy the user public
key from there by using the shell module. You can see
the sample code to do this in Listing 13-10.

Listing 13-10 Copying the user SSH Public Key to a
Location from Which It Can Be Copied

- name: create a directory to store the file

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 file:
 name: "{{ username }}"
 state: directory
- name: copy the local user ssh key to temporary {{
username }} key
 shell: ‘cat /home/{{ username }}/.ssh/id_rsa.pub > {{
username }}/id_rsa.pub’
- name: verify that file exists
 command: ls -l {{ username }}/

Next, in the second play you create the remote user and
use the authorized_key module to copy the key from the
temporary directory to the new user home directory. As
mentioned, Exercise 13-2 guides you through all these
steps.

In this playbook, you first create a local user, including
the SSH key.

Exercise 13-2 Managing Users with SSH Keys

1. Use your editor to create the file
exercise132.yaml and write the header of the
first play, which creates a user on localhost:

- name: prepare localhost

 hosts: localhost

 tasks:

2. Write the first task, which creates the user on
localhost. Notice that the variable {{
username }} is used. When running the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

playbook later, you’ll need to make sure this
variable has a value, for instance, by using the
argument -e username=sharon while
running the playbook. In the user module, you
use the appropriate arguments to create the
SSH public/private key pair according to the
required format:

- name: create the local user, including S

SH key

 user:

 name: "{{ username }}"

 generate_ssh_key: true

 ssh_key_comment: "{{ username }}@{{ an

sible_fqdn }}"

3. You need to make sure the public key is copied
to a directory where it can be accessed. The
following three tasks do this:

- name: create a directory to store the fi

le

 file:

 name: "{{ username }}"

 state: directory

- name: copy the local user ssh key to tem

porary {{ username }} key

 shell: ‘cat /home/{{ username }}/.ssh/id

_rsa.pub > {{ username }}/id_rsa.pub’

- name: verify that file exists

 command: ls -l {{ username }}/

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

4. At this point, the user public SSH key is created
and accessible, and you can write the second
play. This second play uses the user module to
create the user, as well as the authorized_key
module to fetch the key from localhost and copy
it to the .ssh/authorized_keys file in the remote
user home directory:

- name: setup remote host

 hosts: ansible1

 tasks:

 - name: create remote user, no need for

SSH key

 user:

 name: "{{ username }}"

 - name: use authorized_key to set the pa

ssword

 authorized_key:

 user: "{{ username }}"

 key: "{{ lookup(‘file’, ‘./’+ userna

me +’/id_rsa.pub’) }}"

5. At this point, use the command ansible-
playbook exercise132.yaml -e
username=radha to create the user radha
with the appropriate SSH keys.

6. To verify it has worked, use sudo su - radha
on the control host, and type the command ssh
ansible1. You should able to log in without
entering a password.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MANAGING ENCRYPTED
PASSWORDS
When managing users in Ansible, you probably want to
set user passwords as well. The challenge is that you
cannot just enter a password as the value to the
password: argument in the user module because the
user module expects you to use an encrypted string.

Understanding Encrypted Passwords
When a user creates a password, it is encrypted. The
hash of the encrypted password is stored in the
/etc/shadow file, a file that is strictly secured and
accessible only with root privileges. The string looks like
$6$237687687/$9809erhb8oyw48oih290u09. In this
string are three elements, which are separated by $
signs:

• The hashing algorithm that was used

• The random salt that was used to encrypt the
password

• The encrypted hash of the user password

When a user sets a password, a random salt is used to
prevent two users who have identical passwords from
having identical entries in /etc/shadow. The salt and the
unencrypted password are combined and encrypted,
which generates the encrypted hash that is stored in

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

/etc/shadow. Based on this string, the password that the
user enters can be verified against the password field in
/etc/shadow, and if it matches, the user is
authenticated.

Generating Encrypted Passwords
When you’re creating users with the Ansible user
module, there is a password option. This option is not
capable of generating an encrypted password. It expects
an encrypted password string as its input. That means
an external utility must be used to generate an
encrypted string. This encrypted string must be stored in
a variable to create the password. Because the variable is
basically the user password, the variable should be
stored securely in, for example, an Ansible Vault secured
file.

To generate the encrypted variable, you can choose to
create the variable before creating the user account.
Alternatively, you can run the command to create the
variable in the playbook, use register to write the result
to a variable, and use that to create the encrypted user.
If you want to generate the variable beforehand, you can
use the following ad hoc command:

ansible localhost -m debug -a "msg={{ ‘password’ |
password_hash(‘sha512’,’myrandomsalt’) }}"

This command generates the encrypted string as shown
in Listing 13-11, and this string can next be used in a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

playbook. An example of such a playbook is shown in
Listing 13-12.

Listing 13-11 Generating the Encrypted Password
String

[ansible@control ~]$ ansible localhost -m debug -a "msg={{

‘password’ | password_hash(‘sha512’,’myrandomsalt’) }}"

localhost | SUCCESS => {
 "msg":
"6myrandomsalt$McEB.xAVUWe0./6XqZ8n/7k9VV/Gxndy9nIMLyQAi
PnhyBoToMWbxX2vA4f.Uv9PKnPRaYUUc76AjLWVAX6U10"
}

Listing 13-12 Sample Playbook That Creates an
Encrypted User Password

- name: create user with encrypted pass
 hosts: ansible2.example.com
 vars:
 password:
"6myrandomsalt$McEB.xAVUWe0./6XqZ8n/7k9VV/Gxndy9nIMLyQAi
PnhyBoToMWbxX2vA4f.Uv9PKnPRaYUUc76AjLWVAX6U10"
 tasks:
 - name: create the user
 user:
 name: anna
 password: "{{ password }}"

The method that is used here works but is not elegant.
First, you need to generate the encrypted password
manually beforehand. Also, the encrypted password
string is used in a readable way in the playbook. By
seeing the encrypted password and salt, it’s possible to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

get to the original password, which is why the password
should not be visible in the playbook in a secure
environment.

In Exercise 13-3 you create a playbook that prompts for
the user password and that uses the debug module,
which was used in Listing 13-11 inside the playbook,
together with register, so that the password no longer is
readable in clear text. Before looking at Exercise 13-3,
though, let’s first look at an alternative approach that
also works.

Exam tip

The procedure to use encrypted passwords while creating user
accounts is documented in the Frequently Asked Questions from the
Ansible documentation. Because the documentation is available on the
exam, make sure you know where to find this information! Search for the
item “How do I generate encrypted passwords for the user module?”

Using an Alternative Approach
As has been mentioned on multiple occasions, in
Ansible often different solutions exist for the same
problem. And sometimes, apart from the most elegant
solution, there’s also a quick-and-dirty solution, and
that counts for setting a user-encrypted password as
well. Instead of using the solution described in the
previous section, “Generating Encrypted Passwords,”
you can use the Linux command echo password |
passwd --stdin to set the user password. Listing 13-13

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

shows how to do this. Notice this example focuses on
how to do it, not on security. If you want to make the
playbook more secure, it would be nice to store the
password in Ansible Vault.

Listing 13-13 Setting the User Password: Alternative
Solution

- name: create user with encrypted password
 hosts: ansible3
 vars:
 password: mypassword
 user: anna
 tasks:
 - name: configure user {{ user }}
 user:
 name: "{{ user }}"
 groups: wheel
 append: yes
 state: present
 - name: set a password for {{ user }}
 shell: ‘echo {{ password }} | passwd --stdin {{ user
}}’

Exercise 13-3 Creating Users with Encrypted
Passwords

1. Use your editor to create the file
exercise133.yaml.

2. Write the play header as follows:

- name: create user with encrypted passwor

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

d

 hosts: ansible3

 vars_prompt:

 - name: passw

 prompt: which password do you want to

use

 vars:

 user: sharon

 tasks:

3. Add the first task that uses the debug module to
generate the encrypted password string and
register to store the string in the variable
mypass:

- debug:

 msg: "{{ ‘{{ passw }}’| password_hash(

‘sha512’,’myrandomsalt’) }}"

 register: mypass

4. Add a debug module to analyze the exact format
of the registered variable:

- debug:

 var: mypass

5. Use ansible-playbook exercise133.yaml to
run the playbook the first time so that you can
see the exact name of the variable that you have
to use. This code shows that the mypass.msg
variable contains the encrypted password string

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

(see Listing 13-14).

Listing 13-14 Finding the Variable Name Using
debug

TASK [debug] *************************

ok: [ansible2] => {

 "mypass": {

 "changed": false,

 "failed": false,

 "msg": "6myrandomsalt$Jesm4Q

GoCGAny9ebP85apmh0/uUXrj0louYb03leLoOW

SDy/imjVGmcODhrpIJZt0rz.GBp9pZYpfm0SU2

/PO."

 }

}

6. Based on the output that you saw with the
previous command, you can now use the user
module to refer to the password in the right
way. Add the following task to do so:

- name: create the user

 user:

 name: "{{ user }}"

 password: "{{ mypass.msg }}"

7. Use ansible-playbook exercise133.yaml to
run the playbook and verify its output.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

MANAGING USERS
ADVANCED SCENARIO
EXERCISE
It’s time to work on an advanced scenario now. Exercise
13-4 includes a step-by-step procedure that guides you
through the process of setting up a complex playbook.
In this procedure I tried to give you practical guidelines
on how to approach such a complex task on the exam,
including the part where you may change your mind
because you have realized there is a more efficient
method. It is important to read the steps carefully
because some improvements will be applied while
working on this procedure.

Warning

This exercise is written such that you can learn from errors that are
made. In early steps, some configuration is created that will be
optimized later. I purposely used this approach, and you are advised to
closely follow the steps in the exercise before investigating the final
solution in the exercise134.yaml playbook.

Exercise 13-4 Setting Up Ansible Users

In this exercise you create a few Ansible users. The
users need to be created on the Ansible control host as
well as on the managed hosts, and after running the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

playbook, any user created on the localhost must be
able to log in using SSH keys to the corresponding
user account on the remote host without having to
enter a password. Make sure that the setup meets the
following requirements:

• Create users sharon, blair, ashley, and ahmed.

• Users sharon and blair are members of the group
admins; users ashley and ahmed are members of
the group students.

• On the managed hosts, members of the group
admins should have sudo privileges to run any
command they want.

• All users must be configured with the default
password “password”.

1. This time you’re going to use a different
approach and set up the framework of the
playbook first. This is a good approach to start
the development of more complex playbooks
and minimizes chances that you miss anything
in the playbook. To do so, use your editor to
create a file with the name exercise134.yaml,
and define the play headers and the names and
modules you intend to use for each of the tasks
according to the following example:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

- name: create users on localhost

 hosts: localhost

 tasks:

 - name: create groups

 groups:

 - name: create users

 users:

- name: create users on managed hosts

 hosts: ansible4

 tasks:

 - name: create groups

 groups:

 - name: create users

 users:

 - name: copy authorized keys

 authorized_key:

 - name: modify sudo configuration

 template

2. Now that you have defined the global structure,
you can start filling it in with details. Begin with
the first play, which should start with the
creation of the user accounts. In this play, users
and groups need to be created. To start with,
focus on the basic setup and fill it in with
additional details later:

- name: create users on localhost

 hosts: localhost

 vars:

 users:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - username: sharon

 groups: admins

 - username: blair

 groups: admins

 - username: ashley

 groups: students

 - username: ahmed

 groups: students

 tasks:

 - name: create groups

 groups:

 name: "{{ item.groups }}"

 state: present

 loop: "{{ users }}"

 - name: create users

 user:

 name: "{{ item.username }}"

 groups: "{{ item.groups }}"

 loop: "{{ users }}"

3. Because you’re in for a big project this time,
now is a good moment to give it a try. To do so,
temporarily comment out the entire second
play and run the playbook in check mode by
using ansible-playbook -C
exercise134.yaml. If you typed the exact text
listed in step 2, you get an error at the line
where the groups module is referred to. That’s
right—there is no groups module; the name is
group. Correct this and run the playbook again
in check mode. Notice that in check mode you
might get false errors. Just double-check, and if

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you’re convinced you’ve done it right, ignore the
error. Notice that it also doesn’t really hurt if
you just run the playbook. Any later
modifications will be added to the configuration
anyway.

4. Now you’re ready to complete the first play by
adding the remaining tasks to it. To do so, you
still have to do two things, all of which must be
done on the user module: you need to set the
user password, and you need to create an SSH
key pair. To generate the password, you need to
generate an encrypted string that can be used as
an argument to the user module password
argument. To generate this string, use an ad hoc
command: ansible localhost -m debug -a
“msg={{ ‘password’ |
password_hash(‘sha512’, ‘mysalt’) }}”.
Just copy the crypto string this generates (it
starts with 6) and use that in the next step.

5. Complete the user task in the first play with the
generate_ssh_key and password
arguments. The complete task looks as follows:

- name: create users

 user:

 name: "{{ item.username }}"

 groups: "{{ item.groups }}"

 generate_ssh_key: yes

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 password: 6mysalt$khiuhihrb8y349hw

bohbuoehr8bhqohoibhro8bohoiheoi

 loop: "{{ users }}"

 tags: setuplocal

Notice the use of tags: setuplocal on the last line;
this tag makes it easier to run specific parts of the
playbook only, which can be convenient later in the
setup procedure. You might want to run the playbook
now by using ansible-playbook exercise134.yaml
--tags=setuplocal.

6. At this point the local part of the setup seems to
be done, so you can work on the second play.
You should start by observing what you’re
trying to do. In the second play, a couple of
tasks are exactly the same as in the first play.
Because just repeating the same stuff again
wouldn’t be very efficient, you can create some
imports instead and move the existing code to a
file that will be imported. To start with, create
the exercise134-vars.yaml file and give it the
following contents:

 users:

 - username: sharon

 groups: admins

 - username: blair

 groups: admins

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 - username: ashley

 groups: students

 - username: ahmed

 groups: students

7. Create the exercise134-tasks.yaml file and give
it the following contents:

- name: create groups

 group:

 name: "{{ item.groups }}"

 state: present

 loop: "{{ users }}"

- name: create users

 user:

 name: "{{ item.username }}"

 groups: "{{ item.groups }}"

 generate_ssh_key: yes

 ssh_key_comment: "{{ item.username }

}@{{ ansible_fqdn }}"

 password: 6mysalt$khiuhihrb8y349hw

bohbuoehr8bhqohoibhro8bohoiheoi

 loop: "{{ users }}"

8. Now it’s time to rewrite the playbook so that
the entire playbook looks as follows (note that
the last two tasks still need to be defined):

- name: create users on localhost

 hosts: localhost

 vars_files:

 - exercise134-vars.yaml

 tasks:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - name: include user and group setup

 import_tasks: exercise134-tasks.yaml

 tags: setuplocal

- name: create users on managed hosts

 hosts: ansible4

 vars_files:

 - exercise134-vars.yaml

 tasks:

 - name: include user and group setup

 import_tasks: exercise134-tasks.yaml

 - name: copy authorized keys

 authorized_key:

 - name: modify sudo configuration

9. You can work on the copy authorized keys tasks
at this point. Because the users were created on
localhost and each user has its own SSH key
pair, this step appears to be fairly easy. The
challenge in this task is the use of the lookup
plug-in. Complete the authorized_key task such
that the second play looks as follows:

- name: create users on managed hosts

 hosts: ansible4

 vars_files:

 - exercise134-vars.yaml

 tasks:

 - name: include user and group setup

 import_tasks: exercise134-tasks.yaml

 - name: copy authorized keys

 authorized_key:

 user: "{{ item.username }}"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 key: "{{ lookup(‘file’, ‘/home/’+ it

em.username + ‘/.ssh/id_rsa.pub’) }}"

 loop: "{{ users }}"

- name: modify sudo configuration

 tags: setupremote

10. Because you can easily make an error while
using the lookup plug-in, it’s a good idea to run
the second play by using ansible-playbook
exercise134.yaml --tags=setupremote.
Notice that this play works only if the first play
has been executed successfully. And oops! That
doesn’t work out well! You can see the error
shown in Listing 13-15. This error is generated
because the authorized_keys module cannot
access the id_rsa.pub file directly from the
hidden .ssh directory in the user home
directory.

Listing 13-15 Task 10 Error Output

TASK [copy authorized keys] **********

[WARNING]: Unable to find ‘/home/laksm
i/id_rsa.pub’ in expected paths (use -

vvvvv

to see paths)

fatal: [ansible3]: FAILED! => {"msg":

"An unhandled exception occurred while

 running the lookup plugin ‘file’. Err

or was a <class ‘ansible.errors.Ansibl

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

eError’>, original message: could not

locate file in lookup: /home/laksmi/id

_rsa.pub"}

11. To fix the error that occurred in step 10, you
must rewrite the first play with the solution
discussed in the earlier section “Managing SSH
Connections.” The following code shows the
entire first play, with the modifications you
need to make applied after the import_tasks:
statement:

- name: create users on localhost

 hosts: localhost

 vars_files:

 - exercise134-vars.yaml

 tasks:

 - name: include user and group setup

 import_tasks: exercise134-tasks.yaml

 - name: create a directory to store the

key file

 file:

 name: "{{ item.username }}"

 state: directory

 loop: "{{ users }}"

 - name: copy the local user ssh key to t

emporary {{ item.username }} key

 shell: ‘cat /home/{{ item.username }}/

.ssh/id_rsa.pub > {{ item.username }}/id_r

sa.pub’

 loop: "{{ users }}"

 - name: verify that file exists

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 command: ls -l {{ item.username }}/

 loop: "{{ users }}"

 tags: setuplocal

12. Now it’s time to configure the sudo file in the
/etc/sudoers.d/ directory. While you’ve been
setting up the rough structure of the playbook
so far, using the template module has been
suggested. But the fact is that the file that needs
to be created is simple and straightforward, and
just needs to contain the line %admins ALL=
(ALL:ALL) NOPASSWD:ALL. Because this
is a simple task, you don’t need to use the
template module. Just use the copy module
instead, such that after the authorized_key
task, only the following task is included:

- name: copy sudoers file

 copy:

 content: ‘%admins ALL=(ALL:ALL) NOPASS

WD:ALL’

 dest: /etc/sudoers.d/admins

13. Before running the playbook, you may verify
what you have typed with the sample playbook
in the GitHub repository at
https://github.com/sandervanvugt/rhce8-
book/exercise134.yaml.

14. At this point, you can run the playbook by using

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book/exercise134.yaml
https://technet24.ir
https://technet24.ir
https://technet24.ir

ansible-playbook exercise134.yaml, and
you should encounter no errors.

15. To verify that all works well, on the control
host, type sudo su - ahmed, and once in a
shell as user ahmed, type ssh ansible2.
Ansible should let the user in without asking
for a password.

SUMMARY
In this chapter you learned how to manage users.
Although setting up users seems to be an easy task,
some related tasks make it challenging anyway. In this
chapter you learned how to handle these tasks. You
should now be able to create user and group accounts,
manage SSH authorized keys, handle encrypted
passwords, and manage related sudo configuration.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 13-3 lists a reference of these key topics and
the page numbers on which each is found.

Table 13-3 Key Topics for Chapter 13

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

authorized_keys

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

hash

hashing algorithm

PAM

plug-in

public key fingerprint

random salt

REVIEW QUESTIONS
1. Which module would you use to modify the sudo

configuration?

2. Which module can you use to extend the
standard Linux authentication procedure?

3. Which module can you use to manage SSH
known hosts?

4. Which argument would you use to the user
module to specify primary group membership?

5. Which argument would you use to the user
module to manage secondary group
membership?

6. What is the name of the plug-in that is
commonly used with the authorized_keys
module to find a specific file name?

7. When you’re creating an SSH key pair while
creating a user with the ansible user module,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

which additional argument must be used to
ensure the name of the user is included in the
public key file?

8. What is a major limitation to the
authorized_keys module?

9. Which two methods exist to generate an
encrypted password hash?

10. When using the passwd --stdin method to
generate an encrypted password, which Ansible
module must be used?

END-OF-CHAPTER LAB
In this end-of-chapter lab, you apply what you have
learned in this chapter.

LAB 13-1
Write a playbook that creates users according to the
following specifications:

• Create users kim, christina, kelly, and bill.

• Users kim and kelly must be members of the profs
group; users christina and bill are members of the
students group.

• While creating the users, set the encrypted password
to “password”.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Ensure that members of the group profs have sudo
privileges.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 14. Managing
Processes and Tasks
This chapter covers the following subjects:

• Managing Services

• Managing the Boot Process

• Managing the Boot Process and Services Advanced
Exercise

The following RHCE exam objectives are covered
in this chapter:

• Use Ansible Modules for System Administration
Tasks that work with

• Services

• Scheduled tasks

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

your own assessment of your knowledge of the topics,
read the entire chapter. Table 14-1 lists the major
headings in this chapter and their corresponding “Do I
Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Review Questions.”

Table 14-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which module should you use to mask a service?

a. service

b. systemd

c. upstart

d. init

2. Which statement about service facts is true?

a. Facts about services are not gathered by
default.

b. The systemd module gathers facts about
services; the service module does not.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

c. The service module gathers facts about
services; the systemd module does not.

d. You use the setup module to gather facts about
services.

3. You want to use Ansible to manage a task that
should be started once. Your play should be
compatible to BSD init systems, as well as to
systems using systemd as their init system. Which
module should you use?

a. service

b. cron

c. run

d. at

4. Which of the following arguments are specific to
the systemd module and do not occur in the service
module? (Choose two.)

a. mask

b. enabled

c. started

d. daemon_reload

5. Which of the following need to be defined using the
Ansible cron module in a task that is intended to
remove a cron job? (Choose two.)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

a. time

b. user

c. name

d. state

6. You are using the Ansible cron module to run a
cron task with a name that has been used by another
cron task. What will happen?

a. The playbook will generate an error, and
nothing will change.

b. The new task will be added to the list of tasks.

c. The new task will overwrite the old task.

d. The playbook will show an ok status and do
nothing because a task with the specified name
already exists.

7. Which module do you use to change the default
systemd target that a managed host should start in?

a. systemd

b. file

c. command

d. target

8. Which module can you use to manage a system
restart from a playbook?

a. systemd

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

b. power

c. reboot

d. restart

9. The reboot module uses multiple options to specify
timeouts to be respected. Which of the following is
used to define how long Ansible should try to
reconnect to the rebooted host?

a. connect_timeout

b. post_reboot_delay

c. pre_reboot_delay

d. reboot_timeout

10. You want to use the cron module to write the
current time to a file. Which notation do you need
to use? (Choose two.)

a. job: echo rebooted at {{
ansible_facts[’date_time’][’time] }} >>
/tmp/rebooted

b. job: echo rebooted at {{
ansible_date_time.time }} >>
/tmp/rebooted

c. job: echo rebooted at $(date) >>
/tmp/rebooted

d. job: echo rebooted at `date` >>
/tmp/rebooted

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FOUNDATION TOPICS

MANAGING SERVICES
Services can be managed in many ways. You can manage
systemd services, but Ansible also allows for
management of tasks using Linux cron and at. Apart
from that, you can use Ansible to manage the desired
systemd target that a managed system should be started
in, and it can reboot running machines. Table 14-2 gives
an overview of the most significant modules for
managing services.

Table 14-2 Modules Related to Service Management

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Managing Systemd Services
Throughout this book you have used the service module
a lot. This module enables you to manage services,
regardless of the init system that is used, so it works
with System-V init, with Upstart, as well as systemd. In
many cases, you can use the service module for any
service-related task.

If systemd specifics need to be addressed, you must use
the systemd module instead of the service module. Such
systemd-specific features include daemon_reload and
mask. The daemon_reload feature forces the
systemd daemon to reread its configuration files, which
is useful after applying changes (or after editing the
service files directory, without using the Linux

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

systemctl command). The mask feature marks a
systemd service in such a way that it cannot be started,
not even by accident. Listing 14-1 shows an example
where the systemd module is used to manage services.

Listing 14-1 Using systemd Module Features

- name: using systemd module to manage services
 hosts: ansible2
 tasks:
 - name: enable service httpd and ensure it is not masked
 systemd:
 name: httpd
 enabled: yes
 masked: no
 daemon_reload: yes

Given the large amount of functionality that is available
in systemd, the functions that are offered by the
systemd services are a bit limited, and for many specific
features, you must use generic modules such as file and
command instead. An example is setting the default
target, which is done by creating a symbolic link using
the file module.

Managing cron Jobs
The cron module can be used to manage cron jobs. A
Linux cron job is one that is periodically executed by the
Linux crond daemon at a specific time. The cron module
can manage jobs in different ways:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Write the job directly to a user’s crontab

• Write the job to /etc/crontab or under the
/etc/cron.d directory

• Pass the job to anacron so that it will be run once an
hour, day, week, month, or year without specifically
defining when exactly

If you are familiar with Linux cron, using the Ansible
cron module is straightforward. Listing 14-2 shows an
example that runs the fstrim command every day at
4:05 and at 19:05.

Listing 14-2 Running a cron Job

- name: run a cron job
 hosts: ansible2
 tasks:
 - name: run a periodic job
 cron:
 name: "run fstrim"
 minute: "5"
 hour: "4,19"
 job: "fstrim"

As a result of this playbook, a crontab file is created for
user root. To create a crontab file for another user, you
can use the user attribute. Notice that while managing
cron jobs using the cron module, a name attribute is
specified. This attribute is required for Ansible to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

manage the cron jobs and has no meaning for Linux
crontab itself. If, for instance, you later want to remove
a cron job, you must use the name of the job as an
identifier.

Listing 14-3 shows a sample playbook that removes the
job that was created in Listing 14-2. Notice that it just
specifies state: absent as well as the name of the job
that was previously created; no other parameters are
required.

Listing 14-3 Removing a cron Job Using the name
Attribute

- name: run a cron job
 hosts: ansible2
 tasks:
 - name: run a periodic job
 cron:
 name: "run fstrim"
 state: absent

Managing at Jobs
Whereas you use Linux cron to schedule tasks at a
regular interval, you use Linux at to manage tasks that
need to run once only. To interface with Linux at, the
Ansible at module is provided. Table 14-3 gives an
overview of the arguments it takes to specify how the
task should be executed.

Table 14-3 at Module Arguments Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The most important point to understand when working
with at is that it is used to defined how far from now a
task has to be executed. This is done using count and
units. If, for example, you want to run a task five
minutes from now, you specify the job with the
arguments count: 5 and units: minutes. Also notice
the use of the unique argument. If set to yes, the task
is ignored if a similar job is scheduled to run already.
Listing 14-4 shows an example.

Listing 14-4 Running Commands in the Future with
at

- name: run an at task
 hosts: ansible2
 tasks:
 - name: run command and write output to file

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 at:
 command: "date > /tmp/my-at-file"
 count: 5
 units: minutes
 unique: yes
 state: present

In Exercise 14-1 you practice your skills working with
the cron module.

Exercise 14-1 Managing cron Jobs

1. Use your editor to create the playbook
exercise141-1.yaml and give it the following
contents:

- name: run a cron job

 hosts: ansible2

 tasks:

 - name: run a periodic job

 cron:

 name: "run logger"

 minute: "0"

 hour: "5"

 job: "logger IT IS 5 AM"

2. Use ansible-playbook exercise141-1.yaml
to run the job.

3. Use the command ansible ansible2 -a
“crontab -l” to verify the cron job has been
added. The output should look as follows:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ansible2 | CHANGED | rc=0 >>

#Ansible: run logger

0 5 * * * logger IT IS 5 AM

4. Create a new playbook with the name
exercise141-2 that runs a new cron job but uses
the same name:

- name: run a cron job

 hosts: ansible2

 tasks:

 - name: run a periodic job

 cron:

 name: "run logger"

 minute: "0"

 hour: "6"

 job: "logger IT IS 6 AM"

5. Run this new playbook by using ansible-
playbook exercise141-2.yaml. Notice that
the job runs with a changed status.

6. Repeat the command ansible ansible2 -a
“crontab -l”. This shows you that the new
cron job has overwritten the old job because it
was using the same name. Here is something
important to remember: all cron jobs should
have a unique name!

7. Write the playbook exercise141-3.yaml to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

remove the cron job that you just created:

- name: run a cron job

 hosts: ansible2

 tasks:

 - name: run logger

 cron:

 name: "run logger"

 state: absent

8. Use ansible-playbook exercise141-3.yaml
to run the last playbook. Next, use ansible
ansible2 -a “crontab -l” to verify that the
cron job was indeed removed.

MANAGING THE BOOT
PROCESS
Managing the boot process with Ansible is a bit
disappointing because Ansible offers no specific
modules to do so. As a result, you must use generic
modules instead, like the file module to manage the
systemd boot targets or the lineinfile module to manage
the GRUB configuration. What Ansible does offer,
however, is the reboot module, which enables you to
reboot a host and pick up after the reboot at the exact
same location. The next two sections describe how to do
this.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Managing Systemd Targets
Managing the default target that a host should start in is
a common task on Ansible. However, the systemd
module has no options to manage this setting, and no
other option to manage it is available. For that reason,
you must fall back to a generic option instead.

If you need to manage the default systemd target, a file
with the name /etc/systemd/system/default.target has
to exist as a symbolic link to the desired default target.
See, for instance, Listing 14-5, where the output of the
Linux ls -l command is used to show the current
configuration.

Listing 14-5 Showing the Default Systemd Target

[ansible@control rhce8-book]$ ls -l

/etc/systemd/system/default.target

lrwxrwxrwx. 1 root root 37 Mar 23 05:33
/etc/systemd/system/default.target ->
/lib/systemd/system/multi-user.target

Because Ansible itself doesn’t have any module to
specifically set the default.target, you must use a generic
module. In theory, you could use either the command
module or the file module, but because the file module
is a more specific module to generate the symbolic link,
you should use the file module. Listing 14-6 shows how
to manage the boot target.

Listing 14-6 Managing the Default Boot Target

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

- name: set default boot target
 hosts: ansible2
 tasks:
 - name: set boot target to graphical
 file:
 src: /usr/lib/systemd/system/graphical.target
 dest: /etc/systemd/system/default.target
 state: link

Rebooting Managed Hosts
In some cases, a managed host needs to be rebooted
while running a playbook. To do so, you can use the
reboot module. This module uses several arguments to
restart managed nodes. To verify the renewed
availability of the managed hosts, you need to specify
the test_command argument. This argument specifies
an arbitrary command that Ansible should run
successfully on the managed hosts after the reboot. The
success of this command indicates that the rebooted
host is available again.

Equally useful while using the reboot module are the
arguments that relate to timeouts. The reboot module
uses no fewer than four of them:

• connect_timeout: The maximum seconds to wait
for a successful connection before trying again

• post_reboot_delay: The number of seconds to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

wait after the reboot command before trying to
validate the managed host is available again

• pre_reboot_delay: The number of seconds to
wait before actually issuing the reboot

• reboot_timeout: The maximum seconds to wait
for the rebooted machine to respond to the test
command

When the rebooted host is back, the current playbook
continues its tasks. This scenario is shown in the
example in Listing 14-7, where first all managed hosts
are rebooted, and after a successful reboot is issued, the
message “successfully rebooted” is shown. Listing 14-8
shows the result of running this playbook. In Exercise
14-2 you can practice rebooting hosts using the reboot
module.

Listing 14-7 Rebooting Managed Hosts

- name: reboot all hosts
 hosts: all
 gather_facts: no
 tasks:
 - name: reboot hosts
 reboot:
 msg: reboot initiated by Ansible
 test_command: whoami
 - name: print message to show host is back
 debug:
 msg: successfully rebooted

Listing 14-8 Verifying the Success of the reboot

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Module

[ansible@control rhce8-book]$ ansible-playbook

listing147.yaml

PLAY [reboot all hosts]
**

TASK [reboot hosts]
**

changed: [ansible2]
changed: [ansible1]
changed: [ansible3]
changed: [ansible4]
changed: [ansible5]

TASK [print message to show host is back]
**

ok: [ansible1] => {
 "msg": "successfully rebooted"
}
ok: [ansible2] => {
 "msg": "successfully rebooted"
}
ok: [ansible3] => {
 "msg": "successfully rebooted"
}
ok: [ansible4] => {
 "msg": "successfully rebooted"
}
ok: [ansible5] => {
 "msg": "successfully rebooted"
}

PLAY RECAP
**
**
ansible1 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible2 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ignored=0
ansible3 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible4 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible5 : ok=2 changed=1
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Exercise 14-2 Managing Boot State

1. As a preparation for this playbook, so that it
actually changes the default boot target on the
managed host, use ansible ansible2 -m file -
a “state=link
src=/usr/lib/systemd/system/graphical.ta
rget
dest=/etc/systemd/system/default.target”
.

2. Use your editor to create the file
exercise142.yaml and write the following
playbook header:

- name: set default boot target and reboot

 hosts: ansible2

 tasks:

3. Now you set the default boot target to multi-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

user.target. Add the following task to do so:

- name: set default boot target

 file:

 src: /usr/lib/systemd/system/multi-use

r.target

 dest: /etc/systemd/system/default.targ

et

 state: link

4. Complete the playbook to reboot the managed
hosts by including the following tasks:

- name: reboot hosts

 reboot:

 msg: reboot initiated by Ansible

 test_command: whoami

- name: print message to show host is back

 debug:

 msg: successfully rebooted

5. Run the playbook by using ansible-playbook
exercise142.yaml.

6. Test that the reboot was issued successfully by
using ansible ansible2 -a “systemctl get-
default”.

MANAGING THE BOOT
PROCESS AND SERVICES

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADVANCED EXERCISE
The advanced exercise, 14-3, is a relatively easy task this
time. You are guided through the procedure of creating a
playbook that runs a command before the reboot,
schedules a cron job at the next reboot, and, using that
cron job, ensures that after rebooting a specific
command is used as well. To make sure you see what
happens when, you work with a temporary file to which
lines are added.

Exercise 14-3 Managing the Boot Process and
Services

1. Use your editor to create the file
exercise143.yaml and write the playbook header
as follows:

- name: exercise143

 hosts: ansible2

 tasks:

2. Write the first task. This task is not really
functional but enables you to check what is
happening in the remaining tasks in the
playbook. In this task, you use the lineinfile
module to add a line to the end of the check file

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

/tmp/rebooted. Notice how the time, including
a second indicator, is written using two Ansible
facts. It’s required to operate this way because
not one single fact has the time in an hh:mm:ss
format. Write this task code as follows:

- name: add a line to file before rebootin

g

 lineinfile:

 create: true

 state: present

 path: /tmp/rebooted

 insertafter: EOF

 line: rebooted at {{ ansible_facts[’da

te_time’][’time’] }}:{{ ansible_facts[’dat

e_time’][’second’] }}

3. At this point, you can add a cron job that runs at
reboot. The job that runs will add a message to
the /tmp/rebooted file, and to make sure that it
is working correctly, you use bash shell
command substitution to print the results of
the Linux date command. Notice that this is
possible in the cron module because commands
are executed by a bash shell, but it’s not
possible in the previous task that uses the
lineinfile module because in that task the
commands are not processed by a shell. Now
add the task as follows:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

- name: run a cron job on reboot

 cron:

 name: "run on reboot"

 state: present

 special_time: reboot

 job: "echo rebooted at $(date) >> /tmp

/rebooted"

4. Add another task that uses the reboot module
to reboot the managed host:

- name: reboot managed host

 reboot:

 msg: reboot initiated by Ansible

 test_command: whoami

- name: show reboot success

 debug:

 msg: just rebooted successfully

5. Now that the playbook is complete, you can run
it by using ansible-playbook
exercise143.yaml. Notice that it needs a
minute because it has to wait until the target
host is back. When it is back, use ansible
ansible2 -a “cat /tmp/rebooted”. You then
see that both reboot messages are written, and
there is about 30 seconds between the pre-
reboot and the post-reboot commands.

SUMMARY

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this chapter you learned how to manage tasks. In the
first section you read how to manage tasks using
systemd, cron, and at, using the corresponding Ansible
modules. In the next section you read how to manage
the default systemd target as well as system reboots.

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 14-4 lists a reference of these key topics and
the page numbers on which each is found.

Table 14-4 Key Topics for Chapter 14

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
Define the following key terms from this chapter, and
check your answers in the glossary:

anacron

init system

REVIEW QUESTIONS
1. Which Ansible module should you use to print

facts about systemd services?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. You want to write a generic playbook that works
on Ubuntu as well as Red Hat to start the vsftpd
service. Which Ansible module should you use?

3. Which argument must be used with the cron
module to allow cron jobs to be managed by
Ansible?

4. Which module should you use to set the default
systemd target that is entered at startup?

5. Which argument should you use with the cron
module to schedule a job to happen immediately
after system restart?

6. Which arguments to the at module should you
use to specify time in minutes from now?

7. Which argument to the reboot module should
you use to define how to check whether a
rebooted node is back?

8. Which argument to the reboot module should
you use to specify the maximum amount of time
that Ansible should wait for the rebooted node to
return before generating a failure?

9. Which argument to the at module should you
use to have at run a script file?

10. Why can’t you use bash command substitution
to work with the result of a command in the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

lineinfile module?

END-OF-CHAPTER LAB
In this end-of-chapter lab, you combine the use of cron
and reboot.

LAB 14-1
Write a playbook according to the following
specifications:

• The cron module must be used to restart your
managed servers at 2 a.m. each weekday.

• After rebooting, a message must be written to
syslog, with the text “CRON initiated reboot just
completed.”

• The default systemd target must be set to multi-
user.target.

• The last task should use service facts to show the
current version of the cron process.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chapter 15. Managing
Storage
This chapter covers the following subjects:

• Discovering Storage-Related Facts

• Managing Partitions and LVM

• Configuring Storage Advanced Exercise

The following RHCE exam objectives are covered
in this chapter:

• Use Ansible modules for system administration
tasks that work with:

• Storage devices

“DO I KNOW THIS
ALREADY?” QUIZ
The “Do I Know This Already?” quiz allows you to assess
whether you should read this entire chapter thoroughly
or jump to the “Exam Preparation Tasks” section. If you
are in doubt about your answers to these questions or
your own assessment of your knowledge of the topics,
read the entire chapter. Table 15-1 lists the major
headings in this chapter and their corresponding “Do I

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Know This Already?” quiz questions. You can find the
answers in Appendix A, “Answers to the ’Do I Know This
Already?’ Quizzes and Exam Questions.”

Table 15-1 “Do I Know This Already?” Section-to-
Question Mapping

1. Which module should you use to manage partitions
in a scripted way?

a. fdisk

b. gpart

c. gdisk

d. parted

2. Which Ansible module should you use to manage
the extent size used in LVM?

a. lvpv

b. lvg

c. lvm

d. lvol

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

3. When using Ansible facts, what should you look for
to get information about discovered disks?

a. ansible_disks

b. ansible_devices

c. ansible_mounts

d. ansible_device_links

4. What can you use to set a variable inside a task,
based on discovered Ansible facts?

a. set

b. set_vars

c. vars

d. set_facts

5. On a disk you already have one partition with a size
of 2 GiB. You want to create a second partition, with
a size of 2 GiB. Which of the following arguments to
the parted module must be used? (Choose all that
apply.)

a. part_end: 2GiB

b. part_end: 4GiB

c. part_start: 2GiB

d. part_start: 1MiB

6. Which argument must be used in the parted
module to create GPT partitions?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

a. label: gpt

b. type: gpt

c. table: gpt

d. state: gpt

7. Which of the following is set to write a file system
label using the filesystem module?

a. opts: label=mylabel

b. label: mylabel

c. fslabel: mylabel

d. setopts: label=mylabel

8. Which of the following ensures that a file system is
mounted now and added persistently to /etc/fstab?

a. state: mounted

b. state: present

c. state: mounted, fstab: yes

d. state: present, fstab: yes

9. Which module do you use to enable swap space?

a. swap

b. mount

c. command

d. filesystem

10. You have a value that is presented as a float type.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

What do you need to do before you can compare its
size to an expected size?

a. Use the int filter.

b. Nothing; floats can be used in test.

c. Put the variable name between double quotes.

d. Put the variable name between single quotes.

FOUNDATION TOPICS

DISCOVERING STORAGE-
RELATED FACTS
To work with storage in an Ansible environment, you
need to know which devices exist on the managed
nodes. A wide range of storage devices is available, and
you probably need to run conditionals based on the
specific device type. Once the device type is successfully
discovered, you can continue to manage your storage
devices by using one of the multiple storage-related
modules. Table 15-2 shows a list of modules that are
discussed in this chapter. Many other vendor-dependent
storage management modules are available as well; you
can use ansible-doc -l to search for specific vendors.

Table 15-2 Modules for Managing Storage

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The challenge in writing playbooks that deal with
storage is that so many storage devices could be used
and different device names can be used for them. So, to
make sure that your playbook is applied to the right
devices, you first need to find which devices are
available on your managed system. After you find them,
you can use conditionals to make sure that tasks are
executed on the right devices.

Using Storage-Related Facts
Facts about storage are gathered automatically when the
setup module is collecting facts about the managed
machines. Relevant information is stored in different
facts; Table 15-3 gives an overview.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 15-3 Storage-Related Facts

To request specific information about these facts, you
can use the ansible -m setup command with a filter.
For instance, use ansible ansible1 -m setup -a
’filter=ansible_devices’ to find generic information
about storage devices. Listing 15-1 shows a part of the
result of this command.

Listing 15-1 Discovering Storage Facts Using ansible
-m setup

[ansible@control rhce8-book]$ ansible ansible1 -m setup -a

’filter=ansible_devices’

ansible1 | SUCCESS => {
 "ansible_facts": {
 "ansible_devices": {
 ...
 "sda": {
 "holders": [],
 "host": "SCSI storage controller: Broadcom
/ LSI 53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev
01)",
 "links": {
 "ids": [],
 "labels": [],

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 "masters": [],
 "uuids": []
 },
 "model": "VMware Virtual S",
 "partitions": {
 "sda1": {
 "holders": [],
 "links": {
 "ids": [],
 "labels": [],
 "masters": [],
 "uuids": [
 "7acd65d6-115f-499f-a02f-
90364a18b9fc"
]
 },
 "sectors": "2097152",
 "sectorsize": 512,
 "size": "1.00 GB",
 "start": "2048",
 "uuid": "7acd65d6-115f-499f-a02f-
90364a18b9fc"
 },
 "sda2": {
 "holders": [
 "cl-swap",
 "cl-root"
],
 "links": {
 "ids": [
 "lvm-pv-uuid-vswoyx-HihU-
cRqK-2tvx-aesr-SXAR-YY1lLL"
],
 "labels": [],
 "masters": [
 "dm-0",
 "dm-1"
],
 "uuids": []
 },
 "sectors": "39843840",
 "sectorsize": 512,
 "size": "19.00 GB",
 "start": "2099200",
 "uuid": null
 }
 },

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "mq-deadline",
 "sectors": "41943040",
 "sectorsize": "512",
 "size": "20.00 GB",
 "support_discard": "0",
 "vendor": "VMware,",
 "virtual": 1
 },
 "sr0": {
...
 }
 },
 "discovered_interpreter_python":
"/usr/libexec/platform-python"
 },
 "changed": false
}

Note

The filter argument to the setup module uses a shell-style wildcard to
search for matching items and for that reason can search in the highest
level facts, such as ansible_devices, but it is incapable of further
specifying what is searched for. For that reason, in the filter argument to
the setup module, you cannot use a construction like ansible ansible1 -
m setup -a “filter=ansible_devices.sda”, which is common when
looking up the variable in conditional statements.

Using Storage-Related Facts in
Conditional Statements
When you want to work with storage devices in Ansible
playbooks, just gathering facts is not enough. It’s
important that these facts can be used in conditional
statements. There are different ways in which these

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

conditional statements can be formulated. You can, for
instance, use the assert module to show an error
message if a device does not exist and to perform a task
if the device exists. For an easier solution, you can also
use a when statement to look for the existence of a
device. The advantage of using the assert module is that
an error message can be printed if the condition is not
met.

Listing 15-2 shows where the assert module is used;
Listing 15-3 shows the result of running this playbook.

Important

For the labs and demos in this chapter, it is important that nodes
ansible2 and ansible3 are configured with an additional disk device. If
this is not the case yet, configure your virtual machines such that they do
show a second disk device. The examples use the /dev/sdb device
name. If your host uses different device names, such as /dev/vdb in a
KVM virtual machine, it is important to change the examples in this
chapter and in the GitHub repository accordingly. Or you can apply the
solution that is shown in Exercise 15-1 to dynamically detect device
names.

Listing 15-2 Using assert to Run a Task Only If a
Device Exists

- name: search for /dev/sdb continue only if it is found
 hosts: all
 vars:
 disk_name: sdb
 tasks:
 - name: abort if second disk does not exist
 assert:
 that:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - "ansible_facts[’devices’][’{{ disk_name }}’] is
defined"
 fail_msg: second hard disk not found
 - debug:
 msg: "{{ disk_name }} was found, lets continue"

Listing 15-3 ansible-playbook listing152.yaml
Result

[ansible@control rhce8-book]$ ansible-playbook

listing152.yaml

PLAY [search for /dev/sdb continue only if it is found]

TASK [Gathering Facts]
**
**
ok: [ansible2]
ok: [ansible1]
ok: [ansible3]
ok: [ansible4]
ok: [ansible5]

TASK [abort if second disk does not exist]
**
fatal: [ansible1]: FAILED! => {
 "assertion": "ansible_facts[’devices’][’sdb’] is
defined",
 "changed": false,
 "evaluated_to": false,
 "msg": "second hard disk not found"
}
ok: [ansible2] => {
 "changed": false,
 "msg": "All assertions passed"
}
ok: [ansible3] => {
 "changed": false,
 "msg": "All assertions passed"
}
fatal: [ansible4]: FAILED! => {
 "assertion": "ansible_facts[’devices’][’sdb’] is
defined",

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 "changed": false,
 "evaluated_to": false,
 "msg": "second hard disk not found"
}
fatal: [ansible5]: FAILED! => {
 "assertion": "ansible_facts[’devices’][’sdb’] is
defined",
 "changed": false,
 "evaluated_to": false,
 "msg": "second hard disk not found"
}

TASK [debug]
**

ok: [ansible2] => {
 "msg": "sdb was found, lets continue"
}
ok: [ansible3] => {
 "msg": "sdb was found, lets continue"
}

PLAY RECAP
**

ansible1 : ok=1 changed=0
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible2 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible3 : ok=3 changed=0
unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ansible4 : ok=1 changed=0
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0
ansible5 : ok=1 changed=0
unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

To make sure partitioning operations are handled the
right way, you must detect which devices are used. Some
managed hosts have more than one disk device, so

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

sometimes you interface a /dev/sda, but at other times
it might be a /dev/vda for a KVM virtual disk or a
/dev/nvme0n1 for an NVME disk device. To do so, you
must write a playbook that first finds out the name of
the disk device and puts that in a variable that you can
work with further on in the playbook. The set_fact
argument comes in handy to do so. You can use it in
combination with a when conditional statement to
store a detected device name in a variable. In Listing 15-
4 you can see what that looks like, and in Exercise 15-1
you practice this approach.

Listing 15-4 Storing the Detected Disk Device Name
in a Variable

- name: define variable according to diskname detected
 hosts: all
 tasks:
 - ignore_errors: yes
 set_fact:
 disk2name: sdb
 when: ansible_facts[’devices’][’sdb’]

Exercise 15-1 Working with Different Device
Names

1. Use your editor to create the file
exercise151.yaml and write the play header as
follows:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

- name: define variable according to diskn

ame detected

 hosts: all

 tasks:

2. Add the first task to set the variable
disk2name to the value sdb if an sdb device is
detected in Ansible facts. Notice that
ignore_errors:yes is used because you need
this playbook to continue until it has scanned
all possible disk devices.

- ignore_errors: yes

 set_fact:

 disk2name: sdb

 when: ansible_facts[’devices’][’sdb’]

3. Repeat this by creating a task for any other
second disk device you might detect. (You can
change this according to devices found on your
system, so use vdb if you’re on a KVM virtual
machine.)

- ignore_errors: yes

 set_fact:

 disk2name: nvme0n2

 when: ansible_facts[’devices’][’nvme0n2’]

4. In case there is no second disk, the playbook

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

needs to stop executing on that specific host.
The fail module is an excellent module to
realize this. Do this by adding the next task:

- name: getting out if there is no second

disk

 fail:

 msg: there is no second disk

 when: disk2name is not defined

5. As the last element, add a debug task to show
how the second disk device was found if it was
found.

- name: showing this only for hosts with a

 second disk

 debug:

 msg: continuing with {{ disk2name }}

6. If possible, before running the playbook, you
might want to consider adding another node
that has a second disk device that is not
/dev/sdb. If, for instance, you install a RHEL 8
virtual machine in VMware Workstation or
Fusion, it enables you to configure NVME disk
devices. Alternatively, you can fall back on IDE
devices, which show as /dev/hda and /dev/hdb.
Run the playbook by using ansible-playbook
exercise151.yaml. In Listing 15-5 you can see
what the playbook output might look like.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 15-5 Running ansible-playbook
exercise151.yaml Output

[ansible@control rhce8-book]$ ansible-

playbook exercise151.yaml

PLAY [define variable according to dis

kname detected debug test] ***********

TASK [Gathering Facts] ***************

ok: [ansible2]

ok: [ansible1]

ok: [ansible3]

ok: [ansible4]

ok: [ansible5]

ok: [ansible6]

TASK [set_fact] **********************

fatal: [ansible1]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’sdb’]’ failed. The error w

as: error while evaluating conditional

 (ansible_facts[’devices’][’sdb’]): ’d

ict object’ has no attribute ’sdb’\n\n

The error appears to be in ’/home/ansi

ble/rhce8-book/exercise151.yaml’: line

 5, column 5, but may\nbe elsewhere in

 the file depending on the exact synta

x problem.\n\nThe offending line appea

rs to be:\n\n tasks:\n - ignore_erro

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

rs: yes\n ^ here\n"}

...ignoring

ok: [ansible2]

ok: [ansible3]

fatal: [ansible4]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’sdb’]’ failed. The error w

as: error while evaluating conditional

 (ansible_facts[’devices’][’sdb’]): ’d

ict object’ has no attribute ’sdb’\n\n

The error appears to be in ’/home/ansi

ble/rhce8-book/exercise151.yaml’: line

 5, column 5, but may\nbe elsewhere in

 the file depending on the exact synta

x problem.\n\nThe offending line appea

rs to be:\n\n tasks:\n - ignore_erro

rs: yes\n ^ here\n"}

...ignoring

fatal: [ansible5]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’sdb’]’ failed. The error w

as: error while evaluating conditional

 (ansible_facts[’devices’][’sdb’]): ’d

ict object’ has no attribute ’sdb’\n\n

The error appears to be in ’/home/ansi

ble/rhce8-book/exercise151.yaml’: line

 5, column 5, but may\nbe elsewhere in

 the file depending on the exact synta

x problem.\n\nThe offending line appea

rs to be:\n\n tasks:\n - ignore_erro

rs: yes\n ^ here\n"}

...ignoring

fatal: [ansible6]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’sdb’]’ failed. The error w

as: error while evaluating conditional

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 (ansible_facts[’devices’][’sdb’]): ’d

ict object’ has no attribute ’sdb’\n\n

The error appears to be in ’/home/ansi

ble/rhce8-book/exercise151.yaml’: line

 5, column 5, but may\nbe elsewhere in

 the file depending on the exact synta

x problem.\n\nThe offending line appea

rs to be:\n\n tasks:\n - ignore_erro

rs: yes\n ^ here\n"}

...ignoring

TASK [set_fact] **********************

fatal: [ansible1]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’nvme0n2’]’ failed. The err

or was: error while evaluating conditi

onal (ansible_facts[’devices’][’nvme0n

2’]): ’dict object’ has no attribute ’

nvme0n2’\n\nThe error appears to be in

 ’/home/ansible/rhce8-book/exercise151

.yaml’: line 9, column 5, but may\nbe

elsewhere in the file depending on the

 exact syntax problem.\n\nThe offendin

g line appears to be:\n\n when: ans

ible_facts[’devices’][’sdb’]\n - igno

re_errors: yes\n ^ here\n"}

...ignoring

fatal: [ansible2]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’nvme0n2’]’ failed. The err

or was: error while evaluating conditi

onal (ansible_facts[’devices’][’nvme0n

2’]): ’dict object’ has no attribute ’

nvme0n2’\n\nThe error appears to be in

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 ’/home/ansible/rhce8-book/exercise151

.yaml’: line 9, column 5, but may\nbe

elsewhere in the file depending on the

 exact syntax problem.\n\nThe offendin

g line appears to be:\n\n when: ans

ible_facts[’devices’][’sdb’]\n - igno

re_errors: yes\n ^ here\n"}

...ignoring

fatal: [ansible3]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’nvme0n2’]’ failed. The err

or was: error while evaluating conditi

onal (ansible_facts[’devices’][’nvme0n

2’]): ’dict object’ has no attribute ’

nvme0n2’\n\nThe error appears to be in

 ’/home/ansible/rhce8-book/exercise151

.yaml’: line 9, column 5, but may\nbe

elsewhere in the file depending on the

 exact syntax problem.\n\nThe offendin

g line appears to be:\n\n when: ans

ible_facts[’devices’][’sdb’]\n - igno

re_errors: yes\n ^ here\n"}

...ignoring

fatal: [ansible4]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’nvme0n2’]’ failed. The err

or was: error while evaluating conditi

onal (ansible_facts[’devices’][’nvme0n

2’]): ’dict object’ has no attribute ’

nvme0n2’\n\nThe error appears to be in

 ’/home/ansible/rhce8-book/exercise151

.yaml’: line 9, column 5, but may\nbe

elsewhere in the file depending on the

 exact syntax problem.\n\nThe offendin

g line appears to be:\n\n when: ans

ible_facts[’devices’][’sdb’]\n - igno

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

re_errors: yes\n ^ here\n"}

...ignoring

fatal: [ansible5]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’devices’][’nvme0n2’]’ failed. The err

or was: error while evaluating conditi

onal (ansible_facts[’devices’][’nvme0n

2’]): ’dict object’ has no attribute ’

nvme0n2’\n\nThe error appears to be in

 ’/home/ansible/rhce8-book/exercise151

.yaml’: line 9, column 5, but may\nbe

elsewhere in the file depending on the

 exact syntax problem.\n\nThe offendin

g line appears to be:\n\n when: ans

ible_facts[’devices’][’sdb’]\n - igno

re_errors: yes\n ^ here\n"}

...ignoring

ok: [ansible6]

TASK [getting out if there is no secon

d disk] ******************************

fatal: [ansible1]: FAILED! => {"change

d": false, "msg": "there is no second

disk"}

skipping: [ansible2]

skipping: [ansible3]

fatal: [ansible4]: FAILED! => {"change

d": false, "msg": "there is no second

disk"}

fatal: [ansible5]: FAILED! => {"change

d": false, "msg": "there is no second

disk"}

skipping: [ansible6]

TASK [showing this is only for hosts w

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ith a second disk] *******************

ok: [ansible2] => {

 "msg": "continuing with sdb"

}

ok: [ansible3] => {

 "msg": "continuing with sdb"

}

ok: [ansible6] => {

 "msg": "continuing with nvme0n2"

}

PLAY RECAP ***************************

ansible1 : ok=3 c

hanged=0 unreachable=0 failed=1

 skipped=0 rescued=0 ignored=2

ansible2 : ok=4 c

hanged=0 unreachable=0 failed=0

 skipped=1 rescued=0 ignored=1

ansible3 : ok=4 c

hanged=0 unreachable=0 failed=0

 skipped=1 rescued=0 ignored=1

ansible4 : ok=3 c

hanged=0 unreachable=0 failed=1

 skipped=0 rescued=0 ignored=2

ansible5 : ok=3 c

hanged=0 unreachable=0 failed=1

 skipped=0 rescued=0 ignored=2

ansible6 : ok=4 c

hanged=0 unreachable=0 failed=0

 skipped=1 rescued=0 ignored=1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

MANAGING PARTITIONS AND
LVM
After detecting the disk device that needs to be used,
you can move on and start creating partitions and logical
volumes. The following sections explain how to
partition a disk using the parted module, how to work
with the lvg and lvol modules to manage LVM logical
volumes, how to create file systems using the filesystem
module and mount them using the mount module, and
finally, how to manage swap storage.

Creating Partitions
If you need to manage partitions, Ansible provides the
parted module. Because this module has a few options
that are not really intuitive, Table 15-4 provides an
overview. Listing 15-6 shows a task that uses this
module.

Table 15-4 parted Options

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Listing 15-6 Creating Partitions with parted

- name: create storage
 hosts: ansible2
 tasks:
 - name: create new partition
 parted:
 name: files
 label: gpt
 device: /dev/sdb
 number: 1
 state: present
 part_start: 1MiB
 part_end: 2GiB
 - name: create another new partition
 parted:
 name: swap
 label: gpt

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 device: /dev/sdb
 number: 2
 state: present
 part_start: 2GiB
 part_end: 4GiB
 flags: [lvm]

Working with the parted module is not always intuitive.
Let’s look at the contents of the playbook in Listing 15-6
for an example. The first argument to the parted module
is name. If the partition is created as an MBR partition,
this argument is not required. If you want to create a
GPT partition, however, a name must be specified.

The next item you should notice is label. This argument
is used to set the partition table type, not the file system
label. File system labels are a property of the file system
and for that reason are set using the filesystem module.

Next, there is the size specification. When you use
parted, sizes are indicated as an offset from the start of a
disk. To create partitions, you should use part_start as
well as part_end. If these arguments are not used, the
partition starts at 0% and ends at 100% of the available
disk space. When you specify part_start, the first
couple of bytes on a disk are used for metadata storage,
so you cannot start a partition at the beginning of a disk.
That’s why you see the first partition starts at 1 MiB.
Also notice the second partition, where part_start is
set to 2 GiB. You need to enter this because the parted
module is not smart enough to figure out that the next

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

partition should be created after already existing
partitions.

Finally, there is the flags argument. This argument sets
the partition type and is required if you want to create
an LVM partition type.

Managing Volume Groups and LVM
Logical Volumes
If you need to manage LVM logical volumes, the lvg
module is available for managing LVM volume groups,
and the lvol module is available for managing LVM
logical volumes. Creating a volume group is relatively
easy: you use the vg argument to set the name of the
volume group and the pvs argument to identify the
physical volume (which is often a partition or a disk
device) on which the volume group needs to be created.
Also, you might have to specify the pesize to refer to
the size of the physical extents. Listing 15-7 shows a task
that creates a volume group. (Listing 15-7 and some of
the following listings show only the tasks that you
should include, not the complete playbook!)

Listing 15-7 Creating an LVM Volume Group

 - name: create a volume group
 lvg:
 vg: vgdata
 pesize: "8"
 pvs: /dev/sdb1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

After you create an LVM volume group, you can create
LVM logical volumes. When you’re creating logical
volumes, a wide range of options is available. Table 15-5
gives an overview of some of the most useful options,
and Listing 15-8 shows a task that creates an LVM
logical volume.

Table 15-5 lvol Common Options

Listing 15-8 Creating an LVM Logical Volume

 - name: create a logical volume
 lvol:
 lv: lvdata
 size: 100%FREE
 vg: vgdata

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Creating and Mounting File Systems
After creating the block device layer of the storage setup,
you must put a file system on top of it. Ansible provides
the filesystem module to do so. This module supports
creating as well as resizing file systems. Table 15-6 gives
an overview of its most common options.

Table 15-6 filesystem Common Options

The filesystem module has a relatively limited number
of options. The reason is that all options are passed
directly to the underlying Linux mkfs command, and
they are specified using the opts argument. Listing 15-9
shows how to create a file system.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Listing 15-9 Creating an XFS File System

 - name: create an XFS filesystem
 filesystem:
 dev: /dev/vgdata/lvdata
 fstype: xfs

After the file system is created, it can be mounted. To
mount file systems, you use the mount module. Table
15-7 shows common options to this module, and Listing
15-10 shows a task that mounts a file system.

Table 15-7 mount Module Common Options

Listing 15-10 Using the mount Module to Mount a
File System

 - name: mount the filesystem
 mount:
 src: /dev/vgdata/lvdata
 fstype: xfs

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 state: mounted
 path: /mydir

Configuring Swap Space
Swap space can be a useful addition in systems that
have a shortage of memory. Swap space is emulated
memory that is allocated on disk. To set up swap space,
you first must format a device as swap space and next
mount the swap space. To format a device as swap
space, you use the filesystem module. There is no
specific Ansible module to activate the swap space, so
you use the command module to run the Linux swapon
command.

Because adding swap space is not always required, it can
be done in a conditional statement. In the statement,
use the ansible_swaptotal_mb fact to discover how
much swap is actually available. If that amount falls
below a specific threshold, the swap space can be
created and activated. Listing 15-11 shows an example
where a conditional check is performed, and additional
swap space is configured if the current amount of swap
space is lower than 256 MiB.

Listing 15-11 Setting Up Swap Space

- name: configure swap storage
 hosts: ansible2
 tasks:
 - name: setup swap

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 block:
 - name: make the swap filesystem
 filesystem:
 fstype: swap
 dev: /dev/sdb1
 - name: activate swap space
 command: swapon /dev/sdb1
 when: ansible_swaptotal_mb < 256

Now that you know how to manage storage with
Ansible, you can practice these skills in Exercise 15-2,
which guides you through the complete procedure of
setting up storage devices.

Exercise 15-2 Setting Up Storage

1. Use your editor to create the file
exercise152.yaml and write the playbook header
as follows:

- name: create storage

 hosts: ansible2

 tasks:

2. Write the first task to set up a GPT partition on
/dev/sdb:

- name: create new partition

 parted:

 name: files

 label: gpt

 device: /dev/sdb

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 number: 1

 state: present

 part_start: 1MiB

 part_end: 2GiB

3. Create a second partition for use as an LVM
physical volume:

- name: create another new partition

 parted:

 name: swap

 label: gpt

 device: /dev/sdb

 number: 2

 state: present

 part_start: 2GiB

 part_end: 4GiB

 flags: [lvm]

4. Continue with the next task, which sets up an
LVM volume group:

- name: create a volume group

 lvg:

 vg: vgdata

 pesize: "8"

 pvs: /dev/sdb2

5. Add a task that creates a logical volume within
the volume group:

- name: create a logical volume

 lvol:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 lv: lvdata

 size: 100%FREE

 vg: vgdata

6. On top of the logical volume, create an XFS file
system:

- name: create an XFS filesystem

 filesystem:

 dev: /dev/vgdata/lvdata

 fstype: xfs

7. Mount the file system:

- name: mount the filesystem

 mount:

 src: /dev/vgdata/lvdata

 fstype: xfs

 state: mounted

 path: /data

8. This concludes the setup of the LVM storage.
Now add a block that creates and activates swap
space, but only if the current amount of swap
space as detected in the Ansible facts is smaller
than 256 MiB. Notice the indentation; the tasks
within the block are indented one level deeper:

- name: setup swap

 block:

 - name: make the swap filesystem

 filesystem:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 fstype: swap

 dev: /dev/sdb1

 - name: activate swap space

 command: swapon /dev/sdb1

 when: ansible_swaptotal_mb < 256

9. Before running this playbook, run an ad hoc
command to ensure that /dev/sdb on the target
host is empty:

ansible ansible2 -a "dd if=/dev/zero of=/d

ev/sdb bs=1M count=10"

10. Just to make sure that you don’t get any errors
about partitions that are in use, also reboot the
target host:

ansible ansible2 -m reboot

11. Run the playbook by using ansible-playbook
exercise152.yaml. You should see no
problems.

12. Run the playbook again. Notice that at this
point you get an error on the task [create a
logical volume]. The reason is that this task was
not written in an idempotent way. The reason
for the lack of idempotency is that the size is
specified as 100%FREE, which is a relative
value, not an absolute value. This value works

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the first time you run the playbook, but it does
not the second time you run the playbook.
Because no free space is available, the LVM
layer interprets the task as if you wanted to
create a logical volume with a size of 0 MiB and
will complain about that. To ensure that plays
are written in an idempotent way, make sure
that you use absolute values, not relative
values!

CONFIGURING STORAGE
ADVANCED EXERCISE
It’s time again for an advanced exercise. This is probably
the most advanced exercise of all the exercises in this
book, so make sure to take your time to understand all
that is covered. To work on this exercise, you need
managed machines with an additional disk device: add a
10 GB second disk to host ansible2 and a 5 GB second
disk to host ansible3. The exercise assumes the name of
the second disk is /dev/sdb; if a different disk name is
used in your configuration, change this according to
your specifications.

Exercise 15-3 Setting Up an Advanced Storage
Solution

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this exercise you need to set up a storage solution
that meets the following requirements:

• Tasks in this playbook should be executed only on
hosts where the device /dev/sdb exists.

• If no device /dev/sdb exists, the playbook should
print “device sdb not present” and stop executing
tasks on that host.

• Configure the device with one partition that
includes all available disk space.

• Create an LVM volume group with the name
vgfiles.

• If the volume group is bigger than 5 GB, create an
LVM logical volume with the name lvfiles and a
size of 6 GB. Note that you must check the LVM
volume group size and not the /dev/sdb1 size
because in theory you could have multiple block
devices in a volume group.

• If the volume group is equal to or smaller than 5
GB, create an LVM logical volume with the name
lvfiles and a size of 3 GB.

• Format the volume with the XFS file system.

• Mount it on the /files directory.

1. Because this is going to be a bigger playbook,
it’s wise to split development into different
parts so that the different parts can be tested

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

individually. If this were a task on the EX294
exam, it would be smart to start with the most
challenging task and write it in a small playbook
so that it could run independently. The reason
is time management: if you can’t configure the
challenging task, it doesn’t make sense to spend
your time on other tasks. With this point in
mind, let’s focus on the condition where you
need to check the size of the volume group. It
might not be the best idea to start working on
all tasks that are required to get you testing the
volume group that needs to be created. You can,
however, write a test that works on a default
volume group, and that is what you’re going to
do first, using the name of the default volume
group on CentOS 8, which is “cl”. The purpose
is to test the constructions, which is why it
doesn’t really matter that the two tasks have
overlapping when statements. So create a file
with the name exercise153-dev1.yaml and give it
the following contents:

- name: get vg sizes

 hosts: all

 tasks:

 - name: find small vgroup sizes

 debug:

 msg: volume group smaller than or eq

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ual to 20G

 when:

 - ansible_facts[’lvm’][’vgs’][’cl’] is

 defined

 - ansible_facts[’lvm’][’vgs’][’cl’][’s

ize_g’] <= 20.00

 - name: find large vgroup size

 debug:

 msg: volume group larger than or equ

al to 19G

 when:

 - ansible_facts[’lvm’][’vgs’][’cl’] is

 defined

 - ansible_facts[’lvm’][’vgs’][’cl’][’s

ize_g’] >= 19.00

2. Run the playbook by using ansible-playbook
exercise153-dev1.yaml. You’ll notice that it
fails with the error shown in Listing 15-12.

Listing 15-12 exercise153-dev1.yaml Failure
Message

TASK [find small vgroups sizes] ******

fatal: [ansible1]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’lvm’][’vgs’][’cl’][’size_g’] <= 20.00

’ failed. The error was: Unexpected te

mplating type error occurred on ({% if

 ansible_facts[’lvm’][’vgs’][’cl’][’si

ze_g’] <= 20.00 %} True {% else %} Fal

se {% endif %}): ’<=’ not supported be

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

tween instances of ’AnsibleUnsafeText’

 and ’float’\n\nThe error appears to b

e in ’/home/ansible/rhce8-book/exercis

e153-dev1.yaml’: line 5, column 5, but

 may\nbe elsewhere in the file dependi

ng on the exact syntax problem.\n\nThe

 offending line appears to be:\n\n ta

sks:\n - name: find small vgroups siz

es\n ^ here\n"}

fatal: [ansible2]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’lvm’][’vgs’][’cl’][’size_g’] <= 20.00

’ failed. The error was: Unexpected te

mplating type error occurred on ({% if

 ansible_facts[’lvm’][’vgs’][’cl’][’si

ze_g’] <= 20.00 %} True {% else %} Fal

se {% endif %}): ’<=’ not supported be

tween instances of ’AnsibleUnsafeText’

 and ’float’\n\nThe error appears to b

e in ’/home/ansible/rhce8-book/exercis

e153-dev1.yaml’: line 5, column 5, but

 may\nbe elsewhere in the file dependi

ng on the exact syntax problem.\n\nThe

 offending line appears to be:\n\n ta

sks:\n - name: find small vgroups siz

es\n ^ here\n"}

fatal: [ansible3]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’lvm’][’vgs’][’cl’][’size_g’] <= 20.00

’ failed. The error was: Unexpected te

mplating type error occurred on ({% if

 ansible_facts[’lvm’][’vgs’][’cl’][’si

ze_g’] <= 20.00 %} True {% else %} Fal

se {% endif %}): ’<=’ not supported be

tween instances of ’AnsibleUnsafeText’

 and ’float’\n\nThe error appears to b

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

e in ’/home/ansible/rhce8-book/exercis

e153-dev1.yaml’: line 5, column 5, but

 may\nbe elsewhere in the file dependi

ng on the exact syntax problem.\n\nThe

 offending line appears to be:\n\n ta

sks:\n - name: find small vgroups siz

es\n ^ here\n"}

fatal: [ansible4]: FAILED! => {"msg":

"The conditional check ’ansible_facts[

’lvm’][’vgs’][’cl’][’size_g’] <= 20.00

’ failed. The error was: Unexpected te

mplating type error occurred on ({% if

 ansible_facts[’lvm’][’vgs’][’cl’][’si

ze_g’] <= 20.00 %} True {% else %} Fal

se {% endif %}): ’<=’ not supported be

tween instances of ’AnsibleUnsafeText’

 and ’float’\n\nThe error appears to b

e in ’/home/ansible/rhce8-book/exercis

e153-dev1.yaml’: line 5, column 5, but

 may\nbe elsewhere in the file dependi

ng on the exact syntax problem.\n\nThe

 offending line appears to be:\n\n ta

sks:\n - name: find small vgroups siz

es\n ^ here\n"}

skipping: [ansible5]

skipping: [ansible6]

TASK [find large vgroups sizes] ******

skipping: [ansible5]

skipping: [ansible6]

3. As you can see in the errors in Listing 15-12,
there are two problems in the playbook. The

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

first problem is that there is no ignore_errors
in the failing play, which means that only hosts
that haven’t failed will reach the next task. The
second error is the “Unexpected templating
error”. The playbook in its current form is
trying to perform a logical test to compare the
value of two variables that have an
incompatible variable type. The Ansible fact has
the type “AnsibleUnsafeText”, and the value of
20.00 is a float, not an integer. To make this
test work, you must force the type of both
variables to be set to an integer. Now write
exercise153-dev2.yaml where this is
happening; notice the use of the filter int,
which is essential for the success of this
playbook:

- name: get vg sizes

 ignore_errors: yes

 hosts: all

 tasks:

 - name: set vgroup sizes in variables

 set_fact:

 vgsize: "{{ ansible_facts[’lvm’][’vg

s’][’cl’][’size_g’] | int }}"

 - name: debug this

 debug:

 msg: the value of vgsize is {{ vgsiz

e }}

 - name: testing big vgsize value

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 debug:

 msg: the value of vgsize is bigger t

han 5

 when: vgsize | int > 5

 - name: testing small vgsize value

 debug:

 msg: the value of vgsize is smaller

than 5

 when: vgsize | int <= 5

4. Run this playbook. You’ll notice it skips and
ignores some tasks but doesn’t fail anywhere,
which means that this playbook—although
absolutely not perfect—is usable as an example
to test the size of the vgfiles volume group later
in this exercise.

5. Now that you’ve tested the most complex part
of the assignment, you can start writing the rest
of the playbook. Do this in a new file with the
name exercise153.yaml. Because this playbook
has quite a few tasks to accomplish, it might be
smart to define the rough structure and ensure
that all elements that are needed later are at
least documented so that you can later work out
the details. So let’s start with the first part,
where the play header is defined, as well as the
rough structure. This is the part where you still
have the global overview of all the tasks in this
requirement, so you need to make sure you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

won’t forget about them later, which is a real
risk if you’ve been into the details too much for
too long.

- name: set up hosts that have an sdb devi

ce

 hosts: all

 tasks:

 - name: getting out with a nice failure

message if there is no second disk

 # fail:

 debug:

 msg: write a nice failure message an

d a when test here

 # when: something

 - name: create a partition

 #parted

 debug:

 msg: creating the partition

 - name: create a volume group

 #lvg:

 debug:

 msg: creating the volume group

 - name: get the vg size and store it in

a variable

 #set_fact:

 debug:

 msg: storing variable as an integer

 - name: create an LVM on big volume grou

ps

 #lvol:

 debug:

 msg: use when statement to create 6g

 lvol if vsize > 5

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 - name: create an LVM on small volume gr

oups

 #lvol:

 debug:

 msg: use when statement to create 3g

 lvol if vsize <= 5

 - name: formatting the XFS filesystem

 # filesystem

 debug:

 msg: creating the filesystem

 - name: mounting /dev/vgfiles/lvfiles

 # mount:

 debug:

 msg: mounting the volume

6. The advantage of a generic structure like the
one you just defined is that you can run a test at
any moment. Now it’s time to fill it in. Start
with the play header and then check whether
/dev/sdb is present on the managed system:

- name: setup up hosts that have an sdb de

vice

 hosts: all

 tasks:

 - name: getting out with a nice failure

message if there is no second disk

 fail:

 msg: there is no second disk

 when: ansible_facts[’devices’][’sdb’]

is not defined

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

7. At this point I recommend you run a test to see
that the playbook really does skip all hosts that
don’t have a second disk device. Use ansible-
playbook exercise153.yaml to do so and
observe that you see a lot of skipping messages
in the output.

8. If all is well so far, you can continue to create
the partition and create the logical volume
group as well. Here are the tasks you need to
enter. Notice that no size is specified at any
point, which means that the partition and the
volume group will be allowed to grow up to the
maximum size.

- name: create a partition

 parted:

 device: /dev/sdb

 number: 1

 state: present

- name: create a volume group

 lvg:

 pvs: /dev/sdb1

 vg: vgfiles

9. At this point you can insert the part where you
save the volume group size into a variable,
which can be used in the when statement that
will occur in one of the next tasks. Also, because
it’s good to check a lot while you are writing a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

complex playbook, use the debug module to
verify the results.

- name: get vg size and convert to integer

 in new variable

 set_fact:

 vgsize: "{{ ansible_facts[’lvm’][’vgs’

][’vgfiles’][’size_g’] | int }}"

- name: show vgsize value

 debug:

 var: "{{ vgsize }}"

10. After this important step, it’s time to run a test.
If you need it, you can find a sample playbook
of the state so far named exercise153-
step9.yaml in the GitHub repository at
https://github.com/sandervanvugt/rhce8-book,
but it’s obviously much better and
recommended to run your own code! So use
ansible-playbook exercise153.yaml to
verify what you’ve got so far. Notice that you
must make sure to run it on hosts that don’t
have any configuration yet. If a configuration
already exists, that will most likely give you
false positives! If you want to make sure all is
clean, use ansible all -a “dd if=/dev/zero
of=/dev/sdb bs=1M count=10” to wipe the
/dev/sdb devices on your managed hosts,
followed by ansible all -m reboot to reboot

||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/rhce8-book
https://technet24.ir
https://technet24.ir

all of them before you test. The purpose of all
this is that at this point you see the error
message shown in Listing 15-13. Before moving
on to the next step, try to understand what is
going wrong.

Listing 15-13 Error Message After Exercise 15-3 Step
10

TASK [get vg size and convert to integ

er in new variable] ******************

fatal: [ansible2]: FAILED! => {"msg":

"The task includes an option with an u

ndefined variable. The error was: ’dic

t object’ has no attribute ’vgfiles’\n

\nThe error appears to be in ’/home/an

sible/rhce8-book/exercise153-step9.yam

l’: line 18, column 5, but may\nbe els

ewhere in the file depending on the ex

act syntax problem.\n\nThe offending l

ine appears to be:\n\n vg: vgfile

s\n - name: get vg size and convert t

o integer in new variable\n ^ here\

n"}

fatal: [ansible3]: FAILED! => {"msg":

"The task includes an option with an u

ndefined variable. The error was: ’dic

t object’ has no attribute ’vgfiles’\n

\nThe error appears to be in ’/home/an

sible/rhce8-book/exercise153-step9.yam

l’: line 18, column 5, but may\nbe els

ewhere in the file depending on the ex

act syntax problem.\n\nThe offending l

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ine appears to be:\n\n vg: vgfile

s\n - name: get vg size and convert t

o integer in new variable\n ^ here\

n"}

11. As you can see, the variable that you are trying
to use has no value yet. And that is for the
simple reason that fact gathering is required to
set the variable, and fact gathering is happening
at the beginning of the playbook. At this point,
you need to add a task that runs the setup
module right after creating the volume group,
and then you can try again. In the output you
have to look at the [show vgsize value] task,
which should look all right now, and everything
after that can be ignored. See exercise153-
step11.yaml in the GitHub repository if you
need the complete example.

skipping first part of the playbook in t

his listing

- name: create a volume group

 lvg:

 pvs: /dev/sdb1

 vg: vgfiles

- name: run the setup module so that we ca

n use updated facts

 setup:

- name: get vg size and convert to integer

 in new variable

 set_fact:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 vgsize: "{{ ansible_facts[’lvm’][’vgs’

][’vgfiles’][’size_g’] | int }}"

- name: show vgsize value

 debug:

 var: "{{ vgsize }}"

12. Assuming that all went well, you can now add
the two conditional tests, where according to
the vgsize value, the lvol module is used to
create the logical volumes:

- name: create an LVM on big volume groups

 lvol:

 vg: vgfiles

 lv: lvfiles

 size: 6g

 when: vgsize | int > 5

- name: create an LVM on small volume grou

ps

 lvol:

 vg: vgfiles

 lv: lvfiles

 size: 3g

 when: vgsize | int <= 5

13. Add the tasks to format the volumes with the
XFS file system and mount them:

- name: formatting the XFS filesystem

 filesystem:

 dev: /dev/vgfiles/lvfiles

 fstype: xfs

- name: mounting /dev/vgfile/lvfiles

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 mount:

 path: /file

 state: mounted

 src: /dev/vgfiles/lvfiles

 fstype: xfs

14. That’s all! The playbook is now ready for use.
Run it by using ansible-playbook
exercise153.yaml and verify its output.

15. Use the ad hoc command ansible
ansible2,ansible3 -a “lvs” to show LVM
logical volume sizes on the machines with the
additional hard drive. You should see that all
has worked out well and you are done!

SUMMARY
In this chapter you learned how to work with storage.
Setting up storage is an important task that you need to
consider carefully because so many things can go wrong
while trying to set it up! You first learned how to use
Ansible facts to discover facts about your current
storage configuration. After that you learned how to set
up storage devices using the appropriate modules. You
also worked through one of the most advanced playbook
examples in this book, so you are getting close to being
ready for the exam!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

EXAM PREPARATION TASKS
As mentioned in the section “How to Use This Book” in
the Introduction, you have a couple of choices for exam
preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the
companion website.

REVIEW ALL KEY TOPICS
Review the most important topics in this chapter, noted
with the Key Topics icon in the outer margin of the
page. Table 15-8 lists a reference of these key topics and
the page numbers on which each is found.

Table 15-8 Key Topics for Chapter 15

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MEMORY TABLES
Print a copy of Appendix D, “Memory Tables” (found on
the companion website), or at least the section for this
chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the
companion website, includes completed tables and lists
to check your work.

DEFINE KEY TERMS
There are no terms for this chapter.

REVIEW QUESTIONS
1. Which Ansible fact can you use to get an

overview of current mounts?

2. You need to write a playbook that generates an
error if a device does not exist. Which two
modules can you use for this purpose?

3. Which module do you use to create partitions?

4. Which parted option can you use to specify that
it should use GPT partitions?

5. Which parted option do you use to set the lvm
partition type?

6. You want to use the parted module to create a
partition on a disk that already has a 2 GB

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

partition. Which option should you use to ensure
the partition starts at the right location?

7. Which module would you use to manage LVM
volume groups?

8. Why should you avoid using size: 100%FREE
when using the lvol module to create an LVM
volume that uses all available disk space in the
volume group?

9. Which option do you use with the mount module
to specify the device that you want to mount?

10. Which value must be assigned to the mount
module state argument to ensure the device is
mounted now but also mounted persistently
through /etc/fstab?

END-OF-CHAPTER LAB
In this chapter you worked on many advanced storage
tasks. Now you’re going to write a playbook to clean up
the hosts from all that you’ve done in the exercises in
this chapter.

LAB 15-1
Write a playbook that cleans up the second hard disks
on all hosts that have been modified in this chapter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chapter 16. Final
Preparation
Congratulations! You made it through the book, and
now it’s time to finish getting ready for the exam. This
chapter helps you get ready to take and pass the exam.
In this chapter, you learn more about the exam process
and how to register for the exam. You also get some
useful tips that help you avoiding some common pitfalls
while taking the exam.

GENERIC TIPS
In this section, you get some generic tips about the
exam. You learn how to verify your exam readiness, how
to register for the exam, and what to do on the exam.

Verifying Your Readiness
Register for the exam only when you think that you are
ready for it. This book contains a lot of material to help
you verify your exam readiness. To start with, you
should be able to answer all the “Do I Know This
Already?” questions, which you find at the beginning of
each chapter. You should also have completed all the
exercises in the chapters successfully. At the end of each

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

chapter, you can find the end-of-chapter labs. These are
the first real way of testing your readiness. The end-of-
chapter lab questions are formulated in the same way as
you might expect the real exam questions to be, so they
are a good way of finding out whether you are ready for
the exam.

Now that you have worked through all the material in
this book, you are ready for the test exams in this
chapter. Make sure that you can perform all the tests in
the test exams before you register for the exam.

No sample answers are provided for the test exams, and
that is on purpose. On the real exams, nobody tells you
what you’ve done wrong if you fail on specific tasks. You
should be able to find out yourself whether you have
performed specific tasks successfully. If you are in
doubt about specific tasks, chances are that you are just
not ready for these tasks. The idea is that you should
make sure that you feel comfortable with the exam
topics. And if you are, you’ll be able to verify the
playbooks that you’ve written.

Registering for the Exam
There are two ways of taking the RHCE exam. You can
either take it as a classroom exam or as a kiosk exam.
The classroom exam is typically on Friday only, and it is
offered primarily by Red Hat to provide an exam at the
end of a course. Therefore, most of the people who are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

with you in the exam classroom have taken four days of
course training before taking the exam, and for that
reason, classroom exam availability is limited.

For a long time, the classroom exam was the only way to
take the exam. For some time now, though, Red Hat has
provided kiosk exams too. A kiosk exam is an individual
exam, where you work through the exam tasks on a
kiosk computer. This monitored computer is in a booth
in an exam center, where you are monitored through
multiple cameras while working on the exam tasks. The
good things about a kiosk exam are that it is individual
and that you schedule the exam time and place yourself
at your convenience.

You can register for the exam through redhat.com or
through a training company. It does not really matter
where you buy it because you end up at the same exam
anyway. It might be easier, though, to get a discount
while booking through a local training company.
Booking through Red Hat is faster normally because you
have direct access to Red Hat. Notice that specific
policies may apply to specific countries, and not all
options may be available in your area.

If you book a classroom exam, you get an invitation for
the time and date the exam is scheduled. If you book a
kiosk exam, you get a voucher code that you can use to
book the exam venue, time, and date yourself.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

On Exam Day
Make sure to bring appropriate identification to the
exam. To be allowed to take the exam, you need an
approved government ID. Normally, a passport or
driver’s license will do; other types of proof may be
accepted in your country as well. Do not forget it;
without ID, you will not be allowed to take the exam.

Also, make sure you are on time. It is a good idea to
arrive half an hour before the exam’s scheduled starting
time. If you are late, you will normally be allowed access
to the exam, but you will not get extra time. So, just
make sure that you are on time.

After proving your identity, you are introduced to the
exam environment. Because of the nondisclosure
agreement that every test-taker signs with Red Hat, I
cannot tell you in detail what the exam environment
looks like. I can tell you, though, that there will be an
environment in which you have to work. Depending on
the exam you are taking, this consists of one or more
servers. There is also a list of tasks that have to be
performed. Work your way through the tasks, read all
well, and you will pass the exam.

During the Exam
The tasks that you have to work on during the exam are
not necessarily presented in the most logical order.
Therefore, it is a good idea to start reading through all

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the tasks before you start working on the first
assignment. While reading through all the tasks, you
can decide which is the best order to create the
configurations needed. Determine the best possible
order for yourself because it may not be obvious.

Another important tip is to read carefully. Not many
people know how to read carefully anymore, and you are
probably among those people. IT administrators are very
skilled in scanning web pages to retrieve the
information that they need. That skill will not help you
on the exam. Reading skills will. I cannot stress that
point enough. According to my estimate, 40 percent of
all people who fail the exam fail because they do not
read (they scan instead). So, let me give you some tips
on how to read the exam questions:

• If English is not your native language, or if you
master one or more additional languages, you can
switch the language in which questions are
presented. Maybe the English language question is
not clear to you, but the question translated in
another language is. So, if in doubt, read the
translation as well.

• The English language questions are the most used
and best scanned questions. Exam questions are
perfect because Red Hat has made a tremendous
effort to make them perfect. Given the fact that
most of the exam candidates work on English

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

language questions, the quality of English language
questions is the best. You are free to use translated
questions, but you should use the English language
questions as your primary source.

• To make sure that you do not miss anything, make a
task list for each question. You have scratch paper
with you during the exam. Use it to make a short list
of tasks that you have to accomplish and work on
them one by one. This approach helps you to
concentrate on what the exam question is actually
asking.

• After you have worked on all assignments, go have a
cup of coffee (you are allowed to take a break during
the exam). When you return, read all questions
again to make sure that you did not miss anything.
Taking a small break is important; it allows you to
take distance from the exam, after which you will
read the questions as if it is the first time that you
have seen them.

Another important part of the exam is the order in
which you work on the assignments. Even though I
cannot talk about specific exam content, some topics
need to be fixed before other topics. Make sure that you
deal with those topics first. If you do not, fixing the
other assignments will be more difficult or impossible.

The Nondisclosure Agreement

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The RHCE certification is one of the most sought-after
certifications that currently exist in IT. It represents a
real value because the person who takes the RHCE
exam has worked through a list of realistic assignments
and knows how to do the job. It is in everybody’s
interest to help maintain this high value. The
nondisclosure agreement is an important part of that.

The RHCE exam still represents real skills because the
content of these exams is not publicly available. Please
help keep these exams valuable by not talking about
questions that you saw on your exam. A person who
knows which questions are asked will have an easier
exam than you did, which means that the certificate
value will diminish, which will also make your effort
less valuable. So, please help protect what you have
worked so hard for and do not talk about exam content
to anyone.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Part IV: Practice Exams

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Practice Exam A
This content is currently in development.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Practice Exam B
This content is currently in development.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Practice Exam C
This content is currently in development.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Practice Exam D
This content is currently in development.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Part V: Appendixes

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Appendix A. Answers to
the “Do I Know This
Already?” Quizzes and
Review Questions
CHAPTER 1
“Do I Know This Already?” Quiz

1. A and C. Managing Windows with a Bash shell
script simply doesn’t work. This is just one example
that makes answer A true. Apart from that, it is
difficult to guarantee that shell scripts will always
produce the same result if the configuration on the
managed machine changes.

2. B. In releasing, the new software is made available.
To have it working as it should, configuration comes
next to ensure that the systems where the software
is running conform to expectations.

3. D. Putting the infrastructure as code configuration
files in a CVS has many advantages, including all the
features mentioned in the answers to this question.

4. C. Although Red Hat Satellite does take care of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

some automation tasks, it cannot be considered a
complete automation utility because it lacks specific
features.

5. B and C. Most alternative solutions need an agent
and use a more complex format to create
configurations. Ease of configuration and the ability
to manage assets without the need to install an
agent are two major advantages of Ansible.

6. A. Ansible uses native remote access to managed
devices. Often this is SSH. On Windows, Windows
Remote Management (WinRM) is the default, and
on network devices API access can be used. Agents
are never required.

7. C. AWX is the open-source project that delivers a
web interface which allows you to manage Ansible
in large environments. Red Hat offers Ansible Tower
as the commercial version of AWX, adding a support
license to it.

8. C. Although answer D is not strictly wrong, answer
C is better because it is about making just the
changes that are needed to reach the desired state.

9. C. Ansible can perfectly push configurations to a
bare-metal server that has performed a PXE-boot
with the help of another system, but Ansible itself is
not capable of performing a PXE-boot.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

10. A. Ansible started as a solution for configuration
management, and that is the reason most people
still use it. Ansible can be used in other scenarios as
well, but configuration management still is its core
function.

CHAPTER 2
“Do I Know This Already?” Quiz

1. B and D. Ansible commands are executed as Python
scripts on the managed nodes. To push the Python
scripts to the managed nodes, SSH access is
required.

2. B and C. As Python 3 has become the default
Python version in RHEL 8, Ansible, if installed on
RHEL 8, is based on Python 3 also. Ansible needs
Python to be installed on managed nodes in order to
run the Ansible scripts on these hosts.

3. B. Even if working with SSH key-based login is
recommended, it is not mandatory. Password-based
login is also supported.

4. A. Password-less privilege escalation is convenient
but not mandatory.

5. C. Even if having 20 GB disk space or more is
advised, Ansible itself really doesn’t need much disk
space.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6. D. Ansible can be installed using the python-pip
installer. Using the Java installer is not an option
because Ansible is not related to Java at all.

7. C. There must be some way to run configuration
tasks that require administrator privileges, and that
is using root execution through sudo.

8. B. In all installation patterns, Python 3 is installed
by default, so it doesn’t have to be installed
separately.

9. A. Ansible needs access to SSH and that’s all. No
further agents need additional configuration.

10. C. To access a remote host using public/private
keys, the public key of the user must be on the
remote host, not the private key as suggested in
answer B.

Review Questions
1. Add the Ansible repository provided by Red Hat

using subscription-manager and install Ansible from
there.

2. The ansible user account needs to be created on the
host, and sudo privilege escalation needs to be set
up. Also, the user must be able to log in to the
managed host using SSH.

3. Python pip

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. No agents are needed; you just need the SSH
service to be running and accessible.

5. AWX

6. Configure passphrases, and cache the passphrases
using ssh-agent and ssh-add.

7. /etc/sudoers.d/

8. Use the raw module (discussed later).

9. By default, the Ansible control node generates a
Python script. This script is sent over an SSH
connection to the managed host and executed there.
Ansible can be used to manage devices that don’t
have a Python stack. In that case, Ansible sends
native code to the managed device, and no Python
installation is required.

10. Use Ansible Tower, which allows passwords to be
kept in a secured cache.

CHAPTER 3
“Do I Know This Already?” Quiz

1. A. Ansible does not look for an inventory file in the
current directory. If no inventory file is specified,
Ansible looks at the /etc/ansible/hosts file as the
default file to be used.

2. C. If no inventory file can be used, Ansible uses

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

localhost as the default target host.

3. D. The default location where Ansible looks for an
inventory is /etc/ansible/hosts.

4. B. Even if most dynamic inventory scripts are
written in Python, this is not a formal requirement.

5. C. When a directory name is specified as the
inventory, all files in that directory are considered as
inventory files. Notice that dynamic inventory
scripts must all have the execute permission.

6. A. Defining host variables in inventory was
common practice but now is considered deprecated.
Host variables should be defined in the host_vars
and group_vars directories.

7. D. Privilege escalation parameters can be specified
in the ansible.cfg file, in individual plays, or at the
command line. It is not possible to specify privilege
escalation parameters in the inventory file.

8. C. To make it easy to manage diverse Ansible
projects, you should store inventory files in big
environments in the project directory, where
playbooks used to accomplish a specific task are also
stored. Alternatively, you can use Ansible Tower for
this purpose, but using Tower is absolutely not a
requirement.

9. B. The remote_user setting specifies the host name

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

of the user that is used to connect to the remote
host.

10. A. The host_key_checking parameter can be used
to specify whether or not the validity of SSH host
keys should be verified.

Review Questions
1. You don’t have to use any syntax. The group named

all is defined as a default group.

2. Anything you want. There is no name requirement
for an inventory file.

3. /etc/ansible/hosts

4. [linux:children]

web

file

5. --list and --host

6. web[001:010]

7. ungrouped

8. ansible-inventory -i inventory --graph

9. There is no --list-hosts option. Use either --list or
--host <hostname>

10. become_method

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 4
“Do I Know This Already?” Quiz

1. A. To repeat tasks in a consistent way, use a
playbook. Ad hoc commands work with command-
line arguments and are not as easy to run again in
exactly the same way as tasks that are executed
through playbooks.

2. C. If no module is specified in an ad hoc command,
the default command module is used. This module,
however, cannot work with shell features such as
pipes. Use the shell module instead.

3. D. Ansible is idempotent, which means Ansible
compares the desired state in the ad hoc command
or playbook with the current state of the managed
host. If the current state matches the desired state,
no changes are applied.

4. B. Shell redirection is a shell feature, and shell
features are not supported by the command module.
Optionally, the raw module could be used as well,
but because the shell module is more specific, use
the shell module instead.

5. C. The raw module is the only module that enables
you to run commands on managed nodes that don’t
have Python installed.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

6. B. In an environment with multiple Linux
distributions, you should use the package module.
Use the distribution-specific module only if you’re
managing that specific distribution only.

7. D. The Ansible ping module tests whether a target
host is in a manageable state. It tests not only
connectivity but also whether Python has been set
up correctly.

8. C. The ansible-doc -l command produces a list of
modules that are installed.

9. C. Use ansible-doc -s to get a list of module
arguments in playbook-compatible format.

10. C. The Ansible documentation website groups
modules into specific functional categories. One of
them is the system modules category, in which you
can find a list of modules that can be used for a
wide range of system administration tasks.

Review Questions
1. To perform quick checks and to perform initial

setup of hosts

2. The raw module

3. The best way is to use the yum module because in
Ansible using the most specific module is
recommended. However, you can run this command

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

as an argument to the shell module also.

4. Absolutely! On the exam only the result is
evaluated, and as long as you obtain that result with
Ansible, there’s nothing wrong with that.

5. name=, state=, and enabled=

6. The SEE ALSO section contains information about
related modules.

7. Look at the first line of the documentation for the
module; it contains the location of the Python script
this module is using.

8. The script doesn’t have the execute permission set.

9. You would edit the /etc/ansible/ansible.cfg file.

10. Look at the EXAMPLES section in the output of
ansible-doc, or use ansible-doc -s, followed by
the name of the module you want to investigate.

CHAPTER 5
“Do I Know This Already?” Quiz

1. C. Playbooks should start with --- to indicate the
start of the playbook.

2. D. Using the become parameter in the play header
is optional. If it is not specified, the default
parameter from the ansible.cfg is used.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

3. A and C. Indentation is a mandatory element in a
playbook that is used to identify relationships
between parent and child objects. Only spaces can
be used, no tabs.

4. C and D. There is no easy way to undo changes
applied by a playbook. The only way is to write a
playbook that does exactly the opposite.

5. B. A task that has modified the managed system
shows “changed.” Tasks that do not require a
modification show “ok.”

6. C. YAML lists are supported by specific modules
only. The yum module works with YAML lists; the
service module does not.

7. A. If a value contains text to be written to a
destination file, you should use the | sign in a key:|
syntax to indicate that newlines in the following
lines must be maintained.

8. D. A dry run shows the result of tasks on managed
hosts. To trigger a dry run, use the -C option.

9. B. Configuring a multiplay playbook makes sense if
there is a clear relation between the different plays.
If there is no direct relation between the plays, in
most cases it is better to run separate playbooks
because they are easier to manage independently.

10. C. Using multiplay playbooks has many benefits,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

but scheduling plays independently is not one of
them.

Review Questions
1. Use -vvvv. Notice that -vvvvv can also be used but

has a meaning only while managing Windows
machines.

2. Spaces

3. Use ansible-playbook --syntax-check.

4. The uri module

5. The copy module; other modules can be used as
well but are not discussed in this chapter

6. The > sign is used in front of a string of text that
needs to be copied to a target file. The > sign does
not keep newline characters in the text, and that is
useful for readability.

7. Multiple playbooks should be used if there is no
direct logical relation between the different plays in
the playbooks.

8. OK

9. Four times, because playbooks, by default, also run
fact-gathering on managed hosts as a task

10. 200

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 6
“Do I Know This Already?” Quiz

1. D. When the output starts with a variable value, it
must be placed between double quotes. Although
answer A seems correct, variables that have a name
starting with ansible_ are normally used to refer to
Ansible facts. That makes answer D a better answer
than answer A.

2. B. To gather facts, you use the setup module.

3. A. In Ansible versions since 2.5, all variables are
stored in a dictionary variable with the name
ansible_facts, which makes answers A and B the
better choices. To refer to variables, the method that
uses square brackets is the preferred method.

4. B. Custom facts can be provided as a static file or as
a dynamic file. When you use a static custom facts
file, it is not necessary that these files are
executable.

5. C. The variable name my_file1 is the only one that
contains letters, numbers, and underscores and does
start with a letter.

6. D. There is no variables key that can be used in a
play header. The name of the key is vars.

7. A. The hostvars variable is a magic variable that

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

contains many settings that apply to the managed
host.

8. B. You can use the ansible-vault rekey command
to change passwords on Ansible Vault-encrypted
files.

9. B. To interactively prompt for a password, you can
use the --ask-vault-pass option, but it prompts
once only, which doesn’t work if multiple encrypted
files are included where each has a different
password. In that case, use the --vault-id
@prompt option.

10. C. You can use the register parameter in a task to
store the standard output generated by a command
in a multivalued variable.

Review Questions
1. Custom facts must be stored in the

/etc/ansible/facts.d directory. The name of the file
that stores the fact must end in the .fact extension.

2. The setup module is used to trigger fact gathering.

3. You must change a parameter in ansible.cfg, and
you must enable a plug-in that allows facts to be
cached for a specific period.

4. Include vars_files: in the play header.

5. In the current project directory, create a directory

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

with the name group_vars. In that directory, create
a file with the name of the host group to which the
variables should be applied, and define the variables
there. No further action is required in the playbook;
the variables are included automatically.

6. Use an array; loops cannot be applied to variables in
a dictionary.

7. The hostvars magic variable contains all settings
that apply to a specific host.

8. Use ansible-vault rekey filename.

9. In the project directory, create a directory
group_vars. In that directory, create a subdirectory
with the name of the host group, and in there, create
a file with the name vars, which contains regular
variables, and a file with the name vault, which
contains Vault-encrypted variables.

10. To show any variable in a playbook, you can use
the debug module. In this module use var: “{{
cmd_result.rc }}” to show the exit code of the
command.

CHAPTER 7
“Do I Know This Already?” Quiz

1. D. To iterate over any list of values, use loop. In

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ansible 2.5 and earlier, with_items was used
instead, but that syntax is now deprecated.

2. B. When using variables in a when statement, you
don’t have to put the variable names between
double brackets.

3. B. To test the value of a Boolean variable, you just
need to mention the name of the variable.

4. D. To test a variable for a specific value, you must
use ==. In a string test, the value must be placed
between double quotes. Without double quotes, it is
interpreted as an integer.

5. C. To test a variable for a specific value, you must
use ==. If the value is a numeric value, it cannot be
placed between double quotes.

6. C. Use vars_prompt in a playbook to ask a user to
provide a value for a specific variable.

7. A. To activate a handler, use the notify statement,
with the name of the handler that should be
activated as its argument.

8. C. A handler will run only if the task that’s calling it
results in a changed status.

9. A and B. If a task in a playbook fails, playbook
execution normally stops. Override this by using
ignore_errors. Next, use force_handlers to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ensure that the handler will run, despite the failing
task.

10. C. You can use the fail module to configure a
specific error message that should be shown on task
failure.

Review Questions
1. The name is item.

2. You cannot loop over values in a dictionary. If you
need this capability anyway, use the dict2items
filter.

3. Use when.

4. Just use when myvar; nothing else is needed.

5. when myvar == “myvalue”

6. Use myvar in mypackages.

7. Use (var1 == “value1” and var2 == “value2”)
or (var3 == “value3” and var4 == “value4”).

8. Use when: cmd_out.stdout.find(’error’) != -1.

9. Use ignore_errors in the play.

10. Use any_errors_fatal.

CHAPTER 8
“Do I Know This Already?” Quiz

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. A. You can use the stat module to request
information about file properties, including the
current permission mode.

2. C. You can use the lineinfile module to replace a
specific line of text in a file. You can use the
blockinfile module for this purpose as well, but
because it’s more complex in use, it is better to use
the lineinfile module.

3. C. The permission mode is written to the variable
st.stat.mode. This variable contains a string, so
you should use a string test operator, which is why
the value is between single quotes.

4. D. In the lineinfile module, you use the regexp
statement to look for a regular expression. To
indicate that the line should start with the identified
text, the regex should start with a ^.

5. B. The file module cannot be used to copy a line of
text into a file. Use the lineinfile module instead.

6. D. You can use the fetch module to copy a file from
a managed node to the control host.

7. A. You can use the file module to set SELinux file
properties, but any property that is set with the file
module is not applied persistently in the SELinux
policy. Use sefcontext instead.

8. A. Ansible does not offer a specific module to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

restore context. Use the command module to run
the restorecon command.

9. C. To work on variable contents within a template,
use Ansible filters.

10. B. You can use the hostvars magic variable to
process facts that were discovered on specific hosts.

Review Questions
1. Use acl.

2. Use lineinfile and replace.

3. Use stat.

4. You can create new files or directories, create links,
remove files, and set permissions and ownership.

5. Use synchronize.

6. It writes changes to the file system and not to the
policy. Use sefcontext instead.

7. Use seboolean.

8. The task that triggers the handler has not changed
anything.

9. Use {# comment line #}.

10. It can include a line if a specific condition is true.
It is mainly used to work on Boolean variables.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 9
“Do I Know This Already?” Quiz

1. A. Role variables can be stored in the defaults
directory or in the vars directory. Variables in
defaults may be overwritten from a playbook;
variables in the vars directory are not supposed to be
overwritten.

2. D. The /usr/share/ansible/roles directory is used
for storing roles that are installed from RPM
packages. Custom roles should not be stored here.

3. C. Community-provided roles can be found on
Ansible Galaxy.

4. D. Normally, handlers in a play always run after the
tasks in a play. To have tasks run after the handlers,
include them in a post_tasks section.

5. B. Role dependencies should be defined in the
meta/main.yml file. This file is a part of the role
hierarchy.

6. C. The ansible-galaxy init command sets up the
directory structure that is needed to create a custom
inventory.

7. B. You can use a requirements file to install Ansible
Galaxy roles before using them from the command
line. Use ansible-galaxy install -r filename to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

install this file.

8. A. The EL platform ensures that roles will be found
that can be used on RHEL as well as CentOS.

9. A. You use the iburst attribute of the
timesync_ntp_servers variable to specify
whether fast synchronization should happen.

10. B and D. You use the selinux_fcontext variable
to define the file context that should be set on a
target. Also, you must set the
selinux_restore_dirs variable to the name of the
directory where the selinux_fcontext is applied
to ensure that the restorecon command will be
applied to that directory.

Review Questions
1. Configure the roles_dir setting in ansible.cfg.

2. In the defaults directory

3. The meta/main.yml file

4. In ~/.ansible/roles

5. Use pre_tasks.

6. Use post_tasks.

7. Use ansible-galaxy init.

8. Define a requirements file and run it using

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ansible-galaxy install -r requirementsfile.yml.

9. Look up the sample files and other documentation
in /usr/share/doc/rhel-system-roles.

10. Look at variables. To instruct an RHEL System
Role what to do, in most cases you just have to
write a simple playbook that defines variables and
calls the System Role.

CHAPTER 10
“Do I Know This Already?” Quiz

1. A. When using a wildcard in a host name pattern,
you must place the entire pattern between single
quotation marks.

2. D. If an external system is available to store host
names, a dynamic inventory script can be used to
query these host names. There is no limitation to
which systems can be used.

3. D. The ansible-inventory command does not
have an --all option.

4. A. Many dynamic inventory scripts are written in
Python, but this is not a requirement.

5. D. To make sure one group of hosts is fully
processed before moving over to the next group of
hosts, use the serial keyword in the play header.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

6. A and B. To increase the number of hosts on which
tasks can run simultaneously, use the forks option.
This option can be set in ansible.cfg or using the --
forks parameter while starting the play with the
ansible-playbook command.

7. B. An include ensures that code is processed when
the specific contents are reached and is a dynamic
process. Notice that roles can be included as well.

8. B. Use import_tasks to statically import a task
file. The file is imported before any of the tasks are
processed.

9. D. You can use conditional statements to ensure
that tasks run only if a specific condition is true.
Due to the dynamic nature of includes, you cannot
do anything that requires the result of the include to
be there while performing the specific operation.

10. C. Because import_tasks happens before the
tasks are actually executed, they are a part of the
playbook from the moment the task is started, and
ansible-playbook --start-at-task can be used
without any issues.

Review Questions
1. Use web,&file or &web,file.

2. --list and --host <hostname>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3. You use an .ini file.

4. Use ansible-inventory --graph.

5. Use -f 10 to specify the number of forks.

6. Use serial: 3 in the playbook header.

7. Use include_tasks. Using import_tasks
statically includes the tasks before the playbook is
executed.

8. Use a variable include file.

9. The ansible-playbook --list-tasks command
doesn’t work on dynamically included task files. Use
statically imported task files instead.

10. Importing playbooks is recommended in complex
projects, where a main site playbook is used, to
import complete procedures that are written as
separate playbooks.

CHAPTER 11
“Do I Know This Already?” Quiz

1. B. When you run an Ansible command, it either
works or it doesn’t. If the command doesn’t work
out well, the output is written to the STDOUT and
can easily be analyzed from there. Collecting a
history of all Ansible command output in a log file
wouldn’t add very much helpful information.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. C. You should use the --check option to ensure
that modifications are shown but not written. You
must add the --diff option to that command to see
which modifications would be written by the
template module.

3. B. If a task is not executed because the requirement
in a conditional was not met, you see “skipped” in
the playbook results.

4. B. When tasks are dynamically executed, it is not
known right from the beginning what exactly will be
executed.

5. C. You use the assert module to check whether an
expected result is present but otherwise fails. In
both cases, it can be used to write easy-to-
understand failure messages.

6. A. The uri module shows values that are returned
by web services or RESTful APIs.

7. D. You use the stat module to show file properties.

8. C and D. To run a task that is configured with the
debug and never tags, you must specifically
mention the debug or the never tag. However, you
also need to run all other tasks, which is done by
referring to them using either the all or untagged
tags (depending on how tags are used on the other
tasks).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

9. D. You use the ping module to test IP connectivity,
accessibility of the SSH service, sudo configuration,
and availability of a Python stack.

10. C. The error “Missing sudo password” indicates
that sudo could not be used successfully. The most
likely explanation is that the remote_user has not
been configured to run sudo commands without
entering a password. Check your Linux sudo
configuration.

Review Questions
1. Set check_mode: no as an argument to the task.

2. rescued

3. log_path

4. uri

5. fail

6. assert

7. Use the int filter.

8. never

9. You need to call this tag specifically using ansible-
playbook --tags all,debug.

10. ansible all -m ping

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 12
“Do I Know This Already?” Quiz

1. D. To set up access to a yum repository, you should
use the yum_repository module. There is no generic
repository module.

2. B. By default, Ansible does not collect information
about packages. You should use the package_facts
module to collect this information.

3. A. You can use the file argument with the
yum_repository module to specify the name of the
repository file that will be created.

4. C. While you are managing AppStream modules
with yum, the module name must start with an at
sign (@), and the entire string must be placed
between single quotation marks.

5. C. You use state: latest to update installed
packages to the latest version that is available or
install packages if they haven’t been installed yet. If
you combine this with name: ’*’, all currently
installed packages are updated.

6. B. To create repository metadata, you need the
Linux createrepo command. No Ansible module
runs this command, so you have to use the
command module.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

7. D. To specify where downloaded packages are
stored, the download_only argument requires you
to use the download_dir argument to specify the
package download directory.

8. A and B. After you register RHEL with the
redhat_subscription module, you use the
rhsm_repository module to register to repositories
that are offered through Red Hat Subscription
Manager. Other repositories can be addressed using
yum_repository.

9. D. Variables that are set with the -e command-line
option apply to all plays in the playbook. The other
option is to set a host_groups variable, but
because in this case the variable is used to add a new
host, that approach does not work.

10. B and C. When vars_prompt prompts for the
values of variables, the user input is not written to
the screen and also not stored in history, which
makes it a secure way to provide these sensitive
values. Using Ansible Vault also provides a secure
way. Answer D is a bad response because the
variable is readable from Linux shell history.
Answer A is even worse because the variables are
readable from the playbook file.

Review Questions

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

1. package_facts

2. yum_repository

3. name: ’@Virtualization Host’

4. createrepo

5. Use the yum module’s download_only argument
together with the download_dir argument to
specify in which directory the packages must be
installed.

6. fetch

7. rpm_key

8. redhat_subscription

9. rhsm_repository

10. Pass the variable as an argument to the ansible-
playbook command using -e varname.

CHAPTER 13
“Do I Know This Already?” Quiz

1. D. You use the known_hosts module to manage
known hosts settings for users.

2. B and C. To make a user a member of secondary
groups, use the groups argument. To ensure that
current group assignments are not overwritten, add

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the append option.

3. A and B. Ansible offers no modules that are
specifically developed to manage sudoers
configuration files, so you must use the generic
lineinfile or template modules. If either of these
modules is used on the /etc/sudoers file, don’t
forget to use the verify option to have the Linux
visudo command verify that no errors occurred
while modifying the file.

4. D. You use the authorized_key module to manage
user SSH public keys. You use the known_host
module to manage server public keys in the
known_hosts file of the managed hosts.

5. D. You can use the lookup plug-in to dynamically
look up values and work with them. Notice that
lookup is not a module but a plug-in.

6. A. The authorized_keys module cannot read files
from a hidden directory, and for that reason, the
id_rsa.pub file needs to be copied or moved to a
location where the module is allowed to read it.

7. C. The encrypted password as stored in /etc/shadow
consists of the hashing algorithm, the random salt,
and the encrypted hash of the user password.
Username is not a part of the string.

8. B. You cannot use the command module with the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

passwd --stdin command because this command
gets its input from a pipe and shell pipes don’t work
in the command module.

9. A. In all cases, if the highest level of security is
required, Ansible Vault is the only option.

10. C. To maintain flexibility, store the users in a
variable, and to implement separation according to
function, define that variable in an include file.

Review Questions
1. Use lineinfile; no module specifically targets sudo

configuration.

2. Use pamd.

3. Use known_hosts.

4. Use group.

5. Use groups.

6. lookup

7. ssh_key_comment

8. It cannot read public keys from a hidden directory.

9. Use passwd --stdin in the shell module, or use the
debug module together with the password_hash
function.

10. shell

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 14
“Do I Know This Already?” Quiz

1. B. You should use the systemd service to mask a
service because masking services is specific to
systemd services.

2. A. Service properties are not discovered when the
setup module is run to gather facts. Use the
service_facts module instead.

3. D. The at module interfaces Linux at to run tasks
once.

4. A and D. The mask and daemon_reload options
are specific to the systemd module because they
address features unique to the systemd service
manager.

5. C and D. To remove a cron job, you need to mention
its name as well as its state: absent.

6. C. Ansible uses the name of cron tasks as the
unique key to manage the task. If a task with the
specified name already exists, Ansible overwrites it
and the playbook itself shows a changed status.

7. B. The Ansible systemd module does not manage
the default target. Use the file module instead to
manually create the symbolic link that manages the
systemd target.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

8. C. You can use the Ansible reboot module to restart
a managed node from a playbook and continue the
playbook once the managed host is back.

9. D. The reboot_timeout option specifies the number
of seconds to wait for the machine to reboot and
respond to the test command. By default, it is set to
600 seconds.

10. C and D. Commands that are executed in the cron
module are executed by a shell, so you should use
shell command substitution. Using facts is not an
option because they show the time of fact
gathering, not the time the module was actually
executed.

Review Questions
1. Use the service_facts module.

2. Use the service module. You could use the systemd
module as well, but it doesn’t work on older servers
where other service managers are used.

3. Use the name argument. Notice that this argument
writes a name to the cron comments field and has
no meaning to Linux cron but is essential to the
Ansible cron module.

4. Use the file module because you have to create a
symbolic link.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

5. Use special_time.

6. Use units to set the units to minutes; use count to
specify the number of minutes.

7. test_command

8. reboot_timeout

9. script_file

10. Because tasks executed are not executed in a Bash
shell

CHAPTER 15
“Do I Know This Already?” Quiz

1. D. You use the parted module to manage partitions
and their properties.

2. B. Extents are a property of the LVM volume group.
To manage the LVM volume group, you use the lvg
module.

3. B. The ansible_devices option gives access to a
list of all discovered devices, including their
properties.

4. D. To set a variable within a task, you can use
set_facts. The variable from then on will be
available as an Ansible local fact.

5. B and C. When using parted to create partitions,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

you must specify the partition size as an offset from
the beginning of the disk by using the part_start as
well as the part_end arguments. So if a 2 GiB
partition already exists, part_start must be set to 2
GiB so that the partition will start right after the
already-existing partition. The part_end argument
should be 2 GiB after that, so part_end must be set
to 4 GiB.

6. A. The parted label argument is not about file
system labels (which are set at the file system level);
it’s about the partition table type, so you need label:
gpt to create GPT type partitions.

7. A. The filesystem module uses a generic opts
argument to pass arguments to the underlying
Linux mkfs command.

8. A. You use state: mounted to mount a device now
and it will also add a line to /etc/fstab to mount it
persistently. Notice that the mount module has no
fstab argument.

9. C. There is no module for activating swap space.
You use the command module instead.

10. A. You cannot perform a size-related test on a
float; it needs to be converted to an integer. You can
use the int filter to do so.

Review Questions

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. ansible_mounts

2. Use assert and fail.

3. parted

4. label: gpt

5. flags: lvm

6. part_start: 2GiB

7. lvg

8. It is not idempotent. The next time you run the
same module, it will see the 100%FREE
requirement as a requirement that isn’t met yet, so
it will try to apply the new configuration, which will
fail because no more space is available in the
volume group.

9. src: devicename

10. state: mounted

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Appendix B. Getting
Started with Ansible Tower
In this book you’ve learned how to work with Ansible
from the command line, or Ansible Engine as Red Hat
refers to it. Although working with Ansible from the
command line offers you all that you may ever need,
there is an alternative that enables you to manage
Ansible from a web-based environment. This solution is
known as Ansible Tower. You won’t find one single
question about Ansible Tower on the exam, but the
solution is too important to completely ignore it, which
is why in this appendix I introduce you to working with
Ansible Tower. This appendix covers the following
topics:

• Understanding Ansible Tower

• Installing Ansible Tower

• Installing AWX

• Managing Nodes with Ansible Tower

• Understanding Ansible Tower Core Components

• Running a Project in Ansible Tower

UNDERSTANDING ANSIBLE

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TOWER
Ansible Tower offers a web-based environment to
manage Ansible in large environments. From this
dashboard you can easily get an overview of the current
status of Ansible, the job activity, and the success and
failure of recent jobs. It offers other benefits as well:

• Workflow design: Using Ansible Tower
workflows enables you to model complex processes
in Ansible Tower. Different playbooks can be
connected together and use different inventories as
well as different credentials to run the playbooks.

• Activity logging: Ansible Tower provides activity
logging. You can easily find out which user ran
which job at what specific time.

• Scalability: You can build clusters with Ansible
Tower. In a cluster, up to 20 cluster nodes can work
together to provide Ansible control node
functionality in a scalable way and service up to
200,000 nodes.

• Notifications: Ansible Tower can be configured to
send notifications to specific users.

• Scheduling: In Ansible Tower you are able to
schedule jobs to run at a specific time.

• Integrated inventory: In Ansible Tower, multiple
sources of inventory can be used and presented as

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

one big inventory, no matter where the inventory
hosts come from.

• Self-service: Using Ansible Tower makes it easy to
delegate jobs to specific users. Ansible Tower
enables you to create user accounts and grant
specific Tower users permissions to specific jobs.

• Remote execution: The Ansible Tower run
command interface provides an easy-to-use
interface for remote command execution, which in
fact runs ad hoc commands on selected nodes.

• REST API and Tower CLI tool: Apart from the
web interface, Ansible Tower provides a REST API
and the towercli command-line tool, which allows
users to address the API directly without using the
web interface.

Ansible Tower is a Red Hat product that comes with an
enterprise license for updates and support. You can
request a limited evaluation version of Tower at
ansible.com, or you can use the open-source upstream
project AWX instead.

Once they are configured, there is no difference between
Tower and AWX. The setup procedure for both solutions
is quite different, which is why the following sections
contain instructions for setting up both environments.
To install either solution, you need a dedicated node
that meets the following requirements:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• 4 GB RAM (8 GB recommended)

• 2 vCPUs

• 20 GB disk space, much more when used to manage
many nodes

• RHEL 7 or 8

The managed machines have no specific requirements.
Even when used with Ansible Tower, Ansible is still
agentless, which means that normal access mechanisms
are used for the managed machines.

INSTALLING ANSIBLE TOWER
To install the Ansible Tower software, you need to
obtain a free evaluation version from www.ansible.com.
This installation version gives access to a tarball, as well
as a license. You can use the Ansible Tower license with
your current Red Hat account or use a license file. The
following procedure explains how to install Ansible
Tower on a virtual machine that has CentOS 8.x
installed.

1. Go to https://ansible.com/products/tower and
request access to the free evaluation of Ansible
Tower.

2. Store the tarball containing the Ansible software
in your home directory. The name of the tarball
should be ansible-tower-setup-latest.tar.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.ansible.com
https://ansible.com/products/tower
https://technet24.ir
https://technet24.ir
https://technet24.ir

3. Use tar xvf ansible-tower-setup-latest.tar to
extract the tar archive to the current directory.

4. Use cd ansible[Tab] to change into the
directory that was created by extracting the
tarball.

5. Type vim inventory to open the inventory file
that is provided. Make sure to set your passwords
as follows:

admin_password=’password’

pg_password=’password’

rabbitmq_password=’password’

6. Run the setup.sh file by using sudo ./setup.sh.
Completion will take about 15 minutes.

7. When setup is complete, access the Ansible
Tower main web page, using https://localhost.
Log in with the provided credentials.

8. You now see a screen where you are prompted
for a license (see Figure B-1). There are three
options to access the license:

• If you don’t have a license, click the Request
License link to request one.

• If you have a license file, use the Browse button
to browse to the location of that file.

• If your current Red Hat ID is entitled to use a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

license, log in using your Red Hat username and
password.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-1 Entering License Details

9. After entering the license details, click the check
box to agree with the license conditions and click
Submit. This gives you access to the Ansible
Tower web page.

INSTALLING AWX
The installation of AWX is very different. AWX is
provided as a container in OpenShift, Kubernetes, or
Docker-Compose. Of these methods, the Docker-
Compose method is the most accessible method because
it doesn’t require a complete container orchestration
platform like OpenShift or Kubernetes to be set up. For
that reason, in this procedure you learn how to set up
AWX on top of Docker-Compose. Make sure you use a
dedicated system for installing AWX (so don’t try to run
it on the machine where you just installed Ansible
Tower).

1. Use sudo systemctl disable --now firewalld
to disable the firewall—not because you have to,
but just because it makes it easier to get started
with AWX.

2. Disable SELinux by using sudo setenforce 0.
Make this persistent as well by including the line
SELINUX=disabled in the
/etc/sysconfig/selinux configuration file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3. Install the EPEL repository using sudo yum
install epel-release.

4. Install Ansible using sudo yum install ansible.

5. After installing Ansible, clone the AWX GitHub
repository by using git clone
https://github.com/ansible/awx.

6. Now you need to install some supporting
packages. To do so, use sudo yum install yum-
utils device-mapper-persistent-data lvm2.

7. Add the Docker repository by using sudo yum
config-manager --add-repo
https://download.docker.com/linux/cento
s/docker-ce.repo.

8. Remove the default CentOS/RHEL 8 container
management tool podman by using sudo yum
remove podman -y.

9. Install the Docker Community Edition Software
by using sudo yum install docker-ce docker-
ce-cli containerd.io --nobest -y.

10. Enable the Docker daemon. To do so, use sudo
systemctl enable --now docker.

11. Make your current user account a member of the
group docker. Use sudo usermod -aG
$(whoami).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/ansible/awx
https://download.docker.com/linux/centos/docker-ce.repo
https://technet24.ir
https://technet24.ir
https://technet24.ir

12. Make your new group membership effective by
using newgrp docker.

13. Create a symbolic link to start Python. Use sudo
ln -s /usr/bin/python3 /usr/bin/python.

14. Install the Docker compose software. Use sudo
pip3 install docker-compose.

15. Edit ~/awx/installer/inventory and ensure it
contains the line
pg_admin_password=password. Look up
the existing pg_admin_password line and
remove the comment sign to ensure it is at the
right location in the file.

16. Start the installer. First, use cd ~/awx/installer
to get into the right directory, and from there,
type ansible-playbook -i inventory
install.yml to start the installation.

17. After completing the installation, type docker ps
to verify that the Docker containers have been
started.

18. Use docker logs -f awx_task and make sure it
shows completed. This process can take about
five minutes.

19. After the task is complete, access the AWX web
page at http://localhost. Log in using the
username admin and the password password.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

At this point you should have access to the main web
page in either AWX or Ansible Tower. In the following
sections you learn how to start performing your
management tasks from there.

MANAGING NODES WITH
ANSIBLE TOWER
To manage machines with Ansible Tower, you must do
something to reach out to these machines. Because
Ansible Tower is still Ansible, there is no fundamental
difference in how you reach out to the managed
machines from Ansible Tower:

• You need to set up name resolution for managed
machines.

• You must ensure that the managed machines are
running an SSH process that is accessible through
the firewall.

• You need a user account with sudo privileges.

• You need to set up a password and SSH keys.

If you’re reading this appendix after working through
the other chapters in this book, setting up Tower is easy.
It consists of the following tasks, which are all executed
on the Tower node:

• Create an ansible user.

• Use ssh-keygen to generate an SSH key pair.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Use ssh-copy-id to copy the public key to the
managed machines.

Because the managed hosts were set up previously, no
additional configuration is required. If you still need to
set up the managed hosts, read Chapter 2, “Installing
Ansible,” for more information about that procedure.
You don’t need to configure an inventory or an
ansible.cfg file; this functionality is taken over by
Ansible Tower.

UNDERSTANDING ANSIBLE
TOWER CORE COMPONENTS
To work with Ansible Tower, you use a few key
resources. Working with Ansible Tower means you need
to be able to configure these key resources the
appropriate way. Let’s start with an overview:

• Organization: In Ansible Tower, an organization is
a collection of managed devices. Notice that in the
evaluation version of Ansible Tower, only one
organization is available.

• Users: Different users can be created, and RBAC
can be configured for these users.

• Inventories: Inventories are the managed servers.
They can be created statically or dynamically.

• Credentials: Credentials are what you need to log

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

in to a managed machine. They typically consist of
the Ansible control node user account, including
SSH public key and sudo privileges.

• Project: A project is a collection of playbooks that
is obtained from a certain location, such as GitHub.

• Template: A template is a job definition with all of
its parameters. Jobs must be launched and
scheduled from the template.

RUNNING A PROJECT IN
ANSIBLE TOWER
Now that you know which elements are required for
working with Ansible Tower, let’s set up a project in
Tower. To get started with this project, you need to
make sure that some Ansible managed machines are
available. The machines you used throughout this book
will do fine, or you can install new machines. Just make
sure that on the managed machines you have set up a
dedicated Ansible user account, and this user account is
configured for sudo privilege escalation and SSH remote
access.

1. Log in to the Tower web interface. From the pane
on the left, select Inventories and click the +
sign to add a new inventory. Select the
Inventory option.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. Enter webservers as the name for this inventory
project. Click Save in the lower-right corner to
save the new project (see Figure B-2).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure B-2 Adding a New Inventory

3. After saving the new inventory, click Hosts.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

From the interface that shows up, click the + sign
to add a new host. From there, add the name of
the host you want to add and an optional
description; then click Save to save the new host
(see Figure B-3). Repeat this procedure for any
other host you want to add.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure B-3 Adding Hosts to the Inventory

4. From the Hosts interface, scroll down to verify

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that the hosts were added successfully (see
Figure B-4).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Figure B-4 Verifying That Hosts Were Added
Successfully

5. After adding the hosts, you must add credentials.
The credentials contain your user account and
everything else that is needed to successfully
connect to the managed hosts. To add credentials,
select Credentials from the Resources section in
the pane on the left (see Figure B-5).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-5 Credentials Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

6. From the Credentials interface, click + to add
new credentials. Different items need to be
provided. To start with, specify a name for the
credential. Next, ensure that Machine is selected
as the Credential Type (see Figure B-6).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-6 Creating the Credentials

7. After entering the credentials name and type, you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

must specify the username. This is the name of
the remote user you set up on the managed hosts.
Next, you must specify how to connect as this
user. Different connection options are available.
To authenticate with an SSH public/private key
pair, you need to ensure the SSH private key is in
the SSH PRIVATE KEY field. The easiest way to
do so is to use the Files tool from the GNOME
graphical interface and drag the id_rsa file to this
field. (Set the View Hidden Files option in the
Files tool.) See Figure B-7.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-7 Specifying How to Connect

8. After specifying the name of the remote user and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the SSH key, you need to configure privilege
escalation. Set this to sudo and enter the
username root as the privilege escalation user.
Assuming that no password is required to run
sudo commands on the managed hosts, you do
not need to enter anything else. So at this point
you can click Save to save the credentials to your
system (see Figure B-8).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-8 Configuring Privilege Escalation

9. Now that the credentials have been created, you

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

can create a project. In the Ansible Tower project,
you connect to the YAML files you want to use in
your Ansible project. The standard is to provide
these source files through some version control
system, such as GitHub. To configure the project,
from the Resources section in the pane on the
left, click Projects to open the screen you see in
Figure B-9.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-9 Projects Main Screen

10. From the Projects interface shown in Figure B-9,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

click + to add a new project. Enter the name
webservers and ensure that the Organization
name is set to Default. Next, from the SCM TYPE
field, select Git. This adds a few new items to
connect to the Git repository you want to use. If
you have your own Git repository, feel free to use
it; otherwise, use
https://github.com/sandervanvugt/ansible-
demoproject as the sample project to connect to.
Notice that your SCM might require additional
credentials to connect; these are not included in
Figure B-10. In Figure B-10 you see an overview
of all settings entered so far. Click Save to save
the project to Tower.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/sandervanvugt/ansible-demoproject
https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-10 Creating a Project

11. Now you are going to create a template. The

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

template is the place where everything is
connected and the actual job is going to be
configured. From the Resources section in the
pane on the left, click Templates, and from
there click + to add a template. Select Job
Template to open the interface that you see in
Figure B-11.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-11 New Job Template Start Screen

12. To define the template, you start with its name.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next, set the Job type to Run. Notice that you
can also select Check, which will perform a dry
run and syntax check based on the selected
project. Next, use the drop-down list for the
Inventory option to select the inventory you
created earlier. Then use the drop-down list for
the Project option to select the project that you
previously created. After selecting the project,
you get access to the playbooks it provides. Next,
select the credentials you created earlier, and
then select the option Enable Privilege
Escalation to complete required settings for this
template. See Figure B-12 for an overview of
selected options. Scroll down to select the Save
button to write the job settings to your system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-12 Defining a Job Template

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

13. After you specify all template options, they are
stored to the system. Scroll the template all the
way to the bottom of the current screen (see
Figure B-13). From there, click the rocket icon to
launch a job based on this template.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-13 Accessing Saved Templates

14. After you launch a job, the Job status screen

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

opens. From this screen you can see whether the
job was able to run successfully. Notice the
output in the right pane, which really is similar to
the output you’ll see when running Ansible
commands directly from the command line. In
case the process does go wrong (which is the case
in the Figure B-14 output), read the command
output; then try to understand and fix it.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Figure B-14 Analyzing Job Output

15. After you fix the problems, launch the rocket

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

again to restart your job template. If all goes well,
at this point it should show a Successful status.
(In case you missed it, the problem shown in
Figure B-14 is that host name resolution for the
short hostname ansible1 is not set up in the
/etc/hosts file on the Ansible Tower server.)

SUMMARY
In this appendix you learned how to work with Ansible
Tower. You read why using Tower may be convenient
and how to set up an environment that is managed with
Ansible Tower. You also learned how to run a project in
Ansible Tower. Ansible Tower has many more features
to offer, but the introduction in this appendix should be
helpful to get you started.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Appendix C. Red Hat
RHCE 8 (EX294) Cert
Guide Exam Updates
Over time, reader feedback allows Pearson to gauge
which topics give our readers the most problems when
taking the exams. To assist readers with those topics,
the authors create new materials clarifying and
expanding on those troublesome exam topics. As
mentioned in the Introduction, the additional content
about the exam is contained in a PDF on this book’s
companion website, at
http://www.pearsonitcertification.com/title/978013687
2436.

This appendix is intended to provide you with updated
information if Red Hat makes minor modifications to
the exam upon which this book is based. When Red Hat
releases an entirely new exam, the changes are usually
too extensive to provide in a simple update appendix. In
those cases, you might need to consult the new edition
of the book for the updated content. This appendix
attempts to fill the void that occurs with any print book.
In particular, this appendix does the following:

||||||||||||||||||||

||||||||||||||||||||

http://www.pearsonitcertification.com/title/9780136872436
https://technet24.ir
https://technet24.ir

• Mentions technical items that might not have been
mentioned elsewhere in the book

• Covers new topics if Red Hat adds new content to
the exam over time

• Provides a way to get up-to-the-minute current
information about content for the exam

ALWAYS GET THE LATEST AT
THE BOOK’S PRODUCT PAGE
You are reading the version of this appendix that was
available when your book was printed. However, given
that the main purpose of this appendix is to be a living,
changing document, it is important that you look for the
latest version online at the book’s companion website.
To do so, follow these steps:

Step 1. Browse to
www.pearsonitcertification.com/title/9780136
872436.

Step 2. Click the Updates tab.

Step 3. If there is a new Appendix B document on
the page, download the latest Appendix B
document.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.pearsonitcertification.com/title/9780136872436
https://technet24.ir
https://technet24.ir
https://technet24.ir

Note

The downloaded document has a version number. Comparing the
version of the print Appendix B (Version 1.0) with the latest online version
of this appendix, you should do the following:

• Same version: Ignore the PDF that you downloaded from the
companion website.

• Website has a later version: Ignore this Appendix B in your book and
read only the latest version that you downloaded from the companion
website.

TECHNICAL CONTENT
The current Version 1.0 of this appendix does not
contain additional technical coverage.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Appendix D. Memory
Tables
CHAPTER 2

Table 2-2 Test Environment Node Requirements

CHAPTER 3
Table 3-2 Options for Storing Configuration Files

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 3-3 Host Group Usage Overview

Table 3-4 Implicit Hosts and Host Groups

Table 3-5 ansible.cfg Common Settings

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 4
Table 4-2 Ad Hoc Command Components

Table 4-3 Ansible Key Modules

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 4-4 ansible-doc Output Elements

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 5
Table 5-2 Playbook Play Required Keys

CHAPTER 6
Table 6-2 Ansible Variable Types Overview

Table 6-3 Commonly Used Ansible Facts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 6-4 Comparing ansible_facts Versus Injected
Facts as Variables

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 6-5 Magic Variables Overview

Table 6-6 ansible-vault Command Options

Table 6-7 Keys Used with register

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 7
Table 7-2 with_keyword Options Overview

Table 7-3 Conditional Tests Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 7-4 Tasks Result Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 8
Table 8-3 Modules for Managing Changes on
SELinux

Table 8-4 Jinja2 Template Elements

Table 8-5 Common Filters Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 9
Table 9-2 Role Directory Structure

Table 9-3 ansible-galaxy Useful Command-Line
Options

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 9-4 RHEL System Roles Overview

Table 9-5 SELinux Variables Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 11
Table 11-2 Playbook Recap Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 11-3 Verbosity Options Overview

Table 11-4 Troubleshooting Modules Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 11-5 Special Tags Overview

CHAPTER 12
Table 12-2 Software Management Modules Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 12-3 yum_repository Key Arguments

CHAPTER 13
Table 13-2 Managing Users and Groups Modules
Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 14
Table 14-2 Modules Related to Service Management

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 14-3 at Module Arguments Overview

CHAPTER 15
Table 15-3 Storage-Related Facts

Table 15-4 parted Options

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 15-5 lvol Common Options

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 15-6 filesystem Common Options

Table 15-7 mount Module Common Options

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Appendix E. Memory
Tables Answer Key
CHAPTER 2

Table 2-2 Test Environment Node Requirements

CHAPTER 3
Table 3-2 Options for Storing Configuration Files

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 3-3 Host Group Usage Overview

Table 3-4 Implicit Hosts and Host Groups

Table 3-5 ansible.cfg Common Settings

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 4
Table 4-2 Ad Hoc Command Components

Table 4-3 Ansible Key Modules

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 4-4 ansible-doc Output Elements

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 5
Table 5-2 Playbook Play Required Keys

CHAPTER 6
Table 6-2 Ansible Variable Types Overview

Table 6-3 Commonly Used Ansible Facts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 6-4 Comparing ansible_facts Versus Injected
Facts as Variables

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 6-5 Magic Variables Overview

Table 6-6 ansible-vault Command Options

Table 6-7 Keys Used with register

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 7
Table 7-2 with_keyword Options Overview

Table 7-3 Conditional Tests Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 7-4 Tasks Result Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CHAPTER 8
Table 8-3 Modules for Managing Changes on
SELinux

Table 8-4 Jinja2 Template Elements

Table 8-5 Common Filters Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 9
Table 9-2 Role Directory Structure

Table 9-3 ansible-galaxy Useful Command-Line
Options

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 9-4 RHEL System Roles Overview

Table 9-5 SELinux Variables Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 11
Table 11-2 Playbook Recap Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 11-3 Verbosity Options Overview

Table 11-4 Troubleshooting Modules Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 11-5 Special Tags Overview

CHAPTER 12
Table 12-2 Software Management Modules Overview

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 12-3 yum_repository Key Arguments

CHAPTER 13
Table 13-2 Managing Users and Groups Modules
Overview

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

CHAPTER 14
Table 14-2 Modules Related to Service Management

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 14-3 at Module Arguments Overview

CHAPTER 15
Table 15-3 Storage-Related Facts

Table 15-4 parted Options

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 15-5 lvol Common Options

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Table 15-6 filesystem Common Options

Table 15-7 mount Module Common Options

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Appendix F. Study Planner
[This content is currently
in development.]
This content is currently in development.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Glossary
A
ad hoc command An Ansible command that uses a
module to apply the desired state without making
any change to the managed system.

anacron A helper system to Linux cron, which
makes sure that a job is started periodically every
hour, day, week, or month, without specifically
defining when exactly it should run.

Ansible Tower A web-based platform that allows
for management of Ansible environments from a
browser.

ansible.cfg The configuration file that Ansible uses
to get information about required settings. The
parameters from ansible.cfg may be overwritten in
playbooks.

AppStream The package collection in RHEL 8 that
offers access to nonessential packages. Packages in
AppStream are provided as yum modules, which
allows for different versions of the packages to be
offered.

array See List.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

authorized_keys The name of the file that is
created for each user in the .ssh directory in the user
home directory and contains public keys that enable
password-less login for remote users who have
copied over their public key to this file after
generating a public/private key pair using ssh-
keygen.

automation language The format that is used to
define the machine-readable code used to implement
infrastructure as code.

AWX The open-source upstream project for Ansible
Tower.

B
block A group of tasks that can be treated as one
entity while working with conditionals.

C
check mode A mode in which Ansible shows what
happens if a playbook is executed but doesn’t change
anything. Running a playbook in check mode doesn’t
always show everything that would be changed
because the result of executing one task may depend
on the result of another task.

CI/CD Continuous integration/continuous delivery;

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

a way of easily developing software and updating
software source code and making these new
developments available as new versions to the end
users using a CI/CD pipeline.

controller node The node in the Ansible
configuration where all the Ansible management
commands are issued.

current state The current configuration of a
managed system.

CVS Concurrent version system, a system that
makes it possible to manage different versions of
code while it is developed. CVS is a way to
implement version control systems.

D
declarative approach A way of working that uses
configuration files (playbooks in the case of Ansible)
instead of commands that declare the desired state
and that are easy to roll out against the managed
targets in an idempotent way.

desired state The state that is defined in Ansible
playbooks and that needs to be implemented on
Ansible-managed systems.

DevOps A contraction of the words developers and
operators. It’s a new way of working in which

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

developers integrate operator tasks in their work and
operators integrate developer tasks in their work.

dictionary In Python, an unordered collection of
items; also referred to as hashes. It is a collection of
key-value pairs. In Python, a dictionary is defined as
my_dict = { key1: ’car’, key2:’bike’ }. Because it is
based on Python, Ansible enables users to use
dictionaries as an alternative notation to arrays.
Items in values in a dictionary do not start with a
dash. Using dictionaries is one way; the alternative is
to use a list. See also list, to compare differences.

E
EPEL repository The Extra Packages for Enterprise
Linux, a repository that contains packages from the
Fedora project for use on Red Hat Enterprise Linux
or CentOS, but which have not officially been
approved for these platforms.

F
failure condition The definition of what exactly is
to be considered a failure when running Ansible
playbooks.

fact A system property that is detected while starting
a playbook.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

filter A tool that can be used to perform an action on
the result of a variable. For instance, filters can be
used to change the variable type from string to
integer.

fork A task that can be executed in parallel task
execution.

G
Galaxy The Ansible community website, accessible
at https://galaxy.ansible.com, where Ansible roles
and collections are provided.

Git repository An online repository that developers
can use to coordinate changes into software projects,
including version control such that it is easy to roll
back to the previous state of the software.

GPG GNU Privacy Guard; an open-source
implementation of PGP, in which public/private keys
can be used to enhance security. In repositories, the
repository GPG private key is used to sign packages.
Next, the repository client needs to import the GPG
public key of that repository to verify the package
signature before packages are installed.

H
handler A special type of task that runs only if

||||||||||||||||||||

||||||||||||||||||||

https://galaxy.ansible.com
https://technet24.ir
https://technet24.ir

triggered by another task.

hash (In key-value pairs) See dictionary.

hash (In encryption) An encoded representation of a
string that was created with the purpose of securing
the original string.

hashing algorithm A mathematical formula used
to generate a hash.

I
idempotent A way of working in which Ansible
ensures that running the same playbook multiple
times will always result in the same code.

import An option that enables items to be statically
imported before any task will run. Task files and
plays can be imported.

include An option that enables items to be
dynamically included depending on a conditional
statement. Task files can be included.

infrastructure as code A way of working in which
the entire infrastructure of an IT environment is
defined as code (like Ansible playbooks) that can
easily be deployed to implement a new desired state.

init system The system that is used on Linux to
start essential system components after booting the
system. Common init systems are BSD init (used on

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

RHEL 5), Upstart (used on RHEL 6), and systemd
(the default since RHEL 7).

inventory A list of managed hosts. It may be
provided as a static file or as a script that
dynamically discovers manageable hosts (dynamic
inventory).

item An element in a list of variables.

J
Jinja2 A generic templating language for Python
developers.

K
key-value In a YAML dictionary, the key is the
specific item that is to be defined. An example of a
key is “name.” The value is the specific value that is
set to that name.

L
list In variable definition, a key that can have
multiple items as its value; also referred to as an
array. Each item in a list starts with a dash (-).
Individual items in a list can be addressed, using the
index number (starting at zero), as in {{
network_interfaces[1] }}. Compare to how key-value

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

pairs can be specified in a dictionary.

local fact A fact that is defined as a local variable
and is stored on the managed host.

look-up plug-in A plug-in that allows access to
external data sources.

M–O
magic variable A reserved system variable that is
stored as a default value and cannot be overwritten.

managed node The node that is managed by
Ansible.

module The commands that are executed by using
Ansible commands. Ansible modules provide the
intelligence to Ansible.

P–Q
PAM In Linux, Pluggable Authentication Modules.
An advanced framework that allows for
enhancement of standard Linux security, by offering
libraries that can be used by developers of third-
party security solutions.

parallel task execution A process that determines
the number of hosts on which tasks are executed at
the same time.

pip The Python software installer. A Python-based

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

way to install software packages using Python (and
not yum) repositories.

pipelines See CI/CD.

play A collection of tasks that is executed on a
specific host or group of hosts in an Ansible
playbook. Each play has a play header, providing
details on what exactly to do and on which hosts it
should be done.

playbook A collection of one or more plays that is
gathered in a playbook and contain tasks to be
executed on specific hosts.

plug-in Pieces of code that augment Ansible core
functionality.

pool A collection of software repositories in Red Hat
Subscription Manager that a subscription offers an
entitlement for.

project A collection of playbooks and other
configurations used to manage a specific managed
environment.

provisioning Deploying and installing systems.

public key fingerprint A short representation of a
public key, which can be used to verify a public key.

Python A common scripting language. Ansible is
written in Python.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

R
random salt Random data that is added to a hash
function as defined by the encryption algorithm to
generate hashed data.

register A keyword that enables the result of a
command to be stored in a variable.

requirements file A file that can be used to define
multiple roles that should be installed.

RHEL system role An Ansible role created by Red
Hat to standardize configuration tasks across
different versions of Red Hat Enterprise Linux.

role A collection of variables, templates, modules,
and tasks developed to perform a specific task and
can be embedded in a playbook easily.

S
serial task execution A process that determines
the number of hosts on which all tasks are executed
before tasks will be executed on other hosts.

shell script An executable file, written in ASCII
text, that contains commands which will be executed
by the Linux Bash shell.

subscription An entitlement to use Red Hat
software. Red Hat Enterprise Linux needs to be used

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

with a subscription. Subscriptions are used to give
users of RHEL access to software updates and
optionally also support.

T–U
tag A label that can be set on tasks, blocks, plays,
and roles, which allows users to run only specific
parts of the playbook.

task A specification of a module and specific
arguments needed to configure a desired state.

template A configuration file that contains variables
and, based on the variables, is generated on the
managed hosts according to host-specific
requirements.

V
vault A secured environment that can be used to
store variables in an encrypted way.

version control system A structure that enables
developers to easily work on software code and
manage different versions and patches of the code.

W–X
when A conditional statement that enables Ansible
to run a specific task only if a specific condition is

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

true.

WinRM Windows Remote Management; the
Windows software that may be used to manage
Windows with Ansible.

Y–
YAML The language that is used to write Ansible
playbooks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	Dedication
	Acknowledgments
	About the Technical Reviewers
	We Want to Hear from You!
	Reader Services
	Introduction
	Goals and Methods
	Other Resources
	Who Should Read This Book?
	How This Book Is Organized
	How to Use This Book
	Other Features
	Book Organization, Chapters, and Appendixes
	Where Are the Companion Content Files?

	Part I: Introduction to Ansible
	Chapter 1. Understanding Configuration Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Automation
	Understanding Ansible Essential Components
	Understanding Ansible Use Cases
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 2. Installing Ansible
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding an Ansible Environment
	Understanding Controller Host Requirements
	Understanding Installation Methods
	Configuring Managed Hosts
	Configuring the Ansible User
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 2-1

	Chapter 3. Setting Up an Ansible Managed Environment
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Projects
	Configuring Static Inventory
	Working with Dynamic Inventory
	Managing Settings in ansible.cfg
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 3-1

	Chapter 4. Using Ad Hoc Commands
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Ad Hoc Commands
	Working with Modules
	Consulting Module Documentation
	Running Ad Hoc Commands from Shell Scripts
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key terms
	Review Questions
	End-of-Chapter Lab
	Lab 4-1

	Chapter 5. Getting Started with Playbooks
	“Do I Know This Already?” Quiz
	Foundation Topics
	Exploring Your First Playbook
	Working with YAML
	Managing Multiplay Playbooks
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 5-1

	Chapter 6. Working with Variables and Facts
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding the Use of Variables in Ansible Playbooks
	Working with Ansible Facts
	Working with Variables
	Using Vault to Manage Sensitive Values
	Capturing Command Output Using register
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 6-1
	Lab 6-2

	Part II: Common Ansible Management Tasks
	Chapter 7. Using Task Control
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Loops and Items
	Using when to Run Tasks Conditionally
	Using Handlers
	Dealing with Failures
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 7-1

	Chapter 8. Deploying Files
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Modules to Manipulate Files
	Managing SELinux Properties
	Using Jinja2 Templates
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	Exercise Answers
	End-of-Chapter Lab
	Lab 8-1: Generate an /etc/hosts File
	Lab 8-2: Manage a vsftpd Service

	Chapter 9. Using Ansible Roles
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Ansible Roles
	Using Ansible Galaxy Roles
	Using RHEL System Roles
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 9-1
	Lab 9-2

	Chapter 10. Using Ansible in Large Environments
	“Do I Know This Already?” Quiz
	Foundation Topics
	Advanced Inventory Usage
	Optimizing Ansible Processing
	Including and Importing Files
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 10-1

	Chapter 11. Troubleshooting Ansible
	“Do I Know this Already?” Quiz
	Foundation Topics
	Managing Ansible Errors and Logs
	Using Modules for Troubleshooting and Testing
	Using Tags
	Troubleshooting Common Scenarios
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 11-1

	Part III: Managing Systems with Ansible
	Chapter 12. Managing Software with Ansible
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Modules to Manage Packages
	Using Modules to Manage Repositories and Subscriptions
	Implementing a Playbook to Manage Software
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 12-1
	Lab 12-2

	Chapter 13. Managing Users
	”Do I Know This Already?” Quiz
	Foundation Topics
	Using Ansible Modules to Manage Users and Groups
	Managing SSH Connections
	Managing Encrypted Passwords
	Managing Users Advanced Scenario Exercise
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 13-1

	Chapter 14. Managing Processes and Tasks
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing Services
	Managing the Boot Process
	Managing the Boot Process and Services Advanced Exercise
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 14-1

	Chapter 15. Managing Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Discovering Storage-Related Facts
	Managing Partitions and LVM
	Configuring Storage Advanced Exercise
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 15-1

	Chapter 16. Final Preparation
	Generic Tips

	Part IV: Practice Exams
	Practice Exam A
	Practice Exam B
	Practice Exam C
	Practice Exam D

	Part V: Appendixes
	Appendix A. Answers to the “Do I Know This Already?” Quizzes and Review Questions
	Appendix B. Getting Started with Ansible Tower
	Appendix C. Red Hat RHCE 8 (EX294) Cert Guide Exam Updates
	Appendix D. Memory Tables
	Appendix E. Memory Tables Answer Key
	Appendix F. Study Planner [This content is currently in development.]

	Glossary

