

http://www.ingramspark.com/

Technical Reviewers: Many of my students and colleagues
Editors: FirstEditing.com and Zainab Ghori
Cover Design: Nid n Nad Graphics Printing Inc.
Printers and Distributors: IngramSpark Inc.

Copyright © 2020 Asghar Ghori
All rights reserved.

No portion of this book may be stored in a retrieval system, transmitted,
or reproduced in any form, including but not limited to photocopying or

other recording, without the express written consent of the author.

Printed in the USA, Canada, UK, France, Germany, Italy, Spain, and
Australia.

ISBN: 978-1-7750621-2-7
ISBN: 978-1-7750621-3-4 (e-book)

Library of Congress Control Number: 2019920023

To order in bulk at special quantity discounts for sales promotions or for
use in training programs, please contact the author at

asghar_ghori2002@yahoo.com

The following are registered trademarks in the U.S. and other countries:

Red Hat® is a registered trademark of Red Hat, Inc.

RHCSA® is a registered trademark of Red Hat, Inc.

Linux® is a registered trademark of Linus Torvalds.

Oracle® is a registered trademark of Oracle Corporation, Inc.

UNIX® is a registered trademark of The Open Group.

Microsoft® and Windows® are US registered trademarks of Microsoft
Corporation.

Intel® is the trademark or registered trademark of Intel Corporation or
its subsidiaries.

All other trademarks, registered trademarks, or logos used in this book
are the property of their respective owners.

http://firstediting.com/
mailto:asghar_ghori2002@yahoo.com

The author has made his best efforts to prepare this book. The contents
are based on Red Hat® Enterprise Linux® version 8. The author makes
no representation or warranties of any kind with regard to the
completeness or accuracy of the contents herein and accepts no liability
whatsoever including but not limited to merchantability, fitness for any
particular purpose, or any losses or damages of any kind caused or
allegedly caused directly or indirectly from this material.

This book is not a replacement for the official RHCSA training courses
offered by Red Hat, Inc. However, it may be used to prepare for the Red
Hat Certified System Administrator (RHCSA) exam, EX200, based on Red
Hat® Enterprise Linux® version 8. Neither author nor publisher
warrants that use of this publication will ensure passing the relevant
exams or that the information contained herein is endorsed by Red Hat,
Inc.

Preface
Red Hat® had revised their EX200 exam for the RHCSA

certification soon after the release of Red Hat® Enterprise
Linux® version 8 in April 2019. As usual, these exams are
performance-based and present scenarios that are to be
accomplished on live systems within a stipulated time. This
book is written to provide necessary coverage of theoretical
and practical information to help you pass the exam.
Furthermore, this book may be used for classroom trainings
and as a deskside reference.

Keeping in mind the hands-on nature of the exam, I have
included a multitude of step-by-step exercises and Do-It-
Yourself (DIY) challenge labs throughout the book. Chapter
01 details the infrastructure that is needed to practice the
procedures and perform the labs. It also outlines how to
obtain a copy of RHEL 8.

I suggest you study the material presented in each
chapter thoroughly before proceeding to the relevant hands-
on exercise(s). I have provided several review questions
with answers at the end of each chapter. Take the quiz and
then attempt the DIY challenge labs offered thereafter. I
have not furnished solutions to these labs intentionally, as I
am confident that the knowledge and skills you will have
gained by that time will be sufficient to accomplish the labs
on your own; and, in essence, this is what I want you to
eventually get at. Once you have read and understood the
material, performed exercises, completed review questions,
and accomplished DIY challenge labs, take time to attempt
the sample RHCSA exams provided in appendices.

While performing exercises and labs, if a command does
not produce the published result, I advise that you check the
message the command has generated and consult relevant

log files. Minor issues, such as a wrong path or typo, prevent
commands from executing correctly. Sometimes, syntax
errors in command constructs could result in execution
failures. You might have to make modifications to your
command in order to run it as expected. RHEL manual
pages prove helpful in comprehending commands and their
syntaxes.

There are four areas I suggest you focus on in order to
develop expertise with RHEL, as well as to prepare for the
exams: 1) grasping concepts; 2) mastering implementation
procedures, exercises, and labs; 3) learning commands,
understanding configuration files, and knowing service
processes; and 4) being able to troubleshoot and resolve
problems. An excellent knowledge of commands and key
options, and the files they update should also be developed
along with what processes handle which services, and so on.
This will help you obtain a greater overall understanding of
what exactly happens in the background when a command
is executed. Debugging becomes easier when concepts are
clear and working knowledge is solid.

I maintain www.nixeducation.com where I add errata,
additional certification information, helpful videos on Linux
concepts and administration topics, and links to other useful
resources. I encourage you to visit this website.

To conclude, I would like to request for your constructive
feedback sent to my personal email
asghar_ghori2002@yahoo.com about any grammatical or
technical errors or mistakes in the book, as well as any
additional suggestions. Try to be as specific as possible in
your description. Improvement is a continuous process, and
I believe your feedback will help me continue to deliver
quality books to you.

Good luck in your endeavors.

http://www.nixeducation.com/
mailto:asghar_ghori2002@yahoo.com

Asghar Ghori / January 2020 / Toronto, Canada

Acknowledgments

I am grateful to God who enabled me to write this book
successfully.

I would like to acknowledge the valuable feedback my
students, friends, and colleagues provided on my previous
RHCSA and RHCE guides. I am thankful to them for making

this book better in all respects.

I recognize the constructive and positive feedback I had
received from the readers of my previous publications. I

have used their comments toward the improvement of this
edition.

I would like to express my special thanks to my wife,
daughters, and sons, who endured my mental absence while
writing this book. I could not have accomplished this project

without their continuous support.

Lastly, I would like to offer my very special tributes to my
deceased parents and sisters.

Asghar Ghori

About the Author
Asghar Ghori is a seasoned Linux/Cloud/DevOps consultant,
trainer, and author. As a consultant, his experience ranges
from deployment, support, and administration to solution
architecture, design, and consulting; as a trainer, he has
designed and delivered numerous training programs; and as
a published author, he has eight books on UNIX and Linux
(Red Hat Enterprise Linux and CompTIA Linux+) to his
credit.

Asghar holds a BS in Engineering. He is RHCE, RHCSA, HP
CSA, HP CSE, Oracle SCSA, IBM Certified Specialist for AIX,
and CNE, with ITIL and PMP certifications. He is AWS CLP,
SA, DA, and SysOps Administrator, as well as Azure Solution
Architect Expert.

Asghar Ghori lives in a small town near Toronto, Ontario,
Canada with his wife and children, and can be reached via
email asghar_ghori2002@yahoo.com or LinkedIn.

Other publications of Asghar are:

1. CompTIA Linux+/LPIC-1: Training and Exam
Preparation Guide (Exam Codes: LX0-103/101-400 and
LX0-104/102-400) (ISBN: 978-1775062103), published
2017

2. RHCSA & RHCE Red Hat Enterprise Linux 7: Training
and Exam Preparation Guide (EX200 and EX300)
(ISBN: 978-1495148200) (RHEL version 7), published
2015

mailto:asghar_ghori2002@yahoo.com

3. Red Hat Certified System Administrator & Engineer:
Training Guide and a Quick Deskside Reference (ISBN:
978-1467549400) (RHEL version 6), published 2012

4. Red Hat Certified Technician & Engineer (RHCT and
RHCE) Training Guide and Administrator’s Reference
(ISBN: 978-1615844302) (RHEL version 5), published
2009

5. HP-UX: HP Certified Systems Administrator, Exam
HP0-A01, Training Guide and Administrator’s
Reference (ISBN: 978-1606436547) (HP-UX 11iv3),
published 2008

6. HP Certified Systems Administrator, Exam HP0-095,
Training Guide and Administrator’s Reference (ISBN:
978-1424342310) (HP-UX 11iv2 and 11iv3), published
2007

7. Certified System Administrator for HP-UX: Study
Guide and Administrator’s Reference (ISBN: 978-
1419645938) (HP-UX 11iv1), published 2006

Conventions Used in this
Book
The following typographic and other conventions are used in
this book:

Book Antiqua Italic 10 pt. is used in text paragraphs to
introduce new terms. For example:

“Red Hat renamed the Red Hat Linux operating system
series Red Hat Enterprise Linux (RHEL) in 2003.”

Times Roman Italic 10 pt. is used in text paragraphs to
highlight names of files, directories, commands, daemons,
users, groups, hosts, domains, and URLs. This font also
highlights file and directory paths. For example:

“To go directly from /etc to a subdirectory dir1 under
user1’s home directory, create dir1, as”

Times New Roman 9 pt. is used to segregate command
output, script/file contents, and information expected to be
entered in configuration files from the surrounding text. It is
also used in tables, index, and side notes.

Times Roman Bold 10 pt. is used to highlight commands
and command line arguments that the user is expected to
type and execute at the command prompt. For example:

[user1@server1 ~]$ ls -lt

There are two white spaces between parts of a typed
command for the sake of clarity in text.

There are hundreds of screenshots that show commands
and output. They are images taken directly from the Linux
terminal screen.

All headings and sub-headings are in California FB font,
and are bolded.

Ctrl+x key sequence implies that you hold down the Ctrl key
and then press the other key. Courier New font is used to
highlight such combinations. This font is also used to
identify keystrokes, such as Enter and Esc.

. Dotted lines represent truncated command
output.

About the RHCSA Exam
(EX200) on RHEL 8
The Red Hat Certified System Administrator (RHCSA)
certification exam is a performance-based hands-on exam
designed for IT professionals. This exam is presented in
electronic format on a live desktop computer running Red
Hat Enterprise Linux 8. This desktop computer will have two
RHEL 8-based virtual machines to accomplish the exam
tasks. During the exam, the candidates will not have access
to the Internet, or printed or electronic material except for
what comes standard with RHEL 8. The official exam
objectives (57 in total as of January 8, 2020) are listed at
http://www.redhat.com/training/courses/ex200/examobjectiv
e. Visit the URL for up-to-date and in-depth information. The
exam objectives are covered in detail in the chapters
throughout the book. An enumerated list of exam objectives
is presented below along with the chapter number where
the objective is discussed.

Understand and Use Essential Tools
1. Access a shell prompt and issue commands with correct syntax

(chapter 2)
2. Use input-output redirection (>, >>, |, 2>, etc) (chapter 7)
3. Use grep and regular expressions to analyze text (chapter 7)
4. Access remote systems using ssh (chapter 19)
5. Log in and switch users in multi-user targets (chapter 6)
6. Archive, compress, unpack, and uncompress files using tar, star,

gzip, and bzip2 (chapter 3)
7. Create and edit text files (chapter 3)
8. Create, delete, copy, and move files and directories (chapter 3)
9. Create hard and soft links (chapter 3)
10. List, set, and change standard ugo/rwx permissions (chapter 4)
11. Locate, read, and use system documentation including man, info,

and files in /usr/share/doc (chapter 2)

http://www.redhat.com/training/courses/ex200/examobjective

Operate Running Systems
12. Boot, reboot, and shut down a system normally (chapter 12)
13. Boot systems into different targets manually (chapter 12)
14. Interrupt the boot process in order to gain access to a system

(chapter 11)
15. Identify CPU/memory intensive processes and kill processes

(chapter 8)
16. Adjust process scheduling (chapter 8)
17. Manage tuning profiles (chapter 12)
18. Locate and interpret system log files and journals (chapter 12)
19. Preserve system journals (chapter 12)
20. Start, stop, and check the status of network services (chapter 12)
21. Securely transfer files between systems (chapter 19)

Configure Local Storage
22. List, create, and delete partitions on MBR and GPT disks (chapter

13)
23. Create and remove physical volumes (chapter 14)
24. Assign physical volumes to volume groups (chapter 14)
25. Create and delete logical volumes (chapter 14)
26. Configure systems to mount file systems at boot by Universally

Unique ID (UUID) or label (chapter 15)
27. Add new partitions and logical volumes, and swap to a system

non-destructively (chapters 14 and 15)

Create and Configure File Systems
28. Create, mount, unmount, and use vfat, ext4, and xfs file systems

(chapter 15)
29. Mount and unmount network file systems using NFS (chapter 16)
30. Extend existing logical volumes (chapters 14 and 15)
31. Create and configure set-GID directories for collaboration (chapter

4)
32. Configure disk compression (chapter 13)
33. Manage layered storage (chapter 14)
34. Diagnose and correct file permission problems (chapter 4)

Deploy, Configure, and Maintain Systems
35. Schedule tasks using at and cron (chapter 8)
36. Start and stop services and configure services to start

automatically at boot (chapter 12)
37. Configure systems to boot into a specific target automatically

(chapter 12)
38. Configure time service clients (chapter 18)

39. Install and update software packages from Red Hat Network, a
remote repository, or from the local file system (chapter 9 and 10)

40. Work with package module streams (chapter 10)
41. Modify the system bootloader (chapter 11)

Manage Basic Networking
42. Configure IPv4 and IPv6 addresses (chapter 17)
43. Configure hostname resolution (chapter 18)
44. Configure network services to start automatically at boot (chapter

12)
45. Restrict network access using firewall-cmd/firewall (chapter 20)

Manage Users and Groups
46. Create, delete, and modify local user accounts (chapter 5)
47. Change passwords and adjust password aging for local user

accounts (chapter 5 and 6)
48. Create, delete, and modify local groups and group memberships

(chapter 6)
49. Configure superuser access (chapter 6)

Manage Security
50. Configure firewall settings using firewall-cmd/firewalld (chapter

20)
51. Create and use file access control lists (chapter 4)
52. Configure key-based authentication for SSH (chapter 19)
53. Set enforcing and permissive modes for SELinux (chapter 21)
54. List and identify SELinux file and process context (chapter 21)
55. Restore default file contexts (chapter 21)
56. Use Boolean settings to modify system SELinux settings (chapter

21)
57. Diagnose and address routine SELinux policy violations (chapter

21)

Taking the Exam
1. Save time wherever possible, as time is of the

essence during the exam
2. Make certain that any changes you make must

survive system reboots
3. Use any text editor you feel comfortable with to

modify text configuration files
4. Exam tasks are split into two groups and each group

must be performed in its own assigned virtual
machine

5. Inform the proctor right away if you encounter an
issue with your exam system or the virtual machines

6. Exam is administered with no access to the Internet,
electronic devices, or written material

7. Read each exam task carefully and understand it
thoroughly before attempting it

Exam Fees and Registration
Procedure
The fee for the RHCSA exam is US$400 (plus any applicable
taxes), or equivalent in local currencies. To register, visit
http://www.redhat.com/training/courses/ex200/examobjectiv
e, select your location and an exam format, and click Get
Started to continue through the registration process. The
RHCSA exam lasts for 2.5 hours.

http://www.redhat.com/training/courses/ex200/examobjective

About this Book
This book covers four major learning objectives: 1) a self-
study guide for exam aspirants who intend to pass the
RHCSA 8 exam, 2) an in-class training guide for college
students, 3) an on-the-job reference for administrators,
programmers, and managers, and 4) an easy-to-understand
guide for novice and non-RHEL administrators who wish to
learn RHEL from scratch.

This book has 21 chapters that are organized logically,
keeping in mind the four learning objectives mentioned
above. It covers the topics on local RHEL 8 installation;
initial interaction with the system and basic commands;
compression and archiving; file editing and manipulation;
standard and special permissions; file searching and access
controls; user monitoring and authentication files; users,
groups, and password aging; bash shell features and startup
files; processes and task scheduling; basic and advanced
software administration techniques; system boot process
and bootloader; kernel management and system
initialization; logging and system tuning; basic and
advanced storage management tools and solutions; local
and remote file systems and swap regions; network device
and connection configuration; time synchronization and
hostname resolution; the secure shell service; and firewall
and SELinux controls.

Each chapter highlights the major topics and relevant exam
objectives at the beginning, and ends with review questions
& answers and Do-It-Yourself challenge labs. Throughout the
book, figures, tables, screen shots, examples, and exam tips
have been furnished to support explanation and exam

preparation. This book includes four sample exams for
RHCSA, which are expected to be done using the knowledge
and skills attained from reading the material and practicing
the exercises and challenge labs. The labs and the sample
exams include references to relevant topics and/or
exercises.

TABLE OF CONTENTS

Preface
Acknowledgments
About the Author
Conventions Used in this Book
About the RHCSA Exam (EX200) on RHEL 8
About this Book

01.Local Installation
A Quick Look at Linux Development

Linux History in a Nutshell
Linux from Red Hat

Lab Infrastructure for Practice
What is Needed for the Lab?
The RHEL Installer Program
Where Do Installation Logs Go?
Virtual Console Screens

Exercise 1-1: Download and Install
VirtualBox Software, and Create a Virtual
Machine

Downloading and Installing VirtualBox
Creating a Virtual Machine

Exercise 1-2: Download and Install RHEL 8
Downloading RHEL 8 ISO Image
Attaching RHEL 8 ISO Image to the Virtual Machine
Launching the Installer

Adding Support for Keyboards and Languages
Configuring Time & Date
Choosing an Installation Source
Selecting Software to be Installed
Configuring Installation Destination
Configuring Network and Hostname
Beginning Installation
Setting root Password and Creating a User Account
Concluding Installation
Changing Default Boot Order
Performing Post-Installation Tasks

Logging In and Out
Logging In for the First Time
Logging Out

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 1-1: Build RHEL8-VM2 (server2)

02.Initial Interaction with the System
Linux Graphical Environment

Display/Login Manager
Desktop Environment

Linux Directory Structure and File Systems
Top-Level Directories
File System Categories
The Root File System (/), Disk-Based
The Boot File System (/boot) – Disk-Based
The Home Directory (/home)
The Optional Directory (/opt)
The UNIX System Resources Directory (/usr)
The Variable Directory (/var)

The Temporary Directory (/tmp)
The Devices File System (/dev), Virtual
The Procfs File System (/proc), Virtual
The Runtime File System (/run), Virtual
The System File System (/sys), Virtual
Viewing Directory Hierarchy

Basic System Commands
Starting a GNOME Terminal Session
Understanding the Command Mechanics
Listing Files and Directories
Printing Working Directory
Navigating Directories
Identifying Terminal Device File
Inspecting System’s Uptime and Processor Load
Clearing the Screen
Determining Command Path
Viewing System Information
Viewing CPU Specs

Getting Help
Accessing Manual Pages
Headings in the Manual
Manual Sections
Searching by Keyword
Exposing Short Description
The info and pinfo Commands
Documentation in the /usr/share/doc Directory
Red Hat Enterprise Linux 8 Documentation

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 2-1: Navigate Linux Directory Tree
Lab 2-2: Miscellaneous Tasks
Lab 2-3: Identify System and Kernel Information

Lab 2-4: Use Help

03.Basic File Management
Common File Types

Regular Files
Directory Files
Block and Character Special Device Files
Symbolic Links

Compression and Archiving
Using gzip and gunzip
Using bzip2 and bunzip2
Differences between gzip and bzip2
Using tar
Exercise 3-1: Create Compressed Archives

File Editing
Modes of Operation
Starting vim
Inserting text
Navigating within vim
Deleting Text
Undoing and Repeating
Searching for Text
Replacing Text
Copying, Moving, and Pasting Text
Changing Text
Saving and Quitting vim

File and Directory Operations
Creating Files and Directories
Displaying File Contents
Counting Words, Lines, and Characters in Text Files
Copying Files and Directories
Moving and Renaming Files and Directories
Removing Files and Directories

File Linking

Hard Link
Soft Link
Differences between Copying and Linking
Exercise 3-2: Create and Manage Hard Links
Exercise 3-3: Create and Manage Soft Links

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 3-1: Archive, List, and Restore Files
Lab 3-2: Practice the vim Editor
Lab 3-3: File and Directory Operations

04.Advanced File Management
File and Directory Access Permissions

Determining Access Permissions
Permission Classes
Permission Types
Permission Modes
Modifying Access Permission Bits
Exercise 4-1: Modify Permission Bits Using Symbolic
Form
Exercise 4-2: Modify Permission Bits Using Octal Form
Default Permissions
Calculating Default Permissions

Special File Permissions
The setuid Bit on Binary Executable Files
Exercise 4-3: Test the Effect of setuid Bit on
Executable Files
The setgid Bit on Binary Executable Files
Exercise 4-4: Test the Effect of setgid Bit on
Executable Files
The setgid Bit on Shared Directories

Exercise 4-5: Set up Shared Directory for Group
Collaboration
The Sticky Bit on Public and Shared Writable
Directories
Exercise 4-6: Test the Effect of Sticky Bit

File Searching
Using the find Command
Using find with -exec and -ok Flags
Using the locate Command

Access Control Lists (ACLs)
ACL Management Commands
The getfacl Command
The setfacl Command
The Role of the mask Value
Exercise 4-7: Identify, Apply, and Erase Access ACLs
Default ACLs
Exercise 4-8: Apply, Identify, and Erase Default ACLs

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 4-1: Manipulate File Permissions
Lab 4-2: Configure Group Collaboration and Prevent
File Deletion
Lab 4-3: Find Files
Lab 4-4: Find Files Using Different Criteria
Lab 4-5: Apply ACL Settings

05.Basic User Management
User Login Activity and Information

Listing Logged-In Users
Inspecting History of Successful Login Attempts and
System Reboots

Viewing History of Failed User Login Attempts
Reporting Recent User Login Attempts
Examining User and Group Information

Local User Authentication Files
The passwd File
The shadow File
The group File
The gshadow File

The useradd and login.defs Configuration
Files
User Account Management

The useradd, usermod, and userdel Commands
Exercise 5-1: Create a User Account with Default
Attributes
Exercise 5-2: Create a User Account with Custom
Values
Exercise 5-3: Modify and Delete a User Account
No-Login (Non-Interactive) User Account
Exercise 5-4: Create a User Account with No-Login
Access

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 5-1: Check User Login Attempts
Lab 5-2: Verify User and Group Identity
Lab 5-3: Create Users
Lab 5-4: Create User with Non-Interactive Shell

06.Advanced User Management
Password Aging and its Management

The chage Command

Exercise 6-1: Set and Confirm Password Aging with
chage
The passwd Command
Exercise 6-2: Set and Confirm Password Aging with
passwd
The usermod Command
Exercise 6-3: Lock and Unlock a User Account with
usermod and passwd

Linux Groups and their Management
The groupadd, groupmod, and groupdel Commands
Exercise 6-4: Create a Group and Add Members
Exercise 6-5: Modify and Delete a Group Account

Substituting Users and Doing as Superuser
Substituting (or Switching) Users
Doing as Superuser (or Doing as Substitute User)

Owning User and Owning Group
Exercise 6-6: Modify File Owner and Owning Group

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 6-1: Create User and Configure Password Aging
Lab 6-2: Lock and Unlock User
Lab 6-3: Modify Group
Lab 6-4: Configure sudo Access
Lab 6-5: Modify Owning User and Group

07.The Bash Shell
The Bourne-Again Shell

Internal and External Shell Commands
Shell and Environment Variables
Setting and Unsetting Variables
Command and Variable Substitutions

Exercise 7-1: Modify Primary Command Prompt
Input, Output, and Error Redirections
History Substitution
Editing at the Command Line
Tab Completion
Tilde Substitution
Alias Substitution
Metacharacters and Wildcard Characters
Piping Output of One Command as Input to Another
Quoting Mechanisms
Regular Expressions
Running and Controlling Jobs in Foreground and
Background

Shell Startup Files
System-wide Shell Startup Files
Per-user Shell Startup Files

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 7-1: Customize the Command Prompt
Lab 7-2: Redirect the Standard Input, Output, and
Error

08.Linux Processes and Task Scheduling
Processes and Priorities

Process States
Viewing and Monitoring Processes with ps
Viewing and Monitoring Processes with top
Listing a Specific Process
Listing Processes by User and Group Ownership
Understanding Process Niceness
Viewing and Changing Process Niceness
Renicing a Running Process

Controlling Processes with Signals
Job Scheduling

Controlling User Access
Scheduler Log File
Using at
Exercise 8-1: Submit, View, List, and Remove an at
Job
Using crontab
Syntax of User Crontables
Exercise 8-2: Add, List, and Remove a Cron Job
Anacron

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 8-1: Nice and Renice a Process
Lab 8-2: Configure a User Crontab File

09.Basic Package Management
Package Overview

Packages and Packaging
Package Naming
Package Dependency
Package Database
Package Management Tools

Package Management with rpm
The rpm Command
Getting Ready to Use rpm
Querying Packages
Installing a Package
Upgrading a Package
Freshening a Package
Overwriting a Package

Removing a Package
Extracting Files from an Installable Package
Validating Package Integrity and Credibility
Viewing GPG Keys
Verifying Package Attributes
Exercise 9-1: Perform Package Management Tasks
Using rpm

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 9-1: Install and Verify Packages
Lab 9-2: Query and Remove Packages

10.Advanced Package Management
Advanced Package Management Concepts

Package Groups
Application Streams and Modules
BaseOS Repository
AppStream Repository
Benefits of Segregation
Module Streams
Module Profiles
dnf/yum Repository

Software Management with dnf
dnf Configuration File
The dnf Command
Exercise 10-1: Configure Access to Pre-Built ISO
Repositories

Individual Package Management
Listing Available and Installed Packages
Installing and Updating Packages
Exhibiting Package Information

Removing Packages
Exercise 10-2: Manipulate Individual Packages
Determining Provider and Searching Package
Metadata

Package Group Management
Listing Available and Installed Package Groups
Installing and Updating Package Groups
Removing Package Groups
Exercise 10-3: Manipulate Package Groups

Module Management
Listing Available and Installed Modules
Installing and Updating Modules
Displaying Module Information
Removing Modules
Exercise 10-4: Manipulate Modules
Switching Module Streams
Exercise 10-5: Install a Module from an Alternative
Stream

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 10-1: Configure Access to RHEL 8 Repositories
Lab 10-2: Install and Manage Individual Packages
Lab 10-3: Install and Manage Package Groups
Lab 10-4: Install and Manage Modules
Lab 10-5: Switch Module Streams and Install Software

11.Boot Process, GRUB2, and the Linux
Kernel
Linux Boot Process

The Firmware Phase (BIOS and UEFI)
The Bootloader Phase

The Kernel Phase
The Initialization Phase

The GRUB2 Bootloader
Interacting with GRUB2
Understanding GRUB2 Configuration Files
Booting into Specific Targets
Exercise 11-1: Reset the root User Password

The Linux Kernel
Kernel Packages
Analyzing Kernel Version
Understanding Kernel Directory Structure
Installing the Kernel
Exercise 11-2: Download and Install a New Kernel

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 11-1: Modify GRUB2 Timeout
Lab 11-2: Reset root User Password
Lab 11-3: Install New Kernel

12.System Initialization, Message
Logging, and System Tuning
System Initialization and Service
Management

Units
Targets
The systemctl Command
Listing and Viewing Units
Managing Service Units
Managing Target Units

System Logging
The Syslog Configuration File

Rotating Log Files
The Boot Log File
The System Log File
Logging Custom Messages

The systemd Journal
Retrieving and Viewing Messages
Preserving Journal Information

System Tuning
Tuning Profiles
The tuned-adm Command
Exercise 12-1: Manage Tuning Profiles

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 12-1: Modify Default Boot Target
Lab 12-2: Record Custom Alerts
Lab 12-3: Apply Tuning Profile

13.Basic Storage Partitioning
Storage Management Overview

Master Boot Record (MBR)
GUID Partition Table (GPT)
Disk Partitions
Storage Management Tools
Thin Provisioning
Adding Storage for Practice
Exercise 13-1: Add Required Storage to server2

MBR Storage Management with parted
Exercise 13-2: Create an MBR Partition
Exercise 13-3: Delete an MBR Partition

GPT Storage Management with gdisk
Exercise 13-4: Create a GPT Partition

Exercise 13-5: Delete a GPT Partition
Storage Optimization with Virtual Data
Optimizer (VDO)

How VDO Conserves Storage Space
Creating and Managing VDO Volumes
Exercise 13-6: Install Software and Activate VDO
Exercise 13-7: Create a VDO Volume
Exercise 13-8: Delete a VDO Volume

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 13-1: Create and Remove Partitions with parted
Lab 13-2: Create and Remove Partitions with gdisk
Lab 13-3: Create and Delete VDO Volumes
Lab 13-4: Disable and Enable VDO Volume Features

14.Advanced Storage Partitioning
Logical Volume Manager (LVM)

Physical Volume
Volume Group
Physical Extent
Logical Volume
Logical Extent
LVM Operations and Commands
Exercise 14-1: Create a Physical Volume and Volume
Group
Exercise 14-2: Create Logical Volumes
Exercise 14-3: Extend a Volume Group and a Logical
Volume
Exercise 14-4: Rename, Reduce, Extend, and Remove
Logical Volumes
Exercise 14-5: Reduce and Remove a Volume Group

Exercise 14-6: Uninitialize Physical Volumes
Stratis Volume-Managing File System

Stratis Management Operations and Command
Exercise 14-7: Install Software and Activate Stratis
Exercise 14-8: Create and Confirm a Pool and File
System
Exercise 14-9: Expand and Rename a Pool and File
System
Exercise 14-10: Destroy a File System and Pool

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 14-1: Create Volume Group and Logical Volumes
Lab 14-2: Expand Volume Group and Logical Volume
Lab 14-3: Reduce and Remove Logical Volumes
Lab 14-4: Remove Volume Group and Physical
Volumes
Lab 14-5: Create Stratis Pool
Lab 14-6: Expand and Destroy Stratis Pool

15.Local File Systems and Swap
File Systems and File System Types

Extended File Systems
XFS File System
VFAT File System
ISO9660 File System

File System Management
File System Administration Commands
Mounting and Unmounting File Systems
Determining the UUID of a File System
Labeling a File System
Automatically Mounting a File System at Reboots

Monitoring File System Usage
Calculating Disk Usage
Exercise 15-1: Create and Mount Ext4, VFAT, and XFS
File Systems in Partitions
Exercise 15-2: Create and Mount XFS File System in
VDO Volume
Exercise 15-3: Create and Mount Ext4 and XFS File
Systems in LVM Logical Volumes
Exercise 15-4: Resize Ext4 and XFS File Systems in
LVM Logical Volumes
Exercise 15-5: Create, Mount, and Expand XFS File
System in Stratis Volume

Swap and its Management
Determining Current Swap Usage
Prioritizing Swap Spaces
Swap Administration Commands
Exercise 15-6: Create and Activate Swap in Partition
and Logical Volume

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 15-1: Create VFAT, Ext4, and XFS File Systems in
Partitions and Mount Persistently
Lab 15-2: Create XFS File System in VDO Volume and
Mount Persistently
Lab 15-3: Create Ext4 and XFS File Systems in LVM
Logical Volumes and Mount Persistently
Lab 15-4: Extend Ext4 and XFS File Systems in LVM
Logical Volumes
Lab 15-5: Create XFS File System in Stratis Volume
and Mount Persistently
Lab 15-6: Create Swap in Partition and LVM Logical
Volume and Activate Persistently

16.Remote File System
Network File System

Benefits of Using NFS
NFS Versions

NFS Server and Client Configuration
Exercise 16-1: Export Share on NFS Server
Exercise 16-2: Mount Share on NFS Client

Auto File System (AutoFS)
Benefits of Using AutoFS
How AutoFS Works
AutoFS Configuration File
AutoFS Maps
Exercise 16-3: Access NFS Share Using Direct Map
Exercise 16-4: Access NFS Share Using Indirect Map
Automounting User Home Directories
Exercise 16-5: Automount User Home Directories
Using Indirect Map

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 16-1: Configure NFS Share and Automount with
Direct Map
Lab 16-2: Automount NFS Share with Indirect Map

17.Networking, Network Devices, and
Network Connections
Networking Fundamentals

Hostname
Exercise 17-1: Change System Hostname
IPv4 Address
Network Classes
Subnetting

Subnet Mask
Classless Inter-Domain Routing (CIDR) Notation
Protocol
TCP and UDP Protocols
Well-Known Ports
ICMP Protocol
Ethernet Address
IPv6 Address
Major Differences between IPv4 and IPv6

Network Devices and Connections
Consistent Network Device Naming
Understanding Interface Connection Profile
Exercise 17-2: Add Network Devices to server10 and
server20
Network Device and Connection Administration Tools
Exercise 17-3: Configure New Network Connection
Manually
The NetworkManager Service
The nmcli Command
Exercise 17-4: Configure New Network Connection
Using nmcli
Understanding Hosts Table
Testing Network Connectivity
Exercise 17-5: Update Hosts Table and Test
Connectivity

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 17-1: Add New Interface and Configure
Connection Profile with nmcli
Lab 17-2: Add New Interface and Configure
Connection Profile Manually

18.Time Synchronization and Hostname
Resolution
Time Synchronization

Time Sources
NTP Roles
Stratum Levels
Chrony Configuration File
Chrony Daemon and Command
Exercise 18-1: Configure NTP Client
Displaying and Setting System Date and Time

DNS and Name Resolution
DNS Name Space and Domains
DNS Roles
Understanding Resolver Configuration File
Performing Name Resolution with dig
Performing Name Resolution with host
Performing Name Resolution with nslookup
Performing Name Resolution with getent

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 18-1: Modify System Date and Time
Lab 18-2: Configure Chrony

19.The Secure Shell Service
The OpenSSH Service

Common Encryption Techniques
Authentication Methods
OpenSSH Protocol Version and Algorithms
OpenSSH Packages
OpenSSH Server Daemon and Client Commands
Server Configuration File

Client Configuration File
System Access and File Transfer

Exercise 19-1: Access RHEL System from Another
RHEL System
Exercise 19-2: Access RHEL System from Windows
Exercise 19-3: Generate, Distribute, and Use SSH
Keys
Executing Commands Remotely Using ssh
Copying Files Remotely Using scp
Transferring Files Remotely Using sftp
Synchronizing Files Remotely Using rsync

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 19-1: Establish Key-Based Authentication
Lab 19-2: Test the Effect of PermitRootLogin Directive

20.The Linux Firewall
Firewall Overview

Overview of firewalld
firewalld Zones
Zone Configuration Files
firewalld Services
Service Configuration Files

Firewall Management
The firewall-cmd Command
Querying the Operational Status of firewalld
Exercise 20-1: Add Services and Ports, and Manage
Zones
Exercise 20-2: Remove Services and Ports, and
Manage Zones
Exercise 20-3: Test the Effect of Firewall Rule

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 20-1: Add Service to Firewall
Lab 20-2: Add Port Range to Firewall

21.Security Enhanced Linux
Security Enhanced Linux

Terminology
SELinux Contexts for Users
SELinux Contexts for Processes
SELinux Contexts for Files
Copying, Moving, and Archiving Files with SELinux
Contexts
SELinux Contexts for Ports
Domain Transitioning
SELinux Booleans

SELinux Administration
Management Commands
Viewing and Controlling SELinux Operational State
Querying Status
Exercise 21-1: Modify SELinux File Context
Exercise 21-2: Add and Apply File Context
Exercise 21-3: Add and Delete Network Ports
Exercise 21-4: Copy Files with and without Context
Exercise 21-5: View and Toggle SELinux Boolean
Values
Monitoring and Analyzing SELinux Violations

Chapter Summary
Check Your Understanding
Answers to Check Your Understanding
Do-It-Yourself Challenge Labs

Lab 21-1: Disable and Enable the SELinux Operating
Mode
Lab 21-2: Modify Context on Files
Lab 21-3: Add Network Port to Policy Database
Lab 21-4: Copy Files with and without Context
Lab 21-5: Flip SELinux Booleans

Appendix A: Sample RHCSA Exam 1

Appendix B: Sample RHCSA Exam 2

Appendix C: Sample RHCSA Exam 3

Appendix D: Sample RHCSA Exam 4

Glossary

Index

List of Figures

Figure 1-1 Lab Setup
Figure 1-2 VirtualBox Website
Figure 1-3 VirtualBox Download
Figure 1-4 VirtualBox Installation 1
Figure 1-5 VirtualBox Installation 2
Figure 1-6 VirtualBox Installation 3
Figure 1-7 VirtualBox Installation 4
Figure 1-8 VirtualBox Installation 5
Figure 1-9 VirtualBox Installation 6
Figure 1-10 Virtual Machine Creation 1
Figure 1-11 Virtual Machine Creation 2
Figure 1-12 Virtual Machine Creation 3
Figure 1-13 Virtual Machine Creation 4
Figure 1-14 Virtual Machine Creation 5
Figure 1-15 Virtual Machine Creation 6
Figure 1-16 Virtual Machine Creation 7
Figure 1-17 Virtual Machine Creation 8
Figure 1-18 Red Hat User Account Creation 1
Figure 1-19 Red Hat User Account Creation 2
Figure 1-20 Red Hat Developer Login
Figure 1-21 Attach ISO Image to VM
Figure 1-22 Boot Menu
Figure 1-23 Language Selection
Figure 1-24 Installation Summary | Main
Figure 1-25 Installation Summary | Time & Date
Figure 1-26 Installation Summary | Installation Source
Figure 1-27 Installation Summary | Software Selection
Figure 1-28 Installation Summary | Installation Destination
Figure 1-29 Installation Summary | Network & Hostname
Figure 1-30 Installation Summary | Network & Hostname | Configure
Figure 1-31 Installation Summary | Network & Hostname
Figure 1-32 Installation Summary | Begin Installation
Figure 1-33 Configuration | User Settings
Figure 1-34 Configuration | User Settings | Create User
Figure 1-35 Configuration | Finishing Installation
Figure 1-36 VirtualBox Manager | System | Boot Order
Figure 1-37 VirtualBox Manager | System | Boot Order | Alter
Figure 1-38 Initial Setup
Figure 1-39 Graphical Desktop | Sign-in Screen

Figure 1-40 First Time User Login
Figure 1-41 First Time User Login | Getting Started
Figure 1-42 GNOME Desktop Environment
Figure 1-43 GNOME Desktop Environment| Log Out
Figure 2-1 GNOME Display Manager
Figure 2-2 GNOME Desktop Environment
Figure 2-3 GNOME Desktop Environment | Activities
Figure 2-4 Linux Directory Structure
Figure 2-5 GNOME Desktop Environment | Activities | Terminal
Figure 2-6 Red Hat’s Webpage for RHEL 8 Documentation
Figure 3-1 Hard Link
Figure 3-2 Soft Link
Figure 4-1 Permission Weights
Figure 4-2 find Command Syntax
Figure 5-1 The passwd File
Figure 5-2 The shadow File
Figure 5-3 The group File
Figure 5-4 The gshadow File
Figure 8-1 Process State Transition
Figure 8-2 Syntax of Crontables
Figure 11-1 GRUB2 Menu
Figure 11-2 GRUB2 Kernel Edit
Figure 11-3 GRUB2 Commands
Figure 11-4 Anatomy of a Kernel Version
Figure 13-1 VirtualBox Interface
Figure 13-2 VirtualBox – Add Storage
Figure 13-3 VirtualBox – Adjust Disk Name and Size
Figure 13-4 VirtualBox – 7 New Disks Added
Figure 14-1 LVM Structure
Figure 14-2 Stratis Structure
Figure 16-1 NFS Server/Client
Figure 17-1 VirtualBox – Add Network Interface
Figure 18-1 NTP Stratum Levels
Figure 18-2 Sample DNS Hierarchy

List of Tables

Table 1-1 Installation Logs
Table 1-2 Installation Summary | Software Selection | Base Environments
Table 2-1 tree Command Options
Table 2-2 ls Command Options
Table 2-3 Navigating within Manual Pages
Table 2-4 Navigating within info Documentation
Table 3-1 tar Command Options
Table 3-2 tar with Compression Options
Table 3-3 Inserting Text
Table 3-4 Navigating within vim
Table 3-5 Deleting Text
Table 3-6 Undoing and Repeating
Table 3-7 Searching for Text
Table 3-8 Replacing Text
Table 3-9 Copying, Moving, and Pasting Text
Table 3-10 Changing Text
Table 3-11 Saving and Quitting vim
Table 3-12 Navigating with less and more
Table 3-13 wc Command Options
Table 3-14 Copying vs. Linking
Table 4-1 Octal Permission Notation
Table 4-2 setfacl Command Format for Access ACLs
Table 4-3 setfacl Command Switches
Table 5-1 login.defs File Directives
Table 5-2 useradd Command Options
Table 5-3 usermod Command Options
Table 6-1 chage Command Options
Table 6-2 passwd Command Options
Table 6-3 usermod Command Options for User Lock/Unlock
Table 6-4 groupadd Command Options
Table 7-1 Common Predefined Environment Variables
Table 7-2 Helpful Command Line Editing Shortcuts
Table 7-3 Predefined Aliases
Table 7-4 Job Control Commands and Control Sequences
Table 7-5 System-wide Startup Files
Table 7-6 Per-user Startup Files
Table 8-1 ps Command Output Description
Table 8-2 Control Signals
Table 8-3 User Access Restrictions to Scheduling Tools

Table 8-4 Crontable Syntax Explained
Table 9-1 rpm Command Query Options
Table 9-2 rpm Command Install/Remove/Verify Options
Table 9-3 Red Hat GPG Key Files
Table 9-4 Package Verification Codes
Table 9-5 File Type Codes
Table 10-1 Directive Settings in dnf.conf File
Table 10-2 dnf Subcommands for Packages and Repositories
Table 10-3 dnf Subcommands for Package Groups and Modules
Table 11-1 GRUB2 Default Settings
Table 11-2 Kernel Packages
Table 12-1 systemd Unit Types
Table 12-2 systemd Targets
Table 12-3 systemctl Subcommands
Table 12-4 Journal Data Storage Options
Table 12-5 Tuning Profiles
Table 13-1 Common parted Subcommands
Table 13-2 vdo Subcommands
Table 14-1 Common LVM Operations and Commands
Table 14-2 Common Stratis Subcommands
Table 15-1 File System Types
Table 15-2 File System Management Commands
Table 15-3 Common mount Command Options
Table 16-1 AutoFS Directives
Table 17-1 IPv4 vs IPv6
Table 17-2 Network Connection Configuration Directives
Table 17-3 Basic Network Management Tools
Table 17-4 Network Connection and Device Administration Tools
Table 18-1 Chrony Directives
Table 18-2 The Resolver Configuration File
Table 18-3 Name Service Source and Order Determination
Table 19-1 OpenSSH Client Tools
Table 19-2 OpenSSH Server Configuration File
Table 19-3 OpenSSH Client Configuration File
Table 20-1 firewalld Default Zones
Table 20-2 Common firewall-cmd Options
Table 21-1 SELinux Management Commands

Chapter 01

Local Installation

This chapter describes the following major topics:

A quick look at Linux and Open Source
Linux distribution from Red Hat
Recommended lab setup for RHCSA exam
preparation

Overview of the installer program
Where are installation messages stored?
What are virtual console screens?
Download and install VirtualBox
Create virtual machine
Download and install Red Hat Enterprise Linux 8
in virtual machine

Execute post-installation configuration tasks
Log in and out at the graphical console

RHCSA Objectives:

None, but this chapter sets up the foundation for
learning and practicing the exam objectives for
RHCSA

L inux is a free operating system and it has been in
existence for almost three decades. Its source code is
available to developers, amateurs, and general public for

enhancements and customization. Red Hat Inc. modifies a copy
of a selected version of Linux source code and introduces
features, adds improvements, and fixes bugs. The company
packages the updated version as a Linux distribution of their own
for commercial purposes. This distribution is thoroughly tested to
run smoothly and perform well on a wide range of computer
hardware platforms. It is stable, robust, feature-rich, and is ready
to host workload of any size.

Red Hat Enterprise Linux may be downloaded for learning,
practicing, and preparing for the RHCSA exam. It is available as a
single installable image file. A lab environment is necessary to
practice the procedures to solidify the understanding of the
concepts and tools learned. The install process requires careful
planning to identify critical system configuration pieces prior to
launching the installer program. Once the operating system is
installed, users can log in at the console or over the network.

A Quick Look at Linux
Development
Linux is a free computer operating system (OS) that is similar to
the UNIX OS in terms of concepts, features, functionality, and
stability. It is referred to as a UNIX-like operating system.

Linux powers an extensive range of computer hardware
platforms, from laptop and desktop computers to massive
mainframes and supercomputers. Linux also runs as the base OS
on networking, storage, gaming, smart television, and mobile
devices. Numerous vendors, including Red Hat, IBM, Canonical,
Oracle, DXC Technology, Novell, and Dell, offer commercial
support to Linux users worldwide.

Linux is the main alternative to proprietary UNIX and Windows
operating systems because of its functionality, adaptability,
portability, and cost-effectiveness. At present, over one hundred
different Linux distributions are circulating from various vendors,
organizations, non-profit groups, and individuals, though only a
few of them are popular and widely recognized.

Linux is largely used in government agencies, corporate
businesses, academic institutions, scientific organizations, as well
as in home computers. Linux deployment and usage are
constantly on the rise.

Linux History in a Nutshell
In 1984, Richard Stallman, an American software engineer, had a
goal to create a completely free UNIX-compatible open source
(non-proprietary) operating system. The initiative was called the
GNU Project (GNU’s Not Unix) and by 1991, significant software
had been developed. The only critical piece missing was a core
software component called kernel to drive and control the GNU
software and to regulate its communication with the hardware.

Around the same time, Finnish computer science student Linus
Torvalds developed a kernel and proclaimed its availability. The
new kernel was named Linux, and it was gradually integrated
with the GNU software to form what is now referred to as
GNU/Linux, Linux operating system, or simply Linux.

Linux was released under the GNU General Public License (GPL).
Initially written to run on Intel x86-based computers, the first
version (0.01) was released in September 1991 with little more
than 10,000 lines of code. In 1994, the first major release (1.0.0)
was introduced, followed by a series of successive major and
minor versions until the version 4.0 in 2015. Development and
enhancements continued, and version 4.0 was followed by
several stable versions. At the time of this writing, version 4.19,
with its millions of lines of code, is the latest stable kernel.

The Linux kernel, and the operating system in general, has been
enhanced with contributions from tens of thousands of software

programmers, amateurs, and organizations around the world into
a large and complex system under GNU GPL, which provides
public access to its source code free of charge and with full
consent to amend, package, and redistribute.

Linux from Red Hat
Red Hat, Inc., founded in 1993, used the available Linux source
code and created one of the first commercial Linux operating
system distribution called Red Hat Linux (RHL). The company
released the first version 1.0 in November 1994. Several versions
followed until the last version in the series, Red Hat Linux 9 (later
referred to as RHEL 3), based on kernel 2.4.20, was released in
March 2003. Red Hat renamed their Red Hat Linux brand as Red
Hat Enterprise Linux (RHEL) commencing 2003.

RHL was originally assembled and enhanced within the Red Hat
company. In 2003, Red Hat sponsored and facilitated the Fedora
Project and invited the user community to join hands in
enhancing and updating the source code. This project served as
the test bed for developing and testing new features and enabled
Red Hat to include the improved code in successive versions of
RHEL.

The Fedora distribution is completely free, while RHEL is
commercial. RHEL 4 (based on kernel 2.6.9 and released in
February 2005), RHEL 5 (based on kernel 2.6.18 and released in
March 2007), RHEL 6 (based on kernel 2.6.32 and released in
November 2010), RHEL 7 (based on kernel 3.10 and released in
June 2014), and RHEL 8 (based on kernel 4.18 and released in
May 2019) have been built using Fedora distributions 3, 6, 12, 13,
19, and 28, respectively.

RHEL 8 has been tested to run on bare-metal computer
hardware, virtualized platforms, high-end graphics workstations,
IBM Power little endian, IBM System Z, and in the cloud.

Lab Infrastructure for Practice

RHEL 8 is available as a free download from Red Hat for Intel and
AMD processor machines. You will need to create a free Red Hat
user account in order to download it. The downloaded image file
can then be attached to a Virtual Machine (VM) as an ISO image,
burned to a DVD to support installation on a physical computer,
or placed on a remote server for network-based installations via
HTTP, FTP, or NFS protocols.

 An ISO image is a single file that represents the content of an entire

DVD or CD.

Burning the image to a DVD and configuring a server for network-
based installation are beyond the scope of this book. This chapter
will focus on installing the operating system with an ISO image.

What is Needed for the Lab?
Throughout this book, there will be several discussions about
system, network, and security, along with examples on how to
implement and administer them. Each chapter will contain a
number of exercises that will help you perform certain tasks and
execute commands.

You’ll need a laptop or a desktop computer with at least a dual-
core processor, 8GB of physical memory, and 27GB of free
storage space to run two virtual machines with required storage.
If you want to use the static IP addresses on your home router,
make sure that you keep a map between them, and the ones
provided below to avoid any confusion. The computer must have
hardware virtualization support enabled in the BIOS to allow for
64-bit OS installation. Here is a snapshot of what is needed and
how it will be configured:

Base Operating
System:

Windows 10 or MacOS 10.12 or higher

Hypervisor Software: Oracle VirtualBox (VB) 5.2.24 or higher
Number of VMs: 2
vCPUs in each VM: 1
OS in each VM: RHEL 8.0
VM1 (RHEL8-VM1): server1.example.com with static IP 192.168.0.110,

1024MB memory, 1x10GB virtual disk for OS, and one
virtual network device. This VM will be built using the
RHEL 8 ISO image. Exercises 1-1 and 1-2 will walk
through the process of installation. In Chapter 17,
“Networking, Network Devices, and Network
Connections”, you will add another virtual network
device and will rename this server to
server10.example.com.

VM2 (RHEL8-VM2): server2.example.com with static IP 192.168.0.120,
2048MB memory, 1x10GB virtual disk for OS, and one
virtual network device. In Chapter 13, “Basic Storage
Partitioning”, you will add 4x250MB data disks for
parted and LVM exercises, 1x4GB data disk for VDO
exercises, and 2x1GB data disks for Stratis exercises
that are presented in chapters 13, 14, and 15. You wil
build this VM using the RHEL 8 ISO image by
referencing the steps outlined in Exercises 1-1 and 1-
In Chapter 17, “Networking, Network Devices, and
Network Connections”, you will add another virtual
network device and will rename this server to
server20.example.com.

The entire setup for the lab is shown in Figure 1-1.

Figure 1-1 Lab Setup

You will install VirtualBox 5.2.24 (or higher) on Windows 10 or
MacOS 10.12 (or higher). You may use VMware or other
virtualization software as an alternative; however, all of the
exercises and examples in this book reference VirtualBox (VB).

The RHEL Installer Program
The RHEL installer program is called Anaconda. There are several
configuration options on the main screen that require
modification before the installation process begins. Some of the
questions are compulsory and must be answered appropriately
while others are optional and may be skipped for post-installation
setup.

The configuration can be done in any sequence that you prefer.
You should have the minimum mandatory configuration data
handy and be ready to enter it when prompted. Some of the key
configuration items are language, keyboard type, time zone, disk
partitioning, hostname/IP, software selection, root password, user
information, and kdump.

Where Do Installation Logs Go?
There are plentiful log files created and updated as the
installation progresses. These files record configuration and
status information. You can view their contents after the
installation has been completed to check how the installation
proceeded. These files are described in Table 1-1.

File Description

/root/anaconda-ks.cfg Records the configuration entered

/root/install.log Lists the packages being installed

/root/install.log.syslog Stores general messages

/var/log/anaconda/anaconda.log Contains informational, debug, and
other general messages

/var/log/anaconda/ifcfg.log Captures messages related to
network interfaces and connections

/var/log/anaconda/journal.log Stores messages generated by
many services and components
during system installation

/var/log/anaconda/packaging.log Records messages generated by the
yum and rpm commands during
software installation

/var/log/anaconda/program.log Captures messages generated by
external programs

/var/log/anaconda/storage.log Records messages generated by
storage modules

/var/log/anaconda/syslog Records messages related to the
kernel

/var/log/anaconda/X.log Stores X Window System
information

/tmp/yum.log Contains messages related to yum
packages

Table 1-1 Installation Logs

Files in the /var/log/anaconda directory are actually created and
updated in the /tmp directory during the installation; however,
they are moved over once the installation is complete.

Virtual Console Screens
During the installation, there are six text-based virtual console
screens available to monitor the process, view diagnostic
messages, and discover and fix any issues encountered. The
information displayed on the console screens is captured in the
installation log files (Table 1-1). You can switch between screens
by pressing a combination of keys as described below.

Console 1 (Ctrl+Alt+F1): This is the main screen.
Before Anaconda begins, you will select a language to use during
installation, and then it will switch the default console to the sixth
screen (Console 6).

Console 2 (Ctrl+Alt+F2): The screen displays the shell
interface to run commands as the root user.

Console 3 (Ctrl+Alt+F3): This screen displays
installation messages and stores them in /tmp/anaconda.log file.
This file also captures information on detected hardware, in
addition to other data.

Console 4 (Ctrl+Alt+F4): This screen shows storage
messages and records them in /tmp/storage.log file.

Console 5 (Ctrl+Alt+F5): This screen displays program
messages and logs them to /tmp/program.log file.

Console 6 (Ctrl+Alt+F6): This is the default graphical
configuration and installation console screen.

Exercise 1-1: Download and Install
VirtualBox Software, and Create a
Virtual Machine
In this exercise, you will download and install VirtualBox software.
You will create a virtual machine to set up the foundation to
install RHEL 8 for the next exercise.

EXAM TIP: Downloading and installing VirtualBox software and creating
a virtual machine are not part of the exam objectives. These tasks have
been included here only to support readers with building their own lab
environment for practice.

Downloading and Installing VirtualBox

VirtualBox is available for free download and use. At the time of
this writing, the latest version is 6.0; however, you can use any
previous 5.x or a future version. Here is a quick guide on how to
download and install the current version of VirtualBox on a
Windows 10 computer.

1. Go to www.virtualbox.org (Figure 1-2) and click “Download
VirtualBox 6.0”.

Figure 1-2 VirtualBox Website

2. On the next screen, click on “Windows hosts”. This will
start the download to your computer.

http://www.virtualbox.org/

Figure 1-3 VirtualBox Download

The software is now available on your computer.

3. Double-click on the VirtualBox binary to start the
installation. Click Next to proceed on the first screen that
appears.

Figure 1-4 VirtualBox Installation 1

4. If needed, choose a different location on the disk to install
VirtualBox. Click Next to continue.

Figure 1-5 VirtualBox Installation 2

5. Untick any of the checked items if required and click Next
to continue.

Figure 1-6 VirtualBox Installation 3

6. Accept the warning and continue by pressing Yes.

Figure 1-7 VirtualBox Installation 4

7. The setup wizard is now ready to begin the installation.
Click Install to proceed.

Figure 1-8 VirtualBox Installation 5

8. Click Finish to continue.

Figure 1-9 VirtualBox Installation 6

This brings the installation of VirtualBox to a successful
completion. It will also launch the application.

Creating a Virtual Machine
Use VirtualBox to create the first virtual machine called RHEL8-
VM1 with specifications described earlier in this chapter. Here are
the steps for the creation.

9. Launch VirtualBox if it is not already running. The interface
looks similar to what is shown in Figure 1-10.

Figure 1-10 Virtual Machine Creation 1

10. Click on New on the top menu bar to start the virtual
machine creation wizard (see Figure 1-11). Enter the name
RHEL8-VM1, select Linux as the operating system type, and
Red Hat (64-bit) as the version. For this demonstration,
accept the default location to store the VM files on the C
drive. Click Next to continue.

Figure 1-11 Virtual Machine Creation 2

11. In the next window, specify the memory size you want
allocated to the VM. Accept the recommended 1GB for this
VM and click Next.

Figure 1-12 Virtual Machine Creation 3

12. The VM will need a hard disk to store the RHEL 8 operating
system. For this demonstration, choose the creation of a
virtual hard disk option, which is also the default selection.
The other two options are irrelevant for this exercise. You
will adjust the recommended hard disk size of 8GB in a
later step.

Figure 1-13 Virtual Machine Creation 4

13. The virtual hard disk is in essence a file. VirtualBox
supports three different virtual hard disk file types: VDI
(VirtualBox Disk Image), VHD (Virtual Hard Disk), and VMDK
(Virtual Machine Disk). These file types represent

VirtualBox, Microsoft, and VMware disk image formats.
Select the default, VDI, for this demonstration.

Figure 1-14 Virtual Machine Creation 5

14. There are a couple of methods to allocate storage for the
OS. A fixed allocation method reserves the entire specified
capacity for the disk right away and takes a while to create
the disk. In contrast, the dynamically allocated option only
uses the amount of disk space that is needed for the
storage without reserving the entire disk capacity. This
option is preferred over the former. Click Next to continue
with the default option.

Figure 1-15 Virtual Machine Creation 6

15. The RHEL 8 virtual disk image will be stored on a computer
disk. The name of the VDI file will match the name of the
virtual machine name. You can also specify the size for the
disk. Enter 10GB for the OS disk and leave the VDI file
storage location to the default.

Figure 1-16 Virtual Machine Creation 7

16. Clicking Next on the previous window completes the VM
creation process and ends the wizard. VirtualBox will have
the VM listed along with its configuration (see Figure 1-17).

Figure 1-17 Virtual Machine Creation 8

There are a number of other configurable items as depicted in
Figure 1-17. You may have to adjust the display controller setting
to VMSVGA under Display to view full screen content on the
console and attach the network adapter to Bridged Adapter
under Network for bi-directional communication with the
Windows host and the Internet.

Exercise 1-2: Download and Install
RHEL 8
This exercise will build server1 in RHEL8-VM1.

In this exercise, you will download RHEL 8 and install it in RHEL8-
VM1 that you created in Exercise 1-1. You will attach the RHEL 8
ISO image to the VM, name the Linux system
server1.example.com and IP 192.168.0.110. Additional
configuration will be supplied as the installation advances.

EXAM TIP: Downloading and installing RHEL 8 are beyond the scope of
the exam objectives. They have been included here only to support the
readers with building their own lab environment for practice.

The user creation, base environments, storage partitioning,
network device and connection configuration, time
synchronization, and other topics are not explained as part of this
exercise; however, they will be discussed in later chapters.

Downloading RHEL 8 ISO Image
RHEL 8 image is available for free download from Red Hat
Developer’s webpage. You need to create a user account in order
to log in and obtain a copy for yourself. Alternatively, you can use
your credentials on Facebook, Google, LinkedIn, Twitter, etc. for
login. For this demonstration, you will find instructions on how to
open a new account and download the software.

1. Visit https://developers.redhat.com/login and click “Create
one now”.

https://developers.redhat.com/

Figure 1-18 Red Hat User Account Creation 1

2. Fill out the form by providing a unique username, email
address, and password. Make sure to checkmark the boxes
to accept terms and conditions.

Figure 1-19 Red Hat User Account Creation 2

3. After an account has been created, go back to the login
page https://developers.redhat.com/login and submit the
credentials to log in.

4. Click on Linux at the top of the page under the Red Hat
Developer logo.

https://developers.redhat.com/login

Figure 1-20 Red Hat Developer Login

5. Click DOWNLOAD on the following page.
6. Click DOWNLOAD INTEL ISO on the subsequent page to

initiate a download.

The filename of the downloaded image for RHEL version 8.0 will
be rhel-8.0-x86_64-dvd.iso and it will be about 6.9GB in size. You
can move this file to a disk location on your computer where you
want it stored.

Attaching RHEL 8 ISO Image to the Virtual
Machine
We now attach the RHEL 8 ISO image to RHEL8-VM1 in order to
boot and install the OS in the VM. Click on “[Optical Drive]
Empty” under Storage in VirtualBox for this VM and select Choose
Disk Image. Navigate to where you have the ISO image stored.
Highlight the image and click Open to attach it to the VM. After
the image has been attached, the VirtualBox Storage
configuration will look like Figure 1-21.

Figure 1-21 Attach ISO Image to VM

Leave the rest of the settings to their default values.

Launching the Installer
7. While the VM is highlighted in VirtualBox, click the Start

button at the top to power up the VM.
8. A console screen pops up displaying the boot menu (Figure

1-22) with three options. Press the Spacebar key to halt the
autoboot process.

Figure 1-22 Boot Menu

The first option, “Install Red Hat Enterprise Linux 8.0.0”, is
usually used for installing RHEL 8 unless you want the installation
media tested for integrity before continuing, in which case you
will select the second option. Anaconda waits 60 seconds for you
to alter the selection, or it proceeds and autoboots using the
second option on the list, which is also the default. The third
option, “Troubleshooting”, allows you to address some boot-
related issues that might occur during installation.

Use the Up or Down arrow key to select the “Install Red Hat
Enterprise Linux 8.0.0” entry and press Enter. The installer is
launched in graphical mode.

9. The installer program shows a welcome screen with a long
list of supported languages that you could use during the
installation. The default is set to English. Click Continue to
accept the default and move on.

Figure 1-23 Language Selection

 If all the content does not fit on the console screen, try changing the

Graphics Controller to VMSVGA under Settings | Display in the VirtualBox
Manager for the VM.

10. The “Installation Summary” screen appears next, as shown
in Figure 1-24. You have the opportunity to make all
necessary configuration changes prior to starting the
installation. This screen presents a single interface to
configure localization (keyboard, language, date, time, and
time zone), software (installation source and software
selection), and system (disk selection and partitioning,
network and hostname assignments, etc.).

Figure 1-24 Installation Summary | Main

 Any items highlighted in red and with a warning sign must be

configured before the Begin Installation button at the bottom right of the
screen is enabled.

There is no particular sequence to configure these items. If you
do not wish to change a non-highlighted item, simply leave it
intact and the installation program will apply the default settings
for it.

Adding Support for Keyboards and
Languages

11. Anaconda presents additional choices for keyboard layouts
and languages for use during and after the installation. This

should only be done on systems where support for multiple
keyboard layouts and languages is required. The default is
the US English for both.

Configuring Time & Date
12. Click Time & Date to set the time zone (region and city),

date, and time for the system. See Figure 1-25. Click Done
in the upper left corner to save the changes and return to
the Installation Summary screen.

Figure 1-25 Installation Summary | Time & Date

Figure 1-25 reflects two adjustments from the default. The city is
changed to Toronto, and the clock format is switched to AM/PM.

Choosing an Installation Source
13. You can set the installation source for RHEL 8. By default,

Anaconda chooses the auto-detected local media (DVD,
USB flash drive, or ISO image) that was used to start this

installation. For this demonstration, leave the installation
source to the default. Click Done to return to the
Installation Summary page.

Figure 1-26 Installation Summary | Installation Source

If you have access to a configured network location hosting the
installation files, you can choose “On the network” and specify
the HTTP, HTTPS, FTP, or NFS protocol, hostname or IP address of
the network server, and the path to the files. You can also specify
the locations of additional software repositories, besides the
default AppStream, if you have access to them.

Selecting Software to be Installed
14. You can choose the base operating environment that you

want installed. Base environments are predefined groups of
software packages designed for specific use cases. The six
base environments are described in Table 1-2.

Base Environment Description

Server with GUI Infrastructure server with graphics support

Server Infrastructure server without graphics support

Minimal Install Installs a minimum number of packages for
basic system use

Workstation Ideal for desktop and laptop users who require
graphical support and with a minimal set of
services

Custom Operating
System

Gives you a set of basic building blocks for
custom installations

Virtualization Host Infrastructure plus virtualization support to host
virtual machines

Table 1-2 Installation Summary | Software Selection | Base
Environments

Choosing a base environment in the left pane reveals additional
components on the right that may be ticked for installation along
with the selected base environment. See Figure 1-27.

Figure 1-27 Installation Summary | Software Selection

The installer automatically picks and installs prerequisite
software components to fulfill dependency requirements for a

successful installation. The default base environment is “Server
with GUI” for this demonstration. Leave add-ons to the default as
well. Click Done to return to the Installation Summary page.

Configuring Installation Destination
15. The Installation Destination allows you to choose an

available local or remote disk for partitioning and installing
the OS on. Anaconda selects “Automatic partitioning
selected” (highlighted in red) on the Installation Summary
page (Figure 1-24), which you can change on Installation
Destination (Figure 1-28). By default, the 10GB virtual disk
you assigned to the VM initially is automatically picked up
by the installer as the target and it is represented as sda.
The “Encrypt my data” checkbox under Encryption
encrypts all partitions on the disk. If you choose this option,
you will be prompted to enter a passphrase to access the
partitions later. The “Full disk summary and bootloader”
link at the bottom left allows you to choose a disk to place
the bootloader program on. This does not need to be
modified on a single disk system. The default and the only
bootloader program available in RHEL 8 is called GRUB2,
and it is explained at length in Chapter 11, “Boot and
Initialization”.

Figure 1-28 Installation Summary | Installation
Destination

For this demonstration, stick to the default automatic partitioning
scheme. Simply click Done to return to the previous screen. This
scheme will create three partitions—/boot, /, and swap, and
together they will consume the entire selected disk.

Configuring Network and Hostname
16. Assigning appropriate IP and hostname are essential for

system functionality in a network environment. Click
Network & Hostname on the Installation Summary page
and a window similar to the one shown in Figure 1-29 will
appear. Anaconda detects all attached network interfaces,
but it does not automatically assign them IPs. Also, the
default hostname is set to localhost.localdomain. You need
to modify these assignments so that your system is able to
communicate with other systems on the network.
Currently, there is one network device assigned to the
system, which is represented as enp0s3.

 The terms “network interface” and “network device” refer to the

same network hardware component. These terms are used interchangeably
throughout this book. These terms are different from the term “network
connection”, which is the software configuration applied to a network
interface/device.

 The default naming convention for network devices vary based on

the underlying virtualization software being used.

Change the hostname to server1.example.com in the Hostname
field. For IP assignments, there are a couple of options. You can
obtain them automatically from an available DHCP server by
simply sliding the ON/OFF switch located in the top right-hand
corner. However, for this demonstration, click Configure at the
bottom right and enter IP information manually. You also need to
ensure that the network connection is set to autostart.

Figure 1-29 Installation Summary | Network & Hostname

There are multiple tabs available on the network connection
configuration screen, as depicted in Figure 1-30. Go to IPv4
Settings and choose Manual from the drop-down list against
Method. Click Add and enter address 192.168.0.110, netmask 24,
and gateway 192.168.0.1. Click Save to save the configuration
and return to the Network & Hostname window.

Figure 1-30 Installation Summary | Network & Hostname |
Configure

On the Network & Hostname window, slide the ON/OFF switch to
the ON position so that the new assignments take effect right
away. This will also ensure that the assignments are applied
automatically on subsequent system reboots.

Figure 1-31 Installation Summary | Network & Hostname

Now click Done to return to the Installation Summary page.
Chapter 17 “Networking, Network Devices, and Network
Connections” discusses configuring hostnames, network
interfaces, and network connections in detail.

Beginning Installation
17. You’re now on the Installation Summary page (Figure 1-

32). You still have the opportunity to go back and configure
or reconfigure any items you’ve missed. Once you are
satisfied, click Begin Installation at the bottom right to
initiate the installation based on the configuration entered
in the previous steps. Anaconda will now partition the
selected disk and install the software. Any data previously
stored on the disk will be erased and unrecoverable.

Figure 1-32 Installation Summary | Begin Installation

 The Begin Installation button remains inactive until all the items

highlighted in red and with a warning sign are configured.

The configuration and software copy will take some time to
complete. The progress will depend on the system performance
and resources allocated to the VM.

Setting root Password and Creating a User
Account

18. Once the installation has begun, a new screen, called
Configuration, pops up. See Figure 1-33. This is where you
can monitor the progress, and it also allows you to assign a
password to the root user and create a user account.

Figure 1-33 Configuration | User Settings

19. While the installer continues to run, click Root Password
and set a password for the root user. Click Done (two clicks
if the password entered is too short or simple) to return to
the Configuration screen.

20. Next, click User Creation to create a user account called
user1 and assign it a password. Leave the “Make this user
administrator” option unticked. See Figure 1-34. Click Done
(two clicks if the password entered is too short or simple) to
return to the Configuration screen.

Figure 1-34 Configuration | User Settings | Create User

Anaconda will set the root user password and create the user
account during the configuration part of the installation.

Concluding Installation
21. When the required setup is complete and all software

packages are installed, a Reboot button will appear at the
bottom right on the Configuration screen (Figure 1-35).
Click this button to reboot the new system.

Figure 1-35 Configuration | Finishing Installation

By default, VirtualBox does not automatically change the default
boot order. This results in rebooting the VM from the ISO image
again and restarting the installation. To avoid this situation,
power off the virtual machine from VirtualBox and alter the boot
sequence.

Changing Default Boot Order
22. Power off the VM from VirtualBox.
23. The current boot sequence, as shown in Figure 1-36, is set

to boot with floppy first and then optical (DVD/CD) followed
by hard disk.

Figure 1-36 VirtualBox Manager | System | Boot Order

24. Change this sequence to hard disk first and optical next.
See Figure 1-37. Untick Floppy, as it is not required.

Figure 1-37 VirtualBox Manager | System | Boot Order |
Alter

Now power up the VM from the VirtualBox Manager. It will boot
the installed OS.

Performing Post-Installation Tasks
25. The system initiates the Initial Setup application upon

restart so that you can complete certain post-installation
tasks. Figure 1-38 shows the Initial Setup screen with
license already accepted.

Figure 1-38 Initial Setup

26. On this screen you must click the License Information icon
and accept the license terms and conditions by ticking the
box beside “I accept the license agreement”. Click Done to
return to the Initial Setup screen.

27. The second item on the Initial Setup screen helps you
register this system with Red Hat’s subscription
management service to enable it to receive automatic
software updates and perform certain other management
tasks. Leave this item intact for this demonstration and
click Finish Configuration.

This brings the installation and initial configuration of RHEL 8 to a
successful completion.

Logging In and Out
Now that the installation is complete, you can log on to the
system. You selected the Server with GUI base environment,
which includes graphical desktop support to interact with the
system. You also entered credentials for a user account, user1,
during installation. You can now use this account to log in.

Logging In for the First Time
When you sign in with a new user account for the first time,
several screens appear in succession to allow you to configure a
few basic items for the user. Follow the steps below to go through
this process. You will not be prompted again for this configuration
upon next logon.

1. On the graphical logon screen, click user1 and enter the
password when prompted.

Figure 1-39 Graphical Desktop | Sign-in Screen

The login process continues, and a Welcome screen pops up that
shows the language that you had selected at the beginning of the
installation. You can change it to a different language if you so
desire. Click Next.

2. Add an Input Source to be used on the next screen. The
default is the US English keyboard type that you had
selected earlier. Click Next.

3. Enable the geographical location of this system to be
automatically determined for applications to use. The
default is set to on. Click Next.

4. You can connect one of your online user accounts such as
Google, Nextcloud, Microsoft, or Facebook in order to

access your email, contact, and other information and
services. Click Skip for this demonstration.

5. Click “Start using Red Hat Enterprise Linux” on the final
“Ready to Go” screen, Figure 1-40.

Figure 1-40 First Time User Login

6. A Getting Started help screen pops up (Figure 1-41). Here,
you can watch videos on how to launch applications, switch
tasks, and use windows and workspaces in the Graphical
User Interface (GUI). The help is available in text format as
well. You can close this window by clicking the x (exit)
button at the top right.

Figure 1-41 First Time User Login | Getting Started

7. The default graphical desktop included in RHEL 8 is the
GNOME desktop environment (Figure 1-42). You should now
be able to start using the system as user1.

Figure 1-42 GNOME Desktop Environment

GNOME stands for GNU Network Object Model Environment. It is the
default graphical display manager and desktop environment for users in
RHEL 8. Chapter 02 “Initial Interaction with the System” provides more
details on this topic.

Logging Out
8. Logging out of the system is easy. Click on the down arrow

(top right), expand user1 (the name of the logged-in user),
and click Log Out. See Figure 1-43. The user will be signed
out and the main login screen will reappear.

Figure 1-43 GNOME Desktop Environment| Log Out

Chapter 02 will explore how to navigate within the GNOME
desktop environment, execute basic Linux commands at the
command prompt, and obtain necessary help.

Chapter Summary
In this chapter, we started by looking at Linux history and
exploring available versions of Linux from Red Hat. We examined
various pre-installation items for our lab environment to prepare
for a smooth installation in order to practice the exercises and
labs presented in this book. We demonstrated downloading the
images for VirtualBox Manager software and RHEL 8. We built a
virtual machine and installed RHEL 8 in it. We completed post-
installation tasks to conclude the demonstration. Finally, we
logged in to the new system at the console to verify the
installation.

Check Your Understanding
1. The minimal Install base environment includes the

graphical support. True or False?
2. Can you install RHEL 8 in text mode?
3. You can use the /boot partition within LVM to boot RHEL.

True or False?
4. Which kernel version is the initial release of RHEL 8 based

on?
5. Several log files are created and updated in the /tmp

directory during the installation process. Where are these
files moved to after the completion of installation?

6. Name the RHEL installer program.
7. How many console screens do you have access to during

the installation process?
8. RHEL 8 may be downloaded from Red Hat’s developer site.

True or False?
9. RHEL 8 cannot be installed over the network. True or False?
10. What is the name of the default graphical user desktop if

Server with GUI is installed?

Answers to Check Your
Understanding

1. False. Minimal Install base environment does not include
graphics support.

2. Yes, RHEL 8 can be installed in text mode.
3. False. /boot cannot reside within LVM.
4. The initial release of RHEL 8 is based on kernel version

4.18.
5. These files are moved to the /var/log directory.
6. The name of the RHEL installer program is Anaconda.
7. There are six console screens available to you during the

installation process.
8. True. RHEL 8 may be downloaded from

developers.redhat.com. You need to open a new account or
use an existing before you can download it.

http://developers.redhat.com/

9. False. RHEL 8 can be installed with installation files located
on a network server.

10. The default graphical desktop is called GNOME desktop
environment.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the concepts
and topics learned in this chapter. It is expected that you perform
the labs without external help. A step-by-step guide is not
supplied, as the knowledge and skill required to implement the
lab has already been disseminated in the chapter; however, hints
to the relevant major topic(s) are included.

Lab 1-1: Build RHEL8-VM2 (server2)
Create another virtual machine called RHEL8-VM2 in VirtualBox,
attach the ISO image to it, and install RHEL 8. Use the
configuration provided in “What is Needed for the Lab?” and
follow the procedures outlined in Exercises 1-1 and 1-2.

Chapter 02

Initial Interaction with the
System

This chapter describes the following major topics:

Interact with display manager and understand
graphical interface

Overview of Linux directory structure
Recognize top-level directories
Understand command construct
Describe and run basic Linux commands
Obtain help using multiple native tools and
RHEL documentation

RHCSA Objectives:

01.Access a shell prompt and issue commands
with correct syntax

11.Locate, read, and use system documentation
including man, info, and files in /usr/share/doc

Wayland is an advanced display protocol that sets up
the foundation for running graphical applications,
which includes system administration tools, user

applications, as well as Linux graphical display and desktop
manager programs. Working in a graphical environment to
interact with the system is convenient for users with limited
command line knowledge or specific requirements.

Linux files are organized logically for ease of administration. This
file organization is maintained in hundreds of directories located
in larger containers (file systems). Red Hat Enterprise Linux
follows the File system Hierarchy Standard for file organization,
which describes names, locations, and permissions for many file
types and directories.

Linux offers a variety of commands for users and system
managers. User commands are general purpose that are
intended for execution by any user on the system. However,
system management commands require elevated privileges of
the superuser. Knowledge of these tools is essential for
productive usage and efficient administration of the system. This
chapter provides an analysis of command components and how
to construct a command. Following that, it introduces a few basic
user-level commands.

The availability of native help on the system simplifies task
execution for Linux users and system administrators alike. This
assistance is available on commands and configuration files via
locally installed searchable manual pages and documentation for
installed packages. In addition, Red Hat documentation website
provides a wealth of information on various topics, procedures,
and command usage.

Linux Graphical Environment

RHEL allows users to work in both text and graphical
environments. Text interface might be cumbersome, but many
administrators and programmers prefer to work in a text-mode
setting without needing graphics capabilities. Nevertheless, a
graphical environment provides easier and convenient interaction
with the OS by hiding the challenges that users may otherwise
experience when working in text-mode.

Wayland is a client/server display protocol that sets up the
foundation for running graphical programs and applications in
RHEL 8. It is available alongside the legacy X Window System,
which has been around in RHEL for decades. Wayland provides
superior graphics capabilities, features, and performance than X.
There are two components that are critical to the functionality of
a graphical environment: the display manager (a.k.a. login
manager) and the desktop environment. Both are launched
following the completion of the groundwork established by
Wayland.

Display/Login Manager
A display/login manager handles the presentation of graphical
login screen. It allows users to enter credentials to log on to the
system. A preconfigured graphical desktop manager appears
after the credentials are verified. In RHEL 8, the default display
manager is called GNOME Display Manager (GDM). Figure 2-1
provides an image of GDM.

Figure 2-1 GNOME Display Manager

The login screen presents a list of all normal user accounts that
exist on the system. You can log in as any one of them by
selecting the desired account. If you wish to sign in as an unlisted
user or the root user, click “Not Listed?” and enter the username
and password for the desired account. The current system day
and time also appear at the top of the login screen.

There are two downward arrowheads at the top right of the login
screen. The arrowhead on the left is to enable or disable an
accessibility feature. The arrowhead on the right allows you to
power off or reboot the system and change the system volume.
More controls become available after you have logged in. There
are three additional icons at the top right that show the network
connectivity, sound level, and battery/power status.

Desktop Environment
Once the credentials are validated for a user, the display/login
manager establishes a Desktop Environment (DE) to work in.
RHEL 8 comes with several graphical desktop software with
GNOME desktop environment set as the default. It provides an
easy and point-and-click GUI for users to run programs and

operating system tools. Figure 2-2 is an image of the default
GNOME desktop environment for root.

Figure 2-2 GNOME Desktop Environment

If you have worked with Microsoft Windows, you should have no
difficulty using this desktop environment. The default screen has
an Activities icon at the top left, which allows you to search and
access programs. Figure 2-3 depicts a list of application icons
when you click on Activities.

Figure 2-3 GNOME Desktop Environment | Activities

These application icons represent Firefox web browser, file
manager, software updates, GNOME help, and shell terminal. The
icon with nine dots displays all available programs, including
Settings. The Settings application includes administrative and
user-level controls to view or modify configuration items such as
Wi-Fi, Bluetooth, desktop background, notifications, regional
settings, privacy, sound, power, screensaver, network, and more.

Linux Directory Structure and File
Systems

Linux files are organized logically in a hierarchy for ease of
administration and recognition. This organization is maintained in
hundreds of directories located in larger containers called file
systems. Red Hat Enterprise Linux follows the Filesystem
Hierarchy Standard (FHS) for file organization, which describes
names, locations, and permissions for many file types and
directories.

Linux file systems contain files and subdirectories. A
subdirectory, also referred to as a child directory, is located under
a parent directory. The parent directory is a subdirectory of a
higher-level directory. The Linux directory structure is analogous
to an inverted tree, where the top of the tree is the root of the
directory, tree branches are subdirectories, and leaves are files.
The root of the directory is represented by the forward slash
character (/), and this is where the entire directory structure is
ultimately connected. The forward slash is also used as a
directory separator in a path, such as /etc/rc.d/init.d/functions.

In this example, the etc subdirectory is located under /, making
root the parent of etc (which is a child), rc.d (child) is located
under etc (parent), init.d (child) is located under rc.d (parent),
and functions (leaf) is located under init.d (parent) at the bottom.

 The term subdirectory is used for a directory that has a parent

directory.

Each directory has a parent directory and a child directory, with
the exception of the root and the lowest level subdirectories. The
root directory has no parent, and the lowest level subdirectory
has no child.

Top-Level Directories
The key top-level directories under the / are shown in Figure 2-4.
Some of these directories hold static data, while others contain
dynamic (or variable) information. Static data refers to file
content that remains unchanged unless modified explicitly.
Dynamic or variable data, in contrast, refers to file content that is

modified and updated as required by system processes. Static
directories normally contain commands, configuration files,
library routines, kernel files, device files, etc., and dynamic
directories contain log files, status files, temporary files, etc.

Figure 2-4 Linux Directory Structure

The hierarchical directory structure keeps related information
together in a logical fashion. Compare this concept with a file
cabinet containing several drawers, with each drawer storing
multiple file folders.

File System Categories
There are a variety of file system types supported in RHEL that
can be categorized in three basic groups: disk-based, network-
based, and memory-based. Disk-based file systems are typically
created on physical media such as a hard drive or a USB flash
drive. Network-based file systems are essentially disk-based file
systems that are shared over the network for remote access.
Memory-based file systems are virtual; they are created
automatically at system startup and destroyed when the system
goes down. The first two types of file systems store information
persistently, while any data saved in virtual file systems is lost at
system reboots.

During RHEL installation, two disk-based file systems are created
when you select the default partitioning. These file systems are

referred to as the root and boot file systems. Furthermore,
several memory-based file systems are vital to the operation of a
RHEL system.

The Root File System (/), Disk-Based
The root directory is the top-level file system in the FHS and
contains many higher-level directories that store specific
information. Some of the key directories are:

/etc: The etcetera (or extended text configuration) directory
holds system configuration files. Some common subdirectories
are systemd, sysconfig, lvm, and skel, which comprise
configuration files for systemd, most system services, the Logical
Volume Manager, and per-user shell startup template files,
respectively.

/root: This is the default home directory location for the root
user.

/mnt: This directory is used to mount a file system temporarily.

The size of the root file system is automatically determined by
the installer program based on the available disk space when you
select the default partitioning; however, it may be altered if
required.

The Boot File System (/boot) – Disk-Based
The /boot file system contains the Linux kernel, boot support
files, and boot configuration files. Just like the root file system,
the size of this file system is also automatically determined by
the installer program based on the available disk space when you
select the default partitioning; however, it may be set to a
different size during or after the installation if required.

The Home Directory (/home)
The /home directory is designed to store user home directories
and other user contents. Each user is assigned a home directory

to save personal files, and the user can block access to other
users.

The Optional Directory (/opt)
This directory can be used to hold additional software that may
need to be installed on the system. A subdirectory is created for
each installed software.

The UNIX System Resources Directory (/usr)
This directory contains most of the system files. Some of the
important subdirectories are:

/usr/bin: The binary directory contains crucial user executable
commands.

/usr/sbin: Most commands are required at system boot, and
those that require the root user privileges in order to run are
located in this system binary directory. In other words, this
directory contains crucial system administration commands that
are not intended for execution by normal users (although they
can still run a few of them). This directory is not included in the
default search path for normal users because of the nature of
data it holds.

/usr/lib and /usr/lib64: The library directories contain
shared library routines required by many commands and
programs located in the /usr/bin and /usr/sbin directories, as well
as by the kernel and other applications and programs for their
successful installation and operation. The /usr/lib directory also
stores system initialization and service management programs.
The subdirectory /usr/lib64 contains 64-bit shared library
routines.

/usr/include: This directory contains header files for C
language.

/usr/local: This directory serves as a system administrator
repository for storing commands and tools downloaded from the
web, developed in-house, or obtained elsewhere. These
commands and tools are not generally included with the original
Linux distribution. In particular, /usr/local/bin holds executables,
/usr/local/etc holds configuration files, and /usr/local/lib and
/usr/local/lib64 holds library routines.

/usr/share: This is the directory location for manual pages,
documentation, sample templates, configuration files, etc., that
may be shared with other Linux platforms.

/usr/src: This directory is used to store source code.

The Variable Directory (/var)
The /var directory contains data that frequently changes while
the system is operational. Files in this directory contain log,
status, spool, lock, and other dynamic data. Some common
subdirectories under /var are:

/var/log: This is the storage for most system log files, such as
system logs, boot logs, user logs, failed user logs, installation
logs, cron logs, mail logs, etc.

/var/opt: This directory stores log, status, and other variable
data files for additional software installed in /opt, t.

/var/spool: Directories that hold print jobs, cron jobs, mail
messages, and other queued items before being sent out to their
intended destinations are located here.

/var/tmp: Large temporary files or temporary files that need
to exist for longer periods of time than what is typically allowed
in another temporary directory, /tmp, are stored here. These files
survive system reboots and are automatically deleted if they are
not accessed or modified for a period of 30 days.

The Temporary Directory (/tmp)
This directory is a repository for temporary files. Many programs
create temporary files here during runtime or installation. These
files survive system reboots and are automatically removed if
they are not accessed or modified for a period of 10 days.

The Devices File System (/dev), Virtual
The Devices (dev file system) file system is accessible via the
/dev directory, and it is used to store device nodes for physical
hardware and virtual devices. The Linux kernel communicates
with these devices through corresponding device nodes located
here. These device nodes are automatically created and deleted
by the udevd service (a Linux service for dynamic device
management) as necessary.

There are two types of device files: character (or raw) device
files, and block device files. The kernel accesses devices using
one of these files or both.

Character devices are accessed serially with streams of bits
transferred during kernel and device communication. Examples
of such devices are console, serial printers, mice, keyboards,
terminals, etc.

Block devices are accessed in a parallel fashion with data
exchanged in blocks (parallel) during kernel and device
communication. Data on block devices is accessed randomly.
Examples of block devices are hard disk drives, optical drives,
parallel printers, etc.

The Procfs File System (/proc), Virtual
The Procfs (process file system) file system is accessible via the
/proc directory, and it is used to maintain information about the
current state of the running kernel. This includes the details for
current hardware configuration and status information on CPU,
memory, disks, partitioning, file systems, networking, running
processes, and so on. This information is stored in a hierarchy of
subdirectories that contain thousands of zero-length pseudo files.

These files point to relevant data maintained by the kernel in the
memory. This virtual directory structure simply provides an easy
interface to interact with kernel-maintained information. The
Procfs file system is dynamically managed by the system.

The contents in /proc are created in memory at system boot time,
updated during runtime, and destroyed at system shutdown.

The Runtime File System (/run), Virtual
This virtual file system is a repository of data for processes
running on the system. One of its subdirectories, /run/media, is
also used to automatically mount external file systems such as
those that are on optical (CD and DVD) and flash USB.

The contents of this file system are automatically deleted at
system shutdown.

The System File System (/sys), Virtual
Information about hardware devices, drivers, and some kernel
features is stored and maintained in the /sys file system. This
information is used by the kernel to load necessary support for
the devices, create device nodes in /dev, and configure the
devices. This file system is auto-maintained as well.

Viewing Directory Hierarchy
The tree command lists a hierarchy of directories and files. There
are a number of options with this command that can be specified
to include additional information. Table 2-1 describes some
common options.

Option Description

-a Includes hidden files in the output

-d Excludes files from the output

-h Displays file sizes in human-friendly
format

-f Prints the full path for each file

-p Includes file permissions in the
output

Table 2-1 tree Command Options

Let’s try to understand the usage of the tree command with the
help of some examples:

To list only the directories (-d) in the root user’s home directory
(/root):

The output above indicates that there are eight directories under
/root.

To list files in the /etc/sysconfig directory along with their
permissions (-p), sizes in human-readable format (-h), and full
path (-f):

The output shows permissions in column 1, sizes in column 2,
and full path of the files in column 3.

Run man tree at the command prompt to view the manual
pages of the tree command for additional options and their
usage.

Basic System Commands
There are hundreds of commands available in RHEL that range
from simple to complex in terms of their construct and usage.
Commands can be combined to build complex structures for
innovative use cases. Some commands offer a few options, while
others have as many as 70 or more. This section furnishes an
understanding of how commands are formed and demonstrates
the use of some of the basic, common Linux commands. You will
learn more commands and their advanced usages throughout
this book.

Starting a GNOME Terminal Session
In order to issue commands and run programs at the command
prompt, you need access to a terminal session. It you are logged
in as the root user on the GNOME desktop, you can launch a
terminal session by clicking the terminal icon (second icon from
the bottom under Activities). Figure 2-5 illustrates a typical
terminal window.

Figure 2-5 GNOME Desktop Environment | Activities |
Terminal

The header bar as depicted in Figure 2-5 displays the logged-in
username, hostname, and your current directory location.
Underneath the header are several menu items that contain sub-
items for viewing and customizing the terminal window,
copying/pasting text, searching for text, and so on. For instance,
you can click Edit | Preferences and change the background color,
cursor style/type, screen size, font size, etc.

The “[root@server1 ~]#” is the default representation of the
command prompt. It reflects the logged-in username (root, user1,
etc.), hostname of the system (server1, server2, etc.), and your
current directory location, all enclosed within the square brackets
[]. The command prompt ends with the hash sign (#) for the root
user or the dollar sign ($) for normal users (user1, etc.) outside of
the closing square bracket. Commands are typed at the cursor
position and executed by pressing the Enter key.

Understanding the Command Mechanics
To practice the commands provided in this chapter, you can log in
as user1, run the commands, and observe their outputs.
However, as you are learning Linux system administration, it’s
important to feel comfortable working as root in the beginning. If
something breaks, server1 and server2 are built for testing so
they can be rebuilt.

The basic syntax of a Linux command is:

command option(s) argument(s)

Options (a.k.a. a switch of flag) are optional. You can specify zero
or more options with a command. Arguments, in contrast, may be
optional or mandatory depending on the command and its usage.
Many commands have preconfigured default options and
arguments. You are not required to specify them. Other
commands do require at least one option or argument in order to
work. An option modifies the behavior of the command. An
argument supplies a target on which to perform the command
action.

An option may start with a single hyphen character (-la, for
instance), and it is referred to as the short-option format. Each
individual letter in this depiction represents a separate option (l
and a are two options in -la). This is a frequent format throughout
this book.

An option may also begin with two hyphen characters (--all, for
instance), and it is referred to as the long-option format. All
letters in this representation are collectively identified as a single
option (-all is one option).

The following examples express some command structures with a
description on the right that states the number of options and
arguments supplied:

ls No option, no explicit argument; the default
argument is the current directory name

ls -l One option, no explicit argument; the default
argument is the current directory name

ls -al Two options, no explicit argument; the default
argument is the current directory name

ls --all One option, no explicit argument; the default
argument is the current directory name

ls -l
directory_name

One option, one explicit argument

EXAM TIP: Use online help on the usage of a command if needed. Refer
to “Getting Help” later in this chapter for more on how to access and use
help.

Now let’s take a look at some essential Linux commands and
understand their usage.

Listing Files and Directories
One of the most rudimentary commands in Linux is the ls (list)
command. It is used to show the list of files and directories. This
command supports a multitude of options, some of which are
listed in Table 2-2 along with a short explanation.

Option Description

-a Includes hidden files and directories in the output. A file
or directory name that begins with the period character
(.) is considered hidden.

-l Displays long listing with detailed file information
including the file type, permissions, link count, owner,
group, size, date and time of last modification, and
name of the file

-ld Displays long listing of the specified directory but hides
its contents

-lh Displays long listing with file sizes shown in human-
friendly format

-lt Lists all files sorted by date and time with the newest
file first

-ltr Lists all files sorted by date and time with the oldest file
first (reverse)

-R Lists contents of the specified directory and all its
subdirectories (recursive listing)

Table 2-2 ls Command Options

A grasp of the usage of this command and the output it produces
is important. The following examples will illustrate the impact of
options used with the ls command. Again, log in as the root user,
if you are not already, to run these examples.

To list files in the current directory with the assumption that you
are in the /root directory:

To list files in the current directory with detailed information:

The long listing in the output above furnishes a unique piece of
information about the file or directory in nine discrete columns:

Column 1: The first character (hyphen or d) divulges the file
type, and the next nine characters (rw-rw-r--) indicate
permissions.
Column 2: Displays the number of links (links are explained later
in this chapter)
Column 3: Shows the owner name
Column 4: Exhibits the owning group name
Column 5: Identifies the file size in bytes. For directories, this
number reflects the number of blocks being used by the directory
to hold information about its contents.
Columns 6, 7, and 8: Displays the month, day, and time of
creation or last modification
Column 9: Indicates the name of the file or directory

 As an alternative to ls -l, you may use its shortcut ll for brevity and

convenience unless there is a specific need to use the former.

To show the long listing of only the specified directory without
showing its contents:

To display all files in the current directory with their sizes in
human-friendly format:

To list all files, including the hidden files, in the current directory
with detailed information:

To repeat the previous example with the output sorted by date
and time with the newest file first:

To list contents of the /etc directory recursively:

Run man ls at the command prompt to view the manual pages of
the ls command with all the options it supports and how to use
them.

Printing Working Directory
The pwd (print working directory or present working directory)
command displays a user’s current location in the directory tree.
The following example shows that root is currently in the /root
directory:

/root is the home directory for the root user. The pwd command
always returns the absolute path to a file or directory.

Navigating Directories
Files are placed in various directories in Linux, and there are tens
of thousands of them. Each file and directory is recognized by a
unique path in the directory tree. A path (or pathname) is like a
road map that shows you how to get from one place in the
directory hierarchy to another. It uniquely identifies a particular
file or directory by its absolute or relative location in the directory
structure.

An absolute path (a.k.a. a full path or a fully qualified pathname)
points to a file or directory in relation to the top of the directory
tree. It always starts with the forward slash (/). You can use the
pwd command to view your current absolute path in the tree:

The output indicates that /root is the current location for the root
user in the directory hierarchy, and the leading / identifies this
location as a full path.

A relative path, on the other hand, points to a file or directory in
relation to your current location. This file path never begins with
the forward slash (/). It may begin with two period characters (..)
or with a subdirectory name without a leading /, such as
etc/sysconfig.

It’s easy to navigate in the directory hierarchy if you have a good
understanding of the absolute and relative paths and the key
difference between them. Let’s run a couple of examples using
the cd (change directory) command, which is used to switch
between directories, and verify the result with the pwd command.

To determine the current location and then go one level up into
the parent directory using the relative path:

The above sequence of commands display the current location
(/root output of pwd), then move one level up (cd .. is relative to
the current location), and finally verify the new location (/ output
of pwd). You may want to use the absolute path (cd /) instead of
(cd ..) to go to the top of the directory tree (parent directory of
/root).

Now, let’s switch to the directory sysconfig, which is located
under /etc. There are two options: the absolute path
(/etc/sysconfig), or the relative path (etc/sysconfig):

To change into the /usr/bin directory, for instance, you can run
either of the following:

The above example indicates that the absolute path can be used
to switch into a target directory regardless of your current
location in the hierarchy. However, a relative path must be
entered based on your current location in order to move to a
target directory.

At this point, if you want to return to your home directory, you
can simply run the cd command without inputting a path or by
supplying the tilde character (~) with it. Either of the two will
produce the desired result.

In the above example, you could also use the absolute path (cd
/root) or a relative path (cd ../../root) instead.

To switch between the current and previous directories, issue the
cd command with the hyphen character (-). See the following
example and observe the output:

The example shows the use of the hyphen character (-) with the
cd command to switch between the current and previous
directories.

Identifying Terminal Device File
Linux allocates unique pseudo (or virtual) numbered device files
to represent terminal sessions opened by users on the system. It
uses these files to communicate with individual sessions. By
default, these files are stored in the /dev/pts (pseudo terminal
session) directory. These files are created by the system when a
user opens a new terminal session and they are removed on its
closure. The destroyed files are recreated and reused for new
terminal sessions.

Linux provides a command called tty (teletype) to identify your
current active terminal session. Here is an example:

The output discloses the filename “0” and its location (/dev/pts
directory).

Inspecting System’s Uptime and Processor
Load
The uptime command is used to display the system’s current
time, length of time it has been up for, number of users currently
logged in, and the average CPU (processing) load over the past 1,
5, and 15 minutes. See the following output:

The output shows the current system time (08:22:25), up
duration (1 day, 23 hours, and 58 minutes), number of logged-in
users (2), and the CPU load averages over the past 1, 5, and 15
minutes (0.00, 0.00, and 0.00), respectively.

The load average numbers correspond to the percentage of CPU
load with 0.00 and 1.00 represent no load and full load, and a
number greater than 1.00 signifies excess load (over 100%).

Clearing the Screen
The clear command clears the terminal screen and places the
cursor at the top left of the screen. This command is useful to
clear the screen of any distractive content and run new
commands on a clean slate.

You can also use Ctrl+l for this command.

Determining Command Path
RHEL provides a set of tools that can be used to identify the
absolute path of the command that will be executed when you

run it without specifying its full path. These tools are the which,
whereis, and type commands. The following examples show the
full location of the ls command:

As shown above, all three commands responded with an identical
path location for the ls command, which is /usr/bin/ls. This implies
that there is no need to type the entire path /usr/bin/ls to run the
ls command, as the system will automatically determine the
location of ls based on some predefined settings. Refer to
Chapter 07 “The Bash Shell” for more guidance.

Viewing System Information
There are several elements in the RHEL system that identify
various information regarding the operating system, hardware,
kernel, storage, networking, and so on. The uname command
identifies elementary information about the system including its
hostname. Without any options, the output of this command is
restricted to displaying the operating system name only;
however, it reports other details by adding the -a option.

The data returned by the second command above is elaborated
below:

Linux Kernel name
server1.example.com Hostname of the system
4.18.0-80.el8.x86_64 Kernel release
#1 SMP Wed Mar 13 12:02:46 Date and time of the kernel built
UTC 2019
x86_64 Machine hardware name
x86_64 Processor type
x86_64 Hardware platform

GNU/Linux Operating system name

Try running the uname command with the -s (kernel name), -n
(node name), -r (kernel release), -v (kernel build date), -m
(hardware name), -p (processor type), -i (hardware platform), and
-o (OS name) options separately to view specific information.

Viewing CPU Specs
A CPU has many architectural pieces that can be looked at using
the lscpu command. These pieces include the CPU architecture,
its operating modes, vendor, family, model, speed, cache
memory, and whether it supports virtualization. The following
example shows the CPU information from server1:

The output indicates the architecture of the CPU (x86_64),
supported modes of operation (32-bit and 64-bit), sequence
number of the CPU on this system (1), threads per core (1), cores
per socket (1), number of sockets (1), vendor ID (GenuineIntel),
CPU model (58) model name (Intel …), speed (2294.784 MHz),
the amount and levels of cache memory (L1d, L1i, L2, and L3),
and other information.

Getting Help
While working on the system, you may require help to obtain
information about a command or a configuration file. RHEL offers
online help via manual pages. Manual pages are online
documentation that provides details on commands, configuration
files, etc. They are installed under the /usr/share/man directory
when associated software packages are installed.

In addition to the manual pages, apropos, whatis, info, and pinfo
commands as well as documentation located in the
/usr/share/doc directory are also available on the system.

EXAM TIP: If you need help with a command or configuration file, do not
hesitate to use the man pages, refer to the documentation available in
the /usr/share/doc directory, or employ one of the other help tools.

Accessing Manual Pages
Use the man command to view manual pages. The following
example shows how to check manual pages for the passwd
command:

The output returns the name of the command, the section of the
manual pages it is documented in within the parentheses, and
the type (User utilities) of the command on line 1. It then shows a
short description (NAME), the command’s usage (SYNOPSIS), and
a long description (DESCRIPTION), followed by a detailed
explanation of each option that the command supports and other
relevant data. The highlighted line at the bottom indicates the
line number of the manual page. Press h to get help on
navigation, press q to quit and return to the command prompt,
use the Up and Down arrow keys to scroll up and down, and the
PgUp and PgDn keys to scroll one page at a time.

Table 2-3 summarizes the six keys described above and
introduces a few more to assist in navigation.

Key Action

Enter / Down arrow Moves forward one line

Up arrow Moves backward one line

f / Spacebar / Page
down

Moves forward one page

b / Page up Moves backward one page

d / u Moves down / up half a page

g / G Moves to the beginning / end of the man pages

:f Displays line number and bytes being viewed

q Quits the man pages

/pattern Searches forward for the specified pattern

?pattern Searches backward for the specified pattern

n / N Finds the next / previous occurrence of a pattern

h Gives help on navigational keys

Table 2-3 Navigating within Manual Pages

Run man on any of the commands that you have reviewed so far
and navigate using the keys provided in Table 2-3 for practice.

Headings in the Manual
Each page in the manual organizes information under several
headings. Some common headings are NAME (of the command or

file with a short description), SYNOPSIS (syntax summary),
DESCRIPTION (an overview of the command or file), OPTIONS
(options available for use), EXAMPLES (some examples to explain
the usage), FILES (a list of related files), SEE ALSO (reference to
other manual pages or topics), BUGS (any reported bugs or
issues), and AUTHOR (contributor information). You may find a
subset of these headings or additional headings depending on
what information is documented for that command or file.

Manual Sections
Depending on the type of information, the manual information is
split into nine sections for organization and clarity. For instance,
section 1 refers to user commands (see “NAME” for an example
of the passwd command), section 4 contains special files, section
5 describes file formats for many system configuration files, and
section 8 documents system administration and privileged
commands that are designed for execution by the root user.

The default behavior of the man command is to search through
section 1 and each successive section until it finds a match.
There are a few commands in Linux that also have a
configuration file with an identical name. One instance is the
passwd command and the passwd file. The former is located in
the /usr/bin directory and the latter in the /etc directory.

When you run man passwd, the man command scans through
the manual pages and the first occurrence it finds is of the
passwd command that’s stored in section 1. If you want to
consult the manual pages of the passwd configuration file, you
would have to specify the section number with the command
(man 5 passwd) to instruct it to scan that one particular section
only.

The header at the top in the above output is an indication that
this help is for the passwd file and it is documented in section 5.

Searching by Keyword
Sometimes you need to use a command, but you can’t recall its
name. Linux allows you to perform a keyword search on manual
pages using the man command with the -k (lowercase) flag, or
the apropos command. These commands search all sections of
the manual pages and show a list of all entries matching the
specified keyword in their names or descriptions.

Before you can perform keyword searches on a new Linux
installation, you’ll need to run the mandb command in order to
build an indexed database of the manual pages. This activity
depends on the speed and the number of RHEL packages
installed on the system, and it should not take long to perform.
Simply type the command at the prompt and press the Enter key
as follows:

Now you are ready to run keyword lookups. As an example, to
find a forgotten XFS administration command, search for a string
“xfs” by running either man -k xfs or apropos xfs. Both will
produce an identical result.

Once you have identified the command you were looking for, you
can check that command’s manual pages for usage.

Some commands also support the use of the --help and -?
parameters. These parameters provide a brief list of options and
a description without going through the manual pages. For
example, to get quick help on the passwd command, run either
passwd --help or passwd -?:

 Not all commands support the --help and -? parameters.

Exposing Short Description
The whatis command searches for a short description of the
specified command or file in the manual database. It quickly
scans through the installed manual pages for the specified string
and displays all matching entries. For instance, the following
shows outputs of the command when run on yum.conf and
passwd files:

The first output indicates that the specified file is a configuration
file associated with the yum command, and the second output
points to three entries for the passwd file (one configuration file
and two commands).

You may alternatively run man -f yum.conf and yum -f passwd
for the exact same results. Both man -f and whatis produce
identical output.

The info and pinfo Commands
The info and pinfo commands display command documentation
in a document-like format in great detail. Documentation is
divided into sections called nodes. The header across the top of
the screen shows the name of the file being displayed, names of
the current, next, and previous nodes, and the name of the node
prior to the current node. The operation of the info and pinfo

commands is almost identical. The following example provides a
look at the first screen exhibited when either command is
executed on the ls:

While viewing help with info or pinfo, some common keys listed in
Table 2-4 will help you navigate efficiently.

Key Action

Down / Up arrows Moves forward / backward one line

Spacebar / Del Moves forward / backward one page

q Quits the tutorial

[/] Goes to the previous / next node in the
document

t Goes to the top node of the document

s Searches forward for the specified string

{ / } Searches for the previous / next occurrence of
the string

Table 2-4 Navigating within info Documentation

Run info/pinfo on any of the commands you have reviewed so far
and navigate using the keys provided in Table 2-4 for practice.

Documentation in the /usr/share/doc
Directory
The /usr/share/doc directory stores general documentation for
installed packages under subdirectories that match their names.
For example, the documentation for the gzip package includes
the following files:

These text files contain general information about the gzip
package. However, the manual pages and the info
documentation prove to be more resourceful to Linux users and
administrators.

Red Hat Enterprise Linux 8 Documentation
The website at docs.redhat.com hosts documentation for Red
Hat’s various products including RHEL 8 in HTML, PDF, and EPUB
formats (see Figure 2-6).

Figure 2-6 Red Hat’s Webpage for RHEL 8 Documentation

This set of documentation includes release notes, as well as
guides on planning, installation, administration, security, storage
management, virtualization, and so on. For reference, you can
download any of these guides for free in a format of your choice.

Chapter Summary
This chapter touched upon a few basic topics. We started by
looking at a new display protocol that has replaced the legacy X
Window System in RHEL 8. We interacted with the operating

http://docs.redhat.com/

system at the graphical console screen and examined various
settings.

Next, we reviewed the Linux file system structure standard and
significant higher-level subdirectories that consisted of static and
variable files, and were grouped logically into lower-level
subdirectories.

We analyzed command construct, and learned and run selected
user level commands for familiarity. These tools included listing,
viewing, and identifying basic information, and navigating in the
directory hierarchy.

Finally, we learned how to access online help for commands and
configuration files. We saw how to search through manual pages
for desired text. Explanations regarding what commands to use
were offered for additional help.

Check Your Understanding
1. What is the use of the apropos command?
2. Which Linux service creates device nodes at system

startup?
3. What is the function of the pwd command?
4. Which three formats RHEL 8 documentation is available in

at docs.redhat.com?
5. What type of information does section 5 in manual pages

contain?
6. Which protocol has replaced X Window System as the

default display protocol in RHEL 8?
7. Consider a Linux system with six processor cores. How

many times do you have to run the lscpu command to pull
information for all the cores?

8. Which two commands can you use to display the tutorial of
a command?

9. Which three categories can Linux file systems be divided
into?

10. Which three commands may be used to identify the full
path of a command?

http://docs.redhat.com/

11. Which Linux command displays the hierarchy of a
directory?

12. Linux commands may be categorized into two groups:
privileged and non-privileged. True or False?

13. What is the name of the default display manager in RHEL
8?

14. What are the -R and -a options used for with the ls
command?

15. What is the default number of days files in /tmp are kept
before they are automatically deleted if not accessed or
modified.

16. Which command can be used to determine the time the
kernel was build?

17. RHEL follows the Filesystem Hierarchy Standard. True or
False?

Answers to Check Your
Understanding

1. The apropos command can be used to perform a keyword
search in the manual pages.

2. The udevd service.
3. The pwd command shows the absolute path of the current

working directory.
4. The RHEL 8 documentation is available in PDF, EPUB, and

HTML formats.
5. Section 5 of the manual pages contain information on

configuration files.
6. Wayland is the new default display protocol in RHEL 8.
7. Only one time.
8. You can use the info or the pinfo command to display the

tutorial of a command.
9. Linux file systems may be divided into disk-based,

network-based, and memory-based file systems.
10. The which, whereis, and type commands may be used to

determine the full path for a specified command.
11. The tree command shows the hierarchy of a directory.
12. True.

13. GNOME Display Manager is the default display manager in
RHEL 8.

14. The -R option is used for recursive directory listing and the
-a option for listing hidden files.

15. Ten days.
16. The uname command shows the kernel build time.
17. True.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the concepts
and topics learned in this chapter. It is expected that you perform
the labs without external help. A step-by-step guide is not
supplied, as the knowledge and skill required to implement the
lab has already been disseminated in the chapter; however, hints
to the relevant major topic(s) are included.

Lab 2-1: Navigate Linux Directory Tree
As user1 on server1, execute the pwd command to check your
location in the directory tree. Run the ls command with
appropriate switches to show files in the current directory
including the hidden files. Change directory into /etc and run pwd
again to confirm the directory change. Switch back to the
directory where you were before, and run pwd again to verify.
(Hint: Basic System Commands).

Lab 2-2: Miscellaneous Tasks
As user1 on server1, execute the tty command to identify the
terminal device file. Observe the terminal number reported. Open
a couple of more terminal sessions, and run the tty command
and compare the terminal numbers. Execute the uptime
command and analyze the system uptime and processor load
information. Use the three commands—which, whereis, and
type—and identify the location of the vgs command. (Hint: Basic
System Commands).

Lab 2-3: Identify System and Kernel
Information
As user1 on server1, issue uname -a. Analyze the basic
information about the system and kernel reported. Run the lscpu
command and examine the key items relevant to the processor.
(Hint: Basic System Commands).

Lab 2-4: Use Help
As user1 on server1, run man uname and man 5 shadow, and
browse various headings and understand what they contain. Try
apropos ext4 and man -k ext4, whatis group, and observe
their outputs. (Hint: Getting Help).

Chapter 03

Basic File Management

This chapter describes the following major
topics:

Common types of file in Linux
Compress and uncompress files
Archive and compress files and directories
Edit files with the vim editor
Create, list, display, copy, move, rename,
and remove files and directories

Create file and directory links
Identify differences between copying and
linking

RHCSA Objectives:

06.Archive, compress, unpack, and
uncompress files using tar, star, gzip, and
bzip2

07.Create and edit text files

08.Create, delete, copy, and move files and
directories

09.Create hard and soft links

L inux supports different file types that are identified
based on the kind of data they store. There are files
that save information in plain text or binary format.

This file type is very common. There are other files that store
device information or simply point to the same data on the
disk. A good comprehension of Linux file types is important
for both Linux users and administrators.

Compressing and archiving one or more large files or an
entire directory hierarchy allows users to conserve disk
space or remote copy them at a faster pace. The resulting
compressed archive can be easily uncompressed and
unarchived whenever and wherever needed. RHEL offers
native tools to support both user needs.

Normal and application users and database and system
administrators all need to edit text files on a regular basis as
part of their job. Linux delivers several text editors for this
purpose, including the vim editor, which is popular within the
Linux community. A sound, working knowledge of this tool is
essential for all these roles.

There are a number of common operations that can be
performed on files and directories in addition to viewing their
contents. These operations include creating, listing, copying,
moving, renaming, and removing both files and directories.
Normal users will require higher privilege in order to perform
these operations outside of their realm.

There is a tool available in the operating system that helps in
linking files and directories for various use cases. An
understanding of when to link files or directories versus
when to copy them is important.

Common File Types
RHEL supports seven types of files: regular, directory, block
special device, character special device, symbolic link,
named pipe, and socket. The first two are the most common
in Linux. The two types of device files are used by the
operating system to communicate with peripheral devices.
There are many instances of symbolic links as well. The last
two types—named pipes and sockets—are used in inter-
process communication.

Linux does not require an extension to a file to identify its
type. It provides two elementary commands called file and
stat, in addition to the ls command, to ascertain the type of
data that a file may contain. This chapter discusses the first
five file types and skips the last two (named pipes and
sockets), as they are beyond the scope of this book.

Regular Files
Regular files may contain text or binary data. These files
may be shell scripts or commands in the binary form. When
you list a directory, all line entries for files in the output that
begin with the hyphen character (-) represent regular files.
The following truncated output is of the /root directory:

Notice the hyphen in field 1 of column 1 before rw. This
character indicates that the listed file is a regular file. Now,
let’s run the file and stat commands on this file and see what
they report:

The two commands report the file type differently. The first
command returns the specific type of data that the file
contains (ASCII text), and the latter simply states that it is a
regular file.

Directory Files
Directories are logical containers that hold files and
subdirectories. The following ls command output shows a
few directories from /usr/bin:

The letter “d” at the beginning of each line entry identifies
the file as a directory. Try running the file and stat
commands on /usr and see what they report.

Block and Character Special Device Files
Each piece of hardware in the system has an associated file
in the /dev directory that is used by the system to
communicate with that device. This type of file is called a
device file. There are two types of device files: character (or
raw) and block. In the example below, the ls command in

field 1 of column 1 distinguishes between the two with a “c”
for character and a “b” for block:

Use the file and stat commands on /dev/console and
/dev/sda files for additional verification.

Every hardware device such as a disk, CD/DVD, printer, and
terminal has an associated device driver loaded in the
kernel. The kernel communicates with hardware devices
through their respective device drivers. Each device driver is
assigned a unique number called the major number, which
the kernel uses to recognize its type.

Furthermore, there may be more than one instance of the
same device type in the system. In that case, the same
driver is used to control all those instances. For example,
SATA device driver controls all SATA hard disks and CD/DVD
drives. The kernel in this situation allots a minor number to
each individual device within that device driver category to
identify it as a unique device. This scheme applies to disk
partitions as well. In short, a major number points to the
device driver, and a minor number points to a unique device
or partition that the device driver controls.

In the above long listing, columns 5 and 6 depict the major
and minor number association for each device instance.
Major number 8 represents the block device driver for SATA
disks. Similarly (not shown in the above output), major
number 253 denotes the driver for device mapper (VDO
volumes, LVM logical volumes, etc.), and 11 signifies optical
devices. VDO volumes are discussed in Chapter 13 “Basic

Storage Partitioning” and LVM logical volumes are covered in
Chapter 14 “Advanced Storage Partitioning”.

Symbolic Links
A symbolic link (a.k.a. a soft link or a symlink) may be
considered a shortcut to another file or directory. If you issue
ls -l on a symbolically linked file or directory, the line entry
will begin with the letter “l”, and an arrow will be pointing to
the target link. For example:

Run the file and stat commands on /usr/sbin/vigr for
additional confirmation.

Compression and Archiving
Compression tools are used to compress one or more files to
conserve space. They may be used with archive commands,
such as tar or star, to create a single compressed archive of
hundreds of files and directories. A compressed archive can
then be copied to a remote system faster than a non-
compressed archive or stored at a backup location. RHEL
offers a multitude of compression tools such as gzip (gunzip)
and bzip2 (bunzip2).

The tar and star commands have the ability to preserve
general file attributes such as ownership, owning group, and
timestamp as well as extended attributes such as ACLs and
SELinux contexts.

 Chapter 04 “Advanced File Management” expounds on ACLs,

and Chapter 21 “Security Enhanced Linux” on SELinux.

The syntax and usage of tar and star commands are similar,
and most of the common options are identical. We discuss
only the tar command.

Using gzip and gunzip
The gzip/gunzip compression utility pair has been available
in Linux for over two decades. The gzip command is used to
create a compressed file of each of the specified files and it
adds the .gz extension to each file for identification. This tool
can be used with the -r option to compress an entire
directory tree, and with the -l option to display compression
information about a gzipped file. The -l option also instructs
the command to display the filename that will be given to
the file when it is uncompressed.

To compress the file fstab located in the /etc directory, copy
this file in the root user’s home directory /root using the cp
command and confirm with ls:

Now use the gzip command to compress this file and ls to
confirm:

Notice that the original file is compressed, and it now has the
.gz extension added to it. If you wish to view compression
information for the file, run the gzip command again with the
-l option:

To decompress this file, use the gunzip command:

Check the file after the decompression with the ls command.
It will be the same file with the same size, timestamp, and
other attributes.

Using bzip2 and bunzip2
The bzip2/bunzip2 is another compression pair that has been
available in Linux for a long time. The bzip2 command
creates a compressed file of each of the specified files and it
adds the .bz2 extension to each file for identification.

Let’s compress the fstab file again, but this time with bzip2
and confirm with ls:

Notice that the original file is compressed, and it now has the
.bz2 extension. To decompress this file, use the bunzip2
command:

Check the file after the decompression with the ls command.
It will be the same file with the same size, timestamp, and
other attributes.

Differences between gzip and bzip2
The function of both gzip and bzip2 is the same: to compress
and decompress files. However, in terms of the compression
and decompression rate, bzip2 has a better compression
ratio (smaller target file size), but it is slower. These
differences are evident on fairly large files. On small files,

you can use either of the two. Both commands support
several identical options.

Using tar
The tar (tape archive) command is used to create, append,
update, list, and extract files or an entire directory tree to
and from a single file, which is called a tarball or tarfile. This
command can be instructed to also compress the tarball
after it has been created.

tar supports a multitude of options such as those described
in Table 3-1.

Option Definition

-c Creates a tarball.

-f Specifies a tarball name.

-p Preserve file permissions. Default for the root user.
Specify this option if you create an archive as a
normal user.

-r Appends files to the end of an extant
uncompressed tarball.

-t Lists contents of a tarball.

-u Appends files to the end of an extant
uncompressed tarball provided the specified files
being added are newer.

-v Verbose mode.

-x Extracts or restores from a tarball.

Table 3-1 tar Command Options

The -r and -u options do not support adding files to an
existing compressed tarball.

A few examples are provided below to elucidate the use of
tar. Pay special attention to the syntax and options used in
each command and observe the output.

To create a tarball called /tmp/home.tar of the entire /home
directory, use the -v option for verbosity and the -f option to
specify the name of the archive file with the command. The
following is a truncated output of the command:

The resulting tarball will not include the leading forward
slash (/) in the file paths as indicated on line 1 of the output
even though the full path of /home is supplied. This is the
default behavior of the tar command, which gives you the
flexibility to restore the files at any location of your choice
without having to worry about the full pathnames. Use the -P
option at the creation time to override this behavior.

To create a tarball called /tmp/files.tar containing only a
select few files (two files in this example) from the /etc
directory:

To append files located in the /etc/yum.repos.d directory to
the existing tarball /tmp/home.tar:

To list what files are included in the home.tar tarball:

To restore a single file, etc/yum.conf, from /tmp/files.tar
under /root and confirm the output with ls:

To restore all files from /tmp/files.tar under /root and confirm
the output with ls:

tar also supports options to directly compress the target file
while being archived using the gzip or bzip2 command.
These options are described in Table 3-2.

Option Description

-j Compresses a tarball with bzip2

-z Compresses a tarball with gzip

Table 3-2 tar with Compression Options

You will use the options in Table 3-2 to create compressed
archives in Exercise 3-1.

EXAM TIP: Archiving and compression are tasks usually done
together to produce smaller archive files.

Exercise 3-1: Create Compressed Archives
This exercise should be done on server1 as root.

In this exercise, you will create a tarball called home.tar.gz of
the /home directory under /tmp and compress it with gzip.
You will create another tarball called home.tar.bz2 of the
/home directory under /tmp and compress it with bzip2. You
will list the content of home.tar.gz without uncompressing it
and then extract all the files in the current directory. Finally,
you will extract the bzip2-compressed archive in the /tmp
directory.

1. Create (-c) a gzip-compressed (-z) tarball under /tmp (-
f) for /home:

2. Create (-c) a bzip2-compressed (-j) tarball under /tmp
(-f) for /home:

3. List (-t) the content of the gzip-compressed archive (-f)
without uncompressing it:

4. Extract (-x) files from the gzip-compressed tarball (-f)
in the current directory:

5. Extract (-x) files from the bzip2-compressed (-f) tarball
under /tmp (a different directory location than the
current directory) (-C):

Run ls /tmp to view the list of extracted files.

File Editing
The vim editor is an interactive, full-screen visual text-editing
tool that allows you to create and modify text files. This tool
is available as a standard editor in all vendor UNIX versions
and Linux distributions. It does not require the graphical
capability and it is not heavy on compute resources. All text
editing within vim takes place in a buffer (a small chunk of
memory used to hold file updates). Changes can either be
written to the disk or discarded.

It is essential for you as a system administrator to master
the vim editor skills. The best way to learn vim is to practice
by opening or creating a file and run the vim commands. See
the manual pages of vim for details. Alternatively, you can
run the vimtutor command to view the tutorial.

Modes of Operation
The vim editor has three modes of operation: the command
mode, the input mode, and the last line mode. The fourth
mode is referred to as the visual mode, but it is not
discussed in the book.

The command mode is the default mode of vim. The vim
editor places you into this mode when you start it. While in
the command mode, you can carry out tasks such as copy,
cut, paste, move, remove, replace, change, and search on
text, in addition to performing navigational operations. This
mode is also known as the escape mode because the Esc key
is used to enter the mode.

In the input mode, anything that is typed on the keyboard is
entered into the file as text. Commands cannot be run in this
mode. The input mode is also called the edit mode or the
insert mode. You need to press the Esc key to return to the
command mode.

While in the command mode, you may carry out advanced
editing tasks on text by pressing the colon character (:),
which places the cursor at the beginning of the last line of
the screen, and hence it is referred to as the last line or
extended mode. This mode is considered a special type of
command mode.

Starting vim
The vim editor may be started by typing the command vim
at the command prompt, and it may follow an existing or a
new filename as an argument. Without a specified filename,
it simply opens an empty screen where you can enter text.
You can save the text in a file or discard using commands
provided in subsequent subsections.

Alternatively, you can supply a filename as an argument.
This way, vim will open the specified file for editing if the file
exists, or it will create a file by that name if it does not exist.

There are options available that you may specify at the time
of starting this editing tool. Refer to the manual pages for
more information.

Inserting text
Once vim is started, there are six commands that can switch
into the edit mode. These commands are simple lower and
uppercase i, a, and o, and are described in Table 3-3.

Command Action

i Inserts text before the current cursor position

I Inserts text at the beginning of the current line

a Appends text after the current cursor position

A Appends text to the end of the current line

o Opens a new line below the current line

O Opens a new line above the current line

Table 3-3 Inserting Text

Press the Esc key when you’ve finished entering text in the
edit mode to return to the command mode.

Navigating within vim
Navigation keys are helpful in editing small and large files.
They allow you to make rapid moves in the file. There are
multiple key sequences available within vim to control the
cursor movement. Some of the elementary keystrokes are
elaborated in Table 3-4.

Command Action

h Moves backward one character

j Moves downward one line

k Moves upward one line

l Moves forward one character

w Moves to the start of the next word

b Moves backward to the start of the preceding word

e Moves to the ending character of the next word

$ Moves to the end of the current line

Enter Moves to the beginning of the next line

Ctrl+f Scrolls down to the next page

Ctrl+b Scrolls up to the previous page

Table 3-4 Navigating within vim

You can precede any of the commands listed in Table 3-4 by
a numeral to repeat the command action that many times.
For instance, 3h would move the cursor three places to the
left, 5Enter would move the cursor five lines below, and
2Ctrl+f would move the cursor two screens down.

In addition, you can use 0 (zero) to move to the beginning of
the current line, [[to move to the first line of the file, and]]
to move to the last line of the file.

Deleting Text
vim provides several commands to carry out delete
operations. Some of the commands are described in Table 3-
5.

Command Action

x Deletes the character at the cursor position

X Deletes the character before the cursor location

dw Deletes the word or part of the word to the right of
the cursor location

dd Deletes the current line

D Deletes at the cursor position to the end of the
current line

:6,12d Deletes lines 6 through 12

Table 3-5 Deleting Text

You can precede any of the commands listed in Table 3-5,
except for the last line mode command, by a numeral to
repeat the command action that many times. For instance,
2X would delete two characters before the cursor position,
and 3dd would delete the current line and the two lines
below it.

Undoing and Repeating

Table 3-6 explicates the commands that undo the last
change made and repeat the last command run.

Command Action

u Undoes the previous command.

U Undoes all the changes done on the current line.

:u Undoes the previous last line mode command.

. (dot) Repeats the last command run.

Table 3-6 Undoing and Repeating

You can precede any of the commands listed in Table 3-6,
except for the U and :u commands, by a numeral to repeat
the command action that many times. For instance, 2u would
undo the previous two changes, and 2U would undo all the
changes done on the current and the previous lines.

Searching for Text
You can perform forward and reverse searches while in the
command mode by using the / and ? characters followed by
the string to be searched. For instance, in a file with
numerous occurrences of the string “profile,” you can run
/profile or ?profile for a forward or reverse search.

Table 3-7 summarizes these actions.

Command Action

/string Searches forward for a string

?string Searches backward for a string

n Finds the next occurrence of a string

N Finds the previous occurrence of a string

Table 3-7 Searching for Text

For forward searches, repeating “n” takes the cursor to the
previous occurrences of the searched string, and repeating

“N” moves the cursor to the next occurrences.

The behavior is reversed for backward searches. Repeating
“n” takes the cursor to the next occurrences of the searched
string, and repeating “N” moves the cursor to the previous
occurrences.

Replacing Text
Table 3-8 describes two last line mode commands that are
used to perform a search and replace operation.

Command Action

:%s/old/new Replaces the first occurrence of old with new in a
file. For example, to replace the first occurrence of
profile with Profile, use :%s/profile/Profile.

:%s/old/new/g Replaces all occurrences of old with new in a file.
For example, to replace all the occurrences of
profile with Profile in a file, use
:%s/profile/Profile/g.

Table 3-8 Replacing Text

If you have used either of these and would like to undo it,
use the last line mode command :u.

Copying, Moving, and Pasting Text
vim allows you to copy some text and paste it to the desired
location within the file. You can copy (yank) a single
character, a single word, or an entire line, and then paste it
wherever you need it. The copy function can be performed
on multiple characters, words, or lines simultaneously. Table
3-9 describes the copy, move, and paste commands.

Command Action

yl Yanks the current letter into buffer

yw Yanks the current word into buffer

yy Yanks the current line into buffer

p Pastes yanked data below the current line

P Pastes yanked data above the current line

:1,3co6 Copies lines 1 through 3 and pastes them after line
6

:4,6m9 Moves lines 4 through 6 after line 9

Table 3-9 Copying, Moving, and Pasting Text

You can precede any of the commands listed in Table 3-9,
except for the last line mode commands, by a numeral to
repeat the command action that many times. For instance,
2yw would yank two words, 2yy would yank two lines, and 2p
would paste two times.

Changing Text
There are numerous commands available within vim to
change and modify text as summarized in Table 3-10. Most
of these commands switch into the edit mode, so you will
have to press the Esc key to return to the command mode.

Command Action

cl Changes the letter at the cursor location

cw Changes the word (or part of the word) at the
cursor location to the end of the word

cc Changes the entire line

C Changes text at the cursor position to the end of
the line

r Replaces the character at the cursor location with
the character entered following this command

R Overwrites or replaces the text on the current line

J Joins the next line with the current line

xp Switches the position of the character at the cursor
position with the character to the right of it

~ Changes the letter case (uppercase to lowercase,
and vice versa) at the cursor location

Table 3-10 Changing Text

You can precede any of the commands listed in Table 3-10 by
a numeral to repeat the command action that many times.
For instance, 2cc would change the entire current and the
next line, and 2r would replace the current character and the
next character.

Saving and Quitting vim
When you are done with modifications, you can save or
discard them. Use one of the commands listed in Table 3-11
as required.

Command Action

:w Writes changes into the file without quitting vim

:w file2 Writes changes into a new file called file2 without
quitting vim

:w! Writes changes to the file even if the file owner
does not have write permission on the file

:wq Writes changes to the file and quits vim

:wq! Writes changes to the file and quits vim even if the
file owner does not have write permission on the
file

:q Quits vim if no modifications were made

:q! Quits vim if modifications were made, but we do
not wish to save them

Table 3-11 Saving and Quitting vim

The exclamation mark (!) can be used to override the write
protection placed on the file for the owner.

File and Directory Operations
This section elaborates on various management operations
that can be performed on files and directories. These
operations include creating, displaying contents, copying,
moving, renaming, and deleting files and directories. These
common operations can be performed by normal users who
own or have appropriate permissions. The root user can
accomplish these tasks on any file or directory on the
system, regardless of who owns it. In case there’s a lack of
user permissions, an error message is generated.

Creating Files and Directories
Files can be created in multiple ways using different
commands; however, there is only one command to create
directories.

Creating Empty Files Using touch
The touch command creates an empty file. If the file already
exists, it simply updates the timestamp on it to match the
current system date and time. Execute the following as root
in the root user’s home directory to create file1 and then run
ls to verify:

As expected, column 5 (the size column) in the output is 0,
meaning that file1 is created with zero bytes in size. If you
rerun the touch command on this file after a minute or so, a
new timestamp is placed on it:

The touch command has a few interesting options. The -d
and -t options set a specific date and time on a file; the -a
and -m options enable you to change only the access or the
modification time on a file to the current system time; and
the -r option sets the modification time on a file to that of a
reference file’s. Let’s use a couple of these options in the
examples below:

To set the date on file1 to September 20, 2019:

To change the modification time on file1 to the current
system time:

Try the rest of the options for practice.

Creating Short Files Using cat
The cat command allows you to create short text files. The
ending angle bracket “>” must be used to redirect the
output to the specified file (catfile1 in this example):

Nothing is displayed when you execute the above, as the
system is waiting for you to input something. Type some
text. Press the Enter key to open a new line and continue
typing. When you are done, press Ctrl+d to save the text in
catfile1 and return to the command prompt. You can verify
the file creation with the ls command.

Creating Files Using vim
You can use the vim editor to create and modify text files of
any size. Refer to the previous section in this chapter on how
to use vim.

Making Directories Using mkdir
The mkdir command is used to create directories. This
command shows an output if you run it with the -v option.
The following example demonstrates the creation of a
directory called dir1 in the root user’s home directory:

You can create a hierarchy of subdirectories by specifying the
-p (parent) option with mkdir. In the following example,
mkdir is used to create the hierarchy dir2/perl/perl5:

Notice the placement of options in the two examples. Many
commands in Linux accept either format.

Displaying File Contents
RHEL offers a variety of tools for showing file contents.
Directory contents are simply the files and subdirectories
that it contains. Use the ls command as explained earlier to
view directory contents.

For viewing files, you can use the cat, more, less, head, and
tail commands. These tools are explained below.

Using cat
cat displays the contents of a text file. It is typically used to
view short files. It shows the entire file on the screen. The
following example shows the .bash_profile file in the root
user’s home directory with the cat command:

You can add the -n option to the cat command to view the
output in numbered format.

Using tac
tac displays the contents of a text file in reverse. In the
example below, the .bash_profile file in the root user’s home
directory is displayed with the tac command:

Compare this output with that of the cat command’s. Both
are reversed.

Using less and more
Both less and more are text filters that are used for viewing
long text files one page at a time, starting at the beginning.
The less command is more capable than the more command.
less does not need to read the entire file before it starts to
display its contents, thus making it faster. The more
command is limited to forward text searching only, whereas
less is able to perform both forward and backward searches.
Run the less and more commands one at a time and observe
the visual difference in the outputs:

You can navigate with the keys described in Table 3-12 while
viewing the files with either tool.

Key Purpose

Spacebar / f Scrolls forward one screen

Enter Scrolls forward one line

b Scrolls backward one screen

d Scrolls forward half a screen

h Displays help

q Quits and returns to the command prompt

/string Searches forward for a string

?string Searches backward for a string; only applies to the
less command

n Finds the next occurrence of a string

N Finds the previous occurrence of a string; only
applies to the less command

Table 3-12 Navigating with less and more

If the /usr/bin/znew file is unavailable, use /etc/profile
instead.

Using head and tail
head displays the starting few lines of the specified text file.
By default, it returns the first ten lines. See the example
below:

The above output includes three empty lines as well. You can
pass a numeral to the command as an argument to limit the
number of lines in the output. For example, run the following
to view only the top three lines from /etc/profile:

On the other hand, the tail command displays the ending ten
lines from the specified file by default unless a numeral is
passed as an argument to alter the behavior. Issue the
following two commands on your terminal to witness the
difference:

The tail command is particularly useful when watching a log
file while it is being updated. The -f (follow) option enables
this function. The following example enables us to view the
updates to the system log file /var/log/messages in real time:

You may have to wait for some time before you see an
update. Press Ctrl+c to quit when you are done.

Counting Words, Lines, and Characters in
Text Files
The wc (word count) command displays the number of lines,
words, and characters (or bytes) contained in a text file or
input supplied. For example, when you run this command on
the /etc/profile file, you will see output similar to the
following:

Column 1 in the output discloses the number of lines (85) in
the file followed by the number of words (294), the number
of characters (or bytes) (2078), and the filename
(/etc/profile).

You can use the options listed in Table 3-13 to restrict the
output as desired.

Option Action

-l Prints a count of lines

-w Prints a count of words

-c Prints a count of bytes

-m Prints a count of characters

Table 3-13 wc Command Options

The following example displays only the count of characters
in /etc/profile:

Try running wc with the other options and observe the
outcomes.

Copying Files and Directories
The copy operation duplicates a file or directory. RHEL
provides the cp command for this purpose and it has a
variety of options.

Copying Files
The cp command copies one or more files within a directory
or to another directory. To duplicate a file in the same
directory, you must give a different name to the target file.
However, if the copy is being made to a different directory,
you can use either the same filename or assign a different
one. Consider the following examples:

To copy file1 as newfile1 within the same directory:

To copy file1 by the same name to another existing directory
dir1:

By default, the copy operation overwrites the destination file
if it exists without presenting a warning. To alter this
behavior, use the -i (interactive) option to instruct cp to
prompt for confirmation before overwriting:

Press Enter after keying in a “y” for yes or an “n” for no to
proceed.

By default, you do not need to specify the -i option for yes/no
confirmation if you attempt to copy a file to overwrite the
destination file as root. The predefined alias—“alias cp=’cp -
i’”—in the .bashrc file in the root user’s home directory takes
care of that.

Copying Directories
The cp command with the -r (recursive) option copies an
entire directory tree to another location. In the following
example, dir1 is copied to dir2 and then the directory
contents of dir2 are listed for validation:

You may use the -i option for overwrite confirmation if the
destination already has a matching file or directory.

Try running ls -l dir2 -R to view the entire dir2 hierarchy.

The cp command can also use -p, which can provide the
ability to preserve the attributes (timestamp, permissions,
ownership, etc.) of a file or directory being copied. Try
running cp -p file1 /tmp and then use ls -l to compare the
attributes for both files.

Moving and Renaming Files and
Directories
A file or directory can be moved within the same file system
or to another. Within the file system move, an entry is added
to the target directory and the source entry is removed,
which leaves the actual data intact. On the other hand, a
move to a different file system physically moves the file or
directory content to the new location and deletes the source.

A rename simply changes the name of a file or directory;
data is not touched.

Moving and Renaming Files
The mv command is used to move or rename files. The -i
option can be specified for user confirmation if a file by that
name already exists. The following example moves file1 to
dir1 and prompts for confirmation:

By default, you do not need to specify the -i option for yes/no
confirmation if you attempt to move a file to overwrite the
destination file as root. The predefined alias—“alias mv=’mv
-i’”—in the .bashrc file in the root user’s home directory
takes care of that.

To rename newfile1 as newfile2:

Verify the above operations with ls -l.

Moving and Renaming Directories
Use the mv command to move a directory and its contents to
somewhere else or to change the name of the directory. For

example, you can move dir1 into dir2 (dir2 must exist,
otherwise it will be a simple rename operation):

To rename dir2 as dir20:

Verify the above operations with ls -l.

Removing Files and Directories
The remove operation deletes a file entry from the directory
structure and marks its data space as free. For a directory,
the remove operation weeds corresponding entries out from
the file system structure.

Removing Files
You can remove a file using the rm command, which deletes
one or more specified files. For example, issue the following
command to erase newfile2:

By default, you do not need to specify the -i option for yes/no
confirmation if you attempt to remove a file as root. The
predefined alias—“alias rm=’rm -i’”—in the .bashrc file in the
root user’s home directory takes care of that.

The rm command can also be used to remove a file that has
a wildcard character, such as an asterisk (*) or a question
mark (?), embedded in its name. These characters have
special meaning to the shell, and filenames containing them
must be prepended with the backslash character (\) to
instruct the shell to treat them as regular characters.

 A careful use of the rm command is particularly important when

you have administrative rights on the system.

For example, if a file exists by the name * under the /tmp
directory (use touch /tmp/* to create it), you can remove it
by executing rm /tmp/*. If you mistakenly run rm /tmp/*
instead, all files under /tmp will be deleted.

Wildcard characters are used in filename globbing and in
commands where an action needs to occur on multiple files
matching certain criteria. They are discussed in Chapter 07
“The Bash Shell”.

Removing Directories
The rmdir and rm commands remove directories. The rmdir
command is used to delete empty directories, while rm
requires the -d option to accomplish the same. In addition,
the -r or -R (recursive) flag with rm will remove a directory
and all of its contents. Both commands support the -v switch
for reporting what they are doing. Let’s look at a few
examples.

To erase an empty directory called emptydir (assuming
emptydir exists), use either of the following:

To remove dir20 and all its contents recursively, use either -r
or -R with the command:

The rm command supports the -i flag for interactive
deletions.

The same rules that apply on filenames with wildcard
characters in their names, apply on directory names as well.

See the previous topic for details.

File Linking
Each file within a file system has a multitude of attributes
assigned to it at the time of its creation. These attributes are
collectively referred to as the file’s metadata, and they
change when the file is accessed or modified. A file’s
metadata includes several pieces of information, such as the
file type, size, permissions, owner’s name, owning group
name, last access/modification times, link count, number of
allocated blocks, and pointers to the data storage location.
This metadata takes 128 bytes of space for each file. This
tiny storage space is referred to as the file’s inode (index
node).

An inode is assigned a unique numeric identifier that is used
by the kernel for accessing, tracking, and managing the file.
In order to access the inode and the data it points to, a
filename is assigned to recognize it and access it. This
mapping between an inode and a filename is referred to as a
link. It is important to note that the inode does not store the
filename in its metadata; the filename and corresponding
inode number mapping is maintained in the directory’s
metadata where the file resides.

Linking files or directories creates additional instances of
them, but all of them eventually point to the same physical
data location in the directory tree. Linked files may or may
not have identical inode numbers and metadata depending
on how they are linked.

There are two ways to create file and directory links in RHEL,
and they are referred to as hard links and soft links. Links are
created between files or between directories, but not
between a file and a directory.

Hard Link
A hard link is a mapping between one or more filenames and
an inode number, making all hard-linked files
indistinguishable from one another. This implies that all hard-
linked files will have identical metadata. Changes to the file
metadata and content can be made by accessing any of the
filenames.

Figure 3-1 shows two filenames—file10 and file20—both
sharing the same inode number 10176147. Here, each
filename is essentially a hard link pointing to the same
inode.

Figure 3-1 Hard Link

A hard link cannot cross a file system boundary, and it
cannot be used to link directories because of the restrictions
placed within Linux designed to avoid potential issues with
some commands.

The following example creates an empty file called file10 and
then uses the ln command to create a hard link called file20
in the same directory:

After creating the link, run ls with the -li flags as follows:

Look at columns 1 and 3. Column 1 shows the shared inode
number (10176147), and column 3 provides a link count of
the hard links that each file has (file10 points to file20, and
vice versa). If you remove the original file (file10), you will
still have access to the data through file20. Each time you
add a hard link to an extant file, the link count will increase
by 1. Similarly, if you delete a hard link, the link count will go
down by 1. When all the hard links (files) are erased, the link
count will set to 0. The increase and decrease in the number
of links is reflected on all hard-linked files.

Soft Link
A soft link (a.k.a. a symbolic link or a symlink) makes it
possible to associate one file with another. The concept is
analogous to that of a shortcut in Microsoft Windows where
the actual file is resident somewhere in the directory
structure, but there can be one or more shortcuts with
different names pointing to it. With a soft link, you can
access the file directly via the actual filename as well as any
of the shortcuts. Each soft link has a unique inode number
that stores the pathname to the file it is linked with. For a
symlink, the link count does not increase or decrease, rather
each symlinked file receives a new inode number. The
pathname can be absolute or relative depending on what
was specified at the time of its creation. The size of the soft
link is the number of characters in the pathname to the
target.

Figure 3-2 shows the file file10 with a soft link called
softfile10 pointing to it.

Figure 3-2 Soft Link

A soft link can cross a file system boundary and it can be
used to link directories, as it simply uses the pathname of
the destination object.

To create a soft link for file10 as soft10 in the same directory,
use the ln command with the -s switch:

After you have created the link, issue ls -l and notice the
letter “l” as the first character in column 2 of the output.
Also notice the arrow that is pointing from the linked file to
the original file. Both of these indicate that soft10 is merely a
pointer to file10. The -i option displays the associated inode
numbers in the first column. See the output of ls -il below:

If you remove the original file (file10 in this case), the link
soft10 will stay but points to something that does not exist.

RHEL 8 has four soft-linked directories under /. They are:

The syntax for creating soft-linked directories is exactly the
same as that for soft-linked files.

Differences between Copying and Linking
There are key differences between copying and linking
operations. This subsection will discuss when to use copy
and when to opt for a soft or hard link. Table 3-14 highlights
the main differences between the two:

Copying Linking

Creates a duplicate of the source
file. If either file is modified, the
other file will remain intact.

Creates a shortcut that points to
the source file. The source can be
accessed or modified using either
the source file or the link.

Each copied file stores its own data
at a unique location.

All linked files point to the same
data.

Each copied file has a unique inode
number with its unique metadata.

Hard Link: All hard-linked files
share the same inode number, and
hence the metadata.
Symlink: Each symlinked file has a
unique inode number, but the inode
number stores only the pathname
to the source.

If a copy is moved, erased, or
renamed, the source file will have
no impact, and vice versa.

Hard Link: If the hard link is
weeded out, the other file and the
data will remain untouched.
Symlink: If the source is deleted,
the soft link will be broken and
become meaningless. If the soft
link is removed, the source will
have no impact.

Copy is used when the data needs
to be edited independent of the
other.

Links are used when access to the
same source is required from
multiple locations.

Permissions on the source and the
copy are managed independent of
each other.

Permissions are managed on the
source file.

Table 3-14 Copying vs. Linking

Keep these differences in mind when you need to decide
whether to use copy or a link.

Exercise 3-2: Create and Manage Hard
Links
This exercise should be done on server1 as root.

In this exercise, you will create an empty file hard1 under
/tmp and display its attributes (the inode number,

permissions, number of links, owning user, owning group,
size, and timestamp). You will create two hard links hard2
and hard3 for it, and list the attributes for all three files. You
will edit hard2 and add some text. You will list the attributes
for all three files again, and observe identicalness in all
attributes except for the names of files. You will remove
hard1 and hard3 and list the attributes again for the
remaining file. You will notice a decrease in the link count by
2.

1. Create an empty file /tmp/hard1, and display the long
file listing including the inode number:

The file listing indicates the inode number in column 1,
followed by permissions (column 2), number of links (column
3), owning user and group (columns 4 and 5), size (column
6), timestamp (columns 7, 8, and 9), and filename (column
10).

2. Create two hard links called hard2 and hard3 under
/tmp, and display the long listing:

Observe the file listing. All attributes are identical.

3. Edit file hard2 and display the long listing for all three
files again:

Observe the size and timestamp columns. They are identical.

4. Remove file hard1 and display the long listing for the
rest of the files:

The number of links reduced to 1, all other attributes are the
same. You can still access the same data through this last
file.

Exercise 3-3: Create and Manage Soft
Links
This exercise should be done on server1 as root.

In this exercise, you will create a soft link soft1 under /root
pointing to /tmp/hard2. You will display the attributes (the
inode number, permissions, number of links, owning user,
owning group, size, and timestamp) for both files. You will
open soft1 for edit and list the attributes after editing. You
will remove hard2 and then list soft1. You will notice that
soft1 becomes invalid, pointing to something that does not
exist. Remove soft1 to complete the exercise.

1. Create soft link /root/soft1 pointing to /tmp/hard2, and
display the long file listing for both:

The file listing indicates the inode number in column 1,
followed by permissions (column 2), number of links (column
3), owning user and group (columns 4 and 5), size (column
6), timestamp (columns 7, 8, and 9), and filename (column
10). The soft link file has an “l” prefixed to column 2 and an
arrow pointing to the actual file after column 10. Both are
indications of a soft link. Notice the file size (10 bytes for the
full path /tmp/hard2) for soft1. Observe similarities and other
differences.

2. Edit soft1 and display the long listing again:

The number of bytes for hard1 and the timestamp reflects
the editing. The rest of the attributes are the same.

3. Remove hard2 and display the long listing:

The actual file, hard2, is gone and the link is now invalid. You
can remove it with rm -f /root/soft1.

Chapter Summary
This chapter started with an introduction of common file
types that are available in RHEL. A file’s type is determined
by the type of data it stores. Regular is the most common
type of file that stores plain text or binary information.
Directories are also very common and there are thousands of
them on a typical RHEL system. Other file types include
device files and linked files.

We looked at creating and manipulating compressed files
and compressed archives. This is a common practice among
Linux users for storing old files and transferring a large
amount of data to remote systems.

We learned about the vim editor, which is a favorite text file
creation and editing tool. We looked at its various modes of
operations and switching between them. The basics of vim
were discussed, including how to start and insert text,
navigate and search for text, copy and paste text, modify
and delete text, save edits, and quit with or without saving
the changes.

Next, we described file and directory manipulation tools for
operations such as creating, listing, displaying, copying,
moving, renaming, and removing them. Normal and super
users perform these tasks on Linux systems very often.

We examined soft and hard links, and their advantages and
limitations. Based on the knowledge gained, we can identify
and create the type of link we need for a particular use case.

Finally, we explored the differences between file copying and
file linking.

Check Your Understanding
1. Which three Linux utilities can be used to determine a

file’s type?
2. What is the function of the tac command?
3. There are two hard linked files in a directory. How

would you identify them?
4. Which vim mode allows to execute advanced copy and

move functions?
5. A file compressed with bzip2 can be uncompressed

with the gunzip command. True or False?

6. Which numeric identifier does the kernel use to
determine the uniqueness of a device within a device
driver type?

7. What are the two indications in the output of ls -l that
tells us if the file is a symlink?

8. The rmdir command without any switches can be used
to remove an entire directory structure. True or False?

9. What would the command tar pczf output.file /usr/local
do if it is executed by a normal user?

10. The ls -l command produces 9 columns in the output
by default. True or False?

11. What would the command wc -c file1 show?
12. What does the kernel use the major number for?
13. The tail command can be used to view a file while it is

being updated. True or False?
14. Soft linked directories cannot cross file system

boundaries, but hard linked directories can. True or
False?

15. A file must have the .exe extension in order to run.
True or False?

16. The tar command can be used to archive files with
their SELinux contexts. True or False?

17. What would the command touch file1 do on an
existing file1 file?

Answers to Check Your
Understanding

1. The stat, file, and ls commands can be used to
determine a file’s type.

2. The tac command is used to display a text file in
reverse.

3. You can identify them by running ls -li.
4. The last line mode (extended mode) allows users to

copy or move lines.

5. False. The file will have to be uncompressed with
either bzip2 or bunzip2.

6. The kernel uses the minor number to identify the
uniqueness of a device within a particular device
category.

7. A symlink file line entry in the ls -l command output
begins with the letter l and has an arrow pointing to
the source file.

8. False. The rmdir command is used to remove empty
directories.

9. This command will create a gzip’ed tar archive called
output.file of the /usr/local directory with file
permissions preserved.

10. True.
11. This command will show the number of bytes in file1.
12. The kernel employs the major number to identify the

device type.
13. True. You need to include the -f switch in the

command.
14. False. Soft linked directories can and hard linked

directories cannot cross file system boundaries.
15. False.
16. True. The tar command has the --selinux switch that

provides this support.
17. This command will update the access time on file1.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

Lab 3-1: Archive, List, and Restore Files
As user1 on server1, execute the tar command to create a
gzip-compressed archive of the /etc directory. Run the tar
command again to create a bzip2-compressed archive of the
/etc directory. Compare the file sizes of the two archives. Run
the tar command and uncompress and restore both archives
without specifying the compression tool used. (Hint:
Compression and Archiving).

Lab 3-2: Practice the vim Editor
As user1 on server1, create a file called vipractice in the
home directory using vim. Type (do not copy and paste) each
sentence from Lab 3-1 on a separate line (do not worry
about line wrapping). Save the file and quit the editor. Open
vipractice in vim again and reveal line numbering. Copy lines
2 and 3 to the end of the file to make the total number of
lines in the file to 6. Move line 3 to make it line 1. Go to the
last line and append the contents of the .bash_profile.
Substitute all occurrences of the string “Profile” with “Pro
File”, and all occurrences of the string “profile” with “pro
file”. Remove lines 5 to 8. Save the file and quit vim. Provide
a count of lines, words, and characters in the vipractice file
using the wc command. (Hint: File Editing).

Lab 3-3: File and Directory Operations
As user1 on server1, create one file and one directory in the
home directory. List the file and directory and observe the
permissions, ownership, and owning group. Try to move the
file and the directory to the /var/log directory and notice
what happens. Try again to move them to the /tmp directory.
Duplicate the file with the cp command, and then rename
the duplicated file using any name. Remove the file and
directory created for this lab. (Hint: File and Directory
Operations).

Chapter 04

Advanced File Management

This chapter describes the following major topics:

Understand ugo/rwx access permissions on files
and directories

Know symbolic and octal notations of
permission allocation

Modify permissions for file owner, owning group,
and others

Calculate and set default permissions on new
files and directories

Comprehend and configure special permission
bits: setuid, setgid, and sticky

Use setgid bit for group collaboration
Apply sticky bit on public and shared writable
directories

Search for files in a variety of different ways
Grasp and manage extended access controls for
named users and named groups

Set default extended access controls on
directories

RHCSA Objectives:

10.List, set, and change standard ugo/rwx
permissions

31.Create and configure set-GID directories for
collaboration

34.Diagnose and correct file permission problems
51.Create and use file access control lists

Permissions are set on files and directories to prevent
access from unauthorized users. Users are grouped into
three distinct categories. Each user category is then

assigned required permissions. Permissions may be modified
using one of two available methods. The user mask may be
defined for individual users so new files and directories they
create always get preset permissions. Every file in Linux has an
owner and a group.

RHEL offers three additional permission bits to control user
access to certain executable files and shared directories. A
directory with one of these bits can be used for group
collaboration. A public or group writable directory may also be
configured with one of these bits to prevent file deletion by non-
owners.

There is a tool available in RHEL that proves to be very helpful in
searching for files at the specified location using a range of
options to specify the search criteria. This tool may be set to
execute an action on the output files as they are found. There is
another tool available that users may use for simple searches.

Access Control Lists allows the administrator to enforce extended
security attributes on files and directories for specific users or
specific user groups. These attributes are on top of the standard
Linux access permissions for owning users and owning group
members. A directory can have default ACL settings applied to it
to allow content sharing among users without having to change
permissions on each new file and subdirectory created within it.

File and Directory Access
Permissions
Linux is a multi-user operating system that allows hundreds of
users the ability to log in and work concurrently. In addition, the

OS has hundreds of thousands of files and directories that it must
maintain securely in order to warrant a successful system and
application operation from a security standpoint. Given these
factors, it is imperative to regulate user access to files and
directories and grant them appropriate rights to carry out their
designated functions without jeopardizing system security. This
control of permissions on files and directories may also be
referred to as user access rights.

Determining Access Permissions
Access permissions on files and directories allow administrative
control over which users (permission classes) can access them
and to what level (permission types). File and directory
permissions discussed in this section are referred to as standard
ugo/rwx permissions.

Permission Classes
Users are categorized into three unique classes for maintaining
file security through access rights. These classes are user (u),
group (g), and other (o, also referred to as public). These
permission classes represent the owner, the set of users with
identical access requirements, and everyone else on the system,
respectively. There is another special user class called all (a) that
represents the three user classes combined.

Permission Types
Permissions control what actions can be performed on a file or
directory and by whom. There are three types of permissions bits
—read (r), write (w), and execute (x)—and they behave
differently for files and directories. For files, the permissions allow
viewing and copying (read), modifying (write), and running
(execute). And in the case of directories, they allow listing
contents with ls (read); creating, erasing, and renaming files and
subdirectories (write); and enter (with the cd command) into it
(execute).

If a read, write, or execute permission bit is not desired, the
hyphen character (-) is used to represent its absence.

Permission Modes
A permission mode is used to add (+), revoke (-), or assign (=) a
permission type to a permission class. You can view the
permission settings on files and directories in the long listing of
the ls command. This information is encapsulated in column 1 of
the output, a sample of which is shown below:

- rwx rw- r--

The first character indicates the type of file: - for regular file, d for
directory, l for symbolic link, c for character device file, b for
block device file, p for named pipe, s for socket, and so on.

The next nine characters—three groups of three characters—
show the read (r), write (w), and execute (x) permissions for the
three user classes: user (owner), group, and other (public),
respectively. The hyphen character (-) represents a permission
denial for that level.

Modifying Access Permission Bits
The chmod command modifies access rights. It works identically
on files and directories. chmod can be used by root or the file
owner, and can modify permissions specified in one of two ways:
symbolic or octal. Symbolic notation uses a combination of letters
(ugo/rwx) and symbols (+, -, =) to add, revoke, or assign
permission bits. The octal notation (a.k.a. the absolute
representation) uses a three-digit numbering system ranging
from 0 to 7 to express permissions for the three user classes.
Octal values are given in Table 4-1.

Octal
Value

Binary
Notation

Symbolic
Notation

Explanation

0 000 --- No permissions

1 001 --x Execute permission
only

2 010 -w- Write permission only

3 011 -wx Write and execute
permissions

4 100 r-- Read permission only

5 101 r-x Read and execute
permissions

6 110 rw- Read and write
permissions

7 111 rwx Read, write, and
execute permissions

Table 4-1 Octal Permission Notation

In Table 4-1, each “1” corresponds to an r, w, or x, and each “0”
corresponds to the hyphen character (-) for no permission at that
level. Figure 4-1 shows weights associated with each digit
position in the 3-digit octal numbering model.

Figure 4-1 Permission Weights

The position to the right is weight 1, the middle position is weight
2, and the left position is weight 4. If we assign a permission of 6,
for example, it would correspond to the left and middle positions.
Similarly, a permission of 2 would point to the middle position
only.

Exercise 4-1: Modify Permission Bits Using
Symbolic Form
This exercise should be done on server1 as user1.

For this exercise, presume that a file called permfile1 exists with
read permission for the owner (user1), owning group (user1), and
other, as shown below. If the permissions vary, bring them to the
desired state by executing chmod 444 permfile1 prior to
starting the exercise.

In this exercise, you will add an execute bit for the owner and a
write bit for group and public. You will then revoke the write bit
from public and assign read, write, and execute bits to the three
user categories at the same time. Finally, you will revoke write
from the owning group and write and execute bits from public.
The chmod command accepts the -v switch to display what it has
changed. You may alternatively view the long listing after each
command execution for verification.

1. Add an execute bit for the owner:

2. Add a write bit for group members and public:

3. Remove the write permission for public:

4. Assign read, write, and execute permission bits to all three
user categories:

5. Revoke write bit from the group members and write and
execute bits from public:

Exercise 4-2: Modify Permission Bits Using
Octal Form
This exercise should be done on server1 as user1.

For this exercise, a file called permfile2 exists with read
permission for the owner (user1), owning group (user1), and
other, as shown below. If the permissions vary, bring them to the
desired state by executing chmod 444 permfile2 prior to
starting the exercise.

In this exercise, you will add an execute bit for the owner and a
write permission bit for group and public. You will then revoke the
write bit from public and assign read, write, and execute
permissions to the three user categories at the same time. The
chmod command accepts the -v flag to display what it has
changed. You may alternatively view the long listing after each
command execution for verification.

1. Add an execute bit for the owner:

2. Add a write permission bit for group and public:

3. Remove the write bit for public:

4. Assign read, write, and execute permission bits to all three
user categories:

Default Permissions
Linux assigns default permissions to a file or directory at the time
of its creation. Default permissions are calculated based on the

umask (user mask) permission value subtracted from a preset
initial permissions value.

The umask is a three-digit octal value (also represented in
symbolic notation) that refers to read, write, and execute
permissions for owner, group, and public. Its purpose is to set
default permissions on new files and directories without touching
the permissions on existing files and directories. The default
umask value is set to 0022 for the root user and 0002 for all
normal users. Note that the left-most 0 has no significance. Run
the umask command without any options and it will display the
current umask value in octal notation:

Run the command again but with the -S option to display the
umask in symbolic form:

The predefined initial permission values are 666 (rw-rw-rw-) for
files and 777 (rwxrwxrwx) for directories. Even if the umask is set
to 000, the new files will always get a maximum of 666
permissions; however, you can add the executable bits explicitly
with the chmod command if desired.

Calculating Default Permissions
Consider the following example to calculate the default
permission values on files for normal users:

Initial Permissions 666
umask – 002 (subtract)
========================
Default Permissions 664

This is an indication that every new file will have read and write
permissions assigned to the owner and the owning group, and a
read-only permission to other.

To calculate the default permission values on directories for
normal users:

Initial Permissions 777
umask – 002 (subtract)
========================
Default Permissions 775

This indicates that every new directory created will have read,
write, and execute permissions assigned to the owner and the
owning group, and read and execute permissions to everyone
else.

If you want different default permissions set on new files and
directories, you will need to modify the umask. You first need to
ascertain the desired default values. For instance, if you want all
new files and directories to get 640 and 750 permissions, you can
set umask to 027 by running either of the following:

The new value becomes effective right away, and it will only be
applied to files and directories created thereafter. The existing
files and directories will remain intact. Now create tempfile1 and
tempdir1 as user1 under /home/user1 to test the effect of the
new umask:

The above examples show that the new file and directory were
created with different permissions. The file got (666 – 027 = 640)
and the directory got (777 – 027 = 750) permissions.

The umask value set at the command line will be lost as soon as
you log off. In order to retain the new setting, place it in an
appropriate shell startup files discussed in Chapter 06 “Advanced
User Management”.

Special File Permissions
Linux offers three types of special permission bits that may be
set on binary executable files or directories that respond
differently to non-root users for certain operations. These
permission bits are set user identifier bit (commonly referred to
as setuid or suid), set group identifier bit (a.k.a. setgid or sgid),
and sticky bit.

The setuid and setgid bits may be defined on binary executable
files to provide non-owners and non-group members the ability to
run them with the privileges of the owner or the owning group,
respectively. The setgid bit may also be set on shared directories
for group collaboration. The sticky bit may be set on public
directories for inhibiting file erasures by non-owners.

 The setuid and sticky bits may be set on directories and files;

however, they will have no effect.

The use of the special bits should be regulated and monitored to
evade potential security issues to system operation and
applications.

The setuid Bit on Binary Executable Files
The setuid flag is set on binary executable files at the file owner
level. With this bit set, the file is executed by non-owners with
the same privileges as that of the file owner. A common example
is the su command that is owned by the root user. This command
has the setuid bit enabled on it by default. See the underlined “s”
in the owner’s permission class below:

The su (switch user) command allows a user to switch to a
different user account with the password for the target user.
However, the root user can switch into any other user account
without being prompted for a password. When a normal user
executes this command, it will run as if root (the owner) is

running it and, therefore, the user is able to run it successfully
and gets the desired result.

Exercise 4-3: Test the Effect of setuid Bit on
Executable Files
This exercise should be done on server1 as root and user1.

In this exercise, you will need two terminal windows, one with a
root session running and another with user1 on it. As user1, you
will switch into root and observe what happens. As root, you will
then revoke the setuid bit from the /usr/bin/su file and retry
switching into root again. After the completion of the exercise,
you will restore the setuid bit on /usr/bin/su.

1. Log in as root and have a terminal window open (let’s call
it Terminal 1). Open another terminal (let’s name it Terminal
2) and run the following to switch into user1:

2. On Terminal 2, run the su command to switch into root:

The output confirms the switch.

3. On Terminal 1, revoke the setuid bit from /usr/bin/su:

The file is still executable by everyone as indicated by the
execute flag; however, it will prevent regular non-owning users
from switching accounts, as they have lost that special elevated
privilege.

4. On Terminal 2, press Ctrl+d to log off as root.
5. On Terminal 2, switch back into root and see what

happens:

user1 gets an “authentication failure” message even though they
entered the correct password.

6. On Terminal 1, restore the setuid bit on /usr/bin/su:

With the argument +4000, the chmod command enables setuid
on the specified file without altering any existing underlying
permissions. Alternatively, you can use the symbolic notation as
follows:

 If the file already has the “x” bit set for the group, the long listing will

show a lowercase “s”, otherwise it will list it with an uppercase “S”.

The setuid bit has no effect on directories.

The setgid Bit on Binary Executable Files
The setgid attribute is set on binary executable files at the group
level. With this bit set, the file is executed by non-owners with
the exact same privileges as that of the group members. A
common example is the write command that is owned by the
root user with tty as the owning group. This command has the
setgid bit enabled on it by default. See the “s” in the group’s
permission class below:

The write command allows users to write a message on another
logged-in user’s terminal. By default, normal users are allowed
this special elevated privilege because of the presence of the
setgid flag on the file. When a normal user executes this
command to write to the terminal of another user, the command
will run as if a member of the tty group is running it, and the user
is able to execute it successfully.

Exercise 4-4: Test the Effect of setgid Bit on
Executable Files
This exercise should be done on server1 as root and user1.

In this exercise, you will need two terminal windows, one with a
root session running and the other with user1 on it. As user1, you
will produce a list of logged-in users; try to send the root user a
message and observe what happens. As root, you will then
revoke the setgid bit from the /usr/bin/write file and retry sending
another message to root as user1. After the completion of the
exercise, you will restore the setgid bit on /usr/bin/write.

1. Log in as root and have a terminal window open (let’s call
it Terminal 1). Open another terminal (let’s name it Terminal
2) and run the following to switch into user1:

 The su (switch user) command allows a user to switch to a different

user account provided the user knows the password of the target user
account. However, the root user can switch into any other user account
without being prompted for a password.

2. On Terminal 2, run the who command to list users who are
currently logged on:

The output discloses that there are two users—root and user1—
currently signed in.

3. On Terminal 2, execute the write command as follows to
send a message to root:

4. On Terminal 1, you will see the following message from
user1:

Any text you type on Terminal 2 will appear on Terminal 1.

5. On Terminal 1, revoke the setgid bit from /usr/bin/write:

The file is still executable by everyone as indicated by the
execute flag; however, it will prevent them from writing to the
terminals of other users, as they have lost that special elevated
privilege.

6. On Terminal 2, press Ctrl+c to terminate the current write
session.

7. On Terminal 2, rewrite to root and see what happens:

user1 gets an error as indicated in the above output.

8. On Terminal 1, restore the setgid bit on /usr/bin/write:

With the argument +2000, the chmod command enables setgid
on the specified file without altering any existing underlying
permissions. Alternatively, you can use the symbolic form as
follows:

 If the file already has the “x” bit set for the group, the long listing will

show a lowercase “s”, otherwise it will list it with an uppercase “S”.

The setgid bit has an impact on shared (and public) directories
(next subsection).

The setgid Bit on Shared Directories
The setgid bit can also be set on group-shared directories to
allow files and subdirectories created underneath to
automatically inherit the directory’s owning group. This saves

group members who are sharing the directory contents from
changing the group ID for every new file and subdirectory that
they add. The standard behavior for new files and subdirectories
is to always receive the creator’s group.

Exercise 4-5: Set up Shared Directory for
Group Collaboration
This exercise should be done on server1 as root and two test
users user100 and user200. Create the user accounts by running
useradd user100 and useradd user200 (if they don’t already
exist) as root.

In this exercise, you will create a group called sgrp with GID
9999, and add user100 and user200 to this group as members
with shared data needs. You will create a directory called /sdir
with ownership and owning group belonging to root and sgrp,
then set the setgid bit on /sdir and test. For details on managing
users and groups, consult Chapter 05 “Basic User Management”
and Chapter 06 “Advanced User Management”.

1. Add group sgrp with GID 9999 with the groupadd
command:

2. Add user100 and user200 as members to sgrp using the
usermod command:

3. Create /sdir directory:

4. Set ownership and owning group on /sdir to root and sgrp,
using the chown command:

5. Set the setgid bit on /sdir using the chmod command:

6. Add write permission to the group members on /sdir and
revoke all permissions from public:

7. Verify the attributes set in the previous three steps using
the ls command on /sdir:

8. Switch or log in as user100 and change to the /sdir
directory:

9. Create a file and check the owner and owning group on it:

10. Log out as user100, and switch or log in as user200 and
change to the /sdir directory:

11. Create a file and check the owner and owning group on it:

As shown above, the owning group for each file is the same, sgrp,
and the group members have identical rights (read and write).
Both can modify or delete each other’s file. The group members
own the files, but the owning group will always be sgrp to which
they both belong.

The Sticky Bit on Public and Shared Writable
Directories

The sticky bit is set on public and shared writable directories to
protect files and subdirectories owned by normal users from
being deleted or moved by other normal users. This attribute is
set on the /tmp and /var/tmp directories by default as depicted
below; however, it can be applied to any writable directory:

Notice the underlined letter “t” in other’s permission fields. This
indicates the presence of this attribute on the two directories.

Exercise 4-6: Test the Effect of Sticky Bit
This exercise should be done on server1 as root and two test
users user100 and user200. Create the user accounts by running
useradd user100 and useradd user200 (if they don’t already
exist) as root.

In this exercise, you will create a file under /tmp as user100 and
then try to delete it as user200. You will unset the sticky bit on
/tmp and try to erase the file again. After the completion of the
exercise, you will restore the sticky bit on /tmp. For details on
managing users and groups, consult Chapter 05 “Basic User
Management” and Chapter 06 “Advanced User Management”.

1. Switch or log in as user100 and change to the /tmp
directory:

2. Create a file called stickyfile:

3. Log out as user100 and switch or log in as user200 and
change to the /tmp directory:

4. Try to erase the file and observe the system reaction:

It says, “Operation not permitted”. The user cannot remove the
file owned by another user.

5. Log out as user100 and revoke the sticky bit from /tmp as
root and confirm:

6. Switch or log back in as user200 and retry the removal:

The file is gone. A normal user, user200, was able to successfully
delete a file, stickyfile, that was owned by a different normal
user, user100, in a public writable directory, /tmp.

7. Log out as user200 and restore the sticky bit back on /tmp:

With the argument +1000, the chmod command sets the sticky
bit on the specified directory without altering any existing
underlying permissions. Alternatively, you can use the symbolic
notation as follows:

 If the directory already has the “x” bit set for public, the long listing

will show a lowercase “t”, otherwise it will list it with an uppercase “T”.

The sticky bit can also be set on group writable directories such
as /sdir that you created in the previous exercise.

File Searching
A typical running RHEL system has a few hundred thousand files
distributed across several file systems. At times, it is imperative
to look for one or more files based on certain criteria. One
example would be to find all files owned by employees who left
the company over a year ago. Another example would be to
search for all the files that have been modified in the past 20
days by a specific user. For such situations, RHEL offers a
command called find. You supply your search criteria and this
command gets you the result. You can also instruct this utility to
execute a command on the files as they are found.

Using the find Command
The find command recursively searches the directory tree, finds
files that match the specified criteria, and optionally performs an
action on the files as they are discovered. This powerful tool can
be tailored to look for files in a number of ways. The search
criteria may include tracking files by name or part of the name,
ownership, owning group, permissions, inode number, last access
or modification time in days or minutes, size, and file type. Figure
4-2 shows the command syntax.

Figure 4-2 find Command Syntax

With find, files that match the criteria are located and their full
paths are displayed.

To search for a file called file10 (execute touch file10 if it does
not already exist) by its name (name) in root’s home directory,
run the find command as follows. The period character (.)
represents the current directory, which is /root in this example.

 -print is optional. The find command, by default, displays the results

on the screen. You do not need to specify this option.

To perform a case-insensitive (-iname) search for files and
directories in /dev that begin with the string “usb” followed by
any characters:

To find files smaller than 1MB (-1M) in size (-size) in the root
user’s home directory (~). You do not need to issue the command
from this user’s home directory. In fact, you can be anywhere in
the directory tree.

 The tilde character (~) represents a user’s home directory.

To search for files larger than 40MB (+40M) in size (-size) in the
/usr directory:

To find files in the entire root file system (/) with ownership (-
user) set to user daemon and owning group (-group) set to any
group other than (-not or ! for negation) user1:

To search for directories (-type) by the name “src” (-name) in /usr
at a maximum of two subdirectory levels below (-maxdepth):

To run the above search but at least three subdirectory levels
beneath /usr, substitute -maxdepth 2 with -mindepth 3.

To find files in the /etc directory that were modified (-mtime)
more than (the + sign) 2000 days ago:

To run the above search for files that were modified exactly 12
days ago, replace “+2000” with “12”.

To find files in the /var/log directory that have been modified (-
mmin) in the past (the - sign) 100 minutes:

To run the above search for files that have been modified exactly
25 minutes ago, replace “-100” with “25”.

To search for block device files (-type) in the /dev directory with
permissions (-perm) set to exactly 660:

To search for character device files (-type) in the /dev directory
with at least (-222) world writable permissions (this example
would ignore checking the write and execute permissions):

To find files in the /etc/systemd directory that are executable by
at least their owner or group members:

To search for symlinked files (-type) in /usr with permissions (-
perm) set to read and write for the owner and owning group:

find is a very useful and powerful file-searching tool with
numerous other options available to use. Refer to its manual
pages, as there are a ton of examples there. Try some of them
out for additional practice.

Using find with -exec and -ok Flags
An advanced use of the find command is to perform an action on
the files as they are found based on any criteria outlined in the
previous subsection and in the command’s manual pages. The
action may include performing basic file management operations
such as copying, erasing, renaming, changing ownership, or
modifying permissions on each file found. This is done with the -
exec switch. An equivalent option -ok may be used instead, which
requires user confirmation before taking an action.

To search for directories in the entire directory tree (/) by the
name “core” (-name) and list them (ls -ld) as they are discovered
without prompting for user confirmation (-exec):

 The find command replaces {} for each filename as it is found. The

semicolon character (;) marks the termination of the command and it is
escaped with the backslash character (\).

In the next example, the find command uses the -ok switch to
prompt for confirmation before it copies each matched file (-
name) in /etc/sysconfig to /tmp:

The destination directory (/tmp) is specified between {} and \;.
There are many advanced examples provided in the find
command’s manual pages. I suggest to try a few of them.

Using the locate Command
The locate command is used to discover all occurrences of the
specified string as they appear in file pathnames. It can also be
used to locate files with certain extensions. Unlike the find

command that performs a new search every time you run it,
locate searches the /var/lib/mlocate/mlocate.db database, finds
matches, and displays them. This database is usually auto-
updated daily. Alternatively, it can be created and updated
manually with the updatedb command.

The output of the locate command is the absolute path of files
and directories for which the user has access permissions. Here
are a few examples that explain the working of this command.

To locate all occurrences of the string “passwd”:

Use -n and specify the number of occurrences you wish to see:

To locate all files with .sh extension and list only the first two of
them:

To view the number of directories, files, and size information
retained in mlocate.db:

As with other Linux commands, there are many other options
available with the locate command. Refer to its manual pages for
details and usage.

Access Control Lists (ACLs)
The Access Control Lists (ACLs) provide an extended set of
permissions that can be applied on files and directories. These
permissions are in addition to the standard ugo/rwx permissions
and the setuid, setgid, and sticky bit settings. The ACLs define
permissions for named users and named groups using either

octal or symbolic representation of permission allocation. The
named users may or may not be part of the same group. ACLs
are configured and treated the same way on both files and
directories.

ACLs are categorized into two groups based on their type and are
referred to as access ACLs and default ACLs. Access ACLs are set
on individual files and directories, whereas default ACLs can only
be applied at the directory level with files and subdirectories
inheriting them automatically. The directory to be applied the
default ACLs needs to have the execute bit set at the public level.

ACL Management Commands
RHEL offers two commands—getfacl and setfacl—to view and
manage ACLs on files and directories. The getfacl command is
used to display ACL settings, and the setfacl command can set,
modify, substitute, or delete ACL settings.

The getfacl Command
The getfacl command has several options to see the output as
desired; however, it reveals all necessary information without
furnishing any flags with it. The example below creates an empty
file aclfile1 in /tmp and then displays the ACLs on it:

The output returns the names of the file, owner, and owning
group. It then exhibits the existing permissions placed on the file:
read and write for the owner, and read-only for everyone else.
Notice the pair of colon character (:) in the permission rows.
There is a space between them where a named user, a named
group, or their corresponding UID or GID is inserted when
extended permissions are set (see Chapter 05 “Basic User
Management” for a description of UID and GID). For instance, the
ACL setting “user:1000:r--” would imply that the named user with

UID 1000, who is neither the file owner nor a member of the
owning group, is allowed read-only access to this file. Likewise,
the ACL “group:dba:rw-” would give the named group (dba) read
and write access to the file.

In addition, the file’s long listing is also indicative of the presence
of ACLs by exhibiting the plus sign (+) right beside the
permissions column. An example column from ls -l would be -rw-
rw-r--+.

The setfacl Command
The setfacl command is used to apply, modify, or remove ACL
settings. The format for supplying ACL permissions with the
command is explained in Table 4-2.

Format Description

u[ser]:UID:perms Permissions assigned to a named user (username
or UID). The named user must exist in the
/etc/passwd file. If this field is left blank, the
permission will be applied to the owner of the file
or directory, which is equivalent to using the
chmod command.

See Chapter 05 “Basic User Management” to
understand the content and format of the
/etc/passwd file.

g[roup]:GID:perms Permissions assigned to a named group (group
name or GID). The named group must exist in the
/etc/group file. If this field is left blank, the
permission will be applied to the owning group of
the file or directory, which is equivalent to using
the chmod command.

See Chapter 05 “Basic User Management” to
understand the content and format of the
/etc/group file.

o[ther]:perms Permissions assigned to users that are neither the
owner nor part of the owning group.

m[ask]:perms Maximum permissions for a named user or a
named group. If this is set to rw-, for example,
then no named user or group will have
permissions beyond read and write.

Table 4-2 setfacl Command Format for Access ACLs

The setfacl command provides a multitude of switches to use
depending on what you want to achieve. Table 4-3 describes
some of them.

Switch Description

-b Removes all access ACLs

-d Applies to default ACLs

-k Removes all default ACLs

-m Sets or modifies ACLs

-n Prevents an automatic recalculation of the mask

-R Applies recursively to a directory

-x Removes an access ACL

Table 4-3 setfacl Command Switches

We will explore some of these options shortly.

The Role of the mask Value
The value of the ACL mask determines the maximum allowable
permissions placed for a named user or group on a file or
directory. If it is set to rw, for instance, no named user or group
will exceed those permissions. The mask value is displayed on a
separate line in the getfacl output. Each time ACLs are modified
for a file or directory, the mask is recalculated automatically and
applied unless an explicit value is input with the setfacl command
or the -n option is employed to override this behavior. On aclfile1,
there are currently no ACLs set, as it is a new file. The getfacl
command with the -c flag displays the output without the header,
as shown below:

If you want to give read and write permissions to a specific user
(user1) and change the mask to read-only at the same time, the
setfacl command will allocate the permissions as mentioned;
however, the effective permissions for the named user will only
be read-only.

In the example, user1 will not be able to modify this file even
though it appears they have the write permission. The actual
permissions for user1 include both read and write, but they are
curtailed to read-only due to the limitation placed by the mask.
Now, let’s promote the mask value to include the write bit as
well:

The actual permissions for user1 are now boosted to include the
write bit to reflect the new higher value.

Exercise 4-7: Identify, Apply, and Erase
Access ACLs
This exercise should be done on server1 as user1.

In this exercise, you will create a file acluser1 as user1 in /tmp
and check to see if there are any ACL settings on the file. You will
apply access ACLs on the file for a named user, user100, for read
and write access. You will observe the change in the mask value.
You will then add another named user, user200, to the file for full
permissions. You will observe the update in the mask value. You
will delete the settings for user200 and then the rest of the
access ACLs from the file.

1. Switch or log in as user1 and create a file acluser1 in /tmp:

2. Use the ls and getfacl commands and check for the
existence of any ACL entries:

The output discloses an absence of ACLs on the file. The owner
and group members have read and write permissions and
everyone else has the read-only permission.

3. Allocate read and write permissions to user100 with the
setfacl command using the octal form:

4. Run the ls command to check if the plus sign (+) has
appeared next to the first column, then run the getfacl
command to check the new access ACLs and the mask:

A row is added for the named user showing read/write
permissions. Another row with the mask is also added and it is
set to read/write as well. The mask value is auto-calculated
based on the current maximum permissions that a named user or
group has. This is reflected in the above output.

5. At this point, you can open another terminal session,
switch into user100, change directory into /tmp, and open
the file acluser1 in the vim editor. You should be able to
modify the file and save it.

6. Add user200 with full rwx permissions to acluser1 using
the symbolic notation and then show the updated ACL
settings:

Notice the updated value for the mask, which is increased to rwx
to reflect the maximum permission the named user, user200,
has. If this file were to be an executable command, you would
have been able to run it as user200 based on the assigned ACLs.

7. Delete the ACL entries set for user200 and validate:

Notice the reduction in the mask value to rw-, which now reflects
the new current maximum permissions placed on the named
user, user100.

8. Delete the rest of the ACLs:

9. Use the ls and getfacl commands and confirm for the ACLs
removal:

This concludes the exercise.

You can also create a group such as aclgroup1 by running
groupadd -g 8000 aclgroup1 as the root user and repeat this
exercise by adding this group as a named group along with the
two named users (user100 and user200).

Default ACLs

A group collaboration on a shared directory gives members of the
group identical access on files and subdirectories in the directory.
Access ACLs may be applied to the shared directory to give non-
group members certain rights. Furthermore, default ACLs can
also be set on the shared directory to ensure new files and
subdirectories created under the shared directory always have a
consistent set of access rights for group and non-group members.
This way the users do not have to adjust permissions on each
new file and subdirectory they will create. The inheritance works
slightly different for files and subdirectories, as indicated below:

• Files receive the shared directory’s default ACLs as their
access ACLs

• Subdirectories receive both default ACLs and access ACLs
as they are

The default ACLs can be described as the maximum discretionary
permissions that can be allocated on a directory. Let’s perform
the following exercise and see how default ACLs are applied,
viewed, and erased.

Exercise 4-8: Apply, Identify, and Erase
Default ACLs
This exercise should be done on server1 as user1.

In this exercise, you will create a directory projects as user1
under /tmp. You will set default ACLs on the directory for named
users, user100 and user200, to give them full permissions. You
will create a subdirectory prjdir1 and a file prjfile1 under projects
and observe the effects of default ACLs on them. You will delete
all the default entries at the end of the exercise.

1. Switch or log in as user1 and create a directory projects in
/tmp:

2. Use the getfacl command for an initial look at the
permissions on the directory:

The output discloses that the owner and group members have
full permissions on the directory and everyone else has read and
execute permission.

3. Allocate default read, write, and execute permissions to
user100 and user200 on the directory. Use both octal and
symbolic notations and the -d (default) option with the
setfacl command.

The named users have the default ACLs. The rest of the default
ACL entries are for the directory owner, owning group, and public
with the mask reflecting the maximum permissions.

4. Create a subdirectory prjdir1 under projects and observe
the ACL inheritance:

As stated earlier, the subdirectory prjdir1 inherited both default
and access ACLs. This is reflected in the above output.

5. Create a file prjfile1 under projects and observe the ACL
inheritance:

As stated earlier, the file prjfile1 inherited the parent directory’s
default ACLs as its access ACLs minus what the mask limits. The
maximum effective access for the named users is rw.

6. At this point, you can log in as one of the named users,
change directory into /tmp/projects, and edit prjfile1 (add
some random text). Then change into the prjdir1 and
create file file100. You should be able to perform both tasks
successfully.

7. Delete all the default ACLs from the projects directory as
user1 and confirm:

This concludes the exercise.

You can create a group such as aclgroup2 by running groupadd
-g 9000 aclgroup2 as the root user and repeat this exercise by
adding this group as a named group along with the two named
users (user100 and user200).

Chapter Summary
This chapter covered four topics: file and directory permissions,
special permissions, file searching, and access control.

We learned classes, types, and modes of permissions, looked at
octal and symbolic notations of changing permissions, and
applied the knowledge to modify user access on files and
directories. We examined the concept of default permissions and
how they could be employed on parent directories to enable files
and subdirectories created underneath to automatically get the
desired permissions. We analyzed the role of the umask value in
determining the new default permissions.

We looked at special permission bits that could be set on
executable files to gain privileged access, applied on shared
directories for content sharing, and enabled on shared and public
writable directories to prevent file deletion by non-owning users.

Next, we explored the criteria and the tool to search for files at
the specified directory location. We also employed an extended
flag for optional execution of an action on the outcome of the
search command.

Finally, we discussed access control on files and directories using
ACLs. This feature let named users and named groups to have
extended access on given files and directories without the need
to modify ownership or owning group on them.

Check Your Understanding
1. The output generated by the umask command shows the

current user mask in four digits. What is the significance of
the left-most digit?

2. What would the command find /dev -type c -perm 660 do?
3. Default permissions are calculated by subtracting the

initial permissions from the umask value. True or False?
4. What would be the effect of the sticky bit on an executable

file?
5. Which command references the mlocate.db file?
6. Name the permission classes, types, and modes.
7. Default ACLs are meant for directories only. True or False?
8. The default umask for a normal user in bash shell is 0027.

True or False?
9. What digit represents the setuid bit in the chmod

command?
10. What would the command chmod g-s file1 do?
11. Sticky bit is recommended for every system directory. True

or False?
12. What would the command setfacl -m g:dba:rw file1 do?
13. The setgid bit enables group members to run a command

at a higher priority. True or False?
14. What is the equivalent symbolic value for permissions

751?
15. What permissions would the owner of the file get if the

chmod command is executed with 555?
16. What would the find / -name core -ok rm {} \; command

do?
17. Which special permission bit is set on a directory for team

sharing?

Answers to Check Your
Understanding

1. The left-most digit has no significance in the umask value.
2. The find command provided will find all character device

files under /dev with exact permissions of 660.
3. False. Default permissions are calculated by subtracting

the umask value from the initial permission values.
4. Nothing. The sticky bit is meant for directories only.
5. The locate command references the mlocate.db database

to determine the absolute paths of files and directories.

6. Permission classes are user, group, and public; permission
types are read, write, and execute; and permission modes
are add, revoke, and assign.

7. True. Default ACLs are meant for directories only.
8. False. The default umask for bash shell users is 0002.
9. The digit 4 represents the setuid bit.
10. It would remove the setgid bit from file1.
11. False.
12. This command will give the users of the dba group read

and write permissions on file1.
13. False.
14. The equivalent for octal 751 is rwxr-x--x.
15. The owner will get read and execute permissions.
16. The find command provided will display all files by the

name core in the entire directory hierarchy and ask for
removal confirmation as it finds them.

17. The setgid bit is set for team sharing.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the concepts
and topics learned in this chapter. It is expected that you perform
the labs without external help. A step-by-step guide is not
supplied, as the knowledge and skill required to implement the
lab has already been disseminated in the chapter; however, hints
to the relevant major topic(s) are included.

Lab 4-1: Manipulate File Permissions
As user1 on server1, create file file11 and directory dir11 in the
home directory. Make a note of the permissions on them. Run the
umask command to determine the current umask. Change the
umask value to 0035 using symbolic notation. Create file22 and
directory dir22 in the home directory. Observe the permissions on
file22 and dir22, and compare them with the permissions on
file11 and dir11. Use the chmod command and modify the
permissions on file11 to match those on file22. Use the chmod
command and modify the permissions on dir22 to match those on

dir11. Do not remove file11, file22, dir11, and dir22 yet. (Hint:
File and Directory Access Permissions).

Lab 4-2: Configure Group Collaboration and
Prevent File Deletion
As root on server1, create directory /sdir. Create group sgrp and
add user1000 and user2000 (create the users). Set up
appropriate ownership (root), owning group (sgrp), and
permissions (rwx for group, --- for public, s for group, and t for
public) on the directory to support group collaboration and
ensure non-owners cannot delete files. Log on as user1000 and
create a file under /sdir. Log on as user2000 and try to edit that
file. You should be able to edit the file successfully. As user2000
try to delete the file. You should not be able to. (Hint: Special File
Permissions).

Lab 4-3: Find Files
As root on server1, execute the find command to search for all
files in the entire directory structure that have been modified in
the last 300 minutes and display their type. Use the find
command again and search for named pipe and socket files.
(Hint: File Searching).

Lab 4-4: Find Files Using Different Criteria
As root on server1, issue the find command to search for regular
files under /usr that were accessed more than 100 days ago, are
not bigger than 5MB in size, and are owned by the user root.
(Hint: File Searching).

Lab 4-5: Apply ACL Settings
As root on server1, create file testfile under /tmp. Apply ACL
settings on the file so that user2000 gets 7, user3000 gets 6, and
user4000 gets 4 permissions. Create users. Remove the ACLs for
user2000, and verify. Remove all remaining ACLs at once, and
confirm. (Hint: Access Control Lists).

Chapter 05

Basic User Management

This chapter describes the following major topics:

Show who is currently logged in
Review history of successful user login
attempts and system reboots

Report history of failed user log in attempts
View recent user login attempts
Examine user and group information
Understand the content and syntax of local
user authentication files

Analyze user configuration files
Add, modify, and delete local user accounts
with default and custom values

Set and modify user passwords
Add user account with nologin access

RHCSA Objectives:

46.Create, delete, and modify local user
accounts

47.Change passwords and adjust password aging
for local user accounts (only the first part of
this objective “change passwords for local
user accounts” is covered in this chapter; the
second part is in Chapter 06)

User login activities are monitored and recorded in
various files. RHEL offers a set of tools that read the
activity data from these files and display the results. In

addition to user activities, a history of system reboots is also
maintained and it may be viewed with one of the tools. This
information may be useful in debugging, testing, or auditing
purposes.

In order for an authorized person to gain access to the system,
a unique username must be designated and a user account
must be created for them. This user is assigned a password and
is allowed to change it themselves. User account information is
recorded in several files. These files may be edited manually if
necessary; however, this practice is discouraged. A good
knowledge and grasp of the syntax and the type of information
these files store is paramount for Linux administrators. User
attributes may be modified later or the account may be
removed from the system altogether if not required anymore.

Though service user accounts are added to the system when a
corresponding service is installed, there may be situations when
they need to be added manually. These accounts do not require
login access; their presence is needed to support an installed
application.

User Login Activity and
Information
On a busy RHEL system, many users sign in and run jobs as
themselves, or they switch into the root or another user account
to run tasks that only those users have the privilege to execute.
As an administrator, it is one of your responsibilities to ensure
that only authorized users are able to log in to the system. You
can keep track of user logins, such as who is currently logged in

and their previous and recent successful and unsuccessful login
attempts. This information can be of immense help in
determining any suspicious login activity. For instance, multiple
failed attempts of logging in by an authorized user could be due
to a forgotten or lost password, or it might be a result of an
unauthorized individual trying to hack in.

There are many log files in RHEL that various services running
on the system update automatically and instantly as activities
occur. These logs capture user login activities among many
others. This section will focus on the log files and tools that are
relevant to user logins only. Others will be discussed in later
chapters.

Listing Logged-In Users
A list of the users who have successfully signed on to the
system with valid credentials can be printed using one of the
two basic Linux tools: who and w. These commands show
various pieces of information separated in multiple columns.

The who command references the /run/utmp file and displays
the information. Here is a sample from server1:

Column 1 displays the login name of the user. Column 2 shows
the terminal session device filename (pts stands for pseudo
terminal session, and tty identifies a terminal window on the
console).

Columns 3 and 4 show the date and time of the user login, and
column 5 indicates if the terminal session is graphical (:0),
remote (IP address), or textual on the console.

The who command can only print information about the user
who executes it with the arguments “am i”:

The w (what) command displays information in a similar format
as the who command, but it also tells the length of time the
user has been idle for (IDLE), along with the CPU time used by
all processes including any existing background jobs attached
to this terminal (JCPU), the CPU time used by the current
process (PCPU), and current activity (WHAT). In the following
example, line 1 displays the current system time (12:57:51), the
system up duration (4 days, 5 hours, and 3 minutes), number of
users currently logged in (2), and the CPU load averages over
the past 1, 5, and 15 minutes (0.40, 0.63, and 0.9), respectively.
This is exactly what the uptime command shows, which was
also discussed in Chapter 02 “Initial Interaction with the
System”.

The load average numbers represent the percentage of CPU
load with 0.00 and 1.00 correspond to no load and full load, and
a number greater than 1.00 signifies excess load (over 100%).

Inspecting History of Successful Login
Attempts and System Reboots
The last command reports the history of successful user login
attempts and system reboots by consulting the wtmp file
located in the /var/log directory. This file keeps a record of all
login and logout activities, including the login time, duration a
user stayed logged in, and tty (where the user session took
place). Consider the following two examples.

To list all user login, logout, and system reboot occurrences,
issue the last command without any arguments:

The output has information that is distributed across eight to
nine columns. Here is the description for each column for user
history:

Column 1: Login name of the user
Column 2: Terminal name assigned upon logging in
Column 3: Terminal name or IP address from where the
connection was established
Column 4 to 7: Day, month, date, and time when the
connection was established
Column 8: Log out time. If the user is still logged on, it will
say “still logged in”
Column 9: Duration of the login session

For system reboots, this is what it shows:

Column 1: Action name (reboot)
Column 2: Activity name (system boot)
Column 3: Linux kernel version

Column 4 to 7: Day, month, date, and time when the
reboot command was issued
Column 8: System restart time

Column 9: Duration the system remained down. If the
system is running, it will say “still running”.

The last line in the output indicates the log filename (wtmp)
being used to record this information and the time when it
started to log events.

To list system reboot details only, you can issue the last
command and specify reboot as an argument:

The output includes the same information that it depicts with
the last command executed without any argument.

Viewing History of Failed User Login
Attempts
The lastb command reports the history of unsuccessful user
login attempts by reading the btmp file located in the /var/log
directory. This file keeps a record of all unsuccessful login
attempts, including the login name, time, and tty (where the
attempt was made). Consider the following example.

To list all unsuccessful login attempts, type the lastb command
without any arguments. You must be root in order to run this
command.

The output has information that is presented in nine columns.
Here is the description for each column:

Column 1: Name of the user who made the login attempt
Column 2: Name of the protocol used. No tty was assigned
as the attempt failed

Column 3: Terminal name or IP address from where the
connection attempt was launched
Column 4 to 7: Day, month, date, and time of the attempt
Column 8: Duration the login attempt was tried
Column 9: Duration the login attempt lasted for

The last line in the output discloses the log filename (btmp)
being used to record this information and the time when it
started to log events.

Reporting Recent User Login Attempts
The lastlog command reports the most recent login evidence
information for every user account that exists on the system.
This information is captured in the lastlog file located in the
/var/log directory. This file keeps a record of the most recent
user login attempts, including the login name, time, and port (or
tty). Consider the following example.

The output displays the information across four columns. Here
is the description for each column:

Column 1: Login name of the user
Column 2: Terminal name assigned upon logging in
Column 3: Terminal name or IP address from where the
session was initiated

Column 4: Timestamp for the latest login or “Never logged
in” if the user never signed in

Note that service accounts are used by their respective
services, and they are not meant for logging. More information
on service accounts is discussed in the next section.

Examining User and Group Information
The id (identifier) command displays the calling user’s UID (User
IDentifier), username, GID (Group IDentifier), group name, all
secondary groups the user is a member of, and SELinux security
context. Here is a sample output for the root user when this
command is executed without an option or argument:

 Each user and group has a corresponding number (called UID and

GID) for identification purposes. These will be discussed in subsequent
sections of this chapter. For SELinux, see Chapter 21 “Security Enhanced
Linux”.

The id command can be executed by a user to view other users’
identification information. The following example shows an
instance with the root user viewing another user’s id:

The groups command, in contrast, lists all groups the calling
user is a member of:

The first group listed is the primary group for the user who
executed this command; all other groups are secondary (or
supplementary). The groups command can also be used to view
group membership information for a different user. Try running
it as groups user1 and observe the outcome.

Local User Authentication Files
RHEL supports three fundamental user account types: root,
normal, and service. The root user (a.k.a. the superuser or the
administrator), has full access to all services and administrative
functions on the system. This user is created by default during
installation. Normal users have user-level privileges; they
cannot perform any administrative functions but can run
applications and programs that have been authorized. Service
accounts take care of their respective services, which include
apache, ftp, mail, and chrony.

User account information for local users is stored in four files
that are located in the /etc directory. These files—passwd,
shadow, group, and gshadow—are updated when a user or
group account is created, modified, or deleted. The same files
are referenced to check and validate the credentials for a user
at the time of their login attempt, and hence the files are
referred to as user authentication files. These files are so critical
to the operation of the system that the system creates their
automatic backups by default as passwd-, shadow-, group-, and
gshadow- in the /etc directory.

Here is the list of the four files and their backups from the /etc
directory:

All files are short in size, but they grow bigger as new users are
added. Two of the files—gshadow and shadow—along with their
backups have no access permissions for any user, not even for
root. Let’s analyze these files and see what information they
store and how.

The passwd File
The passwd file is a simple plaintext file but it contains vital
user login data. Each row in the file holds information for one
user account. There are seven colon-separated fields per line
entry. A sample row from the file is displayed in Figure 5-1.

Figure 5-1 The passwd File

Here is a description for each field:

Field 1 (Login Name): Contains the login name for signing
in. Login names up to 255 characters, including the
underscore (_) and hyphen (-) characters, are supported. It is
not recommended to include special characters and
uppercase letters in login names. Field 2 (Password): Can
contain an “x” (points to the /etc/shadow file for the actual
password), an asterisk * to identify a disabled account, or a
hashed password.

 A hashed password—a combination of random letters, numbers,

and special characters—is an irreversible, unique, and scrambled string of
characters to safeguard a clear text password. It is generated as a result
of a conversion process of a password using one of the available hashing
algorithms. By default, RHEL uses the SHA-512 algorithm for this purpose.

 An algorithm is a set of well-defined but complex mathematical

instructions used in data encryption and decryption techniques.

Field 3 (UID): Comprises a numeric UID between 0 and
approximately 4.2 billion. UID 0 is reserved for the root
account, UIDs between 1 and 200 are used by Red Hat to
statically assign them to core service accounts, UIDs
between 201 and 999 are reserved for non-core service
accounts, and UIDs 1000 and beyond are employed for
normal user accounts. By default, RHEL begins assigning
UIDs to new users at 1000.
Field 4 (GID): Holds a GID that corresponds with a group
entry in the /etc/group file. By default, RHEL creates a group
for every new user matching their login name and the same
GID as their UID. The GID defined in this field represents the
user’s primary group.
Field 5 (Comments): Called GECOS (General Electric
Comprehensive Operating System and later changed to
GCOS), optionally stores general comments about the user
that may include the user’s name, phone number, location,
or other useful information to help identify the person for
whom the account is set up.
Field 6 (Home Directory): Defines the absolute path to the
user home directory. A home directory is the location where
a user is placed after signing in and it is used for personal
storage. The default location for user home directories is
/home.
Field 7 (Shell): Consists of the absolute path of the shell
file that the user will be using as their primary shell after
logging in. The default shell used in RHEL is the Bash shell
(/bin/bash). Consult Chapter 07 “The Bash Shell” for details
on the Bash shell.

A head and tail from the passwd file for the first and last three
lines is shown below:

The output indicates the root user with UID 0 followed by two
service accounts (bin and daemon). The last three lines display
the three user accounts that were created earlier as part of
some of the exercises.

Let’s verify the permissions and ownership on the passwd file:

The access permissions on the file are 644 (world-readable and
owner-writable), and it is owned by the root user.

The shadow File
RHEL has a secure password control mechanism in place that
provides an advanced level of password security for local users.
This control is referred to as the shadow password. With this
control mechanism in place, user passwords are hashed and
stored in a more secure file /etc/shadow, but there are certain
limits on user passwords in terms of expiration, warning period,
etc., that can also be applied on a per-user basis. These limits
and other settings are defined in the /etc/login.defsfile, which
the shadow password mechanism enforces on user accounts.
This is called password aging. Unlike the passwd file, which is
world-readable and owner-writable, the shadow file has no
access permissions at all. This is done to safeguard the file’s
content.

With the shadow password mechanism active, a user is initially
checked in the passwd file for existence and then in the shadow
file for authenticity.

The shadow file contains user authentication and password
aging information. Each row in the file corresponds to one entry
in the passwd file. There are nine colon-separated fields per line
entry. A sample row from this file is showcased in Figure 5-2.

Figure 5-2 The shadow File

Here is a description for each field:

Field 1 (Login Name): Contains the login name as appears
in the passwd file.
Field 2 (Encrypted Password): Consists of a hashed
password. A single exclamation mark (!) at the beginning of
this field implies that the user account is locked. If this field
is empty, the user will have password-less entry into the
system.
Field 3 (Last Change): Sets the number of days (lastchg)
since the UNIX epoch, a.k.a. UNIX time (January 01, 1970
00:00:00 UTC) when the password was last modified. An
empty field represents the passiveness of password aging
features, and a 0 forces the user to change their password
upon next login.
Field 4 (Minimum): Expresses the minimum number of
days (mindays) that must elapse before the user is allowed
to change their password. This field can be altered using the
chage command with the -m option or the passwd command
with the -n option. A 0 or null in this field disables this
feature.
Field 5 (Maximum): Defines the maximum number of days
(maxdays) of password validity before the user password
expires and it must be changed. This field may be altered
using the chage command with the -M option or the passwd
command with the -x option. A null value here disables this

feature along with other features such as the maximum
password age, warning alerts, and the user inactivity period.
Field 6 (Warning): Denotes the number of days (warndays)
for which the user gets warnings for changing their password
before it actually expires. This field may be altered using the
chage command with the -W option or the passwd command
with the -w option. A 0 or null in this field disables this
feature.
Field 7 (Password Expiry): Contains the maximum
allowable number of days for the user to be able to log in
with the expired password. This period is referred to as the
inactivity period. This field may be altered using the chage
command with the -I option or the passwd command with
the -i option. An empty field disables this feature.
Field 8 (Account Expiry): Determines the number of days
since the UNIX time when the user account will expire and no
longer be available. This field may be altered using the
chage command with the -E option. An empty field disables
this feature.
Field 9 (Reserved): Reserved for future use.

A head and tail from the shadow file for the first and last three
lines is shown below:

The output indicates the root user with UID 0 followed by two
service accounts (bin and daemon). The last three lines display
the three user accounts that were created earlier as part of
some of the exercises. Notice that login names are used as a
common key between the shadow and passwd files.

Let’s verify the permissions and ownership on the shadow file:

The access permissions on the file are 000 (no permissions at
all), and it is owned by the root user. There is a special
mechanism in place that is employed in the background to
update this file when a user account is added, modified,
deleted, or the password changed. This will be discussed in
Chapter 21 “Security Enhanced Linux”.

The group File
The group file is a simple plaintext file and contains critical
group information. Each row in the file stores information for
one group entry. Every user on the system must be a member
of at least one group, which is referred to as the User Private
Group (UPG). By default, a group name matches the username
it is associated with. Additional groups may be set up, and users
with common file access requirements can be added to them.
There are four colon-separated fields per line entry. A sample
row from the file is exhibited in Figure 5-3.

Figure 5-3 The group File

Here is a description for each field:

Field 1 (Group Name): Holds a group name that must
begin with a letter. Group names up to 255 characters,
including the underscore (_) and hyphen (-) characters, are
supported. It is not recommended to include special
characters and uppercase letters in group names.
Field 2 (Encrypted Password): Can be empty or contain
an “x” (points to the /etc/gshadow file for the actual
password), or a hashed group-level password. You can set a
password on a group if you want non-members to be able to
change their group identity temporarily using the newgrp
command. The non-members must enter the correct
password in order to do so.
Field 3 (GID): Holds a GID, which is also placed in the GID
field of the passwd file. By default, groups are created with
GIDs starting at 1000 and with the same name as the
username. The system allows several users to belong to a
single group; it also allows a single user to be a member of
multiple groups at the same time.
Field 4 (Group Members): Lists the membership for the
group. Note that a user’s primary group is always defined in
the GID field of the passwd file.

A head and tail from the group file for the first and last three
lines is shown below:

The output discloses the root user with GID 0 followed by two
group service accounts (bin and daemon). The last three lines
showcase the three groups that were created earlier as part of
some of the exercises.

Let’s verify the permissions and ownership on the group file:

The access permissions on the file are 644 (world-readable and
owner-writable), and it is owned by the root user.

The gshadow File
The shadow password implementation also provides an added
layer of protection at the group level. With this mechanism in
place, the group passwords are hashed and stored in a more
secure file /etc/gshadow. Unlike the group file, which is world-
readable and owner-writable, the gshadow file has no access
permissions at all. This is done to safeguard the file’s content.

The gshadow file stores hashed group-level passwords. Each
row in the file corresponds to one entry in the group file. There
are four colon-separated fields per line entry. A sample row from
this file is exhibited in Figure 5-4.

Figure 5-4 The gshadow File

Here is a description for each field:

Field 1 (Group Name): Consists of a group name as
appeared in the group file.
Field 2 (Encrypted Password): Can contain a hashed
password, which may be set with the gpasswd command for
non-group members to access the group temporarily using
the newgrp command. A single exclamation mark (!) or a null

value in this field allows group members password-less
access and restricts non-members from switching into this
group.
Field 3 (Group Administrators): Lists usernames of group
administrators that are authorized to add or remove
members with the gpasswd command.
Field 4 (Members): Holds a comma-separated list of
members.

 The gpasswd command is used to add group administrators, add or

delete group members, assign or revoke a group-level password, and
disable the ability of the newgrp command to access a group. This
command picks up the default values from the /etc/login.defs file.
Additional discussion on this command is beyond the scope; however, you
can view the manual pages of this command for details on its usage.

A head and tail from the gshadow file for the first and last three
lines is shown below:

The output indicates the root user with GID 0 followed by two
group service accounts (bin and daemon). The last three lines
exhibit the three groups that were created earlier as part of
some of the exercises. Notice that group names are used as a
common key between the gshadow and group files.

Let’s verify the permissions and ownership on the gshadow file:

The access permissions on the file are 000 (no permissions at
all) and it is owned by the root user. There is a special
mechanism in place that is employed in the background to
update this file when a group account is added, modified,

deleted, or the group password changed. This will be discussed
further in Chapter 21 “Security Enhanced Linux”.

The useradd and login.defs
Configuration Files
The useradd command (discussed in the next section) picks up
the default values from the /etc/default/useradd and
/etc/login.defs files for any options that are not specified at the
command line when executing it. Moreover, the login.defs file is
also consulted by the usermod, userdel, chage, and passwd
commands (also discussed in the next section) as needed. Both
files store several defaults including those that affect the
password length and password lifecycle. You can use the cat or
less command to view the useradd file content or display the
settings with the useradd command as follows:

There are a multitude of defaults defined with the directives.
These include the starting GID (GROUP) provided the
USERGROUPS_ENAB directive in the login.defs file is set to no,
home directory location (HOME), number of inactivity days
between password expiry and permanent account disablement
(INACTIVE), account expiry date (EXPIRE), login shell (SHELL),
skeleton directory location to copy user initialization files from
(SKEL), and whether to create mail spool directory
(CREATE_MAIL_SPOOL). You will find a description for some of
these in the next section.

The other file login.defs comprises of additional directives that
set several defaults. User and group management commands
consult this file to obtain information that is not supplied at the

command line. A grep on the file with uncommented and non-
empty lines is shown below:

These directives are elaborated in Table 5-1.

Option Description

MAIL_DIR Specifies the mail directory location

PASS_MAX_DAYS,
PASS_MIN_DAYS,
PASS_MIN_LEN, and
PASS_WARN_AGE

Define password aging attributes. See Chapter
06 “Advanced User Management” for details.

UID_MIN, UID_MAX,
GID_MIN, and
GID_MAX

Identify the ranges of UIDs and GIDs to be
allocated to new users and groups

SYS_UID_MIN,
SYS_UID_MAX,
SYS_GID_MIN, and
SYS_GID_MAX

Identify the ranges of UIDs and GIDs to be
allocated to new service users and groups

CREATE_HOME Defines whether to create a home directory

UMASK Sets a umask value

USERGROUPS_ENAB Defines whether to delete a user’s group (at
the time of user deletion) if it contains no more
members

ENCRYPT_METHOD Specifies the encryption method for user
passwords

Table 5-1 login.defs File Directives

There are many more directives available that can be added to
this file for more control and flexibility. Check the manual pages
of the file for details.

User Account Management
Managing user accounts involves creating, assigning passwords
to, modifying, and deleting them. RHEL provides a set of tools
for performing these operations. These tools are useradd to add
a new user to the system, usermod to modify the attributes of
an existing user, and userdel to remove a user from the system.
In addition, the passwd command is available to set or modify a
user’s password.

The useradd, usermod, and userdel
Commands
This set of commands is used to add, modify, and delete a user
account from the system. The useradd command adds entries
to the four user authentication files for each account added to
the system. It creates a home directory for the user and copies
the default user startup files from the skeleton directory
/etc/skel into the user’s home directory. It can also be used to
update the default settings that are used at the time of new
user creation for unspecified settings. The useradd command
supports a variety of flags; Table 5-2 lists some common options
in both short and long versions.

Option Description

-b (--base-
dir)

Defines the absolute path to the base directory for
placing user home directories. The default is /home.

-c (--
comment)

Describes useful information about the user.

-d (--home-
dir)

Defines the absolute path to the user home directory.

-D (--
defaults)

Displays the default settings from the
/etc/default/useradd file and modifies them.

-e (--
expiredate)

Specifies a date on which a user account is
automatically disabled. The format for the date
specification is YYYY-MM-DD.

-f (--inactive) Denotes maximum days of inactivity between
password expiry and permanent account disablement.

-g (--gid) Specifies the primary GID. Without this option, a group
account matching the username is created with the
GID matching the UID.

-G (--groups) Specifies the membership to supplementary groups.

-k (--skel) Specifies the location of the skeleton directory (default
is /etc/skel), which stores default user startup files.
These files are copied to the user’s home directory at
the time of account creation. Three hidden bash shell
files—.bash_profile, .bashrc, and .bash_logout—are
available in this directory by default. You can
customize these files or add your own to be used for
accounts created thereafter.

-m (--create-
home)

Creates a home directory if it does not already exist.

-o (--non-
unique)

Creates a user account sharing the UID of an existing
user. When two users share a UID, both get identical
rights on each other’s files. This should only be done
in specific situations.

-r (--system) Creates a service account with a UID below 1000 and
a never-expiring password.

-s (--shell) Defines the absolute path to the shell file. The default
is /bin/bash.

-u (--uid) Indicates a unique UID. Without this option, the next
available UID from the /etc/passwd file is used.

login Specifies a login name to be assigned to the user
account.

Table 5-2 useradd Command Options

You can modify the attributes of a user account with the
usermod command. The syntax of this command is very similar
to that of the useradd’s, with most switches identical. Table 5-3
describes the options that are specific to usermod only, and
shows them in both short and long versions. There are two
additional flags of interest that are discussed in Chapter 06
“Advanced User Management”.

Option Description

-a (--append) Adds a user to one or more supplementary groups

-l (--login) Specifies a new login name

-m (--move-
home)

Creates a home directory and moves the content over
from the old location

Table 5-3 usermod Command Options

The userdel command is straightforward. It removes entries for
the specified user from the authentication files, and deletes the
user’s home directory if the -r flag is also specified. The -f
option may be used to force the removal even if the user is still
logged in.

Exercise 5-1: Create a User Account with
Default Attributes
This exercise should be done on server1 as root.

In this exercise, you will create a user account user2 using the
defaults defined in the useradd and login.defs files. You will
assign this user a password and show the new line entries from
all four authentication files.

1. Create user2 with all the default values:

2. Assign this user a password and enter it twice when
prompted:

3. grep for user2: on the authentication files to examine
what the useradd command has added:

The command used the next available UID (1004) and GID
(1004), and the default settings for the home directory
(/home/user2) and shell file (/bin/bash).

4. Test this new account by logging in as user2 and then run
the id and groups commands to verify the UID, GID, and
group membership information:

The above outputs confirmed the UID and username, GID and
group name, and primary group name.

Exercise 5-2: Create a User Account with
Custom Values
This exercise should be done on server1 as root.

In this exercise, you will create an account user3 with UID 1010,
home directory /usr/user3a, and shell /bin/sh. You will assign
this user a password and exhibit the new line entries from all
four authentication files.

1. Create user3 with UID 1010 (-u), home directory
/usr/user3a (-d), and shell /bin/sh (-s):

2. Assign user1234 as password (passwords assigned in the
following way is not recommended; however, it is okay in
a lab environment):

3. grep for user3: on the four authentication files to see
what was added for this user:

4. Test this account by switching to or logging in as user3
and entering user1234 as the password. Run the id and
groups commands for further verification.

Exercise 5-3: Modify and Delete a User
Account
This exercise should be done on server1 as root.

In this exercise, you will modify certain attributes for user2 and
then delete it. You will change the login name to user2new, UID
to 2000, home directory to /home/user2new, and login shell to
/sbin/nologin. You will display the line entry for user2new from
the passwd file for validation. Finally, you will remove this user
and confirm the deletion.

1. Modify the login name for user2 to user2new (-l), UID to
2000 (-u), home directory to /home/user2new (-m and -d),
and login shell to /sbin/nologin (-s). Notice that the
options are specified in a different sequence.

2. Obtain the information for user2new from the passwd file
for confirmation:

3. Remove user2new along with their home and mail spool
directories (-r):

4. Confirm the user deletion:

Nothing is returned in the output, which means this user does
not exist in the passwd file any longer. This confirms the
removal.

No-Login (Non-Interactive) User Account
The nologin shell is a special purpose program that can be
employed for user accounts that do not require login access to
the system. It is located in the /usr/sbin (or /sbin) directory. With
this shell assigned, the user is refused with the message, “This
account is currently not available.” displayed on the screen. If a
custom message is required, you can create a file called
nologin.txt in the /etc directory and add the desired text to it.
The content of this file is printed on the screen upon user
access denial instead of the default message.

Typical examples of user accounts that do not require login
access are the service accounts such as ftp, apache, and sshd.
Let’s take a look at the passwd file and list such users:

This output returns a truncated list of non-interactive user
accounts. There are tens of them, and they grow as you install
more services to the system.

Exercise 5-4: Create a User Account with
No-Login Access This exercise should be done
on server1 as root.
In this exercise, you will create an account user4 with all the
default attributes but with a non-interactive shell. You will
assign this user the nologin shell to prevent them from signing
in. You will display the new line entry from the passwd file and
test the account.

1. Create user4 with non-interactive shell file /sbin/nologin:

2. Assign user1234 as password:

3. grep for user4 on the passwd file and verify the shell field
containing the nologin shell:

4. Test this account by attempting to log in or switch:

As mentioned earlier, you may create the /etc/nologin.txt file
and add a custom message to it. The new message will appear
on your next login attempt.

Chapter Summary
We started this chapter by discovering various tools that are
employed to monitor user login and system reboot activities.
This information is stored in several system files and may be

used for testing, auditing, or troubleshooting reasons. Most of
these tools can be executed by normal users to obtain desired
results; however, others may require privileged access of the
root user in order to be viewed.

Next, we looked closely at the four local user authentication
files: passwd, shadow, group, and gshadow. We examined their
contents and syntax to comprehend what they store and how.
These files are critical to the user login process as well as the
functioning of applications and services.

Finally, we explored user management tools and put them into
action in exercises to create, modify, and delete user accounts.
These tools offer a number of switches to add accounts with
default and custom attributes, as well as user accounts that do
not require login access.

Check Your Understanding
1. What would the command useradd -D do?
2. What does the lastlog command do?
3. What would the command useradd user500 do?
4. The id and groups commands are useful for listing a user

identification. True or False.
5. Name the four local user authentication files.
6. The passwd file contains secondary user group

information. True or False?
7. What is the first UID assigned to a normal user?
8. Name the three fundamental user account classes in

RHEL.
9. Every user in RHEL gets a private group by default. True

or False?
10. What does the “x” in the password field in the passwd

file imply?
11. Name the file that the who command consults to display

logged-in users.
12. What information does the lastb command provide?

13. The who command may be used to view logged out
users. True or False?

14. What would the userdel command do if it is run with the -
r option?

15. What is the first GID assigned to a group?
16. What is the name of the default backup file for shadow?
17. Which file does the last command consult to display

reports?
18. UID 999 is reserved for normal users. True or False?
19. Which file is assigned to users to deny them login

access?
20. You execute the lastb command as a normal user. The

output reports an error. What do you need to do to run
this command successfully?

Answers to Check Your
Understanding

1. This command displays the defaults settings used at the
time of user creation or modification.

2. The lastlog command provides information about recent
user logins.

3. The command provided will add user500 with all
predefined default values.

4. False. Only the id command is used for this purpose.
5. The passwd, shadow, group, and gshadow files.
6. False. The passwd file contains primary user group

information.
7. The first UID assigned to a normal user is 1000.
8. The three fundamental user account categories are root,

normal, and system.
9. True.
10. The “x” in the password field implies that the hashed

password is stored in the shadow file.
11. The who command consults the /run/utmp file to list

logged-in users.

12. The lastb command reports the history of unsuccessful
user login attempts.

13. False. The who command shows currently logged-in users
only.

14. The userdel command with the -r switch will delete the
specified user along with their home directory.

15. The first GID assigned to a normal user is 1000.
16. The name of the default backup file for shadow is

shadow-.
17. The last command consults the /var/log/wtmp file to

display reports.
18. False. UID 999 is reserved for system accounts.
19. The /sbin/nologin file is assigned to users to deny them

login.
20. You need to run the lastb command as root or with the

root privilege.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the concepts
and topics learned in this chapter. It is expected that you
perform the labs without external help. A step-by-step guide is
not supplied, as the knowledge and skill required to implement
the lab has already been disseminated in the chapter; however,
hints to the relevant major topic(s) are included.

Lab 5-1: Check User Login Attempts
As root on server1, execute the last, lastb, and lastlog
commands, and observe the outputs. Check which users have
recently logged in and out of the system successfully (last) and
unsuccessfully (lastb). List the timestamps when the system
was last rebooted (last). Check the last login status for each
user (lastlog). Use the vim editor to record your results. (Hint:
User Login Activity and Information).

Lab 5-2: Verify User and Group Identity

As user1 on server1, run the who and w commands one at a
time, and compare the outputs. Execute the id and groups
commands, and compare the outcomes. Examine the extra
information that the id command shows, but not the groups
command. (Hint: User Login Activity and Information).

Lab 5-3: Create Users
As root on server1, create user account user4100 with UID 4100
and home directory under /usr. Create another user account
user4200 with default attributes. Assign both users a password.
View the contents of the passwd, shadow, group, and gshadow
files, and observe what has been added for the two new users.
(Hint: Local User Authentication Files, and User Account
Management).

Lab 5-4: Create User with Non-Interactive
Shell
As root on server1, create user account user4300 with the
disability of logging in. Assign this user a password. Try to log
on with this user and see is displayed on the screen. View the
content of the passwd file, and see what is there that prevents
this user from logging in. (Hint: Local User Authentication Files,
and User Account Management).

Chapter 06

Advanced User Management

This chapter describes the following major
topics:

Configure password aging attributes on local
user accounts

Lock and unlock user account
Understand, create, modify, and delete local
groups and group memberships

Switch into another user account
Configure who can execute which privileged
commands

Identify and manage file owners and owning
groups

RHCSA Objectives:

05.Log in and switch users in multi-user targets
47.Change passwords and adjust password

aging for local user accounts (only the

second part of this objective “adjust
password aging for local user accounts” is
covered in this chapter; the first part is in
Chapter 05)

48.Create, delete, and modify local groups and
group memberships

49.Configure superuser access

Password aging attributes may be set on user
accounts for increased control on their logins and
passwords. This can be done for an individual user or

applied to all users. Password aging information for users is
stored in one of the authentication files that was discussed at
length in the previous chapter. Individual user accounts may
be prevented from logging in to the system by locking their
access for a period of time or permanently. This lock may be
lifted when required. Setting password aging and
locking/unlocking accounts are administrative functions and
must be performed by a user with elevated privileges of the
root user.

Users are apportioned membership to a single group at the
time of their addition to the system. Later, they may be
assigned membership to additional groups. Members of the
same group possess the same access rights on files and
directories. Other users and members of other groups may
optionally be given access to those files. Group membership
information is stored in user and group authentication files
that were examined in the previous chapter as well.

Users may switch into other user accounts, including the root
user, provided they know the target user’s password. Normal
users may be allowed access to privileged commands by
defining them appropriately in a configuration file. Each file
that exists on the system regardless of its type has an owning
user and an owning group. Similarly, every file that a user
creates is in the ownership of that user. The ownership may
be changed and given to another user by a super user.

Password Aging and its
Management
As mentioned, password aging is a secure mechanism to
control user passwords in Linux. The key advantages include
setting restrictions on password expiry, account disablement,
locking and unlocking users, and password change frequency.
These controls are applied to all user accounts at the time of
their creation and can be set explicitly on a per-user basis
later. You can even choose to inactivate it completely for an
individual user.

Password aging information is stored in the /etc/shadow file
(fields 4 to 8) and its default policies in the /etc/login.defs
configuration file. These files were thoroughly examined in
Chapter 05 “Basic User Management”. In this section, we
explore the aging management tools—chage and passwd—
and look at how to employ them to apply password controls
on user accounts, user100 and user200. Alongside chage and
passwd, the usermod command can also be used to
implement two aging attributes (user expiry and password
expiry); however, this section focuses on this command’s
ability to lock and unlock user accounts.

The chage Command
The chage command is used to set or alter password aging
parameters on a user account. This command changes
various fields in the shadow file depending on which option(s)
you pass to it. There are plenty of switches available with the
command in both short and long formats. Table 6-1 describes
most of them.

Option Description

-d (--
lastday)

Specifies an explicit date in the YYYY-MM-DD format,
or the number of days since the UNIX time when the
password was last modified. With -d 0, the user is
forced to change the password at next login. It
corresponds to field 3 in the shadow file.

-E (--
expiredate)

Sets an explicit date in the YYYY-MM-DD format, or
the number of days since the UNIX time on which
the user account is deactivated. This feature can be
disabled with -E -1. It corresponds to the eighth field
in the shadow file.

-I (--
inactive)

Defines the number of days of inactivity after the
password expiry and before the account is locked.
The user may be able to log in during this period
with their expired password. This feature can be
disabled with -I -1. It corresponds to field 7 in the
shadow file.

-l Lists password aging attributes set on a user
account.

-m (--
mindays)

Indicates the minimum number of days that must
elapse before the password can be changed. A value
of 0 in this field allows the user to change their
password at any time. It corresponds to field 4 in the
shadow file.

-M (--
maxdays)

Denotes the maximum number of days of password
validity before the user password expires and it
must be changed. This feature can be disabled with -
M -1. It corresponds to field 5 in the shadow file.

-W (--
warndays)

Designates the number of days for which the user
gets alerts to change their password before it
actually expires. It corresponds to field 6 in the
shadow file.

Table 6-1 chage Command Options

You will use most of these flags in Exercise 6-1 as well as later
in this chapter.

Exercise 6-1: Set and Confirm Password
Aging with chage
This exercise should be done on server1 as root.

In this exercise, you will configure password aging for user100
using the chage command. You will set mindays to 7,
maxdays to 28, and warndays to 5, and verify the new
settings. You will then rerun the command and set account
expiry to January 31, 2020. You will complete the exercise
with another confirmation.

1. Set password aging parameters for user100 to mindays
(-m) 7, maxdays (-M) 28, and warndays (-W) 5:

2. Confirm the new settings:

The bottom three rows in the output confirm the new settings.
The current password expiry (October 11, 2019) reflects the
28-day duration from September 13, 2019.

3. Set the account expiry to January 31, 2020:

4. Verify the new account expiry setting:

The middle row reflects the new account expiry for user100.
Similarly, you can use the -d and -I options with the chage
command as required.

The passwd Command
The common use of the passwd command is to set or modify
a user’s password; however, you can also use this command
to modify the password aging attributes and lock or unlock
their account. Table 6-2 lists some key options in both short
and long formats.

Option Description

-d (--delete) Deletes a user password without expiring the user
account.

-e (--expire) Forces a user to change their password upon next
logon.

-i (--
inactive)

Defines the number of days of inactivity after the
password expiry and before the account is locked. It
corresponds to field 7 in the shadow file.

-l (--lock) Locks a user account.

-n (--
minimum)

Specifies the number of days that must elapse
before the password can be changed. It corresponds
to field 4 in the shadow file.

-S (--status) Displays the status information for a user.

-u (--unlock) Unlocks a locked user account.

-w (--
warning)

Designates the number of days for which the user
gets alerts to change their password before it
actually expires. It corresponds to field 6 in the
shadow file.

-x (--
maximum)

Denotes the maximum number of days of password
validity before the user password expires and it
must be changed. It corresponds to field 5 in the
shadow file.

Table 6-2 passwd Command Options

Most of these flags will be used in the next few exercises.

Exercise 6-2: Set and Confirm Password
Aging with passwd
This exercise should be done on server1 as root.

In this exercise, you will configure password aging for user200
using the passwd command. You will set mindays to 10,
maxdays to 90, and warndays to 14, and verify the new
settings.

Next, you will set the number of inactivity days to 5 and
ensure that the user is forced to change their password upon
next login. You will complete the exercise with another
verification.

1. Set password aging attributes for user200 to mindays (-
n) 10, maxdays (-x) 90, and warndays (-w) 14:

2. Confirm the new settings:

The output confirms the three new settings (10, 90, and 14).

3. Set the number of inactivity days to 5:

4. Confirm the new setting:

The output verifies the new setting (5).

5. Ensure that the user is forced to change their password
at next login:

6. Display the new setting for confirmation:

The output shows a date prior to the UNIX time. This user will
be prompted to change their password when they attempt to
log in the next time.

The usermod Command
The common use of the usermod command is to modify a
user’s attribute, but it can also lock or unlock their account.
Table 6-3 explains the two options in both short and long
formats.

Option Description

-L (--lock) Locks a user account by placing a single exclamation
mark (!) at the beginning of the password field and
before the hashed password string.

-U (--unlock) Unlocks a user’s account by removing the
exclamation mark (!) from the beginning of the
password field.

Table 6-3 usermod Command Options for User
Lock/Unlock

Let’s apply these options in the next exercise.

Exercise 6-3: Lock and Unlock a User
Account with usermod and passwd
This exercise should be done on server1 as root.

In this exercise, you will disable the ability of user200 to log in
using the usermod and passwd commands. You will verify the
change and then reverse it.

1. Obtain the current password information for user200
from the shadow file:

An unlocked user account never has its password field begin
with an exclamation mark (!). The above output is indicative
of the fact that the account is currently not locked.

2. Lock the account for user200:

3. Confirm the change:

Notice that an exclamation mark (!) is prepended to the
encrypted password, which indicates a locked account.

4. Unlock the account with either of the following:

Verify the reversal with the grep command as demonstrated
in step 3. You can also try to log in as user200 for an
additional validation.

Linux Groups and their
Management
Linux groups are collections of one or more users with
identical permission requirements on files and directories.
They allow group members to collaborate on files of common
interest.

Group information is stored in the /etc/group file and the
default policies in the /etc/login.defsconfiguration file.
Furthermore, the /etc/gshadow file stores group administrator
information and group-level passwords. These files were

thoroughly examined in Chapter 05 “Basic User
Management”.

This section explores group management tools—groupadd,
groupmod, and groupdel—and looks at how to utilize them to
create, alter, and remove groups. Additional group
administration operations, such as adding and deleting group
administrators, and setting and revoking group-level
passwords, are beyond the scope.

The groupadd, groupmod, and groupdel
Commands
This set of management commands is used to add, modify,
and delete a group from the system. The groupadd command
adds entries to the group and gshadow files for each group
added to the system. Table 6-4 lists and explains some of the
groupadd command options in both short and long formats.

Option Description

-g (--gid) Specifies the GID to be assigned to the group

-o (--non-
unique)

Creates a group with a matching GID of an existing
group. When two groups have an identical GID,
members of both groups get identical rights on each
other’s files. This should only be done in specific
situations.

-r Creates a system group with a GID below 1000

groupname Specifies a group name

Table 6-4 groupadd Command Options

The groupadd command picks up the default values from the
login.defs file.

You can modify the attributes of a group with the groupmod
command. The syntax of this command is very similar to the
groupadd with most options identical. The only flag that is

additional with this command is -n, which can change the
name of an existing group.

The groupdel command is straightforward. It removes entries
for the specified group from both group and gshadow files.

Exercise 6-4: Create a Group and Add
Members
This exercise should be done on server1 as root.

In this exercise, you will create a group called linuxadm with
GID 5000 and another group called dba sharing the GID 5000.
You will add user1 as a secondary member to group linuxadm.

1. Create the group linuxadm with GID 5000:

2. Create a group called dba with the same GID as that of
group linuxadm:

3. Confirm the creation of both groups:

The GID for both groups is identical.

4. Add user1 as a secondary member of group dba using
the usermod command. The existing membership for
the user must remain intact.

5. Verify the updated group membership information for
user1 by extracting the relevant entry from the group
file, and running the id and groups command for user1:

The output confirms the primary (user1) and secondary (dba)
group memberships for user1.

Exercise 6-5: Modify and Delete a Group
Account
This exercise should be done on server1 as root.

In this exercise, you will change the linuxadm group name to
sysadm and the GID to 6000. You will modify the primary
group for user200 to sysadm. Finally, you will remove the
sysadm group and verify the actions.

1. Alter the name of linuxadm to sysadm:

2. Change the GID of sysadm to 6000:

3. Confirm the above actions:

The outputs confirm both actions. The new group name is
sysadm and the new GID is 6000. The membership remains
the same. Also notice that the linuxadm group does not exist
anymore. The second command returned nothing for it.

4. Delete the sysadm group and confirm:

The second command returns nothing, which confirms a
successful deletion of the group.

Substituting Users and Doing as
Superuser
In real world Linux environments, you’ll always sign in as a
normal user. Normal users have limited rights on the system.
Their profiles are set to allow them to accomplish routine jobs
efficiently and securely. This is done to secure the overall
system functionality and to prevent unexpected issues. There
are times though when a normal user needs to assume the
identity of a different user to carry out a task as that user or
execute a command successfully that requires elevated
privileges. Linux offers two fundamental tools to support users
in both situations.

Substituting (or Switching) Users
Even though you can log in to the system directly as root, it is
not a recommended practice. Instead, log in with a normal
user account and then switch to the root account if necessary.
This is safer and ensures system security and protection. In
addition to becoming root, you can switch into another user
account. In either case, you’ll need to know the password for
the target user in order for a successful switch. The su
command has the ability to switch into other user accounts.

To switch from user1 (assuming you are logged in as user1)
into root without executing the startup scripts (startup scripts
are explained later in this chapter) for the target user, run the
su command and enter the root user password when
prompted:

Press Ctrl+d key combination to return to the user1 command
prompt. Then rerun the su command with the hyphen
character (-) specified to ensure that startup scripts for the
target user are also executed to provide an environment
similar to that of a real login:

To switch into a different user account, such as user100,
specify the name of the target user with the command. You
must enter the password of the target user when prompted.

RHEL offers two tools—whoami (who am i) and logname (login
name)—that show a user’s current identity (after su’ing into
the target user) and the identity of the user who originally
logged in. Let’s see what they report after switching into
user100:

The whoami command returns the effective (current)
username (user100), and the logname command reports the
user’s real (original) username (user1).

To issue a command as a different user without switching into
that user, use the -c option with su. For example, the firewall-
cmd command with the --list-services option requires
superuser privileges. user1 can use su as follows and execute
this privileged command to obtain desired results:

The root user can switch into any user account that exists on
the system without being prompted for that user’s password.

Although the su command does provide the flexibility and
convenience, switching into the root account to execute
privileged actions is not recommended. There is a preferred
method available in Linux that should be used instead. The
following section sheds light on it.

Doing as Superuser (or Doing as
Substitute User)
On production Linux servers, there are necessary steps to
ensure that users have the ability to carry out their assigned
job without hassle. In most cases, this requires privileged
access to certain tools and functions, which the root user is
normally allowed to run.

RHEL provides normal users the ability to run a set of
privileged commands or to access non-owning files without
the knowledge of the root password. This allows the flexibility
of assigning a specific command or a set of commands to an
individual user or a group of users based on their needs.
These users can then precede one of those commands with a
utility called sudo (superuser do, a.k.a. substitute user do) at
the time of executing that command. The users are prompted
to enter their own password, and if correct, the command is
executed successfully for them. The sudo utility is designed to
provide protected access to administrative functions as
defined in the /etc/sudoers file or files in the drop-in directory
/etc/sudoers.d. It can also be used to allow a user or a group
of users to run scripts and applications owned by a different
user.

Any normal user that requires privileged access to
administrative commands or non-owning files is defined in the
sudoers file. This file may be edited with a command called
visudo, which creates a copy of the file as sudoers.tmp and
applies the changes there. After the visudo session is over,
the updated file overwrites the original sudoers file and

sudoers.tmp is deleted. This is done to prevent multiple users
editing this file simultaneously.

The syntax for user and group entries in the file is similar to
the following example entries for user user1 and group dba:

user1 ALL=(ALL) ALL
%dba ALL=(ALL) ALL

These entries may be added to the beginning of the file, and
they are intended to provide full access to every
administrative function to user1 and members of the dba
group (group is prefixed by the percentage sign (%)). In other
words, user1 and dba group members will have full root user
authority on the system.

When user1 or a dba group member attempts to access a
privileged function, they will be required to enter their own
password. For instance:

If you want user1 and dba group members not to be
prompted for their passwords, modify the entries in the
sudoers file to look like:

user1 ALL=(ALL) NOPASSWD:ALL
%dba ALL=(ALL) NOPASSWD:ALL

Rather than allowing them full access to the system, you can
restrict their access to the functions that they need access to.

For example, to limit their access to a single command
/usr/bin/cat, modify the directives as follows:

user1 ALL=/usr/bin/cat
%dba ALL=/usr/bin/cat

These users should now be able to use the cat command to
view the content of the /etc/sudoers or any other file that
requires the root privilege. Try cat /etc/sudoers as user1 and
then again as sudo cat /etc/sudoers. You will see the
difference.

Configuring sudo to work the way it has just been explained
may result in a cluttered sudoers file with too many entries to
fulfill diversified needs of users and groups. A preferred
method is to use predefined aliases—User_Alias and
Cmnd_Alias—to configure groups of users and commands, and
assign access as required. For instance, you can define a
Cmnd_Alias called PKGCMD containing yum and rpm package
management commands, and a User_Alias called PKGADM for
user1, user100, and user200. These users may or may not
belong to the same Linux group.

Next, assign PKGCMD to PKGADM. This way one rule is set
that allows a group of users access to a group of commands.
You can add or remove commands and users anytime as
needed, and the change will take effect right away. Here is
what this configuration will look like:

Cmnd_Alias PKGCMD = /usr/bin/yum, /usr/bin/rpm
User_Alias PKGADM = user1, user100, user200
PKGADM ALL = PKGCMD

Append the above to the bottom of the sudoers file and then
run the yum or rpm command preceded by sudo as one of the
users listed. You will be able to perform software management
tasks just like the root user.

The sudo command logs successful authentication and
command data to the /var/log/secure file under the name of
the actual user executing the command (and not root).

The sudoers file contains several examples with a brief
explanation. It is a good idea to look at those examples for
additional understanding.

Now that the normal user user1 is added to the sudoers
configuration file, you will be using this user account with
sudo where appropriate in the examples and exercises in the
remainder of the book.

Owning User and Owning Group
In Linux, every file and directory has an owner. By default, the
creator assumes the ownership, but this may be altered and
allocated to a different user if required.

Similarly, every user is a member of one or more groups. A
group is a collection of users with common permission
requirements. By default, the owner’s group is assigned to a
file or directory.

Let’s create a file file1 as user1 in their home directory and
exhibit the file’s long listing:

The output indicates that the owner of file1 is user1 who
belongs to group user1. If you wish to view the corresponding
UID and GID instead, you can specify the -n option with the
command:

Linux provides the chown and chgrp commands that can alter
the ownership and owning group for files and directories;
however, you must have the root user privilege to make these
modifications.

Exercise 6-6: Modify File Owner and
Owning Group
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will first create a file file10 and a
directory dir10 as user1 under /tmp, and then change the
ownership for file10 to user100 and the owning group to dba
in two separate transactions. Then you’ll apply ownership on
file10 to user200 and owning group to user100 at the same
time. Finally, you will change the two attributes on the
directory to user200:dba recursively. Make sure to use sudo
where necessary.

1. Change into the /tmp directory and create file10 and
dir10:

2. Check and validate that both attributes are set to
user1:

3. Set the ownership to user100 and confirm:

4. Alter the owning group to dba and verify:

5. Change the ownership to user200 and owning group to
user100 and confirm:

6. Modify the ownership to user200 and owning group to
dba recursively on dir10 and validate:

You can also use ls -lR dir10 to view file and directory
information under dir10; however, it will show nothing as the
directory is currently empty.

Chapter Summary
At the outset, we described various aging attributes for user
login and password controls that are available to us. We also
looked at files that store default attributes that are applied to
user accounts at the time of their creation. These defaults
may be modified if necessary.

Next, we modified aging attributes for certain user accounts
with the help of the tools we learned. We also employed a tool
with a pair of flags to deny and restore user access to the
system.

We examined group management commands and used them
in exercises to create, modify, and delete group accounts, and
add users to supplementary groups. The set of the
management commands is straightforward and easy to use,
but they require execution by a privileged user.

We looked at a couple of tools towards the end of the chapter
to switch into other user accounts, including the root user,
and to run privileged commands as a normal user. The use of
the latter tool is recommended.

Finally, we discussed ownership and owning groups on files
and directories, and how they are assigned. We performed
exercises to understand who can modify them and how.

Check Your Understanding
1. Which command can be used to display the effective

(current) username?
2. What is the recommended location to store custom

sudo rules?
3. What would the command passwd -l user10 do?
4. The chown command may be used to modify both

ownership and group membership on a file. True or
False?

5. What would the command passwd -n 7 -x 15 -w 3 user5
do?

6. Write the two command names for managing all of the
password aging attributes.

7. Which file has the default password aging settings
defined?

8. What would the command chage -E 2020-10-22 user10
do?

9. What would the command chage -l user5 do?
10. Which two commands can be used to lock and unlock a

user account?
11. When using sudo, log files record activities under the

root user account. True or False?
12. What is the difference between running the su

command with and without the hyphen sign?
13. What is the significance of the -o option with the

groupadd and groupmod commands?

14. What would the entry user10 ALL=(ALL)
NOPASSWD:ALL in the sudoers file imply?

15. The chgrp command may be used to modify both
ownership and group membership on a file. True or
False?

16. What would the command chage -d 0 user60 do?

Answers to Check Your
Understanding

1. The whoami command reports the effective username
of the user running this command.

2. The custom sudo rules should be stored in files under
the /etc/sudoers.d directory.

3. This command will lock user10.
4. True.
5. The command will set mindays to 7, maxdays to 15,

and warndays to 3 for user5.
6. The passwd and chage commands.
7. The /etc/login.defs file has the defaults for password

aging defined.
8. The command provided will set October 22, 2020 as the

expiry date for user10.
9. The command provided will display password aging

attributes for user5.
10. The usermod and passwd commands can be used to

lock and unlock a user account.
11. False. The activities are registered under the username

who invokes the sudo command.
12. With the dash sign the su command processes the

specified user’s startup files, and it won’t without this
sign.

13. The -o option lets the commands share a GID between
two or more groups.

14. It will give user10 password-less access to all privileged
commands.

15. False.
16. The command provided will force user60 to change

their password at next login.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 6-1: Create User and Configure
Password Aging
As root on server1, create group lnxgrp with GID 6000. Create
user user5000 with UID 5000 and GID 6000. Assign this user a
password, and establish password aging attributes so that this
user cannot change their password within 4 days after setting
it and with a password validity of 30 days. This user should
start getting warning messages for changing password 10
days prior to account lock down. This user account needs to
expire on the 20th of December, 2021. (Hint1: Chapter 05:
Local User Authentication Files, and User Account
Management). (Hint2: Password Aging and its Management,
and Linux Groups and their Management).

Lab 6-2: Lock and Unlock User
As root on server1, lock the user account for user5000 using
the passwd command, and confirm by examining the change
in the /etc/shadow file. Try to log in with user5000 and
observe what happens. Use the usermod command and
unlock this account. Verify the unlocking by checking the

entry for the user in the /etc/shadow file. (Hint: Password
Aging and its Management).

Lab 6-3: Modify Group
As root on server1, modify the GID from 6000 to 7000 for the
lnxgrp group. Add users user1000 and user2000 as
supplementary members (create users if needed). Change the
group’s name to dbagrp, and verify. (Hint: Linux Groups and
their Management).

Lab 6-4: Configure sudo Access
As root on server1, add a rule for user5000 to the
/etc/sudoers file to allow this user full root access on the
system. Make sure that this user is not prompted for a
password when they use sudo to execute a command. Now
switch into this user account and try running sudo vgs, and
see if that works. (Hint: Substituting Users and Doing as
Superuser).

Lab 6-5: Modify Owning User and Group
As user1 on server1, create file f6 and directory d6 under
/tmp. Change owning user for f6 to user90 (create user) using
sudo chown, and owning group to dba with sudo chgrp.
Change owning user and group on d6 to user90:g1 (create
group) recursively using sudo chown. (Hint: Owing User and
Owning Group).

Chapter 07

The Bash Shell

This chapter describes the following major
topics:

Introduction to the bash shell
Internal and external commands
Understand, set, and unset shell and
environment variables

Comprehend and use command and variable
expansions

Grasp and utilize input, output, and error
redirections

Know and use history substitution, command
line editing, tab completion, tilde
substitution, and command aliasing

Identify and use metacharacters, wildcard
characters, pipes, and pipelines

Discover the use of quoting mechanisms and
regular expressions

Run and control jobs in background and
foreground

Identify and examine shell startup files

RHCSA Objectives:

02.Use input-output redirection (>, >>, |, 2>,
etc.)

03.Use grep and regular expressions to
analyze text

Shells allow users to interact with the operating
system for execution of their instructions through
programs, commands, and applications. RHEL

supports a variety of shells of which the bash shell is the
most common. It is also the default shell for users in RHEL 8.
This shell offers a variety of features that help users and
administrators perform their job with ease and flexibility.
Some of these features include recalling a command from
history and editing it at the command line before running it,
sending output and error messages to non-default target
locations, creating command shortcuts, sending output of
one command as input to the next, assigning the output of a
command to a variable, using special characters to match a
string of characters, treating a special character as a literal
character, and so on.

Regular expressions are text patterns for matching against
an input provided in a search operation. Text patterns may
include any sequenced or arbitrary characters or character
range. RHEL offers a powerful command to work with pattern
matching.

At login, plenty of system and user startup scripts are
executed to set up the user environment. The system startup
scripts may be customized for all users by the Linux
administrator and the user startup scripts may be modified
by individual users as per their need.

The Bourne-Again Shell
A shell is referred to as the command interpreter, and it is
the interface between a user and the Linux kernel. The shell
accepts instructions (commands) from users (or programs),

interprets them, and passes them on to the kernel for
processing. The kernel utilizes all hardware and software
components required for a successful processing of the
instructions. When concluded, it returns the results to the
shell, which then exhibits them on the screen. The shell also
shows appropriate error messages, if generated. In addition,
the shell delivers a customizable environment to users.

A widely used shell by Linux users and administrators is the
bash (bourne-again shell) shell. Bash is a replacement for the
older Bourne shell with numerous enhancements and plenty
of new features incorporated from other shells. It is the
default shell in most popular Linux distributions including
RHEL 8 and offers several features such as variable
manipulation, variable substitution, command substitution,
input and output redirections, history substitution, tab
completion, tilde substitution, alias substitution,
metacharacters, pattern matching, filename globbing,
quoting mechanisms, conditional execution, flow control, and
shell scripting. This section discusses all of these features
except for the last three.

The bash shell is identified by the dollar sign ($) for normal
users and the hash sign (#) for the root user. The bash shell
is resident in the /usr/bin/bash file.

Internal and External Shell Commands
There is a rich collection of commands built in to the bash
shell known as the internal commands. These include cd,
pwd, umask, alias/unalias, history, command, . (dot), export,
exit, test, shift, set/unset, source, exec, and break. Upon
invocation, these commands are executed directly by the
shell without creating a new process for them. Other
commands located in various directories, such as /usr/bin
and /usr/sbin, are external to the shell, and the shell spawns
a temporary sub-shell (child shell) to run them.

Shell and Environment Variables
A variable is a transient storage for data in memory. It
retains information that is used for customizing the shell
environment and referenced by many programs to function
properly. The shell stores a value in a variable, and one or
more white space characters must be enclosed within
quotation marks (“”).

There are two types of variables: local (or shell) and
environment. A local variable is private to the shell in which
it is created, and its value cannot be used by programs that
are not started in that shell. This introduces the concept of
current shell and sub-shell (or child shell). The current shell
is where a program is executed, whereas a sub-shell (or child
shell) is created within a shell to run a program. The value of
a local variable is only available in the current shell.

The value of an environment variable is inherited from the
current shell to the sub-shell during the execution of a
program. In other words, the value stored in an environment
variable is accessible to the program, as well as any sub-
programs that it spawns during its lifecycle. Any
environment variable set in a sub-shell is lost when the sub-
shell terminates.

There are a multitude of predefined environment variables
that are set for each user upon logging in. Use the env or
the printenv command to view their values. Run these
commands on server1 as user1 and observe the output.
There should be around 25 of them. Some of the common
predefined environment variables are described in Table 7-1.

Variable Description

DISPLAY Stores the hostname or IP address for graphical
terminal sessions

HISTFILE Defines the file for storing the history of executed
commands

HISTSIZE Defines the maximum size for the HISTFILE

HOME Sets the home directory path

LOGNAME Retains the login name

MAIL Contains the path to the user mail directory

PATH Defines a colon-separated list of directories to be
searched when executing a command. A correct
setting of this variable eliminates the need to
specify the absolute path of a command to run it.

PPID Holds the identifier number for the parent program

PS1 Defines the primary command prompt

PS2 Defines the secondary command prompt

PWD Stores the current directory location

SHELL Holds the absolute path to the primary shell file

TERM Holds the terminal type value

UID Holds the logged-in user’s UID

USER Retains the name of the logged-in user

Table 7-1 Common Predefined Environment Variables

RHEL provides the echo command to view the values stored
in variables. For instance, to view the value for the PATH
variable, run the echo command and ensure to prepend the
variable name (PATH) with the dollar sign ($):

Try running echo $HOME, echo $SHELL, echo $TERM,
echo $PPID, echo $PS1, and echo $USER and see what
values they store.

Setting and Unsetting Variables

Shell and environment variables may be set or unset at the
command prompt or via programs, and their values may be
viewed and used as necessary. We define and undefine
variables and view their values using built-in shell
commands such as export, unset, and echo. It is
recommended to use uppercase letters to name variables so
as to circumvent any possible conflicts with a command,
program, file, or directory name that exist somewhere on the
system. To understand how variables are defined, viewed,
made environment, and undefined, a few examples are
presented below. We run the commands as user1.

To define a local variable called VR1:

To view the value stored in VR1:

Now type bash at the command prompt to enter a sub-shell
and then run echo $VR1 to check whether the variable is
visible in the sub-shell. You will not find it there, as it was not
an environment variable. Exit out of the sub-shell by typing
exit.

To make this variable an environment variable, use the
export command:

Repeat the previous test by running the bash command and
then the echo $VR1. You should be able to see the variable
in the sub-shell, as it is now an environment variable. Exit
out of the sub-shell with the exit command.

To undefine this variable and remove it from the shell
environment:

To define a local variable that contains a value with one or
more white spaces:

To define and make the variable an environment variable at
the same time:

The echo command is restricted to showing the value of a
specific variable and the env and printenv commands display
the environment variables only. If you want to view both local
and environment variables, use the set command. Try
running set and observe the output.

Command and Variable Substitutions
The primary command prompt ends in the hash sign (#) for
the root user and in the dollar sign ($) for normal users.
Customizing this prompt to exhibit useful information such as
who you are, the system you are logged on to, and your
current location in the directory tree is a good practice. By
default, this setting is already in place through the PS1
environment variable, which defines the primary command
prompt. You can validate this information by looking at the
command prompt [user1@server1 ~]$.

You can also view the value stored in PS1 by issuing echo
$PS1. The value is \u@\h \W\$. The \u translates into the
logged-in username, \h represents the hostname of the
system, \W shows your current working directory, and \$
indicates the end of the command prompt.

Exercise 7-1 demonstrates how to employ the command and
variable substitution features to customize the primary
command prompt for user1. You will use the hostname
command and assign its output to the PS1 variable. This is
an example of command substitution. Note that the

command whose output you want assigned to a variable
must be encapsulated within either backticks `hostname` or
parentheses $(hostname).

There are two instances of the variable substitution feature
employed in Exercise 7-1. The LOGNAME and the PWD
environment variables to display the username and to reflect
the current directory location.

Exercise 7-1: Modify Primary Command
Prompt
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will customize the primary shell prompt
to display the information enclosed within the quotes “<
username on hostname in pwd >:” using the variable and
command substitution features. You will do this at the
command prompt. You will then edit the ~/.profile file for
user1 and define the new value in there for permanence (see
Shell Startup Files later in this chapter to understand the
purpose of .profile), otherwise, the value will be lost when
user1 closes the terminal window or logs off.

1. Change the value of the variable PS1 to reflect the
desired information:

The prompt has changed to display the desired information.

2. Edit the .profile file for user1 and define the value
exactly as it was run in Step 1.

3. Test by logging off as user1 and logging back in. The
new command prompt will be displayed.

Input, Output, and Error Redirections
Programs read input from the keyboard and write output to
the terminal window where they are initiated. Any errors, if
encountered, are printed on the terminal window too. This is
the default behavior. The bash handles input, output, and
errors as character streams. If you do not want input to come
from the keyboard or output and error to go to the terminal
screen, the shell gives you the flexibility to redirect input,
output, and error messages to allow programs and
commands to read input from a non-default source, and
forward output and errors to one or more non-default
destinations.

EXAM TIP: You may be asked to run a command or report and
redirect its output and/or error messages to a file.

The default (or the standard) locations for the three streams
are referred to as standard input (or stdin), standard output
(or stdout), and standard error (or stderr). These locations
may also be epitomized using the opening angle bracket
symbol (<) for stdin, and the closing angle bracket symbol
(>) for stdout and stderr. Alternatively, you may use the file
descriptors (the digits 0, 1, and 2) to represent the three
locations.

Redirecting Standard Input
Input redirection instructs a command to read input from an
alternative source, such as a file, instead of the keyboard.
The opening angle bracket (<) is used for input redirection.
For example, run the following to have the cat command
read the /etc/redhat-release file and display its content on
the standard output (terminal screen):

Redirecting Standard Output
Output redirection sends the output generated by a
command to an alternative destination, such as a file,
instead of to the terminal window. The closing angle bracket
(>) is used for this purpose. For instance, the following
directs the ls command output to a file called ls.out. This will
overwrite any existing ls.out file if there is one; otherwise, a
new file will be created.

The above can also be run as ls 1> ls.out where the digit
“1” represents the standard output location.

If you want to prevent an inadvertent overwriting of the
output file, you can enable the shell’s noclobber feature with
the set command and confirm its activation by re-issuing the
above redirection example:

You are denied the action.

 You can disable the noclobber option by running set +o

noclobber at the command prompt.

To direct the ls command to append the output to the ls.out
file instead of overwriting it, use the two closing angle
brackets (>>):

Again, the equivalent for the above is ls 1>> ls.out.

Redirecting Standard Error
Error redirection forwards any error messages generated to
an alternative destination rather than to the terminal

window. An alternative destination could be a file. For
example, the following directs the find command issued as a
normal user to search for all occurrences of files by the name
core in the entire directory tree and sends any error
messages produced to /dev/null (/dev/null is a special file
that is used to discard data). This way only the useful output
is exhibited on the screen and errors are thrown away.

Redirecting both Standard Output and
Error
You may redirect both output and error to alternative
locations as well. For instance, issue the following to forward
them both to a file called outerr.out:

This example will produce a listing of the /usr directory and
save the result in outerr.out. At the same time, it will
generate an error message complaining about the non-
existence of /cdr, and it will send it to the same file as well.

 Another method to run the above command is by typing ls /usr

/cdr 1> outerr.out 2>&1, which essentially means to redirect file
descriptor 1 to file outerr.out as well as to file descriptor 2.

You can exchange &> with &>> in the above example to
append the information in the file rather than overwriting it.

History Substitution
History substitution (a.k.a. command history or history
expansion) is a time-saver bash shell feature that keeps a
log of all commands or commandsets that you run at the
command prompt in chronological order with one command
or commandset per line. The history feature is enabled by

default; however, you can disable and re-enable it if
required. The bash shell stores command history in a file
located in the user’s home directory and in system memory.
You may retrieve the commands from history, modify them
at the command prompt, and rerun them.

There are three variables—HISTFILE, HISTSIZE, and
HISTFILESIZE—that control the location and history storage.
HISTFILE defines the name and location of the history file to
be used to store command history, and the default is
.bash_history in the user’s home directory. HISTSIZE dictates
the maximum number of commands to be held in memory
for the current session. HISTFILESIZE sets the maximum
number of commands allowed for storage in the history file
at the beginning of the current session and are written to the
HISTFILE from memory at the end of the current terminal
session. Usually, HISTSIZE and HISTFILESIZE are set to a
common value. These variables and their values can be
viewed with the echo command. The following shows the
settings for user1:

The values of any of these variables may be altered for
individual users by editing the .bashrc or .bash_profile file in
the user’s home directory. A discussion on these files is
provided later in this chapter.

In RHEL, the history command displays or reruns previously
executed commands. This command gets the history data
from the system memory as well as from the .bash_history
file. By default, it shows all entries. Run this command at the
prompt without any options and it will dump everything on
the screen:

The history command has some useful options. Let’s use
them and observe the impact on the output.

To display this command and the ten preceding entries:

To re-execute a command by its line number (line 15 for
example):

To re-execute the most recent occurrence of a command that
started with a particular letter or series of letters (ch for
example):

To issue the most recent command that contained “grep”:

To remove entry 24 from history:

To repeat the last command executed:

The second exclamation mark (!) in the above example is
used to retrieve the last executed command.

You may disable the shell’s history expansion feature by
issuing set +o history at the command prompt and re-
enable it with set -o history. The set command is used in
this way to enable or disable a bash shell feature.

Editing at the Command Line

While typing a command with a multitude of options and
arguments at the command prompt, you often need to move
the cursor backward to add or modify something. For
instance, if you are typing a long command as a normal user
and then realize the command needs to have sudo added at
the beginning, move the cursor quickly to the start of the
command. This is a shortcut to save time. There are plenty
of key combinations for rapid movement on the command
line. Table 7-2 lists and explains several of these.

Key
Combinations

Action

Ctrl+a / Home Moves the cursor to the beginning of the
command line

Ctrl+e / End Moves the cursor to the end of the command
line

Ctrl+u Erase the entire line

Ctrl+k Erase from the cursor to the end of the
command line

Alt+f Moves the cursor to the right one word at a
time

Alt+b Moves the cursor to the left one word at a
time

Ctrl+f / Right
arrow

Moves the cursor to the right one character
at a time

Ctrl+b / Left arrow Moves the cursor to the left one character at
a time

Table 7-2 Helpful Command Line Editing Shortcuts

For normal users and administrators who often work at the
command line, these key combinations will be very helpful in
saving time.

Tab Completion
Tab completion (a.k.a. command line completion) is a bash
shell feature whereby typing one or more initial characters of

a file, directory, or command name at the command line and
then hitting the Tab key twice automatically completes the
entire name. In case of multiple possibilities matching the
entered characters, it completes up to the point they have in
common and prints the rest of the possibilities on the screen.
You can then type one or more following characters and
press Tab again to further narrow down the possibilities.
When the desired name appears, press Enter to accept it and
perform the action. One of the major benefits of using this
feature is the time saved on typing long file, directory, or
command names.

Try this feature out on your Linux terminal window and get
yourself familiarized with it.

Tilde Substitution
Tilde substitution (or tilde expansion) is performed on words
that begin with the tilde character (~). The rules to keep in
mind when using the ~ are:

1. If ~ is used as a standalone character, the shell refers
to the $HOME directory of the user running the
command. The following example displays the $HOME
directory of user1:

2. If the plus sign (+) follows the ~, the shell refers to the
current directory. For example, if user1 is in the
/usr/bin directory and does ~+, the output exhibits the
user’s current directory location:

3. If the hyphen character (-) follows the ~, the shell
refers to the previous working directory. For example, if

user1 switches into the /usr/share/man directory from
/usr/bin and does ~-, the output displays the user’s
last working directory:

4. If a username has the ~ prepended, the shell refers to
the $HOME directory of that user:

Tilde substitution can also be used with commands such as
cd and ls. For instance, to cd into the home directory of
user1 (or any other user for that matter) from anywhere in
the directory structure, specify the login name with the ~:

This command is only successful if user1 has the right
permissions to navigate into the target user’s home
directory. Let’s try this example as the root user:

The above example demonstrates the navigation into the
home directory of user100 as the root user. By default, root
has full rights to cd into any users’ home directory.

Another example below exhibits how a user can cd into one
of their subdirectories (such as /home/user1/dir1) directly
from anywhere (/etc/systemd/system) in the directory
structure (create dir1 for this test):

Try using the ~ with the ls command. For example, run sudo
ls -ld ~root/Desktop as user1.

Alias Substitution
Alias substitution (a.k.a. command aliasing or alias) allows
you to define a shortcut for a lengthy and complex command
or a set of commands. Defining and using aliases saves time
and saves you from typing. The shell executes the
corresponding command or commandset when an alias is
run.

The bash shell includes several predefined aliases that are
set during user login. These aliases may be viewed with the
alias command. The following shows all aliases that are
currently set for user1:

There are more default aliases set for the root user. Run alias
as root:

Table 7-3 describes aliases from the previous two outputs.

Alias Value Definition

vi vim Runs the vim command
instead of the old vi

cp cp -i Issues the cp command in
interactive mode

ll ls -l Shows the ls command output
in long format

mv mv -i Executes the mv command in
interactive mode

rm rm -i Runs the rm command in
interactive mode

which (alias; declare -f) |
/usr/bin/which -- tty-only
--read-alias --read-
functions --show-tilde --
show-dot

Runs the which command with
the specified options

Table 7-3 Predefined Aliases

In addition to listing the set aliases, the alias command can
also be used to define new aliases. The opposite function of
unsetting an alias is performed with the unalias command.
Both alias and unalias are internal shell commands. Let’s
look at a few examples.

Create an alias “search” to abbreviate the find command
with several switches and arguments. Enclose the entire
command within single quotation marks (‘’) to ensure white
spaces are taken care of. Do not leave any spaces before and
after the equal sign (=).

Now, when you type the string “search” at the command
prompt and press the Enter key, the shell will trade the alias
“search” with what is stored in it and will run it. Essentially,
you have created a shortcut to that lengthy command.

Sometimes you define an alias by a name that matches the
name of some system command or program. In this
situation, the shell gives the execution precedence to the
alias. This means the shell will run the alias and not the
command or the program. For example, the rm command
deletes a file without giving any warning if run as a normal
user. To prevent accidental deletion of files with rm, you may
create an alias by the same name as the command but with
the interactive option added, as shown below:

When you execute rm now to remove a file, the shell will run
what is stored in the rm alias and not the command rm. If
you wish to run the rm command instead, run it by preceding
a backslash (\) with it:

You can use the unalias command to unset one or more
specified aliases if they are no longer in need. The following
will undefine the two aliases that were defined for our
examples:

Metacharacters and Wildcard Characters
Metacharacters are special characters that possess special
meaning to the shell. Some of them are the dollar sign ($),
caret (^), period (.), asterisk (*), question mark (?), pipe (|),
angle brackets (< >), curly brackets ({}), square brackets
([]), parentheses (()), plus (+), exclamation mark (!),
semicolon (;), and backslash (\) characters. They are used in
pattern matching (a.k.a. filename expansion or file globbing)
and regular expressions. This sub-section discusses the
metacharacters (* ? [] !) that are used in pattern matching.
The *, ?, and [] characters are also referred to as wildcard
characters.

The * Character
The asterisk (*) matches zero to an unlimited number of
characters except for the leading period (.) in a hidden
filename. See the following examples on usage.

To list all files in the /etc directory that begin with letters
“ma” and followed by any characters:

To list all hidden files and directories in /home/user1:

To list all files in the /var/log directory that end in “.log”:

The * is probably the most common metacharacter that is
used in pattern matching.

The ? Character
The question mark (?) matches exactly one character except
for the leading period in a hidden filename. See the following
example to understand its usage.

To list all files and directories under /var/log with exactly four
characters in their names:

The ? is another metacharacter that is used widely in pattern
matching.

The Square Brackets [] and the
Exclamation Mark !
The square brackets ([]) can be used to match either a set of
characters or a range of characters for a single character
position.

For a set of characters specified in this enclosure, the order
in which they are listed has no importance. This means the
shell will interpret [xyz], [yxz], [xzy], and [zyx] alike during
pattern matching. In the following example, two characters
are enclosed within the square brackets. The output will
include all files and directories that begin with either of the
two characters and followed by any number of characters.

A range of characters must be specified in a proper
sequence such as [a-z] or [0-9]. The following example
matches all directory names that begin with any letter
between “m” and “o” in the /etc/systemd/system directory:

The shell enables the exclamation mark (!) to inverse the
matches. For instance, [!a-d]* would exclude all filenames
that begin with any of the first four alphabets. The following

example will produce the reverse of what the previous
example did:

The output will have a multitude of filenames printed.

Piping Output of One Command as Input
to Another
The pipe, represented by the vertical bar (|) and normally
resides with the backslash (\) on most keyboards, is used to
send the output of one command as input to the next. This
character is also used to define alternations in regular
expressions. You can use the pipe operator as many times in
a command as you require.

The /etc directory contains plenty of files, but they all do not
fit on one terminal screen when you want to see its long
listing. You can use the pipe operator to pipe the output to
the less command in order to view the directory listing one
screenful at a time:

In another example, the last command is run and its output
is piped to the nl command to number each output line:

The following example sends the output of ls to grep for the
lines that do not contain the pattern “root”. The new output
is further piped for a case-insensitive selection of all lines
that exclude the pattern “dec”. The filtered output is
numbered, and the final result shows the last four lines on
the display.

A construct like the above with multiple pipes is referred to
as a pipeline.

Quoting Mechanisms
As you know, metacharacters have special meaning to the
shell. In order to use them as regular characters, the bash
shell offers three quoting mechanisms to disable their
special meaning and allow the shell to treat them as literal
characters. These mechanisms are available through the use
of the backslash (\), single quotation (‘’), and double
quotation (“”) characters, and work by prepending a special
character to the backslash, or enclosing it within single or
double quotation marks.

Prefixing with a Backslash \
The backslash character (\), also referred to as the escape
character in shell terminology, instructs the shell to mask the
meaning of any special character that follows it. For
example, if a file exists by the name * and you want to

remove it with the rm command, you will have to escape the
* so that it is treated as a regular character, not as a
wildcard character.

In the above example, if you forget to escape the *, the rm
command will remove all files from the directory.

Enclosing within Single Quotes ‘’
The single quotation marks (‘’) instructs the shell to mask
the meaning of all encapsulated special characters. For
example, LOGNAME is a variable, and its value can be
viewed with the echo command:

If you encapsulate $LOGNAME within single quotes, the echo
command will exhibit the entire string as is:

In the above example, the shell interprets the dollar sign ($)
as a literal character, and that’s why the echo command
displays what is inside the enclosure, including the $ rather
than the value of the variable.

Enclosing within Double Quotes “”
The double quotation marks (“”) commands the shell to
mask the meaning of all but the backslash (\), dollar sign ($),
and single quotes (‘’). These three special characters retain
their special meaning when they are enclosed within double
quotes. Look at the following examples to understand its
usage.

The above three instances confirm the use of the double
quotes as a special character pair, as depicted in the
outputs.

Regular Expressions
A regular expression, also referred to as a regexp or simply
regex, is a text pattern or an expression that is matched
against a string of characters in a file or supplied input in a
search operation. The pattern may include a single
character, multiple random characters, a range of
characters, word, phrase, or an entire sentence. Any pattern
containing one or more white spaces must be surrounded by
quotation marks.

RHEL provides a powerful tool called grep (global regular
expression print or get regular expression and print) to work
with pattern matching in regular expressions. This tool
searches the contents of one or more text files or input
supplied for a match. If the expression is matched, grep
prints every line containing that expression on the screen
without changing the source content. grep has plenty of
options and it accepts expressions in various forms.

EXAM TIP: The grep command is a handy tool to extract needed
information from a file or command output. The extracted
information can then be redirected to a file. The sequence of the
grep’ed data remains unchanged.

Let’s consider the following examples to comprehend the
usage of the grep command.

To search for the pattern “operator” in the /etc/passwd file:

To search for the space-separated pattern “aliases and
functions” in the $HOME/.bashrc file:

To search for the pattern “nologin” in the passwd file and
exclude (-v) the lines in the output that contain this pattern.
Add the -n switch to show the line numbers associated with
the matched lines.

To find any duplicate entries for the root user in the passwd
file. Prepend the caret sign (^) to the pattern “root” to mark
the beginning of a line.

To identify all users in the passwd file with bash as their
primary shell. Append the dollar sign ($) to the pattern
“bash” to mark the end of a line.

To show the entire login.defs file but exclude all the empty
lines:

To perform a case-insensitive search (-i) for all the lines in
the /etc/bashrc file that match the pattern “path.”

To print all the lines from the /etc/lvm/lvm.conf file that
contain an exact match for a word (-w). You can use the
period character (.) in the search string to match a single
position. The following example searches for words in the
lvm.conf file that begin with letters “acce” followed by
exactly two characters:

In addition to the caret (^), dollar ($), and period (.), the
asterisk (*), question mark (?), square brackets ([]), and curly
brackets ({}) are also used in regular expressions.

To print all the lines from the ls command output that include
either (-E) the pattern “cron” or “ly”. The pipe | character is
used as an OR operator in this example. This is referred to as
alternation. Regex allows you to add more patterns to this
set if desired. For instance, if you search for three patterns,
use ‘pattern1|pattern2|pattern3’. The patterns must be
enclosed within single or double quotes. Here is what you
will issue when you want to look for the patterns “cron” and
“ly” in the /etc directory listing:

To show all the lines from the /etc/ssh/sshd_config file but
exclude (-v) the empty lines and the rows that begin with the
hash (#) character (commented lines). Using the -e flag
multiple times as shown below is equivalent to how “-E
‘pattern1|pattern2’” was used in the above example.

You can combine options and employ diverse regular
expression criteria to perform complex matches on input.
Issue man 7 regex in a terminal window to learn more
about regex. Also consult the manual pages of the grep
command to view available options and other details.

Running and Controlling Jobs in
Foreground and Background
By default, any program or command you issue runs in the
foreground and ties itself to the terminal window where it is
initiated. It can be moved to continue to run in the
background so that the associated terminal session is
released for performing other tasks. A job is a process that is
started in the background and controlled by the terminal
where it is spawned. Just like any other process that is
started on the system, a job is also assigned a PID (process
identifier) by the kernel and, additionally, a job ID by the
shell. Unlike a normal process, a job does not hold the
terminal window where it is initiated. This enables you to run

other programs from the same terminal window. See Chapter
08 “Linux Processes and Task Scheduling” for details on
processes and PIDs.

The shell allows running multiple jobs simultaneously,
including transferring large amounts of data and running
application programs in the background. Background jobs
can be brought to foreground, returned to the background,
suspended, or stopped. The management of multiple jobs
within a shell environment is called job control.

The shell offers certain commands and control sequences for
administering the jobs. See Table 7-4 for their description.

Command Description

jobs Shell built-in command to display jobs

bg Shell built-in command to move a job to the
background or restart a job in the background that
was suspended with Ctrl+z

fg Shell built-in command to move a job to the
foreground

Ctrl+z Suspends a foreground job and allows the terminal
window to be used for other purposes

Table 7-4 Job Control Commands and Control
Sequences

To run a job in the background, type the command at the
command prompt followed by the ampersand (&) operator.

The examples below start the top and vim programs in the
background. The shell displays their assigned job IDs
(enclosed within square brackets) and PIDs. The job IDs allow
us to control the jobs, and the PIDs are used by the kernel to
manage the processes.

Issue the jobs command with the -l switch to view all the jobs
running in the background:

The plus sign (+) indicates the current background job and
the minus sign (-) signifies the previous job. “Stopped”
implies that the jobs are currently suspended and can be
signaled to continue their execution in the background with
the bg command or to bring them back to the foreground
with the fg command.

To bring job ID 1 to the foreground and start running it:

To suspend job ID 1, press ^z followed by bg %1 to let it run
in the background.

To terminate job ID 1, supply its PID (31726) to the kill
command:

A message similar to the following appears when a
background job ends its execution:

 [2] + Done vi testfile1 &

See Chapter 08 “Linux Processes and Task Scheduling” for
more information on the kill command.

Shell Startup Files
Earlier in this chapter, you used local and environment
variables and learned how to modify the primary command
prompt to add useful information to it. In other words, you
modified the default shell environment to suit your needs.
You stored the PS1 value in a shell startup file to ensure the
changes are always available after you log off and log back
in.

Modifications to the default shell environment can be stored
in startup (or initialization) files. These files are sourced by
the shell following user authentication at the time of logging
in and before the command prompt appears. In addition,
aliases, functions, and scripts can be added to these files as
well. There are two types of startup files: system-wide and
per-user.

System-wide Shell Startup Files
System-wide startup files set the general environment for all
users at the time of their login to the system. These files are
located in the /etc directory and are maintained by the Linux
administrator. System-wide files can be modified to include
general environment settings and customizations.

Table 7-5 lists and describes system-wide startup files for
bash shell users.

File Comments

/etc/bashrc Defines functions and aliases, sets umask for user
accounts with a non-login shell, establishes the
command prompt, etc. It may include settings from
the shell scripts located in the /etc/profile.d
directory.

/etc/profile Sets common environment variables such as PATH,
USER, LOGNAME, MAIL, HOSTNAME, HISTSIZE, and
HISTCONTROL for all users, establishes umask for
user accounts with a login shell, processes the shell
scripts located in the /etc/profile.d directory, and so
on.

/etc/profile.d Contains scripts for bash shell users that are
executed by the /etc/profile file.

Table 7-5 System-wide Startup Files

Excerpts from the bashrc and profile files and a list of files in
the profile.d directory are displayed below:

Any file in the profile.d directory can be edited and updated.
Alternatively, you can create your own file and define any
customization that you want.

Per-user Shell Startup Files
Per-user shell startup files override or modify system default
definitions set by the system-wide startup files. These files
may be customized by individual users to suit their needs.
By default, two such files, in addition to the .bash_logout file,
are located in the skeleton directory /etc/skel and are copied
into user home directories at the time of user creation.

You may create additional files in your home directories to
set more environment variables or shell properties if
required.

Table 7-6 lists and describes per-user startup files for bash
shell users.

File Comments

.bashrc Defines functions and aliases. This file sources
global definitions from the /etc/bashrc file.

.bash_profile Sets environment variables and sources the .bashrc
file to set functions and aliases.

.gnome2/ Directory that holds environment settings when
GNOME desktop is started. Only available if GNOME
is installed.

Table 7-6 Per-user Startup Files

Excerpts from the .bashrc and .bash_profile files are
exhibited below:

The order in which the system-wide and per-user startup files
are executed is important to grasp. The system runs the
/etc/profile file first, followed by .bash_profile, .bashrc, and
finally the /etc/bashrc file.

There is also a per-user file .bash_logout in the user’s home
directory. This file is executed when the user leaves the shell
or logs off. This file may be customized as well.

Chapter Summary
In this chapter, we explored the bash shell, which has
numerous features that are essential for users and
administrators alike. We touched upon a few that are more
prevalent. These features included variable settings,
command prompt customization using substitution
techniques, input/output/error redirections, history
expansion, command line editing, filename completion, tilde
substitution, and command aliasing. Moreover, we looked at
the difference between the shell’s internal and external
commands.

We continued to examine additional bash shell features and
expanded on metacharacters, wildcard characters, pipe
symbol, and quoting mechanisms. We demonstrated an
example of building a pipeline by incorporating multiple pipe
characters between commands.

Finally, we analyzed various system-wide and per-user shell
initialization scripts that are executed upon logging in to set
a user environment. These scripts may be customized for all
users or individual users to suit specific needs.

Check Your Understanding
1. You want to change the command prompt for yourself.

Where (the bash shell file) would you define it so that
you get the custom command prompt whenever you
log in?

2. What is the other name for the command line
completion feature?

3. What is a common use of the pipe symbol?
4. Which directory location stores most, if not all,

privileged commands?
5. You have a file called “?” in your home directory along

with other one-letter files. What would you run to
delete the “?” file only?

6. What would the command ls /cdr /usr > output do?
Assume /cdr does not exist.

7. What is the name of the command that allows a user
to define shortcuts to lengthy commands?

8. Which file typically defines the history variables for all
users?

9. You have a command running that is tied to your
terminal window. You want to get the command prompt
back without terminating the running command. Which
key combination would you press to return to the
command prompt?

10. Name the three quoting mechanisms?
11. What would the command export VAR1=”I passed

RHCSA” do?
12. Name the default filename and location where user

command history is stored?
13. What is the primary function of the shell in Linux?
14. What would the command cd ~user20 do if executed

as user10?
15. Which command would you use to display all

matching lines from a text file?
16. What would the command ls > ls.out do?

Answers to Check Your
Understanding

1. You can define it in the ~/.bash_profile file.
2. The other name for the command line completion

feature is tab completion.

3. A common use of the pipe character is to receive the
output of one command and pass it along to the next
command as an input.

4. Privileged commands are stored in /usr/sbin directory.
5. You can issue rm \? to remove the file.
6. The command provided will redirect ls /usr output to

the specified file and ls /cdr (error) to the terminal.
7. The alias command.
8. /etc/profile is the file where the history variables are

defined for all users.
9. The Ctrl+z key combination will suspend the running

program and give you access to the command prompt.
10. The three quoting mechanisms are backslash, single

quotation mark, and double quotation mark.
11. The command provided will set an environment

variable with the quoted string as its value.
12. The user command history is stored in ~/.bash_history

file.
13. The shell acts as an interface between a user and the

system.
14. The command provided will allow user10 to cd into

user20’s home directory provided user10 has proper
access permissions.

15. The grep command.
16. The command provided will redirect the ls command

output to the specified file.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

Lab 7-1: Customize the Command Prompt
As user1 on server1, customize the primary shell prompt to
display the information enclosed within the quotes
“<user1@server1 in /etc >:” when this user switches into
the /etc directory. The prompt should always reflect the
current directory path. Add this to the appropriate per-user
startup file for permanence. (Hint: Command and Variable
Substitutions).

Lab 7-2: Redirect the Standard Input,
Output, and Error
As user1 on server1, run the ls command on /etc, /dvd, and
/var. Have the output printed on the screen as well as
redirected to file /tmp/ioutput, and the errors forwarded to
file /tmp/ioerror. Check both files after the execution of the
command and analyze the results. (Hint: Input, Output, and
Error Redirections).

Chapter 08

Linux Processes and Task
Scheduling

This chapter describes the following major
topics:

Identify and display system and user
executed processes

View process states and priorities
Examine and change process niceness and
priority

Understand signals and their use in
controlling processes

Review job scheduling
Control who can schedule jobs
Schedule and manage jobs using at
Comprehend crontab and understand the
syntax of crontables

Schedule and manage jobs using cron
Understand anacron and its function

RHCSA Objectives:

15. Identify CPU/memory intensive processes,
adjust process priority with renice, and kill
processes

16.Adjust process scheduling
35.Schedule tasks using at and cron

Aprocess is any program, command, or application
running on the system. Every process has a unique
numeric identifier and it is managed by the kernel

through its entire lifespan. It may be viewed, listed, and
monitored, and can be launched at a non-default priority
based on the requirement and available computing resources.
A process may also be re-prioritized while it is running. A
process is in one of several states at any given time during its
lifecycle. A process may be tied to the terminal window where
it is initiated, or it may run on the system as a service.

There are plenty of signals that may be passed to a process to
accomplish various actions. These actions include hard killing
a process, soft terminating it, running it as a background job,
bringing the background job back to the foreground, and
forcing it to restart with the same identifier.

Job scheduling allows a user to schedule a command for a
one-time or recurring execution in the future. A job is
submitted and managed by authorized users only. All
executed jobs are logged. Anacron is a service that
automatically runs jobs that were missed while the system
was down.

Processes and Priorities
A process is a unit for provisioning system resources. It is any
program, application, or command that runs on the system. A
process is created in memory when a program, application, or
command is initiated. Processes are organized in a
hierarchical fashion. Each process has a parent process (a.k.a.
a calling process) that spawns it. A single parent process may
have one or many child processes and passes many of its

attributes to them at the time of their creation. Each process
is assigned an exclusive identification number known as the
Process IDentifier (PID), which is used by the kernel to
manage and control the process through its lifecycle. When a
process completes its lifespan or is terminated, this event is
reported back to its parent process, and all the resources
provisioned to it (cpu cycles, memory, etc.) are then freed and
the PID is removed from the system.

Plenty of processes are spawned at system boot, many of
which sit in the memory and wait for an event to trigger a
request to use their services. These background system
processes are called daemons and are critical to system
operation.

Process States
A process changes its operating state multiple times during its
lifecycle. Many factors, such as load on the processor,
availability of free memory, priority of the process, and
response from other applications, affect how often a process
jumps from one operating state to another. It may be in a non-
running condition for a while or waiting for other process to
feed it information so that it can continue to run.

There are five basic process states: running, sleeping, waiting,
stopped, and zombie. Each process is in one state at any
given time. See Figure 8-1.

Figure 8-1 Process State Transition

Running: The process is being executed by the system
CPU.
Sleeping: The process is waiting for input from a user or
another process.
Waiting: The process has received the input it was waiting
for and is now ready to run as soon as its turn comes.
Stopped: The process is currently halted and will not run
even when its turn comes unless a signal is sent to change
its behavior. (Signals are explained later in this chapter.)
Zombie: The process is dead. A zombie process exists in
the process table alongside other process entries, but it
takes up no resources. Its entry is retained until its parent
process permits it to die. A zombie process is also called a
defunct process.

Viewing and Monitoring Processes with ps
A system may have hundreds or thousands of processes
running concurrently depending on the purpose of the
system. These processes may be viewed and monitored using
various native tools such as ps (process status) and top (table
of processes). The ps command offers plentiful switches that
influence its output, whereas top is used for real-time viewing
and monitoring of processes and system resources.

Without any options or arguments, ps lists processes specific
to the terminal where this command is issued:

The above output returns the elementary information about
processes in four columns. These processes are tied to the
current terminal window. It exhibits the PID, the terminal (TTY)
the process spawned in, the cumulative time (TIME) the
system CPU has given to the process, and the name of the
actual command or program (CMD) being executed.

Some common options that can be used with the ps
command to generate detailed reports include -e (every), -f
(full-format), -F (extra full-format), and -l (long format). A
combination of -e, -F, and -l (ps -eFl) produces a very
thorough process report, however, that much detail may not
be needed in most situations. Other common options such as
--forest and -x will report the output in tree-like hierarchy and
include the daemon processes as well. Check the manual
pages of the command for additional options and their usage.

Here are a few sample lines from the beginning and end of
the output when ps is executed with -e and -f flags on the
system.

This output is disseminated across eight columns showing
details about every process running on the system. Table 8-1
describes the content type of each column.

Column Description

UID User ID or name of the process owner

PID Process ID of the process

PPID Process ID of the parent process

C CPU utilization for the process

STIME Process start date or time

TTY The controlling terminal the process was started on.
“Console” represents the system console and “?”
represents a daemon process.

TIME Aggregated execution time for a process

CMD The command or program name

Table 8-1 ps Command Output Description

The ps output above pinpoints several daemon processes
running in the background. These processes are not
associated with any terminal, which is why there is a ? in the
TTY column. Notice the PID and PPID numbers. The smaller
the number, the earlier it is started. The process with PID 0 is
started first at system boot, followed by the process with PID
1, and so on. Each PID has an associated PPID in column 3.
The owner of each process is exposed in the UID column
along with the name of the command or program under CMD.

Information for each running process is recorded and
maintained in the /proc file system, which ps and many other
commands reference to acquire desired data for viewing.

The ps command output may be customized to view only the
desired columns. For instance, if you want to produce an
output with the command name in column 1, PID in column 2,
PPID in column 3, and owner name in column 4, run it as
follows:

Make sure the -o option is specified for a user-defined format
and there is no white space before or after the column names.
You can add or remove columns and switch their positions as
needed.

Another switch to look at with the ps command is -C
(command list). This option is used to list only those
processes that match the specified command name. For
example, run it to check how many sshd processes are
currently running on the system:

The output exhibits multiple background sshd processes.

Viewing and Monitoring Processes with
top
The other popular tool for viewing process information is the
top command. This command displays statistics in real time
and continuously, and may be helpful in identifying possible
performance issues on the system. A sample of a running top
session is shown below:

Press q or Ctrl+c to quit.

The top output may be divided into two major portions: the
summary portion and the tasks portion. The summary area
spreads over the first five lines of the output, and it shows the
information as follows:

Line 1: Indicates the system uptime, number of users
logged in, and system load averages over the period of 1,
5, and 15 minutes. See the description for the uptime
command output in
Chapter 02 “Initial Interaction with the System”.
Line 2: Displays the task (or process) information, which
includes the total number of tasks running on the system
and how many of them are in running, sleeping, stopped,
and zombie states.
Line 3: Shows the processor usage that includes the CPU
time in percentage spent in running user and system
processes, in idling and waiting, and so on.
Line 4: Depicts memory utilization that includes the total
amount of memory allocated to the system, and how much
of it is free, in use, and allocated for use in buffering and
caching.

Line 5: Exhibits swap (virtual memory) usage that includes
the total amount of swap allocated to the system, and how
much of it is free and in use. The “avail Mem” shows an
estimate of the amount of memory available for starting
new processes without using the swap.

The second major portion in the top command output
showcases the details for each process in 12 columns as
described below:

Columns 1 and 2: Pinpoint the process identifier (PID)
and owner (USER)
Columns 3 and 4: Display the process priority (PR) and
nice value (NI)
Columns 5 and 6: Depict amounts of virtual memory
(VIRT) and non-swapped resident memory (RES) in use
Column 7: Shows the amount of shareable memory
available to the process (SHR)
Column 8: Represents the process status (S)
Columns 9 and 10: Express the CPU (%CPU) and memory
(%MEM) utilization
Column 11: Exhibits the CPU time in hundredths of a
second (TIME+)
Column 12: Identifies the process name (COMMAND)

While in top, you can press “o” to re-sequence the process
list, “f” to add or remove fields, “F” to select the field to sort
on, and “h” to obtain help. top is highly customizable. See the
command’s manual pages for details.

Listing a Specific Process
Though the tools discussed so far provide a lot of information
about processes including their PIDs, Linux also offers the
pidof and pgrep commands to list only the PID of a specific
process. These commands have a few switches available to
modify their behavior; however, their most elementary use is
to pass a process name as an argument to view its PID. For

instance, to list the PID of the rsyslogd daemon, use either of
the following:

Both commands produce an identical result if used without an
option.

Listing Processes by User and Group
Ownership
A process can be listed by its ownership or owning group. You
can use the ps command for this purpose. For example, to list
all processes owned by user1, specify the -U (or -u) option
with the command and then the username:

The command lists the PID, TTY, TIME, and CMD name for all
the processes owned by user1. You can specify the -G (or -g)
option instead and the name of an owning group to print
processes associated with that group only:

The above output reveals all the running processes with root
as their owning group.

Understanding Process Niceness

Linux is a multitasking operating system. It runs numerous
processes on a single processor core by giving each process a
slice of time. The process scheduler on the system performs
rapid switching of processes, giving the notion of concurrent
execution of multiple processes.

A process is spawned at a certain priority, which is
established at initiation based on a numeric value called
niceness (a.k.a. a nice value). There are 40 niceness values,
with -20 being the highest or the most favorable to the
process, and +19 being the lowest or the least favorable to
the process. Most system-started processes run at the default
niceness of 0. A higher niceness lowers the execution priority
of a process, and a lower niceness increases it. In other
words, a process running at a higher priority gets more CPU
attention. A child process inherits the niceness of its calling
process in its priority calculation. Though programs are
normally run at the default niceness, you can choose to
initiate them at a different niceness to adjust their priority
based on urgency, importance, or system load. As a normal
user, you can only make your processes nicer, but the root
user can raise or lower the niceness of any process.

Viewing and Changing Process Niceness
The current process priorities and niceness values can be
viewed with the ps or the top command. With ps, add the -l
option to -ef and look for the priority (PRI, column 7), which is
calculated based on the current niceness value (NI, column 8):

The above example indicates the use of the default niceness
(0) for the first two processes and the highest niceness of -20

for the next three. These values are used by the process
scheduler to adjust the execution time of the processes on the
CPU. The ps command maintains an internal mapping
between niceness levels and priorities. A niceness of 0 (NI
column) corresponds to priority 80 (PR column), and a
niceness of -20 (NI column) maps to priority 60 (PR column).

 In contrast to the niceness-priority mapping that the ps command

uses, the top command displays it differently. For a 0-80 ps mapping,
the top session will report it 0-20. Likewise, ps’ (-20)-60 will be the
same as the top’s (-20)-0.

Check the default niceness using the nice command:

As reported, the default niceness is 0 for the bash shell
process running for user1. This niceness level was inherited
from the parent process.

A different niceness may be assigned to a program or
command at its startup. To run the top command at a lower
priority with a nice value of +2:

Open another terminal window and run the ps command to
validate. Look for the priority and nice values in columns 7
and 8.

Based on the internal mapping that the ps command uses,
the priority and niceness are 82 and 2, respectively.

Let’s terminate the top session in the first terminal window by
pressing the letter q and relaunch it at a higher priority with a

niceness of -10. You must be root or have the root privilege to
start a program at a higher priority.

Validate in the other window:

As you can see, the process is running at a higher priority (70)
with a nice value of -10.

Renicing a Running Process
The niceness of a running process may be altered using the
renice command. This adjustment affects the priority at which
the process is currently running. For example, to change the
niceness of the running top session from -10 to +5, specify
the PID (5572 from column 4 above) with the renice
command. You need to prepend sudo with the command.

Validate the above change with ps. See columns 7 and 8.

The renice command can also alter the nice values of all the
processes owned by a specific user or members of a particular
group by specifying the -u or -g option. There are a few
additional options available with this command. Refer to the
command’s manual pages for usage help.

You can also renice a process from within the top command
window by pressing the letter “r” and entering the PID of the
process you want reniced and the desired nice level.

Controlling Processes with Signals

A system may have hundreds or thousands of processes
running on it. Sometimes it becomes necessary to alert a
process of an event. This is done by sending a control signal
to the process. Processes may use signals to alert each other
as well. The receiving process halts its execution as soon as it
gets the signal and takes an appropriate action as per the
instructions enclosed in the signal. The instructions may
include terminating the process gracefully, killing it abruptly,
or forcing it to re-read its configuration.

There are plentiful signals available for use, but only a few are
common. Each signal is associated with a unique numeric
identifier, a name, and an action. A list of available signals
can be viewed with the kill command using the -l option:

The output returns 64 signals available for process-to-process
and user-to-process communication. Table 8-2 describes the
control signals that are most often used.

Signal
Number

Signal
Name

Action

1 SIGHUP Hang up signal causes a process to
disconnect itself from a closed terminal
that it was tied to. Also used to instruct
a running daemon to re-read its
configuration without a restart.

2 SIGINT The ^c (Ctrl+c) signal issued on the
controlling terminal to interrupt the
execution of a process.

9 SIGKILL Terminates a process abruptly

15 SIGTERM Sends a soft termination signal to stop
a process in an orderly fashion. This is
the default signal if none is specified
with the command.

18 SIGCONT Same as using the bg command to
resume

19 SIGSTOP Same as using Ctrl+z to suspend a job

20 SIGTSTP Same as using the fg command

Table 8-2 Control Signals

The commands used to pass a signal to a process are kill and
pkill. These commands are usually used to terminate a
process. Ordinary users can kill processes that they own,
while the root user privilege is needed to kill any process on
the system.

The kill command requires one or more PIDs, and the pkill
command requires one or more process names to send a
signal to. You can specify a non-default signal name or
number with either utility.

Let’s look at a few examples to understand the usage of these
tools.

To pass the soft termination signal to the crond daemon, use
either of the following:

The pidof command in the above example is used to discover
the PID of the crond process using command substitution and
it is then passed to the kill command for termination. You may
also use the pgrep command to determine the PID of a
process, as demonstrated in the next example. Use ps -ef |
grep crond to confirm the termination.

Using the pkill or kill command without specifying a signal
name or number sends the default signal of 15 to the process.
This signal may or not terminate the process. Some processes
ignore the soft termination signal as they might be in a
waiting state. These processes may be ended forcefully using
signal 9 in any of the following ways:

You may run the killall command to terminate all processes
that match a criterion. Here is how you can use this command
to kill all crond processes (assuming there are many of them
running):

There are plenty of options available with the kill, killall, pkill,
pgrep, and pidof commands. Consult respective manual pages
for more details.

Job Scheduling
Job scheduling allows a user to submit a command for
execution at a specified time in the future. The execution of
the command could be one time or periodic based on a pre-
determined time schedule. A one-time execution may be
scheduled for an activity that needs to be performed at a time
of low system usage. One example of such an activity would

be the execution of a lengthy shell program. In contrast, a
recurring activity could include creating a compressed
archive, trimming log files, monitoring the system, running a
custom script, or removing unwanted files from the system.

Job scheduling and execution is taken care of by two service
daemons: atd and crond. While atd manages the jobs
scheduled to run one time in the future, crond is responsible
for running jobs repetitively at pre-specified times. At startup,
this daemon reads the schedules in files located in the
/var/spool/cron and /etc/cron.d directories, and loads them in
the memory for on-time execution. It scans these files at short
intervals and updates the in-memory schedules to reflect any
modifications. This daemon runs a job at its scheduled time
only and does not entertain any missed jobs. In contrast, the
atd daemon retries a missed job at the same time next day.
For any additions or changes, neither daemon needs a restart.

Controlling User Access
By default, all users are allowed to schedule jobs using the at
and cron services. However, this access may be controlled
and restricted to specific users only. This can be done by
listing users in the allow or deny file located in the /etc
directory for either service. These files are named at.allow
and at.deny for the at service, and cron.allow and cron.deny
for the cron service.

The syntax for the four files is identical. You only need to list
usernames that are to be allowed or denied access to these
scheduling tools. Each file takes one username per line. The
root user is always permitted; it is affected neither by the
existence or non-existence of these files, nor by the inclusion
or exclusion of its entry in these files.

Table 8-3 shows various combinations and their impact on
user access.

at.allow /
cron.allow

at.deny /
cron.deny

Impact

Exists, and
contains user
entries

Existence does not
matter

All users listed in allow
files are permitted

Exists, but is
empty

Existence does not
matter

No users are permitted

Does not exist Exists, and
contains user
entries

All users, other than
those listed in deny files,
are permitted

Does not exist Exists, but is
empty

All users are permitted

Does not exist Does not exist No users are permitted

Table 8-3 User Access Restrictions to Scheduling Tools

By default, the deny files exist and are empty, and the allow
files are non-existent. This opens up full access to using both
tools for all users.

EXAM TIP: One username is entered per line entry in an appropriate
allow or deny file.

The following message appears if an unauthorized user
attempts to execute at:

And the following warning is displayed for unauthorized
access attempt to the cron service:

To generate the denial messages, you need to place entries
for user1 in the deny files.

Scheduler Log File
All activities for atd and crond services are logged to the
/var/log/cron file. Information such as the time of activity,

hostname, process name and PID, owner, and a message for
each invocation is captured. The file also keeps track of other
events for the crond service such as the service start time
and any delays. A few sample entries from the log file are
shown below:

The truncated output shows some past entries from the file.
You need the root user privilege to be able to read the file
content.

Using at
The at command is used to schedule a one-time execution of
a program in the future. All submitted jobs are spooled in the
/var/spool/at directory and executed by the atd daemon at the
specified time. Each submitted job will have a file created
containing the settings for establishing the user’s shell
environment to ensure a successful execution. This file also
includes the name of the command or program to be run.
There is no need to restart the daemon after a job submission.

There are multiple ways and formats for expressing the time
with at. Some examples are:

at 1:15am (executes the task at the next 1:15 a.m.)
at noon (executes the task at 12:00 p.m.)
at 23:45 (executes the task at 11:45 p.m.)
at midnight (executes the task at 12:00 a.m.)
at 17:05 tomorrow (executes the task at 5:05 p.m. on the next day
at now + 5 hours (executes the task 5 hours from now. We can

specify minutes, days, or weeks in place of
hours)

at 3:00 10/15/20 (executes the task at 3:00 a.m. on October 15,

2020)

 at assumes the current year and today’s date if the year and date

are not mentioned.

You may supply a filename with the at command using the -f
option. The command will execute that file at the specified
time. For instance, the following will run
/home/user1/.bash_profile file for user1 2 hours from now:

The above will be executed as scheduled and will have an
entry placed for it in the log file.

Exercise 8-1: Submit, View, List, and
Remove an at Job
This exercise should be done on server1 as user1.

In this exercise, you will submit an at job as user1 to run the
date command at 11:30 p.m. on March 31, 2020, and have
the output and any error messages generated redirected to
the /tmp/date.out file. You will list the submitted job, exhibit
its contents for verification, and then remove the job.

1. Run the at command and specify the correct execution
time and date for the job. Type the entire command at
the first at> prompt and press Enter. Press Ctrl+d at the
second at> prompt to complete the job submission and
return to the shell prompt.

The system assigned job ID 5 to it, and the output also
pinpoints the job’s execution time.

2. List the job file created in the /var/spool/at directory:

3. List the spooled job with the at command. You may
alternatively use atq to list it.

4. Display the contents of this file with the at command
and specify the job ID:

5. Remove the spooled job with the at command by
specifying its job ID. You may alternatively run atrm 5
to delete it.

This should remove the job file from the /var/spool/at
directory. You can confirm the deletion by running atq or at -l.

Using crontab
Using the crontab command is the other method for
scheduling tasks for running in the future. Unlike atd, crond
executes cron jobs on a regular basis if they comply with the
format defined in the /etc/crontab file. Crontables (another
name for crontab files) are located in the /var/spool/cron
directory. Each authorized user with a scheduled job has a file
matching their login name in this directory.

For example, the crontable for user1 would be
/var/spool/cron/user1. The other two locations where system
crontables can be stored are the /etc/crontab file and the
/etc/cron.d directory; however, only the root user is allowed to
create, modify, and delete them. The crond daemon scans
entries in the files at the three locations to determine job
execution schedules. The daemon runs the commands or
programs at the specified time and adds a log entry to the
/var/log/cron file for each invocation. There is no need to
restart the daemon after submitting a new or modifying an
existing cron job.

The crontab command is used to edit (-e), list (-l), and remove
(-r) crontables. The -u option is also available for users who
wish to modify a different user’s crontable, provided they are
allowed to do so and the other user is listed in the cron.allow
file. The root user can also use the -u flag to alter other users’
crontables even if the affected users are not listed in the allow
file. By default, crontab files are opened in the vim editor
when the crontab command is issued to edit them.

Syntax of User Crontables
The /etc/crontab file specifies the syntax that each user cron
job must comply with in order for crond to interpret and
execute it successfully. Based on this structure, each line in a
user crontable with an entry for a scheduled job is comprised
of six fields. Fields 1 to 5 are for the schedule, field 6 may
contain the login name of the executing user, and the rest for
the command or program to be executed. See Figure 8-2 for
the syntax.

Figure 8-2 Syntax of Crontables

A description of each field is provided in Table 8-4.

Field Field Content Description

1 Minute of the
hour

Valid values are 0 (the exact hour) to 59.
This field can have one specific value as in
field 1, multiple comma-separated values
as in field 2, a range of values as in field 3,
a mix of fields 2 and 3 (1-5,6-19), or an *
representing every minute of the hour as
in field 5.

2 Hour of the day Valid values are 0 (midnight) to 23. Same
usage applies as described for field 1.

3 Day of the
month

Valid values are 1 to 31. Same usage
applies as described for field 1.

4 Month of the
year

Valid values are 1 to 12 or jan to dec.
Same usage applies as described for field
1.

5 Day of the
week

Valid values are 0 to 7 or sun to sat, with 0
and 7 representing Sunday, 1 representing
Monday, and so on. Same usage applies as
described for field 1.

6 Command or
program to
execute

Specifies the full path name of the
command or program to be executed,
along with any options or arguments that
it requires.

Table 8-4 Crontable Syntax Explained

Furthermore, step values may be used with * and ranges in
the crontables using the forward slash character (/). Step

values allow the number of skips for a given value. For
example, */2 in the minute field would mean every second
minute, */3 would mean every third minute, 0-59/4 would
mean every fourth minute, and so on. Step values are also
supported in the same format in fields 2 to 5.

EXAM TIP: Make sure you understand and memorize the order of
the fields defined in crontables.

Consult the manual pages of the crontab configuration file
(man 5 crontab) for more details on the syntax.

Exercise 8-2: Add, List, and Remove a Cron
Job
This exercise should be done on server1 as user1 with sudo
where required.

For this exercise, assume that all users are currently denied
access to cron.

In this exercise, you will submit a cron job as user1 to echo
“Hello, this is a cron test.”. You will schedule this command to
execute at every fifth minute past the hour between 10:00
a.m. and 11:00 a.m. on the fifth and twentieth of every
month. You will have the output redirected to the
/tmp/hello.out file, list the cron entry, and then remove it.

1. Edit the /etc/cron.allow file and add user1 to it:

2. Open the crontable and append the following schedule
to it. Save the file when done and exit out of the editor.

3. Check for the presence of a new file by the name user1
under the /var/spool/cron directory:

4. List the contents of the crontable:

5. Remove the crontable and confirm the deletion:

Do not run crontab -r if you do not wish to remove the
crontab file. Instead, edit the file with crontab -e and just
remove the entry.

Anacron
Anacron is a service that runs after every system reboot. It
checks for any cron and at jobs that were scheduled for
execution during the time the system was down and were
missed as a result. Anacron proves to be useful on laptop,
desktop, and similar purpose systems with extended periods
of frequent downtimes and are not intended for 24/7
operations. Anacron scans the /etc/cron.hourly/0anacron file
for three factors to learn whether to run missed jobs. The
three factors it examines are: (1) the presence of the
/var/spool/anacron/cron.daily file, (2) the elapsed time of 24
hours since it was last run, and (3) if the system is plugged in
to an AC source. If all three conditions are true, Anacron
automatically executes the scripts located in the
/etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly
directories based on the settings and conditions defined in
Anacron’s own configuration file /etc/anacrontab. The default
content of the /etc/anacrontab file are displayed below. It
excludes the commented and empty lines.

This file has five variables defined as depicted at the
beginning of the above output. SHELL and PATH set the shell
and path to be used for executing the programs. MAILTO
defines the login name or an email of the user who is to be
sent any output and error messages. RANDOM_DELAY
expresses the maximum arbitrary delay in minutes added to
the base delay of the jobs as defined in column 2 of the last
three lines. START_HOURS_RANGE states the hour duration
within which the missed jobs could be run.

The bottom three lines (each line with six columns) define the
schedule and the programs to be executed:

Column 1: Denotes the period in days (or @daily,
@weekly, @monthly, or @yearly), which Anacron uses to
determine how often to run the specified job
Column 2: Specifies the delay in minutes after the system
has been booted up for Anacron to wait before executing
the job
Column 3: Contains a unique job identifier
Columns 4 to 6: Represent the command to be used to
execute the scripts located under the /etc/cron.daily,
/etc/cron.weekly, and /etc/cron.monthly directories. Here
the run-parts command is invoked for execution at the
default niceness.

For each job, Anacron examines whether the job was already
run during the specified period (column 1). It executes it after
waiting for the number of minutes (column 2) plus the
RANDOM_DELAY value if it wasn’t. When all missed jobs have
been carried out and there is none pending, Anacron exits.

Anacron may be run manually at the command prompt. To run
all the jobs that are scheduled in the /etc/anacrontab file but
were missed, simply type the anacron command and press
the Enter key.

Anacron stores job execution dates in files located in the
/var/spool/anacron directory for each defined entry in the
/etc/anacrontab file. There are several options available with
the anacron command. Check the manual pages for further
information.

Chapter Summary
This chapter discussed two major topics: process
management and job scheduling.

It is vital for users and administrators alike to have a strong
grasp on running processes, resources they are consuming,
process owners, process execution priorities, etc. They should
learn how to list processes in a variety of ways. We looked at
the five states a process is in at any given time during its
lifecycle. We examined the concepts of niceness and
reniceness for increasing or decreasing a process’s priority.
We analyzed some of the many available signals and looked
at how they could be passed to running processes to perform
an action on them.

The second and the last topic talked about submitting and
managing tasks to run in the future one time or on a recurring
basis. We learned about the service daemons that handle the
task execution and the control files where we list users who
can or cannot submit jobs. We looked at the log file that
stores information for all executed jobs. We reviewed the
syntax of the crontable and examined a variety of date/time
formats for use with both at and cron job submission. We
performed two exercises to get a grasp on their usage. Finally,
we studied the anacron service that RHEL uses to execute any

scheduled jobs that were missed from running due to reasons
such as system shutdown.

Check Your Understanding
1. What are the two commands to list the PID of a specific

process?
2. By default the *.allow files exist. True or False?
3. Where do the scheduling daemons store log information

of executed jobs?
4. You must restart the crond service after modifying the

/etc/crontab file. True or False?
5. What are the background service processes normally

referred to in Linux?
6. What is the default nice value?
7. Which service runs missed scheduled tasks?
8. The parent process gets the nice value of its child

process. True or False?
9. When would the cron daemon execute a job that is

submitted as */10 * 2-6 6 * /home/user1/script1.sh?
10. What is the other command besides ps to view running

processes?
11. Every process that runs on the system has a unique

identifier called UID. True or False?
12. Why would you use the renice command?
13. Which user does not have to be explicitly defined in

either *.allow or *.deny file to run the at and cron jobs?
14. When would the at command execute a job that is

submitted as at 01:00 12/12/2020?
15. What are the two commands that you can use to

terminate a process?
16. What is the directory location where user crontab files

are stored?
17. What would the nice command display without any

options or arguments?
18. Which command can be used to edit crontables?

19. The default location to send application error messages
is the system log file. True or False?

20. What are the five process states?
21. Signal 9 is used for a hard termination of a process.

True or False?

Answers to Check Your
Understanding

1. The pidof and pgrep commands.
2. False. By default, the *.deny files exist.
3. The scheduling daemons store log information of

executed jobs in the /var/log/cron file.
4. False. The crond daemon does not need a restart after

a crontable is modified.
5. The background service processes are referred to as

daemons.
6. The default nice value is zero.
7. The anacron service executes any missed at and cron

jobs.
8. False. The child process inherits its parent’s niceness.
9. The cron daemon will run the script every tenth minute

past the hour on the 2nd, 3rd, 4th, 5th, and 6th day of
every sixth month.

10. The top command.
11. False. It is called the PID.
12. The renice command is used to change the niceness of

a running process.
13. The root user.
14. The at command will run it at 1am on December 12,

2020.
15. The kill and pkill commands.
16. The user crontab files are stored in the /var/spool/cron

directory.
17. The nice command displays the default nice value

when executed without any options.

18. You can use the crontab command with the -e option to
edit crontables.

19. False. The default location is the user screen where the
program is initiated.

20. The five process states are running, sleeping, waiting,
stopped, and zombie.

21. True.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 8-1: Nice and Renice a Process
As user1 with sudo on server1, open two terminal sessions.
Run the top command in terminal 1. Run the pgrep or ps
command in terminal 2 to determine the PID and the nice
value of top. Stop top on terminal 1 and relaunch at a lower
priority (+8). Confirm the new nice value of the process in
terminal 2. Issue the renice command in terminal 2 and
increase the priority of top to -10, and validate. (Hint:
Processes and Priorities).

Lab 8-2: Configure a User Crontab File
As user1 on server1, run the tty and date commands to
determine the terminal file (assume /dev/pts/1) and current
system time. Create a cron entry to display “Hello World” on
the terminal. Schedule echo “Hello World” > /dev/tty/1 to
run 3 minutes from the current system time. As root, ensure
user1 can schedule cron jobs. (Hint: Job Scheduling).

Chapter 09

Basic Package Management

This chapter describes the following major
topics:

Overview of Red Hat packages, naming, and
management tools

Package dependency and database
Query, install, upgrade, freshen, overwrite,
and remove packages

Extract package files from installable
package

Validate package integrity and authenticity
View GPG keys and verify package attributes
Manage packages using the rpm command

RHCSA Objectives:

39. Install and update software packages from
Red Hat Network, a remote repository, or

from the local file system (part of this
objective is also covered in Chapter 10)

The Red Hat software management system is known
as RPM Package Manager (RPM). RPM also refers to
one or more files that are packaged together in a

special format and stored in files with the .rpm extension.
These rpm files (also called rpms, rpm packages, or
packages) are manipulated by the RPM package
management system. Each package included in and
available for RHEL is in this file format. Packages have
meaningful names and contain necessary files, as well as
metadata structures such as ownership, permissions, and
directory location for each included file. Packages may be
downloaded and saved locally or on a network share for
quick access, and they may have dependencies over files or
other packages. In other words, a package may require the
presence of additional files, another package, or a group of
packages in order to be installed successfully and operate
properly. Once a package has been installed and its
metadata information stored in a package database, each
attempt to update the package updates its metadata
information as well.

RHEL provides a powerful tool for the installation and
administration of RPM packages. The rpm command is
flexible and it offers multitude of options and subcommands
to perform functions such as querying, installing, upgrading,
freshening, removing, and decompressing packages, and
validating package integrity and authenticity.

Package Overview
RHEL is essentially a set of packages grouped together to
create an operating system. They are prepackaged for

installation and assembled for various intended use cases.
They are built around the Linux kernel and include thousands
of packages that are digitally signed, tested, and certified.
There are several basic and advanced concepts associated
with packages, packaging, and their management that are
touched upon in this chapter and Chapter 10 “Advanced
Package Management”.

Packages and Packaging
A software package is a group of files organized in a
directory structure along with metadata and intelligence that
make up a software application. They are available in two
types: binary (or installable) and source. Binary packages are
installation-ready and are bundled for distribution. They have
.rpm extension and contain install scripts, pre- and post-
installation scripts, executables, configuration files, library
files, dependency information, where to install files, and
documentation. The documentation includes detailed
instructions on how to install and uninstall the package,
manual pages for the configuration files and commands, and
other necessary information pertaining to the installation
and usage of the package.

All metadata related to packages is stored at a central
location and includes information such as package version,
installation location, checksum values, and a list of included
files with their attributes. This allows the package
management toolset to handle package administration tasks
efficiently by referencing this metadata.

The package intelligence is used by the package
administration toolset for a successful completion of the
package installation process. It may include information on
prerequisites, user account setup (if required), and any
directories and soft links that need to be created. The

intelligence also includes the reverse of this process for
uninstallation.

Source packages come with the original unmodified version
of the software that may be unpacked, modified as desired,
and repackaged in the binary format for installation or
redistribution. They are identified with the .src extension.

Package Naming
Red Hat software packages follow a standard naming
convention. Typically, there are five parts to a package
name: (1) the package name, (2) the package version, (3)
the package release (revision or build), (4) the Enterprise
Linux the package is created for, and (5) the processor
architecture the package is built for. An installable package
name always has the .rpm extension; however, this
extension is removed from the installed package name.

For example, if the name of an installable package is
openssl-1.1.1-8.el8.x86_64.rpm, its installed name would be
openssl-1.1.1-8.el8.x86_64. Here is a description of each part
of the package name:

openssl: package name
1.1.1: version
8: release
el8: stands for Enterprise Linux 8 (not all packages have
it)
x86_64: processor architecture the package is created
for. You may see “noarch” for platform-independent
packages that can be installed on any hardware
architecture, or “src” for source code packages.
.rpm: the extension

Package Dependency

An installable package may require the presence of one or
more additional packages in order to be installed
successfully. Likewise, a software package component may
require the functionality provided by one or more packages
to exist in order to operate as expected. This is referred to as
package dependency, where one package depends on one or
more other packages for installation or execution. Package
dependency information is recorded in each package’s
metadata from where it is read by package handling utilities.

Package Database
Metadata for installed packages and package files is stored
and maintained in the /var/lib/rpm directory. This directory
location is referred to as the package database, and it is
referenced by package manipulation utilities to obtain
package name and version data and information about
ownerships, permissions, timestamps, and sizes for each and
every file that is part of the package. The package database
also contains information on dependencies. All this data aids
management commands in listing and querying packages,
verifying dependencies and file attributes, installing new
packages, upgrading and uninstalling existing packages, and
carrying out other package handling tasks.

The package database does not update existing package
information by simply adding available enhancements. It
removes the metadata of the package being replaced and
then adds the information of the replacement package. In
RHEL 8, it can maintain multiple versions of a single package
alongside their metadata.

Package Management Tools
The primary tool for package management on Red Hat
Enterprise Linux is called rpm (redhat package manager).
This tool offers abundant options for easy package handling;

however, a major caveat is that it does not automatically
resolve package dependencies. To overcome this gap, a
more innovative tool called yum (yellowdog update,
modified) was introduced, which offered an easier method
for package management that can find, get, and install all
required dependent packages automatically.

In RHEL 8, a major upcoming enhancement to yum has been
introduced known as dnf. dnf is not an official acronym, but
some documentation refers to it as dandified yum. You may
still use the yum command; however, it is simply a soft link
to dnf.

This chapter focuses on the use of the rpm command.
Chapter 10 “Advanced Package Management” details the dnf
command.

Package Management with rpm
The rpm command handles package management tasks
including querying, installing, upgrading, freshening,
overwriting, removing, extracting, validating, and verifying
packages. As mentioned, this command has a major
drawback as it does not have the ability to automatically
satisfy package dependencies, which can be frustrating
during software installation and upgrade. The rpm command
works with both installed and installable packages.

The rpm Command
Before getting into the details, let’s look at some common
rpm command options. Table 9-1 describes query options in
both short and long option formats. You may use either
format.

Query Options Description

-q (--query) Queries and displays packages

-qa (--query --all) Lists all installed packages

-qc (--query --configfiles) Lists configuration files in a package

-qd (--query --docfiles) Lists documentation files in a package

-qf (--query --file) Exhibits what package a file comes
from

-qi (--query --info) Shows installed package information
including version, size, installation
status and date, signature, and
description

-qip (--query --info --
package)

Shows installable package information
including version, size, installation
status and date, signature, and
description

-ql (--query --list) Lists all files in a package

-qR (--query --requires) Lists files and packages a package
depends on (requires)

-q --whatprovides Lists packages that provide the
specified package or file

-q --whatrequires Lists packages that require the
specified package or file

Table 9-1 rpm Command Query Options

Table 9-2 describes options related to package installation,
removal, and verification. These options are also available in
both short and long formats. You may use either format.

Install/Remove
Options

Description

-e (--erase) Removes a package

--force Installs and replaces a package or files
of the same version

-F (--freshen) Upgrades an installed package

-h (--hash) Shows installation progress with hash
marks

-i (--install) Installs a package

--import Imports a public key

-K Validates the signature and package
integrity

-U (--upgrade) Upgrades an installed package or
loads it if it is not already installed

-v (--verbose) or -vv Displays detailed information

-V (--verify) Verifies the integrity of a package or
package files

Table 9-2 rpm Command Install/Remove/Verify Options

The examples in this chapter employ most of these options
in short format to understand how they are used to achieve
desired results.

Getting Ready to Use rpm
In order to run some of the package management examples,
attach the RHEL 8 ISO image to the RHEL8-VM1 in
VirtualBox. This will allow you to mount the image on server1
and access the software packages in it. The following mounts
the image on the empty /mnt directory using the mount
command. The /dev/sr0 represents the device file for the
image and “ro” mounts the image in read-only mode. See
Chapter 15 “Local File Systems and Swap” for details on
mount and mount point concepts.

 sr0 represents the first instance of the read-only optical device.

Verify the mount using the df command:

Add the information for this optical device image to a file
called fstab in the /etc directory to ensure that the image is
automatically mounted at each subsequent system reboot.
Use the vim editor to open the file and append the following
entry to the end of the file:

Confirm that the new entry placed in the file has no typing or
syntax errors. The command should return to the command
prompt without displaying anything in the output:

The image and the packages therein can now be accessed
via the /mnt directory just like any other directory on the
system. Here is a quick look at the subdirectories
—/mnt/BaseOS/Packages and /mnt/AppStream/Packages—
where all the packages on this image are located:

You will find thousands of files in the two directory locations,
each representing a single package.

Querying Packages
You can query for packages in the package database or at
the specified location. The following are some examples.

To query all installed packages:

To query whether the specified package is installed:

To list all files in a package:

To list only the documentation files in a package:

To list only the configuration files in a package:

To identify which package owns the specified file:

To display information about an installed package including
version, release, installation status, installation date, size,
signatures, description, and so on:

To list all file and package dependencies for a given package:

To query an installable package for metadata information
(version, release, architecture, description, size, signatures,
etc.):

To determine what packages require the specified package in
order to operate properly:

The above output lists all the packages that will require the
specified package “lvm2” in order to work fully and properly.

Installing a Package
Installing a package creates the necessary directory
structure for the package, installs the required files, and runs
any post-installation steps. The following command installs a
package called zsh-5.5.1-6.el8.x86_64.rpm on the system:

If this package required the presence of any missing
packages, you would see an error message related to failed
dependencies. In that case, you would have to first install
the missing packages for this package to be loaded
successfully.

Upgrading a Package
Upgrading a package upgrades an installed version of the
package. In the absence of an existing version, the upgrade
simply installs the package.

To upgrade a package called sushi, use the -U option with the
rpm command. Notice that the sushi package is located in a
different directory than the zsh package in the previous
example.

The command makes a backup of all the affected
configuration files during the upgrade process and adds the
extension .rpmsave to them. In the above example, the sushi
package was installed, as it was not already on the system.

Freshening a Package
Freshening a package requires that an older version of the
package must already exist on the system.

To freshen the sushi package, use the -F option:

The above command did nothing because the same package
version specified with the command is already installed on
the system. It will only work if a newer version of the
installed package is available.

Overwriting a Package
Overwriting a package replaces the existing files associated
with the package of the same version.

To overwrite the package zsh-5.5.1-6.el8.x86_64 that was
installed earlier, use the --replacepkgs option:

The installation progress indicates that the zsh package was
replaced successfully. This action is particularly useful when
you suspect corruption in one or more installed package files
and you want to start fresh.

Removing a Package
Removing a package uninstalls the package and all its
associated files and the directory structure.

To remove the package sushi, use the -e option and specify -
v for verbosity:

This command performs a dependency inspection to check
whether there are any packages that require the existence of
the package being weeded out, and fails the removal if it
detects a dependency.

Extracting Files from an Installable
Package
Files in an installable package can be extracted using the
rpm2cpio command for reasons such as examining the
contents of the package, replacing a corrupted or lost
command, or replacing a critical configuration file of an
installed package to its original state.

Assuming you have lost the /etc/chrony.conf configuration
file and want to retrieve it from its installable package and
put it back, you’ll first need to determine what package this
file comes from:

Now use the rpm2cpio command to extract (-i) all files from
the “chrony” package and create (-d) the necessary directory
structure during the retrieval. Extract the files in a temporary
location such as the /tmp directory before you proceed with
overwriting the destination under /etc.

Run the find command to locate the chrony.conf file:

The above output shows that the file is in the /tmp/etc
directory. You can copy it to the /etc directory now, and
you’re back in business.

Validating Package Integrity and
Credibility
Before it is installed, a package may be checked for integrity
(completeness and error-free state) and credibility

(authenticity) after it has been copied to another location,
downloaded from the web, or obtained elsewhere. Use the
MD5 checksum for verifying its integrity and the GNU Privacy
Guard (GnuPG or GPG) public key signature for ensuring the
credibility of its developer or publisher. This will ensure an
uncorrupted and genuine piece of software.

 The commercial version of GPG is referred to as PGP (Pretty

Good Privacy).

To check the integrity of a package such as zsh-5.5.1-
6.el8.x86_64.rpm located in /mnt/BaseOS/Packages:

The OK in the output confirms that the package is free of
corruption.

Red Hat signs their products and updates with a GPG key,
and includes necessary public keys in the products for
verification. For RHEL, the keys are in files on the installation
media and are copied to the /etc/pki/rpm-gpg/ directory
during the OS installation. Refer to Table 9-3 for a list of files
in that directory and a short explanation.

GPG File Description

RPM-GPG-KEY-redhat-
release

Used for packages shipped after
November 2009 and their updates

RPM-GPG-KEY-redhat-
beta

Used for beta test products shipped after
November 2009

Table 9-3 Red Hat GPG Key Files

To check the credibility of a package, import the relevant
GPG key and then verify the package. The table above shows
that the GPG file for the recent packages is RPM-GPG-KEY-
redhat-release. In the following example, run the rpm

command to import the GPG key from this file and verify the
signature for the zsh-5.5.1-6.el8.x86_64.rpm package using
the -K option with the command:

The OK validates the package signature and certifies the
authenticity and integrity of the package.

Viewing GPG Keys
The GPG key imported in the previous subsection can be
viewed with the rpm command. You can list the key and
display its details as well. Run the command as follows to list
the imported key:

The output suggests that there are two GPG public keys
currently imported on the system. Let’s view the details for
the first one:

The output returns both the metadata and the key data for
the specified GPG public key.

Verifying Package Attributes
Verifying the integrity of an installed package compares the
attributes of files in the package with the original file
attributes saved and stored in the package database at the
time of package installation. The verification process uses
the rpm command with the -V option to compare the owner,
group, permission mode, size, modification time, digest, and
type among other attributes.

The command returns to the prompt without exhibiting
anything if it detects no changes in the attributes. You can
use the -v or -vv option with the command for increased
verbosity.

Run this check on the at package:

The command returned nothing, which implies that the file
attributes are intact. Now change the permissions on one of
the files, /etc/sysconfig/atd, in this package to 770 from the
current value of 644, and then re-execute the verification
test:

The output is indicative of a change in the permission mode
on the atd file in the at package. You may alternatively run
the verification check directly on the file by adding the -f
option to the command and passing the filename as an
argument:

The output returns three columns: column 1 contains nine
fields, column 2 shows the file type, and column 3 expresses
the full path of the file. The command performs a total of
nine checks, as illustrated by the codes in column 1 of the
output, and displays any changes that have occurred since
the package that contains the file was installed. Each of
these codes has a meaning. Table 9-4 lists the codes with
description as they appear from left to right. The period
character (.) appears for an attribute that is not in an altered
state.

Code Description

S Appears if the file size is different

M Appears if the (mode) permission or file type is
altered

5 Appears if MD5 checksum does not match

D Appears if the file is a device file and its major or
minor number has changed

L Appears if the file is a symlink and its path has
altered

U Appears if the ownership has modified

G Appears if the group membership has modified

T Appears if timestamp has changed

P Appears if capabilities have altered

. Appears if no modification is detected

Table 9-4 Package Verification Codes

Column 2 in the output above exposes a code that
represents the type of file. Table 9-5 lists them.

File Type Description

c Configuration file

d Documentation file

g Ghost file

l License file

r Readme file

Table 9-5 File Type Codes

Based on the information in the tables, the /etc/sysconfig/atd
is a configuration file with a modified permission mode.
Reset the attribute to its previous value and rerun the check
to ensure the file is back to its original state.

The command produced no output, which confirms the
integrity of the file as well as the package.

Exercise 9-1: Perform Package
Management Tasks Using rpm
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will verify the integrity and authenticity
of a package called dcraw located in the
/mnt/AppStream/Packages directory on the installation
image and then install it. You will display basic information
about the package, show files it contains, list documentation
files, verify the package attributes, and remove the package.

1. Run the ls command on the /mnt/AppStream/Packages
directory to confirm that the dcraw package is
available:

2. Run the rpm command and verify the integrity and
credibility of the package:

3. Install the package:

4. Show basic information about the package:

5. Show all the files the package contains:

6. List the documentation files the package has:

7. Verify the attributes of each file in the package. Use
verbose mode.

8. Remove the package:

This concludes the exercise.

Chapter Summary
This chapter is the first of the two chapters (second one
being Chapter 10) with coverage on software management.
It covered the foundational topics and set the groundwork for
more advanced features and functions.

We learned the concepts around packages, packaging,
naming convention, dependency, and patch database. We
looked at the variety of options available with the rpm utility
to perform package administration tasks and put many of
them into action to demonstrate their usage. Moreover, we
employed appropriate options to view and validate package
metadata information, GPG keys, and package attributes.

Check Your Understanding
1. What would the rpm -ql zsh command do?
2. State the purpose of the rpm2cpio command.
3. What is the difference between freshening and

upgrading a package?

4. The rpm command automatically takes care of
package dependencies. True or False?

5. What is the difference between installing and
upgrading a package?

6. Package database is located in the /var/lib/rpm
directory. True or False?

7. What would the rpm -qf /bin/bash command do?
8. Name the directory where RHEL 8 stores GPG

signatures.
9. What would the options ivh cause the rpm command

to do?
10. What would the rpm -qa command do?

Answers to Check Your
Understanding

1. The command provided will list all the files that are
included in the installed zsh package.

2. The rpm2cpio command is used to extract files from
the specified package.

3. Both are used to upgrade an existing package, but
freshening requires an older version of the package to
exist.

4. False.
5. Installing will install a new package whereas upgrading

will upgrade an existing package or install it if it does
not already exist.

6. True.
7. The command provided will display information about

the /bin/bash file.
8. RHEL 8 stores GPG signatures in the /etc/pki/rpm-gpg

directory.
9. The rpm command will install the specified package

and show installation details and hash signs for
progress.

10. The command provided will list all installed packages.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

Lab 9-1: Install and Verify Packages
As user1 with sudo on server1, make sure the RHEL 8 ISO
image is attached to the VM and mounted. Use the rpm
command and install the zsh package by specifying its full
path. Run the rpm command again and perform the following
on the zsh package: (1) show information, (2) validate
integrity, and (3) display attributes. (Hint: Package
Management with rpm).

Lab 9-2: Query and Remove Packages
As user1 with sudo on server1, make sure the RHEL 8 ISO
image is attached to the VM and mounted. Use the rpm
command to perform the following: (1) check whether the
setup package is installed, (2) display the list of
configuration files in the setup package, (3) show information
for the zlib-devel package on the ISO image, (4) reinstall the
zsh package (--reinstall -vh), and (5) remove the zsh
package. (Hint: Package Management with rpm).

Chapter 10

Advanced Package
Management

This chapter describes the following major
topics:

Describe package groups
Understand application streams and
modules

Software repositories and how to access
them

Review module streams and module profiles
Perform software management operations
using dnf

List, install, update, and delete individual
packages, package groups, and modules

Show package information, determine
provider, and search metadata

Exhibit package group and module
information

Install module from alternative stream

RHCSA Objectives:

39. Install and update software packages from
Red Hat Network, a remote repository, or
from the local file system (part of this
objective is covered in Chapter 09)

40.Work with package module streams

This is the second of the two chapters that discusses
software administration in RHEL. While the first
chapter (Chapter 09) expounds upon the basic

concepts of rpm package management and demonstrates a
basic command to manipulate individual packages, this
chapter elaborates on the concepts and handling of package
groups, package modules, and package streams. It also
presents a coverage on the concept of software repositories
and how to configure them.

The dnf command (the yum command) is superior to the rpm
command in the sense that it performs automatic
dependency checks and marks any identified extra packages
for installation. There are numerous options and
subcommands available with this advanced tool and it is
capable of interacting with software repositories as well.

Advanced Package Management
Concepts
We discussed and grasped the basic package management
concepts and employed the rpm tool in a variety of ways to
manipulate individual packages. The focus of this chapter
will be on understanding advanced software packaging and
distribution techniques, and using a tool that is capable of
handling single, discrete packages as well as collections of
packages at a time, efficiently.

Package Groups
A package group is a collection of correlated packages
designed to serve a common purpose. It provides the

convenience of querying, installing, and deleting as a single
unit rather than dealing with packages individually. There are
two types of package groups: environment groups and
package groups. The environment groups available in RHEL
8 are server, server with GUI, minimal install, workstation,
virtualization host, and custom operating system. These are
listed on the software selection window during RHEL 8
installation. The package groups include container
management, smart card support, security tools, system
tools, network servers, etc.

Application Streams and Modules
Application Streams is a new concept introduced in RHEL 8.
It employs a modular approach to organize multiple versions
of a software application alongside its dependencies to be
available for installation from a single repository. A module
can be thought of as a logical set of application packages
that includes everything required to install it, including the
executables, libraries, documentation, tools, and utilities as
well as dependent components. Modularity gives the
flexibility to choose the version of software based on need.

In older RHEL releases, each version of a package would
have to come from a separate repository. This has changed
in RHEL 8. Now modules of a single application with different
versions can be stored and made available for installation
from a common repository. The package management tool
has also been enhanced to manipulate modules.

RHEL 8 is shipped with two core repositories called BaseOS
and Application Stream (AppStream).

BaseOS Repository
The BaseOS repository includes the core set of RHEL 8
components including the kernel, modules, bootloader, and
other foundational software packages. These components lay

the foundation to install and run software applications and
programs. BaseOS repository components are available in
the traditional rpm format.

AppStream Repository
The AppStream repository comes standard with core
applications, as well as several add-on applications many of
them in the traditional rpm format and some in the new
modular format. These add-ons include web server software,
development languages, database software, etc. and are
shipped to support a variety of use cases and deployments.

Benefits of Segregation
There are two fundamental benefits to a segregation of the
BaseOS components from other applications: (1) it separates
the application components from the core operating system
elements, and (2) it allows publishers to deliver and
administrators to apply application updates more frequently.
In previous RHEL versions, an OS update would update all
installed components including the kernel, service, and
application components to the latest versions by default.
This could result in an unstable system or a misbehaving
application due to an unwanted upgrade of one or more
packages. By detaching the base OS components from the
applications, either of the two can be updated independent
of the other. This provides enhanced flexibility in tailoring the
system components and application workloads without
impacting the underlying stability of the system.

Module Streams
A module stream is a collection of packages organized by
version. Each module can have multiple streams, and each
stream receives updates independent of the other streams. A
stream can be enabled or disabled. An enabled stream
allows the packages it contains to be queried or installed.

Only one stream of a specific module can be enabled at a
time. Each module has a default stream, which provides the
latest or the recommended version. For example, the perl
module provides two independent streams for the same
software, one for version 5.24 and the other for 5.26. Stream
5.26 is the default, as it is a later version. The system will
automatically attempt to install it if asked for perl.

Module Profiles
A module profile is a list of recommended packages
organized for purpose-built, convenient deployments to
support a variety of use cases such as minimal,
development, common, client, server, etc. A profile may also
include packages from the BaseOS repository or the
dependencies of the stream. Each module stream can have
zero, one, or more profiles associated with it with only one of
them marked as the default.

dnf/yum Repository
A dnf repository (yum repository or a repo) is a digital library
for storing software packages. A repository is accessed for
package retrieval, query, update, and installation, and it may
be free or for a fee. The two repositories—BaseOS and
AppStream—come preconfigured with the RHEL 8 ISO image.
There are a number of other repositories available on the
Internet that are maintained by software publishers such as
Red Hat and CentOS. Furthermore, you can build private
custom repositories for internal IT use for stocking and
delivering software. This may prove to be a good practice for
an organization with a large Linux server base, as it manages
dependencies automatically and aids in maintaining software
consistency across the board. These repositories can also be
used to store in-house developed packages.

It is important to obtain software packages from authentic
and reliable sources such as Red Hat to prevent potential
damage to your system and to circumvent possible software
corruption.

There is a process to create repositories and to access
preconfigured repositories. Creating repositories is beyond
the scope of this book, but there are two pre-set repositories
available on the RHEL 8 image. You will configure access to
them via a definition file to support the exercises and lab
environment.

A sample repo definition file is shown below with some key
directives:

[BaseOS_RHEL_8.0]
name= RHEL 8.0 base operating system components
baseurl=file:///mnt/BaseOS
enabled=1
gpgcheck=0

EXAM TIP: Knowing how to configure a dnf/yum repository using a
URL plays an important role in completing some of the RHCSA exam
tasks successfully. Use two forward slash characters (//) with the
baseurl directive for an FTP, HTTP, or HTTPS source.

The above example shows five lines from a sample repo file.
Line 1 defines an exclusive ID within the square brackets.
Line 2 is a brief description of the repo with the “name”
directive. Line 3 is the location of the repodata directory with
the “baseurl” directive. Line 4 shows whether this repository
is active. Line 5 shows if packages are to be GPG-checked for
authenticity.

Each repository definition file must have a unique ID, a
description, and a baseurl directive defined at a minimum;
other directives are set as required. The baseurl directive for
a local directory path is defined as file:///local_path (the first

two forward slash characters represent the URL convention,
and the third forward slash is for the absolute path to the
destination directory), and for FTP and HTTP(S) sources as
ftp://hostname/network_path and
http(s)://hostname/network_path, respectively. The network
path must include a resolvable hostname or an IP address.

Software Management with dnf
Software for enterprise Linux distributions such as Red Hat
and CentOS is available in the rpm format. These
distributions offer tools to work with individual packages as
well as package groups and modules. The rpm command
was used in the previous chapter to query, list, install, and
erase packages, in addition to a few other tasks that it can
perform. This command is limited to managing one package
at a time.

A more capable tool available in RHEL for managing a single
package, a group of packages, and a module is referred to as
dnf (or yum). This tool has an associated configuration file
that can define settings to control its behavior.

dnf Configuration File
The key configuration file for dnf is dnf.conf that resides in
the /etc/dnf directory. The “main” section in the file sets
directives that have a global effect on dnf operations. You
can define separate sections for each custom repository that
you plan to set up on the system. However, the preferred
location to store configuration for each custom repository in
their own definition files is in the /etc/yum.repos.d directory,
which is the default location created for this purpose. The
default content of this configuration file is listed below:

Table 10-1 explains the above and a few other directives that
you may define in the file. The directives in Table 10-1 are
listed in an alphabetical order.

Directive Description

best Specifies whether to install (or
upgrade to) the latest available
version

clean_requirements_on_remove Defines whether to remove
dependencies during a package
removal process that are no
longer in use

debuglevel Sets the level between 1
(minimum) and 10 (maximum)
at which the debug is to be
recorded in the logfile. Default is
2. A value of 0 disables this
feature.

gpgcheck Indicates whether to check the
GPG signature for package
authenticity. Default is 1
(enabled).

installonly_limit Specifies a count of packages
that can be installed
concurrently. Default is 3.

keepcache Defines whether to store the
package and header cache
following a successful
installation. Default is 0
(disabled).

logdir Sets the directory location to
store the log files. Default is
/var/log.

obsoletes Checks and removes any
obsolete dependent packages
during installs and updates.
Default is 1 (enabled).

Table 10-1 Directive Settings in dnf.conf File

There are a multitude of additional directives available that
you may want to set in the main section of this file or in
custom repository definition files. Run man 5 dnf.conf for
details.

The dnf Command
The dnf package management tool introduced in RHEL 8 is
the next upcoming major version of the yum package
manager that had been around in RHEL for years. You can
use either of the two interchangeably in RHEL 8. In fact, yum
is simply a soft link to the dnf utility. The dnf command is
used in the examples and exercises throughout this book.
The dnf utility requires the system to have access to a local
or remote software repository or to a local installable
package file. The Red Hat Subscription Management service
offers access to official Red Hat software repositories. There
are other web-based repositories that host packages that
you may want to install and use. Alternatively, you can set
up a local, custom repository on your system and add
packages of your choice to it.

The primary benefit of using dnf over rpm is the command’s
ability to resolve dependencies automatically by identifying
and installing any additional required packages for a
successful installation of the specified software. With
multiple repositories set up, dnf extracts the software from
wherever it finds it.

dnf may be used to perform abundant software
administration tasks. It invokes the rpm utility in the
background. dnf can perform a number of operations on
individual packages, package groups, and modules such as
listing, querying, installing, and removing them, as well as
enabling and disabling specific module streams.

Table 10-2 summarizes the software handling tasks that dnf
can perform on packages. It also lists two subcommands
(clean and repolist) that are specific to repositories. The
subcommands in Table 10-2 are sequenced alphabetically.
Refer to the manual pages of dnf for additional

subcommands, operators, options, examples, and other
details.

Subcommand Description

check-update Checks if updates are available for installed
packages

clean Removes cached data

history Displays previous dnf activities as recorded in
the /var/lib/dnf/history directory

info Shows details for a package

install Installs or updates a package

list Lists installed and available packages

provides Searches for packages that contain the specified
file or feature

reinstall Reinstalls the exact version of an installed
package

remove Removes a package and its dependencies

repolist Lists enabled repositories

repoquery Runs queries on available packages

search Searches package metadata for the specified
string

upgrade Updates each installed package to the latest
version

Table 10-2 dnf Subcommands for Packages and
Repositories

Table 10-3 lists and describes dnf subcommands that are
intended for operations on package groups and modules.

Subcommand Description

group install Installs or updates a package group

group info Returns details for a package group

group list Lists available package groups

group remove Removes a package group

module disable Disables a module along with all the streams it
contains

module enable Enables a module along with all the streams it
contains

module install Installs a module profile including its packages

module info Shows details for a module

module list Lists all available module streams along with
their profiles and status

module remove Removes a module profile including its packages

module reset Resets a module so that it is neither in enable
nor in disable state

module update Updates packages in a module profile

Table 10-3 dnf Subcommands for Package Groups and
Modules

You will use most of the subcommands from Table 10-2 and
Table 10-3 in the examples and exercises that follow, but first
you’ll need to create a definition file and configure access to
the two repositories available on the RHEL 8 ISO image.

Exercise 10-1: Configure Access to Pre-
Built ISO Repositories
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will set up access to the two dnf
repositories that are available on RHEL 8 image. You’ve
already configured an automatic mounting of RHEL 8 image
on /mnt in Chapter 09 “Basic Package Management”. You will
create a definition file for the repositories and confirm.

1. Verify that the image is currently mounted:

2. Create a definition file called local.repo in the
/etc/yum.repos.d directory using the vim editor and
define the following data for both repositories in it:

3. Confirm access to the repositories:

Ignore lines 1-4 in the output that are related to subscription
and system registration. Lines 5 and 6 show the rate at
which the command read the repo data. Line 7 displays the
timestamp of the last metadata check. The last two lines
show the repo IDs, repo names, and a count of packages
they hold. As depicted, the AppStream repo consists of 4,672
packages, and the BaseOS repo contains 1,658 packages.
Both repos are enabled by default and are ready for use.

We have divided software administration into three sections
to focus on individual packages, package groups, and
modules separately.

Individual Package Management
The dnf command can be used to perform a variety of
operations on individual packages, just like the rpm
command. The following subsections elaborate with
examples on using this tool to list, install, query, and remove
packages.

Listing Available and Installed Packages
Listing the packages that are available for installation from
one or more enabled repositories helps you understand what
is in the current software inventory and what is needed.
Likewise, listing the packages that are already installed on
the system enables you to make important decisions as to
whether they should be retained, upgraded, downgraded, or
erased. The dnf command lists available packages as well as
installed packages.

To list all packages available for installation from all enabled
repos, run a query against the two repositories that we
configured earlier, as those are the only ones you currently
have access to. The following command will result in a long
output.

To limit the above to the list of packages that are available
only from a specific repo:

You can grep for an expression to narrow down your search.
For example, to find whether the BaseOS repo includes the
zsh package, run the following:

To list all installed packages on the system:

The graphic above shows the output in three columns:
package name, package version, and the repo it was
installed from. @anaconda means the package was installed
at the time of RHEL installation.

To list all installed packages and all packages available for
installation from all enabled repositories:

The @ sign that precedes a repository name in column 3
identifies the package as installed.

To list all packages available from all enabled repositories
that should be able to update:

To list whether a package (bc, for instance) is installed or
available for installation from any enabled repository:

To list all installed packages whose names begin with the
string “gnome” followed by any number of characters:

To list recently added packages:

Refer to the repoquery and list subsections of the dnf
command manual pages for more options and examples.

Installing and Updating Packages
Installing a package creates the necessary directory tree for
the specified and dependent packages, installs the required
files, and runs any post-installation steps. If the package
being loaded is already present, the dnf command updates it
to the latest available version. By default, dnf prompts for a
yes or no confirmation unless the -y flag is entered with the
command.

The following attempts to install a package called ypbind,
but proceeds with an update if it detects the presence of an
older version:

The above dnf command example resolved dependencies
and showed a list of the packages that it would install. It
exhibited the size of the packages and the amount of disk
space that the installation would consume. It downloaded
the packages after confirmation to proceed and installed
them. It completed the installation after every package was
verified. A list of the installed packages was displayed at the
bottom of the output.

To install or update a package called dcraw located locally at
/mnt/AppStream/Packages:

To update an installed package (autofs, for example) to the
latest available version. Note that dnf will fail if the specified
package is not already installed.

To update all installed packages to the latest available
versions:

Refer to the install and update subsections of the dnf
command manual pages for more options and examples.

Exhibiting Package Information
Displaying information for a package shows its name,
architecture it is built for, version, release, size, whether it is
installed or available for installation, repo name it was
installed or is available from, short and long descriptions,
license, and so on. This information can be viewed by
supplying the info subcommand to dnf.

To view information about a package called autofs:

The output shows that autofs is not currently installed, but it
is available for installation from the BaseOS repo. The info
subcommand automatically determines whether the
specified package is installed or not.

Refer to the info subsection of the dnf command manual
pages for more options available for viewing package
information.

Removing Packages
Removing a package uninstalls it and removes all associated
files and directory structure. It also erases any dependencies
as part of the deletion process. By default, dnf prompts for a
yes or no confirmation unless the -y flag is specified at the
command line.

To remove a package called ypbind:

The above output resolved dependencies and showed a list
of the packages that it would remove. It displayed the
amount of disk space that their removal would free up. After
confirmation to proceed, it erased the identified packages
and verified their removal. A list of the removed packages
was exhibited at the bottom of the output.

Refer to the remove subsection of the dnf command manual
pages for more options and examples available for removing
packages.

Exercise 10-2: Manipulate Individual
Packages
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will perform management operations on
a package called cifs-utils. You will determine if this package
is already installed and if it is available for installation. You
will display its information before installing it. You will install
the package and exhibit its information. Finally, you will
remove the package along with its dependencies and
confirm the removal.

1. Check whether the cifs-utils package is already
installed:

The command returned to the prompt without any output,
which implies that the specified package is not installed.

2. Determine if the cifs-utils package is available for
installation:

The package is available for installation. The output shows
its version as well.

3. Display detailed information about the package:

The output is indicative of the fact that the package is
available for installation from the BaseOS repo.

4. Install the package:

5. Display the package information again:

The output reveals that the package is now installed.

6. Remove the package:

7. Confirm the removal:

The no output above confirms that the package is not loaded
on the system.

Determining Provider and Searching
Package Metadata
Determining package contents includes search operations on
installed and available packages. For instance, you can
determine what package a specific file belongs to or which
package comprises a certain string. The following examples
show how to carry out these tasks.

To search for packages that contain a specific file such as
/etc/passwd, use the provides or the whatprovides
subcommand with dnf:

The output returns two instances of the file. The first one
indicates that the passwd file is part of a package called
setup, which was installed during RHEL installation, and the
second instance states that the setup package is part of the
BaseOS repository.

With the provides (whatprovides) subcommand, you can also
use a wildcard character for filename expansion. For
example, the following command will list all packages that
contain filenames beginning with “system-config” followed
by any number of characters:

To search for all the packages that match the specified string
in their name or summary:

The above outcome depicts six matches, four in package
names and two in summaries.

Package Group Management
The dnf command can be used to perform ample operations
on package groups by specifying the group subcommand
with it. The following subsections elaborate with examples
on using this tool to list, install, query, and remove groups of
packages.

Listing Available and Installed Package
Groups
The group list subcommand can be used with dnf to list the
package groups available for installation from either or both
repos, as well as to list the package groups that are already
installed on the system.

To list all available and installed package groups from all
repositories:

The output reveals two categories of package groups: an
environment group and a group. An environment group is a
larger collection of RHEL packages that provides all
necessary software to build the operating system foundation
for a desired purpose. The Server with GUI environment
group was selected at the time of installing server1, which
installed a multitude of packages as well as the GNOME
desktop. See Table 1-2 in Chapter 01 “Local Installation” for a
description of other environment groups.

A group, on the other hand, is a small bunch of RHEL
packages that serve a common purpose. It also saves time
on the deployment of individual and dependent packages.
The above output shows two installed and several available
package groups.

To display the number of installed and available package
groups:

To list all installed and available package groups including
those that are hidden:

Try group list with --installed and --available options to
narrow down the output list.

To list all packages that a specific package group such as
Base contains:

You may use the -v option with the group info subcommand
for more information. Refer to the group list and group info
subsections of the dnf command manual pages for more
details.

Installing and Updating Package Groups
Installing a package group creates the necessary directory
structure for all the packages included in the group and all
dependent packages, installs the required files, and runs any
post-installation steps. If the package group is being loaded
or part of it is already present, the command attempts to
update all the packages included in the group to the latest
available versions. By default, dnf prompts for a yes or no
confirmation unless the -y flag is entered with the command.

The following example attempts to install a package group
called smart card support, but proceeds with an update if it
detects the presence of an older version. You may enclose

the group name within either single or double quotation
marks.

The output discloses that the command installed five
packages located across the two repositories to complete the
installation of the package group.

To update the smart card support package group to the
latest version:

The above command will update all the packages within the
package group to their latest versions if it has access to
them. Refer to the group install and group update
subsections of the dnf command manual pages for more
details.

Removing Package Groups
Removing a package group uninstalls all the included
packages and deletes all associated files and directory
structure. It also erases any dependencies as part of the
deletion process. By default, dnf prompts for a yes or no
confirmation unless the -y flag is specified at the command
line.

To erase the smart card support package group that was
installed:

The above output resolved dependencies and showed a list
of the packages that it would remove. It displayed the
amount of disk space that their removal would free up. After
confirmation to proceed, it erased the identified packages

and verified their removal. A list of the removed packages
was exposed at the bottom of the output.

Refer to the remove subsection of the dnf command manual
pages for more details.

Exercise 10-3: Manipulate Package
Groups
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will perform management operations on
a package group called system tools. You will determine if
this group is already installed and if it is available for
installation. You will list the packages it contains and install
it. Finally, you will remove the group along with its
dependencies and confirm the removal.

1. Check whether the system tools package group is
already installed:

The output does not show the system tools group installed.

2. Determine if the system tools group is available for
installation:

The group name is exhibited at the bottom of the list under
the available groups.

3. Display the list of packages this group contains:

The output returns a long list of packages that are included
in this group. All of the packages will be installed as part of
the group installation.

4. Install the group:

5. Remove the group:

6. Confirm the removal:

The package group is not listed in the above output, which
confirms its removal.

Module Management
Modules are a new concept introduced in RHEL 8, and the
yum/dnf command has also been modified to handle them.
The command can be used to perform a number of
operations on modules by specifying the module
subcommand with it. The following subsections elaborate
with examples on using this tool to list, enable, install, query,
remove, and disable modules.

Listing Available and Installed Modules
The dnf command can list the modules available for
installation from either or both repos, as well as the modules
that are already installed on the system.

To list all modules along with their stream, profile, and
summary information available from all configured repos:

You may limit the output to a list of modules available from a
specific repo such as AppStream by adding --repo AppStream
to the above. The letters d, e, x, and i under the Stream and
Profiles columns and at the last line of the output indicate
their status as default (d), enabled (e), disabled (x), or
installed (i).

To list all the streams for a specific module such as perl and
display their status:

The above output reveals that there are two streams (5.24
and 5.26) available for the perl module from the AppStream
repo, and the current default and enabled version is the
latter of the two.

To modify the above and list only the specified stream (5.24)
for the module perl:

To list all enabled module streams:

Similarly, you can use the --installed and --disabled options
with dnf module list to output only the installed or the
disabled streams.

Refer to the module list subsection of the dnf command
manual pages for more details.

Installing and Updating Modules
Installing a module creates the necessary directory tree for
all the packages included in the module and all dependent
packages, installs the required files for the selected profile,
and runs any post-installation steps. If the module being
loaded or a part of it is already present, the command
attempts to update all the packages included in the profile to
the latest available versions. By default, dnf prompts for a
yes or no confirmation unless the -y flag is entered with the
command.

To install the perl module using its default stream and default
profile:

The default stream and the default profile are the same,
which is 5.26, and the above command installed it.

To update a module called squid to the latest version:

To install the profile “common” with stream “rhel8” for the
container-tools module (run dnf module list to view
available container-tools modules):

The syntax of entering module, stream, and profile together
(module:stream/profile) is illustrated on the above command
line.

Displaying Module Information
Exhibiting information about a module shows its name,
stream, version, list of profiles, default profile, repo name it
was installed or is available from, summary, description, and
artifacts. This information can be viewed by supplying
module info with dnf. Let’s take a look at the following
examples.

To list all profiles available for the module perl:

To limit the output to a particular stream such as 5.26:

To display details for a specific module stream (a non-default
stream), specify the module stream with the module name:

Refer to the module info subsection of the dnf command
manual pages for more details.

Removing Modules
Removing a module will uninstall all the included packages
and delete all associated files and directory structure. It also
erases any dependencies as part of the deletion process. By
default, dnf prompts for a yes or no confirmation unless the -
y flag is specified at the command line.

To remove the container-tools module with “rhel8” stream:

The above output resolved dependencies and showed a list
of the packages that it would remove. It displayed the
amount of disk space that their removal would free up. After
confirmation to proceed, it erased the identified packages
and verified their removal. A list of the removed packages
was exposed at the bottom of the output.

Refer to the module remove subsection of the dnf command
manual pages for more details.

Exercise 10-4: Manipulate Modules
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will perform management operations on
a module called postgresql. You will determine if this module
is already installed and if it is available for installation. You
will show its information and install the default profile for
stream “10”. Finally, you will remove the module profile
along with any dependencies and confirm the removal.

1. Check whether the postgresql module is already
installed:

The postgresql module is not currently installed as there is
no indication (i). The default stream is “10” and the default
profile is “server”. The module with all its streams and
profiles is available from the AppStream repository.

2. Display detailed information about the default stream
of the module:

3. Install the module with default profile for stream “10”:

4. Display the module information again:

Line 2 from the bottom signifies that the default (d) profile
“server” is now installed (i).

5. Remove the module profile for the stream:

6. Confirm the removal:

Line 2 from the bottom indicates the absence of (i) from the
“server” profile, which means the profile is no longer
installed.

Switching Module Streams
Switching module streams is typically performed to upgrade
or downgrade the version of an installed module. The correct
process for either operation is to uninstall the existing
version provided by a stream alongside any dependencies
that it has, switch to the other stream, and install the desired
version. By default, installing a module from a stream
automatically enables the stream if it was previously
disabled, otherwise you can manually enable or disable it
with the dnf command. You can have only one stream of a

given module enabled at a time. Attempting to enable
another one for the same module automatically disables the
current enabled stream.

Earlier in this section, you executed dnf module list and
dnf module info against multiple modules to list and view
information about them. One of the properties they expose is
the enable/disable status of the module stream. Exercise 10-
5 will show you how to switch from one stream to another of
a module and install a different version from there.

Exercise 10-5: Install a Module from an
Alternative Stream
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will downgrade a module to a lower
version. You will remove the stream perl 5.26 and confirm its
removal. You will manually enable the stream perl 5.24 and
confirm its new status. You will install the new version of the
module and display its information.

1. Check the current state of all perl streams:

The above output reveals several interesting facts about the
perl module and its available and installed streams and
profiles. In columns 1 and 2, perl 5.26 is the default (d)
stream and it is currently enabled (e). In column 3, the
default (d) profile for this stream is “common” and it is
currently installed (i). The other stream for this module is

5.24, which is also available for installation from the
AppStream repository.

2. Let’s remove perl 5.26:

The module profile for perl stream 5.26 was removed
successfully.

3. Confirm the removal:

The install (i) indication in column 3 is now gone, which
confirms the profile deletion.

4. Reset the module so that neither stream is enabled or
disabled. This will remove the enabled (e) indication
from perl 5.26.

5. Install the non-default profile “minimal” for perl stream
5.24. This will auto-enable the stream. The --
allowerasing option will instruct the command to
remove installed packages for dependency resolution.

The above graphics are excerpts from a long output that the
dnf command produced. The sequence of activities that
occurred are: (1) dependency resolution, (2) a list of
packages to be upgraded, installed, removed, and
downgraded, along with their versions and sizes, (3) the
module and profile to be installed, (4) the stream (5.24) to
be enabled, (5) a summary of the entire transaction with a
count of the packages to be manipulated, and (6) execution
of the entire transaction.

6. Now that the downgrade is complete and a lower
version of the software is installed, you can check the
status of the module:

The profile “minimal” is installed (i under Profiles) and the
stream 5.24 is enabled (e under Stream).

Chapter Summary
This chapter is the second of the two chapters (the first one
being Chapter 09) with coverage on software management.
This chapter covers advanced topics: yum repositories,
package groups, and package modules.

We looked at the concept of package repositories and
demonstrated setting up access to a local repo. Employing
repositories for package installation and automatic
dependency selection make software installation much
easier than to use the rpm command.

We learned about package groups and the benefits of using
them in contrast to handling individual software packages.
We explored package modules, streams, and profiles, and
how they are organized and manipulated.

Finally, we examined the dnf command and discovered its
benefits over the standard rpm command. dnf offers a
variety of options and subcommands that we employed in
this chapter to demonstrate installing, listing, querying,
updating, and deleting individual packages, package groups,
package streams, and package profiles. Other management
operations such as exhibiting package data, ascertaining
provider, searching metadata for information, and switching
module streams were also covered.

Check Your Understanding
1. A module profile is a list of recommended packages

organized for purpose-built deployments. True or False?
2. What would the dnf group info Base command do?
3. What would you run to list all available profiles for the

module postgresql?
4. Which dnf subcommand can be used to list all

available repositories?

5. What is the use of the -y option with the dnf group
install and dnf module remove commands?

6. What is the main advantage of using dnf over rpm?
7. What would be the command to install perl 5.26?
8. What dnf subcommand would we use to check

available updates for installed packages?
9. What is the concept of module in RHEL 8?
10. What must be the extension of a yum repository file?
11. A module stream is a group of packages organized by

version. True or False?
12. What would the dnf list zsh command do?
13. What would the dnf list installed *gnome* command

do?
14. How many package names can be specified at a time

with the dnf install command?
15. Name the two default yum repositories that contain all

the packages for RHEL 8?
16. We can update all the packages within a package

group using the groupupdate subcommand with dnf.
True or False?

17. What would you run to reset a module so that it is
neither enabled nor disabled?

18. What would the dnf info zsh command do?

Answers to Check Your
Understanding

1. True.
2. The command provided will list all packages in the

specified package group.
3. To view postgresql module profiles, you would run dnf

module info --profile postgresql.
4. The repolist subcommand.
5. dnf will not prompt for user confirmation if the -y

option is used with it.

6. dnf resolves and installs dependent packages
automatically.

7. It would be dnf module install perl:5.26.
8. The check-update subcommand.
9. A module is a collection of packages, including the

dependent packages, that are required to install an
application.

10. The extension of a yum repository configuration file
must be .repo in order to be recognized as a valid repo
file.

11. True.
12. The command provided will display installed and

available zsh package.
13. The command provided will display all installed

packages that contain gnome in their names.
14. There is no limit.
15. The two yum repositories the BaseOS and AppStream.
16. True.
17. You would run dnf module reset to reset a module.
18. The command provided will display the header

information for the zsh package.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

Lab 10-1: Configure Access to RHEL 8
Repositories

As user1 with sudo on server1, make sure the RHEL 8 ISO
image is attached to the VM and mounted. Create a
definition file under /etc/yum.repos.d, and define two blocks
(one for BaseOS and another for AppStream). Verify the
configuration with dnf repolist. You should see numbers in
thousands under the Status column for both repositories.
(Hint1: Chapter 09: Package Management with rpm). (Hint2:
Software Management with dnf).

Lab 10-2: Install and Manage Individual
Packages
As user1 with sudo on server1 and using the dnf command,
list all installed and available packages separately. Show
which package contains the /etc/group file. Install the
package policycoreutils. Review /var/log/yum.log for
confirmation. Perform the following on the policycoreutils
package: (1) show information, (2) list dependencies, and (3)
remove it. (Hint: Individual Package Management).

Lab 10-3: Install and Manage Package
Groups
As user1 with sudo on server1 and using the dnf command,
list all installed and available package groups separately.
Install package groups Security Tools and Scientific Support.
Review /var/log/yum.log for confirmation. Show the packages
included in the Scientific Support package group, and delete
this group. (Hint: Package Group Management).

Lab 10-4: Install and Manage Modules
As user1 with sudo on server1 and using the dnf command,
list all modules. Identify which modules, streams and profiles
are installed, default, disabled, and enabled from the output.
Install the default stream of the development profile for

module php, and verify. Remove the module. (Hint: Module
Management).

Lab 10-5: Switch Module Streams and
Install Software
As user1 with sudo on server1 and using the dnf command,
list postgresql module. This will display the streams and
profiles, and their status. Reset both streams, enable the
stream for the older version, and install its client profile.
(Hint: Module Management).

Chapter 11

Boot Process, GRUB2, and the
Linux Kernel

This chapter describes the following major topics:

Linux boot process: firmware, bootloader,
kernel, and initialization

Understand and interact with GRUB2 to boot
into different targets

Modify GRUB2 configuration
Boot system into specific targets
Reset lost or forgotten root user password
Linux kernel, packages, version anatomy, and
key directories

Download and install a newer kernel version

RHCSA Objectives:

14. Interrupt the boot process in order to gain
access to a system

41.Modify the system bootloader

RHEL goes through multiple phases during the boot
process. It starts selective services during its transition
from one phase into another. It presents the administrator

an opportunity to interact with a preboot program to boot the
system into a non-default target, pass an option to the kernel, or
reset the lost or forgotten root user password. It launches a
number of services during its transition to the default or specified
target.

The kernel controls everything on the system. It controls the
system hardware, enforces security and access controls, and
runs, schedules, and manages processes and service daemons.
The kernel is comprised of several modules. A new kernel must
be installed or an existing kernel must be upgraded when the
need arises from an application or functionality standpoint.

Linux Boot Process
RHEL goes through a boot process after the system has been
powered up or restarted. The boot process lasts until all enabled
services are started. A login prompt will appear on the screen,
which allows users to log in to the system. The boot process is
automatic, but you may need to interact with it to take a non-
default action, such as booting an alternative kernel, booting into
a non-default operational state, repairing the system, recovering
from an unbootable state, and so on. The boot process on an x86
computer may be split into four major phases: (1) the firmware
phase, (2) the bootloader phase, (3) the kernel phase, and (4) the
initialization phase. The system accomplishes these phases one
after the other while performing and attempting to complete the
tasks identified in each phase.

The Firmware Phase (BIOS and UEFI)
The firmware is the BIOS (Basic Input/Output System) or the UEFI
(Unified Extensible Firmware Interface) code that is stored in

flash memory on the x86-based system board. It runs the Power-
On-Self-Test (POST) to detect, test, and initialize the system
hardware components. While doing so, it installs appropriate
drivers for the video hardware and exhibit system messages on
the screen. The firmware scans the available storage devices to
locate a boot device, starting with a 512-byte image that
contains 446 bytes of the bootloader program, 64 bytes for the
partition table, and the last two bytes with the boot signature.
This 512-byte tiny area is referred to as the Master Boot Record
(MBR) and it is located on the first sector of the boot disk. As
soon as it discovers a usable boot device, it loads the bootloader
into memory and passes control over to it.

The BIOS is a small memory chip in the computer that stores
system date and time, list and sequence of boot devices, I/O
configuration, etc. This configuration is customizable. Depending
on the computer hardware, you need to press a key to enter the
BIOS setup or display a menu to choose a source to boot the
system. The computer goes through the hardware initialization
phase that involves detecting and diagnosing peripheral devices.
It runs the POST on the devices as it finds them, installs drivers
for the graphics card and the attached monitor, and begins
exhibiting system messages on the video hardware. It discovers a
usable boot device, loads the bootloader program into memory,
and passes control over to it. Boot devices on most computers
support booting from optical and USB flash devices, hard drives,
network, and other media.

The UEFI is a new 32/64-bit architecture-independent
specification that computer manufacturers have widely adopted
in their latest hardware offerings replacing BIOS. This mechanism
delivers enhanced boot and runtime services, and superior
features such as speed over the legacy 16-bit BIOS. It has its own
device drivers, is able to mount and read extended file systems,
includes UEFI-compliant application tools, and supports one or
more bootloader programs. It comes with a boot manager that
allows you to choose an alternative boot source. Most computer
manufacturers have customized the features for their hardware

platform. You may find varying menu interfaces among other
differences.

The Bootloader Phase
Once the firmware phase is over and a boot device is detected,
the system loads a piece of software called bootloader that is
located in the boot sector of the boot device. RHEL uses GRUB2
(GRand Unified Bootloader) version 2 as the bootloader program.
GRUB2 supports both BIOS and UEFI firmware.

The primary job of the bootloader program is to spot the Linux
kernel code in the /boot file system, decompress it, load it into
memory based on the configuration defined in the
/boot/grub2/grub.cfg file, and transfer control over to it to further
the boot process. For UEFI-based systems, GRUB2 looks for the
EFI system partition /boot/efi instead, and runs the kernel based
on the configuration defined in the /boot/efi/EFI/redhat/grub.efi
file. The next section details the interaction with the bootloader.

The Kernel Phase
The kernel is the central program of the operating system,
providing access to hardware and system services. After getting
control from the bootloader, the kernel extracts the initial RAM
disk (initrd) file system image found in the /boot file system into
memory, decompresses it, and mounts it as read-only on /sysroot
to serve as the temporary root file system. The kernel loads
necessary modules from the initrd image to allow access to the
physical disks and the partitions and file systems therein. It also
loads any required drivers to support the boot process. Later, it
unmounts the initrd image and mounts the actual physical root
file system on / in read/write mode.

At this point, the necessary foundation has been built for the boot
process to carry on and to start loading the enabled services. The
kernel executes the systemd process with PID 1 and passes the
control over to it.

The Initialization Phase

This is the fourth and the last phase in the boot process. systemd
takes control from the kernel and continues the boot process. It is
the default system initialization scheme used in RHEL 8. It starts
all enabled userspace system and network services and brings
the system up to the preset boot target.

 A boot target is an operational level that is achieved after a series of

services have been started to get to that state. More on targets later in this
chapter.

The system boot process is considered complete when all
enabled services are operational for the boot target and users are
able to log in to the system. A detailed discussion on systemd is
available in Chapter 12 “System Initialization, Message Logging,
and System Tuning”.

The GRUB2 Bootloader
After the firmware phase has concluded, the bootloader presents
a menu with a list of bootable kernels available on the system
and waits for a predefined amount of time before it times out and
boots the default kernel. You may want to interact with GRUB2
before the autoboot times out to boot with a non-default kernel,
boot to a different target, or customize the kernel boot string.

Pressing a key before the timeout expires allows you to interrupt
the autoboot process and interact with GRUB2. If you wish to
boot the system using the default boot device with all the
configured default settings, do not press any key, as shown in
Figure 11-1, and let the system go through the autoboot process.

Figure 11-1 GRUB2 Menu

The line at the bottom in Figure 11-1 shows the autoboot
countdown in seconds. The default value is 5 seconds. If you
press no keys within the 5 seconds, the highlighted kernel will
boot automatically.

Interacting with GRUB2
The GRUB2 main menu shows a list of bootable kernels at the
top. You can change the selection using the Up or Down arrow
key. It lets you edit a selected kernel menu entry by pressing an e
or go to the grub> command prompt by pressing a c.

In the edit mode, GRUB2 loads the configuration for the selected
kernel entry from the /boot/grub2/grub.cfg file in an editor,
enabling you to make a desired modification before booting the
system. For instance, you can boot the system into a less capable
operating target by adding “rescue”, “emergency”, or “3” to the
end of the line that begins with the keyword “linux”, as depicted
in Figure 11-2. Press Ctrl+x when done to boot. Remember that
this is a one-time temporary change and it won’t touch the
grub.cfg file.

Figure 11-2 GRUB2 Kernel Edit

If you do not wish to boot the system at this time, you can press
ESC to discard the changes and return to the main menu.

The grub> command prompt appears when you press Ctrl+c
while in the edit window or a c from the main menu. The
command mode provides you with the opportunity to execute
debugging, recovery, and many other tasks. You can view
available commands by pressing the TAB key. See Figure 11-3.

Figure 11-3 GRUB2 Commands

There are over one hundred commands available to perform a
variety of tasks at the GRUB2 level.

Understanding GRUB2 Configuration Files
The GRUB2 configuration file, grub.cfg, is located in the
/boot/grub2 directory. This file is referenced at boot time. This file
is generated automatically when a new kernel is installed or
upgraded, so it is not advisable to modify it directly, as your
changes will be overwritten. The primary source file that is used
to regenerate grub.cfg is called grub, and it is located in the
/etc/default directory. This file defines the directives that govern
how GRUB2 should behave at boot time. Any changes made to
the grub file will only take effect after the grub2-mkconfig utility
has been executed.

Let’s analyze the two files to understand their syntax and
contents.

The /etc/default/grub File
The grub file defines the directives that control the behavior of
GRUB2 at boot time. Any changes in this file must be followed by
the execution of the grub2-mkconfig command in order to be
reflected in grub.cfg.

Here is an enumerated list of the default settings from the grub
file, followed by an explanation in Table 11-1:

Directive Description

GRUB_TIMEOUT Defines the wait time, in seconds, before
booting off the default kernel. Default
value is 5.

GRUB_DISTRIBUTOR Sets the name of the Linux distribution

GRUB_DEFAULT Boots the selected option from the
previous system boot

GRUB_DISABLE_SUBMENU Enables/disables the appearance of
GRUB2 submenu

GRUB_TERMINAL_OUTPUT Sets the default terminal

GRUB_CMDLINE_LINUX Specifies the command line options to
pass to the kernel at boot time

GRUB_DISABLE_RECOVERY Lists/hides system recovery entries in the
GRUB2 menu

GRUB_ENABLE_BLSCFG Defines whether to use the new
bootloader specification to manage
bootloader configuration

Table 11-1 GRUB2 Default Settings

Generally, you do not need to make any changes to this file, as
the default settings are good enough for normal system
operation.

The grub.cfg File
The grub.cfg is the main GRUB2 configuration file that supplies
boot-time configuration information. This file is located in the
/boot/grub2 directory on BIOS-based systems and in the
/boot/efi/EFI/redhat directory on UEFI-based systems. This file can
be regenerated manually with the grub2-mkconfig utility, or it is
automatically regenerated when a new kernel is installed or
upgraded. In either case, this file will lose any previous manual
changes made to it.

Here is how you would run this utility after making a change such
as adjusting the GRUB_TIMEOUT value to 10 in the
/etc/default/grub file to reproduce grub.cfg:

 Use grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg on UEFI

systems.

Restart the system with the reboot command and confirm the
new timeout value when GRUB2 menu appears.

grub2-mkconfig also uses the settings defined in helper scripts
located in the /etc/grub.d directory during the regeneration
process. There are plenty of files located here, as shown below:

The first script, 00_header, sets the GRUB2 environment; the
10_linux script searches for all installed kernels on the same disk
partition; the 30_os-prober searches for the presence of other
operating systems; and 40_custom and 41_custom are to
introduce any customization. An example would be to add
custom entries to the boot menu.

The grub.cfg file also sources the grubenv file located in the
/boot/grub2 directory for kernel options and other settings. Here
is what this file contains on server1:

If a new kernel is installed on the system, the existing kernel
entries remain intact. All bootable kernels are listed in the GRUB2
menu, and any of the kernel entries can be selected to boot.

Booting into Specific Targets
RHEL boots into graphical target state by default if the Server
with GUI software selection is made during installation. It can also
be directed to boot into non-default but less capable operating
targets from the GRUB2 menu. Additionally, in situations when it
becomes mandatory to boot the system into an administrative
state for implementing a function that cannot be otherwise
performed in other target states or for system recovery, RHEL
offers emergency and rescue boot targets. These special target
levels can be launched from the GRUB2 interface by selecting a
kernel, pressing e to enter the edit mode, and appending the
desired target name to the line that begins with the keyword
“linux”.

EXAM TIP: You need to know how to boot a RHEL 8 system into a
specific target from the GRUB2 menu to modify the fstab file or reset an
unknown root user password.

Here is how you would append “emergency” to the kernel line
entry:

Press Ctrl+x after making the modification to boot the system
into the supplied target. You will be required to enter the root
user password to log on. Run reboot after you are done to reboot
the system.

Similarly, you can append “rescue” (or simply “1”, “s”, or
“single”) to the “linux” line and press Ctrl+x to boot into the
rescue target.

Exercise 11-1: Reset the root User Password
This exercise should be done on server1.

For this exercise, assume that the root user password is lost or
forgotten, and it needs to be reset.

In this exercise, you will terminate the boot process at an early
stage to be placed in a special debug shell in order to reset the
root password.

1. Reboot or reset server1, and interact with GRUB2 by
pressing a key before the autoboot times out. Highlight the
default kernel entry in the GRUB2 menu and press e to
enter the edit mode. Scroll down to the line entry that
begins with the keyword “linux” and press the End key to
go to the end of that line:

2. Modify this kernel string and append “rd.break” to the end
of the line. It should look like:

3. Press Ctrl+x when done to boot to the special shell. The
system mounts the root file system read-only on the
/sysroot directory. Make /sysroot appear as mounted on /
using the chroot command:

4. Remount the root file system in read/write mode for the
passwd command to be able to modify the shadow file with
a new password:

5. Enter a new password for root by invoking the passwd
command:

6. Create a hidden file called .autorelabel to instruct the
operating system to run SELinux relabeling on all files,
including the shadow file that was updated with the new
root password, on the next reboot:

7. Issue the exit command to quit the chroot shell and then
the reboot command to restart the system and boot it to
the default target.

Depending on the storage speed, the system might take a few
minutes to complete the relabeling and return to a fully
functional state.

The Linux Kernel
The kernel is the core of the Linux system. It manages hardware,
enforces security, regulates access to the system, as well as
handles processes, services, and application workloads. It is a
collection of software components called modules that work in
tandem to provide a stable and controlled platform. Modules are
device drivers that control hardware devices—the processor,
memory, storage, controller cards, and peripheral equipment,

and interact with software subsystems, such as storage
partitioning, file systems, networking, and virtualization.

Some of these modules are static to the kernel and are integral to
system functionality, while others are loaded dynamically as
needed, making the kernel speedier and more efficient in terms
of overall performance and less vulnerable to crashes. RHEL 8.0
is shipped with kernel version 4.18.0 for the 64-bit Intel/AMD
processor architecture computers with single, multi-core, and
multi-processor configurations. On a Linux system, uname -m
reveals the architecture of the system.

The default kernel installed during the installation is usually
adequate for most system needs; however, it requires a rebuild
when a new functionality is added or removed. The new
functionality may be introduced by installing a new kernel,
upgrading an existing one, installing a new hardware device, or
changing a critical system component. Likewise, an existing
functionality that is no longer needed may be removed to make
the overall footprint of the kernel smaller, resulting in improved
performance and reduced memory utilization.

To control the behavior of the modules, and the kernel in general,
a variety of tunable parameters are set that define a baseline for
kernel functionality. Some of these parameters must be tuned to
allow certain applications and database software to be installed
smoothly and operate properly.

RHEL allows you to generate and store several custom kernels
with varied configuration and required modules, but only one of
them can be active at a time. A different kernel may be loaded by
interacting with GRUB2.

Kernel Packages
Just like any other software that comes in the rpm format for
RHEL, the software comprising the kernel is no different. There is
a set of core kernel packages that must be installed on the
system at a minimum to make it work. Additional packages
providing supplementary kernel support are also available. Table

11-2 lists and describes the core and some add-on kernel
packages.

Kernel
Package

Description

kernel Contains no files, but ensures other kernel packages
are accurately installed

kernel-core Includes a minimal number of modules to provide
core functionality

kernel-devel Includes support for building kernel modules

kernel-modules Contains modules for common hardware devices

kernel-modules-
extra

Contains modules for not-so-common hardware
devices

kernel-headers Includes files to support the interface between the
kernel and userspace libraries and programs

kernel-tools Includes tools to manipulate the kernel

kernel-tools-libs Includes the libraries to support the kernel tools

Table 11-2 Kernel Packages

Moreover, packages containing the source code for RHEL 8 are
also available for those who wish to customize and recompile the
code for their precise needs.

Currently, the following kernel packages are installed on server1:

The output returns six kernel packages that were loaded during
the OS installation.

Analyzing Kernel Version
Sometimes you need to ascertain the version of the kernel
running on the system to check for compatibility with an
application or database that you need to deploy. RHEL has a

basic tool available to extract the version. The uname command
with the -r switch depicts this information, as follows:

The output shows the current kernel version in use is 4.18.0-
80.el8.x86_64. An anatomy of the version is illustrated in Figure
11-4 and explained subsequently.

Figure 11-4 Anatomy of a Kernel Version

From left to right:

(4) major version of the Linux kernel. It changes when
significant alterations, enhancements, and updates to the
previous major version are made.
(18) major revision of the 4th major version
(0) represents patched version of 4.18 with minor bug and
security hole fixes, minor enhancements, and so on.
(80) Red Hat customized version of 4.18.0
(el8) Enterprise Linux this kernel is built for
(x86_64) architecture this kernel is built for

A further analysis designates that 4.18.0 holds the general Linux
kernel version information, the numbers and letters (80.el8)
represent the Red Hat specific information, and x86_64 identifies
the hardware architecture type.

Understanding Kernel Directory Structure

Kernel and its support files are stored at different locations in the
directory hierarchy, of which three locations—/boot, /proc, and
/usr/lib/modules—are noteworthy.

The /boot Location
/boot is essentially a file system that is created at system
installation. It houses the Linux kernel, GRUB2 configuration, and
other kernel and boot support files. A long listing produces the
following output for this file system:

The output displays several files, four of which are for the kernel
and two for its rescue version. The kernel files are vmlinuz,
initramfs, config, and System.map, and they all have the current
kernel version appended to their names. The vmlinuz is the main
kernel file with initramfs, config, and System.map storing the
main kernel’s boot image, configuration, and mapping,
respectively.

The files for the rescue version have the string “rescue”
embedded within their names, as indicated in the above output.

The efi and grub2 subdirectories under /boot hold bootloader
information specific to firmware type used on the system: UEFI or
BIOS. For server1, grub2 contains GRUB2 information as shown
below:

The files grub.cfg and grubenv contain critical data with the
former holding bootable kernel information and the latter stores
the environment information that the kernel uses.

The subdirectory loader under /boot is the storage location for
configuration of the running and rescue kernels. The
configuration is stored in files under the entries subdirectory, as
shown below:

The files are named using the machine id of the system as stored
in the /etc/machine-id file and the kernel version they are for. The
content of the kernel file is presented below:

The “title” is displayed on the bootloader screen where the
countdown to autoboot a selected kernel entry runs. Other than
the kernel version, and the default kernel and boot image
filenames, the environment variables “kernelopts” and
“tuned_params” supply various values to the booting kernel to
control its behavior.

The /proc Location

/proc is a virtual, memory-based file system. Its contents are
created and updated in memory at system boot and during
runtime, and they are destroyed at system shutdown. It
maintains information about the current state of the kernel,
which includes hardware configuration and status information
about processor, memory, storage, file systems, swap, processes,
network interfaces and connections, routing, etc. This data is
kept in tens of thousands of zero-byte files organized in a
hierarchy of hundreds of subdirectories. A long directory listing of
/proc is provided below:

Some subdirectory names are numerical and contain information
about a specific process, and the process ID matches the
subdirectory name. Within each subdirectory are other files and
subdirectories containing a plethora of information, such as
memory segments for processes and configuration data for
system components. You can view the configuration of a
particular item using any text file viewing tool. The following
show selections from the cpuinfo and meminfo files that hold
processor and memory information:

The data stored under /proc is referenced by many system
utilities, including top, ps, uname, free, uptime and w, to display
information.

The /usr/lib/modules Location
This directory holds information about kernel modules.
Underneath it are subdirectories specific to the kernels installed
on the system. For example, the long listing of /usr/lib/modules
below shows that there is only one kernel installed. The name of
the subdirectory corresponds with the installed kernel version.

And this subdirectory contains:

There are several files and a few subdirectories here; they hold
module-specific information for the kernel version.

One of the key subdirectories is /usr/lib/modules/4.18.0-
80.el8.x86_64/kernel/drivers, which stores modules for a variety
of hardware and software components in various subdirectories,
as shown in the listing below:

Additional modules may be installed on the system to support
more components.

Installing the Kernel
Installing kernel packages requires extra care because it could
leave your system in an unbootable or undesirable state. It is
advisable to have the bootable medium handy prior to starting
the kernel install process. By default, the dnf command adds a
new kernel to the system, leaving the existing kernel(s) intact. It
does not replace or overwrite existing kernel files.

EXAM TIP: Always install a new version of the kernel instead of
upgrading it. The upgrade process removes any existing kernel and
replaces it with a new one. In case of a post-installation issue, you will not
be able to revert to the old working kernel.

A newer version of the kernel is typically required if an
application needs to be deployed on the system that requires a
different kernel to operate. When deficiencies or bugs are
identified in the existing kernel, it can hamper the kernel’s
smooth operation. In either case, the new kernel addresses
existing issues as well as adds bug fixes, security updates, new
features, and improved support for hardware devices.

The dnf command is the preferred tool to install a kernel, as it
resolves and installs any required dependencies automatically.
The rpm command may alternatively be used; however, you
must install any reported dependencies manually.

The kernel packages for RHEL 8 are available to subscribers for
download on Red Hat’s Customer Portal. You need a user account
in order to log in and download.

Exercise 11-2: Download and Install a New
Kernel
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will download the latest available kernel
packages from the Red Hat Customer Portal and install them
using the dnf command. You will ensure that the existing kernel
and its configuration remain intact.

1. Check the version of the running kernel:

The output discloses the current active kernel version as 4.18.0-
80.el8.x86_64.

2. List the kernel packages currently installed:

There are six kernel packages on the system as reported.

3. Access the Red Hat Customer Portal webpage at
access.redhat.com and click LOG IN to sign in to the portal
using the credentials you used/created in Chapter 01 “Local
Installation” for the developer account:

4. Click DOWNLOADS at the top:

5. Click “Red Hat Enterprise Linux 8” under “By Category”:

http://access.redhat.com/

6. Click Packages and enter “kernel” in the Search bar to
narrow the list of available packages:

7. Click “Download Latest” against the packages kernel,
kernel-core, kernel-headers, kernel-modules, kernel-tools,
and kernel-tools-libs to download them. These are the
newer packages for the version you currently have on the
system.

8. Once downloaded, move the packages to the /tmp
directory using the mv command.

9. List the packages after moving them:

10. Install all the six packages at once using the dnf
command:

11. Confirm the installation alongside the previous version:

The output indicates that packages for a higher kernel version
4.18.0-80.11.2.el8 have been installed. It also shows the
presence of the previous kernel packages.

12. The /boot/grub2/grubenv file now has the directive
“saved_entry” set to the new kernel, which implies that this
new kernel will boot up on the next system restart:

13. Reboot the system. You will see the new kernel entry in the
GRUB2 boot list at the top. The system will autoboot this
new default kernel.

14. Run the uname command once the system has been
booted up to confirm the loading of the new kernel:

The new active kernel is the one that was just installed.

15. You can also view the contents of the version and cmdline
files under /proc to verify the active kernel:

This concludes the process of downloading and installing a newer
kernel version on RHEL 8.

Chapter Summary
This chapter presented a high-level look at the Linux boot
process, highlighting the four phases the system passes through
and the complexities involved. We reviewed firmware and looked
at preboot administration tasks, which included interacting with

the bootloader program, booting into specific targets, and an
analysis of the bootloader configuration files. We performed a
critical exercise that focused on resetting a forgotten or lost root
user password.

The next major topic discussed the Linux kernel, its key
components and management. We explored various packages
that made up the core kernel software, performed an anatomy of
its versioning, and examined key directories and file systems that
are employed to hold kernel-specific information. Before the
chapter was concluded, we downloaded and installed a new
kernel without impacting the old one.

Check Your Understanding
1. UEFI is replacing BIOS in newer computers. True or False?
2. You have changed the timeout value in the grub

configuration file located in the /etc/default directory. Which
command would you run now to ensure the change takes
effect on next system reboots?

3. You want to view the parameters passed to the kernel at
boot time. Which virtual file would you look at?

4. Name the location of the grub.efi file in the UEFI-based
systems.

5. What is the name of the default bootloader program in
RHEL 8?

6. The systemd command may be used to rebuild a new
kernel. True or False?

7. What does the chroot command do?
8. At what stage should you interrupt the boot sequence to

boot the system into a non-default target?
9. Which two files would you view to obtain processor and

memory information?
10. By default, GRUB2 is stored in the MBR on a BIOS-based

system. True or False?
11. Which file stores the location of the boot partition on the

BIOS systems?
12. You have lost the root user password and you need to

reset it. What would you add to the default kernel boot

string to break the boot process at an early stage?
13. You have installed a newer version of the kernel. What

would you now have to do to make the new kernel the
default boot kernel?

14. What is the system initialization and service management
scheme called?

Answers to Check Your
Understanding

1. True.
2. You will need to run the grub2-mkconfig command.
3. The cmdline file in the /proc file system.
4. The grub.efi file is located in the /boot/efi/EFI/redhat

directory.
5. GRUB2.
6. False.
7. The chroot command changes the specified directory path

to /.
8. At the GRUB2 stage.
9. The cpuinfo and meminfo files in the /proc file system.
10. True.
11. The grub.cfg file stores the location information of the boot

partition.
12. You would add rd.break to the kernel boot string.
13. Nothing. The install process takes care of that.
14. It is called systemd.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the concepts
and topics learned in this chapter. It is expected that you perform
the labs without external help. A step-by-step guide is not
supplied, as the knowledge and skill required to implement the
lab has already been disseminated in the chapter; however, hints
to the relevant major topic(s) are included.

Lab 11-1: Modify GRUB2 Timeout

As user1 with sudo on server1, modify the default timeout value
from 5 seconds to 10 seconds in the /etc/default/grub file and run
grub2-mkconfig to apply the new value. Reboot the system and
observe the new wait time in the bootloader menu. (Hint: The
GRUB2 Bootloader).

Lab 11-2: Reset root User Password
As root on server2, reset the root user password by booting the
system into emergency mode with SELinux disabled. Try to log in
with root and enter the new password after the reboot. (Hint: The
GRUB2 Bootloader).

Lab 11-3: Install New Kernel
As user1 with sudo on server1, check the current version of the
kernel using the uname or rpm command. Download a higher
version from the Red Hat Customer Portal or rpmfind.net, and
install it. Reboot the system and ensure the new kernel is listed
on the bootloader menu. (Hint: The Linux Kernel).

Chapter 12

System Initialization,
Message Logging, and
System Tuning

This chapter describes the following major
topics:

Understand systemd, units, and targets
Analyze service and target unit configuration
files

List and view status of running units
Manage service units and target units
Display and configure default system boot
target

Switch into non-default targets
Analyze system log configuration file
Examine log file rotation settings
Review boot and system log files
Record custom messages in system log file

Describe systemd journal service
Retrieve and scrutinize messages from
journal

Store journal information persistently
Know system tuning and apply tuning profile

RHCSA Objectives:

12.Boot, reboot, and shut down a system
normally

13.Boot systems into different targets
manually

20.Start, stop, and check the status of network
services

36.Start and stop services and configure
services to start automatically at boot

37.Configure systems to boot into a specific
target automatically

44.Configure network services to start
automatically at boot

17.Manage tuning profiles
18.Locate and interpret system log files and

journals
19.Preserve system journals

Systemd is the default system initialization and
service management scheme. It boots the system into
one of several predefined targets and it is used to

handle operational states of services. It employs the
concepts of units and targets for initialization, service
administration, and state changes. A good grasp of what unit
and target configuration files store is key to understanding
how systemd operates.

Alerts and messages generated by system services and user
activities are forwarded to predefined locations for storage.
These alerts and messages include those that are produced
during system boot time. The log data may be analyzed for
debugging or auditing purposes. Log files grow over time and
need to be rotated periodically to prevent the file system
space from filling up. There are configuration files that define
the default and custom locations to direct the log messages
to and to configure rotation settings. The system log file
records custom messages sent to it. systemd includes a
service for viewing and managing system logs in addition to
the traditional logging service. This service maintains a log
of runtime activities for faster retrieval and can be
configured to store the information permanently.

System tuning service is employed to monitor connected
devices and to tweak their parameters to improve
performance or conserve power. A recommended tuning
profile may be identified and activated for optimal
performance and power saving.

System Initialization and
Service Management
systemd (short for system daemon) is the system
initialization and service management mechanism. It has
fast-tracked system initialization and state transitioning by
introducing features such as parallel processing of startup
scripts, improved handling of service dependencies, and on-
demand activation of services. Moreover, it supports
snapshotting of system states, tracks processes using
control groups, and automatically maintains mount points.
systemd is the first process with PID 1 that spawns at boot
and it is the last process that terminates at shutdown.

 systemd spawns several processes during a service startup. It

places the processes in a private hierarchy composed of control
groups (or cgroups for short) to organize processes for the purposes of
monitoring and controlling system resources such as processor,
memory, network bandwidth, and disk I/O. This includes limiting,
isolating, and prioritizing their usage of resources. This way resources
can be distributed among users, databases, and applications based on
their needs and priorities, resulting in overall improved system
performance.

In order to benefit from parallelism, systemd initiates distinct
services concurrently, taking advantage of multiple CPU
cores and other compute resources. To achieve this, systemd
creates sockets for all enabled services that support socket-
based activation instantaneously at the very beginning of
the initialization process, and passes them on to service
daemon processes as they attempt to start in parallel. This
approach lets systemd handle inter-service order
dependencies and allows services to start without any
delays. With systemd, dependent daemons need not be
running; they only need the correct socket to be available.
systemd creates all sockets first, all the daemons next, and
any client requests to daemons not yet running are cached

in the socket buffer and filled when the daemons come
online.

 Socket is a communication method that allows a single process

to talk to another process on the same or remote system.

During the operational state, systemd maintains the sockets
and uses them to reconnect other daemons and services
that were interacting with an old instance of a daemon
before that daemon was terminated or restarted. Likewise,
services that use activation based on D-Bus (Desktop Bus)
are started when a client application attempts to
communicate with them for the first time. Additional
methods used by systemd for activation are device-based
and path-based, with the former starting the service when a
specific hardware type such as USB is plugged in, and the
latter starting the service when a particular file or directory
alters its state.

 D-Bus is another communication method that allows multiple

services running in parallel on a system to talk to one another on the
same or remote system.

With on-demand activation, systemd defers the startup of
services—Bluetooth and printing—until they are actually
needed during the boot process or during runtime. Together,
parallelization and on-demand activation save time and
compute resources, and contribute to expediting the boot
process considerably.

Another major benefit of parallelism witnessed at system
boot is when systemd uses the autofs service to temporarily
mount the configured file systems. During the boot process,
the file systems are checked that may result in unnecessary
delays. With autofs, the file systems are temporarily
mounted on their normal mount points, and as soon as the

checks on the file systems are finished, systemd remounts
them using their standard devices. Parallelism in file system
mounts does not affect the root and virtual file systems.

Units
Units are systemd objects used for organizing boot and
maintenance tasks, such as hardware initialization, socket
creation, file system mounts, and service startups. Unit
configuration is stored in their respective configuration files,
which are auto-generated from other configurations, created
dynamically from the system state, produced at runtime, or
user-developed. Units are in one of several operational
states, including active, inactive, in the process of being
activated or deactivated, and failed. Units can be enabled or
disabled. An enabled unit can be started to an active state; a
disabled unit cannot be started.

Units have a name and a type, and they are encoded in files
with names in the form unitname.type. Some examples are
tmp.mount, sshd.service, syslog.socket, and umount.target.
There are two types of unit configuration files: (1) system
unit files that are distributed with installed packages and
located in the /usr/lib/systemd/system directory, and (2) user
unit files that are user-defined and stored in the
/etc/systemd/user directory (run ls -l on both directories to
list their contents). This information can be vetted with the
pkg-config command:

Furthermore, there are additional system units that are
created at runtime and destroyed when they are no longer
needed. They are located in the /run/systemd/system
directory. These runtime unit files take precedence over the

system unit files, and the user unit files take priority over the
runtime files.

 Unit configuration files are a direct replacement of the

initialization scripts found in the /etc/rc.d/init.d directory in older RHEL
releases.

systemd includes 11 unit types, which are described in Table
12-1.

Unit Type Description

Automount Offers automount capabilities for on-demand
mounting of file systems

Device Exposes kernel devices in systemd and may be
used to implement device-based activation

Mount Controls when and how to mount or unmount file
systems.

Path Activates a service when monitored files or
directories are accessed

Scope Manages foreign processes instead of starting them

Service Starts, stops, restarts, or reloads service daemons
and the processes they are made up of

Slice May be used to group units, which manage system
processes in a tree-like structure for resource
management

Socket Encapsulates local inter-process communication or
network sockets for use by matching service units

Swap Encapsulates swap partitions

Target Defines logical grouping of units

Timer Useful for triggering activation of other units based
on timers

Table 12-1 systemd Unit Types

Unit files contain common and specific configuration
elements. Common elements fall under the [Unit] and
[Install] sections, and comprise the description,

documentation location, dependency information, conflict
information, and other options that are independent of the
type of unit. The unit-specific configuration data is located
under the unit type section: [Service] for the service unit
type, [Socket] for the socket unit type, and so forth. A
sample unit file for sshd.service is shown below from the
/usr/lib/systemd/system directory:

Units can have dependency relationships among themselves
based on a sequence (ordering) or a requirement. A
sequence outlines one or more actions that need to be taken
before or after the activation of a unit (the Before and After
directives). A requirement specifies what must already be
running (the Requires directive) or not running (the Conflicts
directive) in order for the successful launch of a unit. For
instance, the graphical.target unit file tells us that the
system must already be operating in the multi-user mode
and not in rescue mode in order for it to boot successfully
into the graphical mode. Another option, Wants, may be
used instead of Requires in the [Unit] or [Install] section so
that the unit is not forced to fail activation if a required unit
fails to start. Run man systemd.unit for details on systemd
unit files.

There are a few other types of dependencies that you may
see in other unit configuration files. systemd generally sets
and maintains inter-service dependencies automatically;
however, this can be implemented manually if needed.

Targets
Targets are simply logical collections of units. They are a
special systemd unit type with the .target file extension.
They are also stored in the same directory locations as the
other unit configuration files. Targets are used to execute a
series of units. This is typically true for booting the system to
a desired operational run level with all the required services
up and running. Some targets inherit services from other
targets and add their own to them. systemd includes several
predefined targets that are described in Table 12-2.

Target Description

halt Shuts down and halts the system

poweroff Shuts down and powers off the system

shutdown Shuts down the system

rescue Single-user target for running administrative and
recovery functions. All local file systems are
mounted. Some essential services are started, but
networking remains disabled.

emergency Runs an emergency shell. The root file system is
mounted in read-only mode; other file systems are
not mounted. Networking and other services
remain disabled.

multi-user Multi-user target with full network support, but
without GUI

graphical Multi-user target with full network support and GUI

reboot Shuts down and reboots the system

default A special soft link that points to the default system
boot target (multi-user.target or graphical.target)

hibernate Puts the system into hibernation by saving the
running state of the system on the hard disk and
powering it off. When powered up, the system
restores from its saved state rather than booting
up.

Table 12-2 systemd Targets

Target unit files contain all information under the [Unit]
section, and it comprises the description, documentation
location, and dependency and conflict information. A sample
file for the graphical.target target is shown below from the
/usr/lib/systemd/system directory:

The file shows four dependencies: Requires, Wants, Conflicts,
and After. It suggests that the system must have already
accomplished the rescue.service, rescue.target, multi-
user.target, and display-manager.service levels in order to be
declared running in the graphical target. Run man
systemd.target for details on systemd targets.

The systemctl Command
systemd comes with a set of management tools for querying
and controlling operations. The primary tool for interaction in
this command suite is systemctl. The systemctl command
performs administrative functions and supports plentiful
subcommands and flags. Table 12-3 lists and describes some
common operations.

Subcommand Description

daemon-reload Re-reads and reloads all unit configuration files
and recreates the entire user dependency tree.

enable
(disable)

Activates (deactivates) a unit for autostart at
system boot

get-default
(set-default)

Shows (sets) the default boot target

get-property
(set-property)

Returns (sets) the value of a property

is-active Checks whether a unit is running

is-enabled Displays whether a unit is set to autostart at
system boot

is-failed Checks whether a unit is in the failed state

isolate Changes the running state of a system

kill Terminates all processes for a unit

list-
dependencies

Lists dependency tree for a unit

list-sockets Lists units of type socket

list-unit-files Lists installed unit files

list-units Lists known units. This is the default behavior
when systemctl is executed without any
arguments.

mask (unmask) Prohibits (permits) auto and manual activation
of a unit to avoid potential conflict

reload Forces a running unit to re-read its configuration
file. This action does not change the PID of the
running unit.

restart Stops a running unit and restarts it

show Shows unit properties

start (stop) Starts (stops) a unit

status Presents the unit status information

Table 12-3 systemctl Subcommands

You will use a majority of these subcommands with systemctl
going forward. Refer to the manual pages of the command
for more details.

Listing and Viewing Units
The systemctl command is used to view and manage all
types of units. The following examples demonstrate common
operations pertaining to viewing and querying units.

To list all units that are currently loaded in memory along
with their status and description, run the systemctl
command without any options or subcommands. A long
output is generated. The graphic below shows a few starting
and concluding lines followed by a brief explanation.

Here is a breakdown of the graphic above: the UNIT column
shows the name of the unit and its location in the tree, the
LOAD column reflects whether the unit configuration file was
properly loaded (other possibilities are not found, bad
setting, error, and masked), the ACTIVE column returns the
high-level activation state (other possible states are active,

reloading, inactive, failed, activating, and deactivating), the
SUB column depicts the low-level unit activation state
(reports unit-specific information), and the DESCRIPTION
column illustrates the unit’s content and functionality.

By default, the systemctl command lists only the active
units. You can use the --all option to include the inactive
units too.

To list all (--all) active and inactive units of type (-t) socket:

To list all units of type socket (column 2) currently loaded in
memory and the service they activate (column 3), sorted by
the listening address (column 1):

To list all unit files (column 1) installed on the system and
their current state (column 2). This will generate a long list of
units in the output. The following only shows a selection.

To list all units that failed (--failed) to start at the last system
boot:

To list the hierarchy of all dependencies (required and
wanted units) for the current default target:

To list the hierarchy of all dependencies (required and
wanted units) for a specific unit such as atd.service:

There are other listing subcommands and additional flags
available that can be used to produce a variety of reports.

Managing Service Units
The systemctl command offers several subcommands to
manage service units, including starting, stopping,
restarting, and checking their status. These and other

management operations are summarized in Table 12-3. The
following examples demonstrate their use on a service unit
called atd.

To check the current operational status and other details for
the atd service:

The above output reveals a lot of information about the atd
service. On line 1, it shows the service description (read from
the /usr/lib/systemd/system/atd.service file). Line 2
illustrates the load status, which reveals the current load
status of the unit configuration file in memory. Other
possibilities for “Loaded” include “error” (if there was a
problem loading the file), "not-found" (if no file associated
with this unit was found), "bad-setting" (if a key setting was
missing), and "masked" (if the unit configuration file is
masked). Line 2 also tells us whether the service is set
(enable or disable) for autostart at system boot.

Line 3 exhibits the current activation status and the time the
service was started. An activation status designates the
current state of the service. Possible states include:

Active (running): The service is running with one or
more processes
Active (exited): Completed a one-time configuration
Active (waiting): Running but waiting for an event
Inactive: Not running
Activating: In the process of being activated
Deactivating: In the process of being deactivated
Failed: If the service crashed or could not be started

The output also depicts the PID of the service process and
other information.

To disable the atd service from autostarting at the next
system reboot:

To re-enable atd to autostart at the next system reboot:

To check whether atd is set to autostart at the next system
reboot:

To check whether the atd service is running:

To stop and restart atd, run either of the following:

To show the details of the atd service:

.

To prohibit atd from being enabled or disabled:

Try disabling or enabling atd and observe the effect of the
previous command:

Reverse the effect of the mask subcommand and try disable
and enable operations:

Notice that the unmask subcommand has removed the
restriction that was placed on the atd service.

Managing Target Units
The systemctl command is also used to manage the target
units. It can be used to view or change the default boot
target, switch from one running target into another, and so
on. These operations are briefed in Table 12-3. Let’s look at
some examples.

To view what units of type (-t) target are currently loaded
and active:

For each target unit, the above output returns the target
unit’s name, load state, high-level and low-level activation
states, and a short description. Add the --all option to the
above to see all loaded targets in either active or inactive
state.

Viewing and Setting Default Boot Target
The systemctl command is used to view the current default
boot target and to set it. Let’s use the get-default and set-
default subcommands with systemctl to perform these
operations.

To check the current default boot target:

EXAM TIP: You may have to modify the default boot target
persistently.

To change the current default boot target from
graphical.target to multi-user.target:

The command simply removes the existing symlink
(default.target) pointing to the old boot target and replaces it
with the new target file path.

Execute sudo systemctl set-default graphical to revert
the default boot target to graphical.

Switching into Specific Targets
The systemctl command can be used to transition the
running system from one target state into another. There are
a variety of potential targets available to switch into as listed
in Table 12-2; however, only a few of them—graphical, multi-
user, reboot, shutdown—are typically used. The rescue and
emergency targets are for troubleshooting and system
recovery purposes, poweroff and halt are similar to
shutdown, and hibernate is suitable for mobile devices.
Consider the following examples that demonstrate switching
targets.

The current default target on server1 is graphical. To switch
into multi-user, use the isolate subcommand with systemctl:

This should stop the graphical service on the system and
display the text-based console login screen, as shown below:

Type in a username such as user1 and enter the password to
log in:

To return to the graphical target:

The graphical login screen should appear shortly and you
should be able to log back in.

To shut down the system and power it off, use the following
or simply run the poweroff command:

To shut down and reboot the system, use the following or
simply run the reboot command:

The halt, poweroff, and reboot commands are mere symbolic
links to the systemctl command, as the following long listing
suggests:

The halt, poweroff, and reboot commands are available in
RHEL 8 for compatibility reasons only. It is recommended to

use the systemctl command instead when switching system
states.

The three commands, without any arguments, perform the
same action that the shutdown command would with the “-H
now”, “-P now”, and “-r now” arguments, respectively. In
addition, it also broadcasts a warning message to all logged-
in users, blocks new user login attempts, waits for the
specified amount of time for users to save their work and log
off, stops the services, and eventually shut the system down
to the specified target state.

System Logging
System logging (syslog for short) is one of the most
rudimentary elements of an operating system. Its purpose is
to capture messages generated by the kernel, daemons,
commands, user activities, applications, and other events,
and forwarded them to various log files, which store them for
security auditing, service malfunctioning, system
troubleshooting, or informational purposes.

The daemon that is responsible for system logging is called
rsyslogd (rocket-fast system for log processing). This service
daemon is multi-threaded, with support for enhanced
filtering, encryption-protected message relaying, and a
variety of configuration options. The rsyslogd daemon reads
its configuration file /etc/rsyslog.conf and the configuration
files located in the /etc/rsyslog.d directory at startup. The
default depository for most system log files is the /var/log
directory. Other services such as audit, Apache, and GNOME
desktop manager have subdirectories under /var/log for
storing their respective log files.

The rsyslog service is modular, allowing the modules listed in
its configuration file to be dynamically loaded in the kernel

as and when needed. Each module brings a new functionality
to the system upon loading.

The rsyslogd daemon can be stopped manually using
systemctl stop rsyslog. Replace stop with start, restart,
reload, and status as appropriate.

A PID is assigned to the daemon at startup and a file by the
name rsyslogd.pid is created in the /run directory to save the
PID. The reason this file is created and stores the PID is to
prevent the initiation of multiple instances of this daemon.

The Syslog Configuration File
The rsyslog.conf is the primary syslog configuration file
located in the /etc directory . The default uncommented line
entries from the file are shown below and explained
thereafter. Section headings have been added to separate
the directives in each section.

As depicted, the syslog configuration file contains three
sections: Modules, Global Directives, and Rules. The Modules
section defines two modules—imuxsock and imjournal—and
they are loaded on demand. The imuxsock module furnishes

support for local system logging via the logger command,
and the imjournal module allows access to the systemd
journal.

The Global Directives section contains three active
directives. The definitions in this section influence the overall
functionality of the rsyslog service. The first directive sets
the location for the storage of auxiliary files (/var/lib/rsyslog).
The second directive instructs the rsyslog service to save
captured messages using traditional file formatting. The third
directive directs the service to load additional configuration
from files located in the /etc/rsyslogd.d/ directory.

The Rules section has many two-field line entries. The left
field is called selector, and the right field is referred to as
action. The selector field is further divided into two period-
separated sub-fields called facility (left) and priority (right),
with the former representing one or more system process
categories that generate messages, and the latter
identifying the severity associated with the messages. The
semicolon (;) character is used as a distinction mark if
multiple facility.priority groups are present. The action field
determines the destination to send the messages to.

There are numerous supported facilities such as auth,
authpriv, cron, daemon, kern, lpr, mail, news, syslog, user,
uucp, and local0 through local7. The asterisk (*) character
represents all of them.

Similarly, there are several supported priorities, and they
include emerg, alert, crit, error, warning, notice, info, debug,
and none. This sequence is in the descending criticality
order. The asterisk (*) represents all of them. If a lower
priority is selected, the daemon logs all messages of the
service at that and higher levels.

Line 1 under the Rules section instructs the syslog daemon
to catch and store informational messages from all services
to the /var/log/messages file and ignore all messages
generated by mail, authentication, and cron services. Lines
2, 3, and 4 command the daemon to collect and log all
messages produced by authentication, mail, and cron to the
secure, maillog, and cron files, respectively. Line 5 orders the
daemon to display emergency messages (omusrmsg stands
for user message output module) on the terminals of all
logged-in users. Line 6 shows two comma-separated facilities
that are set at a common priority. These facilities tell the
daemon to gather critical messages from uucp and news
facilities and log them to the /var/log/spooler file. Line 7 (the
last line) is for recording the boot-time service startup status
to the /var/log/boot.log file.

If you have made any modifications to the syslog
configuration file, you need to run the rsyslogd command
with the -N switch and specify a numeric verbosity level to
inspect the file for any syntax or typing issues:

The validation returns the version of the command, verbosity
level used, and the configuration file path. With no issues
reported, the rsyslog service can be restarted (or reloaded)
in order for the changes to take effect.

Rotating Log Files
RHEL records all system activities in log files that are stored
in a central location under the /var/log directory, as defined
in the rsyslog configuration file. A long listing of this
directory reveals the files along with subdirectories that may
have multiple service-specific logs. Here is a listing from
server1:

The output shows log files for various services. Depending on
the usage and the number of events generated and
captured, log files may quickly fill up the /var file system,
resulting in unpredictable system behavior. Also, they may
grow to an extent that would make it difficult to load, read,
send, or analyze them. To avoid getting into any unwanted
situation, it’s important to ensure that they’re rotated on a
regular basis and their archives are removed automatically.

To that end, a script called logrotate under /etc/cron.daily/
invokes the logrotate command on a daily basis. Via the
Anacron service, the command runs a rotation as per the
schedule defined in the /etc/logrotate.conf file and the
configuration files for various services located in the
/etc/logrotate.d directory. The configuration files may be
modified to alter the schedule or include additional tasks
such as removing, compressing, and emailing selected log
files.

Here is what the /etc/cron.daily/logrotate script contains:

The following returns the default content of the
/etc/logrotate.conf file:

The file content shows the default log rotation frequency
(weekly). It indicates the period of time (4 weeks) to retain
the rotated logs before deleting them. Each time a log file is
rotated, an empty replacement file is created with the date
as a suffix to its name, and the rsyslog service is restarted.
The script presents the option of compressing the rotated
files using the gzip utility. During the script execution, the
logrotate command checks for the presence of additional log
configuration files in the /etc/logrotate.d directory and
includes them as necessary. The directives defined in the
logrotate.conf file have a global effect on all log files. You can
define custom settings for a specific log file in logrotate.conf
or create a separate file in the /etc/logrotate.d directory. Any

settings defined in user-defined files overrides the global
settings.

The /etc/logrotate.d directory includes additional
configuration files for other service logs, as shown below:

Here there are log configuration files for a number of
services—chrony, cups, dnf, and samba—all with their own
rules defined. The following shows the file content for btmp
(records of failed user login attempts) that is used to control
the rotation behavior for the /var/log/btmp file:

The rotation is once a month. The replacement file created
will get read/write permission bits for the owner (root), the
owning group will be set to utmp, and the rsyslog service will
maintain one rotated copy of the btmp log file.

The Boot Log File

Logs generated during the system startup display the service
startup sequence with a status showing whether the service
was started successfully. This information may help in any
post-boot troubleshooting if required. Boot logs are stored in
the boot.log file under /var/log. Here are a few lines from the
beginning of the file:

OK or FAILED within the square brackets indicates if the
service was started successfully or not.

The System Log File
The default location for storing most system activities, as
defined in the rsyslog.conf file, is the /var/log/messages file.
This file saves log information in plain text format and may
be viewed with any file display utility, such as cat, more, pg,
less, head, or tail. This file may be observed in real time
using the tail command with the -f switch. The messages file
captures the date and time of the activity, hostname of the
system, name and PID of the service, and a short description
of the event being logged.

EXAM TIP: It is helpful to “tail” the messages file when starting or
restarting a system service or during testing to identify any issues
encountered.

The following illustrates some recent entries from this file:

Each line entry represents the detail for one event.

Logging Custom Messages
Many times it is worthwhile to add a manual note to the
system log file to mark the start or end of an activity for
future reference. This is especially important when you run a
script to carry out certain tasks and you want to record the
status or add comments at various stages throughout its
execution. This is also beneficial in debugging the startup of
an application to know where exactly it is failing.

The Modules section in the rsyslog.conf file provides the
support via the imuxsock module to record custom
messages to the messages file using the logger command.
This command may be run by normal users or the root user.
The following example shows how to add a note indicating
the calling user has rebooted the system:

tail the last line from the messages file and you’ll observe
the message recorded along with the timestamp, hostname,
and PID:

You may add the -p option and specify a priority level either
as a numerical value or in the facility.priority format. The

default priority at which the events are recorded is
user.notice. See the manual pages for the logger command
for more details.

The systemd Journal
In addition to the rsyslog service, RHEL offers a systemd-
based logging service for the collection and storage of
logging data. This service is implemented via the systemd-
journald daemon. The function of this service is to gather,
store, and display logging events from a variety of sources
such as the kernel, rsyslog and other services, initial RAM
disk, and alerts generated during the early boot stage. It
stores these messages in the binary format in files called
journals that are located in the /run/log/journal directory.
These files are structured and indexed for faster and easier
searches, and may be viewed and managed using the
journalctl command. As you know, /run is a virtual file
system that is created in memory at system boot,
maintained during system runtime, and destroyed at
shutdown. Therefore, the data stored therein is non-
persistent, but you can enable persistent storage for the logs
if desired.

RHEL runs both rsyslogd and systemd-journald concurrently.
In fact, the data gathered by systemd-journald may be
forwarded to rsyslogd for further processing and persistent
storage in text format.

The main configuration file for this service is
/etc/systemd/journald.conf, which contains numerous default
settings that affect the overall functionality of the service.
These settings may be modified as required.

Retrieving and Viewing Messages

RHEL provides the journalctl command to retrieve messages
from the journal for viewing in a variety of ways using
different options. One common usage is to run the command
without any options to see all the messages generated since
the last system reboot. The following shows a few initial
entries from the journal:

Notice that the format of the messages is similar to that of
the events logged to the /var/log/messages file that you saw
earlier. Each line begins with a timestamp followed by the
system hostname, process name with or without a PID, and
the actual message.

Let’s run the journalctl command with different options to
produce various reports.

To display detailed output for each entry, use the -o verbose
option:

To view all events since the last system reboot, use the -b
options:

You may specify -0 (default, since the last system reboot), -1
(the previous system reboot), -2 (two reboots before), and so
on to view messages from previous system reboots.

To view only kernel-generated alerts since the last system
reboot:

To limit the output to view a specific number of entries only
(3 in the example below), use the -n option:

To show all alerts generated by a particular service, such as
crond:

To retrieve all messages logged for a certain process, such as
the PID associated with the chronyd service:

To reveal all messages for a particular system unit, such as
sshd.service:

To view all error messages logged between a date range,
such as October 10, 2019 and October 16, 2019:

To get all warning messages that have appeared today and
display them in reverse chronological order:

You can specify the time range in hh:mm:ss format, or
yesterday, today, or tomorrow instead.

Similar to the -f (follow) option that is used with the tail
command for real-time viewing of a log file, you can use the
same switch with journalctl as well. Press Ctrl+c to
terminate.

Check the manual pages of the journalctl command and the
systemd-journald service for more details.

Preserving Journal Information
By default, journals are stored in the /run/log/journal
directory for the duration of system runtime. This data is
transient and it does not survive across reboots. The
journalctl command examples demonstrated earlier retrieve
journal information from this temporary location. The
rsyslogd daemon, by default, reads the temporary journals
and stores messages in the /var/log/messages file. You can
enable a separate storage location for the journal to save all
its messages there persistently. The default is under the
/var/log/journal directory. This will make the journal
information available for future reference.

The systemd-journald service supports four options with the
Storage directive in its configuration file journald.conf to
control how the logging data is handled. These options are
described in Table 12-4.

Option Description

volatile Stores data in memory only

persistent Stores data permanently under /var/log/journal and
falls back to memory-only option if this directory
does not exist or has a permission or other issue.
The service creates /var/log/journal in case of its
non-existence.

auto Similar to “persistent” but does not create
/var/log/journal if it does not exist. This is the
default option.

none Disables both volatile and persistent storage
options. Not recommended.

Table 12-4 Journal Data Storage Options

The default (auto) option appears more suitable as it stores
data in both volatile and on-disk storage; however, you need
to create the /var/log/journal directory manually. This option
provides two fundamental benefits: faster query responses
from in-memory storage and access to historical log data
from on-disk storage.

To enable persistent storage without changing the auto
option, simply create the target directory. The service will
automatically start writing the log data there.

As soon as you created the /var/log/journal directory, a
subdirectory matching the system’s machine ID was created

underneath. The file system.journal stores the log data in
binary format.

 The /etc/machine-id stores the system’s machine ID, which the

systemd-journald service uses to create the subdirectory under
/var/log/journal. You can run cat /etc/machine-id to view the file
content.

This log file is rotated automatically once a month based on
the settings in the journald.conf file. Check the manual
pages of the configuration file for details and relevant
directives.

System Tuning
RHEL uses a system tuning service called tuned to monitor
storage, networking, processor, audio, video, and a variety of
other connected devices, and adjusts their parameters for
better performance or power saving based on a chosen
profile. There are several predefined tuning profiles for
common use cases shipped with RHEL that may be activated
either statically or dynamically.

The tuned service activates a selected profile at service
startup and continues to use it until it is switched to a
different profile. This is the static behavior and it is enabled
by default.

The dynamic alternative adjusts the system settings based
on the live activity data received from monitored system
components to ensure optimal performance. In most cases,
the utilization of system components vary throughout the
day. For example, a disk and processor’s utilization increases
during a program startup and the network connection use
goes up during a large file transfer. A surge in a system

component activity results in heightened power
consumption.

Tuning Profiles
tuned includes nine predefined profiles to support a variety
of use cases. In addition, you can create custom profiles from
nothing or by using one of the existing profiles as a
template. In either case, you need to store the custom profile
under the /etc/tuned directory in order to be recognized by
the tuned service.

Tuning profiles may be separated into three groups: (1)
optimized for better performance, (2) geared more towards
power consumption, and (3) that offers a balance between
the other two and the maximum performance/power
combination. Table 12-5 lists and describes these profiles.

Profile Description

Profiles Optimized for Better Performance

Desktop Based on the balanced profile for desktop
systems. Offers improved throughput for
interactive applications.

Latency-
performance

For low-latency requirements

Network-latency Based on the latency-performance for faster
network throughput

Network-
throughput

Based on the throughput-performance profile
for maximum network throughput

Virtual-guest Optimized for virtual machines

Virtual-host Optimized for virtualized hosts

Profiles Optimized for Power Saving

Powersave Saves maximum power at the cost of
performance

Balanced/Max Profiles

Balanced Preferred choice for systems that require a
balance between performance and power
saving

Throughput-
performance

Provides maximum performance and
consumes maximum power

Table 12-5 Tuning Profiles

Predefined profiles are located in the /usr/lib/tuned directory
in subdirectories matching their names. The following shows
a long listing of the directory:

The default active profile set on server1 and server2 is the
virtual-guest profile, as the two systems are hosted in a
VirtualBox virtualized environment.

The tuned-adm Command
tuned comes with a single profile management command
called tuned-adm. This tool can list active and available
profiles, query current settings, switch between profiles, and
turn the tuning off. This command can also recommend the
best profile for the system based on many system attributes.
Refer to the manual pages of the command for more details.

The following exercise demonstrates the use of most of the
management operations listed above.

Exercise 12-1: Manage Tuning Profiles
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will install the tuned service, start it
now, and enable it for auto-restart upon future system
reboots. You will display all available profiles and the current
active profile. You will switch to one of the available profiles
and confirm. You will determine the recommended profile for
the system and switch to it. Finally, you will deactivate
tuning and reactivate it. You will confirm the activation to
conclude the exercise.

1. Install the tuned package if it is not already installed:

The output indicates that the software is already installed.

2. Start the tuned service and set it to autostart at
reboots:

3. Confirm the startup:

4. Display the list of available tuning profiles:

The output shows the nine predefined profiles. It also
exhibits the current active profile.

5. List only the current active profile:

6. Switch to the powersave profile and confirm:

The active profile is now powersave.

7. Determine the recommended profile for server1 and
switch to it:

The first instance of the command shows the best
recommended profile for server1 based on its
characteristics, the second command instance switched to
the recommended profile, and the third instance confirmed
the switching.

8. Turn off tuning:

The service will not perform any tuning until it is reactivated.

9. Reactivate tuning and confirm:

The tuning is re-enabled and the virtual-guest profile is in
effect. This concludes the exercise.

Chapter Summary
This chapter started with a discussion of systemd, the
default service management and system initialization
scheme used in RHEL. We explored key components of

systemd, its key directories, and examined unit and target
configuration files. We utilized the lone systemd
administration command to switch system operational
states, identify and set default boot targets, and manage
service start, stop, and status checking.

Next, we looked at the traditional system logging and newer
systemd journaling services. Both mechanisms have
similarities and differences in how they capture log data and
where they direct it for storage and retrieval. We examined
the system log configuration file and the configuration file
that controls the log file rotation settings. The log subsystem
proves valuable when records are needed for monitoring,
troubleshooting, auditing, or reporting purpose.

Finally, we explored preconfigured tuning profiles and
analyzed pros and cons associated with each one of them.
We demonstrated how to determine a recommended profile
for the system and how to set and activate it.

Check Your Understanding
1. The systemd command may be used to rebuild a new

kernel. True or False?
2. Which command is used to manage system services?
3. Which configuration file must be modified to ensure

journal log entries are stored persistently?
4. What is the PID of the systemd process?
5. What is a target in systemd?
6. You need to append a text string “Hello world” to the

system log file. What would be the command to
achieve this?

7. What is the recommended location to store custom log
configuration files?

8. What would the command systemctl list-dependencies
crond do?

9. Name the two directory paths where systemd unit files
are stored.

10. What would you run to identify the recommended
tuning profile for the system?

11. What would the command systemctl get-default do?
12. systemd starts multiple services concurrently during

system boot. True or False?
13. What is the name of the boot log file?
14. Which systemctl subcommand is executed after a unit

configuration file has been modified to apply the
changes?

15. Which other logging service complements the rsyslog
service?

16. A RHEL system is booted up. You want to view all
messages that were generated during the boot
process. Which log file would you look at?

17. What would the command systemctl restart rsyslog
do?

18. What are the two common systemd targets production
RHEL servers are typically configured to run at?

19. By default, log files are rotated automatically every
week. True or False?

Answers to Check Your
Understanding

1. False.
2. The systemctl command.
3. The journald.conf file under the /etc/systemd directory.
4. The PID of the systemd process is 1.
5. A target is a collection of units.
6. The command to accomplish the desired result would

be logger -i “Hello world”.
7. The recommended location to store custom log

configuration files is /etc/rsyslog.d directory.

8. The command provided will display all dependent
units associated with the specified service.

9. The directory locations are /etc/systemd/system and
/usr/lib/systemd/system.

10. The tuned-adm recommend command.
11. The command provided will reveal the current default

boot target.
12. True.
13. The boot.log file in the /var/log directory.
14. The daemon-reload subcommand.
15. The systemd-journald service.
16. The /var/log/boot.log file.
17. The command provided will restart the rsyslog

service.
18. The two common systemd boot targets are multi-user

and graphical.
19. True.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

Lab 12-1: Modify Default Boot Target
As user1 with sudo on server1, modify the default boot
target from graphical to multi-user, and reboot the system to
test it. Run the systemctl and who commands after the
reboot for validation. Restore the default boot target back to
graphical and reboot to verify. (Hint: System Initialization and
Service Management).

Lab 12-2: Record Custom Alerts
As user1 with sudo on server1, write the message “This is
$LOGNAME adding this marker on $(date)” to
/var/log/messages file. Ensure that variable and command
expansions work. Verify the entry in the file. (Hint: System
Logging).

Lab 12-3: Apply Tuning Profile
As user1 with sudo on server1, identify the current system
tuning profile with the tuned-adm command. List all
available profiles. List the recommended profile for server1.
Apply the “balanced” profile and verify with tuned-adm.
(Hint: System Tuning).

Chapter 13

Basic Storage Partitioning

This chapter describes the following major topics:

Master Boot Record vs. GUID Partition Table
Identify and understand disk partitions
The concept of thin provisioning, and its
benefits

Create and delete partition on MBR disk
Create and delete partition on GPT disk
Overview of Virtual Data Optimizer and how it
conserves storage

Create and delete a Virtual Data Optimizer
volume

RHCSA Objectives:

22.List, create, and delete partitions on MBR and
GPT disks

32.Configure disk compression

Data is stored on disks that are logically divided into
partitions. A partition can exist on a portion of a disk,
on an entire disk, or it may span multiple disks. Each

partition is accessed and managed independent of other
partitions and may contain a file system or swap space.
Partitioning information is stored at special disk locations that
the system references at boot time. RHEL offers a number of
tools for partition management. Partitions created with a
combination of most of these tools can coexist on a single disk.

Thin provisioning is a powerful feature that guarantees an
efficient use of storage space by allocating only what is needed
and by storing data at adjacent locations. Many storage
management solutions such as those we discuss later in this
chapter and in the next incorporate thin provisioning
technology in their core configuration.

Virtual Disk Optimizer is one of the newer storage management
solutions incorporated in RHEL. It capitalizes on thin
provisioning, de-duplication, and compression technologies to
conserve storage space, improve data throughput, and save
money.

This is the first of the three chapters that shed light on storage
solutions. The next two chapters (Chapters 14 and 15) discuss
advanced concepts and management tools.

Storage Management Overview
A disk in RHEL can be carved up into several partitions. This
partition information is stored on the disk in a small region,
which is read by the operating system at boot time. This region
is referred to as the Master Boot Record (MBR) on the BIOS-
based systems, and GUID Partition Table (GPT) on the UEFI-
based systems. At system boot, the BIOS/UEFI scans all storage

devices, detects the presence of MBR/GPT areas, identifies the
boot disks, loads the bootloader program in memory from the
default boot disk, executes the boot code to read the partition
table and identify the /boot partition, loads the kernel in
memory, and passes control over to it. Though MBR and GPT
are designed for different PC firmware types, their job is
essentially the same: to store disk partition information and the
boot code.

Master Boot Record (MBR)
The MBR resides on the first sector of the boot disk. MBR was
the preferred choice for saving partition table information on
x86-based computers. However, with the arrival of bigger and
larger hard drives, a newer firmware specification (UEFI) was
introduced. MBR is still widely used, but its use is diminishing in
favor of UEFI.

MBR allows the creation of three types of partition—primary,
extended, and logical—on a single disk. Of these, only primary
and logical can be used for data storage; the extended is a
mere enclosure for holding the logical partitions and it is not
meant for data storage. MBR supports the creation of up to four
primary partitions numbered 1 through 4 at a time. In case
additional partitions are required, one of the primary partitions
must be deleted and replaced with an extended partition to be
able to add logical partitions (up to 11) within that extended
partition. Numbering for logical partitions begins at 5. MBR
supports a maximum of 14 usable partitions (3 primary and 11
logical) on a single disk.

MBR cannot address storage space beyond 2TB. This is due to
its 32-bit nature and its 512-byte disk sector size. The MBR is
non-redundant; the record it contains is not replicated, resulting
in an unbootable system in the event of corruption. If your disk
is smaller than 2TB and you don’t intend

to build more than 14 usable partitions, you can use MBR
without issues. For more information on MBR, refer to Chapter

11 “Boot Process, GRUB2, and the Linux Kernel”.

GUID Partition Table (GPT)
With the increasing use of disks larger than 2TB on x86
computers, a new 64-bit partitioning standard called Globally
Unique Identifiers (GUID) Partition Table (GPT) was developed
and integrated into the UEFI firmware. This new standard
introduced plenty of enhancements, including the ability to
construct up to 128 partitions (no concept of extended or
logical partitions), utilize disks larger than 2TB, use 4KB sector
size, and store a copy of the partition information before the
end of the disk for redundancy.

Moreover, this standard allows a BIOS-based system to boot
from a GPT disk using the bootloader program stored in a
protective MBR at the first disk sector. In addition, the UEFI
firmware also supports the secure boot feature, which only
allows signed binaries to boot. For more information on UEFI
and GPT, refer to Chapter 11 “Boot Process, GRUB2, and the
Linux Kernel”.

Disk Partitions
The space on a storage device can be sliced into partitions.
Care must be taken when adding a new partition to elude data
corruption with overlapping an extant partition or wasting
storage by leaving unused space between adjacent partitions.
On server1, the disk that was allocated at the time of
installation is recognized as sda (s for SATA, SAS, or SCSI
device) disk a, with the first partition identified as sda1 and the
second partition as sda2. Any subsequent disks added to the
system will be known as sdb, sdc, sdd, and so on, and will use
1, 2, 3, etc. for partition numbering.

RHEL offers a command called lsblk to list disk and partition
information. The following graphic illustrates the current
storage status on server1:

It reveals the presence of one 10GB disk, sda, with two
partitions: sda1 and sda2. The first partition holds /boot, and
the second one is an LVM object encapsulating root and swap
logical volumes within it. Both sda1 and sda2 partitions occupy
the entire disk capacity. The sr0 represents the ISO image
mounted as an optical medium.

 LVM is discussed at length in Chapter 14 “Advanced Storage

Partitioning”.

There are additional tools such as fdisk and parted available
that can be used to expose disk and partitioning information.
Let’s run fdisk with -l and see what it reveals:

The output depicts the size of sda in GBs, bytes, and sectors,
the type of disk label (dos) the disk has, and the disk’s

geometry in the top block. The second block shows the two disk
partitions: sda1 as the bootable partition marked with an
asterisk (*) and sda2 as an LVM partition. It also exposes the
starting and ending sector numbers, size in 1KB blocks, and
type of each partition. The identifiers 83 and 8e are
hexadecimal values for the partition types. The last two blocks
are specific to the LVM logical volumes that exist within the
sda2 partition. A detailed coverage on LVM is provided in
Chapter 14 “Advanced Storage Partitioning”.

Storage Management Tools
RHEL offers numerous tools and toolsets for storage
management, and they include parted, gdisk, VDO, LVM, and
Stratis. There are other native tools available in the OS, but
their discussion is beyond the scope of this book. Partitions
created with a combination of most of these tools and toolsets
can coexist on the same disk. We look at parted, gdisk, and
VDO in this chapter and LVM and Stratis in Chapter 14
“Advanced Storage Partitioning”.

parted is a simple tool that understands both MBR and GPT
formats. gdisk is designed to support the GPT format only, and
it may be used as a replacement of parted. VDO is a disk
optimizer software that takes advantage of certain technologies
to minimize the overall data footprint on storage devices. LVM is
a feature-rich logical volume management solution that gives
flexibility in storage management. Stratis capitalizes on thin
provisioning to create volumes much larger in size than the
underlying storage devices they are built upon.

Thin Provisioning
Thin provisioning technology allows for an economical allocation
and utilization of storage space by moving arbitrary data blocks
to contiguous locations, which results in empty block
elimination. With thin provisioning support in VDO, LVM, and
Stratis, you can create a thin pool of storage space and assign

volumes much larger storage space than the physical capacity
of the pool.

Workloads begin consuming the actual allocated space for data
writing. When a preset custom threshold (80%, for instance) on
the actual consumption of the physical storage in the pool is
reached, expand the pool dynamically by adding more physical
storage to it. The volumes will automatically start exploiting the
new space right away. The thin provisioning technique helps
prevent spending more money upfront.

Adding Storage for Practice
This and the next two chapters have a considerable number of
exercises that require block storage devices for practice. In
Chapter 01 “Local Installation” under “Lab Infrastructure for
Practice”, we mentioned that server2 will have 4x250MB,
1x4GB, and 2x1GB virtual disks for storage exercises. We
presume that server2 was built as part of Lab 1-1 and it is now
available for use.

Exercise 13-1: Add Required Storage to
server2
This exercise will add the required storage disks to server2
(RHEL8-VM2) using VirtualBox.

In this exercise, you will start VirtualBox and add 4x250MB,
1x4GB, and 2x1GB disks to server2 in preparation for exercises
in this chapter and Chapters 14 and 15.

1. Start VirtualBox on your Windows/Mac computer and
highlight the RHEL8-VM2 virtual machine that you created
in Lab 1-1. See Figure 13-1.

Figure 13-1 VirtualBox Interface

2. Click Settings at the top and then Storage on the window
that pops up. Click on “Controller: SATA” to select it.
Figure 13-2.

Figure 13-2 VirtualBox – Add Storage

3. Click on the right-side icon besides “Controller: SATA” to
add a hard disk.

4. Follow this sequence to add a 250MB disk: Click “Create
new disk”, “VDI (Virtualization Disk Image)”, “Dynamically
allocated”, and adjust the size to 250MB. Assign the disk
a unique name. Figure 13-3.

Figure 13-3 VirtualBox – Adjust Disk Name and Size

5. Click Create to create and attach the disk to the VM.
6. Repeat steps 3 through 5 three more times to add disks

of the same size to the VM.
7. Repeat steps 3 through 5 one time to add a disk of size

4GB to the VM.
8. Repeat steps 3 through 5 two times to add two disks of

size 1GB to the VM.
9. The final list of disks should look similar to what is shown

in Figure 13-4 after the addition of all seven drives. Disk
names may vary.

Figure 13-4 VirtualBox – 7 New Disks Added

10. Click OK to return to the main VirtualBox interface.
11. Power on RHEL8-VM2 to boot RHEL 8 in it.
12. When the server is booted up, log on as user1 and run

the lsblk command to verify the new storage:

13. The seven new disks added to server2 are 250MB (sdb,
sdc, sdd, and sde), 4GB (sdf), and 1GB (sdg and sdh).

This concludes the exercise for storage addition to server2.

MBR Storage Management with
parted
parted (partition editor) is a popular tool in RHEL that can be
used to partition disks. This program may be run interactively or
directly from the command prompt. It understands and supports
both MBR and GPT schemes, and can be used to create up to
128 partitions on a single GPT disk. parted provides an
abundance of subcommands to perform disk management
operations such as viewing, labeling, adding, naming, and
deleting partitions. Table 13-1 describes these subcommands in
that sequence.

Subcommand Description

print Displays the partition table that includes disk
geometry and partition number, start and end, size,
type, file system type, and relevant flags.

mklabel Applies a label to the disk. Common labels are gpt
and msdos.

mkpart Makes a new partition

name Assigns a name to a partition

rm Removes the specified partition

Table 13-1 Common parted Subcommands

For the basic partition creation and deletion operations,
Exercises 13-2 and 13-3 will show the use of this tool by directly
invoking it from the command prompt. You will use the /dev/sdb
disk for these exercises. After making a partition, use the print
subcommand to ensure you created what you wanted. The
/proc/partitions file is also updated to reflect the results of
partition management operations.

Exercise 13-2: Create an MBR Partition
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will assign partition type “msdos” to
/dev/sdb for using it as an MBR disk. You will create and confirm
a 100MB primary partition on the disk.

1. Execute parted on /dev/sdb to view the current partition
information:

There is an error on line 1 of the output, indicating an
unrecognized label. This disk must be labeled before it can be
partitioned.

2. Assign disk label “msdos” to the disk with mklabel. This
operation is performed only once on a disk.

The print subcommand confirms the successful application of
the label.

 To use the GPT partition table type, run “sudo parted /dev/sdb

mklabel gpt” instead.

3. Create a 100MB primary partition starting at 1MB
(beginning of the disk) using mkpart:

4. Verify the new partition with print:

Partition numbering begins at 1 by default.

5. Confirm the new partition with the lsblk command:

The device file for the first partition on the sdb disk is sdb1 as
identified on the bottom line. The partition size is 95MB.

 Different tools will have variance in reporting partition sizes. You

should ignore minor differences.

6. Check the /proc/partitions file also:

The virtual file is also updated with the new partition
information. This completes the steps for creating and verifying
an MBR partition using the parted command.

Exercise 13-3: Delete an MBR Partition
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will delete the sdb1 partition that was
created in Exercise 13-2 and confirm the deletion.

1. Execute parted on /dev/sdb with the rm subcommand to
remove partition number 1:

2. Confirm the partition deletion with print:

The partition no longer exists.

3. Check the /proc/partitions file:

The virtual file has the partition entry deleted as well. You can
also run the lsblk command for further verification. The partition
has been removed successfully.

We will recreate partitions for use in LVM in Chapter 14 and then
again in Chapter 15 to construct file system and swap
structures.

GPT Storage Management with
gdisk
The gdisk (GPT disk) utility partitions disks using the GPT
format. This text-based, menu-driven program can show, add,
verify, modify, and delete partitions among other operations.
gdisk can create up to 128 partitions on a single disk on
systems with UEFI firmware.

The main interface of gdisk can be invoked by specifying a disk
device name such as /dev/sdc with the command. Type help or
? (question mark) at the prompt to view available
subcommands.

The output illustrates that there is no partition table defined on
the disk at the moment. There are several subcommands in the
main menu followed by a short description. Refer to the
screenshot above for a list of subcommands.

Exercise 13-4: Create a GPT Partition
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will assign partition type “gpt” to /dev/sdc
for using it as a GPT disk. You will create and confirm a 200MB
partition on the disk.

1. Execute gdisk on /dev/sdc to view the current partition
information:

The disk currently does not have any partition table on it.

2. Assign “gpt” as the partition table type to the disk using
the o subcommand. Enter “y” for confirmation to proceed.
This operation is performed only once on a disk.

3. Run the p subcommand to view disk information and
confirm the GUID partition table creation:

The output returns the assigned GUID and states that the
partition table can hold up to 128 partition entries.

4. Create the first partition of size 200MB starting at the
default sector with default type “Linux filesystem” using
the n subcommand:

5. Verify the new partition with p:

Command (? For help): p

6. Run w to write the partition information to the partition
table and exit out of the interface. Enter “y” to confirm
when prompted.

 You may need to run the partprobe command after exiting the gdisk

utility to update the kernel of the changes.

7. Verify the new partition by issuing either of the following
at the command prompt:

The device file for the first partition on the sdc disk is sdc1 and
it is 200MB in size as reported in the above outputs. This
completes the steps for creating and verifying a GPT partition
using the gdisk command.

Exercise 13-5: Delete a GPT Partition
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will delete the sdc1 partition that was
created in Exercise 13-4 and confirm the removal.

1. Execute gdisk on /dev/sdc and run d1 at the utility’s
prompt to delete partition number 1:

2. Confirm the partition deletion with p:

The partition no longer exists.

3. Write the updated partition information to the disk with w
and quit gdisk:

4. Verify the partition deletion by issuing either of the
following at the command prompt:

Both commands confirm the successful partition removal.

Storage Optimization with Virtual
Data Optimizer (VDO)

One of the new features recently introduced in RHEL is a device
driver layer that sits between the operating system kernel and
the physical storage devices. The goals are to conserve disk
space, improve data throughput, and save on storage cost. This
feature is referred to as Virtual Data Optimizer (VDO). VDO
employs thin provisioning, de-duplication, and compression
technologies to help realize the goals.

How VDO Conserves Storage Space
VDO makes use of the thin provisioning technology to identify
and eliminate empty (zero-byte) data blocks. This is referred to
as zero-block elimination. VDO removes randomization of data
blocks by moving in-use data blocks to contiguous locations on
the storage device. This is the initial stage in the process.

Next, VDO keeps an eye on data being written to the disk. If it
detects that the new data is an identical copy of some existing
data, it makes an internal note of it but does not actually write
the redundant data to the disk. VDO uses the technique called
de-duplication to this end. This technique is implemented in
RHEL with the inclusion of a kernel module called UDS
(Universal De-duplication Service). This is the second stage in
the process.

In the third and final stage, VDO calls upon another kernel
module called kvdo, which compresses the residual data blocks
and consolidates them on a lower number of blocks. This results
in a further drop in storage space utilization.

VDO runs in the background and processes inbound data
through the three stages on VDO-enabled volumes. VDO is not
a CPU- or memory-intensive process; it consumes a low amount
of system resources.

Creating and Managing VDO Volumes
The concept of VDO volumes is similar to that of disk partitions,
which you created in Exercises 13-1 and 13-3 using parted and

gdisk. VDO volumes can be initialized for use just like disk
partitions, or they can be used as LVM physical volumes.

VDO offers a set of commands to create, manage, and monitor
volumes. Of these vdo and vdostats commands are discussed
and used in this section. The vdo command is used to create
and perform essential operations on VDO volumes, and the
vdostats command is employed to monitor usage statistics of
the underlying physical storage device.

Table 13-2 summarizes the subcommands available with vdo.

Subcommand Description

create Adds a new VDO volume on the specified block
device

status Returns the status and attributes of VDO volumes

list Lists the names of all started VDO volumes

start Starts a VDO volume

stop Stops a VDO volume

Table 13-2 vdo Subcommands

The vdostats command has a couple of interesting options that
you will use shortly.

Exercise 13-6: Install Software and Activate
VDO
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will install the VDO software packages,
start the VDO service, and mark it for autostart on subsequent
system reboots.

1. Install packages vdo and kmod-kvdo:

2. Start the service and enable it to start automatically on
future system reboots:

3. Check the operational status of the service:

The relevant packages for VDO are installed, and the VDO
service is started and activated. This concludes the exercise.

Exercise 13-7: Create a VDO Volume
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create a volume called vdo-vol1 of
logical size 16GB on /dev/sdf disk (the actual size of /dev/sdf is
4GB). You will list the volume and display its status information.
You will also show the activation status of the compression and
de-duplication features.

1. Create volume vdo-vol1 (--name) on /dev/sdf (--device) of
logical size 16GB (--vdoLogicalSize) with a slab size of
128MB (--vdoSlabSize):

 If the logical size is not specified, the VDO volume will have the

same size as the underlying disk (/dev/sdf in this case).

 The slab size is the size of the increment by which VDO volumes

grow. This value must be a power of two between 128MB and 32GB; the
default is 2GB. The default unit of size specification is MB.

2. List the new volume using the vdo and lsblk commands:

As indicated, the major number for the VDO volume is 253,
which is associated with the device mapper kernel driver. The
output also shows the logical volume size (16GB) and type
(vdo). It also depicts the disk (sdf) that houses the volume,
along with its actual size (4GB).

3. Display the usage status of the volume:

The size of the actual disk is 4GB. Due to thin provisioning, the
system allowed you to create the VDO volume much larger in
size (4 times) than the physical disk capacity.

4. Show detailed statistics for the volume including
configuration information:

The output will expose over one hundred different settings for
the volume.

5. Display detailed statistics for the volume including
configuration information:

The status includes volume, kernel module, and configuration
information. It also provides a detailed look at volume-specific
elements.

6. Show the activation status of the compression and de-
duplication features:

Both compression and de-duplication features are activated by
default on new VDO volumes. This concludes the exercise.

Exercise 13-8: Delete a VDO Volume
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will delete the vdo-vol1 volume that was
created in Exercise 13-7 and confirm the removal.

1. Verify that the volume still exists with the vdo and lsblk
commands:

2. Specify the name (--name) of the volume with the vdo
command to delete:

3. Confirm the removal with the vdo and lsblk commands:

The volume has been deleted successfully as reported in the
above outputs.

You will recreate VDO volumes in Chapter 15 “Local File Systems
and Swap” for use as file systems and swap areas.

Chapter Summary
This chapter started with an overview of how and where disk
partitioning information is stored. It presented a comparison
between the two common schemes and explained which one to
use and in which situation. A little later, we touched briefly on
the common storage management solutions available in RHEL.

We examined the concept of thin provisioning and realized the
benefits associated with this technology.

Next, we carved up available disk devices using both MBR and
GPT partitioning schemes. We demonstrated the partition
creation, display, and delete operations by running one
command directly at the command prompt and launching the
other in interactive mode.

The last topic of the chapter focused on a storage management
solution that was introduced in RHEL not too long ago. This
solution exploits the underlying thin provisioning, de-
duplication, and compression technologies to save cost, ensure
efficient use of storage space, and improve data throughput.
We performed a couple of exercises in the end to demonstrate
the creation and deletion of volumes using this solution.

Check Your Understanding
1. What is missing in the command vdo create --name vdo1

--vdoLogicalSize 16GB --vdoSlabSize 128MB?
2. What is the maximum number of usable partitions that

can be created on a GPT disk?
3. Which kernel module is responsible for data block

compression in VDO volumes?
4. What are the three techniques VDO volumes employ for

storage conservation?
5. What would the command parted /dev/sdc mkpart pri 1

200m do?
6. Where is the partition table information stored on BIOS-

based systems?
7. What is the name of the technology that VDO employs to

remove randomization of data blocks?
8. What would sdd3 represent?
9. Which command can be used to view the usage statistics

of VDO volumes?
10. Thin provisioning technology allows us to create logical

volumes of sizes larger than the actual physical storage
size. True or False?

11. You have an unused VDO volume called vdo1 on /dev/sdf
disk and you try to delete it. You run vdo remove --device
/dev/sdf, but the removal fails. What are you doing
wrong?

12. What is the maximum number of usable partitions that
can be created on an MBR disk?

13. What would the command systemctl --now enable vdo
do?

14. The gdisk utility can be used to store partition
information in MBR format. True or False?

15. What would the command parted /dev/sdd mklabel
msdos do?

16. VDO is a memory-intensive storage optimization solution
and should not be used. True or False?

17. Which file in the /proc file system stores the in-memory
partitioning information?

18. You have created a VDO volume and you want to check
whether compression is enabled. Which command would
you use?

19. De-duplication is the process of zero-block elimination.
True or False?

Answers to Check Your
Understanding

1. The storage device (--device) name is missing from the
command provided.

2. 128.
3. The kvdo module is responsible for compressing data

blocks in VDO volumes.
4. VDO volumes use thin provisioning, de-duplication, and

compression techniques for storage conservation.
5. The command provided will create a primary partition of

size 200MB on the sdc disk starting at the beginning of
the disk.

6. The partition table information is stored on the Master
Boot Record.

7. VDO employs thin provisioning technology to remove
data block randomization.

8. sdd3 represents the third partition on the fourth disk.
9. The vdostats command can be used to view VDO volume

usage statistics.
10. True.
11. The correct command would be vdo remove --name

vdo1.

12. 14.
13. The command provided will start the VDO service and

enable it to autostart on system reboots.
14. False. The gdisk tool is only for GPT type tables.
15. The command provided will apply msdos label to the sdd

disk.
16. False. VDO uses low memory and other compute

resources.
17. The partitions file.
18. You can issue the vdo status command and pipe the

output to grep for the pattern “compression”.
19. False. De-duplication is the process of removing blocks of

identical data.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the concepts
and topics learned in this chapter. It is expected that you
perform the labs without external help. A step-by-step guide is
not supplied, as the knowledge and skill required to implement
the lab has already been disseminated in the chapter; however,
hints to the relevant major topic(s) are included.

Add more storage to server2 if required.

Lab 13-1: Create and Remove Partitions
with parted
As user1 with sudo on server2, create a 100MB primary
partition on one of the available 250MB disks (lsblk) by invoking
the parted utility directly at the command prompt. Apply label
“msdos” if the disk is new. Create another 100MB partition by
running parted interactively while ensuring that the second
partition won’t overlap the first. Verify the label and the
partitions. Remove both partitions from the command prompt.
(Hint: MBR Storage Management with parted).

Lab 13-2: Create and Remove Partitions
with gdisk
As user1 with sudo on server2, create two 80MB partitions on
one of the 250MB disks (lsblk) using the gdisk utility. Make sure
the partitions won’t overlap. Verify the partitions. You may
delete the partitions if you want. (Hint: GPT Storage
Management with gdisk).

Lab 13-3: Create and Delete VDO Volumes
As user1 with sudo on server2, check to see if VDO software is
installed and the VDO service is enabled and started. Identify
the 4GB disk with the lsblk command, and make sure that it is
not in use. Create a volume testvdo with a logical size 16GB on
the 4GB disk using the vdo command. Select an appropriate
slab size for the volume. Verify the volume creation with the
vdo, lsblk, and vdostats commands. (Hint: Storage Optimization
with Virtual Data Optimizer).

Lab 13-4: Disable and Enable VDO Volume
Features
As user1 with sudo on server2, use the vdostats command to
check whether compression and de-duplication are enabled for
the volume created in Lab 13-3. Use the vdo command with
disableCompression and disableDeduplication subcommands to
disable compression and de-duplication, and verify with
vdostats. Reactivate both features and confirm activation. You
may delete the volume if you want. (Hint: Storage Optimization
with Virtual Data Optimizer).

Chapter 14

Advanced Storage
Partitioning

This chapter describes the following major
topics:

Describe Logical Volume Manager and its
components

Understand various Logical Volume Manager
management operations

Know Logical Volume Manager administration
commands

Create and confirm physical volumes, volume
groups, and logical volumes

Rename, reduce, extend, and remove logical
volumes

Extend, reduce, and remove volume groups
Remove physical volumes
Overview of Stratis (a volume-managing file
system solution in RHEL) service and how it

works
Understand various Stratis management
operations and the command

Create, confirm, expand, rename, and destroy
pools and file systems

RHCSA Objectives:

23.Create and remove physical volumes
24.Assign physical volumes to volume groups
25.Create and delete logical volumes
27.Add new partitions and logical volumes, and

swap to a system non-destructively (the swap
portion of this objective is covered in Chapter
15)

30.Extend existing logical volumes (additional
coverage on this objective is available in
Chapter 15)

33.Manage layered volumes

This chapter is the second of the three chapters (the
other two being Chapter 13 (previous) and Chapter 15
(next)) that expounds upon storage management

concepts and solutions available in RHEL. We discussed
partitioning and thinly-provisioned volumes in the previous
chapter. This chapter presents a detailed coverage on Logical
Volume Manager solution. LVM sets up an abstraction layer
between the operating system and the storage hardware. It
utilizes virtual objects for storage pooling and allocation, and
offers a whole slew of management commands, each of which
carries out a particular operation.

The other advanced storage management solution discussed in
this chapter is a volume-managing file system that capitalizes
on the proven features of LVM and the kernel device driver
software. This solution dynamically adjusts the size of the
underlying volume, eliminating the need for manual expansion.

Logical Volume Manager (LVM)
The Logical Volume Manager (LVM) solution is widely used for
managing block storage in Linux. LVM provides an abstraction
layer between the physical storage and the file system,
enabling the file system to be resized, span across multiple
physical disks, use arbitrary disk space, etc. LVM accumulates
spaces taken from partitions or entire disks (called Physical
Volumes) to form a logical container (called Volume Group),
which is then divided into logical partitions (called Logical
Volumes). The other key benefits of LVM include online resizing
of volume groups and logical volumes, online data migration
between logical volumes and between physical volumes, user-
defined naming for volume groups and logical volumes,
mirroring and striping across multiple physical disks, and

snapshotting of logical volumes. Figure 14-1 depicts the LVM
components.

Figure 14-1 LVM Structure

As noted above, the LVM structure is made up of three key
objects called physical volume, volume group, and logical
volume. These objects are further virtually broken down into
Physical Extents (PEs) and Logical Extents (LEs). The LVM
components are explained in the following subsections.

Physical Volume
A Physical Volume (PV) is created when a block storage device
such as a partition or an entire disk is initialized and brought
under LVM control. This process constructs LVM data structures
on the device, including a label on the second sector and
metadata shortly thereafter. The label includes the UUID, size,
and pointers to the locations of data and metadata areas.
Given the criticality of metadata, LVM stores a copy of it at the

end of the physical volume as well. The rest of the device
space is available for use.

You can use an LVM command called pvs (physical volume scan
or summary) to scan and list available physical volumes on
server2:

The output shows one physical volume (PV) /dev/sda2 of size
9GB in rhel volume group (VG). Additional information displays
the metadata format (Fmt) used, status of the physical volume
under the Attr column (a for allocatable), and the amount of
free space available on the physical volume (PFree).

Try running this command again with the -v flag to view more
information about the physical volume.

Volume Group
A Volume Group (VG) is created when at least one physical
volume is added to it. The space from all physical volumes in a
volume group is aggregated to form one large pool of storage,
which is then used to build logical volumes. The physical
volumes added to a volume group may be of varying sizes.
LVM writes volume group metadata on each physical volume
that is added to it. The volume group metadata contains its
name, date and time of creation, how it was created, the
extent size used, a list of physical and logical volumes, a
mapping of physical and logical extents, etc. A volume group
can have a custom name assigned to it at the time of its
creation. For example, it may be called vg01, vgora, or vgweb
that identifies the type of information it is constructed to store.
A copy of the volume group metadata is stored and maintained
at two distinct locations on each physical volume within the
volume group.

You can use an LVM command called vgs (volume group scan
or summary) to scan and list available volume groups on
server2:

The output shows one volume group (VG) rhel on server2
containing one physical volume (#PV). Additional information
displays the number of logical volumes (#LV) and snapshots
(#SN) in the volume group, status of the volume group under
the Attr column (w for writeable, z for resizable, and n for
normal), size of the volume group (VSize), and the amount of
free space available in the volume group (VFree).

Try running this command again with the -v flag to view more
information about the volume group.

Physical Extent
A physical volume is divided into several smaller logical pieces
when it is added to a volume group. These logical pieces are
known as Physical Extents (PE). An extent is the smallest
allocatable unit of space in LVM. At the time of volume group
creation, you can either define the size of the PE or leave it to
the default value of 4MB. This implies that a 20GB physical
volume would have approximately 5,000 PEs. Any physical
volumes added to this volume group thereafter will use the
same PE size.

You can use an LVM command called vgdisplay (volume group
display) on server2 and grep for ‘PE Size’ to view the PE size
used in the rhel volume group:

The output reveals the PE size used for the rhel VG.

Logical Volume

A volume group consists of a pool of storage taken from one or
more physical volumes. This volume group space is used to
create one or more Logical Volumes (LVs). A logical volume can
be created or weeded out online, expanded or shrunk online,
and can use space taken from one or multiple physical
volumes inside the volume group.

The default naming convention used for logical volumes is
lvol0, lvol1, lvol2, and so on; however, you may assign custom
names to them. For example, a logical volume may be called
system, undo, or webdata1 so as to establish the type of
information it is constructed to store.

You can use an LVM command called lvs (logical volume scan
or summary) to scan and list available logical volumes on
server2:

The output shows two logical volumes root and swap in rhel
volume group. Additional information displays the status of the
logical volumes under the Attr column (w for writeable, i for
inherited allocation policy, a for active, and o for open) and
their sizes.

Try running this command again with the -v flag to view more
information about the logical volumes.

Logical Extent
A logical volume is made up of Logical Extents (LE). Logical
extents point to physical extents, and they may be random or
contiguous. The larger a logical volume is, the more logical
extents it will have. Logical extents are a set of physical
extents allocated to the logical volume.

The PE and LE sizes are normally kept the same within a
volume group; however, a logical extent can be smaller or
larger than a physical extent. The default LE size is 4MB, which
corresponds to the default PE size.

You can use an LVM command called lvdisplay (logical volume
display) on server2 to view information about the root logical
volume in the rhel volume group.

The output does not disclose the LE size; however, you can
convert the LV size in MBs (8,000) and then divide the result by
the Current LE count (2,047) to get the LE size (which comes
close to 4MB).

LVM Operations and Commands
The LVM toolset offers a multitude of administrative commands
to carry out various disk and volume management operations.
These operations include creating and removing a physical
volume, volume group, and logical volume; extending and
reducing a volume group and logical volume; renaming a
volume group and logical volume; and listing and displaying
physical volume, volume group, and logical volume
information.

Table 14-1 summarizes the common LVM tasks and the
commands that are employed to accomplish them.

Command Description

Create and Remove Operations

pvcreate/pvremove Initializes/uninitializes a disk or partition for
LVM use

vgcreate/vgremove Creates/removes a volume group

lvcreate/lvremove Creates/removes a logical volume

Extend and Reduce Operations

vgextend/vgreduce Adds/removes a physical volume to/from a
volume group

lvextend/lvreduce Extends/reduces the size of a logical volume

lvresize Resizes a logical volume. With the -r option,
this command calls the resize2fs command
and resizes the underlying file system as well.
Applies to Ext2/Ext3/Ext4 file system types
only.

Rename Operations

vgrename Renames a volume group

lvrename Renames a logical volume

List and Display Operations

pvs/pvdisplay Lists/displays physical volume information

vgs/vgdisplay Lists/displays volume group information

lvs/lvdisplay Lists/displays logical volume information

Table 14-1 Common LVM Operations and Commands

All the tools accept the -v switch to support verbosity. Refer to
the manual pages of the commands for usage and additional
details.

As noted earlier, there are seven disks available on server2 for
practice. Issue the lsblk command to confirm:

You will use the sdd and sde disks for LVM activities in the
following exercises.

Exercise 14-1: Create a Physical Volume
and Volume Group
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will initialize one partition sdd1 (90MB)
and one disk sde (250MB) for use in LVM. You will create a
volume group called vgbook and add both physical volumes to
it. You will use the PE size of 16MB and list and display the
volume group and the physical volumes.

1. Create a partition of size 90MB on sdd using the parted
command and confirm. You need to label the disk first, as
it is a new disk.

The print subcommand confirms the creation of the partition. It
is the first partition on the disk.

2. Set (set) the flag on the partition (1) to “lvm” using the
parted command:

3. Verify flag activation using the print subcommand with
parted:

The flag is applied and enabled on the partition as indicated
under the Flags column.

4. Initialize the sdd1 partition and the sde disk using the
pvcreate command. Note that there is no need to apply a
disk label on sde with parted as LVM does not require it.

The command generated a verbose output. You now have two
physical volumes available for use.

5. Create vgbook volume group using the vgcreate
command and add the two physical volumes to it. Use
the -s option to specify the PE size in MBs.

The above command combines the two options with a single
hyphen.

6. List the volume group information:

The total capacity available in the vgbook volume group is
320MB.

7. Display detailed information about the volume group
and the physical volumes it contains:

The verbose output includes the physical volume attributes as
well. There are a total of 20 PEs in the volume group (5 in sdd1
and 15 in sde), and each PE is 16MB in size. The collective size
of all the physical volumes represents the total size of the
volume group, which is 20x16 = 320MB.

8. List the physical volume information:

The output shows the physical volumes in vgbook, along with
their utilization status.

9. Display detailed information about the physical volumes:

Once a partition or disk is initialized and added to a volume
group, they are treated identically within the volume group.
LVM does not prefer one over the other.

Exercise 14-2: Create Logical Volumes
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create two logical volumes, lvol0 and
lvbook1, in the vgbook volume group. You will use 120MB for
lvol0 and 192MB for lvbook1 from the available pool of space.
You will display the details of the volume group and the logical
volumes.

1. Create a logical volume with the default name lvol0
using the lvcreate command. Use the -L option to specify
the logical volume size, 120MB. You may use the -v, -vv,
or -vvv option with the command for verbosity.

The size for the logical volume may be specified in units such
as MBs, GBs, TBs, or as a count of LEs; however, MB is the
default if no unit is specified (see the previous command). The
size of a logical volume is always in multiples of the PE size.
For instance, logical volumes created in vgbook with the PE
size set at 16MB can be 16MB, 32MB, 48MB, 64MB, and so on.
The output above indicates that the logical volume is 128MB
(16x8), and not 120MB as specified.

2. Create lvbook1 of size 192MB (16x12) using the lvcreate
command. Use the -l switch to specify the size in logical
extents and -n for the custom name. You may use -v for
verbose information.

3. List the logical volume information:

Both logical volumes are listed in the output with their
attributes and sizes.

4. Display detailed information about the volume group
including the logical volumes and the physical volumes:

Alternatively, you can run the following to view only the logical
volume details:

Review the attributes of the logical volumes as detailed above.

Exercise 14-3: Extend a Volume Group and
a Logical Volume
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will add another partition sdd2 of size
158MB to vgbook to increase the pool of allocatable space. You
will initialize the new partition prior to adding it to the volume
group. You will increase the size of lvbook1 to 336MB. You will

display basic information for the physical volumes, volume
group, and logical volume.

1. Create a partition of size 158MB on sdd and set the flag
to “lvm” using the parted command. Display the new
partition to confirm the partition number, size, and flag.

2. Initialize sdd2 using the pvcreate command:

3. Extend vgbook by adding the new physical volume to it:

4. List the volume group:

The output reflects the addition of a third physical volume to
vgbook. The total capacity of the volume group has now
increased to 464MB with 144MB free.

5. Extend the size of lvbook1 to 340MB by adding 144MB
using the lvextend command:

EXAM TIP: Make sure the expansion of a logical volume does not
affect the file system and the data it contains. More details in Chapter
15.

6. Issue vgdisplay on vgbook with the -v switch for the
updated details:

The output will show a lot of information about the volume
group and the logical and physical volumes it contains. It will
reflect the updates made in this exercise. In fact, each time a
volume group or a logical volume is resized, vgdisplay will
reflect those changes. The above output will display three
physical volumes with the combined allocatable space grown
to 464MB. The number of PEs will have increased to 29, with all
of them allocated to logical volumes and 0 unused. The Logical
Volume sections will display the updated information for the
logical volumes. And at the very bottom, the three physical
volumes will show with their device names, and total and
available PEs in each.

7. View a summary of the physical volumes:

8. View a summary of the logical volumes:

This brings the exercise to an end.

Exercise 14-4: Rename, Reduce, Extend,
and Remove Logical Volumes
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will rename lvol0 to lvbook2. You will
decrease the size of lvbook2 to 50MB using the lvreduce
command and then add 32MB with the lvresize command. You
will then remove both logical volumes. You will display the
summary for the volume groups, logical volumes, and physical
volumes.

1. Rename lvol0 to lvbook2 using the lvrename command
and confirm with lvs:

2. Reduce the size of lvbook2 to 50MB with the lvreduce
command. Specify the absolute desired size for the
logical volume. Answer “Do you really want to reduce
vgbook/lvbook2?” in the affirmative.

3. Add 32MB to lvbook2 with the lvresize command:

4. Use the pvs, lvs, vgs, and vgdisplay commands to view
the updated allocation.

5. Remove both lvbook1 and lvbook2 logical volumes using
the lvremove command. Use the -f option to suppress
the “Do you really want to remove active logical volume”
message.

 Removing a logical volume is a destructive task. You need to

ensure that you perform a backup of any data in the target logical
volume prior to deleting it. You will need to unmount the file system or
disable swap in the logical volume. See Chapter 15 on how to unmount a
file system and disable swap.

6. Execute the vgdisplay command and grep for “Cur LV” to
see the number of logical volumes currently available in
vgbook. It should show 0, as you have removed both
logical volumes.

This concludes the exercise.

Exercise 14-5: Reduce and Remove a
Volume Group
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will reduce vgbook by removing the sdd1
and sde physical volumes from it, and then remove the volume
group. Confirm the deletion of the volume group and the
logical volumes at the end.

1. Remove sdd1 and sde physical volumes from vgbook by
issuing the vgreduce command:

2. Remove the volume group using the vgremove
command. This will also remove the last physical volume,
sdd2, from it.

 You can also use the -f option with the vgremove command to

force the volume group removal even if it contains any number of logical
and physical volumes in it.

 Remember to proceed with caution whenever you perform reduce

and remove operations.

3. Execute the vgs and lvs commands for confirmation:

This concludes the exercise.

Exercise 14-6: Uninitialize Physical
Volumes
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will uninitialize all three physical volumes
—sdd1, sdd2, and sde—by deleting the LVM structural
information from them. Use the pvs command for confirmation.
Remove the partitions from the sdd disk and verify that all
disks used in Exercises 14-1 to 14-5 are now in their original
raw state.

1. Remove the LVM structures from sdd1, sdd2, and sde
using the pvremove command:

2. Confirm the removal using the pvs command:

The partitions and the disk are now back to their raw state and
can be repurposed.

3. Remove the partitions from sdd using the parted
command:

4. Verify that all disks used in previous exercises have
returned to their original raw state using the lsblk
command:

This brings the exercise to an end.

We will recreate logical volumes in Chapter 15 and construct
file system and swap structures in them.

Stratis Volume-Managing File
System
RHEL 8 introduces a new simplified storage management
solution called Stratis. Stratis capitalizes on three existing
matured storage components: the device mapper (dm) kernel

driver, the LVM solution, and the XFS file system. It implements
the advanced features of these components to deliver file
systems that are encapsulated within logical volumes. These
logical volumes are created and expanded dynamically and
transparently, hiding the underlying complexity. The Stratis
solution delivers file systems that are referred to as volume-
managing file systems. Stratis uses the thin provisioning
technology as part of the solution.

 File systems are explained in Chapter 15 “Local File Systems and

Swap”.

The central idea surrounding the Stratis solution is a storage
pool. A storage pool is created using at least one disk or
partition, which is referred to as a blockdev. There can be a
combination of the two in a single pool and more can be added
as the space requirement grows. The total capacity of the pool
is the aggregate of the spaces taken from all the block devices
that are part of the pool. Within a pool, file systems can be
created, all sharing the entire pool capacity.

 LVM logical volumes can also be used as block devices in a Stratis

pool.

Figure 14-2 provides a bird’s-eye view of the three major
objects—pool, blockdev, and file system—used in Stratis.

Figure 14-2 Stratis Structure

The diagram in Figure 14-2 shows a pool containing multiple
disks and partitions. The pool capacity is the aggregate of all
the block storage devices included in the pool, and this
capacity is shared among all the file systems. Each Stratis file
system appears to occupy the entire pool capacity exclusively;
however, they are thinly provisioned. Their actual size grows as
the amount of data stored in them increases. Stratis takes care
of the dynamic expansion of the file systems and the
underlying volumes as needed. As Stratis handles the creation,
formatting, and expansion of the file systems, they must not
be manually initialized or reconfigured.

Stratis Management Operations and
Command
The primary command to manage Stratis is called stratis. This
command has a set of subcommands available to perform

management operations such as creating, viewing, renaming,
and destroying pools and file systems, and expanding pools.

Table 14-2 summarizes the common Stratis subcommands that
are employed to accomplish various management tasks.

Command Description

pool Administers storage pools. Subcommands are
available to list, create, rename, expand, and destroy
a pool.

blockdev Lists block devices

filesystem Administers file systems within storage pools.
Subcommands are available to list, create, rename,
and destroy a file system.

Table 14-2 Common Stratis Subcommands

Stratis runs as a service, so its operational state can be
managed with the systemctl command. The stratis command
interacts with the Stratis service to manage the pool and file
systems dynamically.

For each pool added, Stratis creates a subdirectory under the
/stratis directory matching the pool name. It then creates a
symbolic link for each file system under that subdirectory to
the actual device file located in the /dev directory.

Stratis file systems are not fixed-sized; however, pool space
can be reserved to assure availability if multiple file systems
share a pool.

Exercise 14-7: Install Software and
Activate Stratis
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will install the Stratis software packages,
start the Stratis service, and mark it for autostart on

subsequent system reboots.

1. Install the packages stratisd and stratis-cli:

2. Start the service and enable it to start automatically on
future system reboots:

3. Check the operational status of the service:

The relevant packages for the Stratis storage management
solution are installed, and the Stratis service is started and
activated. This concludes the exercise.

Exercise 14-8: Create and Confirm a Pool
and File System
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create a Stratis pool and a file system
in it. You will display information about the pool, file system,
and device used.

1. You allocated 2x1GB disks: sdg and sdh for Stratis
exercises. Use the lsblk command to confirm their
availability:

The 2x1GB disks are available and unused.

2. Create a pool called bookpool using the sdg disk and
verify the creation:

The specified pool bookpool is created. The second command
output returns the basic information about the pool, including
the number of physical devices used in the pool and their
sizes, and the amount of in-use space in MiBs.

3. Display the block device that is used to form the pool:

The pool bookpool has a single disk of size 1GiB and it is
currently in use.

4. Create a file system called bookfs in the bookpool and
verify the creation:

The pool bookpool has a single file system bookfs of used size
546MiB. Its device file is /stratis/bookpool/bookfs. The file
system’s UUID is also displayed.

5. Create a directory called /bookfs1 and mount the new
file system on it:

6. Check the pool usage:

Observe how the usage grew from 52MiB to 598MiB. This
brings this exercise to an end.

Exercise 14-9: Expand and Rename a Pool
and File System
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will expand the Stratis pool bookpool
(created in Exercise 14-8) using the sdh disk. You will rename
the pool and the file system it contains.

1. Expand the bookpool pool by adding the sdh disk to it:

2. Verify the new capacity of the pool:

The addition of another 1GB disk brings the total physical size
to 2GiB.

3. Change the name of the pool from bookpool to rhcsapool
and verify:

The new name is depicted in the first column.

4. Change the name of the file system from bookfs to
rhcsafs, and verify:

The file system name is changed and it’s reflected in the
output of the second command. The exercise is completed
successfully.

Exercise 14-10: Destroy a File System and
Pool
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will destroy the Stratis file system and the
pool that was created, expanded, and renamed in Exercises
14-8 and 14-9. You will verify the deletion with appropriate
commands.

1. The first step in the process is to unmount the file
system rhcsafs1 from its mount point /bookfs1:

Unmounting a file system ensures that the file system is not
busy.

2. Remove the file system rhcsafs from the pool:

3. Remove the pool rhcsapool from the system:

4. Confirm the removal of the file system and the pool:

The above outputs confirm the removal of the file system and
the pool.

5. Verify that both sdg and sdh disks used in the previous
Stratis exercises have returned to their original raw state
using the lsblk command:

This concludes the exercise.

We will recreate Stratis file systems in Chapter 15 and add
them for persistent mounting.

Chapter Summary

This chapter explicated two advanced storage management
solutions: Logical Volume Manager and Stratis. The LVM
solution has been around in RHEL for decades. The Stratis
solution, on the other hand, is recently added.

We discovered how LVM works. We looked at various LVM
objects and their relationship with one another. We explored
LVM management commands and common options available
with them. We performed a series of exercises to demonstrate
the creation, expansion, renaming, reduction, and deletion of
physical volumes, storage pools, and logical volumes.

The next advanced storage solution we looked at is called
Stratis, which is a volume-managing file system. Stratis takes
advantage of the underlying LVM functionality and the device
mapper kernel driver to create and expand the XFS file system
that it holds. Stratis dynamically expands the underlying LVM
volume without the need for manual administrative
intervention. We executed a couple of step-by-step exercises to
explain the creation, growth, renaming, and removal of Stratis
pools and file systems.

Check Your Understanding
1. The parted utility may be used to create LVM logical

volumes. True or False?
2. What are the two commands that you can use to reduce

the number of logical extents from a logical volume?
3. Stratis uses LVM as the underlying logical volume

management solution. True or False?
4. Provide the command to add physical volumes /dev/sdd1

and /dev/sdc to vg20 volume group.
5. What are the two commands that you can use to add

logical extents to a logical volume?
6. Provide the command to create a volume group called

vg20 on /dev/sdd disk with physical extent size 64MB.
7. Name the three Stratis objects?

8. Provide the command to remove vg20 volume group
along with any logical and physical volumes that it
contains.

9. What is the default size of a physical extent in LVM?
10. What is the default name for the first logical volume in a

volume group?
11. What is one difference between the pvs and pvdisplay

commands?
12. When can a disk or partition be referred to as a physical

volume?
13. Provide the command to remove webvol logical volume

from vg20 volume group.
14. It is necessary to create file system structures in a

logical volume before it can be used to store files in it.
True or False?

15. What would the command stratis pool create pool1
/dev/sdg do?

16. Physical and logical extents are typically of the same
size. True or False?

17. What is the purpose of the pvremove command?
18. What would the command pvcreate /dev/sdd do?
19. A disk or partition can be added to a volume group

without being initialized. True or False?
20. What is the file system type that is created in a Stratis

file system?
21. Provide the command to create a logical volume called

webvol of size equal to 100 logical extents in vg20
volume group.

22. A volume group can be created without any physical
volume in it. True or False?

23. A single disk can be used by both parted and LVM
solutions at the same time. True or False?

24. Provide the command to add /dev/sdh to an existing
pool called pool1.

25. Provide the command to remove /dev/sdd1 physical
volume from vg20 volume group.

26. A partition can be used as an LVM object. True or False?

27. Which command would we use to view the details of a
volume group and logical and physical volumes it
contains?

Answers to Check Your
Understanding

1. False.
2. The lvreduce and lvresize commands.
3. True.
4. vgextend vg20 /dev/sdd1 /dev/sdc
5. The lvextend and lvresize commands.
6. vgcreate -s 64 vg20 /dev/sdd
7. The three Stratis objects are pool, block device, and file

system.
8. vgremove -f vg20
9. The default PE size is 4MB.
10. lvol0 is the default name for the first logical volume

created in a volume group.
11. The pvs command lists basic information about physical

volumes whereas the pvdisplay command shows the
details.

12. After the pvcreate command has been executed on it
successfully.

13. lvremove /dev/vg20/webvol
14. True.
15. The command provided will create a Stratis pool called

pool1 containing /dev/sdg device.
16. True.
17. The pvremove command is used to remove LVM

information from a physical volume.
18. The command provided will prepare the /dev/sdd disk

for use in a volume group.
19. False. A disk or partition must be initialized before it can

be added to a volume group.
20. XFS.

21. lvcreate -l 100 -n webvol vg20
22. False.
23. True. A single disk can be shared between parted-

created partitions and LVM.
24. stratis pool add-data pool1 /dev/sdh
25. vgreduce vg20 /dev/sdd1
26. True.
27. The vgdisplay command with the -v option.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Add more storage to server2 if required.

Lab 14-1: Create Volume Group and Logical
Volumes
As user1 with sudo on server2, initialize 1x250MB disk for use
in LVM (use lsblk to identify available disks). Create volume
group vg100 with PE size 16MB and add the physical volume.
Create two logical volumes lvol0 and swapvol of sizes 100MB
and 120MB. Use the vgs, pvs, lvs, and vgdisplay commands for
verification. (Hint: Logical Volume Manager).

Lab 14-2: Expand Volume Group and
Logical Volume
As user1 with sudo on server2, create a partition on an
available 250MB disk and initialize it for use in LVM (use lsblk
to identify available disks). Add the new physical volume to
vg100. Expand the lvol0 logical volume to size 300MB. Use the

vgs, pvs, lvs, and vgdisplay commands for verification. (Hint:
Logical Volume Manager).

Lab 14-3: Reduce and Remove Logical
Volumes
As user1 with sudo on server2, reduce the size of lvol0 logical
volume to 80MB. Then remove both logical volumes swapvol
and lvol0. Confirm the deletion with vgs, pvs, lvs, and
vgdisplay commands. (Hint: Logical Volume Manager).

Lab 14-4: Remove Volume Group and
Physical Volumes
As user1 with sudo on server2, remove the volume group and
uninitialized the physical volumes. Confirm the deletion with
vgs, pvs, lvs, and vgdisplay commands. Use the lsblk
command and verify that the disks used for the LVM labs no
longer show LVM information. (Hint: Logical Volume Manager).

Lab 14-5: Create Stratis Pool
As user1 with sudo on server2, check to see if Stratis software
is installed and the Stratis service is enabled and started.
Identify 2x1GB disks with the lsblk command and ensure they
are not in use. Create pool strpool on one of the 1GB disks and
verify the pool and the block device with the stratis command.
(Hint: Stratis Volume-Managing File System).

Lab 14-6: Expand and Destroy Stratis Pool
As user1 with sudo on server2, use the other 1GB disk and
expand strpool using the stratis command. Verify the
expansion. Finally, remove the entire pool and confirm the
deletion. Use the lsblk command and verify that the disks used
for the Stratis labs no longer show Stratis information. (Hint:
Stratis Volume-Managing File System).

Chapter 15

Local File Systems and Swap

This chapter describes the following major
topics:

Understand file systems and their benefits,
categories, and types

Review file system types: Ext3/Ext4, XFS,
VFAT, and ISO9660

Know file system administration
commandset

Mount and unmount file systems manually
and persistently

Determine and use UUID
Apply and use file system label
Monitor file system and directory usage
Create and mount different types of local file
systems in partitions

Create and mount XFS file system in VDO
volume

Create, mount, and resize Ext4 and XFS file
systems in LVM

Create, mount, and expand Stratis file
system

Understand, create, and activate swap in
partitions and LVM

RHCSA Objectives:

26.Configure systems to mount file systems at
boot by Universally Unique ID (UUID) or
label

27.Add new partitions and logical volumes,
and swap to a system non-destructively (the
first part of this objective is covered in more
detail in Chapter 14)

28.Create, mount, unmount, and use vfat,
ext4, and xfs file systems

30.Extend existing logical volumes (more
details is also available in Chapter 14)

F ile systems are the most common structures created
in partitions and volumes regardless of the underlying
storage management solution employed. They are

logical containers employed for file storage and can be
optimized, resized, mounted, and unmounted independently.
They must be connected to the root of the directory
hierarchy in order to be accessed by users and applications.
This may be accomplished automatically at system boot or
manually when required. File systems can be mounted or
unmounted using their unique identifiers, labels, or device
files. There is a whole slew of commands available for file
system creation and administration; some of them are file
system type specific while others are general.

The other common structure created in partitions and logical
volumes is the swap space. Swapping provides a mechanism
to move out and in pages of idle data between the physical
memory and the swap. Swap areas act as extensions to the
physical memory, and they may be activated or deactivated
independent of swap spaces located in other partitions and
volumes.

This chapter is the last one in the three chapter series (the
other two being Chapters 13 and 14) on storage
management. It elaborates on file systems and swap, and
demonstrates their creation and management in several
exercises. It also highlights the tools to monitor their usage.

File Systems and File System
Types

A file system is a logical container that stores files and
directories. Each file system is created in a discrete partition,
VDO volume, logical volume, or Stratis pool. A typical
production RHEL system usually has numerous file systems.
During OS installation, only two file systems—/ and /boot—
are created in the default disk layout, but you can design a
custom disk layout and construct separate containers to
store dissimilar information. Typical additional file systems
created during an installation are /home, /opt, /tmp, /usr, and
/var. The two mandatory file systems—/ and /boot—are
required for installation and booting.

Storing disparate data in distinct file systems versus storing
all data in a single file system offers the following
advantages:

Make any file system accessible (mount) or
inaccessible (unmount) to users independent of other
file systems. This hides or reveals information
contained in that file system.
Perform file system repair activities on individual file
systems
Keep dissimilar data in separate file systems
Optimize or tune each file system independently
Grow or shrink a file system independent of other file
systems

RHEL supports several types of file systems that may be
categorized in three basic groups: disk-based, network-
based, and memory-based. Disk-based file systems are
typically created on physical drives using SATA, USB, Fibre
Channel, and other technologies. Network-based file systems
are essentially disk-based file systems shared over the
network for remote access. Memory-based file systems are
virtual; they are created at system startup and destroyed
when the system goes down. Disk-based and network-based

file systems store information persistently, while any data
saved in virtual file systems does not survive across system
reboots.

Table 15-1 lists and explains various common disk- and
network-based file system types supported in RHEL 8.

File System
Type

Category Description

Ext3 Disk The third generation of the extended file
system. It supports metadata journaling
for faster recovery, offers superior
reliability, allows the creation of up to
32,000 subdirectories, and supports larger
file systems and bigger files than its
predecessor.

Ext4 Disk The fourth generation of the extended file
system developed as the successor to
Ext3. It supports all features of Ext3 in
addition to a larger file system size, bigger
file size, an unlimited number of
subdirectories, metadata and quota
journaling, and extended user attributes.

XFS Disk XFS is a highly scalable and high-
performing 64-bit file system. It supports
metadata journaling for faster crash
recovery, and online defragmentation,
expansion, quota journaling, and extended
user attributes. XFS is the default file
system type in RHEL 8.

VFAT Disk This file system is used for post-Windows
95 file system formats on hard disks, USB
drives, and floppy disks.

ISO9660 Disk This is used for optical file systems such as
CD and DVD.

NFS Network Network File System. A shared directory or
file system for remote access by other
Linux systems.

AutoFS Network Auto File System. An NFS file system set to
mount and unmount automatically on
remote client systems.

Table 15-1 File System Types

This chapter covers Ext3, Ext4, XFS, and VFAT file systems at
length. It also touches upon mounting and unmounting
ISO9660. For a brief discussion on memory-based file
systems, see Chapter 02 “Initial Interaction with the

System”. NFS and AutoFS are discussed in Chapter 16
“Remote File System”.

Extended File Systems
Extended file systems have been part of RHEL for many
years. The first generation is obsolete and is no longer
supported. The second, third, and fourth generations are
currently available and supported. The fourth generation is
the latest in the series and is superior in features and
enhancements to its predecessors.

The structure of an extended file system is built on a
partition or logical volume at the time of file system creation.
This structure is divided into two sets. The first set holds the
file system’s metadata and it is very tiny. The second set
stores the actual data, and it occupies almost the entire
partition or the logical volume (VDO, LVM, and Stratis) space.

The metadata includes the superblock, which keeps vital file
system structural information, such as the type, size, and
status of the file system, and the number of data blocks it
contains. Since the superblock holds such critical
information, it is automatically replicated and maintained at
various known locations throughout the file system. The
superblock at the beginning of the file system is referred to
as the primary superblock, and all of its copies as backup
superblocks. If the primary superblock is corrupted or lost, it
renders the file system inaccessible. One of the backup
superblocks is then used to supplant the corrupted or lost
primary superblock to bring the file system back to its
normal state.

The metadata also contains the inode table, which maintains
a list of index node (inode) numbers. Each file is assigned an
inode number at the time of its creation, and the inode
number holds the file’s attributes such as its type,

permissions, ownership, owning group, size, and last
access/modification time. The inode also holds and keeps
track of the pointers to the actual data blocks where the file
contents are located.

The Ext3 and Ext4 file systems support a journaling
mechanism that provides them with the ability to recover
swiftly after a system crash. Both Ext3 and Ext4 file systems
keep track of recent changes in their metadata in a journal
(or log). Each metadata update is written in its entirety to
the journal after completion. The system peruses the journal
of each extended file system following the reboot after a
crash to determine if there are any errors, and it recovers the
file system rapidly using the latest metadata information
stored in its journal. The ext2 file system does not support
journaling, but the support for journaling may be added to it
if required.

In contrast to Ext3 that supports file systems up to 16TiB and
files up to 2TiB, Ext4 supports very large file systems up to
1EiB (ExbiByte) and files up to 16TiB (TebiByte). Additionally,
Ext4 uses a series of contiguous physical blocks on the hard
disk called extents, resulting in improved read and write
performance with reduced fragmentation. Ext4 supports
extended user attributes, acl mount options (to support file
permission allocation to specific users and groups), as well
as metadata and quota journaling.

XFS File System
The X File System (XFS) is a high-performing 64-bit extent-
based journaling file system type. XFS allows the creation of
file systems and files up to 8EiB (ExbiByte). It does not run
file system checks at system boot; rather, it relies on you to
use the xfs_repair utility to manually fix any issues. XFS sets
the extended user attributes and acl mount options by
default on new file systems. It enables defragmentation on

mounted and active file systems to keep as much data in
contiguous blocks as possible for faster access. The only
major caveat with using XFS is its inability to shrink.

Like Ext3 and Ext4, XFS also uses journaling for metadata
operations, guaranteeing the consistency of the file system
against abnormal or forced unmounting. The journal
information is read and any pending metadata transactions
are replayed when the XFS file system is remounted.

XFS uses sophisticated techniques in its architecture for
speedy input/output performance. It can be snapshot in a
mounted, active state. The snapshot can then be used for
backup or other purposes.

VFAT File System
VFAT (Virtual File Allocation Table) is an extension to the
legacy FAT file system type, also called FAT16, that was
introduced in early versions of MS-DOS. The support for
FAT16 was later added to Microsoft Windows, MacOS, and
some UNIX versions, enabling them to read and write files
written in that format. FAT16 had limitations; it was designed
to use no more than 8.3 characters in filenames, limiting
filenames to a maximum of eight characters plus three
characters as an extension. Moreover, it only allowed
filenames to begin with a letter or number and to not contain
spaces. FAT16 treated lowercase and uppercase letters alike.

VFAT was introduced with Microsoft Windows 95 and it has
since been available. It supports 255 characters in filenames
including spaces and periods; however, it still does not
differentiate between lowercase and uppercase letters. VFAT
support was added to Linux several years ago. A VFAT file
system may be created on hard drives, but it is primarily
used on removable media, such as floppy and USB flash
drives, for exchanging data between Linux and Windows.

ISO9660 File System
This file system type conforms to the ISO 9660 standard,
hence the name. It is used for removable optical disc media
such as CD/DVD drives for transporting software and
patches, and operating system images in ISO format
between computers. The ISO9660 format originated from the
High-Sierra File System (HSFS) format, and it has now been
enhanced to include innovative features.

File System Management
Managing file systems involves such operations as creating,
mounting, labeling, viewing, growing, shrinking, unmounting,
and removing them. These management tasks are common
to both Extended and XFS types. Most of these functions are
also applicable to VFAT and a few to optical file systems.

In Chapters 13 and 14, you created several partitions, VDO
volumes, LVM logical volumes, and Stratis volumes.
However, you did not initialize them with a file system type
(except for Stratis), and therefore you could not mount or
use them. Later, you destroyed all the partitions and the
volumes that were created. You also deleted the LVM volume
group and the Stratis pool. All the disks were returned to
their unused state after the completion of the exercises.

Here is a listing of the block devices to confirm the current
state of the disks:

The output verifies the unused state and availability status
for all the disks—sdb through sdh. You should be able to
reuse them in the exercises in this chapter.

File System Administration Commands
In order to create and manage file systems, RHEL offers a
number of commands of which some are limited to their
operations on the Extended, XFS, or VFAT file system type,
while others are general and applicable to all file system
types. Table 15-2 describes common file system
administration commands.

Command Description

Extended File System

e2label Modifies the label of a file system

mke2fs Creates a file system. Can also be invoked as
mkfs.ext3, mkfs.ext4, mkfs -t ext3, and mkfs -t
ext4.

resize2fs Resizes a file system. This command is
automatically invoked when the lvresize command
is run with the -r switch.

tune2fs Tunes or displays file system attributes

XFS

mkfs.xfs Creates a file system. Can also be invoked as mkfs -
t xfs.

xfs_admin Tunes file system attributes

xfs_growfs Extends the size of a file system

xfs_info Exhibits information about a file system

VFAT

mkfs.vfat Creates a file system. It is equivalent to using mkfs
-t vfat.

General File System Commands

blkid Displays block device attributes including their
UUIDs and labels

df Reports file system utilization

du Calculates disk usage of directories and file
systems

lsblk Lists block devices and file systems and their
attributes including their UUIDs and labels

mount Mounts a file system for user access. Displays
currently mounted file systems.

umount Unmounts a file system

Table 15-2 File System Management Commands

Most of these commands are used in this chapter.

Mounting and Unmounting File Systems

In order to enable users to access files and application
programs in a file system, the file system must be connected
to the directory structure at a desired attachment point,
which is referred to as the mount point. A mount point in
essence is any empty directory that is created and used for
this purpose.

There are many file systems already mounted on your
system, such as the root file system mounted on / and the
boot file system mounted on /boot. Both of them are empty
directories and are reserved to connect the two file systems
to the directory hierarchy. You can use the mount command
to view information about mounted file systems. The
following shows the XFS file systems only:

The “-t xfs” option makes the command to only show the file
systems initialized with the XFS type.

The mount command is also used for mounting a file system
to a mount point, and this action is performed with the root
user privileges. The command requires the absolute
pathnames of the file system block device and the mount
point name. It also accepts the UUID or label of the file
system in lieu of the block device name. Options are
available with this command to mount all or a specific type
of file system. The mount command is also used to mount
other types of file systems such as those located in
removable media. Upon successful mount, the kernel places
an entry for the file system in the /proc/self/mounts file.

 A mount point should be empty when an attempt is made to

mount a file system on it, otherwise the content of the mount point
will hide. As well, the mount point must not be in use or the mount
attempt will fail.

The mount command supports numerous options that may
be used as required to override its default behavior. We can
also specify multiple comma-separated options. Table 15-3
describes some common options.

Option Description

acl (noacl) Enables (disables) the support for ACLs

auto
(noauto)

Mounts (does not mount) the file system when the -
a option is specified

defaults Mounts a file system with all the default values
(async, auto, rw, etc.)

_netdev Used for a file system that requires network
connectivity in place before it can be mounted.
VDO and NFS are examples.

remount Remounts an already mounted file system to
enable or disable an option

ro (rw) Mounts a file system read-only (read/write)

Table 15-3 Common mount Command Options

The opposite of the mount command is umount, which is
used to detach a file system from the directory hierarchy and
make it inaccessible to users and applications. This
command expects the absolute pathname to the block
device containing the file system or its mount point name in
order to detach it. Options are available with umount to
unmount all or a specific type of file system. The kernel
removes the corresponding file system entry from the
/proc/self/mounts file after it has been successfully
disconnected.

Determining the UUID of a File System
Every Extended and XFS file system has a 128-bit (32
hexadecimal characters) UUID (Universally Unique IDentifier)
assigned to it at the time of its creation. In contrast, UUIDs
assigned to vfat file systems are 32-bit (8 hexadecimal
characters) in length. Assigning a UUID makes the file

system unique among many other file systems that
potentially exist on the system. The primary benefit of using
a UUID is the fact that it always stays persistent across
system reboots. A UUID is used by default in RHEL 8 in the
/etc/fstab file for any file system that is created by the
system in a standard partition.

 RHEL attempts to mount all file systems listed in the /etc/fstab

file at reboots. Each file system has an associated device file and
UUID, but may or may not have a corresponding label. The system
checks for the presence of each file system’s device file, UUID, or
label, and then attempts to mount it.

The /boot file system, for instance, is located in a partition
and the device file associated with it is on server2 is
/dev/sda1. You can use the xfs_admin command, the blkid
command, or the lsblk command as follows to determine its
UUID:

The UUID reported by the above commands for the /boot file
system is "c1ff315e-4320-442c-a3c5-36db403b53f2". If you
grep for the string “boot” on the /etc/fstab file, you will see
that the system uses this UUID to mount /boot. A discussion
on the /etc/fstab file is provided later in this chapter.

 For extended file systems, you can use the tune2fs command in

addition to the blkid and lsblk commands to determine the UUID.

EXAM TIP: Knowing how to find the UUID of a file system created
in a standard partition or with Stratis is important.

A UUID is also assigned to a file system that is created in a
VDO or LVM volume; however, it need not be used in the
fstab file, as the device files associated with the logical
volumes are always unique and persistent.

Labeling a File System
A unique label may be used instead of a UUID to keep the file
system association with its device file exclusive and
persistent across system reboots. A label is limited to a
maximum of 12 characters on the XFS file system and 16
characters on the Extended file system. By default, no labels
are assigned to a file system at the time of its creation.

The /boot file system is located in the /dev/sda1 partition and
its type is XFS. You can use the xfs_admin command, the
blkid command, or the lsblk command as follows to
determine its label:

The output discloses that there is currently no label assigned
to the /boot file system.

A label is not needed on a file system if you intend to use its
UUID or if it is created in a VDO or LVM logical volume;
however, you can still apply one using the xfs_admin
command with the -L option. Labeling an XFS file system
requires that the target file system be unmounted.

The following example demonstrates the steps to unmount
/boot, set the label “bootfs” on its device file, and remount it:

You can confirm the new label by executing sudo xfs_admin
-l /dev/sda1, sudo blkid /dev/sda1, or sudo lsblk -f
/dev/sda1.

 For extended file systems, you can use the e2label command to

apply a label and the tune2fs, blkid, and lsblk commands to view and
verify.

Now you can replace the UUID="c1ff315e-4320-442c-a3c5-
36db403b53f2" for /boot in the fstab file with LABEL=bootfs,
and unmount and remount /boot as demonstrated above for
confirmation.

A label may also be applied to a file system created in a VDO
or LVM volume; however, it is not recommended for use in
the fstab file, as the device files for these logical volumes are
always unique and remain persistent across system reboots.

Automatically Mounting a File System at
Reboots
File systems defined in the /etc/fstab file are mounted
automatically at reboots. This file must contain proper and
complete information for each listed file system. An
incomplete or inaccurate entry might leave the system in an
undesirable or unbootable state. Another benefit of adding
entries to this file is that you only need to specify one of the
four attributes—block device name, UUID, label, or mount
point—of the file system that you wish to mount manually
with the mount command. The mount command obtains the
rest of the information from this file. Similarly, you only need

to specify one of these attributes with the umount command
to detach it from the directory hierarchy.

The default fstab file contains entries for file systems that
are created at the time of installation. On server2, for
instance, this file currently has the following three entries:

EXAM TIP: Any missing or invalid entry in this file may render the
system unbootable. You will have to boot the system in emergency
mode to fix this file. Ensure that you understand each field in the file
for both file system and swap entries.

The format of this file is such that each row is broken out into
six columns to identify the required attributes for each file
system to be successfully mounted. Here is what the
columns contain:

Column 1: Defines the physical or virtual device path
where the file system is resident, or its associated UUID or
label. There can be entries for network file systems here
as well.
Column 2: Identifies the mount point for the file system.
For swap partitions, use either “none” or “swap”.
Column 3: Specifies the type of file system such as Ext3,
Ext4, XFS, VFAT, or ISO9660. For swap, the type “swap” is
used. You may use “auto” instead to leave it up to the
mount command to determine the type of the file system.
Column 4: Identifies one or more comma-separated
options to be used when mounting the file system. See
Table 15-3 for a description of some of the options,
consult the manual pages of the mount command or the
fstab file for additional options and details.
Column 5: Is used by the dump utility to ascertain the
file systems that need to be dumped. A value of 0 (or the

absence of this column) disables this check. This field is
applicable only on Extended file systems; XFS does not
use it.
Column 6: Expresses the sequence number in which to
run the e2fsck (file system check and repair utility for
Extended file system types) utility on the file system at
system boot. By default, 0 is used for memory-based,
remote, and removable file systems, 1 for /, and 2 for
/boot and other physical file systems. 0 can also be used
for /, /boot, and other physical file systems you don’t want
to be checked or repaired. This field is applicable only on
Extended file systems; XFS does not use it.

 A 0 in columns 5 and 6 for XFS, virtual, remote, and removable

file system types has no meaning. You do not need to add them for
these file system types.

This file is edited manually, so care must be observed to
circumvent syntax and typing errors.

Monitoring File System Usage
On a live system, you’ll often need to check file system
usage to know if a mounted file system requires an
expansion for growth or a clean up to generate free space.
This involves examining the used and available spaces for a
file system. The df (disk free) command has been used for
this purpose. It reports usage details for mounted file
systems. By default, this command reports the numbers in
KBs unless the -m or -h option is specified to view the sizes
in MBs or human-readable format.

 This command may not produce correct information for VDO

and Stratis file systems. Use their own tools for viewing usage.

Let’s run this command with the -h option on server2:

The output shows the file system device file or type in
column 1, followed by the total, used, and available spaces
in columns 2, 3, and 4, and then the usage percentage and
mount point in columns 5 and 6.

There are a few other useful flags available with the df
command that can produce the desired output. These flags
include:

-T to add the file system type to the output (example: df -
hT)
-x to exclude the specified file system type from the
output (example: df -hx tmpfs)
-t to limit the output to a specific file system type
(example: df -t xfs)
-i to show inode information (example: df -hi)

You may use -h with any of these examples to print
information in human-readable format.

Calculating Disk Usage
In contrast to the df command that returns usage
information for an entire file system, the du command
reports the amount of space a file or directory occupies. By
default, it shows the output in KBs; however, you can use the
-m or -h option to view the output in MBs or human-readable
format. In addition, you can view a usage summary with the -
s switch and a grand total with -c.

Let’s run this command on the /usr/bin directory to view the
usage summary:

To add a “total” row to the output and with numbers
displayed in KBs:

Try this command with different options on the /usr/sbin/lvm
file and observe the results.

Exercise 15-1: Create and Mount Ext4,
VFAT, and XFS File Systems in Partitions
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create 2 x 100MB partitions on the
/dev/sdb disk, initialize them separately with the Ext4 and
VFAT file system types, define them for persistence using
their UUIDs, create mount points called /ext4fs1 and /vfatfs1,
attach them to the directory structure, and verify their
availability and usage. Moreover, you will use the disk
/dev/sdc and repeat the above procedure to establish an XFS
file system in it and mount it on /xfsfs1.

1. Apply the label “msdos” to the sdb disk using the
parted command:

2. Create 2 x 100MB primary partitions on sdb with the
parted command:

3. Initialize the first partition (sdb1) with Ext4 file system
type using the mkfs command:

4. Initialize the second partition (sdb2) with VFAT file
system type using the mkfs command:

5. Initialize the whole disk (sdc) with the XFS file system
type using the mkfs.xfs command. Add the -f flag to
force the removal of any old partitioning or labeling
information from the disk.

6. Determine the UUIDs for all three file systems using
the lsblk command:

7. Open the /etc/fstab file, go to the end of the file, and
append entries for the file systems for persistence
using their UUIDs:

8. Create mount points /ext4fs1, /vfatfs1, and /xfsfs1 for
the three file systems using the mkdir command:

9. Mount the new file systems using the mount
command. This command will fail if there are any
invalid or missing information in the file.

10. View the mount and availability status as well as the
types of all three file systems using the df command:

The output verifies the creation and availability status of the
three file systems. They are added to the fstab file for
persistence. A system reboot at this point will remount them
automatically. These file systems may now be used to store
files.

Exercise 15-2: Create and Mount XFS File
System in VDO Volume
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create a VDO volume called vdo1 of
logical size 16GB on the sdf disk (the actual size of this disks

is 4GB). You will initialize the volume with the XFS file system
type, define it for persistence using its device files, create a
mount point called /xfsvdo1, attach it to the directory
structure, and verify its availability and usage.

Prior to proceeding, ensure that the steps outlined in
Exercise 13-6 for VDO software installation and service
startup have been accomplished.

1. Create a VDO volume vdo1 on the sdf disk with a
logical size of 16GB and a slab size of 128MB:

2. List the new VDO volume using the vdo and lsblk
commands:

The output shows the logical volume size (16GB), type (vdo),
and the actual size (4GB) of the underlying disk.

3. Initialize the VDO volume with the XFS file system type
with the mkfs.xfs command. The VDO volume device
file is /dev/mapper/vdo1 as indicated in the output in
step 1. Add the -f flag to force the removal of any old
partitioning or labeling information from the disk.

4. Open the /etc/fstab file, go to the end of the file, and
append the following entry for the file system for
persistence using its device file:

Make sure to include the option x-
systemd.requires=vdo.service (or try _netdev instead)
with the file system entry in the fstab file or your system will
land into the emergency target on the next reboot. This
option holds the mount command from mounting this file
system until the vdo.service service has been operational.

5. Create the mount point /xfsvdo1 using the mkdir
command:

6. Mount the new file system using the mount command.
This command will fail if there are any invalid or
missing information in the file.

The mount command with the -a flag is a validation test for
the fstab file. It should always be executed after updating
this file and before rebooting the server to avoid landing the
system in an unbootable state.

7. View the mount and availability status as well as the
types of the VDO file system using the lsblk and df

commands:

The lsblk command output illustrates the VDO volume name
(vdo1) , the disk it is located on (sdf), the actual (4GB) and
logical (16GB) sizes, and the mount point (/xfsvdo1) where
the file system is connected to the directory structure.

The df command shows the logical size of the file system
and its usage status, but it does not reveal the underlying
disk information. This file system is added to the fstab file for
persistence, meaning a future system reboot will remount it
automatically. This file system may now be used to store
files.

Refer to Chapter 13 “Basic Storage Partitioning” for details
on VDO.

Exercise 15-3: Create and Mount Ext4 and
XFS File Systems in LVM Logical Volumes
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create a volume group called vgfs
comprised of a 160MB physical volume created in a partition
on the /dev/sdd disk. The PE size for the volume group
should be set at 16MB. You will create two logical volumes
called ext4vol and xfsvol of sizes 80MB each and initialize
them with the Ext4 and XFS file system types. You will ensure
that both file systems are persistently defined using their
logical volume device filenames. You will create mount points

called /ext4fs2 and /xfsfs2, mount the file systems, and
verify their availability and usage.

1. Create a 150MB partition on the sdd disk using the
parted command:

2. Initialize the sdd1 partition for use in LVM using the
pvcreate command:

3. Create the volume group vgfs with a PE size of 16MB
using the physical volume sdd1:

The PE size is not easy to alter after a volume group
creation, so ensure it is defined as required at creation.

4. Create two logical volumes ext4vol and xfsvol of size
80MB each in vgfs using the lvcreate command:

5. Format the ext4vol logical volume with the Ext4 file
system type using the mkfs.ext4 command:

You may alternatively use sudo mkfs -t ext4
/dev/vgfs/ext4vol.

6. Format the xfsvol logical volume with the XFS file
system type using the mkfs.xfs command:

You may use sudo mkfs -t xfs /dev/vgfs/xfsvol instead.

7. Open the /etc/fstab file, go to the end of the file, and
append entries for the file systems for persistence
using their device files:

8. Create mount points /ext4fs2 and /xfsfs2 using the
mkdir command:

9. Mount the new file systems using the mount
command. This command will fail if there is any invalid
or missing information in the file.

Fix any issues in the file if reported.

10. View the mount and availability status as well as the
types of the new LVM file systems using the lsblk and
df commands:

The lsblk command output illustrates the LVM logical
volumes (ext4vol and xfsvol), the disk they are located on
(sdd), the sizes (80MB), and the mount points (/ext4fs2 and
/xfsfs2) where the file system are connected to the directory
structure.

The df command shows the size and usage information. Both
file systems are added to the fstab file for persistence,
meaning future system reboots will remount them
automatically. They may now be used to store files.

Exercise 15-4: Resize Ext4 and XFS File
Systems in LVM Logical Volumes
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will grow the size of the vgfs volume
group that was created in Exercise 15-3 by adding the whole
sde disk to it. You will extend the ext4vol logical volume
along with the file system it contains by 40MB using two
separate commands. You will extend the xfsvol logical
volume along with the file system it contains by 40MB using
a single command. You will verify the new extensions.

1. Initialize the sde disk and add it to the vgfs volume
group:

2. Confirm the new size of vgfs using the vgs and
vgdisplay commands:

There are now two physical volumes in the volume group
and the total size increased to 400MiB.

3. Grow the logical volume ext4vol and the file system it
holds by 40MB using the lvextend and fsadm
command pair. Make sure to use an uppercase L to
specify the size. The default unit is MiB. The plus sign
(+) signifies an addition to the current size.

The resize subcommand instructs the fsadm command to
grow the file system to the full length of the specified logical
volume.

4. Grow the logical volume xfsvol and the file system (-r)
it holds by (+) 40MB using the lvresize command:

5. Verify the new extensions to both logical volumes
using the lvs command. You may also issue the
lvdisplay or vgdisplay command instead.

6. Check the new sizes and the current mount status for
both file systems using the df and lsblk commands:

The outputs reflect the new sizes (128MB) for both file
systems. They also indicate their mount status.

This concludes the exercise.

Exercise 15-5: Create, Mount, and Expand
XFS File System in Stratis Volume
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create a Stratis pool called strpool
and a file system (strfs2) in it (the file system type will be
XFS) by reusing the 1GB sdg disk from Chapter 14. You will
display information about the pool, file system, and device
used. You will expand the pool to include another 1GB disk
sdh and confirm.

For further details on Stratis storage management solution,
refer to Chapter 14 “Advanced Storage Partitioning”. Prior to
proceeding, ensure that the steps outlined in Exercise 14-7
for Stratis software installation and service startup have
been accomplished.

1. Create a pool called strpool using the sdg disk and
verify the creation:

The pool is created with a single disk included, and
confirmed.

2. Show the block device used in the pool:

3. Create a file system called strfs2 in the pool and verify
the creation:

4. Determine the UUID of the new file system to be
added to the fstab file:

5. Open the /etc/fstab file, go to the end of the file, and
append the following entry for the file system for
persistence using the UUID:

Make sure to include the option x-
systemd.requires=stratisd.service (or try _netdev
instead) with the file system entry in the fstab file or your
system will land into the emergency target on the next
reboot. This option holds the mount command from
mounting this file system until the stratisd.service service
has been started successfully.

6. Create the mount point /strfs2:

7. Mount the new file system using the mount command
as follows. This command will fail if there are any
invalid or missing information in the file.

8. Check the pool usage:

9. Check the file system usage:

10. Grow the pool by adding the sdh disk to it and confirm
the growth:

The file system strfs2 will automatically expand to take
advantage of the additional pool capacity when required.

This concludes the exercise.

Swap and its Management
Physical memory (or main memory) in the system is a finite
temporary storage resource employed for loading kernel and
running user programs and applications. Swap space is an
independent region on the physical disk used for holding idle

data until it is needed. The system splits the physical
memory into small logical chunks called pages and maps
their physical locations to virtual locations on the swap to
facilitate access by system processors. This physical-to-
virtual mapping of pages is stored in a data structure called
page table, and it is maintained by the kernel.

When a program or process is spawned, it requires space in
the physical memory to run and be processed. Although
many programs can run concurrently, the physical memory
cannot hold all of them at once. The kernel monitors the
memory usage. As long as the free memory remains below a
high threshold, nothing happens. However, when the free
memory falls below that threshold, the system starts moving
selected idle pages of data from physical memory to the
swap space in an effort to make room to accommodate other
programs. This piece in the process is referred to as page
out. Since the system CPU performs the process execution in
a round-robin fashion, when the system needs this paged-out
data for execution, the CPU looks for that data in the
physical memory and a page fault occurs, resulting in
moving the pages back to the physical memory from the
swap. This return of data to the physical memory is referred
to as page in. The entire process of paging data out and in is
known as demand paging.

RHEL systems with less physical memory but high memory
requirements can become over busy with paging out and in.
When this happens, they do not have enough cycles to carry
out other useful tasks, resulting in degraded system
performance. The excessive amount of paging that affects
the system performance is called thrashing.

When thrashing begins, or when the free physical memory
falls below a low threshold, the system deactivates idle
processes and prevents new processes from being launched.

The idle processes are only reactivated and new processes
are only allowed to be started when the system discovers
that the available physical memory has climbed above the
threshold level and thrashing has ceased.

Determining Current Swap Usage
The size of a swap area should not be less than the amount
of physical memory; however, depending on workload
requirements, it may be twice the size or larger. It is also not
uncommon to see systems with less swap than the actual
amount of physical memory. This is especially witnessed on
systems with a huge physical memory size.

RHEL offers the free command to view memory and swap
space utilization. Use this command to view how much
physical memory is installed (total), used (used), available
(free), used by shared library routines (shared), holding data
before it is written to disk (buffers), and used to store
frequently accessed data (cached) on the system. The -h flag
may be specified with the command to list the values in
human-readable format, otherwise -k for KB, -m for MB, -g
for GB, and so on are also supported. Add -t with the
command to display a line with the “total” at the bottom of
the output. Here is a sample output from server2:

The output indicates that the system has 1.8GiB of total
memory of which 895MiB is in use and 447MiB is free. It also
shows on the same line the current memory usages by
temporary (tmpfs) file systems (20MiB) and kernel buffers
and page cache (486MiB). It also illustrates an estimate of
free memory available to start new processes (749MiB).

On the subsequent row, it reports the total swap space
(1.0GiB) configured on the system with a look at used (0
Bytes) and free (1.0GiB) space. The last line prints the
combined usage summary of the main memory and swap.

Try free -hts 3 and free -htc 2 to refresh the output every
three seconds (-s) and to display the output twice (-c).

The free command reads memory and swap information
from the /proc/meminfo file to produce the report. The values
are shown in KBs by default, and they are slightly off from
what is shown in the above screenshot with free. Here are
the relevant fields from this file:

This data depicts the system’s runtime memory and swap
usage, as it is located in a virtual file.

Prioritizing Swap Spaces
On many production RHEL servers, you may find multiple
swap areas configured and activated to meet the workload
demand. The default behavior of RHEL is to use the first
activated swap area and move on to the next when the first
one is exhausted. The system allows us to prioritize one area
over the other by adding the option “pri” to the swap entries
in the fstab file. This flag supports a value between -2 and
32767 with -2 being the default. A higher value of “pri” sets
a higher priority for the corresponding swap region. For swap
areas with an identical priority, the system alternates
between them.

Swap Administration Commands
In order to create and manage swap spaces on the system,
the mkswap, swapon, and swapoff commands are available.
Use mkswap to initialize a partition for use as a swap space.
Once the swap area is ready, you can activate or deactivate
it from the command line with the help of the other two
commands, or set it up for automatic activation by placing
an entry in the fstab file. The fstab file accepts the swap
area’s device file, UUID, or label.

Exercise 15-6: Create and Activate Swap
in Partition and Logical Volume
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create one swap area in a new 40MB
partition called sdb3 using the mkswap command. You will
create another swap area in a 140MB logical volume called
swapvol in vgfs. You will add their entries to the /etc/fstab file
for persistence. You will use the UUID and priority 1 for the
partition swap and the device file and priority 2 for the
logical volume swap. You will activate them and use
appropriate tools to validate the activation.

EXAM TIP: Use the lsblk command to determine available disk
space.

1. Use the parted’s print subcommand on the sdb disk
and the vgs command on the vgfs volume group to
determine available space for a new 40MB partition
and a 144MB logical volume:

The outputs show 49MB (250MB minus 201MB) free space on
the sdb disk and 144MB free space in the volume group.

2. Create partition called sdb3 of size 40MB using the
parted command:

3. Create logical volume swapvol of size 144MB in vgs
using the lvcreate command:

4. Construct swap structures in sdb3 and swapvol using
the mkswap command:

5. Edit the fstab file and add entries for both swap areas
for auto-activation on reboots. Obtain the UUID for
partition swap with lsblk -f /dev/sdb3 and use the
device file for logical volume. Specify their priorities.

EXAM TIP: You will not be given any credit for this work if you
forget to add entries to the fstab file.

6. Determine the current amount of swap space on the
system using the swapon command:

There is one 1GB swap area on the system configured at the
default priority of -2.

7. Activate the new swap regions using the swapon
command:

The command would display errors if there were any issues
with swap entries in the fstab file.

8. Confirm the activation using the swapon command or
by viewing the /proc/swaps file:

The two new swap regions are activated and listed in the
above outputs. Their sizes and priorities are also visible. The
device mapper device files for the logical volumes and the
device file for the partition swap are also exhibited.

9. Issue the free command to view the reflection of swap
numbers on the Swap and Total lines:

The total swap is now 1.2GiB. This concludes the exercise.

Chapter Summary
This chapter covered two major storage topics: file systems
and swap. These structures are created in partitions or
logical volumes irrespective of the underlying storage
management solution used to build them.

The chapter began with a detailed look at the concepts,
categories, benefits, and types of file systems. We reviewed
file system administration and monitoring utilities. We
discussed the concepts around mounting and unmounting
file systems. We examined the UUID associated with file
systems and applied labels to file systems. We analyzed the
file system table and added entries for auto-activating file
systems at reboots. We explored tools for reporting file
system usage and calculating disk usage. We performed a
number of exercises on file system creation and
administration in partitions and VDO, LVM, and Stratis
volumes to reinforce the concepts and theory learned in this
and the last two chapters.

We touched upon the concepts of swapping and paging, and
studied how they work. We performed exercises on creating,
activating, viewing, deactivating, and removing swap spaces,
as well as configuring them for auto-activation at system
reboots.

Check Your Understanding
1. Which two file systems are created in a default RHEL 8

installation?
2. What would the command lvresize -r -L +30

/dev/vg02/lvol2 do?
3. XFS is the default file system type in RHEL 8. True or

False?
4. What type of information does the blkid command

display?

5. What would the command xfs_admin -L bootfs
/dev/sda1 do?

6. The lsblk command cannot be used to view file system
UUIDs. True or False?

7. What is the process of paging out and paging in known
as?

8. What would the command mkswap /dev/sdc2 do?
9. What would happen if you mount a file system on a

directory that already contains files in it?
10. A UUID is always assigned to a file system at its

creation time. True or False?
11. Arrange the activities to create and activate a swap

space while ensuring persistence: (a) swapon, (b)
update fstab, (c) mkswap, and (d) reboot?

12. The difference between the primary and backup
superblocks is that the primary superblock includes
pointers to the data blocks where the actual file
contents are stored whereas the backup superblocks
don’t. True or False?

13. What would the command mkfs.ext4
/dev/vgtest/lvoltest do?

14. Arrange the tasks in correct sequence: umount file
system, mount file system, create file system, remove
file system.

15. Which of these statements is wrong with respect to
file systems: (a) optimize each file system
independently, (b) keep dissimilar data in separate file
systems, (c) grow and shrink a file system independent
of other file systems, and (d) file systems cannot be
expanded independent of other file systems.

16. Which command can be used to create a label for an
XFS file system?

17. What would the mount command do with the -a
switch?

18. What would the command df -t xfs do?

19. What is the difference between the mkfs.ext4 and
mke2fs commands?

20. Which command can be used to determine the total
and used physical memory and swap in the system?

21. Which virtual file contains information about the
current swap?

22. The /etc/fstab file can be used to activate swap spaces
automatically at system reboots. True or False?

23. What is the default file system type used for optical
media?

24. The xfs_repair command must be run on a mounted
file system. True or False?

25. Provide two commands that can be used to activate
and deactivate swap spaces manually.

26. Provide the fstab file entry for an Ext4 file system
located in device /dev/mapper/vg20-lv1 and mounted
with default options on the /ora1 directory.

27. What is the name of the virtual file that holds
currently mounted file system information?

28. Which option must be specified with persistent VDO
file system mounting to avoid landing the system in an
unbootable state?

29. Both Ext3 and Ext4 file system types support
journaling. True or False?

30. Name three commands that can be employed to view
the UUID of an XFS file system?

Answers to Check Your
Understanding

1. / and /boot.
2. The command provided will expand the logical volume

lvol2 in volume group vg02 along with the file system
it contains by 30MB.

3. True.

4. The blkid command displays attributes for block
devices.

5. The command provided will apply the specified label
to the XFS file system in /dev/sda1.

6. False.
7. The process of paging out and in is known as demand

paging.
8. The command provided will create swap structures in

the /dev/vdc2 partition.
9. The files in the directory will hide.
10. True.
11. c/a/b or c/b/a.
12. False.
13. The command provided will format /dev/vgtest/lvoltest

logical volume with Ext4 file system type.
14. Create, mount, unmount, and remove.
15. d is incorrect.
16. The xfs_admin command can be used to create a label

for an XFS file system.
17. The command provided will mount all file systems

listed in the /etc/fstab file but are not currently
mounted.

18. The command provided will display all mounted file
systems of type XFS.

19. No difference.
20. The free command.
21. The /proc/swaps file contains information about the

current swap.
22. True.
23. The default file system type for optical devices is

ISO9660.
24. False.
25. The swapon and swapoff commands.
26. /dev/mapper/vg20-lv1 /ora1 swap defaults 0 0
27. The mounts file under /proc/self directory.
28. The _netdev option.

29. True.
30. You can use the xfs_admin, lsblk, and blkid commands

to view the UUID of an XFS file system.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

To use the same storage that was used in the labs for
Chapters 13 and 14, destroy all traces of the partitions,
volume groups, and pools that were created before
proceeding. Alternatively, you can add more storage to
server2 for the following labs.

Lab 15-1: Create VFAT, Ext4, and XFS File
Systems in Partitions and Mount
Persistently
As user1 with sudo on server2, create three 70MB primary
partitions on one of the available 250MB disks (lsblk) by
invoking the parted utility directly at the command prompt.
Apply label “msdos” if the disk is new. Initialize partition 1
with VFAT, partition 2 with Ext4, and partition 3 with XFS file
system types. Create mount points /vfatfs5, /ext4fs5, and
/xfsfs5, and mount all three manually. Determine the UUIDs
for the three file systems, and add them to the fstab file.
Unmount all three file systems manually, and execute
mount -a to mount them all. Run df -h for verification.
(Hint: File System Management).

Lab 15-2: Create XFS File System in VDO
Volume and Mount Persistently
As user1 with sudo on server2, ensure that VDO software is
installed and the VDO service is enabled and started. Create
a volume vdo5 with a logical size 16GB on an available 4GB
disk (lsblk) using the vdo command. Select an appropriate
slab size for the volume. Verify the volume creation with the
vdo, lsblk, and vdostats commands. Initialize the volume
with XFS file system type. Create mount point /vdofs5, and
mount it manually. Add the file system information to the
fstab file, and use “_netdev” as a mount option. Unmount
the file system manually, and execute mount -a to mount it
back. Run df -h to confirm. (Hint: File System Management).

Lab 15-3: Create Ext4 and XFS File
Systems in LVM Logical Volumes and
Mount Persistently
As user1 with sudo on server2, initialize an available 250MB
disk for use in LVM (lsblk). Create volume group vg200 with
PE size 8MB and add the physical volume. Create two logical
volumes lv200 and lv300 of sizes 120MB and 100MB. Use
the vgs, pvs, lvs, and vgdisplay commands for verification.
Initialize the volumes with Ext4 and XFS file system types.
Create mount points /lvmfs5 and /lvmfs6, and mount them
manually. Add the file system information to the fstab file
using their device files. Unmount the file systems manually,
and execute mount -a to mount them back. Run df -h to
confirm. (Hint: File System Management).

Lab 15-4: Extend Ext4 and XFS File
Systems in LVM Logical Volumes
As user1 with sudo on server2, initialize an available 250MB
disk for use in LVM (lsblk). Add the new physical volume to
volume group vg200. Expand logical volumes lv200 and

lv300 along with the underlying file systems to 200MB and
250MB. Use the vgs, pvs, lvs, vgdisplay, and df commands
for verification. (Hint: File System Management).

Lab 15-5: Create XFS File System in
Stratis Volume and Mount Persistently
As user1 with sudo on server2, confirm Stratis software is
installed and the Stratis service is enabled and started.
Create pool strpool5 on an available 1GB disk and confirm.
Create file system strfs5 in the pool and verify. Create mount
point /strfs5. Determine the UUID of the Stratis file system
and add it to the fstab file for persistence. Use the x-
systemd.requires=stratisd.service as a mount option. Reboot
the system and confirm mounting with df -h. (Hint: File
System Management).

Lab 15-6: Create Swap in Partition and
LVM Logical Volume and Activate
Persistently
As user1 with sudo on server2, create two 100MB partitions
on an available 250MB disk (lsblk) by invoking the parted
utility directly at the command prompt. Apply label “msdos”
if the disk is new. Initialize one of the partitions with swap
structures. Apply label swappart to the swap partition, and
add it to the fstab file. Execute swapon -a to activate it. Run
swapon -s to confirm activation.

Initialize the other partition for use in LVM. Expand volume
group vg200 (Lab 15-4) by adding this physical volume.
Create logical volume swapvol of size 180MB. Use the vgs,
pvs, lvs, and vgdisplay commands for verification. Initialize
the logical volume for swap. Add an entry to the fstab file for
the new swap area using its device file. Execute swapon -a
to activate it. Run swapon -s to confirm activation. (Hint:
Swap and its Management).

Chapter 16

Remote File System

This chapter describes the following major
topics:

Overview of Network File System service and
key components

Network File System benefits and versions
Export a share on NFS server
Mount the share on NFS client using standard
mount method

Understand the AutoFS service, and its
benefits and functioning

Analyze AutoFS configuration maps
Mount the exported share on NFS client using
AutoFS

Configure NFS and AutoFS to share and
mount user home directories

RHCSA Objectives:

29.Mount and unmount network file systems
using NFS

Remote shares may be mounted on RHEL and
accessed the same way as local file systems. This can
be done manually using the same tools that are

employed for mounting and unmounting local file systems. An
alternative solution is to implement the AutoFS service to
automatically mount and unmount them without the need to
execute any commands explicitly. AutoFS monitors activities
in mount points based on which it triggers a mount or
unmount action.

RHEL exports shares using the Network File System service for
remote mounting on clients. The combination of NFS and
AutoFS/standard mount is prevalent in real world scenarios.
This chapter elaborates on the benefits of the file sharing
solution and expounds upon AutoFS maps. It demonstrates a
series of exercises to detail the configuration of the NFS
server, NFS client, and AutoFS service. It also explores the
automatic mounting of user home directories on clients.

Network File System
Network File System (NFS) is a networking protocol that
allows file sharing over the network. The Network File System
service is based upon the client/server architecture whereby
users on one system access files, directories, and file systems
(collectively called “shares”) that reside on a remote system
as if they are mounted locally on their system. The remote
system that makes its shares available for network access is
referred to as an NFS server, and the process of making the
shares accessible is referred to as exporting. The shares the
NFS server exports may be accessed by one or more systems.
These systems are called NFS clients, and the process of
making the shares accessible on clients is referred to as

mounting. See Figure 16-1 for a simple NFS client/server
arrangement that shows two shares—/export1 and /export2—
exported on the network to a remote system, which has them
mounted there.

Figure 16-1 NFS Server/Client

A system can provide both server and client functionality
concurrently. When a directory or file system share is
exported, the entire directory structure beneath it becomes
available for mounting on the client. A subdirectory or the
parent directory of a share cannot be re-exported if it exists in
the same file system. Similarly, a mounted share cannot be
exported further. A single exported file share is mounted on a
directory mount point.

Benefits of Using NFS
The use of NFS provides several benefits, some of which are
highlighted below:

Supports a variety of operating system platforms
including Linux, UNIX, and Microsoft Windows.
Multiple NFS clients can access a single share
simultaneously.
Enables the sharing of common application binaries and
other read-only information, resulting in reduced

administration overhead and storage cost.
Gives users access to uniform data.
Allows the consolidation of scattered user home
directories on the NFS server and then exporting them
to the clients. This way users will have only one home
directory to maintain.

NFS Versions
RHEL 8 provides the support for NFS versions 3, 4.0, 4.1, and
4.2, with version 4.2 being the default. NFSv3 supports both
TCP and UDP transport protocols, asynchronous writes, and
64-bit file sizes that gives clients the ability to access files of
sizes larger than 2GB.

NFSv4.x are Internet Engineering Task Force (IETF) series of
protocols that provide all the features of NFSv3, plus the
ability to transit firewalls and work on the Internet. They
provide enhanced security and support for encrypted
transfers and ACLs, as well as greater scalability, better cross-
platform interoperability, and better system crash handling.
They use usernames and group names rather than UIDs and
GIDs for files located on network shares. NFSv4.0 and NFSv4.1
use the TCP protocol by default, but can work with UDP for
backward compatibility. In contrast, NFSv4.2 only supports
TCP.

NFS Server and Client
Configuration
This section presents two exercises, one demonstrating how
to export a share on a server (NFS server) and the other
outlines the steps on mounting and accessing a share on a
remote system (NFS client). The basic setup of the NFS
service is straightforward. It requires adding an entry of the
share to a file called /etc/exports and using a command called
exportfs to make it available on the network. It also requires

the addition of a firewall rule to allow access to the share by
NFS clients.

The mount command employed on an NFS client is the same
command that was used in Chapter 15 to mount local file
systems. Moreover, the fstab file requires an entry for the NFS
share on the client for persistent mounting.

The exercises in this section illustrate the usage of both
commands and the syntax of both files.

Exercise 16-1: Export Share on NFS Server
This exercise should be done on server2 as user1 with sudo
where required.

In this exercise, you will create a directory called /common
and export it to server1 in read/write mode. You will ensure
that NFS traffic is allowed through the firewall. You will confirm
the export.

1. Install the NFS software called nfs-utils:

2. Create /common directory to be exported as a share:

3. Add full permissions on /common:

4. Add the NFS service persistently to the firewalld
configuration to allow the NFS traffic to pass through,
and load the new rule:

 Refer to Chapter 20 for details around the firewall service.

5. Start the NFS service and enable it to autostart at
system reboots:

6. Verify the operational status of the NFS services:

7. Open the /etc/exports file in a text editor and add an
entry for /common to export it to server1 with
read/write option:

8. Export the entry defined in the /etc/exports file. The -a
option exports all the entries listed in the file and -v
displays verbose output.

The NFS service is now set up on server1 with the /common
share available for mounting on server1 (NFS client in this
case).

For practice, you can unexport the share by issuing the
exportfs command with the -u flag as follows:

Before proceeding, re-export the share using sudo exportfs -
av.

Exercise 16-2: Mount Share on NFS Client
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will mount the /common share exported
in Exercise 16-1. You will create a mount point called /local,
mount the remote share manually, and confirm the mount.
You will add the remote share to the file system table for
persistence. You will remount the share and confirm the
mount. You will create a test file in the mount point and
confirm the file creation on the NFS server (server2).

1. Install the NFS software called nfs-utils:

2. Create /local mount point:

3. Mount the share manually using the mount command:

The remote share is successfully mounted on server1, and it
can be accessed as any other local file system.

4. Confirm the mount using either the mount or the df
command:

The mount command output returns the NFS protocol version
(NFS4) and all the options used in mounting the share.

5. Open the /etc/fstab file and append the following entry
for persistence:

 The _netdev option will cause the system to wait for networking

to establish before attempting to mount this share.

 A mount point should be empty and must not be in use when an

attempt is made to mount a share on it.

6. Unmount the share manually using the umount
command and remount it via the fstab file to validate
the accuracy of the entry placed in the file:

7. Run mount and df -h again to verify the remounting.
8. Create a file called nfsfile under /local and verify:

9. Confirm the file creation on the NFS server (server2):

EXAM TIP: Do not forget to update the /etc/fstab file on the client.

This completes the setup and testing of mounting,
unmounting, and remounting of an NFS share on the client.

Auto File System (AutoFS)
In the previous section, you learned how to attach (mount) an
NFS share to the Linux directory tree manually for access by
users and applications on an NFS client. Once attached, the
share was treated just like any other local file system. You
also learned how to detach (unmount) an NFS share manually
from the directory tree to make it inaccessible to users and
applications. You placed an entry for the share in the fstab file
to guarantee a remount during system reboots.

RHEL offers an alternative way of mounting and unmounting a
share on the clients during runtime as well as system reboots.
This feature is delivered by a service called the Auto File
System (AutoFS). AutoFS is a client-side service, which is
employed to mount an NFS share on-demand. With a proper
entry placed in AutoFS configuration files, the AutoFS service
automatically mounts a share upon detecting an activity in its
mount point with a command such as ls or cd. In the same
manner, AutoFS unmounts the share automatically if it has
not been accessed for a predefined period of time.

 To avoid inconsistencies, mounts managed with AutoFS should

not be mounted or unmounted manually or via the /etc/fstab file.

The use of AutoFS saves the kernel from dedicating system
resources to maintain unused NFS shares, ultimately
contributing to the overall system performance.

Benefits of Using AutoFS
There are several benefits associated with using the AutoFS
service over placing entries in the /etc/fstab file. Some of the

key benefits are described below:

AutoFS requires that NFS shares be defined in text
configuration files called maps, which are located in the
/etc or /etc/auto.master.d directory. AutoFS does not
make use of the /etc/fstab file.
AutoFS does not require root privileges to mount an
NFS share; manual mounting and mounting via fstab do
require that privilege.
AutoFS prevents an NFS client from hanging if an NFS
server is down or inaccessible. With the other method,
the unavailability of the NFS server may cause the NFS
client to hang.
With AutoFS, a share is unmounted automatically if it is
not accessed for five minutes by default. With the fstab
method, the share stays mounted until it is either
manually unmounted or the client shuts down.
AutoFS supports wildcard characters and environment
variables, which the other method does not support.

How AutoFS Works
The AutoFS service consists of a daemon called automount in
the userland that mounts configured shares automatically
upon access. This daemon is invoked at system boot. It reads
the AutoFS master map and creates initial mount point
entries, but it does not mount any shares yet. When the
service detects a user activity under a mount point during
runtime, it mounts the requested file system at that time. If a
share remains idle for a certain time period, automount
unmounts it by itself.

AutoFS Configuration File
The configuration file for the AutoFS service is
/etc/autofs.conf, which AutoFS consults at service startup.
Some key directives from this file are shown below along with
preset values:

master_map_name = auto.master
timeout = 300
negative_timeout = 60
mount_nfs_default_protocol = 4
logging = none

There are additional directives available in this file and more
can be added to modify the default behavior of the AutoFS
service. Table 16-1 describes the above directives.

Directive Description

master_map_name Defines the name of the master map.
The default is auto.master located in
the /etc directory.

timeout Specifies, in seconds, the maximum
idle time after which a share is
automatically unmounted. The
default is five minutes.

negative_timeout Expresses, in seconds, a timeout
value for failed mount attempts. The
default is one minute.

mount_nfs_default_protocol Sets the default NFS version to be
used to mount shares.

logging Configures a logging level. Options
are none, verbose, and debug. The
default is none (disabled).

Table 16-1 AutoFS Directives

The directives in the autofs.conf file are normally left to their
default values, but you can alter them if required.

AutoFS Maps
The AutoFS service needs to know the NFS shares to be
mounted and their locations. It also needs to know any
specific options to use with mounting them. This information
is defined in AutoFS files called maps. There are three
common AutoFS map types: master, direct, and indirect.

The Master Map
The auto.master file located in the /etc directory is the default
master map, as defined in the /etc/autofs.conf configuration
file with the master_map_name directive. This map may be
used to define entries for indirect and direct maps. However,
it is recommended to store user-defined map files in the
/etc/auto.master.d directory, which the AutoFS service
automatically parses at startup. The following presents two
samples to explain the format of the map entries:

/- /etc/auto.master.d/auto.direct
/misc /etc/auto.misc

Line 1 defines a direct map and points to the
/etc/auto.master.d/auto.direct file for mount details.

The second one is for an indirect map, notifying AutoFS to
refer to the /etc/auto.misc file for mount details. The umbrella
mount point /misc will precede all mount point entries listed in
the /etc/auto.misc file. This indirect map entry is normally
used to automount removable file systems, such as CD, DVD,
external USB disks, and so on. Any custom indirect map file
should be located in the /etc/auto.master.d directory.

You may append an option to either entry in the auto.master
file; however, that option will apply globally to all subentries
in the specified map file.

The Direct Map
The direct map is used to mount shares automatically on any
number of unrelated mount points. Some key points to note
when working with direct maps are:

Direct mounted shares are always visible to users.
Local and direct mounted shares can coexist under one
parent directory.

Accessing a directory containing many direct mount
points mounts all shares.

Each direct map entry places a separate share entry to the
/etc/mtab file, which maintains a list of all mounted file
systems whether they are local or remote. This file is updated
whenever a local file system, removable file system, or a
remote share is mounted or unmounted.

Exercise 16-3: Access NFS Share Using
Direct Map
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will configure a direct map to automount
the NFS share /common that is available from server2. You will
install the relevant software, create a local mount point
/autodir, and set up AutoFS maps to support the automatic
mounting. Note that /common is already mounted on the
/local mount point on server1 (NFS client) via the fstab file.
There should’nt be any conflict in configuration or
functionality between the two.

1. Install the AutoFS software package called autofs:

2. Create a mount point /autodir using the mkdir
command:

3. Edit the /etc/auto.master file and add the following
entry at the beginning of the file. This entry will point
the AutoFS service to the auto.dir file for additional
information.

4. Create /etc/auto.master.d/auto.dir file and add the
mount point, NFS server, and share information to it:

5. Start the AutoFS service now and set it to autostart at
system reboots:

6. Verify the operational status of the AutoFS service. Use
the -l and --no-pager options to show full details without
piping the output to a pager program (the pg command
in this case).

7. Run the ls command on the mount point /autodir and
then issue the mount command to verify that the share
is automounted and accessible:

Observe the above outcomes. The mount command output
depicts the path of the AutoFS map
(/etc/auto.master.d/auto.dir), the file system type (autofs),
and the options used during the mount process. An activity in
the mount point (the ls command) caused AutoFS to mount
the share /common on /autodir. Wait five minutes and run the
mount command again. You’ll notice that the auto file system
has disappeared. A cd, ls, or some other activity in the mount
point will bring it back.

This completes the AutoFS setup for an NFS share on the
client using a direct map.

The Indirect Map
The indirect map is preferred over the direct map if you want
to mount all of the shares under one common parent
directory. Some key points to note when working with indirect
maps are:

Indirect mounted shares become visible only after they
have been accessed.
Local and indirect mounted shares cannot coexist under
the same parent directory.
Each indirect map puts only one entry in the /etc/mtab
mount table.
Accessing a directory containing many indirect mount
points shows only the shares that are already mounted.

Both direct and indirect maps have their own merits and
demerits. By comparing their features, it seems more prudent
to use the indirect map for automounting NFS shares.
However, this statement may not be true for every

environment, as there could be specifics that would dictate
which option to go with.

Exercise 16-4: Access NFS Share Using
Indirect Map
This exercise should be done on server1 as user1 with sudo
where required.

In this exercise, you will configure an indirect map to
automount the NFS share /common that is available from
server2. You will install the relevant software and set up
AutoFS maps to support the automatic mounting. You will
observe that the specified mount point “autoindir” is created
automatically under /misc.

Note that /common is already mounted on the /local mount
point via the fstab file and it is also configured via a direct
map for automounting on /autodir. There should occur no
conflict in configuration or functionality among the three.

1. Install the AutoFS software package called autofs:

2. Confirm the entry for the indirect map /misc in the
/etc/auto.master file exists:

3. Edit the /etc/auto.misc file and add the mount point,
NFS server, and share information to it:

4. Start the AutoFS service now and set it to autostart at
system reboots:

5. Verify the operational status of the AutoFS service. Use
the -l and --no-pager options to show full details without
piping the output to a pager program (the pg command
in this case):

6. Run the ls command on the mount point /misc/autoindir
and then grep for auto.misc or autoindir on the mount
command output to verify that the share is
automounted and accessible:

Observe the above outcomes. The mount command output
illustrates the path of the AutoFS map (/etc/auto.misc), the
auto-generated mount point (/misc/autoindir), file system
type (autofs), and the options used during the mount process.
An activity in the mount point (ls command in this case)
caused AutoFS to mount the share /common on
/misc/autoindir. You can use the same umbrella mount point
/misc to mount additional auto-generated mount points.

This mount point will automatically disappear after five
minutes of idling. You can verify that by issuing the mount
command again. A cd, ls, or some other activity in the mount
point will bring it back.

This completes the AutoFS setup for an NFS share on the
client using an indirect map.

Automounting User Home Directories
AutoFS allows us to automount user home directories by
exploiting two special characters in indirect maps. The
asterisk (*) replaces the references to specific mount points
and the ampersand (&) substitutes the references to NFS
servers and shared subdirectories. With user home directories
located under /home, on one or more NFS servers, the AutoFS
service will connect with all of them simultaneously when a
user attempts to log on to a client. The service will mount
only that specific user’s home directory rather than the entire
/home. The indirect map entry for this type of substitution is
defined in an indirect map, such as
/etc/auto.master.d/auto.home, and will look like:

With this entry in place, there is no need to update any
AutoFS configuration files if NFS servers with /home shared
are added or removed. Similarly, if user home directories are
added or deleted, there will be no impact on the functionality
of AutoFS. If there is only one NFS server sharing the home
directories, you can simply specify its name in lieu of the first
& symbol in the above entry.

Exercise 16-5: Automount User Home
Directories Using Indirect Map
There are two portions for this exercise. The first portion
should be done on server2 (NFS server) and the second

portion on server1 (NFS client) as user1 with sudo where
required.

In the first portion, you will create a user account called
user30 with UID 3000. You will add the /home directory to the
list of NFS shares so that it becomes available for remote
mount.

In the second portion, you will create a user account called
user30 with UID 3000, base directory /nfshome, and no user
home directory. You will create an umbrella mount point called
/nfshome for mounting the user home directory from the NFS
server. You will install the relevant software and establish an
indirect map to automount the remote home directory of
user30 under /nfshome. You will observe that the home
directory of user30 is automounted under /nfshome when you
sign in as user30.

On NFS server server2:

1. Create a user account called user30 with UID 3000 (-u)
and assign password “password1”:

2. Edit the /etc/exports file and add an entry for /home:

3. Export all the shares listed in the /etc/exports file:

On NFS client server1:

1. Install the AutoFS software package called autofs:

2. Create a user account called user30 with UID 3000 (-u),
base home directory location /nfshome (-b), no home
directory (-M), and password “password1”:

This is to ensure that the UID for the user is consistent on the
server and the client to avoid access issues.

3. Create the umbrella mount point /nfshome to
automount the user’s home directory:

4. Edit the /etc/auto.master file and add the mount point
and indirect map location to it:

5. Create the /etc/auto.master.d/auto.home file and add
the following information to it:

For multiple user setup, you can replace “user30” with the &
character, but ensure that those users exist on both the
server and the client with consistent UIDs.

6. Start the AutoFS service now and set it to autostart at
system reboots. This step is not required if AutoFS is
already running and enabled.

7. Verify the operational status of the AutoFS service. Use
the -l and --no-pager options to show full details without
piping the output to a pager program (the pg
command):

8. Log in as user30 and run the pwd, ls, and df commands
for verification:

The user is successfully logged in with their home directory
automounted from the NFS server. The pwd command
confirms the path. The df command verifies the NFS server IP
and the source home directory location for user30, as well as
the mount location. You can also use the mount command and
pipe the output to grep for user30 to view mount details
(mount | grep user30).

EXAM TIP: You may need to configure AutoFS for mounting a user
home directory.

This completes the setup for an automounted home directory
share for a user.

Chapter Summary

This chapter discussed the sharing and mounting of remote
file systems using the Network File System protocol. It
elucidated the concepts, benefits, and versions of the NFS
service, and described the commands and configuration files
involved in NFS management on the server and the client.

Next, we performed an exercise to demonstrate the
configuration and sharing of a directory on one of the lab
servers (NFS server) and another exercise on the second lab
system (NFS client) to mount that share manually and
persistently using the standard NFS mount method.

We explored the client-side service called AutoFS for
automounting NFS shares. We discussed the concepts,
benefits, and components associated with AutoFS, and
analyzed its maps. We performed exercises to mount, confirm,
and unmount the remote NFS share using both direct and
indirect methods.

Finally, we described the AutoFS setting to automount user
home directories from the NFS server.

Check Your Understanding
1. What would the entry * server10:/home/& in an AutoFS

indirect map imply?
2. Which command is used to export a share?
3. An NFS server exports a share and an NFS server

mounts it. True or False?
4. Which command would you use to unexport a share?
5. What is the name of the NFS server configuration file?
6. What would the line entry /dir1 *(rw) in the /etc/exports

file mean?
7. What type of AutoFS map would have the /-

/etc/auto.media entry in the auto.master file?
8. AutoFS requires root privileges to automatically mount

a network file system. True or False?

9. What is the default timeout value for a file system
before AutoFS unmounts it automatically?

10. Name the three common types of maps that AutoFS
support.

11. Arrange the tasks in three different correct sequences
to export a share using NFS: (a) update /etc/exports, (b)
add service to firewalld, (c) run exportfs, (d) install nfs-
utils, and (e) start nfs service.

12. What is the name of the AutoFS configuration file and
where is it located?

13. The name of the AutoFS service daemon is autofs. True
or False?

Answers to Check Your
Understanding

1. This indirect map entry would mount individual user
home directories from server10.

2. The exportfs command.
3. True.
4. The exportfs command with the -u switch.
5. The /etc/nfs.conf file.
6. The line entry would export /dir1 in read/write mode to

all systems.
7. A direct map.
8. False.
9. Five minutes.
10. The three common AutoFS maps are master, direct,

and indirect.
11. d/e/b/a/c, d/e/a/c/b, or d/e/a/b/c.
12. The name of the AutoFS configuration file is autofs.conf

and it is located in the /etc directory.
13. False. The name of the AutoFS service daemon is

automount.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 16-1: Configure NFS Share and
Automount with Direct Map
As user1 with sudo on server2, share directory /common
(create it) in read/write mode using NFS. On server1 as user1
with sudo, install the AutoFS software and start the service.
Configure the master and a direct map to automount the
share on /mntauto (create it). Run exportfs -avr to export
the share. Run ls on /mntauto to trigger the mount. Use df -h
to confirm. (Hint: NFS Server and Client Configuration, and
Auto File System).

Lab 16-2: Automount NFS Share with
Indirect Map
As user1 with sudo on server1, configure the master and an
indirect map to automount the share under /autoindir (create
it). Run ls on /autoindir/common to trigger the mount. Use df -
h to confirm. (Hint: Auto File System).

Chapter 17

Networking, Network
Devices, and Network
Connections

This chapter describes the following major
topics:

Overview of basic networking concepts:
hostname, IPv4, network classes, subnetting,
subnet mask, CIDR, protocol, TCP/UDP, well-
known ports, ICMP, Ethernet address, IPv6,
IPv4/IPv6 differences, consistent device
naming, etc.

Change hostname of the system
Understand the concepts of network device
and connection

Anatomy of a network connection profile
Know network device and connection
management tools and techniques

Configure network connections by hand and
using commands

Describe the hosts table
Test network connectivity using hostname
and IP address

RHCSA Objectives:

42.Configure IPv4 and IPv6 addresses

Acomputer network is formed when two or more
physical or virtual computers are connected together
for sharing resources and data. The computers may be

linked via wired or wireless means, and a device such as a
switch is used to interconnect several computers to allow
them to communicate with one another on the network. There
are numerous concepts and terms that need to be grasped in
order to work effectively and efficiently with network device
and network connection configuration and troubleshooting,
and several other network services. This chapter provides a
wealth of that information.

For a system to be able to talk to other systems, one of its
network devices must have a connection profile attached
containing a unique IP address, hostname, and other essential
network parameters. The network assignments may be
configured statically or obtained automatically from a DHCP
server. Few files are involved in the configuration, which may
be modified by hand or using commands. Testing follows the
configuration to confirm the system’s ability to communicate.

Networking Fundamentals
The primary purpose of computer networks is to allow users
to share data and resources. A simple network is formed when
two computers are interconnected. Using a networking device
such as a switch, this network can be expanded to include
additional computers, as well as printers, scanners, storage,
and other devices (collectively referred to as nodes or
entities). A computer on the network can be configured to act
as a file server, storage server, or as a gateway to the
Internet for the rest of the networked computers. Nodes may
be interconnected using wired or wireless means. A corporate

network may have thousands of nodes linked via a variety of
data transmission media. The Internet is the largest network
of networks with millions of nodes interconnected.

There are many elementary concepts and terms that you
need to grasp before being able to configure network
interfaces, connection profiles, and client/server setups that
are elaborated in this and other chapters. As well, there are
many configuration files and commands related to various
network services that you need to understand thoroughly in
order to manage a RHEL-based environment effectively. Some
of the concepts, terms, configuration files, and commands are
explained in this chapter.

Hostname
A hostname is a unique alphanumeric label (the hyphen (-),
underscore (_), and period (.) characters are also allowed)
that is assigned to a node to identify it on the network. It can
consist of up to 253 characters. It is normally allotted based
on the purpose and principal use of the system. In RHEL, the
hostname is stored in the /etc/hostname file.

The hostname can be viewed with several different
commands, such as hostname, hostnamectl, uname, and
nmcli, as well as by displaying the content of the
/etc/hostname file. Let’s run these commands on server1:

All of the above reported exactly the same output.

Exercise 17-1: Change System Hostname
This exercise should be done on both server1 and server2 as
user1 with sudo where required.

In this exercise, you will change the hostnames of both lab
servers persistently. You will rename server1.example.com to
server10.example.com by editing a file and restarting the
corresponding service daemon. You will rename
server2.example.com to server20.example.com using a
command. You will validate the change on both systems.

On server1:

1. Open the /etc/hostname file in a text editor and change
the current entry to the following:

2. Execute the systemctl command to restart the
systemd-hostnamed service daemon and verify the new
hostname with the hostname command:

3. To view the reflection of the new hostname in the
command prompt, log off and log back in as user1. The
new prompt will look like:

On server2:

1. Execute the hostnamectl command to change the
hostname to server20.example.com:

2. To view the reflection of the new hostname in the
command prompt, log off and log back in as user1. You

can also use the hostname command to view the new
name.

You can also change the system hostname using the nmcli
command. For instance, you could have used nmcli general
hostname server20.example.com to rename
server2.example.com. The nmcli command is explained in
detail later in this chapter.

Going forward, you will be using the new hostnames server10
and server20.

IPv4 Address
IPv4 stands for Internet Protocol version 4 and represents a
unique 32-bit software address that every single entity on the
network must have in order to communicate with other
entities. It was the first version of IP that was released for
public use. IPv4 addresses are also referred to as dotted-quad
addresses, and they can be assigned on a temporary or
permanent basis. Temporary addresses are referred to as
dynamic addresses and are typically leased from a DHCP
server for a specific period of time. Permanent addresses, on
the other hand, are called static addresses and they are
manually set.

You can use the ip command with the addr argument to view
the current IP assignments on the system. Let’s run this
command on server10 and see what it returns:

The output indicates one configured network connection
(number 2 above) called enp0s3 with IPv4 address
192.168.0.110 assigned to it. The other connection (number 1
above), represented as lo, is a special purpose software
device reserved for use on every Linux system. Its IPv4
address is always 127.0.0.1, and it is referred to as the
system’s loopback (or localhost) address. Network programs
and applications that communicate with the local system
employ this hostname.

Network Classes
An IPv4 address is comprised of four period-separated octets
(4 x 8 = 32 bit address) that are divided into a network
portion (or network ID/bits) comprising of the Most Significant
Bits (MSBs) and a node portion (or node/host ID/bits)
containing the Least Significant Bits (LSBs). The network
portion identifies the correct destination network, and the
node portion represents the correct destination node on that
network. Public network addresses are classified into three
categories: class A, class B, and class C. Private network
addresses are classified into two categories: class D and class
E. Class D addresses are multicast and they are employed in
special use cases only. Class E addresses are experimental
and are reserved for future use.

Class A

Class A addresses are used for large networks with up to 16
million nodes. This class uses the first octet as the network
portion and the rest of the octets as the node portion. The
total number of usable network and node addresses can be
up to 126 and 16,777,214, respectively. The network address
range for class A networks is between 0 and 127. See an
example below of a random class A IP address, which also
shows two reserved addresses:

10.121.51.209 (class A IP address)
10.121.51.0 (network address)
10.121.51.255 (broadcast address)

The 0 and 255 (highlighted) are network and broadcast
addresses, and they are always reserved.

Class B
Class B addresses are used for mid-sized networks with up to
65 thousand nodes. This class employs the first two octets as
the network portion and the other two as the node portion.
The total number of usable network and node addresses can
be up to 16,384 and 65,534, respectively. The network
address range for class B networks is between 128 and 191.
See an example below of a random class B IP address, which
also shows two reserved addresses:

161.121.51.209 (class B IP address)
161.121.51.0 (network address)
161.121.51.255 (broadcast address)

The 0 and 255 (highlighted) are network and broadcast
addresses, and they are always reserved.

Class C
Class C addresses are employed for small networks with up to
254 nodes. This class uses the first three octets as the
network portion and the last octet as the node portion. The
total number of usable network and node addresses can be

up to 2,097,152 and 254, respectively. The network address
range for class C networks is between 192 and 223. See an
example below of an arbitrary class C IP address, which also
shows two reserved addresses:

215.121.51.209 (class C IP address)
215.121.51.0 (network address)
215.121.51.255 (broadcast address)

The 0 and 255 (highlighted) are network and broadcast
addresses, and they are always reserved.

Class D
Class D addresses range from 224 to 239.

Class E
Class E addresses range from 240 to 255.

Subnetting
Subnetting is a technique by which a large network address
space is divided into several smaller and more manageable
logical subnetworks, referred to as subnets. Subnetting results
in reduced network traffic, improved network performance,
and de-centralized and easier administration, among other
benefits. Subnetting does not touch the network bits; it uses
the node bits only.

The following should be kept in mind when dealing with
subnetting:

Subnetting does not increase the number of IP
addresses in a network. In fact, it reduces the number
of usable addresses.
All nodes in a given subnet have the same subnet
mask.
Each subnet acts as an isolated network and requires a
router to talk to other subnets.

The first and the last IP address in a subnet are
reserved. The first address points to the subnet itself,
and the last address is the broadcast address.

Subnet Mask
A subnet mask or netmask is the network portion plus the
subnet bits. It segregates the network bits from the node bits.
It is used by routers to pinpoint the start and end of the
network/subnet portion and the start and end of the node
portion for a given IP address.

The subnet mask, like an IP address, can be represented in
either decimal or binary notation. The 1s in the subnet mask
isolate the subnet bits from the node bits that contain 0s. The
default subnet masks for class A, B, and C networks are
255.0.0.0, 255.255.0.0, and 255.255.255.0, respectively.

To determine the subnet address for an arbitrary IP address,
such as 192.168.12.72 with netmask 255.255.255.224, write
the IP address in binary format. Then write the subnet mask in
binary format with all network and subnet bits set to 1 and all
node bits set to 0. Then perform a logical AND operation. For
each matching 1 you get a 1, otherwise you get a 0. The
following highlights the ANDed bits:

11000000.10101000.00001100.01001000 (IP address
192.168.12.72)

11111111.11111111.11111111.11100000 (subnet mask
255.255.255.224)

==============================
11000000.10101000.00001100.01000000 (subnet IP

192.168.12.64 in binar
format)

192 . 168 . 12 . 64 (subnet IP in decimal
format)

This calculation enables you to ascertain the subnet address
from a given IP and subnet mask.

Classless Inter-Domain Routing (CIDR)
Notation
Classless Inter-Domain Routing (CIDR) is a technique designed
to control the quick depletion of IPv4 addresses and the rapid
surge in the number of routing tables required to route IPv4
traffic on the network and the Internet. This technique was
introduced as a substitute for the classful scheme, which was
not scalable and had other limitations. Using CIDR, IPv4
addresses can be allocated in custom blocks suitable for
networks of all sizes. This technique has resulted in smaller
and less cluttered routing tables. CIDR was originally designed
to address IPv4 needs; however, it has been extended to
support IPv6 as well.

An IPv4 address written in CIDR notation has a leading
forward slash (/) character followed by the number of routing
bits. A sample class C IP address of 192.168.0.20 with the
default class C subnet mask of 255.255.255.0 will be written
as 192.168.0.20/24. This notation presents a compact method
of denoting an IP address along with its subnet mask.

Protocol
A protocol is a set of rules governing the exchange of data
between two network entities. These rules include how data is
formatted, coded, and controlled. The rules also provide error
handling, speed matching, and data packet sequencing. In
other words, a protocol is a common language that all nodes
on the network speak and understand. Protocols are defined
in the /etc/protocols file. An excerpt from this file is provided
below:

Column 1 in the output lists the name of a protocol, followed
by the associated port number, alias, and a short description
in columns 2, 3, and 4.

Some common protocols are TCP, UDP, IP, and ICMP.

TCP and UDP Protocols
TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol) protocols are responsible for transporting data
packets between network entities. TCP is reliable, connection-
oriented, and point-to-point. It inspects for errors and
sequencing upon a packet’s arrival on the destination node,
and returns an acknowledgement to the source node,
establishing a point-to-point connection with the peer TCP
layer on the source node. If the packet is received with an
error or if it is lost in transit, the destination node requests a
resend of the packet. This ensures guaranteed data delivery
and makes TCP reliable. Due to its reliability and connection-
oriented nature, TCP is widely implemented in network
applications.

UDP, in contrast, is unreliable, connectionless, and multi-
point. If a packet is lost or contains errors upon arrival at the
destination, the source node is unaware of it. The destination
node does not send an acknowledgment back to the source
node. A common use of this protocol is in broadcast-only
applications where reliability is not sought.

Well-Known Ports
Both TCP and UDP use ports for data transmission between a
client and its server program. Ports are either well-known or
private. A well-known port is reserved for an application’s
exclusive use, and it is standardized across all network
operating systems. Well-known ports are defined in the
/etc/services file, an excerpt of which is presented below:

Column 1 lists the official name of a network service, followed
by the port number and transport layer protocol the service
uses, optional aliases, and comments in successive columns.

Some common services and the ports they listen on are FTP
(File Transfer Protocol) 21, SSH (Secure Shell) 22, SMTP
(Simple Mail Transfer Protocol) 25, DNS (Domain Name
System) 53, HTTP (HyperText Transfer Protocol) 80, NTP
(Network Time Protocol) 123, secure HTTP (HyperText Transfer
Protocol Secure) 443, and rsyslog 514.

A private port, on the other hand, is an arbitrary number
generated when a client application attempts to establish a
communication session with its server process. This port
number no longer exists after the session has ended.

ICMP Protocol
The Internet Control Message Protocol (ICMP) is a key
protocol. It is primarily used for testing and diagnosing

network connections. Commands such as ping uses this
protocol to send a stream of messages to remote network
devices to examine their health and report statistical and
diagnostic information. The report includes the number of
packets transmitted, received, and lost; a round-trip time for
individual packets with an overall average; a percentage of
packets lost during the communication; and so on. See a
sample below that shows two packets (-c2) sent from
server10 to the IP address of server20:

Other commands, such as traceroute, also employ this
protocol for route determination and debugging between
network entities. The IPv6 version of ICMP is referred to as
ICMPv6 and it is used by tools such as ping6 and tracepath6.

Ethernet Address
An Ethernet address represents an exclusive 48-bit address
that is used to identify the correct destination node for data
packets transmitted from the source node. The data packets
include hardware addresses for the source and the destination
node. The Ethernet address is also referred to as the
hardware, physical, link layer, or MAC address.

You can use the ip command to list all network interfaces
available on the system along with their Ethernet addresses:

IP and hardware addresses work hand in hand, and a
combination of both is critical to identifying the correct
destination node on the network. A network protocol called

Address Resolution Protocol (ARP) is used to enable IP and
hardware addresses to work in tandem. ARP determines the
hardware address of the destination node when its IP address
is known.

IPv6 Address
With the explosive growth of the Internet, the presence of an
extremely large number of network nodes requiring an IP, and
an ever-increasing demand for additional addresses—the
conventional IPv4 address space, which provides
approximately 4.3 billion addresses—has been exhausted. To
meet the future demand, a new version of IP is now available
and its use is on the rise. This new version is referred to as
IPv6 (IP version 6) or IPng (IP next generation). By default,
IPv6 is enabled in RHEL 8 on all configured network
connections.

IPv6 is a 128-bit software address, providing access to
approximately 340 undecillion (340 followed by 36 zeros)
addresses. This is an extremely large space, and it is
expected to fulfill the IP requirements for several decades to
come.

IPv6 uses a messaging protocol called Neighbor Discovery
Protocol (NDP) to probe the network to discover neighboring
IPv6 devices, determine their reachability, and map their
associations. This protocol also includes enhanced
functionalities (provided by ICMP and ARP on IPv4 networks)
for troubleshooting issues pertaining to connectivity, address
duplication, and routing.

Unlike IPv4 addresses, which are represented as four dot-
separated octets, IPv6 addresses contain eight colon-
separated groups of four hexadecimal numbers. A sample v6
IP would be 1204:bab1:21d1:bb43:23a1:9bde:87df:bac9. It
looks a bit daunting at first sight, but there are methods that
will simplify their representation.

The ip addr command also shows IPv6 addresses for the
interfaces:

It returns two IPv6 addresses. The first one belongs to the
loopback interface, and the second one is assigned to the
enp0s3 connection.

Major Differences between IPv4 and IPv6
There are a number of differences between IPv4 and IPv6
protocols. Some of the major ones are highlighted in Table 17-
1.

IPv4 IPv6

Uses 4x8-bit, period-
separated decimal number

format for address
representation. Example:

192.168.0.100

Uses 8x16-bit, colon-separated
hexadecimal number format for
address representation. Example:
fe80::a00:27ff:feae:f35b

Number of address bits: 32 Number of address bits: 128

Maximum number of
addresses: ~4.3 billion.

Maximum number of addresses:
virtually unlimited

Common testing and
troubleshooting tools: ping,
traceroute, tracepath, etc.

Common testing and
troubleshooting tools: ping6,
traceroute6, tracepath6, etc.

Support for IP
autoconfiguration: no

Support for IP autoconfiguration:
yes

Packet size: 576 bytes Packet size: 1280 bytes

Table 17-1 IPv4 vs IPv6

These and other differences not listed here are due to
enhancements and new features added to IPv6.

Network Devices and
Connections
Network Interface Cards (NICs) are hardware adapters that
provide one or more Ethernet ports for network connectivity.
NICs may also be referred to as network adapters and
individual ports as network interfaces or network devices.
NICs may be built-in to the system board or are add-on
adapters. They are available in one, two, and four port
designs on a single adapter.

Individual interfaces (devices) can have one or more
connection profiles attached to them with different
configuration settings. Each connection profile has a unique
name and includes settings such as the device name,
hardware address, activating the connection on reboot, and
so on. A connection profile can be configured by editing files
or using commands. A device can have multiple connection
profiles attached, but only one of them can be active at a
time.

Consistent Network Device Naming
In RHEL versions earlier than 7, network interfaces were
named eth (Ethernet), em (embedded), and wlan (wireless
lan), and were numbered 0 and onwards as the interfaces
were discovered during a system boot. This was the default
scheme that had been in place for network device naming for
years. Given a large number of interfaces located onboard
and on add-on NICs, the number assignments could possibly
change on the next boot due to failures or errors in their
detection, which will result in connectivity and operational
issues.

As of RHEL 7, the default naming scheme has been
augmented to base on several rules governed by the udevd
service. The default ruleset is to assign names using the

device’s location and topology, and the setting in firmware.
The underlying virtualization layer (VMware, VirtualBox, KVM)
also plays a role in the naming. Some sample device names
are enp0s3, ens160, etc.

This advanced ruleset has resulted in consistent and
predictable naming, eliminating the odds of reenumeration
during a hardware rescan. Moreover, the designated names
are not affected by the addition or removal of interface cards.
This naming scheme helps in identifying, configuring,
troubleshooting, and replacing the right adapter without
hassle.

Understanding Interface Connection
Profile
Each network connection has a configuration file that defines
IP assignments and other relevant parameters for it. The
networking subsystem reads this file and applies the settings
at the time the connection is activated. Connection
configuration files (or connection profiles) are stored in a
central location under the /etc/sysconfig/network-scripts
directory. The filenames begin with ifcfg-and are followed by
the name of the connection. Some instances of connection
filenames are ifcfg-enp0s3, ifcfg-ens160, and ifcfg-em1.

On server10 and server20, the device name for the first
interface is enp0s3 with connection name enp0s3 and
relevant connection information stored in the ifcfg-enp0s3 file.
This connection was established at the time of installation.
The current content of the ifcfg-enp0s3 file from server10 are
presented below with IPv6 directives excluded:

These directives and a few others that can be defined in this
file are listed in alphabetical order in Table 17-2.

Directive Description

BOOTPROTO Defines the boot protocol to be used.
Common values include dhcp to obtain IP
assignments from a DHCP server and none or
static to use a static IP as set with the
IPADDR directive.

BROWSER_ONLY Works if PROXY_METHOD is set to auto.
Default is no.

DEFROUTE Whether to use this connection as the
default route

DEVICE Specifies the device name for the network
interface

DNS1 Defines the IP address or the hostname of
the first DNS server. This address/hostname
is placed in the /etc/resolv.conf file if the
PEERDNS directive is set to no in this file.

GATEWAY Specifies the gateway address for the
connection if the BOOTPROTO directive is set
to none or static

HWADDR Describes the hardware address for the
device

IPADDR Specifies the static IP for the connection if
the BOOTPROTO directive is set to none or
static

IPV4_FAILURE_FATAL Whether to disable the device if IPv4
configuration fails. Default is no.

IPV6INIT Whether to enable IPv6 support for this
connection

NAME Any description given to this connection. The
default matches the device name.

NETMASK Sets the netmask address for the connection
if the BOOTPROTO directive is set to none or
static

NM_CONTROLLED Whether the NetworkManager service is to
be allowed to modify the configuration for
this connection. It should be turned off on
computers that use static IP addresses.
Default is yes.

ONBOOT Whether to auto-activate this connection at
system boot

PEERDNS Whether to modify the DNS client resolver

file /etc/resolv.conf.Default is yes if
BOOTPROTO is set to dhcp.

PREFIX Defines the number of subnet bits. This
directive may be used in lieu of NETMASK.

PROXY_METHOD Method to be used for proxy setting. Default
is no.

UUID The UUID associated with this connection

TYPE Specifies the type of this connection

Table 17-2 Network Connection Configuration
Directives

There are numerous other directives, including those for IPv6,
that may be defined in connection profiles. Run man nm-
settings for a description of additional directives.

Exercise 17-2: Add Network Devices to
server10 and server20
This exercise will add one network interface to server10 and
one to server20 using VirtualBox.

In this exercise, you will shut down server10 and server20.
You will launch VirtualBox and add one network interface to
server10 and one to server20 in preparation for Exercises 17-
3 and 17-4.

1. Execute sudo shutdown now on server10.
2. Start VirtualBox on your Windows/Mac computer and

highlight the RHEL8-VM1 virtual machine that you
created in Exercise 1-2. Make sure it is powered off.

3. Click Settings at the top and then Network on the
window that pops up. Click on “Adapter 2” and check
the “Enable Network Adapter” box. Select “Internal
Network” from the drop down list besides “Attached to”.
See Figure 17-1.

Figure 17-1 VirtualBox – Add Network Interface

4. Click OK to return to the main VirtualBox interface.
5. Power on RHEL8-VM1 to boot RHEL 8 in it.
6. When the server is up, log on as user1 and run the ip

command as follows to verify the new interface:

The output reveals a new network device called enp0s8. This
is the new interface you just added to the VM.

7. Repeat steps 1 through 6 to add a network interface to
server20 and verify.

This completes the addition of new network interfaces to
server10 and server20. You are now ready to use them in the
upcoming exercises.

Network Device and Connection
Administration Tools
There are a few tools and methods available for configuring
and administering network interfaces, connections, and
connection profiles. The NetworkManager service includes a
toolset for this purpose as well. Let’s take a quick look at the
basic management tools in Table 17-3.

Command Description

ip A powerful and versatile tool for displaying,
monitoring, and managing interfaces, connections,
routing, traffic, etc.

ifup Activates a connection

ifdown Deactivates a connection

Table 17-3 Basic Network Management Tools

You can manually create a connection profile and attach it to
a network device. Many Linux administrators prefer this
approach. RHEL also offers an alternative method for this
purpose, which is discussed later in this chapter.

In Exercise 17-3, you’ll use the manual method to configure a
connection profile for a new network device that was added in
Exercise 17-2 and employ the tools listed in Table 17-3.

Exercise 17-3: Configure New Network
Connection Manually
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will create a connection profile for the
new network interface enp0s8 using a text editing tool. You
will assign the IP 172.10.10.110/24 with gateway 172.10.10.1
and set it to autoactivate at system reboots. You will
deactivate and reactivate this interface at the command
prompt.

1. Create a file called ifcfg-enp0s8 in the
/etc/sysconfig/network-scripts directory and enter the
following information to establish a connection profile:

2. Deactivate and reactivate this interface using the
ifdown and ifup commands:

3. Verify the activation of enp0s8 connection:

The new connection profile called enp0s8 has been applied to
the new network device called enp0s8. The connection is now

ready for use. The connectivity to server10 over this new
connection is tested later in this chapter.

The NetworkManager Service
NetworkManager is the default interface and connection
configuration, administration, and monitoring service used in
RHEL 8. This service has a daemon program called
NetworkManager, which is responsible for keeping available
interfaces and connections up and active. It offers a powerful
command line tool called nmcli to manage interfaces and
connections, and to control the service. This utility offers
many options for their effective management. The
NetworkManager service also furnishes a text-based interface
called nmtui and a graphical equivalent called nm-connection-
editor that you may use in lieu of nmcli.

The nmcli Command
nmcli is a NetworkManager command line tool that is
employed to create, view, modify, remove, activate, and
deactivate network connections, and to control and report
network device status. It operates on seven different object
categories, with each category supporting several options to
form a complete command. The seven categories are general,
networking, connection, device, radio, monitor, and agent.
This discussion only focuses on the connection and device
object categories. They are described in Table 17-4 along with
management operations that they can perform.

Object Description

Connection: activates, deactivates, and administers
network connections

show Lists connections

up / down Activates/deactivates a connection

add Adds a connection

edit Edits an existing connection or adds a new one

modify Modifies one or more properties of a connection

delete Deletes a connection

reload Instructs NetworkManager to re-read all connection
profiles

load Instructs NetworkManager to re-read a connection
profile

Device: displays and administers network interfaces

status Exhibits device status

show Displays detailed information about all or the
specified interface

Table 17-4 Network Connection and Device
Administration Tools

Object categories and the objects within them may be written
in an abridged form to save typing. For instance, the
connection category may be abbreviated as a “c” or “con”
and the device category as a “d” or “dev”. The same rule
applies to object names as well. For instance, add may be
specified as an “a”, delete as a “d”, and so on. Check the
manual pages for nmcli-examples.

The nmcli command supports tab completion to make its use
easier. Let’s run a few examples on server10 to understand
the command’s usage.

To show (s) all available connections (c) including both active
and inactive:

The output lists two connection profiles (NAME) and the
devices (DEVICE) they are attached to. It also shows their
UUID and type.

To deactivate (down) the connection (c) enp0s8:

The connection profile is detached from the device, disabling
the connection. You can check with nmcli c s.

To activate (up) the connection (c) enp0s8:

The connection profile is reattached to the device, enabling
the connection. You can check with nmcli c s.

To display the status (s) of all available network devices (d):

The output shows three devices and their types, states, and
the connection profiles attached to them. The loopback
interface is not managed by the NetworkManager service.

Exercise 17-4: Configure New Network
Connection Using nmcli
This exercise should be done on server20 as user1 with sudo
where required.

In this exercise, you will create a connection profile using the
nmcli command for the new network interface enp0s8 that
was added to server20 in Exercise 17-2. You will assign the IP
172.10.10.120/24 with gateway 172.10.10.1, and set it to
autoactivate at system reboots. You will deactivate and
reactivate this interface at the command prompt.

1. Check the running status of the NetworkManager
service:

The service is up and active on the server.

2. Check the presence of the new interface:

The output signifies the presence of a new network device
called enp0s8. It does not have a connection profile attached
to it.

3. Add (add) a connection profile (con) and attach it to the
new interface. Use the type Ethernet, device name
(ifname) enp0s8 with a matching connection name
(con-name), CIDR (ip4) 172.10.10.120/24, and gateway
(gw4) 172.10.10.1:

A new connection has been added, attached to the new
interface, and activated. In addition, the command has saved

the connection information in a new file called ifcfg-enp0s8
and stored it in the /etc/sysconfig/network-scripts directory.

4. Confirm the new connection status:

The output indicates the association of the new connection
with the network device.

5. Check the content of the ifcfg-enp0s8 connection
profile:

There are a number of default directives added to the
connection profile in addition to the configuration items you
entered with the nmcli command above. The ONBOOT
directive is also set to yes automatically. This setting is an
indicative of the fact that the connection will be auto-enabled
at system reboots.

6. Check the IP assignments for the new connection:

The IP is assigned to the interface. The connection is tested
later in this chapter.

7. Deactivate this connection to detach it from the
interface:

The connection profile is now detached from the interface,
deactivating the connection. You can check with nmcli c s.

8. Reactivate the connection to attach it to the interface:

The connection profile is now reattached to the interface,
activating the connection. You can check with nmcli c s.

This brings the exercise to a conclusion.

Understanding Hosts Table
Each IP address used on the system should have a hostname
assigned to it. In an environment with multiple systems on the
network, it is prudent to have some sort of a hostname to IP
address resolution method in place to avoid typing the
destination system IP repeatedly to access it. DNS is one such
method. It is designed for large networks such as corporate
networks and the Internet. For small, internal networks, the
use of a local hosts table (the /etc/hosts file) is also common.
This table is used to maintain hostname to IP mapping for

systems on the local network, allowing us to access a system
by simply employing its hostname. In this book, there are two
systems in place: server10.example.com with IP
192.168.0.110 and alias server10, and server20.example.com
with IP 192.168.0.120 and alias server20. You can append this
information to the /etc/hosts file on both server10 and
server20 as shown below:

192.168.0.110 server10.example.comserver10
192.168.0.120 server20.example.comserver20

Each row in the file contains an IP address in column 1
followed by the official (or canonical) hostname in column 2,
and one or more optional aliases thereafter. The official
hostname and one or more aliases give users the flexibility of
accessing the system using any of these names.

EXAM TIP: In the presence of an active DNS with all hostnames
resolvable, there is no need to worry about updating the hosts file.

As expressed above, the use of the hosts file is common on
small networks and it should be updated on each individual
system to reflect any changes for best inter-system
connectivity experience.

Testing Network Connectivity
RHEL includes the ping command to examine network
connectivity between two systems. It uses the IP address of
the destination system to send a series of 64-byte Internet
Control Message Protocol (ICMP) test packets to it. A response
from the remote system validates connectivity and health.
With the -c option, you can specify the number of packets that
you want transmit.

The following sends two packets from server10 to
192.168.0.120 (IP for server20):

Under “192.168.0.120 ping statistics,” the output depicts the
number of packets transmitted, received, and lost. The packet
loss should be 0%, and the round trip time should not be too
high for a healthy connection. In general, you can use this
command to test connectivity with the system’s own IP, the
loopback IP (127.0.0.1), a static route, the default gateway,
and any other address on the local or remote network.

If a ping response fails, you need to check if the NIC is seated
properly, its driver is installed, network cable is secured
appropriately, IP and netmask values are set correctly, and
the default or static route is accurate.

Exercise 17-5: Update Hosts Table and Test
Connectivity
This exercise should be done on server10 and server20 as
user1 with sudo where required.

In this exercise, you will update the /etc/hosts file on both
server10 and server20. You will add the IP addresses assigned
to both connections and map them to hostnames server10,
server10s8, server20, and server20s8 appropriately. You will
test connectivity from server10 to server20 and from
server10s8 to server20s8 using their IP addresses and then
their hostnames.

On server20:

1. Open the /etc/hosts file and add the following entries:

The IP addresses for both connections are added for both
servers.

On server10:

2. Open the /etc/hosts file and add the following entries:

The IP addresses for both connections are added for both
servers.

3. Send two packets from server10 to the IP address of
server20:

4. Issue two ping packets on server10 to the hostname of
server20:

5. Send one packet from server10 to the IP address of
server20s8:

6. Issue one ping packet on server10 to the hostname of
server20s8:

Steps 3 through 6 verified the connectivity to the remote
server over both connections. Each server has two IP
addresses, and each IP address has a unique hostname
assigned to it.

This concludes the exercise.

Chapter Summary
This chapter discussed the rudiments of networking. It began
by providing an understanding of various essential networking
terms and concepts to build the foundation for networking
topics going forward. Topics such as hostname, IPv4, IPv6,
network classes, subnetting, subnet mask, CIDR notation,
protocol, port, Ethernet address, and consistent device
naming were covered in sufficient detail.

We modified hostnames on both lab servers by modifying a
configuration file and restarting the hostname service on one
server and using a single command on the other. We
employed two different methods to demonstrate multiple
ways of doing the same thing. A third method was also
mentioned to rename the hostname.

Next, we described the terms network devices and network
connections, and realized the difference between the two. We
examined a connection profile and looked at a number of
directives that may be defined for a network connection. We
added a new network device to each lab server and
configured them by employing two different methods. We
activated the new connections and performed a ping test for
functional validation. Lastly, we populated the hosts table
with the IP and hostname mapping on both lab servers.

Check Your Understanding
1. What is the use of ifup and ifdown commands?
2. Which service is responsible for maintaining consistent

device naming?
3. List three key differences between TCP and UDP

protocols.
4. What is the significance of the NAME and DEVICE

directives in a connection profile?
5. Which class of IP addresses has the least number of

node addresses?
6. Which command can you use to display the hardware

address of a network device?
7. Define protocol.
8. Which directory stores the network connection profiles?
9. True or False. A network device is a physical or virtual

network port and a network connection is a
configuration file attached to it.

10. IPv4 is a 32-bit software address. How many bits does
an IPv6 address have?

11. Which file defines the port and protocol mapping?
12. What would the command hostnamectl set-hostname

host20 do?
13. Name the file that stores the hostname of the system.
14. What would the command nmcli cs do?

15. What is the purpose of the ONBOOT directive in the
network connection profile?

16. The /etc/hosts file maintains hostname to hardware
address mappings. True or False?

17. Which file contains service, port, and protocol
mappings?

18. What would the ip addr command produce?
19. Which file would you consult to identify the port

number and protocol associated with a network service?
20. Adding a connection profile with the nmcli command

creates a connection profile in the
/etc/sysconfig/network-scripts directory. True or False?

21. Name four commands that can be used to display the
system hostname?

22. List any two benefits of subnetting.

Answers to Check Your
Understanding

1. The ifup and ifdown commands are used to enable and
disable a network connection, respectively.

2. The udevd service handles consistent naming of
network devices.

3. TCP is connection-oriented, reliable, and point-to-point;
UDP is connectionless, unreliable, and multi-point.

4. The NAME directive sets the name for the network
connection and the DEVICE directive defines the
network device the connection is associated with.

5. The C class supports the least number of node
addresses.

6. The ip command.
7. A set of rules that govern the exchange of information

between two network entities.
8. The /etc/sysconfig/network-scripts directory.
9. True.
10. 128.

11. The /etc/protocols file.
12. The command provided will update the /etc/hostname

file with the specified hostname and restart the
systemd-hostnamed daemon for the change to take
effect.

13. The /etc/hostname file.
14. The command provided will display the status

information for all network connections.
15. The purpose of the ONBOOT directive is to direct the

boot scripts whether to activate this connection.
16. False. This file maintains hostname to IP address

mapping.
17. The /etc/services file.
18. This command provided will display information about

network connections including IP assignments and
hardware address.

19. The /etc/services file.
20. True.
21. The hostname, uname, hostnamectl, and nmcli

commands can be used to view the system hostname.
22. Better manageability and less traffic.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 17-1: Add New Interface and
Configure Connection Profile with nmcli
Add a new network interface to RHEL8-VM1 in VirtualBox.

As user1 with sudo on server10, run ip a and verify the
presence of the new interface (enp0s8). Use the nmcli
command and assign IP 192.168.0.210/24 and gateway
192.168.0.1. Set the network connection to auto-activate on
system reboots. Deactivate and reactivate this connection
manually. (Hint: Network Devices and Connections).

Lab 17-2: Add New Interface and
Configure Connection Profile Manually
Add a new network interface to RHEL8-VM2 in VirtualBox.

As user1 with sudo on server20, run ip a and verify the
presence of the new interface (enp0s8). Make a copy of the
ifcfg-enp0s3 file as ifcfg-enp0s8 under the
/etc/sysconfig/network-scripts directory. Remove the HWADDR
and UUID directives, and set the values for IPADDR, NETMASK,
and GATEWAY directives appropriately. Set the network
connection to auto-activate on system reboots. Deactivate
and reactivate this connection manually. (Hint: Network
Devices and Connections).

Chapter 18

Time Synchronization and
Hostname Resolution

This chapter describes the following major
topics:

Describe time synchronization and the role of
Network Time Protocol

Comprehend the terms: time source, NTP
roles, and stratum levels

Anatomy of the Chrony service configuration
file

Configure and verify NTP/Chrony client
service

View and set system date and time
Overview of Domain Name System and
hostname resolution

Understand various DNS roles
Analyze entries in resolver configuration files

Perform name resolution using a variety of
lookup tools

RHCSA Objectives:

38.Configure time service clients
43.Configure hostname resolution

The Chrony service, a new implementation of the
Network Time Protocol, maintains the clock on the
system and keeps it synchronized with a more accurate

and reliable source of time. Providing accurate and uniform
time for systems on the network allows time-sensitive
applications such as monitoring software, backup tools,
scheduling utilities, billing systems, file sharing protocols, and
authentication programs to perform correctly and precisely. It
also aids logging and auditing services to capture and record
messages and alerts in log files with accurate timestamps.

Domain Name System is an OS- and hardware-independent
network service employed for determining the IP address of a
system when its hostname is known, and vice versa. This
mechanism is implemented to map human-friendly
hostnames to their assigned numeric IP addresses by
consulting one or more servers offering the hostname
resolution service. This service has been used on the Internet
and corporate networks as the de facto standard for this
purpose. DNS clients use this service to communicate with
remote systems. There are several lookup programs that use
DNS to obtain information.

Time Synchronization
Network Time Protocol (NTP) is a networking protocol for
synchronizing the system clock with remote time servers for
accuracy and reliability. This protocol has been in use with
tens of millions of computing devices employing it to
synchronize their clocks with tens of thousands of time
servers deployed across the globe. Having steady and exact
time on networked systems allows time-sensitive applications,
such as authentication and email applications, backup and

scheduling tools, financial and billing systems, logging and
monitoring software, and file and storage sharing protocols, to
function with precision.

NTP sends a stream of messages to configured time servers
and binds itself to the one with least amount of delay in its
responses, the most accurate, and may or may not be the
closest distance-wise. The client system maintains a drift in
time in a file and references this file for gradual drop in
inaccuracy.

RHEL version 8 introduces a new implementation of NTP
called Chrony. Chrony uses the UDP protocol over the well-
known port 123. If enabled, it starts at system boot and
continuously operates to keep the system clock in sync with a
more accurate source of time.

Chrony performs well on computers that are occasionally
connected to the network, attached to busy networks, do not
run all the time, or have variations in temperature.

Time Sources
A time source is any reference device that acts as a provider
of time to other devices. The most precise sources of time are
the atomic clocks. They use Universal Time Coordinated (UTC)
for time accuracy. They produce radio signals that radio clocks
use for time propagation to computer servers and other
devices that require correctness in time. When choosing a
time source for a network, preference should be given to the
one that takes the least amount of time to respond. This
server may or may not be closest physically.

The common sources of time employed on computer networks
are the local system clock, an Internet-based public time
server, and a radio clock.

The local system clock can be used as a provider of time. This
requires the maintenance of correct time on the server either
manually or automatically via cron. Keep in mind that this
server has no way of synchronizing itself with a more reliable
and precise external time source. Therefore, using the local
system clock as a time server is the least recommended
option.

Several public time servers are available over the Internet for
general use (visit www.ntp.org for a list). These servers are
typically operated by government agencies, research and
scientific organizations, large software vendors, and
universities around the world. One of the systems on the local
network is identified and configured to receive time from one
or more public time servers. This option is preferred over the
use of the local system clock.

The official ntp.org site also provides a common pool called
pool.ntp.org for vendors and organizations to register their
own NTP servers voluntarily for general public use. Examples
include rhel.pool.ntp.org and ubuntu.pool.ntp.org for
distribution-specific pools, and ca.pool.ntp.org and
oceania.pool.ntp.org for country and continent/region-specific
pools. Under these sub-pools, the owners maintain multiple
time servers with enumerated hostnames such as
0.rhel.pool.ntp.org, 1.rhel.pool.ntp.org, 2.rhel.pool.ntp.org,
and so on.

A radio clock is regarded as the perfect provider of time, as it
receives time updates straight from an atomic clock. Global
Positioning System (GPS), WWVB, and DCF77 are some
popular radio clock methods. A direct use of signals from
these sources requires connectivity of some hardware to the
computer identified to act as an organizational or site-wide
time server.

NTP Roles

http://www.ntp.org/
http://ntp.org/
http://pool.ntp.org/
http://rhel.pool.ntp.org/
http://ubuntu.pool.ntp.org/
http://ca.pool.ntp.org/
http://oceania.pool.ntp.org/
http://0.rhel.pool.ntp.org/
http://1.rhel.pool.ntp.org/
http://2.rhel.pool.ntp.org/

From an NTP standpoint, a system can be configured to
operate as a primary server, secondary server, peer, or client.

A primary server gets time from a time source and provides
time to secondary servers or directly to clients.

A secondary server receives time from a primary server and
can be configured to furnish time to a set of clients to offload
the primary or for redundancy. The presence of a secondary
server on the network is optional but highly recommended.

A peer reciprocates time with an NTP server. All peers work at
the same stratum level, and all of them are considered
equally reliable. Both primary and secondary servers can be
peers of each other.

A client receives time from a primary or a secondary server
and adjusts its clock accordingly.

Stratum Levels
As mentioned, there are different types of time sources
available so you can synchronize the system clock. These
time sources are categorized hierarchically into several levels
that are referred to as stratum levels based on their distance
from the reference clocks (atomic, radio, and GPS). The
reference clocks operate at stratum level 0 and are the most
accurate provider of time with little to no delay. Besides
stratum 0, there are fifteen additional levels that range from 1
to 15. Of these, servers operating at stratum 1 are considered
perfect, as they get time updates directly from a stratum 0
device. See Figure 18-1 for a sample hierarchy.

Figure 18-1 NTP Stratum Levels

A stratum 0 device cannot be used on the network directly. It
is attached to a computer, which is then configured to operate
at stratum 1. Servers functioning at stratum 1 are called time
servers and they can be set up to deliver time to stratum 2
servers. Similarly, a stratum 3 server can be configured to
synchronize its time with a stratum 2 server and deliver time
to the next lower level servers, and so on. Servers sharing the
same stratum can be configured as peers to exchange time
updates with one another.

 If a secondary server also gets time updates directly from a

stratum 1 server, it will act as a peer to the primary server.

There are a number of public NTP servers available for free
that synchronize time. They normally operate at higher
stratum levels such as 2 and 3.

Chrony Configuration File

The key configuration file for the Chrony service is chrony.conf
located in the /etc directory. This file is referenced by the
Chrony daemon at startup to determine the sources to
synchronize the clock, the log file location, and other details.
This file can be modified by hand to set or alter directives as
required. Some common directives used in this file along with
real or mock values are presented below with an explanation
in Table 18-1:

driftfile /var/lib/chrony/drift
logdir /var/log/chrony
pool 0.rhel.pool.ntp.org iburst
server server20s8.example.com iburst
server 127.127.1.0
peer prodntp1.abc.net

Table 18-1 describes these directives.

http://0.rhel.pool.ntp.org/
http://prodntp1.abc.net/

Directive Description

driftfile Indicates the location and name of the drift file to be
used to record the rate at which the system clock
gains or losses time. This data is used by Chrony to
maintain local system clock accuracy.

logdir Sets the directory location to store the log files in

pool Defines the hostname that represents a pool of time
servers. Chrony binds itself with one of the servers
to get updates. In case of a failure of that server, it
automatically switches the binding to another server
within the pool.

The iburst option dictates the Chrony service to send
the first four update requests to the time server
every 2 seconds. This allows the daemon to quickly
bring the local clock closer to the time server at
startup.

server Defines the hostname or IP address of a single time
server. The IP 127.127.1.0 is a special address that
epitomizes the local system clock.

peer Identifies the hostname or IP address of a time
server running at the same stratum level. A peer
provides time to a server as well as receives time
from the same server.

Table 18-1 Chrony Directives

There are plenty of other directives and options available with
Chrony that may be defined in this file. Use man chrony.conf
for details.

Chrony Daemon and Command
The Chrony service runs as a daemon program called chronyd
that handles time synchronization in the background. It uses
the configuration defined in the /etc/chrony.conf file at startup
and sets its behavior accordingly. If the local clock requires a
time adjustment, Chrony takes multiple small steps toward
minimizing the gap rather than doing it abruptly in a single
step. There are a number of additional options available that
may be passed to the service daemon if required.

The Chrony service has a command line program called
chronyc available that can be employed to monitor the
performance of the service and control its runtime behavior.
There are a few subcommands available with chronyc; the
sources and tracking subcommands list current sources of
time and view performance statistics, respectively.

Exercise 18-1: Configure NTP Client
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will install the Chrony software package
and activate the service without making any changes to the
default configuration. You will validate the binding and
operation.

1. Install the Chrony package using the dnf command:

The software is already installed on the system.

2. Ensure that preconfigured public time server entries are
present in the /etc/chrony.conf file:

There is a single pool entry set in the file by default. This pool
name is backed by multiple NTP servers behind the scene.

3. Start the Chrony service and set it to autostart at
reboots:

4. Examine the operational status of Chrony:

The service has started successfully and it is set for autostart.

5. Inspect the binding status using the sources
subcommand with chronyc:

The output shows the number of available time sources in row
1 and rest of the information in eight columns. Columns 1 to 4
—M, S, Name/IP, and Stratum—illustrate the mode, state,
name/IP, and stratum level of the source. The ^ means server
and the * implies current association.

Columns 4 to 8—Poll, Reach, LastRx, and Last Sample—
display the polling rate (6 means 64 seconds), reachability
register (377 indicates a valid response was received), how
long ago the last sample was received, and the offset
between the local clock and the source at the last

measurement. Check out the manual pages of the chronyc
command and search for the section ‘sources’ for additional
details.

The last line in the output depicts the server10 binding with
time server gpg.n1zyy.com. This association is identified with
the asterisk character (*) beside the time server.

6. Display the clock performance using the tracking
subcommand with chronyc:

Lines 1 and 2 in the above output identify the current source
of time (Reference ID) and the stratum level it is configured at
(Stratum). Line 3 shows the reference time at which the last
measurement from the time source was processed (Ref time).
Line 4 displays the local time offset from NTP time (System
time). Line 5 depicts the last reported offset from the NTP
server (Last offset). Line 6 identifies the frequency at which
time adjustments are occurring (Frequency). The rest of the
lines in the output show additional information. Check out the
manual pages of the chronyc command and search for the
section “tracking” for additional details.

EXAM TIP: You will not have access to the outside network during
the exam, so you will need to point your system to an NTP server
available on the exam network. Simply comment the default
server/pool directive(s) and add a single directive “server

http://gpg.n1zyy.com/

<hostname>” to the file. Replace <hostname> with the NTP server
name or its IP address as provided.

The concludes the exercise.

Displaying and Setting System Date and
Time
System date and time can be viewed and manually adjusted
with native Linux tools such as the timedatectl command. This
command can modify the date, time, and time zone. When
executed without any option, as shown below, it outputs the
local time, Universal time, RTC time (real-time clock, a
battery-backed hardware clock located on the system board),
time zone, and the status of NTP:

This command requires that the NTP/Chrony service is
deactivated in order to make time adjustments. Run the
timedatectl command as follows to turn off NTP and verify:

To modify the current date to January 1, 2020, and confirm:

To change the time to 11:20 p.m. and date to November 18,
2019:

To reactivate NTP:

Check out the manual pages of the timedatectl command for
more subcommands and usage examples.

Alternatively, you can use the date command to view or
modify the system date and time.

To view current date and time:

To change the date and time to November 22, 2019 1:00 p.m.:

There are many options available with the date command.
Consult its manual pages for details.

DNS and Name Resolution
Domain Name System (DNS) is an inverted tree-like structure
employed on the Internet and private networks (including
home and corporate networks) as the de facto standard for
resolving hostnames to their numeric IP addresses. DNS is
platform-independent with support integrated in every

operating system. DNS is also referred to as BIND, Berkeley
Internet Name Domain, which is an implementation of DNS,
and it has been the most popular DNS application in use.
Name resolution is the technique that uses DNS/BIND for
hostname lookups.

In order to understand DNS, a brief discussion of its
components and roles is imperative. The following
subsections provide a look at the client-side configuration files
and commands, along with examples on how to use the tools
for resolving hostnames.

DNS Name Space and Domains
The DNS name space is a hierarchical organization of all the
domains on the Internet. The root of the name space is
represented by a period (.). The hierarchy below the root (.)
denotes the top-level domains (TLDs) with names such as
.com, .net, .edu, .org, .gov, .ca, and .de. A DNS domain is a
collection of one or more systems. Subdomains fall under
their parent domains and are separated by a period (.). For
example, redhat.com is a second-level subdomain that falls
under .com, and bugzilla.redhat.com is a third-level
subdomain that falls under redhat.com.

Figure 18-2 exhibits a sample hierarchy of the name space,
showing the top three domain levels.

Figure 18-2 Sample DNS Hierarchy

http://redhat.com/
http://bugzilla.redhat.com/
http://redhat.com/

At the deepest level of the hierarchy are the leaves (systems,
nodes, or any device with an IP address) of the name space.
For example, a network switch net01 in .travel.gc.ca
subdomain will be known as net01.travel.gc.ca. If a period (.)
is added to the end of this name to look like
net01.travel.gc.ca., it will be referred to as the Fully Qualified
Domain Name (FQDN) for net01.

DNS Roles
From a DNS perspective, a system can be configured to
operate as a primary server, secondary server, or client. A
DNS server is also referred to as a nameserver.

A primary (a.k.a. master) server is responsible for its domain
(or subdomain). It maintains a master database of all the
hostnames and their associated IP addresses that are
included in that domain. Any changes in the database is done
on this server. Each domain must have one primary server
with one or more optional secondary (a.k.a. slave) servers for
load balancing and redundancy. A secondary server also
stores an updated copy of the master database and it
continues to provide name resolution service in the event the
primary server becomes unavailable or inaccessible.

A DNS client queries nameservers for name lookups. Every
system with access to the Internet or other external networks
will have the DNS client functionality configured and
operational. Setting up DNS client on Linux involves two text
files that are discussed in the next two subsections.

Understanding Resolver Configuration File
The resolv.conf file under /etc is the DNS resolver
configuration file where information to support hostname
lookups is defined. This file may be edited manually with a
text editor. It is referenced by resolver utilities to obtain
necessary information to construct and transmit queries.

There are three key directives set in this file—domain,
nameserver, and search—and they are described in Table 18-
2.

Directive Description

domain Identifies the default domain name to be searched
for queries

nameserver Declares up to three DNS server IP addresses to be
queried one at a time in the order in which they are
listed. Nameserver entries may be defined as
separate line items with the directive or on a single
line.

search Specifies up to six domain names, of which the first
must be the local domain. No need to define the
domain directive if the search directive is used.

Table 18-2 The Resolver Configuration File

A sample entry showing the syntax is provided below for
reference:

domain example.com
search example.net example.org example.edu example.gov
nameserver 192.168.0.1 8.8.8.8 8.8.4.4

A variation of the above would be:

domain example.com
search example.net example.org example.edu example.gov
nameserver 192.168.0.1
nameserver 8.8.8.8
nameserver 8.8.4.4

Currently, there are two entries “search example.com” and
“nameserver 192.168.0.1” defined in the resolv.conf file on
server10 and server20.

http://example.com/
http://example.net/
http://example.org/
http://example.edu/
http://example.gov/
http://example.com/
http://example.net/
http://example.org/
http://example.edu/
http://example.gov/
http://example.com/

On a system with this file absent, the resolver utilities only
query the nameserver configured on the localhost, determine
the domain name from the hostname of the system, and
construct the search path based on the domain name.

Viewing and Adjusting Name Resolution
Sources and Order
The nsswitch.conf file under /etc directs the lookup utilities to
the correct source to get hostname information. In the
presence of multiple sources, this file also identifies the order
in which to consult them and an action to be taken next.
There are four keywords—success, notfound, unavail, and
tryagain—that oversee this behavior, and are described along
with default actions in Table 18-3.

Keyword Meaning Default Action

success Information found in
source and provided
to the requester

return (do not try the next
source)

notfound Information not found
in source

continue (try the next
source)

unavail Source down or not
responding; service
disabled or not
configured

continue (try the next
source)

tryagain Source busy, retry
later

continue (try the next
source)

Table 18-3 Name Service Source and Order
Determination

The following example entry shows the syntax of a relevant
entry from the nsswitch.conf file. It shows two sources for
name resolution: files (/etc/hosts) and DNS (/etc/resolv.conf).

 hosts: files dns

Based on the default behavior, the search will terminate if the
requested information is found in the hosts table. However,
you can alter this behavior and instruct the lookup programs
to return if the requested information is not found there. The
modified entry will look like:

hosts: files [notfound=return] dns

This altered entry will ignore the DNS.

 See Chapter 17 for details on the /etc/hosts file.

Once the resolv.conf and nsswitch.conf files are configured
appropriately, you can use any of the native client resolver
tools for lookups. Common query tools available in RHEL 8
include dig, host, nslookup, and getent.

Performing Name Resolution with dig
dig (domain information groper) is a DNS lookup utility. It
queries the nameserver specified at the command line or
consults the resolv.conf file to determine the nameservers to
be queried. This tool may be used to troubleshoot DNS issues
due to its flexibility and verbosity. The following shows a few
usage examples.

To get the IP for redhat.com using the nameserver listed in
the resolv.conf file:

The output shows the total time (13 milliseconds) it took to
get the result, the IP address (209.132.183.105) of

http://redhat.com/

redhat.com, the nameserver IP (192.168.0.1) used for the
query, the DNS port number (53), query timestamp, the size
of the received message, and other information.

To perform a reverse lookup on the redhat.com IP
(209.132.183.105), use the -x option with the command:

Reference the command’s manual pages for details and
options.

Performing Name Resolution with host
host is an elementary DNS lookup utility that works on the
same principles as the dig command in terms of nameserver
determination. This tool produces lesser data in the output by
default; however, you can add the -v option for verbosity.

To perform a lookup on redhat.com:

Rerun the above with -v added. The output will be similar to
that of the dig command.

To perform a reverse lookup on the IP of redhat.com using the
-v flag to add details:

http://redhat.com/
http://redhat.com/
http://redhat.com/
http://redhat.com/

Refer to the command’s manual pages for options and more
information.

Performing Name Resolution with
nslookup
nslookup queries the nameservers listed in the resolv.conf file
or specified at the command line. The following shows a few
usage examples.

To get the IP for redhat.com using nameserver 8.8.8.8 instead
of the nameserver defined in resolv.conf:

To perform a reverse lookup on the IP of redhat.com using the
nameserver from the resolver configuration file:

Consult the command’s manual pages on how to use it in
interactive mode.

Performing Name Resolution with getent
The getent (get entries) command is a rudimentary tool that
can fetch matching entries from the databases defined in the

http://redhat.com/
http://redhat.com/

nsswitch.conf file. This command reads the corresponding
database and displays the information if found. For name
resolution, use the hosts database and getent will attempt to
resolve the specified hostname or IP address. For instance,
run the following for forward and reverse lookups:

Check the command’s manual pages for available flags and
additional information.

Chapter Summary
The focus of this chapter was on two topics: network time
synchronization and hostname resolution.

The chapter began with a discussion of Network Time
Protocol, what role it plays in keeping the clocks synchronized,
and what is its relationship with the Chrony service. We
explored various sources for obtaining time, different roles
that systems could play, and the strata paradigm. We
analyzed the configuration file to understand some key
directives and their possible settings. We performed an
exercise to configure the service, display clock association,
and analyze the results. We also employed a couple of other
RHEL tools to display the system time and set it instantly.

We concluded the chapter with a deliberation of DNS and
name resolution. We discussed the concepts and roles,
analyzed the resolver configuration file, and examined the
source/order determination file. We added required entries to
the resolver configuration file and tested the functionality by
employing client tools for hostname lookup.

Check Your Understanding
1. Chrony is an implementation of the Network Time

Protocol. True or False?
2. What is the name and location of the DNS resolver file?
3. What stratum level do two peer systems operate on a

network?
4. Provide the maximum number of nameservers that can

be defined in the resolver configuration file.
5. What is the purpose of a drift file in Chrony/NTP?
6. What is a relative distinguished name?
7. What would you add to the Chrony configuration file if

you want to use the local system clock as the provider
of time?

8. BIND is an implementation of Domain Name System.
True or False?

9. Define time source.
10. Name the three DNS roles that a RHEL system can play.
11. What would you run to check the NTP bind status with

time servers?
12. Define DNS name space.
13. Name the four Chrony/NTP roles that a RHEL system

can play.
14. Which file defines the name resolution sources and

controls the order in which they are consulted?
15. What is the filename and directory location for the

Chrony configuration file?
16. The Chrony client is preconfigured when the chrony

software package is installed. You just need to start the
service to synchronize the clock. True or False?

17. List any three DNS lookup tools.
18. List two utilities that you can use to change system

time.

Answers to Check Your
Understanding

1. True.
2. The DNS resolver file is called resolv.conf and it is

located in the /etc directory.
3. Two peers on a network operate at the same stratum

level.
4. Three.
5. The purpose of a drift file is to keep track of the rate at

which the system clock gains or losses time.
6. A relative distinguished name represents individual

components of a distinguished name.
7. You will add “server 127.127.1.0” to the Chrony

configuration file and restart the service.
8. True.
9. A time source is a reference device that provides time

to other devices.
10. From a DNS perspective, a RHEL machine can be a

primary server, a secondary server, or a client.
11. You will run chronyc sources to check the binding

status.
12. DNS name space is a hierarchical organization of all the

domains on the Internet.
13. From a Chrony/NTP standpoint, a RHEL machine can be

a primary server, a secondary server, a peer, or a client.
14. The /etc/nsswitch.conf file.
15. The name of the Chrony configuration file is

chrony.conf and it is located in the /etc directory.
16. True.
17. Name resolution tools are dig, host, getent, and

nslookup.
18. The timedatectl and date commands can be used to

modify the system time.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 18-1: Modify System Date and Time
As user1 with sudo on server10, execute the date and
timedatectl commands to check the current system date and
time. Identify the distinctions between the two outputs. Use
timedatectl and change the system date to a future date.
Issue the date command and change the system time to one
hour ahead of the current time. Observe the new date and
time with both commands. Reset the date and time to the
current actual time using either the date or the timedatectl
command. (Hint: Time Synchronization).

Lab 18-2: Configure Chrony
As user1 with sudo on server10, install Chrony and mark the
service for autostart on reboots. Edit the Chrony configuration
file and comment all line entries that begin with “pool” or
“server”. Go to the end of the file, and add a new line “server
127.127.1.0”. Start the Chrony service and run chronyc
sources to confirm the binding. (Hint: Time Synchronization).

Chapter 19

The Secure Shell Service

This chapter describes the following major
topics:

Understand the OpenSSH service, versions,
and algorithms

Overview of encryption techniques and
authentication methods

Describe OpenSSH administration commands
and configuration files

Configure private/public key-based
authentication

Access OpenSSH server from Windows and
other Linux systems

Use OpenSSH client tools to transfer files
Synchronize files remotely over OpenSSH

RHCSA Objectives:

04.Access remote systems using ssh

21.Securely transfer files between systems
52.Configure key-based authentication for SSH

Secure Shell is a network service that delivers a secure
mechanism for data transmission between source and
destination systems over insecure network paths. It

provides a set of utilities that allows users to generate key
pairs and use them to set up trusted logins between systems
for themselves. Additional utilities in the set gives remote
users the ability to log in, execute commands, and transfer
files securely over encrypted network channels. These tools
have predominantly supplanted their insecure counterparts in
the corporate world.

The OpenSSH Service
Secure Shell (SSH) delivers a secure mechanism for data
transmission between source and destination systems over IP
networks. It was designed to replace the old remote login
programs that transmitted user passwords in clear text and
data unencrypted. SSH employs digital signatures for user
authentication with encryption to secure a communication
channel. As a result, this makes it extremely hard for
unauthorized people to gain access to passwords or the data
in transit. It also monitors the data being transferred
throughout a session to ensure integrity. SSH includes a set of
utilities for remote users to log in, transfer files, and execute
commands securely. Due to strong security features, SSH
utilities have supplanted their conventional, unsecure login
and file transfer counterpart programs.

OpenSSH is a free, open source implementation of the
proprietary SSH. Once applied successfully on the system, the
unsecure services—telnet, rlogin, rcp, and ftp—can be
disabled after a careful examination to eliminate potential
impact. The secure command that has substituted telnet and

rlogin remote login services is called ssh, and those for rcp
and ftp are called scp and sftp, respectively.

Common Encryption Techniques
Encryption is a way of scrambling information with the intent
to conceal the real information from unauthorized access.
OpenSSH can utilize various encryption techniques during an
end-to-end communication session between two entities
(client and server). The two common techniques are
symmetric and asymmetric. They are also referred to as
secret key encryption and public key encryption techniques.

Symmetric Technique
This technique uses a single key called a secret key that is
generated as a result of a negotiation process between two
entities at the time of their initial contact. Both sides use the
same secret key during subsequent communication for data
encryption and decryption.

Asymmetric Technique
This technique uses a combination of private and public keys,
which are randomly generated and mathematically related
strings of alphanumeric characters attached to messages
being exchanged. The client transmutes the information with
a public key and the server decrypts it with the paired private
key. The private key must be kept secure since it is private to
a single sender; the public key is disseminated to clients. This
technique is used for channel encryption as well as user
authentication.

Authentication Methods
Once an encrypted channel is established between the client
and server, additional negotiations take place between the
two to authenticate the user trying to access the server.
OpenSSH offers several methods for this purpose; they are

listed below in the order in which they are attempted during
the authentication process:

• GSSAPI-based (Generic Security Service Application
Program Interface) authentication

• Host-based authentication
• Public key-based authentication
• Challenge-response authentication
• Password-based authentication

Let’s review each one in detail.

GSSAPI-Based Authentication
GSSAPI provides a standard interface that allows security
mechanisms, such as Kerberos, to be plugged in. OpenSSH
uses this interface and the underlying Kerberos for
authentication. With this method, an exchange of tokens
takes place between the client and server to validate user
identity.

Host-Based Authentication
This type of authentication allows a single user, a group of
users, or all users on the client to be authenticated on the
server. A user may be configured to log in with a matching
username on the server or as a different user that already
exists there. For each user that requires an automatic entry
on the server, a ~/.shosts file is set up containing the client
name or IP address, and, optionally, a different username.

The same rule applies to a group of users or all users on the
client that require access to the server. In that case, the setup
is done in the /etc/ssh/shosts.equiv file on the server.

Private/Public Key-Based Authentication
This method uses a private/public key combination for user
authentication. The user on the client has a public key and the

server stores the corresponding private key. At the login
attempt, the server prompts the user to enter the passphrase
associated with the key and logs the user in if the passphrase
and key are validated.

Challenge-Response Authentication
This method is based on the response(s) to one or more
arbitrary challenge questions that the user has to answer
correctly in order to be allowed to log in to the server.

Password-Based Authentication
This is the last fall back option. The server prompts the user
to enter their password. It checks the password against the
stored entry in the shadow file and allows the user in if the
password is confirmed.

Of the five authentication methods, the password-based
method is common and requires no further explanation. The
GSSAPI-based, host-based, and challenge-response methods
are beyond the scope of this book. The public/private
authentication and encryption methods will be the focus in
the remainder of this chapter.

OpenSSH Protocol Version and Algorithms
OpenSSH has evolved over the years. Its latest and the
default version in RHEL 8, version 2, has numerous
enhancements, improvements, and sophisticated
configuration options. It supports various algorithms for data
encryption and user authentication (digital signatures) such
as RSA, DSA, and ECDSA. RSA is more common and it is
widely employed partly because it supports both encryption
and authentication. In contrast, DSA and ECDSA are restricted
to authentication only. These algorithms are used to generate
public and private key pairs for the asymmetric technique.

RSA stands for Rivest-Shamir-Adleman, who first published
this algorithm, DSA for Digital Signature Algorithm, and
ECDSA is an acronym for Elliptic Curve Digital Signature
Algorithm.

OpenSSH Packages
OpenSSH has three software packages that are of interest.
These are openssh, openssh-clients, and openssh-server. The
openssh package provides the ssh-keygen command and
some library routines; the openssh-clients package includes
commands, such as scp, sftp, ssh, and ssh-copy-id, and a
client configuration file /etc/ssh/ssh_config; and the openssh-
server package contains the sshd service daemon, server
configuration file /etc/ssh/sshd_config, and library routines. By
default, all three packages are installed during OS installation.

OpenSSH Server Daemon and Client
Commands
The OpenSSH server program sshd is preconfigured and
operational on new RHEL installations, allowing remote users
to log in to the system using an ssh client program such as
PuTTY or the ssh command. This daemon listens on well-
known TCP port 22 as documented in the /etc/ssh/sshd_config
file with the Port directive.

The client software includes plenty of utilities such as those
listed and described in Table 19-1.

Command Description

scp The secure remote copy command that replaced the
non-secure rcp command

sftp The secure remote copy command that replaced the
non-secure ftp command

ssh The secure remote login command that replaced
non-secure telnet and rlogin commands

ssh-copy-id Copies public key to remote systems

ssh-keygen Generates and manages private and public key pairs

Table 19-1 OpenSSH Client Tools

The use of these commands is demonstrated in the following
subsections.

Server Configuration File
The OpenSSH server daemon sshd has a configuration file
that defines default global settings on how it should operate.
This file is located in the /etc/ssh directory and called
sshd_config. There are a number of directives preset in this
file that affect all inbound ssh communication and are tuned
to work as-is for most use cases. In addition, the
/var/log/secure log file is used to capture authentication
messages.

A few directives with their default values from the sshd_config
file are displayed below:

#Port 22
#Protocol 2
ListenAddress 0.0.0.0
SyslogFacility AUTHPRIV
#LogLevel INFO
PermitRootLogin yes
#PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys
PasswordAuthentication yes

#PermitEmptyPasswords no
ChallengeResponseAuthentication no
UsePAM yes
X11Forwarding yes

The above directives are elaborated in Table 19-2.

Directive Description

Port Specifies the port number to
listen on. Default is 22.

Protocol Specifies the default protocol
version to use.

ListenAddress Sets the local addresses the
sshd service should listen on.
Default is to listen on all local
addresses.

SyslogFacility Defines the facility code to be
used when logging messages
to the /var/log/secure file. This
is based on the configuration in
the /etc/rsyslog.conf file.
Default is AUTHPRIV.

LogLevel Identifies the level of criticality
for the messages to be logged.
Default is INFO.

PermitRootLogin Allows or disallows the root
user to log in directly to the
system. Default is yes.

PubKeyAuthentication Enables or disables public key-
based authentication. Default
is yes.

AuthorizedKeysFile Sets the name and location of
the file containing a user’s
authorized keys. Default is
~/.ssh/authorized_keys.

PasswordAuthentication Enables or disables local
password authentication.
Default is yes.

PermitEmptyPasswords Allows or disallows the use of
null passwords. Default is no.

ChallengeResponseAuthentication Enables or disables challenge-
response authentication
mechanism. Default is yes.

UsePAM Enables or disables user
authentication via PAM. If
enabled, only root will be able
to run the sshd daemon.
Default is yes.

X11Forwarding Allows or disallows remote
access to graphical
applications. Default is yes.

Table 19-2 OpenSSH Server Configuration File

There are many more settings available that may be added to
the file for additional control. Check out the manual pages of
the sshd_config file (man 5 sshd_config) for details.

Client Configuration File
Each RHEL client machine that uses ssh to access a remote
OpenSSH server has a local configuration file that directs how
the client should behave. This file, ssh_config, is located in the
/etc/ssh directory. There are a number of directives preset in
this file that affect all outbound ssh communication and are
tuned to work as-is for most use cases.

A few directives with their default values from the ssh_config
file are displayed below:

Host *
ForwardX11 no
PasswordAuthentication yes
StrictHostKeyChecking ask
IdentityFile ~/.ssh/id_rsa
IdentityFile ~/.ssh/id_dsa
Port 22
Protocol 2

The above directives are described in Table 19-3.

Directive Description

Host Container that declares directives
applicable to one host, a group of hosts,
or all hosts. It ends when another
occurrence of Host or Match is
encountered. Default is *, which sets
global defaults for all hosts.

ForwardX11 Enables or disables automatic redirection
of X11 traffic over SSH connections.
Default is no.

PasswordAuthentication Allows or disallows password
authentication. Default is yes.

StrictHostKeyChecking Controls (1) whether to add host keys
(host fingerprints) to ~/.ssh/known_hosts
when accessing a host for the first time,
and (2) what to do when the keys of a
previously-accessed host mismatch with
what is stored in ~/.ssh/known_hosts.
Options are:

no: adds new host keys and ignores
changes to existing keys. yes: adds new
host keys and disallows connections to
hosts with non-matching keys.
accept-new: adds new host keys and
disallows connections to hosts with non-
matching keys.
ask (default): prompts whether to add
new host keys and disallows connections
to hosts with non-matching keys.

IdentityFile Defines the name and location of a file
that stores a user’s private key for their
identity validation. Defaults are id_rsa,
id_dsa, and id_ecdsa based on the type
of algorithm used. Their corresponding
public key files with .pub extension are
also stored at the same directory
location.

Port Sets the port number to listen on. Default
is 22.

Protocol Specifies the default protocol version to
use

Table 19-3 OpenSSH Client Configuration File

The ~/.ssh directory does not exist by default; it is created
when a user executes the ssh-keygen command for the first
time to generate a key pair or connects to a remote ssh
server and accepts its host key for the first time. In the latter
case, the client stores the server’s host key locally in a file
called known_hosts along with its hostname or IP address. On
subsequent access attempts, the client will use this
information to verify the server’s authenticity.

There are a lot more settings available that may be added to
the file for additional control. Check out the manual pages of
the ssh_config file (man 5 ssh_config) for details.

System Access and File Transfer
A user must log in to the Linux system in order to use it or
transfer files. The login process identifies the user to the
system. For accessing a RHEL system remotely, use the ssh
command, and the scp or the sftp command for copying files.
These commands require either a resolvable hostname of the
target system or its IP address in order to try to establish a
connection. All these commands are secure and may be used
over secure and unsecure network channels to exchange
data.

The following subsections and exercises describe multiple
access scenarios including accessing a RHEL system
(server20) from another RHEL system (server10) and a
Windows computer, accessing a RHEL system (server20)
using ssh keys, and transferring files using scp and sftp.

Exercise 19-1: Access RHEL System from
Another RHEL System
This exercise should be done on server10 and server20 as
user1 with sudo where required.

This exercise works under two assumptions: (1) user1 exists
on both server10 and server20, and (2) hostname and IP
mapping is in place in the /etc/hosts file (Chapter 17). Use the
IP address in lieu of the hostname if the mapping is
unavailable for server20.

In this exercise, you will issue the ssh command as user1 on
server10 to log in to server20. You will run appropriate
commands on server20 for validation. You will log off and
return to the originating system.

1. Issue the ssh command while logged in as user1 on
server10:

Answer ‘yes’ to the question presented and press Enter to
continue. This step adds the hostname of server20 to a file
called known_hosts under /home/user1/.ssh directory on the
originating computer (server10). This message will not
reappear on subsequent login attempts to server20 for this
user. Enter the correct password for user1 to be allowed in.
You will be placed in the home directory of user1 on server20.
The command prompt will reflect that information.

2. Issue the basic Linux commands whoami,
hostname, and pwd to confirm that you are
logged in as user1 on server20 and placed in
the correct home directory:

3. Run the logout or the exit command or
simply press the key combination Ctrl+d to
log off server20 and return to server10:

This concludes the exercise.

If you wish to log on as a different user such as user2
(assuming user2 exists on the target server server20), you
may run the ssh command in either of the following ways:

The above will allow you to log in if the password entered for
user2 is valid.

Exercise 19-2: Access RHEL System from
Windows
This exercise should be done on the Windows computer
hosting the virtual machine for server20.

For this exercise, it’s assumed that user1 exists on server20.

In this exercise, you will use a program called PuTTY to access
server20 using its IP address and as user1. You will run
appropriate commands on server20 for validation. You will log
off to terminate the session.

1. On Windows, download PuTTY free of charge from the
Internet. Launch this program and enter the target
host’s IP address. Leave the rest of the settings to their
defaults.

You may assign a name to this session (typically the
hostname is used as the session name) in the Saved Sessions
field and click Save to store this information so as to avoid
retyping in the future.

2. Click on the “Open” button at the bottom of the screen
to try a connection.

3. Enter user1 and password at the “login as” prompt to
log in:

4. Issue the basic Linux commands whoami, hostname,
and pwd to confirm that you are logged in as user1 on
server20 and placed in the correct home directory:

5. Run the logout or the exit command or press the key
combination Ctrl+d to log off server20 and terminate
the login session:

This concludes the exercise.

Exercise 19-3: Generate, Distribute, and
Use SSH Keys
This exercise should be done on server1 and server2 as user1
and sudo where required.

In this exercise, you will generate a password-less ssh key pair
using RSA algorithm for user1 on server10. You will display
the private and public file contents. You will distribute the
public key to server20 and attempt to log on to server20 from
server10. You will show the log file message for the login
attempt.

1. Log on to server10 as user1.
2. Generate RSA keys without a password (-N) and without

detailed output (-q). Press Enter when prompted to
provide the filename to store the private key.

The content of the id_rsa (private key) file is shown below:

The content of the id_rsa.pub (public key) file is displayed
below:

3. Copy the public key file to server20 under
/home/user1/.ssh directory. Accept the fingerprints for
server20 when prompted (only presented on the first
login attempt). Enter the password for user1 set on
server20 to continue with the file copy. The public key
will be copied as authorized_keys.

At the same time, this command also creates or updates the
known_hosts file on server10 and stores the fingerprints for
server20 in it. Here is what is currently stored in it:

4. On server10, run the ssh command as user1 to connect
to server20. You will not be prompted for a password
because there was none assigned to the ssh keys.

You can view this login attempt in the /var/log/secure file on
server20:

The log entry shows the timestamp, hostname, process name
and PID, username and source IP, and other relevant
information. This file will log all future login attempts for this
user.

Executing Commands Remotely Using ssh
The ssh command is a secure replacement for the legacy
unsecure tools telnet, rlogin, and rsh. It allows you to securely
sign in to a remote system or execute a command without
actually logging on to it. Exercise 19-3 demonstrated how a
user can log in using this command. The following shows a
few basic examples on how to use ssh to execute a command
on a remote system.

Invoke the ssh command on server10 to execute the
hostname command on server20:

Run the nmcli command on server20 to show (s) active
network connections (c):

You can run any command on server20 this way without
having to log in to it.

Copying Files Remotely Using scp
Similar to ssh, a user can execute the scp command to
transfer files from server10 to server20, and vice versa. This
program can be run by a normal user as long as the user has
the required read and write permissions on the source and
destination, or by the root user. Here are a few examples to
understand the program’s syntax and usage.

To transfer the /etc/chrony.conf file from server20 to /tmp on
server10 and confirm:

The program took not even a second to transfer the file. The
file size is 1103 bytes. The ls command confirms the pull.

Now let’s transfer the entire /etc/sysconfig directory (-r) from
server10 into /tmp on server20 and confirm. Ignore any
permission errors reported in the output.

Run the ls command on server20 for verification:

The above output verifies the directory copy.

In the above examples, the user account that was used on the
source and target servers is the same user, user1. To transfer
a file or directory using a different user account on the target
server, you need to include that user’s name with the
command. You must know the password for the user on the
target server. Here is the syntax:

Check the manual pages of the scp command for more details
and usage examples.

Transferring Files Remotely Using sftp
The sftp command is an interactive file transfer tool that can
be used instead of scp. This tool can be launched as follows
on server10 to connect to server20:

Type ? at the prompt to list available commands along with a
short description:

As shown in the above screenshot, there are many common
commands available at the sftp> prompt. These include cd to
change directory, get/put to download/upload a file, ls to list
files, pwd to print working directory, mkdir to create a
directory, rename to rename a file, rm to remove a file, and
bye/quit/exit to exit the program and return to the command
prompt. These commands will run on the remote server
(server20). The following screenshot shows how these
commands are used:

Furthermore, there are four commands beginning with an ‘l’—
lcd, lls, lpwd, and lmkdir—at the sftp> prompt. These
commands are intended to be run on the source server
(server10). Other Linux commands are also available at the
sftp> prompt that you may use for basic file management
operations on the remote server.

Type quit at the sftp> prompt to exit the program when you’re
done.

You may use either sftp or scp for transferring files depending
on your comfort level. Consult the manual pages of the
commands for options and additional details.

Synchronizing Files Remotely Using rsync
The rsync (remote synchronization) program works in a
manner similar to the cp, rcp, and scp commands to copy files
between the source and destination. With rsync, the source
and destination could be on the same system or different
systems. The first initiation of rsync copies all files from the
source to the destination with subsequent executions copy
only the updated files. The rsync command uses the ssh
protocol by default.

The following examples explain the usage of the program and
introduce some common flags.

To copy a single file such as grub.conf to /tmp on the same
system:

The -a option in the above example instructs the command to
perform an archive operation and preserve all file attributes
such as permissions, ownership, symlinks, and timestamps.
The -v switch is used for verbosity.

The actual size of the grub.cfg file is 5,032 bytes. The
additional bytes sent (5,126 minus 5,032 = 94 bytes) contain
the metadata and other overhead, and the received bytes
signify the metadata received. The output displays the files
being copied and the file transfer rate as well.

Subsequent invocations of the above would produce an
output similar to the following if the file has not been
modified:

It shows no filenames under the file list, as there was no
transfer occurred.

To copy /etc/rsyslog.conf to /tmp to server20 using in-transit
compression (-z) and displaying the transfer progress (-P):

To copy the entire /home/user1 directory recursively (-r) from
server20 to /tmp/trans directory on server10 (create
/tmp/trans before running the rsync command):

The rsync command is fast and versatile, and has numerous
other options available. Refer to the command’s manual
pages for a description of options and usage examples.

Chapter Summary

This chapter discussed the open source version of the secure
shell service. It started with an overview of the service, and
described what it is, how it works, available versions, and
algorithms employed. We skimmed through various
encryption techniques and authentication methods. We
touched upon the service daemon, client and server
configuration files, and commands. We demonstrated
accessing a lab server from another lab server and from
Windows. We generated and distributed password-less
private/public key pair and employed ssh utilities to remote
execute commands and transfer files.

Lastly, we examined a program that may be put into action to
keep files synchronized between two systems over an ssh
channel.

Check Your Understanding
1. What is the secure equivalent for the rcp command?
2. What would the command ssh-keygen -N “” do?
3. The primary secure shell server configuration file is

ssh_config. True or False?
4. Which three common algorithms are used with SSH

version 2 for encryption and/or authentication?
5. What is the secure shell equivalent for the telnet

command?
6. True or False? By default, the root user can directly log

on to a RHEL system.
7. What is the default location to store user SSH keys?
8. What would the command ssh-copy-id do?
9. What is the rsync command used for?
10. Which two of the five authentication methods

mentioned in this chapter are more prevalent?
11. What is the use of the ssh-keygen command?
12. Name the default algorithm used with SSH.
13. What kind of information does the ~/.ssh/known_hosts

file store?

14. List the two encryption techniques described in this
chapter.

15. What is the default port used by the secure shell
service?

16. Which log file stores authentication messages?
17. The ssh tool provides a non-secure tunnel over a

network for accessing a RHEL system. True or False?
18. Name the SSH client-side configuration file.
19. What would the command ssh server10 ls do?

Answers to Check Your
Understanding

1. The scp command is the secure equivalent for the rcp
command.

2. The command provided will generate a password-less
ssh key pair using the default RSA algorithm.

3. False. The primary secure shell configuration file is
sshd_config.

4. The SSH version 2 uses RSA, DSA, and ECDSA
algorithms.

5. The secure equivalent for telnet is the ssh command.
6. True.
7. Under the ~/.ssh directory.
8. The ssh-copy-id command is used to distribute the

public key to remote systems.
9. The rsync command is used to maintain a copy of

source files at remote location.
10. The public key-based and password-based

authentication methods are more prevalent.
11. The ssh-keygen command is used to generate

public/private key combination for use with ssh.
12. The default algorithm used with ssh is RSA.
13. The ~/.ssh/known_hosts file stores fingerprints of

remote servers.

14. The two encryption techniques are symmetric (secret
key) and asymmetric (public key).

15. The default port used by the secure shell service is 22.
16. The /var/log/secure file stores authentication

messages.
17. False. The ssh command provides a secure tunnel over

a network.
18. The client-side SSH configuration file is ssh_config and

it is located in the /etc/ssh directory.
19. The command provided will run the ls command on the

specified remote ssh server without the need for the
user to log in.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 19-1: Establish Key-Based
Authentication
As user1 with sudo on server10 and server20, create user
account user20 and assign a password. As user20 on
server10, generate a private/public key pair without a
passphrase using the ssh-keygen command. Distribute the
public key to server20 with the ssh-copy-id command. Log on
to server20 as user20 and accept the fingerprints for the
server if presented. On subsequent log in attempts from
server10 to server20, user20 should not be prompted for their
password. (Hint: System Access and File Transfer).

Lab 19-2: Test the Effect of
PermitRootLogin Directive
As user1 with sudo on server20, edit the /etc/ssh/sshd_config
file and change the value of the directive PermitRootLogin to
“no”. Use the systemctl command to activate the change. As
root on server10, run ssh server20 (or its IP address). You’ll
get permission denied message. Reverse the change on
server20 and retry ssh server20. You should be able to log
in. (Hint: The OpenSSH Service).

Chapter 20

The Linux Firewall

This chapter describes the following major
topics:

Describe Linux firewall for host-based
security control

Overview of the firewalld service
Understand the concepts of firewalld zones
and services

Analyze zone and service configuration files
Control access to network services and ports
through firewalld

Use firewall-cmd command to manage
firewall rules

RHCSA Objectives:

45.Restrict network access using firewall-
cmd/firewall

50.Configure firewall settings using firewall-
cmd/firewalld

Running a system in a networked or an Internet-
facing environment requires that some security
measures be taken to tighten access to the system in

general and individual services in particular. This can be
accomplished by implementing a firewall and restricting
inbound traffic to allowed ports from valid source IP
addresses only. We discuss a host-based firewall solution in
this chapter.

Firewall Overview
A firewall is a protective layer implemented at the network or
server level to secure, monitor, and control inbound and
outbound traffic flow. Firewalls employed at the network
level use either dedicated hardware or sophisticated
software appliances to form a shield around the network.
Server level firewalls are referred to as host-based firewalls
and they run in a computer operating system to monitor and
manage traffic in and out. Firewalls defend a network or an
individual server from undesired traffic.

RHEL is shipped with a host-based firewall solution that
works by filtering data packets. A data packet is formed as a
result of a process called encapsulation whereby the header
information is attached to a message (called payload) during
packet formation. The header includes information such as
source and destination IP addresses, port, and type of data.
Based on predefined rules, a firewall intercepts each inbound
and outbound data packet, inspects its header, and decides
whether to allow the packet to pass through.

Ports are defined in the /etc/services file for common
network services that are standardized across all network

operating systems, including RHEL. Some common services
and the ports they listen on are FTP (File Transfer Protocol)
on port 21, SSH (Secure Shell) 22, Postfix (an email service)
25, HTTP (HyperText Transfer Protocol) 80, and NTP (Network
Time Protocol) on port 123.

The host-based firewall solution employed in RHEL uses a
kernel module called netfilter together with a filtering and
packet classification framework called nftables for policing
the traffic movement. It also supports other advanced
features such as Network Address Translation (NAT) and port
forwarding. This firewall solution inspects, modifies, drops, or
routes incoming, outgoing, and forwarded network packets
based on defined rulesets.

Overview of firewalld
firewalld is the default host-based firewall management
service in RHEL 8. One of the major advantages is its ability
to add, modify, or delete firewall rules immediately without
disrupting current network connections or restarting the
service process. This is especially useful in testing and
troubleshooting scenarios. firewalld also allows to save rules
persistently so that they are activated automatically at
system reboots.

The firewalld service lets you perform management
operations at the command line using the firewall-cmd
command, graphically using the web console, or manually by
editing rules files. firewalld stores the default rules in files
located in the /usr/lib/firewalld directory, and those that
contain custom rules in the /etc/firewalld directory. The
default rules files may be copied to the custom rules
directory and modified.

firewalld Zones

firewalld uses the concept of zones for easier and
transparent traffic management. Zones define policies based
on the trust level of network connections and source IP
addresses. A network connection can be part of only one
zone at a time; however, a zone can have multiple network
connections assigned to it. Zone configuration may include
services, ports, and protocols that may be open or closed. It
may also include rules for advanced configuration items such
as masquerading, port forwarding, NATting, ICMP filters, and
rich language. Rules for each zone are defined and
manipulated independent of other zones.

firewalld inspects each incoming packet to determine the
source IP address and applies the rules of the zone that has
a match for the address. In the event no zone configuration
matches the address, it associates the packet with the zone
that has the network connection defined, and applies the
rules of that zone. If neither works, firewalld associates the
packet with the default zone, and enforces the rules of the
default zone on the packet.

The firewalld software installs several predefined zone files
that may be selected or customized. These files include
templates for traffic that must be blocked or dropped, and
for traffic that is public-facing, internal, external, home,
public, trusted, and work-related. Of these, the public zone is
the default zone, and it is activated by default when the
firewalld service is started. Table 20-1 lists and describes the
predefined zones sorted based on the trust level from
trusted to untrusted.

Zone Description

trusted Allow all incoming

internal Reject all incoming traffic except for what is
allowed. Intended for use on internal networks.

home Reject all incoming traffic except for what is
allowed. Intended for use in homes.

work Reject all incoming traffic except for what is
allowed. Intended for use at workplaces.

dmz Reject all incoming traffic except for what is
allowed. Intended for use in publicly-accessible
demilitarized zones.

external Reject all incoming traffic except for what is
allowed. Outgoing IPv4 traffic forwarded through
this zone is masqueraded to look like it originated
from the IPv4 address of an outgoing network
interface. Intended for use on external networks
with masquerading enabled.

public Reject all incoming traffic except for what is
allowed. It is the default zone for any newly added
network interfaces. Intended for us in public places.

block Reject all incoming traffic with icmp-host-prohibited
message returned. Intended for use in secure
places.

drop Drop all incoming traffic without responding with
ICMP errors. Intended for use in highly secure
places.

Table 20-1 firewalld Default Zones

For all the predefined zones, outgoing traffic is allowed by
default.

Zone Configuration Files
firewalld stores zone rules in XML format at two locations:
the system-defined rules in the /usr/lib/firewalld/zones
directory, and the user-defined rules in the
/etc/firewalld/zones directory. The files at the former location
can be used as templates for adding new rules, or applied
instantly to any available network connection. A system zone

configuration file is automatically copied to the
/etc/firewalld/zones directory if it is modified with a
management tool. Alternatively, you can copy the required
zone file to the /etc/firewalld/zones directory manually, and
make the necessary changes. The firewalld service reads the
files saved in this location, and applies the rules defined in
them. A listing of the system zone files is presented below:

The default public zone file is displayed below:

As depicted in the screenshot, the zone has a name and
description, and it contains a list of all the allowed services—
ssh, dhcpv6-client, and cockpit. See the manual pages for
firewalld.zone for details on zone configuration files.

firewalld Services
In addition to the concept of zones, firewalld also uses the
idea of services for easier activation and deactivation of
specific rules. firewalld services are preconfigured firewall
rules delineated for various services and stored in different
files. The rules consist of necessary settings, such as the port

number, protocol, and possibly helper modules, to support
the loading of the service. firewalld services can be added to
a zone. By default, firewalld blocks all traffic unless a service
or port is explicitly opened.

Service Configuration Files
firewalld stores service rules in XML format at two locations:
the system-defined rules in the /usr/lib/firewalld/services
directory, and the user-defined rules in the
/etc/firewalld/services directory. The files at the former
location can be used as templates for adding new service
rules, or activated instantly. A system service configuration
file is automatically copied to the /etc/firewalld/services
directory if it is modified with a management tool.
Alternatively, you can copy the required service file to the
/etc/firewalld/services directory manually, and make the
necessary changes. The firewalld service reads the files
saved in this location, and applies the rules defined in them.
A listing of the system service files is presented below:

The following shows the content of the ssh service file:

As depicted in the screenshot, the service has a name and
description, and it defines the port and protocol for the
service. See the manual pages for firewalld.service for
details on service configuration files.

Firewall Management
Managing the firewalld service involves a number of
operations, such as listing, querying, adding, changing, and
removing zones, services, ports, IP sources, and network
connections. There are three methods available in RHEL 8 to
perform the management tasks. They include the firewall-
cmd command for those who prefer to work at the command
line and the web interface for graphical administration. The
third management option is to make use of the zone and
service templates, and edit them as desired. We use the
command line method in this book.

The firewall-cmd Command
The firewall-cmd command is a powerful tool to manage the
firewalld service at the command prompt. This tool can be
used to add or remove rules from the runtime configuration,
or save any modifications to service configuration for
persistence. It supports numerous options for the
management of zones, services, ports, connections, and so
on; Table 20-2 lists and describes the common options only.

Option Description

General

--state Displays the running status of firewalld

--reload Reloads firewall rules from zone files. All runtime
changes are lost.

--permanent Stores a change persistently. The change only
becomes active after a service reload or restart.

Zones

--get-default-
zone

Shows the name of the default/active zone

--set-default-
zone

Changes the default zone for both runtime and
permanent configuration

--get-zones Prints a list of available zones

--get-active-
zones

Displays the active zone and the assigned
interfaces

--list-all Lists all settings for a zone

--list-all-zones Lists the settings for all available zones

--zone Specifies the name of the zone to work on.
Without this option, the default zone is used.

Services

--get-services Prints predefined services

--list-services Lists services for a zone

--add-service Adds a service to a zone

--remove-
service

Removes a service from a zone

--query-service Queries for the presence of a service

Ports

--list-ports Lists network ports

--add-port Adds a port or a range of ports to a zone

--remove-port Removes a port from a zone

--query-port Queries for the presence of a port

Network Connections

--list-interfaces Lists network connections assigned to a zone

--add-interface Binds a network connection to a zone

--change- Changes the binding of a network connection to

interface a different zone

--remove-
interface

Unbinds a network connection from a zone

IP Sources

--list-sources Lists IP sources assigned to a zone

--add-source Adds an IP source to a zone

--change-
source

Changes an IP source

--remove-
source

Removes an IP source from a zone

Table 20-2 Common firewall-cmd Options

With all the --add and --remove options, the --permanent
switch may be specified to ensure the rule is stored in the
zone configuration file under the /etc/firewalld/zones
directory for persistence. Some of the options from Table 20-
2 are used in the upcoming exercises; the rest are beyond
the scope of this book. Consult the manual pages of the
command for details on the usage of these and other
options.

Querying the Operational Status of
firewalld
You can check the running status of the firewalld service
using either the systemctl or the firewall-cmd command.
Both commands will produce different outputs, but the intent
here is to ensure the service is in the running state.

The output indicates that the firewalld service is in the
running state on server10. The other command outcome also
reports that the service is marked for autostart at system
reboots. In case firewalld is not enabled or is inactive, issue
sudo systemctl --now enable firewalld to start it
immediately, and mark it for autostart on reboots.

You are ready to perform the exercises presented next.

Exercise 20-1: Add Services and Ports,
and Manage Zones
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will determine the current active zone.
You will add and activate a permanent rule to allow HTTP
traffic on port 80, and then add a runtime rule for traffic
intended for TCP port 443 (the HTTPS service). You will add a
permanent rule to the internal zone for TCP port range 5901
to 5910. You will confirm the changes and display the
contents of the affected zone files. Lastly, you will switch the
default zone to the internal zone and activate it.

1. Determine the name of the current default zone:

2. Add a permanent rule to allow HTTP traffic on its
default port:

The command made a copy of the public.xml file from
/usr/lib/firewalld/zones directory into the /etc/firewalld/zones
directory, and added the rule for the HTTP service.

3. Activate the new rule:

4. Confirm the activation of the new rule:

5. Display the content of the default zone file to confirm
the addition of the permanent rule:

6. Add a runtime rule to allow traffic on TCP port 443 and
verify:

7. Add a permanent rule to the internal zone for TCP port
range 5901 to 5910:

8. Display the content of the internal zone file to confirm
the addition of the permanent rule:

The firewall-cmd command makes a backup of the affected
zone file with a .old extension whenever an update is made
to a zone.

9. Switch the default zone to internal and confirm:

10. Activate the rules defined in the internal zone and list
the port range added earlier:

This completes the exercise.

Exercise 20-2: Remove Services and
Ports, and Manage Zones
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will remove the two permanent rules
that were added in Exercise 20-1. You will switch the public
zone back as the default zone, and confirm the changes.

1. Remove the permanent rule for HTTP from the public
zone:

Notice the equal sign (=) used with the --remove-service
option. The firewall-cmd command supports the specification
of add, remove, change, and zone options with and without
an equal sign (=). The --zone option is used to specify the
public zone as it is currently the non-default.

2. Remove the permanent rule for ports 5901 to 5910
from the internal zone:

The --zone option is not used, as ‘internal’ is currently the
default zone.

3. Switch the default zone to public and validate:

4. Activate the public zone rules, and list the current
services:

The public zone reflects the removal of the http service. This
concludes the exercise.

Exercise 20-3: Test the Effect of Firewall
Rule
This exercise should be done on server10 and server20 as
user1 with sudo where required.

In this exercise, you will remove the sshd service rule from
the runtime configuration on server10, and try to access the
server from server20 using the ssh command.

1. Remove the rule for the sshd service on server10:

2. Issue the ssh command on server20 to access
server10:

The error displayed is because the firewall on server10
blocked the access. Put the rule back on server10 and try to
access it from server20 again:

3. Add the rule back for sshd on server10:

4. Issue the ssh command on server20 to access
server10. Enter “yes” if prompted and the password for
user1.

This brings the exercise to an end.

Chapter Summary
We discussed a native host-based firewall solution for system
protection in this chapter. We explored the concepts around
firewall and described how it works. We looked at the
firewalld service and examined the concepts of zones and
services. We reviewed predefined zones and services, and
analyzed their configuration files. We studied the lone
firewall management command and reviewed options for
listing and administering zones, services, ports, network
connections, and source IP addresses.

We learned how to change and check the operational state
of the firewalld service. We performed exercises to add and
remove services and ports persistently and non-persistently,
and manage zones. Finally, we tested the effect of deleting a
port from the firewall configuration and adding it back.

Check Your Understanding
1. A firewall can be configured between two networks but

not between two hosts. True or False?
2. Which directory stores the configuration file for

modified firewalld zones?
3. After changing the default firewalld zone to internal,

what would you run to verify?
4. What is the process of data packet formation called?
5. What would the command firewall-cmd --permanent --

add-service=nfs --zone=external do?
6. If you have a set of firewall rules defined for a service

stored under both /etc/firewalld and /usr/lib/firewalld
directories, which of the two sets will take precedence?

7. What is the kernel module in RHEL 8 that implements
the host-level protection called?

8. firewalld is the firewall management solution in RHEL
8. True or False?

9. Name the default firewalld zone.
10. What is the purpose of firewalld service configuration

files?
11. What would the command firewall-cmd --remove-

port=5000/tcp do?
12. What is the primary command line tool for managing

firewalld called?

Answers to Check Your
Understanding

1. False. A firewall can also be configured between two
host computers.

2. The modified firewalld zone files are stored under
/etc/firewalld/zones directory.

3. You run firewall-cmd --get-default-zone for validation.
4. The process of data packet formation is called

encapsulation.
5. The command provided will add the nfs service to

external firewalld zone persistently.
6. The ruleset located in the /etc/firewalld directory will

have precedence.
7. The kernel module that implements the host-level

protection is called netfilter.
8. True.
9. The default firewalld zone is the public zone.
10. firewalld service configuration files store service-

specific port, protocol, and other details, which makes
it easy to activate and deactivate them.

11. The command provided will remove the runtime
firewall rule for TCP port 5000.

12. The primary command line tool for managing firewalld
is called firewall-cmd.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected
that you perform the labs without external help. A step-by-
step guide is not supplied, as the knowledge and skill
required to implement the lab has already been
disseminated in the chapter; however, hints to the relevant
major topic(s) are included.

Lab 20-1: Add Service to Firewall
As user1 with sudo on server10, add and activate a
permanent rule for HTTPs traffic to the default zone. Confirm
the change by viewing the zone’s XML file and running the
firewall-cmd command. (Hint: Firewall Management).

Lab 20-2: Add Port Range to Firewall
As user1 with sudo on server10, add and activate a
permanent rule for the UDP port range 8000 to 8005 to the
trusted zone. Confirm the change by viewing the zone’s XML
file and running the firewall-cmd command. (Hint: Firewall
Management).

Chapter 21

Security Enhanced Linux

This chapter describes the following major
topics:

Describe Security Enhanced Linux and its
terminology

Understand SELinux contexts for users,
processes, files, and ports

Copy, move, and archive files with and
without SELinux context

How domain transitioning works
Overview of SELinux Booleans
Query and manage SELinux via management
tools

Modify SELinux contexts for files and ports
Add SELinux rules to policy database
View and analyze SELinux alerts

RHCSA Objectives:

53.Set enforcing and permissive modes for
SELinux

54.List and identify SELinux file and process
context

55.Restore default file contexts
56.Use Boolean settings to modify system

SELinux settings
57.Diagnose and address routine SELinux policy

violations

Security Enhanced Linux is a mechanism that controls
who can access and do what on the system. It is part
and parcel of the Linux kernel. It handles access

beyond what the traditional access control system delivers
including file and directory permissions, user and group-level
permissions, shadow password and password aging
mechanisms, and ACLs. The goal of SELinux is to limit the
possible damage that could occur to the system due to
unauthorized user or program access. This chapter covers
SELinux in reasonable detail.

Security Enhanced Linux
Security Enhanced Linux (SELinux) is an implementation of
the Mandatory Access Control (MAC) architecture developed
by the U.S. National Security Agency (NSA) in collaboration
with other organizations and the Linux community for flexible,
enriched, and granular security controls in Linux. MAC is
integrated into the Linux kernel as a set of patches using the
Linux Security Modules (LSM) framework that allows the
kernel to support various security implementations, including
SELinux.

MAC provides an added layer of protection above and beyond
the standard Linux Discretionary Access Control (DAC)
security architecture. DAC includes the traditional file and
directory permissions, ACLs, extended attribute settings,
setuid/setgid bits, su/sudo privileges, and other controls. MAC
limits the ability of a subject (Linux user or process) to access
an object (file, directory, file system, device, network
interface/connection, port, pipe, socket, etc.)to reduce or
eliminate the potential damage the subject may be able to

cause to the system if compromised due to the exploitation of
vulnerabilities in services, programs, or applications.

MAC controls are fine-grained; they protect other services in
the event one service is negotiated. For instance, if the HTTP
service process is compromised, the attacker can only
damage the files the hacked process will have access to, and
not the other processes running on the system, or the objects
the other processes will have access to. To ensure this coarse-
grained control, MAC uses a set of defined authorization rules
called policy to examine security attributes associated with
subjects and objects when a subject tries to access an object,
and decides whether to permit the access attempt. These
attributes are stored in contexts (a.k.a. labels), and are
applied to both subjects and objects.

SELinux decisions are stored in a special cache area called
Access Vector Cache (AVC). This cache area is checked for
each access attempt by a process to determine whether the
access attempt was previously allowed. With this mechanism
in place, SELinux does not have to check the policy ruleset
repeatedly, thus improving performance.

By default, SELinux controls are enabled at the time of RHEL
installation with the default configuration, which confines the
processes to the bare minimum privileges that they need to
function.

Terminology
In order to comprehend SELinux, an understanding of some
key terms is essential. These terms are useful in explaining
the concepts and SELinux functionality in the remainder of
this chapter.

Subject

A subject is any user or process that accesses an object.
Examples include system_u for the SELinux system user, and
unconfined_u for subjects that are not bound by the SELinux
policy. The subject is stored in field 1 of the context.

Object
An object is a resource, such as a file, directory, hardware
device, network interface/connection, port, pipe, or socket,
that a subject accesses. Examples include object_r for general
objects, system_r for system-owned objects, and unconfined_r
for objects that are not bound by the SELinux policy.

Access
An access is an action performed by the subject on an object.
Examples include creating, reading, or updating a file,
creating or navigating a directory, and accessing a network
port or socket.

Policy
A policy is a defined ruleset that is enforced system-wide, and
is used to analyze security attributes assigned to subjects and
objects. This ruleset is referenced to decide whether to permit
a subject’s access attempt to an object, or a subject’s attempt
to interact with another subject. The default behavior of
SELinux in the absence of a rule is to deny the access. Two
standard preconfigured policies are targeted and mls with
targeted being the default.

The targeted policy dictates that any process that is targeted
runs in a confined domain, and any process that is not
targeted runs in an unconfined domain. For instance, SELinux
runs logged-in users in the unconfined domain, and the httpd
process in a confined domain by default. Any subject running
unconfined is more vulnerable than the one running confined.

The mls policy places tight security controls at deeper levels.

A third preconfigured policy called minimum is a light version
of the targeted policy, and it is designed to protect only
selected processes.

Context
A context (a.k.a. label) is a tag to store security attributes for
subjects and objects. In SELinux, every subject and object has
a context assigned, which consists of a SELinux user, role,
type (or domain), and sensitivity level. SELinux uses this
information to make access control decisions.

Labeling
Labeling is the mapping of files with their stored contexts.

SELinux User
SELinux policy has several predefined SELinux user identities
that are authorized for a particular set of roles. SELinux policy
maintains Linux user to SELinux user identity mapping to
place SELinux user restrictions on Linux users. This controls
what roles and levels a process (with a particular SELinux user
identity) can enter. A Linux user, for instance, cannot run the
su and sudo commands or the programs located in their home
directories if they are mapped to the SELinux user user_u.

Role
A role is an attribute of the Role-Based Access Control (RBAC)
security model that is part of SELinux. It classifies who
(subject) is allowed to access what (domains or types).
SELinux users are authorized for roles, and roles are
authorized for domains and types. Each subject has an
associated role to ensure that the system and user processes
are separated. A subject can transition into a new role to gain
access to other domains and types. Examples roles include
user_r for ordinary users, sysadm_r for administrators, and

system_r for processes that initiate under the system_r role.
The role is stored in field 2 of the context.

Type Enforcement
Type enforcement (TE) identifies and limits a subject’s ability
to access domains for processes, and types for files. It
references the contexts of the subjects and objects for this
enforcement.

Type and Domain
A type is an attribute of type enforcement. It is a group of
objects based on uniformity in their security requirements.
Objects such as files and directories with common security
requirements, are grouped within a specific type. Examples of
types include user_home_dir_t for objects located in user
home directories, and usr_t for most objects stored in the /usr
directory. The type is stored in field 3 of a file context.

A domain determines the type of access that a process has.
Processes with common security requirements are grouped
within a specific domain type, and they run confined within
that domain. Examples of domains include init_t for the
systemd process, firewalld_t for the firewalld process, and
unconfined_t for all processes that are not bound by SELinux
policy. The domain is stored in field 3 of a process context.

SELinux policy rules outline how types can access each other,
domains can access types, and domains can access each
other.

Level
A level is an attribute of Multi-Level Security (MLS) and Multi-
Category Security (MCS). It is a pair of sensitivity:category
values that defines the level of security in the context. A
category may be defined as a single value or a range of
values, such as c0.c4 to represent c0 through c4. In RHEL 8,

the targeted policy is used as the default, which enforces MCS
(MCS supports only one sensitivity level (s0) with 0 to 1023
different categories).

SELinux Contexts for Users
SELinux contexts define security attributes placed on subjects
and objects. Each context contains a type and a security level
with subject and object information. Use the id command with
the -Z option to view the context set on Linux users. The
following example shows the context for user1:

The output indicates that user1 is mapped to the SELinux
unconfined_u user, and that there are no SELinux restrictions
placed on this user. You’ll get the same result if you run this
command for other users. This entails that all Linux users,
including root, run unconfined by default, which gives them
full access to the system.

In addition to the unconfined user with unlimited privileges,
SELinux includes seven confined user identities with restricted
access to objects. These accounts are mapped to Linux users
via SELinux policy. This regulated access helps safeguard the
system from potential damage that Linux users might inflict
on the system.

You can use the seinfo query command to list the SELinux
users; however, the setools-console software package must
be installed before doing so.

The output shows the eight predefined SELinux users. You can
use the semanage command to view the mapping between
Linux and SELinux users:

The output displays Linux users in column 1 (Login Name) and
SELinux users they are mapped to in column 2 (SELinux User).
Columns 3 and 4 show the associated security level (MLS/MCS
Range), and the context for the Linux user (the * represents
all services). By default, all non-root Linux users are
represented as __default__, which is mapped to the
unconfined_u user in the policy.

SELinux Contexts for Processes
You can determine the context for processes using the ps
command with the -Z flag. The following example shows only
the first two lines from the command output:

In the output, the subject (system_u) is a SELinux username
(mapped to Linux user root), object is system_r, domain
(init_t) reveals the type of protection applied to the process,

and level of security (s0). Any process that is unprotected will
run in the unconfined_t domain.

SELinux Contexts for Files
You can spot the context for files and directories. To this end,
use the ls command with the -Z switch. The following shows
the four attributes set on the /etc/passwd file:

The outcome indicates the subject (system_u), object
(object_r), type (passwd_file_t), and security level (s0) for the
passwd file. Contexts for system-installed and user-created
files are stored in the file_contexts and file_contexts.local files
located in the /etc/selinux/targeted/contexts/files directory.
These policy files can be updated using the semanage
command.

Copying, Moving, and Archiving Files with
SELinux Contexts
As mentioned, all files in RHEL are labeled with an SELINUX
security context by default. New files inherit the parent
directory’s context at the time of creation. However, three
common file management operations—copy, move, and
archive—require special attention. There are certain rules to
be kept in mind during their use to ensure correct contexts on
affected files. These rules are:

1. If a file is copied to a different directory, the destination
file will receive the destination directory’s context,
unless the --preserve=context switch is specified with
the cp command to retain the source file’s original
context.

2. If a copy operation overwrites the destination file in the
same or different directory, the file being copied will
receive the context of the overwritten file, unless the --

preserve=context switch is specified with the cp
command to preserve the source file’s original context.

3. If a file is moved to the same or different directory, the
SELinux context will remain intact, which may differ
from the destination directory’s context.

4. If a file is archived with the tar command, use the --
selinux option to preserve the context.

Later in the chapter, we will perform an exercise to confirm
the behavior of the three operations.

SELinux Contexts for Ports
SELinux contexts define security attributes for network ports,
which can be viewed with the semanage command . The
following illustrates a few entries from the output of this
command:

chronyd_port_t udp 323
dns_port_t tcp 53, 853
ftp_port_t tcp 21, 989, 990
http_port_t tcp 80, 81, 443, 488, 8008, 8009,

8443, 9000
ntp_port_t udp 123
syslogd_port_t udp 514, 601, 20514

The output is displayed in three columns. Column 1 shows the
SELinux type, column 2 depicts the protocol, and column 3
indicates the port number(s). By default, SELinux allows
services to listen on a restricted set of network ports only.
This is evident from the above output.

Domain Transitioning
SELinux allows a process running in one domain to enter
another domain to execute an application that is restricted to
run in that domain only, provided a rule exists in the policy to

support such transition. SELinux defines a permission setting
called entrypoint in its policy to control processes that can
transition into another domain. To understand how this works,
a basic example is provided below that shows what happens
when a Linux user attempts to change their password using
the /usr/bin/passwd command.

The passwd command is labeled with the passwd_exec_t type,
which can be confirmed as follows:

The passwd command requires access to the /etc/shadow file
in order to modify a user password. The shadow file has a
different type set on it (shadow_t):

The SELinux policy has rules that specifically allow processes
running in domain passwd_t to read and modify the files with
type shadow_t, and allow them entrypoint permission into
domain passwd_exec_t. This rule enables the user’s shell
process executing the passwd command to switch into the
passwd_t domain and update the shadow file.

Open two terminal windows. In window 1, issue the passwd
command as user1 and wait at the prompt:

In window 2, run the ps command:

As you can see, the passwd command (process) transitioned
into the passwd_t domain to change the user password. A

process running in this domain is allowed to modify the
content of the /etc/shadow file.

SELinux Booleans
Booleans are on/off switches that SELinux uses to determine
whether to permit an action. Booleans activate or deactivate
certain rule in the SELinux policy immediately and without the
need to recompile or reload the policy. For instance, the
ftpd_anon_write Boolean can be turned on to enable
anonymous users to upload files. This privilege can be
revoked by turning this Boolean off. Boolean values are stored
in virtual files located in the /sys/fs/selinux/booleans directory.
The filenames match the Boolean names. A sample listing of
this directory is provided below:

On a typical server, you’ll see hundreds of Boolean files in the
output.

The manual pages of the Booleans are available through the
selinux-policy-doc package. Once installed, use the -K option
with the man command to bring the pages up for a specific
Boolean. For instance, issue man -K abrt_anon_write to
view the manual pages for the abrt_anon_write Boolean.

Boolean values can be viewed, and flipped temporarily or for
permanence. The new value takes effect right away.
Temporary changes are stored as a “1” or “0” in the
corresponding Boolean file in the /sys/fs/selinux/booleans

directory and permanent changes are saved in the policy
database.

One of the exercises in the next section demonstrates how to
display and change Boolean values.

SELinux Administration
Managing SELinux involves plentiful tasks, including
controlling the activation mode, checking operational status,
setting security contexts on subjects and objects, and
switching Boolean values. RHEL provides a set of commands
to perform these operations. These commands are available
through multiple packages, such as libselinux-utils provides
getenforce, getenforce, and getsebool commands,
policycoreutils contains sestatus, setsebool, and restorecon
commands, policycoreutils-python-utils provides the
semanage command, and setools-console includes the seinfo
and sesearch commands.

For viewing alerts and debugging SELinux issues, a graphical
tool called SELinux Alert Browser is available, which is part of
the setroubleshoot-server package. In order to fully manage
SELinux, you need to ensure that all these packages are
installed on the system. Besides this toolset, there are
additional utilities available to accomplish specific SELinux
administration tasks, but their use is not as frequent.

Management Commands
SELinux delivers a variety of commands for effective
administration. Table 21-1 lists and describes the commands
mentioned above plus a few more under various management
categories.

Command Description

Mode Management

getenforce Displays the current mode of operation

sestatus Shows SELinux runtime status and Boolean values

setenforce Switches the operating mode between enforcing and
permissive temporarily

Context Management

chcon Changes context on files (changes do not survive file
system relabeling)

restorecon Restores default contexts on files by referencing the
files in the /etc/selinux/targeted/contexts/files
directory

semanage Changes context on files with the fcontext
subcommand (changes survive file system
relabeling)

Policy Management

seinfo Provides information on policy components

semanage Manages policy database

sesearch Searches rules in the policy database

Boolean Management

getsebool Displays Booleans and their current settings

setsebool Modifies Boolean values temporarily, or in the policy
database

semanage Modifies Boolean values in the policy database with
the boolean subcommand

Troubleshooting

sealert The graphical troubleshooting tool

Table 21-1 SELinux Management Commands

Most of these commands are examined in this chapter.

Viewing and Controlling SELinux
Operational State
One of the key configuration files that controls the SELinux
operational state, and sets its default type is the config file

located in the /etc/selinux directory. The default content of the
file are displayed below:

The SELINUX directive in the file sets the activation mode for
SELinux. Enforcing activates it and allows or denies actions
based on the policy rules. Permissive activates SELinux, but
permits all actions. It records all security violations. This mode
is useful for troubleshooting and in developing or tuning the
policy. The third option is to completely turn SELinux off.
When running in enforcing mode, the SELINUXTYPE directive
dictates the type of policy to be enforced. The default SELinux
type is targeted.

Issue the getenforce command to determine the current
operating mode:

The output returns enforcing as the current active policy. You
may flip the state to permissive using the setenforce
command, and verify the change with getenforce:

 You may alternatively use a “0” for permissive and a “1” for

enforcing.

The change takes effect at once; however, it will be lost at the
next system reboot. To make it persistent, edit the
/etc/selinux/config file and set the SELINUX directive to the
desired mode.

EXAM TIP: You may switch SELinux to permissive for
troubleshooting a non-functioning service. Change it back to enforcing
when the issue is resolved.

To disable SELinux completely, the SELINUX directive needs to
be set to disabled in the config file, and the system must be
rebooted. Reactivation in the future to either enforcing or
permissive will require the mode resetting in the config file
followed by a system reboot. The reboot will take longer than
normal, as SELinux will go through the process of relabeling
all the files.

Querying Status
The current runtime status of SELinux can be viewed with the
sestatus command. This command also displays the location
of principal directories, the policy in effect, and the activation
mode.

The output reveals that SELinux is enabled (SELinux status),
and it is running in permissive mode (Current mode) with the
targeted policy in effect (Loaded policy name). It also
indicates the current mode setting in the config file (Mode
from config file) along with other information.

The sestatus command may be invoked with the -v switch to
report on security contexts set on files and processes, as
listed in the /etc/sestatus.conf file. The default content of this
file is shown below:

Run the sestatus command with -v:

With -v included, the command reports the contexts for the
current process (Current context) and the init (systemd)

process (Init context) under Process Contexts. It also reveals
the file contexts for the controlling terminal and associated
files under File Contexts.

Exercise 21-1: Modify SELinux File Context
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will create a directory sedir1 under /tmp
and a file sefile1 under sedir1. You will check the context on
the directory and file. You will change the SELinux user and
type to user_u and public_content_t on both and verify.

1. Create the hierarchy sedir1/sefile1 under /tmp:

2. Determine the context on the new directory and file:

The directory and the file get unconfined_u and user_tmp_t as
the SELinux user and type.

3. Modify the SELinux user (-u) on the directory to user_u
and type (-t) to public_content_t recursively (-R) with
the chcon command:

4. Validate the new context:

This concludes the exercise.

Exercise 21-2: Add and Apply File Context
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will add the current context on sedir1 to
the SELinux policy database to ensure a relabeling will not
reset it to its previous value (see Exercise 21-1). Next, you will
change the context on the directory to some random values.
You will restore the default context from the policy database
back to the directory recursively.

1. Determine the current context:

The output indicates the current SELinux user (user_u) and
type (public_content_t) set on the directory and the file.

2. Add (-a) the directory recursively to the policy database
using the semanage command with the fcontext
subcommand:

The regular expression (/.*)? instructs the command to include
all files and subdirectories under /tmp/sedir1. This expression
is needed only if recursion is required.

The above command added the context to the
/etc/selinux/targeted/contexts/files/file_contexts.local file. You
can use the cat command to view the content.

3. Validate the addition by listing (-l) the recent changes (-
C) in the policy database:

4. Change the current context on sedir1 to something
random (staff_u/etc_t) with the chcon command:

5. The security context is changed successfully. Confirm
with the ls command:

6. Reinstate the context on the sedir1 directory
recursively (-R) as stored in the policy database using
the restorecon command:

The output confirms the restoration of the default context on
the directory and the file.

EXAM TIP: Use the combination of semanage and restorecon
commands to add a file context to the SELinux policy and then apply
it. This will prevent the context on file to reset to the original value in
the event of SELinux relabeling (disabled to enforcing/permissive).

Exercise 21-3: Add and Delete Network
Ports
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will add a non-standard network port
8010 to the SELinux policy database for the httpd service and
confirm the addition. You will then remove the port from the
policy and verify the deletion.

1. List (-l) the ports for the httpd service as defined in the
SELinux policy database:

The output reveals eight network ports the httpd process is
currently allowed to listen on.

2. Add (-a) port 8010 with type (-t) http_port_t and
protocol (-p) tcp to the policy:

3. Confirm the addition:

The new network port is visible in the outcome.

4. Delete (-d) port 8010 from the policy and confirm:

The port is removed from the policy database.

EXAM TIP: Any non-standard port you want to use for any service,
make certain to add it to the SELinux policy database with the correct
type.

Exercise 21-4: Copy Files with and without
Context
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will create a file called sefile2 under /tmp
and display its context. You will copy this file to the
/etc/default directory, and observe the change in the context.

You will remove sefile2 from /etc/default, and copy it again to
the same destination, ensuring that the target file receives
the source file’s context.

1. Create file sefile2 under /tmp and show context:

The context on the file is unconfined_u, object_r, and
user_tmp_t.

2. Copy this file to the /etc/default directory, and check
the context again:

The target file (/etc/default/sefile2) received the default
context of the destination directory (/etc/default).

3. Remove the /etc/default/sefile2 file, and copy it again
with the --preserve=context option:

4. List the file to view the context:

The original context (user_tmp_t) is preserved on the target
file after the copy operation has finished.

Exercise 21-5: View and Toggle SELinux
Boolean Values
This exercise should be done on server10 as user1 with sudo
where required.

In this exercise, you will display the current state of the
Boolean nfs_export_all_rw. You will toggle its value
temporarily, and reboot the system. You will flip its value
persistently after the system has been back up.

1. Display the current setting of the Boolean
nfs_export_all_rw using three different commands—
getsebool, sestatus, and semanage:

2. Turn off the value of nfs_export_all_rw using the
setsebool command by simply furnishing “off” or “0”
with it and confirm:

3. Reboot the system and rerun the getsebool command
to check the Boolean state:

The value reverted to its previous state.

4. Set the value of the Boolean persistently (-P or -m as
needed) using either of the following:

5. Validate the new value using the getsebool, sestatus, or
semanage command:

The command outputs confirm the permanent change.

Monitoring and Analyzing SELinux
Violations
SELinux generates alerts for system activities when it runs in
enforcing or permissive mode. It writes the alerts to the
/var/log/audit/audit.log file if the auditd daemon is running, or
to the /var/log/messages file via the rsyslog daemon in the
absence of auditd. SELinux also logs the alerts that are
generated due to denial of an action, and identifies them with
a type tag AVC (Access Vector Cache) in the audit.log file. It
also writes the rejection in the messages file with a message
ID, and how to view the message details.

 If it works with SELinux in permissive mode and not in enforcing,

something needs to be adjusted in SELinux.

SELinux denial messages are analyzed and the audit data is
examined to identify the potential cause of the rejection. The
results of the analysis are recorded with recommendations on
how to fix it. These results can be reviewed to aid in
troubleshooting, and recommended actions taken to address
the issue. SELinux runs a service daemon called
setroubleshootd that performs this analysis and examination
in the background. This service also has a client interface
called SELinux Troubleshooter (the sealert command) that
reads the data and displays it for assessment. The client tool
has both text and graphical interfaces. The server and client
components are part of the setroubleshoot-server software
package that must be installed on the system prior to using
this service.

The following shows a sample allowed record in raw format
from the /var/log/audit/audit.log file:

The record shows a successful user1 attempt to su into the
root user account on server10.

The following is a sample denial record from the same file in
raw format:

The message has the AVC type, and it is related to the passwd
command (comm) with source context (scontext)
“unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023”, and
the nshadow file (name) with file type (tclass) “file”, and
target context (tcontext) “system_u:object_r:etc_t:s0”. It also
indicates the SELinux operating mode, which is enforcing
(permissive=0). This message indicates that the /etc/shadow
file does not have the correct context set on it, and that’s why
SELinux prevented the passwd command from updating the
user’s password.

You can also use the sealert command to analyze (-a) all AVC
records in the audit.log file. This command produces a
formatted report with all relevant details:

The above SELinux denial was due to the fact that I produced
the scenario by changing the SELinux type on the shadow file
to something random (etc_t). I then issued the passwd
command as user1 to modify the password. As expected,
SELinux disallowed the passwd command to write the new
password to the shadow file, and it logged the password
rejection attempt to the audit log. I then restored the type on
the shadow file with restorecon /etc/shadow. I re-tried the
password change and it worked.

Chapter Summary
In this last chapter of the book, we discussed security
enhanced Linux in fair detail. We looked at the concepts,
features, and terminology at length. We examined how
security contexts are associated with users, processes, files,
and ports, and viewed and modified contexts for them. We
analyzed the configuration file that controls its state and

defines the policy to be enforced. We examined how domain
transitioning works. We learned several SELinux
administrative commands and performed tasks such as
checking and switching activation mode and operational
status. We studied the concept of Booleans and learned how
to modify certain parts of the SELinux policy temporarily and
persistently. Finally, we reviewed the SELinux Troubleshooter
program and used it to view and analyze SELinux related
messages.

Check Your Understanding
1. What is the name and location of the SELinux

configuration file?
2. What would the command semanage fcontext -Cl do?
3. Which command can be used to ensure modified

contexts will survive file system relabeling?
4. What would the command semanage login -a -s user_u

user10 do?
5. Name the two commands that can be used to modify a

Boolean value.
6. Which option is used with the ps command to view the

security contexts for processes?
7. What would the command restorecon -F /etc/sysconfig

do?
8. What is the name of the default SELinux policy used in

RHEL 8?
9. What would the command sestatus -b | grep

nfs_export_all_rw do?
10. Name the directory that stores SELinux Boolean files.
11. What are the two commands to display and modify the

SELinux mode?
12. Name the two SELinux subjects.
13. SELinux is an implementation of discretionary access

control. True or False?

14. Where are SELinux denial messages logged in the
absence of the auditd daemon?

15. Name the four parts of a process context.
16. What one task must be done to change the SELinux

mode from enforcing to disabled?
17. Which option with the cp command must be specified

to preserve SELinux contexts?
18. What is the purpose of the command sestatus?
19. With SELinux running in enforcing mode and a service

is compromised, all other services are affected. True or
False?

20. Name the command that starts the SELinux
Troubleshooter program.

Answers to Check Your
Understanding

1. The SELinux configuration filename is config and it is
located in the /etc/selinux directory.

2. The command provided will show recent changes made
to the SELinux policy database.

3. The semanage command.
4. This command provided will map Linux user user10

with SELinux user user_u.
5. The semanage and setsebool commands.
6. The -Z option.
7. The command provided will restore the default SELinux

contexts on the specified directory.
8. The default SELinux policy used in RHEL 8 is targeted.
9. The command provided will display the current value of

the specified Boolean.
10. The /sys/fs/selinux/booleans directory.
11. The getenforce and setenforce commands.
12. User and process are two SELinux subjects.
13. False. SELinux is an implementation of mandatory

access control.

14. The SELinux denial messages are logged to the
/var/log/messages file.

15. The four parts of a process context are user, role,
type/domain, and sensitivity level.

16. The system must be rebooted.
17. The --preserve=context option.
18. The sestatus command displays SELinux status

information.
19. False.
20. The command name is sealert.

Do-It-Yourself Challenge Labs
The following labs are useful to strengthen most of the
concepts and topics learned in this chapter. It is expected that
you perform the labs without external help. A step-by-step
guide is not supplied, as the knowledge and skill required to
implement the lab has already been disseminated in the
chapter; however, hints to the relevant major topic(s) are
included.

Lab 21-1: Disable and Enable the SELinux
Operating Mode
As user1 with sudo on server10, check and make a note of the
current SELinux operating mode. Modify the configuration file
and set the mode to disabled. Reboot the system to apply the
change. Run sudo getenforce to confirm the change when
the system is up. Restore the directive’s value to enforcing in
the configuration file, and reboot to apply the new mode. Run
sudo getenforce to confirm the mode when the system is
up. (Hint: SELinux Administration).

Lab 21-2: Modify Context on Files
As user1 with sudo on server10, create directory hierarchy
/tmp/d1/d2. Check the contexts on /tmp/d1 and /tmp/d1/d2.
Change the SELinux type on /tmp/d1 to etc_t recursively with

the chcon command and confirm. Add /tmp/d1 to the policy
database with the semanage command to ensure the new
context is persistent on the directory hierarchy. (Hint: SELinux
Administration).

Lab 21-3: Add Network Port to Policy
Database
As user1 with sudo on server10, add network port 9001 to the
SELinux policy database for the secure HTTP service using the
semanage command. Verify the addition. (Hint: SELinux
Administration).

Lab 21-4: Copy Files with and without
Context
As user1 with sudo on server10, create file sef1 under /tmp.
Copy the file to the /usr/local directory. Check and compare
the contexts on both source and destination files. Create
another file sef2 under /tmp and copy it to the /var/local
directory using the --preserve=context option with the cp
command. Check and compare the contexts on both source
and destination files. (Hint: SELinux Administration).

Lab 21-5: Flip SELinux Booleans
As user1 with sudo on server10, check the current value of
Boolean ssh_use_tcpd using the getsebool and sestatus
commands. Use the setsebool command and toggle the value
of the directive. Confirm the new value with the getsebool,
semanage, or sestatus command. (Hint: SELinux
Administration).

Appendix A: Sample RHCSA
Exam 1

Time Duration: 2.5 hours
Passing Score: 70% (210 out of
300)
Instructions: The RHCSA exam,
EX200, is offered electronically on a desktop
system running RHEL 8. The exam presents a
list of tasks that are to be completed within
the stipulated time. Firewall and SELinux need
to be considered. All settings performed on the
systems must survive system reboots, or you
will not be given credits. Access to the
Internet, printed material, and electronic
devices is prohibited during the exam.

Setup for the Sample Exam 1:
Build a virtual machine with RHEL 8 Server for
GUI (Exercises 1-1 and 1-2). Add a 10GB disk
for the OS and use the default storage
partitioning. Add 2x300MB disks. Add a
network interface, but do not configure the
hostname and network connection. Do not

create a normal user account during
installation.

Instructions:
Instruction 01: The following tasks are in addition to the
exercises and labs presented in the book. No solutions are
furnished, but hints to applicable exercises, chapters, or
topics are provided in parentheses for reference.

Instruction 02: Do not browse the Internet or other
material for help. This rule does not apply to the kernel
download task if included. You can refer to the manual
pages, and the documentation under the /usr/share/doc
directory.

Instruction 03: This exam should be done in a terminal
window using only the command line interface (no GUI).

Instruction 04: You can reboot the VM whenever you want
during this exam, but retest the configuration after the
reboot for verification.

Instruction 05: Use your knowledge and judgement for
any missing configuration in task description.

Tasks:
Task 01: Assuming the root user password is lost, and your
system is running in multi-user target with no current root
session open. Reboot the system into an appropriate target,
and reset the root user password to root1234. (Exercise 11-
1). Log in with root and perform the remaining tasks.

Task 02: Using a manual method (create/modify files by
hand), configure a network connection on the primary
network device with IP address 192.168.0.241/24, gateway

192.168.0.1, and nameserver 192.168.0.1 (you may use
different IP assignments based on your lab environment).
(Exercise 17-3).

Task 03: Using a manual method (modify file by hand), set
the system hostname to rhcsa1.example.com and alias
rhcsa1. Make sure that the new hostname is reflected in the
command prompt. (Exercises 17-1 and 17-5).

Task 04: Set the default boot target to multi-user. (Chapter
12, topic: Managing Target Units).

Task 05: Set SELinux to permissive mode. (Chapter 21,
topic: Viewing and Controlling SELinux Operational State).

Task 06: Perform a case-insensitive search for all lines in
the /usr/share/dict/linux.words file that begin with the
pattern “essential”. Redirect the output to /tmp/pattern.txt
file. Make sure that empty lines are omitted. (Chapter 07,
topic: Regular Expressions).

Task 07: Change the primary command prompt for the root
user to display the hostname, username, and current
working directory information in that order. Update the per-
user initialization file for permanence. (Exercise 7-1).

Task 08: Create user accounts called user10, user20, and
user30. Set their passwords to Temp1234. Make accounts
for user10 and user30 to expire on December 31, 2021.
(Exercises 5-1 and 6-1).

Task 09: Create a group called group10 and add users
user20 and user30 as secondary members. (Exercise 6-4).

Task 10: Create a user account called user40 with UID
2929. Set the password to user1234. (Exercise 5-2).

Task 11: Create a directory called dir1 under /tmp with
ownership and owning group set to root. Configure default
ACLs on the directory and give user user10 read, write, and
execute permissions. (Exercise 4-8).

Task 12: Attach the RHEL 8 ISO image to the VM and mount
it persistently to /mnt/cdrom. Define access to both
repositories and confirm. (Chapter 09, topic: Getting Ready
to Use rpm, and Exercise 10-1).

Task 13: Create a logical volume called lvol1 of size 300MB
in vgtest volume group. Mount the Ext4 file system
persistently to /mnt/mnt1. (Exercises 14-1, 14-2, and 15-3).

Task 14: Change group membership on /mnt/mnt1 to
group10. Set read/write/execute permissions on /mnt/mnt1
for group members, and revoke all permissions for public.
(Exercises 6-4, 6-6, and either 4-1 or 4-2).

Task 15: Create a logical volume called lvswap of size
300MB in vgtest volume group. Initialize the logical volume
for swap use. Use the UUID and place an entry for
persistence. (Exercise 15-6).

Task 16: Use tar and bzip2 to create a compressed archive
of the /etc/sysconfig directory. Store the archive under /tmp
as etc.tar.bz2. (Exercise 3-1).

Task 17: Create a directory hierarchy /dir1/dir2/dir3/dir3,
and apply SELinux contexts for /etc on it recursively.
(Chapter 03, topic: Creating Files and Directories, and
Exercise 21-2).

Task 18: Enable access to the atd service for user20 and
deny for user30. (Chapter 08, topic: Controlling User
Access).

Task 19: Add a custom message “This is RHCSA sample
exam on $(date) by $LOGNAME” to the /var/log/messages
file as the root user. Use regular expression to confirm the
message entry to the log file. (Chapter 07, topic: Regular
Expressions, and Chapter 12, topic: Logging Custom
Messages).

Task 20: Allow user20 to use sudo without being prompted
for their password. (Chapter 06, topic: Doing as Superuser
or Doing as Substitute User).

Reboot the system and validate the
configuration.

Appendix B: Sample RHCSA
Exam 2

Time Duration: 2.5 hours
Passing Score: 70% (210 out of
300)
Instructions: The RHCSA exam,
EX200, is offered electronically on a desktop
system running RHEL 8. The exam presents a
list of tasks that are to be completed within
the stipulated time. Firewall and SELinux need
to be considered. All settings performed on the
systems must survive system reboots, or you
will not be given credits. Access to the
Internet, printed material, and electronic
devices is prohibited during the exam.

Setup for the Sample Exam 2:
Build a virtual machine with RHEL 8 Server for
GUI (Exercises 1-1 and 1-2). Add a 10GB disk
for the OS and use the default storage
partitioning. Add one 400MB disk. Add a
network interface, but do not configure the
hostname and network connection. Do not

create a normal user account during
installation.

Instructions:
Instruction 01: The following tasks are in addition to the
exercises and labs presented in the book. No solutions are
furnished, but hints to applicable exercises, chapters, or
topics are provided in parentheses for reference.

Instruction 02: Do not browse the Internet or other
material for help. This rule does not apply to the kernel
download task if included. You can refer to the manual
pages, and the documentation under the /usr/share/doc
directory.

Instruction 03: This exam should be done in a terminal
window using only the command line interface (no GUI).

Instruction 04: You can reboot the VM whenever you want
during this exam, but retest the configuration after the
reboot for verification.

Instruction 05: Use your knowledge and judgement for
any missing configuration in task description.

Tasks:
Task 01: Using the nmcli command, configure a network
connection on the primary network device with IP address
192.168.0.242/24, gateway 192.168.0.1, and nameserver
192.168.0.1 (you may use different IP assignments based on
your lab environment). (Exercise 17-4).

Task 02: Using the hostnamectl command, set the system
hostname to rhcsa2.example.com and alias rhcsa2. Make

sure that the new hostname is reflected in the command
prompt. (Exercises 17-1 and 17-5).

Task 03: Create a user account called user70 with UID 7000
and comments “I am user70”. Set the maximum allowable
inactivity for this user to 30 days. (Exercises 5-2, and 6-1 or
6-2).

Task 04: Create a user account called user50 with a non-
interactive shell. (Exercise 5-4).

Task 05: Create a file called testfile1 under /tmp with
ownership and owning group set to root. Configure access
ACLs on the file and give user10 read and write access. Test
access by logging in as user10 and editing the file. (Chapter
03, topic: Creating Files and Directories, and Exercise 4-7).

Task 06: Attach the RHEL 8 ISO image to the VM and mount
it persistently to /mnt/dvdrom. Define access to both
repositories and confirm. (Chapter 09, topic: Getting Ready
to Use rpm, and Exercise 10-1).

Task 07: Create a logical volume called lv1 of size equal to
10 LEs in vg1 volume group (create vg1 with PE size 8MB in
a partition on the 400MB disk) Initialize the logical volume
with XFS file system type and mount it on /mnt/lvfs1. Create
a file called lv1file1 in the mount point. Set the file system
to automatically mount at each system reboot. (Exercises
14-1, 14-2, and 15-3).

Task 08: Add a group called group20 and change group
membership on /mnt/lvfs1 to group20. Set
read/write/execute permissions on /mnt/lvfs1 for the owner
and group members, and no permissions for others.
(Exercises 6-4, 6-6, and either 4-1 or 4-2).

Task 09: Extend the file system in the logical volume lv1 by
64MB without unmounting it and without losing any data.
(Exercise 15-4).

Task 10: Create a swap partition of size 85MB on the
400MB disk. Use its UUID and ensure it is activated after
every system reboot. (Exercise 15-6).

Task 11: Create a disk partition of size 100MB on the
400MB disk and format it with Ext4 file system structures.
Assign label stdlabel to the file system. Mount the file
system on /mnt/stdfs1 persistently using the label. Create
file stdfile1 in the mount point. (Exercise 13-2 or Exercise
13-4, Chapter 15, topic: Labeling a File System, and Exercise
15-1).

Task 12: Use tar and gzip to create a compressed archive
of the /usr/local directory. Store the archive under /tmp
using a filename of your choice. (Exercise 3-1).

Task 13: Create a directory /direct01 and apply SELinux
contexts for /root. (Exercise 21-2).

Task 14: Set up a cron job for user70 to search for core files
in the /var directory and copy them to the directory
/tmp/coredir1. This job should run every Monday at 1:20
a.m. (Chapter 04, topics: Using the find Command, and
Using find with -exec and -ok Flags, and Exercise 8-2).

Task 15: Search for all files in the entire directory structure
that have been modified in the past 30 days and save the
file listing in the /var/tmp/modfiles.txt file. (Chapter 04,
topics: Using the find Command and Using find with -exec
and -ok Flags).

Task 16: Modify the bootloader program and set the default
autoboot timer value to 2 seconds. (Chapter 11, topic:

Understanding GRUB2 Configuration Files).

Task 17: Determine the recommended tuning profile for the
system and apply it. (Exercise 12-1).

Task 18: Configure Chrony to synchronize system time with
the hardware clock. (Exercise 18-1).

Task 19: Install package group called “Development Tools”,
and capture its information in /tmp/systemtools.out file.
(Chapter 03, topic: Regular Expressions, and Exercise 10-3).

Task 20: Lock user account user70. Use regular expressions
to capture the line that shows the lock and store the output
in file /tmp/user70.lock. (Chapter 03, topic: Regular
Expressions, and Exercise 6-3).

Reboot the system and validate the
configuration.

Appendix C: Sample RHCSA
Exam 3

Time Duration: 2.5 hours
Passing Score: 70% (210 out of
300)
Instructions: The RHCSA exam,
EX200, is offered electronically on a desktop
system running RHEL 8. The exam presents a
list of tasks that are to be completed within
the stipulated time. Firewall and SELinux need
to be considered. All settings performed on the
systems must survive system reboots, or you
will not be given credits. Access to the
Internet, printed material, and electronic
devices is prohibited during the exam.

Setup for the Sample Exam 3:
Build two virtual machines with RHEL 8 Server for GUI
(Exercises 1-1 and 1-2). Add a 10GB disk for the OS and use
the default storage partitioning. Add 1x4GB disk to VM1 and
2x1GB to VM2. Add a network interface, but do not
configure the hostname and network connection. Do not
create a normal user account during installation.

Instructions:
Instruction 01: The following tasks are in addition to the
exercises and labs presented in the book. No solutions are
furnished, but hints to applicable exercises, chapters, or
topics are provided in parentheses for reference.

Instruction 02: Do not browse the Internet or other
material for help. This rule does not apply to the kernel
download task if included. You can refer to the manual
pages, and the documentation under the /usr/share/doc
directory.

Instruction 03: This exam should be done in a terminal
window using only the command line interface (no GUI).

Instruction 04: You can reboot the VM whenever you want
during this exam, but retest the configuration after the
reboot for verification.

Instruction 05: Use your knowledge and judgement for
any missing configuration in task description.

Tasks:
Task 01: On VM1, set the system hostname to
rhcsa3.example.com and alias rhcsa3 using the hostnamectl
command. Make sure that the new hostname is reflected in
the command prompt. (Exercises 17-1 and 17-5).

Task 02: On rhcsa3, configure a network connection on the
primary network device with IP address 192.168.0.243/24,
gateway 192.168.0.1, and nameserver 192.168.0.1 using
the nmcli command. You may use different IP assignments
based on your lab environment. (Exercise 17-4).

Task 03: On VM2, set the system hostname to
rhcsa4.example.com and alias rhcsa4 using a manual

method (modify file by hand). Make sure that the new
hostname is reflected in the command prompt. (Exercises 7-
1 and 17-5).

Task 04: On rhcsa4, configure a network connection on the
primary network device with IP address 192.168.0.244/24,
gateway 192.168.0.1, and nameserver 192.168.0.1 using a
manual method (create/modify files by hand). You may use
different IP assignments based on your lab environment.
(Exercise 17-3).

Task 05: Run “ping -c2 rhcsa4” on rhcsa3. Run “ping -c2
rhcsa3” on rhcsa4. You should see 0% loss in both outputs.
(Exercise 17-5).

Task 06: On rhcsa3 and rhcsa4, attach the RHEL 8 ISO
image to the VM and mount it persistently to /mnt/cdrom.
Define access to both repositories and confirm. (Chapter 09,
topic: Getting Ready to use rpm, and Exercise 10-1).

Task 07: On rhcsa3, add HTTP port 8300/tcp to the SELinux
policy database. (Exercise 21-3).

Task 08: On rhcsa3, create VDO volume vdo1 on the 4GB
disk with logical size 16GB and mounted with Ext4
structures on /mnt/vdo1. (Exercises 13-6 and 13-7).

Task 09: Configure NFS service on rhcsa3 and share
/rh_share3 with rhcsa4. Configure AutoFS direct map on
rhcsa4 to mount /rh_share3 on /mnt/rh_share4. User user80
(create on both systems) should be able to create files
under the share on the NFS server and under the mount
point on the NFS client. (Exercises 16-1 and 16-3).

Task 10: Configure NFS service on rhcsa4 and share the
home directory for user user60 (create on both systems)
with rhcsa3. Configure AutoFS indirect map on rhcsa3 to

automatically mount the home directory under /nfsdir when
user60 logs on to rhcsa3. (Exercises 16-1 and 16-4, and
topic: Automounting User Home Directories).

Task 11: On rhcsa4, create Stratis pool pool1 and volume
str1 on a 1GB disk, and mount it to /mnt/str1. (Exercise 15-
5).

Task 12: On rhcsa4, expand Stratis pool pool1 using the
other 1GB disk. Confirm that /mnt/str1 sees the storage
expansion. (Exercise 15-5).

Task 13: On rhcsa3, create a group called group30 with GID
3000, and add user60 and user80 to this group. Create a
directory called /sdata, enable setgid bit on it, and add write
permission bit for the group. Set ownership and owning
group to root and group30. Create a file called file1 under
/sdata as user user60 and modify the file as user80
successfully. (Exercises 4-5, 6-4, and 6-6).

Task 14: On rhcsa3, create directory /dir1 with full
permissions for everyone. Disallow non-owners to remove
files. Test by creating file /tmp/dir1/stkfile1 as user60 and
removing it as user user80. (Exercise 4-6).

Task 15: On rhcsa3, search for all manual pages for the
description containing the keyword “password” and redirect
the output to file /tmp/man.out. (Chapter 02, topic
Searching by Keyword, and Chapter 07, topic: Regular
Expressions).

Task 16: On rhcsa3, create file lnfile1 under /tmp and
create one hard link /tmp/lnfile2 and one soft link /boot/file1.
Edit lnfile1 using the links and confirm. (Exercises 3-2 and 3-
3).

Task 17: On rhcsa3, install module postgresql version 9.6
(select a different non-default version if 9.6 is not available).
(Exercise 10-5).

Task 18: On rhcsa3, add the http service to the “external”
firewalld zone persistently. (Exercise 20-1).

Task 19: On rhcsa3, set SELinux type shadow_t on a new
file testfile1 in /usr and ensure that the context is not
affected by a SELinux relabeling. (Exercises 21-1 and 21-2).

Task 20: Configure password-less ssh access for user60
from rhcsa3 to rhcsa4. (Exercise 19-3).

Reboot the system and validate the
configuration.

Appendix D: Sample RHCSA
Exam 4

Time Duration: 2.5 hours
Passing Score: 70% (210 out of
300)
Instructions: The RHCSA exam,
EX200, is offered electronically on a desktop
system running RHEL 8. The exam presents a
list of tasks that are to be completed within
the stipulated time. Firewall and SELinux need
to be considered. All settings performed on the
systems must survive system reboots, or you
will not be given credits. Access to the
Internet, printed material, and electronic
devices is prohibited during the exam.

Setup for the Sample Exam 4:
Build two virtual machines with RHEL 8 Server
for GUI (Exercises 1-1 and 1-2). Add a 10GB
disk for the OS and use the default storage
partitioning. Add 1x4GB to VM2. Add a
network interface, but do not configure the
hostname and network connection. Do not

create a normal user account during
installation.

Instructions:
Instruction 01: The following tasks are in addition to the
exercises and labs presented in the book. No solutions are
furnished, but hints to applicable exercises, chapters, or
topics are provided in parentheses for reference.

Instruction 02: Do not browse the Internet or other
material for help. This rule does not apply to the kernel
download task if included. You can refer to the manual
pages, and the documentation under the /usr/share/doc
directory.

Instruction 03: This exam should be done in a terminal
window using only the command line interface (no GUI).

Instruction 04: You can reboot the VM whenever you want
during this exam, but retest the configuration after the
reboot for verification.

Instruction 05: Use your knowledge and judgement for
any missing configuration in task description.

Tasks:
Task 01: On VM1, set the system hostname to
rhcsa5.example.com and alias rhcsa5 using the hostnamectl
command. Make sure that the new hostname is reflected in
the command prompt. (Exercises 17-1 and 17-5).

Task 02: On rhcsa5, configure a network connection on the
primary network device with IP address 192.168.0.245/24,
gateway 192.168.0.1, and nameserver 192.168.0.1 using

the nmcli command. You may use different IP assignments
based on your lab environment. (Exercise 17-4).

Task 03: On VM2, set the system hostname to
rhcsa6.example.com and alias rhcsa6 using a manual
method (modify file by hand). Make sure that the new
hostname is reflected in the command prompt. (Exercises 7-
1 and 17-5).

Task 04: On rhcsa6, configure a network connection on the
primary network device with IP address 192.168.0.246/24,
gateway 192.168.0.1, and nameserver 192.168.0.1 using a
manual method (create/modify files by hand). You may use
different IP assignments based on your lab environment.
(Exercise 17-3).

Task 05: Run “ping -c2 rhcsa6” on rhcsa5. Run “ping -c2
rhcsa5” on rhcsa6. You should see 0% loss in both outputs.
(Exercise 17-5).

Task 06: On rhcsa5 and rhcsa6, attach the RHEL 8 ISO
image to the VM and mount it persistently to /mnt/cdrom.
Define access to both repositories and confirm. (Chapter 09,
topic: Getting Ready to use rpm, and Exercise 10-1).

Task 07: Export /share5 on rhcsa5 and mount it to /share6
persistently on rhcsa6. (Exercises 16-1 and 16-2).

Task 08: Use NFS to export home directories for all users
(u1, u2, and u3) on rhcsa6 so that their home directories
become available under /home1 when they log on to rhcsa5.
Create user accounts as necessary. (Exercises 16-1 and 16-
4, and topic: Automounting User Home Directories).

Task 09: On rhcsa5, add HTTP port 8300/tcp to the public
zone persistently. (Exercise 21-3).

Task 10: Configure password-less ssh access for u1 from
rhcsa5 to rhcsa6. Copy /etc/sysconfig from rhcsa5 to rhcsa6
under /tmp/remote directory securely. (Exercise 19-3, and
Chapter 19, topic: Copying Files Remotely Using scp).

Task 11: On rhcsa6, create VDO volume vdo2 on the 4GB
disk with logical size 16GB and mounted with XFS structures
on /mnt/vdo2. (Exercises 13-6 and 13-7).

Task 12: On rhcsa6, install perl module stream 5.24.
(Exercise 10-5).

Task 13: On rhcsa6, flip the value of the Boolean
nfs_export_all_rw persistently. (Exercise 21-5).

Task 14: On rhcsa5 and rhcsa6, set the tuning profile to
powersave. (Exercise 12-1).

Task 15: On rhcsa5, create file lnfile1 under /tmp and
create three hard links called hard1, hard2, and hard3 for it.
Identify the inode number associated with all four files. Edit
any of the files and observe the metadata for all the files for
confirmation. (Exercise 3-2).

Task 16: On rhcsa5, members (user100 and user200) of
group100 should be able to collaborate on files under
/shared but cannot delete each other’s files. (Exercises 4-5
and 4-6).

Task 17: Synchronize the entire /etc directory on rhcsa5 to
/tmp/etc on rhcsa6. Use in-transit compression. Capture the
output and any errors in the /tmp/etc.transfer file on rhcsa5
during the synchronization process. (Chapter 19, topic:
Synchronizing Files Remotely Using rsync, and Chapter 07,
topic: Regular Expressions).

Task 18: On rhcsa6, list all files that are part of the “setup”
package, and use regular expressions and redirection to
send the output lines containing “hosts” to /tmp/setup.pkg.
(Exercise 9-1, and Chapter 07, topics: Regular Expressions,
and Input, Output, and Error Redirections).

Task 19: On rhcsa5, check the current version of the Linux
kernel. Download a higher version from the Red Hat
Customer Portal (or from rpmfind.net) and install it. Ensure
that the existing kernel and its configuration remain intact.
(Exercise 11-2, and Chapter 02, topic: Viewing System
Information).

Task 20: On rhcsa5, configure journald to store messages
permanently under /var/log/journal and fall back to memory-
only option if /var/log/journal directory does not exist or has
permission/access issues. (Chapter 12, topic: Preserving
Journal Information).

Reboot the system and validate the
configuration.

http://rpmfind.net/

Bibliography

The following websites, forums, and guides were referenced
in writing this book:

1. www.virtualbox.org
2. docs.redhat.com/docs/en-US
3. developers.redhat.com
4. www.redhat.com
5. www.opensource.org
6. www.systemd.io
7. www.tldp.org
8. wiki.archlinux.org
9. www.ibm.com
10. www.centos.org
11. www.wikipedia.org
12. www.linux.org
13. www.firewalld.org
14. www.apache.org
15. www.gnome.org
16. www.ietf.org
17. www.isc.org
18. www.netfilter.org
19. www.nftables.org
20. www.nsa.gov/research/selinux
21. www.ntp.org
22. www.chrony.tuxfamily.org
23. www.openssh.org
24. www.pathname.com/fhs

http://www.virtualbox.org/
http://docs.redhat.com/docs/en-US
http://developers.redhat.com/
http://www.redhat.com/
http://www.opensource.org/
http://www.systemd.io/
http://www.tldp.org/
http://wiki.archlinux.org/
http://www.ibm.com/
http://www.centos.org/
http://www.wikipedia.org/
http://www.linux.org/
http://www.firewalld.org/
http://www.apache.org/
http://www.gnome.org/
http://www.ietf.org/
http://www.isc.org/
http://www.netfilter.org/
http://www.nftables.org/
http://www.nsa.gov/research/selinux
http://www.ntp.org/
http://www.chrony.tuxfamily.org/
http://www.openssh.org/
http://www.pathname.com/fhs

25. Red Hat Certified System Administrator & Engineer
for RHEL 7 book by Asghar Ghori

26. Red Hat Certified System Administrator & Engineer
for RHEL 6 book by Asghar Ghori

Glossary

. (single dot) Represents current directory.

.. (double dots) Represents parent directory of the current
directory.

Absolute mode A method of permission allocation to a file or
directory.

Absolute path A pathname that begins with a /.
Access ACLs ACL settings applied to files.

Access Control List
A method of allocating file permissions to a
specific user or group. See Named user and
Named group.

Access mode See Permission mode.
Access permission See File permission.
Access right See File permission.

Access Cache Vector A special cache area that SELinux uses to store its
decisions.

ACL See Access Control List.

ACL mask Controls the maximum permissions a named user
or named group can have.

Address Resolution
Protocol

A protocol used to determine a system’s Ethernet
address when its IP address is known.

Address space Memory location that a process can refer.
Administrator See Superuser.

Algorithm
A set of well-defined but complex mathematical
instructions used for data encryption and
decryption.

Alias A short name to refer to a lengthy command.
Alias substitution See Alias.
Anaconda RHEL’s installation program.

Anacron A service that runs missing cron and at jobs after
a system reboot.

Apache A popular HTTP web server software.

Application module A complete set of packages to install a software
application.

Application stream
A method of making multiple versions of a
software application available for installation from
the same repository.

AppStream

One of the yum repositories in RHEL 8 that
provides a number of add-on software applications
along with some core operating system
components.

Archive A file that contains one or more files.
Argument A value passed to a command or program.
ARP See Address Resolution Protocol.

ASCII An acronym for American Standard Code for
Information Interchange.

Asymmetric
encryption technique

A technique that uses a combination of
public/private keys to allow two network entities
to communicate privately.

Auditing System and user activity record and analysis.
Authentication The process of identifying a user to a system.

AutoFS
The NFS client-side service that automatically
mounts and unmounts an NFS share on an as-
needed basis.

AutoFS maps Configuration files to define the directory location
to automount a remote share.

Automounter See AutoFS.
AVC See Access Vector Cache.
Background process A process that runs in the background.

Backup Process of saving data on an alternative media
such as a tape or another disk.

BaseOS One of the yum repositories in RHEL 8 that
includes the foundational RHEL components.

Bash shell A feature-rich default shell available in Red Hat
Enterprise Linux.

Berkeley Internet
Name Domain

A University of California at Berkeley
implementation of DNS for Linux and UNIX
platforms. See also Domain Name System.

Binary package A software package available in a format that
yum/dnf/rpm can recognize and install.

BIND See Berkeley Internet Name Domain.
BIOS Basic I/O System. Software code that sits in the

computer’s non-volatile memory and is executed

when the system is booted. Also see Firmware.

Block A collection of bytes of data transmitted as a
single unit.

Block device file
A file associated with devices that transfer data
randomly in blocks. Common examples are disk,
CD, and DVD.

Bluetooth A wireless technology for communication.

Boolean The on/off switch to permit or deny an SELinux
rule for a service.

Boot See Boot process.

Bootloader A small program that loads the operating system
in memory.

Boot order The sequence in which to try devices to boot the
system.

Boot process The process of starting up a system to a usable
state.

Bourne Again Shell See Bash shell.

Bus Data communication path among devices in a
computer system.

Cache
A temporary storage area on the system where
frequently accessed information is duplicated for
quick future access.

Calling process See Parent process.

CentOS
Community Enterprise Operating System. A 100%
unsponsored rebuild of Red Hat Enterprise Linux
OS available for free.

Cgroup See Control group.
Challenge-response
authentication

An authentication method that presents one or
more arbitrary challenge questions to the user.

Character special file
A file associated with devices that transfer data
serially, one character at a time. Common
examples are disk, tape, and mouse.

Child directory A directory one level below the current directory.
Child process A sub-process started by a process.

Child shell A child shell is spawned by the current shell as
needed.

Chrony An implementation of Network Time Protocol for
time synchronization on network devices.

CIDR See Classless Inter-Domain Routing.
Classless Inter- A technique for better use of IP addresses. It also

Domain Routing results in smaller and less cluttered routing tables.

Command An instruction given to the system to perform a
task.

Command aliasing See Alias.
Command history See History substitution.
Command interpreterSee Shell.
Command
completion line

See Tab completion.

Command editing
line

Allows editing at the command line.

Command prompt The OS prompt where you type commands.
Command
substitution

A shell feature that allows the assignment of the
output of an executed command to a variable.

Compression The process of compressing data.

Context (SELinux) A set of SELinux attributes applied to SELinux
subjects and objects.

Contiguous blocks
data

A series of data blocks.

Control group A process management technique.

Core
A core is a processor that shares the chip with
other cores. Multi-core processor chips are
common.

CPU-intensive A program or application that heavily uses system
processors.

Crash An abnormal system shutdown caused by
electrical outage or kernel malfunction, etc.

Crontable A table of cron jobs scheduled for a user.
Commonly abbreviated as crontab.

Current directory The present working directory.

Current shell The shell where a program is launched. Compare
with Child shell.

DAC (SELinux) See Discretionary Access Control.

Daemon A server process that runs in the background and
responds to client requests.

Database A collection of data.

D-bus

Desktop Bus. Another communication method that
allows multiple services running in parallel on a
system to talk to one another on the same or
remote system. Compare with Socket.

De-duplication A technique to remove redundant data blocks

from storage to conserve space and improve
performance.

De-encapsulation The reverse of encapsulation. See Encapsulation.

Default
Predefined values or settings that are
automatically accepted by commands or
programs.

Default ACLs ACL settings applied to directories.

Default permissions Permissions assigned to a file and directory at
creation.

Defunct process See Zombie process.
Desktop bus See D-bus.

Desktop environment Software such as GNOME that provides graphical
environment for users to interact with the system.

Device A peripheral such as a printer, disk drive, or a
CD/DVD device.

Device driver The software that controls a device.
Device file See Special file.
DHCP See Dynamic Host Configuration Protocol.
Directory structure Inverted tree-like Linux/UNIX directory structure.
Discretionary Access
Control

A rich set of traditional access controls in Linux.

Disk-based file
system

A file system created on a non-volatile storage
device.

Disk partitioning
Creation of partitions on a given storage device so
as to access them as distinct, independent logical
containers for data storage.

Display manager Application that is responsible for the presentation
of graphical login screen.

Dnf An upcoming major enhancement to yum.
DNS See Domain Name System.
DNS name space See Name space.

Domain A group of computers configured to use a service
such as DNS or NIS.

Domain Name
System

The de facto hostname resolution service used on
the Internet and corporate networks.

Domain (SELinux) It ascertains the type of access that a process has.

Domain transitioning
The ability of a process running in one SELinux
domain to enter another domain to execute a task
in that domain.

Driver See Device driver.

Dynamic Host
Configuration
Protocol

A networking service that provides IP assignments
to devices.

Encapsulation The process of forming a packet through the
seven OSI layers.

Encryption
A method of scrambling information for privacy.
See asymmetric encryption technique and
symmetric encryption technique.

Encryption keys

A single secret key or a pair of private/public keys
that is used to encrypt and decrypt data for
private communication between two network
entities.

Environment variable A variable whose value is inherited by programs in
sub-shells.

EOF Marks the End OF File.

Error redirection
A shell feature that allows forwarding error
messages generated during a command execution
to an alternative destination (file, printer, etc.).

Ethernet A family of networking technologies designed for
LANs.

Ethernet address See MAC address.
Export See Share.

Exporting The process of making a directory or file system
available over the network for sharing.

Extended file system

A type of file system that has been around in
Linux for decades and currently has the fourth
generation included and widely used in recent
Linux distributions.

Extent
The smallest unit of space allocation in LVM. It is
always contiguous. See Logical extent and
Physical extent.

External command A command external to the shell.

Fedora
Red Hat sponsored community project for
collaborative enhancement of Red Hat Enterprise
Linux OS.

Fibre channel A family of networking technologies designed for
storage networking.

File descriptor A unique, per-process integer value used to refer
to an open file.

File globbing See Filename expansion.
Filename expansion A series of characters used in matching filenames.

Also see Metacharacters and Wildcard characters.

File permission
Read, write, execute or no permission assigned to
a file or directory at the user, group, or public
level.

File system A grouping of files stored in special data
structures.

File Transfer Protocol A widely used protocol for file exchange.

Filter A command that performs data transformation on
the given input.

Firewall A software or hardware appliance used for
blocking inbound unauthorized access.

Firewalld A dynamic firewall manager.
Firewalld zone A method of segregating incoming network traffic.
Firmware The BIOS or the UEFI code in x86-based systems.
FTP See File Transfer Protocol.
Full path See Absolute path.
Gateway A device that connects two networks.

Gateway address
An IP address that allows a system to
communicate with computers on a different
network.

GECOS
General Electric Comprehensive Operating
System. The comments field in the /etc/passwd
file.

GID See Group ID.
Globally Unique
IDentifier

See Universally Unique IDentifier.

Globbing See Regular expression.

GNOME GNU Object Model Environment. An intuitive
graphical user environment.

GNU GNU Not Unix. A project initiated to develop a
completely free Unix-like operating system.

GPG Gnu Privacy Guard. An open source
implementation of PGP. See PGP.

GPL
General Public License that allows the use of
software developed under GNU project to be
available for free to the general public.

GPT See GUID Partition Table.
Graphical User
Interface

An interface that allows users to interact with the
operating system or application graphically.

Group A collection of users that requires same

permissions on files and directories.

Group collaboration A collection of users from different groups with
identical rights on files for the purpose of sharing.

Group ID A numeric identifier assigned to a group.

GRUB2
Grand Unified Bootloader version 2. The second
generation of the GRUB bootloader program that
loads the operating system in memory.

GSSAPI-based
authentication

An authentication method that provides a
standard interface for security mechanisms to be
plugged in.

Guest An operating system instance that runs in a virtual
machine.

GUI See Graphical User Interface.
GUID See Universally Unique IDentifier.

GUID Table Partition A small disk partition on a UEFI system that stores
disk partition information.

Hard link A mapping between a filename and its inode
number.

Hardware address See MAC address.
Hardware clock See Real-Time Clock.
Hashing See Password hashing.
History expansion See History substitution.

History substitution A shell feature that enables the storage of
previously executed commands.

Home directory A directory where a user lands when he logs into
the system.

Host-based firewall A firewall service that runs on the Linux system.

Host-based
authentication

An authentication method that allows a single
user, a group of users, or all users on the client to
be authenticated on the server.

Hostname A unique name assigned to a network node.
Hostname resolution See Name resolution.
Host table A file that maintains IP and hostname mappings.
HTTP See HyperText Transfer Protocol.
HTTPS See HyperText Transfer Protocol Secure.
HyperText Transfer
Protocol

HyperText Transfer Protocol. Allows access to web
pages.

HyperText Protocol
Secure Transfer

Secure cousin of HTTP. Allows access to secure
web pages.

Hypervisor Software loaded on a computer to virtualize its

hardware.
ICMP See Internet Control Message Protocol.

Index node

An index node number holds a file’s properties
including permissions, size and
creation/modification time as well as contains a
pointer to the data blocks that actually store the
file data.

Init
An older method of system initialization. It has
been replaced by systemd in newer Linux
versions.

Initialization files See Shell startup files.

Initial permissions
Predefined permission settings that are used to
calculate default permissions for new files and
directories.

Initial Setup

Program that starts at first system reboot after a
system has been installed to customize
authentication, firewall, network, time zone and
other services.

Inode See Index node.

Inode table A table in a file system that keeps a record of
inode numbers.

Input redirection A shell feature that allows supplying input to a
command from an alternative source (file, etc.).

Installable package See Binary package.

Installer program A program that is launched to install an operating
system or application.

Interface card See Network device.
Internal command A command built-in to the shell.
Internet A complex network of computers and routers.
Internet Control
Message Protocol

A well-known networking protocol that is primarily
used for testing and debugging.

Internet Protocol A protocol that is responsible for relaying traffic
between network entities.

Inter-Process
Communication

Allows processes to communicate directly with
each other by sharing parts of their virtual
memory address space, and then reading and
writing data stored in that shared virtual memory.

I/O redirection
A shell feature that allows getting input from a
non-default location and sending output and error
messages to non-default locations.

IP See Internet Protocol.

IP address A unique 32- or 128-bit software address assigned
to a network node.

IPC See Inter-Process Communication.
ISO9660 A file system type used to mount optical devices.
Job A process started in the background.

Job control The management of jobs running in the
background and foreground.

Job scheduling Execution of commands, programs, or scripts in
future.

Journald A systemd-based logging service for collecting
and storing logging data.

Journaled file system A file system that uses the journaling mechanism
for swift recovery after a system crash.

Journaling

A file system feature that allows it to maintain a
journal (log) of its metadata changes to be used to
fix any potential anomalies that may arise due to
an abnormal system shutdown.

Kerberos A networking protocol used for user authentication
over unsecure networks.

Kernel Software that controls the entire system including
all hardware and software.

Kernel-based Virtual
Machine

An open source hypervisor software used for host
virtualization.

Kvdo A kernel module to support the Virtual Data
Optimizer feature.

KVM See Kernel-based Virtual Machine.

Label (storage) A unique partition identifier that may be used
instead of a UUID or device file.

Label (SELinux) See Context.

Labeling The process of mapping files with their stored
SELinux contexts.

Latency The time it takes for a data packet to travel
between two network entities.

Link An object that associates a filename to any type
of file.

Link count Number of links that refers to a file.
Link layer address See MAC address.
Linux A UNIX-like, open source operating system.

Load balancing A technique whereby more than one server serve
client requests to share the load.

Localhost A reserved, non-networked hostname assigned to
every device. It represents the device itself.

Local variable A variable whose value is private to the shell
(current shell) it is defined in.

Logical extent A unit of space allocation for logical volumes in
LVM.

Logical volume A logical container in LVM that holds a file system
or swap.

Login Manager See Display manager.

Logging A process of capturing desired alerts and
forwarding them to preconfigured locations.

Logical Volume
Manager

A widely used disk partitioning solution.

Login A process that begins when a user enters a
username and password at the login prompt.

Login directory See Home directory.

Loopback A reserved IP address assigned to a device for
testing and troubleshooting local issues.

LVM See Logical Volume Manager.

MAC address
A unique 48-bit hardware address of a network
interface. Also called physical address, Ethernet
address, and hardware address.

MAC (SELinux) See Mandatory Access Control.

Machine A computer, system, workstation, desktop, or
server.

Major number A number that points to a device driver.
Mandatory Access
Control

A rich set of policies for granular access controls.

Map See AutoFS map.
Masquerading A variant of NAT.

Master Boot Record A small region on the disk that stores disk
partition information.

MBR See Master Boot Record.

Memory-based file
system

A kernel-managed virtual file system created in
memory at system boot and destroyed at system
shutdown.

Memory-intensive A program or application that heavily uses
memory.

Metacharacters A series of characters that have special meaning
to the shell and are used in pattern matching and

filename globbing. Also see Wildcard characters.

Minor number A unique number that points to an individual
device controlled by a specific device driver.

MLS See Multi-Level Security.

Module (kernel) Device drivers used to control hardware devices
and software components.

Module (package) See Application module.

Mounting Attaching a device (a file system, a CD/DVD) to
the directory structure.

Multi-Level Security One of the two standard SELinux policies that
controls access at deeper levels.

Named group A specific group that receives ACLs.

Named pipe
Allows two unrelated processes running on the
same system or on two different systems to
communicate with each other and exchange data.

Named user A specific user that receives ACLs.

Name resolution A technique to determine IP address by providing
hostname.

Name space A hierarchical organization of DNS domains on the
Internet.

NAT See Network Address Translation.
NDP See Neighbor Discovery Protocol.
Neighbor Discovery
Protocol

A networking protocol that is used to discover IPv6
devices and troubleshoot networking issues.

Netfilter
A framework that provides a set of hooks within
the kernel to enable it to intercept and manipulate
data packets.

Netmask See Subnet mask.

Network Two or more computers joined together to share
resources.

Network Address
Translation

Allows systems on an internal network to access
external networks using a single IP address.

Network classes Ranges of IP addresses classified into five distinct
categories.

Network connection A connection profile attached to a network device
(interface).

Network device A physical or virtual network interface assigned to
a system for network connectivity.

Network File System A networking protocol that allows Linux systems
to share resources (files, directories, and file

systems) on the network.
Network interface See Network device.
Network interface
card

See Network device.

NetworkManager
A Linux service that is used to configure,
administer, and monitor network devices and
connections.

Network mask See Subnet mask.
Network Time
Protocol

A networking protocol that is used to synchronize
the system clock with a reliable time source.

NIC See Network device.
NFS See Network File System.
NFS client A system that mounts an exported Linux resource.

NFS server A system that exports (shares) a resource for
mounting by an NFS client.

Nftables A packet classification framework to monitor
network traffic.

Niceness It determines the priority of a process.
Nice value See Niceness.
Node A network device with a hostname and IP address.
Node name A unique name assigned to a node.
Nologin (user)
account

A user without the ability to log in to the system.

Normal (user)
account

A user account with limited privileges on the
system.

NTP See Network Time Protocol.

NTP client A system that receives time from a primary or
secondary NTP server for its clock adjustments.

NTP peer Two or more time servers that operate at the
same stratum level.

NTP pool A pool of time servers.

NTP server See Primary NTP server and Secondary NTP
server.

Object (SELinux)
A file, directory, file system, device, network
connection, network interface, network socket,
network port, etc.

Octal mode A method for setting permissions on a file or
directory using octal numbering system.

Octal numbering
system

A 3 digit numbering system that represents values
from 0 to 7.

On-demand
activation

A systemd way of activating a service when
needed.

Open source
Any software whose source code is published and
is accessible at no cost to the public under GNU
GPL for copy, modification and redistribution.

OpenSSH A free implementation of secure shell services and
utilities.

Orphan process An alive child process of a terminated parent
process.

Output redirection
A shell feature that allows forwarding a command
output to an alternative destination (file, printer,
etc.).

Owner A user who has ownership rights on a file,
directory, or process.

Owning user The owner of a file or directory.
Owning group The group of a file or directory.

Package A set of necessary files and metadata that makes
up a software application.

Package credibility The authenticity or originality of a package.

Package database A directory location that stores metadata for
installed packages.

Package dependency Additional required packages for a successful
installation or functioning of another package.

Package group A group of similar applications that can be
managed as a single entity.

Package integrity A state of being complete and error-free.
Package module See Application module.

Paging The process of transferring data between memory
and swap space.

PAM See Pluggable Authentication Module.
Parent directory A directory one level above the current directory.

Parent process A process with one or more child processes
spawned.

Parent process ID The ID of a process that starts a child process.

Parallelism A systemd way of starting multiple services
concurrently at system boot.

Partition A partition created on a storage device.

Password aging A mechanism that provides enhanced control on
user passwords.

Password-based An authentication method that prompts users to

authentication enter their passwords to be signed in.

Password hashing

A one-way process of converting a legible text
string into a random but unique string of
characters using one of the several available
password hashing algorithms.

Pattern matching See Regular expression.
Peer See NTP peer.

Per-user startup files A set of initialization files that defines custom
settings for an individual user upon logging in.

Performance-based Hands-on implementation.

Performance
monitoring

The process of acquiring data from system
components for analysis and decision-making
purposes.

Permission Right to read, write, or execute.

Permission class
Access rights on files and directories based on an
individual user, a group of users, or everyone else
on the system.

Permission type Read, write, or execute permission bits set on files
or directories.

Permission mode Add, revoke, or assign a permission type to a
permission class.

PGP Pretty Good Privacy. An encryption program to
ensure data privacy and secrecy.

Physical address See MAC address.

Physical extent A unit of space allocation on physical volumes in
LVM.

Physical volume A disk or a partition logically brought under LVM
control.

PID See Process ID.

Pipe Sends output of one command as input to the
second command.

Pipeline A command construction with the pipe character
used multiple times.

Pluggable
Authentication
Module

A set of library routines that allows using any
authentication service available on a system for
user authentication, password modification and
user account validation purposes.

Policy (SELinux) A set of rules enforced system-wide for analysis of
security attributes on subjects and objects.

Pool See Storage pool and Thin pool.
Pool (NTP) See NTP pool.

Port
A number appended to an IP address. This number
could be associated with a well-known service or
is randomly generated.

Port forwarding A method of directing incoming network traffic to
an alternative network port.

POST Power-On-Self-Test that runs at system boot to test
hardware. See BIOS, Firmware, and UEFI.

Postfix A mail transfer application used for sending and
receiving mail.

PPID See Parent process ID.

Primary DNS A system that acts as the primary provider of DNS
zones.

Primary NTP server
A system that gets time from a more reliable
source and provides time to secondary servers or
clients.

Primary prompt The symbol where commands and programs are
typed for execution.

Priority See Process priority.

Private key

A randomly generated portion of the
private/public key combination that is used to
decode the messages encrypted with the paired
public key.

Privilege An extra right to accomplish something.

Process Any command, program, or daemon that runs on
a system.

Process ID A numeric identifier assigned by kernel to each
process spawned.

Process niceness See Niceness.

Process priority
The value at which a process is running. This
value is determined based on the current niceness
setting.

Process state One of multiple states in which a process is held
during its lifecycle.

Processor A CPU. It may contain more than one cores.

Profile (module)
A list of recommended packages that are
organized for purpose-built convenient
installations.

Prompt See Primary prompt and Secondary prompt.

Protocol A common language that communicating nodes
understand.

Proxy A system that acts on behalf of other systems to

access network services.

Public key
A randomly generated portion of the
private/public key combination that is used to
encode messages destined for a specific user.

Public key-based
authentication

An authentication method that uses a
public/private key pair for user authentication.

Public key encryption See Asymmetric encryption technique.

Quoting Treats the specified special character as a regular
character by disabling their special meaning.

Real-Time Clock A battery-backed hardware clock on the system.

Recovery
A function that recovers a crashed system to its
previous normal state. It may require restoring
lost data files.

Redhat Package
Manager

A file format used for packaging software for RHEL
and its clones.

Red Hat Subscription
Management

A comprehensive management service provided
by Red Hat to its clients.

Redirection Getting input from and sending output to non-
default destinations.

Regex See Regular expression.
Regexp See Regular expression.

Regular expression A string of characters commonly used for pattern
matching and filename globbing.

Relative path A path to a file relative to the current user location
in the file system hierarchy.

Renicing Changing the niceness of a running process.

Repository A URL location that provides access to software
packages for installation.

Rescue mode A special boot mode for fixing and recovering an
unbootable system.

Resolver The client-side of DNS.

RHCE
Red Hat Certified Engineer. A designation that
may be earned by passing a performance based
RHCE exam.

RHCSA
Red Hat Certified System Administrator. A
designation that may be earned by passing a
performance based RHCSA exam.

RHEL Red Hat Enterprise Linux.
RHSM See Red Hat Subscription Management.
Role (SELinux) It controls who (SELinux subject) is allowed to

access what (SELinux domains or types).
Root (user) account See Superuser.

Router A device that routes data packets from one
network to another.

Routing The process of choosing a path over which to send
a data packet.

Root servers The thirteen most accurate root DNS servers.
RPM See RedHat Package Manager.

Rsyslog
Essential Linux service for capturing system
messages and forwarded them to various
destinations for storage.

RTC See Real-Time Clock.
Runtime The operational state of an operating system.

SAS Serial Attached SCSI. See Small Computer System
Interface.

SATA Serial Advanced Technology Attachment. This disk
technology is a successor to the PATA drives.

Script A text program written to perform a series of
tasks.

SCSI See Small Computer System Interface.

Search path A list of directories where the system looks for the
specified command.

Secondary DNS A system that acts as an alternate provider of DNS
zones.

Secondary NTP
server

A system that gets time from a primary NTP
server and provides time to NTP clients.

Secondary prompt A prompt indicating that the entered command
needs more input.

Secret key
encryption

See Symmetric encryption technique.

Secure shell A set of tools that gives secure access to a
system.

Security context SELinux security attributes set on files, processes,
users, ports, etc.

Security Enhanced
Linux

An implementation of Mandatory Access Control
architecture for enhanced and granular control on
files, processes, users, ports, etc.

SELinux See Security Enhanced Linux.

Server (hardware) Typically, a larger and more powerful system that
offers services to network users.

Server (software) A process or daemon that runs on the system to
serve client requests.

Service (user)
account

A user account that is used to control an installed
application or service.

Set Group ID Sets effective group ID.
Set User ID Sets effective user ID.
Setgid See Set group ID.
Setuid See Set user ID.

Shadow password A mechanism to store passwords and password
aging data in a secure file.

Share A directory or file system shared over the
network.

Shared memory
A portion in physical memory created by a process
to share it with other processes that communicate
with that process.

Sharing See Exporting.

Shell The Linux command interpreter that sits between
a user and kernel.

Shell program See Script.
Shell script See Script.

Shell scripting Programming in a Linux shell to automate one or a
series of tasks.

Shell startup files A set of files that are used to define the
environment for a user upon logging in.

Shell variable See Local variable.
Signal A software interrupt sent to a process.
Simple Mail Transfer
Protocol

A networking protocol used for email transfer over
the Internet.

Single user mode An operating system state in which the system
cannot be accessed over the network.

Skeleton directory A directory location where user default
configuration templates are stored.

Small Computer
System Interface

A parallel interface used to connect peripheral
devices to the system.

SMTP See Simple Mail Transfer Protocol.
Snapshot The state of a system at a certain point in time.

Socket
A communication method that allows a process to
talk to another process on the same or remote
system.

Soft link See Symbolic link.

Source package A software package that can be modified and
repackaged for a specific purpose.

Special characters See Metacharacters.
Special file A file that points to a specific device.

Special file
permissions

Additional access permission bits that may be set
on files and directories, where applicable, to give
extra rights to (or limit rights for) normal users on
executable files and shared directories. Also see
Set user ID, Set group ID, and Sticky bit.

SSH See Secure Shell.

Standard error A standard location to forward error messages to.
Also see Error redirection.

Standard input A standard location to receive input from. Also see
Input redirection.

Standard output A standard location to forward output to. Also see
Output redirection.

Startup files See Shell startup files.
Stderr See Standard error.
Stdin See Standard input.
Stdout See Standard output.

Sticky bit Disallows non-owners to delete files located in a
directory.

Storage pool A logical storage space created with one or more
disks or partitions.

Stratis A simplified storage management solution.

Stratum level The categorization of NTP time sources based on
reliability and accuracy.

Stream (module) Represents a collection of packages that are
organized by version.

String A series of characters.
Subject (SELinux) A process or user.

Subnet One of the smaller networks formed using the
process of subnetting. See Subnetting.

Subnet mask Segregates the network bits from the node bits in
an IP address.

Subnetting The process of dividing an IP address into several
smaller subnetworks.

Sub-shell See Child shell. Compare with Current shell.
Substituting users See Switching users.
Sudo A method of delegating a portion of superuser

privileges to normal users.

Superblock A small portion in a file system that holds the file
system’s critical information.

Superuser A user with full powers on the system.
Swap Alternative disk or file system location for paging.

Switch
A network device that looks at the MAC address
and switches the packet to the correct destination
port based on the MAC address.

Switching users The ability to switch into a different user account
provided the target user’s password is known.

Symbolic link
A shortcut that points to a file or directory located
somewhere in the directory hierarchy. Compare
with hard link.

Symbolic mode A method of setting permissions on a file using
non-decimal values.

Symlink See Symbolic link.
Symmetric
encryption technique

A technique that employs a secret key for private
communication between two network entities.

Syslog See rsyslog.

System A computer or a logical partition in a computer
that runs an operating system.

System AdministratorPerson responsible for installing, configuring and
managing a RHEL system.

System call A mechanism that applications use to request
service from the kernel.

System console A display terminal that acts as the system
console.

Systemd
System daemon. The default method of system
initialization and service management in newer
Linux distributions including RHEL 7 and RHEL 8.

System recovery The process of recovering an unbootable system.

System tuning
A service in RHEL 8 to monitor connected devices
and dynamically adjust their parameters for
performance improvement.

System-wide startup
files

A set of initialization files that defines common
settings for all users upon logging in.

Tab completion

A shell feature that allows completing a file or
command name by typing a partial name at the
command line and then hitting the Tab key twice
for additional matching possibilities.

Target A logical collection of systemd units. All units

within a target are treated as a single entity.
Targeted policy An SELinux policy.
TCP See Transmission Control Protocol.

TCP/IP
Transmission Control Protocol / Internet Protocol. A
stacked, standard suite of protocols for computer
communication.

Terminal A window where commands are executed.

Thin pool
A pool of storage that uses the thin provisioning
technology to allow the creation of volumes much
larger than their actual physical size.

Thin provisioning An economical technique of storage allocation and
utilization.

Thrashing Excessive amount of paging.

Throughput The amount of data transferred between two
network entities within a specified period of time.

Tilde expansion See Tilde substitution.

Tilde substitution A shell feature that uses the tilde character as a
shortcut to navigate within the directory tree.

Time source A reference device that provides time to other
devices.

Transmission Control
Protocol

A stateful and reliable transport protocol.
Compare with UDP.

Tty Refers to a terminal.

Tuning profile A set of attributes that can be applied to a system
for improving performance of certain components.

Type enforcement It controls the ability of an SELinux subject to
access domains and types.

Udevd Dynamic device management service.
UDP See User Datagram Protocol.
UDS See Universal De-duplication Service.
UEFI See Unified Extensible Firmware Interface.
UID See User ID.
Umask See User mask.
Unified Extensible
Firmware Interface

Software code used in computers for pre-boot
system management. Also see Firmware.

Universal De-
duplication Service

A kernel module to support data de-duplication.

Universally Unique
IDentifier

A unique alphanumeric software identifier used to
identify an object, such as a disk or disk partition.

Unmounting Detaching a mounted file system or a CD/DVD

from the directory structure.

Unit A systemd object used to organize service
startups, socket creation, etc.

Universal Time
Coordinated

The reference time used around the world to
determine the local time and time zone.

USB Universal Serial Bus. A bus standard to connect
peripheral devices.

User Datagram
Protocol

A stateless and unreliable transport protocol.
Compare with TCP.

User ID A numeric identifier assigned to a user.

User mask A value used in calculating default access rights
on new files and directories.

User Private Group
Referred to the GID that matches with the user’s
UID for safeguarding the user’s private data from
other users.

UTC See Universal Time Coordinated.
UUID See Universally Unique IDentifier.
Variable A temporary storage of data in memory.

Variable substitution A shell feature that allows the value of a variable
to be used in a command.

VDO See Virtual Data Optimizer.
VFAT See Virtual File Allocation Table.

VirtualBox A type II hypervisor to virtualize an operating
system.

VirtualBox Manager The management interface for VirtualBox.

Virtual console One of several console screens available for
system access.

Virtual Data
Optimizer

A feature to conserve disk space, improve data
throughput, and save cost.

Virtual Allocation File
Table

An MSDOS-compatible file system type.

Virtual file system See memory-based file system.

Virtual host
An approach to host more than one website on a
single system using unique or shared IP
addresses.

Virtualization

A technology that allows a single physical
computer to run several independent logical
computers (called virtual machines) with
complete isolation from one another.

Virtual machine
A logical computer running within a virtualized
environment.

Volume group A logical container in LVM that holds physical
volumes, logical volumes, file systems, and
swap.

Volume-managing
file system

A storage management solution that dynamically
and transparently manages the underlying
logical volume layer for file systems.

Wayland

An innovative, superior, faster networking
protocol that has replaced the X Window System
protocol in RHEL 8. See X Window System
protocol.

Web

A system of interlinked hypertext documents
accessed over a network or the Internet via a
web browser.

Web server
A system or service that provides web clients
access to website pages.

Wildcard characters
A subset of metacharacters used for character
matching in strings. See also Metacharacters.

Workload
Any application, database, program, or a
combination that runs on the system.

XFS
eXtended File System. A high-performance
journaling file system type.

X Window System
protocol

A networking protocol that lays the foundation to
run graphical applications. See Wayland.

Yum repository See Repository.
Zero-block
elimination

A technique to remove empty (zero-byte) data
blocks from storage.

Zombie process
A child process that terminated abnormally and
whose parent process still waits for it.

Zone (DNS) A delegated portion of a DNS name space.
Zone (Firewalld) A firewalld zone for traffic management.

Index

.

.bash_history file, 157

.bash_profile file, 172

.bashrc file, 172

A

Absolute path, 47
Access Control List, 103

Access ACLs, 103
Default ACLs, 108
Defined, 103
mask, 105
Named groups, 103
Named users, 103

Access permissions (See File permissions)
Address Resolution Protocol (See Networking)
alias command, 161
Alias substitution (See Shell)
anacron command, 191
anacrontab file, 191
Application stream (See Package)
apropos command, 53
Archiving, 62
Archiving tools, 62
ARP (See Networking)
at command, 187
at.allow file, 185
at.deny file, 185
atd service, 185, 187
audit.log file, 476
Auto File System (See AutoFS)
AutoFS, 380

Automounting user home directories, 386
Benefits, 381
Configuration file, 381
Defined, 380
How AutoFS works, 381
Maps, 382

Direct, 382
Indirect, 384
Master, 382

autofs service, 381
autofs.conf file, 381

B

bashrc file, 170
Berkeley Internet Name Domain (See Domain

Name System)
bg command, 170
BIND (See Domain Name System)
blkid command, 350
Block device file (See File type)
Boot process, 250

Bootloader phase, 251
Firmware phase, 250

BIOS, 250
UEFI, 250

Initialization phase, 251
Kernel phase, 251

boot.log file, 289
btmp file, 117
bunzip2 command, 63
bzip2 command, 63
bzip2 vs gzip, 64

C

Calling process (See Process)
cat command, 72, 73
cd command, 47
chage command, 136
Character device file (See File type)
chcon command, 469
chgrp command, 146

Child process (See Process)
chmod command, 89
chown command, 146
Chrony (See Network Time Protocol)
chrony.conf file, 418
chronyc command, 419
chronyd service, 419
CIDR (See Networking)
Classless Inter-Domain Routing (See Networking)
clear command, 49
Command aliasing (See Shell)
Command construction, 43
Command history (See Shell)
Command interpreter (See Shell)
Command line completion (See Shell)
Command line editing (See Shell)
Compression (file), 62
Compression tools, 62
config file, 469
Counting words, lines, and characters, 76
cp command, 76
cron log file, 186, 188
cron.allow file, 185
crond service, 185, 188
crontab command, 188
crontab file, 188
Crontable, 189

D

DAC (See SELinux
Daemon (See Process)
date command, 423
D-bus (See Initialization)
De-duplication, 314
Desktop environment, 35
Desktop manager, 34
Device driver (See Kernel)
df command, 350, 354
dig command, 426
Display/Login manager, 34
dnf command, 217
dnf.conf file, 216
DNS (See Domain Name System)

Documentation /usr/share/doc, 56
Domain Name System, 423

BIND, 423
Domain, 423
FQDN, 424
Managing

Lookup tools, 426
Name resolution, 423
Name space, 423
Resolver configuration file, 424
Resolver sources and order, 425
Roles, 424

Client, 424
Primary (Master), 424
Secondary (Slave), 424

du command, 350, 355

E

e2label command, 350
echo command, 153
Editing files, 67
Encapsulation, 450
env command, 153
Ethernet address (See Networking)
export command, 154
exportfs command, 377

F

fdisk command, 303
fg command, 169
FHS (See Filesystem Hierarchy Standard)
File and directory

Copying directory, 77
Copying file, 76
Creating directory, 73
Creating file, 72
Displaying content, 73
Moving directory, 78
Moving file, 77
Removing file, 78
Renaming directory, 78

Renaming file, 77
file command, 60
File permissions, 88

Calculating default, 92
Classes, 88
Default, 91
Initial, 91
Modes, 89
Modifying, 89

Using octal notation, 89
Using symbolic notation, 89

Special, 93
setgid on directories, 96
setgid on files, 94
setuid (suid), 93
Sticky bit, 98

Types, 88
umask, 91

File system
/, 38
/boot, 39
/dev, 40
/home, 39
/opt, 39
/proc, 40
/run, 41
/sys, 41
/tmp, 40
/usr, 39
/var, 39
Benefits, 346
Categories, 38, 346

Disk-based, 38
Memory-based, 38
Network-based, 38

Defined, 346
Extended file system with journal, 348
fstab file, 353
Managing, 349

Commands, 349
Determining UUID, 351
Labeling, 352
Mount options, 351
Mounting, 350
Mounting automatically, 353

Unmounting, 351
Monitoring, 354
Top-level, 37
Types, 346

Extended, 347
ISO9660, 349
VFAT, 348
XFS, 348

UUID, 351
File type

Block device, 40, 61
Character device, 61
Directory, 61
Raw device, 40
Regular, 60
Symbolic link, 62
Symlink (See Symbolic link)

Filesystem Hierarchy Standard, 37
find command, 100
Finding files, 100
Firewall

Defined, 450
Firewalld, 450

Managing, 453
Service, 452
Service files, 452
Zone, 450
Zone files, 451

Host-based, 450
firewall-cmd command, 454
Firewalld (See Firewall)
firewalld service, 450
FQDN (See Domain Name System)
free command, 367
fstab file, 351, 353, 377
Fully Qualified Domain Name (See Domain Name System)

G

gdisk command, 310
getenforce command, 469, 470
getent command, 428
getfacl command, 104
getsebool command, 469

Getting help, 50
GNU, 2
gpasswd command, 124
GPL, 2
grep command, 166
Group

Creating, 141
Deleting, 141
Identifying, 118
Modifying, 141
Owning group, 146

group file, 122
groupadd command, 141
groupdel command, 141
groupmod command, 141
groups command, 118
grub file, 254
grub.cfg file, 253, 254
GRUB2, 251

Configuration files
grub, 254
grub.cfg, 253
grubenv, 255

Managing, 251
Specific targets, 256

grub2-mkconfig command, 254, 255
grubenv file, 255
gshadow file, 124
gunzip command, 63
gzip command, 62
gzip vs bzip2, 64

H

halt command, 284
Hardware address (See Networking)
Hardware clock, 422
head command, 75
history command, 158
History expansion (See Shell)
History substitution (See Shell)
host command, 427
Hostname, 392
hostname command, 392

hostname file, 392
hostnamectl command, 392
hosts file, 409, 426

I

ICMP (See Networking)
id command, 118
ifdown command, 403
ifup command, 403
Index node number (See Inode), 79
info command, 55
Initialization

systemd
Control groups, 272
D-bus, 273
Listing previous system reboots, 115
Managing, 276

Setting default target, 283
Switching target, 283
Target, 282
Unit, 277
Viewing default target, 283

Overview, 272
Parallelism, 272
Socket, 272
Target

Analyzing file, 276
Defined, 275
Types, 275

Unit
Analyzing file, 274
Defined, 273
State, 273
Types, 274

Inode, 79
Installation

LAB Setup, 4
RHEL

Adding keyboard and languages, 20
Attaching image, 17
Configuring install destination, 22
Configuring network and hostname, 23
Creating user account, 26

Downloading, 14
Finishing, 27
Launching installer, 17
Logs, 5
Planning, 5
Post-Installation, 28
Selecting software, 21
Selecting source, 20
Setting root password, 26
Virtual consoles, 5
VirtualBox
Creating virtual machine, 10
Downloading, 6

Internet Control Message Protocol (See
Networking)

Internet Protocol (See Networking)
IP address (See Networking)
ip command, 394, 399
IPv6 address (See Networking)

J

Job control, 169
Job scheduling

Anacron, 190
Controlling access, 185
crontab file syntax, 189
Daemon

atd, 187
crond, 188

Logging, 186
Overview, 185
Step values, 189
Using at, 187
Using crontab, 188

jobs command, 169
journalctl command, 291
journald.conf file, 291

K

Kernel
Analyzing version, 259

Device driver, 258
Directory structure, 260
Installing, 263
Module, 262
Modules, 258
Overview, 258
Packages, 258

kill command, 183
killall command, 185
kvdo module, 314

L

last command, 115
lastb command, 116
lastlog command, 117
less command, 74
Linking files, 79

Copying vs. linking, 82
Hard link, 80
Link, 79
Symbolic link, 80

Linux
A quick look, 2
Defined, 2
Fedora Project, 3
RHEL history, 3

Linux directory structure, 37
ln command, 81
locate command, 102
Locating files, 102
Log rotation, 286
logger command, 290
Logging in, 29
Logging out, 31
Logical Volume Manager (See Storage)
login.defs file, 125
logrotate command, 287
logrotate.conf file, 287
Loopback address (See Networking)
ls command, 44
lsblk command, 303, 326, 349
lscpu command, 50
lvcreate command, 325

lvdisplay command, 325, 326
lvextend command, 325
LVM (See Storage)
lvreduce command, 325
lvremove command, 325
lvrename command, 325
lvresize command, 325
lvs command, 324, 326

M

MAC address (See Networking)
machine-id file, 294
Major number, 62
man command, 51
mandb command, 53
Manual page headings, 52
Manual page sections, 52
meminfo virtual file, 368
messages log file, 289
Metacharacters (See Shell)
Metadata (file), 79
Minor number, 62
mkdir command, 73
mke2fs command, 350
mkfs command, 350
mkfs.ext3 command, 350
mkfs.ext4 command, 350
mkfs.vfat command, 350
mkfs.xfs command, 350
mkswap command, 368
Module (See Package)
more command, 74
mount command, 350, 377
mounts virtual file, 351
mv command, 77

N

Name resolution (See Domain Name System)
NDP (See Networking)
Neighbor Discovery Protocol (See Networking)
Netfilter, 450

netfilter kernel module, 450
Netmask (See Networking)
Network adapter (See Networking)
Network classes (See Networking)
Network connection (See Networking)
Network connection profile (See Networking)
Network device (See Networking)
Network device naming (See Networking)
Network entity (See Networking)
Network File System

Benefits, 376
Configuring, 377

Exporting, 376
Mounting, 376

Defined, 376
Share, 376
Versions, 377

Network Interface Card (See Networking)
Network Time Protocol

Chrony, 416
Configuration file, 418
Displaying time, 422
Modifying time, 422
Overview, 416
Roles, 417

Client, 417
Peer, 417
Primary server, 417
Secondary server, 417

Stratum levels, 417
Time server, 418
Time source

Internet-based, 417
Overview, 416
Radio/Atomic clock, 417

Networking
Changing hostname, 393
Configuring

Commands, 403
Fundamentals

ARP, 399
CIDR notation, 396

Classes, 394
Class A, 395
Class B, 395

Class C, 395
Class D, 395
Class E, 395

Common protocols, 398
Connection profile (anatomy), 401
Consistent naming, 400
Entity, 392
Hostname, 392
Hosts table, 409
ICMP, 398
IP address, 394
IPv4 vs. IPv6, 400
IPv6, 399
Localhost, 394
Loopback address, 394
MAC address, 399
NDP, 399
Network connection, 401
Network connection profile, 401
Network Interface Card, 400
NetworkManager, 405
Node, 392
Port, 397
Protocol, 397
Subnet mask, 396
Subnetting, 396
TCP, 397
UDP, 397

NetworkManager service, 405
network-scripts directory, 401
NFS (See Network File System)
Nftables, 450
NIC (See Networking)
nice command, 182
Nice value (See Process)
Niceness (See Process)
nmcli command, 392, 405
nm-connection-editor command, 405
nmtui command, 405
Node (See Networking)
nologin.txt file, 130
nslookup command, 428
nsswitch.conf file, 425
NTP (See Network Time Protocol)

O

Online help tools, 50
OpenSSH

Algorithms, 434
Authentication methods, 433

Challenge-Response, 433
GSSAPI-based, 433
Host-based, 433
Password-based, 433
Public/private key, 433

Copying files, 442
Defined, 432
Encryption techniques, 432

Asymmetric, 432
Symmetric, 432

Legacy unsecure commands, 432
Managing

Client configuration file, 436
Server configuration file, 434

Packages, 434
Synchronizing files, 445
Transferring files, 444
Version, 434

P

Package
Application Stream, 214
Binary, 196
Database, 197
Dependency, 197
Groups, 214
Managing

dnf/yum, 216
Configuration file, 216
Group

Installing, 230
Listing, 229
Removing, 231
Updating, 230

Individual package
Displaying, 223

Installing, 222
Listing, 220
Removing, 224
Searching metadata, 228
Searching provider, 228
Updating, 222

Module
Displaying, 239
Installing, 237
Listing, 236
Removing, 239
Switching stream, 243
Updating, 237

rpm
Extracting, 204
Freshening, 203
Installing, 203
Overwriting, 204
Querying, 200
Removing, 204
Upgrading, 203
Verifying attributes, 206
Verifying signatures, 205
Viewing GPG keys, 206

Metadata, 196
Module, 214

Profile, 215
Stream, 215

Naming convention, 197
Overview, 196
Repository

AppStream, 215
BaseOS, 214
Overview, 215

Source, 196
Parent process (See Process)
parted command, 304, 308
partitions virtual file, 308
passwd command, 138, 140
passwd file, 119
Path, 46
Pathname, 46
Pattern matching, 166
Payload, 450
pgrep command, 180

Physical address (See Networking)
pidof command, 180
pinfo command, 55
ping command, 398, 409
Pipe (See Shell)
pkg-config command, 273
pkill command, 184
Port (See Networking)
poweroff command, 284
printenv command, 153
Process

Background job, 169
Calling, 176
Child, 176
Daemon, 176
Foreground job, 169
Job control, 169
Listing, 180
Listing by ownership, 181
Nice value, 181
Niceness, 181
Parent, 176
Priority, 181
Process ID, 176
Renicing, 183
Signals, 183
States, 176
Viewing with ps, 177
Viewing with top, 179

Process file system (See File system)
Process ID (See Process)
Process priority (See Process)
Process states (See Process)
profile file, 170
profile.d directory, 171
Protocol (See Networking)
protocols file, 397
ps command, 177
Pseudo terminal, 48
pvcreate command, 325
pvdisplay command, 326
pvremove command, 325
pvs command, 323, 326
pwd command, 46

Q

Quoting mechanisms, 165

R

Real-time clock (See Hardware clock)
reboot command, 284
redhat-release file, 156
Redirection

Defined, 155
Error, 157
Input, 156
Output, 156

Regex (See Pattern matching)
Regexp (See Pattern matching)
Regular expressions (See Pattern matching)
Relative path, 47
renice command, 183
Renicing (See Process)
Repository (See Package)
resize2fs command, 350
resolv.conf file, 401, 424
restorecon command, 469
rm command, 78
rmdir command, 79
rpm command, 198
rpm2cpio command, 204
rsync command, 445
rsyslog.conf file, 285
rsyslogd service, 284
rsyslogd.pid file, 285
RTC (See Hardware clock)

S

scp command, 432, 434, 442
sealert command, 469
secure log file, 146
Secure shell (See OpenSSH)
seinfo command, 465, 469
SELinux

Activation modes, 469
Booleans, 467
Contexts for files, 466
Contexts for ports, 466
Contexts for processes, 465
Contexts for users, 464
Defined, 462
Discretionary Access Control, 462
File operations with SELinux context, 466
Managing, 468

Analyzing alerts, 476
Commands, 468
Operational state, 469
Querying, 470

Mandatory Access Control, 462
Terms

Access, 463
Context, 463
Domain, 464
Domain transitioning, 467
Labeling, 463
Level, 464
Object, 463
Policy, 463
Role, 464
SELinux user, 463
Subject, 463
Type, 464
Type enforcement, 464

semanage command, 465, 466, 469
sesearch command, 469
sestatus command, 469, 470
sestatus.conf file, 471
setenforce command, 469
setfacl command, 104
Setgid bit, 94, 96
setroubleshootd service, 476
setsebool command, 469
Setuid bit, 93
sftp command, 432, 434, 444
shadow file, 120
Shadow mechanism, 120
Shell

Alias substitution, 161
Bash, 152

Child shell, 153
Command history, 157
Command line completion, 159
Command line editing, 159
Command substitution, 155
Current shell, 153
External commands, 152
Features, 152
History expansion, 157
History substitution, 157
Internal commands, 152
Metacharacters, 162
Modifying command prompt, 155
Overview, 152
Pipe, 164
Quoting mechanisms, 165
Tab completion, 159
Tilde substitution, 159
Variable substitution, 155
Variables

Displaying, 153, 154
Environment, 153
Local, 153
Setting, 154
Shell, 153
Unsetting, 154

Wildcards
Asterisk, 162
Exclamation point, 164
Question mark, 163
Square brackets, 163

shutdown command, 284
Signal (See Process)
Socket, 272
ssh command, 432, 434, 441
ssh_config file, 436
ssh-copy-id command, 434
sshd service, 434
sshd_config file, 434
ssh-keygen command, 434
stat command, 60
Sticky bit, 98
Storage

Benefits, 322
LVM, 322

Concept, 322
Logical extent, 324
Logical volume, 324
Managing

Commands, 325
Physical extent, 324
Physical volume, 323
Volume group, 323

Managing
Tools, 304
Using gdisk, 310
Using parted, 308

Partition table
GPT, 303
MBR, 302
UEFI, 302

Stratis
Defined, 335
Dynamic expansion, 336
Managing, 337
Pool, 336

Thin provisioning
Defined, 304
pool, 304

VDO
Compression, 314
De-duplication, 314
Defined, 314
How it works, 314
Managing, 315
Zero-block elimination, 314

Stratis (See Storage)
stratis command, 337
stratisd service, 337
Stream (See Package)
su command, 143
Subnet mask (See Networking)
Subnetting (See Networking)
Substituting users, 143
sudo command, 144
sudoers file, 144
Swap

Commands, 368
Defined, 366
Demand paging, 367

Determing usage, 367
Prioritizing, 368
Thrashing, 367

swapoff command, 368
swapon command, 368
System logging

Configuration file, 285
Journal, 290
journald

Configuration file, 291
Preserving, 293
Viewing, 291

Logging, 289
Logging custom messages, 290
Rotating log files, 286
rsyslogd, 284
systemd-journald daemon, 291

System tuning (See Tuning)
systemctl command, 276
systemd (See Initialization)
systemd-hostnamed service, 393
systemd-journald service, 290

T

tac command, 74
tail command, 75
Tape archive (See Archiving)
tar command, 64
TCP (See Networking)
Thin provisioning (See Storage)
Tilde expansion (See Shell)
Tilde substitution (See Shell)
Time synchronization (See Network Time

Protocol)
timedatectl command, 422
top command, 179
touch command, 72
traceroute command, 398
Transmission Control Protocol (See Networking)
tree command, 41
tty command, 48
tune2fs command, 350
tuned service, 294

tuned-adm command, 295
Tuning, 294

Daemon, 294
Defined, 294
Managing, 295
Profile location, 295
Profiles, 294

type command, 49

U

udevd service, 40, 400
UDP (See Networking)
UDS (See Universal De-duplication Service)
UDS module, 314
umask command, 91
umount command, 350, 351
unalias command, 162
uname command, 49, 259
Universal De-duplication Service, 314
unset command, 154
UPG (See User Private Group)
uptime command, 48
User

Authentication file
group, 122
gshadow, 124
passwd, 119
shadow, 121

Configuring password aging, 136
Creating, 127
Deleting, 128
Doing as superuser, 144
Identifying, 118
Initialization file

Per-user, 171
Sourcing sequence, 172
System-wide, 170

Locking and unlocking, 140
login.defs file, 125
Managing

Listing logged-in users, 114
Listing previous failed logins, 116
Listing previous successful logins, 115

Listing recent logins, 117
Modifying, 127
Nologin account, 130
Owning user, 146
Password aging, 136
Skeleton directory, 127
Substituting, 143
Type

Normal, 118
Service, 118
Superuser, 118

User Private Group, 122
useradd file, 125

User Datagram Protocol (See Networking)
User Private Group, 122
useradd command, 127
useradd file, 125
usermod command, 127
UUID (See File system)

V

vdo command, 315
vdostats command, 315
vgcreate command, 325
vgdisplay command, 324
vgextend command, 325
vgreduce command, 325
vgremove command, 325
vgrename command, 325
vgs command, 323, 326
vi editor (See vim editor)
vim editor, 67

Changing, 70
Copying, 70
Deleting, 68
Inserting, 67
Modes, 67

Command mode, 67
Extended mode, 67
Input mode, 67
Last line mode, 67

Moving, 70
Navigating, 68

Pasting, 70
Replacing, 70
Saving and quitting, 71
Searching, 69
Starting, 67
Undoing and repeating, 69

VirtualBox
Changing boot order, 27
Creating virtual machine, 10
Downloading, 6

Volume-Managing file system, 336

W

w command, 115
Wayland, 34

Desktop environment, 35
Desktop manager, 34
Display/Login manager, 34

wc command, 76
whatis command, 54
whereis command, 49
which command, 49
who command, 114
Wildcard characters (See Wildcards under Shell)
wtmp file, 116

X

xfs_admin command, 350
xfs_growfs command, 350
xfs_info command, 350
xfs_repair command, 348

Z

Zero-block elimination, 314

	Title Page
	Copyright Page
	Preface
	Acknowledgments
	About the Author
	About this Book
	Table of Contents
	List of Figures
	List of Tables
	01. Local Installation
	A Quick Look at Linux Development
	Linux History in a Nutshell
	Linux from Red Hat

	Lab Infrastructure for Practice
	What is Needed for the Lab?
	The RHEL Installer Program
	Where Do Installation Logs Go?
	Virtual Console Screens

	Exercise 1-1: Download and Install VirtualBox Software, and Create a Virtual Machine
	Downloading and Installing VirtualBox
	Creating a Virtual Machine

	Exercise 1-2: Download and Install RHEL 8
	Downloading RHEL 8 ISO Image
	Attaching RHEL 8 ISO Image to the Virtual Machine
	Launching the Installer
	Adding Support for Keyboards and Languages
	Configuring Time & Date
	Choosing an Installation Source
	Selecting Software to be Installed
	Configuring Installation Destination
	Configuring Network and Hostname
	Beginning Installation
	Setting root Password and Creating a User Account
	Concluding Installation
	Changing Default Boot Order
	Performing Post-Installation Tasks

	Logging In and Out
	Logging In for the First Time
	Logging Out

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 1-1: Build RHEL8-VM2 (server2)

	02. Initial Interaction with the System
	Linux Graphical Environment
	Display/Login Manager
	Desktop Environment

	Linux Directory Structure and File Systems
	Top-Level Directories
	File System Categories
	The Root File System (/), Disk-Based
	The Boot File System (/boot) – Disk-Based
	The Home Directory (/home)
	The Optional Directory (/opt)
	The UNIX System Resources Directory (/usr)
	The Variable Directory (/var)
	The Temporary Directory (/tmp)
	The Devices File System (/dev), Virtual
	The Procfs File System (/proc), Virtual
	The Runtime File System (/run), Virtual
	The System File System (/sys), Virtual
	Viewing Directory Hierarchy

	Basic System Commands
	Starting a GNOME Terminal Session
	Understanding the Command Mechanics
	Listing Files and Directories
	Printing Working Directory
	Navigating Directories
	Identifying Terminal Device File
	Inspecting System’s Uptime and Processor Load
	Clearing the Screen
	Determining Command Path
	Viewing System Information
	Viewing CPU Specs

	Getting Help
	Accessing Manual Pages
	Headings in the Manual
	Manual Sections
	Searching by Keyword
	Exposing Short Description
	The info and pinfo Commands
	Documentation in the /usr/share/doc Directory
	Red Hat Enterprise Linux 8 Documentation

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 2-1: Navigate Linux Directory Tree
	Lab 2-2: Miscellaneous Tasks
	Lab 2-3: Identify System and Kernel Information
	Lab 2-4: Use Help

	03. Basic File Management
	Common File Types
	Regular Files
	Directory Files
	Block and Character Special Device Files
	Symbolic Links

	Compression and Archiving
	Using gzip and gunzip
	Using bzip2 and bunzip2
	Differences between gzip and bzip2
	Using tar
	Exercise 3-1: Create Compressed Archives

	File Editing
	Modes of Operation
	Starting vim
	Inserting text
	Navigating within vim
	Deleting Text
	Undoing and Repeating
	Searching for Text
	Replacing Text
	Copying, Moving, and Pasting Text
	Changing Text
	Saving and Quitting vim

	File and Directory Operations
	Creating Files and Directories
	Displaying File Contents
	Counting Words, Lines, and Characters in Text Files
	Copying Files and Directories
	Moving and Renaming Files and Directories
	Removing Files and Directories

	File Linking
	Hard Link
	Soft Link
	Differences between Copying and Linking
	Exercise 3-2: Create and Manage Hard Links
	Exercise 3-3: Create and Manage Soft Links

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 3-1: Archive, List, and Restore Files
	Lab 3-2: Practice the vim Editor
	Lab 3-3: File and Directory Operations

	04. Advanced File Management
	File and Directory Access Permissions
	Determining Access Permissions
	Permission Classes
	Permission Types
	Permission Modes
	Modifying Access Permission Bits
	Exercise 4-1: Modify Permission Bits Using Symbolic Form
	Exercise 4-2: Modify Permission Bits Using Octal Form
	Default Permissions
	Calculating Default Permissions

	Special File Permissions
	The setuid Bit on Binary Executable Files
	Exercise 4-3: Test the Effect of setuid Bit on Executable Files
	The setgid Bit on Binary Executable Files
	Exercise 4-4: Test the Effect of setgid Bit on Executable Files
	The setgid Bit on Shared Directories
	Exercise 4-5: Set up Shared Directory for Group Collaboration
	The Sticky Bit on Public and Shared Writable Directories
	Exercise 4-6: Test the Effect of Sticky Bit

	File Searching
	Using the find Command
	Using find with -exec and -ok Flags
	Using the locate Command

	Access Control Lists (ACLs)
	ACL Management Commands
	The getfacl Command
	The setfacl Command
	The Role of the mask Value
	Exercise 4-7: Identify, Apply, and Erase Access ACLs
	Default ACLs
	Exercise 4-8: Apply, Identify, and Erase Default ACLs

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 4-1: Manipulate File Permissions
	Lab 4-2: Configure Group Collaboration and Prevent File Deletion
	Lab 4-3: Find Files
	Lab 4-4: Find Files Using Different Criteria
	Lab 4-5: Apply ACL Settings

	05. Basic User Management
	User Login Activity and Information
	Listing Logged-In Users
	Inspecting History of Successful Login Attempts and System Reboots
	Viewing History of Failed User Login Attempts
	Reporting Recent User Login Attempts
	Examining User and Group Information

	Local User Authentication Files
	The passwd File
	The shadow File
	The group File
	The gshadow File

	The useradd and login.defs Configuration Files
	User Account Management
	The useradd, usermod, and userdel Commands
	Exercise 5-1: Create a User Account with Default Attributes
	Exercise 5-2: Create a User Account with Custom Values
	Exercise 5-3: Modify and Delete a User Account
	No-Login (Non-Interactive) User Account
	Exercise 5-4: Create a User Account with No-Login Access

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 5-1: Check User Login Attempts
	Lab 5-2: Verify User and Group Identity
	Lab 5-3: Create Users
	Lab 5-4: Create User with Non-Interactive Shell

	06. Advanced User Management
	Password Aging and its Management
	The chage Command
	Exercise 6-1: Set and Confirm Password Aging with chage
	The passwd Command
	Exercise 6-2: Set and Confirm Password Aging with passwd
	The usermod Command
	Exercise 6-3: Lock and Unlock a User Account with usermod and passwd

	Linux Groups and their Management
	The groupadd, groupmod, and groupdel Commands
	Exercise 6-4: Create a Group and Add Members
	Exercise 6-5: Modify and Delete a Group Account

	Substituting Users and Doing as Superuser
	Substituting (or Switching) Users
	Doing as Superuser (or Doing as Substitute User)

	Owning User and Owning Group
	Exercise 6-6: Modify File Owner and Owning Group

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 6-1: Create User and Configure Password Aging
	Lab 6-2: Lock and Unlock User
	Lab 6-3: Modify Group
	Lab 6-4: Configure sudo Access
	Lab 6-5: Modify Owning User and Group

	07. The Bash Shell
	The Bourne-Again Shell
	Internal and External Shell Commands
	Shell and Environment Variables
	Setting and Unsetting Variables
	Command and Variable Substitutions
	Exercise 7-1: Modify Primary Command Prompt
	Input, Output, and Error Redirections
	History Substitution
	Editing at the Command Line
	Tab Completion
	Tilde Substitution
	Alias Substitution
	Metacharacters and Wildcard Characters
	Piping Output of One Command as Input to Another
	Quoting Mechanisms
	Regular Expressions
	Running and Controlling Jobs in Foreground and Background

	Shell Startup Files
	System-wide Shell Startup Files
	Per-user Shell Startup Files

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 7-1: Customize the Command Prompt
	Lab 7-2: Redirect the Standard Input, Output, and Error

	08. Linux Processes and Task Scheduling
	Processes and Priorities
	Process States
	Viewing and Monitoring Processes with ps
	Viewing and Monitoring Processes with top
	Listing a Specific Process
	Listing Processes by User and Group Ownership
	Understanding Process Niceness
	Viewing and Changing Process Niceness
	Renicing a Running Process
	Controlling Processes with Signals

	Job Scheduling
	Controlling User Access
	Scheduler Log File
	Using at
	Exercise 8-1: Submit, View, List, and Remove an at Job
	Using crontab
	Syntax of User Crontables
	Exercise 8-2: Add, List, and Remove a Cron Job
	Anacron

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 8-1: Nice and Renice a Process
	Lab 8-2: Configure a User Crontab File

	09. Basic Package Management
	Package Overview
	Packages and Packaging
	Package Naming
	Package Dependency
	Package Database
	Package Management Tools

	Package Management with rpm
	The rpm Command
	Getting Ready to Use rpm
	Querying Packages
	Installing a Package
	Upgrading a Package
	Freshening a Package
	Overwriting a Package
	Removing a Package
	Extracting Files from an Installable Package
	Validating Package Integrity and Credibility
	Viewing GPG Keys
	Verifying Package Attributes
	Exercise 9-1: Perform Package Management Tasks Using rpm

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 9-1: Install and Verify Packages
	Lab 9-2: Query and Remove Packages

	10. Advanced Package Management
	Advanced Package Management Concepts
	Package Groups
	Application Streams and Modules
	BaseOS Repository
	AppStream Repository
	Benefits of Segregation
	Module Streams
	Module Profiles
	dnf/yum Repository

	Software Management with dnf
	dnf Configuration File
	The dnf Command
	Exercise 10-1: Configure Access to Pre-Built ISO Repositories

	Individual Package Management
	Listing Available and Installed Packages
	Installing and Updating Packages
	Exhibiting Package Information
	Removing Packages
	Exercise 10-2: Manipulate Individual Packages
	Determining Provider and Searching Package Metadata

	Package Group Management
	Listing Available and Installed Package Groups
	Installing and Updating Package Groups
	Removing Package Groups
	Exercise 10-3: Manipulate Package Groups

	Module Management
	Listing Available and Installed Modules
	Installing and Updating Modules
	Displaying Module Information
	Removing Modules
	Exercise 10-4: Manipulate Modules
	Switching Module Streams
	Exercise 10-5: Install a Module from an Alternative Stream

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 10-1: Configure Access to RHEL 8 Repositories
	Lab 10-2: Install and Manage Individual Packages
	Lab 10-3: Install and Manage Package Groups
	Lab 10-4: Install and Manage Modules
	Lab 10-5: Switch Module Streams and Install Software

	11. Boot Process, GRUB2, and the Linux Kernel
	Linux Boot Process
	The Firmware Phase (BIOS and UEFI)
	The Bootloader Phase
	The Kernel Phase
	The Initialization Phase

	The GRUB2 Bootloader
	Interacting with GRUB2
	Understanding GRUB2 Configuration Files
	Booting into Specific Targets
	Exercise 11-1: Reset the root User Password

	The Linux Kernel
	Kernel Packages
	Analyzing Kernel Version
	Understanding Kernel Directory Structure
	Installing the Kernel
	Exercise 11-2: Download and Install a New Kernel

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 11-1: Modify GRUB2 Timeout
	Lab 11-2: Reset root User Password
	Lab 11-3: Install New Kernel

	12. System Initialization, Message Logging, and System Tuning
	System Initialization and Service Management
	Units
	Targets
	The systemctl Command
	Listing and Viewing Units
	Managing Service Units
	Managing Target Units

	System Logging
	The Syslog Configuration File
	Rotating Log Files
	The Boot Log File
	The System Log File
	Logging Custom Messages

	The systemd Journal
	Retrieving and Viewing Messages
	Preserving Journal Information

	System Tuning
	Tuning Profiles
	The tuned-adm Command
	Exercise 12-1: Manage Tuning Profiles

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 12-1: Modify Default Boot Target
	Lab 12-2: Record Custom Alerts
	Lab 12-3: Apply Tuning Profile

	13. Basic Storage Partitioning
	Storage Management Overview
	Master Boot Record (MBR)
	GUID Partition Table (GPT)
	Disk Partitions
	Storage Management Tools
	Thin Provisioning
	Adding Storage for Practice
	Exercise 13-1: Add Required Storage to server2

	MBR Storage Management with parted
	Exercise 13-2: Create an MBR Partition
	Exercise 13-3: Delete an MBR Partition

	GPT Storage Management with gdisk
	Exercise 13-4: Create a GPT Partition
	Exercise 13-5: Delete a GPT Partition

	Storage Optimization with Virtual Data Optimizer (VDO)
	How VDO Conserves Storage Space
	Creating and Managing VDO Volumes
	Exercise 13-6: Install Software and Activate VDO
	Exercise 13-7: Create a VDO Volume
	Exercise 13-8: Delete a VDO Volume

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 13-1: Create and Remove Partitions with parted
	Lab 13-2: Create and Remove Partitions with gdisk
	Lab 13-3: Create and Delete VDO Volumes
	Lab 13-4: Disable and Enable VDO Volume Features

	14. Advanced Storage Partitioning
	Logical Volume Manager (LVM)
	Physical Volume
	Volume Group
	Physical Extent
	Logical Volume
	Logical Extent
	LVM Operations and Commands
	Exercise 14-1: Create a Physical Volume and Volume Group
	Exercise 14-2: Create Logical Volumes
	Exercise 14-3: Extend a Volume Group and a Logical Volume
	Exercise 14-4: Rename, Reduce, Extend, and Remove Logical Volumes
	Exercise 14-5: Reduce and Remove a Volume Group
	Exercise 14-6: Uninitialize Physical Volumes

	Stratis Volume-Managing File System
	Stratis Management Operations and Command
	Exercise 14-7: Install Software and Activate Stratis
	Exercise 14-8: Create and Confirm a Pool and File System
	Exercise 14-9: Expand and Rename a Pool and File System
	Exercise 14-10: Destroy a File System and Pool

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 14-1: Create Volume Group and Logical Volumes
	Lab 14-2: Expand Volume Group and Logical Volume
	Lab 14-3: Reduce and Remove Logical Volumes
	Lab 14-4: Remove Volume Group and Physical Volumes
	Lab 14-5: Create Stratis Pool
	Lab 14-6: Expand and Destroy Stratis Pool

	15. Local File Systems and Swap
	File Systems and File System Types
	Extended File Systems
	XFS File System
	VFAT File System
	ISO9660 File System

	File System Management
	File System Administration Commands
	Mounting and Unmounting File Systems
	Determining the UUID of a File System
	Labeling a File System
	Automatically Mounting a File System at Reboots
	Monitoring File System Usage
	Calculating Disk Usage
	Exercise 15-1: Create and Mount Ext4, VFAT, and XFS File Systems in Partitions
	Exercise 15-2: Create and Mount XFS File System in VDO Volume
	Exercise 15-3: Create and Mount Ext4 and XFS File Systems in LVM Logical Volumes
	Exercise 15-4: Resize Ext4 and XFS File Systems in LVM Logical Volumes
	Exercise 15-5: Create, Mount, and Expand XFS File System in Stratis Volume

	Swap and its Management
	Determining Current Swap Usage
	Prioritizing Swap Spaces
	Swap Administration Commands
	Exercise 15-6: Create and Activate Swap in Partition and Logical Volume

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 15-1: Create VFAT, Ext4, and XFS File Systems in Partitions and Mount Persistently
	Lab 15-2: Create XFS File System in VDO Volume and Mount Persistently
	Lab 15-3: Create Ext4 and XFS File Systems in LVM Logical Volumes and Mount Persistently
	Lab 15-4: Extend Ext4 and XFS File Systems in LVM Logical Volumes
	Lab 15-5: Create XFS File System in Stratis Volume and Mount Persistently
	Lab 15-6: Create Swap in Partition and LVM Logical Volume and Activate Persistently

	16. Remote File System
	Network File System
	Benefits of Using NFS
	NFS Versions

	NFS Server and Client Configuration
	Exercise 16-1: Export Share on NFS Server
	Exercise 16-2: Mount Share on NFS Client

	Auto File System (AutoFS)
	Benefits of Using AutoFS
	How AutoFS Works
	AutoFS Configuration File
	AutoFS Maps
	Exercise 16-3: Access NFS Share Using Direct Map
	Exercise 16-4: Access NFS Share Using Indirect Map
	Automounting User Home Directories
	Exercise 16-5: Automount User Home Directories Using Indirect Map

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 16-1: Configure NFS Share and Automount with Direct Map
	Lab 16-2: Automount NFS Share with Indirect Map

	17. Networking, Network Devices, and Network Connections
	Networking Fundamentals
	Hostname
	Exercise 17-1: Change System Hostname
	IPv4 Address
	Network Classes
	Subnetting
	Subnet Mask
	Classless Inter-Domain Routing (CIDR) Notation
	Protocol
	TCP and UDP Protocols
	Well-Known Ports
	ICMP Protocol
	Ethernet Address
	IPv6 Address
	Major Differences between IPv4 and IPv6

	Network Devices and Connections
	Consistent Network Device Naming
	Understanding Interface Connection Profile
	Exercise 17-2: Add Network Devices to server10 and server20
	Network Device and Connection Administration Tools
	Exercise 17-3: Configure New Network Connection Manually
	The NetworkManager Service
	The nmcli Command
	Exercise 17-4: Configure New Network Connection Using nmcli
	Understanding Hosts Table
	Testing Network Connectivity
	Exercise 17-5: Update Hosts Table and Test Connectivity

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 17-1: Add New Interface and Configure Connection Profile with nmcli
	Lab 17-2: Add New Interface and Configure Connection Profile Manually

	18. Time Synchronization and Hostname Resolution
	Time Synchronization
	Time Sources
	NTP Roles
	Stratum Levels
	Chrony Configuration File
	Chrony Daemon and Command
	Exercise 18-1: Configure NTP Client
	Displaying and Setting System Date and Time

	DNS and Name Resolution
	DNS Name Space and Domains
	DNS Roles
	Understanding Resolver Configuration File
	Performing Name Resolution with dig
	Performing Name Resolution with host
	Performing Name Resolution with nslookup
	Performing Name Resolution with getent

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 18-1: Modify System Date and Time
	Lab 18-2: Configure Chrony

	19. The Secure Shell Service
	The OpenSSH Service
	Common Encryption Techniques
	Authentication Methods
	OpenSSH Protocol Version and Algorithms
	OpenSSH Packages
	OpenSSH Server Daemon and Client Commands
	Server Configuration File
	Client Configuration File

	System Access and File Transfer
	Exercise 19-1: Access RHEL System from Another RHEL System
	Exercise 19-2: Access RHEL System from Windows
	Exercise 19-3: Generate, Distribute, and Use SSH Keys
	Executing Commands Remotely Using ssh
	Copying Files Remotely Using scp
	Transferring Files Remotely Using sftp
	Synchronizing Files Remotely Using rsync

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 19-1: Establish Key-Based Authentication
	Lab 19-2: Test the Effect of PermitRootLogin Directive

	20.The Linux Firewall
	Firewall Overview
	Overview of firewalld
	firewalld Zones
	Zone Configuration Files
	firewalld Services
	Service Configuration Files

	Firewall Management
	The firewall-cmd Command
	Querying the Operational Status of firewalld
	Exercise 20-1: Add Services and Ports, and Manage Zones
	Exercise 20-2: Remove Services and Ports, and Manage Zones
	Exercise 20-3: Test the Effect of Firewall Rule

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 20-1: Add Service to Firewall
	Lab 20-2: Add Port Range to Firewall

	21.Security Enhanced Linux
	Security Enhanced Linux
	Terminology
	SELinux Contexts for Users
	SELinux Contexts for Processes
	SELinux Contexts for Files
	Copying, Moving, and Archiving Files with SELinux Contexts
	SELinux Contexts for Ports
	Domain Transitioning
	SELinux Booleans

	SELinux Administration
	Management Commands
	Viewing and Controlling SELinux Operational State
	Querying Status
	Exercise 21-1: Modify SELinux File Context
	Exercise 21-2: Add and Apply File Context
	Exercise 21-3: Add and Delete Network Ports
	Exercise 21-4: Copy Files with and without Context
	Exercise 21-5: View and Toggle SELinux Boolean Values
	Monitoring and Analyzing SELinux Violations

	Chapter Summary
	Check Your Understanding
	Answers to Check Your Understanding
	Do-It-Yourself Challenge Labs
	Lab 21-1: Disable and Enable the SELinux Operating Mode
	Lab 21-2: Modify Context on Files
	Lab 21-3: Add Network Port to Policy Database
	Lab 21-4: Copy Files with and without Context
	Lab 21-5: Flip SELinux Booleans

	Appendix A: Sample RHCSA Exam 1
	Appendix B: Sample RHCSA Exam 2
	Appendix C: Sample RHCSA Exam 3
	Appendix D: Sample RHCSA Exam 4
	Bibliography
	Glossary
	Index

